
Object-Oriented Modeling

PowerDesigner® 16.5

Windows

DOCUMENT ID: DC38086-01-1650-01
LAST REVISED: January 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

PART I: Building OOMs ..1

CHAPTER 1: Getting Started with Object-Oriented
Modeling ...3

Creating an OOM ...5
OOM Properties ..7

Previewing Object Code ..8
Customizing Object Creation Scripts10
Customizing your Modeling Environment11

Setting OOM Model Options ...11
Setting OOM Display Preferences13
Viewing and Editing the Object Language Definition

File ..13
Changing the Object Language13

Extending your Modeling Environment14
Linking Objects with Traceability Links15

CHAPTER 2: Use Case Diagrams17
Use Case Diagram Objects ...18
Use Cases (OOM) ...18

Creating a Use Case ..19
Use Case Properties ..19

Actors (OOM) ...20
Creating an Actor ..22
Actor Properties ..22
Reusing Actors ...24

Use Case Associations (OOM) ...24
Creating a Use Case Association25
Use Case Association Properties25

Object-Oriented Modeling iii

CHAPTER 3: Structural Diagrams27
Class Diagrams ..27

Class Diagram Objects ...28
Composite Structure Diagrams ..29

Composite Structure Diagram Objects30
Package Diagrams ...31

Package Diagram Objects ..32
Object Diagrams ..32

Object Diagram Objects ..33
Classes (OOM) ...34

Creating a Class ...34
Class Properties ...35
Creating Java BeanInfo Classes39

Creating a Java BeanInfo Class from the
Language Menu ..41

Creating a Java BeanInfo Class from the Class
Contextual Menu ...42

Generic Types and Methods ...42
Creating Generic Types42
Creating Generic Methods43
Creating a Specialized Classifier43
Creating a Bound Classifier45
Generic Type Example ...45

Composite and Inner Classifiers46
Creating Inner Classifiers46
Creating a Composite Classifier Diagram47

Specifying a Classifier as a Data Type or Return Type
..47

Viewing the Migrated Attributes of a Class48
Packages (OOM) ..49

OOM Package Properties ...50
Defining the Diagram Type of a New Package51

Interfaces (OOM) ..51

Contents

iv PowerDesigner

Creating an Interface ..51
Interface Properties .. 52

Objects (OOM) ..54
Creating an Object ..56
Object Properties ..56
Linking a Classifier to an Object57

Parts (OOM) ..58
Creating a Part ..59
Part Properties ..59

Ports (OOM) ..60
Creating a Port ..61
Port Properties ..61
Redefining Parent Ports ..63

Attributes (OOM) ..63
Creating an Attribute ...64

Copying an Attribute to a Class, Interface, or
Identifier ...65

Overriding an Attribute in PowerBuilder66
Adding Getter and Setter Operations to a

Classifier ..66
Attribute Properties ...67
Setting Data Profiling Constraints70

Creating Data Formats For Reuse71
Specifying Advanced Constraints72

Identifiers (OOM) ..72
Creating an Identifier .. 73

Creating a primary identifier when you create the
class attributes .. 73

Defining the Primary Identifier from the List of
Identifiers ...74

Identifier Properties .. 74
Adding Attributes to an Identifier75

Operations (OOM) ..76
Creating an Operation .. 76

Copying an Operation From Another Classifier . . .77

Contents

Object-Oriented Modeling v

Inheriting and Overriding Operations from
Parent Classifiers .. 77

Creating a Standard Operation77
Implementing Operations from an Interface78

Operation Properties ..79
Parameters (OOM) ...83

Associations (OOM) ..84
Creating an Association ..86
Association Properties ..86
Association Implementation ..89

Understanding the Generated Code91
Creating an Association Class92
Migrating Association Roles in a Class Diagram93

Migrating Navigable Roles93
Rebuilding Data Type Links ..94
Linking an Association to an Instance Link94

Generalizations (OOM) ..95
Creating a Generalization ...96
Generalization Properties ...96

Dependencies (OOM) ..98
Creating a Dependency ..99
Dependency Properties ..100

Realizations (OOM) ..102
Creating a Realization ..102
Realization Properties ..103

Require Links (OOM) ...103
Creating a Require Link ..104
Require Link Properties ..104

Assembly Connectors (OOM) ...105
Creating an Assembly Connector105
Assembly Connector Properties106

Delegation Connectors (OOM) ...106
Creating a Delegation Connector107
Delegation Connector Properties107

Annotations (OOM) ..108

Contents

vi PowerDesigner

Attaching an Annotation to a Model Object108
Creating a New Annotation Type110
Using the Annotation Editor ..113

Instance Links (OOM) ..113
Creating an Instance Link ...116
Instance Link Properties ... 117

Domains (OOM) ..117
Creating a Domain ..118
Domain Properties ..118
Updating Attributes Using a Domain in an OOM121

CHAPTER 4: Dynamic Diagrams123
Communication Diagrams ..123

Communication Diagram Objects125
Sequence Diagrams ..125

Sequence Diagram Objects ..128
Activity Diagrams ..129

Activity Diagram Objects ...131
Statechart Diagrams ..131

Defining a Default Classifier in a Statechart Diagram
.. 133

Statechart Diagram Objects133
Interaction Overview Diagrams ..134

Interaction Overview Diagram Objects135
Messages (OOM) ..135

Creating a Message ..137
Message Properties ..137
Creating Create and Destroy Messages in a

Sequence Diagram ...141
Creating Create Messages 141
Creating Destroy Messages142

Creating a Recursive Message in a Sequence
Diagram ..143

Contents

Object-Oriented Modeling vii

Creating a Recursive Message Without
Activation ...144

Creating a Recursive Message with Activation
...145

Messages and Gates ..145
Sequence Numbers ..147

Moving Sequence Numbers147
Inserting Sequence Numbers149
Increasing Sequence Numbers in a

Communication Diagram149
Decreasing Sequence Numbers in a

Communication Diagram149
Activations (OOM) ...149

Creating an Activation ...150
Creating Activations with Procedure Call

Messages ..150
Creating an Activation from a Diagram150

Attaching a Message to an Activation150
Detaching a Message from an Activation151
Overlapping Activations ..151
Moving an Activation ...152
Resizing an Activation ..152

Interaction References and Interaction Activities (OOM)
...153

Creating an Interaction Reference153
Creating an Interaction Activity154
Interaction Reference and Interaction Activity

Properties ...154
Manipulating Interaction References154

Interaction Fragments (OOM) ...155
Creating an Interaction Fragment155
Interaction Fragment Properties155
Manipulating Interaction Fragments157

Activities (OOM) ...158
Creating an Activity ...159

Contents

viii PowerDesigner

Activity Properties ...160
Specifying Activity Parameters162
Specifying Action Types ..163

Example: Using the Call Action Type164
Example: Reading and Writing Variables167

Decomposed Activities and Sub-Activities168
Converting an Activity Diagram to a

Decomposed Activity170
Organization Units (OOM) ..171

Creating an Organization Unit171
Creating Organization Units with the Swimlane

Tool ..172
Organization Unit Properties172
Attaching Activities to Organization Units173
Displaying a Committee Activity173
Managing Swimlanes and Pools174

Moving, Copying and Pasting Swimlanes175
Grouping and Ungrouping Swimlanes176
Creating Links Between Pools of Swimlanes178
Changing the Orientation of Swimlanes178
Resizing Swimlanes ...179
Changing the Format of a Swimlane179

Starts (OOM) ...179
Creating a Start ..180
Start Properties ..180

Ends (OOM) ...180
Creating an End ..181
End Properties ..181

Decisions (OOM) ...182
Creating a Decision ..184
Decision Properties ..184

Synchronizations (OOM) ..185
Creating a Synchronization ...186
Synchronization Properties ...186

Flows (OOM) ..187

Contents

Object-Oriented Modeling ix

Creating a Flow ...188
Flow Properties ...188

Object Nodes (OOM) ..189
Creating an Object Node ..190
Object Node Properties ..190

States (OOM) ..191
Creating a State ..192
State Properties ..192
Decomposed States and Sub-states194

Converting a Statechart Diagram to a
Decomposed State ..196

Transitions (OOM) ..197
Creating a Transition ...197
Transition Properties ...198

Events (OOM) ...199
Creating an Event ...200
Event Properties ...200
Defining Event Arguments ..201

Actions (OOM) ..201
Creating an Action ..203
Action Properties ..203

Junction Points (OOM) ..204
Creating a Junction Point ..205
Junction Point Properties ..205

CHAPTER 5: Implementation Diagrams207
Component Diagrams ...207

Component Diagram Objects208
Deployment Diagrams ...209

Deployment Diagram Objects210
Components (OOM) ...210

Creating a Component ..211
Using the Standard Component Wizard211

Component Properties ..212

Contents

x PowerDesigner

Creating a Class Diagram for a Component215
Deploying a Component to a Node216

Nodes (OOM) ..216
Creating a Node ..217
Node Properties ..217
Node Diagrams ...218

Component Instances (OOM) ...218
Creating a Component Instance219
Component Instance Properties220

Files (OOM) ...220
Creating a File Object ...221
File Object Properties ...222

Node Associations (OOM) ..223
Creating a Node Association223
Node Association Properties223

CHAPTER 6: Web Services ..225
Defining Web Services Tools ..225
Defining Web Services Targets ..228
Defining Web Service Components228

Web Service Component Properties228
Creating a Web Service with the Wizard231
Creating a Web Service from the Component Diagram

..233
Defining Data Types for WSDL234

WSDL Data Type Mappings234
Selecting WSDL Data Types234
Declaring Data Types in the WSDL234

Web Service Implementation Class Properties234
Managing Web Service Methods235

Creating a Web Service Method235
Web Service Method Properties237
Implementing a Web Service Method in Java237

Defining the Return Type of an Operation237

Contents

Object-Oriented Modeling xi

Defining the Parameters of an Operation238
Implementing the Operation240

Implementing a Web Service Method in .NET242
Defining Web Service Method Extended Attributes242
Defining SOAP Data Types of the WSDL Schema243

Defining Web Service Component Instances244
Web Service Tab of the Component Instance245
WSDL Tab of the Component Instance246
Using Node Properties ...246

Generating Web Services for Java246
Generating JAXM Web Services247
Generating JAX-RPC Web Services248
Generating Stateless Session Bean Web Services249
Generating AXIS RPC Web Services 250
Generating AXIS EJB Web Services 251
Generating Java Web Services (JWS)252
Testing Web Services for Java252

Generating Web Services for .NET252
Defining Web Services Generation Options in .NET ..252
Defining Web Service Generation Tasks in .NET253
Generating Web Services in .NET253
Generating a .NET Proxy Class for a Web Service254

Define the WSDL Variable254
Generate the Client Proxy Classes254

Deploying Web Services in .NET255
Testing Web Services for .NET255

Generating Web Services for Sybase WorkSpace256
Creating a Java or EJB Web Service for Sybase

WorkSpace ...256
Defining the Java Class Package257
Generating the Java or EJB Web Service for Sybase

WorkSpace ...258
Understanding the .svc_java or .svc_ejb File258

Importing WSDL Files ...259
Browsing WSDL Files from UDDI261

Contents

xii PowerDesigner

CHAPTER 7: Generating and Reverse Engineering
OO Source Files ...263

Generating OO Source Files from an OOM263
Working with Generation Targets266
Defining the Source Code Package266

Reverse Engineering OO Source Files into an OOM267
Reverse Engineering OO Files into a New OOM267

Reverse Engineering Encoding Format268
Reverse Engineering into an Existing OOM269

Synchronizing a Model with Generated Files270

CHAPTER 8: Generating Other Models from an OOM
...273

Managing Object Persistence During Generation of
Data Models ...275

Managing Persistence for Generalizations275
Managing Persistence for Complex Data Types277
Customizing XSM Generation for Individual Objects279

CHAPTER 9: Checking an OOM281
Domain Checks ..281
Data Source Checks ..282
Package Checks ...283
Actor/Use Case Checks ..284
Class Checks ...285
Identifier Checks ..291
Interface Checks ..291
Class/Interface Attribute Checks294
Class/Interface Operation Checks295
Realization Checks ..297
Generalization Checks ..297
Object Checks ..298

Contents

Object-Oriented Modeling xiii

Instance Link Checks ..299
Message Checks ..299
State Checks ..300
State Action Checks ..301
Event Checks ...302
Junction Point Checks ..303
Activity Checks ..303
Decision Checks ..304
Object Node Checks ..305
Organization Unit Checks ...306
Start/End Checks ...307
Synchronization Checks ...307
Transition and Flow Checks ...308
Component Checks ...309
Node Checks ..310
Data Format Checks ...311
Component Instance Checks ...311
Interaction Reference Checks ..312
Class Part Checks ...313
Class/Component Port Checks ..314
Class/component Assembly Connector Checks315
Association Checks ...316
Activity Input and Output Parameter Checks316

CHAPTER 10: Importing a Rational Rose Model into
an OOM ...317

Importing Rational Rose Use Case Diagrams318
Importing Rational Rose Class Diagrams319
Importing Rational Rose Collaboration Diagrams320
Importing Rational Rose Sequence Diagrams321
Importing Rational Rose Statechart Diagrams321
Importing Rational Rose Activity Diagrams322
Importing Rational Rose Component Diagrams323
Importing Rational Rose Deployment Diagrams324

Contents

xiv PowerDesigner

CHAPTER 11: Importing and Exporting an OOM in
XMI Format ...325

Importing XMI Files ...325
Exporting XMI Files ...325

PART II: Object Language Definition Reference327

CHAPTER 12: Working with Java329
Java Public Classes ..329
Java Enumerated Types (Enums)329
JavaDoc Comments ..332

Defining Values for Javadoc Tags335
Javadoc Comments Generation and Reverse

Engineering .. 337
Java 5.0 Annotations ...337
Java Strictfp Keyword ...338
Enterprise Java Beans (EJBs) V2339

Using EJB Types ...340
EJB Properties ..341
Creating an EJB with the Wizard341
Defining Interfaces and Classes for EJBs344
Defining Operations for EJBs 346

Adding an Operation to the Bean Class 347
Adding an Operation to an EJB Interface 347
Understanding Operation Synchronization348

Understanding EJB Support in an OOM348
Previewing the EJB Deployment Descriptor 351
Generating EJBs ...353

What Kind of Generation to Use?354
Understanding EJB Source and Persistence356
Generating EJB Source Code and the

Deployment Descriptor357

Contents

Object-Oriented Modeling xv

Generating JARs .. 358
Reverse Engineering EJB Components359

Enterprise Java Beans (EJBs) V3360
Creating an EJB 3.0 with the Enterprise JavaBean

Wizard ..360
EJB 3.0 BeanClass Properties364
EJB 3.0 Component Properties365

Adding Further Interfaces and Classes to the
EJB ..365

EJB 3.0 Operation Properties366
Java Servlets ..367

Servlet Page of the Component367
Defining Servlet Classes ..368
Creating a Servlet with the Wizard368
Understanding Servlet Initialization and

Synchronization ..369
Generating Servlets ..370

Generating Servlet Web Deployment Descriptor
...373

Generating WARs ...373
Reverse Engineering Servlets374

Java Server Pages (JSPs) ...376
JSP Page of the Component376
Defining File Objects for JSPs376
Creating a JSP with the Wizard377
Generating JSPs ...378

Generating JSP Web Deployment Descriptor378
Reverse Engineering JSPs ...381

Generating Java Files ..382
Reverse Engineering Java Code386

Reverse Engineer Java Options Tab388
Reverse Engineering Java Code Comments390

Contents

xvi PowerDesigner

CHAPTER 13: Working with the Eclipse Modeling
Framework (EMF) ...391

EMF Objects ...391
EPackages ...391
Eclasses, EEnums, and EDataTypes391
EAnnotations ...392
Eattributes and EEnumLiterals392
EReferences ..392
EOperations and EParameters393

Generating EMF Files ..393
Reverse Engineering EMF Files394

CHAPTER 14: Working with IDL CORBA -
Deprecated ...395

IDL Objects ...395
Generating for IDL ...404
Reverse Engineering IDL Files ...405

CHAPTER 15: Working with PowerBuilder407
PowerBuilder Objects ..407
Generating PowerBuilder Objects410
Reverse Engineering PowerBuilder411

Reverse Engineered Objects411
Operation Reversed Header412
Overriding Attributes ..413

PowerBuilder Reverse Engineering Process413
Reverse Engineering PowerBuilder Objects414

Loading a PowerBuilder Library Model in the
Workspace ...416

CHAPTER 16: Working with VB .NET417

Contents

Object-Oriented Modeling xvii

Inheritance & Implementation ..417
Namespace ...417
Project ...417
Accessibility ...418
Classes, Interfaces, Structs, and Enumerations419
Module ...420
Custom Attributes ...421
Shadows ..421
Variables ..422
Property ...423
Method ...424
Constructor & Destructor ...426
Delegate ...426
Event ..427
Event Handler ...428
External Method ...428
Generating VB.NET Files ..429
Reverse Engineering VB .NET ..431

Selecting VB .NET Reverse Engineering Options431
Defining VB .NET Reverse Engineering Options

...432
VB .NET Reverse Engineering Preprocessing433

VB .NET Supported Preprocessing Directives
...434

Defining a VB .NET Preprocessing Symbol434
VB .NET Reverse Engineering with

Preprocessing ...435
Reverse Engineering VB .NET Files436

Working with ASP.NET ..437
ASP Tab of the Component ..437
Defining File Objects for ASP.NET438
Creating an ASP.NET with the Wizard438
Generating ASP.NET ..440

Contents

xviii PowerDesigner

CHAPTER 17: Working with Visual Basic 2005 -
Deprecated ...443

Visual Basic 2005 Assemblies ..443
Visual Basic 2005 Compilation Units445

Partial Types ...447
Visual Basic 2005 Namespaces ..447
Visual Basic 2005 Classes ..448
Visual Basic 2005 Interfaces ...449
Visual Basic 2005 Structs ...449
Visual Basic 2005 Delegates ...450
Visual Basic 2005 Enums ..451
Visual Basic 2005 Fields, Events, and Properties452
Visual Basic 2005 Methods ...455
Visual Basic 2005 Inheritance and Implementation456
Visual Basic 2005 Custom Attributes456
Generating Visual Basic 2005 Files456
Reverse Engineering Visual Basic 2005 Code458

Visual Basic Reverse Engineer Dialog Options Tab .. .459
Visual Basic Reverse Engineering Preprocessing

Directives ..460
Visual Basic Supported Preprocessing

Directives ...461
Defining a Visual Basic Preprocessing Symbol

...461

CHAPTER 18: Working with C# - Deprecated463
Inheritance & Implementation ..463
Namespace ...463
Project ...463
Accessibility ...464
Classes, Interfaces, Structs, and Enumerations465
Custom Attributes ...467
Fields ...467

Contents

Object-Oriented Modeling xix

Property ...468
Indexer ...469
Method ...471
Constructor & Destructor ...473
Delegate ...473
Event ..474
Operator Method ..474
Conversion Operator Method ...474
Documentation Tags ...475
Generating C# Files ...476
Reverse Engineering C# ...478

Selecting C# Reverse Engineering Options479
Defining C# Reverse Engineering Options 480

C# Reverse Engineering Preprocessing480
C# Supported Preprocessing Directives481
Defining a C# Preprocessing Symbol482
C# Reverse Engineering with Preprocessing 483

Reverse Engineering C# Files 483

CHAPTER 19: Working with C# 2.0485
C# 2.0 Assemblies ...485
C# 2.0 Compilation Units ..487

Partial Types ... 488
C# 2.0 Namespaces ...489
C# 2.0 Classes ..490
C# 2.0 Interfaces ..491
C# 2.0 Structs ...491
C# 2.0 Delegates ..492
C# 2.0 Enums ...493
C# 2.0 Fields ...494
C# 2.0 Methods ..494
C# 2.0 Events, Indexers, and Properties497
C# 2.0 Inheritance and Implementation500
C# 2.0 Custom Attributes ..500

Contents

xx PowerDesigner

Generating C# 2.0 Files ...500
Reverse Engineering C# 2.0 Code502

C# Reverse Engineer Dialog Options Tab503
C# Reverse Engineering Preprocessing Directives504

C# Supported Preprocessing Directives504
Defining a C# Preprocessing Symbol505

CHAPTER 20: Working with XML - Deprecated507
Designing for XML ...507
Generating for XML ...511
Reverse-Engineering XML ..512

CHAPTER 21: Working with C++515
Designing for C++ ..515
Generating for C++ ..516

CHAPTER 22: Object/Relational (O/R) Mapping519
Top-Down: Mapping Classes to Tables519

Entity Class Transformation ..521
Attribute Transformation ..522
Value Type Transformation ..523
Association Transformation ...524

Association Class Transformation526
Inheritance Transformation ...526

Bottom-Up: Mapping Tables to Classes529
Meet in the Middle: Manually Mapping Classes to Tables

...530
Entity Class Mapping ..531
Attribute Mapping ..534
Primary Identifier Mapping ..535
Association Mapping ...538

One-to-One Association Mapping Strategy539
One-to-Many Association Mapping Strategy540

Contents

Object-Oriented Modeling xxi

Many-to-Many Association Mapping Strategy . . .543
Defining Inheritance Mapping543

Table Per Class Hierarchy Inheritance Mapping
Strategy ...543

Joined Subclass Inheritance Mapping Strategy
...546

Table Per Class Inheritance Mapping Strategy
...547

CHAPTER 23: Generating Persistent Objects for
Java and JSF Pages ..549

Generating Hibernate Persistent Objects549
Defining the Hibernate Default Options549
Defining the Hibernate Database Configuration

Parameters ...550
Defining Hibernate Basic O/R Mappings551

Defining Hibernate Class Mapping Options551
Defining Primary Identifier Mappings554
Defining Attribute Mappings558

Hibernate Association Mappings559
Defining Hibernate Association Mapping

Options ..559
Collection Management Options561
Persistence Options ...562
Mapping Collections of Value Types563

Defining Hibernate Inheritance Mappings564
Generating Code for Hibernate564

Checking the Model ...565
Defining Generation Options565
Generating Code for Hibernate566

Using the Generated Hibernate Code567
Importing the Generated Project into Eclipse567
Performing the Unit Tests567
Running Unit Tests in Eclipse568

Contents

xxii PowerDesigner

Running Unit Tests with Ant570
Generating EJB 3 Persistent Objects571

Generating Entities for EJB 3.0572
Defining EJB 3 Basic O/R Mapping572

Defining Entity Mappings572
Defining Embeddable Class Mapping575

Defining EJB 3 Association Mappings576
Mapping One-to-one Associations576
Mapping One-to-many Associations576
Mapping Many-to-many Associations577
Defining EJB 3 Association Mapping Options

...578
Defining EJB 3 Inheritance Mappings578

Mapped Superclasses579
Table Per Class Hierarchy Strategy579
Joined Subclass Strategy579
Applying Table Per Class Strategy580

Defining EJB 3 Persistence Default Options580
Defining EJB 3 Persistence Configuration580
Checking the Model ..582
Generating Code for EJB 3 Persistence583

Defining the Environment Variable583
Generate Code ..584
Authoring in Dali Tools586
Run Unit Tests ...586
Generated File List ..589

Generating JavaServer Faces (JSF) for Hibernate590
Defining Global Options ..590
Defining Attribute Options ...593

Derived Attributes ..595
Attribute Validation Rules and Default Values

...595
Defining Master-Detail Pages596
Generating PageFlow Diagrams598

Generating a class level PageFlow diagram598

Contents

Object-Oriented Modeling xxiii

Generating a Package Level PageFlow
Diagram: ..599

Generating a Model Level PageFlow Diagram
...599

Modifing Default High Level PageFlow Diagram
...600

Installing Apache MyFaces Runtime Jar Files602
Configuring for JSF Generation603
Generating JSF Pages ..603
Testing JSF Pages ..604

Testing JSF Pages with Eclipse WTP604
Testing JSF Pages with Apache Tomcat604

CHAPTER 24: Generating .NET 2.0 Persistent
Objects and Windows Applications605

Generating ADO.NET and ADO.NET CF Persistent
Objects ...607

ADO.NET and ADO.NET CF Options607
Class Mappings ..608

Primary Identifier Mappings610
Attribute Mappings ...611

Defining Association Mappings612
Defining Inheritance Mappings614
Generating Code for ADO.NET or ADO.NET CF614

Generating NHibernate Persistent Objects615
NHibernate Options ..616
Defining Class Mappings ..617

Primary Identifier Mappings620
Attribute Mappings ...623

Defining Association Mappings625
Defining NHibernate Collection Options626
Defining NHibernate Persistence Options627
Defining NHibernate Collection Container Type

...628

Contents

xxiv PowerDesigner

Defining Inheritance Mappings628
Generating Code for NHibernate629

Configuring Connection Strings630
Configuring a Connection String from the ADO.NET or

ADO.NET CF Tab ...631
Configuring a Connection String from the NHibernate

Tab ..631
OLEDB Connection String Parameters631
ODBC Connection String Parameters632
Microsoft SQL Server and Microsoft SQL Server

Mobile Edition Connection String Parameters632
Oracle Connection String Parameters632

Generating Code for Unit Testing633
Running NUnit Unit Tests ..635
Running Visual Studio Test System Unit Tests636

Running Tests in Visual Studio.NET 2005 IDE
...637

Running Tests from the Command Line637
Generating Windows or Smart Device Applications638

Specifying an Image Library638
Controlling the Data Grid View638
Defining Attributes Display Options638
Defining Attribute Validation Rules and Default Values

..639
Generating Code for a Windows Application639
Generating Code for a Smart Device Application640

Deploying Code to a Smart Device641
Testing the Application on the Device641

Index ...643

Contents

Object-Oriented Modeling xxv

Contents

xxvi PowerDesigner

PART I

Building OOMs

The chapters in this part explain how to model your information systems in
PowerDesigner®.

Object-Oriented Modeling 1

2 PowerDesigner

CHAPTER 1 Getting Started with Object-
Oriented Modeling

An object-oriented model (OOM) helps you analyze an information system through use cases,
structural and behavioral analyses, and in terms of deployment, using the Unified Modeling
Language (UML). You can model, reverse-engineer, and generate for Java, .NET and other
languages.

PowerDesigner® supports the following UML diagrams:

• Use case diagram () - see Chapter 2, Use Case Diagrams on page 17

• Structural Diagrams:
• Class diagram () - see Class Diagrams on page 27
• Composite structure diagram () - see Composite Structure Diagrams on page 29
• Object diagram () - see Object Diagrams on page 32
• Package diagram () - see Package Diagrams on page 31

• Dynamic Diagrams:
• Communication diagram () - see Communication Diagrams on page 123
• Sequence diagram () - see Sequence Diagrams on page 125
• Activity diagram () - see Activity Diagrams on page 129
• Statechart diagram () - see Statechart Diagrams on page 131
• Interaction overview diagram () - see Interaction Overview Diagrams on page

134
• Implementation Diagrams:

• Component diagram () - see Component Diagrams on page 207
• Deployment diagram () - see Deployment Diagrams on page 209

In the picture below, you can see how the various UML diagrams can interact within your
model:

Object-Oriented Modeling 3

Suggested Bibliography

• James Rumbaugh, Ivar Jacobson, Grady Booch – The Unified Modeling Language
Reference Manual – Addison Wesley, 1999

• Grady Booch, James Rumbaugh, Ivar Jacobson – The Unified Modeling Language User
Guide – Addison Wesley, 1999

CHAPTER 1: Getting Started with Object-Oriented Modeling

4 PowerDesigner

• Ivar Jacobson, Grady Booch, James Rumbaugh – The Unified Software Development
Process – Addison Wesley, 1999

• Doug Rosenberg, Kendall Scott – Use Case Driven Object Modeling With UML A
Practical Approach – Addison Wesley, 1999

• Michael Blaha, William Premerlani – Object-Oriented Modeling and Design for Database
Applications – Prentice Hall, 1998

• Geri Schneider, Jason P. Winters, Ivar Jacobson – Applying Use Cases: A Practical Guide
– Addison Wesley, 1998

• Pierre-Alain Muller – Instant UML – Wrox Press Inc, 1997
• Bertrand Meyer – Object-Oriented Software Construction – Prentice Hall, 2nd Edition,

1997
• Martin Fowler, Kendall Scott – UML Distilled Applying The Standard Object Modeling

Language – Addison Wesley, 1997

Creating an OOM
You create a new object-oriented model by selecting File > New Model.

Note: In addition to creating an OOM from scratch with the following procedure, you can also
reverse-engineer a model from existing OO code (see Reverse Engineering OO Source Files
into an OOM on page 267).

The New Model dialog is highly configurable, and your administrator may hide options that
are not relevant for your work or provide templates or predefined models to guide you through
model creation. When you open the dialog, one or more of the following buttons will be
available on the left hand side:

• Categories - which provides a set of predefined models and diagrams sorted in a
configurable category structure.

• Model types - which provides the classic list of PowerDesigner model types and
diagrams.

• Template files - which provides a set of model templates sorted by model type.

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 5

1. Select File > New Model to open the New Model dialog.

2. Click a button, and then select a category or model type (Object-Oriented Model) in the
left-hand pane.

3. Select an item in the right-hand pane. Depending on how your New Model dialog is
configured, these items may be first diagrams or templates on which to base the creation of
your model.

Use the Views tool on the upper right hand side of the dialog to control the display of the
items.

4. Enter a model name. The code of the model, which is used for script or code generation, is
derived from this name using the model naming conventions.

5. Select a target object language , which customizes PowerDesigner's default modifying
environment with target-specific properties, objects, and generation templates.

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the resource and save it in your model file, click the Embed Resource in
Model button to the right of this field. Embedding a file in this way enables you to make
changes specific to your model without affecting any other models that reference the
shared resource.

CHAPTER 1: Getting Started with Object-Oriented Modeling

6 PowerDesigner

6. [optional] Click the Select Extensions button and attach one or more extensions to your
model.

7. Click OK to create and open the object-oriented model .

Note: Sample OOMs are available in the Example Directory.

OOM Properties
You open the model property sheet by right-clicking the model in the Browser and selecting
Properties.

Each object-oriented model has the following model properties:

Property Description

Name/Code/Comment Identify the model. The name should clearly convey the model's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You
can optionally add a comment to provide more detailed information about
the model. By default the code is auto-generated from the name by applying
the naming conventions specified in the model options. To decouple name-
code synchronization, click to release the = button to the right of the Code
field.

Filename Specifies the location of the model file. This box is empty if the model has
never been saved.

Author Specifies the author of the model. If you enter nothing, the Author field in
diagram title boxes displays the user name from the model property sheet
Version Info tab. If you enter a space, the Author field displays nothing.

Version Specifies the version of the model. You can use this box to display the
repository version or a user defined version of the model. This parameter is
defined in the display preferences of the Title node.

Object language Specifies the model target.

Default diagram Specifies the diagram displayed by default when you open the model.

Keywords Provide a way of loosely grouping objects through tagging. To enter mul-
tiple keywords, separate them with commas.

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 7

Previewing Object Code
Click the Preview tab in the property sheet of the model, packages, classes, and various other
model objects in order to view the code that will be generated for it.

For example, if you have created EJB or servlet components in Java, the Preview tab displays
the EJB or Web deployment descriptor files. If you have selected an XML family language, the
Preview tab displays the Schema file that corresponds to the XML file to be generated.

If you have selected the Preview Editable option (available from Tools > Model Options),
you can modify the code of a classifier directly from its Preview tab. The modified code must
be valid and apply only to the present classifier or your modifications will be ignored. You can
create generalization and realization links if their classifiers already exist in the model, but you
cannot rename the classifier or modify the package declaration to move it to another package.
You should avoid renaming attributes and operations, as any other properties that are not
generated (such as description, annotation or extended attributes) will be lost. Valid changes
are applied when you leave the Preview tab or click the Apply button.

In a model targeting PowerBuilder, this feature can be used to provide a global vision of the
code of an object and its functions which is not available in PowerBuilder. You can use the
Preview tab to check where instance variables are used in the code. You can also modify the
body of a function or create a new function from an existing function using copy/paste.

CHAPTER 1: Getting Started with Object-Oriented Modeling

8 PowerDesigner

The following tools are available on the Preview tab toolbar:

Tools Description

Editor Menu [Shift+F11] - Contains the following commands:

• New [Ctrl+N] - Reinitializes the field by removing all the existing content.
• Open... [Ctrl+O] - Replaces the content of the field with the content of the se-

lected file.
• Insert... [Ctrl+I] - Inserts the content of the selected file at the cursor.
• Save [Ctrl+S] - Saves the content of the field to the specified file.
• Save As... - Saves the content of the field to a new file.
• Select All [Ctrl+A] - Selects all the content of the field.
• Find... [Ctrl+F] - Opens a dialog to search for text in the field.
• Find Next... [F3] - Finds the next occurence of the searched for text.
• Find Previous... [Shift+F3] - Finds the previous occurence of the searched for

text.
• Replace... [Ctrl+H] - Opens a dialog to replace text in the field.
• Go To Line... [Ctrl+G] - Opens a dialog to go to the specified line.
• Toggle Bookmark [Ctrl+F2] Inserts or removes a bookmark (a blue box) at the

cursor position. Note that bookmarks are not printable and are lost if you refresh
the tab, or use the Show Generation Options tool

• Next Bookmark [F2] - Jumps to the next bookmark.
• Previous Bookmark [Shift+F2] - Jumps to the previous bookmark.

Edit With [Ctrl+E] - Opens the previewed code in an external editor. Click the down
arrow to select a particular editor or Choose Program to specify a new editor. Editors
specified here are added to the list of editors available at Tools > General Options >
Editors.

Save [Ctrl+S] - Saves the content of the field to the specified file.

Print [Ctrl+P] - Prints the content of the field.

Find [Ctrl+F] - Opens a dialog to search for text.

 Cut [Ctrl+X], Copy [Ctrl+C], and Paste [Ctrl+V] - Perform the standard clipboard
actions.

 Undo [Ctrl+Z] and Redo [Ctrl+Y] - Move backward or forward through edits.

Refresh [F5] - Refreshes the Preview tab.

You can debug the GTL templates that generate the code shown in the Preview tab. To
do so, open the target or extension resource file, select the Enable Trace Mode option,
and click OK to return to your model. You may need to click the Refresh tool to
display the templates.

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 9

Tools Description

Select Generation Targets [Ctrl+F6] - Lets you select additional generation targets
(defined in extensions), and adds a sub-tab for each selected target. For information
about generation targets, see Customizing and Extending PowerDesigner > Extension
Files > Generated Files (Profile) > Generating Your Files in a Standard or Extended
Generation.

Show Generation Options [Ctrl+W] - Opens the Generation Options dialog, allow-
ing you to modify the generation options and to see the impact on the code. This feature
is especially useful when you are working with Java. For other object languages,
generation options do not influence the code.

Customizing Object Creation Scripts
The Script tab allows you to customize the object's creation script by, for example, adding
descriptive information about the script.

Examples
For example, if a project archives all generated creation scripts, a header can be inserted before
each creation script, indicating the date, time, and any other appropriate information or, if
generated scripts must be filed using a naming system other than the script name, a header
could direct a generated script to be filed under a different name.

You can insert scripts at the beginning (Header subtab) and the end (Footer subtab) of a script
or insert scripts before and after a class or interface creation command (Imports subtab)

The following tools and shortcut keys are available on the Script tab:

Tool Description

[Shift+F11] Open Editor Contextual menu

[Ctrl+E] Edit With - Opens your default editor.

Import Folder - [Imports sub-tab] Opens a selection window to select packages to
import to the cursor position, prefixed by the keyword 'import'.

Import Classifier - [Imports sub-tab] Opens a selection window to select classifiers to
import to the cursor position, prefixed by the keyword 'import'.

You can use the following formatting syntax with variables:

Format code Format of variable value in script

.L Lowercase characters

CHAPTER 1: Getting Started with Object-Oriented Modeling

10 PowerDesigner

Format code Format of variable value in script

.T Removes blank spaces

.U Uppercase characters

.c Upper-case first letter and lower-case next letters

.n Maximum length where n is the number of characters

.nJ Justifies to fixed length where n is the number of characters

You embed formatting options in variable syntax as follows:
%.format:variable%

Customizing your Modeling Environment
The PowerDesigner object-oriented model provides various means for customizing and
controlling your modeling environment.

Setting OOM Model Options
You can set OOM model options by selecting Tools > Model Options or right-clicking the
diagram background and selecting Model Options. These options affect all the objects in the
model, including those already created.

You can set the following options:

Option Definition

Name/Code case
sensitive

Specifies that the names and codes for all objects are case sensitive, allowing you
to have two objects with identical names or codes but different cases in the same
model. If you change case sensitivity during the design process, we recommend
that you check your model to verify that your model does not contain any du-
plicate objects.

Enable links to re-
quirements

Displays a Requirements tab in the property sheet of every object in the model,
which allows you to attach requirements to objects (see Requirements Model-
ing).

Show classes as
data types

Includes classes of the model in the list of data types defined for attributes or
parameters, and return types defined for operations.

Preview editable Applies to reverse engineering. You can edit your code from the Preview page of
a class or an interface by selecting the Preview Editable check box. This allows
you to reverse engineer changes applied to your code directly from the Preview
page.

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 11

Option Definition

External Shortcut
Properties

Specifies the properties that are stored for external shortcuts to objects in other
models for display in property sheets and on symbols. By default, All properties
appear, but you can select to display only Name/Code to reduce the size of your
model.

Note: This option only controls properties of external shortcuts to models of the
same type (PDM to PDM, EAM to EAM, etc). External shortcuts to objects in
other types of model can show only the basic shortcut properties.

Default Data
Types

Specifies default data types for attributes, operations, and parameters.

If you type a data type value that does not exist in the BasicDataTypes and
AdditionalDataTypes lists of the object language, then the value of the Default-
DataType entry is used. For more information on data types in the object lan-
guage, see Customizing and Extending PowerDesigner > Object, Process, and
XML Language Definition Files > Settings Category: Object Language.

Domain/Attrib-
ute: Enforce non-
divergence

Specifies that attributes attached to a domain must remain synchronized with the
properties of that domain. You can specify any or all of:

• Data type – data type, length, and precision
• Check – check parameters, such as minimum and maximum values
• Rules – business rules

Domain/Attrib-
ute: Use data type
full name

Specifies that the full data type name is used for attribute data types instead of its
abbreviated from. Provides a clear persistent data type list for attributes.

Default Associa-
tion Container

Specifies a default container for associations that have a role with a multiplicity
greater than one.

Message: Support
delay

Specifies that messages may have duration (slanted arrow message). If this op-
tion is deselected, messages are treated as instantaneous, or fast (horizontal
message).

Interface/Class:
Auto-implement
realized interfa-
ces

Adds to the realizing class any methods of a realized interface and its parents that
are not already implemented by the class. The <<implement>> stereotype is
applied to the methods.

Interface/Class:
Class attribute de-
fault visibility

Specifies the default visibility of class attributes.

Note: For information about specifying naming conventions for your model objects, see Core
Features Guide > Modeling with PowerDesigner > Objects > Naming Conventions.

CHAPTER 1: Getting Started with Object-Oriented Modeling

12 PowerDesigner

Setting OOM Display Preferences
PowerDesigner display preferences allow you to customize the format of object symbols, and
the information that is displayed on them. To set object-oriented model display preferences,
select Tools > Display Preferences or right-click the diagram background and select Display
Preferences from the contextual menu.

For detailed information about customizing and controlling the attributes and collections
displayed on object symbols, see Core Features Guide > Modeling with PowerDesigner >
Diagrams, Matrices, and Symbols > Display Preferences.

Viewing and Editing the Object Language Definition File
Each OOM is linked to a definition file that extends the standard PowerDesigner metamodel to
provide objects, properties, data types, and generation parameters and templates specific to
the language being modeled. Definition files and other resource files are XML files located in
the Resource Files directory inside your installation directory, and can be opened and
edited in the PowerDesigner Resource Editor.

Warning! We strongly recommend that you make a back up of the resource files delivered
with PowerDesigner before editing them.

To open your model's definition file and review its extensions, select Language > Edit
Current Object Language.

For detailed information about the format of these files, see Customizing and Extending
PowerDesigner > Object, Process, and XML Language Definition Files.

Note: Some resource files are delivered with "Not Certified" in their names. Sybase® will
perform all possible validation checks, however Sybase does not maintain specific
environments to fully certify these resource files. Sybase will support the definition by
accepting bug reports and will provide fixes as per standard policy, with the exception that
there will be no final environmental validation of the fix. Users are invited to assist Sybase by
testing fixes of the definition provided by Sybase and report any continuing inconsistencies.

Changing the Object Language
You can change the object language being modeled in your OOM at any time.

Note: You may be required to change the object language if you open a model and the
associated definition file is unavailable. Language definition files are frequently updated in
each version of PowerDesigner and it is highly recommended to accept this change, or
otherwise you may be unable to generate for the selected language.

1. Select Language > Change Current Object Language:

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 13

2. Select a object language from the list.

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the resource and save it in your model file, click the Embed Resource in
Model button to the right of this field. Embedding a file in this way enables you to make
changes specific to your model without affecting any other models that reference the
shared resource.

3. Click OK.

A message box opens to tell you that the object language has been changed.

4. Click OK to return to the model.

Extending your Modeling Environment
You can customize and extend PowerDesigner metaclasses, parameters, and file generation
with extensions, which can be stored as part of your model or in separate extension files
(*.xem) for reuse with other models.

To access extension defined in a *.xem file, simply attach the file to your model. You can do
this when creating a new model by clicking the Select Extensions button at the bottom of the
New Model dialog, or at any time by selecting Model > Extensions to open the List of
Extensions and clicking the Attach an Extension tool.

In each case, you arrive at the Select Extensions dialog, which lists the extensions available,
sorted on sub-tabs appropriate to the type of model you are working with:

CHAPTER 1: Getting Started with Object-Oriented Modeling

14 PowerDesigner

To get started extending objects, see Core Features Guide > Modeling with PowerDesigner >
Objects > Extending Objects. For detailed information about working with extensions, see
Customizing and Extending PowerDesigner > Extension Files.

Linking Objects with Traceability Links
You can create traceability links to show any kind of relationship between two model objects
(including between objects in different models) via the Traceability Links tab of the object's
property sheet. These links are used for documentation purposes only, and are not interpreted
or checked by PowerDesigner.

For more information about traceability links, see Core Features Guide > Linking and
Synchronizing Models > Getting Started with Linking and Syncing > Creating Traceability
Links.

CHAPTER 1: Getting Started with Object-Oriented Modeling

Object-Oriented Modeling 15

CHAPTER 1: Getting Started with Object-Oriented Modeling

16 PowerDesigner

CHAPTER 2 Use Case Diagrams

A use case diagram is a UML diagram that provides a graphical view of the requirements of
your system, and helps you identify how users interact with it.

Note: To create a use case diagram in an existing OOM, right-click the model in the Browser
and select New > Use Case Diagram. To create a new model, select File > New Model,
choose Object Oriented Model as the model type and Use Case Diagram as the first diagram,
and then click OK.

With a use case diagram, you immediately see a snapshot of the system functionality. Further
details can later be added to the diagram if you need to elucidate interesting points in the
system behavior.

A use case diagram is well suited to the task of describing all of the things that can be done with
a database system by all the people who might use it. However, it would be poorly suited to
describing the TCP/IP network protocol because there are many exception cases, branching
behaviors, and conditional functionality (what happens when the connection dies, what
happens when a packet is lost?)

In the following example, the actor "photographer" does two things with the camera: take
pictures and change the film. When he takes a picture, he has to switch the flash on, open the
shutter, and then close the shutter but these activities are not of a high enough level to be
represented in a use case.

Object-Oriented Modeling 17

Use Case Diagram Objects
PowerDesigner supports all the objects necessary to build use case diagrams.

Object Tool Symbol Description

Actor Used to represent an external person, process or
something interacting with a system, sub-system or
class. See Actors (OOM) on page 20.

Use case Defines a piece of coherent behavior in a system,
without revealing its internal structure. See Use
Cases (OOM) on page 18.

Association Communication path between an actor and a use
case that it participates in. See Use Case Associa-
tions (OOM) on page 24.

Generalization A link between a general use case and a more spe-
cific use case that inherits from it and add features
to it. See Generalizations (OOM) on page 95.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Use Cases (OOM)
A use case is an interaction between a user and a system (or part of a system). It defines a
discrete goal that a user wants to achieve with the system, without revealing the system's
internal structure.

A use case can be created in the following diagrams:

• Use Case Diagram

Example
In this example, "buy tickets" and "buy subscriptions" are use cases.

CHAPTER 2: Use Case Diagrams

18 PowerDesigner

Creating a Use Case
You can create a use case from the Toolbox, Browser, or Model menu.

• Use the Use Case tool in the Toolbox.
• Select Model > Use Cases to access the List of Use Cases, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Use Case.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Use Case Properties
To view or edit a use case's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Specification Tab
The Specification tab contains the following properties, available on sub-tabs at the bottom of
the dialog:

Property Description

Action Steps Specifies a textual description of the normal sequence of actions associated with a
use case.

For example, the action steps for a use case called 'register patient' in a hospital
might be as follows: "Open a file, give a new registration number, write down
medical treatment".

CHAPTER 2: Use Case Diagrams

Object-Oriented Modeling 19

Property Description

Extension Points Specifies a textual description of actions that extend the normal sequence of
actions. Extensions are usually introduced with an "ifthen" statement.

For example, an extension to the action steps above might be: "If the patient
already has a registration number, then retrieve his personal file".

Exceptions Specifies signals raised in response to errors during system execution.

Pre-Conditions Specifies constraints that must be true for an operation to be invoked.

Post-Conditions Specifies constraints that must be true for an operation to exit correctly.

Implementation Classes Tab
A use case is generally a task or service, represented as a verb. When analyzing what a use case
must do, you can identify the classes and interfaces that need to be created to fulfill the task,
and attach them to the use case. The Implementation Classes tab lists the classes and interfaces
used to implement a use case. The following tools are available:

Tool Action

Add Objects – Opens a dialog box to select any class or interface in the model to implement
the use case.

Create a New Class – Creates a new class to implement the use case.

Create a New Interface - Creates a new interface to implement the use case.

For example, a use case Ship product by express mail could be implemented by the classes
Shipping, Product, and Billing.

Related Diagrams Tab
The Related Diagrams tab lists diagrams that help you to further understand the use case. Click
the Add Objects tool to add diagrams to the list from any model open in the workspace. For
more information, Core Features Guide > Modeling with PowerDesigner > Diagrams,
Matrices, and Symbols > Diagrams > Specifying Diagrams as Related Diagrams.

Actors (OOM)
An actor is an outside user or set of users that interact with a system. Actors can be humans or
other external systems. For example, actors in a computer network system may include a
system administrator, a database administrator and users. Actors are typically those entities
whose behavior you cannot control or change, because they are not part of the system that you
are describing.

An actor can be created in the following diagrams:

CHAPTER 2: Use Case Diagrams

20 PowerDesigner

• Communication Diagram
• Sequence Diagram
• Use Case Diagram

A single actor object may be used in a use case, a sequence, and a communication diagram if it
plays the same role in each. Each actor object is available to all the diagrams in your OOM.
They can either be created in the diagram type you need, or dragged from a diagram type and
dropped into another diagram type.

Actors in a Use Case Diagram

In the use case diagram, an actor is a primary actor for a use case if he asks for and/or triggers
the actions performed by a use case. Primary actors are located to the left of the use case, and
the association linking them should be drawn from the actor to the use case.

An actor is a secondary actor for a use case if it does not trigger the actions, but rather assists
the use case to complete the actions. After performing an action, the use case may give results,
documents, or information to the outside and, if so, the secondary actor may receive them.
Secondary actors are located to the right of the use case, and the association linking them
should be drawn from the use case to the actor.

On a global scale, a secondary actor for one use case may be a primary actor for another use
case, either in the same or another diagram.

Actors in a Communication Diagram
In a communication diagram, an actor may be connected to an object by an instance link, or
may send or receive messages.

Actors in a Sequence Diagram
In the sequence diagram, an actor has a lifeline representing the duration of its life. You cannot
separate an actor and its lifeline.

CHAPTER 2: Use Case Diagrams

Object-Oriented Modeling 21

If an actor is the invoker of the interaction, it is usually represented by the first (farthest left)
lifeline in the sequence diagram. If you have several actors in the diagram, you should try to
position them to the farthest left or to the farthest right lifelines because actors are, by
definition, external to the system.

Creating an Actor
You can create an actor from the Toolbox, Browser, or Model menu.

• Use the Actor tool in the Toolbox.
• Select Model > Actors to access the List of Actors, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Actor.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Actor Properties
To view or edit an actor's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 2: Use Case Diagrams

22 PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Implementation Classes Tab
An actor can be a human being (person, partner) or a machine, or process (automated system).
When analyzing what an actor must do, you can identify the classes and interfaces that need to
be created for the actor to perform his task, and attach them to the actor. The Implementation
Classes tab lists the classes and interfaces used to implement the actor. The following tools are
available:

Tool Action

Add Objects – Opens a dialog box to select any class or interface in the model to implement
the actor.

Create a New Class – Creates a new class to implement the actor.

Create a New Interface - Creates a new interface to implement the actor.

For example, an actor Car could be implemented by the classes Engine and Motorway.

Conceptually, you may link elements even deeper. For example, a clerk working in an
insurance company is represented as an actor in a use case diagram, dealing with customers
who declare a car accident.

The clerk actor becomes an object in a communication or sequence diagram, receiving
messages from customers and sending messages to his manager, which is an instance of the
Clerk class in a class diagram with its associated attributes and operations:

CHAPTER 2: Use Case Diagrams

Object-Oriented Modeling 23

Related Diagrams Tab
The Related Diagrams tab lists diagrams that help you to further understand the actor. Click
the Add Objects tool to add diagrams to the list from any model open in the workspace. For
more information, see Core Features Guide > Modeling with PowerDesigner > Diagrams,
Matrices, and Symbols > Diagrams > Specifying Diagrams as Related Diagrams.

Reusing Actors
The same actor can be used in a Use Case Diagram, Communication Diagram, and Sequence
Diagram. To reuse an actor created in one diagram in another diagram:

• Select the actor you need in the Browser, and drag it and drop it into the new diagram.
• Select Symbols > Show Symbols in the new diagram to open the Show Symbols dialog

box, select the actor to display, and click OK.

Use Case Associations (OOM)
An association is a unidirectional relationship that describes a link between objects.

Use case associations can only be created in use case diagrams. You can create them by
drawing from:

• An actor to a use case - an input association
• A use case to an actor - an output association

The UML standard does not explicitly display the direction of the association, and instead has
the position of actors imply it. When an actor is positioned to the left of the use case, the
association is an input, and when he is to the right, it is an output. To explicitly display the
orientation of the association click Tools > Display Preferences, select Use Case
Association in the Category tree, and select the Orientation option. For detailed information
about working with display preferences, see Core Features Guide > Modeling with
PowerDesigner > Diagrams, Matrices, and Symbols > Display Preferences.

CHAPTER 2: Use Case Diagrams

24 PowerDesigner

Example

Creating a Use Case Association
You can create use case association from the Toolbox, Browser, or Model menu.

• Use the Use Case Association tool in the Toolbox.
• Select Model > Associations to access the List of Associations, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Association.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Use Case Association Properties
To view or edit an association's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

CHAPTER 2: Use Case Diagrams

Object-Oriented Modeling 25

Property Description

Orientation Defines the direction of the association. You can choose between:

• Primary Actor – the association leads from the actor to the use case
• Secondary Actor – the association leads from the use case to the actor

Source Specifies the object that the association leads from. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected
object.

Destination Specifies the object that the association leads to. Use the tools to the right of the
list to create, browse for, or view the properties of the currently selected object.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 2: Use Case Diagrams

26 PowerDesigner

CHAPTER 3 Structural Diagrams

The diagrams in this chapter allow you to model the static structure of your system.
PowerDesigner provides three types of diagrams for modeling your system in this way, each
of which offers a different view of your objects and their relationships:

• A class diagram shows the static structure of the classes that make up the system. You use a
class diagram to identify the kinds of objects that will compose your system, and to define
the ways in which they will be associated. For more information, see Class Diagrams on
page 27.

• A composite structure diagram allows you to define in greater detail the internal structure
of your classes and the ways that they are associated with one another. You use a composite
structure diagram in particular to model complex forms of composition that would be very
cumbersome to model in a class diagram. For more information, see Composite Structure
Diagrams on page 29.

• An object diagram is like a class diagram, except that it shows specific object instances of
the classes. You use an object diagram to represent a snapshot of the relationships between
actual instances of classes. For more information, see Object Diagrams on page 32.

• A package diagram shows the structure of the packages that make up your application, and
the relationships between them. For more information, see Package Diagrams on page
31.

Class Diagrams
A class diagram is a UML diagram that provides a graphical view of the classes, interfaces,
and packages that compose a system, and the relationships between them.

Note: To create a class diagram in an existing OOM, right-click the model in the Browser and
select New > Class Diagram. To create a new model, select File > New Model, choose Object
Oriented Model as the model type and Class Diagram as the first diagram, and then click
OK.

You build a class diagram to simplify the interaction of objects in the system you are modeling.
Class diagrams express the static structure of a system in terms of classes and relationships
between those classes. A class describes a set of objects, and an association describes a set of
links; objects are class instances, and links are association instances.

A class diagram does not express anything specific about the links of a given object, but it
describes, in an abstract way, the potential link from an object to other objects.

The following example shows an analysis of the structure of peripherals in a class diagram:

Object-Oriented Modeling 27

Class Diagram Objects
PowerDesigner supports all the objects necessary to build class diagrams.

Object Tool Symbol Description

Class Set of objects sharing the same attributes, opera-
tions, methods, and relationships. See Classes
(OOM) on page 34.

Interface Descriptor for the externally visible operations of a
class, object, or other entity without specification
of internal structure. See Interfaces (OOM) on
page 51.

Port Interaction point between a classifier and its envi-
ronment. See Ports (OOM) on page 60.

Generalization Link between classes showing that the sub-class
shares the structure or behavior defined in one or
more superclasses. See Generalizations (OOM) on
page 95.

Require Link Connects a class, component, or port to an inter-
face. See Require Links (OOM) on page 103.

Association Structural relationship between objects of differ-
ent classes. See Associations (OOM) on page
84.

Aggregation A form of association that specifies a part-whole
relationship between a class and an aggregate class
(example: a car has an engine and wheels). See
Associations (OOM) on page 84.

CHAPTER 3: Structural Diagrams

28 PowerDesigner

Object Tool Symbol Description

Composition A form of aggregation but with strong ownership
and coincident lifetime of parts by the whole; the
parts live and die with the whole (example: an
invoice and its invoice line). See Associations
(OOM) on page 84.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Realization Semantic relationship between classifiers, in
which one classifier specifies a contract that an-
other classifier guarantees to carry out. See Real-
izations (OOM) on page 102.

Inner link Exists when a class is declared within another class
or interface. See Composite and inner classifiers
on page 46.

Attribute N/A N/A Named property of a class. See Associations
(OOM) on page 84.

Operation N/A N/A Service that can be requested from a class. See
Operations (OOM) on page 76.

Composite Structure Diagrams
A composite structure diagram is a UML diagram that provides a graphical view of the
classes, interfaces, and packages that compose a system, including the ports and parts that
describe their internal structures.

Note: To create a composite structure diagram in an existing OOM, right-click the model in
the Browser and select New > Composite Structure Diagram. To create a new model, select
File > New Model, choose Object Oriented Model as the model type and Composite
Structure Diagram as the first diagram, and then click OK.

A composite structure diagram performs a similar role to a class diagram, but allows you to go
into further detail in describing the internal structure of multiple classes and showing the
interactions between them. You can graphically represent inner classes and parts and show
associations both between and within classes.

In the following example, the internal structures of the classes TitleSql (which contains two
inner classes) and TitleImp (which contains two parts) are connected via the interfaces
dmlAccess and java.sql.connection1:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 29

Composite Structure Diagram Objects
PowerDesigner supports all the objects necessary to build composite structure diagrams.

Object Tool Symbol Description

Class Set of objects sharing the same attributes, opera-
tions, methods, and relationships. See Classes
(OOM) on page 34.

Interface Descriptor for the externally visible operations of a
class, object, or other entity without specification
of internal structure. See Interfaces (OOM) on
page 51.

Port Interaction point between a classifier and its envi-
ronment. See Ports (OOM) on page 60.

Part Classifier instance playing a particular role within
the context of another classifier. See Parts (OOM)
on page 58.

Generalization Link between classes showing that the sub-class
shares the structure or behavior defined in one or
more superclasses. See Generalizations (OOM) on
page 95.

Require Link Connects classifiers to interfaces. See Require
Links (OOM) on page 103.

Assembly Connector Connects parts to each other. See Assembly Con-
nectors (OOM) on page 105.

Delegation Connec-
tor

Connects parts to ports on the outside of classifi-
ers. See Delegation Connectors (OOM) on page
106.

Association Structural relationship between objects of differ-
ent classes. See Associations (OOM) on page
84.

CHAPTER 3: Structural Diagrams

30 PowerDesigner

Object Tool Symbol Description

Aggregation A form of association that specifies a part-whole
relationship between a class and an aggregate class
(example: a car has an engine and wheels). See
Associations (OOM) on page 84.

Composition A form of aggregation but with strong ownership
and coincident lifetime of parts by the whole; the
parts live and die with the whole (example: an
invoice and its invoice line). See Associations
(OOM) on page 84.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Realization Semantic relationship between classifiers, in
which one classifier specifies a contract that an-
other classifier guarantees to carry out. See Real-
izations (OOM) on page 102.

Attribute N/A N/A Named property of a class. See Associations
(OOM) on page 84.

Operation N/A N/A Service that can be requested from a class. See
Operations (OOM) on page 76.

Package Diagrams
A package diagram is a UML diagram that provides a high-level graphical view of the
organization of your application, and helps you identify generalization and dependency links
between the packages.

Note: To create a package diagram in an existing OOM, right-click the model in the Browser
and select New > Package Diagram. To create a new model, select File > New Model, choose
Object Oriented Model as the model type and Package Diagram as the first diagram, and then
click OK.

You can control the level of detail shown for each package, by toggling between the standard
and composite package views via the Edit or contextual menus.

In the following example, the WebShop package imports the Cart package, which, in turn,
imports the Types package, and has access to the Auxiliary package. The Types package is
shown in composite (sub-diagram) view:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 31

Package Diagram Objects
PowerDesigner supports all the objects necessary to build package diagrams.

Object Tool Symbol Description

Package A container for organizing your model objects. See
Packages (OOM) on page 49.

Generalization Link between packages showing that the sub-
package shares the structure or behavior defined in
one or more super-packages. See Generalizations
(OOM) on page 95.

Dependency Relationship between two packages, in which a
change to one package will affect the other. See
Dependencies (OOM) on page 98.

Object Diagrams
An object diagram is a UML diagram that provides a graphical view of the structure of a
system through concrete instances of classes (objects), associations (instance links), and
dependencies.

Note: To create an object diagram in an existing OOM, right-click the model in the Browser
and select New > Object Diagram. To create a new model, select File > New Model, choose
Object Oriented Model as the model type and Object Diagram as the first diagram, and then
click OK.

As a diagram of instances, the object diagram shows an example of data structures with data
values that corresponds to a detailed situation of the system at a particular point in time.

The object diagram can be used for analysis purposes: constraints between classes that are not
classically represented in a class diagram can typically be represented in an object diagram.

CHAPTER 3: Structural Diagrams

32 PowerDesigner

If you are a novice in object modeling, instances usually have more meaning than classifiers
do, because classifiers represent a level of abstraction. Gathering several instances under the
same classifier helps you to understand what classifiers are. Moreover, even for analysts used
to abstraction, the object diagram can help understand some structural constraints that cannot
be easily graphically specified in a class diagram.

In this respect, the object diagram is a limited use of a class diagram. In the following example,
the class diagram specifies that a class Writer is linked to a class Document.

The object diagram, deduced from this class diagram, highlights some of the following
details: the object named John, instance of the class Writer is linked to two different objects
Draft and Master that are both instances of the class Document.

Note: You can drag classes and associations from the Browser and drop them into an object
diagram. If you drag classes, new objects as instances of classes are created. If you drag an
association, a new instance link as instance of the association, and two objects are created.

Object Diagram Objects
PowerDesigner supports all the objects necessary to build object diagrams.

Object Tool Symbol Description

Object Instance of a class. See Objects (OOM) on page
54.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 33

Object Tool Symbol Description

Attribute values N/A N/A An attribute value represents an instance of a class
attribute, this attribute being in the class related to
the object. See Object Properties on page 56.

Instance link Communication link between two objects. See In-
stance Links (OOM) on page 113.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Classes (OOM)
A class is a description of a set of objects that have a similar structure and behavior, and share
the same attributes, operations, relationships, and semantics.

A class can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram

The structure of a class is described by its attributes and associations, and its behavior is
described by its operations.

Classes, and the relationships that you create between them, form the basic structure of an
OOM. A class defines a concept within the application being modeled, such as:

• a physical thing (like a car),
• a business thing (like an order)
• a logical thing (like a broadcasting schedule),
• an application thing (like an OK button),
• a behavioral thing (like a task)

The following example shows the class Aircraft with its attributes (range and length) and
operation (startengines).

Creating a Class
You can create a class from an interface, or from the Toolbox, Browser, or Model menu.

• Use the Class tool in the Toolbox.
• Select Model > Classes to access the List of Classes, and click the Add a Row tool.

CHAPTER 3: Structural Diagrams

34 PowerDesigner

• Right-click the model (or a package) in the Browser, and select New > Class.
• Right-click an interface, and select Create Class from the contextual menu (this method

allows you to inherit all the operations of the interface, including the getter and setter
operations, creates a realization link between the class and the interface, and shows this
link in the Realizes sub-tab of the Dependencies tab of the class property sheet).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Class Properties
To view or edit a class's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Extends Specifies the parent class (to which the present class is linked by a generalization).
Click the Select Classifier tool to the right to specify a parent class and click the
Properties tool to access its property sheet.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 35

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can enter
a stereotype directly in this field, or add stereotypes to the list by specifying them in
an extension file.

The following common stereotypes are available by default:

• <<actor>> - Coherent set of roles that users play

• <<enumeration>> - List of named values used as the range of an attribute type

• <<exception>> - Exception class, mainly used in relation to error messages

• <<implementationClass>> - Class whose instances are statically typed. De-
fines the physical data structure and methods of a class as implemented in
traditional programming languages

• <<process>> - Heavyweight flow that executes concurrently with other pro-
cesses

• <<signal>> - Specification of asynchronous stimulus between instances

• <<metaclass>> - a metaclass of some other class

• <<powertype>> - a metaclass whose instances are sub-classes of another class

• <<thread>> - Lightweight flow that executes concurrently with other threads
within the same process. Usually executes inside the address space of an en-
closing process

• <<type>> - Abstract class used to specify the structure and behavior of a set of
objects but not the implementation

• <<utility>> - Class that has no instances

Other language-specific stereotypes may be available if they are specified in the
object language file (see Customizing and Extending PowerDesigner > Extension
Files > Stereotypes (Profile)).

Visibility Specifies the visibility of the object, how it is seen outside its enclosing namespace.
When a class is visible to another object, it may influence the structure or behavior
of the object, and/or be affected by it. You can choose between:

• Private – only to the object itself

• Protected – only to the object and its inherited objects

• Package – to all objects contained within the same package

• Public – to all objects (option by default)

CHAPTER 3: Structural Diagrams

36 PowerDesigner

Property Description

Cardinality Specifies the number of instances a class can have. You can choose between:

• 0..1 – None to one

• 0..* – None to an unlimited number

• 1..1 – One to one

• 1..* – One to an unlimited number

• * – Unlimited number

Type Allows you to specify that a class is a generic type, or that it is bound to one. You can
choose between:

• Class

• Generic

• Bound – an additional list is displayed, which lets you specify the generic type
to which the class is bound. Use the tools to the right of the list to create, browse
for, or view the properties of the currently selected type.

If you specify either Generic or Bound, then the Generic tab is displayed, allowing
you to control the associated type variables. For more information on generic types
and binding classes to them, see Generic Types and Methods on page 42.

Abstract Specifies that the class cannot be instantiated and therefore has no direct instances.

Final Specifies that the class cannot have any inherited objects.

Generate code Specifies that the class is included when you generate code from the model, it does
not affect inter-model generation.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail Tab
The Detail tab contains a Persistent groupbox whose purpose is to define the persistent
generated code of a class during OOM to CDM or PDM generation, and which contains the
following properties:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 37

Property Description

Persistent Specifies that the class must be persisted in a generated CDM or PDM. You have to
select one of the following options:

• Generate table - the class is generated as an entity or table.

• Migrate columns – [PDM only] the class is not generated, and its attributes and
associations are migrated to the generated parent or child table.

• Generate ADT – [PDM only] the class is generated as an abstract data type (see
Data Modeling > Building Data Models > Physical Diagrams > Abstract Data
Types).

• Value Type – the class is not generated, and its attributes are generated in their
referencing types.

For more information, see Managing Object Persistence During OOM to PDM
Generation on page 275.

Code Specifies the code of the table or entity that will be generated from the current class
in a CDM or PDM model. Persistent codes are used for round-trip engineering: the
same class always generates the same entity or table with a code compliant with the
target DBMS.

Example: to generate a class Purchaser into a table PURCH, type PURCH in the
Code box.

Inner to Specifies the name of the class or interface to which the current class belongs as an
inner classifier

Association
class

Specifies the name of the association related to the class to form an association
class. The attributes and operations of the current class are used to complement the
definition of the association.

The following tabs are also available:

• Attributes - lists and lets you add or create attributes (including accessors) associated with
the class (see Attributes (OOM) on page 63). Click the Inherited button to review the
public and protected attributes inherited from a parent class.

• Identifiers - lists and lets you create identifiers associated with the class (see Identifiers
(OOM) on page 72).

• Operations - lists and lets you add or create operations associated with the class (see
Operations (OOM) on page 76).

• Generic - lets you specify the type parameters of a generic class or values for the required
type parameters for a class that is bound to a generic type (see Generic Types and Methods
on page 42

• Ports - lists and lets you create ports associated with the class (see Ports (OOM) on page
60).

CHAPTER 3: Structural Diagrams

38 PowerDesigner

• Parts - lists and lets you create parts associated with the class (see Parts (OOM) on page
58).

• Associations - lists and lets you create associations associated with the class (see
Associations (OOM) on page 84).

• Inner Classifiers - lists and lets you create inner classes and interfaces associated with the
class (see Composite and Inner Classifiers on page 46).

• Related Diagrams - lists and lets you add model diagrams that are related to the class (see
Core Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and
Symbols > Diagrams > Specifying Diagrams as Related Diagrams).

• Script - lets you customize the class creation script (see Customizing Object Creation
Scripts on page 10)

• Preview - lets you view the code to be generated for the class (see Previewing OOM Code
on page 8)

Note: If the class is a Web service implementation class, see also Web Service Implementation
Class Properties on page 234.

Creating Java BeanInfo Classes
If you are using the Java object language, you can create Java BeanInfo classes from any class
with a type of "JavaBean".

A JavaBean is a reusable software component written in Java that can be manipulated visually
in a builder tool. A Java BeanInfo class is used as a standard view of a Bean. Each JavaBean
can implement a BeanInfo class. Bean implementors may want to provide explicit information
about the methods, properties, and events of a Bean by providing a Java BeanInfo class.

The BeanInfo class is generated with an attribute, and the following operations:

• constructor
• getPropertyDescriptors();
• getMethodDescriptors();

You can view the complete code by clicking the Preview tab in the BeanInfo class property
sheet.

Attribute Created
The attribute has the following code:

private static final Class <ClassCode>Class = <ClassCode>.class;

Operations Created
The constructor has the following code:

<ClassCode>BeanInfo()
{
 super();
 }

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 39

The getPropertyDescriptors() operation has the following code:

public PropertyDescriptor[] getPropertyDescriptors ()
{
 // Declare the property array
 PropertyDescriptor properties[] = null;

 // Set properties
 try
 {
 // Create the array
 properties = new PropertyDescriptor[<nbProperties>];
 // Set property 1
 properties[0] = new
PropertyDescriptor("<propertyCode1>" ,<ClassCode>Class;
 properties[0].setConstrained(false);
 properties[0].setDisplayName("propertyName1");
 properties[0].setShortDescription("propertyComment1");
 // Set property 2
 properties[1] = new
PropertyDescriptor("<propertyCode2>" ,<ClassCode>Class;
 properties[1].setConstrained(false);
 properties[1].setDisplayName("propertyName2");
 properties[1].setShortDescription("propertyComment2");

 }
 catch
 {
 // Handle errors
 }
 return properties;
}

The getMethodDescriptors() operation has the following code:

public MethodDescriptor[] getMethodDescriptors ()
{
 // Declare the method array
 MethodDescriptor methods[] = null;
 ParameterDescriptor parameters[] = null;

 // Set methods
 try
 {
 // Create the array
 methods = new MethodDescriptor[<nbMethods>];
 // Set method 1
 parameters = new ParameterDescriptor[<nbParameters1>];
 parameters[0] = new ParameterDescriptor();
 parameters[0].setName("parameterCode1");
 parameters[0].setDisplayName("parameterName1");
 parameters[0].setShortDescription("parameterComment1");
 methods[0] = new MethodDescriptor("<methodCode1>", parameters);
 methods[0].setDisplayName("methodName1");
 methods[0].setShortDescription("methodComment1");
 // Set method 2

CHAPTER 3: Structural Diagrams

40 PowerDesigner

 methods[1] = new MethodDescriptor("<methodCode2>");
 methods[1].setDisplayName("methodName2");
 methods[1].setShortDescription("methodComment2");

 }
 catch
 {
 // Handle errors
 }
 return methods;
 }

When you create a Java BeanInfo class, a dependency link is automatically created between
both classes and the stereotype of the Java BeanInfo class is set to <<BeanInfo>>.

Creating a Java BeanInfo Class from the Language Menu
You can create a Java BeanInfo class from the Language menu.

1. Select Language > Create BeanInfo Classes to display the Create BeanInfo Classes
selection window. This window contains a list of all the classes of type JavaBean in the
model.

2. Select the classes for which you want to generate Java BeanInfo classes and click OK.

A BeanInfo class is created in the model for each selected class.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 41

Creating a Java BeanInfo Class from the Class Contextual Menu
You can create a Java BeanInfo class from the class contextual menu.
Right-click a class in the diagram, and select Create BeanInfo Class from the contextual
menu.

Generic Types and Methods
Generic types and methods are a new feature of Java 5.0. A generic type is a class or interface
that has one or more type variables and one or more methods that use a type variable as a
placeholder for an argument or return type.

Using generic types and methods allows you to take advantage of stronger compile-time type
checking. When a generic type is used, an actual type is specified for each type variable. This
additional type information is used by the compiler to automatically cast the associated return
values.

Creating Generic Types
PowerDesigner allows you to designate classes and interfaces as generic types.

You define a list of type variables that will be used as datatypes for attributes, method
parameters, or return types. PowerDesigner requires the existence of a bound class to create a
generalization, realization, or association.

You then bind a classifier to the generic type via this intermediate bound class, and specify the
actual types to be used in place of the required type variables.

1. Open the property sheet of the class or interface, and select Generic from the Type list on
the General tab. The Generic tab will be automatically displayed, and a type variable
created in the list in the tab.

2. Click the Generic tab, and add any additional type variables that you require with the Add a
Row tool. You can also specify a derivation constraint in the form of a list of types.

3. Click OK to return to the diagram. The classifier symbol will now display the type
variables on its top-left corner.

CHAPTER 3: Structural Diagrams

42 PowerDesigner

In order for the classifier to become a true generic type, it must contain at least one generic
method.

Creating Generic Methods
PowerDesigner allows you to designate operations as generic methods. Generic methods are
methods that have their own list of type variables.

1. Open the property sheet of the class or interface and click on its Operations tab.

2. Click the Add a Row tool to create a new operation, and then click the Properties tool to
open its property sheet.

3. Click Yes to confirm the creation of the operation, and then select the Generic checkbox on
the General tab of the new operation property sheet to designate the operation as a generic
method. The Generic tab will be automatically displayed, and a type variable created in the
list in the tab.

4. Add any additional type variables that you require with the Add a Row tool, and then click
OK.

Creating a Specialized Classifier
If you need to create a classifier that will inherit from a generic type, you must create an
intermediary bound classifier. The Generic Classifier Specialization Wizard can perform
these steps for you.

1. Right-click a generic class or interface, and select Create Specialized Class (or Interface)
from the contextual menu to open the Generic Classifier Specialization Wizard:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 43

2. Enter a Name and Code for the specialized classifier, and then click Next to go to the type
parameters page.

3. Specify values for each of the type parameters in the list. If you do not specify a value for a
type parameter, it will be added as a type parameter to the new specialized classifier.

4. Click Finish to return to the diagram. The wizard will have created the specialized
classifier and also a bound classifier which acts as an intermediary between the generic and
the specialized classifiers, in order to specify values for the type parameters.

The bound classifier is attached to the generic classifier via a dependency with a stereotype
of <<bind>>, and acts as the parent of the specialized classifier, which is connected to it by
a generalization.

In the example below, SpecializedClass inherits from GenericClass via
GenericClass_Bound, which specifies type parameters for the generic types T, T_2, and
T_3.

CHAPTER 3: Structural Diagrams

44 PowerDesigner

At compile time, the specialized classifier can inherit the methods and properties of the
generic classifier, and the generic type variables will be replaced by actual types. As a
result, the compiler will be able to provide stronger type checking and automatic casting of
the associated return values.

Creating a Bound Classifier
You may need to bind a classifier to a generic classifier without creating a specialized
classifier. The Bound Classifier Wizard can do this for you.

1. Right-click a generic class or interface, and select Create Bound Class (or Interface) from
the contextual menu to launch the Bound Classifier Wizard.

2. The wizard will create the bound classifier, which is attached to the generic classifier via a
dependency with a stereotype of <<bind>>.

Generic Type Example
In the example below, the bound interface, List_T, specifies a type 'T' for the type parameter
<E> of List.

The generic class Vector<T> realizes the generic interface List<E> (via the bound interface
List_T) with a type <T> (that is defined in its own generic definition):

public class vector <T> implements List <E>

The bound class Vector_Integer specifies a type 'Integer' for the type parameter <T> of
Vector<T>. The SimpleVectorProgram class is associated to Vector_Integer, allowing it to use
the attribute data type of the Vector class set to Integer.

You must create a bound class for a generalization or a realization. However, we could have
specified a parameter value for the generic type <T> directly (without creating a bound class)
as an attribute data type, parameter data type, or return data type, by simply typing the
following expression in the type field of SimpleVectorProgram:

Vector<integer>

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 45

Composite and Inner Classifiers
A composite classifier is a class or an interface that contains other classes or interfaces (called
inner classifiers). Inner classifiers are listed in the Browser as children of their composite
classifier.

Inner classifiers can be displayed directly in the main class diagram, or in a additional class
diagram specific to the composite classifier:

Main diagram (with inner links) Composite Classifier Diagram

Note: You can display multiple composite classifiers in a composite structure diagram (see
Composite Structure Diagrams on page 29).

Note: In previous versions of PowerDesigner, there was no composite classifier and inner
classifiers used to appear at the same hierarchical level as their parent in the Browser tree view
and in the list of classifiers.

Creating Inner Classifiers
You can create inner classifiers in a class or interface.

• Open the Inner Classifiers tab in the property sheet of a class or interface, and click the
Add inner class or Add inner interface tool.

CHAPTER 3: Structural Diagrams

46 PowerDesigner

• Right-click a class or interface in the Browser, and select New > Class or New >
Interface.

• Select the Inner Link tool in the Toolbox and click and use it to connect two classes in the
diagram. The first class will become a composite class and the second, an inner classifier

• Create a composite classifier diagram dedicated to the class (see following section), and
create classes or interfaces there.

All inner classifiers are listed in the bottom of the class symbol.

Creating a Composite Classifier Diagram
You may want to create a diagram to show the internal structure of a composite classifier. You
can create a composite classifier diagram in any of the following ways:

• Right-click a class or interface in the Browser, and select New > Class Diagram
• Double-click a class or interface in the diagram while holding down the CTRL key

The composite classifier diagram will be empty by default, even if the composite classifier
already includes some inner classifiers. You can create symbols for the internal classifiers by
selecting Symbol > Show Symbols, or by dragging and dropping them from the Browser to
the diagram.

If you have created a composite classifier diagram, you can display it in the main class diagram
by right-clicking the class symbol and selecting Composite View > Read-only (Sub-
Diagram).

Specifying a Classifier as a Data Type or Return Type
You can specify a class or an interface in the current model or in another model (including a
JDK library) as an attribute or parameter data type or as an operation return type. If the
classifier belongs to the current model or package, it is displayed together with the other
classifiers. If it belongs to another model or package, a shortcut of the classifier is created in
the current package.

Note: For information about generating classifiers linked in this way, see Managing
Persistence for Complex Data Types on page 277.

1. Open the appropriate object property sheet:

• To specify a classifier as an attribute data type, open the attribute property sheet (see
Attribute Properties on page 67).

• To specify a classifier as an operation return type, open the operation property sheet
(see Operation Properties on page 79).

• To specify a classifier as an operation parameter data type, open the operation property
sheet (see Parameters (OOM) on page 83).

2. On the General tab, click the Select Classifier tool to the right of the Data type field, and
select a classifier from the list, which lists all available classifiers in all models open in the
workspace.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 47

Note: Select the Use fully qualified name option to include the package hierarchy leading
to the classifier.

3. Click OK to specify the classifier as the Data type.

Note: You can alternatively enter the code of the classifier directly in the Data type field.
To enter a qualified name use a dot separator. For example
Manufacturing.Core.Person.

Viewing the Migrated Attributes of a Class
Navigable associations migrate attributes to classes during code generation. You can display
these migrated attributes in the Associations tab of a class property sheet.

In the following example, the class Employee is associated with the class Company.

If you preview the generated code of the class Employee, you can see the following three
attributes (in Java language):

public class EMPLOYEE
{
 public COMPANY hires[];
 public int NAME;
 public int DEPARTMENT;
}

The association between Employee and Company is migrated as the attribute public
COMPANY hires [].

You can use the Associations tab of a class property sheet to display the list of all migrated
attributes proceeding from navigable associations.

CHAPTER 3: Structural Diagrams

48 PowerDesigner

Packages (OOM)
A package is a general purpose mechanism for organizing elements into groups. It contains
model objects and is available for creation in all diagrams.

When you work with large models, you can split them into smaller subdivisions to avoid
manipulating the entire set of data of the model. Packages can be useful to assign portions of a
model, representing different tasks and subject areas to different development teams.

You can create several packages at the same hierarchical level within a model, or decompose a
package into other packages and continue this process without limitation in decomposition
depth. Each package at each level of decomposition can contain one or more diagrams.

Note: In activity and statechart diagrams, you do not create packages but instead decompose
activities and states, which act like packages in this context.

You can expand a package to view its contents by right-clicking its symbol and selecting
Composite View > Read-only (Sub-Diagram). You may need to resize the symbol to see all
its content. Double-click the composite symbol to go to the package diagram.

To return to the standard symbol, right-click the symbol and select Composite View >
None.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 49

OOM Package Properties
Packages have properties displayed on property sheets. All packages share the following
common properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Sub-classification derived from an existing package. The following stereotypes
are available by default:

• <<archive>> Jar or War archive (Java only)
• <<assembly>> – Specifies that a package produces a portable executable

(PE), (C# and VB.NET only)
• <<CORBAModule>> – UML Package identified as IDL module (IDL-COR-

BA only)
• <<facade>> – Package is a view of another package
• <<framework>> – Package consists mostly of patterns
• <<metamodel>> – Package is an abstraction of another package
• <<model>> – Specifies a semantically closed abstraction of a system
• <<stub>> – Package serves as a proxy for the public contents of another

package
• <<subsystem>> – Grouping of elements, some of which constitute a specifi-

cation of the behavior offered by the other contained elements
• <<system>> – Package represents the entire system being modeled
• <<systemModel>> – Package that contains other packages with the same

physical system. It also contains all relationships and constraints between
model elements contained in different models

• <<topLevel>> – Indicates the top-most package in a containment hierarchy

Default diagram Diagram displayed by default when opening the package

Use parent
namespace

[package only] Specifies that the package does not represent a separate namespace
from its parent and thus that objects created within it must have names that are
unique within the parent container. If this property is not selected, then the package
and its parent package or model can both contain classes that are called Class A.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 3: Structural Diagrams

50 PowerDesigner

Defining the Diagram Type of a New Package
When you create a new package, the default diagram of the package is defined according to the
various parameters.

• If you create a package using the Package tool from the Toolbox, the diagram is of the
same type as the parent package or model.

• If you create a package from the Browser, the diagram is of the same type as existing
diagrams in the parent package or model, if these diagrams share the same type. If
diagrams in the parent package or model are of different types, you are asked to select the
type of diagram for the new sub-package.

• If you create a package from the List of Packages, the diagram is of the same type as the
active diagram.

Interfaces (OOM)
An interface is similar to a class but it is used to define the specification of a behavior. It is a
collection of operations specifying the externally visible behavior of a class. It has no
implementation of its own.

An interface can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Component Diagram

An interface includes the signatures of the operations. It specifies only a limited part of the
behavior of a class. A class can implement one or more interfaces.

A class must implement all the operations in an interface to realize the interface. The following
example shows an interface (Designated) realized by a class (Employee).

Creating an Interface
You can create an interface from a class, or from the Toolbox, Browser, or Model menu.

• Select the Interface tool in the Toolbox.
• Select Model > Interfaces to access the List of Interfaces, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Interface.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 51

• Right-click a class, and select Create Interface from the contextual menu (this method
allows you to inherit all the operations of the class, including the getter and setter
operations, creates a realization link between the interface and the class, and shows this
link in the Realizes sub-tab of the Dependencies tab of the interface property sheet).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Interface Properties
To view or edit an interface's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Extends Indicates the name of the class or interface that the current interface extends.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

The following common stereotypes are available by default:

• <<metaclass>> - interface that will interact with a model that contains
classes with metaclass stereotypes

• <<powertype>> - a metaclass whose instances are sub-classes of another
class

• <<process>> - heavyweight flow that can execute concurrently with other
processes

• <<thread>> - lightweight flow that can execute concurrently with other
threads within the same process. Usually executes inside the address space of
an enclosing process

• <<utility>> - a class that has no instances

CHAPTER 3: Structural Diagrams

52 PowerDesigner

Property Description

Visibility Specifies the visibility of the object, how it is seen outside its enclosing name-
space. When an interface is visible to another object, it may influence the struc-
ture or behavior of the object, or similarly, the other object can affect the prop-
erties of the interface. You can choose between:

• Private – only to the object itself
• Protected – only to the object and its inherited objects
• Package – to all objects contained within the same package
• Public – to all objects (option by default)

Inner to Indicates the name of the class or interface to which the current interface belongs
as an inner classifier.

Type Allows you to specify that an interface is a generic type, or that it is bound to one.
You can choose between:

• Interface
• Generic
• Bound – If you select this option, then an additional list becomes available to

the right, where you can specify the generic type to which the interface is
bound.

If you specify either Generic or Bound, then the Generic tab is displayed, al-
lowing you to control the associated type variables (see Generic Types and
Methods on page 42).

Generate code The interface is automatically included among the objects generated from the
model when you launch the generation process.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs list objects associated with the interface:

• Attributes - lists the attributes associated with the interface. You can create attributes
directly in this page, or add already existing attributes. For more information, see
Attributes (OOM) on page 63.

• Operations - lists the operations associated with the interface. You can create operations
directly in this page, or add already existing operations. For more information, see
Operations (OOM) on page 76.

• Generic Parameters - lets you specify the type parameters of a generic interface or values
for the required type parameters for an interface that is bound to a generic type (see
Generic Types and Methods on page 42

• Inner Classifiers - lists the inner classes and interfaces associated with the interface. You
can create inner classifiers directly in this page. For more information, see Composite and
Inner Classifiers on page 46.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 53

• Related Diagrams - lists and lets you add model diagrams that are related to the interface
(see Core Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and
Symbols > Diagrams > Specifying Diagrams as Related Diagrams.

Objects (OOM)
At the conceptual level, an object is an element defined as being part of the system described. It
represents an object that has not yet been instantiated because the classes are not yet clearly
defined at this stage.

If you need to go further with the implementation of your model, the object that has emerged
during analysis will probably turn into an instance of a defined class. In this case, an object is
considered an instance of a class.

Three possible situations can be represented:

• When an object is not an instance of a class - it has only a name
• When an object is an instance of a class - it has a name and a class
• When an object is an instance of a class but is actually representing any or all instances of a

class - it has a class but no name

An object can be created in the following diagrams:

• Communication Diagram
• Object Diagram
• Sequence Diagram

The object shares the same concept in the object, sequence and communication diagrams. It
can either be created in the diagram type you need, or dragged from a diagram type and
dropped into another diagram type.

Defining Multiples
A multiple defines a set of instances. It is a graphical representation of an object that represents
several instances, however a multiple can only hold one set of attributes even if it represents
several instances. An object can communicate with another object that is a multiple. This
feature is mainly used in the communication diagram but can also be used in the object
diagram.

A clerk handles a list of documents: it is the list of documents that represents a multiple object.

When the Multiple check box is selected in the object property sheet, a specific symbol (two
superposed rectangles) is displayed.

CHAPTER 3: Structural Diagrams

54 PowerDesigner

Objects in an Object Diagram
In the object diagram, an object instance of a class can display the values of attributes defined
on the class. When the class is deleted, the associated objects are not deleted.

Objects in a Communication Diagram
In a communication diagram, an object is an instance of a class. It can be persistent or
transient: persistent is the situation of an object that continues to exist after the process that
created it has finished, and transient is the situation of an object that stops to exist when the
process that created it finishes.

The name of the object is displayed underlined. The Underline character traditionally
indicates that an element is an instance of another element.

Objects in a Sequence Diagram
In the sequence diagram, an object has a lifeline: it is the dashed vertical line under the object
symbol. Time always proceeds down the page. The object lifeline indicates the period during
which an object exists. You cannot separate an object and its lifeline.

If the object is created or destroyed during the period of time shown on the diagram, then its
lifeline starts or stops at the corresponding point.

Objects appear at the top of the diagram. They exchange messages between them.

An object that exists when a transaction, or message starts, is shown at the top of the diagram,
above the first message arrow. The lifeline of an object that still exists when the transaction is
over, continues beyond the final message arrow.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 55

Creating an Object
You can create an object from the Browser or Model menu.

• Select the Object tool in the Toolbox.
• Select Model > Objects to access the List of Objects, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Object.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Object Properties
To view or edit an object's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

You need not specify a name (as you can have an object representing an unnamed
instance of a class or interface), but in this case, you must specify a Classifier.
Names must be unique per classifier.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Classifier Specifies the class or interface of which an object is an instance. You can link an
object to an existing class or interface, or create a new one using the Create Class
button beside this box (see Linking a Classifier to an Object on page 57).

Multiple Specifies that the object represents multiple instances.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Attribute Values Tab
An attribute value is an instance of a class attribute from the class of which the object is an
instance, or of an attribute inherited from a parent of the class.

CHAPTER 3: Structural Diagrams

56 PowerDesigner

You can add class attributes to the object and assign values to them on the Attribute Values tab
using the Add Attribute Values tool, which opens a dialog listing all attributes of the class of
the object, including inherited attributes of classes from which the class inherits. Once the
attribute is added to the object, you can specify its value in the Value column. All other
columns are read-only.

You can control the display of attribute values on object symbols using display preferences
(Tools > Display Preferences):

Linking a Classifier to an Object
The object diagram represents instances of class or interface, the sequence diagram represents
the dynamic behavior of a class or interface, and the communication diagram represents those
instances in a communication mode. For all these reasons, you can link a class or an interface
to an object in an OOM.

From the object property sheet, you can:

• Link the object to an existing class or interface
• Create a class

1. Select a class or interface from the Classifier list in the object property sheet.

or

Click the Create Class tool beside the Classifier list to create a class and display its
property sheet.

Define the properties of the new class and click OK.

The class or interface name is displayed in the Classifier list.

2. Click OK.

The object name is displayed in the sequence diagram, followed by a colon, and the name
of the class or interface selected.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 57

You can similarly view the object name in the class or interface property sheet: click the
Dependencies tab and select the Objects sub-tab. The object name is automatically added
in this sub-tab.

Note: You can drag a class or interface node from the Browser and drop it into the sequence,
communication or object diagrams. You can also copy a class or interface and paste it, or paste
it as shortcut, into these diagrams. This automatically creates an object, instance of the class or
of the interface.

Parts (OOM)
A part allows you to define a discrete area inside a class or a component. Parts can be
connected to other parts or to ports, either directly or via a port on the outside of the part.

You connect a part to another part by way of an assembly connector. You connect a part to a
port on the outside of a class or component by way of a delegation connector.

A part can be created in the following diagrams:

• Composite Structure Diagram (inside a class)
• Component Diagram (inside a component)

You can only create a part within a class or a component. If you attempt to drag a part outside of
its enclosing classifier, the classifier will grow to continue to enclose it.

Parts in a Composite Structure Diagram
In the example below, the class TitleImpl2 contains a part called unitTest

Parts in a Component Diagram
In the example below, the component PersistentTitle contains two parts, TitleManager and
TitleDataAccess

CHAPTER 3: Structural Diagrams

58 PowerDesigner

Creating a Part
You can create a part from the Toolbox or from the Parts tab of a class or component property
sheet.

• Use the Part tool in the Toolbox.
• Open the Parts tab in the property sheet of a class or component, and click the Add a Row

tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Part Properties
To view or edit a part's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Parent Specifies the parent object.

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Visibility Specifies the visibility of the object, how it is seen outside its enclosing name-
space. You can choose between:

• Private – only to the object itself
• Protected – only to the object and its inherited objects
• Package – to all objects contained within the same package
• Public – to all objects (option by default)

Data type Specifies a classifier as a data type.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 59

Property Description

Multiplicity Specifies the number of instances of the part. If the multiplicity is a range of
values, it means that the number of parts can vary at run time.

You can choose between:

• * – none to unlimited
• 0..* – zero to unlimited
• 0..1 – zero or one
• 1..* – one to unlimited
• 1..1 – exactly one

Composition Specifies the nature of the association with the parent object. If this option is
selected, it is a composition and if not, an aggregation.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Ports - lists the ports associated with the part. You can create ports directly in this tab. For
more information, see Ports (OOM) on page 60.

Ports (OOM)
A port is created on the outside of a classifier and specifies a distinct interaction point between
the classifier and its environment or between the (behavior of the) classifier and its internal
parts.

Ports can be connected to:

• a part via a delegation connector, through which requests can be made to invoke the
behavioral features of a classifier

• an interface via a require link, through which the port may specify the services a classifier
provides (offers) to its environment as well as the services that a classifier expects
(requires) of its environment.

A port can be created in the following diagrams:

• Class Diagram (on a class)
• Composite Structure Diagram (on a class, a part, or an interface)
• Component Diagram (on a component or a part)

Ports in a Class Diagram
In the example below, the class TitleImpl2 contains the ports sql and stat, which are connected
by require links to the interfaces java.math.stat2 and java.sql.connection2:

CHAPTER 3: Structural Diagrams

60 PowerDesigner

Ports in a Composite Structure Diagram
In the example below, the internal structure of the class TitleImpl2 is shown in more detail, and
demonstrates how ports can be used to specify interaction points between a part and its
enclosing classifier:

Ports in a Component Diagram
In the example below, the use of ports to connect parts with an enclosing component is
demonstrated:

Creating a Port
You can create a port from the Toolbox or from the Ports tab of a class, part or component
property sheet.

• Use the Port tool in the Toolbox.
• Open the Ports tab in the property sheet of a class, part, or component, and click the Add a

Row tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Port Properties
To view or edit a port's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 61

Property Description

Parent Specifies the parent classifier.

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Visibility Specifies the visibility of the object, how it is seen outside its enclosing name-
space. You can choose between:

• Private – only to the object itself
• Protected – only to the object and its inherited objects
• Package – to all objects contained within the same package
• Public – (default) to all objects

Data type Specifies a classifier as a data type.

Multiplicity Specifies the number of instances of the port. If the multiplicity is a range of
values, it means that the number of ports can vary at run time.

You can choose between:

• * – none to unlimited
• 0..* – zero to unlimited
• 0..1 – zero or one
• 1..* – one to unlimited
• 1..1 – exactly one

Redefines A port may be redefined when its containing classifier is specialized. The rede-
fining port may have additional interfaces to those that are associated with the
redefined port or it may replace an interface by one of its subtypes.

Is Service Specifies that this port is used to provide the published functionality of a clas-
sifier (default).

If this property is cleared, the port is used to implement the classifier but is not
part of the essential externally-visible functionality of the classifier. It can,
therefore, be altered or deleted along with the internal implementation of the
classifier and other properties that are considered part of its implementation.

CHAPTER 3: Structural Diagrams

62 PowerDesigner

Property Description

Is Behavior Specifies that the port is a "behavior port", and that requests arriving at this port
are sent to the classifier behavior of the classifier. Any invocation of a behavioral
feature targeted at a behavior port will be handled by the instance of the owning
classifier itself, rather than by any instances that this classifier may contain.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Redefining Parent Ports
A classifier that is connected to a parent by way of a generalization can redefine the ports of the
parent.

1. Open the property sheet of a class, interface, or component, and click the Ports tab.

2. Click the Redefine button at the bottom of the tab to open the Parent Ports window, which
will display a list of ports belonging to the parent classifier.

1. Select a port and then click Redefine to have it redefined by the child classifier.
2. Click Close to return to the child's property sheet. The redefined port will now appear in the

list on the Ports tab.

Attributes (OOM)
An attribute is a named property of a class (or an interface) describing its characteristics.

An attribute can be created for a class or interface in the following diagrams:

• Class Diagram
• Composite Structure Diagram

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 63

• Component Diagram

A class or an interface may have none or several attributes. Each object in a class has the same
attributes, but the values of the attributes may be different.

Attribute names within a class must be unique. You can give identical names to two or more
attributes only if they exist in different classes.

In the following example, the class Printer contains two attributes: printspeed and laser:

Interface Attributes
An attribute of an interface is slightly different from an attribute of a class because an interface
can only have constant attributes (static and frozen). For example, consider an interface named
Color with three attributes RED, GREEN, and BLUE. They are all static, final and frozen.

If you generate in Java, you see:

public interface Color
{
 public static final int RED = 0xFF0000;
 public static final int GREEN = 0x00FF00;
 public static final int BLUE = 0x0000FF;
}

All these attributes are constants because they are static (independent from the instances),
final (they can not be overloaded), and frozen (their value cannot be changed).

You can use the attributes of other interfaces or classes and add them to the current interface.

Creating an Attribute
You can create an attribute from the property sheet of a class, identifier, or interface.

Open the property sheet of a classifier, select the Attributes tab, and click one of the following
tools:

Tool Description

Add a Row / Insert a Row - Enter a name and any other appropriate properties. Alterna-
tively, right-click a class or interface in the Browser, and select New > Attribute.

CHAPTER 3: Structural Diagrams

64 PowerDesigner

Tool Description

Add Attributes - Select existing attributes to add to the classifier (see Copying an Attribute
to a Class, Interface, or Identifier on page 65).

[PowerDesigner] Override Inherited Attributes - Select attributes inherited from a parent
classifier to override (see Overriding an Attribute in PowerBuilder on page 66).

Add... - Click the arrow to the right of the tool and select the appropriate type of standard
operation (such as constructors/destructors or initializers) from the list (see Adding Getter
and Setter Operations to a Classifier on page 66).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Copying an Attribute to a Class, Interface, or Identifier
You can duplicate an attribute from one classifier to another. If the classifier already contains
an attribute with the same name or code as the copied attribute, the copied attribute is renamed.
For example the attribute PERIPHLD is renamed into PERIPHLD2 when it is copied to a class
which already contains an attribute PERIPHLD.

1. Open the property sheet of a class, interface, or identifier, and click the Attributes tab.

2. Click the Add Attributes tool to open the Selection window. This window contains a list of
all the attributes in the model, except those that already belong to the object.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 65

3. Select the attributes you want to add to the object.

or

Use the Select All tool to add all the attributes in the list to the object.

4. Click OK to add the selected attributes to the current object.

Overriding an Attribute in PowerBuilder
When modeling for PowerBuilder, you can override attributes inherited from a parent class
redefining them in the child class. You can only modify the initial value of the attribute and not
any other properties.

1. Double-click a class that is linked to a parent class in the diagram to open its property sheet,
and then click the Attributes tab.

2. Click the Override Inherited Attributes tool to display a selection window listing the
attributes that belong to all the parent classes of the class.

3. Select an attribute and click OK. A copy of the attribute is added to the list of attributes of
the child class. It is grayed to indicate that its properties cannot be modified, and its
stereotype is set to <<Override>>.

4. Click OK.

Adding Getter and Setter Operations to a Classifier
PowerDesigner helps you to quickly create Getter and Setter operations for your attributes
from the Attributes tab of your classifier.

1. Open the property sheet of your classifier and click the Attributes tab.

CHAPTER 3: Structural Diagrams

66 PowerDesigner

2. Select one or more attributes and then click the Add... button at the bottom of the attributes
tab and select the action you want to perform. Depending on the target language, some of
the following actions will be available:

• Get/Set Operations - Creates get and set operations on the Operations tab for the
selected attributes

• Property - [C#/VB.NET only] Creates a property on the Attributes tab and get and set
operations on the Operations tab to access the original attribute via the property.

• Indexer - [C# only] Creates an indexer on the Attributes tab and get and set operations
on the Operations tab to access the original attribute via the indexer.

• Event Operations - [C#/VB.NET only, for attributes with the Event stereotype] Creates
add and remove operations on the Operations tab for the event.

3. [optional] Click the Operations tab to view the newly created operations. Certain values,
including the names cannot be modified.

4. Click OK to close the property sheet and return to your model.

Attribute Properties
To view or edit an attribute's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 67

Property Description

Parent Specifies the classifier to which the attribute belongs.

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Visibility Specifies the visibility of the object, how it is seen outside its enclosing name-
space. When a class is visible to another object, it may influence the structure or
behavior of the object, or similarly, the other object can affect the properties of the
class. You can choose between:

• Private – only to the class to which it belongs
• Protected – only to the class and its derived objects
• Package – to all objects contained within the same package
• Public – to all objects (option by default)

Data type Set of instances sharing the same operations, abstract attributes, relationships,
and semantics.

Multiplicity Specifies the range of allowable number of values the attribute may hold. You can
choose between:

• 0..1 – zero or one
• 0..* – zero to unlimited
• 1..1 – exactly one
• 1..* – one to unlimited
• * – none to unlimited

You can change the default format of multiplicity from the registry.

HKEY_CURRENT_USER\Software\Sybase\PowerDesigner
16\ModelOptions\Cld\
MultiplicityNotation = 1 (0..1) or 2 (0,1)

CHAPTER 3: Structural Diagrams

68 PowerDesigner

Property Description

Array size Specifies multiplicity in the syntax of a given language, when attribute multi-
plicity cannot express it. For example, you can set array size to [4,6,8] to get the
PowerBuilder syntax int n[4,6,8] or set array size to [,,] to get the c# syntax int[,,]
n;

Depending on the model language, the following will be generated:

• Java, C# and C++ – [2][4][6]
• PowerBuilder – [2,4,6]
• VB .NET – (2,4,6)

Enum class [Java 5.0 and higher] Specifies an anonymous class for an EnumConstant. Use
the tools to the right of the field to create, browse for, or view the properties of the
currently selected class.

Static The attribute is associated with the class, as a consequence, static attributes are
shared by all instances of the class and have always the same value among
instances.

Derived Indicates that the attribute can be computed from another attribute. The deriva-
tion formula can be defined in the attribute description tab, it does not influence
code generation.

Mandatory Boolean calculated attribute selected if the minimum multiplicity is greater than
0.

Volatile Indicates that the attribute is not a member of the class. It is only defined by getter
and setter operations, in C# it replaces the former extended attribute volatile. For
more information on adding operations to a class, see Adding Getter and Setter
Operations to a Classifier on page 66.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail Tab
The Detail tab contains the following properties:

Property Description

Initial value Specifies the intial value assigned to the attribute on creation.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 69

Property Description

Changeability Specifies if the value of the attribute can be modified once the object has been
initialized. You can choose between:

• Changeable – The value can be changed

• Read-only – Prevents the creation of a setter operation (a setter is created in
the method inside the class)

• Frozen – Constant

• Add-only – Allows you to add a new value only

Domain Specifies a domain (see Domains (OOM) on page 117), which will define the
data type and related data characteristics for the attribute and may also indicate
check parameters, and business rules.

Select a domain from the list, or click the Ellipsis button to the right to create a
new domain in the List of Domains.

Primary Identifier [class attributes] Specifies that the attribute is part of a primary identifier. Primary
identifiers are converted to primary keys after generation of an OOM to a PDM.
Exists only in classes

Migrated from Specifies the attribute being overridden (PowerDesigner only) or association
migrated (see Migrating Association Roles in a Class Diagram on page 93).
Click the Properties tool to the right of the field to open the referenced object's
property sheet.

Persistent [class attributes] Specifies that the attribute will be persisted and stored in a
database (see Managing Object Persistence During Generation of Data Models
on page 275).

Code Specifies the code of the table or entity that will be generated in a persistent CDM
or PDM model.

Data type Specifies a persistent data type used in the generation of a persistent model, either
CDM or PDM. The persistent data type is defined from default PowerDesigner
conceptual data types.

Length Specifies the maximum number of characters of the persistent data type.

Precision Specifies the number of places after the decimal point, for persistent data type
values that can take a decimal point

Setting Data Profiling Constraints
PowerDesigner supports data profiling in the physical data model (PDM) and the Standard
Checks and Additional Checks tabs are provided in OOM attribute and domain property

CHAPTER 3: Structural Diagrams

70 PowerDesigner

sheets solely to retain this information when linking and synching between an OOM and a
PDM.

The following constraints are available on the Standard Checks tab of OOM attributes and
domains:

Property Description

Values Specifies the range of acceptable values. You can set a:

• Minimum - The lowest acceptable numeric value
• Maximum - The highest acceptable numeric value
• Default - The value assigned in the absence of an expressly entered value.

Characteristics Specifies the shape of acceptable data. You can choose a:

• Format - A number of standard formats are available in the list and you can
create your own format for reuse elsewhere or simply enter a format in the
field.

• Unit - A standard measure. This field is informational only and is not
generated.

• No space - Space characters are not allowed.
• Cannot modify - The value cannot be updated after initialization.

Character case Specifies the acceptable case for the data. You can choose between:

• Mixed case [default]
• Uppercase
• Lowercase
• Sentence case
• Title case

List of values Specifies the various values that are acceptable.

Select the Complete check box beneath the list to exclude all other values not
appearing in the list.

Creating Data Formats For Reuse
You can create data formats to reuse in constraints for multiple objects by clicking the New
button to the right of the Format field on the Standard Checks tab. Data formats are
informational only, and are not generated as constraints.

Note: To create multiple data formats, use the List of Data Formats, available by selecting
Model > Data Formats.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 71

Data Format Properties
To view or edit a data format's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Type Specifies the type of the format. You can choose between:

• Date/Time

• String

• Regular Expression

Expression Specifies the form of the data to be stored in the column; For example, 9999.99
would represent a four digit number with two decimal places.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Specifying Advanced Constraints
The Additional Checks tab is used in the physical data model (PDM) to specify complex
column constraints, and is provided in OOM attribute and domain property sheets solely to
retain this information when linking and synching between an OOM and a PDM.

Identifiers (OOM)
An identifier is a class attribute, or a combination of class attributes, whose values uniquely
identify each occurrence of the class. It is used during intermodel generation when you

CHAPTER 3: Structural Diagrams

72 PowerDesigner

generate a CDM or a PDM into an OOM, the CDM identifier and the PDM primary or
alternate keys become identifiers in the OOM.

An identifier can be created for a class in the following diagrams:

• Class Diagram
• Composite Structure Diagram

Each class can have at least one identifier. Among identifiers, the primary identifier is the main
identifier of the class. This identifier corresponds to a primary key in the PDM.

When you create an identifier, you can attach attributes or business rules to it. You can also
define one or several attributes as being primary identifier of the class.

For example, the social security number for a class employee is the primary identifier of this
class.

Creating an Identifier
You can create an identifier from the property sheet of a class or interface.

• Open the Identifiers tab in the property sheet of a class or interface, and click the Add a
Row tool.

• Open the Attributes tab in the property sheet of a class or interface, and select the Primary
Identifier checkbox when you create an attribute.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Creating a primary identifier when you create the class attributes
You can create a primary identifier when you create attributes for a class.

1. Double-click a class in the diagram to display its property sheet, and then click the
Attributes tab.

2. Double-click an attribute in the list to display its property sheet, and then click the Detail
tab.

3. Select the Primary Identifier check box and click OK to return to the Attributes tab of the
class property sheet.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 73

4. Click the Identifiers tab to view the new identifier in the list.

5. Click OK.

Defining the Primary Identifier from the List of Identifiers
You can define the primary identifier from the List of Identifiers.

1. Select Model > Identifiers to display the list of identifiers.

2. Double-click an identifier in the list to display its property sheet.

3. Select the Primary Identifier check box.

4. Click OK in each of the dialog boxes.

Identifier Properties
To view or edit an identifier's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Parent Specifies the class to which the identifier belongs.

CHAPTER 3: Structural Diagrams

74 PowerDesigner

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Primary Identifier Specifies that the identifier is a primary identifier.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Adding Attributes to an Identifier
An identifier can contain one or several attributes. You can add these attributes to an identifier
to further characterize the identifier.

1. Select an identifier from the List of Identifiers or the Identifiers tab in the property sheet of
a class, and click the Properties tool to display its property sheet.

2. Click the Attributes tab and click the Add Attributes tool to display the list of attributes for
the class.

3. Select the check boxes for the attributes you want to add to the identifier.

4. Click OK in each of the dialog boxes.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 75

Operations (OOM)
An operation is a named specification of a service that can be requested from any object of a
class to affect behavior. It is a specification of a query that an object may be called to execute.

An operation can be created for a class or interface in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Component Diagram

A class may have any number of operations or no operations at all.

In the following example, the class Car, has 3 operations: start engine, brake, and accelerate.

Operations have a name and a list of parameters. Several operations can have the same name
within the same class if their parameters are different.

For more information on EJB operations, see Defining Operations for EJBs on page 346.

Creating an Operation
You can create an operation from the property sheet of, or in the Browser under, a class or
interface.

Open the property sheet of a classifier, select the Operations tab, and click on one of the
following tools:

Tool Description

Add a Row / Insert a Row - Enter a name and any other appropriate properties. Alternatively,
right-click a class or interface in the Browser, and select New > Operation.

Add Operations - Select existing operations to add to the classifier (see Copying an Oper-
ation From Another Classifier on page 77).

Override Inherited Operations - Select operations inherited from a parent classifier to
override (see Inheriting and Overriding Operations from Parent Classifiers on page 77).

Add... - Click the arrow to the right of the tool and select the appropriate type of standard
operation (such as constructors/destructors or initializers) from the list (see Creating a
Standard Operation on page 77).

CHAPTER 3: Structural Diagrams

76 PowerDesigner

Tool Description

Unimplemented Operations - Select operations to be implemented from an interface to
which the current class is linked by a realization link (see Implementing Operations from an
Interface on page 78).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Copying an Operation From Another Classifier
You can copy an operation from one classifier and add it to another. If the class already
contains an operation with the same name or code as the copied operation, the copied
operation is renamed.

1. Open the property sheet of a classifier and click the Operations tab.

2. Click the Add Operations tool to open a selection window listing all the operations
available in the model.

3. Select one or more operations in the list and then click OK to create a copy of the operation
and add it to the classifier.

Inheriting and Overriding Operations from Parent Classifiers
PowerDesigner lets you view and override operations inherited from parent classes from the
child class property sheet Operations tab.

In order to inherit and be able to override inherited operations, your class must be linked to one
or more parent classifiers that have operations specified.

1. Open the property sheet of a class that is linked by a generalization link to one or more
parents and click the Operations tab.

2. Click the Override Inherited Operation to open a selection dialog, which lists the
operations that the classifier inherits from its parents.

3. Select one or more operations, and then click OK to copy them to the list of operations of
the child class with their stereotype set to <<Override>>.

Each overridden operation has the same signature (name and parameters) as the original
operation, and you can only modify the code on its Implementation tab.

Creating a Standard Operation
PowerDesigner can create standard operations for your classifiers using tools on the classifier
property sheet Operations tab.

1. Open the property sheet of your classifier and click the Operations tab.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 77

2. Click the Add... tool, and select the type of standard operation you want to add:

• Default Constructor/Destructor - to perform initialization/cleanup for classifiers. You
can add parameters afterwards.

• Copy Constructor - to copy the attributes of a class instance to initialize another
instance.

• Initializer/Static Initializer- [Java only] to initialize a class before any constructor.
• Duplicate Operation - to create and initialize an instance of a class within the class.
• Activate/Deactivate Operations - [PowerBuilder only]
The operation is added to the list. Some or all of its properties will be dimmed to indicate
that they are uneditable.

3. [optional] Select the operation and then click the Properties tool to add parameters to it or
otherwise complete its definition.

4. Add other operations as necessary, or click OK to close the property sheet and return to
your model.

Implementing Operations from an Interface
When you create a realization link between a class and an interface, the class must implement
all the operations of the interface.

Note: To automatically create the necessary operations in your class, click Tools > Model
Options to open the Model Options dialog, and select the Auto-Implement Realized
Interfaces option. If this option is not selected, you can implement the operations manually.

CHAPTER 3: Structural Diagrams

78 PowerDesigner

1. Open the property sheet of a class that is linked to one or more interfaces by realization
links and click the Operations tab.

2. Click the Unimplemented Operations tool to open a selection dialog, which lists all the
operations waiting to be implemented in the class.

3. Select one or more operations, and then click OK to copy them to the list of operations of
the class with their stereotype set to <<Implement>>.

Each implemented operation has the same signature (name and parameters) as the original
operation, and you can only modify the code on its Implementation tab.

Operation Properties
To view or edit an operation's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Parent Specifies the parent classifier to which the operation belongs.

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 79

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

The following common stereotypes are available by default:

• <<constructor>> - Operation called during the instantiation of an objet that
creates an instance of a class

• <<create>> - Operation used by a class when instantiating an object

• <<destroy>> - Operation used by a class that destroys an instance of a class

• <<storedProcedure>> - Operation will become a stored procedure in the
generated PDM

• <<storedFunction>> - Operation will become a stored function in the
generated PDM

• <<EJBCreateMethod>> - EJB specific CreateMethod

• <<EJBFinderMethod>> - EJB specific FinderMethod

• <<EJBSelectMethod>> - EJB specific SelectMethod

For more information on EJB specific methods, see Defining Operations for
EJBs on page 346.

Return Type A list of values returned by a call of the operation. If none are returned, the
return type value is null

Visibility [class operators] Visibility of the operation, whose value denotes how it is seen
outside its enclosing name space:

• Private - Only to the class to which it belongs

• Protected - Only to the class and its derived objects

• Package - To all objects contained within the same package

• Public - To all objects

Language event When classes represent elements of interfaces, this box allows you to show an
operation as triggered by a significant occurrence of an event

Static The operation is associated with the class, as a consequence, static operations
are shared by all instances of the class and have always the same value among
instances

Array Flag defining the return type of the operation. It is true if the value returned is a
table

Abstract The operation cannot be instantiated and thus has no direct instances

Final The operation cannot be redefined

CHAPTER 3: Structural Diagrams

80 PowerDesigner

Property Description

Read-only Operation whose execution does not change the class instance

Web service method If displayed and selected, implies that the operation is used as a web service
method

Influent object Specifies the operation on which the current operation is based. In general, this
is either a parent operation that is being overridden through a generalization
link or an interface operation that is being implemented though a realization
link.

Generic Specifies that the operation is a generic method (see Generic Types and Meth-
ods on page 42).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Parameters Tab
The Parameters tab lists the parameters of your operation. Each parameter is a variable that can
be changed, passed, or returned. A parameter has the following properties:

Property Description

Parent Specifies the operation to which the parameter belongs.

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Data type Set of instances sharing the same operations, abstract attributes, relationships,
and semantics

Array When selected, turns attributes into table format

Array size Specifies an accurate array size when the attribute multiplicity is greater than
1.

Variable Argument Specifies that the method can take a variable number of parameters for a given
argument. You can only select this property if the parameter is the last in the
list.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 81

Property Description

Parameter Type Direction of information flow for the parameter. Indicates what is returned
when the parameter is called by the operation during the execution process.
You can choose from the following:

• In - Input parameter passed by value. The final value may not be modified
and information is not available to the caller

• In/Out - Input parameter that may be modified. The final value may be
modified to communicate information to the caller

• Out - Output parameter. The final value may be modified to communicate
information to the caller

Default value Default value when a parameter is omitted. For example:

Use an operation oper(string param1, integer param2),

and specify two arguments oper(val1, val2) during invocation. Some languag-
es, like C++, allow you to define a default value that is then memorized when
the parameter is omitted during invocation.

If the declaration of the method is oper(string param1, integer param2 = de-
fault), then the invocation oper(val1) is similar to oper(val1, default).

WSDL data type Only available with Web services. Defines the XML-Schema/SOAP type used
during invocation of a Web method (using http or Soap)

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Implementation Tab
The Implementation tab allows you to specify the code that will be used to implement the
operation, and contains the following sub-tabs at the bottom of the dialog:

Items Description

Body Code of the implementation.

Exceptions Signal raised in response to behavioral faults during system execution. Use the
Add Exception tool to select an exception classifier to add at the cursor po-
sition.

Pre-conditions Constraint that must be true when the operation is invoked.

Post-conditions Constraints that must be true at the completion of the operation.

Specification Similar to the pseudo code, it is a description of the normal sequence of actions.

The following tabs are also available:

CHAPTER 3: Structural Diagrams

82 PowerDesigner

• Parameters - lists the parameters of the operation. Each parameter is a variable that can be
changed, passed, or returned (see Parameters (OOM) on page 83).

• Generic Parameters - lets you specify the type parameters of a generic method (see Generic
Types and Methods on page 42).

• Related Diagrams - lists and lets you add model diagrams that are related to the operation
(see Core Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and
Symbols > Diagrams > Specifying Diagrams as Related Diagrams).

Parameters (OOM)
A parameter is a variable that can be changed, passed, or returned.To view or edit a parameter's
properties, select it on the Parameters tab of an operation or event and click the Properties
tool.

The General tab contains the following properties:

Property Description

Parent Specifies the operation or event to which the parameter belongs.

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Data type Set of instances sharing the same operations, abstract attributes, relationships,
and semantics.

Array Specifies that the data type is a table format.

Array size Specifies an accurate array size when the attribute multiplicity is greater than
1.

Variable Argument Specifies that the method can take a variable number of parameters for a given
argument. You can only select this property if the parameter is the last in the
list.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 83

Property Description

Parameter Type Direction of information flow for the parameter. You can choose from the
following:

• In - Input parameter passed by value. The final value may not be modified
and information is not available to the caller.

• In/Out - Input parameter that may be modified. The final value may be
modified to communicate information to the caller.

• Out - Output parameter. The final value may be modified to communicate
information to the caller.

Default value Default value when a parameter is omitted. For example:

Use an operation oper(string param1, integer param2),

and specify two arguments oper(val1, val2) during invocation. Some languag-
es, like C++, allow you to define a default value that is then memorized when
the parameter is omitted during invocation.

If the declaration of the method is oper(string param1, integer param2 = de-
fault), then the invocation oper(val1) is similar to oper(val1, default).

WSDL data type Only available with Web services. Defines the XML-Schema/SOAP type used
during invocation of a Web method (using http or Soap)

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Associations (OOM)
An association represents a structural relationship between classes or between a class and an
interface.

An association can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram

It is drawn as a solid line between the pair of objects.

In addition to naming the association itself, you can specify a role name for each end in order to
describe the function of a class as viewed by the opposite class. For example, a person

CHAPTER 3: Structural Diagrams

84 PowerDesigner

considers the company where he works as an employer, and the company considers this person
as an employee.

Reflexive Association
A reflexive association is an association between a class and itself.

In the following example, the association Supervise expresses the fact that an employee can, at
the same time, be a manager and someone to manage.

In the Dependencies tab of the class, you can see two identical occurrences of the association,
this is to indicate that the association is reflexive and serves as origin and destination for the
link.

Aggregation
An aggregation is a special type of association in which one class represents a larger thing (a
whole) made of smaller things (the parts). This is sometimes known as a "has-a" link, and
allows you to represent the fact that an object of the whole has objects of the part. In the
following example, the family is the whole that can contain children.

You can create an aggregation directly using the Aggregation tool in the Toolbox. The
aggregation symbol in a diagram is the following:

Composition
A composition is a special type of aggregation in which the parts are strongly tied to the whole.
In a composition, an object may be a part of only one composite at a time, and the composite
object manages the creation and destruction of its parts. In the following example, the frame is
a part of a window. If you destroy the window object, the frame part also disappears.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 85

You can create a composition directly using the Composition tool in the Toolbox. The
composition symbol in a diagram is the following:

You can define one of the roles of an association as being either an aggregation or a
composition. The Container property needs to be defined to specify which of the two roles is
an aggregation or a composition.

Creating an Association
You can create an association from the Toolbox, Browser, or Model menu.

• Use the Association, Aggregation, or Composition tool in the Toolbox.
• Select Model > Associations to access the List of Associations, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Association.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Association Properties
To view or edit an association's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

CHAPTER 3: Structural Diagrams

86 PowerDesigner

Property Description

Class A/Class B Specifies the classes at each end of the association. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected
class.

Type Specifies the type of association. You can choose between:

• Association

• Aggregation – a part-whole relationship between a class and an aggregate
class

• Composition – a form of aggregation but with strong ownership and co-
incident lifetime of parts by the whole

Container If the association is an aggregation or a composition, the container radio but-
tons let you define which class contains the other in the association

Association Class Class related to the current association that completes the association defini-
tion

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail Tab
Each end of an association is called a role. You can define its multiplicity, persistence,
ordering and changeability. You can also define its implementation.

Property Description

Role name Name of the function of the class as viewed by the opposite class

Visibility Specifies the visibility of the association role, how it is seen outside its en-
closing namespace. When the role of an association is visible to another object,
it may influence the structure or behavior of the object, or similarly, the other
object can affect the properties of the association. You can choose between:

• Private – only to the object itself

• Protected – only to the object and its inherited objects

• Package – to all objects contained within the same package

• Public – to all objects (option by default)

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 87

Property Description

Multiplicity The allowable cardinalities of a role are called multiplicity. Multiplicity indi-
cates the maximum and minimum cardinality that a role can have. You can
choose between:

• 0..1 – zero or one

• 0..* – zero to unlimited

• 1..1 – exactly one

• 1..* – one to unlimited

• * – none to unlimited

An extended attribute exists for each role of an association. It allows you to
choose how the association should be implemented. They are available in your
current object language, from the Profile\Association\Exten-
dedAttributes category, under the roleAContainer and ro-
leBContainer names. Such extended attributes are pertinent only for a

'many' multiplicity (represented by *), they provide a definition for collections
of associations. For more information, see Customizing and Extending Pow-
erDesigner > Object, Process, and XML Language Definition Files.

Array size Specifies an accurate array size when the multiplicity is greater than 1.

Changeability Specifies if the set of links related to an object can be modified once the object
has been initialized. You can choose between:

• Changeable – Associations may be added, removed, and changed freely

• Read-only – You are not allowed to modify the association

• Frozen – Constant association

• Add-only – New associations may be added from a class on the opposite
end of the association

Ordering The association is included in the ordering which sorts the list of associations
by their order of creation. You can choose between:

• Sorted – The set of objects at the end of an association is arranged ac-
cording to the way they are defined in the model

• Ordered – The set of objects at the end of an association is arranged in a
specific order

• Unordered – The end of an association is neither sorted nor ordered

Initial value Specifies an instruction for initializing migrated attributes, for example 'new
client ()'.

Navigable Specifies that information can be transmitted between the two objects linked by
the relationship.

CHAPTER 3: Structural Diagrams

88 PowerDesigner

Property Description

Persistent Specifies that the instance of the association is preserved after the process that
created this instance terminates.

Volatile Specifies that the corresponding migrated attributes are not members of the
class, which is only defined by the getter and setter operations.

Container type Specifies a container collection for migrated attributes of complex types.

Implementation
class

Specifies the container implementation (see Association Implementation on
page 89).

Migrated attribute Specifies the name of the migrated association role.

Association Implementation
Associations describe structural relationships between classes that become links between the
instances of these classes. These links represent inter-object navigation that is to say the fact
that one instance can retrieve another instance through the navigable link.

When an association end is navigable, it means you want to be able to retrieve the instance of
the class it is linked to, this instance is displayed as a migrated attribute in the current instance
of a class. The rolename of this end can be used to clarify the structure used to represent the
link.

For example, let us consider an association between class Company and class Person.
Navigation is possible in both directions to allow Company to retrieve a list of employees, and
each employee to retrieve his company.

PowerDesigner supports different ways for implementing associations in each object
language.

Default Implementation
By default, migrated attributes use the class they come from as type.

When the association multiplicity is greater than one, the type is usually an array of the class,
displayed with [] signs. In our example, attribute employee in class Company is of type Person
and has an array of values. When you instantiate class Company, you will have a list of
employees to store for each company.

public class Company
{
 public String Name;

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 89

 public String Catalog;
 public String Address;

 public Person[] employee;

Depending on the language you are working with, you may have other ways to implement
migrated attributes. PowerDesigner lets you choose an implementation in the Detail tab of the
association property sheet.

Container Type and Implementation Class
A container is a collection type of objects that stores elements. The container structure is more
complex than the array type and provides more methods for accessing elements (test element
existence, insert element in collection, and so on) and managing memory allocation
dynamically.

You can select a container type from the Container Type list. This type will be used by
migrated attributes. The code of a migrated attribute that uses a container type contains getter
and setter functions used to define the implementation of the association. These functions are
visible in the Code Preview tab, but do not appear in the list of operations.

When you use the role migration feature to visualize migrated attributes and select a container
type, the generated code is identical.

Depending on the language and the libraries you are using, the container type may be
associated with an implementation class. In this case, the container type is used as an interface
for declaring the collection features, and the implementation class develops this collection.
For example, if you select the container type java.util.Set, you should know that this collection
contains no duplicate elements. You can then select an implementation class among the
following: HashSet, LinkedHashSet, or TreeSet.

For more information on container types and implementation classes, see the corresponding
language documentation.

More on Implementation Class
The default implementation mechanism is defined in the object language resource file under
the Profile\Association category. This mechanism uses templates to define the migrated
attribute generated syntax, the operations to generate, and other association details. For
example, template roleAMigratedAttribute allows you to recover the visibility and initial
value of the association role. You can use the resource editor interface to modify
implementation details.

For more information on template definition, see Customizing and Extending PowerDesigner
> Customizing Generation with GTL

CHAPTER 3: Structural Diagrams

90 PowerDesigner

Understanding the Generated Code
When you define an implementation class, association implementation details are always
generated in the origin and/or destination classes of the navigable association.

Generation uses specific documentation comment tags to store association information. These
documentation comment tags gather all the required details to be able to recreate the
association upon reverse engineering. The documentation comment tags are processed during
reverse engineering in order to make round-trip engineering possible.

The following documentation tags are used:

• pdRoleInfo is used to retrieve the classifier name, container type, implementation class,
multiplicity and type of the association

• pdGenerated is used to flag automatically generated functions linked to association
implementation. These functions should not be reverse engineered otherwise generated
and reverse engineered models will be different

Warning! Make sure you do not modify these tags in order to preserve round-trip engineering.

In Java
The javadoc tag syntax is used /**@tag value*/.

In the following example, the tag @pdRoleInfo is used to store association implementation
details, and @pdGenerated is used to indicate that the getter method is automatically
generated and should not be reverse engineered.

 /**@pdRoleInfo name=Person coll=java.util.Collection
impl=java.util.LinkedList mult=1..* */
 public java.util.Collection employee;
 /** @pdGenerated default getter */
 public java.util.Collection getEmployee()
 {
 if (employee == null)
 employee = new java.util.HashSet();
 return employee;
 }
...

In C#
The documentation tag ///<tag value /> is used.

In the following example, the tag <pdRoleInfo> is used to store association implementation
details, and <pdGenerated> is used to indicate that the getter method is automatically
generated and should not be reverse engineered.

 ///<pdRoleInfo name='Person' coll='System.CollectionsArrayList'
impl='java.util.LinkedList' mult='1..*' type='composition'/>
 public java.util.Collection employee;
 ///<pdGenerated> default getter </pdGenerated>
...

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 91

In VB .NET
The documentation tag "<tag value /> is used.

In the following example, the tag <pdRoleInfo> is used to store association implementation
details, and <pdGenerated> is used to indicate that the getter method is automatically
generated and should not be reverse engineered.

 "<pdRoleInfo name='Person' coll='System.CollectionsArrayList'
impl='java.util.LinkedList' mult='1..*' type='composition'/>
 public java.util.Collection employee;
 "<pdGenerated> default getter </pdGenerated>
...

Creating an Association Class
You can add properties to an association between classes or interfaces by creating an
association class. It is used to further define the properties of an association by adding
attributes and operations to the association.

An association class is an association that has class properties, or a class that has association
properties. In the diagram, the symbol of an association class is a connection between an
association and a class. Association classes must be in the same package as the parent
association; you cannot use the shortcut of a class to create an association class.

The class used to create an association class cannot be reused for another association class.
However, you can create other types of links to and from this class.

In the following example, the classes Student and Subject are related by an association exam.
However, this association does not specify the date of the exam. You can create an association
class called Exam that will indicate additional information concerning the association.

1. Right-click the association and select Add Association Class from the contextual menu.

2. Double-click the association to open its property sheet, and click the Create button to the
right of the Association class listbox.

A dashed link is automatically added between the class and the association.

CHAPTER 3: Structural Diagrams

92 PowerDesigner

Migrating Association Roles in a Class Diagram
You can migrate association roles and create attributes before generation. This is very
convenient for many reasons including data type customization and the ability to change the
attribute order in the list of attributes. The last feature is especially important in XML.

Regardless of the navigability, the migration creates an attribute and sets its properties as
follows:

• Name and code of the attribute: association role if already set, if not the association name
• Data type: code of the classifier linked by the association
• Multiplicity: role multiplicity
• Visibility: role visibility

Migration Rules
The following rules apply when migrating association roles:

• If the migrated attribute name is the same as the role name, then modifying the role name
synchronizes the migrated attribute name

• If the migrated attribute data type is the same as the role classifier, then modifying the role
multiplicity synchronizes the migrated attribute multiplicity

• If the code of the classifier, linked by the association, changes, then the migrated attribute
data type is automatically synchronized

• If you manually change the migrated attribute, the synchronization does not work, the
association role is not synchronized

• The migrated attribute is automatically deleted if the association is deleted

After migration, the property sheet of the new attribute displays the name of the association in
the Migrated from box in the Detail tab.

Migrating Navigable Roles
You can migrate the navigable role of an association and turn it into an attribute:

1. Right-click the association in the diagram.

2. Select Migrate > Migrate Navigable Roles from the association contextual menu.

An attribute is created and named after the navigable role of the association followed by
the code of the classifier.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 93

Rebuilding Data Type Links
If a classifier data type is not linked to its original classifier, you can use the Rebuild Data Type
Links feature to restore the link. This feature looks for all classifiers of the current model and
links them, if needed, to the original classifier.

The Rebuild Data Type Links scans the following data types:

• Attribute data type: an association is created and the attribute is flagged as Migrated
Attribute

• Parameter data type: an association is created and links the original classifier
• Operation return type: an association is created and links the original classifier

In some cases, for C++ in particular, this feature is very useful to keep the synchronization of
the link even if the data type changes, so that it keeps referencing the original class.

The Rebuild Data Type Links contains the following options:

1. Select Tools > Rebuild Data Type Links to open the Create Associations and Internal
Links window.

2. Set the following options as needed:

Option Description

Create associations Looks for attributes whose data type matches a classifier and links the
attributes to the newly created association as migrated attributes

Create symbols for as-
sociations

Creates a symbol of the new association

Create internal links Creates a link between the return type or parameter data type and the
classifier it references

3. Click OK.

Linking an Association to an Instance Link
You can drag an association node from the Browser and drop it into the communication or
object diagrams. This automatically creates two objects, and an instance link between them.

CHAPTER 3: Structural Diagrams

94 PowerDesigner

Both objects are instances of the classes or interfaces, and the instance link is an instance of the
association.

Generalizations (OOM)
A generalization is a relationship between a general element (the parent) and a more specific
element (the child). The more specific element is fully consistent with the general element and
contains additional information.

A generalization can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Component Diagram
• Use Case Diagram

You create a generalization relationship when several objects have common behaviors. You
can also create a generalization between a shortcut of an object and an object but, if the link is
oriented, only the parent object can be the shortcut.

Generalizations in a Use Case Diagram
In a use case diagram, you can create a generalization between:

• Two actors
• Two use cases

For example two or more actors may have similarities, and communicate with the same set of
use cases in the same way. This similarity is expressed with generalization to another actor. In
this case, the child actors inherit the roles, and relationships to use cases held by the parent
actor. A child actor includes the attributes and operations of its parent.

Generalizations in a Class or Composite Structure Diagram
In a class diagram, you can create a generalization between:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 95

• Two classes
• Two interfaces

For example, an animal is a more general concept than a cat, a dog or a bird. Inversely, a cat is a
more specific concept than an animal.

Animal is a super class. Cat, Dog and Bird are sub-classes of the super class.

Generalizations in a Component Diagram
In a component diagram, you can create a generalization between two components, as shown
below:

Creating a Generalization
You can create a generalization from the Toolbox, Browser, or Model menu.

• Use the Generalization tool in the Toolbox.
• Select Model > Generalizations to access the List of Generalizations, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Generalization.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Generalization Properties
To view or edit a generalization's properties, double-click its diagram symbol or Browser or
list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator..

The General tab contains the following properties:

CHAPTER 3: Structural Diagrams

96 PowerDesigner

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Parent Specifies the parent object. Use the tools to the right of the list to create, browse
for, or view the properties of the currently selected object.

Child Specifies the child object. Click the Properties tool to the right of this box to
view the properties of the currently selected object.

Visibility Specifies the visibility of the object, how it is seen outside its enclosing name-
space. You can choose between:

• Private – only to the generalization itself
• Protected – only to the generalization and its inherited objects
• Package – to all objects contained within the same package
• Public – to all objects (option by default)

Generate parent
class as table

Selects the "Generate table" persistence option in the Detail tab of the parent
class property sheet. If this option is not selected, the "Migrate columns"
persistence option of the parent class is selected.

Generate child class
as table

Selects the "Generate table" persistence option in the Detail tab of the child
class property sheet. If this option is not selected, the "Migrate columns"
persistence option of the child class is selected.

Specifying Attrib-
ute

Specifies a persistent attribute (with a stereotype of <<specifying>>) in the
parent table. Click the New tool to create a new attribute. This attribute will
only be generated if the child table is not.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

If the generalization is created in a use case diagram, you cannot change the type of objects
linked by the generalization. For example, you cannot attach the dependency coming from a
use case to a class, or an interface.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 97

Dependencies (OOM)
A dependency is a semantic relationship between two objects, in which a change to one object
(the influent object) may affect the semantics of the other object (the dependent object).

A dependency can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Object Diagram
• Use Case Diagram
• Component Diagram
• Deployment Diagram

The dependency relationship indicates that one object in a diagram uses the services or
facilities of another object. You can also define dependencies between a package and a
modeling element.

Dependencies in a Class or Composite Structure Diagram
In a class diagram, you can create a dependency between:

• A class and an interface (and vice versa)
• Two classes
• Two interfaces

For example:

Dependencies in an Object Diagram
In an object diagram, you can create a dependency between two objects as follows:

Dependencies in a Use Case Diagram
In a use case diagram, you can create a dependency between:

• An actor and a use case (and vice versa)
• Two actors

CHAPTER 3: Structural Diagrams

98 PowerDesigner

• Two use cases

Buying a computer from a web site involves the activity of finding the product page within the
seller's web site:

Dependencies in a Component Diagram
In a component diagram, you can create a dependency between two components as shown
below. You cannot create a dependency between a component and an interface.

When using a dependency, you can nest two components by using a stereotype.

Dependencies in a Deployment Diagram
In a deployment diagram, a dependency can be created between nodes, and component
instances as follows:

Creating a Dependency
You can create a dependency from the Toolbox, Browser, or Model menu.

• Use the Dependency tool in the Toolbox.
• Select Model > Dependencies to access the List of Dependencies, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Dependency.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 99

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Dependency Properties
To view or edit a dependency's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the
naming conventions specified in the model options. To decouple name-code
synchronization, click to release the = button to the right of the Code field.

CHAPTER 3: Structural Diagrams

100 PowerDesigner

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by
specifying them in an extension file.

The following common stereotypes are provided by default:

• << Access >> - Public contents of the target package that can by accessed
by the source package

• << Bind >> - Source object that instantiates the target template using the
given actual parameters

• << Call>> - Source operation that invokes the target operation
• << Derive >> - Source object that can be computed from the target
• << Extend >> - (Use Case/Class) Target object extends the behavior of

the source object at the given extension point
• << Friend>> - Source object that has special visibility towards the target
• << Import >> - Everything declared public in the target object becomes

visible to the source object, as if it were part of the source object defi-
nition

• << Include >> - (Use Case/Class) Inclusion of the behavior of the first
object into the behavior of the client object, under the control of the client
object

• << Instantiate >> - Operations on the source class create instances of the
target class

• << Refine >> - The target object has a greater level of detail than the
source object

• << Trace >> - Historical link between the source object and the target
object

• << Use >> - Semantics of the source object are dependent on the se-
mantics of the public part of the target object

• << ejb-ref >> - (Java only) Used in Java Generation to create references
to EJBs (entity beans and session beans) for generating the deployment
descriptor

• << sameFile >> - (Java only) Used in Java Generation to generate Java
classes of visibility protected or private within a file corresponding to a
class of visibility public

Influent Selected use case or actor influences the dependent object. Changes on the
influent object affect the dependent object. Click the Properties tool to the
right of the field to view the object property sheet

Dependent Selected use case or actor depends on the influent object. Changes on the
dependent object do not affect the influent object. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected
object.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 101

Property Description

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

If the dependency is created in a use case diagram, you cannot change the objects linked by the
dependency. For example, you cannot attach the dependency coming from a use case to a class
or an interface.

Realizations (OOM)
A realization is a relationship between a class or component and an interface.

A realization can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Component Diagram

In a realization, the class implements the methods specified in the interface. The interface is
called the specification element and the class is called the implementation element.You can
also create a realization between a shortcut of an interface and a class. Whenever the link is
oriented, only the parent object can be the shortcut.

The arrowhead at one end of the realization always points towards the interface.

Creating a Realization
You can create a realization from the Toolbox, Browser, or Model menu.

• Use the Realization tool in the Toolbox.
• Select Model > Realizations to access the List of Realizations, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Realizations

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Structural Diagrams

102 PowerDesigner

Realization Properties
To view or edit a realization's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Interface Name of the interface that carries out the realization. Use the tools to the right
of the list to create, browse for, or view the properties of the currently selected
interface.

Class Name of the class for which the realization is carried out

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Require Links (OOM)
Require links connect classifiers and interfaces. A require link can connect a class, a
component, or a port on the outside of one of these classifiers to an interface.

A require link can be created in the following diagrams:

• Class Diagram
• Composite Structure Diagram
• Component Diagram

Require Links in a Class Diagram
In the example below, require links connect the class TitleImpl with the interfaces
java.math.stat and java.sql.connection. Note how the require link can proceed from a port or
directly from the class

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 103

Creating a Require Link
You can create a require link from the Toolbox, Browser, or Model menu.

• Use the Require Link/Connector tool in the Toolbox.
• Select Model > Require Links to access the List of Require Links, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Require Link.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Require Link Properties
To view or edit a require link's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Interface Specifies the interface to be linked to. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected interface.

Client Specifies the class, port, or component to be linked to.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 3: Structural Diagrams

104 PowerDesigner

Assembly Connectors (OOM)
Assembly connectors represent the paths of communication by which parts in your classifiers
request and provide services to each other.

An assembly connector can be created in the following diagrams:

• Composite Structure Diagram
• Component Diagram

Assembly Connectors in a Composite Structure Diagram
In the example below an assembly connector connects the supplier part "TitleDataAccess" to
the client part "TitleManager".

Assembly Connectors in a Component Diagram
In the example below an assembly connector connects the supplier part "TitleDataAccess" to
the client part "TitleManager".

Creating an Assembly Connector
You can create assembly connector using the Require Link/Connector tool in the Toolbox.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 105

Assembly Connector Properties
To view or edit an assembly connector's properties, double-click its diagram symbol or
Browser or list entry. The property sheet tabs and fields listed here are those available by
default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Supplier Specifies the part providing the service. Use the tools to the right of the list to
create, browse for, or view the properties of the currently selected part.

Client Specifies the part requesting the service. Use the tools to the right of the list to
create, browse for, or view the properties of the currently selected part.

Interface Specifies the interface that the supplier part uses to provide the service. Use the
tools to the right of the list to create, browse for, or view the properties of the
currently selected interface.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Delegation Connectors (OOM)
Delegation connectors represent the paths of communication by which parts inside a classifier
connect to ports on the outside of that classifier and request and provide services to each
other.

A delegation connector can be created in the following diagrams:

• Composite Structure Diagram
• Component Diagram

Delegation Connectors in a Composite Structure Diagram
In the example below a delegation connector connects the supplier port "sql" on the outside of
the class "TitleImp" to the client part "TitleDataAccess" via a port "sql". A second delegation

CHAPTER 3: Structural Diagrams

106 PowerDesigner

connector connects the supplier part "TitleManager" via the port "mgr" to the port "mgr" on
the outside of the class "TitleImp".

Delegation Connectors in a Component Diagram
In the example below a delegation connector connects the supplier part "TitleDataAccess" via
the port "sql" to the client port "sql" on the outside of the component "PersistentTitle".

Creating a Delegation Connector
You can create a delegation connector using the Require Link/Connector tool in the
Toolbox.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Delegation Connector Properties
To view or edit a delegation connector's properties, double-click its diagram symbol or
Browser or list entry. The property sheet tabs and fields listed here are those available by
default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 107

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Supplier Specifies the part or port providing the service. Use the tools to the right of the list
to create, browse for, or view the properties of the currently selected object.

Client Specifies the part or port requesting the service. Use the tools to the right of the
list to create, browse for, or view the properties of the currently selected object.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Annotations (OOM)
Java 5.0 and the .NET languages (C# 2.0 and VB 2005) provide methods for adding metadata
to code. PowerDesigner provides full support for Java annotations and .NET custom
attributes. For language-specific information, see the relevant chapter in Part Two of this
book.

This metadata can be accessed by post-processing tools or at run-time to vary to behavior of
the system.

Attaching an Annotation to a Model Object
PowerDesigner supports the Java 5.0 built-in annotations, the .NET 2.0 built-in custom
attributes and for both Java 5.0 and .NET 2.0, also allows you to create your own. You can
attach annotations to types and other model objects:

1. Double-click a class or other object to open its property sheet, and then click the
Annotations tab.

2. Click in the Annotation Name column, and select an annotation from the list.

CHAPTER 3: Structural Diagrams

108 PowerDesigner

3. If the annotation takes parameters, you can enter them directly in the Annotation Text
column or click the ellipsis button to open the Annotation Editor.

4. [optional] Click the Preview tab to see the code that will be generated for the class, with its
declaration preceded by the annotation:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 109

5. Click OK to return to the diagram.

Creating a New Annotation Type
You can create new annotation types to attach to your objects.

1. Create a class and then double-click it to access its property sheet.

2. On the General tab, in the Stereotype list:

• For Java 5.0 - select AnnotationType
• For .NET 2.0 - select AttributeType

3. Click the Attributes tab, and add an attribute for each parameter accepted by the annotation
type.

CHAPTER 3: Structural Diagrams

110 PowerDesigner

4. [optional] Click the Preview tab to review the code to be generated for the annotation
type:

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 111

5. Click OK to return to the diagram. The annotation type will be represented as follows:

CHAPTER 3: Structural Diagrams

112 PowerDesigner

Using the Annotation Editor
The Annotation Editor assists you in specifying the values for annotation parameters. It is
accessible by clicking the ellipsis button in the Annotation Text Column on the Annotations
tab of a class or other object:

The top panes provide lists of available properties and constructors, which you can double-
click to add them to the bottom, editing pane.

Instance Links (OOM)
An instance link represents a connection between two objects. It is drawn as a solid line
between two objects.

An instance link can be created in the following diagrams:

• Communication Diagram
• Object Diagram

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 113

Instance Links in an Object Diagram
Instance links have a strong relationship with associations of the class diagram: associations
between classes, or associations between a class and an interface can become instance links
(instances of associations) between objects in the object diagram. Moreover, the instance link
symbol in the object diagram is similar to the association symbol in the class diagram, except
that the instance link symbol has no cardinalities.

The roles of the instance link are duplicated from the roles of the association. An instance link
can therefore be an aggregation or a composition, exactly like an association of the class
diagram. If it is the case, the composition or aggregation symbol is displayed on the instance
link symbol. The roles of the association are also displayed on the instance link symbol
provided you select the Association Role Names display preference in the Instance Link
category.

Example
The following figure shows Object_1 as instance of Class_1, and Object_2 as instance of
Class_2. They are linked by an instance link. It shows Class_1 and Class_2 linked by an
association. Moreover, since Class_2 is associated with Class_1 and also inherits from
Class_3, there is an association between Class_1 and Class_3.

The instance link between Object_1 and Object_2 in the figure can represent Association_1 or
Association_2.

CHAPTER 3: Structural Diagrams

114 PowerDesigner

You can also use shortcuts of associations, however you can only use it if the model to which
the shortcut refers is open in the workspace.

Instance Links Behavior
The following rules apply to instance links:

• When an association between classes becomes an instance link, both classes linked by the
association, and both classes of the objects linked by the instance link must match (or the
class of the object must inherit from the parent classes linked by the association). This is
also valid for an association between a class and an interface

• Two instance links can be defined between the same source and destination objects
(parallel instance links). If you merge two models, the Merge Model feature differentiates
parallel instance links according to their class diagram associations

• You can use reflexive instance links (same source and destination object)

Instance Links in a Communication Diagram
An instance link represents a connection between objects, it highlights the communication
between objects, hence the name 'communication diagram'. It is drawn as a solid line between:

• Two objects
• An object and an actor (and vice versa)

An instance link can be an instance of an association between classes, or an association
between a class and an interface.

The role of the instance link comes from the association. The name of an instance link
comprises the names of both objects at the extremities, plus the name of the association.

The symbol of the instance link may contain several message symbols attached to it.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 115

Instance links hold an ordered list of messages. The sequence numbers specify the order in
which messages are exchanged between objects. For more information, see Messages (OOM)
on page 135.

Instance Links Behavior
The following rules apply to instance links:

• You can use a recursive instance link with an object (same source and destination object)
• Two instance links can be defined between the same source and destination objects

(parallel instance links)
• When you delete an instance link, its messages are also deleted if no sequence diagram

already uses them
• When an association between classes turns into an instance link, both classes linked by the

association, and both classes of the objects linked by the instance link must match (or the
class of the object must inherit from the parent classes linked by the association). This is
also valid for an association between a class and an interface

• If you change one end of an association, the instance link that comes from the association is
detached

• When you copy and paste, or move an instance link, its messages are automatically copied
at the same time

• When the extremities of the message change, the message is detached from the instance
link

• If you use the Show Symbols feature to display an instance link symbol, all the messages
attached to the instance link are displayed

Creating an Instance Link
You can create an instance link from the Toolbox, Browser, or Model menu.

• Use the Instance Link tool in the Toolbox.
• Select Model > Instance Links to access the List of Instance Links, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Instance Link.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Drag and Drop Associations in an Object Diagram
You can drag an association from the Browser and drop it into an object diagram. This creates
an instance link and two objects, instances of these classes or interfaces.

CHAPTER 3: Structural Diagrams

116 PowerDesigner

Instance Link Properties
To view or edit an instance link's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name and code are read-only. You can optionally add a
comment to provide more detailed information about the object.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Object A Name of the object at one end of the instance link. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected
object.

Object B Name of the object at the other end of the instance link. Use the tools to the right
of the list to create, browse for, or view the properties of the currently selected
object.

Association Association between classes (or association between a class and an interface)
that the instance link uses to communicate between objects of these classes.
Use the tools to the right of the list to create, browse for, or view the properties
of the currently selected associtation.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Domains (OOM)
Domains define the set of values for which an attribute is valid. They are used to enforce
consistent handling of data across the system. Applying domains to attributes makes it easier
to standardize data characteristics for attributes in different classes.

A domain can be created in the following diagrams:

• Class Diagram

In an OOM, you can associate the following properties with a domain:

• Data type
• Check parameters
• Business rules

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 117

Creating a Domain
You can create a domain from the Browser or Model menu.

• Select Model > Domains to access the List of Domains, and click the Add a Row tool
• Right-click the model or package in the Browser, and select New > Domains

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Domain Properties
To view or edit a domain's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Data type Form of the data corresponding to the domain ; numeric, alphanumeric, Boo-
lean, or others

Multiplicity Specification of the range of allowable number of values attributes using this
domain may hold. The multiplicity of a domain is useful when working with a
multiple attribute for example. The multiplicity is part of the data type and both
multiplicity and data type may come from the domain. You can choose be-
tween:

• 0..1 – zero or one

• 0..* – zero to unlimited

• 1..1 – exactly one

• 1..* – one to unlimited

• * – none to unlimited

CHAPTER 3: Structural Diagrams

118 PowerDesigner

Property Description

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail Tab
The Detail tab contains a Persistent groupbox whose purpose is to improve the generation of
code and data types during generation of a CDM or a PDM from an object-oriented model, and
which contains the following properties:

Property Description

Persistent Groupbox for valid generation of CDM or PDM persistent models. Defines a
model as persistent (see Managing Object Persistence During Generation of
Data Models on page 275).

Data Type Specifies a persistent data type used in the generation of a persistent model,
either a CDM or a PDM. The persistent data type is defined from default
PowerDesigner conceptual data types

Length Maximum number of characters of the persistent data type.

Precision Number of places after the decimal point, for persistent data type values that
can take a decimal point.

The following tabs are also available:

• Standard Checks - contains checks which control the values permitted for the domain (see
Setting Data Profiling Constraints on page 70)

• Additional Checks - allows you to specify additional constraints (not defined by standard
check parameters) for the domain.

• Rules - lists the business rules associated with the domain (see Core Features Guide >
Modeling with PowerDesigner > Objects > Business Rules).

The tables below give details of the available data types:

Numeric Data Types

Data Type Content Length Mandatory
Precision

Integer 32-bit integer — —

Short Integer 16-bit integer — —

Long Integer 32-bit integer — —

Byte 256 values — —

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 119

Data Type Content Length Mandatory
Precision

Number Numbers with a fixed decimal point Fixed

Decimal Numbers with a fixed decimal point Fixed

Float 32-bit floating point numbers Fixed —

Short Float Less than 32-bit point decimal number — —

Long Float 64-bit floating point numbers — —

Money Numbers with a fixed decimal point Fixed

Serial Automatically incremented numbers Fixed —

Boolean Two opposing values (true/false; yes/no; 1/0) — —

Character Data Types

Data Type Content Length

Characters Character strings Fixed

Variable Characters Character strings Maximum

Long Characters Character strings Maximum

Long Var Characters Character strings Maximum

Text Character strings Maximum

Multibyte Multibyte character strings Fixed

Variable Multibyte Multibyte character strings Maximum

Time Data Types

Data Type Content

Date Day, month, year

Time Hour, minute, and second

Date & Time Date and time

Timestamp System date and time

CHAPTER 3: Structural Diagrams

120 PowerDesigner

Other Data Types

Data Type Content Length

Binary Binary strings Maximum

Long Binary Binary strings Maximum

Bitmap Images in bitmap format (BMP) Maximum

Image Images Maximum

OLE OLE links Maximum

Other User-defined data type —

Undefined Not yet defined data type —

Updating Attributes Using a Domain in an OOM
When you modify a domain, you can choose to automatically update the following properties
for attributes using the domain:

• Data type
• Check parameters
• Business rules

1. Select Model > Domains to display the list of domains.

2. Click a domain from the list, and then click the Properties tool to display its property
sheet.

Note: You also access a domain property sheet by double-clicking the appropriate domain
in the Browser.

3. Type or select domain properties as required in the tabbed pages and click OK. If the
domain is used by one or more attributes, an update confirmation box asks you if you want
to update Data type and Check parameters for the attributes using the domain.

4. Select the properties you want to update for all attributes using the domain and click Yes.

CHAPTER 3: Structural Diagrams

Object-Oriented Modeling 121

CHAPTER 3: Structural Diagrams

122 PowerDesigner

CHAPTER 4 Dynamic Diagrams

The diagrams in this chapter allow you to model the dynamic behavior of your system, how its
objects interact at run-time. PowerDesigner provides four types of diagrams for modeling
your system in this way:

• A communication diagram represents a particular use case or system functionality in terms
of interactions between objects, while focusing on the object structure. For more
information, see Communication Diagrams on page 123.

• A sequence diagram represents a particular use case or system functionality in terms of
interactions between objects, while focusing on the chronological order of the messages
sent. For more information, see Sequence Diagrams on page 125.

• A activity diagram represents a particular use case or system functionality in terms of the
actions or activities performed and the transitions triggered by the completion of these
actions. It also allows you to represent conditional branches. For more information, see
Activity Diagrams on page 129.

• A statechart diagram represents a particular use case or system functionality in terms of the
states that a classifier passes through and the transitions between them. For more
information, see Statechart Diagrams on page 131.

• An interaction overview diagram provides a high level view of the interactions that occur
in your system. For more information, see Interaction Overview Diagrams on page 134.

Communication Diagrams
A communication diagram is a UML diagram that provides a graphical view of the
interactions between objects for a use case scenario, the execution of an operation, or an
interaction between classes, with an emphasis on the system structure.

Note: To create a communication diagram in an existing OOM, right-click the model in the
Browser and select New > Communication Diagram. To create a new model, select File >
New Model, choose Object Oriented Model as the model type and Communication
Diagram as the first diagram, and then click OK. To create a communication diagram that
reuses the objects and messages from an existing sequence diagram (and creates instance links
between the objects that communicate using messages, updating any message sequence
numbers based upon the relative position of messages on the timeline), right-click in the
sequence diagram and select Create Default Communication Diagram, or select Tools >
Create Default Communication Diagram. Note that the two diagrams do not remain
synchronized – changes made in one diagram will not be reflected in the other.

You can use one or more communication diagrams to enact a use case or to identify all the
possibilities of a complex behavior.

Object-Oriented Modeling 123

A communication diagram conveys the same kind of information as a sequence diagram,
except that it concentrates on the object structure in place of the chronology of messages
passing between them.

A communication diagram shows actors, objects (instances of classes) and their
communication links (called instance links), as well as messages sent between them. The
messages are defined on instance links that correspond to a communication link between two
interacting objects. The order in which messages are exchanged is represented by sequence
numbers.

Analyzing a Use Case
A communication diagram can be used to refine a use case behavior or description. This
approach is useful during requirement analysis because it may help identify classes and
associations that did not emerge at the beginning.

You can formalize the association between the use case and the communication diagram by
adding the diagram to the Related Diagrams tab of the property sheet of the use case.

It is often necessary to create several diagrams to describe all the possible scenarios of a use
case. In this situation, it can be helpful to use the communication diagrams to discover all the
pertinent objects before trying to identify the classes that will instantiate them. After having
identified the classes, you can then deduce the associations between them from the instance
links between the objects.

The major difficulty with this approach consists in identifying the correct objects to transcribe
the action steps of the use case. An extension to UML, "Robustness Analysis" can make this
process easier. This method recommends separating objects into three types:

• Boundary objects are used by actors when communicating with the system; they can be
windows, screens, dialog boxes or menus

• Entity objects represent stored data like a database, database tables, or any kind of transient
object such as a search result

• Control objects are used to control boundary and entity objects, and represent the transfer
of information

CHAPTER 4: Dynamic Diagrams

124 PowerDesigner

PowerDesigner supports the Robustness Analysis extension through an extension file (see
Customizing and Extending PowerDesigner > Extension Files > Example: Creating
Robustness Diagram Extensions.

Analyzing a Class Diagram
Building a communication diagram can also be the opportunity to test a static model at the
conception level; it may represent a scenario in which classes from the class diagram are
instantiated to create the objects necessary to run the scenario.

It complements the class diagram that represents the static structure of the system by
specifying the behavior of classes, interfaces, and the possible use of their operations.

You can create the necessary objects and instance links automatically by selecting the relevant
classes and associations in a class diagram, and then pressing CTRL+SHIFT while dragging
and dropping them into a an empty communication diagram. Then you have simply to add the
necessary messages.

Communication Diagram Objects
PowerDesigner supports all the objects necessary to build communication diagrams.

Object Tool Symbol Description

Actor An external person, process or something inter-
acting with a system, sub-system or class. See Ac-
tors (OOM) on page 20.

Object Instance of a class. See Objects (OOM) on page
54.

Instance link Communication link between two objects. See In-
stance Links (OOM) on page 113.

Message Interaction that conveys information with the ex-
pectation that action will ensue. It creates an in-
stance link by default when no one exists. See
Messages (OOM) on page 135.

Sequence Diagrams
A sequence diagram is a UML diagram that provides a graphical view of the chronology of the
exchange of messages between objects and actors for a use case, the execution of an operation,
or an interaction between classes, with an emphasis on their chronology.

Note: To create a sequence diagram in an existing OOM, right-click the model in the Browser
and select New > Sequence Diagram. To create a new model, select File > New Model,
choose Object Oriented Model as the model type and Sequence Diagram as the first diagram,

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 125

and then click OK. To create a sequence diagram that reuses the objects and messages from an
existing communication diagram, right-click in the communication diagram and select
Create Default Sequence Diagram, or select Tools > Create Default Sequence Diagram.
Note that the two diagrams do not remain synchronized – changes made in one diagram will
not be reflected in the other.

You can use one or more sequence diagrams to enact a use case or to identify all the
possibilities of a complex behavior.

A sequence diagrams shows actors, objects (instances of classes) and the messages sent
between them. It conveys the same kind of information as a communication diagram, except
that it concentrates on the chronology of messages passing between the objects in place of
their structure.

By default, PowerDesigner provides an "interaction frame", which surrounds the objects in
the diagram and acts as the exterior of the system (or part thereof) being modeled. Messages
can originate from or be sent to any point on the frame, and these gates can be used in place of
actor objects (see Messages and Gates on page 145). You can suppress the frame by clicking
Tools > Display Preferences, selecting the Interaction Frame category and deselecting the
Interaction Symbol option. For detailed information about using display preferences, see
Core Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and Symbols >
Display Preferences.

One of the major advantages of a sequence diagram over a communication diagram is that you
can reference common interactions and easily specify alternative or parallel scenarios using
interaction fragments. Thus, you can describe in a single sequence diagram a number of
related interactions that would require multiple communication diagrams.

In the following example, the Client actor places an order. The Place Order message creates an
Order object. An interaction fragment handles various possibilities for checking the order. The
Account object and Manager actor may interact with the order depending on its size. Once the
Confirm Order message is sent, the Process Order interaction is initiated. This interaction is
stored in another sequence diagram, and is represented here by an interaction reference:

CHAPTER 4: Dynamic Diagrams

126 PowerDesigner

Analyzing a Use Case
A sequence diagram can be used to refine a use case behavior or description. This approach is
useful during requirement analysis because it may help identify classes and associations that
did not emerge at the beginning.

You can formalize the association between the use case and the sequence diagram by adding
the diagram to the Related Diagrams tab of the property sheet of the use case.

It is often necessary to create several diagrams to describe all the possible scenarios of a use
case. In this situation, it can be helpful to use the sequence diagrams to discover all the
pertinent objects before trying to identify the classes that will instantiate them. After having
identified the classes, you can then deduce the associations between them from the messages
passing between the objects.

Analyzing a Class Diagram
Building a sequence diagram can also be the opportunity to test a static model at the
conception level; it may represent a scenario in which classes from the class diagram are
instantiated to create the objects necessary to run the scenario.

It complements the class diagram that represents the static structure of the system by
specifying the behavior of classes, interfaces, and the possible use of their operations.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 127

A sequence diagram allows you to analyze class operations more closely than a
communication diagram. You can create an operation in the class of an object that receives a
message through the property sheet of the message. This can also be done in a communication
diagram, but there is more space in a sequence diagram to display detailed information
(arguments, return value, etc) about the operation.

Note: The Auto-layout, Align and Group Symbols features are not available in the sequence
diagram.

When you use the Merge Models feature to merge sequence diagrams, the symbols of all
elements in the sequence diagram are merged without comparison. You can either accept all
modifications on all symbols or no modifications at all.

Sequence Diagram Objects
PowerDesigner supports all the objects necessary to build sequence diagrams.

Object Tool Symbol Description

Actor An external person, process or something interact-
ing with a system, sub-system or class. See Actors
(OOM) on page 20.

Object Instance of a class. See Objects (OOM) on page
54.

Activation Execution of a procedure, including the time it
waits for nested procedures to execute. See Activa-
tions (OOM) on page 149.

Interaction Refer-
ence

Reference to another sequence diagram. See Inter-
action References and Interaction Activities
(OOM) on page 153.

Interaction Fragment Collection of associated messages. See Interaction
Fragments (OOM) on page 155.

Message Communication that conveys information with the
expectation that action will ensue. See Messages
(OOM) on page 135.

Self Message Recursive message: the sender and the receiver are
the same object. See Messages (OOM) on page
135.

Procedure Call Mes-
sage

Procedure call message with a default activation.
See Messages (OOM) on page 135.

CHAPTER 4: Dynamic Diagrams

128 PowerDesigner

Object Tool Symbol Description

Self Call Message Procedure call recursive message with a default ac-
tivation. See Messages (OOM) on page 135.

Return Message Specifies the end of a procedure. Generally associ-
ated with a Procedure Call, the Return message may
be omitted as it is implicit at the end of an activation.
See Messages (OOM) on page 135.

Self Return Message Recursive message with a Return control flow type.
See Messages (OOM) on page 135.

Activity Diagrams
An activity diagram is a UML diagram that provides a graphical view of a system behavior,
and helps you functionally decompose it in order to analyze how it will be implemented.

Note: To create an activity diagram in an existing OOM, right-click the model in the Browser
and select New > Activity Diagram. To create a new model, select File > New Model, choose
Object Oriented Model as the model type and Activity Diagram as the first diagram, and then
click OK.

Whereas a statechart diagram focuses on the implementation of operations in which most of
the events correspond precisely to the end of the preceding activity, the activity diagram does
not differentiate the states, the activities and the events.

The activity diagram gives a simplified representation of a process, showing control flows
(called transitions) between actions performed in the system (called activities). These flows
represent the internal behavior of a model element (use case, package, classifier or operation)
from a start point to several potential end points.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 129

You can create several activity diagrams in a package or a model. Each of those diagrams is
independent and defines an isolated context in which the integrity of elements can be checked.

Analyzing a Use Case
An activity diagram is frequently used to graphically describe a use case. Each activity
corresponds to an action step and the extension points can be represented as conditional
branches.

Analyzing a Business Process
Beyond object-oriented modeling, activity diagrams are increasingly used to model the
business processes of an enterprise. This kind of modeling takes place before the classic UML
modeling of an application, and permits the identification of the important processes of the
enterprise and the domains of responsibility of each organizational unit within the enterprise.

For more information about business process modeling with PowerDesigner, see Business
Process Modeling.

CHAPTER 4: Dynamic Diagrams

130 PowerDesigner

Activity Diagram Objects
PowerDesigner supports all the objects necessary to build activity diagrams.

Object Tool Symbol Description

Start Starting point of the activities represented in the
activity diagram. See Starts (OOM) on page 179.

Activity Invocation of an action. See Activities (OOM) on
page 158.

Composite activity N/A Complex activity decomposed to be further de-
tailed. See Activities (OOM) on page 158.

Object node A specific state of an activity. See Object Nodes
(OOM) on page 189.

Organization unit A company, a system, a service, an organization, a
user or a role. See Organization Units (OOM) on
page 171.

Flow Path of the control flow between activities. See
Flows (OOM) on page 187.

Decision Decision the control flow has to take when several
flow paths are possible. See Decisions (OOM) on
page 182.

Synchronization Enables the splitting or synchronization of control
between two or more concurrent actions. See Syn-
chronizations (OOM) on page 185.

End Termination point of the activities described in the
activity diagram. See Ends (OOM) on page 180.

Statechart Diagrams
A statechart diagram is a UML diagram that provides a graphical view of a State Machine, the
public behavior of a classifier (component or class), in the form of the changes over time of the
state of the classifier and of the events that permit the transition from one state to another.

Note: To create a statechart diagram in an existing OOM, right-click the model in the Browser
and select New > Statechart Diagram. To create a new model, select File > New Model,
choose Object Oriented Model as the model type and Statechart Diagram as the first
diagram, and then click OK.

It is assumed that the classifier has previously been identified in another diagram and that a
finite number of states can be identified for it.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 131

Unlike the interaction diagrams, the statechart diagram can represent a complete specification
of the possible scenarios pertaining to the classifier. At any given moment, the object must be
in one of the defined states.

You can create several statechart diagrams for the same classifier, but then the states and
transitions represented should relate to a different aspect of its evolution. For example; a
person can be considered on one hand as moving between the states of studying, working,
being unemployed, and being retired, and on the other as transitioning between being single,
engaged, married, and divorced.

Statechart diagrams show classifier behavior through execution rules explaining precisely
how actions are executed during transitions between different states; these states correspond
to different situations during the life of the classifier.

The example above shows the states of a game of chess.

The first step in creating a statechart diagram consists in defining the initial and final states and
the set of possible states between them. Then you link the states together with transitions,
noting on each, the event that sets off the transition from one state to another.

You can also define an action that executes at the moment of the transition. Similarly, the entry
to or exit from a state can cause the execution of an action. It is even possible to define the
internal events that do not change the state. Actions can be associated with the operations of
the classifier described by the diagram.

It is also possible to decompose complex states into sub-states, which are represented in sub-
statechart diagrams.

A statechart diagram requires the previous identification of a classifier. It can be used to
describe the behavior of the classifier, and also helps you to discover its operations via the
specification of actions associated with statechart events.

You can also use the transitions identified to establish the order in which operations can be
invoked. This type of diagram is called a "protocol state machine".

Another potential use is the specification of a Graphic User Interface (GUI) where the states
are the distinct screens available with possible transitions between them, all depending on
keyboard and mouse events produced by the user.

CHAPTER 4: Dynamic Diagrams

132 PowerDesigner

Defining a Default Classifier in a Statechart Diagram
You can define the classifier of a state using the Classifier list in the state property sheet. This
allows you to link the state to a use case, a component or a class.

At the diagram level, you can also specify the context element of a state by filling in the
Default Classifier list in the statechart diagram property sheet. As a result, each state that is
created in a diagram using the State tool is automatically associated with the default classifier
specified in the statechart diagram property sheet.

By default new diagrams are created with an empty value in the Default Classifier list, except
sub-statechart diagrams that automatically share the same Classifier value defined on the
parent decomposed state. The Default Classifier value is an optional value in the statechart
diagram.

Statechart Diagram Objects
PowerDesigner supports all the objects necessary to build statechart diagrams.

Object Tool Symbol Description

Start Starting point of the states represented in the statechart
diagram. See Starts (OOM) on page 179.

State The situation of a model element waiting for events.
See States (OOM) on page 191.

Action N/A N/A Specification of a computable statement. See Actions
(OOM) on page 201.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 133

Object Tool Symbol Description

Event N/A N/A Occurrence of something observable, it conveys infor-
mation specified by parameters. See Events (OOM) on
page 199.

Transition Path on which the control flow moves between states.
See Transitions (OOM) on page 197.

Junction point Divides a transition between states. Used particularly
when specifying mutually exclusive conditions. See
Junction Points (OOM) on page 204.

Synchronization Enables the splitting or synchronization of control be-
tween two or more concurrent states. See Synchroni-
zations (OOM) on page 185.

End Termination point of the states described in the state-
chart diagram. See Ends (OOM) on page 180.

Interaction Overview Diagrams
An interaction diagram is a UML diagram that provides a high-level graphical view of the
control flow of your system as it is decomposed into sequence and other interaction diagrams.

Note: To create an interaction overview diagram in an existing OOM, right-click the model in
the Browser and select New > Interaction Overview Diagram. To create a new model, select
File > New Model, choose Object Oriented Model as the model type and Interaction
Overview Diagram as the first diagram, and then click OK.

You can include references to sequence diagrams, communication diagrams, and other
interaction diagrams.

In the following example, a control flow is shown linking two sequence diagrams:

CHAPTER 4: Dynamic Diagrams

134 PowerDesigner

Interaction Overview Diagram Objects
PowerDesigner supports all the objects necessary to build interaction overview diagrams.

Object Tool Symbol Description

Start Starting point of the interactions represented in the
diagram. See Starts (OOM) on page 179.

Interaction activity Reference to a sequence diagram, communication
diagram, or interaction overview diagram. See In-
teraction References and Interaction Activities
(OOM) on page 153.

Flow Flow of control between two interactions. See
Flows (OOM) on page 187.

Decision Decision the flow has to take when several paths are
possible. See Decisions (OOM) on page 182.

Synchronization Enables the splitting or synchronization of control
between two or more flows. See Synchronizations
(OOM) on page 185.

End Termination point of the interactions described in
the diagram. See Ends (OOM) on page 180.

Messages (OOM)
A message is a communication between objects. The receipt of a message will normally have
an outcome.

A message can be created in the following diagrams:

• Communication Diagram
• Sequence Diagram

Objects can cooperate by using several kinds of requests (send a signal, invoke an operation,
create an object, delete an existing object, etc.). Sending a signal is used to trigger a reaction
from the receiver in an asynchronous way and without a reply. Invoking an operation will
apply an operation to an object in a synchronous or asynchronous mode, and may require a
reply from the receiver. All these requests constitute messages. They correspond to stimulus in
the UML language.

A message has a sender, a receiver, and an action. The sender is the object or actor that sends
the message. The receiver is the object or actor that receives the message. The action is
executed on the receiver. You can also create recursive messages, where the same object is the
sender and receiver.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 135

The message symbol is an arrow showing its direction, and can also display the following
information:

• A sequence number indicating the order in which messages are exchanged (see Sequence
numbers on page 147)

• The message name (or the name of the associated operation)
• The condition
• The return value
• The argument

Reusing Messages
The same message can be used in a sequence and a communication diagram or in multiple
diagrams of either type. When you drag a message from one diagram to another, it is dropped
with both extremities if they do not exist, and (in a communication diagram) it is attached to a
default instance link.

The sequence number attached to a message is identical in all diagrams if the message is
reused.

When you copy a message, its name does not change. You can either keep its original name, or
rename the message after copy.

Any change on the Action or Control Flow value of the message is reflected in all diagrams.
However, if the change you want to perform is not valid, the change will not be possible. For
example, you are not allowed to move a Create message if a Create message already exists
between the sender and the receiver.

Messages in a Communication Diagram
In a communication diagram, each message is associated with an instance link. An instance
link may have several associated messages, but each message can be attached to only one
instance link. The destruction of an instance link destroys all the messages associated with
it.

Messages in a Sequence Diagram
A message is shown as a horizontal solid arrow from the lifeline of one object or actor, to the
lifeline of another. The arrow is labeled with the name of the message. You can also define a
control flow type that represents both the relationship between an action and its preceding and
succeeding actions, and the waiting semantics between them.

In a sequence diagram you can choose between the following types of messages:

• Message
• Self Message

CHAPTER 4: Dynamic Diagrams

136 PowerDesigner

• Procedure Call Message
• Self Call Message
• Return Message
• Self Return Message

You can create activations on the lifeline of an object to represent the period of time during
which it is performing an action.

A message can be drawn from an actor to an object, or inversely. It is also possible to create a
message between two actors but it will be detected, and displayed as a warning during the
check model process.

Note: If you need to fully describe, or put a label on a message, you can write a note using the
Note tool, and position the note close to the message.

Creating a Message
You can create a message from the Toolbox, Browser, or Model menu.

• Use the Message tool (or, in a sequence diagram, the Self Message, Procedure Call
Message, or Self Call Message tool) in the Toolbox.

• Select Model > Messages to access the List of Messages, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Message.
• Open the property sheet of an instance link (in a communication diagram), click the

Messages tab, and click the Create a New Message tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Message Properties
To view or edit a message's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 137

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Sender Object the message starts from. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected object.

Receiver Object the message ends on. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected object, or to reverse
the direction of the message.

Note: You can right-click a message in the diagram and select Reverse to
reverse its direction. You cannot reverse the direction of a Create or Destroy
message.

Sequence number Allows you to manually add a sequence number to the message. It is mainly
used in communication diagrams to describe the order of messages, but can also
be used in sequence diagrams

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail tab
The Detail tab includes the following properties:

Property Description

Action Specifies the type of message action. You can choose between:

• Create – the sender object instantiates and initializes the receiver object. A
message with a create action is the first message between a sender and a
receiver.

• Destroy – the sender object destroys the receiver object. A large X is
displayed on the lifeline of the receiver object. A message with a destroy
action is the last message between a sender and a receiver.

• Self-Destroy – (only available if the control flow property is set to "Re-
turn") the sender object warns the receiver object that it is destroying itself.
A large X is displayed on the lifeline of the sender object. A message with a
self-destroy action is the last message between a sender and a receiver.

CHAPTER 4: Dynamic Diagrams

138 PowerDesigner

Property Description

Control flow Specifies the mode in which messages are sent. You can choose between:

• Asynchronous – the sending object does not wait for a result, it can do
something else in parallel. No-wait semantics

• Procedure Call – Call of a procedure. The sequence is complete before the
next sequence resumes. The sender must wait for a response or the end of
the activation. Wait semantics

• Return – Generally associated with a Procedure Call. The Return arrow
may be omitted as it is implicit at the end of an activation

• Undefined – No control flow defined

Operation Links the message to an operation of a class. If the receiver of a message is an
object, and the object has a class, the message, as a dynamic flow of informa-
tion, invokes an operation. You can therefore link a message to an existing
operation of a class but also operations defined on parent classes, or you can
create an operation from the Operation list in the message property sheet.

If an operation is linked to a message, you can replace the message name with
the name of the method that one object is asking the other to invoke. This
process can be very useful during implementation. To display the name of the
operation instead of the name of the message, select the Replace by Operation
Name display preference in the message category.

You can link a Create message to a Constructor operation of a class if you wish
to further detail a relation between a message and an operation. You are not
allowed however to link a message with a Return control flow to an operation.

If you change the generalization that exists between classes, the operation that
is linked to the message may no longer be available. In this case, the operation
is automatically detached from the message. The same occurs when you re-
verse the message direction, unless the new receiver object has the same class.

Arguments Arguments of the operation

Return value Function return value stored in a variable and likely to be used by other func-
tions

Predecessor list Made of a list of sequence numbers followed by "/ ", the predecessor list defines
which messages must be exchanged before the current message could be sent.
Example: sequence numbers 1, 2, 4 before 3 = "1,2,4/ 3"

Condition Condition attached to the message. May be specified by placing Boolean ex-
pressions in braces on the diagram. Example: condition for timing: [dialing
time < 30 sec]

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 139

Property Description

Begin time User-defined time alias, used for defining constraints. Example: Begin time =
t1, End time = t2, constraint = {t2 - t1 < 30 sec}

End time User-defined time alias, used for defining constraints.

Support delay Specifies that the message may have duration. The message symbol may slant
downwards.

If this option is not selected, the message is instantaneous, or fast, and the
message symbol is horizontal.

You can specify Support delay as a default option in the Model Options dialog
box.

Support delay is not available with a recursive message: it is selected and
grayed out.

Control Flow
By default, a message has an Undefined control flow.

If you want to make a diagram more readable, you can draw the Return arrow to show the exact
time when the action is returned back to the sender. It is an explicit return that results in
returning a value to its origin.

In the example below, the explicit Return causes values to be passed back to the original
activation.

You can combine message control flows and message actions according to the following
table:

CHAPTER 4: Dynamic Diagrams

140 PowerDesigner

Control flow Symbol No action Create Destroy Self-De-
stroy

Asynchronous Yes

Procedure Call Yes

Return Yes Yes

Undefined Yes

Note: You can access the Action and Control flow values of a message by right clicking the
message symbol in the diagram, and selecting Action/Control flow from the contextual menu.

Creating Create and Destroy Messages in a Sequence Diagram
Create and Destroy messages are specified via the Action property on the Detail tab of their
property sheet.

Creating Create Messages
A message can create an object if it is the first message received by the object and you set its
Action property to "Create".

You cannot create an actor or use the create action with a recursive message.

When a message creates an object in a sequence diagram, the message is drawn with its
arrowhead on the object; both object and message are at the same level.

In a sequence diagram, you can also create a create message automatically as follows:

1. Click the Message tool in the Toolbox.

2. Click the lifeline of the sender object or actor and, while holding down the mouse button,
drag the cursor towards the receiver object.

3. Release the mouse button on the object symbol of the receiver (and not on its lifeline).

If the message is the first message to be received by the receiver object, the receiver object
symbol moves down to line up with the create message.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 141

Creating Destroy Messages
A message can destroy an object if it is the last message received by the object and you set its
Action property to "Destroy".

You cannot destroy an actor or use the destroy action with a recursive message.

A destroyed object lifeline is marked by an X at the intersection point between the object
lifeline and the message. The Destroy action ends both activation and object lifeline at this
same point.

Note that the Destroy action does not destroy the object, but only represents this destruction in
the diagram. The object lifeline ends at a precise point in time; it is not possible to graphically
pull the lifeline downwards any more.

There are two possible forms of destroy messages:

• Destroy message
• Self-Destroy message

Creating a Destroy Message
You can create a destroy message from the Toolbox.

1. Click the Message tool in the Toolbox.

2. Click the lifeline of the sender object or actor and, while holding down the mouse button,
drag the cursor towards the lifeline of the receiver object.

3. Release the mouse button on the lifeline of the receiver, and then double-click the newly
created message symbol to display its property sheet.

4. Select Destroy from the Action list in the Detail tab (this action is not available if the
message is not the last message on the receiver lifeline).

5. Click OK. An X is placed at the intersection point between the Destroy message arrow and
the receiver object lifeline.

CHAPTER 4: Dynamic Diagrams

142 PowerDesigner

Creating a Self-Destroy Message
You create a self-destroy message from the Toolbox.

1. Click the Message tool in the Toolbox.

2. Click the lifeline of the sender object and, while holding down the mouse button, drag the
cursor towards the lifeline of the receiver object.

3. Release the mouse button on the object symbol of the receiver, and then double-click the
newly created message symbol to display its property sheet.

4. Select Self-Destroy from the Action list in the Detail tab.

5. Select Return from the Control flow list.

6. Click OK. The lifeline of the self-destroyed object is marked by an X.

Creating a Recursive Message in a Sequence Diagram
A message is recursive when the object sends the message to itself. In this case, the arrow starts
and finishes on the lifeline of the same object.

The Create and Self-Destroy actions, and the Support delay option are not available with a
recursive message.

When you create Undefined or Return recursive messages from the Toolbox, the control flow
value is already selected:

Message type Symbol

Undefined recursive message

Return recursive message

You can also create an Undefined recursive message and change the control flow value
afterwards.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 143

Example

You can choose to create a recursive message with or without activation from the Toolbox.

When you create a recursive message with activation, the recursive message is automatically
attached to an activation and its control flow value is a Procedure Call which, by default, starts
the activation.

Activation symbols are automatically created on the object lifeline as shown below:

Creating a Recursive Message Without Activation
You can create a recursive message without activation from the Toolbox.

1. Click the Self Message tool in the Toolbox.

2. Click the object lifeline to create a recursive message.

CHAPTER 4: Dynamic Diagrams

144 PowerDesigner

Creating a Recursive Message with Activation
You can create a recursive message with activation from the Toolbox.

1. Click the Self Call Message tool in the Toolbox.

2. Click the object lifeline to create a recursive message with activation.

Messages and Gates
In UML 2, you can send messages to and from the interaction frame that surrounds your
sequence diagram. The frame represents the outer edge of the system (or of the part of the
system) being modeled and can be used in place of an actor (actors are no longer used in UML
2 sequence diagrams, but continue to be supported for backwards compatibility in
PowerDesigner). A message originating from a point on the frame is said to be sent from an
input gate, while a message arriving there is received by an output gate.

In the example below, a high-level sequence diagram, ProcessOrder, shows a series of
communications between a user and an sales system:

The message ProcessOrder originates from an input gate on the ProcessOrder interaction
frame, and is received as an input message by the Order Controller object. Once the order
processing is complete, the message ReturnOrderStatus is received by an output gate on the
ProcessOrder interaction frame.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 145

The message CheckOrder originates from the Order Controller object, and is received as an
input message by an input gate on the CheckOrder interaction reference frame. Once the order
checking is complete, the ReturnCheckStatus message is sent from an output gate on the
CheckOrder interaction reference frame and is received by the Order Controller object.

The following diagram shows the CheckOrder sequence diagram which illustrates the detail
of the order checking process:

Here, the message CheckOrder originates from an input gate on the CheckOrder interaction
frame, and is received as an input message by the Check Interface object. Once the order
processing is complete, the message ReturnMessage is received by an output gate on the
CheckOrder interaction frame.

Note: PowerDesigner allows you to use actors and interaction frames in your diagrams in
order to provide you with a choice of styles and to support backwards compatibility. However,
since both represent objects exterior to the system being modeled, we recommend that you do
not intermingle actors and frames in the same diagram. You cannot send messages between an
actor and an interaction frame.

CHAPTER 4: Dynamic Diagrams

146 PowerDesigner

Sequence Numbers
Sequence numbers can be assigned to messages in both communication and sequence
diagrams, but they are most important in communication diagrams.

When you create a message in a communication diagram, the default value of the sequence
number is calculated with regards to the most recently created or modified message. The first
sequence number created is 1.

A succession of sequence numbers is built from the most recent sequence number plus 1. For
example, 3 + 1 => 4, or 2.1 + 1 => 2.2

The creation of sequence numbers respects the syntax of numbers already used in the diagram
(1, 2, 3, etc... or 1.1, 1.2, etc.).

By convention, the addition of letters to sequence numbers signifies that the messages are
parallel. For example, the messages with sequence numbers 3.1a and 3.1b are sent at the same
time.

If you need to change sequence numbers manually, you can move or insert messages in the
diagram or increase and decrease the sequence numbers.

Moving Sequence Numbers
You can move and insert message numbers within the communication diagram.

When you move an existing number and attach it to another message, the sequence numbers
are recalculated with respect to the following rules:

• For a number "x", all numbers equal to or greater than number "x" are modified
• Any gap is filled with the sequence number that is immediately available after the move

Example 1
The sequence numbers in a communication diagram are 1, 2, 3, 4, 5, and 6.

When you change sequence number 6 and place it in third position, sequence number 6
becomes sequence number 3: all numbers between 3 and 6 are modified as follows:

Example 2
When you change sequence number 4 and place it in second position, sequence number 4
becomes sequence number 2: all numbers between 2 and 4 are modified, 5 and 6 remain:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 147

Example 3
When you change sequence number 2 and place it in fifth position, sequence number 2
becomes sequence number 5: all numbers between 2 and 5 are modified as follows:

Example 4
The sequence numbers in a communication diagram are:

• 1
• 1.1:msg_a
• 1.1.1:msg_a1
• 1.1.2:msg_a2
• 1.2:msg_b
• 2
• 3

When you change sequence number 1.1:msg_a to sequence number 3, the following changes
occur:

Note: You can use the Undo feature whenever needed while manipulating these elements
within communication diagrams.

CHAPTER 4: Dynamic Diagrams

148 PowerDesigner

Inserting Sequence Numbers
When you insert a new message with a new sequence number in an existing communication
diagram, the sequence numbers are recalculated with respect to the following rule: for each
number after the insertion, all numbers are incremented by 1.

In the same manner, a parent changes its children. For example, the number is incremented by
1 for numbers like 1.1, 1.2, 1.3 as follows: 1.1 + 1 = 1.2.

The syntax of sequence numbers currently used in the diagram is respected: that means that
the number is incremented by 1 regardless of the syntax (1, 2, 3... or 1.1, 1.2, 1.3...).

Increasing Sequence Numbers in a Communication Diagram
You can increment a sequence number using the following methods:

• Right-click the message in the diagram and select Increase Number from the contextual
menu.
or
Select the message in the diagram and press Ctrl and the numpad + sign to increment the
number by 1.

Decreasing Sequence Numbers in a Communication Diagram
You can decrease a sequence number using the following methods:

• Right-click the message in the diagram and select Decrease Number from the contextual
menu.
or
Select the sequence number in the diagram and press Ctrl and + sign to decrease the
number by 1.

Activations (OOM)
Activations are optional symbols that represent the time required for an action to be
performed. They are created on the lifeline of an object. They are purely symbols and do not
have property sheets.

An activation can be created in the following diagrams:

• Sequence Diagram

In a communication diagram, messages that are passed during the period represented by an
activation are given sub-numbers. Thus an activation created by message 1, may give rise to
messages 1.1 and 1.2.

You can attach or detach a message to an activation. You can also move, resize, and cause the
activation to overlap other activations.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 149

Creating an Activation
You can create an activation when you create a Procedure Call message or afterwards for any
type of message. A Procedure Call generally starts an activation, that is why the message is
automatically attached to an activation.

Creating Activations with Procedure Call Messages
Activations are automatically created when you create procedure call messages in the
diagram.
1. Select the Procedure Call Message tool in the Toolbox.

2. Click the lifeline of the sender object or actor and, while holding down the mouse button,
drag the cursor towards the receiver object.

3. Release the mouse button on the object symbol of the receiver.

The message is created along with activations on the lifelines of both the sender and
receiver (note that activations are not created on the lifelines of actors).

Creating an Activation from a Diagram
You can create an activation from a diagram using the Activation tool.
1. Select the Activation tool in the Toolbox.

2. Click the lifeline of an object to create an activation symbol at the click position. If you
create the activation on top of an existing message, it is automatically attached to the
activation.

Attaching a Message to an Activation
A message is attached to an activation when its begin or endpoint is on the activation symbol
and not on the object lifeline. Attachment symbols appear at the endpoints of the message
arrow (if attachment symbols are not displayed, select Tools > Display Preferences, and
select the Activation Attachment display preference in the Message category).

You can attach an existing message that touches an activation but which does not display an
activation symbol, by dragging the message inside the activation, while holding the Ctrl key
down.

When a message is attached to an activation, you cannot move it outside the limits of the
activation symbol as shown below:

CHAPTER 4: Dynamic Diagrams

150 PowerDesigner

If you delete an activation with a message attached, the message will be detached from the
activation but will not be deleted.

Message Control Flow and Activation
When a message is attached to an activation, the control flow value of the message influences
the position of the activation towards the message:

• Procedure Call - A Procedure Call message attached to an activation starts the activation
on the receiver lifeline, that is to say the arrival point of the message is located at the top of
the activation.

• Return - A Return message attached to an activation finishes the activation on the sender
lifeline, that is to say the starting point of the message is located at the bottom of the
activation.

Procedure Call and Return messages are the only messages defined on a definite location in
the activation: a Procedure Call message is at the top of the activation, a Return message is at
the bottom of the activation. Other messages attached to an activation can be moved without
any constraint inside the activation.

Detaching a Message from an Activation
You can detach a message from an activation by dragging the message outside the activation,
while holding the Ctrl key down.

Overlapping Activations
An activation can overlap other existing activations.

For example, you may want an activation to overlap another one to represent an action in a
loop. The action is done repeatedly until it reaches its goal, this loop can start and finish at the
same time another activation is representing another action.

You can make activations overlap this way to show concurrent activities.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 151

Moving an Activation
If you move an activation with a message attached to it, the message does not move. Thus, it is
possible to move the activation up and down until its top or bottom reaches the message level.:

If you move the endpoint of a message with Support Delay, the inclination angle of the
message is preserved as shown below:

Resizing an Activation
You may want to resize an activation by pulling the top or bottom of the activation symbol.
This will resize the activation vertically.

When you resize an activation, the following rules apply:

• A Procedure Call message is always attached to the top of the activation on the receiver
lifeline. The Procedure Call message stays at the top of the activation if the activation is
moved up, or resized upwards.

• A Return message is always attached to the bottom of the activation on the sender lifeline.
The Return message stays at the bottom of the activation if the activation is moved down.

• Messages that are covered by the activation after resizing are not automatically attached to
the activation.

To change the activation of a message, press Ctrl and click to select the begin or endpoint of
the message and drag it onto another activation.

CHAPTER 4: Dynamic Diagrams

152 PowerDesigner

Interaction References and Interaction Activities (OOM)
An interaction reference is used to represent one sequence diagram in the body of another.
This feature allows you to modularize and reuse commonly-used interactions across a range of
sequence diagrams. Interaction activities are similar, but are able to represent a sequence,
communication, or interaction overview diagram.

Interaction references and interaction activities can be created in sequence diagrams.

For an interaction activity, right-click the activity and select Composite View > Read-only
(Sub-Diagram) to see the referenced diagram displayed in the symbol. Select Adjust to
read-only view from the contextual menu to automatically resize the symbol to optimize the
display of the referenced diagram.

Example: Interaction Reference in Activity Diagram
In the example below, the user must log in before passing a request to the account page of a
website. As the log in process will form a part of many interactions with the site, it has been
abstracted to another sequence diagram called "Log In", and is represented here by an
interaction reference.

Creating an Interaction Reference
You can create an interaction reference from the Toolbox or Browser.

• Use the Interaction Reference tool in the Toolbox. You can either click near the lifeline of
an object to create an interaction reference attached to that lifeline, or click and hold while
drawing a box that will overlap and attach to several lifelines.
The Select a sequence diagram dialog box opens to allow you to specify the sequence
diagram to which the reference refers. Select an existing or new diagram and click OK.

• Drag another sequence diagram from the browser and drop it into the present sequence
diagram.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 153

Creating an Interaction Activity
You can create an interaction activity from the Toolbox or Browser.

• Use the Interaction Activity tool in the Toolbox.
The Select a diagram dialog box opens to allow you to specify the diagram to which the
activity refers. Select an existing or new diagram and click OK.

• Drag a sequence, communication or interaction overview diagram from the browser and
drop it into an interaction overview diagram.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Interaction Reference and Interaction Activity Properties
You can modify an object's properties from its property sheet. To open an interaction reference
property sheet, double-click its diagram symbol in the top-left corner near the operator tag.

The General Tab contains the following properties:

Property Description

Referenced Dia-
gram

Specifies the sequence diagram that will be represented in the current diagram by
the interaction reference. You can click on the Create tool to the right of the box to
create a new sequence diagram.

Stereotype Extends the semantics of the object beyond the core UML definition.

Arguments Specifies the arguments to be passed to the first message in the referenced dia-
gram.

Return value Specifies the value to be returned by the last message in the referenced diagram.

Manipulating Interaction References
You can move interaction references, resize them, and generally manipulate them freely.
When you cause the symbol to overlap an object lifeline, it attaches to it automatically, and this
attachment is represented by a small bump on the top edge of the symbol where it meets the
lifeline. If you drag or resize the symbol away from a lifeline, it detaches automatically.

If you move an object that is attached to an interaction, the symbol resizes itself automatically
to remain attached to the object lifeline.

You can manually control whether object lifelines are attached to an interaction reference that
passes over them by clicking the attachment point.

Note that an interaction reference cannot be copied or re-used in another diagram. However,
multiple references to the same diagram can be created.

CHAPTER 4: Dynamic Diagrams

154 PowerDesigner

Interaction Fragments (OOM)
An interaction fragment allows you to group related messages in a sequence diagram. Various
predefined fragment types are available allowing you to specify alternate outcomes, parallel
messages, or looping.

An interaction fragment can be created in the following diagrams:

• Sequence Diagram

In the example below, the User sends a request to the Account Page. The two alternative
responses and the conditions on which they depend, are contained within an interaction
fragment.

Creating an Interaction Fragment
You can create an interaction fragment from the Toolbox.

• Use the Interaction Fragment tool in the Toolbox. You can either click near the lifeline of
an object to create an interaction fragment attached to that lifeline, or click and hold while
drawing a box that will overlap and attach to several lifelines.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Interaction Fragment Properties
You can modify an object's properties from its property sheet. To open an interaction fragment
property sheet, double-click its diagram symbol in the top-left corner near the operator tag.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 155

The following sections detail the property sheet tabs that contain the properties most
commonly entered for interaction fragments.

The General Tab contains the following properties:

Property Description

Operator Specifies the type of fragment. You can choose between:

• Alternative (alt) – the fragment is split into two or more mutually exclusive
regions, each of which has an associated guard condition. Only the messages
from one of these regions will be executed at runtime.

• Assertion (assert) – the interaction must occur exactly as indicated or it will be
invalid.

• Break (break) – if the associated condition is true, the parent interaction termi-
nates at the end of the fragment.

• Consider (consider) – only the messages shown are significant.

• Critical Region (critical) – no other messages can intervene until these messages
are completed.

• Ignore (ignore) – some insignificant messages are not shown.

• Loop (loop) – the interaction fragment will be repeated a number of times.

• Negative (neg) – the interaction is invalid and cannot happen.

• Option (opt) – the interaction only occurs if the guard condition is satisfied.

• Parallel (par) – the fragment is split into two or more regions, all of which will be
executed in parallel at runtime.

• Strict Sequencing (strict) – the ordering of messages is strictly enforced.

• Weak Sequencing (seq) – the ordering of messages is enforced on each lifeline,
but not between lifelines.

The operator type is shown in the top left corner of the interaction fragment symbol.

Stereotype Extends the semantics of the object beyond the core UML definition.

Condition Specifies any condition associated with the fragment. This may be the evaluation of
a variable, such as:

X > 3

Or, for a loop fragment, the specification of the minimum and (optionally) maxi-
mum number of times that the loop will run. For example:

1,10

For the Consider or Ignore operators, this field lists the associated messages.

This field is not available if the fragment does not support conditions.

CHAPTER 4: Dynamic Diagrams

156 PowerDesigner

Sub-Regions Tab
The Interaction Sub-Regions Tab lists the regions contained within the fragment. It is only
displayed if you select an operator that requires more than one region. You can add or delete
regions and (if appropriate) specify conditions for them.

Manipulating Interaction Fragments
You can manipulate interaction fragments with some limitations.

Moving and Resizing Fragments
You can move interaction fragments, resize them, and generally manipulate them freely.
When you cause the symbol to overlap an object lifeline, it attaches to it automatically, and this
attachment is represented by a small bump on the top edge of the symbol where it meets the
lifeline. If you drag or resize the symbol away from a lifeline, it detaches automatically.

If you move an object that is attached to an interaction fragment, the symbol resizes itself
automatically to remain attached to the object lifeline.

You can manually control whether object lifelines are attached to an interaction fragment that
passes over them by clicking the attachment point.

Moving Messages
Any message that is entirely enclosed within an interaction fragment will be moved with the
fragment up and down the object lifeline to which it is attached. However, if you move the
fragment away from either of the lifelines to which it is attached, the message will be detached
from the fragment and not moved.

You can move messages freely in and out of interaction fragments. If you move a message so
that it is completely contained within a fragment, it will be attached to that fragment. If you
move a message so either of its ends is outside the fragment, then it is detached from the
fragment.

Messages and Regions
When a fragment is split into two or more regions, you can move messages freely between
regions. However, you cannot move the dividing line between two regions over a message.
You can resize a region by moving the dividing line below it. Such resizing will affect the total
size of the fragment. To resize the last region, at the bottom of the fragment, you must select
and move the bottom edge of the fragment.

If you delete a region, then the space that it occupied and any messages it contained will be
merged with the region above.

Note that an interaction fragment cannot be copied as a shortcut in another diagram.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 157

Activities (OOM)
An activity is the invocation of a manual or automated action, such as "send a mail", or
"increment a counter". When the activity gains control, it performs its action and then,
depending on the result of the action, the transition (control flow) is passed to another activity.

An activity can be created in the following diagrams:

• Activity Diagram

PowerDesigner's support for UML 2 allows you a great deal of flexibility in the level of detail
you provide in your activity diagrams. You can simply link activities together to show the
high-level control flow, or refine your model by specifying the:

• parameters that are passed between the activities (see Specifying Activity Parameters on
page 162)

• action type of the activity and associate it with other model objects (see Specifying Action
Types on page 163)

CHAPTER 4: Dynamic Diagrams

158 PowerDesigner

In the example above, the ReceiveCheckLogin activity has an action type of "Accept call" (see
Specifying Action Types on page 163), and passes the two output parameters "login" and
"password" (see Specifying Activity Parameters on page 162) to a series of decisions that lead
to the ReplyCheckLogin. This last activity has an input parameter called "Result" and an
action type of Reply Call.

Atomic and Decomposed Activities
An activity can be atomic or decomposed. Decomposed activities contain sub-activities,
which are represented in a sub-diagram. For more information, see Decomposed Activities
and Sub-Activities on page 168.

A PowerDesigner activity is equivalent to a UML activity (ActionState or SubactivityState)
and an activity graph. In UML, an ActionState represents the execution of an atomic action,
and the SubactivityState is the execution of an activity graph (which is, in turn, the description
of a complex action represented by sub-activities).

The following table lists the mappings between UML and PowerDesigner terminology and
concepts:

UML Objects PowerDesigner Objects

ActionState Activity

SubactivityState Composite activity

Activity Graph Composite activity

PowerDesigner combines a SubactivityState and an activity graph into a decomposed activity
so that you can define sub-activities directly under the parent without defining an additional
object. If you do need to highlight the difference, you can create activities directly under the
model or the package, and use activity shortcuts to detail the activity implementation, so that
the SubactivityState corresponds to the shortcut of a decomposed activity.

Creating an Activity
You can create an activity from the Toolbox, Browser, or Model menu.

• Use the Activity tool in the Toolbox.
• Select Model > Activities to access the List of Activities, and click the Add a Row tool.
• Right-click the model, package, or decomposed activity in the Browser, and select New >

Activity.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 159

Activity Properties
To view or edit an activity's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Organization unit Specifies the organization unit (see Organization Units (OOM) on page 171)
linked to the activity and also allows you to assign the Committee Activity value
(see Displaying a Committee Activity on page 173) to a decomposed activity to
graphically show the links between organization units designed as swimlanes
and sub-activities. A Committee Activity is an activity realized by more than one
organization unit.

You can click the Ellipsis button beside the Organization unit list to create a new
organization unit or click the Properties tool to display its property sheet.

Composite status Specifies whether the activity is decomposed into sub-activities. You can choose
between:

• Atomic Activity – (default) The activity does not contain sub-activities

• Decomposed Activity – the activity can contain sub-activities. A Sub-Ac-
tivities tab is displayed in the property sheet to list these sub-activities, and a
sub-diagram is created below the activity in the Browser to display them.

If you revert the activity from Decomposed to Atomic status, then any sub-ac-
tivities that you have created will be deleted.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 4: Dynamic Diagrams

160 PowerDesigner

Action Tab
The Action tab defines the nature, the type and the duration of an action that an activity
executes. It contains the following properties:

Property Description

Action type Specifies the kind of action that the activity executes. For more information,
see Specifying Action Types on page 163.

[action object] Depending on the action type you choose, an additional field may be dis-
played, allowing you to specify an activity, classifier, attribute, event, ex-
pression, operation, or variable upon which the action acts. You can use the
tools to the right of the list to create an object, browse the available objects or
view the properties of the currently selected object.

Pre-Conditions / Ac-
tions / Post-Condi-
tions

These sub-tabs provide a textual account of how the action is executed. For
example, you can write pseudo code or information on the program to execute.

Duration Specifies the estimated or statistic duration to execute the action. This infor-
mation is for documentation purposes only; estimate on the global duration is
not computed.

Timeout Zero by default. If the value is not set to zero, it means that a timeout exception
occurs if the execution of the activation takes more than the specified timeout
limit. You can type any alphanumeric value in the Timeout box (example: 20
seconds).

Input Parameters and Output Parameters Tabs
These tabs list the input and output parameters required by the activity (see Specifying
Activity Parameters on page 162).

Sub-Activities Tab
This tab is displayed only if the Composite status of the activity is set to Decomposed, and lists
its sub-activities.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 161

Specifying Activity Parameters
Activity parameters are values passed between activities. They are represented as small
squares on the edges of activity symbols. In this example, the parameters login and password
are passed from the Enter login activity to the Check login activity.

1. Open the property sheet of an activity and click the Input Parameters or Output Parameters
tab.

2. Use the tools to add an existing parameter or to create a new one.

Note: You can also create parameters as a part of specifying an activity action type. See
Specifying Action Types on page 163.

Activity parameters can have the following properties:

Property Description

Parent Specifies the parent activity.

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Data type Specifies the data type of the parameter. You can choose a standard data type or
specify a classifier. You can use the tools to the right of the list to create a classifier,
browse the available classifiers or view the properties of the currently selected
classifier.

CHAPTER 4: Dynamic Diagrams

162 PowerDesigner

Property Description

State Specifies the object state linked to the parameter. You can enter free text in the
field, or use the tools to the right of the list to create a state, browse the available
states or view the properties of the currently selected state.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Specifying Action Types
You can add additional detail to your modeling of activities by specifying the type of action
performed and, in certain cases, associating it with a specific model object that it acts upon,
and the parameters that it passes.

1. Open the property sheet of an activity and click the Action tab.

2. Select an action type. The following list details the available action types, and specifies
where appropriate, the required action object:

• <Undefined> [no object] - default. No action defined
• Reusable Activity [no object] – a top-level container.
• Call [operation or activity] – calls an operation or activity. See Example: Using the Call

Action Type on page 164
• Accept Call [operation or activity] – waits for an operation or activity to be called.
• Reply Call [operation or activity] – follows an Accept Call action, and responds to an

operation or activity.
• Generate Event [event] – generates an event. Can be used to raise an exception.
• Accept Event [event] – waits for an event to occur.
• Create Object [classifier] – creates a new instance of a classifier
• Destroy Object [classifier] – destroys an instance of a classifier
• Read Attribute [classifier attribute] – reads an attribute value from a classifier instance
• Write Attribute [classifier attribute] – writes an attribute value to a classifier instance
• Read Variable [variable] – writes a value to a local variable. The variable can be used to

store an output pin provided by an action to reuse later in the diagram. See Variable
Properties on page 167.

• Write Variable [variable] - reads a value from a local variable. See Variable Properties
on page 167.

• Evaluate Expression [expression text] – evaluates an expression and returns the value
as an output pin.

• Unmarshall [no object] – breaks an input object instance into several outputs computed
from it.

• Region [no object] – a composite activity that isolates a part of the graph. Equivalent to
the UML Interruptible Activity Region.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 163

• For Each [no object] – loops an input collection to execute a set of actions specified into
the decomposed activity. Equivalent to the UML Expansion Region.

• Loop Node [expression text] – expression text

3. If the action type requires an action object, an additional field will be displayed directly
below the Action Type list, allowing you to specify an activity, classifier, attribute, event,
expression, operation, or variable upon which the action acts. You can use the tools to the
right of the list to create an object, browse the available objects or view the properties of the
currently selected object.

4. Click OK to save your changes and return to the diagram.

Example: Using the Call Action Type
One of the most common action types is Call, which allows an activity to invoke a classifier
operation (or another activity).

1. Create an activity and call it Check Login.

2. Open its property sheet, click the Action tab, and select Call from the Action type list. The
Operation field appears:

3. Click the Create tool to the right of the new field to open a wizard to choose an operation:

CHAPTER 4: Dynamic Diagrams

164 PowerDesigner

4. You can choose an existing classifier or activity, or select to create one. Select New Class,
and then click Next:

5. Specify a name for the class and for the operation that you want to create, and then click
Next:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 165

6. Create two input and one output parameter for the operation, and then click Finish. The
property sheet of the new operation opens to allow you to further specify the operation.
When you are finished, click OK to return to the Activity property sheet and click the Input
Parameters tab to view the parameters you have created:

CHAPTER 4: Dynamic Diagrams

166 PowerDesigner

Note that, in addition to the two input parameters, PowerDesigner has created a third,
called "target", with the type of the new class.

7. Click Ok to save the changes and return to the diagram:

The activity now displays its two input and one output parameter (the target parameter is
hidden by default). The class and operation that youhave created are available in the
Browser for further use.

Example: Reading and Writing Variables
Variables hold temporary values that can be passed between activities. You can create and
access variables using the Write Variable and Read Variables action types.

1. Open the property sheet of an activity and click the Action tab.

2. Select the appropriate action type:

• Read Variable - then click the Create or Select Object tool to the right of the variable
field to create or select the variable to read.

• Write Variable - then click the Create or Select Object tool to the right of the variable
field to create or select the variable to write to.

3. Specify the name and other properties of the variable and click OK to return to the activity
property sheet.

Variable Properties
To view or edit a variable's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 167

Property Description

Data type Specifies the data type of the variable. You can choose a standard data type or
specify a classifier. You can use the tools to the right of the list to create a classifier,
browse the available classifiers or view the properties of the currently selected
classifier.

Multiplicity Specifies the number of instances of the variable. If the multiplicity is a range of
values, it means that the number of variables can vary at run time.

You can choose between:

• * – none to unlimited

• 0..* – zero to unlimited

• 0..1 – zero or one

• 1..* – one to unlimited

• 1..1 – exactly one

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Decomposed Activities and Sub-Activities
A decomposed activity is an activity that contains sub-activities. It is equivalent to a
SubactivityState and an activity graph in UML. The decomposed activity behaves like a
specialized package or container. A sub-activity can itself be decomposed into further sub-
activities, and so on.

Note: To display all activities in the model in the List of Activities, including those belonging
to decomposed activities, click the Include Composite Activities tool.

You can decompose activities either directly in the diagram using an editable composite view
or by using sub-diagrams. Sub-objects created in either mode can be displayed in both modes,
but the two modes are not automatically synchronized. Editable composite view allows you
to quickly decompose activities and show direct links between activities and subactivities,
while Read-only (Sub-Diagram) mode favors a more formal decomposition and may be
more appropriate if you decompose through many levels.

You can choose the mode for viewing composite activities on a per-object basis, by right-
clicking the symbol and selecting the desired mode from the Composite View menu.

You cannot create a package or any other UML diagram type in a decomposed activity, but you
can use shortcuts to packages.

Working in Editable Composite View Mode
You can decompose an activity and create sub-activities within it simply be creating or
dragging another activity onto its symbol. You can resize the parent symbol as necessary and

CHAPTER 4: Dynamic Diagrams

168 PowerDesigner

create any number of sub-activities inside it. You can decompose a sub-activity by creating or
dragging another activity onto its symbol, and so on.

Flows can link activities at the same level, or can link activities in the parent diagram with
sub-activities in the Live Composite View:

Converting an Atomic Activity to a Decomposed Activity
You can convert an atomic activity to a decomposed activity in any of the following ways:

• Press Ctrl and double-click the activity symbol (this will open the sub-activity directly)
• Open the property sheet of the activity and, on the General tab, select the Decomposed

Activity radio button
• Right-click the activity and select Decompose Activity from the contextual menu

When you create a decomposed activity, a sub-activity diagram, which is empty at first, is
added below its entry in the browser:

To open a sub-activity diagram, press Ctrl and double-click on the decomposed activity
symbol, or double-click the appropriate diagram entry in the Browser.

You can add objects to a sub-activity diagram in the same way as you add them to an activity
diagram. Any activities that you add to a sub-activity diagram will be a part of its parent
decomposed activity and will be listed under the decomposed activity in the Browser.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 169

You can create several sub-activity diagrams within a decomposed activity, but we
recommend that you only create one unless you want to design exception cases, such as error
management.

Note: You can locate any object or any diagram in the Browser tree view from the current
diagram window. To do so, right-click the object symbol, or the diagram background and
select Edit > Find in Browser.

Converting an Activity Diagram to a Decomposed Activity
You can convert an activity diagram to a decomposed activity using the Convert Diagram to
Activity wizard. The conversion option is only available once objects have been created in the
diagram. By converting a diagram to a decomposed activity, you can then use the decomposed
activity in another activity diagram.

1. Right-click the diagram node in the Browser and select Convert to Composite Activity
from the contextual menu.

or

Right-click the diagram background and select Diagram > Convert to Composite
Activity from the contextual menu.

or

Select Tools > Convert to Composite Activity.

2. Specify a name and a code in the Convert Diagram to Activity page, and then click Next to
open the Selecting Objects to Move page.

3. Select the activities that you want to move to the new decomposed activity diagram.
Activities that you select will be moved in the Browser to under the new decomposed

CHAPTER 4: Dynamic Diagrams

170 PowerDesigner

activity. Those that you do not select will remain in their present positions in the Browser
and will be represented in the new sub-activity diagram as shortcuts.

4. Click Finish to exit the wizard. The new decomposed activity and its sub-activity diagram
will be created, and any objects selected to be moved will now appear beneath the
decomposed object in the Browser

Organization Units (OOM)
An organization unit can represent a company, a system, a service, an organization, a user or a
role, which is responsible for an activity. In UML, an organization unit is called a swimlane,
while in the OOM, "swimlane" refers to the symbol of the organization unit.

Note: To enable the display of organization unit swimlanes, select Tools > Display
Preferences, and select the Organization unit swimlane checkbox on the General page, or
right-click in the diagram background and select Enable Swimlane Mode.

An organization unit can be created in an activity diagram and can contain any of the other
activity diagram objects:

Creating an Organization Unit
Create an organization unit to show the participant responsible for the execution of activities.

In order to add Organization Unit Swimlanes to your diagrams, you must select Tools >
Display Preferences and select the Organization Unit Swimlanes checkbox.

• Use the Organization Unit Swimlane tool in the Toolbox.
• Select Model > Organization Units to access the List of Organization Units, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Organization

Unit.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 171

Creating Organization Units with the Swimlane Tool
Use the Organization Unit Swimlane tool in the Toolbox to quickly create organization unit
swimlanes.

Click in or next to an existing swimlane or pool of swimlanes to add a swimlane to the pool.

Click away from existing swimlanes to create a new pool.

Organization Unit Properties
To view or edit an organization unit's properties, double-click its diagram symbol or Browser
or list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Comment Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You
can optionally add a comment to provide more detailed information about
the object. By default the code is generated from the name by applying the
naming conventions specified in the model options. To decouple name-
code synchronization, click to release the = button to the right of the Code
field.

CHAPTER 4: Dynamic Diagrams

172 PowerDesigner

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You
can enter a stereotype directly in this field, or add stereotypes to the list by
specifying them in an extension file.

An organization unit has the following predefined stereotypes:

• Role – specifies a role a user plays
• User
• Group – specifies a group of users
• Company
• Organization – specifies an organization as a whole
• Division – specifies a division in a global structure
• Service – specifies a service in a global structure

Parent organization Specifies another organization unit as the parent to this one.

For example, you may want to describe an organizational hierarchy be-
tween a department Dpt1 and a department manager DptMgr1 with
DptMgr1 as the parent organization of Dpt1.

The relationship between parent and child organization units can be used to
group swimlanes having the same parent. For more information, see
Grouping and Ungrouping Swimlanes on page 176.

Keywords Provide a way of loosely grouping objects through tagging. To enter mul-
tiple keywords, separate them with commas.

Attaching Activities to Organization Units
Attach activities to organization units to graphically assign responsibility for them. When
activities are attached to an organization unit displayed in a swimlane, the organization unit
name is displayed in the Organization Unit list of their property sheets.

You attach activities to an organization unit by creating them in (or moving existing ones into)
the required swimlane. Alternately, you can select an organization unit name from the
Organization Unit list of the activity property sheet, and click OK to attach it.

To detach activities from an organization unit, drag them outside the swimlane or select
<None> in the activity property sheet.

Displaying a Committee Activity
A committee activity is a decomposed activity whose sub-activities are managed by several
organization units.

1. Open the property sheet of a decomposed activity.

2. Select Committee Activity from the Organization Unit list and click OK.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 173

This value is only available for decomposed activities.

3. In the diagram, resize the decomposed activity symbol to cover all the appropriate
swimlanes.

The symbol background color changes on the swimlanes depending on whether each is
responsible for sub-activities.

In the following example, all sub-activities of Payment are managed in the Accountancy
organization unit:

The symbol background of the committee activity is lighter and hatched on Sales and Delivery
since they do not:

• Manage any sub-activities
• Have any symbol in the sub-activity diagram

Note that this display does not appear in composite view mode.

Managing Swimlanes and Pools
Each group of one or more swimlanes forms a pool. You can create multiple pools in a
diagram, and each pool is generally used to represent a separate organization.

To select an individual swimlane in a pool, click its header:

To select a pool, click any of its swimlanes or position the cursor above the pool, until you see a
vertical arrow pointing to the frame, then click to display the selection frame:

CHAPTER 4: Dynamic Diagrams

174 PowerDesigner

Moving, Copying and Pasting Swimlanes
You can move, copy, and paste swimlanes and pools in the same or in another diagram.

Diagram What happens...

Same When you move a swimlane or pool within the same diagram, all symbols inside
the swimlane(s) are moved at the same time (even if some elements are not
formally attached), so as to preserve the layout of the diagram.

Different When you move or copy a swimlane or pool to another folder or diagram, the
symbols inside the swimlane(s) are not copied.

If a swimlane is dropped on or near another swimlane or pool, it joins the pool.

In the following example, Sales forms a pool with Accountancy and Delivery, and is moved to
another pool containing Customer and Customer Service:

After the move, Sales has moved from its original pool, and joined the pool containing
Customer and Customer Service:

If the moved swimlane is dropped away from another swimlane or pool, it forms a new pool by
itself, as in the following example:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 175

If you move linked objects inside a swimlane, the width or height of the swimlane varies with
them.

Note: The auto-layout function is unavailable with organization units displayed as swimlanes.

Grouping and Ungrouping Swimlanes
Group organization unit swimlanes within a pool to organize them under a common parent or
user-defined name.

To group swimlanes within a pool, right-click the pool, select Swimlane Group Type, and
then select one of the following options:

• By Parent - to assign the name of the last common parent for the group. This name comes
from the Parent Organization Unit field in the swimlanes property sheet.

• User-Defined - to assign a name of your choice for the group. Then, you must select at
least two attached swimlanes, and select Symbol > Group Symbols from the menu bar to
display a default name that you can modify.

To ungroup swimlanes, select Ungroup Symbols from the pool contextual menu or Select
Symbol > Ungroup Symbols.

The following example shows a pool without any group:

CHAPTER 4: Dynamic Diagrams

176 PowerDesigner

In the following example, Sales and Distribution are grouped by their BlueSky Ltd common
parent:

In the following example, the pool is assigned a user-defined group named 3rd quarter:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 177

Creating Links Between Pools of Swimlanes
Create links between pools or between activities in separated pools to represent interactions
between them.

To create links between pools of swimlanes, simply click the Flow tool in the Toolbox and
drag a flow from one activity in a pool to another in a different pool or from one pool to
another.

In the following example, flows pass between Authorize Payment in the Sales swimlane in one
pool and Authorization in the Bank swimlane in another pool:

Note: Such links between activities in separate pools are not visible when the swimlanes are
not in composite view mode.

Changing the Orientation of Swimlanes
You can change the orientation of swimlanes so that they run vertically (from top to bottom) or
horizontally (from left to right). All swimlanes in a diagram must have the same orientation.

1. Select Tools > Display Preferences to open the Display Preferences dialog box.

2. Select the appropriate radio button in the Organization unit swimlane groupbox, and click
OK.

CHAPTER 4: Dynamic Diagrams

178 PowerDesigner

Resizing Swimlanes
You can resize swimlanes within a pool by clicking the dividing line between them and
dragging it.

When you change the width or height of an individual swimlane, all activity symbols attached
to the swimlane keep their position.

You can resize a pool by selecting one of the handles around the pool, and dragging it into any
direction. Any other pools your diagram may contain may also be resized to preserve the
diagram layout.

Changing the Format of a Swimlane
You can change the format of swimlanes or a pool using the Symbol Format dialog box.
Format changes apply to all swimlanes in the pool.

1. Right-click the swimlane or a pool, and select Format to display the Symbol Format
dialog box.

2. Enter or select changes in the different tabs, and click OK to return to the diagram.

Starts (OOM)
A start is a starting point of the flow represented in the diagram.

A start can be created in the following diagrams:

• Activity Diagram - one or more per diagram

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 179

• Statechart Diagram - one or more per diagram
• Interaction Overview Diagram - one only per diagram

You should not use the same start in two diagrams, and you cannot create shortcuts of starts.

Note: The start is compared and merged in the Merge Model feature, which checks that there
is no additional start in decomposed activities.

Creating a Start
You can create a start from the Toolbox, Browser, or Model menu.

• Use the Start tool in the Toolbox.
• Select Model > Starts to access the List of Starts, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Start.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Start Properties
To view or edit a start's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Ends (OOM)
An end is a termination point of the flow represented in the diagram.

An end can be created in the following diagrams:

CHAPTER 4: Dynamic Diagrams

180 PowerDesigner

• Activity Diagram
• Statechart Diagram
• Activity Overview Diagram

You can create several ends within the same diagram, if you want to show divergent end cases,
like errors scenarios:

If there is no end, the diagram contains an endless activity. However, a decomposed activity
must always contain at least one end.

You should not use the same end in more than one diagram. You are not allowed to use
shortcuts of ends, but graphical synonyms are permitted.

Creating an End
You can create an end from the Toolbox, Browser, or Model menu.

• Use the End tool in the Toolbox.
• Select Model > Ends to access the List of Ends, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > End.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

End Properties
To view or edit an end's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 181

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can enter a
stereotype directly in this field, or add stereotypes to the list by specifying them in an
extension file.

Termination Specifies whether the end is the termination of the entire activity or simply one
possible flow.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Decisions (OOM)
A decision specifies which path to take, when several paths are possible.

A decision can be created in the following diagrams:

• Activity Diagram
• Interaction Overview Diagram

A decision can have one or more input flows and one or more output flows, each labeled with a
distinct guard condition, a condition that must be satisfied for an associated flow to execute
some action. Your guard conditions should avoid ambiguity by not overlapping, yet should
also cover all possibilities in order to avoid process freeze.

A decision can represent:

• A conditional branch: one input flow and several output flows. In the following example,
the control flow passes to the left if the age given in the application form is <18, to the right
if the age is >65, and takes the another route if the age is not mentioned:

CHAPTER 4: Dynamic Diagrams

182 PowerDesigner

You can display a condition on the decision symbol in order to factorize the conditions
attached to the flows. In the following example, the condition Total * NB + VAT > 10.000
is entered in the Condition tab in the decision property sheet, and True and False are
entered in the Condition tabs of the flows:

• A merge: several input flows and one output flow. In the following example, the
Subscription and Charge account flows merge to become the Ship order flow:

A decision allows you to create complex flows, such as:

• if ... then ... else ...
• switch ... case ...
• do ... while ...
• loop
• for ... next ...

Note: It is not possible to attach two flows of opposite directions to the same corner on a
decision symbol.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 183

Creating a Decision
You can create a decision from the Toolbox, Browser, or Model menu.

• Use the Decision tool in the Toolbox
• Select Model > Decisions to access the List of Decisions, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Decision.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Decision Properties
To view or edit a decision's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can enter
a stereotype directly in this field, or add stereotypes to the list by specifying them in
an extension file.

Type Calculated read-only value showing the type of the decision that can have the
following values:

• Incomplete - No input or no output transition has been defined or exactly one
input and one output transitions have been defined

• Conditional branch – One input and several outputs have been defined

• Merge - Several inputs and one output have been defined

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Decision Property Sheet Condition Tab
The Condition tab contains the following properties:

CHAPTER 4: Dynamic Diagrams

184 PowerDesigner

Property Description

Alias Specifies a short name for the condition, to be displayed next to its symbol in the
diagram.

Condition (text
box)

Specifies a condition to be evaluated to determine how the decision should be
traversed. You can enter any appropriate information in this box, as well as open,
insert and save text files. You can open the Condition tab by right-clicking the
decision symbol, and selecting Condition in the contextual menu.

Synchronizations (OOM)
A synchronization enables the splitting or synchronization of control between two or more
concurrent actions.

A synchronization can be created in the following diagrams:

• Activity Diagram
• Statechart Diagram
• Interaction Overview Diagram

Synchronizations are represented as horizontal or vertical lines. You can change the
orientation of the symbol by right-clicking it and selecting Change to Vertical or Change to
Horizontal from the contextual menu.

A synchronization can be either a:

• Fork - Splits a single input flow into several independent output flows executed in parallel:

• Join – Merges multiple input flows into a single output flow. All input flows must reach the
join before the single output flow continues:

In the following example, the flow coming into the first synchronization is split into two
separate flows, which pass through Check Customer Account and Check Stock. Then both
flows are merged into a second synchronization giving a single flow, which leads to Process
Order:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 185

Creating a Synchronization
You can create a synchronization from the Toolbox, Browser, or Model menu.

• Use the Synchronization tool in the Toolbox.
• Select Model > Synchronizations to access the List of Synchronizations, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New >

Synchronization.

By default, the synchronization symbol is created horizontally. To toggle between horizontal
and vertical display, right-click the symbol and select Change to Vertical or Change to
Horizontal in the contextual menu.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Synchronization Properties
To view or edit a synchronization's properties, double-click its diagram symbol or Browser or
list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

CHAPTER 4: Dynamic Diagrams

186 PowerDesigner

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Timeout Defines a timeout limit for waiting until all transitions end. It is empty when the
value = 0.

Type [read-only] Calculates the form of the synchronization:

• Incomplete - No or exactly one input or no output transition has been defined

• Conditional branch – One input and several outputs have been defined

• Merge - Several inputs and one output have been defined

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Flows (OOM)
A flow is a route the control flow takes between objects . The routing of the control flow is
made using guard conditions defined on flows. If the condition is true, the control is passed to
the next object.

A flow can be created in the following diagrams:

• Activity Diagram
• Interaction Overview Diagram

A flow between an activity and an object node indicates that the execution of the activity puts
an object in a specific state. When a specific event occurs or when specific conditions are
satisfied, the control flow passes from the activity to the object node. A flow from an object
node to an activity means that the activity uses this specific state in its execution. In both cases,
the flow is represented as a simple arrow.

In the following example the flow links Process Order to Ship US Postal Ground:

A flow can link shortcuts. A flow accepts shortcuts on both extremities to prevent it from being
automatically moved when a process is to be moved. In this case, the process is moved and
leaves a shortcut, but contrary to the other links, the flow is not moved. Shortcuts of flows do
not exist, and flows remain in place in all cases.

The following rules apply:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 187

• Reflexive flows (same source and destination process) are allowed on processes.
• Two flows between the same source and destination objects are permitted, and called

parallel flows.

Note: When flows are compared and merged by the Merge Model feature, they are matched by
trigger event first, and then by their calculated name. When two flows match, the trigger
actions automatically match because there cannot be more than one trigger action.

Creating a Flow
You can create a flow from the Toolbox, Browser, or Model menu.

• Use the Flow/Resource Flow tool in the Toolbox
• Select Model > Flows to access the List of Flows, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Flow.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Flow Properties
To view or edit a flow's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name and code are read-only. You can optionally add
a comment to provide more detailed information about the object.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by
specifying them in an extension file.

Source Specifies the object that the flow leads from. Use the tools to the right of the
list to create, browse for, or view the properties of the currently selected
object. You can also open the property sheet of the source object by clicking
the Source button located at the top part of the current object property sheet.

Destination Specifies the object that the flow leads to. Use the tools to the right of the list
to create, browse for, or view the properties of the currently selected object.
You can also open the property sheet of the destination object by clicking the
Destination button located at the top part of the current object property sheet.

CHAPTER 4: Dynamic Diagrams

188 PowerDesigner

Property Description

Flow type Specifies the type of the flow. You can create your own type of flow in the list,
or choose one of the following values:

• Success - defines a successful flow

• Timeout - defines the occurrence of a timeout limit

• Technical error

• Business error

• Compensation - defines a compensation flow

The flow type is unavailable if you associate an event with the flow on the
Condition tab.

Weight Specifies the number of objects consumed on each traversal.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Note: You can view input and output flows of a process from its property sheet by clicking the
Input Flows and Output Flows sub-tabs of the Dependencies tab.

Flow Property Sheet Condition Tab

Parameter Description

Alias Short name for the condition, to be displayed next to its symbol in the diagram.

Condition (text
box)

Specifies a condition to be evaluated to determine how the flow should be trav-
ersed. You can enter any appropriate information in this box, as well as open, insert
and save text files. You can open the Condition tab by right-clicking the flow
symbol, and selecting Condition in the contextual menu.

Flow Property Sheet Parameters Tab
The Parameters tab lists the parameters that are passed along the flow. The list is
automatically completed if you draw the flow between two activity parameters .

Flow Property Sheet Transformation Tab
The Transformations tab specifies a data transformation to apply to input tokens. For
example, it could extract a single attribute value from an input object.

Object Nodes (OOM)
An object node is the association of an object (instance of a class) and a state. It represents an
object in a particular state.

Its symbol is a rectangle as shown below:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 189

An object node can be created in the following diagrams:

• Activity Diagram

The same object can evolve after several actions defined by activities, have been executed. For
example, a document can evolve from the state initial, to draft, to reviewed, and finally turn
into a state approved.

You can draw flows from an activity to an object node and inversely:

• A flow from an activity to an object node - means that the execution of the activity puts the
object in a specific state. It represents the result of an activity

• A flow from an object node to an activity - means that the activity uses this specific state in
its execution. It represents a data flow between them

When an activity puts an object in a state and this object is immediately reused by another
activity, it shows a transition between two activities with some data exchange, the object node
representing the data exchange.

For example, the object nodes Order approved and Invoice edited, are linked to the classes
Order and Invoice, which are represented in a separate class diagram:

Creating an Object Node
You can create an object node from the Toolbox, Browser, or Model menu.

• Use the Object Node tool in the Toolbox.
• Select Model > Object Nodes to access the List of Object Nodes, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Object Node.
• Drag and drop a classifier from the Browser onto an activity diagram. The new object node

will be linked to and display the name of the classifier.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Object Node Properties
To view or edit an object node's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Dynamic Diagrams

190 PowerDesigner

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Data type Specifies the data type of the object node. You can use the tools to the right of
the list to create a classifier, browse the complete tree of available classifiers or
view the properties of the currently selected classifier.

State Specifies the state of the object node. You can type the name of a state here or, if
a classifier has been specified as the data type, select one of its states from the
list. You can use the tools to the right of the list to create a state, browse the
complete tree of available states or view the properties of the currently selected
state.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

States (OOM)
A state represents a situation during the life of a classifier that is usually specified by
conditions. It can also be defined as the situation of a classifier waiting for events. Stability and
duration are two characteristics of a state.

A state can be created in the following diagrams:

• Statechart Diagram

A state can be atomic or decomposed:

• An atomic state does not contain sub-states, and has the following symbol:

• A decomposed state contains sub-states, which are represented in a sub-diagram, and has
the following symbol:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 191

For more information on decomposed states, see Decomposed states and sub-states on page
194.

Several states in a statechart diagram correspond to several situations during the life of the
classifier.

Events and condition guards on output transitions define the stability of a state. Some actions
can be associated with a state, especially when the object enters or exit the state. Some actions
can also be performed when events occur inside the state; those actions are called internal
transitions, they do not cause a change of state.

You cannot decompose shortcuts of states.

Drag a Class, Use Case or Component in a Statechart Diagram
The statechart diagram describes the behavior of a classifier. To highlight the relationship
between a classifier and a state, you can define the context classifier of a state using the
Classifier list in the state property sheet. This links the state to a use case, a component or a
class.

You can also move, copy and paste, or drag a class, use case or component and drop it into a
statechart diagram to automatically create a state associated with the element that has been
moved.

Creating a State
You can create a state from the Toolbox, Browser, or Model menu.

• Use the State tool in the Toolbox.
• Select Model > States to access the List of States, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > State.
• Drag and drop a class, use case or component into the diagram.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

State Properties
To view or edit a state's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Dynamic Diagrams

192 PowerDesigner

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by speci-
fying them in an extension file.

Classifier Classifier linked to the state. It can be a use case, a class or a component. When
a classifier is selected, it is displayed in between brackets after the state name in
the Browser. Use the tools to the right of the list to create, browse for, or view
the properties of the currently selected object.

Composite status If you select the Decomposed state option, the state becomes a decomposed
state. If you select the Atomic state option, the state becomes an atomic state,
and all its child objects are deleted

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Actions Tab
You can specify a set of internal actions on an atomic or decomposed state on the Actions tab.
These represent actions performed within the scope of the state when some events occur. You
can create and define the properties of the action from the Actions tab, or double-click the
arrow at the beginning of a line to display the action property sheet.

Note: You can open the Actions tab by right clicking the state symbol in the diagram, and
selecting Actions from the contextual menu.

For more information on actions, see Actions (OOM) on page 201.

Deferred Events Tab
The Deferred Events tab contains an Add Objects tool that allows you to add already existing
events but not to create new events. This list is similar to the list of Business Rules that only
reuse elements and does not create them.

The difference between an event and a deferred event is that an event is always instantaneous
and dynamically handled by a state, whereas a deferred event is an event that occurs during a
particular state in the object life cycle but it is not directly used up by the state.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 193

A deferred event occurs in a specific state, is then handled in a queue, and is triggered by
another state of the same classifier later.

Sub-States Tab
The Sub-States tab is displayed when the current state is decomposed in order to display a list
of child states. You can use the Add a row and Delete tools to modify the list of child states. The
Sub-States tab disappears if you change the current state to atomic because this action deletes
the children of the state.

Decomposed States and Sub-states
A decomposed state is a state that contains sub-states. The decomposed state behaves like a
specialized package or container. A sub-state can itself be decomposed into further sub-states,
and so on.

Note: To display all states in the model in the List of States, including those belonging to
decomposed states, click the Include Composite States tool.

You can decompose states either directly in the diagram using an editable composite view or
by using sub-diagrams. Sub-objects created in either mode can be displayed in both modes,
but the two modes are not automatically synchronized. Editable composite view allows you
to quickly decompose states and show direct links between states and substates, while Read-
only (Sub-Diagram) mode favors a more formal decomposition and may be more appropriate
if you decompose through many levels.

You can choose how to view composite states on a per-object basis, by right-clicking the
symbol and selecting the desired mode from the Composite View menu.

You cannot create a package or any other UML diagram type in a decomposed state, but you
can use shortcuts to packages.

Working in Editable Composite View Mode
You can decompose a state and create substates within it simply be creating or dragging
another state onto its symbol. You can resize the parent symbol as necessary and create any
number of substates inside it. You can decompose a substate by creating or dragging another
state onto its symbol, and so on.

Transitions can link states at the same level, or can link states in the parent diagram with sub-
states in the Editable Composite View mode:

CHAPTER 4: Dynamic Diagrams

194 PowerDesigner

Working with Sub-State Diagrams
You can convert an atomic state to a decomposed state in any of the following ways:

• Press Ctrl and double-click the state symbol (this will open the sub-state directly)
• Open the property sheet of the state and, on the General tab, select the Decomposed State

radio button
• Right-click the state and select Decompose State

When you create a decomposed state, a sub-state diagram, which is empty at first, is added
below its entry in the browser:

To open a sub-state diagram, press Ctrl and double-click on the decomposed state symbol, or
double-click the appropriate diagram entry in the Browser.

You can add objects to a sub-state diagram in the same way as you add them to an state
diagram. Any states that you add to a sub-state diagram will be a part of its parent decomposed
state and will be listed under the decomposed state in the Browser.

You can create several sub-state diagrams within a decomposed state, but we recommend that
you only create one unless you want to design exception cases, such as error management.

Note: You can locate any object or any diagram in the Browser tree view from the current
diagram window. To do so, right-click the object symbol, or the diagram background and
select Edit > Find in Browser.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 195

Converting a Statechart Diagram to a Decomposed State
You can convert a statechart diagram to a decomposed state using the Convert Diagram to
State wizard. The conversion option is only available once objects have been created in the
diagram. By converting a diagram to a decomposed state, you can then use the decomposed
state in another statechart diagram.

1. Right-click the diagram node in the Browser and select Convert to Decomposed State from
the contextual menu.

or

Right-click the diagram background and select Diagram > Convert to Decomposed
State from the contextual menu.

or

Select Tools > Convert to Decomposed State.

2. Specify a name and a code in the Convert Diagram to State page, and then click Next to
open the Selecting Objects to Move page.

3. Select the states that you want to move to the new decomposed state diagram. States that
you select will be moved in the Browser to under the new decomposed state. Those that
you do not select will remain in their present positions in the Browser and will be
represented in the new sub-state diagram as shortcuts.

4. Click Finish to exit the wizard. The new decomposed state and its sub-state diagram will be
created, and any objects selected to be moved will now appear beneath the decomposed
object in the Browser

CHAPTER 4: Dynamic Diagrams

196 PowerDesigner

Transitions (OOM)
A transition is an oriented link between states, which indicates that an element in one state can
enter another state when an event occurs (and, optionally, if a guard condition is satisfied). The
expression commonly used in this case is that a transition is fired.

A transition can be created in the following diagrams:

• Statechart Diagram

The statechart diagram transition is quite similar to the flow in the activity diagram, with the
addition of a few properties:

• A trigger event: it is the event that triggers the transition (when you copy a transition, the
trigger event is also copied)

• A trigger action: it specifies the action to execute when the transition is triggered

The activity diagram is a simplification of the statechart diagram in which the states have only
one action and the transition has a triggered event corresponding to the end of the action.

The transition link is represented as a simple arrow. The associated event, the condition and the
action to execute are displayed above the symbol.

The following rules apply:

• Reflexive transitions only exist on states
• A trigger event can only be defined if the source is a start or a state
• Two transitions can not be defined between the same source and destination objects

(parallel transitions). The Merge Model feature forbids this.

Note: When transitions are compared and merged by the Merge Model feature, they are
matched by trigger event first, and then by their calculated name. When two transitions match,
the trigger actions automatically match because there cannot be more than one trigger action.

Creating a Transition
You can create a transition from the Toolbox, Browser, or Model menu.

• Use the Transition tool in the Toolbox.
• Select Model > Transitions to access the List of Transitions, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Transition.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 197

Transition Properties
To view or edit a transition's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name and code are read-only. You can optionally add a
comment to provide more detailed information about the object.

Stereotype Extends the semantics of the object beyond the core UML definition. You can enter
a stereotype directly in this field, or add stereotypes to the list by specifying them in
an extension file.

Source Where the transition starts from. Use the tools to the right of the list to create, browse
for, or view the properties of the currently selected object.

Destination Where the transition ends on. Use the tools to the right of the list to create, browse
for, or view the properties of the currently selected object.

Flow type Represents a condition that can be attached to the transition. You can choose be-
tween the following default types or create your own:

• Success – Defines a successful flow

• Timeout – Defines a timeout limit

• Exception – Represents an exception case

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Trigger Tab
The Trigger tab contains the following properties:

Property Description

Trigger event Specifies the event (see Events (OOM) on page 199) that triggers the transition. You
can click the Properties tool beside this box to display the event property sheet. It is
available only for transitions coming from a state or a start and is not editable in other
cases. When you define a trigger event, the inverse relationship is displayed in the
Triggered Objects tab of the corresponding event property sheet. The Triggered
Objects tab lists transitions that the event can trigger.

Event argu-
ments

Specifies a comma-separated list of event arguments (arg1, arg2,...).

CHAPTER 4: Dynamic Diagrams

198 PowerDesigner

Property Description

Trigger action Specifies the action to execute when the transition is triggered.

Operation Read-only list that lists operations of the classifier associated with the state that is the
source of the transition. It allows you to specify the action implementation using an
operation. It is grayed and empty when the classifier is not a class

Operation ar-
guments

Arguments of an event defined on an operation

Condition Tab
The Condition tab contains the following properties:

Property Description

Alias Short name for the condition, to be displayed next to its symbol in the diagram.

Condition
(text box)

Specifies a condition to be evaluated to determine whether the transition should be
traversed. You can enter any appropriate information in this field, as well as open,
insert and save text files.

Events (OOM)
An event is the occurrence of something observable. The occurrence is assumed to be
instantaneous and should not have duration.

An event can be created in the following diagrams:

• Statechart Diagram

Events convey information specified by parameters. They are used in the statechart diagram in
association with transitions: they are attached to transitions to specify which event fires the
transition. They are also used in association with actions: the event can trigger the change of
state of a classifier or the execution of an internal action on a state.

The same event can be shared between several transitions and actions. It is reusable by nature
because it is not dependent on the context.

The event icon in the Browser is the following symbol:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 199

Predefined Events
You can select an event from the Trigger Event list in the action and transition property sheets.
You can also select a predefined event value from the Trigger Event list if you define the event
on an action.

The list of events contains the following predefined values:

• Entry: the action is executed when the state is entered
• Do: a set of actions is executed after the entry action
• Exit: the action is executed when the state is exited

Examples
An event could be:

• A boolean expression becoming true
• The reception of a signal
• The invocation of an operation
• A time event, like a timeout or a date reached

You can display the arguments of an event in the statechart diagram.

For more information on arguments of an event, see Defining event arguments on page
201.

Creating an Event
You can create an event from the Browser, from the Model menu or from a transition property
sheet.

• Select Model > Events to access the List of Events, and click the Add a Row tool
• Right-click the model or package in the Browser, and select New > Event
• Double-click a transition to open its property sheet, click the Trigger tab, and then click the

Create tool to the right of the Trigger event box

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Event Properties
To view or edit an event's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Dynamic Diagrams

200 PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Parameters - lists the parameters of the event corresponding to the event signature (see
Parameters (OOM) on page 83).

• Dependencies - contains a Triggered Objects sub-tab that displays the actions on states and
on transitions that are triggered by this event.

Defining Event Arguments
Event arguments are slightly different from event parameters. Event arguments are defined on
the action or on the transition that receives the event, they are dependent on the particular
context that follows this receipt.

It is a text field defined on the action or the transition. You can edit it and separate arguments
with a comma, for example: arg1, arg2. There is no control of coherence between event
parameters and event arguments in PowerDesigner.

Example
An event can have a parameter "person" that is for example, a person sending a request. Within
the context of a transition triggered by this event, you may clearly know that this parameter is a
customer, and then purposefully call it "customer" instead of "person".

Actions (OOM)
An action is a specification of a computable statement. It occurs in a specific situation and may
comprise predefined events (entry, do and exit) and internal transitions.

An action can be created in the following diagrams:

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 201

• Statechart Diagram

Internal transitions can be defined on a state, they are internal to the state and do not cause a
change of state; they perform actions when triggered by events. Internal transitions should not
be compared to reflexive transitions on the state because the entry and exit values are not
executed when the internal event occurs.

An action contains a Trigger Event property containing the specification of the event that
triggers the action.

For more information on events, see Events (OOM) on page 199.

Action on State and on Transition
In an OOM, an action is used in the statechart diagram in association with states: the action is
executed in the state during entry or exit. It is also used in association with transitions: the
action is executed when the transition is triggered.

In UML, the difference is that an action is displayed in interaction diagrams (in association
with messages) and in statechart diagrams.

When you define an action on a state, you can define several actions without any limitation.
When you define an action on a transition, there can only be one action as the transition can
execute only one action. An action defined on a state can contain the event that triggers it: the
action property sheet contains the event property sheet. An action defined on a transition does
not contain the event that triggers it: you can only enter the action in a text field.

In the following figure, you can see actions defined on states, and actions defined on
transitions together with the order of execution of actions:

The action icon in the Browser is a two-wheel symbol, it is defined within a state node but does
not appear within a transition node.

CHAPTER 4: Dynamic Diagrams

202 PowerDesigner

Creating an Action
You can create an action from the property sheet of a state or transition.

• Open the Actions tab in the property sheet of a state, and click the Add a Row tool
• Open the Trigger tab in the property sheet of a transition, and type the action name in the

Trigger action box

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Action Properties
To view or edit an action's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the
naming conventions specified in the model options. To decouple name-code
synchronization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by
specifying them in an extension file.

Trigger event Specifies the role an action plays for a state or the event that triggers its
execution. You can:

• Add an event to an action by choosing it from the list.

• Add multiple events by clicking the ellipsis tool next to the list.

• Create a new event by clicking the Create tool.

• Select an event created in the current model or other models by clicking
the Select Trigger Event tool.

Click the Properties tool to display the event property sheet. When a trigger
event is defined on an action, the inverse relationship is displayed in the
Triggered Objects sub-tab of the Dependencies tab of the event property
sheet (see Events (OOM) on page 199).

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 203

Property Description

Event arguments Arguments of an event defined on a state. Arguments are instances of pa-
rameters or names given to parameters in the context of executing an event.
You can specify a list of event arguments (arg1, arg2,...) in this box

Operation Read-only list that lists operations of the classifier associated with the state. It
allows you to specify the action implementation using an operation. It is
grayed and empty when the classifier is not a class

Operation arguments Arguments of an event defined on an operation

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Condition Tab
The Condition tab is available for actions defined on states. You can specify an additional
condition on the execution of an action when the event specified by the trigger event occurs.

The Alias field allows you to enter a condition attached to an action. You can also use the text
to detail the condition. For example, you can write information on the condition to execute, as
well as open, insert and save any text files containing valuable information.

We recommend that you write an alias (short expression) when you use a long condition so as
to display the alias instead of the condition in the diagram.

The condition of an action is displayed between brackets:

Junction Points (OOM)
A junction point can merge and/or split several input and output transitions. It is similar to the
decision in the activity diagram

A junction point can be created in the following diagrams:

• Statechart Diagram

You are not allowed to use shortcuts of a junction point. A junction point may be dependent on
event parameters if the parameters include some split or merge variables for example.

You can attach two transitions of opposite directions to the same junction point symbol.

The symbol of a junction point is an empty circle:

CHAPTER 4: Dynamic Diagrams

204 PowerDesigner

Creating a Junction Point
You can create a junction point from the Toolbox, Browser, or Model menu.

• Use the Junction Point tool in the Toolbox.
• Select Model > Junction Points to access the List of Junction Points, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Junction Point.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Junction Point Properties
To view or edit a junction point's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 4: Dynamic Diagrams

Object-Oriented Modeling 205

CHAPTER 4: Dynamic Diagrams

206 PowerDesigner

CHAPTER 5 Implementation Diagrams

The diagrams in this chapter allow you to model the physical environment of your system, and
how its components will be deployed. PowerDesigner provides two types of diagrams for
modeling your system in this way:

• A component diagram represents your system decomposed into self-contained
components or sub-systems. It can show the classifiers that make up these systems
together with the artifacts that implement them, and exposes the interfaces offered or
required by each component, and the dependencies between them. For more information,
see Component Diagrams on page 207.

• A deployment diagram allows you to represent the execution environment for a project. It
describes the hardware on which each of your components will run and how that hardware
is connected together. For more information, see Deployment Diagrams on page 209.

Component Diagrams
A component diagram is a UML diagram that provides a graphical view of the dependencies
and generalizations among software components, including source code components, binary
code components, and executable components.

Note: To create a component diagram in an existing OOM, right-click the model in the
Browser and select New > Component Diagram. To create a new model, select File > New
Model, choose Object Oriented Model as the model type and Component Diagram as the
first diagram, and then click OK.

For information about Java- and .NET-specific components, see Chapter 12, Working with
Java on page 329 and Chapter 16, Working with VB .NET on page 417.

The following example shows relationships between components in a showroom reservation
system:

Component diagrams are used to define object dependencies and relationships at a higher
level than class diagrams.

Object-Oriented Modeling 207

Components should be designed in order to be reused for several applications, and so that they
can be extended without breaking existing applications.

You use component diagrams to model the structure of the software, and show dependencies
among source code, binary code and executable components so that the impact of a change can
be evaluated.

A component diagram is useful during analysis and design. It allows analysts and project
leaders to specify the components they need before having them developed and implemented.
The component diagram provides a view of components and makes it easier to design,
develop, and maintain components and help the server to deploy, catalog, and find
components.

Component Diagram Objects
PowerDesigner supports all the objects necessary to build component diagrams.

Object Tool Symbol Description

Component Represents a shareable piece of implementation of a
system. See Components (OOM) on page 210.

Interface Descriptor for the externally visible operations of a
class, object, or other entity without specification of
internal structure. See Interfaces (OOM) on page
51.

Port Interaction point between a classifier and its envi-
ronment. See Ports (OOM) on page 60.

Part Classifier instance playing a particular role within
the context of another classifier. See Parts (OOM)
on page 58.

Generalization A link between a general component and a more
specific component that inherits from it and add
features to it. See Generalizations (OOM) on page
95.

Realization Semantic relationship between classifiers, in which
one classifier specifies a contract that another clas-
sifier guarantees to carry out. See Realizations
(OOM) on page 102.

Require Link Connects components to interfaces. See Require
Links (OOM) on page 103.

Assembly Connec-
tor

Connects parts to each other. See Assembly Con-
nectors (OOM) on page 105.

CHAPTER 5: Implementation Diagrams

208 PowerDesigner

Object Tool Symbol Description

Delegation Con-
nector

Connects parts to ports on the outside of compo-
nents. See Delegation Connectors (OOM) on page
106.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Deployment Diagrams
A deployment diagram is a UML diagram that provides a graphical view of the physical
configuration of run-time elements of your system.

Note: To create a deployment diagram in an existing OOM, right-click the model in the
Browser and select New > Deployment Diagram. To create a new model, select File > New
Model, choose Object Oriented Model as the model type and Deployment Diagram as the
first diagram, and then click OK.

The deployment diagram provides a view of nodes connected by communication links. It
allows you to design nodes, file objects associated with nodes that are used for deployment,
and relationships between nodes. The nodes contain instances of component that will be
deployed into and execute upon database, application or web servers.

Deployment diagrams are used for actual deployment of components into servers. A
deployment can represent the ability to use instances.

You use the deployment diagram to establish the link to the physical architecture. It is suitable
for modeling network topologies, for instance.

You can build a deployment diagram to show the following views, from a high level
architecture that describes the material resources and the distribution of the software in these
resources, to final complete deployment into a server:

• Identify the system architecture: use nodes and node associations only

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 209

• Identify the link between software and hardware: use component instances, split up their
route, identify and select the servers

• Deploy components into the servers: include some details, add physical parameters

Deployment Diagram Objects
PowerDesigner supports all the objects necessary to build deployment diagrams.

Object Tool Symbol Description

Node Physical element that represents a processing re-
source, a physical unit (computer, printer, or other
hardware units). See Nodes (OOM) on page 216.

Component instance Instance of a deployable component that can run or
execute on a node. See Component Instances
(OOM) on page 218.

Node association An association between two nodes means that the
nodes communicate to each other. See Node Asso-
ciations (OOM) on page 223.

Dependency Relationship between two modeling elements, in
which a change to one element will affect the other
element. See Dependencies (OOM) on page 98.

Components (OOM)
A component is a physical, replaceable part of a system that packages implementation,
conforms to and provides the realization of a set of interfaces. It can represent a physical piece
of implementation of a system, like software code (source, binary or executable), scripts, or
command files. It is an independent piece of software developed for a specific purpose but not
a specific application. It may be built up from the class diagram and written from scratch for
the new system, or it may be imported from other projects and third party vendors.

A component can be created in the following diagrams:

• Component Diagram

The symbol of the component is as follows:

A component provides a 'black box' building block approach to software construction. For
example, from the outside, a component may show two interfaces that describe it, whereas
from the inside, it would reflect both interfaces realized by a class, both operations of the
interfaces being the operations of the class.

CHAPTER 5: Implementation Diagrams

210 PowerDesigner

A component developer has an internal view of the component: its interfaces and
implementation classes, whereas one who assembles components to build another component
or an application only has the external view (the interfaces) of these components.

A component can be implemented in any language. In Java, you can implement EJB, servlets,
and JSP components, for example.

For more information on other types of components: EJB, servlets, JSP and ASP.NET, see
Chapter 12, Working with Java on page 329 and Chapter 16, Working with VB .NET on page
417.

If you start developing a component with classes and interfaces in an OOM and you later want
to store them in a database, it is possible to create a manual mapping of objects so that OOM
objects correspond to PDM objects. Similarly, if you have an existing OOM and an existing
PDM and both models must be preserved; you can handle the link between the object-oriented
environment and the physical database through the object to relational mapping. Using this
mapping, you can make your components communicate to each other and evolve in an object
environment, as well as retrieve data stored in a database.

For more information on O/R Mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

Creating a Component
You can create a component using a Wizard or from the Toolbox, Browser, or Model menu.

• Use the Component tool in the Toolbox.
• Select Model > Components to access the List of Components, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Component.
• Select Tools > Create Component to access the Standard Component Wizard.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

For more information on other types of components: EJB, servlets, JSP and ASP.NET, see
Chapter 12, Working with Java on page 329 and Chapter 16, Working with VB .NET on page
417.

Using the Standard Component Wizard
PowerDesigner provides a wizard to help you in creating components from classes.

1. Open a class or composite structure diagram and select the class or classes that you want to
include in the new component.

2. Select Tools > Create Component to open the Standard Component Wizard.

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 211

3. Type a name and a code for the component and click Next.

4. If you want the component to have a symbol and appear in a diagram, then select the Create
Symbol In checkbox and specify the diagram in which you want it to appear (you can
choose to create a new diagram). If you do not select this checkbox, then the component is
created and visible from the Browser but will have no symbol.

5. If you want to create a new class diagram to regroup the classes selected, then select the
Create Class Diagram for Component Classifiers.

Component Properties
To view or edit a component's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

CHAPTER 5: Implementation Diagrams

212 PowerDesigner

Property Description

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

The following standard stereotypes are available by default:

• <<Document>> - Generic file that is not a source file or an executable

• <<Executable>> - Program file that can be executed on a computer system

• <<File>> - Physical file in the context of the system developed

• <<Library>> - Static or dynamic library file

• <<Table>> - Database table

You can modify an existing stereotype or create a new one in an object language
or extension file.

Type Specifies the type of component. You can choose between a standard component
(if no specific implementation has been defined) or a specific component, such as
EJB, JSP, Servlet or ASP.NET (see Chapter 6, Web Services on page 225).

To display the type of a component, select Tools > Display Preferences and
select the Type option in the component category.

Whenever you change the type of a component after creation, the modification
triggers a conversion from one type to another: all relevant interfaces, classes,
and dependencies are automatically created and initialized. Such a change will
affect some property sheets, the Check Model feature, and code generation.

For example, if you convert a standard component to an EJB Entity Bean, it will
automatically generate a Bean class and a primary key class of the EJB, as well as
home and component interfaces. If you convert an EJB to a standard component,
the classes and interfaces of the EJB are preserved in the model.

Transaction Used for a component with transactional behavior.

Class diagram Specifies a diagram with classes and interfaces linked to the component, which is
automatically created and updated (see Creating a Class Diagram for a Compo-
nent on page 215).

Web service Indicates that the component is a Web service.

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 213

Property Description

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Interfaces Tab
Each component uses one or several interfaces. It also uses or requires interfaces from other
components. These interfaces are visible entry points and services that a component makes
available to other software components and classes. If dependencies among components
originate from interfaces, these components can be replaced by other components that use the
same interfaces.

The Interfaces tab lists interfaces exposed and implemented by the component. Use the Add
Objects tool to add existing interfaces or the Create an Object tool to create new interfaces
for the component.

Component interfaces are shown as circles linked to the component side by an horizontal or a
vertical line:

The symbol of a component interface is visible if you have selected the Interface symbols
display preference from Tools > Display Preferences. The symbol of an interface can be
moved around the component symbol, and the link from the component to the interface can be
extended.

If you are working with EJB, some of the interfaces have a special meaning (local interface,
remote interface, etc...). For more information, see Defining Interfaces and Classes for EJBs
on page 344.

Classes Tab
A component usually uses one implementation class as the main class, while other classes are
used to implement the functions of the component. Typically, a component consists of many
internal classes and packages of classes but it may also be assembled from a collection of
smaller components.

The Classes tab lists classes contained within the component. Use the Add Objects tool to add
existing classes or the Create an Object tool to create new classes for the component.

Classes are not visible in the component diagram.

The following tabs are also available:

• Components - lists the child components of the component. You can create components
directly in this tab.

CHAPTER 5: Implementation Diagrams

214 PowerDesigner

• Operations - lists the operations contained within the interfaces associated with the
component. Use the filter in the toolbar to filter by a specific interfaces.

• Ports - lists the ports associated with the component. You can create ports directly in this
tab (see Ports (OOM) on page 60).

• Parts - lists the parts associated with the component. You can create parts directly in this tab
(see Parts (OOM) on page 58).

• Files - lists the files associated with the component. If files are attached to a component
they are deployed to the server with the component (see Files (OOM) on page 220).

• Related Diagrams - lists and lets you add model diagrams that are related to the component
(see Core Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and
Symbols > Diagrams > Specifying Diagrams as Related Diagrams).

Creating a Class Diagram for a Component
You can create a class diagram for a selected component to have an overall view of the classes
and interfaces associated with the component. You can only create one class diagram per
component.

The Create/Update Class Diagram feature from the component contextual menu, acts as
follows:

• Creates a class diagram if none exists
• Attaches a class diagram to a component
• Adds symbols of all related interfaces and classes in the class diagram
• Completes the links in the diagram

This feature also allows you to update a class diagram after you have made some modifications
to a component.

The Open Class Diagram feature, available from the component contextual menu, opens the
specific class diagram if it exists, or it creates a new default class diagram.

For EJB components for example, the Open Class Diagram feature opens the class diagram
where the Bean class of the component is defined.

If you delete a component that is attached to a class diagram, the class diagram is also deleted.
Moreover, the classes and interfaces symbols are deleted in the class diagram, but the classes
and interfaces objects remain in the model.

Right-click the component in the component diagram and select Create/Update Class
Diagram from the contextual menu.

A new class diagram, specific to the component, is displayed in the diagram window and the
corresponding node is displayed under in the Browser. You can further create objects related to
the component in the new class diagram.

Note: To open the class diagram for a component, right-click the component in the diagram
and select Open Class Diagram from the contextual menu or press Ctrl and double-click the
component.

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 215

Deploying a Component to a Node
Deploying a component to a node allows you to set an instance of the component within a
node. You can deploy a component from the component diagram or from the Browser. After
deployment, a shortcut of the component and a new component instance are created within the
deployment node.

You can only select one component to deploy at a time.

1. Right-click the component symbol and select Deploy Component to Node to open the
Component to Node Deployment window:

2. Select either an existing node to deploy the component to or click the New Node button to
create a new node and deploy the component to it.

3. Click OK to create a new component instance inside the selected node.

Nodes (OOM)
A node is the main element of the deployment diagram. It is a physical element that represents
a processing resource, a real physical unit, or physical location of a deployment (computer,
printer, or other hardware units).

In UML, a node is defined as Type or Instance. This allows you to define for example
'BackupMachine' as node Type, and 'Server:BackupMachine' as Instance. As a matter of
simplification, PowerDesigner handles only one element, called node, which actually
represents a node instance. If you need to designate the type, you can use a stereotype for
example.

CHAPTER 5: Implementation Diagrams

216 PowerDesigner

A node can be created in the following diagrams:

• Deployment Diagram

The symbol of a node is a cube:

A node cannot contain another node, however it can contain component instances and file
objects: the software component instances and/or associated file objects that are executed
within the nodes. You can use shortcuts of component as well.

You can add a component instance from the node property sheet. You can display the list of
component instances in the node symbol as well, by selecting the option Components in the
node display preferences.

Composite View
You can add component instances and file objects to a node by dropping them onto the node
symbol. By default, these sub-objects are displayed inside the symbol. To disable the display
of these sub-objects, right click the node symbol and select Composite View > None. To
redisplay them, select Composite View > Editable.

Creating a Node
You can create a node from the Toolbox, Browser, or Model menu.

• Use the Node tool in the Toolbox.
• Select Model > Nodes to access the List of Nodes, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Node.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Node Properties
To view or edit a node's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 217

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Cardinality Specific numbers of instances that the node can have, for example: 0...1.

Network address Address or machine name.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Component Instances Tab
The Component Instances tab lists all instances of components that can run or execute on the
current node (see Component Instances (OOM) on page 218). You can specify component
instances directly on this tab and they will be displayed within the node symbol.

Node Diagrams
You can create deployment diagrams within a node to visualize the component instances and
file objects it contains.

To create a node diagram, press Ctrl and double-click the node symbol in the deployment
diagram, or right-click the node in the Browser and select New > Deployment Diagram. The
diagram is created under the node in the Browser and opens in the canvas pane.

To open a node diagram from the node symbol in a deployment diagram, press Ctrl and
double-click on the node symbol or right-click the node symbol and select Open Diagram.

Component Instances (OOM)
A component instance is an instance of a component that can run or execute on a node.
Whenever a component is processed into a node, a component instance is created. The
component instance plays an important role because it contains the parameter for deployment
into a server.

A component instance can be created in the following diagrams:

CHAPTER 5: Implementation Diagrams

218 PowerDesigner

• Deployment Diagram

The component instance symbol is the same as the component symbol in the component
diagram.

The component instance relationship with the node is similar to a composition; it is a strong
relationship, whereas the file object relationship with the node is different because several
nodes can use the same file object according to deployment needs.

Drag and Drop a Component in a Deployment Diagram
You can drag a component from the Browser and drop it into a deployment diagram to
automatically create a component instance linked to the component.

The component instance that inherits from the component automatically inherits its type: the
type of the component is displayed in the property sheet of the component instance.

Deploy Component to Node from the Component Diagram
You can create a component instance from a component. To do this, use the Deploy
Component to Node feature. This feature is available from the contextual menu of a
component (in the component diagram) or from the Browser. This creates a component
instance and attaches the component instance to a node. If you display the node symbol in a
deployment diagram, the component instance name is displayed within the node symbol to
which it is attached.

For more information, see Deploying a component to a node on page 216.

Creating a Component Instance
You can create a component instance from the Toolbox, Browser, or Model menu.

• Use the Component Instance tool in the Toolbox.
• Select Model > Component Instances to access the List of Component Instances, and

click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Component

Instance.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 219

Component Instance Properties
To view or edit a component instance's properties, double-click its diagram symbol or
Browser or list entry. The property sheet tabs and fields listed here are those available by
default, before any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Cardinality Specific number of occurrences that the component instance can have, for exam-
ple: 0...1.

Component Component of which the component instance is an instance. If you change the
component name in this box, the name of the component instance is updated in the
model.

Component type Read-only box that shows the type of the component from which the component
instance is coming.

Web service Indicates that the component instance is an instance of a Web service component.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

If you want to list all component instances of a component, click the Component Instances
tabbed page in the Dependencies tab of the component property sheet.

Files (OOM)
A file object can be a bitmap file used for documentation, or it can be a file containing text that
is used for deployment into a server.

A file can be created in the following diagrams:

• All Diagrams

The symbol of a file object is as follows:

CHAPTER 5: Implementation Diagrams

220 PowerDesigner

The file object can have a special function in a deployment diagram, where it can be specified
as an artifact (by selecting the Artifact property) and generated during the generation process.

When you want to associate a file object to a node, you can drag a dependency from the file
object to the node:

You can also use Ctrl and double-click on the parent node symbol, then create the file object
into the node diagram.

You can edit a file object by right-clicking its symbol in the deployment diagram and selecting
Open Document or Open With > text editor of your choice from the contextual menu.

Creating a File Object
You can create a file object by drag and drop or from the Toolbox, Browser, or Model menu.

• Use the File tool in the Toolbox.
• Select Model > Files to access the List of Files, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > File.
• Drag and drop a file from Windows Explorer to your diagram or the PowerDesigner

Browser

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 221

File Object Properties
To view or edit a file object's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can enter a
stereotype directly in this field, or add stereotypes to the list by specifying them in an
extension file.

Location type Specifies the nature of the file object. You can choose from the following:

• Embedded file – the file is stored within the model and is saved when you save the
model. If you subsequently change the type to external, you will be warned that
the existing contents will be lost.

• External file – the file is stored in the Windows file system, and you must enter its
path in the Location field. If you subsequently change the type to embedded, you
will be prompted to import the contents of the file into the model.

• URL – the file is on the web and you must enter its URL in the Location field

Location [External and URL types only] Specifies the path or URL to the file.

Extension Specifies the extension of the file object, which is used to associate it with an editor.
By default, the extension is set to txt.

Generate Specifies to generate the file object when you generate the model to another model.

Artifact Specifies that the file object is not a piece of documentation, but rather forms an
integral part of the application.

If an artifact has an extension that is defined in the Editors page in the General
Options dialog linked to the <internal> editor, a Contents tab is displayed in the
artifact property sheet, which allows you to edit the artifact file in the PowerDesigner
text editor.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

CHAPTER 5: Implementation Diagrams

222 PowerDesigner

Node Associations (OOM)
You can create associations between nodes, called node associations. They are defined with a
role name and a multiplicity at each end. An association between two nodes means that the
nodes communicate with each other, for example when a server is sending data to a backup
server.

A node association can be created in the following diagrams:

• Deployment Diagram

A node association symbol is as follows:

Creating a Node Association
You can create a node association from the Toolbox, Browser, or Model menu.

• Use the Node Association tool in the Toolbox.
• Select Model > Node Associations to access the List of Node Associations, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Node

Association.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Node Association Properties
To view or edit a node association's properties, double-click its diagram symbol or Browser or
list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator.

The General Tab contains the following properties:

CHAPTER 5: Implementation Diagrams

Object-Oriented Modeling 223

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object beyond the core UML definition. You can
enter a stereotype directly in this field, or add stereotypes to the list by specifying
them in an extension file.

Role A One side of a node association. Each role can have a name and a cardinality and be
navigable.

Node A Name of the node at one end of the node association. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected node.

Multiplicity A Multiplicity indicates the maximum and minimum number of instances of the
node association. You can choose between:

• 0..1 – zero or one
• 0..* – zero to unlimited
• 1..1 – exactly one
• 1..* – one to unlimited
• * – none to unlimited

For example, in a computer environment, there can be 100 clients and 100 ma-
chines but there is a constraint that says that a machine can accept at most 4 clients
at the same time. In this case, the maximum number of instances is set to 4 in the
Multiplicity box on the machine side:

Role B One side of a node association. Each role can have a name and a cardinality and be
navigable.

Node B Name of the node at the other end of the node association. You can use the tools to
the right of the list to create an object, browse the complete tree of available
objects or view the properties of the currently selected object.

Multiplicity B Multiplicity indicates the maximum and minimum number of instances of the
node association. For more details, see Multiplicity A, above.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 5: Implementation Diagrams

224 PowerDesigner

CHAPTER 6 Web Services

A Web service is a service offered via the web. The principle on which a Web service works is
the following: a business application sends a request to a service at a given URL address. The
request can use the SOAP protocol over HTTP. The service receives the request, processes it,
and returns a response. An example that is most commonly used for a Web service is a stock
quote service in which the request asks for the price of a specific stock and the response gives
the stock price.

In an OOM, you design a Web service as a component (EJB, servlet, or standard component)
that includes a Web service implementation class.

When you work with Web services in an OOM, you use the class, component and deployment
diagrams, which allow you to:

• Create new Web Service component
• Reverse engineer WSDL to create Web Service component
• Browse UDDI to search WSDL
• Generate WSDL from Web Service component definition
• Generate server side Web Services code for Java (AXIS, JAXM, JAX-RPC, Web Services

for J2EE) or .NET (C# and VB .NET)
• Generate client proxy for Java or .NET
• Reverse engineer for Java and .NET

To work with Web services, you need a Java, C# or Visual Basic .NET compiler.

For Java, you also need a WSDL-to-Java and a Java-to-WSDL tool to generate Java proxy
code and JAX-RPC compliant server side code. The WSDL-to-Java and Java-to-WSDL tools
are used by the WSDL for Java extension file'. For example, the WSDP (Web Service
Developer Pack) provides a XRPCC tool, Apache AXIS provides a wsdl2java and a java2wsdl
tool (which can be downloaded from : http://www.oracle.com/technetwork/java/index.html).
Apache AXIS can be downloaded from: http://ws.apache.org/axis.

To generate client proxy code for .NET, you will need to use the WSDL.exe included in Visual
Studio .NET and declare the path to the WSDL.exe in the General Options dialog box (Tools >
General Options) when you create the WSDL environment variables.

Defining Web Services Tools
A Web Service is an interface that describes a collection of operations that are accessible on
the network through SOAP messages.

Web services operate over the Internet or a corporate intranet in the exact same way as you
locate a web site: either you type in the URL address or you use a search engine to locate the

Object-Oriented Modeling 225

http://www.oracle.com/technetwork/java/index.html
http://ws.apache.org/axis

site. You may know the address of the Web service you want to invoke, the address of its
interface (WSDL for example), or you must search for the service by querying a Web service
registry. The UDDI specification defines a standard mechanism for publishing and locating
the existence of businesses and the services they provide.

WSDL is a language that describes what a Web service is capable of and how a client can
locate and invoke that service. The Web Services Description Language (WSDL) 1.1
document, available at http://www.w3.org/TR/wsdl, describes WSDL documents as follows:

"A WSDL document defines services as collections of network endpoints, also called ports. In
WSDL, the abstract definition of endpoints and messages is separated from their concrete
network deployment. This allows the reuse of abstract definitions: messages are abstract
descriptions of the data being exchanged, and port types are abstract collections of operations.
The concrete protocol and data format specifications for a particular port type constitutes a
reusable binding. A port is defined by associating a network address with a reusable binding,
and a collection of ports defines a service. Hence, a WSDL document uses the following
elements in the definition of network services:

• Types: a container for data type definitions using some type system (such as XSD)
• Message: an abstract, typed definition of the data being communicated
• Operation: an abstract description of an action supported by the service
• Port Type: an abstract set of operations supported by one or more endpoints
• Binding: a concrete protocol and data format specification for a particular port type
• Port: a single endpoint defined as a combination of a binding and a network address
• Service: a collection of related endpoints"

Interface and Implementation
WSDL is used to define the Web service interface, the Web service implementation, or both.
As a result, it is possible to use two WSDL files, one for the interface and one for the
implementation.

In an interface WSDL, you declare the procedures that allow you to create a Web service.

In an implementation WSDL, you define how to implement these procedures through services
and ports (access endpoints URLs).

In an OOM, an interface WSDL is associated with a component, and an implementation
WSDL is associated with a component instance. You can save both WSDL files within the
model.

CHAPTER 6: Web Services

226 PowerDesigner

http://www.w3.org/TR/wsdl

For detailed information about WSDL, see http://www.w3.org/2002/ws/desc.

Simple Object Access Protocol (SOAP)
SOAP is a protocol based upon XML for exchange of information in a distributed
environment. It represents the invocation mechanism within a Web service architecture.
WSDL allows a user to understand which format of the SOAP message should be sent to
invoke the service and what is the expected return message format.

Universal Description Discovery and Integration (UDDI)
UDDI is an XML-based registry for businesses worldwide. This registry lists all Web services
on the Internet and handles their addresses.

In UDDI, an organization or a company, called a businessEntity usually publishes a WSDL to
describe Web services interfaces as tModel. Another company may implement it, and then
publish in the UDDI the following items that describe how to invoke the Web service:

• The company, called businessEntity
• The service, called businessService
• The access endpoints, called the bindingTemplate
• The specification, called the tModel

Supported Web Services
For Web services implemented using .NET, PowerDesigner generates .asmx files for C# or
VB .NET, WSDL files and client proxies in C# or VB .NET.

For Web services implemented using Java, PowerDesigner allows you to use one of the
following models: AXIS, JAXM, JAX-RPC and Web Services for J2EE (Stateless Session
Bean).

CHAPTER 6: Web Services

Object-Oriented Modeling 227

http://www.w3.org/2002/ws/desc

Defining Web Services Targets
The Java and .NET (C# and Visual Basic .NET) OOM languages support Web services.

In general, a WSDL can be generated by the server where the Web service is deployed. As a
result, the WSDL generated by the server contains both the interface and implementation
definition.

When you work with Java, C# or VB.NET in an OOM, an extension file is automatically
attached to the model to complement the definition of these languages within the context of
Web services.

Defining Web Service Components
A Web service is represented as a component that you can display in a component diagram.
From a component diagram, you can display the Web service interface and implementation
code, eventually, you can also deploy Web service components to nodes if you want to
describe deployment of components into servers.

For more information on how to deploy components, see Deploying a Component to a Node
on page 216.

A component can be a Web service Interface or a Web service Implementation type. You have
to check the Web Service check box in the component property sheet to declare your
component as a Web service.

The following Web service types are supported for the Java language:

• Java Web Service: exposes a Java class with the .jws extension as a Web service using
Apache Axis.

• Axis RPC: exposes a Java class as a Web service using the Apache Axis RPC model.
• Axis EJB: exposes a Stateless Session Bean as a Web service using the Apache Axis EJB

model.
• JAX-RPC: uses a Java class and an interface to implement the JAX-RPC model.
• JAXM: exposes a Servlet as a Web service using JAXM.
• Web Service for J2EE: exposes a Stateless Session Bean as a Web service using the Web

Service for J2EE (JSR109) model.

Web Service Component Properties
Web service component property sheets contain all the standard component properties, and
some additional tabs.

Component Web Service Tab
The Web Service tab includes the following properties:

CHAPTER 6: Web Services

228 PowerDesigner

Property Description

Web service
class

Specifies the Web service class name. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected class. If the Web service
component is a Stateless Session Bean, the Web service class is also the bean
class.

Application
namespace

Specifies the application namespace, which is used to generate the URL for the
Web service in the server. By default, the component package or model code is
used, but you can override it here.

WSDL URL Specifies where the WSDL is published on the web.

Web service type Specifies the type of Web service. An interface is a component that defines the
service interface only. An implementation is a component that implements a
service interface.

Use external
WSDL

Specifies that the WSDL is published at a specific URL and that the original
WSDL will be preserved. When you import a WSDL, this option is selected by
default.

Component WSDL Tab
The WSDL tab includes the following properties:

Property Description

Target name-
space

Specifies a URL linked to a method that ensures the uniqueness of the Web service
and avoids conflicts with other Web services of the same name.

By default, this field is set to http://tempuri.org for .NET and urn:
%Code%Interface for Java, but we recommend that you change it to ensure

the service name uniqueness

Prefix Specifies the target namespace prefix

Encoding style Specifies the kind of encoding, either SOAP (soap:xxx) or XML-Schema (xsd:xxx)
for the WSDL

Comment Provides a description of the WSDL file.

WSDL editor Allows you to edit the contents of the WSDL. If you make edits, then the User-
Defined tool is pressed.

Component WSDL Schema Tab
The WSDL Schema tab in the component property sheet includes a text zone that contains
some shared schema definitions from the WSDL schema. This part of the schema defines the
data types used by the input, output and fault messages.

CHAPTER 6: Web Services

Object-Oriented Modeling 229

The other part of the schema is defined within the different Web methods (operations) as
SOAP input message data types, SOAP output message data types, and SOAP fault data types
(see Defining SOAP Data Types of the WSDL Schema on page 243).

Component UDDI/Extended Attributes Tab
These tabs include the following properties:

Name Description

SOAP binding style Defines the SOAP binding style. It could be a document or rpc

Scripting name: SoapBindingStyle

SOAP binding transport Defines the SOAP binding transport URI

Scripting name: SoapBindingTransport

SOAP body namespace Defines the namespace of the XML schema data types in the WSDL

Scripting name: SoapBodyNamespace

Business name Stores the name of the business found in a UDDI registry

Scripting name: BusinessName

Business description Stores the business description of the Web Service found in a UDDI reg-
istry

Scripting name: BusinessDescription

Business key Stores the key of the business found in a UDDI registry

Scripting name: BusinessKey

Namespaces Stores additional namespace that are not automatically identified by Pow-
erDesigner

Scripting name: Namespaces

Service name Stores the name of the service found in a UDDI registry

Scripting name: ServiceName

Service description Stores the service description of the Web Service found in a UDDI registry

Scripting name: ServiceDescription

Service key Stores the key of the service found in a UDDI registry

Scripting name: ServiceKey

tModel name Stores the name of the tModel found in a UDDI registry

Scripting name: tModelName

CHAPTER 6: Web Services

230 PowerDesigner

Name Description

tModel key Stores the key of the tModel found in a UDDI registry

Scripting name: tModelKey

tModel URL Stores the URL of the tModel found in a UDDI registry. It allows you to
retrieve the WSDL

Scripting name: tModelURL

UDDI operator URL Stores the URL of the UDDI registry operator URL used to find the WSDL

Scripting name: UDDIOperatorURL

You can use the Preview tab of the component to preview the code that will be generated for the
Web service component.

Creating a Web Service with the Wizard
You can create a Web service with the wizard that will guide you through the creation of the
component. The wizard is invoked from a class diagram and is only available if you use the
Java or the .NET family.

You can either create a Web service without selecting any class, or use the standard approach
that consists in selecting an existing class first and then start the wizard from the contextual
menu of the class.

You can also create several Web services of the same type by selecting several classes at the
same time. The wizard will automatically create one Web service per class. The classes you
have selected in the class diagram become Web service classes, they are renamed to match the
naming conventions standard, and they are linked to the new Web service component.

Note: You must create the Web service component within a package so that the package acts as
a namespace.

The wizard for creation of Web services lets you define the following parameters:

Property Description

Name Name of the Web service component

Code Code of the Web service component

Web service type Interface or Implementation. Interface refers to a component that de-
fines the service interface only. Implementation refers to a component
that implements a service interface

Component type The component type depends on the web service type. You can select
among a list of web service interface or implementation protocols

CHAPTER 6: Web Services

Object-Oriented Modeling 231

Property Description

Web service implementa-
tion class

Defines the class that is used to implement the Web service

Create symbol Creates a component symbol in the diagram specified beside the Create
symbol In check box. If a component diagram already exists, you can
select one from the list. You can also display the diagram properties by
selecting the Properties tool

Create Class Diagram for
component classifiers

Available only for stateless session beans and servlets. It creates a class
diagram with a symbol for each class and interface. If you have selected
classes and interfaces before starting the wizard, they are used to create
the component. This option allows you to display these classes and
interfaces in a diagram

1. Select Tools > Create Web Service Component from a class diagram.

The Web Service Wizard dialog box is displayed.

2. Type a name and code for the Web service component and click Next.

Note: If you have selected classes before starting the wizard, some of the following steps
are omitted because the different names are created by default according to the names of
the selected classes.

When you create a Web service with the wizard, you have to select the type of the Web
service and the type of the component that is used as a source. The following table maps
available component types to Web service types in Java:

CHAPTER 6: Web Services

232 PowerDesigner

Component
type

Java service
interface

Java service im-
plementation

Use

Standard — Java class

Axis RPC — Java class

Axis EJB — EJB Stateless Session
Bean

Java Web Service
(JWS)

— Java class with .jws ex-
tension

JAXM — Java Servlet

JAX-RPC — Java class

Web Service for
J2EE

— EJB Stateless Session
Bean

= allowed

— = not allowed

3. Select a Web service type and a component type and click Next.

4. Select a Web service implementation class and click Next.

5. At the end of the wizard, you have to define the creation of symbols.

When you have finished using the wizard, the following actions are executed:

• A Web service component flagged as 'Web service' is created
• A Web service implementation class is created and visible in the Browser. It is named after

the original class if you have selected a class before starting the wizard. If you have not
selected a class beforehand, it is prefixed after the original default component name to
preserve coherence

• A default operation with the "Web method" flag is created
• Depending on the component type, required interfaces associated with the component are

added

Creating a Web Service from the Component Diagram
You can also create a web service from the component diagram.

1. Click the Component tool in the Toolbox and click in the diagram to create a component.

2. Click the Pointer tool or right-click to release the Component tool.

3. Double-click the component symbol to display the property sheet.

4. Select the Web Service check box in the General tab.

5. Click OK.

CHAPTER 6: Web Services

Object-Oriented Modeling 233

Defining Data Types for WSDL
WSDL uses XML Schema to define data types for message structures.

WSDL Data Type Mappings
To generate WSDL, it is necessary to map Java or .NET types to XML types.

In an OOM, there are three data type maps defined in the WSDL extension file.

• WSDL2Local - converts WSDL types to Java or .NET types
• Local2SOAP - converts Java or .NET types to SOAP types for SOAP encoding
• Local2XSD map - converts Java or .NET types to XML Schema types for XML Schema

encoding

Selecting WSDL Data Types
If you need to use a specific data type, you can select the WSDL data type for the operation
return type or the parameter type.

You can select a WSDL data type from the list in the operation and parameter property sheets.
This box includes basic data types for XML Schema encoding or SOAP encoding.

You can also click the Properties button beside the WSDL data type box to open the WSDL
Schema tab in the component property sheet. This tab shows the contents of the WSDL
schema.

As long as the WSDL data type is not manually changed, it is synchronized with the Java
or .NET data type. You can use the Preview tab in the property sheet of the class to verify the
code at any time.

1. From the Web Method tab in the operation property sheet, select or type a new data type in
the WSDL data type box.

or

From the parameter property sheet, select or type a new data type from the WSDL data
type box.

2. Click Apply

Declaring Data Types in the WSDL
Classes used as data types are declared as Complex Types inside the <types> section of
WSDL.

Web Service Implementation Class Properties
A Web service requires one implementation class. An implementation class can only be
associated with one Web service component. In .NET languages, the implementation class

CHAPTER 6: Web Services

234 PowerDesigner

can be generated inside the .asmx file or outside. In Java, a Web service class can have a
serialization and a deserialization class.

Web service implementation classes contain the following additional properties on the Detail
tab:

Property Description

Web service com-
ponent

Specifies the Web service component linked to the Web service implementa-
tion class. Click the Properties tool to the right of this field to open the com-
ponent property sheet.

Serialization class Specifies the class used to convert an object into a text or binary format. Click
the Properties tool to the right of this field to open the class property sheet.

Deserialization
class

Specifies the class used to convert a text, XML or binary format into an object.
Click the Properties tool to the right of this field to open the class property
sheet.

Click the Preview tab to preview:

• The Web service implementation class in Java
• The .ASMX file in .NET
• The interface WSDL generated from the component and implementation class in Java

and .NET (read-only)

Managing Web Service Methods
You can define one or several methods as part of a Web Service. In PowerDesigner, you use
operations to create Web service methods.

Creating a Web Service Method
A Web service method is an operation with the Web Service Method property selected.

A web service method can call other methods that are not exposed as Web service methods. In
this case, these internal methods are not generated in the WSDL.

Web service methods can belong to the component implementation class or to component
interfaces.

Interfaces linked to a Web service component can be used to design different groups of
methods representing different port types.

A component interface containing at least one operation with the Web Service Method
property selected is considered as a port type.

CHAPTER 6: Web Services

Object-Oriented Modeling 235

Interface methods use the same extended attributes as classes methods for WSDL
customization, as explained in Defining Web service method extended attributes on page
242.

Three extended attributes are used to decide which Port Type should be generated:
SOAPPortType, HttpGetPortType and HttpPostPortType. If a Web method is created in an
interface, only the SOAPPortType attribute is set to True. This method is automatically added
to the implementation class of the component.

For JAXM Web Service component, the implementation of the Web Service must be done in
the onMessage() method. To be able to generate the correct WSDL, you have to declare a Web
Service method without implementation to define the input SOAP message and the output
SOAP message.

For more information on method implementation see Implementing a Web service method in
Java on page 237 and Implementing a Web service method in .NET on page 242.

1. Open the property sheet of the Web Service class or interface.

2. Click the Operation tab, then click the Insert a row tool to create a new operation.

3. Click Apply and click the Properties tool to display the operation property sheet.

4. Select the Web Service method check box in the General tab.

5. Click OK.

CHAPTER 6: Web Services

236 PowerDesigner

Web Service Method Properties
When the Web Service method check box is selected in the operation property sheet, a number
of additional tabs are displayed.

The Web Method tab in the operation property sheet includes the following properties:

Property Description

SOAP extension class Used for .NET. At creation of the class, new default functions are added.
In .NET, a method can have a SOAP extension class to handle the seriali-
zation and de-serialization for the method and to handle security of other
SOAP extensions features. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected class.

WSDL data type Data type for the return type. It includes basic data types from the object
language and complex data types from the WSDL Schema. You can click the
Properties tool beside this box to display the WSDL Schema tab of the
component property sheet. This tab shows the contents of the WSDL schema

The following tabs are also displayed:

• SOAP Input - defines the name and schema of the SOAP input message element.
• SOAP Output - defines the name and schema of the SOAP output message element.
• SOAP Fault - defines the default name and schema of the SOAP fault message element.

Implementing a Web Service Method in Java
To implement a Web service method, you have to define the following:

• The operation return type
• The operation parameters
• The operation implementation

Defining the Return Type of an Operation
To define the return type of an operation you have to specify:

• The return type for the Java method: in the General tab of the operation property sheet. If
the return value in Java is a Java class or an array of Java class, PowerDesigner will
generate an output message type based on the return class structure

• The output message type for WSDL: for simple return value, the output message type for
WSDL can be defined in the Web Method tab of the operation property sheet

For more complex return types, you can manually define the output message schema using the
SOAP Output tab of the operation property sheet.

CHAPTER 6: Web Services

Object-Oriented Modeling 237

Defining the Parameters of an Operation
To define the parameters of an operation, you have to specify:

• The parameters type for the Java method using the Data Type list in the Parameter property
sheet

• The input message type for WSDL using the WSDL Data Type list in the Parameter
property sheet. This list displays basic data types from the object language and complex
data types from the WSDL Schema. You can click the Properties tool beside this box to
display the WSDL Schema tab of the component property sheet. This tab shows the
contents of the WSDL schema

CHAPTER 6: Web Services

238 PowerDesigner

For simple parameter values, the input message type is generated from the WSDL types of the
parameters. If a parameter is a class or an array of class, PowerDesigner will only generate
SOAP binding.

For detailed information about SOAP, see http://www.w3.org/2000/xp/Group.

For more complex parameter types and input message types, you can manually define the
input message schema using the SOAP Input tab in the operation property sheet.

CHAPTER 6: Web Services

Object-Oriented Modeling 239

http://www.w3.org/2000/xp/Group

Implementing the Operation
You implement a Web Service method as a normal Java method.

The following example, shows the implementation of Web service method GetQuote.

CHAPTER 6: Web Services

240 PowerDesigner

For a Web Service method in a JAXM Web Service, you have to implement the onMessage()
method. You have to process the input SOAP message, generate an output SOAP message and
return the output message.

CHAPTER 6: Web Services

Object-Oriented Modeling 241

Implementing a Web Service Method in .NET
To implement a Web service method in .NET, you have to define input parameters and return
type.

These procedures are described in Implementing a Web service method in Java on page
237.

By default, PowerDesigner generates the C# or VB .NET Web Service class inside the .asmx
file. If you want to generate the C# or VB .NET class in a separate file and use the CodeBehind
mode for the .asmx file, you have to modify a generation option: in the Options tab of the
Generation dialog box, set the value of Generate Web Service code in .asmx file to False.

You can preview the .asmx file code and the WSDL code from the Preview tab of the class
property sheet.

Defining Web Service Method Extended Attributes
You can customize the WSDL generation using extended attributes. They allow you to modify
input message name, output message name, SOAP operation style, port types to generate,
SOAP action, Web method type, and so on.

1. Open the operation property sheet.

CHAPTER 6: Web Services

242 PowerDesigner

2. Click the WSDL attributes tab and modify extended attributes.

Defining SOAP Data Types of the WSDL Schema
Each Web method has an input, output and fault data type to be defined. A data type has a name
and a schema definition.

For reverse-engineered Web services, input, output, and fault data types are set to the value
found in the reversed WSDL schema. Data types that are not associated with any input, output,
or fault are considered as shared schema definitions and are available in the component. They
are displayed in the WSDL Schema tab of the component property sheet.

CHAPTER 6: Web Services

Object-Oriented Modeling 243

For newly-created operations, input and output data types are set to a default value, and are
synchronized with parameter changes. Default data type name and schema are defined in the
WSDL extension file and can be customized. However once modified, a data type becomes
user-defined and cannot be synchronized any more. Fault data types are always user-defined.

You can reuse an existing data type defined in another operation. A check is available on
components to make sure that no data type has different names inside the same component
(see Chapter 9, Checking an OOM on page 281).

When generating, the WSDL schema is composed of the shared schema definitions from the
component, and a computed combination of all SOAP input, output, and fault definitions from
the operations.

You can type the SOAP input, SOAP output and SOAP fault data type names in the appropriate
tabs in the operation property sheet. Each tab contains a box, and a text zone in which you can
edit the data type definition from the WSDL schema.

Defining Web Service Component Instances
The deployment diagram is used with Web services to model the Web services deployment.
This diagram is useful if you want to deploy a Web service into one or several servers, and if
you want to know which Web service is deployed where, as deployment diagrams can display
network addresses, access endpoints and access types.

A component instance defines the ports, the access type, and the access endpoint that is the full
URL to invoke the Web service.

When the Web Service check box is selected in the property sheet of the component instance,
it means that the component instance is an instance of a Web service component. A component
instance that inherits from a component inherits its type: the type of the component is
displayed in the property sheet of the component instance.

When the Web Service check box is selected, a Web Service tab and a WSDL tab
automatically appear in the property sheet of the component instance.

For more information on the deployment diagram, see Chapter 5, Implementation Diagrams
on page 207.

CHAPTER 6: Web Services

244 PowerDesigner

Web Service Tab of the Component Instance
The Web Service tab in the property sheet of the component instance includes the following
properties:

Property Description

Access point
URL

Displays the full URL to invoke the Web service. It is a calculated value that uses
the network address located in the node. You can also type your own URL by using
the User-Defined tool to the right of the box. Once clicked, the URL can be
overridden

WSDL URL Indicates where the WSDL should be published on the web. You can type your
own URL by using the User-Defined tool to the right of the box. Once clicked, the
URL can be overridden

Use external
WSDL

Indicates that the WSDL is published at a specific URL

When a WSDL is not user-defined, it is regenerated each time and can be displayed in the
Preview tab of the component instance property sheet. An external WSDL has a user-defined
WSDL text.

Access Point URL Examples
Here are some examples of the syntax used in .NET and Java:

For .NET, the default syntax is:

accesstype://machine_networkaddress:port/application_namespace/
webservice_code.asmx

For example: http://doc.sybase.com:8080/WebService1/StockQuote.asmx.

For Java, the default syntax is:

accesstype://machine_networkaddress:port/application_namespace/
webservice_code

For example: http://doc.sybase.com/WebService1/StockQuote.

Computed attributes AccessType and PortNumber for code generator & VBScript are
computed from the access point URL. For example: http, https.

WSDL URL Examples
For .NET, the default syntax is:

accesstype://machine_networkaddress:port/application_namespace/
Webservice_code.asmx?WSDL

For Java, the default syntax is:

accesstype://machine_networkaddress:port/application_namespace/
wsdl_file

CHAPTER 6: Web Services

Object-Oriented Modeling 245

WSDL Tab of the Component Instance
The WSDL tab in the property sheet of the component instance includes the following
properties:

Property Description

Target namespace URL linked to a method that ensures the uniqueness of the Web service and
avoids conflicts with other Web services of the same name. By default, it is:
http://tempuri.org/ for .NET, and urn:%Component.targetNamespace% for
Java

Import interface
WSDL

When selected, means that the implementation WSDL imports the existing
interface WSDL

Comment Used as the description of the WSDL file during WSDL generation and
WSDL publishing in UDDI

WSDL editor You can also use a text zone below the Comment area to display the contents
of the WSDL. When you click the User-Defined tool among the available
tools, you make the contents user-defined. Once clicked, the contents can be
overridden

Note: You can display some of the tabs of the property sheet of a component instance by
right-clicking the component instance symbol in the diagram and selecting the appropriate tab
from the contextual menu.

Using Node Properties
The node property sheet includes the following property, specific to Web services:

Property Description

Network address Address or machine name. For example: doc.sybase.com, or 123.456.78.9

Since a machine can be used for several services and each service may have a different access
type, port number and path, the machine Network address is only used as a default value. You
can redefine the real URL of each component instance in the property sheet of the component
instance at any time.

Generating Web Services for Java
You can generate client side or server side implementation classes, interfaces, deployment
descriptor, JAR, WAR, or EAR from the Generate object language command in the Language
menu.

Web services server side code generation consists in generating the following items:

CHAPTER 6: Web Services

246 PowerDesigner

• Generate Web service implementation classes and interfaces (Java class, Stateless Session
Bean, Servlet, etc.)

• Generate Web services deployment descriptor for Java using the Web Service for J2EE
(JSR109) specification. The deployment descriptor is an XML file that must be in every
WAR archive, it is named WEB.xml by convention and contains information needed for
deploying a Web service

• Generate interface WSDL and implementation WSDL files (WSDL files can be generated
separately because they can be used for UDDI or client applications)

In general, once a Web service is deployed, the server is capable of generating an
implementation WSDL.

Web services client side code generation consists in generating proxy classes.

PowerDesigner supports the JAXM, JAX-RPC, Web Service for J2EE (JSR 109), AXIS RPC,
EJB, and Java Web Service (JWS) types of Java Web services.

Generating JAXM Web Services
JAXM is a Java API for XML messaging that provides a standard way to send XML
documents over the Internet from the Java platform.

If the Web service implementation type is JAXM, PowerDesigner uses the JAXM model for
implementation. JAXM Web Service components provide the flexibility for handling
complex message formats.

The JAXM Java class uses the onMessage() method to get the SOAP input message and return
the output SOAP message. To generate correct WSDL, you have to define a Web Service
method with the correct name, input message format and output message format but without
implementation. The onMessage() method should not be defined as a Web Service method.

To Use JAXM, you can use the Java Web Services Developer Pack (JWSDP) 1.1 or higher
(available from http://www.oracle.com/technetwork/java/index.html) or a Servlet container
or J2EE server that supports JAXM.

To compile JAXM Web service components, you need the jaxm-api.jar, jaxp-api.jar and saaj-
api.jar files in your CLASSPATH environment variable. You can also define a
JAVACLASSPATH variable in PowerDesigner to define the classpath specific to
PowerDesigner, in this case the JAVACLASSPATH variable replaces the CLASSPATH
environment variable

You need an application server or a Servlet container that supports JAXM. JWSDP ships with
Apache Tomcat that supports JAXM.

1. Select Language > Generate Java Code.

2. Select a directory where you want to generate the code.

3. In the Tasks tab, select the command Java: Package J2EE application in an EAR file. This
command will create a .WAR file and a .EAR file.

CHAPTER 6: Web Services

Object-Oriented Modeling 247

http://www.oracle.com/technetwork/java/index.html

4. Click OK.

Generating JAX-RPC Web Services
JAX-RPC is a Java API for XML-based RPC (Remote Procedure Calling protocol). It
facilitates RPC over the Internet allowing XML formatted parameters to be passed to remote
services and allowing XML formatted values to be returned.

If the Web service implementation type is JAX-RPC, PowerDesigner uses the JAX-RPC
model for implementation. JAX-RPC defines RPC type invocation for Web Services but it is
limited to simple message formats. You can use very complex Objects/XML mapping.

Using the JAX-RPC model implies to:

• Generate the Web Service Java class and interface code
• Compile the Web Service Java class and interface
• Run a JAX-RPC tool to generate server side artifacts and client side proxy to handle the

Web Service
• Package all the compiled code, WSDL and deployment descriptor in a .WAR file
• Deploy the .WAR file in a server that supports JAX-RPC

To use JAX-RPC, you can use the Java Web Services Developer Pack (JWSDP) 1.1 or higher
(available from http://www.oracle.com/technetwork/java/index.html) or another application
server that supports the JAX-RPC model.

To generate server side code and client proxy for JAX-RPC, if you use JWSDP, you can use the
wscompile.bat tool. For other JAX-RPC compatible implementations, please refer to the
documentation. To invoke the wscompile.bat tool from PowerDesigner, you have to define an
environment variable WSCOMPILE in the Variables category located in the General Options
windows (Tools > General Options). The WSCOMPILE variable should indicate the full
path of the wscompile.bat file. To run wscompile.bat, the jaxrpc-api.jar file must be in your
CLASSPATH environment variable. You can also define a JAVACLASSPATH variable in
PowerDesigner to define the classpath specific to PowerDesigner, in this case the
JAVACLASSPATH variable replaces the CLASSPATH environment variable

To deploy JAX-RPC Web service components, you need an application server or a Servlet
container that supports JAX-RPC. JWSDP ships with Apache Tomcat that supports JAX-
RPC

1. Select Language > Generate Java Code.

2. Select a directory where you want to generate the code.

3. In the Tasks tab, to generate server side code, select the command WSDL: Compile and
PackageWeb Service Server-Side Code into an archive. To generate client proxy, select the
command WSDL: Compile and PackageWeb Service Client Proxy into an archive.

These commands will compile the Java classes generated by PowerDesigner, run the
WSCOMPILE tool and create a .WAR file.

CHAPTER 6: Web Services

248 PowerDesigner

http://www.oracle.com/technetwork/java/index.html

4. Click OK.

Generating Stateless Session Bean Web Services
PowerDesigner supports the Web Services for J2EE specification that defines the
programming model and runtime architecture for implementing Web services.

In Java, Web services may be implemented either through JAX-RPC endpoints or EJB
stateless session bean components. Both of these implementations expose their Web methods
through a service endpoint interface (SEI).

JAX-RPC endpoints are considered as Web components, they are represented as servlets in the
OOM and are packaged into a WAR, while EJB stateless session beans are packaged into an
EJB JAR. In both cases, WSDL files, and the required deployment descriptors should be
included in the WEB-INF or META-INF directories. You can refer to chapters 5 and 7 of the
Web Services for J2EE specification for more information.

If the Web service implementation type is Stateless Session Bean, PowerDesigner uses Web
Services for J2EE specification for implementation.

Developing Stateless Session Bean as Web Service is similar to JAX-RPC: you use a Bean
class instead of a normal Java class. As for JAX-RPC, it is limited to simple message formats.

For more information on JAX-RPC, see Generating JAX-RPC Web services on page 248.

CHAPTER 6: Web Services

Object-Oriented Modeling 249

1. Select Language > Generate Java Code.

2. Select a directory where you want to generate the code.

3. In the Tasks tab, to generate server side code, select the command WSDL: Compile and
PackageWeb Service Server-Side Code into an archive. To generate client proxy, select the
command WSDL: Compile and PackageWeb Service Client Proxy into an archive.

These commands will compile the Java classes generated by PowerDesigner, run the
WSCOMPILE tool and create a .WAR file.

4. Click OK.

Generating AXIS RPC Web Services
If the Web service implementation type is AXIS RPC, PowerDesigner uses a Java class for
implementation and Apache Axis for deployment.

The supported provider type is Java:RPC. The supported provider styles are RPC, document
and wrapped. If the provider style is <Default>, PowerDesigner will automatically select the
best provider style. To select the provider style, you can change the AxisProviderStyle
extended attribute of the Web service component.

To customize Axis deployment descriptor generation, you can change several Axis specific
extended attributes in the Web service component property sheet.

CHAPTER 6: Web Services

250 PowerDesigner

A deploy.wsdd and an undeploy.wsdd are generated from the model or the package that
contains Web service components. A single deploy.wsdd and undeploy.wsdd files are
generated for all Web service components of the model or package.

1. Select Language > Generate Java Code.

2. Select a directory where you want to generate the code.

3. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

4. [optional] Click the Options tab and set any appropriate generation options:

5. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

6. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Generating AXIS EJB Web Services
If the Web service implementation type is AXIS EJB, PowerDesigner uses a Stateless Session
Bean for the implementation, an application server for EJB deployment and Apache Axis for
exposing the EJB as a Web service.

To customize the generation of the Axis deployment descriptor, you can change several Axis
specific extended attributes in the Web service component properties.

A deploy.wsdd and an undeploy.wsdd are generated from the model or the package that
contains Web service components. A single deploy.wsdd and undeploy.wsdd files are
generated for all Web service components of the model or package.

To expose a Stateless Session Bean as Web service using Axis, you need to:

• Generate the EJB code
• Compile and package the EJB
• Deploy the EJB in a J2EE server
• Expose the EJB as a Web Service using Axis

1. Select Language > Generate Java Code.

2. Select a directory where you want to generate the code.

3. In the options tab, you can modify generation options and deployment options.

4. In the Tasks tab, you can select the commands in the following order: Package J2EE
application in an EAR file, Deploy J2EE application, Expose EJB as Web Services.

CHAPTER 6: Web Services

Object-Oriented Modeling 251

Generating Java Web Services (JWS)
If the Web service implementation type is Java Web Service (JWS), PowerDesigner uses a
Java class for implementation. The Java class will have the .jws extension.

To deploy the Java class, you can simply copy the .jws file to the server that supports Java Web
Service format. For example, for Apache Axis, you can copy the .jws file to the directory
webapps\axis.

Testing Web Services for Java
To test a Java Web Service, there are several methods:

• Send SOAP message. You can write a Java program to send SOAP message to a Web
Service and process the returned output SOAP message using the SAAJ API

• Use Dynamic Invocation. You can use the Dynamic Invocation method defined by JAX-
RPC

• Use Dynamic Proxy. You can use the Dynamic Proxy method defined by JAX-RPC
• Use Client Proxy. You can use a client proxy to invoke a Web Service easily. If you use the

JWSDP, you can use the wscompile.bat tool to generate a client proxy. If you use Apache
Axis, you can use the java org.apache.axis.wsdl.WSDL2Java Java class

Generating Web Services for .NET
The following items are generated in .NET languages (C# and VB.NET):

• An implementation class (C# or VB.NET) with special super class and WebMethod
property for the methods. If you disable the Generate Web Service C# code in .asmx file
option, a C# or VB .NET class will also be generated for each Web Service

• A .ASMX file

Note
It is not necessary to define the super class (also known as WebService) for the Web service
classes; if the WebService super class is not defined, the code generator adds it to the code.

When generating the server side code, you can use the following default options and tasks that
help you automatically start generating with pre-defined characteristics.

Defining Web Services Generation Options in .NET
You can select Web services generation options available for .NET languages by starting the
Generate object language command in the Language menu.

C# Generation Options
The following options are available from the Options tab in the Generation dialog box for
C#:

CHAPTER 6: Web Services

252 PowerDesigner

Option Description

Generate C# web Service code
in .ASMX

Generates the C# code in the .ASMX file

VB.NET Generation Options
The following options are available from the Options tab in the Generation dialog box for
VB.NET:

Option Description

Generate VB.NET Web service
code in .ASMX

Generates the Visual Basic.NET code in the .ASMX file

Defining Web Service Generation Tasks in .NET
You can select Web services generation tasks available for .NET languages by starting
selecting Language > Generate object language.

The following tasks are available from the Tasks tab in the Generation dialog box for C# and
VB.NET:

Option Description

Compile source files Compiles the generated code

Generate Web service proxy
code

Generates the Web Service proxy class for a Web Service com-
ponent instance.

You need to define a component instance for the Web Service
deployment URL

Open the solution in Visual Stu-
dio .NET

If you selected the Generate Visual Studio .NET project files op-
tion, this task allows to open the solution in the Visual Studio .NET
development environment

Generating Web Services in .NET
The deployment of a Web service consists in copying the generated implementation class
and .ASMX file into the directory of the web server virtual folder.

The .ASMX is an ASP.NET file, it contains the code of the C# or VB.NET Web service class.

1. Select Language > Generate C# Code or Generate VB .NET Code.

2. Select the generation directory. You can select a Microsoft Internet Information Server
(IIS) directory for generation, for example, C:\Inetpub\wwwroot\StockQuote. If you have
defined you Web Services inside a package, you can generate the Web Services code in the
C:\Inetpub\wwwroot directory. Each package will create a subdirectory.

CHAPTER 6: Web Services

Object-Oriented Modeling 253

3. Set the Generate Web Service C# code in .asmx file option to false in the Options tab if you
want to generate the C# or VB .NET class outside a .asmx file.

4. Select the Compile C# code or VB .NET code command in the Tasks tab if you generate
the C# or VB .NET Web Service class outside a .asmx file.

5. Click OK.

The code generation process creates a subdirectory under wwwroot using the package
name, and creates a <WebServiceName>.ASMX file within the subdirectory.

Generating a .NET Proxy Class for a Web Service
PowerDesigner can also generate a client proxy class to simplify the invocation of the Web
Service. To generate the client proxy class, PowerDesigner uses the wsdl.exe program that
comes with Visual Studio .NET. You have to define a WSDL variable to indicate where the
wsdl.exe program is located.

Define the WSDL Variable
To define a WSDL variable:

1. Select Tools > General Options.

2. Select the Variables category.

3. Add a WSDL variable in the Name column.

4. Browse for the wsdl.exe file in the Value column.

5. Click OK.

Generate the Client Proxy Classes
To generate the client proxy classes:

1. Select Language > Generate C# Code or Generate VB .NET Code.

2. Open the Tasks tab.

3. Select the command WSDL: Generate Web Service proxy code.

CHAPTER 6: Web Services

254 PowerDesigner

4. Click OK.

Deploying Web Services in .NET
To deploy and test a Web Service for .NET, you have to install Microsoft Internet Information
Server (IIS). In the machine where you install IIS, you also have to install the .NET
Framework. You can download .NET Framework or .NET Framework SDK from the
Microsoft web site.

To deploy the generated Web Service code, you simply copy the .asmx file and the C# or
VB .NET class files under the IIS directory C:\Inetpub\wwwroot\<PackageName>, where
<PackageName> is the name of the package. For example: C:\Inetpub\wwwroot\StockQuote.

Testing Web Services for .NET
To test the Web Service, you have to enter the URL of the Web Service in the browser: http://
[HostName]/[PackageName]/[ServiceName].asmx. For example: http://localhost/
StockQuote/StockQuote.asmx.

The IIS Web server will generate a testing tab to let you test the deployed Web Service if the
input parameters and the return value use simple data types.

To test Web Services with complex data types, you have to create a testing program using Web
Service proxy or use a tool to send a SOAP message to the Web Service.

CHAPTER 6: Web Services

Object-Oriented Modeling 255

Generating Web Services for Sybase WorkSpace
Sybase WorkSpace provides an integrated development environment to develop, test and
deploy Web services. PowerDesigner allows you to generate Java and EJB Web services and
use the Sybase WorkSpace utilities to fine-tune their implementation.

You can design your Web services using the standard PowerDesigner environment or using
the PowerDesigner Eclipse plugin that runs in the WorkSpace environment (see Core Features
Guide > Modeling with PowerDesigner > The PowerDesigner Plugin for Eclipse).

PowerDesigner helps you to quickly:

• Create a Web service with the correct implementation class
• Define the Java class package
• Generate the Web service and open it in the Workspace Java Service Editor

Creating a Java or EJB Web Service for Sybase WorkSpace
PowerDesigner provides full support for creating a Java Web service for Sybase WorkSpace.

1. Select File > New Model to open the New Model dialog, and select Object Oriented
Model in the Model Type list.

2. Select Java in the Object language list and select Class diagram in the Diagram list.

3. Click the Select Extensions button, click the IDE sub-tab, select the Sybase WorkSpace
xem, and click OK to return to the New Model dialog.

4. Click OK to create the OOM.

5. Select Tools > Create Web Service Component to open the Web Service Wizard.

6. Type a name and a code for the component and click Next.

7. Select Implementation in the Web Service Type list and select one of the following in the
Component Type list:

• Java Web Service (JWS)
• Axis EJB (Stateless Session Bean)

8. Click Next, select a Web service implementation class, and then click Finish.

The Web service component is created together with the implementation class and the
corresponding Web method.

9. Double-click the implementation class in the diagram and open the Operations tab in the
class property sheet.

10. Double-click the WebMethod created by default. The Web Service Method check box is
selected. You can rename the operation if necessary.

11. Click the Implementation tab and enter the implementation of the Web service:

CHAPTER 6: Web Services

256 PowerDesigner

12. Click OK in each of the dialog boxes.

You can preview the code that will be generated for the Web service by clicking the
Preview tab of the associated class or component. You can customize the Web service by
editing the properties of the component.

Defining the Java Class Package
When you create a Web service using the Web Service Wizard, the Java class and the Web
service component are both created at the model level. You can, if necessary, define a package
name for your Java class and component.

1. Right-click the model in the Browser, and select Add Package Hierarchy from the
contextual menu.

2. Enter the appropriate package hierarchy and click OK to create it in the model.

CHAPTER 6: Web Services

Object-Oriented Modeling 257

Generating the Java or EJB Web Service for Sybase WorkSpace
PowerDesigner can generate all the files that you need to work with to define the Web service
in the Workspace Java Service Editor.

1. Select Language > Generate Java code to open the Generation dialog.

2. Enter a destination directory to which to generate the files.

3. Ensure that the Sybase WorkSpace IDE is selected on the Targets tab.

4. Click OK to generate the following files:

• A svc_java or svc_ejb file that defines the Web service
• A .java file for the implementation of the Web service
• A .project file for creating a Java project if it does not exist
• A .classpath file for defining Java libraries in a Java project

When you generate using the PowerDesigner Eclipse plugin an Eclipse project will be
created or, if you are generating to an existing project, the project will be refreshed to show
the new files.

5. In Workspace, right-click the .svc_java file in the Navigator window and select Open with
> Java Service Editor.

6. Click the Interface sub-tab and continue with the implementation of the service.

For more information on the Java Service Editor, see your Sybase Workspace
documentation.

Understanding the .svc_java or .svc_ejb File
PowerDesigner generates a svc_java or svc_ejb file for each Web service.

Each file contains the following fields:

Field Component property

serviceName Web service component code

serviceComment Web service component comment

projectName [svc_java only] Last directory name of the generation full path

projectPath [svc_ejb only] The project directory and folder name

serviceFilename %serviceName%.svc_java

authorName Web service component modifier name

dateCreated Generation date and time in the format: Mmm dd, yyyy hh:mm:ss
AM/PM

ejbFullName [svc_ejb only] <PackageCode>.<ComponentCode>

CHAPTER 6: Web Services

258 PowerDesigner

Field Component property

operationName Web method code

operationComment Web method comment

static [svc_java only] Use "METHOD_TYPE_STATIC" if the web meth-
od is static

inputMessage Input message name

outputMessage Output message name

returnType Web operation return type

parameterName Operation parameter code

parameterComment Operation parameter comment

dataType Operation parameter data type

javaServiceParamType [svc_java only] Web operation parameter type

classFullPath %projectName %/ %qualifiedClassName%

qualifiedClassName Fully qualified Java class file name

endpointName [svc_ejb only] End point name

connectionName [svc_ejb only] Application server connection profile name.

EJBComponentURI [svc_ejb only] EJB component URI

jndiProviderURL [svc_ejb only] JNDI provider URL

initialContextFactory [svc_ejb only] Initial context factory class name

jndiName [svc_ejb only] EJB JNDI name

clientJAR [svc_ejb only] Client JAR file path

ejbRemoteInterface [svc_ejb only] EJB remote interface fully qualified name

ejbHomeInterface [svc_ejb only] EJB home interface fully qualified name

Importing WSDL Files
PowerDesigner can import WSDL files for .NET and Java.

1. Select Language > Import WSDL to open the Import WSDL dialog.

2. On the Selection tab, complete the following fields:

CHAPTER 6: Web Services

Object-Oriented Modeling 259

Item Description

WSDL URL Indicates the location of the WSDL file. You can complete this field
by:
• Entering the location directly in the field
• Clicking the Browse File tool to browse on your local file system
• Clicking the Browse UDDI tool to search on a UDDI server (see

Browsing WSDL Files from UDDI on page 261)

Package Specifies the package and namespace where the component and the
Web service class will be created.

Component type [Java only] Specifies the type of the component to create.

3. Select the Web services and port types you want to import.

Each Web service selected will be imported as a component and an implementation class.
Each port type selected in a selected Web service generates an interface.

4. [optional] Click the Preview WSDL button to preview the WSDL and the unique key used
to locate the UDDI.

5. [optional] Click the Options tab, which allows you to specify in which diagrams
PowerDesigner should create the symbols for the imported objects. Deselecting an option
will suppress the creation of a symbol, but the object will still be imported.

6. Click OK to begin the import.

CHAPTER 6: Web Services

260 PowerDesigner

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog opens to allow you to select how the imported
objects will be merged with your model

For detailed information about merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

Each Web service selected will be imported as a component and an implementation class.
Each port type selected in a selected Web service generates an interface.

Note: If the WSDL contains a section prefixed with <!-- service -->, a component instance
is created. This section is displayed in the WSDL tab in the property sheet of the
component instance.

Browsing WSDL Files from UDDI
PowerDesigner provides an interface for browsing for a WSDL directly on a UDDI server.

1. Click the Browse UDDI tool to the right of the WSDL URL field on the Selection tab of
the Import WSDL dialog.

2. Complete the following fields to specify your search criteria:

CHAPTER 6: Web Services

Object-Oriented Modeling 261

Item Description

UDDI operator URL Choose from a list of default UDDI operator URLs, or enter your own
URL.

UDDI version Specify the correct UDDI version for the URL.

Search for Specify the name of the item to search for.

Search in Specify whether to search on the business entity (company name), Web
service name, or WSDL name.

3. Click the Search button.

The result is displayed in the Search Result window.

4. [optional] Click the Preview WSDL button to open the WSDL property sheet, which
contains various tabs allowing you to view information about the business entity and
service, the specification and the WSDL code:

5. Click Close to return to the Browse UDDI dialog.

6. Click OK to return to the Import WSDL dialog to complete the import.

CHAPTER 6: Web Services

262 PowerDesigner

CHAPTER 7 Generating and Reverse
Engineering OO Source Files

PowerDesigner can generate and reverse engineer source files from and to an OOM.

Generating OO Source Files from an OOM
PowerDesigner provides a standard interface for generating source files for all the supported
OO languages. For details of language-specific options and generation tasks, see the
appropriate language chapter.

By default, PowerDesigner supports the generation of the following types of objects for the
languages supported by the OOM:

Object lan-
guage

What is generated

Analysis No files generated as this language is mainly used for modeling purpose

C# .CS definition files

C++ C++ definition files (.h and .cpp)

IDL-CORBA IDL-CORBA definition files

Java Java files from classes and interfaces of the model. Includes support of EJB and
J2EE

PowerBuilder .PBL application or .SRU files from classes of the model

Visual Basic.Net .VB files

XML–DTD .DTD files

XML–Schema .XSD files. Includes standard XML language properties

Note: The PowerDesigner generation system is extremely customizable through the use of
extensions (see Extending your Modeling Environment on page 14). For detailed information
about customizing generation, including adding generation targets, options, and tasks, see
Customizing and Extending PowerDesigner > Extension Files.

1. Select Language > Generate langage Code to open the Generation dialog box:

Object-Oriented Modeling 263

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated, and PowerDesigner remembers for any subsequent
generation the changes you make.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

264 PowerDesigner

5. [optional] Click the Options tab and set any necessary generation options. For more
information about these options, see the appropriate language chapter.

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

7. [optional] Click the Tasks tab and specify any additional language-specific generation
tasks to perform.

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

Object-Oriented Modeling 265

Working with Generation Targets
The Targets tab of the Generation dialog box allows you to specify additional generation
targets, which are defined by extension files.

PowerDesigner provides many extensions, which can extend the object language for use with
a particular server, framework, etc. You can modify these extensions or create you own. For
information about attaching extensions to your model, see Extending your Modeling
Environment on page 14.

The Generation dialog Targets tab groups targets by category. For each category, it is only
possible to select one extension at a time.

For detailed information about editing and creating extensions, see Customizing and
Extending PowerDesigner > Extension Files.

Defining the Source Code Package
For those languages that support the concept of packages and/or namespaces, classes must be
generated in packages that are used as qualifying namespace. You can define these qualifying
packages one by one in the model as necessary, or insert a base structure automatically via the
Add Package Hierarchy command.

1. Right-click the Model in the Browser, and select Add Package Hierarchy from the
contextual menu.

2. Enter a package hierarchy in the text field, using periods or slashes to separate the
packages. For example:

com.mycompany.myproduct.oom

or

com/mycompany/myproduct/oom

The corresponding package hierarchy will be created in the Browser. All diagrams and objects
(except global objects) existing in the model will be moved to the lowest level package of the
hierarchy.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

266 PowerDesigner

Reverse Engineering OO Source Files into an OOM
Reverse engineering is the process of extracting data or source code from a file and using it to
build or update an OOM. You can reverse engineer objects to a new model, or to an existing
model.

You can reverse the following types of files into an OOM:

• Java
• IDL
• PowerBuilder
• XML - PowerDesigner uses a parser developed by the Apache Software Foundation

(http://www.apache.org).
• C#
• VB
• VB.NET

Inner Classifiers
When you reverse a language containing one or more inner classifiers (see Composite and
Inner Classifiers on page 46) into an OOM, one class is created for the outer class, and one
class is created for each of the inner classifiers, and an inner link is created between each inner
classifier and the outer class.

Symbol Creation
If you select the Create Symbols reverse option, the layout of the symbols in the diagram is
automatically arranged. When reverse engineering a large number of objects with complex
interactions, auto-layout may create synonyms of objects to improve the diagram readability.

Reverse Engineering OO Files into a New OOM
You can reverse engineer object language files to create a new OOM.

1. Select File > Reverse Engineer > Object Language to open the New Object-Oriented
Model dialog box.

2. Select an object language in the list and click the Share radio button.

3. [optional] Click the Select Extensions tab, and select any extensions you want to attach to
the new model.

For detailed information about working with extensions, see Customizing and Extending
PowerDesigner > Extension Files.

4. Click OK to go to the appropriate, language-specific Reverse Engineering window. For
detailed information about this window for your language see the appropriate language
chapter.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

Object-Oriented Modeling 267

http://www.apache.org

5. Select the files that you want to reverse and the options to set, and then click OK to start
reverse engineering.

A progress box is displayed. The classes are added to your model

Note: This product includes XML4C 3.0.1 software developed by the Apache Software
Foundation (http://www.apache.org)

Copyright (c) 1999 The Apache Software Foundation. All rights reserved. THE XML4C 3.0.1
SOFTWARE ("SOFTWARE") IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Reverse Engineering Encoding Format
If the applications you want to reverse contain source files written with Unicode or MBCS
(Multibyte character set), you should use the encoding parameters provided to you in the File
Encoding box.

If you want to change these parameters because you know which encoding is used within the
sources, you can select the appropriate encoding parameter by clicking the Ellipsis button
beside the File Encoding box. This opens the Text Input Encoding Format dialog box in which
you can select the encoding format of your choice.

The Text Input Encoding Format dialog box includes the following options:

Option Description

Encoding hint Encoding format to be used as hint when reversing the file

CHAPTER 7: Generating and Reverse Engineering OO Source Files

268 PowerDesigner

http://www.apache.org

Option Description

Detection mode Indicates whether text encoding detection is to be attempted and specifies how
much of each file should be analyzed. You can select from the following options:

• No detection - Turns off the detection feature. Select this option when you
know what the encoding format is

• Quick detection - Analyzes a small buffer to perform detection. Select this
option when you think that the encoding format will be easy to detect

• Full detection - Analyzes the whole file to perform detection. Select this
option when you think that the number of characters that determine the
encoding format is very small

On ambiguous
detection

Specifies what action should be taken in case of ambiguity. You can select from
the following options:

• Use encoding hint and display warning - the encoding hint is used and a
warning message is displayed in the Reverse tab of the Output window

• Use encoding hint - uses the encoding format selected in the Encoding Hint
box, f possible. No warning message is displayed

• Use detected encoding - Uses the encoding format detected by PowerDe-
signer

Abort on charac-
ter loss

Allows you to stop reverse engineering if characters cannot be identified and are
to be lost in current encoding

Here is an example on how to read encoding formats from the list:

Reverse Engineering into an Existing OOM
You can reverse engineer source files to add objects to an existing OOM.

1. Select Language > Reverse Engineer to display Reverse Engineering dialog box.

2. Select to reverse engineer files or directories from the Reverse Engineering list.

3. Click the add button in the Selection tab to display a standard Open dialog box.

4. Select the files or directory to reverse engineer and click Open.

5. Click OK to begin reverse engineering.

A message in the Output window indicates that the specified file is fully reverse
engineered and the Merge Models window opens.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

Object-Oriented Modeling 269

6. Review the objects that you will be importing, and the changes that they will make to the
model.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

7. Click OK to merge the selected changes into your model.

Synchronizing a Model with Generated Files
You can design your system in PowerDesigner, use the generation process, then visualize and
modify the generated file in your code editor, synchronize the classifiers with the source code
and then go back to the model. With this feature, you can modify the generated file and reverse
in the same generated file.

The synchronization launches a reverse engineering dialog box, pre-selects option, and fills
the list of classifiers with the classifiers selected in the class diagram.

You can then easily locate the files that should be taken into account for synchronization. If
there is no classifier selected, the reverse feature pre-selects directories and adds the current
directory to the list.

1. Select Language > Synchronize with generated files to display the Reverse dialog box.

The Selection tab is displayed.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

270 PowerDesigner

2. Select to reverse engineer files or directories from the Reverse Engineering list.

3. Click the Add button to open the Browse for Folder dialog box.

4. Select the appropriate directory, and click OK to open the Reverse Java dialog box you
need.

5. Click OK to begin synchronization.

A progress box is displayed, followed by the Merge Models dialog box.

Note: The Merge Models dialog box shows the From Model (source directory) in the left
pane, and the To Model (current model) in the right pane. You can expand the nodes in the
To Model pane to verify that the merge actions selected correspond to what you want to
perform.

6. Review the objects that you will be importing, and the changes that they will make to the
model, and then click OK.

The Reverse tab of the Output window displays the changes which occurred during
synchronization and the diagram window displays the synchronized model.

CHAPTER 7: Generating and Reverse Engineering OO Source Files

Object-Oriented Modeling 271

CHAPTER 7: Generating and Reverse Engineering OO Source Files

272 PowerDesigner

CHAPTER 8 Generating Other Models from
an OOM

You can generate conceptual and physical data models and XML models from an OOM.

The following table details how OOM objects are generated to other models:

OOM CDM PDM XSM

Domain Domain Domain Simple Type

Class (Persistent and
Generate check boxes
selected).

Entity Table (The cardinality
of a class becomes the
number of records of a
table.)

Element

Abstract class Entity Table Complex type

Attribute (Persistent
check box selected)

Attribute Column Attribute or element
(see generation op-
tions)

Identifier Identifier Identifier Key

Composition - - New level in the ele-
ment hierarchy

Operation with
<<storedProcedure>>
stereotype (parent class
generated as a table)

- Stored procedure at-
tached to the table, with
the operation body as a
body in the procedure
definition.

-

Operation with
<<storedFunction>>
stereotype (parent class
generated as a table)

- Stored function attach-
ed to the table, with the
operation body as a
body in the function
definition.

-

Association Relationship or associ-
ation

Table (if many-to-
many multiplicity) or
reference. Role names
become migrated for-
eign keys.

KeyRef constraints

Object-Oriented Modeling 273

OOM CDM PDM XSM

Association class Entity/relationship no-
tation: entity with two
associations.

Merise notation: asso-
ciation, and two asso-
ciation links

A table and two associ-
ations between the end
points of the associa-
tion class

-

Dependency - - -

Realization - - -

Generalization Inheritance Reference Complex type deriva-
tion (XSD) or attribute
migration to child ele-
ment (DTD)

1. Select Tools, and then one of the following to open the appropriate Model Generation
Options Window:

• Generate Conceptual Data Model... Ctrl+Shift+C - For example, to translate OOM
classes into CDM entities. You will then be able to further refine your model and
eventually generate a Physical Data Model (PDM) from the CDM.

• Generate Physical Data Model... Ctrl+Shift+P - For example, to translate the design
of your system to your database. This allows you to model the objects in the world they
live in and to automate the translation to database tables and columns.

• Generate Object-Oriented Model... Ctrl+Shift+O - For example, to transform an
analytical OOM (designed with the Analysis object language) to implementation
OOMs designed for Java, C#, and any other of the object languages supported by
PowerDesigner.

• Generate XML Model... Ctrl+Shift+M - For example, to generate a message format
from your class structure.

2. On the General tab, select a radio button to generate a new or update an existing model,
and complete the appropriate options.

3. [optional] Click the Detail tab and set any appropriate options. We recommend that you
select the Check model checkbox to check the model for errors and warnings before
generation.

4. [optional] Click the Target Models tab and specify the target models for any generated
shortcuts.

5. [optional] Click the Selection tab and select or deselect objects to generate.

6. Click OK to begin generation.

CHAPTER 8: Generating Other Models from an OOM

274 PowerDesigner

Note: For detailed information about the options available on the various tabs of the
Generation window, see Core Features Guide > Linking and Synchronizing Models >
Generating Models and Model Objects.

Managing Object Persistence During Generation of Data
Models

Developers use object-oriented programming languages to develop business objects that will
be stored in a database. PowerDesigner provides various properties to give you precise control
over the generation of persistent objects into a data model.

Sometimes, the class and attribute codes in object-oriented programming languages
(specified in the Code field under the Name field on the General tab of their property sheets)
are different to the codes used for tables and columns in the data model representing the
database.

In these cases, you can specify an alternative, persistent, code in the Code field in the
Persistent groupbox on the Detail tab of classes and attributes. These codes will be used in
place of the standard codes during generation of a data model and also facilitate round-trip
engineering by recovering object codes from the database.

The other properties in these Persistent groupboxes, help you control how classes will be
generated in data models (see Class Properties on page 35) and the data types to be used for
attributes (see Attribute Properties on page 67)

Note: You can also create object-to-relational mappings between OOM and CDM or PDM
objects using the mapping editor (see Core Features Guide > Linking and Synchronizing
Models > Object Mappings).

Managing Persistence for Generalizations
You can control the generation of classes connected by a generalization link into CDM entities
or PDM tables using the Generate table and Migrate columns options in the
Persistent groupbox on the Detail tab.

In the following example, Customer is set to Generate table and inherits, via a
generalization link, from Person, which is set to Migrate columns:

CHAPTER 8: Generating Other Models from an OOM

Object-Oriented Modeling 275

Customer inherits the attributes of the parent class in the generated PDM:

Derived classes are created to improve the readability of a model but add no semantic
information and are not generated in a PDM, their attributes being migrated to the parent. In
the following example, Women and Person are both set to Migrate columns, while
Employee is set to Generate table:

In the generated PDM, Employee inherits from both its parent class and the derived class:

CHAPTER 8: Generating Other Models from an OOM

276 PowerDesigner

For more information, see Class Properties on page 35 and Generalizations (OOM) on page
95.

Managing Persistence for Complex Data Types
When you specify a class as the data type of an attribute, you can control its generation to a
CDM or PDM using the Generate table, Value Type and Generate ADT (PDM
only) options in the Persistent groupbox on the Detail tab.

In the following example, Customer contains an attribute, address, for which the class
Address, has been selected as data type (see Specifying a Classifier as a Data Type or Return
Type on page 47):

Customer is specified as persistent, and the Generate table option is selected. You can
generate the class Address in any of the following ways:

• As a persistent class - by selecting Generate table in the Persistent groupbox on the
Detail tab (see Class Properties on page 35):

In a PDM, both classes are generated as tables
linked by a reference joining the Address
ID primary key column (created during gener-
ation) in the Address parent table and the
address foreign key column in the Cus-
tomer child table:

In a CDM, both classes are generated as entities
linked by a one to many relationship joining the
Address ID primary identifier (created
during generation) in theAddress entity, and
the address attribute in the Customer
entity:

• As an embedded class - by selecting Value Type:

CHAPTER 8: Generating Other Models from an OOM

Object-Oriented Modeling 277

In a PDM, Customer is generated as a table
with all the attributes of Address embedded
in it as columns prefixed by address_:

In a CDM, both classes are generated as enti-
ties, and Customer includes all the attributes
of Address embedded in it as attributes pre-
fixed by address_:

• As an Abstract Data Type class (PDM only) - by selecting Generate ADT:

In a PDM, Customer is generated as a table and Address is generated as an abstract data
type (which does not have a symbol), which is referenced by the column address:

Note: If you specify a multiplicity (see Attribute Properties on page 67) for the attribute using
a complex data type, when generating:

• A persistent class - the multiplicity is generated as a cardinality on the reference between
the tables.

• An embedded class - attributes are generated the maximum number of times required by
the multiplicity, but only if the maximum is set to a fixed value. In the following example,
attribute multiplicity is 0..2, so attributes will be embedded twice:

• An abstract data type class - for DBMSs that support ARRAY and LIST for abstract data
types, multiplicity affects generation as follows:

CHAPTER 8: Generating Other Models from an OOM

278 PowerDesigner

• 0..n or 1..n - generate as an abstract data type of type LIST (example: TABLE for
Oracle).

• 1..2 or 0..10 - generate as an abstract data type of type ARRAY (example: VARRAY for
Oracle).

• 0..1 or 1..1 - generate as an abstract data type of type OBJECT.

Customizing XSM Generation for Individual Objects
When generating an XSM from a PDM or OOM, you can specify global generation options to
generate tables/classes as elements with or without complex types and columns/attributes as
elements or attributes. You can override these options for individual objects by attaching the
PDM XML Generation or OOM XML Generation extension to your source model and
selecting from their XML generation options.

Note: The extension provides new property sheet tabs for setting generation options for
individual objects, but you can also set these options with or without the extension by selecting
Model > objects to open the appropriate object list, clicking the Customize Columns and
Filter tool, and selecting to display the XML Generation Mode column.

For example, if you want to generate the majority of your table columns to an XSM as XML
attributes, but want to generate certain columns as elements, you should:

• Modify the XML generation options for those columns that you want to generate as
elements.

• Select to generate columns as attributes on the Model Generation Options Detail tab.

1. Select Model > Extensions to open the List of Extensions, and click the Attach an
Extension tool.

2. On the General Purpose tab, select PDM XML Generation or OOM XML
Generation and click OK to attach the extension to your model and OK to close the
List of Extensions.

These extension files enable the display of the XML tab in all table and column or class
and attribute property sheets.

3. Open the property sheet of the table, column, class, or attribute whose generation you want
to customize, and click the XML tab.

4. Use the radio buttons to specify how you want to generate the object in an XSM.

• For tables and classes, you can specify to generate them as:
• Elements - the table/class is generated as an untyped element directly linked to its

columns/attributes generated as attributes or sub-elements.
• Elements with complex types - the table/class is generated as an element typed by a

complex type, generated in parallel, to contain the columns/attributes.

CHAPTER 8: Generating Other Models from an OOM

Object-Oriented Modeling 279

• Default - generation of the table/class is controlled by the option selected in the
XML Generation group box on the Model Generation Options Detail tab.

• For tables, you can additionally specify to generate keys as:
• Key - [default] The primary

key columns are generated and also KEY and KEYREF wherever the table is ref
erenced.

• ID attribute - The primary key columns are not generated and an ID attribute, id, is
generated to replace them.
Wherever the table is referenced, an IDREF attribute is generated to reference th
e appropriate element. If the reference role name is assigned, this attribute is
given this
name. Otherwise, the referenced table name is used and the standard renaming m
echanism is enforced.

• Key and ID attribute - In many cases the primary
key columns have significant data and you may want to generate them, as well as
an ID attribute.
In this case an ID attribute is generated for the element and IDREF is used syste
matically for any reference to the table:

The following rules apply to the generation of keys:
• If a Table generates an ID, all its child tables will generate an ID attribute.
• If a Table generates Key columns, all its child tables will generate Key columns.
• If a child table is flagged to generate PK only, ID Attribute will be automatically

 generated.
• If a table generates ID attribute, No Key nor KeyRef will be generated, and ALL

 references will generate IDREF attribute.. (Even if the table generates also Key
Columns)

• If a table generates ID attribute ONLY, All Foreign Key Columns referencing its
 Key columns will be systematically removed and replaced by an IDREF attribute

• For columns and attributes, you can specify to generate them as:
• Elements - [default] the column/attribute is generated as an sub-element of its

table/class element or complex type.
• Attributes - the column/attribute is generated as an attribute of its table/class

element or complex type.
• Default - generation of the column/attribute is controlled by the option selected in

the XML Generation group box on the Model Generation Options Detail tab.

5. Modify the XML generation options for any other objects that you want to generate in a
different manner.

6. Select Tools > Generate XML Model, ensure that the appropriate options are set in the
XML Generation group box on the Model Generation Options Detail tab, and start your
generation.

CHAPTER 8: Generating Other Models from an OOM

280 PowerDesigner

CHAPTER 9 Checking an OOM

The object-oriented model is a very flexible tool, which allows you quickly to develop your
model without constraints. You can check the validity of your OOM at any time.

A valid OOM conforms to the following kinds of rules:

• Each object name in a OOM must be unique
• Each class in a OOM must have at least one attribute and operation
• Each start or end must be linked to an object of the diagram

Note: We recommend that you check your object-oriented model before generating code or
another model from it . If the check encounters errors, generation will be stopped. The Check
model option is enabled by default in the Generation dialog box.

You can check your model in any of the following ways:

• Press F4, or
• Select Tools > Check Model, or
• Right-click the diagram background and select Check Model from the contextual menu

The Check Model Parameters dialog opens, allowing you to specify the kinds of checks to
perform, and the objects to apply them to. The following sections document the OOM -
specific checks available by default. For information about checks made on generic objects
available in all model types and for detailed information about using the Check Model
Parameters dialog, see Core Features Guide > Modeling with PowerDesigner > Objects >
Checking Models.

Domain Checks
PowerDesigner provides default model checks to verify the validity of domains.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Object-Oriented Modeling 281

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Inconsistency be-
tween default val-
ues and check pa-
rameters

The values entered in the check parameters tab are inconsistent for numeric and
string data types: default does not respect minimum and maximum values, or
default does not belong to list of values, or values in list are not included in
minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters tab

• Automatic correction: None

Data Source Checks
PowerDesigner provides default model checks to verify the validity of data sources.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

282 PowerDesigner

Check Description and Correction

Existence of mod-
el

A data source must have at least one physical data model in its definition.

• Manual correction: Add a physical data model from the Models tab of the
property sheet of the data source

• Automatic correction: Deletes data source without physical data model

Data source con-
tainain models
with different
DBMS types

The models in a data source represent a single database. This is why the models in
the data source should share the same DBMS.

• Manual correction: Delete models with different DBMS or modify the
DBMS of models in the data source

• Automatic correction: None

Package Checks
PowerDesigner provides default model checks to verify the validity of packages.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Circular inheri-
tance

Objects cannot be dependent on each other. Circular links must be removed.

• Manual correction: Remove circular generalization links
• Automatic correction: None

Circular depend-
ency

Classes are dependent on each other through association class and/or generali-
zation links. Circular links must be removed.

• Manual correction: Remove circular links
• Automatic correction: None

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 283

Check Description and Correction

Shortcut code
uniqueness

Two shortcuts with the same code cannot be in the same namespace.

• Manual correction: Change the code of one of the shortcuts
• Automatic correction: None

Shortcut poten-
tially generated as
child table of a
reference

The package should not contain associations with an external shortcut as child
class. Although this can be tolerated in the OOM, the association will not be
generated in a PDM if the external shortcut is generated as a shortcut.

• Manual correction: Modify the design of your model in order to create the
association in the package where the child class is defined

• Automatic correction: None

Actor/Use Case Checks
PowerDesigner provides default model checks to verify the validity of actors and use cases.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Actor/use case
not linked to any
object

Actors and use cases should be linked to at least one object in the model.

• Manual correction: Create a link between the actor and a use case, or an
object

• Automatic correction: None

CHAPTER 9: Checking an OOM

284 PowerDesigner

Class Checks
PowerDesigner provides default model checks to verify the validity of classes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Empty classifier Attributes and operations are missing for this classifier.

• Manual correction: Add attributes or operations to the classifier
• Automatic correction: None

Persistent class
without persistent
attributes

All attributes of a persistent class cannot be non-persistent.

• Manual correction: Define at least one attribute as persistent
• Automatic correction: None

Association class
with identifier(s)

An associated class should not have identifiers.

• Manual correction: Remove the identifier
• Automatic correction: None

Classifier visibili-
ty

A private or protected classifier should be inner to another classifier.

• Manual correction: Change classifier visibility to public or package
• Automatic correction: Changes the visibility to public or package

Class constructor
return type

A constructor cannot have a return type.

• Manual correction: Remove current return type of the constructor
• Automatic correction: Removes current return type of the constructor

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 285

Check Description and Correction

Class constructor
modifiers

A constructor cannot be static, abstract, or final.

• Manual correction: Remove the static, abstract, or final property of the con-
structor

• Automatic correction: Removes the static, abstract or final property of the
constructor

Operation imple-
mentation

When there is a realization between a class and an interface, you must implement
the operations of the interface within the class. To do so, click the Operations tab
in the class property sheet and select the To be Implemented button at the bottom
of the tab to implement the missing operations.

• Manual correction: Implement the operations of the interface within the class
• Automatic correction: None

Role name as-
signment

A navigable role will be migrated as an attribute into a class. The code of the
association is used if the role has no name.

• Manual correction: Assign a role name for the association role
• Automatic correction: None

Role name
uniqueness

The name of the role is used by another role or by another attribute.

• Manual correction: Change the name of the duplicate role
• Automatic correction: None

JavaBean without
a BeanInfo

Bean implementors that provide explicit information about their beans must
provide a BeanInfo class.

• Manual correction: Create a BeanInfo class
• Automatic correction: None

BeanInfo without
a JavaBean class

A BeanInfo class must depend on a JavaBean class.

• Manual correction: Create a JavaBean class and recreate its BeanInfo, or
delete the BeanInfo

• Automatic correction: None

Emuneration type
parent

A enum may not have children.

• Manual correction: Remove links to child classes.
• Automatic correction: None

CHAPTER 9: Checking an OOM

286 PowerDesigner

Check Description and Correction

Bean class defini-
tion

The Bean class must be defined as public. It must define a public constructor that
takes no arguments and cannot define the finalize() method. It must be abstract
for CMP Entity Beans but cannot be abstract or final for BMP Entity, Session and
Message-driven Beans.

• Manual correction: Change the class visibility to public, define a public
constructor with no arguments, do not define the finalize() method

• Automatic correction: Changes the class visibility to public, defines a public
constructor with no arguments and removes the finalize() method. Corrects
to set final = false, and set abstract = false

Bean class Busi-
ness methods im-
plementation

For each method defined in the component interface(s), there must be a matching
method in the Bean class that has the same name, number, return type and types of
arguments.

• Manual correction: Add a method with the same name, number, return type
and types of arguments in the Bean class

• Automatic correction: Adds a method with the appropriate values in the Bean
class

Bean class Home
interface methods
implementation

For each create<METHOD> method of the bean Home Interface(s), there must
be a matching ejbCreate<METHOD> method in the Bean class with the same
method arguments. For each home method of the Home Interface(s), there must
be a matching ebjHome<METHOD> method in the Bean class with the same
number and types of arguments, and the same return type.

The following check applies to Entity Beans only.

For each ejbCreate<METHOD> method of the Bean class, there must be a
matching ejbPostCreate<METHOD> method in the Bean class with the same
number and types of arguments.

• Manual correction: Add a method with the same name and types of argu-
ments in the Bean class

• Automatic correction: Adds a method with the appropriate values in the Bean
class

The following check applies to BMP Entity Beans only.

For each find<METHOD> finder method defined in the bean Home Interface(s),
there must be a corresponding ejbFind<METHOD> method with the same
number, return type, and types of arguments.

• Manual correction: Add a method with the same number, return type and
types of arguments in the bean Home Interface(s)

• Automatic correction: Adds a method with the appropriate values in the bean
Home Interface(s)

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 287

Check Description and Correction

Bean class ejb-
Create methods

ejbCreate<METHOD> methods must be defined as public, and cannot be final
nor static.

The following check applies to Entity Beans only.

The return type of an ejbCreate() method must be the primary key type.

• Manual correction: Select the primary key in the Return type list of the
Operation property sheet

• Automatic correction: Selects the primary key as return type

The following check applies to Session Beans and Message Driven Beans. and
Message Driven Beans.

The return type of an ejbCreate() method must be void.

• Manual correction: Select void in the Return type list of the Operation prop-
erty sheet

• Automatic correction: Changes the return type to void

The following check applies to Message Driven Beans only.

The Bean class must define an ejbCreate() method that takes no arguments.

• Manual correction: Add a method with no argument in the Bean class
• Automatic correction: Adds a method with no argument in the Bean class

Bean class ejb-
PostCreate meth-
ods

The following check applies to Entity Beans only.

ejbPostCreate<METHOD> methods must be defined as public, and cannot be
final nor static. Their return type must be void.

• Manual correction: Change the method visibility to public, deselect the final
and static check boxes and select void in the Return type list of the Operation
property sheet

• Automatic correction: Changes the method visibility to public, changes the
final and static check boxes and changes the return type to void

Bean class ejb-
Find methods

BMP Entity Bean specific.

ejbFind<METHOD> methods must be defined as public and cannot be final nor
static. Their return type must be the entity bean primary key type or a collection of
primary keys.

• Manual correction: Change the method visibility to public and deselect the
static check box

• Automatic correction: Changes the method visibility to public and deselects
the static and final check boxes. Forces the return type of ejbFind<METH-
OD> to the primary key type

CHAPTER 9: Checking an OOM

288 PowerDesigner

Check Description and Correction

Bean class ejb-
Home methods

ejbHome<METHOD> methods must be defined as public and cannot be static.

• Manual correction: Change the method visibility to public and deselect the
static check box

• Automatic correction: Changes the method visibility to public and deselects
the static check box

Bean class ejbSe-
lect methods

The following check applies to CMP Entity Beans only.

EjbSelect <METHOD> methods must be defined as public and abstract. Their
throws clause must include the javax.ejb.FinderException.

• Manual correction: Change the method visibility to public, select the abstract
check box, and include the javax.ejb.FinderException

• Automatic correction: Changes the method visibility to public, selects the
abstract check box, and includes the javax.ejb.FinderException

Primary key class
definition

The following check applies to Entity Beans only.

The primary key class must be declared as public and must define a public
constructor that takes no arguments.

• Manual correction: Change the method visibility to public and add a default
constructor in the primary key class

• Automatic correction: Changes the method visibility to public and adds a
default constructor in the primary key class

Primary key class
attributes

All primary key class attributes must be declared as public. In addition, each
primary key class attribute must have a corresponding cmp-field in the Bean
class.

• Manual correction: Change the visibility to public, and create a cmp-field in
the Bean class that has the same name and the same data type as the attribute
of the primary key class

• Automatic correction: Changes the visibility to public and creates a cmp-
field in the Bean class that has the same name and the same data type as the
attribute of the primary key class

Primary key class
existence

If the bean class has more than one primary key attribute then a primary key class
must exist. If there is only one primary key attribute, it cannot have a standard
data type, but must have an object data type (ex: java.lang.Long).

• Manual correction: If there are many primary key attributes, create a primary
key class. If there is only one primary key attribute, select an object/classifier
data type

• Automatic correction: Creates a primary key class, or selects the appropriate
object/classifier data type

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 289

Check Description and Correction

Class mapping
not defined

The class must be mapped to tables or views in the data source.

• Manual correction: Define the mapping from the Mapping tab of the class
property sheet. (Class Sources tab), or remove the data source

• Automatic correction: Removes the data source from the Mapping For list in
the class Mapping tab

For more information about O/R mapping, see Core Features Guide > Linking
and Synchronizing Models > Object Mappings > Object to Relational (O/R)
Mapping.

Attribute map-
ping not defined

The attribute must be mapped to columns in the data source.

• Manual correction: Define the mapping from the Mapping tab of the Class
property sheet. (Attributes Mapping tab), or remove the data source

• Automatic correction: Removes the data source from the Mapping For list in
the class Mapping tab

For more information about O/R mapping, see Core Features Guide > Linking
and Synchronizing Models > Object Mappings > Object to Relational (O/R)
Mapping.

Incomplete bound
classifier

A classifier that is of type "Bound" must be bound to a generic classifier.

• Manual correction: Specify a generic classifier in the field to the right of the
type list on the General tab of the bound classifier's property sheet. You can
also connect it to the generic classifier by way of a dependency with stereo-
type <<bind>>.

• Automatic correction: None

Invalid generation
mode

If a class has its persistence mode set to Migrate Columns, it must have a per-
sistent parent or child to which to migrate the columns

• Manual correction: Link the class to a persistent parent or child, or change its
persistence mode on the Detail tab of its property sheet.

• Automatic correction: None

CHAPTER 9: Checking an OOM

290 PowerDesigner

Identifier Checks
PowerDesigner provides default model checks to verify the validity of identifiers.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of at-
tribute

Identifiers must have at least one attribute.

• Manual correction: Add an attribute to the identifier, or delete the identifier
• Automatic correction: None

Identifier inclu-
sion

Two identifiers should not use the same attributes.

• Manual correction: Remove the unnecessary identifier
• Automatic correction: None

Interface Checks
PowerDesigner provides default model checks to verify the validity of interfaces.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 291

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Empty classifier Attributes and operations are missing for this classifier.

• Manual correction: Add attributes or operations to the classifier
• Automatic correction: None

Classifier visibili-
ty

A private or protected classifier should be inner to another classifier.

• Manual correction: Change classifier visibility to public or package
• Automatic correction: Changes the visibility to public or package

Interface con-
structor

An interface cannot be instantiated. Thus a constructor cannot be defined for an
interface.

• Manual correction: Remove the constructor
• Automatic correction: None

Interface naviga-
bility

Navigation is not allowed from an interface.

• Manual correction: Deselect navigability on the class side of the association
• Automatic correction: Deselects navigability on the class side of the asso-

ciation

Home interface
create methods

The return type for create<METHOD> methods must be the bean component
interface type. The throws clause must include the javax.ejb.CreateException
together with all exceptions defined in the throws clause of the matching ejb-
Create<METHOD> and ejbPostCreate<METHOD> methods of the Bean class.

• Manual correction: Include the javax.ejb.CreateException and all exceptions
defined in the throws clause of the matching ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods of the Bean class, or remove exceptions
from the ejbPostCreate<METHOD> method

• Automatic correction: Includes the javax.ejb.CreateException and all ex-
ceptions defined in the throws clause of the matching ejbCreate<METHOD>
and ejbPostCreate<METHOD> methods of the Bean class

CHAPTER 9: Checking an OOM

292 PowerDesigner

Check Description and Correction

Home interface
finder methods

The return type for find<METHOD> methods must be the bean component
interface type (for a single-object finder) or a collection of primary keys thereof
(for a multi-object finder). The throws clause must include the javax.ejb.Find-
erException.

• Manual correction: Include the javax.ejb.FinderException in the throws
clause

• Automatic correction: Includes the javax.ejb.FinderException in the throws
clause, and sets Return Type to be the component interface type

The following check applies to BPM Entity Beans only.

The throws clause must include all exceptions defined in the throws clause of the
matching ejbFind<METHOD> methods of the Bean class.

• Manual correction: Include all exceptions defined in the throws clause of the
matching ejbFind<METHOD> methods of the Bean class, or remove ex-
ceptions from the ejbFind<METHOD> method

• Automatic correction: Includes all exceptions defined in the throws clause of
the matching ejbFind<METHOD> methods of the Bean class

Remote Home in-
terface methods

The throws clause of the Remote Home interface methods must include the
java.rmi.RemoteException.

• Manual correction: Include the java.rmi.RemoteException
• Automatic correction: Includes the java.rmi.RemoteException

Component inter-
face business
methods

The throws clause of the component interface business methods must include all
exceptions defined in the throws clause of the matching method of the Bean class.
The throws clause of the Remote interface methods must include the java.rmi.Re-
moteException.

• Manual correction: Include the java.rmi.RemoteException
• Automatic correction: Includes the java.rmi.RemoteException

Incomplete bound
classifier

A classifier that is of type "Bound" must be bound to a generic classifier.

• Manual correction: Specify a generic classifier in the field to the right of the
type list on the General tab of the bound classifier's property sheet. You can
also connect it to the generic classifier by way of a dependency with stereo-
type <<bind>>.

• Automatic correction: None

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 293

Class/Interface Attribute Checks
PowerDesigner provides default model checks to verify the validity of class and interface
attributes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Detect inconsis-
tencies within
check parameters

The values entered in the check parameters tab are inconsistent for numeric and
string data types: default does not respect minimum and maximum values, or
default does not belong to list of values, or values in list are not included in
minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters tab

• Automatic correction: None

Data type assign-
ment

The data type of an attribute should be defined. Moreover, its type cannot be
void.

• Manual correction: Assign a valid data type to the attribute
• Automatic correction: None

Initial value for fi-
nal attribute

The final attribute of a classifier must be initialized.

• Manual correction: Give a default value to the final attribute
• Automatic correction: None

CHAPTER 9: Checking an OOM

294 PowerDesigner

Check Description and Correction

Domain diver-
gence

The definition of the attribute definition is diverging from the definition of the
domain.

• Manual correction: Modify attribute type to respect domain properties
• Automatic correction: Corrects attribute type to prevent divergence from

domain

For more information about domain divergence, see Setting OOM Model Op-
tions on page 11.

Event parameter
data type

[VB 2005] An interface attribute with a stereotype of Event must have a delegate
as its data type.

• Manual correction: set the data type to an appropriate delegate
• Automatic correction: None

Class/Interface Operation Checks
PowerDesigner provides default model checks to verify the validity of class and interface
operations.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Return type as-
signment

The return type of an operation should be defined.

• Manual correction: Assign a return type to the operation
• Automatic correction: Assigns a void return type to the operation

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 295

Check Description and Correction

Parameter data
type assignment

The data type of a parameter should be defined. Moreover, its type cannot be
void.

• Manual correction: Choose a valid data type for the parameter
• Automatic correction: None

Abstract opera-
tion body

[classes] Abstract operations in a class cannot be implemented.

• Manual correction: Remove the body or the abstract property of the operation
• Automatic correction: None

Abstract opera-
tion in a instantia-
ble class

[classes] Abstract operations must be declared in abstract classes only.

• Manual correction: Set the class to abstract, or remove the abstract property
of the operation

• Automatic correction: Removes the abstract property in the operation prop-
erty sheet

Overloading op-
erations signature

[classes] Overloaded operations with the same name and same parameters data
type cannot have different return types in a class.

Overloading an operation refers to using the same method name but performing
different operations based on different parameter number or type.

• Manual correction: Change the operation name, parameter data type, or
return type

• Automatic correction: None

Overriding opera-
tions

[classes] When overriding a parent operation in a class, it is impossible to change
its modifiers.

Overriding an operation means that an operation defined in a given class is
redefined in a child class, in this case the operation of the parent class is said to be
overriden.

• Manual correction: Keep the same modifiers for child operation
• Automatic correction: None

Enum: Constants
must overload ab-
stract method

[classes] You can give each enum constant a different behavior by declaring an
abstract method in the enum type and overloading it with a concrete method for
each constant. In this case, each constant must overload the abstract method.

• Manual correction: Make sure each constant is associated with a concrete
method that overloads the abstract method.

• Automatic correction: None

CHAPTER 9: Checking an OOM

296 PowerDesigner

Realization Checks
PowerDesigner provides default model checks to verify the validity of realizations.

Check Description and Correction

Redundant reali-
zations

Only one realization is allowed between two given objects.

• Manual correction: Remove redundant realizations
• Automatic correction: None

Realization ge-
neric missing
child type param-
eters

A child of a generic classifier must resolve all of the type parameters defined by
its parent.

• Manual correction: Resolve the missing type parameters.
• Automatic correction: None.

Realization ge-
neric child cannot
be bound

A bound classifier cannot be the child of any classifier other than its generic
parent.

• Manual correction: Remove the additional links.
• Automatic correction: None.

Generalization Checks
PowerDesigner provides default model checks to verify the validity of generalizations.

Check Description and Correction

Redundant gener-
alizations

Only one generalization is allowed between two classes or two interfaces.

• Manual correction: Remove redundant generalizations
• Automatic correction: None

Class multiple in-
heritance

The following check applies only to Java and PowerBuilder.

Multiple inheritance is accepted in UML but not in this language.

• Manual correction: Keep single inheritance
• Automatic correction: None

Extend final class A final class cannot be extended.

• Manual correction: Remove the generalization link, or remove the final
property in the parent class

• Automatic correction: None

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 297

Check Description and Correction

Non-persistent
specifying attrib-
ute

If a generalization has a specifying attribute, the attribute must be marked as
persistent.

• Manual correction: Select the Persistent checkbox on the Detail tab of the
specifying attribute property sheet.

• Automatic correction: None

Generic: Child
type parameters

A child of a generic classifier must resolve all of the type parameters defined by
its parent.

• Manual correction: Resolve the missing type parameters.
• Automatic correction: None.

Generic: Child
cannot be bound

A bound classifier cannot be the child of any classifier other than its generic
parent.

• Manual correction: Remove the additional links.
• Automatic correction: None.

Object Checks
PowerDesigner provides default model checks to verify the validity of objects.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

298 PowerDesigner

Check Description and Correction

Isolated object An object should not be isolated in the model.

• Manual correction: Create a relationship to or from the object. The relation-
ship can be a message, an instance link, or a dependency or
Link the object to an object node in the activity diagram

• Automatic correction: None

Note: the Check Model feature takes the object into account and not the symbol
of the object to perform this check; if the object is already associated with an
instance link or an object node in your model, the Check Model feature will not
return an error message.

Instance Link Checks
PowerDesigner provides default model checks to verify the validity of instance links.

Check Description and Correction

Redundant in-
stance links

Two instance links between the same objects should not have the same associ-
ation.

• Manual correction: Remove one of the redundant instance links
• Automatic correction: None

Message Checks
PowerDesigner provides default model checks to verify the validity of messages.

Check Description and Correction

Message without
sequence number

A message should have a sequence number.

• Manual correction: Enter a sequence number on the message
• Automatic correction: None

Message used by
several instance
links

A message should not be attached to several instance links.

• Manual correction: Detach the message from the instance link
• Automatic correction: None

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 299

Check Description and Correction

Message between
actors

An actor cannot send a message to another actor in the model. Messages are
allowed between two objects, and between objects and actors.

• Manual correction: Create a message between two objects or between and
actor and an object

• Automatic correction: None

State Checks
PowerDesigner provides default model checks to verify the validity of states.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Input transition
missing

Each state must have at least one input transition. A state without an input
transition cannot be reached.

• Manual correction: Add a transition linked to the state
• Automatic correction: None

Composite state
does not have any
start

A composite state details the state behavior in a sub-statechart diagram. To be
complete, this sub-statechart diagram requires a start.

• Manual correction: Add a start in the sub-statechart diagram, or deselect the
Composite check box in the state property sheet

• Automatic correction: None

CHAPTER 9: Checking an OOM

300 PowerDesigner

Check Description and Correction

Incorrect action
order

The entry trigger events must be the first in the list of actions on a state. The exit
trigger events must the last in the list. All other actions can be ordered without any
constraint.

• Manual correction: Move all entry at the top of the list and all exit at the
bottom

• Automatic correction: Moves all entry at the top of the list and all exit at the
bottom

State Action Checks
PowerDesigner provides default model checks to verify the validity of state actions.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Unspecified trig-
ger event

Each action on a state must have a trigger event specified. This trigger event
indicates when the action is executed.

Note that this check does not apply to actions defined on transitions because
transitions have an implicit event corresponding to the end of execution of in-
ternal actions (of the source state).

• Manual correction: Specify a trigger event in the action property sheet
• Automatic correction: None

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 301

Check Description and Correction

Duplicated occur-
rence

Two distinct actions of a same state should not occur simultaneously. The oc-
currence of an action is defined by combining a trigger event and a condition.

• Manual correction: Change the trigger event or the condition of the action
• Automatic correction: None

Event Checks
PowerDesigner provides default model checks to verify the validity of events.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Unused event An event is useful to trigger an action defined on a state or on a transition. An
event alone is useless.

• Manual correction: Delete the event or use it within an action on a state or on a
transition

• Automatic correction: Deletes the event

CHAPTER 9: Checking an OOM

302 PowerDesigner

Junction Point Checks
PowerDesigner provides default model checks to verify the validity of junction points.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Incomplete junc-
tion point

A junction point represents a split or a merge of transition paths. That is why a
junction point must have at least one input and one output transitions.

• Manual correction: Add any missing transitions on the junction point
• Automatic correction: None

Activity Checks
PowerDesigner provides default model checks to verify the validity of activities.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 303

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Input or Output
transition missing

Each activity must have at least one input transition and at least one output
transition.

• Manual correction: Add a transition linked to the activity
• Automatic correction: None

Composite activi-
ty does not have
any start

A composite activity details the activity execution in a sub-activity diagram. To
be complete, this sub-activity diagram requires a start connected to other activ-
ities, or requires a start at the beginning.

• Manual correction: Add a start in the sub-activity diagram, or deselect the
Composite check box in the activity property sheet

• Automatic correction: None

Non-Reusable
Activity Calls

Only activities with an action type of <undefined> or Reusable activity may be
reused by other activities with action types of Call, Accept Call, or Reply Call.

• Manual correction: Change the action type of the referenced activity, or
remove any references to it.

• Automatic correction: None

Decision Checks
PowerDesigner provides default model checks to verify the validity of decisions.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

CHAPTER 9: Checking an OOM

304 PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Incomplete decision A decision represents a conditional branch when a unique transition is split into
several output transitions, or it represents a merge when several input transi-
tions are merged into a unique output transition. That is why a decision must
have more than one input transition or more than one output transition.

• Manual correction: Add any missing transitions on the decision
• Automatic correction: None

Object Node Checks
PowerDesigner provides default model checks to verify the validity of object nodes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 305

Check Description and Correction

Object node with
undefined object

An object node represents a particular state of an object. That is why an object
must be linked to an object node.

• Manual correction: In the property sheet of the object node, select or create
an object from the Object list

• Automatic correction: None

Object Node With-
out Data Type

An object node conveys no information if it does not have a data type.

• Manual correction: Select a Data type in the object node property sheet.
• Automatic correction: None

Organization Unit Checks
PowerDesigner provides default model checks to verify the validity of organization units.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Circular dependen-
cy

The organization unit cannot be parent of itself or parent of another child
organization unit.

• Manual correction: Change the organization unit in the Parent box in the
organization unit property sheet

• Automatic correction: None

CHAPTER 9: Checking an OOM

306 PowerDesigner

Start/End Checks
PowerDesigner provides default model checks to verify the validity of starts and ends.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Missing transition Starts and ends must be linked to an object of the statechart or activity diagram.

• Manual correction: Create a transition from the start and/or to the end
• Automatic correction: None

Synchronization Checks
PowerDesigner provides default model checks to verify the validity of synchronizations.

Check Description and Correction

Name/Code contains
terms not in glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 307

Check Description and Correction

Name/Code contains
synonyms of glossa-
ry terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Incomplete synchro-
nization

A synchronization represents a fork when a unique transition is split into
several output transitions executed in parallel, or it represents a join when
several input transitions are joined and they wait until all transitions reach the
join before continuing as a unique output transition. That is why a synchro-
nization must have more than one input transition, or more than one output
transition.

• Manual correction: Add any missing transitions to the synchronization
• Automatic correction: None

Transition and Flow Checks
PowerDesigner provides default model checks to verify the validity of transitions and flows.

Check Description and Correction

Transition / flow
without source or
destination

The transition or flow has no source or destination.

• Manual correction: Select or create an object as source or destination.
• Automatic correction: None

Useless condition If there is only one output transition/flow, there is no reason to have a condition
or type on the transition/flow.

• Manual correction: Remove the unnecessary condition or type, or create
another transition/flow with another condition or type.

• Automatic correction: None

CHAPTER 9: Checking an OOM

308 PowerDesigner

Check Description and Correction

Missing condition If an object has several output transitions/flows, or if the transition/flow is
reflexive, each transition/flow must contain a condition.

In a statechart diagram, a transition must contain an event or condition.

• Manual correction: Define a condition, or create a synchronization to
specify a parallel execution

• Automatic correction: None

Duplicated transi-
tion between states/
Duplicated flow be-
tween activities

Two parallel transitions (with the same extremities) must not occur simulta-
neously, but must rather be governed by conditions (and, for transitions, trigger
events).

• Manual correction: Change one of the trigger events or conditions
• Automatic correction: None

Component Checks
PowerDesigner provides default model checks to verify the validity of components.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 309

Check Description and Correction

Isolated component A component should not be isolated in the model. It should be linked to a class
or an interface.

• Manual correction: Attach some classes or interfaces to the component
• Automatic correction: None

EJB component at-
tached classifiers

Entity and Session Beans must provide either a remote or a local client view, or
both.

• Manual correction: Complete existing view(s), or create a remote view if
no interface has been exposed

• Automatic correction: Completes existing view(s), or creates a remote
view if no interface has been exposed

SOAP message re-
definition

You cannot have the same SOAP input and SOAP output data type inside the
same component.

• Manual correction: Change the name of the input data type, or change the
name of the output data type in the SOAP Input or SOAP Output tabs in the
operation property sheet

• Automatic correction: None

The definition of the SOAP data types is available in the schema part of the
WSDL that you can display in the WSDL tab of the component property sheet.

Node Checks
PowerDesigner provides default model checks to verify the validity of nodes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glossary
terms.

CHAPTER 9: Checking an OOM

310 PowerDesigner

Check Description and Correction

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Empty node A node is said to be empty when it does not contain any component instance.

• Manual correction: Add at least one component instance to the node
• Automatic correction: None

Data Format Checks
PowerDesigner provides default model checks to verify the validity of data formats.

Check Description and Correction

Empty expression Data formats must have a value entered in the Expression field.

• Manual correction: Specify an expression for the data format.
• Automatic correction: None

Component Instance Checks
PowerDesigner provides default model checks to verify the validity of component instances.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 311

Check Description and Correction

Component in-
stance without
component

An instance of a component has been created but no component is attached. You
must attach it to a component.

• Manual correction: Attach an existing component to the component instance,
or create a component from the Create tool in the property sheet of the
component instance

• Automatic correction: None

Duplicate compo-
nent instances

Several instances of the same component exist in the same node.

• Manual correction: Delete the duplicate component instance or attach it to
the right component

• Automatic correction: None

Isolated compo-
nent instance

A component instance should not be created outside of a node. It will not be
deployed.

• Manual correction: Attach it to a node
• Automatic correction: None

Interaction Reference Checks
PowerDesigner provides default model checks to verify the validity of interaction references.

Check Description and Correction

Missing refer-
enced diagram

An interaction reference object must reference a sequence diagram object.

• Manual correction: Open the interaction reference property sheet and specify
the sequence diagram to reference.

• Automatic correction: None

CHAPTER 9: Checking an OOM

312 PowerDesigner

Check Description and Correction

Attached lifelines
consistency

The interaction reference symbol has a list of attached lifelines, which corre-
spond to actors and objects. These actors and objects must match a subset of the
ones displayed in the referenced sequence diagram. This corresponds to a subset
because some lifelines in referenced diagram could not be displayed in the dia-
gram of the interaction reference. The current check verifies the following con-
sistency rules:

The number of attached lifelines cannot be greater than the number of lifelines in
the referenced diagram

If one attached lifeline corresponds to an object, and if this object has an asso-
ciated metaclass, then there must be at least one object in the referenced sequence
diagram that is associated with the same metaclass

• Manual correction: Change the list of attached lifelines for the interaction
reference object. This can be done simply by resizing the interaction refer-
ence symbol or by clicking with the pointer tool on the intersection of the
interaction reference symbol and the lifeline. The tool cursor changes on this
area and allows you to detach the interaction reference symbol from (or
attach it to) the lifeline.

• Automatic correction: None

Too many input
messages for ref-
erence

The interaction reference has more incoming than outgoing messages.

• Manual correction: Delete incoming messages or add outgoing messages,
until the numbers are equal.

• Automatic correction: None

Too many output
messages for ref-
erence

The interaction reference has more outgoing than incoming messages.

• Manual correction: Delete outgoing messages or add incoming messages,
until the numbers are equal.

• Automatic correction: None

Class Part Checks
PowerDesigner provides default model checks to verify the validity of class parts.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 313

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Class part classi-
fier type

A class part must have a data type that is a classifier linked to its owner classifier
by an association.

• Manual correction: Specify a data type for the part and connect the relevant
classifier to its owner classifier.

• Automatic correction: None

Class part associ-
ation type

The composition property of a part must match the type of the association be-
tween its owner and its data type.

• Manual correction: Enable or disable the Composition property.
• Automatic correction: The Composition property is enabled or disabled.

Class/Component Port Checks
PowerDesigner provides default model checks to verify the validity of class and component
ports.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

CHAPTER 9: Checking an OOM

314 PowerDesigner

Check Description and Correction

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Class or compo-
nent port isolated
ports

Class and component ports must have a data type, or must have a provided or
required interface.

• Manual correction: Specify a data type or interface
• Automatic correction: None

Class/component Assembly Connector Checks
PowerDesigner provides default model checks to verify the validity of class and component
assembly connectors.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Component as-
sembly connector
null interface con-
nector

An interface must be defined for each assembly connector.

• Manual correction: Define an interface for the assembly connector.
• Automatic correction: None.

Component as-
sembly connector
interfaces

The interface defined for an assembly connector must be provided by the supplier
and required by the client.

• Manual correction: Ensure that the supplier and client are correctly defined.
• Automatic correction: None.

CHAPTER 9: Checking an OOM

Object-Oriented Modeling 315

Association Checks
PowerDesigner provides default model checks to verify the validity of associations.

Check Description and Correction

Generic: Child
type parameters

In a navigable association, if the parent is generic, the child must redefine all the
type parameters of the parent.

If the parent is a partially bound classifier (where some type parameters are not
resolved) then the child must redefine all the unresolved type parameters.

• Manual correction: Resolve the missing type parameters.
• Automatic correction: None.

Generic: Child
cannot be bound

A bound classifier cannot be the child of any navigable association other than its
generic parent.

• Manual correction: Remove the additional links.
• Automatic correction: None.

Activity Input and Output Parameter Checks
PowerDesigner provides default model checks to verify the validity of activity input and
output parameters.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 9: Checking an OOM

316 PowerDesigner

CHAPTER 10 Importing a Rational Rose Model
into an OOM

You can import Rational Rose (.MDL) models created with version 98, 2000, and 2002 into an
OOM.

Note: A Rose model can support one or several languages whereas a PowerDesigner OOM
can only have a single object language. When you import a multi-language Rose model into an
OOM, the OOM will have only one of the object languages of the Rose model. The following
table shows how Rose languages are converted to PowerDesigner languages:

Rose Language PowerDesigner Language

CORBA IDL-CORBA

Java Java

C++ C++

VC++ C++

XML-DTD XML-DTD

Visual Basic Visual Basic 6

Analysis, Oracle 8, Ada, COM, Web Modeler, and
all other languages

Analysis

1. Select File > Import > Rational Rose File, and browse to the directory that contains the
Rose file.

2. Select Rational Rose Model (*.MDL) file from the Files of Type list, and then select the
file to import.

3. Click Open.

The import process begins, and the default diagram of the model opens in the canvas.
General Rose objects are imported as follows:

Rose Object OOM Object

Package Package

Note: The Global property is not imported.

Diagram Diagram

Object-Oriented Modeling 317

Rose Object OOM Object

Note Note

Note link Note link

Text Text

File File

Only the following properties are imported for the Rose model object:

Rose Property OOM Property

Documentation Comment

Zoom Page scale

Stereotype Stereotype

Importing Rational Rose Use Case Diagrams
PowerDesigner can import the most important objects in Rose use case diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Class with <<actor>>, <<business actor>>, or
<<business worker>> stereotype

Implementation class contained by an actor

Class with <<boundary>>, <<business enti-
ty>>, <<control>>, <<entity>>, or <<table>>
stereotype

Class (without symbol, as classes are not permitted
in OOM use case diagrams)

Use case:

• Diagrams

Use case:

• Related diagrams

Association:

• Navigable

Association:

• Orientation

Note: Dependencies between a use case and an actor are not imported.

CHAPTER 10: Importing a Rational Rose Model into an OOM

318 PowerDesigner

Importing Rational Rose Class Diagrams
PowerDesigner can import the most important objects in Rose class diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Class:

• 'Class utility' Type

• Export Control

• Implementation

• Cardinality: 0..n, 1..n

• Nested class

• Persistence

• Abstract

Class:

• 'Class' Type

• Visibility

• Package

• Cardinality: 0..*, 1..*

• Inner classifier

• Persistence

• Abstract

Interface:

• Export Control

• Implementation

• Nested class

Interface:

• Visibility

• Package

• Inner classifier

Attribute:

• Export Control

• Implementation

• Initial value

• Static

• Derived

Attribute:

• Visibility

• Package

• Initial value

• Static

• Derived

Operation:

• Export Control

• Implementation

Operation:

• Visibility

• Package

Generalization:

• Export Control

• Implementation

• Virtual inheritance

• Multi inheritance

Generalization:

• Visibility

• Package

• Extended attribute

• Multi inheritance

CHAPTER 10: Importing a Rational Rose Model into an OOM

Object-Oriented Modeling 319

Rose Object OOM Object

Association:

• Role name

• Export Control

• Navigable

• Cardinality

• Aggregate (class A or B)

• Aggregate (by reference)

• Aggregate (by value)

Association:

• Role name

• Visibility

• Navigable

• Multiplicity

• Container

• Aggregation

• Composition

Dependency Dependency

Importing Rational Rose Collaboration Diagrams
PowerDesigner can import the most important objects in Rose collaboration diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Object or class instance:

• Class

• Multiple instances

Object:

• Class or interface

• Multiple

Link or object link:

• Assoc

• Messages list

Instance link:

• Association

• Messages

Actor Actor

Message:

• Simple stereotype

• Synchronous stereotype

• Asynchronous stereotype

• Balking

Message:

• Undefined

• Procedure call

• Asynchronous

• Condition

CHAPTER 10: Importing a Rational Rose Model into an OOM

320 PowerDesigner

Importing Rational Rose Sequence Diagrams
PowerDesigner can import the most important objects in Rose sequence diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Object or class instance:

• Persistence

• Multiple instances

Object:

• Persistence

• Multiple

Actor Actor

Message:

• Simple stereotype

• Synchronous stereotype

• Asynchronous stereotype

• Balking

• Return message

• Destruction marker

Message:

• Undefined

• Procedure call

• Asynchronous

• Condition

• Return

• Recursive message with Destroy action

Importing Rational Rose Statechart Diagrams
PowerDesigner can import the most important objects in Rose statechart diagrams.

In Rose, activity and statechart diagrams are created in the Use Case or Logical View:

• At the root level
• In an activity
• In a state

A UML State Machine is automatically created, which contains statechart and activity
diagrams with their relevant objects.

In PowerDesigner, statechart diagrams are created at the model level or in a composite state:
the parent package or the model is considered the State Machine.

Rose statechart diagrams that are at the root level, or in a state are imported, but those that are
in an activity are not imported.

Only the listed properties are imported:

CHAPTER 10: Importing a Rational Rose Model into an OOM

Object-Oriented Modeling 321

Rose Object OOM Object

State:

• When action

• OnEntry action

• OnExit action

• Do action

• OnEvent action

• Event action

• Event arguments

State or object node:

• Trigger event

• Entry

• Exit

• Do

• Event

• Trigger event

• Event arguments

State transition:

• <No name>

• <No code>

• Event

• Arguments

• Guard condition

• Action

Transition:

• Calculated name

• Calculated Code

• Trigger Event

• Event arguments

• Condition

• Trigger action

Importing Rational Rose Activity Diagrams
PowerDesigner can import the most important objects in Rose activity diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Activity:

• Actions

Activity:

• Action

Object (associated with a state) Object node

State State (no symbol in activity diagram)

Start state Start

Self Transition or Object Flow Transition

Synchronization Synchronization

Decision Decision

End state End

CHAPTER 10: Importing a Rational Rose Model into an OOM

322 PowerDesigner

Rose Object OOM Object

Swimlane Organization unit/swimlane

Note:

• PowerDesigner does not support multiple actions on an activity. After import, the Action
tab in the OOM activity property sheet displays <<Undefined>> and the text zone
reproduces the list of imported actions.

• PowerDesigner does not manage Rose Subunits as separate files, but rather imports *.CAT
and *.SUB files into the model that references them. If a .CAT or a .SUB file does not exist
in the specified path, PowerDesigner searches in the same directory as the file containing
the model.

• In Rose, you can associate an Object (instance of a class) with a State. The Rose Object is
imported as an object without symbol. If it is associated with a State, an object node with a
symbol is created with the name, stereotype and comment of the State. If the Rose diagram
that contains the symbol of the Object is in a composite activity, a shortcut of the object is
created in the imported composite activity, because PowerDesigner does not support
decomposition of object nodes.

Importing Rational Rose Component Diagrams
PowerDesigner can import the most important objects in Rose component diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Component:

• Interface of realize

• Class of realize

• File

• URL file

• Declaration

Component:

• Interface

• Class

• External file in Ext. Dependencies

• URL file in Ext. Dependencies

• Description in Notes tab

The following types of components, which have Rose predefined stereotypes and different
symbols are imported. The stereotypes are preserved, but each will have a standard OOM
component symbol:

• Active X
• Applet
• Application

CHAPTER 10: Importing a Rational Rose Model into an OOM

Object-Oriented Modeling 323

• DLL
• EXE
• Generic Package
• Generic Subprogram
• Main Program
• Package Body
• Package Specification
• Subprogram Body
• Subprogram Specification
• Task Body
• Task Specification

Importing Rational Rose Deployment Diagrams
PowerDesigner can import the most important objects in Rose deployment diagrams.

Only the listed properties are imported:

Rose Object OOM Object

Node:

• Device

• Processor

• Device characteristics

• Processor characteristics

Node:

• Node

• Node

• Description

• Description

File objects:

• File

• URL definition

File objects:

• File object linked to the package

• File object

Node association:

• Connection

• Characteristics

Node association:

• Node association

• Description

CHAPTER 10: Importing a Rational Rose Model into an OOM

324 PowerDesigner

CHAPTER 11 Importing and Exporting an OOM
in XMI Format

PowerDesigner supports the import and export of XML Metadata Interchange (XMI) UML
v2.x files, an open format that allows you to transfer UML models between different tools. All
of the OOM objects can be imported and exported.

Importing XMI Files
PowerDesigner supports the import of an OOM from an XMI file. Since XMI only supports
the transfer of objects, PowerDesigner assigns default symbols to imported objects and
assigns them to default diagrams.

1. Select File > Import > XMI File to open the New Model dialog.

2. Select an object language, specify the first diagram in the model and click OK.

3. Select the .XML or .XMI file to import and click Open.

The General tab in the Output window shows the objects being imported. When the import
is complete, your specified first diagram opens in the canvas.

Exporting XMI Files
PowerDesigner supports the export of an OOM to an XMI file. Since XMI only supports the
transfer of objects, any associated PowerDesigner symbols and diagrams are not preserved
during the export.

PowerDesigner exports to UML container objects as follows:

UML Container PowerDesigner Object PowerDesigner Diagram

Activity Composite Activity Activity Diagram

State Machine Composite State State Diagram

Interaction Package Sequence Diagram,

Communication Diagram, or

Interaction Overview Diagram

1. Select File > Export > XMI File to open a standard Save As dialog box.

Object-Oriented Modeling 325

2. Enter a filename for the file to be exported, select the appropriate type, and click Save.

The General tab in the Output window shows the objects being exported. You can open the
resulting XMI file in any modeling tool that supports this exchange format or a code
generator such as Java, CORBA, or C++.

CHAPTER 11: Importing and Exporting an OOM in XMI Format

326 PowerDesigner

PART II

Object Language Definition
Reference

The chapters in this part provide information specific to the object languages supported by
PowerDesigner.

Object-Oriented Modeling 327

328 PowerDesigner

CHAPTER 12 Working with Java

PowerDesigner supports the modeling of Java programs including round-trip engineering.

Note: To model for Java v5 and higher, select Java as your target language. Support for earlier
versions, through Java 1.x is deprecated.

For information specific to modeling for Java in the Eclipse environment, see Core Features
Guide > Modeling with PowerDesigner > The PowerDesigner Plugin for Eclipse.

Java Public Classes
Java allows the creation of multiple classes in a single file but one class, and only one, has to be
public.

In PowerDesigner, you should create one public class and several dependent classes and draw
dependency links with stereotype <<sameFile>> between them. This type of link is handled
during generation and reverse engineering.

Java Enumerated Types (Enums)
Java 5 supports enumerated types. These replace the old typesafe enum pattern, and are much
more compact and easy to maintain. They can be used to list such collections of values as the
days of the week or the suits of a deck of cards, or any fixed set of constants, such as the
elements in a menu.

An enum is represented by a class with an <<enum>> stereotype.

1. Create a class in a class diagram or composite structure diagram, and double-click it to
open its property sheet.

2. On the General tab, select <<enum>> from the Stereotype list.

Object-Oriented Modeling 329

3. Click the Attributes tab, and add as many attributes as necessary. These attributes have, by
default, a data type of EnumConstant. For example, to create an enum type that contained
standard mathematical operations, you would create four EnumConstants with the names
"PLUS", "MINUS", "TIMES", and "DIVIDE".

Note that, since a Java enum is a full featured class, you can also add other kinds of
attributes to it by clicking in the Data Type column and selecting another type from the
list.

4. [optional] You can create an anonymous class for an EnumConstant by selecting its row on
the Attributes tab and clicking the Properties tool to open its property sheet. On the General
tab, click the Create tool next to the Enum class box to create the internal class.

These anonymous classes will be displayed on the Inner Classifiers tab of the Enum class
property sheet:

CHAPTER 12: Working with Java

330 PowerDesigner

The Operation enum class, with an anonymous class for each of its EnumConstants to
allow for the varied arithmetic operations, could be represented in a class diagram as
follows:

The equivalent code would be like the following:

CHAPTER 12: Working with Java

Object-Oriented Modeling 331

JavaDoc Comments
Javadoc is a tool delivered in the JDK that parses the declarations and documentation
comments in a set of Java source files and produces a corresponding set of HTML pages
describing model objects.

Javadoc comments are included in the source code of an object, immediately before the
declaration of any object, between the characters /** and */.

A Javadoc comment can contain:

• A description after the starting delimiter /**. This description corresponds to a Comment
in OOM objects

• Tags prefixed by the @ character

For example, in the following code preview page, you can read the tag @author, and the
comment inserted from the Comment box in the General page of the class property sheet.

CHAPTER 12: Working with Java

332 PowerDesigner

The following table summarizes the support of Javadoc comments in PowerDesigner:

Javadoc Description Applies to Corresponding ex-
tended attribute

%comment% Comment box. If
Javadoc comments
are not found, stand-
ard comments are re-
versed instead

Class, interface, operation,
attribute

—

@since Adds a "Since" head-
ing with the specified
since-text to the gen-
erated documenta-
tion

Class, interface, operation,
attribute

Javadoc since

@deprecated Adds a comment in-
dicating that this API
should no longer be
used

Class, interface, operation,
attribute

Javadoc deprecated

CHAPTER 12: Working with Java

Object-Oriented Modeling 333

Javadoc Description Applies to Corresponding ex-
tended attribute

@author Adds an Author entry Class, interface Javadoc author.

If the tag is not defined,
the user name from the
Version Info page is
used, otherwise the de-
fined tag value is dis-
played

@version Adds a Version entry,
usually referring to
the version of the
software

Class, interface Javadoc version

@see Adds a "See Also"
heading with a link or
text entry that points
to reference

Class, interface, operation,
attribute

Javadoc see

@return Adds a "Returns"
section with the de-
scription text

Operation Javadoc misc

@throws Adds a "Throws"
subheading to the
generated documen-
tation

Operation Javadoc misc. You can
declare operation excep-
tions

@exception Adds an "Exception"
subheading to the
generated documen-
tation

Operation Javadoc misc. You can
declare operation excep-
tions

@serialData Documents the types
and order of data in
the serialized form

Operation Javadoc misc

@serialField Documents an Ob-
jectStreamField
component of a Seri-
alizable class' serial-
PersistentFields
member

Attribute Javadoc misc

@serial Used in the doc com-
ment for a default se-
rializable field

Attribute Javadoc misc

CHAPTER 12: Working with Java

334 PowerDesigner

Javadoc Description Applies to Corresponding ex-
tended attribute

@param Adds a parameter to
the Parameters sec-
tion

Attribute Javadoc misc

Defining Values for Javadoc Tags
You can define values for Javadoc tags from the JavaDoc tab of an object property sheet.

To do so, you have to select a Javadoc tag in the list of extended attributes and click the ellipsis
button in the Value column. The input dialog box that is displayed allows you to create values
for the selected Javadoc tag. For example, if the data type is set to (Color), you can select
another color in the Color dialog box by clicking the ellipsis button in the Value column.

Note: You define values for the @return, @exception, @throws, @serialData, @serialField,
@serial JavaDoc, and @param comments in the Javadoc@misc extended attribute.

Javadoc tags are not generated if no extended attribute is valued.

Do not forget to repeat the Javadoc tag before each new value, some values being multi-line. If
you do not repeat the Javadoc tag, the values will not be generated.

When you assign a value to a Javadoc tag, the tag and its value appear in the code preview page
of the corresponding object.

@author
@author is not generated if the extended attribute has no value.

@exceptions and @throws
@exceptions and @throws are synonymous Javadoc tags used to define the exceptions that
may be thrown by an operation.

CHAPTER 12: Working with Java

Object-Oriented Modeling 335

To use these tags you can proceed as follows:

• From the operation property sheet, click the Implementation tab and click the Exceptions
tab to open the Exceptions page. You can type exceptions in this page.

• In the same property sheet, click the Extended Attributes tab, select the
Javadoc@exception line in the list and click the ellipsis button in the Value column. Type
values for each declared exception, do not forget to repeat @exception or @throws before
each exception.

It is also possible to type values directly after the @exception or the @throws tags in the
Extended Attributes page. These comments describe exceptions that are not listed in the
operation exceptions, and do not appear after the throws parameter in the Preview page of
the class.

CHAPTER 12: Working with Java

336 PowerDesigner

When you preview the generated code, each exception is displayed with its value:

Javadoc Comments Generation and Reverse Engineering
You recover Javadoc comments in classes, interfaces, operations, and attributes during reverse
engineering. Javadoc comments are reverse engineered only if they exist in the source code.

The Reverse Javadoc Comments feature is very useful for round-trip engineering: you keep
Javadoc comments during reverse engineering and you can regenerate the code with preserved
Javadoc comments. The generation process generates object comments compliant with
Javadoc

For more information on the generation of Javadoc comments, see Javadoc Comments
Generation and Reverse Engineering on page 337.

Java 5.0 Annotations
PowerDesigner provides full support for Java 5.0 annotations, which allow you to add
metadata to your code. This metadata can be accessed by post-processing tools or at run-time
to vary the behavior of the system.

You can use built-in annotations, such as those listed below, and also create your own
annotations, to apply to your types.

There are three types of annotations available:

CHAPTER 12: Working with Java

Object-Oriented Modeling 337

• Normal annotations – which take multiple arguments
• Single member annotations – which take only a single argument, and which have a more

compact syntax
• Marker annotations – which take no parameters, and are used to instruct the Java compiler

to process the element in a particular way

PowerDesigner supports the seven built-in Java 5.0 annotations:

• java.lang.Override - specifies that a method declaration will override a method declaration
in a superclass, and will generate a compile-time error if this is not the case.

• java.lang.Deprecated – specifies that an element is deprecated, and generates a compile-
time warning if it is used in non-deprecated code.

• java.lang.SuppressWarning – specifies compile-time warnings that should be suppressed
for the element.

• java.lang.annotation.Documented – specifies that annotations with a type declaration are
to be documented by javadoc and similar tools by default to become part of the public API
of the annotated elements.

• java.lang.annotation.Inherited – specifies that an annotation type is automatically
inherited for a superclass

• java.lang.annotation.Retention – specifies how far annotations will be retained during
processing. Takes one of the following values:
• SOURCE – annotations are discarded at compile-time
• CLASS – [default] annotations are retained by the compiler, but discarded at run-time
• RUNTIME – annotations are retained by the VM at run-time

• java.lang.annotation.Target – restricts the kind of program element to which an annotation
may be applied and generates compile-time errors. Takes one of the following values:
• TYPE – class, interface, or enum declaration
• FIELD – including enum constants
• METHOD
• PARAMETER
• CONSTRUCTOR
• LOCAL_VARIABLE
• PACKAGE

For general information about modeling this form of metadata in PowerDesigner, see
Attributes (OOM) on page 63.

Java Strictfp Keyword
Floating-point hardware may calculate with more precision and with a greater range of values
than required by the Java specification. The strictfp keyword can be used with classes or

CHAPTER 12: Working with Java

338 PowerDesigner

operations in order to specify compliance with the Java specification (IEEE-754). If this
keyword is not set, then floating-point calculations may vary between environments.

To enable the Strictfp keyword:

1. Double-click a class to open its property sheet.

2. Click the Extended Attributes tab, and then click the Java sub-tab.

3. Find the strictfp entry in the Name column, and set the Value to "true".

4. Click OK. The class will be generated with the strictfp keyword, and will perform
operations in compliance with the Java floating-point specification

Enterprise Java Beans (EJBs) V2
The Java TM 2 Platform, Enterprise Edition (J2EE TM) is a Java platform that defines the
standard for developing multi-tier enterprise applications. J2EE simplifies enterprise
applications by basing them on standardized, reusable modular components, it provides a
complete set of services to those components, and handles many details of application
behavior automatically without complex programming.

PowerDesigner supports the EJB 2.0 specification, with special emphasis on entity beans
(both CMP and BMP), and allows you to take full advantage of the tight integration between
the PDM and OOM.

To work with EJB 2.0, you require Java 2 SDK Standard Edition (J2SE TM) 1.3 (final release),
Java 2 SDK Enterprise Edition (J2EE TM) 1.3 (final release), a Java IDE or a text editor and a
J2EE application server supporting EJB 2.0.

We recommend that you add the JAVA_HOME and J2EE_HOME system variables in your
environment as follows:

In CLASSPATH:

%JAVA_HOME%\lib;%J2EE_HOME%\lib\j2ee.jar;%J2EE_HOME%\lib

In Path:

%JAVA_HOME%\bin;%J2EE_HOME%\bin

For detailed information on EJB, see the Oracle Java Web site, at http://www.oracle.com/
technetwork/java/index.html.

CHAPTER 12: Working with Java

Object-Oriented Modeling 339

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Using EJB Types
You can define the following types of EJB components:

Type Definition

Entity Beans Designed to represent data in the database; they wrap data with business
object semantics, read and update data automatically. Entity beans include:
CMP (Container Managed Persistence) With CMP Entity Beans, persistence
is handled by the component server (also known as Container) BMP (Bean
Managed Persistence) With BMP Entity Beans, persistence management is
left to the bean developer

Session Beans
(Stateful and State-
less)

Encapsulate business logic and provide a single entry point for client users. A
session bean will usually manage, and provide indirect access to several entity
beans. Using this architecture, network traffic can be substantially reduced.
There are Stateful and Stateless beans (see below)

Message Driven
Beans

Anonymous beans that cannot be referenced by a given client, but rather
respond to JMS asynchronous messages. Like Session Beans, they provide a
way of encapsulating business logic on the server side

Entity Beans
Entity beans are used to represent underlying objects. The most common application for entity
beans is their representation of data in a relational database. A simple entity bean can be
defined to represent a database table where each instance of the bean represents a specific row.
More complex entity beans can represent views of joined tables in a database. One instance
represents a specific customer and all of that customer's orders and order items.

The code generated is different depending on the type of Entity Bean (Container Managed
Persistence or Bean Managed Persistence).

Stateful and Stateless Session Beans
A session bean is an EJB in which each instance of a session bean is created through its home
interface and is private to the client connection. The session bean instance cannot be easily
shared with other clients, this allows the session bean to maintain the client's state. The
relationship between the client and the session bean instance is one-to-one.

Stateful session beans maintain conversational state when used by a client. A conversational
state is not written to a database, it is a state kept in memory while a client uses a session.

Stateless session beans do not maintain any conversational state. Each method is independent,
and uses only data passed in its parameters.

Message Driven Beans
They are stateless, server side components with transactional behavior that process
asynchronous messages delivered via the Java Message Service (JMS). Applications use

CHAPTER 12: Working with Java

340 PowerDesigner

asynchronous messaging to communicate by exchanging messages that leave senders
independent from receivers.

EJB Properties
The EJB tab in the component property sheet provides additional properties.

Property Description

Remote home interface Defines methods and operations used in a remote client view. Ex-
tends the javax.ejb.EJBHome interface

Remote interface Provides the remote client view. Extends the javax.ejb.EJBObject
interface

Local home interface Defines methods and operations used locally in a local client view.
Extends the javax.ejb.EJBLocal-Home interface

Local interface Allows beans to be tightly coupled with their clients and to be di-
rectly accessed. Extends the javax.ejb.EJBLocalObject interface

Bean class Class implementing the bean business methods

Primary key class Class providing a pointer into the database. It is linked to the Bean
class. Only applicable to entity beans

Note: You can open the EJB page by right clicking the EJB component symbol, and selecting
EJB.

For more information on interface methods and implementation methods, see Understanding
operation synchronization on page 348.

Previewing the Component Code
You can see the relation between an EJB and its classes and interfaces from the Preview tab
without generating any file. To preview the code of an EJB, click the Preview tab in the
component property sheet (see Previewing Object Code on page 8). The various sub-tabs
show the code for each interface and class of the EJB. In the model or package property sheet,
the Preview page describes the EJB deployment descriptor file with the name of the generated
EJB and its methods.

Creating an EJB with the Wizard
You can create an EJB component with the wizard that will guide you through the creation of
the component. It is only available if the language is Java.

The wizard is invoked from a class diagram. You can either create an EJB without selecting
any class, or select a class first and start the wizard from the contextual menu of the class.

You can also create several EJBs of the same type by selecting several classes at the same time.
The wizard will automatically create one EJB per class. The classes you have selected in the
class diagram become the Bean classes. They are renamed to fit the naming conventions
standard, and they are linked to their component.

CHAPTER 12: Working with Java

Object-Oriented Modeling 341

If you have selected classes or interfaces before starting the wizard, they are automatically
linked to the new EJB component.

When an interface or a class is already stereotyped, like <<EJBEntity>> for example, it is
primarily used to be the interface or the class of the EJB.

For more information on stereotyped EJB interface or class, see section Defining Interfaces
and Classes for EJBs on page 344.

The EJB creation wizard lets you define the following parameters:

Property Description

Name Name of the EJB component

Code Code of the EJB component

Component type Entity Bean CMP, Entity Bean BMP, Message Driven Bean, Session
Bean Stateful, or Session Bean Stateless For more information on the
different types of EJB, see section Using EJB types on page 340

Bean class Class implementing the bean business methods

Remote interface Extends the javax.ejb.EJBObject interface and provides the remote
client view

Remote home interface Defines methods and operations used in a remote client view. It extends
the javax.ejb.EJBHome interface

Local interface Extends the javax.ejb.EJBLocalObject interface, and allows beans to be
tightly coupled with their clients and to be directly accessed

Local home interface Defines methods and operations used locally in a local client view. It
extends the javax.ejb.EJBLocal-Home interface

Primary key class Class providing a pointer into the database. It is only applicable to entity
beans

Transaction Defines what transaction support is used for the component. The trans-
action is important for distribution across a network on a server. The
transaction support value is displayed in the deployment descriptor.
This information is given by the deployment descriptor to the server
when generating the component

Create symbol Creates a component symbol in the diagram specified beside the Create
symbol In check box. If a component diagram already exists, you can
select one from the list. You can also display the diagram properties by
selecting the Properties tool

CHAPTER 12: Working with Java

342 PowerDesigner

Property Description

Create Class Diagram for
component classifiers

Creates a class diagram with a symbol for each class and interface. If
you have selected classes and interfaces before starting the wizard, they
are used to create the component. This option allows you to display
these classes and interfaces in a diagram

The Transaction support groupbox contains the following values, as per the Enterprise
JavaBeans 2.0 specification:

Transaction value Description

Not Supported The component does not support transaction, it does not need any
transaction and if there is one, it ignores it

Supports The component is awaiting a transaction, it uses it

Required If there is no transaction, one is created

Requires New The component needs a new transaction at creation, the server must
provide it with a new transaction

Mandatory If there is no transaction, an exception is thrown

Never There is no need for a transaction

The EJB deployment descriptor supports transaction type for each method: you can specify a
transaction type for each method of EJB remote and local interface.

You can define the transaction type for each method using an extended attribute from the
Profile/Operation/Extended Attributes/EJB folder of the Java object language. If the
transaction type of the operation is not specified (it is empty), the default transaction type
defined in the component is used instead.

1. Select Tools > Create Enterprise JavaBean from a class diagram to open the Enterprise
JavaBean Wizard dialog.

Note: If you have selected classes before starting the wizard, some of the following steps
may be omitted because the different names are created by default according to the names
of the selected classes.

2. Enter a name and code for the component and click Next.

3. Select the component type and click Next.

4. Select the Bean class name and click Next.

5. Select the remote interface and the remote home interface names and click Next.

6. Select the local interface and the local home interface names and click Next.

7. Select the primary key class name and click Next.

CHAPTER 12: Working with Java

Object-Oriented Modeling 343

8. Select the transaction support and click Next.

9. At the end of the wizard, you have to define the creation of symbols and diagrams.

When you have finished using the wizard, the following actions are executed:

• An EJB component is created
• Classes and interfaces are associated with the component, and any missing classes or

interfaces associated with the component are added
• Any diagrams associated with the component are created or updated
• Depending on the EJB type, the EJB primary key class, its interfaces and dependencies are

automatically created and visible in the Browser. In addition to this, all dependencies
between remote interfaces, local interfaces and the Bean class of the component are
created

• The EJB created is named after the original class if you have selected a class before starting
the wizard. Classes and interfaces are also prefixed after the original class name to
preserve coherence

Defining Interfaces and Classes for EJBs
An EJB comprises a number of specific interfaces and implementation classes. Interfaces of
an EJB are always exposed, you define a public interface and expose it. You can attach an
interface or class to only one EJB at a time.

EJB component interfaces are shown as circles linked to the EJB component side by an
horizontal or a vertical line:

Interfaces provide a remote view (Remote home interface Remote interface), or a local view
(Local home interface Local interface).

Classes have no symbol in the component diagram, but the relationship between the class and
the EJB component is visible from the Classes page of the EJB component property sheet, and
from the Components tabbed page in the Dependencies page of the class property sheet.

The following table displays the stereotypes used to automatically identify EJB interfaces and
classes:

Stereotype Describes

<<EJBRemoteHome>> The remote home interface

<<EJBRemote>> The remote interface

CHAPTER 12: Working with Java

344 PowerDesigner

Stereotype Describes

<<EJBLocalHome>> The local home interface

<<EJBLocal>> The local interface

<<EJBEntity>> The bean class of an entity bean

<<EJBSession>> The bean class of a session bean

<<EJBMessageDriven>> The bean class of a message driven bean

<<EJBPrimaryKey>> The primary key class of an entity bean

Template names are instantiated with respect to the corresponding component and assigned to
the newly created objects. If an unattached interface or class, matching a given name and
classifier type already exists in the model, it is automatically attached to the EJB.

1. Right-click the EJB component in the diagram and select EJB from the contextual menu.

The component property sheet opens to the EJB page. Interfaces and classes are created
and attached to the EJB.

You can use the Create tool beside the interface or the class name to recreate an interface or
a class if it is set to <None>.

2. Click the Properties button beside the interface or the class name box that you want to
define.

CHAPTER 12: Working with Java

Object-Oriented Modeling 345

The interface or the class property sheet is displayed.

3. Select properties as required.

The interfaces and classes definitions are added to the current EJB component definition.

Defining Operations for EJBs
You can create the following types of operations for an EJB from the property sheet of the
Bean class or EJB interfaces:

• EJB Business Method (local)
• EJB Business Method (remote)
• EJB Create Method (local)
• EJB Create Method (remote)
• EJB Finder Method (local)
• EJB Finder Method (remote)
• EJB Select Method

Note: You cannot create an operation from the Operations page of the component property
sheet as this page is only used to view the operations of the EJB component. You view
operations of an EJB from the Operations page in the component property sheet

Stereotypes
The following standard stereotypes, as defined for EJBs, are assigned to these operations:

• <<EJBCreateMethod>>
• <<EJBFinderMethod>>
• <<EJBSelectMethod>>

CMP Entity Beans
You can create the following operations for CMP Entity Beans only:

• EJB Create(...) Method (local)
• EJB Create(...) Method (remote)

When you create an EJB Create(...) Method (local), the method is created in the local home
interface with all the persistent attributes as parameters. When you create an EJB Create(...)
Method (remote), the method is created in the remote home interface with all the persistent
attributes as parameters.

Moreover, all linked methods ejbCreate(...) and ejbPostCreate(...) are created automatically in
the Bean class with all the persistent attributes as parameters. Parameters are synchronized
whenever a change is applied.

Note: If you need to modify the methods of an interface, you can do so from the Operations
page of the interface property sheet.

CHAPTER 12: Working with Java

346 PowerDesigner

Adding an Operation to the Bean Class
After creation of the Bean class, you may need to create a method that is missing at this stage of
the process, such as an internal method.

1. Double-click the Bean class to display its property sheet.

2. Click the Operations tab, then click a blank line in the list.

An arrow is displayed at the beginning of the line.

3. Double-click the arrow at the beginning of the line.

A confirmation box asks you to commit the object creation.

4. Click Yes.

The operation property sheet is displayed.

5. Type a name and code for your operation.

6. Click the Implementation tab to display the Implementation page.

The Implementation page opens to the Body tabbed page.

7. Add the method code in this page.

8. Click OK.

You return to the class property sheet.

9. Click the Preview tab to display the Preview page.

You can now validate the to-be-generated Java code for the Bean class.

10. Click OK.

Adding an Operation to an EJB Interface
You can add an operation to an EJB interface from the interface property sheet or from the
Bean class property sheet using the Add button in the Operations page.

When you add an operation to an interface, an implementation operation is automatically
created in the Bean class because the interface operation has a linked method. This ensures
operation synchronization (see Understanding Operation Synchronization on page 348).

1. Open the Bean class property sheet and click the Operations tab.

2. Click the Add... tool and select the required EJB operation from the list.

The requested operation is created at the end of the list of operations in the Bean class
property sheet, and you can also verify that the new operation is displayed in the interface
operation list.

CHAPTER 12: Working with Java

Object-Oriented Modeling 347

Understanding Operation Synchronization
Synchronization maintains the coherence of the whole model whenever a change is applied on
operations, attributes, and exceptions. Synchronization occurs progressively as the model is
modified.

Operation Synchronization
Synchronization occurs from interface to Bean class. Interface operations have linked
methods in the Bean class with name/code, return type and parameters synchronized with the
interface operation. When you add an operation to an interface, you can verify that the
corresponding linked method is created in the Bean class (it is grayed in the list). Whereas no
operation is created in an interface if you add an operation to a Bean class.

For example, double-click the Bean class of a component, click the Operations tab, click the
Add button at the bottom of the Operations page, and select EJB Create method (local):
PowerDesigner adds this operation to the interface and automatically creates the ejbCreate
and ejbPostCreate operations in the Bean class.

Exception Synchronization
Exceptions are synchronized from the Bean class to interfaces. The exception list of the home
interface create method is a superset of the union of the exception lists of the matching
ejbCreate and ejbPostCreate implementation operations in the bean class.

The interface exception attributes are thus updated whenever the exception list of the bean
class implementation method is modified.

Understanding EJB Support in an OOM
PowerDesigner simplifies the development process by transparently handling EJB concepts
and enforcing the EJB programming contract.

• Automatic initialization - When creating an EJB, the role of the initialization process is to
initialize classes and interfaces and their methods with respect to the EJB programming
contract. PowerDesigner automatically does this whenever a class or interface is attached
to an EJB

CHAPTER 12: Working with Java

348 PowerDesigner

• Synchronization - maintains the coherence of the whole model whenever a change is
applied:
• Operations - Synchronization occurs from interface to Bean class with linked methods

(Understanding Operation Synchronization on page 348).
• Exceptions - Synchronization occurs from Bean class to interface. (Understanding

Operation Synchronization on page 348).
• Primary identifier attribute - Synchronization occurs from Bean class to Primary key

class, when attribute is primary identifier in Bean class it is automatically migrated to
primary key class.

• Model checks: the Check Model feature validates a given model and complements
synchronization by offering auto-fixes. You can check your model at any time using the
Check Model feature from the Tools menu (see Chapter 9, Checking an OOM on page
281).

• Template based code generation - EJB-specific templates are available in the Profile/
Component/Templates category of the Java object language resource file. The generation
of EJB classes and interfaces creates the following inheritance links (for Entity beans
CMP):
• The local home interface inherits javax.ejb.EJBLocalHome
• The local interface inherits javax.ejb.EJBLocalObject
• The remote home interface inherits javax.ejb.EJBHome
• The remote interface inherits javax.ejb.EJBObject

CHAPTER 12: Working with Java

Object-Oriented Modeling 349

It creates the following realization links:
• The Primary key class implements java.io.Serializable
• The Bean class implements javax.ejb.EntityBean

CHAPTER 12: Working with Java

350 PowerDesigner

It transforms cmp-fields (attributes flagged as Persistent) and cmr-fields (attributes that
are migrated from associations)into getter and setter methods:

At a higher level, PowerDesigner supports different approaches to assist you in the component
development process including:

• Forward engineering: from an OOM to a PDM. It provides the ability to create and reverse
EJBs in a OOM, generate the corresponding PDM, O/R Mapping and generate code

• Reverse engineering: from a PDM (database) to an OOM. It provides the ability to create
and reverse tables in a PDM, generate corresponding classes, create EJB from given
classes and generate code

Previewing the EJB Deployment Descriptor
An EJB deployment descriptor describes the structure and properties of one or more EJBs in
an XML file format. It is used for deploying the EJB in the application server. It declares the
properties of EJBs, the relationships and the dependencies between EJBs. One deployment
descriptor is automatically generated per package or model, it describes all EJBs defined in the
package.

The role of the deployment descriptor, as part of the whole process is shown in the following
figure:

CHAPTER 12: Working with Java

Object-Oriented Modeling 351

The EJB deployment descriptor and the compiled Java classes of the EJBs should be packaged
in a JAR file.

The EJB deployment tool of the application server imports the Java classes from the JAR file
and configures the EJBs in the application server based on the description of EJBs contained in
the EJB deployment descriptor.

You can see the deployment descriptor from the Preview page of the package or model
property sheet.

You can customize the EJB deployment descriptor by modifying the templates in the Java
object language.

For more information on customizing the object language, see Customizing and Extending
PowerDesigner > Object, Process, and XML Language Definition Files.

1. Right-click the model in the Browser and select Properties to open the model property
sheet.

2. Click the Preview tab.

CHAPTER 12: Working with Java

352 PowerDesigner

Generating EJBs
The EJB generation process allows you to generate EJB source code that is compliant with
J2EE 1.3 (EJB 2.0). The code generator (Java, EJB, XML, etc...) is based on templates and
macros. You can customize the generated code by editing the Java object language from Tools
> Resources > Object Languages.

The following picture illustrates the overall EJB development process.

CHAPTER 12: Working with Java

Object-Oriented Modeling 353

The following picture focuses on the PowerDesigner part, and highlights the role of O/R
Mapping generation. The O/R mapping can be created when generating a PDM from an OOM
or generating an OOM from a PDM.

For more information on object mapping, see Chapter 22, Object/Relational (O/R) Mapping
on page 519.

What Kind of Generation to Use?
You may face two situations when generating EJB source code:

• You have no database
• You already have a database

You want to generate EJB source code when creating a database. If there is no database, the
development process is the following:

• Define persistent objects in the class diagram, and define EJBs in the component diagram
• Generate the Physical Data Model, with creation of an O/R Mapping during generation
• Create the database
• Generate EJB source code and deployment descriptor for deployment in the application

server

CHAPTER 12: Working with Java

354 PowerDesigner

You want to generate EJB source code for an existing database. If the database already exists,
you may want to wrap the existing database into EJBs and use EJBs to access the database.The
development process is the following:

• Reverse engineer the PDM into an OOM, and retrieve the O/R mapping generated during
reverse

• Define EJBs in the OOM based on persistent classes
• Generate the EJB source code and deployment descriptor for deployment in the

application server

CHAPTER 12: Working with Java

Object-Oriented Modeling 355

You can also use generation of EJB source code when managing persistence of EJBs with an
existing database. For example, it may be necessary to manage the persistence of an already
defined EJB with an existing database. Since you cannot change the definition of EJB nor the
database schema, you need a manual object to relational mapping in this case.

For more information on object mapping, see Chapter 22, Object/Relational (O/R) Mapping
on page 519.

Understanding EJB Source and Persistence
You generate persistence management methods based on the object language.

Depending if the EJB is of a CMP or BMP type, the deployment descriptor file is displayed
different:

• A CMP involves the application server. It includes the EJB and the O/R mapping
descriptor (.XML). The server retrieves both EJB and O/R mapping descriptor to generate
the code
If the application server does not support an O/R Mapping descriptor, the mapping must be
done manually. If the O/R mapping descriptor of your application server is not supported
yet, you can create your own by creating a new extension file. For detailed information
about working with extension files, see Customizing and Extending PowerDesigner >
Extension Files.

• A BMP involves a manual process. It includes the EJB source, without any O/R mapping
descriptor (O/R mapping is not necessary). The BMP developer should implement the
persistence management him/herself by implementing the ejbStore(), and ejbLoad()
methods, the application server only supports its functions. An implementation class

CHAPTER 12: Working with Java

356 PowerDesigner

inherits from the BMP Bean class, handles persistence data and communicates with the
database

• You can also define an EJB as CMP, then generate it as BMP when generating the code.
The code generator generates an implementation class (sub-class) for the Bean class that
contains its methods, and uses an O/R mapping and a persistent template to implement the
persistence

For more information on defining O/R mapping, see Chapter 22, Object/Relational (O/R)
Mapping on page 519.

You can use different methods to generate an EJB CMP into an EJB BMP. You can either copy
the Java object language delivered in PowerDesigner as a reference to a new object language,
and describe how to generate implementation classes of the EJB CMP in your own object
language, or you can create an extension file that includes these implementation classes.

You could also write a VB script to convert the EJB CMP into an EJB BMP. To do this, you
must generate the EJB as CMP, then launch the VB script that will go through all objects of the
model and generate an implementation class for each identified class.

Generating EJB Source Code and the Deployment Descriptor
When generating an EJB, classes and interfaces of the EJB are directly selected. The
generation retrieves the classes used by the component, as well as the interfaces associated
with the classes.

1. Select Language > Generate Java Code to open the Generation dialog.

2. Enter the directory in which you want to generate the Java files.

3. [optional] Click the Selection tab and select the objects that you want to generate. By
default, all objects are generated.

4. [optional] Click the Options tab and select any appropriate generation options (see
Generating Java Files on page 382).

5. [optional] Click the Tasks tab and select any appropriate task to perform during generation
(see Generating Java Files on page 382).

6. Click OK to begin generation.

CHAPTER 12: Working with Java

Object-Oriented Modeling 357

A progress box is displayed, followed by a Result list. You can use the Edit button in the
Result list to edit the generated files individually.

7. Click Close.

The ejb-jar.xml deployment descriptor is created in the META-INF directory and all files
are generated in the generation directory.

Generating JARs
In order to package the EJB, the bean classes, interfaces and the deployment descriptor are
placed into a .JAR file. This process is common to all EJB components.

You can generate .JAR files from the Tasks page of the Generation dialog box (Language >
Generate Java Code).

For example, one of the task allows you to compile .JAVA files using a compiler, to create
a .JAR file including the compiled Java classes, and to complete the .JAR file with the
deployment descriptor and icons.

Warning! You must set the values of the commands used during generation from the Variables
section of the General Options dialog box in order to enable them. For example, you can set the
javac.exe and jar.exe executables at this location.

For more information on how to set these variables, see Core Features Guide > Modeling with
PowerDesigner > Customizing Your Modeling Environment > General Options >
Environment Variables.

CHAPTER 12: Working with Java

358 PowerDesigner

There is no constraint over the generation of one JAR per package. Only packages with the
<<archive>> stereotype will generate a JAR when they (or one of their descendant package
not stereotyped <<archive>>) contain one EJB.

The newly created archive contains the package and all of its non-stereotyped descendants.
The root package (that is the model) is always considered as being stereotyped <<archive>>.

For example, if a model contains several EJB components in different sub-packages but that
none of these packages is stereotyped <<archive>>, a single JAR is created encompassing all
packages.

Reverse Engineering EJB Components
PowerDesigner can reverse engineer EJB components located in .JAR files.

1. Select Language > Reverse Engineer Java to open the Reverse Engineer Java dialog.

2. On the Selection tab, select Archives from the Reverse list.

3. Click the Add button, navigate to and select the objects that you want to reverse, and then
click Open to add them to the list.

4. Click the Options tab and select the Reverse Engineer Deployment Descriptor check
box.

5. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

CHAPTER 12: Working with Java

Object-Oriented Modeling 359

6. Click OK.

The Reverse page of the Output window displays the changes that occurred during reverse
and the diagram window displays the updated model.

Enterprise Java Beans (EJBs) V3
The specification for EJB 3.0 attempts to simplify the complexity of the EJB 2.1 architecture
by decreasing the number of programming artefacts that developers need to provide,
minimizing the number of required callback methods and reducing the complexity of the
entity bean programming model and the O/R mapping model.

The two most significant changes in the proposed EJB 3.0 specification are:

• An annotation-based EJB programming model - all kinds of enterprise beans are just plain
old Java objects (POJOs) with appropriate annotations. A configuration-by-exception
approach uses intuitive defaults to infer most common parameters. Annotations are used to
define the bean's business interface, O/R mappings, resource references, and other
information previously defined through deployment descriptors or interfaces.
Deployment descriptors are not required; the home interface is gone, and it is no longer
necessary to implement a business interface (the container can generate it for you).
For example, you declare a stateless session bean by using the @Stateless annotation. For
stateful beans, the @Remove annotation is marked on a particular method to indicate that
the bean instance should be removed after a call to the marked method completes.

• The new persistence model for entity beans - The new entity beans are also just POJOs
with a few annotations and are not persistent entities by birth. An entity instance becomes
persistent once it is associated with an EntityManager and becomes part of a persistence
context, which is loosely synonymous with a transaction context and implicitly coexists
with a transaction's scope.
The entity relationships and O/R mapping is defined through annotations, using the open
source Hibernate framework (see Chapter 23, Generating Persistent Objects for Java and
JSF Pages on page 549).

There are also several side effects to these proposals, such as a new client-programming
model, use of business interfaces, and an entity bean life cycle.

Note: The EJB 2.1 programming model (with deployment descriptors and home/remote
interfaces) is still valid and supported by PowerDesigner. The new simplified model, which is
only available with Java 5.0, does not entirely replace the EJB 2.1 model.

Creating an EJB 3.0 with the Enterprise JavaBean Wizard
To create an EJB3, launch the Enterprise JavaBean Wizard from a class diagram.

The following types of EJB3 beans are available:

CHAPTER 12: Working with Java

360 PowerDesigner

• Entity Bean – generated with an @Entity annotation
• Message Driven Bean – generated with a @MessageDriven annotation
• Stateful Session Bean – generated with an @Stateful annotation
• Stateless Session Bean – generated with an @Stateless annotation

1. If you have already created a class to serve as the BeanClass, then right click it and select
Create Enterprise JavaBean from the contextual menu. Otherwise, to create an EJB 3.0
along with a new BeanClass, Select Tools > Create Enterprise JavaBean. In either case,
the Enterprise JavaBean Wizard opens:

2. Specify a name for the EJB, and then click Next to go to the next screen:

CHAPTER 12: Working with Java

Object-Oriented Modeling 361

3. Choose a type of EJB3, and then click Next to go to the next screen:

4. Choose a Bean Class. If you have not selected a class before launching the wizard, a default
class with the same name as the component will be suggested. Otherwise the original class
will be selected. Then click Next to go to the next screen:

CHAPTER 12: Working with Java

362 PowerDesigner

5. Choose the desired level of transaction support, and then click Next to go to the next
screen:

6. Select the appropriate checkboxes if you want to create diagrams for the component and/or
the component classifiers, and then click Finish to instruct PowerDesigner to create them.

CHAPTER 12: Working with Java

Object-Oriented Modeling 363

EJB 3.0 BeanClass Properties
A BeanClass is the primary class contained within an EJB 3.0 component. EJB 3.0 BeanClass
property sheets contain all the standard class tabs along with the EJB3 tab.

The EJB3 tab contains the following properties:

Property Description

Transaction Management Specifies the method of transaction management for a Session Bean or
a Message Driven Bean. You can choose between:

• Bean
• Container

Generated as a @TransactionManagement annotation.

Transaction Attribute Type Transaction Attribute Type for the Bean Class

Specifies the transaction attribute type for a Session Bean or a Message
Driven Bean. You can choose between:

• Not Supported
• Supports
• Required
• Requires New
• Mandatory
• Never

Generated as a @TransactionAttribute annotation.

Exclude Default Intercep-
tors

Specifies that the invocation of default interceptor methods is exclu-
ded.

Generated as a @ExcludeDefaultInterceptors annotation.

Exclude Superclass Listen-
ers

Specifies that the invocation of superclass listener methods is exclu-
ded.

Generated as a @ExcludeSuperclassListeners annotation.

Mapped Name Specifies a product specific name.

Generated as a @MappedName annotation.

Run-As Specifies the bean's run-as property (security role).

Generated as a @RunAs annotation.

Declare Roles Specifies references to security roles.

Generated as a @DeclareRoles annotation.

CHAPTER 12: Working with Java

364 PowerDesigner

Property Description

Roles Allowed Specifies the roles allowed for all bean methods.

Generated as a @RolesAllowed annotation.

Permit All Specifies that all roles are allowed for all bean business methods.

Generated as a @PermitAll annotation.

EJB 3.0 Component Properties
EJB 3.0 component property sheets contain all the standard component tabs along with the
EJB tab.

The EJB tab contains the following properties:

Property Description

Bean class Specifies the associated bean class.

Remote home interface [session beans only] Specifies an optional remote home interface (for
earlier EJB clients).

Local home interface [session beans only] Specifies the local home interface (for earlier EJB
clients).

Adding Further Interfaces and Classes to the EJB
In addition to the bean class and remote and home interfaces defined on the EJB tab, you can
link supplementary classes and interfaces to the EJB3.

You can link the following supplementary classes and interfaces to the EJB3:

• An optional collection of remote interfaces with <<EJBRemote>> stereotypes. Generated
as a @Remote annotation.

• An optional collection of local interfaces with <<EJBLocal>> stereotypes. Generated as a
@Local annotation.

• An optional collection of interceptor classes with <<EJBInterceptor>> stereotypes.
Generated as an @Interceptors annotation.

• An optional collection of entity listener classes with <<EJBEntityListener>> stereotypes.
Generated as an @EntityListeners annotation.

You add these interfaces and classes to the EJB3 component via the Interfaces and Classes
tabs. For example, you can add an <<EJBInterceptor>> Interface to an EJB3:

1. Open the property sheet of the EJB3 and click the Interfaces tab.

2. Click the Create a New Object tool to create a new interface and open its property sheet.

3. On the General tab, select <<EJBInterceptor>> from the list of stereotypes.

CHAPTER 12: Working with Java

Object-Oriented Modeling 365

4. Complete the remaining properties as required and then click OK to return to the EJB3
property sheet.

EJB 3.0 Operation Properties
EJB operation 3.0 property sheets contain all the standard operation tabs along with the EJB3
tab.

The EJB3 tab contains the following properties:

Property Description

Initialize Method Specifies an initialize method.

Generated as a @Init annotation.

Remove Method Specifies an remove method.

Generated as a @Remove annotation.

Post-Construct Specifies a post construct method.

Generated as a @PostConstruct annotation.

Post-Activate Specifies a post activate method.

Generated as a @PostActivate annotation.

Pre-Passivate Specifies a pre passivate method.

Generated as a @PrePassivate annotation.

Pre-Destroy Specifies a pre destroy method.

Generated as a @PreDestroy annotation.

Interceptor Method Specifies an interceptor method.

Generated as a @AroundInvoke annotation.

Timeout Method Specifies a timeout method.

Generated as a @Timeout annotation.

Exclude Default Intercep-
tors

Excludes invocation of default interceptor for the method.

Generated as a @ExcludeDefaultInterceptors annotation.

Exclude Class Interceptors Excludes invocation of class-level interceptors for the method.

Generated as a @ExcludeClassInterceptors annotation.

Transaction Attribute Type Specifies a Transaction Attribute Type for the method.

Generated as a @TransactionAttribute annotation.

Permit All Roles Specifies that all roles are permitted for the method.

Generated as a @PermitAll annotation.

CHAPTER 12: Working with Java

366 PowerDesigner

Property Description

Deny All Roles Specifies that method may not be invoked by any security role.

Generated as a @DenyAll annotation.

Roles Allowed Specifies the roles allowed for the method.

Generated as a @RolesAllowed annotation.

Java Servlets
Servlets are programs that help in building applications that generate dynamic Web pages
(HTML, XML). Servlets are a Java-equivalent of the CGI scripts and can be thought of as a
server-side counterpart to the client-side Java applets.

Servlets are Java classes that implement a specific interface and produce HTML in response to
GET/POST requests.

In an OOM, a servlet is represented as a component, it is linked to a servlet class that
implements the required interface and provides the servlet implementation.

When you set the type of the component to Servlet, the appropriate servlet class is
automatically created, or attached if it already exists. The servlet class is initialized so that
operations are automatically added.

Servlet Page of the Component
When you set the type of the component to Servlet, the Servlet page is automatically displayed
in the component property sheet.

The Servlet page in the component property sheet includes the following properties:

Property Description

Servlet class Class that implements the required interface. You can click the Properties tool
beside this box to display the property sheet of the class, or click the Create tool to
create a class

Servlet type HttpServlet supports the http protocol, it is the most commonly used. Generi-
cServlet extends the servlet generic class. User-defined implies some customi-
zation as it does not implement anything. The methods vary if you change the
servlet type value

CHAPTER 12: Working with Java

Object-Oriented Modeling 367

Defining Servlet Classes
Servlet classes are identified using the <<ServletClass>> stereotype.

The servlet class name is synchronized with the component name following the convention
specified in the Value box of the Settings/Namings/ServletClassName entry in the Java object
language.

Creating a Servlet with the Wizard
You can create a servlet with the wizard that will guide you through the creation of the
component. The wizard is invoked from a class diagram. It is only available if the language is
Java.

You can either create a servlet without selecting any class, or select a class beforehand and
start the wizard from the contextual menu of the class.

You can also create several servlets of the same type by selecting several classes at the same
time. The wizard will automatically create one servlet per class. The classes you have selected
in the class diagram become servlet classes. They are renamed to fit the naming conventions
standard, and they are linked to the new servlet component.

The wizard for creation of a servlet lets you define the following parameters:

Wizard page Description

Name Name of the servlet component

Code Code of the servlet component

Servlet type You can select the following types: HttpServlet that supports the http
protocol (most commonly used), GenericServlet that extends the serv-
let generic class, or user-defined that implies some customization as it
does not implement anything

Servlet class Class that provides the Servlet implementation.

Create symbol Creates a component symbol in the diagram specified beside the Create
symbol In check box. If a component diagram already exists, you can
select one from the list. You can also display the diagram properties by
selecting the Properties tool

Create Class Diagram for
component classifiers

Creates a class diagram with a symbol for each class. If you have
selected classes before starting the wizard, they are used to create the
component. This option allows you to display these classes in a diagram

1. Select Tools > Create Servlet from a class diagram.

The Java Servlet Wizard dialog box is displayed.

CHAPTER 12: Working with Java

368 PowerDesigner

Note: If you have selected classes before starting the wizard, some of the following steps
are omitted because the different names are created by default according to the names of
the selected classes.

2. Select a name and code for the servlet component and click Next.

3. Select a servlet type and click Next.

4. Select the servlet class name and click Next.

5. At the end of the wizard, you have to define the creation of symbols and diagrams.

When you have finished using the wizard, the following actions are executed:

• A servlet component is created
• The servlet class is created and visible in the Browser. It is named after the original class if

you have selected a class before starting the wizard
• If you have not selected a class beforehand, it is prefixed after the original default

component name to preserve coherence
• Any diagrams associated with the component are created or updated

Understanding Servlet Initialization and Synchronization
When creating a servlet, the initialization process instantiates the servlet class together with its
methods.

The role of the synchronization is to maintain the coherence of the whole model whenever a
change is applied. It occurs progressively between classes already attached to a component.
PowerDesigner successively performs several actions to complete synchronization as the
model is modified.

CHAPTER 12: Working with Java

Object-Oriented Modeling 369

The initialization and synchronization of the servlet class works in a similar way as with
Message Driven bean classes:

• When the servlet class is attached to a servlet component, implementation methods for
operations defined in the javax.servlet.Servlet interface are added by default. This
interface is the base interface for all servlets, it may be included in the code depending on
the servlet type selected. For HttpServlet and GenericServlet, the servlet class being
directly derived from a class that implements it, it does not need to reimplement the
interface. On the contrary, for user-defined servlets, this interface is implemented. You can
see it from the Preview page of the servlet class.

• Implementation methods are removed when the class is detached if their body has not been
altered

• The actual set of predefined methods vary depending on the servlet type

You can use the Check Model feature at any time to validate your model and complement the
synchronization by selecting Tools > Check Model.

Generating Servlets
The generation process retrieves all classes used by the servlet components to generate the
servlets.

1. Select Language > Generate Java Code to display the Generation dialog box.

2. Select or browse to a directory that will contain the generated files.

3. Click the Selection tab, then select the objects you need in the different tabbed pages.

CHAPTER 12: Working with Java

370 PowerDesigner

4. Click Apply.

5. Click the Options tab, specify your generation options.

CHAPTER 12: Working with Java

Object-Oriented Modeling 371

For more information on the generation options, see Generating Java Files on page 382.

6. Click Apply.

7. Click the Tasks tab, then select the commands you want to perform during generation.

For more information on the generation tasks, see Generating Java Files on page 382.

You must beforehand set your environment variables from Tools > General Options >
Variables in order to activate them in this page.

For more information on how to set these variables, see Core Features Guide > Modeling
with PowerDesigner > Customizing Your Modeling Environment > General Options >
Environment Variables.

8. Click OK.

A progress box is displayed, followed by a Result list. You can use the Edit button in the
Result list to edit the generated files individually.

9. Click Close.

The web.XML file is created in the WEB-INF directory and all files are generated in the
generation directory.

CHAPTER 12: Working with Java

372 PowerDesigner

Generating Servlet Web Deployment Descriptor
The Web deployment descriptor is an XML file, called web.XML. It is generated in the WEB-
INF directory and is independent from the application server.

For more information on generating the Web deployment descriptor, see Generating servlets
on page 370.

The Web application deployment descriptor is generated per package. A WAR command
available in the Tasks page of the Generation dialog box allows you to build a Web Archive
that contains the Web deployment descriptor, in addition to all classes and interfaces
referenced by servlet components. At the model level, an EAR command is also provided to
group all WAR and JAR files generated for a given model inside a single enterprise archive.
The EAR contains an additional deployment descriptor generated per model that is called
application.XML.

The Web deployment descriptor contains several servlets to be deployed, it is available from
the Preview page of the package, or the model property sheet.

Generating WARs
You can package servlets and JSPs into a .WAR file.

You can generate .WAR files from the Tasks page of the Generation dialog box (Language >
Generate Java Code).

CHAPTER 12: Working with Java

Object-Oriented Modeling 373

There is no constraint over the generation of one WAR per package. Only packages with the
<<archive>> stereotype will generate a WAR when they (or one of their descendant package
not stereotyped <<archive>>) contain one servlet, or one JSP.

The newly created archive contains the package and all of its non-stereotyped descendants.
The root package (that is the model) is always considered as being stereotyped <<archive>>.

For example, if a model contains several Web components in different sub-packages but that
none of these packages is stereotyped <<archive>>, a single WAR is created encompassing all
packages.

For more information on generating WARs, see Generating Java Files on page 382.

Reverse Engineering Servlets
You can reverse engineer servlet code and deployment descriptor into an OOM. The reverse
engineering feature reverses the Java class as a servlet class, it reverses the servlet as a
component, and associates the servlet class with this component. The reverse engineering
feature also reverses the deployment descriptor and all the files inside the WAR.

You start reverse engineering servlet from Language > Reverse Engineer Java.

Select one of the following Java formats from the Selection page, and select the Reverse
Engineer Deployment Descriptor check box from the Options page:

• Java directories
• Class directories
• Archive (.JAR file)

For more information on the Java formats, see Reverse Engineering Java Code on page
386.

CHAPTER 12: Working with Java

374 PowerDesigner

1. Select Language > Reverse Engineer Java.

The Reverse Java dialog box is displayed.

2. Select Archive from the Reverse list in the Selection page.

3. Click the Add button.

A standard Open dialog box is displayed.

4. Select the items you want to reverse and click Open.

The Reverse Java dialog box displays the items you selected.

5. Click the Options tab , then select the Reverse Engineer Deployment Descriptor check
box.

6. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

7. Click OK.

The Reverse page of the Output window displays the changes that occurred during reverse
and the diagram window displays the updated model.

CHAPTER 12: Working with Java

Object-Oriented Modeling 375

Java Server Pages (JSPs)
Java Server Page (JSP) is an HTML Web page that contains additional bits of code that execute
application logic to generate dynamic content.

In an OOM, a JSP is represented as a file object and is linked to a component - of type JSP -.
The Java Server Page (JSP) component type allows you to identify this component.
Components of this type are linked to a single file object that defines the page.

When you set the type of the component to JSP, the appropriate JSP file object is automatically
created, or attached if it already exists. You can see the JSP file object from the Files page in the
component property sheet.

JSP Page of the Component
When you set the type of the component to JSP, the JSP page is automatically displayed in the
component property sheet.

The JSP page in the component property sheet includes the following properties:

Property Description

JSP file File object that defines the page. You can click the Properties tool beside this box
to display the property sheet of the file object, or click the Create tool to create a
file object

Default template Extended attribute that allows you to select a template for generation. Its content
can be user defined or delivered by default

To modify the default content, edit the current object language from Language > Edit
Current Object Language and modify the following item: Profile/FileObject/Criteria/JSP/
Templates/DefaultContent<%is(DefaultTemplate)%>. Then create the templates and rename
them as DefaultContent<%is(<name>)%> where <name> stands for the corresponding
DefaultContent template name.

To define additional DefaultContent templates for JSPs, you have to modify the JSPTemplate
extended attribute type from Profile/Share/Extended Attribute Types and add new values
corresponding to the new templates respective names.

For more information on the default template property, see the definition of TemplateContent
in Creating a JSP with the Wizard on page 377.

Defining File Objects for JSPs
The file object content for JSPs is based on a special template called DefaultContent defined
with respect to the FileObject metaclass. It is located in the Profile/FileObject/Criteria/JSP/
Templates category of the Java object language. This link to the template exists as a basis,

CHAPTER 12: Working with Java

376 PowerDesigner

therefore if you edit the file object, the link to the template is lost - the mechanism is similar to
that of operation default bodies.

For more information on the Criteria category, see Customizing and Extending
PowerDesigner > Extension Files > Criteria (Profile).

Java Server Page files are identified using the JSPFile stereotype. The server page name is
synchronized with the JSP component name following the convention specified in the Value
box of the Settings/Namings/JSPFileName entry of the Java object language.

You can right-click a file object, and select Open With > text editor from the contextual menu
to display the content of the file object.

Creating a JSP with the Wizard
You can create a JSP with the wizard that will guide you through the creation of the
component. The wizard is invoked from a class diagram. It is only available if the language is
Java.

You can either create a JSP without selecting any file object, or select a file object beforehand
and start the wizard from the Tools menu.

You can also create several JSP of the same type by selecting several file objects at the same
time. The wizard will automatically create one JSP per file object: the file objects you have
selected in the class diagram become .JSP files.

1. Select Tools > Create JSP from a class diagram.

2. Select a name and code for the JSP component and click Next.

CHAPTER 12: Working with Java

Object-Oriented Modeling 377

3. Select the default template of the JSP file object. TemplateContent is an extended
attribute located in the Profile/Component/Criteria/J2EE-JSP category of
the Java object language. If you do not modify the content of the file object, the default
content remains. All templates are available in the Profile/FileObject/Criteria/JSP/
templates category of the Java object language.

4. Click Next to go to the final page of the wizard, where you can select Create symbol to
create a component symbol in the specified diagram.

When you have finished using the wizard, the following actions are executed:

• A JSP component and a file object with an extension .JSP are created and visible in the
Browser. The file object is named after the original default component name to preserve
coherence

• If you open the property sheet of the file object, you can see that the Artifact property is
selected
For more information on artifact file objects, see File Object Properties on page 222.

• You can edit the file object directly in the internal editor of PowerDesigner, if its extension
corresponds to an extension defined in the Editors page of the General Options dialog box,
and if the <internal> keyword is defined in the Editor Name and Editor Command columns
for this extension

Generating JSPs
The generation process generates only file objects with the Artifact property selected.

Generating JSP Web Deployment Descriptor
The Web deployment descriptor is an XML file, called web.XML. It is generated in the WEB-
INF directory and is independent from the application server.

The Web application deployment descriptor is generated per package. A WAR command
available in the Tasks page of the Generation dialog box allows you to build a Web Archive
that contains the Web deployment descriptor, in addition to all classes and file objects
referenced by JSP components. At the model level, an EAR command is also provided to
group all WAR and JAR files generated for a given model inside a single enterprise archive.
The EAR contains an additional deployment descriptor generated per model that is called
application.XML.

The Web deployment descriptor is available from the Preview page of the package, or the
model property sheet.

1. Select Language > Generate Java Code to display the Generation dialog box.

2. Select or browse to a directory that will contain the generated files.

3. Click the Selection, then select the objects you need in the different tabbed pages.

CHAPTER 12: Working with Java

378 PowerDesigner

4. Click Apply.

5. Click the Options tab, then specify your generation options in the Options page.

CHAPTER 12: Working with Java

Object-Oriented Modeling 379

For more information on the generation options, see Generating Java Files on page 382.

6. Click Apply.

7. Click the Tasks tab to display, then select the commands you want to perform during
generation in the Tasks page.

For more information on the generation tasks, see Generating Java Files on page 382.

You must beforehand set the environment variables from the Variabes tab of the General
Options diaog box in order to activate them in this page.

For more information on how to set these variables, see Core Features Guide > Modeling
with PowerDesigner > Customizing Your Modeling Environment > General Options >
Environment Variables.

8. Click OK.

A progress box is displayed, followed by a Result list. You can use the Edit button in the
Result list to edit the generated files individually.

9. Click Close.

The web.XML file is created in the WEB-INF directory and all files are generated in the
generation directory.

CHAPTER 12: Working with Java

380 PowerDesigner

Reverse Engineering JSPs
You can reverse engineer JSPs code and deployment descriptor into an OOM. The reverse
engineering feature reverses the files to create JSP components and reverses the deployment
descriptor inside the WAR.

You start reverse engineering JSPs from Language > Reverse Engineer Java. Select one of
the following Java formats from the Selection page, and select the Reverse Engineer
Deployment Descriptor check box from the Options page:

• Java directories
• Class directories
• Archive (.JAR file)

For more information on the Java formats, see Reverse Engineering Java Code on page
386.

1. Select Language > Reverse Engineer Java.

The Reverse Java dialog box is displayed.

2. Select Archive from the Reverse list in the Selection page.

3. Click the Add button.

A standard Open dialog box is displayed.

4. Select the items you want to reverse and click Open.

The Reverse Java dialog box displays the items you selected.

5. Click the Options tab, then select the Reverse Engineer Deployment Descriptor check
box.

CHAPTER 12: Working with Java

Object-Oriented Modeling 381

6. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

7. Click OK.

The Reverse page of the Output window displays the changes that occurred during reverse
and the diagram window displays the updated model.

Generating Java Files
You generate Java source files from the classes and interfaces of a model. A separate file, with
the file extension .java, is generated for each class or interface that you select from the model,
along with a generation log file. You can only generate Java files from one model at a time.

The following PowerDesigner variables are used in the generation of Java source files:

CHAPTER 12: Working with Java

382 PowerDesigner

Variable Description Default

J2EEVERIF Batch program for verifying if the deployment
jar for an EJB is correct

verifier.bat

JAR Command for archiving java files jar.exe

JAVA Command for running JAVA programs java.exe

JAVAC Command for compiling JAVA source files javac.exe

JAVADOC Command for defining JAVA doc comments javadoc.exe

To review or edit these variables, select Tools > General Options and click the Variables
category. For example, you could add the JAVACLASSPATH variable in this table in order to
override your system's CLASSPATH environment variable.

1. Select Language > Generate Java Code to open the Java Generation dialog.

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

5. [optional] Click the Options tab and set any appropriate generation options:

Option Description

Java: Sort class members
primarily by

Sorts attributes and operations by:
• Visibility- [default] Public attributes and operations are gen-

erated before private ones
• Type - Attributes and operations are sorted by type whatever

their visibility

Java: Class members type
sort

Sorts attributes and operations in the order:
• Attributes – Operations - Attributes are generated before the

operations
• Operations – Attributes - Operations are generated before the

attributes

Java: Class members visibil-
ity sort

Sorts attributes and operations in the order:
• Public – Private - Public attributes and operations are gener-

ated before private ones
• Private – Public - Private attributes and operations are gener-

ated before public attributes and operations
• None - Attributes and operations order remains unchanged

CHAPTER 12: Working with Java

Object-Oriented Modeling 383

Option Description

Java: Generate package im-
ports

When a class is used by another class, it is referenced by a class
import:

import package1.package2.class.
This options allows you to declare import of the whole package,
and saves time whenever many classes of the same package are
referenced:

import package1.package2.*;

Java: Generate object ids as
JavaDoc tags

Generates information used for reverse engineering like object
identifiers (@pdoid) that are generated as documentation tags. If
you do not want these tags to be generated, you have to set this
option to False

Java: Generate default ac-
cessors for navigable asso-
ciations

Generates the getter and setter methods for navigable associations

Ant: Generate Ant build.xml
file

Generates the build.xml file. You can use this file if you have
installed Ant

EJB: Generate CMP field
accessors in component in-
terfaces

Generates CMP fields getter and setter operations to EJB interfa-
ces

EJB: Generate CMR field
accessors in component in-
terfaces

Generates CMR fields getter and setter declarations in EJB inter-
faces

EJB: Add Java classes
source code in the JAR file

Includes Java classes code in the JAR

EJB: Generate value object
class and associated naviga-
tion methods for CMP Enti-
ty Beans

Generates an additional class named %Component.Code%Val-
ueObject for each CMP bean class and declares all the CMP fields
as public attributes. In addition, a getter and a setter are generated
in the bean class for each CMR relationship

J2EE: Jar Web component
classes

Archives Web component classes in a Jar

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

CHAPTER 12: Working with Java

384 PowerDesigner

7. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

Task Description

Java: Compile Java sources Starts a compiler using the javac command to compile Java source
files.

Java: Package compiled
classes in a JAR file

Compiles source files and package them in a JAR file

Java: Run Java application Compiles source files and run the Java application using the java
command

Java: Generate Javadoc Generates Javadoc

Java: Package J2EE applica-
tion in an EAR file

Calls commands for building EJB component source, creating a
JAR file for Java classes and a deployment descriptor, building the
Web component source code, creating an EAR file for Web com-
ponent classes and a deployment descriptor, and creating an EAR
archive containing all generated JAR/WAR files

Java: Run J2EE verifier Calls commands for building EJB component source code, creat-
ing a JAR file for Java classes and a deployment descriptor, build-
ing the Web component source code, creating a WAR file for Web
component classes and a deployment descriptor, creating an EAR
archive containing all generated JAR/WAR files, and running the
J2EE verifier on generated archives

WSDL: Compile and pack-
age Web Service server-side
code into an archive

Calls commands for building EJB and Web component source
code, running the WSCompile tool, creating a WAR file for Web
component classes and deployment descriptor, and creating a JAR
file for Java classes and deployment descriptor

WSDL: Compile and pack-
age Web Service client
proxy into an archive

Calls commands for building EJB and Web component source
code, running the WSCompile tool, and creating a WAR file for
client-side artifacts

Note: Packages with the <<archive>> stereotype will generate a JAR (when they or one of
their descendant packages not stereotyped <<archive>> contain one EJB) or a WAR
(when they contain a servlet or JSP). Each archive contains the package and all of its non-
stereotyped descendants. The model acts as the root package and is considered to be
stereotyped <<archive>>.

CHAPTER 12: Working with Java

Object-Oriented Modeling 385

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Reverse Engineering Java Code
You can reverse engineer files that contain Java classes into an OOM. For each existing class in
a Java file, a corresponding class is created in the OOM, with the same name and containing
the same information.

When you reverse engineer a Java class that already exists in a model, a Merge Model window
will open, allowing you to specify whether to replace existing classes, or to retain the existing
class definitions in the model.

1. Select Language > Reverse Engineer Java. to open the Reverse Engineer Java dialog
box:

CHAPTER 12: Working with Java

386 PowerDesigner

2. Select one of the following file formats from the Reverse engineer list:

• Java files (.java) - Files contains one or several class definitions.
• Java directories - Folders containing Java files. All the .java files, including those

contained in sub-directories will be reverse engineered. Each sub-directory becomes a
package within the model. As Java files in the same directory are often interdependent,
if you do not reverse engineer all the files in the directory, your model may be
incomplete.

• Class files (.class) – Compiled files containing the definition of a single class with the
same name as the file. Each sub-directory becomes a package within the model.

• Class directories – Folders containing class files. All the .class files, including those
contained in sub-directories will be reverse engineered.

• Archives (.zip, .jar) - Compressed files containing definitions of one or several classes.
PowerDesigner creates a class for each class definition in the .jar or .zip file. The
following files are not reverse engineered: manifest.mf, web.xml, ejb-jar.xml, and
*.jsp. Other files are reverse engineered as files with the Artifact property set to true so
that they can be generated later. Files are reverse engineered in packages
corresponding to the directory structure found in the archive.

3. Click the Add button to browse to and select the files or directories to reverse, and then
click Open to return to the Reverse Java dialog box, which now displays the selected files.

You can repeat this step as many times as necessary to select files or directories from
different locations.

CHAPTER 12: Working with Java

Object-Oriented Modeling 387

You can right-click any of the files and select Edit from the contextual menu to view its
contents in an editor.

4. [optional] Click the Options tab and specify any appropriate reverse engineering options.
For more information about these options, see Reverse Engineer Java Options tab on page
388

Note: You can choose to reverse .java source files without their code body for visualization
or comparison purposes, or to limit the size of your model if you have a very large number
of classes to reverse engineer. To do this, select the Ignore operation body option.

5. Click OK to begin the reverse engineering process. If the model in which you are reverse
engineering already contains data, the Merge Models dialog box will open to allow you to
specify whether to control whether existing objects will be overwritten.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

PowerDesigner creates a class in the model for each class definition in the reversed files.
The classes are visible in the Browser and, by default, symbols are created in one or more
diagrams

Reverse Engineer Java Options Tab
The options tab allows you to specify various reverse engineering options.

CHAPTER 12: Working with Java

388 PowerDesigner

The following Java reverse engineering options are available. Note that some may be disabled
depending on the type of Java files being reversed:

Option Result of selection

File encoding Specifies the default file encoding of the files to reverse engineer.

Ignore operation bodies Reverses classes without including the body of the code. This can be
useful when you want to reverse objects for visualization or compar-
ison purposes, or to limit the size of your model if you have a very
large number of classes to reverse.

Ignore comments Reverses classes without including code comments.

Reverse engineer Deploy-
ment Descriptor

Reverses components with deployment descriptor. For more infor-
mation, see Reverse Engineering EJB Components on page 359,
Reverse Engineering Servlets on page 374, and Reverse Engineering
JSPs on page 381.

Create associations from
classifier-typed attributes

Creates associations between classes and/or interfaces.

Create symbols Creates a symbol for each object in the diagram. If this option is not
selected, reversed objects are only visible in the browser.

Libraries Specifies a list of library models to be used as references during
reverse engineering.

The reverse engineered model may contain shortcuts to objects de-
fined in a library. If you specify the library here, the link between the
shortcut and its target object (in the library) will be preserved and the
library will be added to the list of target models in the reverse engi-
neered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above
library v1.0, PowerDesigner will first attempt to resolve shortcuts
against library v1.1 and will only parse library v1.0 if unresolved
shortcuts remain.

You should use the List of Target Models to manage libraries related
to the reverse engineered model, for example, you can change the
library version (see Core Features Guide > Linking and Synchroniz-
ing Models > Shortcuts and Replicas > Working with Target Mod-
els).

Mark classifiers as not gener-
ated

Specifies that reversed classifiers (classes and interfaces) will not be
generated from the model. To subsequently generate the classifier,
you must select the Generate check box in its property sheet.

CHAPTER 12: Working with Java

Object-Oriented Modeling 389

Reverse Engineering Java Code Comments
When you reverse engineer Java files, some comments may change form or position within the
code.

Comment in original Java file After reverse

Before the import declarations Goes to header

Beginning with /* Begins with //

At the end of the file below all the code Goes to footer

Within a class but not within an operation Is attached to the attribute or operation that im-
mediately follows it

CHAPTER 12: Working with Java

390 PowerDesigner

CHAPTER 13 Working with the Eclipse
Modeling Framework (EMF)

PowerDesigner supports modeling in the EMF language including round-trip engineering.

The Eclipse Modeling Framework (EMF), is a modeling framework and code generation
facility for building tools and other applications based on a structured data model. An EMF
model provides a simple model of the classes and data of an application and is used as a
metadata definition framework in lots of Eclipse based tools, including Sybase DI and Sybase
WorkSpace.

For more information on EMF, see the EMF documentation and tutorials at http://
www.eclipse.org/emf.

EMF Objects
The following objects are available in an OOM targeted for EMF.

EPackages
PowerDesigner models EMF EPackages as standard UML packages, but with additional
properties.

EPackage property sheets contains all the standard package tabs along with the EMF tab, the
properties of which are listed below:

Property Description

Namespace prefix Used when references to instances of the classes in this package are serialized.

Namespace URI Appears in the xmlns tag to identify this package in an XMI document.

Base package
name

Contains the generated code for the model.

For information about creating and working with packages, see Packages (OOM) on page
49.

Eclasses, EEnums, and EDataTypes
PowerDesigner models EMF EClasses as standard UML classes, and EEnums and
EDataTypes as standard UML classes with an Enum and an EDataType stereotype,
respectively.

For information about creating and working with classes, see Classes (OOM) on page 34.

Object-Oriented Modeling 391

http://www.eclipse.org/emf
http://www.eclipse.org/emf

EClass, Eenum, and EDataType property sheets contain all the standard class tabs along with
the EMF tab, the properties of which are listed below:

Property Description

Instance
Class Name

Specifies the data type instance class name.

EAnnotations
PowerDesigner models EMF EAnnotations as standard UML classes, with an
AnnotationType sterotype.

For information about creating and working with classes, see Classes (OOM) on page 34.

EAnnotation property sheets contain all the standard class tabs along with the EMF tab, the
properties of which are listed below:

Property Description

References Specifies the EMF annotation references.

URI Specifies the EMF annotation source.

Eattributes and EEnumLiterals
PowerDesigner models EMF EAttributes and EEnumLiterals (EAttributes belonging to
EEnums) as standard UML attributes, but with additional properties.

For information about creating and working with attributes, see Attributes (OOM) on page
63.

EAttribute and EEnumLiteral property sheets contains all the standard attribute tabs along
with the EMF specific tabs listed in the sections below.

Property Description

Unique Specifies that the attribute may not have duplicates.

Unsettable Generates an unset method to undo the set operation.

Ordered Specifies that the attribute is ordered.

EReferences
PowerDesigner models EMF EReferences as standard UML associations, but with additional
properties.

For information about creating and working with associations, see Associations (OOM) on
page 84.

CHAPTER 13: Working with the Eclipse Modeling Framework (EMF)

392 PowerDesigner

EReference property sheets contains all the standard association tabs along with the EMF tab,
the properties of which are listed below:

Property Description

Unique Specifies that the selected role may not have duplicates.

Resolve proxies Resolves proxies if the selected role is in another file.

Unsettable Specifies that the selected role cannot be set.

EOperations and EParameters
PowerDesigner models EMF EOperations and EParameters as standard UML operations and
operation parameters.

For information about creating and working with operations, see Operations (OOM) on page
76.

Generating EMF Files
PowerDesigner can generate EMF .ecore and .genmodel files.

1. Select Language > Generate EMF Code to open the Generation dialog box:

2. Enter a directory in which to generate the files and specify whether you want to perform a
model check.

3. [optional] On the Selection tab, specify the objects that you want to generate from. By
default, all objects are generated, and PowerDesigner remembers for any subsequent
generation the changes you make.

Note: Although you can create all the standard UML diagrams and their associated
objects, you can only generate packages, classes, and interfaces.

4. [optional] Click the Options tab and specify the EMF version that you want to generate
for.

5. Click OK to begin generation.

A Progress box is displayed. The Result list displays the files that you can edit. The result is
also displayed in the Generation tab of the Output window, located in the bottom part of the
main window.

CHAPTER 13: Working with the Eclipse Modeling Framework (EMF)

Object-Oriented Modeling 393

Reverse Engineering EMF Files
In order to reverse engineer EMF files into an OOM, you must use the PowerDesigner Eclipse
plugin, and also have installed the EMF plugin.

1. Select Language > Reverse Engineer EMF to open the Reverse Engineer OOM from
EMF file dialog box.

2. Click one of the following buttons to browse to .ecore, .emof, or .genmodel files to reverse
engineer:

• Browse File System
• Browse Workspace

3. Select the files to reverse engineer and click Open (or OK) to add them to the Model URIs
list.

4. Click Next to go to the Package Selection page, and select the packages to reverse
engineer.

5. Click Finish to begin the reverse engineering.

If the model in which you are reverse engineering already contains data, the Merge Models
dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The packages are added to your model.

CHAPTER 13: Working with the Eclipse Modeling Framework (EMF)

394 PowerDesigner

CHAPTER 14 Working with IDL CORBA -
Deprecated

PowerDesigner supports modeling in the Interface Definition Language.

Note: Support for this language is deprecated.

IDL stands for Interface Definition Language. It was defined for the Common Object Request
Broker Architecture (CORBA) to enable client/server object interaction.

The IDL language is independent from the platform you are working on. In this manual, we
refer to version 2.4 of the IDL-CORBA specification, and we support the concepts defined in
the UML Profile for CORBA Specification from the Object Management Group (OMG).

IDL Objects
PowerDesigner supports modeling for all IDL objects.

Interfaces
PowerDesigner represents CORBA interfaces as standard classes with the
<<CORBAInterface>> stereotype or as standard interfaces (to which a
<<CORBAInterface>> stereotype is automatically applied). IDL interface properties are
represented as follows:

IDL concept PowerDesigner implementation

Inheritance between interfaces Generalization link between classes with <<CORBAInterface>>
stereotype

Readonly attribute Readonly stereotype for attribute

Local interface isLocal extended attribute set to True

Abstract interface Abstract property selected in class property sheet

Interface declaration Use inner link between <<CORBAInterface>> class and other
items

Note: You can draw associations between interfaces. Use an inner link to declare an item inner
to another.

In the following example, the composition link indicates that an attribute in TestInterface uses
the interface TestStruct as data type. The declaration inside the interface is performed with an
inner link.

Object-Oriented Modeling 395

interface TestInterface {
 struct TestStruct {
 string member1;
 };

 attribute string StringA;
 attribute TestInterface::TestStruct MyStructAttr;
 void OperationA(inout TestStruct t, in string str);
 boolean OperationB(inout TestStruct t);

};

Modules
PowerDesigner represents CORBA modules as packages bearing the <<CORBAModule>>
stereotype.

One IDL file is generated per package. The directory hierarchy follows the module hierarchy
(and not the package hierarchy), so that only <<CORBAModule>> stereotyped packages are
mapped onto file directories. #include directives are generated based on <<include>>
stereotyped dependencies between packages and based on class shortcuts defined in a given
package

Data Types
PowerDesigner represents CORBA data type as classes bearing the <<CORBAPrimitive>>
stereotype, and fixed data types as classes bearing the <<CORBAFixed>> stereotype.

When you apply the <<CORBAFixed>>stereotype, the following extended attributes are
automatically added to the class, for which you must define values:

• digits: indicates the number of digits of the fixed-point decimal number
• scale: indicates the scale of the fixed-point decimal number

typedef fixed<8, 3> Class_1;

General Constants
PowerDesigner represents CORBA general constants (values defined independently of any
object and likely to be reused) as attributes created in a class, where both the class and the
attribute bear the <<CORBAConstants>> stereotype.

CHAPTER 14: Working with IDL CORBA - Deprecated

396 PowerDesigner

const char red = 13325;
const char blue = 14445;
const long green = 26664;

Interface Constants
PowerDesigner represents CORBA interface constants (values defined for a specific
interface) as attributes bearing the <<CORBAConstants>> stereotype, which are created in
the interface where they will be used.

interface screen {
 const short background = blue;
 const short fields = green

Typedefs
PowerDesigner represents CORBA simple typedefs as classes bearing the
<<CORBATypedef>> stereotype. The typedef class should be linked to a class with the
<<CORBAPrimitive>>, <<CORBAStruct>> or <<CORBAUnion>> stereotype through a
generalization link in order to define the type of data.

typedef num identifier;

Sequences, Anonymous Sequences, and Sequences in Structs
PowerDesigner represents CORBA sequences as classes bearing the <<CORBASequence>>
stereotype. The upper bound of the sequence is specified by its UpperBound extended
attribute, and its type is defined in another class linked to it by an association.

typedef sequence< string > name_lastname;

CHAPTER 14: Working with IDL CORBA - Deprecated

Object-Oriented Modeling 397

To avoid defining directly a type for a sequence to design sequence imbrication, use the
<<CORBAAnonymousSequence>> stereotype.

typedef sequence< sequence< string > > Election_list;

To create a sequence in a struct, apply the <<CORBAAnonymousSequence>> stereotype to
the sequence class.

struct Customer {
 string name_lastname;
 long age;
 sequence< string > w;
};

Valuetypes and Custom Valuetypes
PowerDesigner represents CORBA valuetypes as classes bearing the <<CORBAValue>>
stereotype and custom valuetypes as classes bearing the <<CORBACustomValue>>
stereotype. You can further define the valuetype as follows:

• Inheritance between valuetypes has to be designed as a generalization between two
valuetype classes

• The interface supported by a value type is the one linked to the valuetype class with a
generalization

• Members of a valuetype are linked with a composition to the valuetype
• You can declare an interface inside a valuetype using an inner link
• Boolean extended attribute Istruncatable allows you to specify if the valuetype is

truncatable or not
• A value type factory operation is represented using an operation with the

<<CORBAValueFactory>> stereotype

CHAPTER 14: Working with IDL CORBA - Deprecated

398 PowerDesigner

• Code for DateAndTime:
valuetype DateAndTime : Time supports PrettyPrint {
 public DateAndTime::Date the date;
 factory init(in short hr, in short min);
 string get_date();

};

Boxed Values
PowerDesigner represents CORBA boxed values as classes bearing the
<<CORBABoxedValue>> stereotype. Since the boxed value does not support inheritance, or
operations, you should use a class with the <<CORBAAnonymousSequence>> stereotype to
associate a boxed value with an interface.

valuetype OptionalNameSeq sequence< myName >;

Enums
PowerDesigner represents CORBA enums as classes bearing the <<CORBAEnum>>
stereotype, and enum elements as attributes bearing the <<CORBAEnum>> stereotype.

Structs
PowerDesigner represents CORBA struct types as classes bearing the <<CORBAStruct>>
stereotype. You can mix attribute types in the struct class.

struct Customer {
 string name_lastname;

CHAPTER 14: Working with IDL CORBA - Deprecated

Object-Oriented Modeling 399

 long age;
};

You use composition links to define complex struct classes as defined in the following
example:

struct Customer {
 string name_lastname;
 long age;
 Address references;
 Customer_Category belongs;
};

To define a struct inside another struct, create two classes with the <<CORBAStruct>>
stereotype, add a composition between classes and use the inner link feature to declare one
class as inner to the other.

struct A {
 struct B {
 short c;
 long d;
 } e, z;
 string x;
};

Unions
PowerDesigner represents CORBA unions as classes bearing the <<CORBAUnion>>
stereotype. Each attribute in a union represents a case, the Case extended attribute (in Profile
\Attribute\Criteria\IDL union member\Extended Attributes) contains the case default value.

To define the switch data type, the discriminant data type for union cases, you have to add an
attribute named <class name>_switch to the list of union attributes.

CHAPTER 14: Working with IDL CORBA - Deprecated

400 PowerDesigner

union Test switch(char) {
 case 1:
 char Test1;
 case 2:
 string Test2;
 default:
 short Test3;
};

You can use an enum or a struct as a case in the union using a composition association.

union Customer switch(short) {
 case XYZ:
 char Last_Name;
 case ZYX:
 char Name;
 default:
 Identification uses;
};

The name of the attribute is on the association role and the case is on the association.

CHAPTER 14: Working with IDL CORBA - Deprecated

Object-Oriented Modeling 401

You can use an enum or a struct as a switch data type using a composition association. In this
situation, the composition role is used as switch attribute for the union.

union Screen switch(Colors) {
 case red:
 short background;
 case blue:
 short foreground;
};

If you do not use the composition role as switch attribute, you still have to define a switch
attribute in the Union.

Arrays
PowerDesigner represents CORBA arrays as classes bearing the <<CORBAArray>>
stereotype. You must link the array class with another class representing the array type (use the
<<CORBAPrimitive>> stereotype to define the type), and define the array dimension in the
Dims extended attribute of the array class, a comma-separated list of the dimensions (integer
values) of the array. It is used in place of the index<i> qualifiers on the associationEnd
specified in the CORBA profile.

In the following example, array 2D_array uses string data type set to 10:

typedef string 2D_array[10];

You can use a class with the <<CORBAAnonymousSequence>> stereotype to avoid directly
defining a type for an array for a sequence.

typedef sequence< string > 2D_array[10];

To define arrays for a union or a struct attribute, you have to use the multiplicity properties of
the attribute.

CHAPTER 14: Working with IDL CORBA - Deprecated

402 PowerDesigner

union Customer switch(short) {
 case XYZ:
 char Last_Name[30];
 case ZYX:
 char Name[20];
};

You can also use the association multiplicity when the union or struct is linked with another
class. The association role and multiplicity will become array attributes of the union or struct
classes:

struct Client {
 char Name[30];
 short Age[3];
 European_Client European attributes[5];
};

Exceptions
PowerDesigner represents CORBA exceptions as classes bearing the
<<CORBAException>> stereotype, where the class is declared as inner to the interface likely
to raise the exception.

The list of exceptions is defined in the Exceptions tabbed page in the Implementation page of
an operation, with no enclosing parentheses.

interface TEX {
 exception Badness2000 {
 string err_msg;
 };

 void process_token(in string tok) raises (Badness2000);

};

CHAPTER 14: Working with IDL CORBA - Deprecated

Object-Oriented Modeling 403

struct AdminLimit {
 PropertyName name;
 PropertyValue value;
};
exception AdminLimitExceeded {
 AdminLimit admin_property_error;
};

Generating for IDL
IDL generation produces files with the .idl extension. One IDL file is generated per package.

A generation log file is also created after generation.

You can select the Check model option in the Options page of the Generation dialog box
before starting generation.

For more information on how to design objects for IDL generation, see Chapter 14, Working
with IDL CORBA - Deprecated on page 395.

1. Select Language > Generate IDL-CORBA Code to display the Generation dialog box.

2. Type a destination directory for the generated file in the Directory box.

or

Click the Select a Path button to the right of the Directory box and browse to select a
directory path.

3. Select the items to include in the generation from the Selection page.

4. Click the Options tab to display the Options page.

5. <optional> Select the Check Model check box if you want to verify the validity of your
model before generation.

6. Select a value for each required option.

CHAPTER 14: Working with IDL CORBA - Deprecated

404 PowerDesigner

7. Click the Tasks tab, then select the required task(s).

8. Click OK to generate.

A Progress box is displayed. The Result list displays the files that you can edit. The result is
also displayed in the Generation page of the Output window, located in the bottom part of
the main window.

All IDL files are generated in the destination directory.

Reverse Engineering IDL Files
You can reverse engineer IDL files to create classes and interfaces with their attributes and
operations in a class diagram.

Reverse-engineering IDL files is subject to the following limitations:

• Pre-processing - When a # symbol is displayed at the beginning of a line, the reverse
feature processes both "if" and "else" values during reverse.

• The following tags are not reversed:
• fixed <8, 4>
• fixed <8, 2>
• sequence <short, 4>
• sequence
• [wire_marshal(wireVARIANT)]
An example is shown below:
struct bar {
 fixed <8, 4> high_scale;
 fixed <8, 2> low_scale;
};

struct bar {
 long val;
 sequence <short, 4> my_shorts;
};

typedef sequence<LinkKind>LinkKinds;
typedef [wire_marshal(wireVARIANT)] struct tagVARIANT VARIANT;

Note: You can right-click the files to reverse engineer and select the Edit command to view the
content of your files. To use this command you have to associate the file extension with an
editor in the General Options\Editor dialog box.

1. Select Language > Reverse Engineer IDL to display the Reverse IDL dialog box.

2. Select to reverse engineer files or directories from the Reverse Engineering dropdown
listbox.

3. Click the Add button in the Selection page.

CHAPTER 14: Working with IDL CORBA - Deprecated

Object-Oriented Modeling 405

A standard Open dialog box is displayed.

4. Select the items or directory you want to reverse engineer, then cick the Open button.

Note: You select several files simultaneously using the Ctrl or Shift keys. You cannot
select several directories.

The Reverse IDL dialog box displays the items you selected.

5. Select reverse engineering options in the Options page.

Option Result of selection

Create symbols Creates a symbol for each reversed IDL object in the diagram. Otherwise,
reversed objects are visible only in the browser

Mark classifiers not
to be generated

Reversed classifiers (classes and interfaces) will not be generated from
the model. To generate the classifier, you must select the Generate check
box in its property sheet

Libraries Specifies a list of library models to be used as references during reverse
engineering.

The reverse engineered model may contain shortcuts to objects defined in
a library. If you specify the library here, the link between the shortcut and
its target object (in the library) will be preserved and the library will be
added to the list of target models in the reverse engineered model.

You can drag and drop the libraries in the list in order to specify a hier-
archy among them. PowerDesigner will seek to resolve shortcuts found in
the reverse engineered model against each of the specified libraries in
turn. Thus, if library v1.1 is displayed in the list above library v1.0,
PowerDesigner will first attempt to resolve shortcuts against library v1.1
and will only parse library v1.0 if unresolved shortcuts remain.

You should use the List of Target Models to manage libraries related to the
reverse engineered model, for example, you can change the library ver-
sion. See Core Features Guide > Linking and Synchronizing Models >
Shortcuts and Replicas > Working with Target Models.

6. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The classes and interfaces are added to your model. They are visible in the diagram and in the
Browser. They are also listed in the Reverse page of the Output window, located in the lower
part of the main window.

CHAPTER 14: Working with IDL CORBA - Deprecated

406 PowerDesigner

CHAPTER 15 Working with PowerBuilder

PowerDesigner supports the modeling of PowerBuilder programs including round-trip
engineering.

PowerBuilder is an object oriented development tool. Most of its components are designed as
objects with properties, methods and events that can be mapped to UML classes bearing
specific stereotypes. PowerDesigner supports PowerBuilder objects stored in a .PBL file.
Dynamic PowerBuilder Libraries (PBD) are not supported.

Note: If you have multiple versions of PowerBuilder installed on your machine
PowerDesigner uses the most recent version by default. If you want to work on an earlier
version of PowerBuilder, click the Change button to the right of the PowerBuilder version
field in the generation or reverse engineering dialog.

PowerBuilder Objects
This section describes the mapping between PowerBuilder objects and PowerDesigner OOM
objects.

Applications
You design a PowerBuilder application using a class with the <<application>> stereotype.
Application properties are defined as follow:

PowerBuilder PowerDesigner

Instance variable Attribute

Shared variable Static attribute

Global variable Attribute with <<global>> stereotype

Property Attribute with <<property>> stereotype

External function Operation with <<external>> stereotype

Function Operation

Event Operation with <<event>> stereotype or operation with non-
null event name

Structure in object Inner class with <<structure>> stereotype

Object-Oriented Modeling 407

Structures
You design a PowerBuilder structure using a class with the <<structure>> stereotype. The
members of the structure are designed with class attributes.

Functions
You design a PowerBuilder function using a class with the <<function>> stereotype. This
class should also contain one operation. The structures in a function are designed with
<<structure>> inner classes linked to the class.

User Objects
You design a PowerBuilder user object using a class with the <<userObject>> stereotype.
User objects properties are defined as follow:

PowerBuilder PowerDesigner

Control inner class with <<control>> stereotype

Instance variable Attribute

Shared variable Static attribute

Property attribute with <<property>> stereotype

Function Operation

Event operation with <<event>> stereotype or operation with non-
null event name

Structure in object inner class with <<structure>> stereotype

Proxies
You design a PowerBuilder proxy using a class with the <<proxyObject>> stereotype.
Instance variables of the proxy are designed with class attributes, and proxy functions are
designed with operations.

Windows
You design a PowerBuilder window using a class with the <<window>> stereotype. Window
properties are defined as follow:

PowerBuilder PowerDesigner

Control inner class with <<control>> stereotype

Instance variable Attribute

Shared variable Static attribute

Property Attribute with <<property>> stereotype

CHAPTER 15: Working with PowerBuilder

408 PowerDesigner

PowerBuilder PowerDesigner

Function Operation

Event Operation with <<event>> stereotype or operation with non-null
event name

Structure in object Inner class with <<structure>> stereotype

Operations
If the operation extended attribute GenerateHeader is set to true, the operation header will be
generated. This attribute is set to true for any new operation. You can force header generation
for all operations in a model by setting the ForceOperationHeader extended attribute to true.
Operation headers are generated in the following way:

//<FuncType>: <Operation signature>
//Description: <Operation comment line1>
// <Operation comment line2>
//Access: <visibility>
//Arguments: <parameter1 name> - <parameter1 comment line1>
// <parameter1 comment line2>
// <parameter2 name> - <parameter2 comment>
//Returns: <Return comment>
// <Return comment2>

Header item PowerDesigner Object or Property

FuncType Function, Subroutine or Event

Description Comment typed in operation property sheet

Access Visibility property in operation property sheet

Arguments Parameter(s) name and comment

Returns Value of ReturnComment extended attribute in operation property sheet

User-defined com-
ment

Value of UserDefinedComment extended attribute in operation property sheet

Events
To generate a:

• Standard event handler - create an operation and select an event value in the Language
Event list in the operation property sheet

• User-defined event handler - create an operation and select the <<event>> stereotype. The
Language Event list must remain empty

• Custom event handler - create an operation and set a value to the EventID extended
attribute. If this extended attribute has a value, the operation is generated as a custom event

CHAPTER 15: Working with PowerBuilder

Object-Oriented Modeling 409

handler, even if it has a name defined in the Language Event list or the <<event>>
stereotype.

Other Objects
These PowerBuilder objects are reverse engineered as classes with the corresponding
PowerBuilder stereotype. Their properties are not mapped to PowerDesigner class properties,
and their symbol is a large PowerBuilder icon.

PowerBuild-
er

PowerDesigner

Query <<query>> class

Data window <<dataWindow>> class

Menu <<menu>> class

Project <<project>> class

Pipe line <<pipeLine>> class

Binary <<binary>> class

For more information about PowerBuilder reverse engineering, see Reverse Engineering
PowerBuilder on page 411.

Generating PowerBuilder Objects
You can generate PowerBuilder objects to an existing PowerBuilder application or as source
files. Each class bearing a stereotype is generated as the appropriate PowerBuilder object.
Classes without stereotypes are generated as user objects. Objects not fully supported by
PowerDesigner have all their properties removed and only the header is generated.

1. Select Language > Generate PowerBuilder to open the PowerBuilder Generation
dialog.

2. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

3. [optional] Click the Options tab and set any appropriate generation options:

Option Description

Check model Launches a model check before generation (see Chapter 9, Checking an
OOM on page 281).

CHAPTER 15: Working with PowerBuilder

410 PowerDesigner

Option Description

Using librairies This mode is only available if you have PowerBuilder installed on your
machine.

Specify a PowerBuilder version and select a target or application from
the Target/Application list. Objects are generated as follows:
• Package with specified library path (defined in an extended attribute

during reverse engineering) is generated in corresponding library
from target/application library list

• Package at the root of the model without library path is generated in
a new library at the same level as target/application library

• Child package without library path is generated in parent package
• Object at the root of the model is generated in the target/application

library

Using source files Specify a directory to which to generate the files. Objects are generated
as follows:
• Classes Defined at the Model Level are generated as source files in

the specified directory.
• Classes Defined in Packages are generated as source files in sub-

directories.

You must import the generated objects into PowerBuilder.

4. Click OK to begin generation.

The files are generated to the specified application or directory.

Reverse Engineering PowerBuilder
This section explains how PowerBuilder objects are reverse engineered and how to define
reverse engineering options for PowerBuilder.

Reverse Engineered Objects
You can reverse engineer into an OOM, objects stored in a .PBL file or exported by
PowerBuilder into files. Some of the reverse engineered objects support a full-featured
mapping with an OOM class, some do not.

Libraries
Each PowerBuilder library is reversed as a package in the resulting OOM. The path of the
library is stored in an extended attribute attached to the package.

Objects reverse engineered from a library are created into the corresponding package in
PowerDesigner.

CHAPTER 15: Working with PowerBuilder

Object-Oriented Modeling 411

Full-featured Mapping
During reverse engineering, new classes with stereotype corresponding to the PowerBuilder
objects they come from are created. The symbol of these classes displays an icon in the upper
left corner:

For more information on fully supported PowerBuilder objects, PowerBuilder Objects on
page 407.

Minimal Mapping
PowerBuilder objects not fully supported in PowerDesigner are reverse engineered as classes
with the corresponding PowerBuilder stereotype. However, their properties are not mapped to
PowerDesigner class properties, and their symbol is a large PowerBuilder icon.

The source code of these objects is retrieved without any parsing and stored in the class header,
as displayed in the Script\Header tab of the class; it will be used in the same way during
generation.

For more information on partially supported PowerBuilder objects, see PowerBuilder Objects
on page 407.

Operation Reversed Header
Reverse engineering processes the first comment block of the function between two lines of
slash characters.

///
//////
// <FuncType>: <Operation signature>
// Description: <Operation comment line1>
// <Operation comment line2>
// Access: <visibility>
// Arguments: <parameter1 name> - <parameter1 comment line1>
// <parameter1 comment line2>
// <parameter2 name> - <parameter2 comment>
// Returns: <Return comment>
// <Return comment2>
///
//////

If all generated keywords are found, the block will be removed and relevant attributes will be
set:

CHAPTER 15: Working with PowerBuilder

412 PowerDesigner

Keywords attribute Corresponding operation attribute

FuncType, Subroutine, Event Name

Description Operation comment

Access Visibility property

Arguments Parameter(s) name and comment

Returns Value for ReturnComment extended attribute

User-defined comment Value for UserDefinedComment extended attribute

GenerateHeader Set to True

Other function comments Kept in operation body

Otherwise, the function comments are kept in the operation body and the GenerateHeader
extended attribute set to false.

Overriding Attributes
When a class inherits from another class, non-private inherited attributes can be defined as
properties of the child class, allowing the user to define initial values in the child class.

1. Open the property sheet of a child class, and click the Attributes tab.

2. Click the Override Inherited Attributes tool to display the list of attributes available
from the parent class.

3. Select one or more attributes in the list and click OK.

The attributes appear in the child class list of attributes. You can modify their initial value
in the corresponding column.

PowerBuilder Reverse Engineering Process
When you reverse engineer objects from PowerBuilder, you can select to reverse engineer
libraries, files or directories.

Reverse Engineering Libraries
This mode allows you to select a PowerBuilder target/application from the Target/Application
list. When a target or an application is selected, the libraries used by the target or application
are automatically displayed in the list. By default all objects of all libraries are selected. You
can deselect objects and libraries before starting reverse engineering.

If PowerBuilder is not installed on your machine, the Target/Application list remains empty.

Reverse Engineering Source Files
This mode allows you to select PowerBuilder object source files to reverse engineer. The
extension of the source file determines the type of the reversed object.

CHAPTER 15: Working with PowerBuilder

Object-Oriented Modeling 413

You can right-click the files to reverse engineer and select the Edit command to view the
content of your files. To use this command you have to associate the file extension with an
editor in the General Options\Editor dialog box.

Reverse Engineering Directories
This mode allows you to select a PowerBuilder directory to reverse engineer. When you select
a directory, you cannot select individual target or application. Use the Change button to select
a directory.

Reverse Engineering PowerBuilder Objects
You can reverse engineer PowerBuilder objects by selecting Language > Reverse Engineer
PowerBuilder.

1. Select Language > Reverse Engineer PowerBuilder to display the Reverse Engineer
PowerBuilder dialog box.

2. Select a file, library or directory in the Reverse Engineering box.

3. When available, select a target or application in the list.

4. Click the Options tab and set any appropriate options.

Option Description

Ignore operation body Reverses PowerBuilder objects without including the body of the code

CHAPTER 15: Working with PowerBuilder

414 PowerDesigner

Option Description

Ignore comments Reverses PowerBuilder objects without including code comments

Create symbols Creates a symbol in the diagram for each object. Otherwise, reversed
objects are visible only in the browser

Create inner classes
symbols

Creates a symbol in the diagram for each inner class

Mark classifiers not to
be generated

Reversed classifiers (classes and interfaces) will not be generated from
the model. To generate the classifier, you must select the Generate check
box in its property sheet

Create Associations Creates associations between classes and/or interfaces

Libraries Specifies a list of library models to be used as references during reverse
engineering.

The reverse engineered model may contain shortcuts to objects defined
in a library. If you specify the library here, the link between the shortcut
and its target object (in the library) will be preserved and the library will
be added to the list of target models in the reverse engineered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above library
v1.0, PowerDesigner will first attempt to resolve shortcuts against li-
brary v1.1 and will only parse library v1.0 if unresolved shortcuts re-
main.

You should use the List of Target Models to manage libraries related to
the reverse engineered model, for example, you can change the library
version. See Core Features Guide > Linking and Synchronizing Models
> Shortcuts and Replicas > Working with Target Models.

5. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog (see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models) is displayed.

The classes are added to your model. They are visible in the diagram and in the Browser.
They are also listed in the Reverse tab of the Output window, located in the lower part of the
main window.

Note: Some standard objects like windows or structures, inherit from parent classes
defined in the system libraries. If these libraries are not loaded in the workspace,
PowerDesigner no longer creates an unresolved class to represent the standard object
parent in the model. The link between standard object and parent will be recreated after
generation thanks to the standard object stereotype.

CHAPTER 15: Working with PowerBuilder

Object-Oriented Modeling 415

Loading a PowerBuilder Library Model in the Workspace
When you reverse engineer PowerBuilder files, you can, at the same time, load one of the
PowerBuilder models that contains the class libraries of a particular version of PowerBuilder.
The Setup program installs these models in the Library directory.

You can select to reverse a PowerBuilder library model from the Options tab of the Reverse
Engineer PowerBuilder dialog box.

You can open a PowerBuilder library model in the workspace from the Library directory.

1. Select File > Open to display the Open dialog box.

2. Select or browse to the Library directory.

The available library files are listed. Each PB file corresponds to a particular version of
PowerBuilder.

3. Select the file corresponding to the version you need.

This file contains all the library class files of the PowerBuilder version that you have
chosen.

4. Click Open.

The OOM opens in the workspace.

CHAPTER 15: Working with PowerBuilder

416 PowerDesigner

CHAPTER 16 Working with VB .NET

PowerDesigner supports the modeling of VB .NET programs including round-trip
engineering.

Inheritance & Implementation
You design VB .NET inheritance using a generalization link between classes.

You design VB .NET implementation using a realization link between a class and an interface.

Namespace
You define a VB .NET namespace using a package.

PowerDesigner models namespaces as standard packages with the Use Parent Namespace
property deselected.

In the following example, class Architect is declared in package Design which is a sub-
package of Factory. The namespace declaration is the following:

Namespace Factory.Design
 Public Class Architect
...
...End Class
End Namespace ' Factory.Design

Classifiers defined directly at the model level fall into the VB .NET global namespace.

Project
You can reverse engineer VB .NET projects when you select VB .NET projects from the
Reverse Engineer list in the Reverse Engineer VB .NET dialog box.

Make sure you reverse engineer each project into a separate model.

Assembly properties are reverse engineered as follow:

VB .NET assembly properties PowerDesigner equivalent

Title Name of the model

Description Description of the model

Object-Oriented Modeling 417

VB .NET assembly properties PowerDesigner equivalent

Company AssemblyCompany extended attribute

Copyright AssemblyCopyright extended attribute

Product AssemblyProduct extended attribute

Trademark AssemblyTrademark extended attribute

Version AssemblyVersion extended attribute

AssemblyInformationalVersion

AssemblyFileVersion

AssemblyDefaultAlias

Stored in CustomAttributes extended attribute

Project properties are reverse engineered as extended attributes whether they have a value or
not. For example, the default HTML page layout is saved in extended attribute
DefaultHTMLPageLayout.

You can use the Ellipsis button in the Value column to modify the extended attribute value,
however you should be very cautious when performing such changes as they may jeopardize
model generation.

Accessibility
To define accessibility for a class, an interface, an attribute or a method, you have to use the
visibility property in PowerDesigner.

The following accessibility attributes are supported in PowerDesigner:

VB .NET accessibility PowerDesigner visibility

Public (no restriction) Public

Protected (accessible by derived classes) Protected

Friend (accessible within the program that contains
the declaration of the class)

Friend

Protected Friend (accessible by derived classes and
within the program that contains the declaration of
the class)

Protected Friend

Private (only accessible by the class) Private

In the following example, the visibility of class Customer is friend:

Friend Class Customer

CHAPTER 16: Working with VB .NET

418 PowerDesigner

Classes, Interfaces, Structs, and Enumerations
You design a VB .NET class using a class in PowerDesigner. Structures are classes with the
<<structure>> stereotype, and enumerations are classes with the <<enumeration>>
stereotype.

• VB .NET classes can contain events, variables, constants, methods, constructors and
properties. The following specific kinds of classes are also supported:
• MustInherit class is equivalent to an abstract class. To design this type of class you need

to create a class and select the Abstract check box in the General tab of the class
property sheet.

Public MustInherit Class Cus-
tomer
 Private Name As Char
 Private ID As Integer
End Class

• NotInheritable class is equivalent to a final class. To design this type of class, you need
to create a class and select the Final check box in the General tab of the class property
sheet.

Public NotInheritable Class
FinalClass
 Private At1 As Object
 Private At2 As Object
End Class

Note: You design a VB .NET nested type using an inner class or interface.

• VB .NET interfaces are modeled as standard interfaces. They can contain events,
properties, and methods; they do not support variables, constants, and constructors.

• Structures can implement interfaces but do not support inheritance; they can contain
events, variables, constants, methods, constructors, and properties. The following
structure contains two attributes and a constructor operation:

...
Public Class Point
 Protected Y As Integer
 Protected X As Integer
 Public Sub New()

 End Sub
End Class
...

• Enumeration class attributes are used as enumeration values. The following items must be
set:

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 419

• Data Type - using the EnumDataType extended attribute of the enumeration (for
example Byte, Short, or Long)

• Initial Expression - using the Initial Value field of an enum attribute
For example:

Public Enum Day
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
 Sunday
 FirstDay = Monday
 LastDay = Sunday
End Enum

Module
You design a VB .NET module using a class with the <<Module>> stereotype and attributes,
functions, subs and events.

In the following example, you define a module Test using a class with the <<Module>>
stereotype. Test contains a function. To design this function you have to create an operation
called Main and empty the return type property. You can then define the function body in the
implementation tab of this operation.

...
Public Module Test
 Public Sub Main()
 Dim val1 As Integer = 0
 Dim val1 As Integer = val1
 val2 = 123
 Dim ref1 As New Class1 ()
 Dim ref1 As Class1 = ref1
 ref2.Value = 123
 Console.WriteLine ("Value: "& val1", "& val2)
 Console.WriteLine ("Refs: "&ref1.Value &", "& ref2.Value)

 End Sub
 End Module
...

CHAPTER 16: Working with VB .NET

420 PowerDesigner

Custom Attributes
To define custom attributes for a class, an interface, a variable, a parameter or a method, you
have to use the Custom attributes extended attribute in PowerDesigner. You can use the
Custom attributes input box to type all the custom attributes you wish to add using the correct
VB .NET syntax.

Custom Attributes for Return Types
You can use the Return type custom attribute extended attribute to define custom attributes for
the return type of a property attribute or a method.

Shadows
Shadows indicates that an inherited element hides a parent element with the same name. To
design a shadows class or interface, you have to set the class or interface Shadows extended
attribute to True.

In the following example, class DialogBox inherits from class Window. Class Window
contains an inner classifier Control, and so does class DialogBox. You do not want class
DialogBox to inherit from the control defined in Window, to do so, you have to set the
Shadows extended attribute to True, in the Control class inner to DialogBox:

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 421

...
Public Class DialogBox
 Inherits Window
 Public Shadows Class Control
 End Class
End Class
...

Variables
You design a VB .NET variable using an attribute in PowerDesigner.

The following table summarizes the different types of VB .NET variables and attributes
supported in PowerDesigner:

VB .NET variable PowerDesigner equivalent

ReadOnly variable Attribute with Read-only changeability

Const variable Attribute with Frozen changeability

Shared variable Attribute with Static property selected

Shadowing variable Extended attribute Shadowing set to Shadows or Overloads

WithEvents variable Attribute with withEvents stereotype

Overrides variable Extended attribute Overrides set to True

New variable Extended attribute AsNew set to True

• Data Type: You define the data type of a variable using the attribute Data Type property
• Initial Value: You define the initial value of a variable using the attribute Initial Value

property
• Shadowing: To define a shadowing by name set the Shadowing extended attribute to

Shadows. To define a shadowing by name and signature set the Shadowing extended
attribute to Overloads. See Method on page 424 for more details on shadowing

CHAPTER 16: Working with VB .NET

422 PowerDesigner

Property
To design a VB .NET property you have to design an attribute with the <<Property>>
stereotype, another attribute with the <<PropertyImplementation>> stereotype is
automatically created, it is displayed with an underscore sign in the list of attributes. The
corresponding getter and setter operations are also automatically created.

You can get rid of the implementation attribute.

If you remove the getter operation, the ReadOnly keyword is automatically generated. If you
remove the setter operation, the WriteOnly keyword is automatically generated. If you remove
both getter and setter operations, the attribute no longer has the <<Property>> stereotype.

When you define a <<Property>> attribute, the attribute changeability and the getter/setter
operations are tightly related as explained in the following table:

Operations Property attribute changeability

If you keep both getter and setter
operations

Property is Changeable

If you remove the setter operation
of a changeable property

Property becomes Read-only

If you remove the getter operation
of a changeable property

Property becomes Write-only

On the other hand, if you modify the property changeability, operations will reflect this
change, for example, if you turn a changeable property into a read-only property, the setter
operation is automatically removed.

In the following example, class Button contains a property Caption. The Getter operation has
been removed which causes the WriteOnly keyword to appear in the property declaration
line:

Public Class Button
 Private captionValue As String
 Public WriteOnly Property Caption() As String
 Set (ByVal Value As String)
 captionValue = value
 Repaint()

 End Set
 End Property
End Class

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 423

• Must override: Set the Must override extended attribute of the property to True to express
that the property in a base class must be overridden in a derived class before it can be used

• Overridable: Set the Overridable extended attribute of the property to True to express that
the property can be overridden in a derived class

• Overrides: Set the Overrides extended attribute of the property to True to express that a
property overrides a member inherited from a base class

• Parameters: Type a value in the value box of the Property parameters extended attribute to
specify which value of the property attribute is to be used as parameter. In the following
example, class Person contains property attribute ChildAge. The parameter used to sort
the property is ChildName:

Public Class Person
 Private _ChildAge As Integer

 Private Property ChildAge(ChildName as String) As Integer
 Get
 return _ChildAge
 End Get
 Set (ByVal Value ChildAge As Integer)
 If (_ChildAge <> newChildAge)
 _ChildAge = newChildAge
 End If
 End Set
 End Property
End Class

Method
You design a VB .NET method using an operation. Methods can be functions or subs.

You design a function using an operation with a return value.

You design a sub using an operation with an empty return type.

The following table summarizes the different methods supported in PowerDesigner:

VB .NET method PowerDesigner equivalent

Shadowing or Overloads meth-
od

Select Shadows or Overloads from the Shadowing list on the
VB.NET tab of the operation property sheet

Shared method Select the Static check box on the General tab of the operation
property sheet

CHAPTER 16: Working with VB .NET

424 PowerDesigner

VB .NET method PowerDesigner equivalent

NotOverridable method Select the Final check box on the General tab of the operation
property sheet

Overridable method Select the Overridable check box on the VB.NET tab of the oper-
ation property sheet

MustOverride method Select the Abstract check box on the General tab of the operation
property sheet

Overrides method Select the Overrides check box on the VB.NET tab of the operation
property sheet

Shadowing
To define a shadowing by name, select Shadows from the Shadowing list on the VB.NET tab
of the operation property sheet . To define a shadowing by name and signature select
Overloads. In the following example, class Derived inherits from class Base:

Operation F in class Derived overloads operation F in class Base; and operation G in class
Derived shadows operation G in class Base:

Public Class Derived
 Inherits Base
 Public Overloads Sub F(ByVal i As Integer)
 End Sub
 Public Shadows Sub G(ByVal i As Integer)
 End Sub
End Class

Method Parameters
You define VB .NET method parameters using operation parameters.

You can define the following parameter modifiers in PowerDesigner:

VB .NET modifier PowerDesigner equivalent

ByVal Select In in the Parameter Type box on the parameter property sheet
General tab

ByRef Select In/Out or Out in the Parameter Type box on the parameter prop-
erty sheet General tab

Optional Set the Optional extended attribute on the Extended Attributes tab to
True

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 425

VB .NET modifier PowerDesigner equivalent

ParamArray Select the Variable Argument checkbox on the parameter property sheet
General tab

Method Implementation
Class methods are implemented by the corresponding interface operations. To define the
implementation of the methods of a class, you have to use the To be implemented button in the
Operations tab of a class property sheet, then click the Implement button for each method to
implement. The method is displayed with the <<Implement>> stereotype.

Constructor & Destructor
You design VB .NET constructors and destructors by clicking the Add > Default
Constructor/Destructor button in the list of operations of a class. This automatically creates
a constructor called New with the Constructor stereotype, and a destructor called Finalize with
the Destructor stereotype. Both constructor and destructor are grayed out in the list, which
means you cannot modify their definition, but you can still remove them from the list.

Delegate
You can design the following types of VB .NET delegates:

• To create a delegate at the namespace level, create a class with the <<Delegate>>
stereotype, and add an operation with the <<Delegate>> stereotype to this class and define
a visibility for this operation. This visibility becomes the visibility of the delegate

...
Public Delegate Function ActionOccurred () As Object
...

• To create a delegate in a class, module, or structure, you just have to create an operation
with the <<Delegate>> stereotype. In the following example, class Worker is inner to
module Utilities. Both contain internal delegates designed as operations with the
<<Delegate>> stereotype

CHAPTER 16: Working with VB .NET

426 PowerDesigner

...
Public Module Utilities
 Public Delegate Function NewWorker () As Object
 Public Class Worker
 Public Delegate Function WorkStarted () As Object
 End Class
End Module
...

Event
To define an event in VB .NET you must declare its signature. You can either use a delegate as
a type for this event or define the signature on the event itself. Both declarations can be mixed
in a class.

The delegate used as a type is represented by an attribute with the <<Event>> stereotype. You
define the delegate name using the attribute data type.

Public Class Printer
 Public PaperJam As EventHandler
 Public OutOfPaper As EventHandler
 Public JobOK As PrinterGoodDelegate
End Class

When you define the signature on the event itself, you have to use an operation with the
<<Event>> stereotype. The signature of this operation then becomes the signature of the
event.

Public Class Printer
 Public Event PaperJam(ByVal p As Printer, ByVal e As EventArgs)

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 427

 Public Event JobOK(ByVal p As Object)
End Class

Event Implementation
To design the implementation clause of a delegate used as a type you have to type a clause in
the implements extended attribute of the <<Event>> attribute.

For <<Event>> operations, you have to use the To Be Implemented feature in the list of
operations of the class.

Event Handler
To define a VB .NET event handler you should already have an operation with the <<event>>
stereotype in your class. You then have to create another operation, and type the name of the
<<event>> operation in the Handles extended attribute Value box.

...
Public Function Operation_2() As Object Handles Print
 End Function
...

External Method
You define a VB .NET external method using an operation with the <<External>> stereotype.
External methods share the same properties as standard methods.

You can also define the following specific properties for an external method:

• Alias clause: you can use the Alias name extended attribute to specify numeric ordinal
(prefixed by a @ character) or a name for an external method

• Library clause: you can use the Library name extended attribute to specify the name of the
external file that implements the external method

• ANSI, Unicode and Automodifiers used for calling the external method can be defined
using the Character set extended attribute of the external method

CHAPTER 16: Working with VB .NET

428 PowerDesigner

Generating VB.NET Files
You generate VB.NET source files from the classes and interfaces of a model. A separate file,
with the file extension .vb, is generated for each class or interface that you select from the
model, along with a generation log file.

During VB .NET generation, each top object, that is to say class, interface, module, and so on,
generates a source file with the .vb extension. Inner classifiers are generated in the source of
the container classifier.

The Imports directive can appear at the beginning of the script of each generated file.

You can define imports in PowerDesigner in the Script\Imports sub-tab of the property sheet
of a main object. You can type the import statement or use the Import Folder or Import
Classifier tools in the Imports sub-tab.

Options appear in the generated file header. You can define the following options for main
objects:

• Compare: type the value Text or Binary in the value box of the Compare extended attribute
of the generated top object

• Explicit: select True or False in the value box of the Explicit extended attribute of the
generated top object

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 429

• Strict: select True or False in the in the value box of the Strict extended attribute of the
generated top object

The following PowerDesigner variables are used in the generation of VB.NET source files:

Variable Description

VBC VB .NET compiler full path. For example, C:\WINDOWS\Microsoft.NET\Frame-
work\v1.0.3705\vbc.exe

WSDL Web Service proxy generator full path. For example, C:\Program Files\Microsoft
Visual Studio .NET\FrameworkSDK\Bin\wsdl.exe

To review or edit these variables, select Tools > General Options and click the Variables
category.

1. Select Language > Generate VB.NET Code to open the VB.NET Generation dialog.

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

5. [optional] Click the Options tab and set any appropriate generation options:

Options Description

Generate VB .NET Web
Service code in .ASMX file
instead of .VB file

Generates the Visual Basic code in the .ASMX file

Generate Visual Studio .NET
project files

Generates the files of the Visual Studio .NET project. A solution
file is generated together with several project files, each project
corresponding to a model or a package with the <<Assembly>>
stereotype

Generate object ids as docu-
mentation tags

Generates information used for reverse engineering like object
identifiers (@pdoid) that are generated as documentation tags. If
you do not want these tags to be generated, you have to set this
option to False

Visual Studio .NET version Indicates the version number of Visual Studio .NET

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

CHAPTER 16: Working with VB .NET

430 PowerDesigner

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

7. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

Task Description

Generate Web service proxy
code (WSDL)

Generates the proxy class

Compile Visual Basic .NET
source files

Compiles the source files

Open the solution in Visual
Studio .NET

If you selected the Generate Visual Studio .NET project files op-
tion, this task allows to open the solution in the Visual Studio .NET
development environment

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Reverse Engineering VB .NET
You can reverse engineer VB .NET files into an OOM.

In the Selection tab, you can select to reverse engineer files, directories or projects.

You can also define a base directory. The base directory is the common root directory for all
the files to reverse engineer. This base directory will be used during regeneration to recreate
the exact file structure of the reverse engineered files.

Edit Source
You can right-click the files to reverse engineer and select the Edit command to view the
content of your files. To use this command you have to associate the file extension with an
editor in the General Options\Editor dialog box.

Selecting VB .NET Reverse Engineering Options
You define the following VB .NET reverse engineering option from the Reverse Engineer
VB .NET dialog box:

Option Result of selection

File encoding Allows you to modify the default file encoding of the files to reverse
engineer

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 431

Option Result of selection

Ignore operation body Reverses classes without including the body of the code

Ignore comments Reverses classes without including code comments

Create Associations from
classifier-typed attributes

Creates associations between classes and/or interfaces

Create symbols Creates a symbol for each object in the diagram, if not, reversed
objects are only visible in the browser

Libraries Specifies a list of library models to be used as references during
reverse engineering.

The reverse engineered model may contain shortcuts to objects de-
fined in a library. If you specify the library here, the link between the
shortcut and its target object (in the library) will be preserved and the
library will be added to the list of target models in the reverse engi-
neered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above
library v1.0, PowerDesigner will first attempt to resolve shortcuts
against library v1.1 and will only parse library v1.0 if unresolved
shortcuts remain.

You should use the List of Target Models to manage libraries related
to the reverse engineered model, for example, you can change the
library version (see Core Features Guide > Linking and Synchroniz-
ing Models > Shortcuts and Replicas > Working with Target Mod-
els).

Preserve file structure Creates an artifact during reverse engineering in order to be able to
regenerate an identical file structure

Mark classifiers not to be
generated

Reversed classifiers (classes and interfaces) will not be generated
from the model. To generate the classifier, you must select the Gen-
erate check box in its property sheet

Defining VB .NET Reverse Engineering Options
To define VB .NET reverse engineering options:

1. Select Language > Reverse Engineer VB .NET.

2. Click the Options tab to display the Options tab.

CHAPTER 16: Working with VB .NET

432 PowerDesigner

3. Select or clear reverse engineering options.

4. Browse to the Library directory, if required.

5. Click Apply and Cancel.

VB .NET Reverse Engineering Preprocessing
VB .NET files may contain conditional code that needs to be handled by preprocessing
directives during reverse engineering. A preprocessing directive is a command placed within
the source code that directs the compiler to do a certain thing before the rest of the source code
is parsed and compiled. The preprocessing directive has the following structure:

#directive symbol

Where # is followed by the name of the directive, and symbol is a conditional compiler
constant used to select particular sections of code and exclude other sections.

In VB .NET symbols have values.

In the following example, the #if directive is used with symbols FrenchVersion and
GermanVersion to output French or German language versions of the same application from
the same source code:

 #if FrenchVersion Then
 ' <code specific to French language version>.
 #ElseIf GermanVersion Then

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 433

 ' <code specific to French language version>.
 #Else
 ' <code specific to other language version>.
 #End If

You can declare a list of symbols for preprocessing directives. These symbols are parsed by
preprocessing directives: if the directive condition is true the statement is kept, otherwise the
statement is removed.

VB .NET Supported Preprocessing Directives
The following directives are supported during preprocessing:

Directive Description

#Const Defines a symbol

#If Evaluates a condition, if the condition is true, the statement following the con-
dition is kept otherwise it is ignored

#Else If the previous #If test fails, source code following the #Else directive will be
included

#Else If Used with the #if directive, if the previous #If test fails, #Else If includes or
exclude source code, depending on the resulting value of its own expression or
identifier

#End If Closes the #If conditional block of code

Note: #Region, #End Region, and #ExternalSource directives are removed from source code.

Defining a VB .NET Preprocessing Symbol
You can define VB .NET preprocessing symbols and values in the preprocessing tab of the
reverse engineering dialog box.

Symbol names are not case sensitive but they must be unique. Make sure you do not type
reserved words like true, false, if, do and so on. You must always assign a value to a symbol,
this value can be a string (no " " required), a numeric value, a boolean value or Nothing.

The list of symbols is saved in the model and will be reused when you synchronize your model
with existing code using the Synchronize with Generated Files command.

For more information on the Synchronize with Generated Files command see Synchronizing a
Model with Generated Files on page 270.

You can use the Set As Default button to save the list of symbols in the registry.

1. Select Language > Reverse engineering VB .NET.

The Reverse Engineering VB .NET dialog box is displayed.

2. Click the Preprocessing tab, then click the Add a row tool to insert a line in the list.

3. Type symbol names in the Name column.

CHAPTER 16: Working with VB .NET

434 PowerDesigner

4. Type symbol value in the Value column.

The Defined check box is automatically selected for each symbol to indicate that the
symbol will be taken into account during preprocessing.

5. Click Apply.

VB .NET Reverse Engineering with Preprocessing
Preprocessing is a reverse engineering option you can enable or disable.

1. Select Language > Reverse engineering VB .NET.

The Reverse Engineering VB .NET dialog box is displayed.

2. Select files to reverse engineer in the Selection tab.

3. Select reverse engineering options in the Options tab.

4. Select the Enable preprocessing check box in the Preprocessing tab.

5. Select symbols in the list of symbols.

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 435

6. Click OK to start reverse engineering.

When preprocessing is over the code is passed to reverse engineering.

Reverse Engineering VB .NET Files
You can reverse engineer VB .NET files.

1. Select Language > Reverse Engineer VB .NET to display the Reverse Engineer
VB .NET dialog box.

2. Select to reverse engineer files or directories from the Reverse Engineering list.

3. Click the Add button in the Selection tab.

A standard Open dialog box is displayed.

4. Select the items or directory you want to reverse engineer.

Note: You select several files simultaneously using the Ctrl or Shift keys. You cannot
select several directories.

The Reverse VB .NET dialog box displays the files you selected.

5. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

CHAPTER 16: Working with VB .NET

436 PowerDesigner

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The classes are added to your model. They are visible in the diagram and in the Browser.
They are also listed in the Reverse tab of the Output window, located in the lower part of the
main window.

Working with ASP.NET
An Active Server Page (ASP) is an HTML page that includes one or more scripts (small
embedded programs) that are interpreted by a script interpreter (such as VBScript or JScript)
and that are processed on a Microsoft Web server before the page is sent to the user. An ASP
involves programs that run on a server, usually tailoring a page for the user. The script in the
Web page at the server uses input received as the result of the user's request for the page to
access data from a database and then builds or customizes the page on the fly before sending it
to the requestor.

ASP.NET (also called ASP+) is the next generation of Microsoft Active Server Page (ASP).
Both ASP and ASP.NET allow a Web site builder to dynamically build Web pages on the fly by
inserting queries to a relational database in the Web page. ASP.NET is different than its
predecessor in two major ways:

• It supports code written in compiled languages such as Visual Basic, VB .NET, and Perl
• It features server controls that can separate the code from the content, allowing

WYSIWYG editing of pages

ASP.NET files have a .ASPX extension. In an OOM, an ASP.NET is represented as a file
object and is linked to a component (of type ASP.NET). The component type Active Server
Page (ASP.NET) allows you to identify this component. Components of this type are linked to
a single file object that defines the page.

When you set the type of the component to ASP.NET, the appropriate ASP.NET file object is
automatically created, or attached if it already exists. You can see the ASP.NET file object
from the Files tab in the component property sheet.

ASP Tab of the Component
When you set the type of the component to ASP.NET, the ASP tab is automatically displayed
in the component property sheet.

The ASP tab includes the following properties:

Property Description

ASP file File object that defines the page. You can click the Properties tool beside this box
to display the property sheet of the file object, or click the Create tool to create a
file object

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 437

Property Description

Default template Extended attribute that allows you to select a template for generation. Its content
can be user defined or delivered by default

To modify the default content, edit the current object language from Language > Edit
Current Object Language and modify the following item: Profile/FileObject/Criteria/ASP/
Templates/DefaultContent<%is(DefaultTemplate)%>. Then create the templates and rename
them as DefaultContent<%is(<name>)%> where <name> stands for the corresponding
DefaultContent template name.

To define additional DefaultContent templates for ASP.NET, you have to modify the
ASPTemplate extended attribute type from Profile/Share/Extended Attribute Types and add
new values corresponding to the new templates respective names.

For more information on the default template property, see the definition of TemplateContent
in Creating an ASP.NET with the wizard on page 438.

Defining File Objects for ASP.NET
The file object content for ASP is based on a special template called DefaultContent defined
with respect to the FileObject metaclass. It is located in the Profile/FileObject/Criteria/ASP/
Templates category of the C# and VB.NET object languages. This link to the template exists
as a basis, therefore if you edit the file object, the link to the template is lost - the mechanism is
similar to that of operation default bodies.

For more information on the Criteria category, see Customizing and Extending
PowerDesigner > Extension Files > Criteria (Profile).

Active Server Page files are identified using the ASPFile stereotype. The server page name is
synchronized with the ASP.NET component name following the convention specified in the
Value box of the Settings/Namings/ASPFileName entry of the C# and VB.NET object
languages.

You can right-click a file object, and select Open With > text editor from the contextual menu
to display the content of the file object.

Creating an ASP.NET with the Wizard
You can create an ASP.NET with the wizard that will guide you through the creation of the
component. The wizard is invoked from a class diagram. It is only available if the language is
C# or VB.NET.

You can either create an ASP.NET without selecting any file object, or select a file object
beforehand and start the wizard from the Tools menu.

You can also create several ASP.NET of the same type by selecting several file objects at the
same time. The wizard will automatically create one ASP.NET per file object: the file objects
you have selected in the class diagram become ASP.NET files.

CHAPTER 16: Working with VB .NET

438 PowerDesigner

The wizard for creation of an ASP.NET lets you define the following parameters:

Wizard page Description

Name Name of the ASP.NET component

Code Code of the ASP.NET component

TemplateContent Allows you to choose the default template of the ASP.NET file object. The
TemplateContent is an extended attribute located in the Profile/Compo-
nent/Criteria/ASP category of the C# and VB.NET object languages. If
you do not modify the content of the file object, the default content re-
mains (see the Contents tab of the file object property sheet). All templates
are available in the FileObject/Criteria/ASP/templates category of the
current object language

Create symbol Creates a component symbol in the diagram specified beside the Create
symbol In check box. If a component diagram already exists, you can
select one from the list. You can also display the diagram properties by
selecting the Properties tool

1. Select Tools > Create ASP from a class diagram.

The Active Server Page Wizard dialog box is displayed.

2. Select a name and code for the ASP.NET component and click Next.

3. Select an ASP.NET template and click Next.

4. At the end of the wizard, you have to define the creation of symbols.

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 439

When you have finished using the wizard, the following actions are executed:

• An ASP.NET component and a file object with an extension .ASPX are created and visible
in the Browser. The file object is named after the original default component name to
preserve coherence

• If you open the property sheet of the file object, you can see that the Artifact property is
selected
For more information on artifact file objects, see File Object Properties on page 222.

• You can edit the file object directly in the internal editor of PowerDesigner, if its extension
corresponds to an extension defined in the Editors page of the General Options dialog box,
and if the <internal> keyword is defined in the Editor Name and Editor Command columns
for this extension

Generating ASP.NET
The generation process generates only file objects having the Artifact property selected.

1. Select Language > Generate C# or VB.NET code to display the Generation dialog box.

2. Select or browse to a directory that will contain the generated files.

3. Click the Selection tab, then select the objects you need in the different sub-tabs.

4. Click Apply.

5. Click the Options tab, then specify your generation options in the Options tab.

CHAPTER 16: Working with VB .NET

440 PowerDesigner

For more information on the generation options, see Generating VB.NET Files on page
429.

6. Click Apply.

7. Click the Tasks tab to display the Tasks tab.

8. Select the commands you want to perform during generation in the Tasks tab.

For more information on the generation tasks, see Generating VB.NET Files on page
429.

You must beforehand set the environment variables from General Options diaog box
(Variables section) in order to activate them in this tab.

For more information on how to set these variables, see Core Features Guide > Modeling
with PowerDesigner > Customizing Your Modeling Environment > General Options >
Environment Variables.

9. Click OK.

A progress box is displayed, followed by a Result list. You can use the Edit button in the
Result list to edit the generated files individually.

10. Click Close.

The files are generated in the generation directory.

CHAPTER 16: Working with VB .NET

Object-Oriented Modeling 441

CHAPTER 16: Working with VB .NET

442 PowerDesigner

CHAPTER 17 Working with Visual Basic 2005 -
Deprecated

PowerDesigner provides full support for modeling all aspects of Visual Basic 2005 including
round-trip engineering.

Note: Support for this language is deprecated.

Visual Basic 2005 is a high-level programming language for the Microsoft .NET framework.

PowerDesigner can be used as a standalone product and as a plug-in for Visual Studio,
allowing you to integrate its enterprise-level modeling capabilities in your standard .NET
workflow. For more information, see Core Features Guide > Modeling with PowerDesigner >
The PowerDesigner Add-In for Visual Studio.

This chapter outlines the specifics of PowerDesigner’s support for modeling the Visual Basic
2005 language, and should be read in conjunction with the language-neutral chapters in Part
One of this book.

In addition to PowerDesigner's standard palettes, the following custom tools are available to
help you rapidly develop your class and composite structure diagrams:

Icon Tool

Assembly – a collection of Visual Basic 2005 files (see Visual Basic 2005 Assemblies on
page 443).

Custom Attribute – for adding metadata (see Visual Basic 2005 Custom Attributes on page
456).

Delegate – type-safe reference classes (see Visual Basic 2005 Delegates on page 450).

Enum – sets of named constants (see Visual Basic 2005 Enums on page 451).

Struct – lightweight types (see Visual Basic 2005 Structs on page 449).

Visual Basic 2005 Assemblies
An assembly is a collection of Visual Basic 2005 files that forms a DLL or executable.
PowerDesigner provides support for both single-assembly models (where the model
represents the assembly) and multi-assembly models (where each assembly appears directly
below the model in the Browser tree and is modeled as a standard UML package with a
stereotype of <<Assembly>>).

Object-Oriented Modeling 443

Creating an Assembly
PowerDesigner supports both single-assembly and multi-assembly models.

By default, when you create a VB 2005 OOM, the model itself represents an assembly. To
continue with a single-assembly model, insert a type or a namespace in the top-level diagram.
The model will default to a single-module assembly, with the model root representing the
assembly.

To create a multi-assembly model, insert an assembly in the top-level diagram in any of the
following ways:

• Use the Assembly tool in the Visual Basic 2005 Toolbox.
• Select Model > Assembly Objects to access the List of Assembly Objects, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Assembly.

Note: If these options are not available to you, then you are currently working with a single-
assembly model.

Converting a Single-Assembly Model to a Multi-Assembly Model
To convert to a multi-assembly model, right-click the model in the Browser and select
Convert to Multi-Assembly Model, enter a name for the assembly that will contain all the
types in your model in the Create an Assembly dialog, and click OK.

PowerDesigner converts the single-assembly model into a multi-assembly model by inserting
a new assembly directly beneath the model root to contain all the types present in the model.
You can add new assemblies as necessary but only as direct children of the model root.

Assembly Properties
Assembly property sheets contains all the standard package tabs along with the following
Visual Basic 2005-specific tabs:

The Application tab contains the following properties:

Property Description

Generate Project
File

Specifies whether to generate a Visual Studio 2005 project file for the assembly.

Project Filename Specifies the name of the project in Visual Studio. The default is the value of the
assembly code property.

Assembly Name Specifies the name of the assembly in Visual Studio. The default is the value of
the assembly code property.

Root Namespace Specifies the name of the root namespace in Visual Studio. The default is the
value of the assembly code property.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

444 PowerDesigner

Property Description

Output Type Specifies the type of application being designed. You can choose between:

• Class library

• Windows Application

• Console Application

Project GUID Specifies a unique GUID for the project. This field will be completed automat-
ically at generation time.

The Assembly Information tab contains the following properties:

Property Description

Generate Assem-
bly Information

Specifies whether to generate an assembly manifest file.

Title Specifies a title for the assembly manifest. This field is linked to the Name field
on the General tab.

Description Specifies an optional description for the assembly manifest.

Company Specifies a company name for the assembly manifest.

Product Specifies a product name for the assembly manifest.

Copyright Specifies a copyright notice for the assembly manifest.

Trademark Specifies a trademark for the assembly manifest.

Culture Specifies which culture the assembly supports.

Version Specifies the version of the assembly.

File Version Specifies a version number that instructs the compiler to use a specific version for
the Win32 file version resource.

GUID Specifies a unique GUID that identifies the assembly.

Make assembly
COM-Visible

Specifies whether types within the assembly will be accessible to COM.

Visual Basic 2005 Compilation Units
By default, PowerDesigner generates one source file for each class, interface, delegate, or
other type, and bases the source directory structure on the namespaces defined in the model.

You may want instead to group multiple classifiers in a single source file and/or construct a
directory structure independent of your namespaces.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 445

A compilation-unit allows you to group multiple types in a single source file. It consists of zero
or more using-directives followed by zero or more global-attributes followed by zero or more
namespace-member-declarations.

PowerDesigner models compilation units as artifacts with a stereotype of <<Source>> and
allows you to construct a hierarchy of source directories using folders. Compilation units do
not have diagram symbols, and are only visible inside the Artifacts folder in the Browser.

You can preview the code that will be generated for your compilation unit at any time, by
opening its property sheet and clicking the Preview tab.

Creating a Compilation Unit
To create an empty compilation unit from the Browser, right-click the model or the Artifacts
folder and select New > Source, enter a name (being sure to retain the .cs extension), and then
click OK.

Note: You can create a compilation unit and populate it with a type from the Generated Files
tab of the property sheet of the type by clicking the New tool in the Artifacts column.

Adding a Type to a Compilation Unit
You can add types to a compilation unit by:

• Dragging and dropping the type diagram symbol or browser entry onto the compilation
unit browser entry.

• Opening the compilation unit property sheet to the Objects tab and using the Add
Production Objects tool.

• Opening the type property sheet to the Generated Files tab and using the Add/Remove
tool in the Artifacts column. Types that are added to multiple compilation units will be
generated as partial types and you can specify the compilation unit in which each of their
attributes and methods will be generated.

Creating a Generation Folder Structure
You can control the directory structure in which your compilation units will be generated by
using artifact folders:

1. Right-click the model or a folder inside the Browser Artifacts folder, and select New >
Artifact Folder.

2. Specify a name for the folder, and then click OK to create it.
3. Add compilation units to the folder by dragging and dropping their browser entries onto

the folder browser entry, or by right-clicking the folder and selecting New > Source.

Note: Folders can only contain compilation units and other folders. To place a type in the
generation folder hierarchy, you must first add it to a compilation unit.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

446 PowerDesigner

Partial Types
Partial types are types that belong to more than one compilation unit. They are prefixed with
the partial keyword.

public partial class Server
{
 private int start;
}

In this case, you can specify to which compilation unit each field and method will be assigned,
using the Compilation Unit box on the C# or VB tab of their property sheets.

For partial types that contain inner types, you can specify the compilation unit to which each
inner type will be assigned as follows:

1. Open the property sheet of the container type and click the Inner Classifiers tab.
2. If the CompilationUnit column is not displayed, click the Customize Columns and

Filter tool, select the column from the selection box, and then click OK to return to the
tab.

3. Click in the CompilationUnit column to reveal a list of available compilation units, select
one, and click OK to close the property sheet.

Visual Basic 2005 Namespaces
Namespaces restrict the scope of an object's name. Each class or other type must have a unique
name within the namespace.

PowerDesigner models namespaces as standard packages with the Use Parent Namespace
property deselected. For information about creating and working with packages, see Packages
(OOM) on page 49.

In the following example, class Architect is declared in package Design which is a sub-
package of Factory. The namespace declaration is the following:

Namespace Factory.Design
 Public Class Architect
...
...End Class
End Namespace ' Factory.Design

This structure, part of the NewProduct model, appears in the PowerDesigner Browser as
follows:

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 447

Classifiers defined directly at the model level fall into the Visual Basic 2005 global
namespace.

Visual Basic 2005 Classes
PowerDesigner models Visual Basic 2005 classes as standard UML classes, but with
additional properties.

For information about creating and working with classes, see Classes (OOM) on page 34.

The following specific classes are also supported in PowerDesigner:

• MustInherit class is equivalent to an abstract class. To design this type of class you need to
create a class and select the Abstract check box in the General tab of the class property
sheet.

Public MustInherit Class Cus-
tomer
 Private Name As Char
 Private ID As Integer
End Class

• NotInheritable class is equivalent to a final class. To design this type of class, you need to
create a class and select the Final check box in the General tab of the class property sheet.

Public NotInheritable Class Fi-
nalClass
 Private At1 As Object
 Private At2 As Object
End Class

Visual Basic 2005 Class Properties
Visual Basic 2005 class property sheets contain all the standard class tabs along with the
following properties, located on the VB tab:

Property Description

Explicit Specifies the Explicit option directive for the class declaration.

Shadows Specifies that the class redefines a class defined in a parent class.

Strict Specifies the Strict option directive for the class declaration.

Compare Specifies the Compare option directive for the class declaration.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

448 PowerDesigner

Visual Basic 2005 Interfaces
PowerDesigner models Visual Basic 2005 interfaces as standard UML interfaces, with
additional properties.

For information about creating and working with interfaces, see Interfaces (OOM) on page
51.

Visual Basic 2005 interfaces can contain events, properties, indexers and methods; they do not
support variables, constants, and constructors.

Visual Basic 2005 Interface Properties
Visual Basic 2005 interface property sheets contain all the standard interface tabs along with
the following properties, located on the VB tab:

Property Description

Explicit Specifies the Explicit option directive for the interface declaration.

Shadows Specifies that the interface redefines a interface defined in a parent interface .

Strict Specifies the Strict option directive for the interface declaration.

Compare Specifies the Compare option directive for the interface declaration.

Visual Basic 2005 Structs
Structs are lightweight types that make fewer demands on the operating system and on
memory than conventional classes. PowerDesigner models Visual Basic 2005 structs as
classes with a stereotype of <<Structure>>.

For information about creating and working with classes, see Classes (OOM) on page 34.

A struct can implement interfaces but does not support inheritance; it can contain events,
variables, constants, methods, constructors, and properties.

In the following example, the struct contains two attributes and a constructor operation:

...
Public Class Point
 Protected Y As Integer
 Protected X As Integer
 Public Sub New()

 End Sub
End Class
...

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 449

Creating a Struct
You can create a struct in any of the following ways:

• Use the Struct tool in the Visual Basic 2005 Toolbox.
• Select Model > Struct Objects to access the List of Struct Objects, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Struct.

Struct Properties
Visual Basic 2005 struct property sheets contain all the standard struct tabs along with the
following properties, located on the VB tab:

Property Description

Explicit Specifies the Explicit option directive for the struct declaration.

Shadows Specifies that the struct redefines a struct defined in a parent struct.

Strict Specifies the Strict option directive for the struct declaration.

Compare Specifies the Compare option directive for the struct declaration.

Visual Basic 2005 Delegates
Delegates are type-safe reference types that provide similar functions to pointers in other
languages. PowerDesigner models delegates as classes with a stereotype of <<Delegate>>
with a single operation code-named "<signature>". The visibility, name, comment, flags and
attributes are specified on the class object whereas the return-type and parameters are
specified on the operation.

For information about creating and working with classes, see Classes (OOM) on page 34.

You can design the following types of VB .NET delegates:

• To create a delegate at the namespace level, create a class with the <<Delegate>>
stereotype, and add an operation with the <<Delegate>> stereotype to this class and define
a visibility for this operation. This visibility becomes the visibility of the delegate

...
Public Delegate Function Actio-
nOccurred () As Object
...

• To create a delegate in a class, module, or structure, you just have to create an operation
with the <<Delegate>> stereotype. In the following example, class Worker is inner to
module Utilities. Both contain internal delegates designed as operations with the
<<Delegate>> stereotype

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

450 PowerDesigner

...
Public Module Utilities
 Public Delegate Function New-
Worker () As Object
 Public Class Worker
 Public Delegate Function
WorkStarted () As Object
 End Class
End Module
...

Creating a Delegate
You can create a delegate in any of the following ways:

• Use the Delegate tool in the Visual Basic 2005 Toolbox.
• Select Model > Delegate Objects to access the List of Delegate Objects, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Delegate.

Delegate Properties
Visual Basic 2005 delegate property sheets contain all the standard delegate tabs along with
the following properties, located on the VB tab:

Property Description

Explicit Specifies the Explicit option directive for the delegate declaration.

Shadows Specifies that the delegate redefines a delegate defined in a parent delegate.

Strict Specifies the Strict option directive for the delegate declaration.

Compare Specifies the Compare option directive for the delegate declaration.

Visual Basic 2005 Enums
Enums are sets of named constants. PowerDesigner models enums as classes with a stereotype
of <<Enum>>.

For information about creating and working with classes, see Classes (OOM) on page 34.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 451

Public Enum Day
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
 Sunday
 FirstDay = Monday
 LastDay = Sunday
End Enum

Creating an Enum
You can create an enum in any of the following ways:

• Use the Enum tool in the Visual Basic 2005 Toolbox.
• Select Model > Enum Objects to access the List of Enum Objects, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Enum.

Enum Properties
Visual Basic 2005 enum property sheets contain all the standard enum tabs along with the
following properties, located on the VB tab:

Property Description

Base Integral
Type

Specifies the base integral type for the enum.

Compare Specifies the Compare option directive for the enum declaration.

Explicit Specifies the Explicit option directive for the enum declaration.

Shadows Specifies that the enum redefines a enum defined in a parent enum .

Strict Specifies the Strict option directive for the enum declaration.

Visual Basic 2005 Fields, Events, and Properties
PowerDesigner models Visual Basic 2005 fields, events, and properties as standard UML
attributes with additional properties.

Creating a Field, Event, or Property
To create a field, event, or property, open the property sheet of a type, click the Attributes tab,
click the Add button at the bottom of the tab, and select the appropriate option.

For general information about creating and working with attributes, see Attributes (OOM) on
page 63.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

452 PowerDesigner

Working with Events
Events are modeled as attributes with a stereotype of <<Event>>, and with one or two linked
operations representing the add and/or remove handlers. You declare events within classes,
structures, modules, and interfaces using the Event keyword, as in the following example:
Event AnEvent(ByVal EventNumber As Integer)

An event is like a message announcing that something important has occurred. The act of
broadcasting the message is called raising the event.

Events must be raised within the scope where they are declared. For example, a derived class
cannot raise events inherited from a base class.

Any object capable of raising an event is an event sender, also known as an event source.
Forms, controls, and user-defined objects are examples of event senders.

Event handlers are procedures that are called when a corresponding event occurs. You can use
any valid subroutine as an event handler. You cannot use a function as an event handler,
however, because it cannot return a value to the event source.

Visual Basic uses a standard naming convention for event handlers that combines the name of
the event sender, an underscore, and the name of the event. For example, the click event of a
button named button1 would be named Sub button1_Click. It is recommended that you use
this naming convention when defining event handlers for your own events, but it is not
required; you can use any valid subroutine name.

Before an event handler becomes usable, you must first associate it with an event by using
either the Handles or AddHandler statement.

The WithEvents statement and Handles clause provide a declarative way of specifying event
handlers. Events raised by an object declared with WithEvents can be handled by any
subroutine with a Handles clause that names this event. Although the Handles clause is the
standard way of associating an event with an event handler, it is limited to associating events
with event handlers at compile time.

The AddHandler and RemoveHandler statements are more flexible than the Handles clause.
They allow you to dynamically connect and disconnect the events with one or more event
handlers at run time, and they do not require you to declare object variables using WithEvents.

The following example shows the Button class, which contains three events:

Public Class Printer
 Public PaperJam As EventHandler
 Public OutOfPaper As EventHan-
dler
 Public JobOK As PrinterGoodDe-
legate
End Class

The following example shows the Printer class, which contains an event handler:

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 453

...
Public Function Operation_2() As
Object Handles Print
 End Function
...

Working with Properties
Properties are modeled as attributes with a stereotype of <<Property>>, and with one or two
linked operations representing the get and/or set accessors.

The visibility of the property is defined by the visibility of the get accessor operation if any,
otherwise by that of the set accessor operation.

The Get and Set accessors in Visual Basic 2005 can now have different accessibility settings,
as long as Set is more restrictive than Get.

It is possible to add a Property for an existing attribute to access it. The attribute will have the
<<PropertyImplementation>> stereotype. The created Property will use the same code as the
implemented attribute but starting with an underscore (_) character. By default, the Property
will have a public visibility and will not be persistent.

Field, Event, and Property Properties
Visual Basic 2005 field, event, and property property sheets contain all the standard attribute
tabs along with the VB, the properties of which are listed below:

Property Description

Compilation
Unit

Specifies the compilation unit in which the field will be stored. This field is only
available if the parent type is a partial type (allocated to more than one compilation
unit).

As New Specifies that the attribute is created by new object instance.

Shadowing Specifies the form of shadowing. You can choose between:

• Shadows

• Overloads

• Overrides

Default [properties only] Specifies whether the property is a default.

Overriding [properties only] Specifies the form of overriding available. You can choose be-
tween:

• Overridable

• NotOverridable

• MustOverride

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

454 PowerDesigner

Property Description

Property Param-
eters

[properties only] Specifies the parameters of the property.

Visual Basic 2005 Methods
PowerDesigner models Visual Basic 2005 methods as operations.

For information about creating and working with operations, see Operations (OOM) on page
76.

Method Properties
Method property sheets contain all the standard operation tabs along with the VB tab, the
properties of which are listed below:

Property Description

Compilation
Unit

Specifies the compilation unit in which the method will be stored. This field is
only available if the parent type is a partial type (allocated to more than one
compilation unit).

Overridable Specifies that the method can be overridden.

Overrides Specifies that the method overrides another.

Handles Specifies the name of the event that the method handles.

Shadows Specifies the form of shadowing. You can choose between:

• Shadows

• Overloads

Library Name Specifies the library DLL name.

Alias Name Specifies the alias name.

Character Set Specifies the character set of the external method.

Constructors and Destructors
You design VB .NET constructors and destructors by clicking the Add Default Constructor/
Destructor button in the list of operations of a class. This automatically creates a constructor
called New with the Constructor stereotype, and a destructor called Finalize with the
Destructor stereotype. Both constructor and destructor are grayed out in the list, which means
you cannot modify their definition, but you can still remove them from the list.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 455

Visual Basic 2005 Inheritance and Implementation
PowerDesigner models Visual Basic 2005 inheritance links as standard UML generalizations
or realizations.

PowerDesigner models Visual Basic 2005 inheritance links between types as standard UML
generalizations (see Generalizations (OOM) on page 95).

PowerDesigner models Visual Basic 2005 implementation links between types and interfaces
as standard UML realizations (see Realizations (OOM) on page 102).

Visual Basic 2005 Custom Attributes
PowerDesigner provides full support for Visual Basic 2005 custom attributes, which allow
you to add metadata to your code. This metadata can be accessed by post-processing tools or at
run-time to vary the behavior of the system.

You can use built-in custom attributes, such as System.Attribute and
System.ObsoleteAttribute, and also create your own custom attributes to apply to your types.

For general information about modeling this form of metadata in PowerDesigner, see
Annotations (OOM) on page 108.

Generating Visual Basic 2005 Files
You generate Visual Basic 2005 source files from the classes and interfaces of a model. A
separate file, with the file extension .vb, is generated for each class or interface that you select
from the model, along with a generation log file.

The following PowerDesigner variables are used in the generation of Visual Basic 2005
source files:

Variable Description

CSC Visual Basic 2005 compiler full path. For example, C:\WINDOWS\Microsoft.NET
\Framework\v1.0.3705\csc.exe

WSDL Web Service proxy generator full path. For example, C:\Program Files\Microsoft
Visual Studio .NET\FrameworkSDK\Bin\wsdl.exe

To review or edit these variables, select Tools > General Options and click the Variables
category.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

456 PowerDesigner

1. Select Language > Generate Visual Basic 2005 Code to open the Visual Basic 2005
Generation dialog.

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

5. [optional] Click the Options tab and set any appropriate generation options:

Option Description

Generate object ids as docu-
mentation tags

Specifies whether to generate object ids for use as documentation
tags.

Sort class members primarily
by

Specifies the primary method by which class members are sorted:
• Visibility
• Type

Class members type sort Specifies the order by which class members are sorted in terms of
their type:
• Methods – Properties - Fields
• Properties – Methods - Fields
• Fields – Properties - Methods

Class members visibility sort Specifies the order by which class members are sorted in terms of
their visibility:
• Public - Private
• Private – Public
• None

Generate Visual Studio 2005
project files

Specifies whether to generate project files for use with Visual
Studio 2005.

Generate Assembly Info File Specifies whether to generate information files for assemblies.

Generate Visual Studio Solu-
tion File

Specifies whether to generate a solution file for use with Visual
Studio 2005.

Generate Web Service code
in .asmx file

Specifies whether to generate web services in a .asmx file.

Generate default accessors
for navigable associations

Specifies whether to generate default accessors for navigable
associations.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 457

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

7. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

Task Description

WSDLDotNet: Generate
Web service proxy code

Generates the proxy class

Compile source files Compiles the source files

Open the solution in Visual
Studio

Depends on the Generate Visual Studio 2005 project files option.
Opens the generated project in Visual Studio 2005.

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Reverse Engineering Visual Basic 2005 Code
You can reverse engineer Visual Basic 2005 files into an OOM.

1. Select Language > Reverse Engineer Visual Basic to open the Reverse Engineer Visual
Basic dialog box.

2. Select what form of code you want to reverse engineer. You can choose between:

• Visual Basic files (.vb)
• Visual Basic directories
• Visual Basic projects (.vbproj)

3. Select files, directories, or projects to reverse engineer by clicking the Add button.

Note: You can select multiple files simultaneously using the Ctrl or Shift keys. You
cannot select multiple directories.

The selected files or directories are displayed in the dialog box and the base directory is set
to their parent directory. You can change the base directory using the buttons to the right of
the field.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

458 PowerDesigner

4. [optional] Click the Options tab and set any appropriate options. For more information, see
Visual Basic Reverse Engineer dialog Options tab on page 459.

5. [optional] Click the Preprocessing tab and set any appropriate preprocessing symbols. For
more information, see Visual Basic reverse engineering preprocessing directives on page
460.

6. Click OK to begin the reverse engineering.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The classes are added to your model. They are visible in the diagram and in the Browser,
and are also listed in the Reverse tab of the Output window, located in the lower part of the
main window.

Visual Basic Reverse Engineer Dialog Options Tab
The following options are available on this tab:

Option Description

File encoding Specifies the default file encoding of the files to reverse engineer

Ignore operation body Reverses classes without including the body of the code

Ignore comments Reverses classes without including code comments

Create Associations from
classifier-typed attributes

Creates associations between classes and/or interfaces

Create symbols Creates a symbol for each object in the diagram, if not, reversed objects
are only visible in the browser

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 459

Option Description

Libraries Specifies a list of library models to be used as references during reverse
engineering.

The reverse engineered model may contain shortcuts to objects defined
in a library. If you specify the library here, the link between the shortcut
and its target object (in the library) will be preserved and the library will
be added to the list of target models in the reverse engineered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above library
v1.0, PowerDesigner will first attempt to resolve shortcuts against li-
brary v1.1 and will only parse library v1.0 if unresolved shortcuts re-
main.

You should use the List of Target Models to manage libraries related to
the reverse engineered model, for example, you can change the library
version (see Core Features Guide > Linking and Synchronizing Models
> Shortcuts and Replicas > Working with Target Models).

Preserve file structure Creates an artifact during reverse engineering in order to be able to
regenerate an identical file structure

Mark classifiers not to be
generated

Specifies that reversed classifiers (classes and interfaces) will not be
generated from the model. To generate the classifier, you must select the
Generate check box in its property sheet

Visual Basic Reverse Engineering Preprocessing Directives
Visual Basic files may contain conditional code that needs to be handled by preprocessing
directives during reverse engineering. A preprocessing directive is a command placed within
the source code that directs the compiler to do a certain thing before the rest of the source code
is parsed and compiled. The preprocessing directive has the following structure:

#directive symbol

Where # is followed by the name of the directive, and symbol is a conditional compiler
constant used to select particular sections of code and exclude other sections.

In Visual Basic symbols have values.

In the following example, the #if directive is used with symbols FrenchVersion and
GermanVersion to output French or German language versions of the same application from
the same source code:

 #if FrenchVersion Then
 ' <code specific to French language version>.
 #ElseIf GermanVersion Then
 ' <code specific to French language version>.
 #Else

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

460 PowerDesigner

 ' <code specific to other language version>.
 #End If

You can declare a list of symbols for preprocessing directives. These symbols are parsed by
preprocessing directives: if the directive condition is true the statement is kept, otherwise the
statement is removed.

Visual Basic Supported Preprocessing Directives
The following directives are supported during preprocessing:

Directive Description

#Const Defines a symbol

#If Evaluates a condition, if the condition is true, the statement following the con-
dition is kept otherwise it is ignored

#Else If the previous #If test fails, source code following the #Else directive will be
included

#Else If Used with the #if directive, if the previous #If test fails, #Else If includes or
exclude source code, depending on the resulting value of its own expression or
identifier

#End If Closes the #If conditional block of code

Note: #Region, #End Region, and #ExternalSource directives are removed from source code.

Defining a Visual Basic Preprocessing Symbol
You can define Visual Basic preprocessing symbols and values in the preprocessing tab of the
reverse engineering dialog box.

Symbol names are not case sensitive but they must be unique. Make sure you do not type
reserved words like true, false, if, do and so on. You must always assign a value to a symbol,
this value can be a string (no " " required), a numeric value, a boolean value or Nothing.

The list of symbols is saved in the model and will be reused when you synchronize your model
with existing code using the Synchronize with Generated Files command.

For more information on the Synchronize with Generated Files command see Synchronizing a
Model with Generated Files on page 270.

You can use the Set As Default button to save the list of symbols in the registry.

1. Select Language > Reverse engineering Visual Basic.

The Reverse Engineering Visual Basic dialog box is displayed.

2. Click the Preprocessing tab, then click the Add a row tool to insert a line in the list.

3. Type symbol names in the Name column.

4. Type symbol value in the Value column.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

Object-Oriented Modeling 461

The Defined check box is automatically selected for each symbol to indicate that the
symbol will be taken into account during preprocessing.

5. Click Apply.

PowerDesigner does not support the default namespace in a Visual Studio project. If you
define default namespaces in your projects, you should avoid reverse engineering the entire
solution. It is better to reverse engineer each project separately.

CHAPTER 17: Working with Visual Basic 2005 - Deprecated

462 PowerDesigner

CHAPTER 18 Working with C# - Deprecated

PowerDesigner supports the modeling of C# programs including round-trip engineering.

Note: Support for this language is deprecated.

Inheritance & Implementation
You design C# inheritance using a generalization link between classes.

You design C# implementation using a realization link between a class and an interface.

Namespace
You define a C# namespace using a package.

PowerDesigner models namespaces as standard packages with the Use Parent Namespace
property deselected.

In the following example, class Architect is declared in package Design which is a sub-
package of Factory. The namespace declaration is the following:

namespace Factory.Design
{
 public class Architect
 {
 }
}

Classifiers defined directly at the model level fall into the C# global namespace.

Project
You can reverse engineer C# projects when you select C# projects from the Reverse Engineer
list in the Reverse Engineer C# dialog box.

Make sure you reverse engineer each project into a separate model.

Assembly properties are reverse engineered as follow:

C# assembly properties PowerDesigner equivalent

Title Name of the model

Object-Oriented Modeling 463

C# assembly properties PowerDesigner equivalent

Description Description of the model

Configuration AssemblyConfiguration extended attribute

Company AssemblyCompany extended attribute

Copyright AssemblyCopyright extended attribute

Product AssemblyProduct extended attribute

Trademark AssemblyTrademark extended attribute

Version AssemblyVersion extended attribute

Culture AssemblyCulture extended attribute

AssemblyVersionAttribute

System.CLSCompliant

AssemblyFlagsAttribute

Stored in CustomAttributes extended attribute

Project properties are reverse engineered as extended attributes whether they have a value or
not. For example, the default HTML page layout is saved in extended attribute
DefaultHTMLPageLayout.

You can use the Ellipsis button in the Value column to modify the extended attribute value,
however you should be very cautious when performing such changes as they may jeopardize
model generation.

Accessibility
To define accessibility for a class, an interface, or a method, you have to use the visibility
property in PowerDesigner.

The following accessibility attributes are supported in PowerDesigner:

C# accessibility PowerDesigner visibility

Public (no restriction) Public

Private (access limited to the containing type) Private

Protected (access limited to the containing class or
types derived from the containing class)

Protected

Internal (access limited to current program) Internal

Protected internal (access limited to this program or
types derived from the containing class)

Protected internal

CHAPTER 18: Working with C# - Deprecated

464 PowerDesigner

Classes, Interfaces, Structs, and Enumerations
You design a C# class using a class in PowerDesigner. Structures are classes with the
<<structure>> stereotype, and enumerations are classes with the <<enumeration>>
stereotype.

• C# classes can contain events, variables, constants, methods, constructors, properties, and
indexers. The following specific classes are also supported in PowerDesigner:
• New class is used to declare a member with the same name or signature as an inherited

member. To design a new class, you have to set the class new extended attribute to True.
In the following example, class DialogBox inherits from class Window. Class Window
contains an inner classifier Control, and so does class DialogBox. You do not want
class DialogBox to inherit from the control defined in Window, to do so, you have to set
the new extended attribute to True, in the Control class inner to DialogBox:

{
 public class DialogBox : Win-
dow
 {
 public new class Control
 {
 }
 }
}

• Abstract class is equivalent to an abstract class. To design this type of class you need to
create a class and select the Abstract check box in the General tab of the class property
sheet.

{
 public abstract class Client
 {
 private int Name;
 private int ID;

 }
}

• Sealed class is equivalent to a final class. To design this type of class, you need to create
a class and select the Final check box in the General tab of the class property sheet.

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 465

{
 public sealed class Sealed-
Class
 {
 private int A1;
 private int A2;

 }
}

Note: You design a C# nested type using an inner class or interface.

• C# interfaces are modeled as standard interfaces. They can contain events, properties,
indexers and methods; they do not support variables, constants, and constructors.

• Structures can implement interfaces but do not support inheritance; they can contain
events, variables, constants, methods, constructors, and properties. The following struct
contains two attributes:

{
 public struct Point
 {
 public int New()
 {
 return 0;
 }
 private int x;
 private int y;
 }
}

• Enumeration class attributes are used as enumeration values. The following items must be
set:
• Data Type - using the EnumDataType extended attribute of the enumeration (for

example Byte, Short, or Long)
• Initial Expression - using the Initial Value field of an enum attribute
For example:

{
 public enum Color : colors
 {
 Red,
 Blue,
 Green,
 Max = Blue
 }
}

CHAPTER 18: Working with C# - Deprecated

466 PowerDesigner

Custom Attributes
To define custom attributes for a class, an interface, a variable, a parameter or a method, you
have to use the CustomAttributes extended attribute in PowerDesigner. You can use the
CustomAttributes input box to type all the custom attributes you wish to add using the correct
C# syntax.

Fields
You design a C# field using an attribute in PowerDesigner.

The following table summarizes the C# field modifiers supported in PowerDesigner:

C# field modifiers PowerDesigner equivalent

Static field Static property selected

New field New extended attribute set to True

Unsafe field Unsafe extended attribute set to True

Public field Public visibility

Protected field Protected visibility

Internal field Internal visibility

Private field Private visibility

Readonly field Read-only changeability

Volatile field Volatile property selected

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 467

• Data Type: You define the data type of a field using the attribute Data Type property
• Initial Value: You define the initial value of a field using the attribute Initial Value property

Property
To design a C# property you have to design an attribute with the <<Property>> stereotype.

When you do so, another attribute with the <<PropertyImplementation>> stereotype is
automatically created, it is displayed with an underscore sign in the list of attributes. The
corresponding getter and setter operations are also automatically created.

You can get rid of the implementation attribute.

If you remove both getter and setter operations, the attribute no longer has the <<Property>>
stereotype.

When you define a <<Property>> attribute, the attribute changeability and the getter/setter
operations are tightly related as explained in the following table:

Operations Property attribute changeability

If you keep both getter and setter
operations

Property is Changeable

If you remove the setter operation
of a changeable property

Property becomes Read-only

If you remove the getter operation
of a changeable property

Property becomes Write-only

On the other hand, if you modify the property changeability, operations will reflect this
change, for example, if you turn a changeable property into a read-only property, the setter
operation is automatically removed.

In the following example, class Employee contains 2 properties. The Setter operation has been
removed for property TimeReport:

{
 public class Employee
 {
 private int _Function;
 private int _TimeReport;
 // Property Function
 private int Function

CHAPTER 18: Working with C# - Deprecated

468 PowerDesigner

 {
 get
 {
 return _Function;
 }
 set
 {
 if (this._Function != value)
 this._Function = value;
 }
 }
 // Property TimeReport
 private int TimeReport
 {
 get
 {
 return _TimeReport;
 }
 }
 }

The following table lists the different property modifiers supported in PowerDesigner:

C# property modifiers PowerDesigner equivalent

Abstract Abstract extended attribute set to True

Extern Extern extended attribute set to True

Override Override extended attribute set to True

Sealed Sealed extended attribute set to True

Unsafe Unsafe extended attribute set to True

Virtual Virtual extended attribute set to True

Indexer
You design a C# indexer using an attribute with the <<Indexer>> stereotype. Another attribute
with the <<IndexerImplementation>> stereotype is automatically created, it is displayed with
an underscore sign in the list of attributes. The corresponding getter and setter operations are
also automatically created.

You can get rid of the implementation attribute.

If you remove both getter and setter operations, the attribute no longer has the <<Indexer>>
stereotype.

When you define a <<Indexer>> attribute, the attribute changeability and the getter/setter
operations are tightly related as explained in the following table:

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 469

Operations Indexer attribute changeability

If you keep both getter and setter
operations

Indexer is Changeable

If you remove the setter operation
of a changeable property

Indexer becomes Read-only

If you remove the getter operation
of a changeable property

Indexer becomes Write-only

On the other hand, if you modify the indexer changeability, operations will reflect this change,
for example, if you turn a changeable indexer into a read-only indexer, the setter operation is
automatically removed.

In the following example, class Person contains indexer attribute Item. The parameter used to
sort the property is String Name:.

public class Person
{
 private Hashtable _childAges;
 // Indexer Item
 private int this[String name]
 {
 get
 {
 return (int)_ChildAges[name];
 }
 set
 {
 _ChildAges[name] = value;
 }
 }
}
Person someone;
someone ["Alice"] = 3;
someone ["Elvis"] = 5;

The following table lists the different indexer modifiers supported in PowerDesigner:

C# property modifier PowerDesigner equivalent

New New extended attribute set to True

Usafe Usafe extended attribute set to True

Virtual Virtual extended attribute set to True

CHAPTER 18: Working with C# - Deprecated

470 PowerDesigner

C# property modifier PowerDesigner equivalent

Override Override extended attribute set to True

Extern Extern extended attribute set to True

Abstract Abstract extended attribute set to True

Sealed Sealed extended attribute set to True

Parameters
Type a value in the value box of the Indexer parameters extended attribute to specify which
value of the property attribute is to be used as parameter.

Method
You design a C# method using an operation.

The following table summarizes the different methods supported in PowerDesigner:

C# method PowerDesigner equivalent

Extern Select the Extern check box in the C# tab of the operation property
sheet

New Select the New check box in the C# tab of the operation property
sheet

Virtual Select the Virtual check box in the C# tab of the operation property
sheet

Override Select the Override check box in the C# tab of the operation property
sheet

Unsafe Select the Unsafe check box in the C# tab of the operation property
sheet

Explicit Select the Explicit check box in the C# tab of the operation property
sheet

Static Select the Static check box in the General tab of the operation prop-
erty sheet

Sealed Select the Final check box in the General tab of the operation prop-
erty sheet

Abstract Select the Abstract check box in the General tab of the operation
property sheet

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 471

New
When a class inherits from another class and contains methods with identical signature as in
the parent class, the New check box is automatically selected to make the child method prevail
over the parent method.

BaseInitializer and ThisInitializer for Constructors
The Base Initializer property in the C# tab of the operation property sheet is used to create an
instance constructor initializer of the form base. It causes an instance constructor from the
base class to be invoked.

The This Initializer property in the C# tab of the operation property sheet is also used to create
an instance constructor initializer, it causes an instance constructor from the class itself to be
invoked.

In the following example, class B inherits from class A. You define a Base Initializer extended
attribute in class B constructor, this extended attribute will be used to initialize class A
constructor:

internal class B : A
 {
 public B(int x, int y) : base(x + y, x - y)
 {}
 }

Method Parameters
You define C# method parameters using operation parameters.

You can define the following parameter modifiers in PowerDesigner:

C# modifier PowerDesigner equivalent

[none] Select In in the Parameter Type box on the parameter property sheet
General tab

ref Select In/Out in the Parameter Type box on the parameter property sheet
General tab

out Select Out in the Parameter Type box on the parameter property sheet
General tab

CHAPTER 18: Working with C# - Deprecated

472 PowerDesigner

C# modifier PowerDesigner equivalent

... Select the Variable Argument checkbox on the parameter property sheet
General tab

Method Implementation
Class methods are implemented by the corresponding interface operations. To define the
implementation of the methods of a class, you have to use the To be implemented button in the
Operations tab of a class property sheet, then click the Implement button for each method to
implement. The method is displayed with the <<Implement>> stereotype.

Constructor & Destructor
You design C# constructors and destructors by clicking the Add Default Constructor/
Destructor button on the class property sheet Operations tab. This automatically creates a
constructor with the Constructor stereotype, and a destructor with the Destructor stereotype.
Both constructor and destructor are grayed out in the list, which means you cannot modify
their definition, but you can still remove them from the list.

Delegate
You can design the following types of C# delegates:

• To create a delegate at the namespace level, create a class with the <<Delegate>>
stereotype, and add an operation with the <<Delegate>> stereotype to this class and define
a visibility for this operation. This visibility becomes the visibility of the delegate

{
 public delegate int ActionOccurred();
}

• To create a delegate in a class, or structure, you just have to create an operation with the
<<Delegate>> stereotype. In the following example, Class worker contains an internal
delegate designed as an operation with the <<Delegate>> stereotype

{
 public class Worker
 {
 public delegate WorkStarted();

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 473

 }
}

Event
You design a C# event using an attribute with the <<Event>> stereotype.

Operator Method
You design a C# operator using an operation with the <<Operator>> stereotype. Make sure the
<<Operator>> operation has the Public visibility and the Static property selected.

To define an external operator, you have to set the extern extended attribute of the operation to
True. The new, virtual and override extended attributes are not valid for operators.

The operator token (like +, -, !, ~, or ++ for example) is the name of the method.

Conversion Operator Method
You design a C# conversion operator using an operation with the <<ConversionOperator>>
stereotype.

You also need to declare the conversion operator using the explicit or implicit keywords. You
define the conversion operator keyword by selecting the implicit or explicit value of the scope
extended attribute.

In the following example, class Digit contains one explicit conversion operators and one
implicit conversion operator:

public struct Digit
{

CHAPTER 18: Working with C# - Deprecated

474 PowerDesigner

 public Digit(byte value)
 {
 if (value < 0 || value > 9) throw new ArgumentException();
 this.value = value;
 }
 public static implicit operator byte(Digit d)
 {
 return d.value;
 }

 public static explicit operator Digit(byte b)
 {
 return new Digit(b);
 }
 private byte value;
}

Documentation Tags
To generate documentation tags, you should use the Comment box in property sheets. You can
use any documentation tag before and after documentation, for example you can type
<summary> and </summary>.

If you add a tag, the documentation is preceded by /// in the generated code. During reverse
engineering, the / signs used to identify documentation are removed and the start and end
documentation tags are automatically added.

In the following example, you add a comment to class Employee:

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 475

The following code is generated:

 /// <summary>
 /// this is documentation
 /// this is documentation
 /// </summary>

Generating C# Files
You generate C# source files from the classes and interfaces of a model. A separate file, with
the file extension .cs, is generated for each class or interface that you select from the model,
along with a generation log file.

During C# generation, each main object (class, interface, and so on) generates a source file
with the .cs extension. Inner classifiers are generated in the source of the container classifier.

The using directive can appear at the beginning of the script of each generated file.

In PowerDesigner, you can define a using directive in the Script\Imports tab of the property
sheet of a main object. You can type the using statement or use the Import Folder or Import
Classifier tools in the Imports tab.

CHAPTER 18: Working with C# - Deprecated

476 PowerDesigner

The following PowerDesigner variables are used in the generation of C# source files:

Variable Description

CSC C# compiler full path. For example, C:\WINDOWS\Microsoft.NET\Framework
\v1.0.3705\csc.exe

WSDL Web Service proxy generator full path. For example, C:\Program Files\Microsoft
Visual Studio .NET\FrameworkSDK\Bin\wsdl.exe

To review or edit these variables, select Tools > General Options and click the Variables
category.

1. Select Language > Generate C# Code to open the C# Generation dialog.

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

5. [optional] Click the Options tab and set any appropriate generation options:

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 477

Option Description

Generate Web Service C#
code in .ASMX file

Generates the C# code in the .ASMX file

Generate Visual Stu-
dio .NET project files

Generates the files of the Visual Studio .NET project. A solution file
is generated together with several project files, each project corre-
sponding to a model or a package with the <<Assembly>> stereotype

Generate object ids as
documentation tags

Generates information used for reverse engineering like object iden-
tifiers (@pdoid) that are generated as documentation tags. If you do
not want these tags to be generated, you have to set this option to
False

Visual Studio .NET ver-
sion

Indicates the version number of Visual Studio .NET

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

7. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

Task Description

Compile C# source files Compiles the source files

Generate Web service
proxy code (WSDL)

Generates the proxy class

Open the solution in Visu-
al Studio .NET

If you selected the Generate Visual Studio .NET project files option,
this task allows to open the solution in the Visual Studio .NET
development environment

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Reverse Engineering C#
You can reverse engineer C# files into an OOM.

In the Selection tab, you can select to reverse engineer files, directories or projects.

CHAPTER 18: Working with C# - Deprecated

478 PowerDesigner

You can also define a base directory. The base directory is the common root directory for all
the files to reverse engineer. This base directory will be used during regeneration to recreate
the exact file structure of the reverse engineered files.

Edit Source
You can right-click the files to reverse engineer and select the Edit command to view the
content of your files. To use this command you have to associate the file extension with an
editor in the General Options\Editor dialog box.

Selecting C# Reverse Engineering Options
You define the following C# reverse engineering option from the Reverse Engineer C# dialog
box:

Option Result of selection

File encoding Allows you to modify the default file encoding of the files to reverse
engineer

Ignore operation body Reverses classes without including the body of the code

Ignore comments Reverses classes without including code comments

Create Associations from
classifier-typed attributes

Creates associations between classes and/or interfaces

Create symbols Creates a symbol for each object in the diagram, if not, reversed
objects are only visible in the browser

Libraries Specifies a list of library models to be used as references during
reverse engineering.

The reverse engineered model may contain shortcuts to objects de-
fined in a library. If you specify the library here, the link between the
shortcut and its target object (in the library) will be preserved and the
library will be added to the list of target models in the reverse engi-
neered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above
library v1.0, PowerDesigner will first attempt to resolve shortcuts
against library v1.1 and will only parse library v1.0 if unresolved
shortcuts remain.

You should use the List of Target Models to manage libraries related
to the reverse engineered model, for example, you can change the
library version (see Core Features Guide > Linking and Synchroniz-
ing Models > Shortcuts and Replicas > Working with Target Mod-
els).

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 479

Option Result of selection

Preserve file structure Creates an artifact during reverse engineering in order to be able to
regenerate an identical file structure.

Mark classifiers not to be
generated

Reversed classifiers (classes and interfaces) will not be generated
from the model. To generate the classifier, you must select the Gen-
erate check box in its property sheet

Defining C# Reverse Engineering Options
To define C# reverse engineering options:

1. Select Language > Reverse Engineer C#.

2. Click the Options tab to display the Options tab.

3. Select or clear reverse engineering options.

4. Browse to the Library directory, if required.

5. Click Apply and Cancel.

C# Reverse Engineering Preprocessing
C# files may contain conditional code that needs to be handled by preprocessing directives
during reverse engineering. A preprocessing directive is a command placed within the source

CHAPTER 18: Working with C# - Deprecated

480 PowerDesigner

code that directs the compiler to do a certain thing before the rest of the source code is parsed
and compiled. The preprocessing directive has the following structure:

#directive symbol

Where # is followed by the name of the directive, and symbol is a conditional compiler
constant used to select particular sections of code and exclude other sections.

In C#, symbols have no value, they can be true or false.

In the following example, the #if directive is used with symbol DEBUG to output a certain
message when DEBUG symbol is true, if DEBUG symbol is false, another output message is
displayed.

using System;
public class MyClass
{
 public static void Main()
 {

 #if DEBUG
 Console.WriteLine("DEBUG version");
 #else
 Console.WriteLine("RELEASE version");
 #endif
 }
}

You can declare a list of symbols for preprocessing directives. These symbols are parsed by
preprocessing directives: if the directive condition is true the statement is kept, otherwise the
statement is removed.

C# Supported Preprocessing Directives
The following directives are supported during preprocessing:

Directive Description

#define Defines a symbol

#undefine Removes a previous definition of the symbol

#if Evaluates a condition, if the condition is true, the statement following the con-
dition is kept otherwise it is ignored

#elif Used with the #if directive, if the previous #if test fails, #elif includes or exclude
source code, depending on the resulting value of its own expression or identifier

#endif Closes the #if conditional block of code

#warning Displays a warning message if the condition is true

#error Displays an error message if the condition is true

Note: #region, #endregion, and #line directives are removed from source code.

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 481

Defining a C# Preprocessing Symbol
You can define C# preprocessing symbols in the preprocessing tab of the reverse engineering
dialog box.

Symbol names are case sensitive and must be unique. Make sure you do not type reserved
words like true, false, if, do and so on.

The list of symbols is saved in the model and will be reused when you synchronize your model
with existing code using the Synchronize with Generated Files command.

For more information on the synchronize with generated files command see Synchronizing a
Model with Generated Files on page 270.

You can use the Set As Default button to save the list of symbols in the registry.

1. Select Language > Reverse engineering C#.

The Reverse Engineering C# dialog box is displayed.

2. Click the Preprocessing tab, then click the Add a row tool to insert a line in the list.

3. Type symbol names in the Name column.

The Defined check box is automatically selected for each symbol to indicate that the
symbol will be taken into account during preprocessing.

CHAPTER 18: Working with C# - Deprecated

482 PowerDesigner

4. Click Apply.

C# Reverse Engineering with Preprocessing
Preprocessing is an option you can enable or disable when you reverse engineer a model.

1. Select Language > Reverse engineering C#.

The Reverse Engineering C# dialog box is displayed.

2. Select files to reverse engineer in the Selection tab.

3. Select reverse engineering options in the Options tab.

4. Select the Enable preprocessing check box in the Preprocessing tab.

5. Select symbols in the list of symbols.

6. Click OK to start reverse engineering.

When preprocessing is over the code is passed to reverse engineering.

Reverse Engineering C# Files
You can reverse engineer C# files

PowerDesigner does not support the default namespace in a Visual Studio project. If you
define default namespaces in your projects, you should avoid reverse engineering the entire
solution. It is better to reverse engineer each project separately.

CHAPTER 18: Working with C# - Deprecated

Object-Oriented Modeling 483

1. Select Language > Reverse Engineer C# to display the Reverse Engineer C# dialog box.

2. Select to reverse engineer files or directories from the Reverse Engineering list.

3. Click the Add button in the Selection tab.

A standard Open dialog box is displayed.

4. Select the items or directory you want to reverse engineer.

Note: You select several files simultaneously using the Ctrl or Shift keys. You cannot
select several directories.

The Reverse C# dialog box displays the files you selected.

5. Click OK.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

For more information on merging models, see the Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The classes are added to your model. They are visible in the diagram and in the Browser.
They are also listed in the Reverse tab of the Output window, located in the lower part of the
main window.

CHAPTER 18: Working with C# - Deprecated

484 PowerDesigner

CHAPTER 19 Working with C# 2.0

PowerDesigner provides full support for modeling all aspects of C# 2.0 including round-trip
engineering.

C# 2.0 is a modern, type-safe, object-oriented language that combines the advantages of rapid
development with the power of C++.

PowerDesigner can be used as a standalone product and as a plug-in for Visual Studio,
allowing you to integrate its enterprise-level modeling capabilities in your standard .NET
workflow. For more information, see Core Features Guide > Modeling with PowerDesigner >
The PowerDesigner Add-In for Visual Studio.

In addition to PowerDesigner's standard pallets, the following custom tools are available to
help you rapidly develop your class and composite structure diagrams:

Icon Tool

Assembly – a collection of C# files (see C# 2.0 Assemblies on page 485).

Custom Attribute – for adding metadata (see C# 2.0 Custom Attributes on page 500).

Delegate – type-safe reference classes (see C# 2.0 Delegates on page 492).

Enum – sets of named constants (see C# 2.0 Enums on page 493).

Struct – lightweight types (see C# 2.0 Structs on page 491).

C# 2.0 Assemblies
An assembly is a collection of C# files that forms a DLL or executable. PowerDesigner
provides support for both single-assembly models (where the model represents the assembly)
and multi-assembly models (where each assembly appears directly below the model in the
Browser tree and is modeled as a standard UML package with a stereotype of
<<Assembly>>).

Creating an Assembly
PowerDesigner supports both single-assembly and multi-assembly models.

By default, when you create a C# 2.0 OOM, the model itself represents an assembly. To
continue with a single-assembly model, insert a type or a namespace in the top-level diagram.

Object-Oriented Modeling 485

The model will default to a single-module assembly, with the model root representing the
assembly.

To create a multi-assembly model, insert an assembly in the top-level diagram in any of the
following ways:

• Use the Assembly tool in the C# 2.0 Toolbox.
• Select Model > Assembly Objects to access the List of Assembly Objects, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Assembly.

Note: If these options are not available to you, then you are currently working with a single-
assembly model.

Converting a Single-Assembly Model to a Multi-Assembly Model
To convert to a multi-assembly model, right-click the model in the Browser and select
Convert to Multi-Assembly Model, enter a name for the assembly that will contain all the
types in your model in the Create an Assembly dialog, and click OK.

PowerDesigner converts the single-assembly model into a multi-assembly model by inserting
a new assembly directly beneath the model root to contain all the types present in the model.
You can add new assemblies as necessary but only as direct children of the model root.

Assembly Properties
Assembly property sheets contains all the standard package tabs along with the following
C#-specific tabs:

The Application tab contains the following properties:

Property Description

Generate Project
File

Specifies whether to generate a Visual Studio 2005 project file for the assembly.

Project Filename Specifies the name of the project in Visual Studio. The default is the value of the
assembly code property.

Assembly Name Specifies the name of the assembly in Visual Studio. The default is the value of
the assembly code property.

Root Namespace Specifies the name of the root namespace in Visual Studio. The default is the
value of the assembly code property.

Output Type Specifies the type of application being designed. You can choose between:

• Class library

• Windows Application

• Console Application

CHAPTER 19: Working with C# 2.0

486 PowerDesigner

Property Description

Project GUID Specifies a unique GUID for the project. This field will be completed automat-
ically at generation time.

The Assembly Information tab contains the following properties:

Property Description

Generate Assem-
bly Information

Specifies whether to generate an assembly manifest file.

Title Specifies a title for the assembly manifest. This field is linked to the Name field
on the General tab.

Description Specifies an optional description for the assembly manifest.

Company Specifies a company name for the assembly manifest.

Product Specifies a product name for the assembly manifest.

Copyright Specifies a copyright notice for the assembly manifest.

Trademark Specifies a trademark for the assembly manifest.

Culture Specifies which culture the assembly supports.

Version Specifies the version of the assembly.

File Version Specifies a version number that instructs the compiler to use a specific version for
the Win32 file version resource.

GUID Specifies a unique GUID that identifies the assembly.

Make assembly
COM-Visible

Specifies whether types within the assembly will be accessible to COM.

C# 2.0 Compilation Units
By default, PowerDesigner generates one source file for each class, interface, delegate, or
other type, and bases the source directory structure on the namespaces defined in the model.

You may want instead to group multiple classifiers in a single source file and/or construct a
directory structure independent of your namespaces.

A compilation-unit allows you to group multiple types in a single source file. It consists of zero
or more using-directives followed by zero or more global-attributes followed by zero or more
namespace-member-declarations.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 487

PowerDesigner models compilation units as artifacts with a stereotype of <<Source>> and
allows you to construct a hierarchy of source directories using folders. Compilation units do
not have diagram symbols, and are only visible inside the Artifacts folder in the Browser.

You can preview the code that will be generated for your compilation unit at any time, by
opening its property sheet and clicking the Preview tab.

Creating a Compilation Unit
To create an empty compilation unit from the Browser, right-click the model or the Artifacts
folder and select New > Source, enter a name (being sure to retain the .cs extension), and then
click OK.

Note: You can create a compilation unit and populate it with a type from the Generated Files
tab of the property sheet of the type by clicking the New tool in the Artifacts column.

Adding a Type to a Compilation Unit
You can add types to a compilation unit by:

• Dragging and dropping the type diagram symbol or browser entry onto the compilation
unit browser entry.

• Opening the compilation unit property sheet to the Objects tab and using the Add
Production Objects tool.

• Opening the type property sheet to the Generated Files tab and using the Add/Remove
tool in the Artifacts column. Types that are added to multiple compilation units will be
generated as partial types and you can specify the compilation unit in which each of their
attributes and methods will be generated.

Creating a Generation Folder Structure
You can control the directory structure in which your compilation units will be generated by
using artifact folders:

1. Right-click the model or a folder inside the Browser Artifacts folder, and select New >
Artifact Folder.

2. Specify a name for the folder, and then click OK to create it.
3. Add compilation units to the folder by dragging and dropping their browser entries onto

the folder browser entry, or by right-clicking the folder and selecting New > Source.

Note: Folders can only contain compilation units and other folders. To place a type in the
generation folder hierarchy, you must first add it to a compilation unit.

Partial Types
Partial types are types that belong to more than one compilation unit. They are prefixed with
the partial keyword.

public partial class Server
{

CHAPTER 19: Working with C# 2.0

488 PowerDesigner

 private int start;
}

In this case, you can specify to which compilation unit each field and method will be assigned,
using the Compilation Unit box on the C# or VB tab of their property sheets.

For partial types that contain inner types, you can specify the compilation unit to which each
inner type will be assigned as follows:

1. Open the property sheet of the container type and click the Inner Classifiers tab.
2. If the CompilationUnit column is not displayed, click the Customize Columns and

Filter tool, select the column from the selection box, and then click OK to return to the
tab.

3. Click in the CompilationUnit column to reveal a list of available compilation units, select
one, and click OK to close the property sheet.

C# 2.0 Namespaces
Namespaces restrict the scope of an object's name. Each class or other type must have a unique
name within the namespace.

PowerDesigner models namespaces as standard packages with the Use Parent Namespace
property deselected. For information about creating and working with packages, see Packages
(OOM) on page 49.

In the following example, class Architect is declared in package Design which is a sub-
package of Factory. The namespace declaration is the following:

namespace Factory.Design
{
 public class Architect
 {
 }
}

This structure, part of the NewProduct model, appears in the PowerDesigner Browser as
follows:

Classifiers defined directly at the model level fall into the C# global namespace.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 489

C# 2.0 Classes
PowerDesigner models C# 2.0 classes as standard UML classes, but with additional
properties.

For information about creating and working with classes, see Classes (OOM) on page 34.

In the following example, class DialogBox inherits from class Window, which contains an
inner classifier Control, as does class DialogBox:

{
 public class DialogBox : Window
 {
 public new class Control
 {
 }
 }
}

In the following example, the class Client is defined as abstract by selecting the Abstract check
box in the General tab of the class property sheet:

{
 public abstract class Client
 {
 private int Name;
 private int ID;

 }
}

In the following example, the class SealedClient is defined as sealed by selecting the Final
check box in the General tab of the class property sheet:

{
 public sealed class SealedClass
 {
 private int A1;
 private int A2;

 }
}

C# Class Properties
C# class property sheets contain all the standard class tabs along with the C# tab, the properties
of which are listed below:

CHAPTER 19: Working with C# 2.0

490 PowerDesigner

Property Description

Static Specifies the static modifier for the class declaration.

Sealed Specifies the sealed modifier for the class declaration.

New Specifies the new modifier for the class declaration.

Unsafe Specifies the unsafe modifier for the class declaration.

C# 2.0 Interfaces
PowerDesigner models C# 2.0 interfaces as standard UML interfaces, with additional
properties.

For information about creating and working with interfaces, see Interfaces (OOM) on page
51.

C# interfaces can contain events, properties, indexers and methods; they do not support
variables, constants, and constructors.

C# Interface Properties
C# interface property sheets contain all the standard interface tabs along with the C# tab, the
properties of which are listed below:

Property Description

New Specifies the new modifier for the interface declaration.

Unsafe Specifies the unsafe modifier for the interface declaration.

C# 2.0 Structs
Structs are lightweight types that make fewer demands on the operating system and on
memory than conventional classes. PowerDesigner models C# 2.0 structs as classes with a
stereotype of <<Structure>>.

For information about creating and working with classes, see Classes (OOM) on page 34.

A struct can implement interfaces but does not support inheritance; it can contain events,
variables, constants, methods, constructors, and properties.

In the following example, the struct contains two attributes:

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 491

{
 public struct Point
 {
 public int New()
 {
 return 0;
 }
 private int x;
 private int y;
 }
}

Creating a Struct
You can create a struct in any of the following ways:

• Use the Struct tool in the C# 2.0 Toolbox.
• Select Model > Struct Objects to access the List of Struct Objects, and click the Add a

Row tool.
• Right-click the model (or a package) in the Browser, and select New > Struct.

Struct Properties
Struct property sheets contains all the standard class tabs along with the C# tab, the properties
of which are listed below:

Property Description

New Specifies the new modifier for the struct declaration.

Unsafe Specifies the unsafe modifier for the struct declaration.

C# 2.0 Delegates
Delegates are type-safe reference types that provide similar functions to pointers in other
languages. PowerDesigner models delegates as classes with a stereotype of <<Delegate>>
with a single operation code-named "<signature>". The visibility, name, comment, flags and
attributes are specified on the class object whereas the return-type and parameters are
specified on the operation.

A type-level (class or struct) delegate is modeled either as an operation bearing the
<<Delegate>> stereotype, or as a namespace-level delegate in which the class representing the
delegate is inner to the enclosing type.

For information about creating and working with classes, see Classes (OOM) on page 34.

CHAPTER 19: Working with C# 2.0

492 PowerDesigner

{
 public delegate int ActionOc-
curred();
}

Creating a Delegate
You can create a delegate in any of the following ways:

• Use the Delegate tool in the C# 2.0 Toolbox.
• Select Model > Delegate Objects to access the List of Delegate Objects, and click the

Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Delegate.

Delegate Properties
Delegate property sheets contains all the standard class tabs along with the C# tab, the
properties of which are listed below:

Property Description

New Specifies the new modifier for the delegate declaration.

Unsafe Specifies the unsafe modifier for the delegate declaration.

C# 2.0 Enums
Enums are sets of named constants. PowerDesigner models enums as classes with a stereotype
of <<Enum>>.

{
 public enum Color : colors
 {
 Red,
 Blue,
 Green,
 Max = Blue
 }
}

For information about creating and working with classes, see Classes (OOM) on page 34.

Creating an Enum
You can create an enum in any of the following ways:

• Use the Enum tool in the C# 2.0 Toolbox.
• Select Model > Enum Objects to access the List of Enum Objects, and click the Add a

Row tool.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 493

• Right-click the model (or a package) in the Browser, and select New > Enum.

Enum Properties
C# Enum property sheets contain all the standard class tabs along with the C# tab, the
properties of which are listed below:

Property Description

Base Integral
Type

Specifies the base integral type for the enum.

New Specifies the new modifier for the enum declaration.

C# 2.0 Fields
PowerDesigner models C# fields as standard UML attributes.

For information about creating and working with attributes, see Attributes (OOM) on page
63.

Field Properties
C# Field property sheets contain all the standard attribute tabs along with the C# tab, the
properties of which are listed below:

Property Description

Compilation
Unit

Specifies the compilation unit in which the field will be stored. This field is only
available if the parent type is a partial type (allocated to more than one compilation
unit).

New Specifies the new modifier for the field declaration.

Unsafe Specifies the unsafe modifier for the field declaration.

Const Specifies the const modifier for the field declaration.

Readonly Specifies the readonly modifier for the field declaration.

C# 2.0 Methods
PowerDesigner models C# methods as operations.

For information about creating and working with operations, see Operations (OOM) on page
76.

CHAPTER 19: Working with C# 2.0

494 PowerDesigner

Method Properties
Method property sheets contain all the standard operation tabs along with the C# tab, the
properties of which are listed below:

Property Description

Compilation
Unit

Specifies the compilation unit in which the method will be stored. This field is only
available if the parent type is a partial type (allocated to more than one compilation
unit).

Extern Specifies the extern modifier for the method declaration.

New Specifies the new modifier for the method declaration. When a class inherits from
another class and contains methods with identical signature as in the parent class, this
field is selected automatically to make the child method prevail over the parent
method.

Override Specifies the override modifier for the method declaration.

Unsafe Specifies the unsafe modifier for the method declaration.

Virtual Specifies the virtual modifier for the method declaration.

Scope Specifies the scope of the method.

Base Initializ-
er

Creates an instance constructor initializer of the form base, causing an instance
constructor from the base class to be invoked.

In the following example, class B inherits from class A. You define a Base Initializer
in the class B constructor, which will be used to initialize the class A constructor:

internal class B : A
 {
 public B(int x, int y) : base(x + y, x - y)
 {}
 }

This Initializ-
er

Creates an instance constructor initializer, causing an instance constructor from the
class itself to be invoked.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 495

Constructors and Destructors
You design C# constructors and destructors by clicking the Add Default Constructor/
Destructor button on the class property sheet Operations tab. This automatically creates a
constructor with the Constructor stereotype, and a destructor with the Destructor stereotype.
Both constructor and destructor are grayed out in the list, which means you cannot modify
their definition.

Method Implementation
Class methods are implemented by the corresponding interface operations. To define the
implementation of the methods of a class, you have to use the To be implemented button on
the class property sheet Operations tab, then click the Implement button for each method to
implement. The method is displayed with the <<Implement>> stereotype.

Operator Method
You design a C# operator using an operation with the <<Operator>> stereotype. Make sure the
<<Operator>> operation has Public visibility and the Static property selected.

To define an external operator, you have to set the extern extended attribute of the operation to
True. The new, virtual and override extended attributes are not valid for operators.

The operator token (like +, -, !, ~, or ++ for example) is the name of the method.

Conversion Operator Method
You design a C# conversion operator using an operation with the <<ConversionOperator>>
stereotype.

You also need to declare the conversion operator using the explicit or implicit keywords. You
define the conversion operator keyword by selecting the implicit or explicit value of the scope
extended attribute.

In the following example, class Digit contains one explicit conversion operators and one
implicit conversion operator:

CHAPTER 19: Working with C# 2.0

496 PowerDesigner

public struct Digit
{
 public Digit(byte value)
 {
 if (value < 0 || value > 9)
throw new ArgumentException();
 this.value = value;
 }
 public static implicit operator
byte(Digit d)
 {
 return d.value;
 }

 public static explicit operator
Digit(byte b)
 {
 return new Digit(b);
 }
 private byte value;
}

C# 2.0 Events, Indexers, and Properties
PowerDesigner represents C# events, indexers, and properties as standard UML attributes
with additional properties.

For general information about creating and working with attributes, see Attributes (OOM) on
page 63.

Creating an Event, Indexer, or Property
To create an event, indexer, or property, open the property sheet of a type, click the Attributes
tab, click the Add button at the bottom of the tab, and select the appropriate option.

These objects are created as follows:

• Events – stereotype <<Event>> with one or two linked operations representing the add
and/or remove handlers

• Indexers – stereotype <<Indexer>> with one or two linked operations representing the get
and/or set accessors

• Properties – stereotype <<Property>> with one or two linked operations representing the
get and/or set accessors. In addition, you should note that:
• The visibility of the property is defined by the visibility of the get accessor operation if

any, otherwise by that of the set accessor operation.
• When an attribute becomes a property, an implementation attribute is automatically

created to store the property value. The implementation attribute is not persistent and
has a private visibility. It has the stereotype <<PropertyImplementation>> and has the

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 497

same name than the property but starting with a lowercase character. If the property
name already starts with a lower case its first character will be converted to uppercase.

• The implementation attribute can be removed for properties not needing it. (calculated
properties for instance)

• If the boolean-valued extended attribute Extern is set to true, no operations should be
linked to the property.

• When a property declaration includes an extern modifier, the property is said to be an
external property. Because an external property declaration provides no actual
implementation, each of its accessor-declarations consists of a semicolon.

Event, Indexer, and Property Properties
Event, indexer, and property property sheets contain all the standard attribute tabs along with
the C# tab, the properties of which are listed below:

Property Description

Compilation
Unit

Specifies the compilation unit in which the attribute will be stored. This field is only
available if the parent type is a partial type (allocated to more than one compilation
unit).

New Specifies the new modifier for the attribute declaration.

Unsafe Specifies the unsafe modifier for the attribute declaration.

Abstract Specifies the abstract modifier for the attribute declaration.

Extern Specifies the extern modifier for the attribute declaration.

Override Specifies the override modifier for the attribute declaration.

Sealed Specifies the sealed modifier for the attribute declaration.

Virtual Specifies the virtual modifier for the attribute declaration.

Event Example
The following example shows the Button class, which contains three events:

Property Example
In the following example, class Employee contains 2 properties. The Setter operation has been
removed for property TimeReport:

CHAPTER 19: Working with C# 2.0

498 PowerDesigner

{
 public class Employee
 {
 private int _Function;
 private int _TimeReport;
 // Property Function
 private int Function
 {
 get
 {
 return _Function;
 }
 set
 {
 if (this._Function != value)
 this._Function = value;
 }
 }
 // Property TimeReport
 private int TimeReport
 {
 get
 {
 return _TimeReport;
 }
 }
 }

Indexer Example
In the following example, class Person contains indexer attribute Item. The parameter used to
sort the property is String Name:

public class Person
{
 private Hashtable _childAges;
 // Indexer Item
 private int this[String name]
 {
 get
 {
 return (int)_ChildAges[name];
 }
 set
 {
 _ChildAges[name] = value;
 }
 }
}
Person someone;
someone ["Alice"] = 3;
someone ["Elvis"] = 5;

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 499

C# 2.0 Inheritance and Implementation
PowerDesigner models C# inheritance links between types as standard UML generalizations.

For more information about generalizations, see Generalizations (OOM) on page 95.

PowerDesigner models C# implementation links between types and interfaces as standard
UML realizations. For more information, see Realizations (OOM) on page 102.

C# 2.0 Custom Attributes
PowerDesigner provides full support for C# 2.0 custom attributes, which allow you to add
metadata to your code. This metadata can be accessed by post-processing tools or at run-time
to vary the behavior of the system.

You can use built-in custom attributes, such as System.Attribute and
System.ObsoleteAttribute, and also create your own custom attributes to apply to your types.

For general information about modeling this form of metadata in PowerDesigner, see
Annotations (OOM) on page 108.

Generating C# 2.0 Files
You generate C# 2.0 source files from the classes and interfaces of a model. A separate file,
with the file extension .cs, is generated for each class or interface that you select from the
model, along with a generation log file.

The following PowerDesigner variables are used in the generation of C# 2.0 source files:

Variable Description

CSC C# compiler full path. For example, C:\WINDOWS\Microsoft.NET\Framework
\v1.0.3705\csc.exe

WSDL Web Service proxy generator full path. For example, C:\Program Files\Microsoft
Visual Studio .NET\FrameworkSDK\Bin\wsdl.exe

To review or edit these variables, select Tools > General Options and click the Variables
category.

1. Select Language > Generate C# 2 Code to open the C# 2.0 Generation dialog.

2. Enter a directory in which to generate the files, and specify whether you want to perform a
model check (see Chapter 9, Checking an OOM on page 281).

CHAPTER 19: Working with C# 2.0

500 PowerDesigner

3. [optional] Select any additional targets to generate for. These targets are defined by any
extensions that may be attached to your model (see Working With Generation Targets on
page 266).

4. [optional] Click the Selection tab and specify the objects that you want to generate from.
By default, all objects are generated.

5. [optional] Click the Options tab and set any appropriate generation options:

Option Description

Generate object ids as docu-
mentation tags

Specifies whether to generate object ids for use as documentation
tags.

Sort class members primarily
by

Specifies the primary method by which class members are sorted:
• Visibility
• Type

Class members type sort Specifies the order by which class members are sorted in terms of
their type:
• Methods – Properties - Fields
• Properties – Methods - Fields
• Fields – Properties - Methods

Class members visibility sort Specifies the order by which class members are sorted in terms of
their visibility:
• Public - Private
• Private – Public
• None

Generate Visual Studio 2005
project files

Specifies whether to generate project files for use with Visual
Studio 2005.

Generate Assembly Info File Specifies whether to generate information files for assemblies.

Generate Visual Studio Solu-
tion File

Specifies whether to generate a solution file for use with Visual
Studio 2005.

Generate Web Service code
in .asmx file

Specifies whether to generate web services in a .asmx file.

Generate default accessors
for navigable associations

Specifies whether to generate default accessors for navigable
associations.

Note: For information about modifying the options that appear on this and the Tasks tab
and adding your own options and tasks, see Customizing and Extending PowerDesigner >
Object, Process, and XML Language Definition Files > Generation Category.

6. [optional] Click the Generated Files tab and specify which files will be generated. By
default, all files are generated.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 501

For information about customizing the files that will be generated, see Customizing and
Extending PowerDesigner > Extension Files > Generated Files (Profile).

7. [optional] Click the Tasks tab and specify any appropriate generation tasks to perform:

Task Description

WSDLDotNet: Generate
Web service proxy code

Generates the proxy class

Compile source files Compiles the source files

Open the solution in Visual
Studio

Depends on the Generate Visual Studio 2005 project files option.
Opens the generated project in Visual Studio 2005.

8. Click OK to begin generation.

When generation is complete, the Generated Files dialog opens, listing the files that have
been generated to the specified directory. Select a file in the list and click Edit to open it in
your associated editor, or click Close to exit the dialog.

Reverse Engineering C# 2.0 Code
You can reverse engineer C# files into an OOM.

1. Select Language > Reverse Engineer C# to open the Reverse Engineer C# dialog box.

2. Select what form of code you want to reverse engineer. You can choose between:

• C# files (.cs)
• C# directories
• C# projects (.csproj)

3. Select files, directories, or projects to reverse engineer by clicking the Add button.

Note: You can select multiple files simultaneously using the Ctrl or Shift keys. You
cannot select multiple directories.

The selected files or directories are displayed in the dialog box and the base directory is set
to their parent directory. You can change the base directory using the buttons to the right of
the field.

4. [optional] Click the Options tab and set any appropriate options. For more information, see
C# Reverse Engineer dialog Options tab on page 503.

5. [optional] Click the Preprocessing tab and set any appropriate preprocessing symbols. For
more information, see C# reverse engineering preprocessing directives on page 504.

6. Click OK to begin the reverse engineering.

A progress box is displayed. If the model in which you are reverse engineering already
contains data, the Merge Models dialog box is displayed.

CHAPTER 19: Working with C# 2.0

502 PowerDesigner

For more information on merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

The classes are added to your model. They are visible in the diagram and in the Browser,
and are also listed in the Reverse tab of the Output window, located in the lower part of the
main window.

C# Reverse Engineer Dialog Options Tab
The following options are available on this tab:

Option Description

File encoding Specifies the default file encoding of the files to reverse engineer

Ignore operation body Reverses classes without including the body of the code

Ignore comments Reverses classes without including code comments

Create Associations from
classifier-typed attributes

Creates associations between classes and/or interfaces

Create symbols Creates a symbol for each object in the diagram, if not, reversed objects
are only visible in the browser

Libraries Specifies a list of library models to be used as references during reverse
engineering.

The reverse engineered model may contain shortcuts to objects defined
in a library. If you specify the library here, the link between the shortcut
and its target object (in the library) will be preserved and the library will
be added to the list of target models in the reverse engineered model.

You can drag and drop the libraries in the list in order to specify a
hierarchy among them. PowerDesigner will seek to resolve shortcuts
found in the reverse engineered model against each of the specified
libraries in turn. Thus, if library v1.1 is displayed in the list above library
v1.0, PowerDesigner will first attempt to resolve shortcuts against li-
brary v1.1 and will only parse library v1.0 if unresolved shortcuts re-
main.

You should use the List of Target Models to manage libraries related to
the reverse engineered model, for example, you can change the library
version (see Core Features Guide > Linking and Synchronizing Models
> Shortcuts and Replicas > Working with Target Models).

Preserve file structure Creates an artifact during reverse engineering in order to be able to
regenerate an identical file structure

Mark classifiers not to be
generated

Specifies that reversed classifiers (classes and interfaces) will not be
generated from the model. To generate the classifier, you must select the
Generate check box in its property sheet

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 503

C# Reverse Engineering Preprocessing Directives
C# files may contain conditional code that needs to be handled by preprocessing directives
during reverse engineering. A preprocessing directive is a command placed within the source
code that directs the compiler to do a certain thing before the rest of the source code is parsed
and compiled. The preprocessing directive has the following structure:

#directive symbol

Where # is followed by the name of the directive, and symbol is a conditional compiler
constant used to select particular sections of code and exclude other sections.

In C#, symbols have no value, they can be true or false.

In the following example, the #if directive is used with symbol DEBUG to output a certain
message when DEBUG symbol is true, if DEBUG symbol is false, another output message is
displayed.

using System;
public class MyClass
{
 public static void Main()
 {

 #if DEBUG
 Console.WriteLine("DEBUG version");
 #else
 Console.WriteLine("RELEASE version");
 #endif
 }
}

You can declare a list of symbols for preprocessing directives. These symbols are parsed by
preprocessing directives: if the directive condition is true the statement is kept, otherwise the
statement is removed.

C# Supported Preprocessing Directives
The following directives are supported during preprocessing:

Directive Description

#define Defines a symbol

#undefine Removes a previous definition of the symbol

#if Evaluates a condition, if the condition is true, the statement following the condition
is kept otherwise it is ignored

#elif Used with the #if directive, if the previous #if test fails, #elif includes or exclude
source code, depending on the resulting value of its own expression or identifier

#endif Closes the #if conditional block of code

CHAPTER 19: Working with C# 2.0

504 PowerDesigner

Directive Description

#warning Displays a warning message if the condition is true

#error Displays an error message if the condition is true

Note: #region, #endregion, and #line directives are removed from source code.

Defining a C# Preprocessing Symbol
You can define C# preprocessing symbols in the preprocessing tab of the reverse engineering
dialog box.

Symbol names are case sensitive and must be unique. Make sure you do not type reserved
words like true, false, if, do and so on.

The list of symbols is saved in the model and will be reused when you synchronize your model
with existing code using the Synchronize with Generated Files command.

For more information on the synchronize with generated files command see Synchronizing a
Model with Generated Files on page 270.

You can use the Set As Default button to save the list of symbols in the registry.

1. Select Language > Reverse engineering C#.

The Reverse Engineering C# dialog box is displayed.

2. Click the Preprocessing tab to display the corresponding tab.

3. Click the Add a row tool to insert a line in the list.

4. Type symbol names in the Name column.

The Defined check box is automatically selected for each symbol to indicate that the
symbol will be taken into account during preprocessing.

CHAPTER 19: Working with C# 2.0

Object-Oriented Modeling 505

5. Click Apply.

PowerDesigner does not support the default namespace in a Visual Studio project. If you
define default namespaces in your projects, you should avoid reverse engineering the entire
solution. It is better to reverse engineer each project separately.

CHAPTER 19: Working with C# 2.0

506 PowerDesigner

CHAPTER 20 Working with XML - Deprecated

You can model XML schemas, DTDs and XDR files in an OOM.

Note: Support for this language is deprecated in the OOM. PowerDesigner provides the XML
Schema Model (XSM) for modeling XML schemas, DTDs and XDR (see XML Modeling).

Designing for XML
This section explains how to design XML Schema objects in the PowerDesigner Object
Oriented Model.

XML Object Modeling in PowerDesigner

Schema Any package or model can generate an XML Schema. You do not need to
define specific attribute or stereotype for the package or model to generate an
XML Schema.

Complex type In XML Schema, a complex type allows elements in its content and may carry
attributes. Complex types can be:

• Global, that is to say defined as a child of the schema element, in order to be
reused among schema elements. You design a global complex type using a
class with the <<complexType>> stereotype. In the following example,
UsAddress is a complex type with a set of attributes that specify it:

<xsd:complexType name="UsAddress">
 <xsd:element name="name" type="Name"/>
 <xsd:element name="street" type="string"/>
 <xsd:element name="town" type="string"/>
 <xsd:element name="zip" type="Integer"/>
</xsd:complexType>

• Local to an element definition. In this case, you have to create a class with
the <<element>> stereotype. You then need to set the isComplexType
extended attribute of the class to True. This is to make sure that attributes
defined in the <<element>> class are generated as a complex type:

<xsd:element name="customer">
 <xsd:complexType>
 <xsd:element name="name" type="int"/>
 <xsd:element name="address" type="int"/>
 </xsd:complexType>
</xsd:element>

Object-Oriented Modeling 507

XML Object Modeling in PowerDesigner

Simple type In XML Schema, a simple type can be a string or a decimal built into XML
Schema, it can also be a type derived from those built-in the language. A simple
type cannot contain elements or attributes. In PowerDesigner, you design a
simple type using a class with the <<simpleType>> stereotype. You must add
an attribute with the <<simpleType>> stereotype to this class.

<xsd:simpleType name="string">
 <xsd:restriction base="string">
 </xsd:restriction>
</xsd:simpleType>

Deriving types XML Schema allows you to derive new types by extending or restricting an
existing type. In PowerDesigner, you design the extension mechanism using a
generalization between two classes. The contentDerivation extended attribute
of the generalization allows you to set the type of derivation: extension or
restriction.

To design type derivation from a basic type (defined in Settings\DataTypes
\BasicDataTypes in the object language editor) you cannot use classes and
generalizations, you have to use the simpleContentBase and simpleContent-
Derivation extended attributes. For example, class A derives from basic data
type xsd:string. You define this derivation setting the following values for class
A:

Union A <<union>> class generates a <<union>> attribute and is migrated to specify
the attribute location. You can generate single line <union> tag as follows:
<union memberTypes=“{member types list}”/>. You can define a value for the
extended attribute memberTypes used with simple Type attributes (either
<<simpleType>> or <<simpleAttribute>>).

Global element A global element is declared as a child of the schema element; it can be ref-
erenced in one or more declarations. You define an XML Schema global ele-
ment using a class with the <<element>> stereotype in PowerDesigner. You
define the type of a global element using the following methods:

• For a complex type, use attributes. In this case you have to set the isCom-
plexType extended attribute to True for attributes defined in the <<ele-
ment>> class to be generated as a complex type:

<xsd:element name="customer">
<xsd:complexType>
<xsd:element name="name" type="int"/>
<xsd:element name="address" type="int"/>
</xsd:complexType>
</xsd:element>

• For a simple type, set a value for the type extended attribute

<xsd:element name="Customer" type="CustomerList-
Type"/>

CHAPTER 20: Working with XML - Deprecated

508 PowerDesigner

XML Object Modeling in PowerDesigner

Element group An element group is declared as a child of the schema element; it can be
referenced in one or more declarations using the <<ref>> stereotype on an
association. You define an XML Schema element group using a class with the
<<group>> stereotype in PowerDesigner.

Attribute group An attribute group is a set of attributes. You define an XML Schema attribute
group using a class with the <<attributeGroup>> stereotype in PowerDesigner.
All the attributes of this class should have the <<attribute>> stereotype. For
example, the following attribute group called item gathers information about
an item in a purchase order:

<xsd:attributeGroup name="item">
<xsd:attribute name="weight" type="Integer"/>
<xsd:attribute name="shipping_method" type="Inte-
ger"/>
</xsd:attributeGroup>

Reference A reference is a simplified declaration of an element or an attribute group
referencing a global definition. In PowerDesigner, you design a reference using
an association with the <<ref>> stereotype. In the following example, element
Customer references complex type UsAddress.

<xsd:element name="Customer">
<xsd:complexType>
<xsd:element name="name" type="int"/>
<xsd:element name="ID" type="int"/>
<xsd:complexType ref="UsAddress" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
Note that the referenced element is introduced by its stereotype. In the above
example, UsAddress is of <<complexType>> and complexType is displayed in
the reference line: <xsd:complexType ref="UsAddress" minOccurs="0" max-
Occurs="unbounded"/>

CHAPTER 20: Working with XML - Deprecated

Object-Oriented Modeling 509

XML Object Modeling in PowerDesigner

Sequence XML Schema elements can be constrained to appear in the same order as they
are declared, this is called a sequence. In PowerDesigner, depending on the
type of sequence you need to design, you can use one of the following methods:

• If all the class attributes are defined in the sequence, you should create a
class without stereotype and set the class extended attribute isSequence to
true. In the following example, all attributes of class item_sequence are
defined in the sequence:

<xsd:element name="item_sequence">
<xsd:sequence>
<xsd:element name="prodName" type="int"/>
<xsd:element name="prodID" type="int"/>
<xsd:element name="prodPrice" type="int"/>
</xsd:sequence>
</xsd:element>

• If some of the class attributes do not belong to the sequence, you have to
design the following construct: create a class containing the attributes
belonging to the sequence and assign the <<sequence>> stereotype to this
class. Create another class containing the other attributes. Select the Inner
link tool in the Toolbox and draw a link from the second class to the
<<sequence>> class. The resulting code is the following:

<xsd:element name="PurchaseOrder">
<xsd:sequence>
<xsd:element name="shipTo" type="int"/>
<xsd:element name="billTo" type="int"/>
</xsd:sequence>
<xsd:element name="prodID" type="int"/>
</xsd:element>

By default, inner classes are generated before attributes in a class (as defined in
the Class\Template\body entry in the object language definition file). However,
you can modify generation order among class attributes using the attribute
migration feature. To do so, you should create an association from the parent
class to the <<sequence>> class, right-click the association and select Migrate
> Migrate Navigable Roles. The migrated attribute can then be moved in the
list of class attributes in order to have the desired generation order.

<xsd:element name="PurchaseOrder">
<xsd:element name="prodID" type="int"/>
<xsd:sequence>
<xsd:element name="shipTo" type="int"/>
<xsd:element name="billTo" type="int"/>
</xsd:sequence>
</xsd:element>

CHAPTER 20: Working with XML - Deprecated

510 PowerDesigner

XML Object Modeling in PowerDesigner

Choice & All A choice allows you to display only one child in an instance of an element. All
allows you to display all the elements in the group once or not at all. In Pow-
erDesigner, you design a choice/all mostly as a sequence.

• If all the class attributes are defined in the choice/all, you should create a
class without stereotype and set the class extended attribute isChoice/isAll
to true. In the following example, all attributes of class InternationalShip-
ping are defined in the choice:

<xsd:element name="InternationalShipping">
<xsd:choice>
<xsd:element name="EuropeShipping" type="int"/>
<xsd:element name="AfricaShipping" type="int"/>
<xsd:element name="AsiaShipping" type="int"/>
</xsd:choice>
</xsd:element>

• If some of the class attributes do not belong to the choice, you have to create
a class containing the attributes belonging to the choice and assign the
<<choice>>/<<all>> stereotype to this class. Create another class con-
taining the other attributes. Select the Inner link tool in the Toolbox and
draw a link from the second class to the <<choice>>>>/<<all>> class: You
can also use the attribute migration feature to modify generation order
among attributes (see Sequence, above).

Generating for XML
When you generate XML from an OOM, PowerDesigner creates one XML file per package.
The file contains the definition of each of the classes you select to generate in the Generation
dialog box. You can select any of the classes from the model, including those that are
contained within packages or sub-packages.

• XML Schema - a .XSD file will be generated per package or model. You can generate an
XML Schema definition in this specific format for validations and/or data exchange
purposes

• XML DTD - a .DTD file will be generated per package or model. A DTD file provides an
overall structure for an XML file. You can generate an XML DTD definition in this
specific format for validations and/or data exchange purposes

Navigable associations are migrated and generated as attributes although they do have their
own definition in the object language file. Interfaces, operations, and links (dependencies,
realizations and generalizations) are not included in the generated file.

To change the XML format type, you must change the object language for the model (by
selecting Language > Change Current Object Language). You can create a new XML
object language based on an existing one if you want to generate in another type of XML
format that is not available in PowerDesigner.

CHAPTER 20: Working with XML - Deprecated

Object-Oriented Modeling 511

The files generated are generated with the .xsd, .dtd or .xdr extension depending on the XML
format specified. A generation log file is also created after generation.

1. Select Language > Generate XML-language Code to open the Generation dialog box.

2. Enter a destination directory for the generated files and, optionally, select the Check Model
checkbox to verify the validity of your model before generation.

3. Click the Selection tab and select the objects to include in the generation from the various
sub-tabs.

4. Click OK to generate XML files in the specified directory.

Reverse-Engineering XML
You can reverse engineer *.DTD, *.XSD, and *.XML files into an OOM. You can right-click
the files to reverse engineer and select the Edit command to view the content of your files. To
use this command you have to associate the file extension with an editor in the General
Options/Editor dialog box.

When you reverse engineer a DTD file into an OOM, you get a more readable view of the
DTD. This feature can be very helpful when you want to check and understand a new DTD that
you have not generated. When you reverse engineer a DTD file into an OOM:

• Referenced DTD files, using DOCTYPE keyword, may not be reversed correctly, it is
therefore better to choose a real DTD file rather than an XML document referencing a
DTD file with a DOCTYPE document type declaration

• Elements of type #PCDATA are reversed as attributes
• An element that has both a parent and a child element is linked to its parent element by an

aggregation link
• If an empty element has no child object but has attributes, it is reversed as a class and its

attributes become attributes of the class
• Attributes of type ID and IDREF(S) are reversed as attributes with ID and IDREF(S) data

types
• The attribute sequence order may not be preserved
• Attribute groups structure is not preserved
• DTD files may not be reversed properly if they contain some reference to an undefined

parameter entity

When you reverse engineer an XML Schema file into an OOM, the sequence order of the
contents of an element may not be preserved and the following main elements are not reverse
engineered:

• Namespace
• Key/keyref
• Field/selector

CHAPTER 20: Working with XML - Deprecated

512 PowerDesigner

• Unique

1. Select Language > Reverse Engineer XML to open the Reverse XML dialog box.

2. Click the Add button in the Selection page, select the .xsd, .xdr or .dtd files you want to
reverse, and click Open. You can select multiple files with the CTRL or SHIFT keys.
The Reverse XML dialog box displays the files you selected.

3. Click OK to reverse the files. If the model to which you are reverse engineering already
contains objects, the Merge Models dialog box is displayed. For more information on
merging models, see Core Features Guide > Modeling with PowerDesigner > Comparing
and Merging Models.
The classes are added to your model and are visible in the diagram and in the Browser.

CHAPTER 20: Working with XML - Deprecated

Object-Oriented Modeling 513

CHAPTER 20: Working with XML - Deprecated

514 PowerDesigner

CHAPTER 21 Working with C++

PowerDesigner supports the modeling of C++ programs including round-trip engineering.

Designing for C++
This section explains how to design C++ objects in the PowerDesigner Object Oriented
Model.

Namespace Declaration for Classifiers
The extended attribute UseNamespace allows you to generate a classifier inside a namespace
declaration. You should set the extended attribute value to True.

Bidirectional Associations Management
The problem of bidirectional associations is addressed by using forward declarations instead
of includes.

Consider a bidirection association between ClassA and ClassB.

The generated code in A.h would be the following:

#if !defined(__A_h)
#define __A_h

class B; // forward declaration of class B

class A
{
public:
 B* b;

protected:
private:

};

#endif

The generated code in B.h would be the following:

#if !defined(__B_h)
#define __B_h

Object-Oriented Modeling 515

class A; // forward declaration of class A

class B
{
public:
 A* a;

protected:
private:

};

#endif

This approach will not work if one of the classes is an inner class because it is not possible to
forward-declare inner classes in C++.

If such a situation occurs, a warning message is displayed during generation, and the
corresponding code is commented out.

Unsupported ANSI Features
PowerDesigner does not support the following C++ features:

• Templates
• Enums
• Typedefs
• Inline methods

Generating for C++
When generating with C++, the files generated are generated for classes and interfaces.

A header file with the .h extension, and a source file with the .cpp extension are generated per
classifier.

A generation log file is also created after generation.

1. Select Language > Generate C++ Code to display the Generation dialog box.

2. Type a destination directory for the generated file in the Directory box.

or

CHAPTER 21: Working with C++

516 PowerDesigner

Click the Select a Path button to the right of the Directory box and browse to select a
directory path.

3. Select the objects to include in the generation from the tabbed pages at the bottom of the
Selection page.

Note: All classes of the model, including those grouped into packages, are selected and
displayed by default. You use the Select tools to the right of the Folder Selection list to
modify the selection. The Include Sub-Packages tool allows you to include all classes
located within packages.

4. Click the Options tab to display the Options page.

5. <optional> Select the Check Model check box if you want to verify the validity of your
model before generation.

6. Select a value for each required option.

7. Click the Tasks tab, then select the required task(s).

8. Click OK to generate.

A Progress box is displayed. The Result list displays the files that you can edit. The result is
also displayed in the Generation page of the Output window, located in the bottom part of
the main window.

All C++ files are generated in the destination directory.

CHAPTER 21: Working with C++

Object-Oriented Modeling 517

CHAPTER 21: Working with C++

518 PowerDesigner

CHAPTER 22 Object/Relational (O/R) Mapping

PowerDesigner supports and can automatically generate and synchronize O/R Mappings
between OOM and PDM objects.

The following table lists object mappings in these two model types:

OOM Element PDM Element

Domain Domain

Class (if the Persistent checkbox and Generate
table option are selected)

Table

Attribute Column (if the Persistent checkbox
is selected)

Column

Identifier Identifier

Association Reference or table

Association class Table with two associations between the end points
of the association class

Generalization Reference

You can define mappings between these two model types in any of the following ways:

• Top-down – generate tables and other PDM objects from OOM classes
• Bottom-up – generate classes and other OOM objects from PDM tables
• Meet-in-the-middle – manually define mappings between classes and tables using the

visual mapping editor

Top-Down: Mapping Classes to Tables
PowerDesigner provides default transformation rules for generating physical data models
from object-oriented models. You can customize these rules with persistence settings and
generation options.

1. Create your OOM, and populate it with persistent classes (see Entity Class Transformation
on page 521), inheritance links and associations etc, to define the structure of your model
domain.

2. Select Tools > Generate Physical Data Model to open the PDM Generation Options
dialog.

Object-Oriented Modeling 519

3. On the General tab, specify the DBMS type and the name and code of the PDM to generate
(or select an existing PDM to update.

4. Click the Detail tab and select the O/R Mapping checkbox. You can optionally also specify
a table prefix that will be applied to all generated tables.

5. Click the Selection tab and the select the OOM objects that you want to transform into
PDM objects.

6. Click OK to generate (or update) your PDM.

CHAPTER 22: Object/Relational (O/R) Mapping

520 PowerDesigner

Entity Class Transformation
To transform a class into a table, select the Persistent option on the Detail tab of its property
sheet and then specify the type in the Persistent groupbox.

Persistent classes are classes with one of the following persistent types:

• Generate table - These classes are called Entity classes, and will be generated as separate
tables. You can customize the code of the generated tables in the Code box in the Persistent
groupbox. Only one table can be generated for each entity class with this type, but you can
manually map an entity class to multiple tables (see Defining entity class mapping on page
531).

• Migrate columns - These classes are called Entity classes, but no separate table will be
generated for them. This persistent type is used in inheritance transformation, and its
attributes and associations are migrated to the generated parent or child table.

• Generate ADT - These classes are generated as abstract data types, user-defined data types
that can encapsulate a range of data values and functions. This option is not used when you
define O/R Mapping.

• Value Type - These classes are called Value type classes. No separate table will be
generated for the class; its persistent attributes will be transformed into columns that are
embedded in other table(s)

Note: Identifiers of persistent classes, where the generation type is not set to Value type are
transformed into table keys. Primary identifiers are transformed into primary keys or part of

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 521

primary keys (see Defining primary identifier mapping on page 535). Persistent attributes
contained in primary identifiers are transformed into columns of primary keys.

Attribute Transformation
To transform an attribute into a column, select the Persistent option on the Detail tab of its
property sheet.

Persistent attributes can have simple data types or complex data types:

• Simple Data Type - such as int, float, String, Date etc.
Each persistent attribute is transformed into one column. Its data type is converted into an
internal standard data type, which is then mapped to the appropriate data type in the
DBMS. These transformations are controlled by the table of values in the
AMCDDataType entry in the Data Type folder of the DBMS definition:

CHAPTER 22: Object/Relational (O/R) Mapping

522 PowerDesigner

• Complex Data Type - based on a classifier. The transformation depends on the persistent
settings of the classifier. The classifier is generally used as a value type class (see Value
type transformation on page 523).

You can also customize the code of the generated data types in the Code box of the Persistent
groupbox. You can also customize the code of the generated columns.

Value Type Transformation
PowerDesigner supports fine-grained persistence model. Multiple classes can be transformed
into single table.

Given two classes, Person and Address, where the class Person contains an attribute address
whose data type is Address, the classes can be transformed into one table if the transformation
type of Class Address is set to Value type. The columns transformed from persistent attributes
of the class Address will be embedded in the table transformed from the class Person.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 523

Classes Table

Association Transformation
Association defined between entity classes will be transformed into reference keys or
reference tables. Associations with Value type classes as target or source will be ignored.

Transformation rules differ according to the type of the association:

• One-to-one - one foreign key will be generated with the same direction as the association.
The primary key of parent table will also migrate into child table as its foreign key.

Classes Tables

The generated foreign key has the same direction as the association direction. If the
association is bidirectional (can navigate in two ways), foreign keys with both directions
will be generated since PowerDesigner does not know which table is the parent table. You
need to delete one manually.

• One-to-many association - just one foreign key will be generated for each one-to-many
association, whatever its direction (bidirectional or unidirectional). The reference key
navigates from the table generated from the entity class on multiple-valued side to the table
generated from the entity class on single-valued side.

CHAPTER 22: Object/Relational (O/R) Mapping

524 PowerDesigner

Classes Tables

• One-to-many composition - PowerDesigner can generate a primary key of a parent table as
part of the primary key of the child table if you define the association as composition with
the class on single-valued side containing the class on multiple-valued side:

Classes Tables

• Many-to-many - each many-to-many association will be transformed into one middle table
and two reference keys that navigate from the middle table to the tables generated from the
two entity classes.

Classes Tables

For most O/R Mapping frameworks, one unidirectional one-to-many association (see One-
to-Many Association Mapping Strategy on page 540) will usually be mapped to a middle
table and two references navigating from the middle table to the tables mapped by the two
entity classes.

Note: The minimal multiplicity of association ends can affect the Mandatory property of the
generated reference keys:

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 525

• For one-to-one associations if the minimal multiplicity of side that is transformed to parent
table is more than one, the generated foreign key will be mandatory.

• For one-to-many associations, if the minimal multiplicity on single-valued side is more
than one, the generated foreign key will be mandatory.

Association Class Transformation
In O/R Mapping, association classes are only meaningful for many-to-many associations.
Persistent attributes in the association entity class will be transformed into columns of the
middle table.

In the following example, we have defined an association class to hold ultra information for
the association:

Classes Tables

Inheritance Transformation
PowerDesigner supports various mapping strategies for inheritance persistence. Each strategy
has its pros and cons, and you should select the most appropriate one for your needs. You can
also apply mixed strategies, but this may not be well supported by your persistence
framework.

• Table per class hierarchy. All the classes in a hierarchy are mapped to a single table. The
table has a column that serves as a "discriminator column". The value of this column
identifies the specific subclass to which the instance that is represented by the row belongs.
In order to apply this kind of strategy, you should set the transformation type of leaf classes
to Generate table and the transformation type of the other classes in the hierarchy to
Migrate columns. PowerDesigner will only generate the tables for leaf classes. If you want
to map other classes to tables, you need to create them manually.

CHAPTER 22: Object/Relational (O/R) Mapping

526 PowerDesigner

Classes Tables

• Joined subclass. The root class of the class hierarchy is represented by a single table. Each
subclass is represented by a separate table. This table contains the fields that are specific to
the subclass (not inherited from its super class), as well as the column(s) that represent its
primary key. The primary key column(s) of the subclass table serves as a foreign key to the
primary key of the super class table.
In order to apply this kind of strategy, you should set the transformation type of all the
classes to Generate table. You can also, optionally, define a discriminator.

Classes Tables

• Table per class. Each class is mapped to a separate table. All properties of the class,
including inherited properties, are mapped to columns of the table for the class.
In order to apply this kind of strategy, you should set the transformation type of the root
class to Generate table and the transformation type of other classes in the class hierarchy to
Migrate columns.
For each class hierarchy, a discriminator is needed to distinguish between different class
instances. You need to select one of the attributes of the root class in the Specifying
Attribute list located in the property sheet of one of the children inheritance links of the
root class. The attribute will be transformed into a discriminator column. In the following
example, we define one extra attribute shapeType in Shape and select it as discriminator
attribute:

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 527

Classes Tables

• Mixed Strategy - You can apply more than one strategy in the same inheritance hierarchy.
The transformation of entity classes with the Generate table transformation type will not
change, but the transformation of those set to Migrate columns will be slightly different. If
entity classes set to Migrate columns have both their super-class and sub-classes set to
Generate table, the columns transformed from their persistent attributes will be migrated
into tables transformed from sub-classes. The migration to sub-classes has higher priority.

CHAPTER 22: Object/Relational (O/R) Mapping

528 PowerDesigner

Bottom-Up: Mapping Tables to Classes
PowerDesigner provides default transformation rules for generating object-oriented models
from physical data models. You can enhance the generated mappings manually using the
Mapping Editor.

When you generate an object-oriented model from a data model:

• Each selected table is transformed into a persistent entity class and its:
• Columns are transformed into persistent attributes.
• Keys are transformed into identifiers.
• Primary keys are transformed into primary identifiers.

• Reference keys have, by default, a cardinality of 0..* and will be transformed into into
bidirectional many-to-many associations. To generate a one-to-one association, you need
to set the maximum cardinality to 1 (cardinality 0..1 or 1..1). If the reference key is
mandatory, the minimal multiplicity of one side of the generated association will be 1.
You cannot generate inheritance links from reference keys and tables.

1. Create your PDM (perhaps by reverse-engineering a database) and populate it with the
appropriate tables and references.

2. Select Tools > Generate Object-Oriented Model to open the OOM Generation Options
dialog.

3. On the General tab, specify the Object language type and the name and code of the OOM to
generate (or select an existing OOM to update).

4. Click the Detail tab and select the Generate Mappings checkbox. You can optionally also
specify a class prefix that will be applied to all generated classes.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 529

5. Click the Selection tab and the select the tables that you want to transform into classes.

6. Click OK to generate (or update) your OOM.

Meet in the Middle: Manually Mapping Classes to Tables
If you have an existing OOM and PDM, you can define mappings between them manually
using the Mapping Editor.

There are no constraints on the way you map your persistent classes. However, there are some
well-defined mapping strategies, which are supported by most of O/R Mapping technologies.
You should follow these strategies in order to build correct O/R Mapping models. However,
minor differences still reside between them which we will raise when necessary.

Note: when your O/R Mapping models are related with a specific technology, for example
when you are modeling for EJB 3.0 persistence, there will be some constraints and we provide
model checks to help you check the syntax of the mappings you have defined.

In order to define basic mappings, you have to define a data source for your OOM. Then you
can define the mapping using the Mapping tab of the OOM object you want to map to a PDM
object or using the Mapping Editor.

1. In the OOM, select Model > Data Sources to open the corresponding list.

2. Click the Add a row tool to create a data source.

CHAPTER 22: Object/Relational (O/R) Mapping

530 PowerDesigner

You can create multiple data sources in the model.

3. Double-click the data source in the list to open its property sheet.

4. On the Models tab, click the Add Models tool to select one or more PDMs from the
available open PDM as source models for the data source.

5. Define mappings using the Mapping tab or the Mapping Editor.

The Mapping Editor is more convenient to use as you can define all the mappings in one
place just by some drag and drop actions. However, it is easy to understand the
correspondence between OOM elements and PDM elements by using the Mapping tab in
objects property sheet. So we will introduce you how to use Mapping definition tab to
define mappings in the following sections.

When you are familiar with O/R Mapping concepts, you can use the Mapping Editor.

Entity Class Mapping
In order to define mapping for entity classes, you have to:

• Open the Mapping tab of a class property sheet
• Click the Create Mapping to create a new class mapping
• In the Select an object dialog box, add a data model element as mapping source

You can also click the Add objects tool in the Class Sources sub-tab of the Mapping tab after
you created the class mapping.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 531

You can add tables, views and references as mapping sources. There are some constraints on
views as mapping sources, as some views cannot be updated. When you add references as
mapping sources, tables at the two ends will also be added.

You can add multiple tables as mapping sources. Usually, the first table you add is called the
primary table. Other tables are called secondary tables. Each secondary table should have
reference key referring to primary table, which is joined on its primary key.

Given the following class Customer:

It can be mapped to two tables:

CHAPTER 22: Object/Relational (O/R) Mapping

532 PowerDesigner

The Customer table is the primary table. The CutomerInfo table is the secondary table and it
has one reference key referring to the primary table, which is joined on its primary key.

With the Mapping Editor, you just have to drag the two tables and drop them to class Customer
to define class mappings.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 533

Attribute Mapping
After you have defined class mapping, you can define attribute mappings for the class in the
Attributes Mapping sub-tab of the Mapping tab. PowerDesigner will generate some attribute
mappings by matching their names with the column names. Click the Add Mappings tool and
select the attributes you want to be mapped from the list.

For each attribute, you can select the column to which it is mapped from the list in the Mapped
to column. Usually you just have to map each attribute to one column. However, you may need
to map the attribute to multiple columns when you define attribute mappings for Value type
class for example. In this case, you can open the attribute mappings property sheet and select
the Sources tab to add multiple columns.

CHAPTER 22: Object/Relational (O/R) Mapping

534 PowerDesigner

You can also map the attribute to a formula expression by defining it in the Mapped to box in
the General tab. You can construct the formula using the SQL editor.

When an attribute has a Value type class as type, you do not need to define attribute mappings
for it. You should instead define mapping for the Value type class.

Primary Identifier Mapping
Columns of primary keys should be mapped to persistent attributes. Like primary keys for
tables, you need to set these persistent attributes as primary identifiers of entity classes. The
mapped primary keys should be primary keys of primary tables.

There are three types of primary identifier mapping:
• Simple primary identifier mapping - the primary key is associated with only one column

and the mapped primary identifier has one persistent attribute mapped to the column.
• Composite primary identifier mapping - the primary key is associated with more than one

column and the mapped primary identifier has the same number of persistent attributes
mapped to the columns.
Column(s) of primary keys can be mapped to associations (see Association
Transformation on page 524). They are migrated from primary keys of other tables.

• Component primary identifier mapping - multiple persistent attributes are encapsulated
into a value type class, and the mapped primary identifier contains one attribute whose
type is the Value type class.
Attributes of value type classes are mapped to columns, which are embedded in primary
tables mapped by other entity classes. So you have to add primary tables of the containing
classes as value type classes' mapping sources. If the value type class is used in more than

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 535

one entity class, you should map each of its persistent attributes to multiple columns of
tables of these classes.
For example, Value type class Address is used as attribute type for two classes, Product and
Customer. The attributes of the Value type class Address can be mapped to columns of two
tables, Company table and Customer table:

Classes Tables

The mapping is easier to visualize in the Mapping Editor.

CHAPTER 22: Object/Relational (O/R) Mapping

536 PowerDesigner

Primary identifier mapping is mandatory for entity classes.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 537

Association Mapping
You can define association mapping in the Mapping tab of the association property sheet and
select the Add Objects tool to add mapping sources.

Associations defined between entity classes can be mapped to reference keys or tables. In
order to define association mapping, you have to add the references keys or tables as mapping
sources. When you add reference keys, the tables on their ends will also be added.

Associations can be classified as one-to-one, one-to-many and many-to-many according to
multiplicities of ends. And associations can be classified as unidirectional and bi-directional
according to navigability of both ends. Associations of different types should be mapped in
different ways. We will introduce them in detail in the following sections.

CHAPTER 22: Object/Relational (O/R) Mapping

538 PowerDesigner

One-to-One Association Mapping Strategy
You can map each unidirectional one-to-one association to a reference key. The foreign key
should have the same direction as the association.

In the following example, there are two entity classes, Person and Account, and a one-to-one
association between them. The association is unidirectional and navigates from the entity
class Person to the entity class Account.

Classes Tables

The association and the reference key are linked in the Mapping Editor.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 539

For a bi-directional one-to-one association, you also just can map it to one reference key. But
the reference can navigate in either direction.

One-to-Many Association Mapping Strategy
Each unidirectional many-to-one association is mapped to a reference that has the same
direction as the association.

In the following example, a unidirectional many-to-one association defined between the class
Customer and the class Order is mapped to the reference key:

Classes Tables

CHAPTER 22: Object/Relational (O/R) Mapping

540 PowerDesigner

Each unidirectional one-to-many association should be mapped to a middle table and two
references that refer to tables mapped by the entity classes on both ends.

In the following example, the association defined between Customer and Order is a
unidirectional one-to-many association mapped to a middle table and reference keys:

Classes Tables

You can map a bi-directional one-to-many association as unidirectional many-to-one
association. The reference just can navigate from primary table of class on multiple-valued
side to primary table of class on single-valued side.

Sometimes we want to make the primary key of parent table be part of primary key of the child
table and reference key join on the migrated column(s). For example we can map Customer,
Order and bi-directional one-to-many association to tables and reference key as follows:

In order to define such type of association mapping, you have to define the association as
composition with the class on single-valued side containing the class on multiple-valued side
first.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 541

The association is the following:

Then add the reference as mapping sources. You just can define the same way association
mapping for bi-directional one-to-many association.

CHAPTER 22: Object/Relational (O/R) Mapping

542 PowerDesigner

Many-to-Many Association Mapping Strategy
Each many-to-many association is mapped to a middle table and two reference keys that refer
to tables mapped by entity classes on the two ends.

In the following example a many-to-many association defined between the class Employee
and the class Title is mapped to a middle table and references:

Classes Tables

Defining Inheritance Mapping
Inheritance can be mapped using a table per class, joined subclass, or table per class hierarchy
inheritance mapping strategy. You can apply any of these inheritance mapping strategies or
mix them. You should define primary identifier on the entity class that is the root of the entity
hierarchy.

Table Per Class Hierarchy Inheritance Mapping Strategy
The whole class hierarchy is mapped to one table. One character based type or integer type
discriminator column is defined to distinguish instances of difference classes in the hierarchy.

Classes Tables

1. Define class mappings for each class in the hierarchy so that all the classes have the same
primary table. They can also be mapped to other secondary tables:

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 543

2. Define identifier mapping in the root class.

3. Define attribute mappings or association mappings for each class.

4. Select one of the attributes in the root class, as the Specifying Attribute in the property
sheet of one of the children inheritance links of the root class to specify it as a discriminator
column, which is used to distinguish between different class instances. In the following
example, we define one extra attribute shapeType in Shape and select it as discriminator
attribute:

CHAPTER 22: Object/Relational (O/R) Mapping

544 PowerDesigner

5. Define persistence generation type for each class. Define the persistence generation type
of the root class as Generate table and all the other classes as Migrate columns.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 545

Joined Subclass Inheritance Mapping Strategy
Each entity class is mapped to its own primary table. Each primary table has a reference key
referring to a primary table of its parent class except for the primary table of the root class. The
reference key should join on the primary key of the primary table.

1. Define class mappings for each class in the hierarchy. Each class is mapped to its own
primary table.

2. Define identifier mapping in the root class.

3. Define attribute mappings or association mappings for each class.

4. Define persistence generation type for each class.

5. Define persistence generation type of all the classes as Generate table.

CHAPTER 22: Object/Relational (O/R) Mapping

546 PowerDesigner

Table Per Class Inheritance Mapping Strategy
Each class is mapped to its own primary table. All persistent attributes of the class, including
inherited persistent attributes, are mapped to columns of the table.

Classes Tables

1. Define entity class mappings for each class in the hierarchy, mapping each class to its own
primary table:

2. Define attribute mappings and association mappings for each class.

CHAPTER 22: Object/Relational (O/R) Mapping

Object-Oriented Modeling 547

3. Define identifier mapping in the root class.

4. Define persistence generation type for each class.

5. Define persistence generation type of leaf classes as Generate table and all the other
classes as Migrate columns.

Note: Super classes can be also mapped to primary tables of subclasses if inherited
persistent attributes are mapped in different ways for subclasses, for example to different
columns. The other primary table can just be secondary tables. PowerDesigner will
generate these secondary tables for super classes.

For this kind of strategy, some super classes can have no table mapped. These classes are
used to define state and mapping information that can be inherited by their subclasses.

CHAPTER 22: Object/Relational (O/R) Mapping

548 PowerDesigner

CHAPTER 23 Generating Persistent Objects
for Java and JSF Pages

PowerDesigner supports the generation of persistent objects for Hibernate ans EJB3, as well
as JavaServer Faces for Hibernate.

Generating Hibernate Persistent Objects
Hibernate is an open source project developed by JBoss, which provides a powerful, high
performance and transparent object/relational persistence and query solution for Java.
PowerDesigner can generate Hibernate O/R mapping files for you from your Java OOM.

To enable Hibernate extensions in your model, select Model > Extensions, click the Import
tool, select the Hibernate file on the O/R Mapping tab), and click OK to attach it.

Hibernate lets you develop persistent objects using POJO (Plain Old Java Object). All the
common Java idioms, including association, inheritance, polymorphism, composition, and
the Java collections framework are supported. Hibernate allows you to express queries in its
own portable SQL extension (HQL), as well as in native SQL, or with Java-based Criteria and
Example objects.

PowerDesigner supports the design of Java classes, database schema and Object/Relational
mapping (O/R mapping). Using these metadata, PowerDesigner can generate Hibernate
persistent objects including:

• Persistent Java classes (domain specific objects)
• Configuration file
• O/R mapping files
• DAO factory
• Data Access Objects (DAO)
• Unit test classes for automated test

Defining the Hibernate Default Options
You can define these options in the model or a package property sheet.

1. Open the model or a package property sheet, and click the Hibernate Default Options
tab:

2. Define the model or package level default options.

Object-Oriented Modeling 549

Option Description

Auto import Specifies that users may use an unqualified class name in queries.

Default access Specifies the default class attribute access type.

Specifies the default cascade Specifies the default cascade type.

Schema name Specifies the default database schema name.

Catalog name Specifies the default database catalog name.

Defining the Hibernate Database Configuration Parameters
Hibernate can support multiple databases. You need to define database configuration
parameters. The database configuration parameters are stored in the configuration file,
hibernate.cfg.xml .

1. Open the model property sheet and click the Hibernate Configuration tab.

2. Define the type of database, JDBC driver, connection URL, JDBC driver jar file path, user
name, password, etc.

Option Description

Dialect Specifies the dialect, and hence the type of database.

Hibert Tag: dialect

JDBC driver class Specifies the JDBC driver class.

Hibert Tag: connection.driver_class

Connection URL Specifies the JDBC connection URL string.

Hibert Tag: connection.url

JDBC driver jar Specifies the JDBC driver jar file path.

Hibert Tag: N/A

User name Specifies the database user name.

Hibert Tag: connection.username

Password Specifies the database user password.

Hibert Tag: connection.password

Show SQL Specifies that SQL statements should be shown in the log.

Hibert Tag: show_sql

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

550 PowerDesigner

Option Description

Auto schema export Specifies the mode of creation from tables.

Hibert Tag: hbm2ddl.auto

Package prefix Specifies a namespace prefix for all the packages in the model.

Hibert Tag: N/A

Connection pool
size

Specifies the maximum number of pooled connections.

Hibert Tag: connection.pool_size

You can verify the configuration parameters in the Preview tab.

Defining Hibernate Basic O/R Mappings
There are two kinds of classes in Hibernate, entity classes and value type classes. Entity
classes have their own database identities, mapping files and life cycles, while value type
classes don't have. Value type classes depend on entity classes. Value type classes are also
called component classes.

Hibernate uses mapping files to define the mapping metadata. Each mapping file
<Class>.hbm.xml can contain metadata for one or many classes. PowerDesigner uses the
following grouping strategy:

• A separate mapping file is generated for each single entity class that is not in an inheritance
hierarchy.

• A separate mapping file is generated for each inheritance hierarchy that has a unique
mapping strategy. All mappings of subclasses are defined in the mapping file. The
mapping file is generated for the root class of the hierarchy. See Defining Hibernate
Inheritance Mappings on page 564 for details about how the mapping strategy is
determined.

• No mapping file is generated for a single value type class that is not in an inheritance
hierarchy. Its mapping is defined in its owner's mapping file.

Defining Hibernate Class Mapping Options
Classes can be mapped to tables or views. Since views have many constraints and limited
functionality (for example they do not have primary keys and reference keys), some views
cannot be updated, and the mappings may not work properly in some cases.

There are some conditions that need to be met in order to generate mapping for a specific
class:

• The Java source can be generated. This may not be possible if, for example, the visibility of
the class is private.

• The class is persistent.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 551

• The generation mode is not set to Generate ADT (abstract data type).
• If the class is an inner class, it must be static, and have public visibility. Hibernate should

then be able to create instances of the class.

Hibernate-specific class mapping options can be defined in the Hibernate tab of the class
property sheet:

Option Description

Dynamic insert Specifies that INSERT SQL should be generated at runtime and will
contain only the columns whose values are not null.

Hibernate Tag: dynamic-insert

Dynamic update Specifies that UPDATE SQL should be generated at runtime and will
contain only the columns whose values have changed.

Hibernate Tag: dynamic-update

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

552 PowerDesigner

Option Description

Select before update Specifies that Hibernate should never perform a SQL UPDATE unless it is
certain that an object is actually modified.

Hibernate Tag: select-before-update

Default cascade type Specifies the default cascade style.

Hibernate Tag: default-cascade

Default access type Specifies the default access type (field or property)

Hibernate Tag: default-access

Proxy name Specifies an interface to use for lazy initializing proxies.

Hibernate Tag: proxy

Batch size Specifies a "batch size" for fetching instances of this class by identifier.

Hibernate Tag: batch-size

Check Specifies a SQL expression used to generate a multi-row check constraint
for automatic schema generation.

Hibernate Tag: check

Polymorphism Specifies whether implicit or explicit query polymorphism is used.

Hibernate Tag: polymorphism

Schema name Specifies the name of the database schema.

Hibernate Tag: schema

Catalog name Specifies the name of the database catalog.

Hibernate Tag: catalog

Row id Specifies that Hibernate can use the ROWID column on databases which
support it (for example, Oracle).

Hibernate Tag: rowed

Persister class name Specifies a custom persistence class.

Hibernate Tag: persister

Lazy Specifies that the class should be lazy fetching.

Hibernate Tag: lazy

Mutable Specifies that instances of the class are mutable.

Hibernate Tag: mutable

Abstract class Specifies that the class is abstract.

Hibernate Tag: abstract

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 553

Option Description

Auto import Specifies that an unqualified class name can be used in a query

Hibernate Tag: Auto-import

Discriminator column Specifies the discriminator column or formula for polymorphic behavior
in a one table per hierarchy mapping strategy.

Hibernate Tag: discriminator

Discriminator value Specifies a value that distinguishes individual subclasses, which are used
for polymorphic behavior.

Hibernate Tag: discriminator-value

Discriminator type Specifies the discriminator type.

Hibernate Tag: type

Force usage of discrimi-
nator

Forces Hibernate to specify allowed discriminator values even when re-
trieving all instances of the root class.

Hibernate Tag: force

Do not use discriminator
in insert

Forces Hibernate to not include the column in SQL INSERTs

Hibernate Tag: insert

Optimistic lock type Specifies an optimistic locking strategy.

Hibernate Tag: optimistic-lock

Optimistic lock column
name

Specifies the column used for optimistic locking. A field is also generated
if this option is set.

Hibernate Tag: version/ timestamp

Optimistic lock unsaved
value

Specifies whether an unsaved value is null or undefined.

Hibernate Tag: unsaved-value

Defining Primary Identifier Mappings
Primary identifier mapping is mandatory in Hibernate. Primary identifiers of classes are
mapped to primary keys of master tables in data sources. If not defined, a default primary
identifier mapping will be generated, but this may not work properly.

There are three kinds of primary identifier mapping in Hibernate:

• Simple identifier mapping
• Composite identifier mapping
• Component identifier mapping

Mapped classes must declare the primary key column of the database table. Most classes will
also have a Java-Beans-style property holding the unique identifier of an instance.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

554 PowerDesigner

Simple Identifier Mapping
When a primary key is attached to a single column, only one attribute in the primary identifier
can be mapped. This kind of primary key can be generated automatically. You can define the
generator class and parameters. There are many generator class types, such as increment,
identity, sequence, etc. Each type of generator class may have parameters that are meaningful
to it. See your Hibernate documentation for detailed information.

You can define the generator class and parameters in the Hibernate tab of the primary identifier
property sheet. The parameters take the form of param1=value1; param2=value2.

1. Open the class property sheet and click the Attributes tab.

2. Create an attribute and set it as the Primary identifier.

3. Click the Identifiers tab and double-click the entry to open its property sheet.

4. Click the Hibernate tab, select a generator class and define its parameters.

Example parameters:

• Select hilo in the Generator class list
• Enter "table=hi_value,column=next_value,max_lo=10000" in the Generator params

box. You should use commas to separate the parameters.

5. You can check the code in the Preview tab:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 555

Note that, if there are several Primary identifier attributes, the generator is not used.

Composite Identifier Mapping
If a primary key comprises more than one column, the primary identifier can have multiple
attributes mapped to these columns. In some cases, the primary key column could also be the
foreign key column.

1. Define association mappings.

2. Migrate navigable roles of associations.

3. Add these migrated attributes in primary identifier. The migrated attributes need not to be
mapped.

In the above example, the Assignment class has a primary identifier with three attributes: one
basic type attribute and two migrated attributes. The primary identifier mapping is as follows:

<composite-id>
 <key-property name="type">
 <column name="type" sql-type="smallint"
 not-null="true"/>
 </key-property>

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

556 PowerDesigner

 <key-many-to-one name="title">
 </key-many-to-one>
 <key-many-to-one name="worker">
 </key-many-to-one>
</composite-id>

Component Primary Identifier Mapping
For more convenience, a composite identifier can be implemented as a separate value type
class. The primary identifier has just one attribute with the class type. The separate class
should be defined as a value type class. Component class mapping will be generated then.

1. Define a primary identifier attribute.

2. Define the type of the attribute as a value type class.

3. Set the Class generation property of the primary identifier attribute to Embedded.

4. Set the ValueType of the primary identifier class to true.

5. Define a mapping for the primary identifier class.

In the example above, three name attributes are grouped into one separate class Name. It is
mapped to the same table as Person class. The generated primary identifier is as follows:

<composite-id name="name" class="identifier.Name">
 <key-property name="firstName">
 <column name="name_firstName"
 sql-type="text"/>
 </key-property>
 <key-property name="middleName">
 <column name="name_middleName"
 sql-type="text"/>
 </key-property>
 <key-property name="lastName">
 <column name="name_lastName"
 sql-type="text"/>
 </key-property>
</composite-id>

Note: The value type class must implement the java.io.Serializable interface, which
implements the equals() and hashCode() methods.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 557

Defining Attribute Mappings
Attributes can be migrated attributes or ordinary attributes. Ordinary attributes can be mapped
to columns or formulas. Migrated attributes do not require attribute mapping.

The following types of mapping are possible:

• Map attribute to formula - When mapping an attribute to a formula, you should ensure that
the syntax is correct. There is no column in the source table of the attribute mapping.

• Component attribute mapping - A component class can define the attribute mapping as for
other classes, except that there is no primary identifier.

• Discriminator mapping - In inheritance mapping with a one-table-per-hierarchy strategy,
the discriminator needs to be specified in the root class. You can define the discriminator in
the Hibernate tab of the class property sheet.

Hibernate-specific attribute mapping options are defined in the Hibernate tab of the Attribute
property sheet.

Option Description

Generate finder func-
tion

Generates a finder function for the attribute.

Hibernate type Specifies a name that indicates the Hibernate type.

Property access Specifies the strategy that Hibernate should use for accessing the property
value.

Id unsaved value Specifies the value of an unsaved id.

Insert Specifies that the mapped columns should be included in any SQL INSERT
statements.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

558 PowerDesigner

Option Description

Update Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Optimistic lock Specifies that updates to this property require acquisition of the optimistic
lock.

Lazy Specifies that this property should be fetched lazily when the instance var-
iable is first accessed (requires build-time byte code instrumentation).

Hibernate Association Mappings
Hibernate supports one-one, one-to-many/many-to-one, and many-to-many association
mappings. The mapping modeling is same with standard O/R Mapping Modeling. However,
Hibernate provides special options to define its association mappings, which will be saved
into <Class>.hbm.xml mapping file. PowerDesigner allows you to define standard
association attributes like Container Type implementation class, role navigability, array size
and specific extended attributes for Hibernate association mappings.

Defining Hibernate Association Mapping Options
You define Hibernate association mapping options as follows:

1. Open the Association property sheet and click the Hibernate Collection tab.

2. Define the collection management options (see Collection management options on page
561).

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 559

3. Select the Hibernate Persistence tab. Define persistence options (see Persistence options
on page 562).

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

560 PowerDesigner

Collection Management Options
The following options are available:

Field Description

Sort Specifies a sorted collection with natural sort order, or a given comparator
class.

Hibernate Tag: sort

Order by Specifies a table column (or columns) that define the iteration order of the Set
or bag, together with an optional asc or desc.

Hibernate Tag: order-by

Access Specifies the strategy Hibernate should use for accessing the property value.

Hibernate Tag: access

Cascade Specifies which operations should be cascaded from the parent object to the
associated object.

Hibernate Tag: cascade

Collection type Specifies a name that indicates the Hibernate type.

Hibernate Tag: type

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 561

Field Description

Batch size Specifies the batch load size.

Hibernate Tag: batch-size

Not found Specifies how foreign keys that reference missing rows will be handled: ignore
will treat a missing row as a null association.

Hibernate Tag: not-found

Inverse collection Specifies that the role is the inverse relation of the opposite role.

Hibernate Tag: inverse

Persistence Options
The following options are available:

Field Description

Schema Specifies the name of the schema.

Hibernate Tag: schema

Catalog Specifies the name of the catalog.

Hibernate Tag: catalog

Where clause Specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.

Hibernate Tag: where

Check Specifies a SQL expression used to generate a multi-row check constraint for
automatic schema generation.

Hibernate Tag: check

Fetch type Specifies outer-join or sequential select fetching.

Hibernate Tag: fetch

Persister class Specifies a custom persistence class.

Hibernate Tag: persister

Subselect Specifies an immutable and read-only entity to a database subselect.

Hibernate Tag: subselect

Index column Specifies the column name if users use list or array collection type.

Hibernate Tag: index

Insert Specifies that the mapped columns should be included in any SQL INSERT
statements.

Hibernate Tag: insert

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

562 PowerDesigner

Field Description

Update Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Hibernate Tag: update

Lazy Specifies that this property should be fetched lazily when the instance variable
is first accessed.

Hibernate Tag: lazy

Optimistic lock Specifies that a version increment should occur when this property is dirty.

Hibernate Tag: optimistic-lock

Outer join Specifies to use an outer-join.

Hibernate Tag: outer-join

Mapping Collections of Value Types
If there is a value type class on the navigable role side of an association with a multiplicity of
one, PowerDesigner will embed the value type in the entity type as a composite attribute.

Mapping Collections of Value Type
You define mapping collections of value type as follows:

1. Create an entity type class.

2. Create another class for value type.

3. Open the property sheet of the class, click the Detail tab, and select the Value type radio
button.

4. Create an association between the value type class and an entity type class. On the value
type side, set the multiplicity to one and the navigability to true.

5. Generate the PDM with O/R mapping.

6. Open the property sheet of the entity class and click the Preview tab.

7. Verify the mapping file.

A composite entity class may contain components, using the <nested-composite-element>
declaration.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 563

Defining Association Collection Type for One-to-many or Many-to-many Associations
You define association collection type for one-to-many or many-to-many associations as
follows:

1. Open the association property sheet and click the Detail tab.

2. Specify a Multiplicity on both sides.

3. Specify either unidirectional or bi-directional navigability.

4. Specify role names if necessary.

5. If one role of the association is navigable and the multiplicity is many, you can set the
collection container type and batch loading size.

6. If you select java.util.List or <none>, it implies that you want to use an array or list-indexed
collection type. Then you should define an index column to preserve the objects collection
order in the database.

Note: The Java collection container type conditions the Hibernate collection type.

Collection Container Type Hibernate Collection Type

<None> array

java.util.Collection bag or idbag (many-to-many)

java.util.List list

java.util.Set set

Defining Hibernate Inheritance Mappings
Hibernate supports the three basic inheritance mapping strategies:

• Table per class hierarchy
• Table per subclass
• Table per concrete class

• There are not any special different from standard inheritance mapping definition in O/R
Mapping Modeling. However, a separate mapping file is generated for each inheritance
hierarchy that has a unique mapping strategy. All mappings of subclasses are defined in the
mapping file. The mapping file is generated for the root class of the hierarchy.

Generating Code for Hibernate
Before generating code for Hibernate, you need to:

• Install Hibernate 3.0 or higher.
• Check the model.
• Define generation options.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

564 PowerDesigner

Checking the Model
When you complete the definition of the model, you need to run the Check Model function to
verify if there are errors or warnings in the model. If there are errors, you need to fix them
before generating code.

Defining Generation Options
There are two types of generation options:

• Environment variables - to allow your Eclipse or Ant build script to find the Hibernate
library Jar files

• Generation options

Defining Environment Variables
You define environment variables as follows:

1. Select Tools > General Options.

2. Select the Variables node.

3. Add a variable HIBERNATE_HOME and, in the value field, enter the Hibernate home
directory path. For example, D:\Hibernate-3.0.

Defining Generation Options
You define generation options as follows:

1. Select Language > Generate Java Code.

2. Specify the root directory where you want to generate the code.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 565

3. Click the Options tab.

4. [optional] To use DAO, set the Generate DAO sources option to true.

5. [optional] To use Eclipse to compile and test the Java classes, set the Generate Eclipse
project artifacts option to true.

6. [optional] To use unit test classes to test the Hibernate persistent objects, set the Generate
unit test sources option to true.

7. Click on OK to generate code immediately or Apply and then Cancel to save your changes
for later.

Generating Code for Hibernate
Once you have completed your model, checked it, and defined your generation options, you
can generate the code for Hibernate.

1. Select Language > Generate Java Code.

2. [optional] Click the Select tab to change the object selection.

3. [optional] Click the Options tab to change the Hibernate and Java generation options.

4. [optional] Click the Generated Files tab to review all the files that will be generated.

5. Click OK.

You can use an IDE like Eclipse to modify the generated code, compile, run the unit test and
develop your application.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

566 PowerDesigner

Using the Generated Hibernate Code
To use Eclipse, you need to download and install the Eclipse SDK.

Importing the Generated Project into Eclipse
If you have selected the Generate Eclipse project artifacts generation option, you can import
the generated project into Eclipse and use Eclipse to modify, compile and run the tests.

If you use the PowerDesigner Eclipse plugin then, after the code generation, the project is
automatically imported or refreshed in Eclipse.

If you use the standalone version of PowerDesigner, you need to import the generated project
as follows:

1. In Eclipse, select File > Import
2. In the import list, select Existing Projects into Workspace. Eclipse will automatically

compile all the Java classes. If there are errors, you should check:
• That all the required Jar files are included in the .classpath file.
• That the JDK version is the right one. If you use Java 5.0 as the language in OOM, you

need to use the JDK 5.0 to compile the code.

Performing the Unit Tests
If the generated Java classes are compiled without error, you can run the unit tests within
Eclipse or using Ant.

The unit tests generate random data to create and update objects.

After creating, updating, deleting or finding objects, a test asserts that the result is as expected.

If the result is as expected, the test succeeds; otherwise it fails.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 567

Before running the unit tests, you need to:

1. Create the database file.
2. Define an ODBC connection.
3. Generate the database from the PDM using the ODBC connection.
4. Give the test user the permission to connect to the database.
5. Start the database.

Running Unit Tests in Eclipse
Eclipse integrates JUnit. The JUnit Jar files and JUnit user-interface are provided.

Running a Single Test Case
You run a single test case as follows:

1. Open the Java perspective

2. In the Package Navigator, expand the test package

3. Right-click on a test case (for example, CustomerTest.java) and select Run As > JUnit
Test.

4. Select the JUnit view to verify the result:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

568 PowerDesigner

If there are 0 errors, then the test has succeeded. If there are errors, you need to check the
Console view to locate the sources of them. The problem could be:

• The database is not started.
• The user name or password is wrong.
• The database is not generated.
• The mapping is wrong.

Running the Test Suite
You run the test suite as follows

1. Open the Java perspective

2. In the Package Navigator, expand the test package

3. Right-click on the AllTests.java test suite and select Run As > JUnit Test.

4. Select the JUnit view to verify the result

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 569

Running Unit Tests with Ant
To generate the Ant build.xml file, you need to select the Generate Ant build.xml file in the
Java code generation window.

To use Ant, you need to:

• Download it from http://www.apache.org and install it.
• Define an environment variable ANT_HOME and set it to your Ant installation directory.
• Copy junit-3.8.1.jar from HIBERNATE_HOME/lib directory to ANT_HOME/lib

directory.
• Make sure that the Hibernate Jar files are defined in the build.xml file or in the

CLASSPATH environment variable.
• Make sure that the JDBC driver Jar file of your database is defined in the build.xml file or

in the CLASSPATH environment variable.

Running Unit Tests with Ant from PowerDesigner:
You run unit tests with Ant from PowerDesigner as follows:

1. Select Language > Generate Java Code.

2. Select the Options tab.

3. Set the Generate Ant build.xml file option to true.

4. Select the Tasks tab.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

570 PowerDesigner

http://www.apache.org

5. Check the Hibernate: Run the generated unit tests task.

6. Click OK.

7. After you close the generation files list window, the JUnit task runs. You can see the result
in output window.

Running Unit Tests with Ant from the Command Line
You run unit tests with Ant from the command line as follows:

1. Open a command line window.

2. Go to the directory where you have generated the code.

3. Run the JUnit test task: Ant junit

4. Check the output result.

Generating EJB 3 Persistent Objects
EJB 3.0 introduces a standard O/R mapping specification and moves to POJO based
persistence. PowerDesigner provides support for EJB 3 through an extension file.

To enable the EJB 3 extensions in your model, select Model > Extensions, click the Import
tool, select the EJB 3.0 file (on the O/R Mapping tab), and click OK to attach it.

EJB 3.0 persistence provides a lightweight persistence solution for Java applications. It
supports powerful, high performance and transparent object/relational persistence, which can
be used both in container and out of container.

EJB 3.0 persistence lets you develop persistent objects using POJO (Plain Old Java Object).
All the common Java idioms, including association, inheritance, polymorphism, composition,
and the Java collections framework are supported. EJB 3.0 persistence allows you to express
queries in its own portable SQL extension (EJBQL), as well as in native SQL.

PowerDesigner supports the design of Java classes, database schema and Object/Relational
mapping (O/R mapping). Using these metadata, PowerDesigner can generate codes for EJB 3
persistence, including:

• Persistent EJB Entities (domain specific objects)
• Configuration file

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 571

• O/R mapping files (Optional)
• DAO factory
• Data Access Objects (DAO)
• Unit test classes for automated test

Generating Entities for EJB 3.0
You generate entities for EJB 3.0 as follows:

1. Create an OOM and a PDM, and then define your O/R mappings. For detailed information,
see Chapter 22, Object/Relational (O/R) Mapping on page 519.

2. Define the EJB 3 persistence settings.

3. Generate Java code.

4. Run unit tests.

Defining EJB 3 Basic O/R Mapping
There are three kinds of persistent classes in EJB 3:

• Entity classes
• Embeddable classes
• Mapped superclasses

The following requirements apply to persistent classes:

• They must be defined as persistent classes (see Entity Class Transformation on page
521).

• They must be top level classes (and not inner classes).
• Entity classes and Mapped superclasses should carry the EJBEntity stereotype.
• Embeddable classes are Value type classes, i.e. persistent classes with a Value type

persistent type.

Classes that do not meet these requirements will be ignored.

Tip: You can set the stereotype and persistence of all the classes in a model or package (and
sub-packages) by right-clicking the model or package and selecting Make Persistent from the
contextual menu.

Defining Entity Mappings
Set the stereotype of persistent classes to make them EJB 3 Entity classes.

The Entity annotation is generated to specify that the class is an entity.

@Entity
@Table(name="EMPLOYEE")
public class Employee { ... }

For more informations about defining entity class mappings, see Chapter 22, Object/
Relational (O/R) Mapping on page 519.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

572 PowerDesigner

EJB 3 Entity Mapping Options
The following EJB3-specific mapping options can be set on the EJB 3 Persistence tab of the
class property sheet.

Option Description

Entity Name Specifies that the class alias that can be used in EJB QL.

Access strategy Specifies the default access type (FIELD or PROPERTY)

Schema name Specifies the name of the database schema.

Catalog name Specifies the name of the database catalog.

Mapping definition type Specifies what will be generated for mapping meta data, the mapping file,
annotations or both.

Discriminator value Specifies the discriminator value to distinguish instances of the class

Mapping to Multiple Tables
In EJB 3, Entity classes can be mapped to multiple tables. For more for information on how to
map one Entity class to multiple tables, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

There is a check to guarantee that secondary tables have reference keys referring to primary
tables.

The SecondaryTable annotation is generated to specify a secondary table for the annotated
Entity class. The SecondaryTables annotation is used when there are multiple secondary
tables for an Entity.

Defining Primary Identifier Mapping
Three kinds of primary identifier mapping are supported in EJB 3.0:

• Simple identifier mapping - This kind of primary key can be generated automatically in
EJB 3. You can define the generator class and parameters. There are four generator class
types, Identity, Sequence, Table and Auto. Table generator and sequence generators
require certain parameters. See the EJB 3.0 persistence specification for details.
You can define the generator class and parameters in the EJB 3 persistence tab of primary
identifiers' property sheet. The parameters take the form of param1=value1;
param2=value2.
The Id annotation generated specifies the primary key property or field of an entity. The
GeneratedValue annotation provides for the specification of generation strategies for the
values of primary keys:

@Id
@GeneratedValue(strategy=GenerationType.TABLE,
generator="customer_generator")
@TableGenerator(

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 573

 name=" customer_generator",
 table="Generator_Table",
 pkColumnName="id",
 valueColumnName="curr_value",
 initialValue=4
)
@Column(name="cid", nullable=false)

• Composite identifier mapping - The IdClass annotation will be generated for an entity
class or a mapped superclass to specify a composite primary key class that is mapped to
multiple fields or properties of the entity:

@IdClass(com.acme.EmployeePK.class)
@Entity
public class Employee {
 @Id String empName;
 @Id Date birthDay;
 ...
}

• Embedded primary identifier mapping - corresponds to component primary identifier
mapping. The EmbeddedId annotation is generated for a persistent field or property of an
entity class or mapped superclass to denote a composite primary key that is an embeddable
class:

@EmbeddedId
protected EmployeePK empPK;

Defining Attribute Mappings
Each persistent attribute with basic types can be mapped to one column. Follow instructions to
define attribute mappings for this kind of persistent attributes.

The following EJB3-specific attribute mapping options are available on the EJB 3 Persistence
tab of each attribute's property sheet:

Option Description

Version attribute Specifies if attribute is mapped as version attribute

Insertable Specifies that the mapped columns should be included in any SQL INSERT
statements.

Updatable Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Fetch Specify if attribute should be fetched lazily.

Generate finder Generates a finder function for the attribute.

The Basic annotation is generated to specify fetch mode for the attribute or property and
whether the attribute or property is mandatory. The Column annotation is generated to specify
a mapped column for a persistent property or field.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

574 PowerDesigner

@Basic
@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Other Annotations can also be generated to specify the persistence type of an attribute or
property. A Temporal annotation specifies that a persistent property or attribute should be
persisted as a temporal type. There is also the enumerated annotation for enumerated types
and Lob for large object types.

Defining Versioning Mapping
EJB 3.0 uses managed versioning to perform optimistic locking. If you want to use this kind of
feature, you need to set one mapped persistent attribute as the Version attribute, by selecting
the Version attribute option on the EJB 3 Persistence tab. The following types are supported
for Version attribute: int, Integer, short, Short, long, Long, Timestamp.

The Version attribute should be mapped to the primary table for the entity class. Applications
that map the Version property to a table other than the primary table will not be portable. Only
one Version attribute should be defined for each Entity class.

The Version annotation is generated to specify the version attribute or property of an entity
class that serves as its optimistic lock value.

@Version
@Column(name="OPTLOCK")
protected int getVersionNum() { return versionNum; }

Defining Embeddable Class Mapping
Embeddable classes are simple Value type classes. Follow the instructions for defining Value
type class mappings to define Embeddable class mapping for EJB 3.

In EJB 3, Embeddable classes can contain only attribute mappings, and these persistent
attributes can have only basic types, i.e. Embeddable classes cannot contain nested
Embeddable classes.

Note: The Embeddable class must implement the java.io.Serializable interface and overrides
the equals() and hashCode() methods.

The Embeddable annotation is generated to specify a class whose instances are stored as an
intrinsic part of an owning entity and share the identity of the entity.

@Embeddable
public class Address implements java.io.Serializable {
 @Basic(optional=true)
 @Column(name="address_country")
 public String getCountry() {}

}

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 575

Defining EJB 3 Association Mappings
EJB 3 persistence provides support for most of the association mapping strategies. We will
just address the differences here.

One association must be defined between two Entity classes or one Entity class and one
Mapped superclass before it can be mapped. Association mapping with a Mapped superclass
as the target will be ignored. Embeddable classes can be either the source or the target of
associations.

Mapping for associations with association class is not currently supported. You must separate
each kind of associations into two equivalent associations.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

Mapping One-to-one Associations
EJB 3 persistence supports both bi-directional one-to-one association mapping and
unidirectional one-to-one association mapping.

The OneToOne annotation is generated to define a single-valued association to another entity
that has one-to-one multiplicity. For bi-directional one-to-one associations, the generated
annotations will resemble:

@OneToOne(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumns({
 @JoinColumn(name="aid", referencedColumnName="aid")
})
public Account getAccount() { ... }

@OneToOne(cascade=CascadeType.PERSIST, mappedBy="account")
public Person getPerson() { ... }

Generated annotations for unidirectional one-to-one associations are similar. A model check
is available to verify that mappings are correctly defined for unidirectional one-to-one
associations. One unidirectional association can only be mapped to a reference that has the
same direction as the association.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

Mapping One-to-many Associations
EJB 3 persistence supports bi-directional one-to-many association mapping, unidirectional
one-to-one association mapping and unidirectional one-to-many association mapping.

A OneToMany annotation is generated to define a many-valued association with one-to-many
multiplicity. A ManyToOne annotation is generated to define a single-valued association to
another entity class that has many-to-one multiplicity. The JoinColumn annotation is

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

576 PowerDesigner

generated to specify a join column for the reference associating the tables. For bi-directional
one-to-many associations, generated annotations will resemble:

@OneToMany(fetch=FetchType.EAGER, mappedBy="customer")
public java.util.Collection<Order> getOrder() { ... }
@ManyToOne
@JoinColumns({
 @JoinColumn(name="cid", referencedColumnName="cid")
})
public Customer getCustomer() { ... }

Generated annotations for unidirectional many-to-one associations are similar. A model
check is available to verify that mappings for bi-directional one-to-many associations and
unidirectional many-to-one associations are correctly defined. The references can only
navigate from primary tables of classes on the multiple-valued side to primary tables of classes
on the single-valued side.

For unidirectional one-to-many association, the JoinTable annotation is generated to define
middle table and join columns for the two reference keys.

@OneToMany(fetch=FetchType.EAGER)
@JoinTable(
 name="Customer_Order",
 joinColumns={
 @JoinColumn(name="cid", referencedColumnName="cid")
 },
 inverseJoinColumns={
 @JoinColumn(name="oid",
 referencedColumnName="orderId")
 }
)
public java.util.Collection<Order> getOrder() { ... }

A model check is available to verify that mappings for unidirectional one-to-many
associations are correctly defined. Middle tables are needed for this kind of one-to-many
association mapping.

One-to-many associations where the primary key is migrated are not supported in EJB 3.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

Mapping Many-to-many Associations
EJB 3 persistence supports both bi-directional many-to-many association mapping and
unidirectional many-to-many association mapping.

A ManyToMany annotation is generated to define a many-valued association with many-to-
many multiplicity.

@ManyToMany(fetch=FetchType.EAGER)
@JoinTable(
 name="Assignment",

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 577

 joinColumns={
 @JoinColumn(name="eid", referencedColumnName="eid")
 },
 inverseJoinColumns={
 @JoinColumn(name="tid", referencedColumnName="tid")
 }
)
public java.util.Collection<Title> getTitle() { ... }

A model check is available to verify that mappings are correctly defined for many-to-many
associations. Middle tables are needed for many-to-many association mapping.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

Defining EJB 3 Association Mapping Options
The following EJB 3-specific options for association mappings are available on the EJB 3
Persistence tab of an association's property sheet:

Field Description

Inverse side Specifies which side is the inverse side.

Role A cascade Specifies which cascade operation can be performed on role A side.

Role B cascade Specifies which cascade operation can be performed on role B side.

Role A fetch Specifies if role A side should be fetched eagerly.

Role B fetch Specifies if role B side should be fetched eagerly.

Role A order by Specifies the order clause for role A side.

Role A order by Specifies the order clause for role B side.

Defining EJB 3 Inheritance Mappings
EJB 3 persistence supports all three popular inheritance mapping strategies and also mixed
strategies.

• Table per class hierarchy - SINGLE_TABLE
• Joined subclass - JOINED
• Table per concrete class - TABLE_PER_CLASS

All classes in the class hierarchy should be either Entity classes or Mapped superclasses. For
each class hierarchy, the primary identifier must be defined on the Entity class that is the root
of the hierarchy or on a mapped superclass of the hierarchy.

You can optionally define a Version attribute on the entity that is the root of the entity hierarchy
or on a Mapped superclass of the entity hierarchy.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

578 PowerDesigner

Mapped Superclasses
In EJB 3.0, Mapped superclasses are used to define state and mapping information that is
common to multiple entity classes. They are not mapped to separate tables of their own. You
cannot currently define Mapped superclasses in PowerDesigner.

Table Per Class Hierarchy Strategy
In this strategy, the whole class hierarchy is mapped to one table. You can optionally define
discriminator values for each Entity class in the hierarchy on the EJB 3 Persistence tab of the
class property sheet.

Option Description

Discriminator value Specifies a value that distinguishes individual this class from other
classes.

The Inheritance annotation with SINGLE_TABLE strategy is generated. The
DiscriminatorColumn annotation is generated to define the discriminator column. The
DiscriminatorValue annotation is generated to specify the value of the discriminator column
for entities of the given type if you specify it for the class.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

@Entity(name="Shape")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="shapeType",
discriminatorType=DiscriminatorType.STRING, length=100)
@Table(name="Shape")
public class Shape { ... }

@Entity(name="Rectangle")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorValue("Rectangle")
@Table(name="Shape")
public class Rectangle extends Shape { ... }

A model check is available to verify that discriminator columns are correctly defined.

Joined Subclass Strategy
In this strategy, each class is mapped to its own primary table. Primary tables of child classes
have reference keys referring to the primary tables of the parent classes.

An Inheritance annotation with JOINED strategy is generated. The PrimaryKeyJoinColumn
annotation is generated to define a join column that joins the primary table of an Entity
subclass to the primary table of its superclass.

For more informations about mapping, see Chapter 22, Object/Relational (O/R) Mapping on
page 519.

@Entity(name="Shape")
@Inheritance(strategy=InheritanceType.JOINED)

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 579

@DiscriminatorColumn(name="shapeType")
@Table(name="Shape")
public class Shape { ... }

@Entity(name="Rectangle")
@Inheritance(strategy=InheritanceType.JOINED)
@PrimaryKeyJoinColumns({
 @PrimaryKeyJoinColumn(name="sid", referencedColumnName="sid")
})
@Table(name="Rectangle")
public class Rectangle extends Shape { ... }

A model check is available to verify that primary tables of child classes have reference keys
referring to the primary tables of their parent classes.

Applying Table Per Class Strategy
In this strategy, each class is mapped to a separate table. When transforming an OOM to a
PDM, PowerDesigner only generates tables for leaf classes, and assumes that all other classes
are not mapped to a table, even if you manually define additional mappings. The
MappedSuperclass annotations are generated for those classes, and the Inheritance annotation
will not be generated for all the classes. You need to customize the generated annotations and
create additional tables if you want to map classes other than leaf classes to tables.

@MappedSuperclass
public class Shape { .. }

@Entity(name="Rectangle")
@Table(name="Rectangle")
public class Rectangle extends Shape { ... }

Defining EJB 3 Persistence Default Options
The following default persistent options can be set at the model, package or class level:

Option Description

Default access Specifies an access strategy.

Mapping definition
type

Specifies the level of mapping metadata to be generated.

Catalog name Specifies the catalog name for persistent classes.

Schema name Specifies the schema name for persistent classes.

Defining EJB 3 Persistence Configuration
There are some persistence properties which are used for database connection. You need to set
them before run the generated application.

1. Open EJB 3 Persistence Configuration form from the model's property sheet.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

580 PowerDesigner

2. Select persistence provider you use. You should refer to compliance issues for some
constraints with these persistence providers.

3. 3. Define JDBC driver class, connection URL, JDBC driver jar file path, user name and
password.

Option Description

Persistence provid-
er

Specifies the persistence provider to be used.

Transaction type Specifies the transaction type to be used.

Data source Specifies the data source name (if data source is used).

Add Dali support Specifies that the generated project can be authored in Dali. A special Eclipse
project builder and nature will be generated.

JDBC driver class Specifies the JDBC driver class.

Connection URL Specifies the JDBC connection URL string.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 581

Option Description

JDBC driver jar Specifies the JDBC driver jar file path.

User name Specifies the database user name.

Password Specifies the database user password.

Cascade persist Specifies whether to set the cascade style to PERSIST for all relationships in
the persistent unit.

You can verify the configuration parameters in the Preview tab. The generated persistence
configuration file looks like:

<persistence xmlns="http://java.oracle.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.oracle.com/xml/ns/persistence
 http://java.oracle.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="EJB3_0Model" transaction-
type="RESOURCE_LOCAL">
 <description>
 This is auto generated configuration for persistent unit
EJB3_0Model
 </description>
<provider>org.hibernate.ejb.HibernatePersistence</provider>
 <!-- mapped files -->
 <!--jar-file/-->
 <!-- mapped classes -->
 <class>com.company.orders.Customer</class>
 <class>com.company.orders.Order</class>
 <properties>
 <property
name="hibernate.dialect">org.hibernate.dialect.SybaseDialect</
property>
 <property
name="hibernate.connection.driver_class">com.sybase.jdbc2.jdbc.SybD
river</property>
 <property
name="hibernate.connection.url">jdbc:sybase:Tds:localhost:5000/
Production</property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"></property>
 </properties>
 </persistence-unit>
</persistence>

Checking the Model
To keep the model and mappings correct and consistent, you need to run a model check. If
there are errors, you need to fix them. You can also run model checking before code
generation.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

582 PowerDesigner

Generating Code for EJB 3 Persistence
In order to generate code for EJB 3 persistence, you must.

• Download an EJB 3 persistence provider such as Hibernate Entity Manager, Kodo,
TopLink and GlassFish.

• Define an environment variable to specify the location of the persistence library directory.
• Generate code - define model selection and generation options and preview generated file

list.
• Run unit test.

Defining the Environment Variable
PowerDesigner uses an environment variable to generate library configuration for Eclipse
project or Ant build script.

1. Select Tools > General Options.

2. Select the Variables node

3. Add a variable EJB3PERSISTENCE_LIB and, in the value field, enter directory path
which you put your persistence provider libraries, for example D:\EJB 3.0\Hibernate
Entity Manager\lib.

You can also define this as a Windows system environment variable, but you need to restart
PowerDesigner to have it take effect.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 583

Generate Code
To generate code, select Language > Generate Java code (Ctrl + G).Specify the directory
where you want to put your generated code. On the Targets tab, make sure the O/R Mapping
target is selected.

Select Model Elements
Select model elements to be generated on the Selection tab. The model should be selected for
there are some important artifacts generated on the model level, such as persistence
configuration file, DAO factory classes, DAO base classes etc.

Define Generation Options

• Define generation options on the Options tab.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

584 PowerDesigner

Option Description

Generate DAO sources Specifies whether DAO sources should be generated.

Generate Eclipse project artifacts Specifies whether Eclipse project file and classpath file should
be generated.

Generate unit test sources Specifies whether unit test sources should be generated.

Java source directory Specifies directory for Java sources.

Test source directory Specifies directory for unit test sources.

Generate schema validation files Specifies whether schema file and validation script should be
generated.

Generate Ant build.xml file Specifies whether Ant build.xml file should be generated.

Preview Generated File List
You can get a preview of generated file list on the Generated files tab.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 585

Specify Post Generation Tasks
There are some tasks that can be run after the generation. You can select them on Tasks tab.
The useful one is Run generated unit tests. PowerDesigner will run unit tests by Ant script
generated after generation if you select the task. You can also run it on the command window.
There are some prerequisites before you can run the task. We will show you how to run unit
tests in the coming section.

Authoring in Dali Tools
Dali JPA Tools provide support for the definition, editing, and deployment of Object-
Relational (O/R) mappings for EJB 3.0 Entity Beans. It simplifies mapping definition and
editing through:

• Creation and automated mapping wizards
• Intelligent mapping assistance
• Dynamic problem identification

You can import generated Eclipse project and do further editing in Dali tools if you had
selected Add Dali support in model's property sheet.

Run Unit Tests
There are two ways you can run unit tests generated. One is running Ant task. The other is
running them in Eclipse.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

586 PowerDesigner

Running Unit Tests with Ant
To generate the Ant build.xml file, you need to select the Generate Ant build.xml file in the
Java code generation options tab.

To use Ant, you need to:

• Download Ant from http://www.apache.org and install it.
• Define an environment variable ANT_HOME and set it to your Ant installation directory.
• Download junit-3.8.1.jar if you don't have it.
• Copy junit-3.8.1.jar to $ANT_HOME/lib directory.
• Make sure that you have defined database connection parameters and JDBC driver jar

correctly.

Running Unit Tests with Ant from PowerDesigner
You can run unit tests with Ant from PowerDesigner.
Select the Run unit tests task when generating code.

Running Unit Tests with Ant from the Command Line
You can run unit tests with Ant from the command line.

1. Open a command line window.

2. Go to the directory where you have generated the code.

3. Run the JUnit test task by issuing command: Ant junit

4. Check the output result in ejb3-persistence.log and testout directory.

Running Unit Test in Eclipse
To use Eclipse, you need to download and install the Eclipse SDK.

If you have selected the Generate Eclipse project artifacts generation option, you can import
the generated project into Eclipse and use Eclipse to modify, compile and run the tests.

If you use the PowerDesigner Eclipse plugin, after the code generation, the project is
automatically imported or refreshed in Eclipse.

You can run a single test case each time or run them as suite.

Running a Single Test Case
You can run a single test case.

1. Open the Java perspective

2. In the Package Navigator, expand the test package

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 587

http://www.apache.org

3. Select a test case class, for example CustomerTest.java and run it as Unit Test

4. Select the JUnit view to verify the result:

Running the Test Suite
You can run test cases as a suite.

1. Select AllTests class under test package.

2. Run it as Application. All the tests will be run as suite.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

588 PowerDesigner

Generated File List
The following files are generated:

• Eclipse Project Files - If you have selected the Generate Eclipse project artifacts
generation option, .project file and .classpath file are generated by PowerDesigner. But if
you are regenerating codes, these two files will not be generated again.

• Persistent Java Classes - If mapping definition type specified includes Annotation,
Default, Annotation or Mapping File & Annotation, annotations will be generated in Java
sources.

• Primary Key Classes - Primary key classes are generated to ease find-by-primary-key
operation. It is also mandatory for composite primary key.

• EJB 3 Configuration File - The EJB 3 persistence configuration file persistence.xml is
generated in META-INFO sub directory of Java source directory.

• Log4J Configuration File - PowerDesigner uses Log4j as the default logging framework to
log messages. The Log4j properties file log4j.properties is generated in Java source
directory.

• Utility Class - The Util.java class contains some utility functions that are used by unit tests,
such as compare date by precision. It is defined in the com.sybase.orm.util package.

• EJB 3 O/R Mapping Files - If mapping definition type specified includes mapping file,
Mapping File & Annotation or Mapping file, EJB 3 O/R mapping files will be generated.
These mapping files are generated in the same directory with Java source.

• Factory and Data Access Objects - To help simplify the development of your application,
PowerDesigner generates DAO Factory and Data Access Objects (DAO), using Factory
and DAO design pattern.

• Unit Test Classes - generated to help user perform test to prove that:
• The mappings are correctly defined
• The CRUD (Create, Read, Update and Delete) work properly
• The find methods work
• The navigations work
Unit test classes include:
• Test helper classes - provide some utility functions for unit test classes, such as creating

new instances, modifying state of instances, saving instances etc.
• Unit Test Classes - For each persistent entity, PowerDesigner generates a unit test class.

The generated test cases are:
• Insert test method - to test instance insert.
• Update test method - to test instance update.
• Delete test method - to test instance delete.
• Property finder test methods - to test every property finder method defined in Dao.
• Get all instance list test method - to test get all instances method.
• Navigation test method - to test association mapping.
• Inheritance test method - to test inheritance mapping.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 589

• User defined operation test methods - skeleton test methods for user defined
functions.

• AllTest Class - a test suite that runs all the unit test cases.
• Ant Build File - PowerDesigner can generate an Ant build file to help you to compile and

run unit tests if you set the Generate Ant build.xml file option to true in the Java code
generation window. The Ant build.xml contains customized elements for EJB 3:
• Custom properties - that specify directories and class path.
• Custom target definitions - to define JUnit tasks.
• Custom tasks - to run JUnit test or generate JUnit test reports.

Generating JavaServer Faces (JSF) for Hibernate
JavaServer Faces (JSF) is a UI framework for Java Web applications. It is designed to
significantly ease the burden of writing and maintaining applications that run on a Java
application server and render their UIs back to a target client.

PowerDesigner supports JSF through an extension file that provides JSF extended attributes,
model checks, JSP templates, invoker-managed bean templates, and face-configure templates
for your Java OOM.

You can quickly build Web applications without writing repetitive code, by using
PowerDesigner to automatically generate persistent classes, DAO, managed beans, page
navigation and JSF pages according to your Hibernate or EJB3.0 persistent framework.

To enable the JSF extensions in your model, select Model > Extensions, click the Import
tool, select the JavaServer Faces (JSF) file on the User Interface tab), and click OK
to attach it.

Note: Since JSF uses Data Access Objects (DAO) to access data from the database, you will
need also to add a persistence management extension such as Hibernate in order to generate
JSF.

JSF generation can help you to test persistent objects using Web pages with your own data and
can also help you to generate default JSF Web application. You can use an IDE to improve the
generated JSF pages or change the layout.

Defining Global Options
Each page could use a style sheet, a header file and a footer file to define its standard
presentation.

PowerDesigner provides default style sheet, header and footer files Alternatively, you can
specify your own files.

You can also define global default options like data format, time format, etc.

1. Open the model property sheet, and click the JSF tab:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

590 PowerDesigner

2. Define style sheet, header and footer files.

3. Define the directory where the images used by style sheet, header and footer.

4. Define the JSF library Jar files directory.

5. Define default options.

The following options are available:

Option Description

JSF runtime Specifies the JSF runtime.

It can be JSF Reference Implementation or Apache My Faces.

Target IDE Specifies the target IDE.

List/Default Values: Eclipse WTP, Sybase WorkSpace

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 591

Option Description

Target runtime Specifies the target runtime.

List/Default Values: Apache Tomcat v5.0, Sybase EAServer v5.x, etc.

Dynamic Web Module Specifies the dynamic web module's version

List/Default Values: 2.2, 2.3, and 2.4.

Stylesheet CSS File Specifies the stylesheet file for JSF pages.

List/Default Values: %$_JSF%\stylesheet.css

Header JSP file Specifies the header file for JSF pages.

List/Default Values: %$_JSF%\header.jsp

Footer JSP file Specifies the footer file for JSF pages.

List/Default Values: %$_JSF%\footer.jsp

Picture library path Specifies the path that contains pictures for JSF pages.

List/Default Values: %$_JSF%\images

Use resource bundle Specifies to use a resource bundle.

Locale Specifies the locale

Time zone Specifies the time zone

Date format Specifies the date format could be default, short, medium, long, full

Default: short

Date display pattern Specifies the date pattern

Time format Specifies the date format could be default, short, medium, long, full

Default: short

Time display pattern Specifies the time pattern

Date and time pattern Specifies the date and time pattern

Currency code Specifies the currency code

Currency symbol Specifies the currency symbol

Form label width Specifies the width of the control label in pixel in a form

Default: 200

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

592 PowerDesigner

Option Description

Form control width Specifies the width of the control in pixel in a form

Default: 500

Table column width Specifies the width of the control in pixel in a table

Default: 50

Table number rows Specifies the number of rows that can be displayed in a table

Default: 20

Defining Attribute Options
You can define attribute-level options for validation or presentation style.

1. Open Attribute Property sheet, select JSF tab.

2. Define Attribute options.

Option Description

Control type Specifies the type of control.

Note: You should select the type that can support the Attribute Java type.

• String - EditBox, MultilineEdit

• Boolean - CheckBox

• Date - Date, Time, DateTime, Year, Month, Day

• <Contains List of Value> - ListBox, ComboBox, RadioButtons

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 593

Option Description

Minimum length Specifies the minimum number of characters

Maximum length Specifies the maximum number of characters

Display format pattern Specifies the display format pattern for the attribute

Number of visible
characters

Specifies the number of visible characters per line

Number of lines Specifies the number of lines for multiline edit control

Default: 3

List values method Specifies the method that provides the list of values for ListBox, ComboBox
or radioButtons.

CSS style Specifies the CSS formatting style

Use the attribute as for-
eign key label

Specifies that the column associated to the attribute will be used as the
foreign key label for the foreign key selection.

If no FK label column is defined, PowerDesigner will choose the first not-
PK and non FK column for the default label column.

Default: False

Note: If the "Use the attribute as foreign key label" checkbox is not selected and if there is a
foreign key in the current table, PowerDesigner generates a combo box by default to display
the foreign key id. If you want to display the value of another column (for example, the product
name instead of the product id), you can select the "Use the attribute as foreign key label"
option for product name attribute to indicate that it will be used as foreign key label.

Remember that if some attributes specify the choice to be true, we will generate the foreign
key label only according to the first attribute of them.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

594 PowerDesigner

Derived Attributes
To support derived attributes in PowerDesigner, you can:

1. Define an attribute, and indicate that it is not persistent, and is derived.
2. Generate and implement a getter.

When generating pages, PowerDesigner will automatically include the derived attributes.

Attribute Validation Rules and Default Values
PowerDesigner can generate validation and default values for the edit boxes in the Create and
Edit pages.

1. Open the attribute property sheet, and click the Standard Checks tab.

2. You can define minimum value and maximum values to control the value range.

3. You can define a default value. A string, must be enclosed in quotes. You can also define
the Initial value in the Details tab.

4. You can define a list of values that will be used in a listbox, combo box or radio buttons.

Note: You can set a "list of values" on the Standard Checks tab of an attribute property sheet,
and PowerDesigner will generate a combo box that includes the values. For validation rules,
you can define the customized domain as well, and then select the domain you want to apply in
the specified attribute.

You can also select which control style to use:

• Combobox
• Listbox
• Radio buttons (if the number of values is low) For example: Mr. Ms.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 595

Defining Master-Detail Pages
If two objects have a master-detail relationship, PowerDesigner renders them (create, update,
delete and find methods) in the same page. When you click the detail link button column in the
master table view, the detail page view in the same page will change dynamically.

For example, there is a table Orders (Master table) and a table Orderline (Detail table). The
association is a composition. If you delete an order, the order lines should be deleted. They will
be shown on the same page:

1. Create a one-to-many association, where the one-to-many direction is navigable.

2. Open the association property sheet, and click the JSF tab.

3. Select the "Use Master-Detail Page" checkbox:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

596 PowerDesigner

The association type must be set to Composition or Aggregation, which means that one
side of association is a weak-reference to the master class.

The generated master-detail JSF page will resemble the following:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 597

Generating PageFlow Diagrams
In Java Server Faces, a configuration (xml) file is used to define navigation rules between
different web pages, which is called PageFlow. Power Designer will provide a high level
PageFlow diagram to abstract different kinds of definition, and can generate navigation rules
for JSF web application and JSF page bean based on PageFlow diagram.

You can Generate PageFlow Diagram diagram in three levels, Model, Package and Class.
Next description will use the following example.

Generating a class level PageFlow diagram
You generate a class level PageFlow diagram as follows:

1. Select one class in the ClassDiagram, e.g., Customer. Right click and select the context
menu "Generate PageFlow Diagram".

2. A new PageFlow will be automatically generated, e.g., CustomerPageFlow.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

598 PowerDesigner

Generating a Package Level PageFlow Diagram:
You generate a package level PageFlow diagram as follows:

1. Select one package, e.g., "Orders". Right click it and select the context menu "Generate
PageFlow Diagram".

2. The PageFlow will be generated for each class under this package and its sub packages
recursively, e.g., CustomerPageFlow, OrdersPageFlow, ProductPageFlow,
OrderLinePageFlow.

Generating a Model Level PageFlow Diagram
You generate a model level PageFlow diagram as follows:

1. Right click on the model, e.g., "JSF", and select the context menu "Generate PageFlow
Diagram".

2. A model level PageFlow will be generated, e.g., "JSFPageFlow" automatically. At the
same time, the PageFlow will be generated for each class under this package and its sub
packages recursively, e.g., CustomerPageFlow, OrdersPageFlow, ProductPageFlow,
OrderLinePageFlow.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 599

Modifing Default High Level PageFlow Diagram
After generating the default High Level PageFlow, you can define customized pages and
pageflows in the class level PageFlow.

All the pages in the default High Level PageFlow diagram have their pre-defined stereotype,
e.g., The stereotype for CustomerFind is "FindPage", CustomerEdit is "EditPage", etc. You
can add your customized Page.

You can also add new PageFlows to link the pages in the PageFlow diagram, which is similar
to adding a transition in a statechart diagram.

Adding a New Page
You add a new page from the Toolbox.

1. Select the State tool in the Toolbox, and drag it to the PageFlow diagram, it will create a
new Page with the default name.

2. You can change its name and change its stereotype to Page in its property dialog, e.g.,
change the name to "Home". This dialog is same with general State.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

600 PowerDesigner

After create a new Page, when the code generation, a default JSF page and its page bean will be
generated.

Adding a New PageFlow
You add a new PageFlow from the Toolbox.

1. Select Transition from the Toolbox.

2. Draw a transition from the the source state, e.g. Home, to the target state, e.g.
CustomerFind.

3. Open the property sheet of the transition and click the Trigger tab.

4. Click the Create tool to the right of the Trigger Event field to create a new event, enter an
appropriate name for the event and click OK to return to the transition property sheet.

5. Click OK to create the new PageFlow:

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 601

After you modify the default pageflow, and generate JSF codes, the corresponding default
JSF pages, page beans and faces-config file will be updated.

Installing Apache MyFaces Runtime Jar Files
You can edit, deploy and test JSF pages in the Eclipse WTP or Sybase WorkSpace IDE. If the
IDE does not include JSF runtime Jar files, you will need to download a copy and install
them.

1. Download the appropriate release of the Apache MyFaces JSF implementation from the :
Apache MyFaces Project website

2. Extract the myfaces-all.jar to an appropriate folder.

3. Download the dependency jar files from the same site and copy the jar files of the folder
myfaces-blank-example\WEB-INF\lib to the Apache MyFaces lib folder. You
should have the following jar files:

• commons-beanutils-1.6.1.jar
• commons-codec-1.2.jar
• commons-collections-3.0.jar
• commons-digester-1.5.jar
• commons-el.jar
• commons-logging.jar
• commons-validator.jar
• log4j-1.2.8.jar

4. In PowerDesigner, select Tools > General Options > Variables, and define a JSF_LIB
variable to indicate the Apache MyFaces implementation lib folder path.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

602 PowerDesigner

http://myfaces.apache.org/

Configuring for JSF Generation
You configure for JSF generation as follows:

1. Select Tools > General Options.

2. Select the Variables Category.

3. Add a new row in the Variables list:

• Name: JSF_LIB
• Value: Select JSF Jar file library folder.

4. Select the Named Paths Category.

5. If there is no _JSF named path, add a new row in the Named Paths list:

• Name: _JSF
• Value: Select the JSF folder where it contains JSF style sheets, headers, footers and

images.

Generating JSF Pages
Before generation, make sure that you have attached the Hibernate Extension file to the model,
and checked the model for errors.

1. Java CodeSelect Language > Generate Java Code.

2. Specify a target directory.

3. Define generation options.

4. Click OK.

The generation produces the following files:

• Persistent files (persistent classes, DAO, ...)
• Eclipse and Eclipse WTP project artifacts
• A home page
• JSF pages for persistent classes:

• A find page for searching objects
• A list page for displaying find results
• A create page for creating new objects
• An edit page for updating objects

• Managed beans
• Page flows (face configuration files)

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

Object-Oriented Modeling 603

Testing JSF Pages
You can deploy a JSF Web application in a Web server or an application server that supports
JSP. For example, Apache Tomcat, JBoss.

You can use an IDE like Eclipse to edit the generated Java classes, and use the Eclipse WTP
(Web Tools Project) to edit JSF pages and face config files.

Testing JSF Pages with Eclipse WTP
You test JSF Pages with Eclipse WTP as follows:

1. Install a Web server such as Tomcat or an application server such as JBoss.

2. Generate Java code

3. Import the JSF project into Eclipse. The project is built.

4. Configure your Web server or application server.

5. Start the database.

6. Start the Web server or application server using the WTP Servers view.

7. Right-click the index.jsp under the webroot folder and select Run As > Run on Server.

8. Select the server you want to use in the list.

Testing JSF Pages with Apache Tomcat
You test JSF Pages with Apache Tomcat as follows:

1. Install a Web server such as Tomcat or an application server such as JBoss.

2. Generate Java code

3. Import the JSF project into Eclipse. The project is built.

4. Copy the <ProjectName> folder under the .deployables folder into the Apache Tomcat
webapps folder. Where <ProjectName> is the Eclipse project name.

5. Start the database.

6. Start Apache Tomcat server.

7. Run the Web application using the URL: http://<hostname>:8080/<ProjectName>/
index.jsp. If Apache Tomcat is installed locally, <hostname> is localhost.

CHAPTER 23: Generating Persistent Objects for Java and JSF Pages

604 PowerDesigner

CHAPTER 24 Generating .NET 2.0 Persistent
Objects and Windows
Applications

PowerDesigner follows the best practices and design patterns to produce n-tier architecture
enterprise applications for the .NET framework, as shown in the following figure:

PowerDesigner can be used to generate all these layers:

• Domain Model - contains persistent POCOs (Plain Old CLR Objects), which are similar to
Java's POJOs. These act as information holders for the application and do not contain any
business logic. A primary key class is generated for each persistent class in order to help
the "find-by-primary-key" function, especially when the class has a composite primary
identifier.

• Data Access Layer - follows the standard DAO pattern, and provides typical CRUD
methods for each class. This layer is divided into two parts, one of which contains
interfaces for DAL, while the other contains the implementation for these interfaces, using
ADO.NET technology to access databases.

Object-Oriented Modeling 605

The DAL Helper provides common features used by all the DAL implementations, such as
connection and transaction management, and the supply of SQL command parameters.
Some common classes, such as Session, Criteria, and Exception, are also defined.
PowerDesigner supports two kinds of DAL implementation:
• ADO.NET (see Generating ADO.NET and ADO.NET CF Persistent Objects on page

607)
• Nhibernate (see Generating NHibernate Persistent Objects on page 615)

• Business Logic Layer - contains the typical user-defined business logic. This is a wrapper
for the DAL, exposing CRUD functionalities provided by the DAL underneath. You can
customize this layer according to your needs.

• Windows Application - the Composite UI Application Block, or CAB layer helps you
build complex user interface applications that run in Windows. It provides an architecture
and implementation that assists with building applications by using the common patterns
found in line-of-business client applications.
PowerDesigner can generate data-centric windows applications based on the CAB (see
Generating Windows or Smart Device Applications on page 638).

The .NET CF (Compact Framework) has a similar organization, but with a configuration
utility class that provides the capability to load and parse configuration used in different
layers, e.g., data source configuration, log and exception configuration, etc:

PowerDesigner supports the ADO.NET DAL implementation for the .NET CF (see
Generating ADO.NET and ADO.NET CF Persistent Objects on page 607)

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

606 PowerDesigner

Generating ADO.NET and ADO.NET CF Persistent Objects
Microsoft ADO.NET and ADO.NET CF are database-neutral APIs.

PowerDesigner supports ADO.NET and ADO.NET CF through extension files that provide
enhancements to support:

• Cascade Association: one-to-one, one-to-many, many-to-one, and complex many-to-
many associations.

• Inheritance: table per class , table per subclass, and table per concrete class hierarchies.
• Value Types
• SQL statements: including complex SQL statement like Join according to OOM model

and PDM model.

To enable the ADO.NET or ADO.NET CF extensions in your model, select Model >
Extensions, click the Import tool, select the ADO.NET or ADO.NET Compact
Framework file (on the O/R Mapping tab), and click OK to attach it.

PowerDesigner also supports the design of .NET classes, database schema and Object/
Relational mapping (O/R mapping), and can use these metadata, to generate ADO.NET and
ADO.NET CF persistent objects including:

• Persistent .NET classes (POCOs)
• ADO.NET O/R mapping classes (ADODALHelper)
• DAL factory
• Data Access Objects (DAL)

ADO.NET and ADO.NET CF Options
To set the database connection parameters and other ADO.NET or ADO.NET CF options,
double-click the model name in the browser to open its property sheet, and click the
ADO.NET or ADO.NET CF tab.

Option Description

Target Device [ADO.NET CF only] Specifies the operating system on which the application
will be deployed.

Output file folder [ADO.NET CF only] Specifies the location on the device to which the ap-
plication will be deployed. Click the ellipsis button to the right of this field to
edit the root location and add any appropriate sub-directories.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 607

Option Description

Data Provider Specifies which data provider you want to use. For ADO.NET, you can choose
between:

• OleDB
• SqlClient
• ODBC
• Oracle

For ADO.NET CF, you can choose between:

• Microsoft SQL Server 2005 Mobile Edition
• Sybase ASA Mobile Edition

Connection String Specifies the connection string. You can enter this by hand or click the ellipsis
tool to the right of the field to use a custom dialog. For information about the
provider-specific parameters used to build the connection string, see Config-
uring Connection Strings on page 630.

Default access Specifies the default class attribute access type. This and the other package
options, are valid for the whole model You can fine-tune these options for an
individual package through its property sheet.

Default cascade Specifies the default cascade type.

Default command
type

Specifies the default command type, which can be overridden by concrete
class.

DALContainer Specifies the collection type returned from database. You can choose between
Generic List Collection and System.Collections.ArrayList.

Logging Type [ADO.NET only] The common logging component is Log4Net, but you can
reuse it as well if you have your own logging framework. By default, the value
of logging type is Console type, but PowerDesigner also supports "None" or
Log4Net

Class Mappings
There are two kinds of classes in ADO.NET and ADO.NET CF:

• Entity classes - have their own database identities, mapping files and life cycles
• Value type classes - depend on entity classes. Also known as component classes

Framework-specific class mapping options are defined on the ADO.NET or ADO.NET CF
tab of the class property sheet:

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

608 PowerDesigner

Option Description

Default cascade Specifies the default cascade style.

Default access Specifies the default access type (field or property)

Default command type Specifies command type, currently we supply Text and StoreProcedure to
users.

Lazy Specifies that the class should be lazy fetching.

Abstract class Specifies that the class is abstract.

Discriminator column Specifies the discriminator column or formula for polymorphic behavior in
a one table per hierarchy mapping strategy.

Discriminator value Specifies a value that distinguishes individual subclasses, which are used
for polymorphic behavior.

Discriminator type Specifies the discriminator type.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 609

Primary Identifier Mappings
Primary identifier mapping is mandatory in ADO.NET and ADO.NET CF. Primary identifiers
of entity classes are mapped to primary keys of master tables in data sources. If not defined, a
default primary identifier mapping will be generated, but this may not work properly.

Mapped classes must declare the primary key column of the database table. Most classes will
also have a property holding the unique identifier of an instance.

There are three kinds of primary identifier mapping in ADO.NET and ADO.NET CF:

• Simple identifier mapping - When a primary key is attached to a single column, only one
attribute in the primary identifier can be mapped. This kind of primary key can be
generated automatically. You can define increment, identity, sequence, etc., on the
corresponding column in PDM.

• Composite identifier mapping - If a primary key comprises more than one column, the
primary identifier can have multiple attributes mapped to these columns. In some cases,
the primary key column could also be the foreign key column. In the following example,
the Assignment class has a primary identifier with three attributes: one basic type attribute
and two migrated attributes:

• Component identifier mapping - For more convenience, a composite identifier can be
implemented as a separate value type class. The primary identifier has just one attribute
with the class type. The separate class should be defined as a value type class. Component
class mapping will be generated then. In the example below, three name attributes are
grouped into one separate class Name, which is mapped to the same table as the Person
class.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

610 PowerDesigner

Attribute Mappings
Attributes can be migrated attributes or ordinary attributes. Ordinary attributes can be mapped
to columns or formulas. Migrated attributes do not require attribute mapping.

The following types of mapping are possible:

• Component attribute mapping - A component class can define the attribute mapping as for
other classes, except that there is no primary identifier.

• Discriminator mapping - In inheritance mapping with a one-table-per-hierarchy strategy,
the discriminator needs to be specified in the root class. You can define the discriminator in
the ADO.NET or ADO.NET CF tab of the class property sheet.

Framework-specific attribute mapping options are defined in the ADO.NET or ADO.NET CF
tab of the Attribute property sheet.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 611

Option Description

Generate finder func-
tion

Generates a finder function for the attribute.

Insert Specifies that the mapped columns should be included in any SQL INSERT
statements.

Update Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Lazy Specifies that this property should be fetched lazily when the instance var-
iable is first accessed (requires build-time byte code instrumentation).

Property access Specifies the strategy used for accessing the property value.

Defining Association Mappings
ADO.NET and ADO.NET CF support one-to-one, one-to-many/many-to-one, and many-to-
many association mappings. PowerDesigner allows you to define standard association
attributes like Container Type class, role navigability, array size and specific extended
attributes for association mappings.
Open the Association property sheet and click the ADO.NET or ADO.NET CF Collection
tab.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

612 PowerDesigner

1. Define the appropriate options and then click OK.

The following options are available on this tab:

Option Description

Order by Specifies a table column (or columns) that define the iteration order of the Set
or bag, together with an optional asc or desc.

Cascade Specifies which operations should be cascaded from the parent object to the
associated object.

Batch size Specifies the batch load size.

Not found Specifies how foreign keys that reference missing rows will be handled:
ignore will treat a missing row as a null association.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 613

Option Description

Insert Specifies that the mapped columns should be included in any SQL INSERT
statements.

Update Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Lazy Specifies that this property should be fetched lazily when the instance variable
is first accessed.

Many-to-Many oper-
ation side

Specifies the entry point when operating data in bi-directional many-to-many
association. No matter the choice is RoleA or RoleB, the results are the same.

Defining Inheritance Mappings
ADO.NET and ADO.NET CF support the three basic inheritance mapping strategies:

• Table per class hierarchy
• Table per subclass
• Table per concrete class

• These strategies all follow the standard inheritance mapping definitions.

Generating Code for ADO.NET or ADO.NET CF
In order to generate code for ADO.NET or ADO.NET CF, you must have the .NET
Framework 2.0 Visual Studio.NET 2005 or above installed:

1. Select Tools > Check Model to verify if there are errors or warnings in the model. If there
are errors, fix them before continuing with code generation.

2. Select Language > Generate C# 2 Code or Generate Visual Basic 2005 Code to open
the Generation dialog box:

3. Specify the root directory where you want to generate the code and then click the Options
tab:

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

614 PowerDesigner

4. [optional] To use DAL, set the Generate DAL sources option to true. For information about
the standard C# and VB.NET generation options, see Generating Visual Basic 2005 Files
on page 456 or Generating C# 2.0 Files on page 500.

5. Click OK to generate code immediately or Apply and then Cancel to save your changes for
later.

Once generation is complete, you can use an IDE such as Visual Studio.NET 2005 to modify
the code, compile, and develop your application.

Generating NHibernate Persistent Objects
NHibernate is a port of the Hibernate Core for Java to the .NET Framework. It handles
persistent POCOs (Plain Old CLR Objects) to and from an underlying relational database.

PowerDesigner supports NHibernate through an extension file that provides enhancements to
support all the common .NET idioms, including association, inheritance, polymorphism,
composition, and the collections framework are supported. NHibernate allows you to express
queries in its own portable SQL extension (HQL), as well as in native SQL, or with Criteria
and Example objects.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 615

To enable the NHibernate extensions in your model, select Model > Extensions, click the
Import tool, select the NHibernate file (on the O/R Mapping tab), and click OK to attach
it.

PowerDesigner supports the design of .NET classes, database schema, and Object/Relational
mapping (O/R mapping). Using these metadata, PowerDesigner can generate NHibernate
persistent objects including:

• Persistent .NET classes (domain specific objects)
• NHibernate Configuration file
• NHibernate O/R mapping files
• DAL factory
• Data Access Objects (DAL)

NHibernate Options
To set the database connection parameters and other NHibernate options, double-click the
model name in the browser to open its property sheet, and click the NHibernate tab.

Option Description

Dialect Specifies the dialect, and hence the type of database.

NHibernate Tag: dialect

Driver class Specifies the driver class.

NHibernate Tag: connection.driver_class

Connection String Specifies the connection string. You can enter this by hand or click the ellipsis
tool to the right of the field to use a custom dialog. For information about the
provider-specific parameters used to build the connection string, see Configur-
ing Connection Strings on page 630.

NHibernate Tag: connection.url

Auto import Specifies that users may use an unqualified class name in queries.

Default access Specifies the default class attribute access type. This and the other package
options, are valid for the whole model You can fine-tune these options for an
individual package through its property sheet.

Specifies the de-
fault cascade

Specifies the default cascade type.

Schema name Specifies the default database schema name.

Catalog name Specifies the default database catalog name.

Show SQL Specifies that SQL statements should be shown in the log.

NHibernate Tag: show_sql

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

616 PowerDesigner

Option Description

Auto schema ex-
port

Specifies the mode of creation from tables.

NHibernate Tag: hbm2ddl.auto

Defining Class Mappings
There are two kinds of classes in NHibernate:

• Entity classes - have their own database identities, mapping files and life cycles
• Value type classes - depend on entity classes. Also known as component classes

NHibernate uses mapping XML files to define the mapping metadata. Each mapping file can
contain metadata for one or many classes. PowerDesigner uses the following grouping
strategy:

• A separate mapping file is generated for each single entity class that is not in an inheritance
hierarchy.

• A separate mapping file is generated for each inheritance hierarchy that has a unique
mapping strategy. All mappings of subclasses are defined in the mapping file. The
mapping file is generated for the root class of the hierarchy.

• No mapping file is generated for a single value type class that is not in an inheritance
hierarchy. Its mapping is defined in its owner's mapping file.

Classes can be mapped to tables or views. Since views have many constraints and limited
functionality (for example they do not have primary keys and reference keys), some views
cannot be updated, and the mappings may not work properly in some cases.

There are some conditions that need to be met in order to generate mapping for a specific
class:

• The source can be generated. This may not be possible if, for example, the visibility of the
class is private.

• The class is persistent.
• The generation mode is not set to Generate ADT (abstract data type) and Value Type.
• If the class is an inner class, it must be static, and have public visibility. NHibernate should

then be able to create instances of the class.

NHibernate specific class mapping options are defined in the NHibernate tab of the class
property sheet:

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 617

Option Description

Dynamic insert Specifies that INSERT SQL should be generated at runtime and will contain
only the columns whose values are not null.

NHibernate Tag: dynamic-insert

Dynamic update Specifies that UPDATE SQL should be generated at runtime and will contain
only the columns whose values have changed.

NHibernate Tag: dynamic-update

Select before update Specifies that NHibernate should never perform a SQL UPDATE unless it is
certain that an object is actually modified.

NHibernate Tag: select-before-update

Default cascade Specifies the default cascade style.

NHibernate Tag: default-cascade

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

618 PowerDesigner

Option Description

Default access Specifies the default access type (field or property)

NHibernate Tag: default-access

Proxy name Specifies an interface to use for lazy initializing proxies.

NHibernate Tag: proxy

Batch size Specifies a "batch size" for fetching instances of this class by identifier.

NHibernate Tag: batch-size

Check Specifies a SQL expression used to generate a multi-row check constraint for
automatic schema generation.

NHibernate Tag: check

Polymorphism Specifies whether implicit or explicit query polymorphism is used.

NHibernate Tag: polymorphism

Schema name Specifies the name of the database schema.

NHibernate Tag: schema

Catalog name Specifies the name of the database catalog.

NHibernate Tag: catalog

Row id Specifies that NHibernate can use the ROWID column on databases which
support it (for example, Oracle).

NHibernate Tag: rowed

Persister class name Specifies a custom persistence class.

NHibernate Tag: persister

Lazy Specifies that the class should be lazy fetching.

NHibernate Tag: lazy

Mutable Specifies that instances of the class are mutable.

NHibernate Tag: mutable

Abstract class Specifies that the class is abstract.

NHibernate Tag: abstract

Auto import Specifies that an unqualified class name can be used in a query

NHibernate Tag: Auto-import

Discriminator col-
umn

Specifies the discriminator column or formula for polymorphic behavior in a
one table per hierarchy mapping strategy.

NHibernate Tag: discriminator

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 619

Option Description

Discriminator value Specifies a value that distinguishes individual subclasses, which are used for
polymorphic behavior.

NHibernate Tag: discriminator-value

Discriminator type Specifies the discriminator type.

NHibernate Tag: type

Force usage of dis-
criminator

Forces NHibernate to specify allowed discriminator values even when retriev-
ing all instances of the root class.

NHibernate Tag: force

Do not use discrim-
inator in insert

Forces NHibernate to not include the column in SQL INSERTs

NHibernate Tag: insert

Optimistic lock type Specifies an optimistic locking strategy.

NHibernate Tag: optimistic-lock

Optimistic lock col-
umn name

Specifies the column used for optimistic locking. A field is also generated if
this option is set.

NHibernate Tag: version/ timestamp

Optimistic lock un-
saved value

Specifies whether an unsaved value is null or undefined.

NHibernate Tag: unsaved-value

Primary Identifier Mappings
Primary identifier mapping is mandatory in NHibernate. Primary identifiers of entity classes
are mapped to primary keys of master tables in data sources. If not defined, a default primary
identifier mapping will be generated, but this may not work properly.

There are three kinds of primary identifier mapping in NHibernate:

• Simple identifier mapping -
• Composite identifier mapping
• Component identifier mapping

Mapped classes must declare the primary key column of the database table. Most classes will
also have a property holding the unique identifier of an instance.

Composite Identifier Mapping
If a primary key comprises more than one column, the primary identifier can have multiple
attributes mapped to these columns. In some cases, the primary key column could also be the
foreign key column.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

620 PowerDesigner

In the above example, the Assignment class has a primary identifier with three attributes: one
basic type attribute and two migrated attributes. The primary identifier mapping is as follows:

<composite-id>
 < key-property name="Type" access="property">
 < column name="Type" sql-type="integer"
 not-null="true"/>
 </key-property>
 <key-many-to-one name="title" access="property">
 </key-many-to-one>
 <key-many-to-one name="worker" access="property">
 </key-many-to-one>
</composite-id>

Component Primary Identifier Mapping
For more convenience, a composite identifier can be implemented as a separate value type
class. The primary identifier has just one attribute with the class type. The separate class
should be defined as a value type class. Component class mapping will be generated then.

In the example above, three name attributes are grouped into one separate class Name. It is
mapped to the same table as Person class. The generated primary identifier is as follows:

<composite-id name="name" class="identifier.Name">
 <key-property name="firstName">
 <column name="name_firstName"
 sql-type="text"/>
 </key-property>
 <key-property name="middleName">
 <column name="name_middleName"
 sql-type="text"/>
 </key-property>

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 621

 <key-property name="lastName">
 <column name="name_lastName"
 sql-type="text"/>
 </key-property>
</composite-id>

Note: The value type class must implement the java.io.Serializable interface, which
implements the equals() and hashCode() methods.

Simple Identifier Mapping
When a primary key is attached to a single column, only one attribute in the primary identifier
can be mapped. This kind of primary key can be generated automatically. You can define the
generator class and parameters. There are many generator class types, such as increment,
identity, sequence, etc. Each type of generator class may have parameters that are meaningful
to it. See your NHibernate documentation for detailed information.

You can define the generator class and parameters in the NHibernate tab of the primary
identifier property sheet. The parameters take the form of param1=value1; param2=value2.

1. Open the class property sheet and click the Identifiers tab. Double-click the entry to open
its property sheet.

2. Click the NHibernate tab, select a generator class and define its parameters.

Example parameters:

• Select hilo in the Generator class list

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

622 PowerDesigner

• Enter "table=hi_value,column=next_value,max_lo=10000" in the Generator params
box. You should use commas to separate the parameters.

3. You can check the code in the Preview tab:

Note that, if there are several Primary identifier attributes, the generator is not used.

Attribute Mappings
Attributes can be migrated attributes or ordinary attributes. Ordinary attributes can be mapped
to columns or formulas. Migrated attributes do not require attribute mapping.

The following types of mapping are possible:

• Map attribute to formula - When mapping an attribute to a formula, you should ensure that
the syntax is correct. There is no column in the source table of the attribute mapping.

• Component attribute mapping - A component class can define the attribute mapping as for
other classes, except that there is no primary identifier.

• Discriminator mapping - In inheritance mapping with a one-table-per-hierarchy strategy,
the discriminator needs to be specified in the root class. You can define the discriminator in
the NHibernate tab of the class property sheet.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 623

NHibernate-specific attribute mapping options are defined in the NHibernate tab of the
Attribute property sheet.

Option Description

Generate finder func-
tion

Generates a finder function for the attribute.

NHibernate type Specifies a name that indicates the NHibernate type.

Property access Specifies the strategy that NHibernate should use for accessing the property
value.

Id unsaved value Specifies the value of an unsaved id.

Insert Specifies that the mapped columns should be included in any SQL INSERT
statements.

Update Specifies that the mapped columns should be included in any SQL UPDATE
statements.

Optimistic lock Specifies that updates to this property require acquisition of the optimistic
lock.

Lazy Specifies that this property should be fetched lazily when the instance var-
iable is first accessed (requires build-time byte code instrumentation).

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

624 PowerDesigner

Defining Association Mappings
NHibernate supports one-one, one-to-many/many-to-one, and many-to-many association
mappings. The mapping modeling is same with standard O/R Mapping Modeling. However,
NHibernate provides special options to define its association mappings, which will be saved
into <Class>.hbm.xml mapping file. PowerDesigner allows you to define standard
association attributes like Container Type class, role navigability, array size and specific
extended attributes for NHibernate association mappings.

1. Open the Association property sheet and click the NHibernate Collection tab.

2. Define the collection management options (see Defining NHibernate Collection options
on page 626).

3. Select the NHibernate Persistence tab, and define the persistence options (see Defining
NHibernate Persistence options on page 627).

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 625

Defining NHibernate Collection Options
The following options are available:

Option Description

Sort Specifies a sorted collection with natural sort order, or a given comparator class.

NHibernate Tag: sort

Order by Specifies a table column (or columns) that define the iteration order of the Set or
bag, together with an optional asc or desc.

NHibernate Tag: order-by

Access Specifies the strategy Nhibernate should use for accessing the property value.

NHibernate Tag: access

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

626 PowerDesigner

Option Description

Cascade Specifies which operations should be cascaded from the parent object to the
associated object.

NHibernate Tag: cascade

Collection type Specifies a name that indicates the NHibernate type.

NHibernate Tag: type

Batch size Specifies the batch load size.

NHibernate Tag: batch-size

Not found Specifies how foreign keys that reference missing rows will be handled: ignore
will treat a missing row as a null association.

NHibernate Tag: not-found

Inverse collection Specifies that the role is the inverse relation of the opposite role.

NHibernate Tag: inverse

Mapping type Specifies the collection mapping type

NHibernate Tag: Set, Array, Map, or List.

Defining NHibernate Persistence Options
The following options are available:

Option Description

Schema Specifies the name of the schema.

NHibernate Tag: schema

Catalog Specifies the name of the catalog.

NHibernate Tag: catalog

Where clause Specifies an arbitrary SQL WHERE condition to be used when retrieving objects of
this class.

NHibernate Tag: where

Check Specifies a SQL expression used to generate a multi-row check constraint for au-
tomatic schema generation.

NHibernate Tag: check

Fetch type Specifies outer-join or sequential select fetching.

NHibernate Tag: fetch

Persister class Specifies a custom persistence class.

NHibernate Tag: persister

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 627

Option Description

Subselect Specifies an immutable and read-only entity to a database subselect.

NHibernate Tag: subselect

Index column Specifies the column name if users use list or array collection type.

NHibernate Tag: index

Insert Specifies that the mapped columns should be included in any SQL INSERT state-
ments.

NHibernate Tag: insert

Update Specifies that the mapped columns should be included in any SQL UPDATE state-
ments.

NHibernate Tag: update

Lazy Specifies that this property should be fetched lazily when the instance variable is
first accessed.

NHibernate Tag: lazy

Optimistic
lock

Specifies that a version increment should occur when this property is dirty.

NHibernate Tag: optimistic-lock

Outer join Specifies to use an outer-join.

NHibernate Tag: outer-join

Defining NHibernate Collection Container Type
NHibernate supports Set, Bag, List, Array, and Map mapping type, it restricts the container
type. PowerDesigner does not support Map mapping type.

Collection Mapping Type Collection Container Type

Set Iesi.Collections.ISet

Bag System.Collections.IList

List System.Collections.IList

Array <None>

You can input the container type manually, or select the needed mapping type, and
PowerDesigner will automatically select the correct container type.

Defining Inheritance Mappings
NHibernate supports the two basic inheritance mapping strategies:

• Table per class hierarchy

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

628 PowerDesigner

• Table per subclass

It does not support the "Table per concrete class" mapping strategy.

These strategies all follow the standard inheritance mapping definitions. However, a separate
mapping file is generated for each inheritance hierarchy that has a unique mapping strategy.
All mappings of subclasses are defined in the mapping file. The mapping file is generated for
the root class of the hierarchy.

Generating Code for NHibernate
Before generating code for NHibernate, you must have NHibernate 1.0.2 or higher installed.

1. Select Tools > Check Model to verify if there are errors or warnings in the model. If there
are errors, fix them before continuing with code generation.

2. Select Tools > General Options, and click the Variables node.

3. Add a variable NHIBERNATE_HOME and, in the value field, enter the NHibernate home
directory path. For example, D:\nhibernate-1.0.2.0\bin.

4. Select Language > Generate C# 2 Code or Generate Visual Basic 2005 Code to open
the Generation dialog box:

5. Specify the root directory where you want to generate the code, and then click the Options
tab:

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 629

6. [optional] To use DAL, set the Generate DAL sources option to true. For information about
the standard C# and VB.NET generation options, see the relevant chapters.

7. Click OK to generate code immediately or Apply and then Cancel to save your changes for
later.

Once generation is complete, you can use an IDE such as Visual Studio.NET 2005 to modify
the code, compile, and develop your application.

Configuring Connection Strings
PowerDesigner supports multiple types of database connection with each of the .NET
frameworks.

Each connection requires a different set of parameters, which can be entered by hand in the
Connection String field of the ADO.NET or NHibernate tab, or through custom dialogs
accessible via the ellipsis tool to the right of this field.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

630 PowerDesigner

Configuring a Connection String from the ADO.NET or ADO.NET CF
Tab

You configure a connection string from the ADO.NET or ADO.NET CF tab as follows:

1. Select a data provider.

2. Click the ellipsis button to open a provider-specific connection string dialog.

3. [ADO.NET only] Enter the necessary parameters and click Test Connection to validate
them.

4. Click Apply to Connection String and then Close to return to the ADO.NET or ADO.NET
CF tab.

Configuring a Connection String from the NHibernate Tab
You configure a connection string from the NHibernate tab as follows:

1. Select a dialect and driver class.

2. Click the ellipsis button to open a provider-specific connection string dialog.

3. Enter the necessary parameters and click Test Connection to validate them.

4. Once the connection tests correctly, click Close to return to the NHibernate tab.

OLEDB Connection String Parameters
The following parameters are required to configure an OLEDB connection string:

Option Description

Data provider Specifies the data provider from the list

Server or file name Specifies the database server or file name.

User name Specifies the database user name.

Password Specifies the database user password.

Use Windows NT integrated
security

Specifies to use Windows NT integrated security.

Allow saving password Specifies whether to allow saving password or not

Initial catalog Specifies database's initial catalog.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 631

ODBC Connection String Parameters
The following parameters are required to configure an ODBC connection string:

Option Description

ODBC source name Specifies the ODBC source name

User name Specifies the database user name.

Password Specifies the database user password.

Microsoft SQL Server and Microsoft SQL Server Mobile Edition
Connection String Parameters

The following parameters are required to configure a Microsoft SQL Server and Microsoft
SQL Server Mobile Edition connection string:

Option Description

Server name Specifies the server name.

User name Specifies the database user name.

Password Specifies the database user password.

Authentication type Specifies authentication type, Use SQL Server Authentication, or
Use Windows Authentication

Database name Specifies the database name

Database file name Specifies the database's file name.

Logical name Specifies the logical name for the database file.

Oracle Connection String Parameters
The following parameters are required to configure an Oracle connection string:

Option Description

Server name Specifies the server name.

User name Specifies the database user name.

Password Specifies the database user password.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

632 PowerDesigner

Generating Code for Unit Testing
You can run the tests using NUnit or Visual Studio Test System. PowerDesigner provides
support for unit test code generation through an extension file.

If there are many persistent classes, it can be difficult to test them all to prove that:

• The mappings are correctly defined
• The CRUD (Create, Read, Update, Delete) options work
• The find methods work
• The navigations work

Usually, developers have to develop unit tests or user-interfaces in order to test these objects.
PowerDesigner can automate this time-consuming process by using the NUnit or Visual
Studio Test System (VSTS) to generate the unit test classes. Most code generated for these two
UnitTest frameworks is very similar. The main differences are:

• Team Test use different attributes with NUnit in test class, such as [TestClass()] to
[TestFixture] and [TestMethod()] to [Test] etc.

• AllTests file is not generated because all tests will be run in Visual Studio gui or command
prompt.

• Log4net is replaced by test result .trx file that can be opened in Test Result window in
Visual Studio.

Some conditions must be met to unit test for a class:

• Mapping of the class should be defined.
• The class can be instantiated. Unit test classes cannot be generated for abstract classes.
• The class is not a value type.
• The Mutable property is set to true. If Mutable is set to false, the class can not be updated or

deleted.
• The class has no unfulfilled foreign key constraints. If any foreign key is mandatory, the

parent class should be reachable (navigable on the parent class side) for testing.

To enable the unit test extensions in your model, select Model > Extensions, click the Import
tool, select the UnitTest.NET or UnitTest.NET CF file (on the Unit Test tab), and
click OK to attach it.

Before generating code for UnitTest, you must have NUnit 2.2.3 or higher installed (available
at http://www.nunit.org).

1. Select Tools > Check Model to verify if there are errors or warnings in the model. If there
are errors, fix them before continuing with code generation.

2. Select Tools > General Options, and click the Variables node.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 633

http://www.nunit.org/

3. Add a variable NUNIT_HOME and, in the value field, enter the NUnit home directory
path. For example, D:\NUnit2.2.3\bin. Add a variable LOG4NET_HOME in the same
way if log4net is going to be used for logging.

4. Select Language > Generate C# 2 Code or Generate Visual Basic 2005 Code to open
the Generation dialog box.

5. Specify the root directory where you want to generate the code, and then click the Options
tab:

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

634 PowerDesigner

6. Select a UnitTest framework in "Unit test framework". You can choose between Nunit or
Visual Studio Team Test.

7. Click on OK to generate code immediately or Apply, and then Cancel to save your changes
for later.

Running NUnit Unit Tests
After generating your test code, you can run it in one of three ways:

• Run in Nunit - NUnit has two different ways to run your test cases. The console runner,
nunit-console.exe, is the fastest to launch, but is not interactive. The GUI runner, nunit-
gui.exe, is a Windows Forms application that allows you to work selectively with your test
cases and provides graphical feedback.
NUnit also provide Category attribute, which provides an alternative to suites for dealing
with groups of tests. Either individual test cases or fixtures may be identified as belonging
to a particular category. Both the GUI and console test runners allow specifying a list of
categories to be included in or excluded from the run. When categories are used, only the
tests in the selected categories will be run. Those tests in categories that are not selected are
not reported at all.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 635

• Nunit GUI - The nunit-gui.exe program is a graphical runner. It shows the tests in an
explorer-like browser window and provides a visual indication of the success or failure of
the tests. It allows you to selectively run single tests or suites and reloads automatically as
you modify and re-compile your code.

As you can see, the tests that were not run are marked with a grey circle, while those that
were run successfully are colored green. If any tests had failed, they would be marked
red.

• Nunit Console - The nunit-console.exe program is a text-based runner and can be used
when you want to run all your tests and don't need a red/yellow/green indication of success
or failure. It is useful for automation of tests and integration into other systems. It
automatically saves its results in XML format, allowing you to produce reports or
otherwise process the results.

Running Visual Studio Test System Unit Tests
The Visual Studio Team System Team Test tools offer a number of ways to run tests, both from
the Visual Studio integrated development environment (IDE) and from a command prompt.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

636 PowerDesigner

Running Tests in Visual Studio.NET 2005 IDE
You run tests in Visual Studio.NET 2005 IDE as follows:

1. Use the Test Manager or Test View window. You can also rerun tests from the Test Result
window.

2. In the Test Manager window, select tests by selecting the check boxes in the test's row, and
then either click Run Tests on the Test Manager toolbar or right-click the selected tests and
then click Run Checked Tests.

3. In the Test View window, select the tests you want to run and then click Run Tests on the
Test View toolbar, or right-click, and select Run Selection.

Running Tests from the Command Line
You run tests from the command line as follows:

1. Open the Visual Studio command prompt

2. Either navigate to your solution folder directory or, when you run the MSTest.exe program
in step, specify a full or relative path to the metadata file or to the test container.

3. Run the MSTest.exe program

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 637

Generating Windows or Smart Device Applications
The Composite UI Application Block (CAB) helps you build complex user interface
applications that run in Windows. It provides an architecture and implementation that assists
with building applications by using the common patterns found in line-of-business client
applications. The current version of the Composite UI Application Block is aimed at Windows
Forms applications that run with the Microsoft .NET Framework 2.0.

PowerDesigner supports development for Windows and Smart Device application
development through extension files for your C# v2.0 or Visual Basic 2005 OOM.

You can quickly build Windows and Smart Device applications without writing repetitive
code, by using PowerDesigner to generate persistent classes, DAL, BLL and UI files based on
CAB according to your NHibernate or ADO.NET persistent framework.

To enable the Windows or Smart Device extensions in your model, select Model >
Extensions, click the Import tool, select the Windows Application orSmart
Device Application file on the User Interface tab), and click OK to attach it.

Note: You will also need to add the ADO.NET or Nhibernate persistence management
extension in order to generate your application files.

Using this Windows application, you can test persistent objects with your own data. You can
also improve the generated files and change the layout as you like in Visual Studio.

Specifying an Image Library
Your forms will probably use some images as icons. PowerDesigner provides a default image
library, which it uses by default for Windows applications. You can also specify your own
image library.

1. Open the model property sheet, and click the Window Application tab.

2. Specify a path to your image library, and then click OK to return to the model.

Controlling the Data Grid View
You can specify the length of your ADO.NET CF datagrid views.

1. Open the model property sheet, and click the Smart Device Application tab.

2. Specify the number of rows, and then click OK to return to the model.

Defining Attributes Display Options
You can define attribute-level options for presentation style.

1. Open Attribute Property sheet, and select the Windows Application tab.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

638 PowerDesigner

2. Set the appropriate options and then click OK

The following options are available:

Option Description

Control Type You can choose TextBox or ComoboBox as input control

Display as for-
eign key label

Specifies to display the current attribute as a foreign key label in combo boxes,
instead of the foreign key. For example, select this option for the product name
attribute to use it as foreign key label instead of the product id.

Defining Attribute Validation Rules and Default Values
PowerDesigner provides validation and default values for the edit boxes in the Create, Find,
ListView, and DetailView forms.

1. Open the attribute property sheet, and click the Standard Checks tab.

2. [optional] Define minimum value and maximum values to control the value range.

3. [optional] Define a default value. A string value must be enclosed in quotes. You can also
define the Initial value in the Details tab.

4. [optional] Define a list of values. PowerDesigner will automatically generate a combo box
that includes these values.

5. Click OK to return to the model.

Generating Code for a Windows Application
Before generating code for Windows Application, you need to install CAB (available from
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/cab.asp).
Check for the following required files in your installation directory:

• Microsoft.Practices.CompositeUI.dll
• Microsoft.Practices.CompositeUI.WinForms.dll
• Microsoft.Practices.ObjectBuilder.dll

1. Select Tools > Check Model to verify if there are errors or warnings in the model. If there
are errors, fix them before continuing with code generation.

2. Select Tools > General Options, and click the Variables node.

3. Add a variable CAB_PATH with the value of your installation directory

4. Select Language > Generate C# 2.0 Code or Generate Visual Basic 2005 Code to open
the Generation dialog box.

5. Specify a target directory, and then click OK to begin generation.

The following files will be generated:

• Domain files (persistent classes, mapping files)

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 639

• DAL files (database connection file and data access files)
• A solution file and project files
• A login dialog
• Forms for persistent classes
• Controller files

For each persistent class, PowerDesigner generates:

• A find dialog for searching objects
• A list view form for displaying find results
• A detail view form for displaying object's detailed information
• A create view form for creating new objects

You can deploy or edit a Windows application in an IDE, such as Visual Studio .NET 2005.

Generating Code for a Smart Device Application
PowerDesigner can generate code for smart device applications.

Before generating a smart device application, you must:

• Ensure that you have attached the ADO.NET Compact Framework (and, if you want to
generate unit tests, UnitTest.NET Compact Framework) extensions (see Generating
Windows or Smart Device Applications on page 638).

• Set any appropriate model properties on the ADO.NET CF and Application tabs,
including a functioning connection string (see ADO.NET and ADO.NET CF Options on
page 607).

• Specify appropriate values for the following variables (select Tools > General Options,
and click the Variables category):
• CFUT_HOME – if using Microsoft Mobile Client Software Factory CFUnitTester
• ASANET_HOME – if using Sybase ASA. Specifies the location of

iAnywhere.Data.AsaClient.dll.
• SQLSERVERMOBILENET_HOME – if using Microsoft SQL Server Mobile

Edition. Specifies the location of System.Data.SqlServerCe.dll
• ULTRALITENETCE_HOME – if using Sybase UltraLite. Specifies the location of

ulnet10.dll
• ULTRALITENET_HOME – if using Sybase UltraLite. Specifies the location of

iAnywhere.Data.UltraLite.dll and en\iAnywhere.Data.UltraLite.resources.dll

1. Select Tools > Check Model to verify that there are no errors in the model. If there are
errors, fix them before continuing with code generation.

2. Select Language > Generate C#2 Code or Generate Visual Basic 2005 to open the
Generation dialog box.

3. Specify the root directory where you want to generate the code and then click the Options
tab.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

640 PowerDesigner

4. Specify any appropriate options and then click OK to generate code immediately or Apply
and then Cancel to save your changes for later.

Deploying Code to a Smart Device
You deploy code to a smart device as follows:

1. Compile your generated code in Visual Studio.

2. Deploy the start up project, i.e. the <model>Test project or User Interface project

3. Deploy the SystemFramework project separately with the database file and required DLLs
(such as ulnet10.dll for UltraLite support).

Testing the Application on the Device
You test the Application on the Device as follows:

1. If you have generated and deployed the user interface projects to the device, you can run
them and test the application by inputting some data.

2. If you have generated for 'Microsoft Mobile Client Software Factory', you can run the unit
tests by clicking GuiTestRunner.exe in the deployment folder in the device. The exe file
and its references can be copied from the Microsoft Mobile Client Software Factory
installation folder.

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

Object-Oriented Modeling 641

CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications

642 PowerDesigner

Index
.NET

compile source files 253
generate server side code 252
generation options 252
generation tasks 253
Web service method 242
Web service proxy code 253
Web service support 228

A
abstract data type 277
access point URL 245
accessibility

C# 464
VB.NET 418

action 201
check model 301
create 203
properties 203

action type 163, 164
activation 135

attach message 150
create 150
detach message 151
move 152
overlap 151
procedure call 150
resize 152
sequence diagram 149

activity 158
action type 163, 164
attached to organization unit 173
check model 303
committee activity 173
create 159
decomposed 168
parameter 162
properties 160

activity diagram 129
activity 158
convert to decomposed activity 170
object node 189
organization unit 171
start 179, 180, 182

actor 20
check model 284
create 22
drag and drop in other diagram 24
primary actor 20
properties 22
secondary actor 20
show symbol 24

add package hierarchy 266
ADO.NET

association mapping 612
attribute mapping 611
component primary identifier mapping 610
composite identifier mapping 610
database connection strings 630
extension file 607
generating code 614
inheritance mapping 614
O/R mapping 608
ODBC connection string 632
OLEDB connection string 631
options 607
Oracle connection string 632
simple identifier mapping 610
SQL Server connection string 632

ADO.NET CF
options 607

aggregation association 84
Analysis (object language) 263
annotation 108

assigning 108
Java 337

archive Java 386
argument

event 201
ASMX file

generate 253
ASP.NET 437

artifact file object 438
ASP file 437
create 438
create from class diagram 438
create from selected file object 438
default template 437
file object 438

Index

Object-Oriented Modeling 643

generate 440
TemplateContent 438
wizard 438

assembly
C# 2.0 485
Visual Basic 2005 443

assembly connector 105
check model 315
create 105
properties 106

association 24, 84
add association class 92
change to instance link 94
check model 316
container type 89
create 86
default implementation 89
generate PDM 273
generated code 91
implementation 89
implementation class 89
migrate navigable roles 93
pdGenerated 91
pdRoleInfo 91
properties 86
role 86
transformation 524

association class 86, 92
transformation 526

association mapping 538
attribute 63

add 65
add operation 66
attach 63
C# 467
check model 294
complex data type 522
constraint 70, 72
create 64, 65
duplicate 65
identifier 75
initial value 66
interface 63
migrate 48, 275
operation 66
override 66
properties 67
simple data type 522
transformation 522

update using domain 121
VB.NET 422

attribute mapping 534
AXIS EJB 251, 252
AXIS RPC 250

B

bean class
adding an operation 347

bidirectional association in C++ 515
bindingTemplate 225
BMP entity bean 340
bound classifier wizard 45
businessEntity 225
businessService 225

C

C#
accessibility 464
annotation 108
attribute 467
class 465
constructor 473
conversion operator method 474
custom attributes 467
delegate 473
destructor 473
documentation tag 475
enumeration 465
event 474
field 467
generation 263, 476, 500
implementation 463
indexer 469
inheritance 463
interface 465
method 471
method implementation 471
method parameter 471
namespace 463
operator method 474
preprocessing 483
preprocessing (reverse engineering) 480
preprocessing symbol (reverse engineering)

482
project 463
property 468

Index

644 PowerDesigner

reverse engineering 478, 480–483
struct 465

C# 2.0
assembly 485
class 490
compilation unit 487
custom attributes 500
delegate 492
enum 493
event 497
field 494
implementation 500
indexer 497
inheritance 500
interface 491
method 494
namespace 489
partial type 488
property 497
reverse-engineering code 502
struct 491

C# generation option
code in .ASMX 252

C# reverse engineering 483
preprocessing directives 481

C++ 516
bidirectional association 515
generate 516
generation 263
unsupported features 515

CDM
generate 273

check model 281
action 301
activity 303
actor 284
assembly connector 315
association 316
attribute 294
class 285
class part 313
component 309
component instance 311
data format 311
data source 282
decision 304
domain 281
EJB 348
end 307

event 302
flow 308
generalization 297
identifier 291
input parameter 316
instance link 299
interaction reference 312
interface 291
junction point 303
message 299
node 310
object 298
object node 305
operation 295
organization unit 306
output parameter 316
package 283
port 314
realization 297
start 307
state 300
synchronization 307
transition 308
use case 284

circular dependency 283
circular inheritance 283
class 34, 391

association 48
C# 2.0 490
check model 285
circular dependency 283
composite classifier 46
copy and paste in communication diagram 57
copy and paste in object diagram 57
copy and paste in sequence diagram 57
create 34, 57
create from an interface 34
drag and drop in communication diagram 57
drag and drop in object diagram 57
drag and drop in sequence diagram 57
EJB 344
generate in C# 465
generate in VB.NET 419
generate PDM 273
implement interface 78
inherited association 48
instantiation 57
migrate attribute 48
part 58

Index

Object-Oriented Modeling 645

port 60
properties 35
realization 34, 103
Visual Basic 2005 448

class diagram 27
annotation 108
association 84
attribute 63
class 34
create a JSP 377
create a servlet 368
create an ASP.NET 438
create an EJB 341
create for component 215
create Web service 231
dependency 98
domain 117
generalization 95
identifier 72
interface 51
operation 76
part 58
port 60
realization 102
require link 103
servlet 368

class part
check model 313

classifier
attach to data type 47
attach to return type 47
fully qualified name 47
interface 46
operation return type 47
parameter data type 47
use case 46

CLASSPATH 247
J2EE_HOME 339
JAVA_HOME 339

CMP entity bean 340, 346
code

comment 390
preview 8

code generation 393
comment

generate 337
Java code 390
Javadoc 337
Web service component instance 246

committee activity 173
communication diagram 123

actor 20
create from sequence diagram 123
create sequence diagram 125
instance link 113
message 135

compilation unit 445, 487
complex data type 277
component 210

check model 309
class diagram 215
create 211
create class diagram 215
deploy to node 216
open class diagram 215
part 58
port 60
properties 212
servlet 367
update class diagram 215

component diagram 207
ASP.NET 437
component 210
delegation connector 106
dependency 98
EJB 339
generalization 95
JSP 376
part 58
port 60
servlet 367
Web service 228, 233

component instance 218
cardinality 220
check model 311
create 219
properties 220
Web service 220, 244

component primary identifier mapping 535
composite activity

package 49
composite classifier

create diagram 47
composite primary identifier mapping 535
composite state

package 49
composite structure diagram 29

association 84

Index

646 PowerDesigner

delegation connector 106
composite view 49

editable mode 168, 194
node 216
read-only (sub-diagram) mode 168, 194

composition association 84
conditional branch 182
constraint 70, 72

data format 71
constructor 77

generate in C# 473
generate in VB.NET 426

container
type 89

conversion operator 474
convert to decomposed 170, 196
create associations

reverse engineering Java 388
create symbols

reverse engineering Java 388
custom attribute

C# 467
VB.NET 421

custom attributes
C# 2.0 500
Visual Basic 2005 456

D
data format 71

check model 311
data grid view 638
data profiling 70, 72
data source 530

check model 282
data type

default 11
options 11
parameter 47
Web service 234

data type link (rebuid) 94
de-serialization class for Web service class 234
decision 182

check model 304
conditional branch 182
create 184
merge 182
properties 184

decomposed activity 168, 170
committee activity 173

decomposed state 194, 196
delegate 426, 450, 473

C# 2.0 492
delegation connector 106

create 107
properties 107

dependency 98
create 99
properties 100

deploy
.NET Web services 253, 255

deploy component to node 216
deployment descriptor

EJB 351
JAR 351
reverse engineering Java 388
Web service 246
XML file 351

deployment diagram 209
component instance 218
dependency 98
file object 220
node 216
node association 223
node diagram 218
Web service 244

derivation constraint (generic type) 42
Destroy ()message 142
destructor 77

generate in C# 473
generate in VB.NET 426

directives for preprocessing 434, 481
disable swimlane mode 171
display preferences 13
documentation tag 475
domain 117

check model 281
constraint 70, 72
create 118
properties 118
update attributes 121

E
EEnum 391
EJB 339

check model 348
code generation 348
create 341
create from a class diagram 341

Index

Object-Oriented Modeling 647

create from selected class 341
create operation from bean class 346
create operation from interface 346
define class 344
define interface 344
define operation 346
generate 353
generate JAR 358
generate source code 357
initialization 348
linked method 348
operation stereotype 346
persistence 356
properties 341
reverse engineering 359
source code 356
stereotype 344
synchronization 348
transaction 341
version 339
wizard 341

EJB entity bean 340
EJB message driven bean 340
EJB session bean 340

stateful 340
stateless 340

EJB Web service
create 256
svc_ejb file 258

ejb-jar.XML 358
EJB3 360

creating 360
properties 365

EJB3 BeanClass
properties 364

EJB3 operation
properties 366

ejbCreate method 346
ejbFinder method 346
ejbPostCreate method 346
ejbSelect method 346
EMF

annotation 392
association 392
attribute 392
class 391
datatype 391
EEnum 391
generating code 393

operation 393
package 391
parameter 393
reference 392
reverse-engineering code 394

enable swimlane mode 171
end

check model 307
create 181
define 180
properties 181

enterprise java bean v3.0 360
Enterprise Java Bean Wizard 360
entity

class transformation 521
entity class

mapping 531
entity/relationships

OOM 273
enum 451

C# 2.0 493
enum in Java 329
enumeration

generate in C# 465
generate in VB.NET 419

event 199
arguments 201
check model 302
create 200
design as attribute 427
design as operation 427
generate in C# 474
generate in VB.NET 427
properties 200

event handler 428
exception

synchronize 348
export

XMI file 325
XML 325

extension 14, 266
WSDL for .NET 228
WSDL for Java 228

extension file 14
external method 428

F
field

C# 2.0 494

Index

648 PowerDesigner

field in C# 467
file

create 221
file encoding in reverse engineering 268
file object 220

ASP.NET 438
ASP.NET stereotype 438
JSP 376
properties 222

flow 187
check model 308
create 188
properties 188

fork 185
format variable 10

G
gate (sequence diagram) 145
generalization 95, 275

check model 297
create 96
properties 96

generate
add package hierarchy 266
ADT 275
C# 263
C++ 263
CDM 273
generation 263
IDL-CORBA 263
Java BeanInfo 39
JavaBean 39
object language 263
PowerBuilder 263
table 275
VB.NET 263
WSDL 263
XML 263

generation 393
.NET commands 253
.NET options 252
.NET Web services 253
ASMX file 252
ASP.NET 440
AXIS EJB 251, 252
AXIS RPC 250
C# 476, 500
C++ 516
EJB 353, 357

IDL-CORBA 404
JAR 358
Java 382
Java Web service 258
Javadoc 337
Javadoc comment 337
JAX-RPC 248
JAXM 247
JSP 378
JSP Web deployment descriptor 378
PowerBuilder 410
server side code in .NET 252
servlet 370
servlet Web deployment descriptor 373
Stateless Session Bean Web 249
VB.NET 429
Visual Basic 2005 456
Web services 246

generation target 266
generic classifier specialization wizard 43
generic type 42
generic type (derivation constraint) 42
Getter operation 66
guard condition for decision 182

H
Hibernate

database configuration parameters 550
default options 549
entity type classes 551
extensions 549
generating code 564
generation options 565
PowerDesigner support for 549
using Ant 570
using Eclipse 567
value type classes 551

Hibernate JavaServer Faces
attribute options 593
attribute validation rules 595
computed attributes 595
default values 595
generating 603
global page options 590
JSF runtime environments 602
master-detail pages 596
testing 604

Hibernate O/R mapping
association mapping 559

Index

Object-Oriented Modeling 649

attribute mapping 558
basic 551
collections of value types 563
component primary identifier mapping 557
composite identifier mapping 556
inheritance mapping 564, 578
options 551
simple identifier mapping 555

I
identifier 72

add attributes 75
check model 291
create 73
properties 74

IDL
reverse engineering 405

IDL-CORBA 404
definition file 404
generation 263, 404
objects 395

implement
association 89
Web service method 237

implementation
C# 463
VB .NET 417
Visual Basic 2005 456
Web service 231

implementation class 89
implementation operation 78
import

interface WSDL in Web service component
instance 246

Rational Rose 317
XMI file 325
XML 325

indexer parameters 469
inheritance 66, 77, 275

C# 463
joined subclass 526
table per class 526
table per class hierarchy 526
transformation 526
VB .NET 417
Visual Basic 2005 456

inheritance mapping 543
inherited attribute 63, 275

PowerBuilder 413

inherited operation 76
initial value 66
inner classifier 46

create 46
inner link 46
reverse engineering 267

inner link 46
inner classifier 46

input flow
fork 185
join 185

input parameter
check model 316

instance link 113
check model 299
create 116
instance of association 94
properties 117

instantiation
class 57

interaction activity 153
create 154
properties 154

interaction fragment 155
create 155
manipulating 157
properties 155

interaction overview diagram 134
interaction activity 153
start 179, 180, 182

interaction reference 153
check model 312
create 153
properties 154

interface 51, 491
attribute 63
check model 291
composite classifier 46
create 51
create a class 34
EJB 344
generate in C# 465
generate in VB.NET 419
properties 52
realization 103
Visual Basic 2005 449
Web service 231, 235

Index

650 PowerDesigner

J
J2EE 339
JAR 358
Java 329

annotation 108, 337
code comment 390
enum 329
generate 382
generation 263
JSP 376
public class 329
reverse engineering 386
script 10
servlet 367
strictfp keyword 338
Web service support 228

Java BeanInfo 39
create 39
generate 39

Java class package 257
JAVA HOME path 339
Java IDE 339
Java reverse engineering

options 388
Java Web service

create 256
define Java class package 257
generate 258
generate for Sybase WorkSpace 256
svc_java file 258

JavaBean
generate 39

JAVACLASSPATH 247
Javadoc 335, 337

comments 332
Javadoc comment 337
JavaServer Faces

extension file 590
JAX-RPC 225, 231, 248
JAXM 225, 231, 247
JDK 339
JMS 340
join 185
joined subclass 546
JSP 376, 377

file object 376
generate 378
generate WAR file 373
reverse engineering 381

JSP component
default template 376

JSR specification 225, 231, 246
junction point 204

check model 303
create 205
properties 205

justify variable 10

L

library
PowerBuilder 416
reverse engineering Java 388

linked method 348
Local2SOAP 234
Local2XSD 234

M

many-to-many association mapping 543
mark classifiers

reverse engineering Java 388
merge 182
Merise 273
message 135

check model 299
create 137
Create 141
create sequence number 147
decrease sequence number 149
Destroy 141, 142
increase sequence number 149
properties 137
recursive 143
Self-Destroy 142
sequence diagrame 145

method 494
BaseInitializer 471
de-serialization 237
delegate 426, 473
generate in C# 471
generate in VB.NET 424
implementation 424, 471
parameter 424, 471
serialization 237
shadowing 424
ThisInitializer 471
Visual Basic 2005 455

Index

Object-Oriented Modeling 651

migrate
association role 93
attribute 93, 275
column 275
navigable roles in association 93

model
copy object language 5
create 5
diagram 3
options 11
PowerBuilder 416
preview code 8
properties 7
share object language 5

model option
data type 11

modeling environment
customize 11

module
generate in VB.NET 420

N
namespace 266, 489

generate in C# 463
generate in VB.NET 417
package 50
Visual Basic 2005 447
Web service 231

network address 246
New (C# method) 471
NHibernate

association mapping 625
attribute mapping 623
component primary identifier mapping 620
composite identifier mapping 620
database connection strings 630
extension file 615
generating code 629
inheritance mapping 628
O/R mapping 617
ODBC connection string 632
OLEDB connection string 631
options 616
Oracle connection string 632
simple identifier mapping 620
SQL Server connection string 632

node 216
check model 310
component deployed 216

composite view 216
create 217
network address 246
node diagram 218
properties 217

node association 223
create 223
properties 223
role 223

node diagram 218
deployment diagram 218

NUnit
running 635

O
O/R mapping 210, 519
object

check model 298
class instantiation 57
communication diagram 54
create 56
instance of class 57
objects diagram 54
OOM 54
properties 56
sequence diagram 54

object diagram
dependency 98
instance link 113

object language
C++ 516
generate 263
IDL-CORBA 404

object node 189
check model 305
create 190
properties 190

object persistence 275
complex data type 275, 277
simple data type 275

ODBC
connection string 632

OLEDB
connection string 631

one-to-many association mapping 540
one-to-one association mapping 539
OOM

activity diagram 129
changing 13

Index

652 PowerDesigner

check model 281
class diagram 27
communication diagram 123
component diagram 207
composite structure diagram 29
create 5
deployment diagram 209
edit definition file 13
generate CDM 273
generate PDM 519, 529
interaction overview diagram 134
object diagram 32
options 11
overview 3
package diagram 31
sequence diagram 125
statechart diagram 131
use case diagram 17

operation 76
add 77
attribute 66
check model 295
create 76
duplicate 77
EJB 346
Getter 66
implement 240
override 77
parameters 79, 83, 238
properties 79, 83
return type 47, 237
synchronize 348

operator method 474
Oracle

connection string 632
organization unit 171–173

attached to activity 173
check model 306
committee activity 173
creating 171
parent organization 172
properties 172
swimlane 171

See also swimlane
Organization Unit Swimlane tool 172
output flow

fork 185
join 185

output parameter
check model 316

override 66, 77, 413

P
package 49

check model 283
composite view 49
default diagram 51
hierarchy 266
properties 50
sub-package 49

parameter
in a Web service method 238
operation 79, 83

part 58
create 59
properties 59

partial type
C# 2.0 488
Visual Basic 2005 447

PBD libraries not supported 407
PBL libraries 407
pdGenerated 91
PDM

generate from association 273
generate from class 273
generate from OOM 519, 529

pdRoleInfo 91
persistence

attribute migration 275
inter-model generation 35
OOM to CDM 275
OOM to PDM 275

persistent
attribute (class diagram) 277
class generation 277

persistent codes 275
port 60

check model 314
create 61
properties 61

PowerBuilder
application 411
binary object 411
control 411
data window 411
design 407
function 411

Index

Object-Oriented Modeling 653

generation 263, 410
libraries 411
library 416
load 416
menu 411
model 416
objects 411
open 416
overriding attribute 413
PBD not supported 407
PBL 407
pipe line 411
project 411
proxy object 411
query 411
reverse engineering 411, 414
structure 411
target/application 413
user object 411
window 411

preprocessing
C# 482
C# reverse engineering 480, 483
directives 434
directives (C# reverse engineering) 481
symbol (VB .NET) 434
VB .NET 433

preview code 8
previous version model 46
primary identifier mapping 535
procedure call

activation 150
project

C# 463
VB.NET 417

property
generate in C# 468

public class in Java 329

R
Rational Rose

importing into an OOM 317
realization 102

check model 297
class 34, 103
create 102
interface 103
properties 103

reflexive association 84

require link 103
create 104
properties 104

return type
operation 47
Web service method 237

reverse engineering 267
.class 386
.jar 386
.java 386
.zip 386
C# 2.0 478
C# 2.0 code 502
EJB 359
EMF code 394
encoding 268
IDL 405
into an existing OOM 269
Java 386
Javadoc comment 337
JSP 381
JSP deployment descriptor 381
new OOM 267
options (C#) 479
PowerBuilder 413
preprocessing (VB .NET) 435
servlet 374
synonym creation 267
target/application 413
VB .NET 431
Visual Basic 2005 458
Web service 259

role
association 86
migrate from association 93

Rose
importing into an OOM 317

S
script

Java 10
search WSDL 261
Self-Destroy message 142
sequence diagram 125

activation 135
actor 20
create communication diagram 123
create from communication diagram 125
gate 145

Index

654 PowerDesigner

interaction fragment 155
interaction frame 125
interaction reference 153
message 135
objects 128

sequence number
create in communication diagram 147
insert 149
move 147

serialization class for Web service class 234
servlet 367

class 368
component 367
create 368
create from class diagram 368
create from selected class 368
generate 370
initialization 369
reverse engineering 374
synchronization 369
Web service 231
wizard 368

Setter operation 66
shadows in VB.NET 421
shortcut

generated as child table 283
simple data type 275
simple primary identifier mapping 535
Smart Device Application

generating code 640
Smart Device applications

data grid view 638
SOAP 225

fault in WSDL schema 243
input in WSDL schema 243
output in WSDL schema 243

SOAP extension class 237
Web service operation 237

specialized class 42
SQL Server

connection string 632
Standard Component Wizard 211
start 179

check model 307
create 180
properties 180

state 191
check model 300
create 192

decomposed 194
properties 192

statechart diagram 131
action 201
convert to decomposed state 196
default classifier 133
event 199
junction point 204
start 179, 180
state 191
transition 197

stateless session bean
Web service 231

Stateless Session Bean Web 249
strictfp keyword 338
struct 449

C# 465, 491
structure in VB.NET 419
sub in VB.NET 424
sub-class generalization 95
sub-package hierarchy 49
super class generalization 95
svc_ejb file 258
svc_java file 258
swimlane 171

changing format 179
changing orientation 178
copying and pasting 175
creating 172
creating links between pools 178
grouping 176
moving 175
organization unit 171
resizing 179
selecting symbol 174
ungrouping 176

See also organization unit
See also organization unit

Sybase WorkSpace
generate Java Web service 256

synchronization 185
change to horizontal 186
change to vertical 186
check model 307
create 186
exception 348
operation 348
properties 186

Index

Object-Oriented Modeling 655

synchronize
code editor 270
generated file 270
model 270

synonym creation in reverse engineering 267
syntax variable 10

T

table per class 547
table per class hierarchy 543
target namespace

Web service component instance 246
templatecontent

ASP.NET 438
templatecontent (JSP) 377
test .NET Web services 255
tModel 225
traceability link 15
transaction

EJB 341
type 341

transition 197
check model 308
create 197
link to event 197
properties 198

trigger event
transition 197

U

UDDI 225
operator URL 261
version 261

UML
activity diagram 129
class diagram 27
communication diagram 123
component diagram 207
composite structure diagram 29
deployment diagram 209
interaction overview diagram 134
object diagram 32
package diagram 31
sequence diagram 125
statechart diagram 131
use case diagram 17

unit test 567

unit tests
extension file 633
generating code 633

use case 18
check model 284
create 19
properties 19

use case association
create 25
properties 25

use case diagram 17
actor 20
association 24
dependency 98
generalization 95

V
value type

transformation 523
variable

CLASSPATH 247
creating 167
format 10
JAVACLASSPATH 247
justify 10
properties 167
reading 167
syntax 10
writing to 167

variable in VB.NET 422
VB .NET

preprocessing directives 434
reverse engineering 431, 433–436
reverse engineering options 431
reverse engineering preprocessing 433

VB.NET
accessibility 418
annotation 108
attribute 422
class 419
constructor 426
custom attributes 421
delegate 426
destructor 426
enumeration 419
event 427
event handler 428
external method 428
generation 263, 429

Index

656 PowerDesigner

implementation 417
inheritance 417
interface 419
method 424
method implementation 424
method parameter 424
module 420
namespace 417
project 417
property 423
shadows 421
structure 419
sub 424
variable 422

Visual Basic 2005
assembly 443
class 448
compilation unit 445
custom attributes 456
delegate 450
enum 451
event 452
field 452
generation 456
implementation 456
inheritance 456
interface 449
introduction 443
method 455
namespace 447
partial type 447
property 452
reverse engineering 458
struct 449

VSTS
running 636

W
WAR 373
Web service 225

component diagram 228
component instance 244
create 231
create from class diagram 231
create from selected class 231
create in component diagram 233
data type 234
deploy in .NET 253, 255
deployment descriptor 246

deployment diagram 244
generate client side code 246
generate EAR 246
generate for Sybase WorkSpace 256
generate in .NET 253
generate JAR 246
generate WAR 246
implementation 225
implementation class 231
interface 235
method 235
namespace 231
node 246
port type 235
properties 228
reverse engineering 259
test in .NET 255
type 231
wizard 231
XSD data type 234

Web service component 228
Web service interface 225
Web service method

create 235
extended attributes 242
implement 237
implement in .NET 242
implementation class 235
interface 235
operation implementation 240
operation parameters 238
return type 237

Web service proxy code in .NET generation tasks
253

web.xml 246
Windows applications

attribute display options 638
attribute validation rules 639
extension file 638
generating code 639
image library 638

wizard
create a JSP 377
create a servlet 368
create an ASP.NET 438
create an EJB 341
create Web service 231

WSDL 225
data type 234

Index

Object-Oriented Modeling 657

generation 263
implementation 225
import 259
interface 225
reverse options 259

WSDL data type
select 234
Web service operation 237

WSDL editor
user-defined button 246

WSDL for .NET extension 228
WSDL for Java extension 228
WSDL schema

SOAP fault 243
SOAP input 243
SOAP output 243

WSDL URL
Web service component instance 245

WSDL2Local 234

X

xem 14
XMI

save as XML 325
saved as XML 325

XMI file
export 325
import 325

XML
designing for 507
export 325
generating for 511
generation 263
import 325
modeling 507
reverse engineering 512

XSM
customizing generation 279

Index

658 PowerDesigner

	Object-Oriented Modeling
	Contents
	PART I: Building OOMs
	CHAPTER 1: Getting Started with Object-Oriented Modeling
	Creating an OOM
	OOM Properties

	Previewing Object Code
	Customizing Object Creation Scripts
	Customizing your Modeling Environment
	Setting OOM Model Options
	Setting OOM Display Preferences
	Viewing and Editing the Object Language Definition File
	Changing the Object Language

	Extending your Modeling Environment
	Linking Objects with Traceability Links

	CHAPTER 2: Use Case Diagrams
	Use Case Diagram Objects
	Use Cases (OOM)
	Creating a Use Case
	Use Case Properties

	Actors (OOM)
	Creating an Actor
	Actor Properties
	Reusing Actors

	Use Case Associations (OOM)
	Creating a Use Case Association
	Use Case Association Properties

	CHAPTER 3: Structural Diagrams
	Class Diagrams
	Class Diagram Objects

	Composite Structure Diagrams
	Composite Structure Diagram Objects

	Package Diagrams
	Package Diagram Objects

	Object Diagrams
	Object Diagram Objects

	Classes (OOM)
	Creating a Class
	Class Properties
	Creating Java BeanInfo Classes
	Creating a Java BeanInfo Class from the Language Menu
	Creating a Java BeanInfo Class from the Class Contextual Menu

	Generic Types and Methods
	Creating Generic Types
	Creating Generic Methods
	Creating a Specialized Classifier
	Creating a Bound Classifier
	Generic Type Example

	Composite and Inner Classifiers
	Creating Inner Classifiers
	Creating a Composite Classifier Diagram

	Specifying a Classifier as a Data Type or Return Type
	Viewing the Migrated Attributes of a Class

	Packages (OOM)
	OOM Package Properties
	Defining the Diagram Type of a New Package

	Interfaces (OOM)
	Creating an Interface
	Interface Properties

	Objects (OOM)
	Creating an Object
	Object Properties
	Linking a Classifier to an Object

	Parts (OOM)
	Creating a Part
	Part Properties

	Ports (OOM)
	Creating a Port
	Port Properties
	Redefining Parent Ports

	Attributes (OOM)
	Creating an Attribute
	Copying an Attribute to a Class, Interface, or Identifier
	Overriding an Attribute in PowerBuilder
	Adding Getter and Setter Operations to a Classifier

	Attribute Properties
	Setting Data Profiling Constraints
	Creating Data Formats For Reuse
	Specifying Advanced Constraints

	Identifiers (OOM)
	Creating an Identifier
	Creating a primary identifier when you create the class attributes
	Defining the Primary Identifier from the List of Identifiers

	Identifier Properties
	Adding Attributes to an Identifier

	Operations (OOM)
	Creating an Operation
	Copying an Operation From Another Classifier
	Inheriting and Overriding Operations from Parent Classifiers
	Creating a Standard Operation
	Implementing Operations from an Interface

	Operation Properties
	Parameters (OOM)

	Associations (OOM)
	Creating an Association
	Association Properties
	Association Implementation
	Understanding the Generated Code

	Creating an Association Class
	Migrating Association Roles in a Class Diagram
	Migrating Navigable Roles

	Rebuilding Data Type Links
	Linking an Association to an Instance Link

	Generalizations (OOM)
	Creating a Generalization
	Generalization Properties

	Dependencies (OOM)
	Creating a Dependency
	Dependency Properties

	Realizations (OOM)
	Creating a Realization
	Realization Properties

	Require Links (OOM)
	Creating a Require Link
	Require Link Properties

	Assembly Connectors (OOM)
	Creating an Assembly Connector
	Assembly Connector Properties

	Delegation Connectors (OOM)
	Creating a Delegation Connector
	Delegation Connector Properties

	Annotations (OOM)
	Attaching an Annotation to a Model Object
	Creating a New Annotation Type
	Using the Annotation Editor

	Instance Links (OOM)
	Creating an Instance Link
	Instance Link Properties

	Domains (OOM)
	Creating a Domain
	Domain Properties
	Updating Attributes Using a Domain in an OOM

	CHAPTER 4: Dynamic Diagrams
	Communication Diagrams
	Communication Diagram Objects

	Sequence Diagrams
	Sequence Diagram Objects

	Activity Diagrams
	Activity Diagram Objects

	Statechart Diagrams
	Defining a Default Classifier in a Statechart Diagram
	Statechart Diagram Objects

	Interaction Overview Diagrams
	Interaction Overview Diagram Objects

	Messages (OOM)
	Creating a Message
	Message Properties
	Creating Create and Destroy Messages in a Sequence Diagram
	Creating Create Messages
	Creating Destroy Messages
	Creating a Destroy Message
	Creating a Self-Destroy Message

	Creating a Recursive Message in a Sequence Diagram
	Creating a Recursive Message Without Activation
	Creating a Recursive Message with Activation

	Messages and Gates
	Sequence Numbers
	Moving Sequence Numbers
	Inserting Sequence Numbers
	Increasing Sequence Numbers in a Communication Diagram
	Decreasing Sequence Numbers in a Communication Diagram

	Activations (OOM)
	Creating an Activation
	Creating Activations with Procedure Call Messages
	Creating an Activation from a Diagram

	Attaching a Message to an Activation
	Detaching a Message from an Activation
	Overlapping Activations
	Moving an Activation
	Resizing an Activation

	Interaction References and Interaction Activities (OOM)
	Creating an Interaction Reference
	Creating an Interaction Activity
	Interaction Reference and Interaction Activity Properties
	Manipulating Interaction References

	Interaction Fragments (OOM)
	Creating an Interaction Fragment
	Interaction Fragment Properties
	Manipulating Interaction Fragments

	Activities (OOM)
	Creating an Activity
	Activity Properties
	Specifying Activity Parameters
	Specifying Action Types
	Example: Using the Call Action Type
	Example: Reading and Writing Variables
	Variable Properties

	Decomposed Activities and Sub-Activities
	Converting an Activity Diagram to a Decomposed Activity

	Organization Units (OOM)
	Creating an Organization Unit
	Creating Organization Units with the Swimlane Tool

	Organization Unit Properties
	Attaching Activities to Organization Units
	Displaying a Committee Activity
	Managing Swimlanes and Pools
	Moving, Copying and Pasting Swimlanes
	Grouping and Ungrouping Swimlanes
	Creating Links Between Pools of Swimlanes
	Changing the Orientation of Swimlanes
	Resizing Swimlanes
	Changing the Format of a Swimlane

	Starts (OOM)
	Creating a Start
	Start Properties

	Ends (OOM)
	Creating an End
	End Properties

	Decisions (OOM)
	Creating a Decision
	Decision Properties

	Synchronizations (OOM)
	Creating a Synchronization
	Synchronization Properties

	Flows (OOM)
	Creating a Flow
	Flow Properties

	Object Nodes (OOM)
	Creating an Object Node
	Object Node Properties

	States (OOM)
	Creating a State
	State Properties
	Decomposed States and Sub-states
	Converting a Statechart Diagram to a Decomposed State

	Transitions (OOM)
	Creating a Transition
	Transition Properties

	Events (OOM)
	Creating an Event
	Event Properties
	Defining Event Arguments

	Actions (OOM)
	Creating an Action
	Action Properties

	Junction Points (OOM)
	Creating a Junction Point
	Junction Point Properties

	CHAPTER 5: Implementation Diagrams
	Component Diagrams
	Component Diagram Objects

	Deployment Diagrams
	Deployment Diagram Objects

	Components (OOM)
	Creating a Component
	Using the Standard Component Wizard

	Component Properties
	Creating a Class Diagram for a Component
	Deploying a Component to a Node

	Nodes (OOM)
	Creating a Node
	Node Properties
	Node Diagrams

	Component Instances (OOM)
	Creating a Component Instance
	Component Instance Properties

	Files (OOM)
	Creating a File Object
	File Object Properties

	Node Associations (OOM)
	Creating a Node Association
	Node Association Properties

	CHAPTER 6: Web Services
	Defining Web Services Tools
	Defining Web Services Targets
	Defining Web Service Components
	Web Service Component Properties
	Creating a Web Service with the Wizard
	Creating a Web Service from the Component Diagram
	Defining Data Types for WSDL
	WSDL Data Type Mappings
	Selecting WSDL Data Types
	Declaring Data Types in the WSDL

	Web Service Implementation Class Properties

	Managing Web Service Methods
	Creating a Web Service Method
	Web Service Method Properties
	Implementing a Web Service Method in Java
	Defining the Return Type of an Operation
	Defining the Parameters of an Operation
	Implementing the Operation

	Implementing a Web Service Method in .NET
	Defining Web Service Method Extended Attributes
	Defining SOAP Data Types of the WSDL Schema

	Defining Web Service Component Instances
	Web Service Tab of the Component Instance
	WSDL Tab of the Component Instance
	Using Node Properties

	Generating Web Services for Java
	Generating JAXM Web Services
	Generating JAX-RPC Web Services
	Generating Stateless Session Bean Web Services
	Generating AXIS RPC Web Services
	Generating AXIS EJB Web Services
	Generating Java Web Services (JWS)
	Testing Web Services for Java

	Generating Web Services for .NET
	Defining Web Services Generation Options in .NET
	Defining Web Service Generation Tasks in .NET
	Generating Web Services in .NET
	Generating a .NET Proxy Class for a Web Service
	Define the WSDL Variable
	Generate the Client Proxy Classes

	Deploying Web Services in .NET
	Testing Web Services for .NET

	Generating Web Services for Sybase WorkSpace
	Creating a Java or EJB Web Service for Sybase WorkSpace
	Defining the Java Class Package
	Generating the Java or EJB Web Service for Sybase WorkSpace
	Understanding the .svc_java or .svc_ejb File

	Importing WSDL Files
	Browsing WSDL Files from UDDI

	CHAPTER 7: Generating and Reverse Engineering OO Source Files
	Generating OO Source Files from an OOM
	Working with Generation Targets
	Defining the Source Code Package

	Reverse Engineering OO Source Files into an OOM
	Reverse Engineering OO Files into a New OOM
	Reverse Engineering Encoding Format

	Reverse Engineering into an Existing OOM

	Synchronizing a Model with Generated Files

	CHAPTER 8: Generating Other Models from an OOM
	Managing Object Persistence During Generation of Data Models
	Managing Persistence for Generalizations
	Managing Persistence for Complex Data Types
	Customizing XSM Generation for Individual Objects

	CHAPTER 9: Checking an OOM
	Domain Checks
	Data Source Checks
	Package Checks
	Actor/Use Case Checks
	Class Checks
	Identifier Checks
	Interface Checks
	Class/Interface Attribute Checks
	Class/Interface Operation Checks
	Realization Checks
	Generalization Checks
	Object Checks
	Instance Link Checks
	Message Checks
	State Checks
	State Action Checks
	Event Checks
	Junction Point Checks
	Activity Checks
	Decision Checks
	Object Node Checks
	Organization Unit Checks
	Start/End Checks
	Synchronization Checks
	Transition and Flow Checks
	Component Checks
	Node Checks
	Data Format Checks
	Component Instance Checks
	Interaction Reference Checks
	Class Part Checks
	Class/Component Port Checks
	Class/component Assembly Connector Checks
	Association Checks
	Activity Input and Output Parameter Checks

	CHAPTER 10: Importing a Rational Rose Model into an OOM
	Importing Rational Rose Use Case Diagrams
	Importing Rational Rose Class Diagrams
	Importing Rational Rose Collaboration Diagrams
	Importing Rational Rose Sequence Diagrams
	Importing Rational Rose Statechart Diagrams
	Importing Rational Rose Activity Diagrams
	Importing Rational Rose Component Diagrams
	Importing Rational Rose Deployment Diagrams

	CHAPTER 11: Importing and Exporting an OOM in XMI Format
	Importing XMI Files
	Exporting XMI Files

	PART II: Object Language Definition Reference
	CHAPTER 12: Working with Java
	Java Public Classes
	Java Enumerated Types (Enums)
	JavaDoc Comments
	Defining Values for Javadoc Tags
	Javadoc Comments Generation and Reverse Engineering

	Java 5.0 Annotations
	Java Strictfp Keyword
	Enterprise Java Beans (EJBs) V2
	Using EJB Types
	EJB Properties
	Creating an EJB with the Wizard
	Defining Interfaces and Classes for EJBs
	Defining Operations for EJBs
	Adding an Operation to the Bean Class
	Adding an Operation to an EJB Interface
	Understanding Operation Synchronization

	Understanding EJB Support in an OOM
	Previewing the EJB Deployment Descriptor
	Generating EJBs
	What Kind of Generation to Use?
	Understanding EJB Source and Persistence
	Generating EJB Source Code and the Deployment Descriptor

	Generating JARs
	Reverse Engineering EJB Components

	Enterprise Java Beans (EJBs) V3
	Creating an EJB 3.0 with the Enterprise JavaBean Wizard
	EJB 3.0 BeanClass Properties
	EJB 3.0 Component Properties
	Adding Further Interfaces and Classes to the EJB

	EJB 3.0 Operation Properties

	Java Servlets
	Servlet Page of the Component
	Defining Servlet Classes
	Creating a Servlet with the Wizard
	Understanding Servlet Initialization and Synchronization
	Generating Servlets
	Generating Servlet Web Deployment Descriptor

	Generating WARs
	Reverse Engineering Servlets

	Java Server Pages (JSPs)
	JSP Page of the Component
	Defining File Objects for JSPs
	Creating a JSP with the Wizard
	Generating JSPs
	Generating JSP Web Deployment Descriptor

	Reverse Engineering JSPs

	Generating Java Files
	Reverse Engineering Java Code
	Reverse Engineer Java Options Tab
	Reverse Engineering Java Code Comments

	CHAPTER 13: Working with the Eclipse Modeling Framework (EMF)
	EMF Objects
	EPackages
	Eclasses, EEnums, and EDataTypes
	EAnnotations
	Eattributes and EEnumLiterals
	EReferences
	EOperations and EParameters

	Generating EMF Files
	Reverse Engineering EMF Files

	CHAPTER 14: Working with IDL CORBA - Deprecated
	IDL Objects
	Generating for IDL
	Reverse Engineering IDL Files

	CHAPTER 15: Working with PowerBuilder
	PowerBuilder Objects
	Generating PowerBuilder Objects
	Reverse Engineering PowerBuilder
	Reverse Engineered Objects
	Operation Reversed Header
	Overriding Attributes

	PowerBuilder Reverse Engineering Process
	Reverse Engineering PowerBuilder Objects

	Loading a PowerBuilder Library Model in the Workspace

	CHAPTER 16: Working with VB .NET
	Inheritance & Implementation
	Namespace
	Project
	Accessibility
	Classes, Interfaces, Structs, and Enumerations
	Module
	Custom Attributes
	Shadows
	Variables
	Property
	Method
	Constructor & Destructor
	Delegate
	Event
	Event Handler
	External Method
	Generating VB.NET Files
	Reverse Engineering VB .NET
	Selecting VB .NET Reverse Engineering Options
	Defining VB .NET Reverse Engineering Options

	VB .NET Reverse Engineering Preprocessing
	VB .NET Supported Preprocessing Directives
	Defining a VB .NET Preprocessing Symbol
	VB .NET Reverse Engineering with Preprocessing

	Reverse Engineering VB .NET Files

	Working with ASP.NET
	ASP Tab of the Component
	Defining File Objects for ASP.NET
	Creating an ASP.NET with the Wizard
	Generating ASP.NET

	CHAPTER 17: Working with Visual Basic 2005 - Deprecated
	Visual Basic 2005 Assemblies
	Visual Basic 2005 Compilation Units
	Partial Types

	Visual Basic 2005 Namespaces
	Visual Basic 2005 Classes
	Visual Basic 2005 Interfaces
	Visual Basic 2005 Structs
	Visual Basic 2005 Delegates
	Visual Basic 2005 Enums
	Visual Basic 2005 Fields, Events, and Properties
	Visual Basic 2005 Methods
	Visual Basic 2005 Inheritance and Implementation
	Visual Basic 2005 Custom Attributes
	Generating Visual Basic 2005 Files
	Reverse Engineering Visual Basic 2005 Code
	Visual Basic Reverse Engineer Dialog Options Tab
	Visual Basic Reverse Engineering Preprocessing Directives
	Visual Basic Supported Preprocessing Directives
	Defining a Visual Basic Preprocessing Symbol

	CHAPTER 18: Working with C# - Deprecated
	Inheritance & Implementation
	Namespace
	Project
	Accessibility
	Classes, Interfaces, Structs, and Enumerations
	Custom Attributes
	Fields
	Property
	Indexer
	Method
	Constructor & Destructor
	Delegate
	Event
	Operator Method
	Conversion Operator Method
	Documentation Tags
	Generating C# Files
	Reverse Engineering C#
	Selecting C# Reverse Engineering Options
	Defining C# Reverse Engineering Options

	C# Reverse Engineering Preprocessing
	C# Supported Preprocessing Directives
	Defining a C# Preprocessing Symbol
	C# Reverse Engineering with Preprocessing

	Reverse Engineering C# Files

	CHAPTER 19: Working with C# 2.0
	C# 2.0 Assemblies
	C# 2.0 Compilation Units
	Partial Types

	C# 2.0 Namespaces
	C# 2.0 Classes
	C# 2.0 Interfaces
	C# 2.0 Structs
	C# 2.0 Delegates
	C# 2.0 Enums
	C# 2.0 Fields
	C# 2.0 Methods
	C# 2.0 Events, Indexers, and Properties
	C# 2.0 Inheritance and Implementation
	C# 2.0 Custom Attributes
	Generating C# 2.0 Files
	Reverse Engineering C# 2.0 Code
	C# Reverse Engineer Dialog Options Tab
	C# Reverse Engineering Preprocessing Directives
	C# Supported Preprocessing Directives
	Defining a C# Preprocessing Symbol

	CHAPTER 20: Working with XML - Deprecated
	Designing for XML
	Generating for XML
	Reverse-Engineering XML

	CHAPTER 21: Working with C++
	Designing for C++
	Generating for C++

	CHAPTER 22: Object/Relational (O/R) Mapping
	Top-Down: Mapping Classes to Tables
	Entity Class Transformation
	Attribute Transformation
	Value Type Transformation
	Association Transformation
	Association Class Transformation

	Inheritance Transformation

	Bottom-Up: Mapping Tables to Classes
	Meet in the Middle: Manually Mapping Classes to Tables
	Entity Class Mapping
	Attribute Mapping
	Primary Identifier Mapping
	Association Mapping
	One-to-One Association Mapping Strategy
	One-to-Many Association Mapping Strategy
	Many-to-Many Association Mapping Strategy

	Defining Inheritance Mapping
	Table Per Class Hierarchy Inheritance Mapping Strategy
	Joined Subclass Inheritance Mapping Strategy
	Table Per Class Inheritance Mapping Strategy

	CHAPTER 23: Generating Persistent Objects for Java and JSF Pages
	Generating Hibernate Persistent Objects
	Defining the Hibernate Default Options
	Defining the Hibernate Database Configuration Parameters
	Defining Hibernate Basic O/R Mappings
	Defining Hibernate Class Mapping Options
	Defining Primary Identifier Mappings
	Simple Identifier Mapping
	Composite Identifier Mapping
	Component Primary Identifier Mapping

	Defining Attribute Mappings

	Hibernate Association Mappings
	Defining Hibernate Association Mapping Options
	Collection Management Options
	Persistence Options
	Mapping Collections of Value Types
	Mapping Collections of Value Type
	Defining Association Collection Type for One-to-many or Many-to-many Associations

	Defining Hibernate Inheritance Mappings
	Generating Code for Hibernate
	Checking the Model
	Defining Generation Options
	Defining Environment Variables
	Defining Generation Options

	Generating Code for Hibernate

	Using the Generated Hibernate Code
	Importing the Generated Project into Eclipse
	Performing the Unit Tests
	Running Unit Tests in Eclipse
	Running a Single Test Case
	Running the Test Suite

	Running Unit Tests with Ant
	Running Unit Tests with Ant from PowerDesigner:
	Running Unit Tests with Ant from the Command Line

	Generating EJB 3 Persistent Objects
	Generating Entities for EJB 3.0
	Defining EJB 3 Basic O/R Mapping
	Defining Entity Mappings
	Defining Embeddable Class Mapping

	Defining EJB 3 Association Mappings
	Mapping One-to-one Associations
	Mapping One-to-many Associations
	Mapping Many-to-many Associations
	Defining EJB 3 Association Mapping Options

	Defining EJB 3 Inheritance Mappings
	Mapped Superclasses
	Table Per Class Hierarchy Strategy
	Joined Subclass Strategy
	Applying Table Per Class Strategy

	Defining EJB 3 Persistence Default Options
	Defining EJB 3 Persistence Configuration
	Checking the Model
	Generating Code for EJB 3 Persistence
	Defining the Environment Variable
	Generate Code
	Authoring in Dali Tools
	Run Unit Tests
	Running Unit Tests with Ant
	Running Unit Tests with Ant from PowerDesigner
	Running Unit Tests with Ant from the Command Line

	Running Unit Test in Eclipse
	Running a Single Test Case
	Running the Test Suite

	Generated File List

	Generating JavaServer Faces (JSF) for Hibernate
	Defining Global Options
	Defining Attribute Options
	Derived Attributes
	Attribute Validation Rules and Default Values

	Defining Master-Detail Pages
	Generating PageFlow Diagrams
	Generating a class level PageFlow diagram
	Generating a Package Level PageFlow Diagram:
	Generating a Model Level PageFlow Diagram
	Modifing Default High Level PageFlow Diagram
	Adding a New Page
	Adding a New PageFlow

	Installing Apache MyFaces Runtime Jar Files
	Configuring for JSF Generation
	Generating JSF Pages
	Testing JSF Pages
	Testing JSF Pages with Eclipse WTP
	Testing JSF Pages with Apache Tomcat

	CHAPTER 24: Generating .NET 2.0 Persistent Objects and Windows Applications
	Generating ADO.NET and ADO.NET CF Persistent Objects
	ADO.NET and ADO.NET CF Options
	Class Mappings
	Primary Identifier Mappings
	Attribute Mappings

	Defining Association Mappings
	Defining Inheritance Mappings
	Generating Code for ADO.NET or ADO.NET CF

	Generating NHibernate Persistent Objects
	NHibernate Options
	Defining Class Mappings
	Primary Identifier Mappings
	Simple Identifier Mapping

	Attribute Mappings

	Defining Association Mappings
	Defining NHibernate Collection Options
	Defining NHibernate Persistence Options
	Defining NHibernate Collection Container Type

	Defining Inheritance Mappings
	Generating Code for NHibernate

	Configuring Connection Strings
	Configuring a Connection String from the ADO.NET or ADO.NET CF Tab
	Configuring a Connection String from the NHibernate Tab
	OLEDB Connection String Parameters
	ODBC Connection String Parameters
	Microsoft SQL Server and Microsoft SQL Server Mobile Edition Connection String Parameters
	Oracle Connection String Parameters

	Generating Code for Unit Testing
	Running NUnit Unit Tests
	Running Visual Studio Test System Unit Tests
	Running Tests in Visual Studio.NET 2005 IDE
	Running Tests from the Command Line

	Generating Windows or Smart Device Applications
	Specifying an Image Library
	Controlling the Data Grid View
	Defining Attributes Display Options
	Defining Attribute Validation Rules and Default Values
	Generating Code for a Windows Application
	Generating Code for a Smart Device Application
	Deploying Code to a Smart Device
	Testing the Application on the Device

	Index

