
API Reference Manual

EAServer
6.0



DOCUMENT ID: DC38037-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server 
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage 
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, 
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise, 
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client 
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, 
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench, 
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, 
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work 
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works 
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, 
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere 
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent 
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere, 
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business 
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, 
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation 
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access 
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server 
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC 
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC, 
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript, 
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare 
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational 
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server 
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere, 
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script, 
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL 
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server 
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase 
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP, 
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench, 
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The 
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server 
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, 
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL, 
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, 
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are 
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

API Reference iii

About This Book ...........................................................................................................................  ix

CHAPTER 1 Java Classes and Interfaces ..........................................................  1
Package index..................................................................................  1

com.sybase.CORBA.jdbc11......................................................  1
com.sybase.jaguar.jcm..............................................................  1
com.sybase.jaguar.server .........................................................  2
com.sybase.jaguar.sql...............................................................  2
com.sybase.jaguar.util...............................................................  2

com.sybase.CORBA.jdbc11.IDL class.............................................  2
IDL.getDate(java.sql.Date) ........................................................  3
IDL.getDecimal(java.math.BigDecimal).....................................  4
IDL.getMoney(java.math.BigDecimal) .......................................  4
IDL.getResultSet(java.sql.ResultSet) ........................................  4
IDL.getTime(java.sql.Time) .......................................................  5
IDL.getTimestamp(java.sql.Timestamp)....................................  5

com.sybase.CORBA.jdbc11.IdlResultSet ........................................  6
com.sybase.CORBA.jdbc11.SQL class ...........................................  7

SQL.getBigDecimal(BCD.Decimal) ...........................................  8
SQL.getBigDecimal(BCD.Money) .............................................  8
SQL.getDate(MJD.Date) ...........................................................  9
SQL.getResultSet(TabularResults.ResultSet) ..........................  9
SQL.getTime(MJD.Time) ..........................................................  9
SQL.getTimestamp(MJD.Timestamp).....................................  10

com.sybase.jaguar.jcm.JCM class.................................................  10
JCM.byNameAllowed(String) ..................................................  11
JCM.getCache(String, String, String) ......................................  11
JCM.getCacheByName(String) ...............................................  12

com.sybase.jaguar.jcm.JCMCache class.......................................  13
JCMCache.byNameAllowed() .................................................  14
JCMCache.dropConnection(Connection)................................  15
JCMCache.getConlibName() ..................................................  15
JCMCache.getConnection(int) ................................................  15
JCMCache.getPoolSizeMax() .................................................  17



Contents

iv EAServer

JCMCache.getPoolSizeMin() ..................................................  17
JCMCache.getProxyConnection(int, String)............................  17
JCMCache.getName().............................................................  19
JCMCache.getPassword() ......................................................  19
JCMCache.getRemoteServerName() .....................................  19
JCMCache.getUserName() .....................................................  20
JCMCache.releaseConnection(Connection) ...........................  20

com.sybase.jaguar.jcm.JConnectionNotFoundException class.....  21
com.sybase.jaguar.server.Jaguar class.........................................  21

Jaguar.getInstanceContext() ...................................................  22
Jaguar.getHostName() ............................................................  23
Jaguar.getPassword() .............................................................  23
Jaguar.getPeerAddress() ........................................................  24
Jaguar.getServerName().........................................................  24
Jaguar.getUserName()............................................................  24
Jaguar.inJaguar() ....................................................................  25
Jaguar.writeLog(boolean, String) ............................................  25

com.sybase.jaguar.server.JContext class......................................  26
JContext.createServerResultSetMetaData() ...........................  26
JContext.createServerResultSet(JServerResultSetMetaData) 27
JContext.forwardResultSet(ResultSet)....................................  27
JContext.getComponentName()..............................................  28
JContext.getPackageName() ..................................................  28

com.sybase.jaguar.sql.JServerResultSet interface........................  29
JServerResultSet.done() .........................................................  30
JServerResultSet.findColumn(String) .....................................  30
JServerResultSet.getMetaData() ............................................  31
JServerResultSet.next() ..........................................................  31
JServerResultSet.setBigDecimal(int, BigDecimal, int) ............  32
JServerResultSet.setCurrency(int, long) .................................  32
JServerResultSet.setNull(int) ..................................................  33
JServerResultSet.set<Object>(int, <Object>) .........................  33

com.sybase.jaguar.sql.JServerResultSetMetaData interface ........  35
JServerResultSetMetaData.setColumnCount(int)...................  36
JServerResultSetMetaData.setColumnDisplaySize(int, int)....  37
JServerResultSetMetaData.setColumnLabel(int, String) ........  38
JServerResultSetMetaData.setColumnName(int, String) .......  38
JServerResultSetMetaData.setColumnType(int, int)...............  38
JServerResultSetMetaData.setCurrency(int, boolean) ...........  40
JServerResultSetMetaData.setNullable(int, int) ......................  41
JServerResultSetMetaData.setPrecision(int, int) ....................  42
JServerResultSetMetaData.setScale(int, int) ..........................  42

com.sybase.jaguar.util.JException class........................................  43



Contents

API Reference v

CHAPTER 2 C Routines Reference...................................................................  45
Alphabetical list of all routines........................................................  45

Routines for managing transaction flow ..................................  47
Routines for managing cached connections ...........................  47
Routines for handling errors in C or C++ components ............  48
Routines for managing memory in C or C++ components ......  48
Routines to obtain user login information ................................  48

Unsupported routines.....................................................................  48
JagAlloc..........................................................................................  49
JagCmGetCachebyName ..............................................................  50
JagCmGetCachebyUser ................................................................  51
JagCmGetConnection....................................................................  53
JagCmGetCtx.................................................................................  57
JagCmGetProxyConnection...........................................................  59
JagCmReleaseConnection ............................................................  61
JagCompleteWork..........................................................................  63
JagContinueWork...........................................................................  64
JagDisallowCommit........................................................................  65
JagFree ..........................................................................................  66
JagGetHostName...........................................................................  66
JagGetPassword............................................................................  67
JagGetPeerAddress.......................................................................  68
JagGetUserName ..........................................................................  69
JagInTransaction............................................................................  70
JagIsRollbackOnly .........................................................................  70
JagLog ...........................................................................................  71
JagRollbackWork ...........................................................................  72
JagSleep ........................................................................................  72

APPENDIX A Deprecated Java Classes and Interfaces ...................................  75
Package Index ...............................................................................  75

com.sybase.jaguar.beans.enterprise ......................................  75
com.sybase.jaguar.beans.enterprise.EnterpriseBeanException class  

76
com.sybase.jaguar.beans.enterprise.InstanceContext interface ...  76

InstanceContext.completeWork() ............................................  77
InstanceContext.continueWork() .............................................  78
InstanceContext.getSharedObjects() ......................................  79
InstanceContext.inTransaction() .............................................  79
InstanceContext.isRollbackOnly() ...........................................  79
InstanceContext.rollbackWork() ..............................................  80

com.sybase.jaguar.beans.enterprise.ServerBean interface ..........  81
ServerBean.activate(InstanceContext, String) ........................  84
ServerBean.canReuse()..........................................................  85



Contents

vi EAServer

ServerBean.deactivate()..........................................................  85
ServerBean.destroy() ..............................................................  86

com.sybase.jaguar.beans.enterprise.SharedObjectException class 86
com.sybase.jaguar.beans.enterprise.SharedObjects interface......  87

SharedObjects.get(int) ............................................................  87
SharedObjects.lock(int) ...........................................................  88
SharedObjects.lockNoWait(int) ...............................................  89
SharedObjects.set(int, Object) ................................................  90
SharedObjects.unlock(int) .......................................................  90

Index .............................................................................................................................................  93



Contents

API Reference vii



Contents

viii EAServer



API Reference ix

About This Book

This book, the EAServer API Reference Manual, contains reference pages 
for EAServer proprietary Java classes, C++ classes, ActiveX interfaces, 
and C routines. EAServer also supports many standard Java 2 Enterprise 
Edition (J2EE) and CORBA APIs. For information on these, see:

• The Enterprise JavaBeans User’s Guide.

• The CORBA Components Guide.

• The relevant standards document for API reference information. For 
J2EE standards documents, please see the Sun Microsystems J2EE 
Web pages at http://java.sun.com/. For CORBA standards 
documentation, please see the Object Management Group (OMG) Web 
site at http://www.omg.org/.

Audience This book is written as a reference for developers of EAServer 
applications. Developers should know their development language and 
programming tools.

How to use this book Chapter 1, “Java Classes and Interfaces,”  documents EAServer’s Java 
classes and interfaces. You will need this information to implement Java 
components or Java clients.

Chapter 2, “C Routines Reference,” documents EAServer’s C library 
routines. You will need this information to implement C components.

Appendix A, “Deprecated Java Classes and Interfaces,” documents Java 
classes and interfaces supported solely for backward compatibility.

Related documents Core EAServer documentation The core EAServer documents are 
available in HTML and PDF format in your EAServer software 
installation and on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual (this book) contains reference pages 
for proprietary EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-
based configuration scripts to:



 

x  EAServer

• Define and configure entities, such as EJB modules, Web applications, 
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components 
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and 
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications. 

The EAServer Java Message Service User’s Guide describes how to create 
Java Message Service (JMS) clients and components to send, publish, and 
receive JMS messages.

The EAServer Migration Guide contains information about migrating 
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your 
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how 
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and 
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and 
firewalls



     About This Book

API Reference xi

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management 
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly 
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create, 
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services 
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access 
Protocol (SOAP), Web Services Description Language (WSDL), and 
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services, 
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for 
troubleshooting problems that EAServer users may encounter. This document 
is available only online; see the EAServer Troubleshooting Guide at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for 
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and 
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available 
on the Sybase Product Manuals Web site at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes 
the Sybase Software Asset Management license manager for managing and 
tracking your Sybase software license deployments. The Sybase Software Asset 
Management User’s Guide is available on the Getting Started CD and in the 
EAServer 6.0 collection on the Sybase Product Manuals Web site at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.



 

xii  EAServer

Conventions The formatting conventions used in this manual are:

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure 
applications rather than the Management Console

variable, package, or 
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in 
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how 
to navigate menu selections. For example, File | Save indicates “select Save from the File 
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as 
program text

• Example program fragments

• Example output fragments



     About This Book

API Reference xiii

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://sybooks.sybase.com/nav/base.do.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and 
software 
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at 
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name 
and password.

3 Select a product.



 

xiv  EAServer

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is 
displayed.

Padlock icons indicate that you do not have download authorization for 
certain EBF/Maintenance releases because you are not registered as a 
Technical Support Contact. If you have not registered, but have valid 
information provided by your Sybase representative or through your 
support contract, click Edit Roles to add the “Technical Support Contact” 
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the 
product description to download the software.

Accessibility 
features

EAServer has been tested for compliance with U.S. government Section 508 
Accessibility requirements. The online help for this product is also provided in 
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information, 
see “Keyboard navigation” in Chapter 2, “Management Console Overview,” 
in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for 
those that cannot use a mouse, are visually impaired, or have other special 
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note  You may need to configure your accessibility tool for optimal use. Some 
screen readers pronounce text based on its case; for example, they pronounce 
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You 
might find it helpful to configure your tool to announce syntax conventions. 
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see 
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase 
Accessibility site includes links to information on Section 508 and W3C 
standards.



     About This Book

API Reference xv

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.



 

xvi  EAServer



API Reference 1

C H A P T E R  1 Java Classes and Interfaces

Package index

com.sybase.CORBA.jdbc11
For use in classes that will be run in a JDK-1.1-compatible Java virtual 
machine. Provides classes for converting between EAServer’s predefined 
IDL datatypes and the core Java language objects:

• IDL – Provides methods to convert core Java datatypes to EAServer’s 
predefined CORBA IDL datatypes.

• IdlResultSet – Implements the JServerResultSet interface, allowing 
you to construct TabularResults.ResultSet instances for component 
methods that return row results.

• SQL – Provides methods to convert EAServer’s predefined CORBA 
IDL datatypes to core Java datatypes.

Note  Open source implementations of the TabularResults classes are 
available on the EAServer CodeXchange pages at 
http://easerver.codexchange.sybase.com/.

com.sybase.jaguar.jcm
Classes and interfaces for managing cached JDBC connections in server-
side Java code:

• com.sybase.jaguar.jcm.JCM class – Provides access to JDBC data 
sources.

• com.sybase.jaguar.jcm.JCMCache class – Manages a pool of JDBC 
connections to a third-tier database server.

• com.sybase.jaguar.jcm.JConnectionNotFoundException class – 
Exception thrown when no connections are available.



com.sybase.CORBA.jdbc11.IDL class 

2  EAServer

com.sybase.jaguar.server
Utility classes used in server-side Java code:

• com.sybase.jaguar.server.Jaguar class – Provides utility methods for use 
in server-side Java code.

• com.sybase.jaguar.server.JContext class – Instantiates objects that are 
used to send result sets from a Java component method and provides a 
method to retrieve rows from a java.sql.ResultSet and forward them to the 
client.

com.sybase.jaguar.sql
Interfaces for objects that construct and send row results from a Java server 
component to the client:

• com.sybase.jaguar.sql.JServerResultSet interface – Provides methods to 
return result rows to a client application. JServerResultSet is similar to the 
java.sql.ResultSet interface, which is used to retrieve result rows from a 
server.

• com.sybase.jaguar.sql.JServerResultSetMetaData interface – Provides 
methods for describing the metadata of a result set. Metadata specifies the 
number of columns in each row as well as the datatype, format, nullability, 
and so forth for each column.

com.sybase.jaguar.util
Utility classes that are used in both server-side and client side Java code:

• com.sybase.jaguar.util.JException class – JException is the generic 
exception that is thrown by methods in the EAServer classes or in 
generated client stub classes.

com.sybase.CORBA.jdbc11.IDL class
Description package com.sybase.CORBA.jdbc11;

public abstract class IDL



CHAPTER 1    Java Classes and Interfaces

API Reference 3

Provides methods to convert core Java datatypes to EAServer’s predefined 
CORBA IDL datatypes.

Constructors None. All methods are static.

Methods • getDate(java.sql.Date) – Converts a java.sql.Date object to an equivalent 
MJD::Date CORBA IDL object.

• getDecimal(java.math.BigDecimal) – Converts a BigDecimal object to an 
equivalent BCD::Decimal CORBA IDL object.

• getMoney(java.math.BigDecimal) – Converts a BigDecimal object to an 
equivalent BCD::Money CORBA IDL object.

• getResultSet(java.sql.ResultSet) – Converts a java.sql.ResultSet object to 
an equivalent TabularResults::ResultSet CORBA IDL object.

• getTime(java.sql.Time) – Converts a java.sql.Time object to an equivalent 
MJD::Time CORBA IDL object.

• getTimestamp(java.sql.Timestamp) – Converts a java.sql.Timestamp object 
to an equivalent MJD::Timestamp CORBA IDL object.

See also com.sybase.CORBA.jdbc11.SQL class

IDL.getDate(java.sql.Date)
Description Converts a java.sql.Date object to an equivalent MJD::Date CORBA IDL 

object.

Syntax

public static MJD.Date getDate(java.sql.Date value)

Parameters value
A java.sql.Date value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Date value.

See also getTime(java.sql.Time), getTimestamp(java.sql.Timestamp), 
SQL.getDate(MJD.Date)

Package com.sybase.CORBA.jdbc11

Class IDL



com.sybase.CORBA.jdbc11.IDL class 

4  EAServer

IDL.getDecimal(java.math.BigDecimal)
Description Converts a BigDecimal object to an equivalent BCD::Decimal CORBA IDL 

object.

Syntax

public static BCD.Decimal
getDecimal(java.math.BigDecimal value) 
throws org.omg.CORBA.DATA_CONVERSION

Parameters value
A java.math.BigDecimal value to be converted.

Return value The value converted to an equivalent CORBA IDL BCD::Decimal value.

See also getMoney(java.math.BigDecimal), SQL.getBigDecimal(BCD.Decimal)

IDL.getMoney(java.math.BigDecimal)
Description Converts a BigDecimal object to an equivalent BCD::Money CORBA IDL 

object.

Syntax

public static BCD.Money getMoney(
 java.math.BigDecimal value) 
throws org.omg.CORBA.DATA_CONVERSION

Parameters value
A java.math.BigDecimal value to be converted.

Return value The value converted to an equivalent CORBA IDL BCD::Money value.

See also getDecimal(java.math.BigDecimal), SQL.getBigDecimal(BCD.Money)

IDL.getResultSet(java.sql.ResultSet)
Description Converts a java.sql.ResultSet object to an equivalent TabularResults::ResultSet 

CORBA IDL object.

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL



CHAPTER 1    Java Classes and Interfaces

API Reference 5

Syntax

public static MJD.ResultSet
getResultSet( java.sql.ResultSet rs)

Parameters rs
A java.sql.ResultSet value to be converted.

Return value The value converted to an equivalent CORBA IDL TabularResults::ResultSet 
value.

See also SQL.getResultSet(TabularResults.ResultSet)

IDL.getTime(java.sql.Time)
Description Converts a java.sql.Time object to an equivalent MJD::Time CORBA IDL 

object.

Syntax

public static MJD.Time getTime(java.sql.Time value)

Parameters value
A java.sql.Time value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Time value.

See also getDate(java.sql.Date), getTimestamp(java.sql.Timestamp), 
SQL.getTime(MJD.Time)

IDL.getTimestamp(java.sql.Timestamp)
Description Converts a java.sql.Timestamp object to an equivalent MJD::Timestamp 

CORBA IDL object.

Syntax

public static MJD.Timestamp
getTimestamp( java.sql.Timestamp value)

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL



com.sybase.CORBA.jdbc11.IdlResultSet 

6  EAServer

Parameters value
A java.sql.Timestamp value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Timestamp value.

See also getDate(java.sql.Date), getTime(java.sql.Time), 
SQL.getTimestamp(MJD.Timestamp)

com.sybase.CORBA.jdbc11.IdlResultSet
Description package com.sybase.CORBA.jdbc11;

public class IdlResultSet 
extends java.lang.Object 
implements jaguar.sql.JServerResultSet;

Implements the JServerResultSet interface, allowing you to construct 
TabularResults.ResultSet instances for component methods that return row 
results.

Component methods that return row results to clients return 
TabularResults.ResultSet or TabularResults.ResultSet[]. IdlResultSet allows you 
to create instances of these types using the JDBC style JServerResultSet 
interfaces.

For documentation of the TabularResults IDL types, see the generated Interface 
Repository documentation at ../../ir/TabularResults.html.

To return a single result set, initialize the rows and columns using the 
JServerResultSetMetaData and JServerResultSet methods, then convert to a 
TabularResults.ResultSet instance as shown in this code fragment:

JServerResultSetMetaData jsrs;
... define column formats ...
IdlResultSet irs = new IdlResultSet(jsrsmd);
... define row data using JServerResultSet methods ...
return irs.getResultSet();

To return multiple result sets, build an array of TabularResults.ResultSet 
instances, as follows:

1 Declare a java.util.Vector instance:

java.util.Vector vector = new Vector();

2 Initialize each IdlResultSet instance as described above, then add it to the 
vector:



CHAPTER 1    Java Classes and Interfaces

API Reference 7

vector.addElement(irs.getResultSet());

3 When done, convert the vector to an array to be returned by the method:
TabularResults.ResultSet[] array = 

new TabularResults.ResultSet[vector.size()];
vector.copyInto(array);
return array;

Constructors • IdlResultSet(java.sql.ResultSetMetaData) – Construct an instance using the 
column formats specified by a JServerResultSetMetaData instance. You 
can add rows to the instance using the JServerResultSet methods.

• IdlResultSet(java.sql.ResultSet) – Construct an instance by reading the 
rows from the supplied ResultSet. 

Methods • getResultSet() – Translate the contents of this instance into 
TabularResults.ResultSet instance.

See also com.sybase.jaguar.sql.JServerResultSet interface, 
com.sybase.jaguar.sql.JServerResultSetMetaData interface

com.sybase.CORBA.jdbc11.SQL class
Description package com.sybase.CORBA.jdbc11;

public abstract class SQL

Provides methods to convert EAServer’s predefined CORBA IDL datatypes to 
core Java datatypes.

Constructors None. All methods are static.

Methods • getBigDecimal(BCD.Decimal) – Converts a BCD::Decimal CORBA IDL 
object to an equivalent java.math.BigDecimal.

• getBigDecimal(BCD.Money) – Converts a BCD::Money CORBA IDL object 
to an equivalent java.math.BigDecimal.

• getDate(MJD.Date) – Converts an MJD::Date CORBA IDL object to an 
equivalent java.sql.Date object.

• getResultSet(TabularResults.ResultSet) – Converts a 
TabularResults::ResultSet CORBA IDL object to an equivalent 
java.sql.ResultSet object.

• getTime(MJD.Time) – Converts an MJD::Time CORBA IDL object to an 
equivalent java.sql.Time object.



com.sybase.CORBA.jdbc11.SQL class 

8  EAServer

• getTimestamp(MJD.Timestamp) – Converts an MJD::Timestamp CORBA 
IDL object to an equivalent java.sql.Timestamp object.

See also com.sybase.CORBA.jdbc11.IDL class

SQL.getBigDecimal(BCD.Decimal)
Description Converts a BCD::Decimal CORBA IDL object to an equivalent 

java.math.BigDecimal.

Syntax

public static java.math.BigDecimal 
getBigDecimal(BCD.Decimal value)

Parameters value
A BCD.Decimal value to be converted.

Return value The value converted to an equivalent java.math.BigDecimal value.

See also getBigDecimal(BCD.Decimal), getBigDecimal(BCD.Money), 
IDL.getDecimal(java.math.BigDecimal)

SQL.getBigDecimal(BCD.Money)
Description Converts a BCD::Money CORBA IDL object to an equivalent 

java.math.BigDecimal.

Syntax

public static java.math.BigDecimal
getBigDecimal(BCD.Money value)

Parameters value
A BCD.Money value to be converted.

Return value The value converted to an equivalent java.math.BigDecimal value.

See also getBigDecimal(BCD.Decimal), IDL.getMoney(java.math.BigDecimal)

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL



CHAPTER 1    Java Classes and Interfaces

API Reference 9

SQL.getDate(MJD.Date)
Description Converts an MJD::Date CORBA IDL object to an equivalent java.sql.Date 

object.

Syntax

public static java.sql.Date getDate(MJD.Date value)

Parameters value
An MJD::Date value to be converted.

Return value The value converted to an equivalent java.sql.Date value.

See also getTime(MJD.Time), getTimestamp(MJD.Timestamp), 
IDL.getDate(java.sql.Date)

SQL.getResultSet(TabularResults.ResultSet)
Description Converts a TabularResults::ResultSet CORBA IDL object to an equivalent 

java.sql.ResultSet object.

Syntax

public static java.sql.ResultSet 
getResultSet(TabularResults.ResultSet rs)

Parameters rs
A TabularResults.ResultSet object to be converted.

Return value The value converted to an equivalent java.sql.ResultSet value.

See also IDL.getResultSet(java.sql.ResultSet)

SQL.getTime(MJD.Time)
Description Converts an MJD::Time CORBA IDL object to an equivalent java.sql.Time 

object.

Syntax

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11



com.sybase.jaguar.jcm.JCM class 

10  EAServer

public static java.sql.Time getTime(MJD.Time value)

Parameters value
An MJD.Time value to be converted.

Return value The value converted to an equivalent java.sql.Time value.

See also getDate(MJD.Date), getTimestamp(MJD.Timestamp), 
IDL.getTime(java.sql.Time)

SQL.getTimestamp(MJD.Timestamp)
Description Converts an MJD::Timestamp CORBA IDL object to an equivalent 

java.sql.Timestamp object.

Syntax

public static java.sql.Timestamp
getTimestamp(MJD.Timestamp value)

Parameters value
An MJD.Timestamp value to be converted.

Return value The value converted to an equivalent java.sql.Timestamp value.

See also getDate(MJD.Date), getTime(MJD.Time), 
IDL.getTimestamp(java.sql.Timestamp)

com.sybase.jaguar.jcm.JCM class
Description package com.sybase.jaguar.jcm;

public class JCM extends Object 

Provides access to JDBC data sources.

Constructors None. All methods are static.

Methods • byNameAllowed(String) – Determines if a data source can be retrieved by 
calling getCacheByName(String).

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL



CHAPTER 1    Java Classes and Interfaces

API Reference 11

• getCache(String, String, String) – Returns a reference to a data source with 
matching values for the specified user name, password, and server name.

• getCacheByName(String) – Returns a reference to the data source with the 
given name.

JCM.byNameAllowed(String)
Description Determines if a data source can be retrieved by calling 

getCacheByName(String).

Note  Beginning in EAServer 6.0, all data sources allow access by name. This 
method is provided for backward compatibility.

Syntax

public static boolean byNameAllowed
(String name) 
throws JException 

Parameters name
The name of the data source of interest.

Return value true if a data source is installed with the specified name, and the data source 
can be retrieved with JCM.getCacheByName(String); false otherwise.

Usage The getCacheByName(String) method allows you to retrieve a data source by 
specifying only the data source name, rather than specifying values for the data 
source user name, password, and server name. 

You can call byNameAllowed to determine whether by-name access is allowed 
for a specified data source.

See also getCacheByName(String)

JCM.getCache(String, String, String)
Description Returns a reference to a data source with matching values for the specified user 

name, password, and server name.

Package com.sybase.jaguar.jcm

Interface JCM 



com.sybase.jaguar.jcm.JCM class 

12  EAServer

Syntax

public static JCMCache getCache
( String user, String pwd, String server) 
throws JException

Parameters user
The database user name associated with the data source.

pwd
The database password associated with the data source.

server
The database server name associated with the data source. The value should 
be a JDBC connection URL in the appropriate format for calls to 
java.sql.DriverManager.getConnection(String). The URL format depends on 
which JDBC driver the data source uses. See your JDBC driver 
documentation for more information.

Return value A reference to a JCMCache instance with matching values for user, pwd, and 
server.

A JException exception is thrown if no data source with matching values exists.

Usage The supplied values for user, pwd, and server must match the properties of an 
existing data source. 

See also Chapter 4, “Database Access,” in the EAServer System Administration Guide 

getCacheByName(String)

JCM.getCacheByName(String)
Description Returns a reference to the data source with the specified name.

Syntax

public static JCMCache getCacheByName
( String name) 
throws JException 

Parameters name
The name of the data source to be retrieved.

Package com.sybase.jaguar.jcm

Interface JCM 

Package com.sybase.jaguar.jcm

Interface JCM 



CHAPTER 1    Java Classes and Interfaces

API Reference 13

Return value A reference to a JCMCache instance with a matching value for name.

A JException exception is thrown if:

• No data source is installed with the specified name.

• A matching data source is installed, but the data source properties forbid 
retrieval with this method. Use getCache(String, String, String) instead.

Usage getCacheByName allows you to retrieve a data source by specifying only the 
data source name, rather than specifying values for the data source user name, 
password, and server name. 

Using this method rather than getCache(String, String, String) removes the need 
to code database user names and passwords into your component source code. 
This method also allows you to change the data source user name, password, 
or server in the data source properties without requiring corresponding changes 
to your component source code.

Note  Beginning in EAServer 6.0, all data sources allow access by name.

See also Chapter 4, “Database Access,” in the EAServer System Administration Guide 

byNameAllowed(), getCache(String, String, String)

com.sybase.jaguar.jcm.JCMCache class
Description package com.sybase.jaguar.jcm;

public class JCMCache extends Object

Manages a pool of connections to a third-tier database server.

Constructors None. Call JCM.getCache(String, String, String). 

Fields JCM_FORCE

public final static int JCM_FORCE

A value for the getConnection flag parameter. 

JCM_NOWAIT

public final static int JCM_NOWAIT

A value for the getConnection flag parameter.

JCM_WAIT



com.sybase.jaguar.jcm.JCMCache class 

14  EAServer

public final static int JCM_WAIT

A value for the getConnection flag parameter. 

Methods • byNameAllowed() – Determines whether the data source can be retrieved 
by calling JCM.getCacheByName(String).

• dropConnection(Connection) – Drops a connection. The connection is 
closed and not released into the data source.

• getPoolSizeMax() – Retrieves the maximum number of connections that 
this data source can manage.

• getConlibName() – Returns the connectivity library (or interface) name for 
the data source.

• getConnection(int) – Obtains a connection handle from the data source.

• getProxyConnection(int, String) – Obtains a connection handle from the 
data source, specifying an alternate login name to set-proxy to.

• getName() – Retrieves the data source’s name.

• getPassword() – Retrieves the password used by connections in the data 
source.

• getRemoteServerName() – Returns the remote server name used by 
connections in the data source.

• getUsername() – Retrieves the user name used by connections in the data 
source.

• releaseConnection(Connection) – Releases a connection to the data source 
for reuse.

JCMCache.byNameAllowed()
Description Determines whether the cache can be retrieved by calling 

JCM.getCacheByName(String).

Note  Beginning in EAServer 6.0, all data sources allow access by name. This 
method is provided for backward compatibility.

Syntax

public boolean byNameAllowed()

Package com.sybase.jaguar.jcm

Class JCMCache



CHAPTER 1    Java Classes and Interfaces

API Reference 15

Return value true if the data source can be retrieved with JCM.getCacheByName(String), 
false otherwise.

See also getName(), JCM.byNameAllowed(String), JCM.getCacheByName(String)

See Chapter 4, “Database Access,” in the EAServer System Administration 
Guide

JCMCache.dropConnection(Connection)
Description Drops a connection. The connection is closed and not released into the cache.

Syntax

public void dropConnection( Connection con) 
throws SQLException 

Parameters con
The java.sql.Connection instance to be dropped.

Usage Use dropConnection() to close a connection when you do not want the 
connection returned to the data source. If necessary, future getConnection(int) 
calls will allocate new connections to replace any that have been dropped.

See also getConnection(int), releaseConnection(Connection)

JCMCache.getConlibName()
Description Returns the connectivity library (or interface) name for the data source.

Syntax

public String getConlibName()

Return value “JDBC”

JCMCache.getConnection(int)
Description Obtains a connection handle from the data source.

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache



com.sybase.jaguar.jcm.JCMCache class 

16  EAServer

Syntax

public Connection getConnection(int flag)
throws SQLException, JException, 
JConnectionNotFoundException

Parameters flag
A symbolic value that specifies what should happen if the maximum number 
of connections have been allocated and are in use (that is, no connection is 
available in the data source). Allowable values are:

Return value A java.sql.Connection instance from the data source. If the call specifies 
JCM_NOWAIT and no connections are available, the call throws a 
JConnectionNotFoundException instance.

Usage getConnection(int) attempts to return a connection from the data source. data 
sources are maintained statically; a data source is initially empty when the 
server starts. Subsequent getConnection(int) calls allocate connections when 
necessary. releaseConnection(Connection) calls release control of a connection 
for later reuse. 

Each data source has a maximum number of connections determined by the 
data source properties. (See Chapter 4, “Database Access,” in the EAServer 
System Administration Guide for more information.) The flag parameter 
determines getConnection(int) behavior when the data source’s maximum 
number of connections are in use. getPoolSizeMax() returns the data source’s 
maximum number of connections. 

For improved performance, connections should not be held any longer than 
necessary. As a general rule, methods that use a cached connection should 
release it with releaseConnection(Connection) before returning. This strategy 
minimizes contention by multiple components for a data source’s connections.

See also dropConnection(Connection), getPoolSizeMax(), 
releaseConnection(Connection) 

Package com.sybase.jaguar.jcm

Class JCMCache

Value Behavior when no connection is available

JCM_NOWAIT Throws JConnectionNotFoundException.

JCM_WAIT Does not return until a cached connection is available.

JCM_FORCE “Forces” open a new, uncached connection. The data 
source’s maximum size is ignored.



CHAPTER 1    Java Classes and Interfaces

API Reference 17

JCMCache.getPoolSizeMax()
Description Retrieves the maximum number of connections that can be pooled in the data 

source.

Syntax

public int getPoolSizeMax()

Return value The data source size.

Usage The size is specified the data source properties. See Chapter 4, “Database 
Access,” in the EAServer System Administration Guide for more information.

See also getPoolSizeMin()

JCMCache.getPoolSizeMin()
Description Retrieves the maximum number of connections that can be pooled in the data 

source.

Syntax

public int getPoolSizeMax()

Return value The data source size.

Usage The size is specified the data source properties. See Chapter 4, “Database 
Access,” in the EAServer System Administration Guide for more information.

See also getPoolSizeMax()

JCMCache.getProxyConnection(int, String)
Description Obtains a connection handle from the data source, specifying an alternate login 

name to set-proxy to.

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache



com.sybase.jaguar.jcm.JCMCache class 

18  EAServer

Not all data sources support set-proxy
Set-proxy support must be enabled in the data source properties before you can 
use this feature. See Chapter 4, “Database Access,” in the EAServer System 
Administration Guide for more information. You must be connected to a 
database server, such as Adaptive Server Enterprise 11.5 or later, that supports 
the set session authorization command. 

Syntax

public Connection getProxyConnection(int flag, String proxy)
throws SQLException, JException, 

JConnectionNotFoundException

Parameters flag
A symbolic value that specifies what should happen if the maximum number 
of connections have been allocated and are in use (that is, no connection is 
available in the data source). Allowable values are:

proxy
The user name to set-proxy to. 

Return value A java.sql.Connection instance from the data source. If the call specifies 
JCM_NOWAIT and no connections are available, the call throws a 
JConnectionNotFoundException instance.

Usage This method retrieves a cached connection, specifying an alternate login name 
to set-proxy to. Set-proxy support must be enabled in the data source 
properties. If support is enabled, connections retrieved from the data source 
with getConnection(int) set-proxy to the client user name. Call 
getProxyConnection(int, String) to specify a different user name to set-proxy to.

Other than the set-proxy behavior, getProxyConnection(int, String) is identical to 
getConnection(int).

See Chapter 4, “Database Access,” in the EAServer System Administration 
Guide for information on defining data sources and enabling set-proxy support.

Package com.sybase.jaguar.jcm

Class JCMCache

Value Behavior when no connection is available

JCM_NOWAIT Throws JConnectionNotFoundException.

JCM_WAIT Does not return until a cached connection is available.

JCM_FORCE “Forces” open a new, uncached connection. The data 
source’s maximum size is ignored.



CHAPTER 1    Java Classes and Interfaces

API Reference 19

For improved performance, connections should not be held any longer than 
necessary. As a general rule, methods that use a cached connection should 
release it with releaseConnection(Connection) before returning. This strategy 
minimizes contention by multiple components for a data source’s connections.

See also dropConnection(Connection), getPoolSizeMax(), getConnection(int), 
releaseConnection(Connection) 

JCMCache.getName()
Description Retrieves the data source’s name.

Syntax

public String getName()

Return value The data source’s name.

JCMCache.getPassword()
Description Retrieves the password used by connections in the data source.

Syntax

public String getPassword()

Return value The password.

See also getRemoteServerName(), getUsername()

JCMCache.getRemoteServerName()
Description Retrieves the remote server name used by connections in the data source.

Syntax

public String getRemoteServerName()

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache



com.sybase.jaguar.jcm.JCMCache class 

20  EAServer

Return value The remote server name.

See also getPassword(), getUsername()

JCMCache.getUserName()
Description Retrieves the user name used by connections in the data source.

Syntax

public String getUserName()

Return value The user name.

See also getPassword(), getRemoteServerName()

JCMCache.releaseConnection(Connection)
Description Releases a connection to the data source for reuse.

Syntax

public void releaseConnection( Connection con) 
throws SQLException 

Parameters con
The connection to release.

Usage Released connections must be in a state that allows new queries to be issued. 

The connection will be dropped (and not returned to the data source) if the data 
source has exceeded its maximum number of connections. The maximum 
number of connections can be exceeded if calls to getConnection(int) are issued 
with flag as JCM_FORCE. In this case, releaseConnection drops the excess 
connections.

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache



CHAPTER 1    Java Classes and Interfaces

API Reference 21

Many JDBC programs do not explicitly clean up java.sql.Statement objects. 
Instead, they rely on the JDBC driver to clean up Statement objects when the 
connection is closed. This strategy does not work with cached connections: you 
must explicitly clean up Statement objects before releasing a connection back 
into the data source. To clean up Statement objects, call Statement.close() and 
set the Statement reference to null.

 Warning! To prevent memory leaks, you must explicitly clean up a 
connection’s Statement objects before releasing the connection back into the 
data source. Do not release a connection more than once.

See also getConnection(int), dropConnection(Connection)

com.sybase.jaguar.jcm.JConnectionNotFoundExceptio
n class
Description package com.sybase.jaguar.jcm;

public class JConnectionNotFoundException 
extends JException;

Exception thrown by JCMCache.getConnection(int) to indicate that no 
connections are available in the data source. You must specify JCM_NOWAIT 
in order for the exception to be thrown.

Constructors Same as JException.

Methods Same as JException.

See also com.sybase.jaguar.util.JException class, java.sql.SQLException class

com.sybase.jaguar.server.Jaguar class
Description package com.sybase.jaguar.server;

public class Jaguar extends Object 

Provides utility methods for use in server-side Java code.

Constructors None. All methods are static.



com.sybase.jaguar.server.Jaguar class 

22  EAServer

Methods • getInstanceContext() – Returns the InstanceContext object associated with 
the current component instance.

• getHostName() – Returns the client host name for the client connection 
that is associated with this component instance.

• getPassword() – Returns the password for the client connection that is 
associated with this component instance.

• getPeerAddress() – Returns the client host address for the client 
connection that is associated with this component instance.

• getServerName() – Returns the name of the server.

• getUserName() – Returns the user name for the client connection that is 
associated with this component instance.

• inJaguar() – Tests if running inside the server.

• writeLog(boolean, String) – Writes a message to the server’s log file.

Jaguar.getInstanceContext()
Description Retrieves the InstanceContext object associated with the current component 

instance.

Syntax

public InstanceContext getInstanceContext()

Return value An InstanceContext object for the current component instance.

Usage Components that do not implement the ServerBean interface can call this 
method to get an InstanceContext object. The InstanceContext provides 
transaction primitives that allow the component to influence the outcome of the 
transactions in which it participates.

Components that implement InstanceContext receive the InstanceContext via 
the ServerBean.activate(InstanceContext, String) method.

See also InstanceContext, ServerBean

Package com.sybase.jaguar.server

Class Jaguar



CHAPTER 1    Java Classes and Interfaces

API Reference 23

Jaguar.getHostName()
Description Returns the client host name for the client connection that is associated with 

this component instance.

Syntax

public static String getHostName() throws JException 

Return value The client host name. The host name can be 0 length if the client software did 
not supply the host name.

Note
Java clients do not supply the client host name (there is no mechanism to 
retrieve the host name in Java).

See also getPeerAddress()

Jaguar.getPassword()
Description Returns the password for the client connection that is associated with this 

component instance.

Syntax

public static String getPassword() throws JException 

Return value The client password. The password can be 0 length.

Usage getPassword returns the password for the client connection that is associated 
with this component instance. 

This method cannot be called from a component instance that is running as a 
service component, since service components run without client interaction.

See also getUserName()

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar



com.sybase.jaguar.server.Jaguar class 

24  EAServer

Jaguar.getPeerAddress()
Description Returns the client host address for the client connection that is associated with 

this component instance.

Syntax

public static String getPeerAddress() throws JException 

Return value The client’s IP address, or “0.0.0.0” if the client’s IP address is unavailable.

See also getHostName()

Jaguar.getServerName()
Description Returns the name of the server.

Syntax

public static String getServerName() throws JException 

Return value The name of the server.

Jaguar.getUserName()
Description Returns the user name for the client connection that is associated with this 

component instance.

Syntax

public static String getUserName() throws JException 

Return value The user name. The user name can be 0 length.

Usage getUserName returns the user name for the client connection that is associated 
with this component instance. 

This method cannot be called from a component instance that is running as a 
service component, since service components run without client interaction.

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar



CHAPTER 1    Java Classes and Interfaces

API Reference 25

See also getPassword()

Jaguar.inJaguar()
Description Tests if running inside the server.

Syntax

public static boolean inJaguar() throws JException 

Return value true if running inside the server, false otherwise.

Usage As an alternative, you can call the method com.sybase.CORBA.ORB.isClient(), 
which returns a boolean value that is true if running outside of EAServer. Use 
this alternative if your code may be run without the EAServer server-side 
classes in the CLASSPATH.

Jaguar.writeLog(boolean, String)
Description Writes a message to the server’s log file.

Standard output redirected to the server log
Prehistoric EAServer versions required you to call this method to write to the 
log. In version 3.0 or later, you can call any of the System.out.print methods.

Syntax

public static native void writeLog 
(boolean use_date, String logmsg) 
throws JException

Parameters use_date
true if the current date and time should be prepended to the log message; 
false otherwise.

logmsg
A message to be written to the server’s log file.

Usage This method records a message in the server’s log file.

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar



com.sybase.jaguar.server.JContext class 

26  EAServer

By convention, errors that occur on the server are written to the log. Java 
components should call writeLog(String) rather than printing to the console with 
java.lang.System.out or java.lang.System.err. 

For information on configuring the log file used by the server, see Chapter 3, 
“Creating and Configuring Servers,” in the EAServer System Administration 
Guide.

com.sybase.jaguar.server.JContext class
Description package com.sybase.jaguar.server;

public class JContext extends Object 

Instantiates objects that are used to send result sets from a Java component 
method and provides a method to forward rows from a java.sql.ResultSet to the 
client.

Constructors None. All methods are static.

Methods • createServerResultSetMetaData() – Creates a JServerResultSetMetaData 
object.

• createServerResultSet(JServerResultSetMetaData) – Creates a 
JServerResultSet object with row format that matches the specified 
JServerResultSetMetaData object.

• forwardResultSet(ResultSet) – Retrieves the rows from a java.sql.ResultSet 
object and forward them to the client.

• getComponentName() – Retrieves the name of the currently executing 
component.

• getPackageName() – Determines the name of the package in which the 
currently executing component is installed.

See also JServerResultSet, JServerResultSetMetaData

JContext.createServerResultSetMetaData()
Description Creates a JServerResultSetMetaData object. 

Syntax
Package com.sybase.jaguar.server



CHAPTER 1    Java Classes and Interfaces

API Reference 27

public static JServerResultSetMetaData 
 createServerResultSetMetaData() 
throws SQLException 

Usage The JServerResultSetMetaData reference can be used to describe result rows to 
be sent to the client.

See also createServerResultSet(JServerResultSetMetaData), 
forwardResultSet(ResultSet)

JContext.createServerResultSet(JServerResultSetMetaData)
Description Creates a JServerResultSet object. 

Syntax

public static JServerResultSet createServerResultSet 
( JServerResultSetMetaData metadata) 
throws SQLException 

Parameters metadata
A JServerResultSetMetaData object that has been initialized to describe the 
result set that will be sent.

See also createServerResultSetMetaData(), forwardResultSet(ResultSet)

JContext.forwardResultSet(ResultSet)
Description Retrieves the rows from a java.sql.ResultSet object and forward them to the 

client.

Syntax

public static void
 forwardResultSet( ResultSet rs) 
throws SQLException 

Class JContext

Package com.sybase.jaguar.server

Class JContext

Package com.sybase.jaguar.server

Class JContext



com.sybase.jaguar.server.JContext class 

28  EAServer

Parameters rs
A java.sql.ResultSet containing result rows from a JDBC query to a third-tier 
server.

See also java.sql.ResultSet

JContext.getComponentName()
Description Retrieves the name of the currently executing component.

Syntax

public static String
 getComponentName()

Return value The name of the component.

Usage getPackageName() and getComponentName() allow you to determine the name 
of the currently executing component. Within a server, components are 
identified by the name of the CORBA package where they are installed and the 
component name.

See also getPackageName(), Jaguar.getServerName()

JContext.getPackageName()
Description Determines the name of the package in which the currently executing 

component is installed.

Syntax

public static String
 getPackageName()

Return value The name of the CORBA package.

Usage getPackageName() and getComponentName() allow you to determine the name 
of the currently executing component. Within a server, components are 
uniquely identified by the name of the CORBA package where they are 
installed and the component name.

Package com.sybase.jaguar.server

Class JContext

Package com.sybase.jaguar.server

Class JContext



CHAPTER 1    Java Classes and Interfaces

API Reference 29

See also getComponentName(), Jaguar.getServerName()

com.sybase.jaguar.sql.JServerResultSet interface
Description package com.sybase.jaguar.sql;

public interface JServerResultSet extends Object 

Provides methods to send rows to the client. JServerResultSet is similar to the 
java.sql.ResultSet interface, which is used to retrieve result rows from a server.

Constructors Call JContext.createServerResultSet(JServerResultSetMetaData).

Methods • done() – Indicates that all rows in a result set have been sent.

• findColumn(String) – Maps a column name to a column index.

• getMetaData() – Returns a java.sql.ResultSetMetaData object that describes 
the rows in a result set. The metadata includes the number of columns, the 
datatype of each column, and other details about each column such as 
whether values can be NULL.

• next() – Sends a row to the client.

• setBigDecimal(int, BigDecimal, int) – Specifies a non-NULL value for a 
BigDecimal column.

• setCurrency(int, long) – Specifies a non-NULL value for a column that 
represents a cash value.

• setNull(int) – Specifies that a column in the current row has value NULL.

• set<Object>(int, <Object>) – Specifies a non-NULL value for a column in 
the current row.

Usage A JServerResultSetMetaData instance is required to construct a 
JServerResultSet. JServerResultSetMetaData describes the format of rows in 
the result set. After initializing the JServerResultSetMetaData instance, call 
JContext.createServerResultSet(JServerResultSetMetaData).

The cursor of a JServerResultSet is initially positioned before the first row. An 
initial next() call is required to move the cursor to the first row. 

Subsequent calls to next() add new rows; each should be preceded by 
set<Object>(int, <Object>) or setNull(int) calls to set column values for the row. 

You can add any number of rows with next(). Once all rows have been added, 
call the done() method to indicate the end of the result set. 



com.sybase.jaguar.sql.JServerResultSet interface 

30  EAServer

After the done() method finishes, the JServerResultSet is again positioned 
before the first row. The same JServerResultSet instance can be used to another 
result set based on the same metadata.

Implementations of the JServerResultSet interface may buffer rows as needed 
during consecutive next() calls before sending them to the client. The done() 
method should flush any buffered rows (and flush network buffers as well, if 
possible—the EAServer done() implementation flushes network buffers).

See also JContext.forwardResultSet(ResultSet)

JServerResultSet.done()
Description Indicates that all rows in a result set have been sent.

Syntax

public abstract void done() 
throws SQLException 

Usage You must call the done() method to indicate that all rows in a result set have 
been sent. 

JServerResultSet.findColumn(String)
Description Returns the index for the column that has the specified name.

Syntax

public abstract int findColumn( String columnName)
throws SQLException 

Parameters columnName
The name of the column of interest.

Return value The index of the column whose name matches the supplied name. Throws a 
SQLException if no column has a matching name. The index of the first column 
is 1.

See also JServerResultSetMetaData.setColumnName(int, String)

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet



CHAPTER 1    Java Classes and Interfaces

API Reference 31

JServerResultSet.getMetaData()
Description Returns a java.sql.ResultSetMetaData object that describes the rows in a result 

set. The metadata includes the number of columns, the datatype of each 
column, and other details about each column, such as whether values can be 
NULL.

Syntax

public abstract ResultSetMetaData getMetaData()
throws SQLException 

Return value A java.sql.ResultSetMetaData object that describes the rows in a result set.

Usage A JServerResultSet object’s metadata is determined when the object is 
constructed by calling createServerResultSetMetaData(). The metadata cannot 
be changed afterwards.

See also java.sql.ResultSetMetaData, createServerResultSetMetaData(), 
createServerResultSet(JServerResultSetMetaData), 
java.sql.ResultSet.getMetaData()

JServerResultSet.next()
Description Sends a row to the client.

Syntax

public abstract boolean next() throws SQLException 

Return value true if the row was successfully created, false otherwise.

Usage The cursor of a JServerResultSet object is positioned before the first row when 
the object is constructed. An initial next() call is required to move the cursor to 
the first row. A done() call repositions the cursor before the first row.

After the first next() call, subsequent calls to next() add new rows; each should 
be preceded by set<Object>(int, <Object>) or setNull(int) calls to set column 
values for the row. 

Any number of rows can be sent with next(). Once all rows have been sent, the 
done() method must be called to indicate the end of the result set.

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet



com.sybase.jaguar.sql.JServerResultSet interface 

32  EAServer

See also done(), ResultSet.next()

JServerResultSet.setBigDecimal(int, BigDecimal, int)
Description Specifies a non-NULL value for a java.math.BigDecimal column.

Syntax

public abstract void setBigDecimal
(int columnIndex, 
 BigDecimal columnValue, 
int scale) throws SQLException 

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
A java.math.BigDecimal value.

scale
The scale of the value. The scale specifies the number of decimal digits to 
the right of the decimal point.

Usage Use setBigDecimal methods to specify values for non-NULL 
java.math.BigDecimal column values. If a column’s value is NULL, call 
setNull(int).

You can set values for columns within a row in any order.

See also ResultSet.getBigDecimal(int, int)

JServerResultSet.setCurrency(int, long)
Description Specifies a non-NULL value for a column that represents a cash value.

Syntax

public abstract void setCurrency
(int columnIndex, 
long columnValue)
throws SQLException 

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet



CHAPTER 1    Java Classes and Interfaces

API Reference 33

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
The column’s value, expressed as the number of one-ten-thousandths of a 
cash unit. In other words, columnValue represents the cash value:

columnValue/10000

Usage You must call setCurrency to specify values for columns that represent a cash 
value. The result set’s metadata specifies whether a column represents a cash 
value (ResultSetMetaData.isCurrency(int) returns true for the column).

setCurrency throws a SQLException if the column does not represent a cash 
value.

See also ResultSet.getBigDecimal(int, int), ResultSetMetaData.isCurrency(int), 
JServerResultSetMetaData.setCurrency(int, boolean)

JServerResultSet.setNull(int)
Description Specifies that a column in the current row has value NULL.

Syntax

public abstract void setNull(int columnIndex) 
throws SQLException 

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

Usage An exception is thrown if the ResultSet object’s metadata does not allow 
NULL values for the column. 

See also JServerResultSetMetaData.setNullable(int, int), 
JServerResultSet.getMetaData(), ResultSet.wasNull()

JServerResultSet.set<Object>(int, <Object>)
Description Specifies a non-NULL value for a column in the current row.

Syntax

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql



com.sybase.jaguar.sql.JServerResultSet interface 

34  EAServer

public abstract void setASCIIStream 
(int columnIndex, java.io.InputStream columnValue) 
throws SQLException, IOException

public abstract void setBinaryStream 
(int columnIndex, java.io.InputStream columnValue) 
throws SQLException, IOException

public abstract void setBoolean 
(int columnIndex, boolean columnValue) 
throws SQLException 

public abstract void setByte 
(int columnIndex, byte columnValue) 
throws SQLException 

public abstract void setDouble 
(int columnIndex, double columnValue) 
throws SQLException

public abstract void setDouble 
(int columnIndex, double columnValue) 
throws SQLException

public abstract void setFloat 
(int columnIndex, float columnValue) 
throws SQLException

public abstract void setInt 
(int columnIndex, int columnValue) 
throws SQLException

public abstract void setShort 
(int columnIndex, short columnValue) 
throws SQLException

public abstract void setString 
(int columnIndex, java.lang.String columnValue) 
throws SQLException

public abstract void setTimestamp 
(int columnIndex, java.sql.Timestamp columnValue) 
throws SQLException

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
An object of the appropriate type that contains the value for the column. The 
object type must match the column type that was specified by 
JServerResultSetMetaData.setColumnType(int, int) for the result set’s 
metadata. Table 1-1 on page 40 lists type mappings.

Interface JServerResultSet



CHAPTER 1    Java Classes and Interfaces

API Reference 35

Usage Use the set<Object> methods to specify values for non-NULL column values. 
If a column’s value is NULL, call setNull(int).

You can set values for columns within a row in any order.

See also JServerResultSetMetaData.setColumnType(int, int), 
setBigDecimal(int, BigDecimal, int), java.sql.ResultSet

com.sybase.jaguar.sql.JServerResultSetMetaData 
interface
Description package com.sybase.jaguar.sql;

public interface JServerResultSetMetaData 
extends ResultSetMetaData 

Provides methods to describe a result set’s metadata. Metadata specifies the 
number of columns in each row as well as the datatype, format, nullability, and 
so forth for each column.

Constructors The JContext.createServerResultSetMetaData() method returns a class instance 
that implements this interface.

Methods • setAutoIncrement(int, boolean) – (Not yet supported.) Specifies whether a 
column has the auto-increment property.

• setCaseSensitive(int, String) – (Not yet supported.) Specifies whether a 
column’s values are case-sensitive.

• setCatalogName(int, String) – (Not yet supported.) Specifies the name of 
the column’s catalog (database).

• setColumnCount(int) – Specifies the number of columns that will be sent in 
result-set rows.

• setColumnDisplaySize(int, int) – Specifies the column’s normal maximum 
width in characters.

• setColumnLabel(int, String) – Recommends a display title for the column.

• setColumnName(int, String) – Specifies the column’s name.

• setColumnType(int, int) – Specifies the column’s SQL (java.sql.Types) 
datatype.

• setColumnTypeName(int, String) – (Not yet supported.) Specifies a 
column’s data-source-specific type name.



com.sybase.jaguar.sql.JServerResultSetMetaData interface 

36  EAServer

• setCurrency(int, boolean) – Specifies whether the column represents a cash 
value.

• setNullable(int, int) – Specifies whether column values can be null.

• setPrecision(int, int) – Specifies the column’s precision. The precision 
equals the number of decimal digits in a value.

• setScale(int, int) – Specifies the column’s scale. The scale equals the 
number of decimal digits to the right of the decimal point.

• setSchemaName(int, String) – (Not yet supported.) Specifies the schema 
name of the column’s table.

• setSearchable(int, boolean) – (Not yet supported.) Specifies whether a 
column can be used in a SQL where clause.

• setSigned(int, boolean) – (Not yet supported.) Specifies whether the 
column represents a signed number.

• setTableName(int, String) – (Not yet supported.) Specifies the name of the 
table that contains the column.

Note
The current version does not support some interface methods. The list above 
indicates the methods that are not yet supported. These methods throw a 
JException with a “Unsupported Functionality” message.

Usage JServerResultSetMetaData provides set methods that correspond to the get 
methods defined in java.sql.ResultSetMetaData. Since 
JServerResultSetMetaData extends ResultSetMetaData, you can call the get 
methods directly on a JServerResultSetMetaData object.

You can use an initialized JServerResultSetMetaData object to create one or 
more JServerResultSet objects by calling 
JContext.createServerResultSet(JServerResultSetMetaData).

See also java.sql.ResultSetMetaData

JServerResultSetMetaData.setColumnCount(int)
Description Specifies the number of columns that will be sent in result-set rows.

Syntax
Package com.sybase.jaguar.sql



CHAPTER 1    Java Classes and Interfaces

API Reference 37

public abstract void setColumnCount(int columnCount)
throws SQLException 

Parameters columnCount
The number of columns.

Usage You must call setColumnCount() before you can call any other methods to 
describe an individual column’s metadata. Once the number of columns is 
specified, it cannot be changed without discarding any column descriptions 
that you have set. That is, if you call setColumnCount() again, you must reset 
each column’s metadata.

See also ResultSetMetaData.getColumnCount()

JServerResultSetMetaData.setColumnDisplaySize(int, int)
Description Specifies the column’s normal maximum width in characters.

Syntax

public abstract void setColumnDisplaySize
(int columnIndx, int size)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

size
The maximum width in characters.

Usage setColumnDisplaySize determines the maximum length of variable length 
columns (CHAR, VARCHAR, LONGVARCHAR, BINARY, VARBINARY, 
LONGVARBINARY).

If you do not call setColumnDisplaySize to set a default display size, the 
implementation-specific default is used. To avoid excessive memory 
allocation, you must explicitly set the display size. In particular, the default 
display sizes for LONGVARCHAR and LONGVARBINARY columns can be 
larger than a Gigabyte.

See also ResultSetMetaData.getColumnDisplaySize(int)

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData



com.sybase.jaguar.sql.JServerResultSetMetaData interface 

38  EAServer

JServerResultSetMetaData.setColumnLabel(int, String)
Description Recommends a display title for the column.

Syntax

public abstract void setColumnLabel
(int columnIndex, String label)
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

label
The recommended display title. The default is the column name specified 
with setColumnName(int, String).

See also ResultSetMetaData.getColumnLabel(int), setColumnName(int, String)

JServerResultSetMetaData.setColumnName(int, String)
Description Specifies the column’s name.

Syntax

public abstract void setColumnName
(int columnIndex, String columnName)
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

columnName
The name of the column. The default is “” (0-length string).

See also ResultSetMetaData.getColumnName(int)

JServerResultSetMetaData.setColumnType(int, int)
Description Specifies the column’s SQL (java.sql.Types) datatype.

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData



CHAPTER 1    Java Classes and Interfaces

API Reference 39

Syntax

public abstract void setColumnType
(int columnIndex, int SQLType) 
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

SQLType
A symbolic constant that indicates the column’s Java datatype. Constants 
are defined statically in the class java.sql.Types. The table below lists the 
supported java.sql.Types and lists, for each type, the corresponding Java type 
and the JServerResultSet.set<Object>(int, <Object>) method that must be 
called to set values for the column.

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData



com.sybase.jaguar.sql.JServerResultSetMetaData interface 

40  EAServer

Table 1-1: Mapping type constants to Java types and setXXX methods

Note
java.sql.Types.OTHER and java.sql.Types.BIGINT are not supported.

Usage setColumnType(int, int) specifies the datatype for a column. There is no default. 
For java.math.BigDecimal columns, you must also call setPrecision(int, int) and 
setScale(int, int) to specify the column’s precision and scale, respectively.

For columns that represent cash values, you must use 
JServerResultSet.setCurrency(int, long) to set values for the column.

See also java.sql.Types, ResultSetMetaData.getColumnType(int), setPrecision(int, int), 
setScale(int, int)

JServerResultSetMetaData.setCurrency(int, boolean)
Description Specifies whether the column represents a cash value.

java.sql.Types constant Java datatype
JServerResultSet 
method to set values

BINARY byte[] setBinaryStream or 
setBytes

BIT boolean setBoolean

CHAR java.lang.String setASCIIStream or 
setString

DECIMAL java.math.BigDecimal setBigDecimal

DOUBLE double setDouble

FLOAT double setDouble

INTEGER int setInt

LONGVARBINARY java.io.InputStream or 
byte[]

setBinaryStream or 
setBytes

LONGVARCHAR String setASCIIStream or 
setString

NUMERIC java.math.BigDecimal setBigDecimal

REAL float setFloat

SMALLINT short setShort

TIMESTAMP java.sql.Timestamp setTimestamp

TINYINT byte setByte

VARCHAR java.lang.String setString

VARBINARY byte[] setBytes



CHAPTER 1    Java Classes and Interfaces

API Reference 41

Syntax

public abstract void 

 setCurrency
(int columnIndex, boolean property)
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

property
true if the column represents a cash value, false otherwise. The default is 
false.

See also ResultSetMetaData.isCurrency(int)

JServerResultSetMetaData.setNullable(int, int)
Description Specifies whether column values can be null.

Syntax

public abstract void setNullable
(int columnIndex, int property)
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

property
A symbolic constant that takes the following values:

The default is columnNullableUnknown.

See also JServerResultSet.setNull(int), ResultSetMetaData.isNullable(int)

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Value To indicate

columnNullable Values for the column can be null.

columnNoNulls Values for the column cannot be null.

columnNullableUnknown Nullability of the column is not known.



com.sybase.jaguar.sql.JServerResultSetMetaData interface 

42  EAServer

JServerResultSetMetaData.setPrecision(int, int)
Description Specifies the column’s precision. The precision equals the number of decimal 

digits in a value.

Syntax

public abstract void setPrecision
(int columnIndex, int precision) 
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

precision
The precision of the column. The default is 0.

Usage This method applies to java.math.BigDecimal columns only.

See also ResultSetMetaData.getPrecision(int), setScale(int, int)

JServerResultSetMetaData.setScale(int, int)
Description Specifies the column’s scale. The scale equals the number of decimal digits to 

the right of the decimal point.

Syntax

public abstract void setScale
(int columnIndex, int scale) 
throws SQLException 

Parameters columnIndex
The index of the column. The first column has index 1.

scale
The scale for the column. The default is 0.

Usage This method applies to java.math.BigDecimal columns only.

See also ResultSetMetaData.getScale(int), setPrecision(int, int)

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData



CHAPTER 1    Java Classes and Interfaces

API Reference 43

com.sybase.jaguar.util.JException class
Description package com.sybase.jaguar.util;

public class JException 
extends Exception

JException is the generic exception that is thrown by methods in the EAServer 
classes or in generated client stub classes.

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also JConnectionNotFoundException, java.sql.SQLException



com.sybase.jaguar.util.JException class 

44  EAServer



API Reference 45

C H A P T E R  2 C Routines Reference

This chapter contains reference pages for the C routines that are provided 
for use by EAServer C or C++ components. Routines are indexed in the 
following sections:

• “Alphabetical list of all routines” on page 45

• “Routines for managing transaction flow” on page 47

• “Routines for managing cached connections” on page 47

• “Routines for handling errors in C or C++ components” on page 48

• “Routines for managing memory in C or C++ components” on page 
48

• “Routines to obtain user login information” on page 48

• “Unsupported routines” on page 48

Detailed reference pages for each routine follow the index sections. 
Routines are listed in alphabetical order by routine name.

Alphabetical list of all routines
• JagAlloc – Allocate memory for use in C component code.

• JagCmGetCachebyName – Retrieve the handle for the data source 
with the specified name.

• JagCmGetCachebyUser – Retrieve a data source handle for 
connections that use a specified set of values for server, user name, 
password, and connectivity library.

• JagCmGetConnection – Retrieve a connection from a specified data 
source or from any data source that matches a specified set of values 
for server, user name, password, and connectivity library.

• JagCmGetCtx – Obtain the connectivity-library-specific context 
reference that is used to allocate connections from a data source.



Alphabetical list of all routines 

46  EAServer

• JagCmGetProxyConnection – Retrieve a cached connection, specifying an 
alternate login name to set-proxy to.

• JagCmReleaseConnection – Place a connection back in the data source for 
reuse.

• JagCompleteWork – Indicate that the component’s work for the current 
transaction was successfully finished and that this component instance 
should be deactivated.

• JagContinueWork – State indicator routine to specify that the component’s 
work for the current transaction may be committed.

• JagDisallowCommit – State indicator routine to specify that the current 
transaction cannot be committed because the component’s work has not 
been completed.

• JagFree – Free memory that was allocated with JagAlloc.

• JagGetHostName – Retrieve the client host name for the client connection 
that is associated with a C or C++ component instance.

• JagGetPassword – Retrieve the password for the client connection that is 
associated with a C or C++ instance.

• JagGetPeerAddress – Retrieve the client host IP address for the client 
connection that is associated with a C or C++ component instance.

• JagGetUserName – Retrieve the user name for the client connection that 
is associated with a C or C++ component instance.

• JagInTransaction – Determine whether the current method is executing in 
a transaction.

• JagIsRollbackOnly – Query whether the current transaction is doomed to 
be rolled back or is still viable.

• JagLog – Write a message to the server’s log file.

• JagRollbackWork – Indicate that the component cannot complete its work 
for the current transaction. The component instance will be deactivated 
when the method returns.

• JagSleep – Suspend execution of the thread in which your component is 
running.



CHAPTER 2    C Routines Reference

API Reference 47

Routines for managing transaction flow
A component that participates in transactions can call these routines to 
influence the outcome of the current transaction. 

• JagCompleteWork – Indicate that the component’s work for the current 
transaction was successfully finished and that this component instance 
should be deactivated when the method returns.

• JagContinueWork – Indicate that the component should not be deactivated 
after the current method invocation; allow the current transaction to be 
committed if the component instance is deactivated.

• JagDisallowCommit – Indicate that the current transaction cannot be 
committed because the component’s work has not been completed; the 
instance remains active after the current method returns.

• JagInTransaction – Determine whether the current method is executing in 
a transaction.

• JagIsRollbackOnly – Query whether the current transaction is doomed to 
be rolled back or is still viable.

• JagRollbackWork – Indicate that the component cannot complete its work 
for the current transaction. The component instance will be deactivated 
when the method returns.

Routines for managing cached connections
EAServer provides the following routines to manage cached connections:

• JagCmGetCachebyName – Retrieve the handle for the data source with the 
specified name.

• JagCmGetCachebyUser – Retrieve a data source handle for connections 
that use a specified set of values for server, user name, password, and 
connectivity library.

• JagCmGetConnection – Retrieve a connection from a specified data source 
or from any data source that matches a specified set of values for server, 
user name, password, and connectivity library.

• JagCmGetCtx – Obtain the connectivity-library-specific context reference 
that is used to allocate connections from a data source.

• JagCmGetProxyConnection – Retrieve a cached connection, specifying an 
alternate login name to set-proxy to.



Unsupported routines 

48  EAServer

• JagCmReleaseConnection – Place a connection back in the data source for 
reuse.

Routines for handling errors in C or C++ components
These routines are useful for handling errors in C components. 

• JagLog – Write a message to the server’s log file.

Routines for managing memory in C or C++ components
• JagAlloc – Allocate memory for use in C component code.

• JagFree - Free memory that was allocated with JagAlloc.

Routines to obtain user login information
You can call these routines in C or C++ component code to obtain information 
about the client connection that is associated with the current instance:

• JagGetHostName – Retrieve the client host name for the client connection 
that is associated with a C or C++ component instance.

• JagGetPassword – Retrieve the password for the client connection that is 
associated with a C or C++ component instance.

• JagGetPeerAddress – Retrieve the client host IP address for the client 
connection that is associated with a C or C++ component instance.

• JagGetUserName – Retrieve the user name for the client connection that 
is associated with a C or C++ component instance.

Unsupported routines
These routines are no longer supported in EAServer 6.0 and later releases:

• JagBeginResults

• JagBindCol



CHAPTER 2    C Routines Reference

API Reference 49

• JagCmCacheProps

• JagCmGetCtx

• JagColAttributes

• JagDescribeCol

• JagEndResults

• JagFreeCollectionHandle

• JagFreeCollectionList

• JagFreeSharedDataHandle

• JagGetCollection

• JagGetCollectionList

• JagGetInstanceData

• JagGetSharedData

• JagGetSharedDataByIndex

• JagGetSharedValue

• JagLockCollection

• JagLockNoWaitCollection

• JagNewCollection

• JagNewSharedData

• JagNewSharedDataByIndex

• JagResultsPassthrough

• JagSendMsg

• JagSetSharedValue

• JagSetInstanceData

• JagUnlockCollection

JagAlloc
Description Allocate memory for use in C component code.



JagCmGetCachebyName 

50  EAServer

Syntax void * JAG_PUBLIC JagAlloc(
SQLINTEGER len
);

Parameters len
The number of bytes to be allocated.

Return value A pointer to newly allocated memory or NULL if the requested block of 
memory can not be allocated.

Usage In C components, memory used to store output parameters for variable-length 
types (string and binary) must be allocated with JagAlloc.

Memory allocated with JagAlloc must be freed with JagFree.

In C++ components, use the standard CORBA memory allocation and 
deallocation routines.

See also JagFree

JagCmGetCachebyName
Description Retrieve the handle for the data source with the specified name.

Note  Beginning in EAServer 6.0, all data sources allow access by name. 

Syntax JagStatus JagCmGetCachebyName (
SQLCHAR *cachename,
JagCmCache *cache
);

Parameters cachename 
The data source name.

cache 
The address of a JagCmCache handle. If a matching data source is available, 
its handle is returned as *cache. If no matching data source exists, *cache is 
set to NULL.

Return value
Return value To indicate

JAG_SUCCEED Success. *cache is set to the address of the matching data 
source.

JAG_FAIL Failure.



CHAPTER 2    C Routines Reference

API Reference 51

JagCmGetCachebyName fails for the following reasons:

• A NULL value was passed for cachename.

• No matching data source was found.

• A matching data source is installed, but the data source properties do not 
allow retrieval with JagCmGetCachebyName. 

JagCmGetCachebyName records a message that describes the failure reason in 
the server log file.

Usage JagCmGetCachebyName allows you to retrieve connections without specifying 
the user name, password, and other parameters that are required by the 
JagCmGetCachebyUser routine.

You can retrieve a data source handle with either JagCmGetCachebyUser or 
JagCmGetCachebyName. Calling JagCmGetCachebyName allows you to 
change the data source user name, password, or server properties without 
requiring corresponding changes to your component source code. 

See also JagCmGetCachebyUser

JagCmGetCachebyUser
Description Retrieve a data source handle for connections that use a specified set of values 

for server, user name, password, and connectivity library.

Syntax JagStatus JagCmGetCachebyUser (
SQLCHAR *username,
SQLCHAR *password,
SQLCHAR *server,
SQLCHAR *con_lib,
JagCmCache *cache
);

Parameters username 
The user name for connections in the desired data source.

password 
The password used by connections in the desired data source.

server 
For ODBC connections, the ODBC data source name (as you would use to 
call SQLConnect). For Client-Library connections, the server name (as you 
would use to call ct_connect).



JagCmGetCachebyUser 

52  EAServer

con_lib 
A string value indicating the connectivity library used by connections in the 
data source. Allowable values are:

cache 
The address of a JagCmCache handle. If a matching data source is available, 
its handle is returned as *cache. If no matching data source exists, *cache is 
set to NULL.

Return value

JagCmGetCachebyUser fails for the following reasons:

• A NULL value was passed for username, password, server, or con_lib.

• An invalid value was passed for con_lib.

• No matching data source was found.

Usage JagCmGetCachebyUser allows you to retrieve connections that match the 
desired characteristic values for:

• Server name

• User name

• Password

• Connectivity library

You can use this routine when you are not sure if a data source is configured 
for a particular set of characteristic values. If no such data source is available, 
JagCmGetCachebyUser sets the *cache parameter to NULL. If one or more 
matching data sources exist, JagCmGetCachebyUser sets *cache to the handle 
for the first matching data source that it finds.

See JagCmGetConnection for an example that calls JagCmGetCachebyUser.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x

Return value To indicate

JAG_SUCCEED Success. *cache is set to the address of the matching data 
source.

JAG_FAIL Failure.



CHAPTER 2    C Routines Reference

API Reference 53

See also JagCmGetCachebyName

JagCmGetConnection
Description Retrieve a connection from a specified data source or from any data source that 

matches a specified set of values for server, user name, password, and 
connectivity library.

Syntax JagStatus JagCmGetConnection (
JagCmCache *cache,
SQLCHAR *username,
SQLCHAR *password,
SQLCHAR *server,
SQLCHAR *con_lib,
SQLPOINTER *connection,
JagCmOpt opt
);

Parameters cache 
The address of a JagCmCache cache handle variable. The input value 
determines how the parameter is used:

• If *cache is not NULL, it must specify a valid data source handle. 
JagCmGetConnection attempts to return a connection from the specified 
data source. You can call JagCmGetCachebyUser to obtain a data 
source handle for any data source.

• If *cache is NULL, characteristic values for username, password, 
server, and con_lib must be supplied. If a matching data source is 
found, *cache is set to handle for the data source.

username 
When *cache is NULL, the user name for connections in the desired data 
source. Ignored when *cache is not NULL.

password 
When *cache is NULL, the password used by connections in the desired 
data source. Ignored when *cache is not NULL.

server 
When *cache is NULL, the name of the server to which cached connections 
are made. Ignored when *cache is not NULL.



JagCmGetConnection 

54  EAServer

con_lib 
When *cache is NULL, indicates a string value indicating the connectivity 
library used by connections in the data source. Ignored when *cache is not 
NULL.

When *cache is NULL, allowable values for con_lib are:

connection 
The address of a variable that receives the connection handle. Declare a 
variable of the appropriate type, as follows:

• For ODBC connections, pass the address of an SQLHDBC variable

• For Client-Library connections, pass the address of a 
CS_CONNECTION * variable

• For Oracle 7.x connections, pass the address of an OCI Lda_Def 
variable

• For Oracle 8.x connections, pass the address of an OCI OCISvcCtx 
variable

On successful return, the connection will be open and in a state that allows 
commands to be sent to the remote server. 

opt 
A symbolic value that indicates the desired behavior if all connections in a 
data source are in use. Allowable values are:

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x

Value of opt
JagCmGetConnection behavior when all 
connections are in use

JAG_CM_NOWAIT Fails with an error if no connection can be returned.

JAG_CM_WAIT Does not return until a connection becomes available.

JAG_CM_FORCE Allocates and opens a new connection. The new 
connection is not cached and will be destroyed when 
JagCmReleaseConnection is called.



CHAPTER 2    C Routines Reference

API Reference 55

Return value

Usage JagCmGetConnection returns a connection that was allocated and opened with 
the specified connectivity library and that has matching values for server, user 
name, and password. 

JagCmGetConnection behaves differently depending on whether the *cache 
parameter is NULL. 

Calls that pass a NULL data source handle

If *cache is NULL, CmGetConnection looks for a data source with settings that 
match the values of the username, password, server, and con_lib parameters. 
If a cache is found and a connection is available, a connection is returned from 
that data source and *cache is set to reflect the data source from which the 
connection came. If no data source is found, then a connection structure is 
allocated, a connection is opened using the specified connectivity library and 
the new connection structure is returned. If a data source was found, con_lib is 
ignored. The following table summarizes the JagCmGetConnection call when 
*cache is NULL.

Table 2-1: JagCmGetConnection behavior when *cache is NULL

Return value To indicate

ODBC status code The result of a SQLAllocConnect or SQLConnect call, or 
SQL_SUCCESS in the case where a previously opened 
connection is returned.

Client-Library status 
code

The result of a ct_con_alloc or ct_connect call, or 
CS_SUCCEED in the case where a previously opened 
connection is returned.

OCI_SUCCESS (An 
OCI 7.x and 8.x status 
code)

Successful retrieval of an OCI 7.x or 8.x connection.

OCI_FAIL (An OCI 
7.x and 8.x status 
code)

Failure to retrieve an OCI 7.x or 8.x connection. Check the 
server log for errors, and verify that the connection can be 
pinged.

JAG_FAIL Failure. JagCmGetConnection returns JAG_FAIL when the 
call specifies an invalid con_lib value.

Data 
source 
found?

Connection 
available in 
data source? Result

Yes Yes The call returns a connection handle in 
*connection and sets *cache to reflect the 
data source from which the connection 
came.



JagCmGetConnection 

56  EAServer

Cached and uncached connections

A connection obtained with JagCmGetConnection is either cached or uncached. 

A cached connection is one that was taken from a configured data source. 
When JagCmGetConnection returns a cached connection, it sets *cache to 
indicate the data source to which the connection belongs. Cached connections 
must be released to the data source from which they were taken: pass the data 
source reference obtained in the JagCmGetConnection call when calling 
JagCmReleaseConnection. 

An uncached connection is one that was not taken from a data source. 
JagCmGetConnection returns an uncached connection in either of the following 
cases:

• There is no data source configured with the specified 
username/password/server/con_lib parameter values.

• There is a matching data source, all its connections are in use, and the 
JagCmGetConnection call specifies JAG_CM_FORCE as the value of the 
opt parameter.

Calls that pass a non-NULL data source handle

When a data source handle is passed in *cache, JagCmGetConnection looks for 
an available connection in that data source. If none is available, then the value 
of the opt parameter determines whether the call waits for a connection to be 
released, fails, or opens a new, uncached connection.

See also JagCmReleaseConnection

Yes No Depending on the value of the opt 
parameter, the call fails, waits for an 
available connection, or allocates and opens 
a new, uncached connection. *cache is 
returned as NULL.

No N/A The call attempts to allocate and open a new, 
uncached connection. *cache is returned as 
NULL.

Data 
source 
found?

Connection 
available in 
data source? Result



CHAPTER 2    C Routines Reference

API Reference 57

JagCmGetCtx
Description Obtain the connectivity-library-specific context reference that is used to 

allocate connections from a data source.

Syntax JagStatus JagCmGetCtx (

JagCmCache *cache,

SQLCHAR *username,

SQLCHAR *password,

SQLCHAR *server,

SQLCHAR *con_lib,

SQLPOINTER *ctx

);

Parameters cache 
The address of a JagCmCache data source handle variable. The input value 
determines how the parameter is used:

• When *cache is NULL, the values of username, password, server, and 
con_lib are used to search for a matching data source. If found, *ctx is 
set to the address of the connectivity-library context handle, and *cache 
is set to the matching data source handle.

• If *cache contains a valid data source handle, JagCmGetCtx retrieves 
the connectivity-library context for the indicated data source. You can 
call JagCmGetCachebyUser or JagCmGetCachebyName to obtain a 
data source handle for any data source.

username 
When *cache is NULL, the user name for connections in the desired data 
source. Ignored when *cache is not NULL.

password 
When *cache is NULL, the password used by connections in the desired 
data source. Ignored when *cache is not NULL.

server 
When *cache is NULL, the name of the server to which cached connections 
are made. Ignored when *cache is not NULL.



JagCmGetCtx 

58  EAServer

con_lib 
When *cache is NULL, a string value indicating the connectivity library 
used by connections in the data source. Ignored when cache is not NULL.

When cache is NULL, con_lib must be one of the following:

ctx 
The address of a variable that receives the connectivity library context used 
to allocate cached connections. The returned type depends on the 
connectivity library, as follows:

Return value

JagCmGetCtx fails for the following reasons:

• The cache parameter is passed as NULL.

• The value of cache is not NULL, and *cache references an invalid data 
source.

• The value of cache is NULL, and there is no data source matching the 
values specified for the username, password, server, and con_lib 
parameters.

Usage JagCmGetCtx retrieves the context or environment handle that is used to 
allocate connections in a data source.

See also JagCmGetConnection

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

Connectivity library Value returned in *ctx

Client-Library A pointer to a CS_CONTEXT structure. Each data 
source uses a separate CS_CONTEXT structure.

ODBC An ODBC SQLHENV environment handle. This 
handle is shared by all ODBC data sources.

Returns To indicate

JAG_SUCCEED Successful retrieval of the CS_CONTEXT for a Client-
Library data source.

JAG_FAIL Failure. JagCmGetCtx fails when con_lib specifies an 
invalid value.



CHAPTER 2    C Routines Reference

API Reference 59

JagCmGetProxyConnection
Description Retrieve a cached connection, specifying an alternate login name to set-proxy 

to. 

Not all data sources support set-proxy
JagCmGetProxyConnection cannot be used with OCI connections. You must 
be connected to a database server, such as Adaptive Server Enterprise 11.5, that 
supports the set session authorization command. Set-proxy support must be 
enabled in the data source properties before you can use this feature. See 
Chapter 4, “Database Access,” in the EAServer System Administration Guide 
for more information.

Syntax JagStatus JAG_PUBLIC JagCmGetProxyConnection (

        JagCmCache      *cache,

        SQLCHAR         *username,

        SQLCHAR         *password,

        SQLCHAR         *server,

        SQLCHAR         *con_lib,

        SQLPOINTER      *connection,

        JagCmOpt        opt,

        SQLCHAR         *proxy

        );

Parameters cache 
The address of a JagCmCache data source handle variable. The input value 
determines how the parameter is used:

• When *cache is NULL, the values of username, password, server, and 
con_lib are used to search for a matching data source. If found, *ctx is 
set to the address of the connectivity-library context handle, and *cache 
is set to the matching data source handle.

• If *cache contains a valid data source handle, 
JagCmGetProxyConnection retrieves the connectivity-library context 
for the indicated data source. You can call JagCmGetCachebyUser or 
JagCmGetCachebyName to obtain a data source handle for any data 
source.

username 
When *cache is NULL, the user name for connections in the desired data 
source. Ignored when *cache is not NULL.



JagCmGetProxyConnection 

60  EAServer

password 
When *cache is NULL, the password used by connections in the desired 
data source. Ignored when *cache is not NULL.

server 
When *cache is NULL, the name of the server to which cached connections 
are made. Ignored when *cache is not NULL.

con_lib 
When *cache is NULL, a string value indicating the connectivity library 
used by connections in the data source. Ignored when cache is not NULL.

When cache is NULL, con_lib must be one of the following:

connection 
The address of a variable that receives the connection handle. Declare a 
variable of the appropriate type, as follows:

• For ODBC connections, pass the address of an SQLHDBC variable

• For Client-Library connections, pass the address of a 
CS_CONNECTION * variable

On successful return, the connection will be open and in a state that allows 
commands to be sent to the remote server. 

opt 
A symbolic value that indicates the desired behavior if all connections in a 
data source are in use. Allowable values are:

proxy
The user name to set-proxy to.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

Value of opt
JagCmGetConnection behavior when all 
connections are in use

JAG_CM_NOWAIT Fails with an error if no connection can be returned.

JAG_CM_WAIT Does not return until a connection becomes available.

JAG_CM_FORCE Allocates and opens a new connection. The new 
connection is not cached and will be destroyed when 
JagCmReleaseConnection is called.



CHAPTER 2    C Routines Reference

API Reference 61

Return value

Usage JagCmGetProxyConnection retrieves a cached connection, specifying an 
alternate login name to set-proxy to. Set-proxy support must be enabled in the 
data source properties. If support is enabled, connections retrieved from the 
data source with JagCmGetConnection set-proxy to the client user name. Call 
JagCmGetProxyConnection to specify a different user name to set-proxy to.

Other than the set-proxy behavior, JagCmGetProxyConnection is identical to 
JagCmGetConnection.

See Chapter 4, “Database Access,” in the EAServer System Administration 
Guide for information on defining data sources and enabling set-proxy support.

See also JagCmGetConnection

JagCmReleaseConnection
Description Place a connection back in the data source for reuse.

Syntax JagStatus JagCmReleaseConnection (

JagCmCache *cache,

SQLCHAR *username,

SQLCHAR *password,

SQLCHAR *server,

SQLCHAR *con_lib,

SQLPOINTER connection,

SQLINTEGER opt

);

Return value To indicate

ODBC status code The result of a SQLAllocConnect or SQLConnect call, or the 
set session authorization command.

Client-Library status 
code

The result of a ct_con_alloc or ct_connect call, or the set 
session authorization command.

JAG_FAIL Failure. JagCmGetConnection returns JAG_FAIL when the 
call specifies an invalid con_lib value.



JagCmReleaseConnection 

62  EAServer

Parameters cache 
The address of a JagCmCache data source handle variable. *cache can be 
NULL or a valid data source handle.

If *cache is not NULL, must be the data source handle that was used to 
obtain the connection by calling JagCmGetConnection. 

If *cache is NULL, JagCmReleaseConnection attempts to place the 
connection in a data source that has available space and that uses the same 
values for username, password, server, and con_lib. If no such data source 
has available space, the connection is closed and deallocated.

username 
The user name of the connection. Ignored unless cache is NULL.

password 
The password used by the connection. Ignored unless cache is NULL.

server 
The name of the server to which the connection is made. Ignored unless 
cache is NULL.

con_lib 
A string value indicating the connectivity library used by the connection. 
Ignored unless cache is NULL. Allowable values for con_lib are:

connection 
The connection handle to be released. The connection must be in a state that 
allows commands to be sent to the remote server. If commands were sent 
using the connection, the results of the commands must have been 
completely processed.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC driver library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x



CHAPTER 2    C Routines Reference

API Reference 63

opt 
One of the following symbolic constants:

Use JAG_CM_DROP to destroy a connection when errors have made it 
unusable.

Return value

Usage JagCmReleaseConnection releases control of a connection that was obtained 
from JagCmGetConnection.

 Warning! Do not release a connection more than once.

See also JagCmGetConnection

JagCompleteWork
Description Indicate that the component’s work for the current transaction has been 

successfully completed and is ready to be committed.

Syntax void JagCompleteWork();

opt value To indicate

JAG_CM_DROP The connection should be forced closed and 
deallocated. If the connection came from a data source, 
a new connection will be created in its place.

JAG_CM_UNUSED Normal behavior: a connection taken from a data 
source is placed back in the data source; a connection 
created outside of a data source is closed and 
destroyed.

Returns To indicate

ODBC or Client-
Library return status

The result of connectivity library calls to close and 
deallocate a connection that was not released to a data 
source.

CS_SUCCEED A Client-Library connection was returned to a data source.

SQL_SUCCESS An ODBC connection was returned to a data source.

JAG_FAIL Failure. JagCmReleaseConnection fails when cache is 
NULL and con_lib specifies an invalid value.



JagContinueWork 

64  EAServer

Usage JagCompleteWork specifies that the component has successfully completed its 
contribution to the current transaction. The component instance deactivates 
when control returns from the current component method invocation. 

If the component instance is the initiator of the transaction (that is, it was 
instantiated directly by a base client), then the component dispatcher attempts 
to commit the transaction. The transaction commits unless the commit is 
disallowed or vetoed; depending on the components that are participating, this 
can happen in any of the following ways:

• A participating C or C++ component has called JagDisallowCommit.

• A participating Java component throws an exception from its 
ServerBean.deactivate() method.

• A participating ActiveX component has called 
IObjectContext::disableCommit().

If a component is not transactional, then JagCompletework and 
JagRollbackWork have the same effect: both cause the component instance to 
deactivate after the currently executing method returns.

If a method calls none of JagCompleteWork, JagContinueWork, 
JagDisallowCommit, or JagRollbackWork, the default behavior is that of 
JagContinueWork.

See also JagContinueWork, JagDisallowCommit, JagRollbackWork

JagContinueWork
Description Indicate that the component should not be deactivated after the current method 

invocation; allow the current transaction to be committed if the component 
instance is deactivated.

Syntax void JagContinueWork();

Usage JagContinueWork specifies that the component instance should not be 
automatically deactivated after the current method completes. If the instance is 
deactivated before the next method invocation, the current transaction is 
committed.

When a method calls JagContinueWork, the component instance is not 
deactivated until one of the following happens:

• The component’s stub is destroyed explicitly by the client.



CHAPTER 2    C Routines Reference

API Reference 65

• The client disconnects without explicitly destroying the stub (the current 
transaction is always rolled back in this case).

• The component instance calls JagCompleteWork or JagRollbackWork 
during a subsequent method invocation.

JagContinueWork and JagDisallowCommit allow components to maintain state 
between method calls. If a component is not transactional, JagContinueWork 
and JagDisallowCommit have the same effect: both prevent immediate 
deactivation of the component. 

If a method calls none of JagCompleteWork, JagContinueWork, 
JagDisallowCommit, or JagRollbackWork, the default behavior is that of 
JagContinueWork.

See also JagCompleteWork, JagDisallowCommit, JagRollbackWork

JagDisallowCommit
Description Indicate that the current transaction cannot be committed because the 

component’s work has not been completed; the instance remains active after 
the current method returns. 

Syntax void JagDisallowCommit();

Usage JagDisallowCommit specifies that the component instance should not be 
automatically deactivated after the current method completes. If the instance is 
deactivated before the next method invocation, the current transaction is rolled 
back.

When a method calls JagDisallowCommit, the component instance is not 
deactivated until one of the following happens:

• The component’s stub is destroyed explicitly by the client.

• The client disconnects without explicitly destroying the stub (the current 
transaction is always rolled back in this case).

• The component instance calls JagCompleteWork or JagRollbackWork 
during a subsequent method invocation.

JagContinueWork and JagDisallowCommit allow components to maintain state 
between method calls. If a component is not transactional, JagContinueWork 
and JagDisableCommit have the same effect: both prevent immediate 
deactivation of the component. 



JagFree 

66  EAServer

If a method calls none of JagCompleteWork, JagContinueWork, 
JagDisallowCommit, or JagRollbackWork, the default behavior is that of 
JagContinueWork.

See also JagCompleteWork, JagContinueWork, JagIsRollbackOnly, JagRollbackWork

JagFree
Description Free memory that was allocated with JagAlloc.

Syntax void JAG_PUBLIC JagFree(
void *ptr
);

Parameters ptr 
A pointer to the memory to be freed.

See also JagAlloc

JagGetHostName
Description Retrieve the client host name for the client connection that is associated with a 

C or C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetHostName(
SQLPOINTER hostName, 
SQLINTEGER hostNameLen,
SQLINTEGER *returnLen)

Parameters hostName 
The address of a character array to receive the client host name or, if the 
client software did not supply a host name, a zero-length string.

Java clients and JagGetHostName
Java clients do not supply the client host name (there is no mechanism to 
retrieve the host name in Java). 

hostNameLen 
The length, in bytes, of the hostName array. The length must include space 
for a null-terminator.



CHAPTER 2    C Routines Reference

API Reference 67

returnLen 
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes, 
of the hostName value. The host name is null-terminated and the length 
includes the null-terminator.

Return value

JagGetHostName fails for the following reasons:

• hostName was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a 
component method call.

Check the server’s log file for more information when JagGetHostName fails.

See also JagGetPeerAddress

JagGetPassword
Description Retrieve the password for the client connection that is associated with a C or 

C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetPassword(
SQLPOINTER password, 
SQLINTEGER passwordLen,
SQLINTEGER *returnLen)

Parameters password 
The address of a character array to receive the client password. If the 
connection has a NULL password, JagGetPassword writes a null-terminator 
to the password buffer.

passwordLen 
The length, in bytes, of the password array. The length must include space 
for a null-terminator.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure



JagGetPeerAddress 

68  EAServer

returnLen 
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes, 
of the password value. The host name is null-terminated and the length 
includes the null-terminator.

Return value

JagGetPassword fails for the following reasons:

• password was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a 
component method call.

Check the server’s log file for more information when JagGetPassword fails.

See also JagGetHostName, JagGetUserName

JagGetPeerAddress
Description Retrieve the client host IP address for the client connection that is associated 

with a C or C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetPeerAddress(
SQLPOINTER peerAddress, 
SQLINTEGER bufLen,
SQLINTEGER *returnLen)

Parameters peerAddress 
The address of a character array to receive the client IP address. The output 
value is “0.0.0.0” if the client’s IP address is unavailable. 

bufLen 
The length, in bytes, of the peerAddress array. The length must include 
space for a null-terminator.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure



CHAPTER 2    C Routines Reference

API Reference 69

returnLen 
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes, 
of the peerAddress value. The host name is null-terminated and the length 
includes the null-terminator.

Return value

JagGetPeerAddress fails for the following reasons:

• peerAddress was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a 
component method call.

Check the server’s log file for more information when JagGetPeerAddress 
fails.

See also JagGetHostName

JagGetUserName 
Description Retrieve the user name for the client connection that is associated with a C or 

C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetUserName(
SQLPOINTER userName, 
SQLINTEGER userNameLen,
SQLINTEGER *returnLen)

Parameters userName 
The address of a character array to receive the user name. The user name can 
have 0 length if no user name was supplied. In this case, only a null-
terminator will be written to *userName. (In practice, a user name is 
required to connect to the server unless user authentication is disabled.)

userNameLen 
The length, in bytes, of the userName array. The length must include space 
for a null-terminator.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure



JagInTransaction 

70  EAServer

returnLen 
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length in bytes of 
the userName value. The user name is null-terminated and the length 
includes the null-terminator.

Return value

JagGetUserName fails for the following reasons:

• userName was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a 
component method call.

Check the server’s log file for more information when JagGetUserName fails.

See also JagGetHostName, JagGetPassword

JagInTransaction
Description Determine whether the current method is executing in a transaction.

Syntax JagBoolean JagInTransaction();

Usage Methods can call JagInTransaction to determine whether they are executing 
within a transaction. Methods in components that are declared to be 
transactional always execute as part of a transaction.

See also JagIsRollbackOnly

JagIsRollbackOnly
Description Query whether the current transaction is doomed to be rolled back or is still 

viable.

Return value To indicate

JAG_SUCCEED Success.

JAG_FAIL Failure.



CHAPTER 2    C Routines Reference

API Reference 71

Syntax JagBoolean JagIsRollbackOnly()

Return value JAG_TRUE if the current transaction is doomed, in other words, it can never 
be committed. If executing outside of any transaction, returns JAG_FALSE.

Usage Transactional components that issue intercomponent method calls should call 
JagIsRollbackOnly afterward to determine whether the current transaction is 
still viable. If not, the method should clean up and call JagRollbackWork to 
deactivate the current instance. 

Transactions are doomed when a participating component has called 
JagRollbackWork (or its equivalent if the component is a Java or ActiveX 
component). Work performed by participating components is rolled back when 
the root component of the transaction deactivates. 

See also JagInTransaction, JagRollbackWork

JagLog
Description Write a message to the server’s log file.

Syntax #include <jagpublic.h>

JagStatus JagLog(
JagBoolean use_date, 
SQLPOINTER logmsg)

Parameters use_date 
Pass as JAG_TRUE to indicate that the message should be preceded by a 
timestamp in the log; pass as JAG_FALSE to log the message without a 
timestamp.

logmsg 
A null-terminated string containing the message to be logged. The message 
must include a newline at the end.

Return value
Return value To indicate

JAG_SUCCEED Success.

JAG_FAIL Failure. JagLog fails if the log file can not be opened or if 
logmsg is NULL. If the log file cannot be opened, log 
messages are written to the server process’ standard error 
device.



JagRollbackWork 

72  EAServer

JagRollbackWork
Description Indicate that the component cannot complete its work for the current 

transaction. The component instance will be deactivated when the method 
returns.

Syntax void JagRollbackWork();

Usage JagRollbackWork specifies that the component cannot complete its work for the 
current transaction. The transaction will be rolled back when the initiating 
component is deactivated.

If a component is not transactional, then JagRollbackWork and 
JagRollbackWork have the same effect: both cause the component instance to 
deactivate after the currently executing method returns.

If a method calls none of JagCompleteWork, JagContinueWork, 
JagDisallowCommit, or JagRollbackWork, the default behavior is that of 
JagContinueWork.

See also JagCompleteWork, JagContinueWork, JagDisallowCommit, JagInTransaction, 
JagIsRollbackOnly

JagSleep
Description Suspend execution of the thread in which your component is running.

Syntax void JAG_PUBLIC JagSleep (
JagLong seconds)

Parameters seconds 
The number of seconds to sleep.

Usage JagSleep suspends execution of the thread in which the current component 
instance is running. JagSleep is useful in service components that perform 
background processing in the run method. run typically loops forever, and 
calling JagSleep prevents your component from dominating the server’s CPU 
execution time. 



CHAPTER 2    C Routines Reference

API Reference 73

JagSleep can only be called by a component that is executing within EAServer. 
This routine is not available to clients.

 Warning! In EAServer components, never call the sleep system routine or any 
other routine that suspends execution of the current process. Doing so suspends 
execution of the server. JagSleep suspends only the current thread, allowing 
components running in other threads to continue execution.



JagSleep 

74  EAServer



API Reference 75

A P P E N D I X  A Deprecated Java Classes and 
Interfaces

This appendix documents obsolete EAServer Java classes and interfaces, 
which are based on an obsolete version (version 0.4) of the Enterprise Java 
Beans specification.

Rather than using these models for developing new Java components, use 
the latest EJB version, for portability to other J2EE based application 
servers.

Package Index

com.sybase.jaguar.beans.enterprise
Classes and interfaces used to implement Java components and to create 
stubs for remote communication. These classes are based on an early draft 
of the Enterprise JavaBeans specification. Future releases of the Java 
Developer’s Kit will likely provide built-in classes with the same 
functionality:

• com.sybase.jaguar.beans.enterprise.EnterpriseBeanException class – 
Exception that can be thrown by components that implement the 
ServerBean interface..

• com.sybase.jaguar.beans.enterprise.InstanceContext interface – An 
InstanceContext object allows a Java component to influence the 
outcome of the transaction in which it is participating.

• com.sybase.jaguar.beans.enterprise.ServerBean interface – Interface 
for EAServer Java components, with methods that support 
transactional behavior and reuse of component instances.



com.sybase.jaguar.beans.enterprise.EnterpriseBeanException class 

76  EAServer

• com.sybase.jaguar.beans.enterprise.SharedObjectException class – Class 
representing exceptions that are thrown by SharedObjects interface 
methods.

• com.sybase.jaguar.beans.enterprise.SharedObjects interface – Interface to 
support sharing data between instances of the same component.

com.sybase.jaguar.beans.enterprise.EnterpriseBeanEx
ception class
Description package com.sybase.jaguar.beans.enterprise;

public class JCM extends Exception

Exception that can be thrown by components that implement the ServerBean 
interface.

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also ServerBean

com.sybase.jaguar.beans.enterprise.InstanceContext 
interface
Description package com.sybase.jaguar.beans.enterprise;

public interface InstanceContext extends Object

An InstanceContext object allows a Java component to influence the outcome 
of the transaction in which it is participating. A component method’s calls to 
the InstanceContext state primitives also determine the component’s state after 
the method completes. See “ServerBean lifecycle” on page 82 for more 
information.

Constructors None. A component that implements the ServerBean interface receives an 
InstanceContext object as a parameter to the method activate(InstanceContext, 
String). A component that does not implement the ServerBean interface can call 
Jaguar.getInstanceContext() to obtain an InstanceContext object.



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 77

Methods • completeWork() – For transactional components, indicate that the 
transaction in which a component is participating should be committed. 
For any component, indicate that the instance should be deactivated.

• continueWork() – Indicate that the current component instance cannot be 
deactivated automatically when control returns from the current 
component method invocation.

• getSharedObjects() – Get a SharedObjects object that allows access to data 
shared among instances of a component.

• inTransaction() – Determine whether the current component instance is 
executing in the context of a transaction.

• isRollbackOnly() – Determine if the current transaction is doomed.

• rollbackWork() – For transactional components, indicate that the 
transaction in which a component is participating should be aborted and 
rolled back. For any component, indicate that the instance should be 
deactivated.

See also com.sybase.jaguar.beans.enterprise.ServerBean interface, 
com.sybase.jaguar.beans.enterprise.SharedObjects interface

InstanceContext.completeWork()
Description For transactional components, indicate that the transaction in which a 

component is participating should be committed. For any component, indicate 
that the instance should be deactivated.

Syntax

public abstract void completeWork();

Usage For a transactional component, completeWork() indicates that the component’s 
contribution to the current transaction has been successfully completed. For 
any component, completeWork() indicates that the component instance should 
be deactivated when control returns from the current component method 
invocation. 

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext



com.sybase.jaguar.beans.enterprise.InstanceContext interface 

78  EAServer

If the component is transactional and the component instance is the initiator of 
the transaction (that is, it was instantiated directly by a base client), then 
EAServer attempts to commit the transaction. The transaction commits unless 
the commit is vetoed. Depending on the components that are participating, a 
veto can happen in any of the following ways:

• A participating Java component throws an exception from its 
ServerBean.deactivate() method.

• A participating C component has called JagDisallowCommit.

• A participating ActiveX component has called 
IObjectContext.disableCommit().

If the component instance is not the initiator of the transaction, the transaction 
may be rolled back when another participating instance calls rollbackWork() in 
addition to any of the cases listed above.

You can call completeWork(), continueWork(), and rollbackWork() many times in 
one method. Only the last call to execute takes effect. If you call none of these, 
the default behavior is that specified by continueWork().

See also continueWork(), rollbackWork(), isRollbackOnly(), inTransaction()

InstanceContext.continueWork()
Description Indicate that the current component instance cannot be deactivated 

automatically when control returns from the current component method 
invocation.

Syntax

public abstract void continueWork();

Usage Calling continueWork() indicates that the component instance should not be 
deactivated when the method returns. The component instance is not 
deactivated until one of the following happens:

• The transaction times out or the client’s instance reference expires. In 
either case, the current transaction is rolled back.

• The transaction’s root component calls completeWork() or rollbackWork(). 
If your component implements the ServerBean interface, it can veto the 
transaction by throwing an exception in the deactivate() method.

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 79

• The component instance calls completeWork() or rollbackWork() during a 
subsequent method invocation.

You can call completeWork(), continueWork(), and rollbackWork() many times in 
one method. Only the last call to execute takes effect. If you call none of these, 
the default behavior is that specified by continueWork().

See also completeWork(), rollbackWork(), isRollbackOnly(), inTransaction()

InstanceContext.getSharedObjects()
Description Get a SharedObjects object that allows access to data shared among instances 

of a component.

Syntax

public abstract SharedObjects getSharedObjects();

See also com.sybase.jaguar.beans.enterprise.SharedObjects interface

InstanceContext.inTransaction()
Description Determine whether the current component instance is executing in the context 

of a transaction.

Syntax

public abstract boolean inTransaction();

Return value true if the current component instance is executing as part of a transaction; 
false otherwise.

See also completeWork(), continueWork(), isRollbackOnly(), rollbackWork()

InstanceContext.isRollbackOnly()
Description Determine if the current transaction is doomed.

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext



com.sybase.jaguar.beans.enterprise.InstanceContext interface 

80  EAServer

Syntax

public abstract boolean isRollbackOnly();

Return value true if the current transaction is doomed; false if the transaction is in a 
committable state or if the current component instance is not executing as part 
of a transaction.

Usage Call isRollbackOnly() to determine whether the current transaction is still viable.

If a component participates in a multi-component transaction, you should call 
isRollbackOnly() in the following places:

• After issuing intercomponent calls

• At the start of methods that can be executed by intercomponent calls.

If the transaction is no longer viable, there is no point in continuing execution. 
The method should clean up and call rollbackWork() to deactivate the 
component instance. 

See also completeWork(), continueWork(), inTransaction(), rollbackWork()

InstanceContext.rollbackWork()
Description For transactional components, indicate that the transaction in which a 

component is participating should be aborted and rolled back. For any 
component, indicate that the instance should be deactivated.

Syntax

public abstract void rollbackWork();

Usage For a transactional component, rollbackWork() indicates that the component 
cannot complete its contribution to the current transaction. After the method 
returns, the transaction is doomed: the transaction flow continues until all 
participating components are deactivated. At that point, the transaction is 
rolled back. 

In any component, rollbackWork() indicates that the component instance should 
be deactivated when control returns from the current component method 
invocation.

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 81

You can call rollbackWork(), continueWork(), and completeWork() many times in 
one method; only the last call to execute takes effect. If you call none of these, 
the default behavior is that specified by continueWork().

Transactional components that make intercomponent method calls can call 
isRollbackOnly() to determine whether the current transaction is still viable or 
has been set to rollback only.

See also completeWork(), continueWork(), inTransaction(), isRollbackOnly() 

com.sybase.jaguar.beans.enterprise.ServerBean 
interface
Description package com.sybase.jaguar.beans.enterprise;

public interface ServerBean

Interface for EAServer Java components, with methods that support 
transactional behavior and reuse of component instances.

Constructors None required. If a component’s implementation class provides a default 
constructor, the EAServer runtime server calls the default constructor when 
creating a new component instance.

Methods • activate(InstanceContext, String) – Indicates that this component instance 
has been activated.

• canReuse() – Specify whether this component instance is eligible for 
reuse.

• deactivate() – Indicates that this component instance has been deactivated.

• destroy() – Indicates that this component instance is being released and 
will not be activated again.

Usage A component that implements ServerBean can participate in instance pooling. 
The server can maintain a cache of idle component instances and bind them to 
individual clients only as needed. This strategy allows the server to service 
more clients without the performance drain caused by allocating a component 
instance for each request.



com.sybase.jaguar.beans.enterprise.ServerBean interface 

82  EAServer

The activate(InstanceContext, String) method indicates that an instance is being 
removed from the pool to service a client. The deactivate() method indicates 
that the instance is finished servicing the client. Instance reuse is optional (see 
“Support for instance pooling” on page 83). However, components that 
support it will achieve greater scalability.

ServerBean lifecycle

Figure A-1 illustrates the states and state transitions in the lifecycle of a Java 
component that implements ServerBean.

Figure A-1: States in the ServerBean lifecycle

The state transitions are as follows:

• New instance – The EAServer runtime allocates a new instance of the 
component class. The default constructor is called if one exists. The 
instance remains idle until the first method invocation. 

• Activation – Activation prepares a component instance for use by a client. 
activate(InstanceContext, String) is called. Once an instance is activated, it 
is bound to one client and can service no other client until it has been 
deactivated.

• In Method – In response to a method invocation request from the client, 
the EAServer runtime calls the corresponding class method in the 
component. The next state depends on the method’s execution, as follows:

• If the method throws an uncaught exception, the instance is 
deactivated. If the method is participating in a transaction, the 
transaction is rolled back.



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 83

• If the method has called InstanceContext.rollbackWork() or 
InstanceContext.completeWork(), the instance is deactivated.

• If the method has called InstanceContext.continueWork(), the instance 
is not deactivated. The client’s next method invocation is serviced by 
the same instance unless the client destroys its reference or 
disconnects. 

• Deactivation – Deactivation occurs when:

• The instance has called either InstanceContext.rollbackWork() or 
InstanceContext.completeWork()

• The current transaction times out, or

• The client’s instance reference has expired.

The EAServer runtime calls the component’s deactivate() method to 
indicate deactivation. 

You can define your component so that instances are recycled after 
deactivation, as described in “Support for instance pooling” on page 83. 

• Destruction – The EAServer runtime calls destroy() to indicate that 
references to the class instance are being released. The instance is 
deallocated at a later time by the Java garbage collector thread.

Support for instance pooling

Instance pooling allows a single component instance to be activated and 
deactivated many times to serve different clients. Instance pooling can increase 
the performance of your application, since it eliminates unnecessary instance 
allocations. There are two ways to support pooling:

• In the Management Console, you can configure your component so 
instances are always pooled by selecting the Pooling option in the 
component properties. 

• Alternatively, you can implement the ServerBean.canReuse() method to 
specify at runtime whether an instance can be pooled. If canReuse() 
returns true, the instance is pooled. Otherwise, the instance is destroyed. 

If the component’s Pooling option is enabled, EAServer never calls the 
canReuse() method since instances are always pooled.



com.sybase.jaguar.beans.enterprise.ServerBean interface 

84  EAServer

If your component supports pooling, you must add code to the 
activate(InstanceContext, String) method that resets any class variables to their 
initial values. When activate returns, the component state must be the same as 
if the component were freshly constructed. If the component keeps references 
to stateful objects across activation cycles, you must reset these objects to an 
initial state as well.

See also InstanceContext

ServerBean.activate(InstanceContext, String)
Description Indicate that this component instance has been activated. 

Syntax

public abstract void activate
(InstanceContext ctx, String instanceKey)
throws EnterpriseBeanException;

Parameters ctx
An InstanceContext that is associated with the current component instance. 
activate should save a reference to the instance context for use in later 
method calls. This reference becomes invalid and must be discarded when 
deactivate() is called.

instanceKey
Not used.

Usage activate and deactivate allow a component’s instances to be pooled. If a 
component supports instance pooling, activate must reset any class variables to 
the initial values, as if the component instance were being freshly constructed. 
To prohibit instance pooling, code the canReuse() method to return false. 

See “ServerBean lifecycle” on page 82 for more information on when activate 
and deactivate are called.

If a component is declared to be transactional and its activate method throws an 
exception, the EAServer runtime server rolls back the transaction in which the 
component is about to participate.

See also deactivate(), canReuse() 

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 85

ServerBean.canReuse()
Description Specify whether this component instance is eligible for reuse.

Syntax

public abstract boolean canReuse()

Return value true or false to indicate whether the component instance is eligible to be 
recycled.

Usage If the Pooling option is not set in component properties, EAServer calls the 
component’s canReuse method after deactivating each instance to determine 
whether the instance can be reused. If canReuse returns false, EAServer 
destroys the instance. If the Pooling option is set, EAServer never calls the 
canReuse method. .

Components that support instance pooling must be coded such that a recycled 
instance behaves the same as a newly allocated instance. Your implementation 
of the activate(InstanceContext, String) method must ensure that the instance 
state is reset to that of a newly allocated instance.

See also activate(InstanceContext, String), deactivate(), destroy()

ServerBean.deactivate()
Description Indicates that this component instance has been deactivated. 

Syntax

public abstract void deactivate()
throws EnterpriseBeanException;

Usage The EAServer runtime calls deactivate() to indicate that the component 
instance is being deactivated. See “ServerBean lifecycle” on page 82 for more 
information on when activate and deactivate are called.

If your component caches data changes, you can code the deactivate() method 
to send cached changes to the remote database server. deactivate() can call 
InstanceContext.isRollbackOnly() to determine whether the current transaction 
is being committed or rolled back. If the transaction is being committed, 
deactivate() must send any cached database changes to the remote server(s).

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean



com.sybase.jaguar.beans.enterprise.SharedObjectException class 

86  EAServer

If deactivate() throws an exception, the current transaction (if any) is rolled 
back; the caller of the component method that attempted to commit the 
transaction receives the exception as a JException with the message text 
included.

If your component is transactional and it maintains state (it calls 
InstanceContext.continueWork() from one or more methods), then deactivate() 
must verify that the current component state is ready for commit and throw an 
exception if it is not.

Note
deactivate should release references to the InstanceContext object that was 
received in the activate(InstanceContext, String) method. The InstanceContext 
is meaningless after deactivate has been called.

See also activate(InstanceContext, String), canReuse(), destroy()

ServerBean.destroy()
Description Indicates that this component instance is being released and will not be 

activated again.

Syntax

public abstract void destroy();

Usage destroy should release any resources that were allocated by the component’s 
constructor.

See also activate(InstanceContext, String), deactivate(), canReuse()

com.sybase.jaguar.beans.enterprise.SharedObjectExc
eption class
Description package com.sybase.jaguar.beans.enterprise;

public class SharedObjectException 
extends Exception 

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 87

Class representing exceptions that occur during SharedObjects processing. 

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also SharedObjects

com.sybase.jaguar.beans.enterprise.SharedObjects 
interface
Description package com.sybase.jaguar.beans.enterprise;

public interface SharedObjects

Interface to support sharing data between instances of the same component.

Constructors None. See InstanceContext.getSharedObjects(), 
ServerBean.activate(InstanceContext, String).

Methods • get(int) – Retrieve the value of a property.

• lock(int) – Place an advisory lock on a property.

• lockNoWait(int) – Place an advisory lock on a property. If the property is 
currently locked, do not wait for the current lock to be released and 
execution immediately returns to the calling method.

• set(int, Object) – Set the value of a property.

• unlock(int) - Unlock a property locked by the same instance executing the 
unlock method.

See also com.sybase.jaguar.beans.enterprise.InstanceContext interface

SharedObjects.get(int)
Description Retrieve the value of a property.

Syntax
Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects



com.sybase.jaguar.beans.enterprise.SharedObjects interface 

88  EAServer

public abstract Object get
(int index)
throws SharedObjectException;

Parameters index
An arbitrary integer that identifies the property from which you want to 
retrieve the value.

Usage To retrieve a property value, retrieve an object reference to the property using 
the get method and then assign the object reference to a variable with the 
desired datatype. If the property has not been initialized, the property and 
variable are initialized to null.

Executing a single get method on a property is atomic. Atomic means that an 
operation on data will complete before any other operations can access that 
data.

See also set(int, Object), lock(int), lockNoWait(int), unlock(int)

SharedObjects.lock(int)
Description Place an advisory lock on a property.

Syntax

public abstract void lock
(int index)
throws SharedObjectException;

Parameters index
An integer that identifies the property you want to lock.

Usage Use the lock method in combination with the lockNoWait and unlock methods to 
synchronize multiple updates to and reads from the same property value. The 
lock method places an advisory lock on a property. An advisory lock prevents 
another instance from locking the property but does not prevent another 
instance from using the get and set methods to retrieve and update the property 
value. If the property is currently locked, the lock method waits for the current 
lock to be released.

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 89

You must lock a property before using the get or set method to retrieve or 
update the property value. When you lock a property that has not been set, the 
property is created and its value is initialized to null. You can lock the same 
property more than once as long as all locks are executed from the same 
component instance. However, these multiple locks are not iterative and you 
only have to unlock the property once.

See also lockNoWait(int), unlock(int), get(int), set(int, Object)

SharedObjects.lockNoWait(int)
Description Place an advisory lock on a property. If the property is currently locked, do not 

wait for the current lock to be released and execution immediately returns to 
the calling method.

Syntax

public abstract void lockNoWait
(int index)
throws SharedObjectException;

Parameters index
An integer that identifies the property you want to lock.

Usage Use the lockNoWait method in combination with the lock and unlock methods to 
synchronize multiple updates to and reads from the same property value. The 
lockNoWait method places an advisory lock on a property. An advisory lock 
prevents another instance from locking the property but does not prevent 
another instance from using the get and set methods to retrieve and update the 
property value. If the property is currently locked, the lockNoWait method does 
not wait for the current lock to be released and execution immediately returns 
to the calling method.

You must lock a property before using the get or set method to retrieve or 
update the property value. When you lock a property that has not been set, the 
property is created and its value is initialized to null. You can lock the same 
property more than once as long as all locks are executed from the same 
component instance. However, these multiple locks are not iterative and you 
only have to unlock the property once.

See also lock(int), unlock(int), get(int), set(int, Object)

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects



com.sybase.jaguar.beans.enterprise.SharedObjects interface 

90  EAServer

SharedObjects.set(int, Object)
Description Set the value of a property.

Syntax

public abstract Object set
(int index)
Object obj)

throws SharedObjectException;

Parameters index
An integer that identifies the property for which you want to set a value.

obj
An object containing the new property value.

Usage To set a property value, assign a value an object and pass that object as the obj 
parameter in the set method.

Executing a single set method on a property is atomic. That is, the call will 
complete before any other operations can access the property being set.

See also get(int), lock(int), lockNoWait(int), unlock(int)

SharedObjects.unlock(int)
Description Unlock a property locked by the same instance executing the unlock method.

Syntax

public abstract void unlock
(int index)
throws SharedObjectException

Parameters index
An integer that identifies the property to be locked.

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects



APPENDIX A    Deprecated Java Classes and Interfaces

API Reference 91

Usage Use the unlock method in combination with the lock and lockNoWait methods to 
synchronize multiple updates to and reads from the same property value. The 
unlock method releases an advisory lock on a property that has been locked by 
the instance executing the unlock method. An advisory lock prevents another 
instance from locking the property but does not prevent another instance from 
using the get and set methods to retrieve and update the property value.

You can unlock a property that has not been set. Even if a property has been 
locked more than once, you only have to unlock the property once.

See also lock(int), lockNoWait(int), get(int), set(int, Object)



com.sybase.jaguar.beans.enterprise.SharedObjects interface 

92  EAServer



API Reference 93

B
byNameAllowed

method in Java class 
com.sybase.jaguar.jcm.JCMCache 14

byNameAllowed method in Java class 
com.sybase.jaguar.jcm.JCM 11

C
com.sybase.jaguar.jcm.JCM Java class

JCM.getCache method 11
JCM.getCacheByName method 12

com.sybase.jaguar.jcm.JCMJava class
overview of 10

com.sybase.jaguar.jcm.JCMCache Java class
 15
overview of 13
byNameAllowed method 14
dropConnection method 15
getConnection method 15, 17
getName method 19
getPassword method 19
getPoolSizeMax method 17
getPoolSizeMin method 17
getRemoteServerName method 19
getUserNamemethod 20
JCM_FORCE field 13
JCM_NOWAIT field 13
JCM_WAIT field 13
releaseConnection method 20

com.sybase.jaguar.jcm.JCMJava class
JCM.getCacheByName method 11

com.sybase.jaguar.jcm.JConnectionNotFound
Java class 21

com.sybase.jaguar.server.Jaguar Java class
overview 21
getHostName method 23
getPeerAddress method 24

getServerName method 23, 24
inJaguar method 25
writeLog method 25

com.sybase.jaguar.server.JContext Java class
overview 26
createServerResultSet method 27
forwardResultSet method 27

com.sybase.jaguar.server.JContext java class
createServerResultSetMetaData method 26

com.sybase.jaguar.sql.JServerResultSet Java interface
overview 29
 33
done method 30
findColumn method 30
getMetaData method 31
next method 31
setASCIIStream method 34
setBigDecima method 32
setBinaryStream method 34
setBoolean method 34
setByte method 34
setCurrency method 32
setDouble method 34
setFloat method 34
setInt method 34
setShort method 34
setString method 34
setTimestamp method 34

com.sybase.jaguar.sql.JServerResultSetMetaData Java 
interface

overview 35
setColumnCount method 36
setColumnNamemethod 38
setColumnType method 38
setCurrency method 40
setNullable method 41
setPrecision method 42
setScale method 42

com.sybase.jaguar.sql.JServerResultSetMetaDataJava 
interface

Index



Index

94 EAServer

setColumnLabel method 38
com.sybase.jaguar.util.JException Java class

overview 43
connection management

C routines for 47
Java classes for 10, 13

conventions xii
createServerResultSet

method in com.sybase.jaguar.server.JContext Java class 
27

createServerResultSetMetaData
method in com.sybase.jaguar.server.JContext Java class 

26

D
data sources

C routines for 47
Java class for 13

done
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 30
dropConnection

method in Java class com.sybase.jaguar.jcm.JCMCache 
15

F
findColumn

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 30

forwardResultSet
method in com.sybase.jaguar.server.JContext Java class 

27

G
getCache method in Java class com.sybase.jaguar.jcm.JCM 

11
getCacheByName method in Java class 

com.sybase.jaguar.jcm.JCM 12
getConlibName

method in Java class com.sybase.jaguar.jcm.JCMCache 

15
getConnection

method in Java class 
com.sybase.jaguar.jcm.JCMCache 15, 17

getHostName
method in Java class 

com.sybase.jaguar.server.Jaguar 23
getMetaData

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 31

getPassword
method in Java class 

com.sybase.jaguar.jcm.JCMCache 19
getPeerAddress

method in Java class 
com.sybase.jaguar.server.Jaguar 24

getPoolSizeMax
method in Java class 

com.sybase.jaguar.jcm.JCMCache 17
getPoolSizeMin

method in Java class 
com.sybase.jaguar.jcm.JCMCache 17

getRemoteServerName
method in Java class 

com.sybase.jaguar.jcm.JCMCache 19
getServerName

method in Java class 
com.sybase.jaguar.server.Jaguar 23, 24

getUserName
method in Java class 

com.sybase.jaguar.jcm.JCMCache 20

I
inJaguar

method in Java class 
com.sybase.jaguar.server.Jaguar 25

J
JagCmGetCachebyName

CM-Library routine 50
JagCmGetCachebyUser

CM-Library routine 51



Index

API Reference 95

JagCmGetConnection
CM-Library routine 53

JagCmGetCtx
CM-Library routine 57

JagCmReleaseConnection
CM-Library routine 61

Jaguar
Java class 21

Java
classes and interfaces, index of 1, 75
EAServer packages 1, 75

JCM
Java connection management class 10

JCM_FORCE
field in Java class 

com.sybase.jaguar.jcm.JCMCache 13
JCM_NOWAIT

field in Java class 
com.sybase.jaguar.jcm.JCMCache 13

JCM_WAIT
field in Java class 

com.sybase.jaguar.jcm.JCMCache 13
JCMCache

Java connection cache class 13
JConnectionNotFoundException

Java class 21
JContext

Java class 26
JException

Java class 43
JServerResultSet

Java interface 29
JServerResultSetMetaData

Java interface 35

N
next

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 31

R
releaseConnection

method in Java class 
com.sybase.jaguar.jcm.JCMCache 20

S
setASCIIStream

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

setBigDecimal
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 32
setBinaryStream

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

setBoolean
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 34
setByte

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

setColumnCount
method in Java interface 

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 36

setColumnLabel
method in Java interface 38

setColumnName
method in Java interface 

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 38

setColumnType
method in Java interface 

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 38

setCurrency
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 32
method in Java interface 

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 40

setDouble
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 34
setFloat

method in Java interface 



Index

96 EAServer

com.sybase.jaguar.sql.JServerResultSet 34
setInt

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

setNull
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 33
setNullable

method in Java interface 
com.sybase.jaguar.sql.JServerResultSetMetaData 

41
setPrecision

method in Java interface 
com.sybase.jaguar.sql.JServerResultSetMetaData 

42
setScale

method in Java interface 
com.sybase.jaguar.sql.JServerResultSetMetaData 

42
setShort

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

setString
method in Java interface 

com.sybase.jaguar.sql.JServerResultSet 34
setTimestamp

method in Java interface 
com.sybase.jaguar.sql.JServerResultSet 34

T
typographical conventions xii

W
writeLog

method in Java class com.sybase.jaguar.server.Jaguar 
25


	API Reference Manual
	About This Book
	CHAPTER 1 Java Classes and Interfaces
	Package index
	com.sybase.CORBA.jdbc11
	com.sybase.jaguar.jcm
	com.sybase.jaguar.server
	com.sybase.jaguar.sql
	com.sybase.jaguar.util

	com.sybase.CORBA.jdbc11.IDL class
	IDL.getDate(java.sql.Date)
	IDL.getDecimal(java.math.BigDecimal)
	IDL.getMoney(java.math.BigDecimal)
	IDL.getResultSet(java.sql.ResultSet)
	IDL.getTime(java.sql.Time)
	IDL.getTimestamp(java.sql.Timestamp)

	com.sybase.CORBA.jdbc11.IdlResultSet
	com.sybase.CORBA.jdbc11.SQL class
	SQL.getBigDecimal(BCD.Decimal)
	SQL.getBigDecimal(BCD.Money)
	SQL.getDate(MJD.Date)
	SQL.getResultSet(TabularResults.ResultSet)
	SQL.getTime(MJD.Time)
	SQL.getTimestamp(MJD.Timestamp)

	com.sybase.jaguar.jcm.JCM class
	JCM.byNameAllowed(String)
	JCM.getCache(String, String, String)
	JCM.getCacheByName(String)

	com.sybase.jaguar.jcm.JCMCache class
	JCMCache.byNameAllowed()
	JCMCache.dropConnection(Connection)
	JCMCache.getConlibName()
	JCMCache.getConnection(int)
	JCMCache.getPoolSizeMax()
	JCMCache.getPoolSizeMin()
	JCMCache.getProxyConnection(int, String)
	JCMCache.getName()
	JCMCache.getPassword()
	JCMCache.getRemoteServerName()
	JCMCache.getUserName()
	JCMCache.releaseConnection(Connection)

	com.sybase.jaguar.jcm.JConnectionNotFoundExceptio n class
	com.sybase.jaguar.server.Jaguar class
	Jaguar.getInstanceContext()
	Jaguar.getHostName()
	Jaguar.getPassword()
	Jaguar.getPeerAddress()
	Jaguar.getServerName()
	Jaguar.getUserName()
	Jaguar.inJaguar()
	Jaguar.writeLog(boolean, String)

	com.sybase.jaguar.server.JContext class
	JContext.createServerResultSetMetaData()
	JContext.createServerResultSet(JServerResultSetMetaData)
	JContext.forwardResultSet(ResultSet)
	JContext.getComponentName()
	JContext.getPackageName()

	com.sybase.jaguar.sql.JServerResultSet interface
	JServerResultSet.done()
	JServerResultSet.findColumn(String)
	JServerResultSet.getMetaData()
	JServerResultSet.next()
	JServerResultSet.setBigDecimal(int, BigDecimal, int)
	JServerResultSet.setCurrency(int, long)
	JServerResultSet.setNull(int)
	JServerResultSet.set<Object>(int, <Object>)

	com.sybase.jaguar.sql.JServerResultSetMetaData interface
	JServerResultSetMetaData.setColumnCount(int)
	JServerResultSetMetaData.setColumnDisplaySize(int, int)
	JServerResultSetMetaData.setColumnLabel(int, String)
	JServerResultSetMetaData.setColumnName(int, String)
	JServerResultSetMetaData.setColumnType(int, int)
	JServerResultSetMetaData.setCurrency(int, boolean)
	JServerResultSetMetaData.setNullable(int, int)
	JServerResultSetMetaData.setPrecision(int, int)
	JServerResultSetMetaData.setScale(int, int)

	com.sybase.jaguar.util.JException class

	CHAPTER 2 C Routines Reference
	Alphabetical list of all routines
	Routines for managing transaction flow
	Routines for managing cached connections
	Routines for handling errors in C or C++ components
	Routines for managing memory in C or C++ components
	Routines to obtain user login information

	Unsupported routines
	JagAlloc
	JagCmGetCachebyName
	JagCmGetCachebyUser
	JagCmGetConnection
	JagCmGetCtx
	JagCmGetProxyConnection
	JagCmReleaseConnection
	JagCompleteWork
	JagContinueWork
	JagDisallowCommit
	JagFree
	JagGetHostName
	JagGetPassword
	JagGetPeerAddress
	JagGetUserName
	JagInTransaction
	JagIsRollbackOnly
	JagLog
	JagRollbackWork
	JagSleep

	APPENDIX A Deprecated Java Classes and Interfaces
	Package Index
	com.sybase.jaguar.beans.enterprise

	com.sybase.jaguar.beans.enterprise.EnterpriseBeanEx ception class
	com.sybase.jaguar.beans.enterprise.InstanceContext interface
	InstanceContext.completeWork()
	InstanceContext.continueWork()
	InstanceContext.getSharedObjects()
	InstanceContext.inTransaction()
	InstanceContext.isRollbackOnly()
	InstanceContext.rollbackWork()

	com.sybase.jaguar.beans.enterprise.ServerBean interface
	ServerBean.activate(InstanceContext, String)
	ServerBean.canReuse()
	ServerBean.deactivate()
	ServerBean.destroy()

	com.sybase.jaguar.beans.enterprise.SharedObjectExc eption class
	com.sybase.jaguar.beans.enterprise.SharedObjects interface
	SharedObjects.get(int)
	SharedObjects.lock(int)
	SharedObjects.lockNoWait(int)
	SharedObjects.set(int, Object)
	SharedObjects.unlock(int)


	Index


