
API Reference Manual
EAServer
Version 5.2

DOCUMENT ID: DC38037-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Java Classes and Interfaces .. 1
Package index.. 1

com.sybase.CORBA.jdbc102.. 1
com.sybase.CORBA.jdbc11.. 1
com.sybase.jaguar.jcm.. 2
com.sybase.jaguar.server ... 2
com.sybase.jaguar.sql... 2
com.sybase.jaguar.util... 3
com.sybase.jaguar.util.jdbc102 ... 3
com.sybase.jaguar.util.jdbc11 ... 3

com.sybase.CORBA.jdbc11.IDL class... 3
IDL.getDate(java.sql.Date) .. 4
IDL.getDecimal(java.math.BigDecimal)..................................... 5
IDL.getMoney(java.math.BigDecimal) 5
IDL.getResultSet(java.sql.ResultSet) .. 5
IDL.getTime(java.sql.Time) ... 6
IDL.getTimestamp(java.sql.Timestamp).................................... 6

com.sybase.CORBA.jdbc11.IdlResultSet .. 7
com.sybase.CORBA.jdbc11.SQL class ... 8

SQL.getBigDecimal(BCD.Decimal) ... 9
SQL.getBigDecimal(BCD.Money) ... 9
SQL.getDate(MJD.Date) ... 10
SQL.getResultSet(TabularResults.ResultSet) 10
SQL.getTime(MJD.Time) .. 10
SQL.getTimestamp(MJD.Timestamp)..................................... 11

jaguar.jcm.JCM class ... 11
JCM.byNameAllowed(String) .. 12
JCM.getCache(String, String, String) 12
JCM.getCacheByName(String) ... 13

jaguar.jcm.JCMCache class... 14
JCMCache.byNameAllowed() ... 15
JCMCache.dropConnection(Connection)................................ 16
API Reference iii

Contents
JCMCache.getConlibName() .. 16
JCMCache.getConnection(int) .. 17
JCMCache.getPoolSizeMax() ... 18
JCMCache.getPoolSizeMin() .. 18
JCMCache.getProxyConnection(int, String)............................ 18
JCMCache.getName()... 20
JCMCache.getPassword() .. 20
JCMCache.getRemoteServerName() 21
JCMCache.getUserName() ... 21
JCMCache.releaseConnection(Connection) 21

jaguar.jcm.JConnectionNotFoundException class......................... 22
jaguar.server.Jaguar class ... 23

Jaguar.getInstanceContext() ... 23
Jaguar.getHostName() .. 24
Jaguar.getPassword() ... 24
Jaguar.getPeerAddress() .. 25
Jaguar.getServerName()... 25
Jaguar.getUserName().. 25
Jaguar.inJaguar() .. 26
Jaguar.writeLog(boolean, String) .. 26

jaguar.server.JContext class.. 27
JContext.createServerResultSetMetaData() 28
JContext.createServerResultSet(JServerResultSetMetaData) 28
JContext.forwardResultSet(ResultSet).................................... 28
JContext.getComponentName().. 29
JContext.getPackageName() .. 29

jaguar.sql.JServerResultSet interface.. 30
JServerResultSet.done() ... 31
JServerResultSet.findColumn(String) 31
JServerResultSet.getMetaData() .. 32
JServerResultSet.next() .. 32
JServerResultSet.setBigDecimal(int, BigDecimal, int) 33
JServerResultSet.setCurrency(int, long) 34
JServerResultSet.setNull(int) .. 34
JServerResultSet.set<Object>(int, <Object>) 35

jaguar.sql.JServerResultSetMetaData interface 36
JServerResultSetMetaData.setColumnCount(int)................... 38
JServerResultSetMetaData.setColumnDisplaySize(int, int).... 38
JServerResultSetMetaData.setColumnLabel(int, String) 39
JServerResultSetMetaData.setColumnName(int, String) 39
JServerResultSetMetaData.setColumnType(int, int)............... 40
JServerResultSetMetaData.setCurrency(int, boolean) 41
JServerResultSetMetaData.setNullable(int, int) 42
JServerResultSetMetaData.setPrecision(int, int) 43
iv EAServer

Contents
JServerResultSetMetaData.setScale(int, int) 43
jaguar.util.JException class.. 44
jaguar.util.<object>Holder class ... 44
jaguar.util.jdbc102.<object>Holder class 46
jaguar.util.jdbc11.<object>Holder class ... 47

CHAPTER 2 ActiveX C++ Interface Reference... 49
Header files and link libraries ... 49
List of interfaces ... 50
GetObjectContext routine... 50
IJagServer interface ... 51

IJagServer::WriteLog... 52
IJagServerResults interface ... 53

IJagServerResults::BeginResults.. 54
IJagServerResults::BindCol .. 55
IJagServerResults::ColAttributes .. 58
IJagServerResults::DescribeCol ... 59
IJagServerResults::EndResults... 61
IJagServerResults::ResultsPassthrough................................. 62
IJagServerResults::SendData ... 66

IObjectContext interface... 66
IObjectContext::DisableCommit .. 67
IObjectContext::EnableCommit ... 68
IObjectContext::IsInTransaction .. 69
IObjectContext::IsSecurityEnabled.. 70
IObjectContext::SetAbort... 70
IObjectContext::SetComplete.. 71

IObjectControl interface ... 72
IObjectControl::Activate... 76
IObjectControl::CanBePooled ... 76
IObjectControl::Deactivate .. 77

ISharedProperty interface .. 78
ISharedProperty::get_Value .. 78
ISharedProperty::put_Value .. 78

ISharedPropertyGroup interface .. 79
ISharedPropertyGroup::CreateProperty.................................. 80
ISharedPropertyGroup::CreatePropertyByPosition................. 80
ISharedPropertyGroup::get_Property...................................... 81
ISharedPropertyGroup::get_PropertyByPosition..................... 82

ISharedPropertyGroupManager interface 83
ISharedPropertyGroupManager::CreatePropertyGroup.......... 84
ISharedPropertyGroupManager::get_Group 85
API Reference v

Contents
CHAPTER 3 ActiveX IDispatch Interface Reference .. 87
How to use these reference pages .. 87
IDispatch interface index.. 88
IJagServer interface ... 88

IJagServer.WriteLog.. 88
IJagServerResults interface ... 89

IJagServerResults.BeginResults... 90
IJagServerResults.BindCol ... 90
IJagServerResults.BindColumn .. 91
IJagServer.ColAttributes ... 92
IJagServerResults.DescribeCol .. 93
IJagServer.EndResults.. 95
IJagServer.ResultsPassthru.. 95
IJagServer.ResultSetsPassthrough .. 96
IJagServerResults.SendData .. 97

SharedProperty interface ... 98
SharedPropertyGroup interface ... 98

SharedPropertyGroup.CreateProperty.................................... 99
SharedPropertyGroup.CreatePropertyByPosition................... 99
SharedPropertyGroup.Property... 100
SharedPropertyGroup.PropertyByPosition............................ 101

SharedPropertyGroupManager interface 101
SharedPropertyGroupManager.CreatePropertyGroup.......... 102
SharedPropertyGroupManager.Group 103

CHAPTER 4 ActiveX Client Interfaces... 105
How to use these reference pages .. 105
Interface index.. 105
Field interface... 106
Fields collection.. 108

Fields.Item... 109
JagORBClientErrNum enumeration ... 109
JagORBSrvErrNum enumeration... 113
JCollection interface... 114
Object interface .. 116

Object.Narrow_ ... 117
Orb interface .. 117

Orb.Init... 118
Orb.resolve_initial_references... 122
Orb.object_to_string .. 122
Orb.string_to_object .. 123

RecordSet interface ... 124
RecordSet.MoveFirst... 125
RecordSet.MoveNext .. 125
vi EAServer

Contents
RecordSet.NextRecordSet .. 125

CHAPTER 5 C Routines Reference... 127
Alphabetical list of all routines.. 127

Routines for managing component instance data 130
Routines for managing transaction flow 130
Routines for sharing data between components 131
Routines for managing cached connections 132
Routines for sending result sets .. 132
Routines for handling errors in C or C++ components 133
Routines for managing memory in C or C++ components 133
Routines to obtain user login information 133

JagAlloc.. 133
JagBeginResults .. 134
JagBindCol... 134
JagCmCacheProps .. 138
JagCmGetCachebyName .. 142
JagCmGetCachebyUser .. 143
JagCmGetConnection.. 145
JagCmGetCtx... 149
JagCmGetProxyConnection... 151
JagCmReleaseConnection .. 153
JagColAttributes... 156
JagCompleteWork.. 157
JagContinueWork... 157
JagDescribeCol.. 158
JagDisallowCommit.. 161
JagEndResults ... 162
JagFree .. 162
JagFreeCollectionHandle... 163
JagFreeCollectionList... 163
JagFreeSharedDataHandle ... 164
JagGetCollection.. 164
JagGetCollectionList .. 165
JagGetHostName... 166
JagGetInstanceData .. 167
JagGetPassword.. 168
JagGetPeerAddress... 169
JagGetSharedData .. 170
JagGetSharedDataByIndex ... 171
JagGetSharedValue... 171
JagGetUserName .. 172
JagInTransaction.. 173
JagIsRollbackOnly ... 174
API Reference vii

Contents
JagLockCollection .. 174
JagLockNoWaitCollection .. 175
JagLog ... 176
JagNewCollection .. 177
JagNewSharedData ... 179
JagNewSharedDataByIndex .. 180
JagResultsPassthrough ... 181
JagRollbackWork ... 185
JagSendData ... 185
JagSendMsg .. 186
JagSetInstanceData... 187
JagSetSharedValue ... 188
JagSleep .. 191
JagUnlockCollection... 191

APPENDIX A Deprecated Java Classes and Interfaces 193
Package Index ... 193

com.sybase.jaguar.beans.enterprise 193
jaguar.beans.enterprise.EnterpriseBeanException class............. 194
jaguar.beans.enterprise.InstanceContext interface...................... 194

InstanceContext.completeWork() .. 195
InstanceContext.continueWork() ... 196
InstanceContext.getSharedObjects() 197
InstanceContext.inTransaction() ... 197
InstanceContext.isRollbackOnly() ... 198
InstanceContext.rollbackWork() .. 198

jaguar.beans.enterprise.ServerBean interface............................. 199
ServerBean.activate(InstanceContext, String) 203
ServerBean.canReuse().. 203
ServerBean.deactivate().. 204
ServerBean.destroy() .. 205

jaguar.beans.enterprise.SharedObjectException class 205
jaguar.beans.enterprise.SharedObjects interface........................ 206

SharedObjects.get(int) .. 206
SharedObjects.lock(int) ... 207
SharedObjects.lockNoWait(int) ... 207
SharedObjects.set(int, Object) .. 208
SharedObjects.unlock(int) ... 209

Index ... 211
viii EAServer

About This Book

This book, the EAServer API Reference Manual, contains reference pages
for EAServer proprietary Java classes, C++ classes, ActiveX interfaces,
and C routines. EAServer also supports many standard Java 2 Enterprise
Edition (J2EE) and CORBA APIs. For information on these, see:

• The EAServer Programmer’s Guide for usage information.

• The relevant standards document for API reference information. For
J2EE standards documents, please see the Sun Microsystems J2EE
Web pages at http://java.sun.com/. For CORBA standards
documentation, please see the Object Management Group (OMG) Web
site at http://www.omg.org/.

Audience This book is written as a reference for developers of EAServer
applications. Developers should know their development language and
programming tools.

How to use this book Chapter 1, “Java Classes and Interfaces” documents EAServer’s Java
classes and interfaces. You will need this information to implement Java
components or Java clients.

Chapter 2, “ActiveX C++ Interface Reference” documents EAServer’s
ActiveX C++ interfaces. You will need this information to implement
ActiveX components using C++.

Chapter 3, “ActiveX IDispatch Interface Reference” documents
EAServer’s ActiveX automation interfaces. You will need this
information to implement ActiveX components using IDEs that use
ActiveX automation such as Microsoft Visual Basic.

Chapter 4, “ActiveX Client Interfaces” documents the interfaces that
ActiveX clients use to process result sets returned by a component method
invocation.

Chapter 5, “C Routines Reference” documents EAServer’s C library
routines. You will need this information to implement C components.

Conventions The formatting conventions used in this manual are:
API Reference ix

Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in EAServer Manager, a command line, or as program text

• Example program fragments

• Example output fragments
x EAServer

 About This Book
• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with jagtool

The EAServer Programmer’s Guide explains how to:

• Create, deploy, and configure components and component-based
applications

• Create, deploy, and configure Web applications, Java servlets, and
JavaServer Pages

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections using the
Security Manager plug-in for Sybase Central

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.
API Reference xi

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box
xii EAServer

 About This Book
4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.
API Reference xiii

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.
xiv EAServer

 About This Book
If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
API Reference xv

xvi EAServer

C H A P T E R 1 Java Classes and Interfaces

Package index

com.sybase.CORBA.jdbc102
For use in classes that will be run in a JDK-1.0.2-compatible Java virtual
machine. Classes in this package use the same names and method syntax
as com.sybase.CORBA.jdbc11, except for the following package
substitutions:

Most programmers use import statements to determine whether JDK 1.0.2
or JDK 1.1 versions of the classes are used.

com.sybase.CORBA.jdbc11
For use in classes that will be run in a JDK-1.1-compatible Java virtual
machine. Provides classes for converting between EAServer’s predefined
IDL datatypes and the core Java language objects:

• IDL – Provides methods to convert core Java datatypes to EAServer’s
predefined CORBA IDL datatypes.

• IdlResultSet – Implements the JServerResultSet interface, allowing
you to construct TabularResults.ResultSet instances for component
methods that return row results.

• SQL – Provides methods to convert EAServer’s predefined CORBA
IDL datatypes to core Java datatypes.

JDK 1.0.2 package Substitutes for

jdbc.math java.math

jdbc.sql java.sql
API Reference 1

Package index
com.sybase.jaguar.jcm
Classes and interfaces for managing cached JDBC connections in server-side
Java code:

• jaguar.jcm.JCM class – Provides access to JDBC connection caches that
have been defined in EAServer Manager.

• jaguar.jcm.JCMCache class – Manages a pool of JDBC connections to a
third-tier database server.

• jaguar.jcm.JConnectionNotFoundException class – Exception thrown
when no connections are available.

com.sybase.jaguar.server
Utility classes used in server-side Java code:

• jaguar.server.Jaguar class – Provides utility methods for use in server-side
Java code.

• jaguar.server.JContext class – Instantiates objects that are used to send
result sets from a Java component method and provides a method to
retrieve rows from a java.sql.ResultSet and forward them to the client.

com.sybase.jaguar.sql
Interfaces for objects that construct and send row results from a Java server
component to the client:

• jaguar.sql.JServerResultSet interface – Provides methods to return result
rows to a client application. JServerResultSet is similar to the
java.sql.ResultSet interface, which is used to retrieve result rows from a
server.

• jaguar.sql.JServerResultSetMetaData interface – Provides methods for
describing the metadata of a result set. Metadata specifies the number of
columns in each row as well as the datatype, format, nullability, and so
forth for each column.
2 EAServer

CHAPTER 1 Java Classes and Interfaces
com.sybase.jaguar.util
Utility classes that are used in both server-side and client side Java code:

• jaguar.util.JException class – JException is the generic exception that is
thrown by methods in the EAServer classes or in generated client stub
classes.

• jaguar.util.<object>Holder class – Holder classes are used to pass INOUT
parameters to component method calls. Each holder class has a value field
that contains instances of a specific object or base Java type.

com.sybase.jaguar.util.jdbc102
Holder classes for use in code that will run in a version 1.0.2 Java virtual
machine:

• jaguar.util.jdbc102.<object>Holder class – The
com.sybase.jaguar.util.jdbc11 holder classes are used to pass jdbc.sql and
jdbc.math objects as INOUT parameters. Use these classes in code that
runs in a JDK 1.1 or later virtual machine.

The classes in com.sybase.jaguar.util.jdbc102 and
com.sybase.jaguar.util.jdbc11 have identical names and method signatures.
You can switch between these classes simply by changing the import
statements in your source files.

com.sybase.jaguar.util.jdbc11
Holder classes for use in code that will run in a version 1.1 or later Java virtual
machine:

• jaguar.util.jdbc11.<object>Holder class – The com.sybase.jaguar.util.jdbc11
holder classes are used to pass java.sql and java.math objects as INOUT
parameters. Use these classes in code that runs in a JDK 1.1 or later virtual
machine.

com.sybase.CORBA.jdbc11.IDL class
Description package com.sybase.CORBA.jdbc11;
API Reference 3

com.sybase.CORBA.jdbc11.IDL class
public abstract class IDL

Provides methods to convert core Java datatypes to EAServer’s predefined
CORBA IDL datatypes.

Constructors None. All methods are static.

Methods • getDate(java.sql.Date) – Converts a java.sql.Date object to an equivalent
MJD::Date CORBA IDL object.

• getDecimal(java.math.BigDecimal) – Converts a BigDecimal object to an
equivalent BCD::Decimal CORBA IDL object.

• getMoney(java.math.BigDecimal) – Converts a BigDecimal object to an
equivalent BCD::Money CORBA IDL object.

• getResultSet(java.sql.ResultSet) – Converts a java.sql.ResultSet object to
an equivalent TabularResults::ResultSet CORBA IDL object.

• getTime(java.sql.Time) – Converts a java.sql.Time object to an equivalent
MJD::Time CORBA IDL object.

• getTimestamp(java.sql.Timestamp) – Converts a java.sql.Timestamp object
to an equivalent MJD::Timestamp CORBA IDL object.

See also com.sybase.CORBA.jdbc11.SQL class

IDL.getDate(java.sql.Date)
Description Converts a java.sql.Date object to an equivalent MJD::Date CORBA IDL

object.

Syntax

public static MJD.Date getDate(java.sql.Date value)

Parameters value
A java.sql.Date value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Date value.

See also getTime(java.sql.Time), getTimestamp(java.sql.Timestamp),
SQL.getDate(MJD.Date)

Package com.sybase.CORBA.jdbc11

Class IDL
4 EAServer

CHAPTER 1 Java Classes and Interfaces
IDL.getDecimal(java.math.BigDecimal)
Description Converts a BigDecimal object to an equivalent BCD::Decimal CORBA IDL

object.

Syntax

public static BCD.Decimal
getDecimal(java.math.BigDecimal value)
throws org.omg.CORBA.DATA_CONVERSION

Parameters value
A java.math.BigDecimal value to be converted.

Return value The value converted to an equivalent CORBA IDL BCD::Decimal value.

See also getMoney(java.math.BigDecimal), SQL.getBigDecimal(BCD.Decimal)

IDL.getMoney(java.math.BigDecimal)
Description Converts a BigDecimal object to an equivalent BCD::Money CORBA IDL

object.

Syntax

public static BCD.Money getMoney(
 java.math.BigDecimal value)
throws org.omg.CORBA.DATA_CONVERSION

Parameters value
A java.math.BigDecimal value to be converted.

Return value The value converted to an equivalent CORBA IDL BCD::Money value.

See also getDecimal(java.math.BigDecimal), SQL.getBigDecimal(BCD.Money)

IDL.getResultSet(java.sql.ResultSet)
Description Converts a java.sql.ResultSet object to an equivalent TabularResults::ResultSet

CORBA IDL object.

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL
API Reference 5

com.sybase.CORBA.jdbc11.IDL class
Syntax

public static MJD.ResultSet
getResultSet(java.sql.ResultSet rs)

Parameters rs
A java.sql.ResultSet value to be converted.

Return value The value converted to an equivalent CORBA IDL TabularResults::ResultSet
value.

See also SQL.getResultSet(TabularResults.ResultSet)

IDL.getTime(java.sql.Time)
Description Converts a java.sql.Time object to an equivalent MJD::Time CORBA IDL

object.

Syntax

public static MJD.Time getTime(java.sql.Time value)

Parameters value
A java.sql.Time value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Time value.

See also getDate(java.sql.Date), getTimestamp(java.sql.Timestamp),
SQL.getTime(MJD.Time)

IDL.getTimestamp(java.sql.Timestamp)
Description Converts a java.sql.Timestamp object to an equivalent MJD::Timestamp

CORBA IDL object.

Syntax

public static MJD.Timestamp
getTimestamp(java.sql.Timestamp value)

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL

Package com.sybase.CORBA.jdbc11

Class IDL
6 EAServer

CHAPTER 1 Java Classes and Interfaces
Parameters value
A java.sql.Timestamp value to be converted.

Return value The value converted to an equivalent CORBA IDL MJD::Timestamp value.

See also getDate(java.sql.Date), getTime(java.sql.Time),
SQL.getTimestamp(MJD.Timestamp)

com.sybase.CORBA.jdbc11.IdlResultSet
Description package com.sybase.CORBA.jdbc11;

public class IdlResultSet
extends java.lang.Object
implements jaguar.sql.JServerResultSet;

Implements the JServerResultSet interface, allowing you to construct
TabularResults.ResultSet instances for component methods that return row
results.

Component methods that return row results to clients return
TabularResults.ResultSet or TabularResults.ResultSet[]. IdlResultSet allows you
to create instances of these types using the JDBC style JServerResultSet
interfaces.

For documentation of the TabularResults IDL types, see the generated Interface
Repository documentation at ../../ir/TabularResults.html.

To return a single result set, initialize the rows and columns using the
JServerResultSetMetaData and JServerResultSet methods, then convert to a
TabularResults.ResultSet instance as shown in this code fragment:

JServerResultSetMetaData jsrs;
... define column formats ...
IdlResultSet irs = new IdlResultSet(jsrsmd);
... define row data using JServerResultSet methods ...
return irs.getResultSet();

To return multiple result sets, build an array of TabularResults.ResultSet
instances, as follows:

1 Declare a java.util.Vector instance:

java.util.Vector vector = new Vector();

2 Initialize each IdlResultSet instance as described above, then add it to the
vector:
API Reference 7

com.sybase.CORBA.jdbc11.SQL class
vector.addElement(irs.getResultSet());

3 When done, convert the vector to an array to be returned by the method:
TabularResults.ResultSet[] array =

new TabularResults.ResultSet[vector.size()];
vector.copyInto(array);
return array;

Constructors • IdlResultSet(java.sql.ResultSetMetaData) – Construct an instance using the
column formats specified by a JServerResultSetMetaData instance. You
can add rows to the instance using the JServerResultSet methods.

• IdlResultSet(java.sql.ResultSet) – Construct an instance by reading the
rows from the supplied ResultSet.

Methods • getResultSet() – Translate the contents of this instance into
TabularResults.ResultSet instance.

See also jaguar.sql.JServerResultSet interface, jaguar.sql.JServerResultSetMetaData
interface

com.sybase.CORBA.jdbc11.SQL class
Description package com.sybase.CORBA.jdbc11;

public abstract class SQL

Provides methods to convert EAServer’s predefined CORBA IDL datatypes to
core Java datatypes.

Constructors None. All methods are static.

Methods • getBigDecimal(BCD.Decimal) – Converts a BCD::Decimal CORBA IDL
object to an equivalent java.math.BigDecimal.

• getBigDecimal(BCD.Money) – Converts a BCD::Money CORBA IDL object
to an equivalent java.math.BigDecimal.

• getDate(MJD.Date) – Converts an MJD::Date CORBA IDL object to an
equivalent java.sql.Date object.

• getResultSet(TabularResults.ResultSet) – Converts a
TabularResults::ResultSet CORBA IDL object to an equivalent
java.sql.ResultSet object.

• getTime(MJD.Time) – Converts an MJD::Time CORBA IDL object to an
equivalent java.sql.Time object.
8 EAServer

CHAPTER 1 Java Classes and Interfaces
• getTimestamp(MJD.Timestamp) – Converts an MJD::Timestamp CORBA
IDL object to an equivalent java.sql.Timestamp object.

See also com.sybase.CORBA.jdbc11.IDL class

SQL.getBigDecimal(BCD.Decimal)
Description Converts a BCD::Decimal CORBA IDL object to an equivalent

java.math.BigDecimal.

Syntax

public static java.math.BigDecimal
getBigDecimal(BCD.Decimal value)

Parameters value
A BCD.Decimal value to be converted.

Return value The value converted to an equivalent java.math.BigDecimal value.

See also getBigDecimal(BCD.Decimal), getBigDecimal(BCD.Money),
IDL.getDecimal(java.math.BigDecimal)

SQL.getBigDecimal(BCD.Money)
Description Converts a BCD::Money CORBA IDL object to an equivalent

java.math.BigDecimal.

Syntax

public static java.math.BigDecimal
getBigDecimal(BCD.Money value)

Parameters value
A BCD.Money value to be converted.

Return value The value converted to an equivalent java.math.BigDecimal value.

See also getBigDecimal(BCD.Decimal), IDL.getMoney(java.math.BigDecimal)

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL
API Reference 9

com.sybase.CORBA.jdbc11.SQL class
SQL.getDate(MJD.Date)
Description Converts an MJD::Date CORBA IDL object to an equivalent java.sql.Date

object.

Syntax

public static java.sql.Date getDate(MJD.Date value)

Parameters value
An MJD::Date value to be converted.

Return value The value converted to an equivalent java.sql.Date value.

See also getTime(MJD.Time), getTimestamp(MJD.Timestamp),
IDL.getDate(java.sql.Date)

SQL.getResultSet(TabularResults.ResultSet)
Description Converts a TabularResults::ResultSet CORBA IDL object to an equivalent

java.sql.ResultSet object.

Syntax

public static java.sql.ResultSet
getResultSet(TabularResults.ResultSet rs)

Parameters rs
A TabularResults.ResultSet object to be converted.

Return value The value converted to an equivalent java.sql.ResultSet value.

See also IDL.getResultSet(java.sql.ResultSet)

SQL.getTime(MJD.Time)
Description Converts an MJD::Time CORBA IDL object to an equivalent java.sql.Time

object.

Syntax

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL

Package com.sybase.CORBA.jdbc11
10 EAServer

CHAPTER 1 Java Classes and Interfaces
public static java.sql.Time getTime(MJD.Time value)

Parameters value
An MJD.Time value to be converted.

Return value The value converted to an equivalent java.sql.Time value.

See also getDate(MJD.Date), getTimestamp(MJD.Timestamp),
IDL.getTime(java.sql.Time)

SQL.getTimestamp(MJD.Timestamp)
Description Converts an MJD::Timestamp CORBA IDL object to an equivalent

java.sql.Timestamp object.

Syntax

public static java.sql.Timestamp
getTimestamp(MJD.Timestamp value)

Parameters value
An MJD.Timestamp value to be converted.

Return value The value converted to an equivalent java.sql.Timestamp value.

See also getDate(MJD.Date), getTime(MJD.Time),
IDL.getTimestamp(java.sql.Timestamp)

jaguar.jcm.JCM class
Description package com.sybase.jaguar.jcm;

public class JCM extends Object

Provides access to JDBC connection caches that have been defined in
EAServer Manager.

Constructors None. All methods are static.

Methods • byNameAllowed(String) – Determines if a cache can be retrieved by calling
getCacheByName(String).

Class SQL

Package com.sybase.CORBA.jdbc11

Class SQL
API Reference 11

jaguar.jcm.JCM class
• getCache(String, String, String) – Returns a reference to a connection cache
with matching values for the specified user name, password, and server
name.

• getCacheByName(String) – Returns a reference to the connection cache
with the given name.

Usage For an introduction to the Java connection management classes, see Chapter
26, “Using Connection Management,” in the EAServer Programmer’s Guide.

JCM.byNameAllowed(String)
Description Determines if a cache can be retrieved by calling getCacheByName(String).

Syntax

public static boolean byNameAllowed
(String name)
throws JException

Parameters name
The name of the cache of interest, as entered in EAServer Manager.

Return value true if a cache is installed with the specified name, and the cache can be
retrieved with JCM.getCacheByName(String); false otherwise.

Usage The getCacheByName(String) method allows you to retrieve a connection
cache by specifying only the cache name, rather than specifying values for the
cache user name, password, and server name. However, by-name access must
be enabled for the cache in EAServer Manager to allow retrieval with
getCacheByName(String).

You can call byNameAllowed to determine whether by-name access is allowed
for a specified cache.

See also getCacheByName(String)

JCM.getCache(String, String, String)
Description Returns a reference to a connection cache with matching values for the

specified user name, password, and server name.

Package com.sybase.jaguar.jcm

Interface JCM
12 EAServer

CHAPTER 1 Java Classes and Interfaces
Syntax

public static JCMCache getCache
(String user, String pwd, String server)
throws JException

Parameters user
The database user name associated with the cache.

pwd
The database password associated with the cache.

server
The database server name associated with the cache. The value should be a
JDBC connection URL in the appropriate format for calls to
java.sql.DriverManager.getConnection(String). The URL format depends on
which JDBC driver the cache uses. See your JDBC driver documentation for
more information.

Return value A reference to a JCMCache instance with matching values for user, pwd, and
server.

A JException exception is thrown if no cache with matching values exists.

Usage The supplied values for user, pwd, and server must match the properties of an
existing cache.

See also Chapter 4, “Database Access,” in the EAServer System Administration Guide

getCacheByName(String)

JCM.getCacheByName(String)
Description Returns a reference to the connection cache with the specified name.

Syntax

public static JCMCache getCacheByName
(String name)
throws JException

Parameters name
The name of the cache to be retrieved, as entered in EAServer Manager.

Package com.sybase.jaguar.jcm

Interface JCM

Package com.sybase.jaguar.jcm

Interface JCM
API Reference 13

jaguar.jcm.JCMCache class
Return value A reference to a JCMCache instance with a matching value for name.

A JException exception is thrown if:

• No cache is installed with the specified name.

• A matching cache is installed, but the cache properties forbid retrieval
with this method. Use getCache(String, String, String) instead.

Usage getCacheByName allows you to retrieve a connection cache by specifying only
the cache name, rather than specifying values for the cache user name,
password, and server name.

Using this method rather than getCache(String, String, String) allows you to
change the cache user name, password, or server in EAServer Manager without
requiring corresponding changes to your component source code.

In order for components to retrieve a cache with getCacheByName, the
EAServer Administrator must select the “Enable cache-by-name access”
option for the cache in EAServer Manager. getCacheByName throws an
exception if the cache does not have this option enabled.

See also Chapter 4, “Database Access,” in the EAServer System Administration Guide

getCacheByName(String), getCache(String, String, String)

jaguar.jcm.JCMCache class
Description package com.sybase.jaguar.jcm;

public class JCMCache extends Object

Manages a pool of connections to a third-tier database server.

Constructors None. Call JCM.getCache(String, String, String).

Fields JCM_FORCE

public final static int JCM_FORCE

A value for the getConnection flag parameter.

JCM_NOWAIT

public final static int JCM_NOWAIT

A value for the getConnection flag parameter.

JCM_WAIT
14 EAServer

CHAPTER 1 Java Classes and Interfaces
public final static int JCM_WAIT

A value for the getConnection flag parameter.

Methods • byNameAllowed() – Determines whether the cache can be retrieved by
calling JCM.getCacheByName(String).

• dropConnection(Connection) – Drops a connection. The connection is
closed and not released into the cache.

• getPoolSizeMax() – Retrieves the maximum number of connections that
this cache can manage.

• getConlibName() – Returns the connectivity library (or interface) name for
the cache.

• getConnection(int) – Obtains a connection handle from the cache.

• getProxyConnection(int, String) – Obtains a connection handle from the
cache, specifying an alternate login name to set-proxy to.

• getName() – Retrieves the cache’s name.

• getPassword() – Retrieves the password used by connections in the cache.

• getRemoteServerName() – Returns the remote server name used by
connections in the cache.

• getUsername() – Retrieves the user name used by connections in the
cache.

• releaseConnection(Connection) – Releases a connection to the cache for
reuse.

See also java.sql.Connection, “Using Java Connection Manager classes” in the
EAServer Programmer’s Guide

JCMCache.byNameAllowed()
Description Determines whether the cache can be retrieved by calling

JCM.getCacheByName(String).

Syntax

public boolean byNameAllowed()

Package com.sybase.jaguar.jcm

Class JCMCache
API Reference 15

jaguar.jcm.JCMCache class
Return value true if the cache can be retrieved with JCM.getCacheByName(String), false
otherwise.

Usage The “Enable cache-by-name access” option in the Connection Cache
Properties dialog determines whether components can retrieve the cache by
calling JCM.getCacheByName(String). See Chapter 4, “Database Access,” in
the EAServer System Administration Guide for more information.

See also getName(), JCM.byNameAllowed(String), JCM.getCacheByName(String)

JCMCache.dropConnection(Connection)
Description Drops a connection. The connection is closed and not released into the cache.

Syntax

public void dropConnection(Connection con)
throws SQLException

Parameters con
The java.sql.Connection instance to be dropped.

Usage Use dropConnection() to close a connection when you do not want the
connection returned to the cache. If necessary, future getConnection(int) calls
will allocate new connections to replace any that have been dropped.

See also getConnection(int), releaseConnection(Connection)

JCMCache.getConlibName()
Description Returns the connectivity library (or interface) name for the cache.

Syntax

public String getConlibName()

Return value “JDBC”

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache
16 EAServer

CHAPTER 1 Java Classes and Interfaces
JCMCache.getConnection(int)
Description Obtains a connection handle from the cache.

Syntax

public Connection getConnection(int flag)
throws SQLException, JException,
JConnectionNotFoundException

Parameters flag
A symbolic value that specifies what should happen if the maximum number
of connections have been allocated and are in use (that is, no connection is
available in the cache). Allowable values are:

Return value A java.sql.Connection instance from the connection cache. If the call specifies
JCM_NOWAIT and no connections are available, the call throws a
JConnectionNotFoundException instance.

Usage getConnection(int) attempts to return a connection from the cache. Caches are
maintained statically; a cache is initially empty when the server starts.
Subsequent getConnection(int) calls allocate connections when necessary.
releaseConnection(Connection) calls release control of a connection for later
reuse.

Each cache has a maximum number of connections determined by the cache’s
definition in EAServer Manager. (See Chapter 4, “Database Access,” in the
EAServer System Administration Guide for more information.) The flag
parameter determines getConnection(int) behavior when the cache’s maximum
number of connections are in use. getPoolSizeMax() returns the cache’s
maximum number of connections.

For improved performance, connections should not be held any longer than
necessary. As a general rule, methods that use a cached connection should
release it with releaseConnection(Connection) before returning. This strategy
minimizes contention by multiple components for a cache’s connections.

See also dropConnection(Connection), getPoolSizeMax(),
releaseConnection(Connection)

Package com.sybase.jaguar.jcm

Class JCMCache

Value Behavior when no connection is available

JCM_NOWAIT Throws JConnectionNotFoundException.

JCM_WAIT Does not return until a cached connection is available.

JCM_FORCE “Forces” open a new, uncached connection. The cache’s
maximum size is ignored.
API Reference 17

jaguar.jcm.JCMCache class
JCMCache.getPoolSizeMax()
Description Retrieves the maximum number of connections that can be pooled in the cache.

Syntax

public int getPoolSizeMax()

Return value The cache size.

Usage The size of a cache is specified the Connection Cache Properties in EAServer
Manager. See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

See also getPoolSizeMin()

JCMCache.getPoolSizeMin()
Description Retrieves the maximum number of connections that can be pooled in the cache.

Syntax

public int getPoolSizeMax()

Return value The cache size.

Usage The size of a cache is specified the Connection Cache Properties in EAServer
Manager. See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

See also getPoolSizeMax()

JCMCache.getProxyConnection(int, String)
Description Obtains a connection handle from the cache, specifying an alternate login name

to set-proxy to.

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache
18 EAServer

CHAPTER 1 Java Classes and Interfaces
Not all connection caches support set-proxy
Set-proxy support must be enabled for caches in EAServer Manager before you
can use this feature. See Chapter 4, “Database Access,” in the EAServer
System Administration Guide for more information. You must be connected to
a database server, such as Adaptive Server Enterprise 11.5 or later, that
supports the set session authorization command.

Syntax

public Connection getProxyConnection(int flag, String proxy)
throws SQLException, JException,

JConnectionNotFoundException

Parameters flag
A symbolic value that specifies what should happen if the maximum number
of connections have been allocated and are in use (that is, no connection is
available in the cache). Allowable values are:

proxy
The user name to set-proxy to.

Return value A java.sql.Connection instance from the connection cache. If the call specifies
JCM_NOWAIT and no connections are available, the call throws a
JConnectionNotFoundException instance.

Usage This method retrieves a cached connection, specifying an alternate login name
to set-proxy to. Set-proxy support must be enabled for a cache in EAServer
Manager. If support is enabled, connections retrieved from the cache with
getConnection(int) set-proxy to the client user name. Call
getProxyConnection(int, String) to specify a different user name to set-proxy to.

Other than the set-proxy behavior, getProxyConnection(int, String) is identical to
getConnection(int).

See Chapter 4, “Database Access,” in the EAServer System Administration
Guide for information on defining caches and enabling set-proxy support.

Package com.sybase.jaguar.jcm

Class JCMCache

Value Behavior when no connection is available

JCM_NOWAIT Throws JConnectionNotFoundException.

JCM_WAIT Does not return until a cached connection is available.

JCM_FORCE “Forces” open a new, uncached connection. The cache’s
maximum size is ignored.
API Reference 19

jaguar.jcm.JCMCache class
For improved performance, connections should not be held any longer than
necessary. As a general rule, methods that use a cached connection should
release it with releaseConnection(Connection) before returning. This strategy
minimizes contention by multiple components for a cache’s connections.

See also dropConnection(Connection), getPoolSizeMax(), getConnection(int),
releaseConnection(Connection)

JCMCache.getName()
Description Retrieves the cache’s name.

Syntax

public String getName()

Return value The cache’s name.

Usage You can change a cache’s name using EAServer Manager. See Chapter 4,
“Database Access,” in the EAServer System Administration Guide for more
information.

JCMCache.getPassword()
Description Retrieves the password used by connections in the cache.

Syntax

public String getPassword()

Return value The password.

Usage A cache’s password is specified on the cache’s EAServer Manager property
sheet. See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

See also getRemoteServerName(), getUsername()

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache
20 EAServer

CHAPTER 1 Java Classes and Interfaces
JCMCache.getRemoteServerName()
Description Retrieves the remote server name used by connections in the cache.

Syntax

public String getRemoteServerName()

Return value The remote server name.

Usage A cache’s remote server name is specified on the cache’s EAServer Manager
property sheet. See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

See also getPassword(), getUsername()

JCMCache.getUserName()
Description Retrieves the user name used by connections in the cache.

Syntax

public String getUserName()

Return value The user name.

Usage A cache’s user name is specified on the cache’s EAServer Manager property
sheet. See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

See also getPassword(), getRemoteServerName()

JCMCache.releaseConnection(Connection)
Description Releases a connection to the cache for reuse.

Syntax

public void releaseConnection(Connection con)
throws SQLException

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache

Package com.sybase.jaguar.jcm

Class JCMCache
API Reference 21

jaguar.jcm.JConnectionNotFoundException class
Parameters con
The connection to release.

Usage Released connections must be in a state that allows new queries to be issued.

The connection will be dropped (and not returned to the cache) if the cache has
exceeded its maximum number of connections. The maximum number of
connections can be exceeded if calls to getConnection(int) are issued with flag
as JCM_FORCE. In this case, releaseConnection drops the excess connections.

Many JDBC programs do not explicitly clean up java.sql.Statement objects.
Instead, they rely on the JDBC driver to clean up Statement objects when the
connection is closed. This strategy does not work with cached connections: you
must explicitly clean up Statement objects before releasing a connection back
into the cache. To clean up Statement objects, call Statement.close() and set the
Statement reference to null.

 Warning! To prevent memory leaks, you must explicitly clean up a
connection’s Statement objects before releasing the connection back into the
cache. Do not release a connection more than once.

See also getConnection(int), dropConnection(Connection)

jaguar.jcm.JConnectionNotFoundException class
Description package com.sybase.jaguar.jcm;

public class JConnectionNotFoundException
extends JException;

Exception thrown by JCMCache.getConnection(int) to indicate that no
connections are available in the cache. You must specify JCM_NOWAIT in
order for the exception to be thrown.

Constructors Same as JException.

Methods Same as JException.

See also jaguar.util.JException class, java.sql.SQLException class
22 EAServer

CHAPTER 1 Java Classes and Interfaces
jaguar.server.Jaguar class
Description package com.sybase.jaguar.server;

public class Jaguar extends Object

Provides utility methods for use in server-side Java code.

Constructors None. All methods are static.

Methods • getInstanceContext() – Returns the InstanceContext object associated with
the current component instance.

• getHostName() – Returns the client host name for the client connection
that is associated with this component instance.

• getPassword() – Returns the password for the client connection that is
associated with this component instance.

• getPeerAddress() – Returns the client host address for the client
connection that is associated with this component instance.

• getServerName() – Returns the name of the server.

• getUserName() – Returns the user name for the client connection that is
associated with this component instance.

• inJaguar() – Tests if running inside the server.

• writeLog(boolean, String) – Writes a message to the server’s log file.

Jaguar.getInstanceContext()
Description Retrieves the InstanceContext object associated with the current component

instance.

Syntax

public InstanceContext getInstanceContext()

Return value An InstanceContext object for the current component instance.

Usage Components that do not implement the ServerBean interface can call this
method to get an InstanceContext object. The InstanceContext provides
transaction primitives that allow the component to influence the outcome of the
transactions in which it participates.

Package com.sybase.jaguar.server

Class Jaguar
API Reference 23

jaguar.server.Jaguar class
Components that implement InstanceContext receive the InstanceContext via
the ServerBean.activate(InstanceContext, String) method.

See also InstanceContext, ServerBean

Jaguar.getHostName()
Description Returns the client host name for the client connection that is associated with

this component instance.

Syntax

public static String getHostName() throws JException

Return value The client host name. The host name can be 0 length if the client software did
not supply the host name.

Note
Java clients do not supply the client host name (there is no mechanism to
retrieve the host name in Java).

See also getPeerAddress()

Jaguar.getPassword()
Description Returns the password for the client connection that is associated with this

component instance.

Syntax

public static String getPassword() throws JException

Return value The client password. The password can be 0 length.

Usage getPassword returns the password for the client connection that is associated
with this component instance.

This method cannot be called from a component instance that is running as a
service component, since service components run without client interaction.

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar
24 EAServer

CHAPTER 1 Java Classes and Interfaces
See also getUserName()

Jaguar.getPeerAddress()
Description Returns the client host address for the client connection that is associated with

this component instance.

Syntax

public static String getPeerAddress() throws JException

Return value The client’s IP address, or “0.0.0.0” if the client’s IP address is unavailable.

See also getHostName()

Jaguar.getServerName()
Description Returns the name of the server.

Syntax

public static String getServerName() throws JException

Return value The name of the server.

Jaguar.getUserName()
Description Returns the user name for the client connection that is associated with this

component instance.

Syntax

public static String getUserName() throws JException

Return value The user name. The user name can be 0 length.

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar
API Reference 25

jaguar.server.Jaguar class
Usage getUserName returns the user name for the client connection that is associated
with this component instance.

This method cannot be called from a component instance that is running as a
service component, since service components run without client interaction.

See also getPassword()

Jaguar.inJaguar()
Description Tests if running inside the server.

Syntax

public static boolean inJaguar() throws JException

Return value true if running inside the server, false otherwise.

Usage As an alternative, you can call the method com.sybase.CORBA.ORB.isClient(),
which returns a boolean value that is true if running outside of EAServer. Use
this alternative if your code may be run without the EAServer server-side
classes in the CLASSPATH.

Jaguar.writeLog(boolean, String)
Description Writes a message to the server’s log file.

Standard output redirected to the server log
Prehistoric EAServer versions required you to call this method to write to the
log. In version 3.0 or later, you can call any of the System.out.print methods.

Syntax

public static native void writeLog
(boolean use_date, String logmsg)
throws JException

Package com.sybase.jaguar.server

Class Jaguar

Package com.sybase.jaguar.server

Class Jaguar
26 EAServer

CHAPTER 1 Java Classes and Interfaces
Parameters use_date
true if the current date and time should be prepended to the log message;
false otherwise.

logmsg
A message to be written to the server’s log file.

Usage This method records a message in the server’s log file.

By convention, errors that occur on the server are written to the log. Java
components should call writeLog(String) rather than printing to the console with
java.lang.System.out or java.lang.System.err.

For information on configuring the log file used by the server, see Chapter 3,
“Creating and Configuring Servers,” in the EAServer System Administration
Guide.

jaguar.server.JContext class
Description package com.sybase.jaguar.server;

public class JContext extends Object

Instantiates objects that are used to send result sets from a Java component
method and provides a method to forward rows from a java.sql.ResultSet to the
client.

Constructors None. All methods are static.

Methods • createServerResultSetMetaData() – Creates a JServerResultSetMetaData
object.

• createServerResultSet(JServerResultSetMetaData) – Creates a
JServerResultSet object with row format that matches the specified
JServerResultSetMetaData object.

• forwardResultSet(ResultSet) – Retrieves the rows from a java.sql.ResultSet
object and forward them to the client.

• getComponentName() – Retrieves the name of the currently executing
component, as displayed in EAServer Manager.

• getPackageName() – Determines the name of the package in which the
currently executing component is installed.

See also JServerResultSet, JServerResultSetMetaData
API Reference 27

jaguar.server.JContext class
JContext.createServerResultSetMetaData()
Description Creates a JServerResultSetMetaData object.

Syntax

public static JServerResultSetMetaData
 createServerResultSetMetaData()
throws SQLException

Usage The JServerResultSetMetaData reference can be used to describe result rows to
be sent to the client.

See also createServerResultSet(JServerResultSetMetaData),
forwardResultSet(ResultSet)

JContext.createServerResultSet(JServerResultSetMetaData)
Description Creates a JServerResultSet object.

Syntax

public static JServerResultSet createServerResultSet
(JServerResultSetMetaData metadata)
throws SQLException

Parameters metadata
A JServerResultSetMetaData object that has been initialized to describe the
result set that will be sent.

See also createServerResultSetMetaData(), forwardResultSet(ResultSet)

JContext.forwardResultSet(ResultSet)
Description Retrieves the rows from a java.sql.ResultSet object and forward them to the

client.

Syntax

Package com.sybase.jaguar.server

Class JContext

Package com.sybase.jaguar.server

Class JContext

Package com.sybase.jaguar.server

Class JContext
28 EAServer

CHAPTER 1 Java Classes and Interfaces
public static void
 forwardResultSet(ResultSet rs)
throws SQLException

Parameters rs
A java.sql.ResultSet containing result rows from a JDBC query to a third-tier
server.

See also java.sql.ResultSet

JContext.getComponentName()
Description Retrieves the name of the currently executing component, as displayed in

EAServer Manager.

Syntax

public static String
 getComponentName()

Return value The name of the component, as displayed in EAServer Manager.

Usage getPackageName() and getComponentName() allow you to determine the name
of the currently executing component. Within a server, components are
identified by the name of the EAServer Manager package where they are
installed and the EAServer Manager component name.

See also getPackageName(), Jaguar.getServerName()

JContext.getPackageName()
Description Determines the name of the package in which the currently executing

component is installed.

Syntax

public static String
 getPackageName()

Return value The name of the EAServer package, as displayed in EAServer Manager.

Package com.sybase.jaguar.server

Class JContext

Package com.sybase.jaguar.server

Class JContext
API Reference 29

jaguar.sql.JServerResultSet interface
Usage getPackageName() and getComponentName() allow you to determine the name
of the currently executing component. Within a server, components are
uniquely identified by the name of the EAServer Manager package where they
are installed and the EAServer Manager component name.

See also getComponentName(), Jaguar.getServerName()

jaguar.sql.JServerResultSet interface
Description package com.sybase.jaguar.sql;

public interface JServerResultSet extends Object

Provides methods to send rows to the client. JServerResultSet is similar to the
java.sql.ResultSet interface, which is used to retrieve result rows from a server.

Constructors Call JContext.createServerResultSet(JServerResultSetMetaData).

Methods • done() – Indicates that all rows in a result set have been sent.

• findColumn(String) – Maps a column name to a column index.

• getMetaData() – Returns a java.sql.ResultSetMetaData object that describes
the rows in a result set. The metadata includes the number of columns, the
datatype of each column, and other details about each column such as
whether values can be NULL.

• next() – Sends a row to the client.

• setBigDecimal(int, BigDecimal, int) – Specifies a non-NULL value for a
BigDecimal column.

• setCurrency(int, long) – Specifies a non-NULL value for a column that
represents a cash value.

• setNull(int) – Specifies that a column in the current row has value NULL.

• set<Object>(int, <Object>) – Specifies a non-NULL value for a column in
the current row.

Usage A JServerResultSetMetaData instance is required to construct a
JServerResultSet. JServerResultSetMetaData describes the format of rows in
the result set. After initializing the JServerResultSetMetaData instance, call
JContext.createServerResultSet(JServerResultSetMetaData).

The cursor of a JServerResultSet is initially positioned before the first row. An
initial next() call is required to move the cursor to the first row.
30 EAServer

CHAPTER 1 Java Classes and Interfaces
Subsequent calls to next() add new rows; each should be preceded by
set<Object>(int, <Object>) or setNull(int) calls to set column values for the row.

You can add any number of rows with next(). Once all rows have been added,
call the done() method to indicate the end of the result set.

After the done() method finishes, the JServerResultSet is again positioned
before the first row. The same JServerResultSet instance can be used to another
result set based on the same metadata.

Implementations of the JServerResultSet interface may buffer rows as needed
during consecutive next() calls before sending them to the client. The done()
method should flush any buffered rows (and flush network buffers as well, if
possible—the EAServer done() implementation flushes network buffers).

“Sending result sets with Java” in the EAServer Programmer’s Guide
summarizes the call sequences to send result sets and contains examples.

See also JContext.forwardResultSet(ResultSet)

JServerResultSet.done()
Description Indicates that all rows in a result set have been sent.

Syntax

public abstract void done()
throws SQLException

Usage You must call the done() method to indicate that all rows in a result set have
been sent.

JServerResultSet.findColumn(String)
Description Returns the index for the column that has the specified name.

Syntax

public abstract int findColumn(String columnName)
throws SQLException

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet
API Reference 31

jaguar.sql.JServerResultSet interface
Parameters columnName
The name of the column of interest.

Return value The index of the column whose name matches the supplied name. Throws a
SQLException if no column has a matching name. The index of the first column
is 1.

See also JServerResultSetMetaData.setColumnName(int, String)

JServerResultSet.getMetaData()
Description Returns a java.sql.ResultSetMetaData object that describes the rows in a result

set. The metadata includes the number of columns, the datatype of each
column, and other details about each column, such as whether values can be
NULL.

Syntax

public abstract ResultSetMetaData getMetaData()
throws SQLException

Return value A java.sql.ResultSetMetaData object that describes the rows in a result set.

Usage A JServerResultSet object’s metadata is determined when the object is
constructed by calling createServerResultSetMetaData(). The metadata cannot
be changed afterwards.

See also java.sql.ResultSetMetaData, createServerResultSetMetaData(),
createServerResultSet(JServerResultSetMetaData),
java.sql.ResultSet.getMetaData()

JServerResultSet.next()
Description Sends a row to the client.

Syntax

public abstract boolean next() throws SQLException

Return value true if the row was successfully created, false otherwise.

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet
32 EAServer

CHAPTER 1 Java Classes and Interfaces
Usage The cursor of a JServerResultSet object is positioned before the first row when
the object is constructed. An initial next() call is required to move the cursor to
the first row. A done() call repositions the cursor before the first row.

After the first next() call, subsequent calls to next() add new rows; each should
be preceded by set<Object>(int, <Object>) or setNull(int) calls to set column
values for the row.

Any number of rows can be sent with next(). Once all rows have been sent, the
done() method must be called to indicate the end of the result set.

See also done(), ResultSet.next()

JServerResultSet.setBigDecimal(int, BigDecimal, int)
Description Specifies a non-NULL value for a java.math.BigDecimal column.

Syntax

public abstract void setBigDecimal
(int columnIndex,
 BigDecimal columnValue,
int scale) throws SQLException

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
A java.math.BigDecimal value.

scale
The scale of the value. The scale specifies the number of decimal digits to
the right of the decimal point.

Usage Use setBigDecimal methods to specify values for non-NULL
java.math.BigDecimal column values. If a column’s value is NULL, call
setNull(int).

You can set values for columns within a row in any order.

See also ResultSet.getBigDecimal(int, int)

Package com.sybase.jaguar.sql

Interface JServerResultSet
API Reference 33

jaguar.sql.JServerResultSet interface
JServerResultSet.setCurrency(int, long)
Description Specifies a non-NULL value for a column that represents a cash value.

Syntax

public abstract void setCurrency
(int columnIndex,
long columnValue)
throws SQLException

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
The column’s value, expressed as the number of one-ten-thousandths of a
cash unit. In other words, columnValue represents the cash value:

columnValue/10000

Usage You must call setCurrency to specify values for columns that represent a cash
value. The result set’s metadata specifies whether a column represents a cash
value (ResultSetMetaData.isCurrency(int) returns true for the column).

setCurrency throws a SQLException if the column does not represent a cash
value.

See also ResultSet.getBigDecimal(int, int), ResultSetMetaData.isCurrency(int),
JServerResultSetMetaData.setCurrency(int, boolean)

JServerResultSet.setNull(int)
Description Specifies that a column in the current row has value NULL.

Syntax

public abstract void setNull(int columnIndex)
throws SQLException

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

Usage An exception is thrown if the ResultSet object’s metadata does not allow
NULL values for the column.

Package com.sybase.jaguar.sql

Interface JServerResultSet

Package com.sybase.jaguar.sql

Interface JServerResultSet
34 EAServer

CHAPTER 1 Java Classes and Interfaces
See also JServerResultSetMetaData.setNullable(int, int),
JServerResultSet.getMetaData(), ResultSet.wasNull()

JServerResultSet.set<Object>(int, <Object>)
Description Specifies a non-NULL value for a column in the current row.

Syntax

public abstract void setASCIIStream
(int columnIndex, java.io.InputStream columnValue)
throws SQLException, IOException

public abstract void setBinaryStream
(int columnIndex, java.io.InputStream columnValue)
throws SQLException, IOException

public abstract void setBoolean
(int columnIndex, boolean columnValue)
throws SQLException

public abstract void setByte
(int columnIndex, byte columnValue)
throws SQLException

public abstract void setDouble
(int columnIndex, double columnValue)
throws SQLException

public abstract void setDouble
(int columnIndex, double columnValue)
throws SQLException

public abstract void setFloat
(int columnIndex, float columnValue)
throws SQLException

public abstract void setInt
(int columnIndex, int columnValue)
throws SQLException

public abstract void setShort
(int columnIndex, short columnValue)
throws SQLException

public abstract void setString
(int columnIndex, java.lang.String columnValue)
throws SQLException

Package com.sybase.jaguar.sql

Interface JServerResultSet
API Reference 35

jaguar.sql.JServerResultSetMetaData interface
public abstract void setTimestamp
(int columnIndex, java.sql.Timestamp columnValue)
throws SQLException

Parameters columnIndex
The index of the column whose value is being set. The first column is 1.

columnValue
An object of the appropriate type that contains the value for the column. The
object type must match the column type that was specified by
JServerResultSetMetaData.setColumnType(int, int) for the result set’s
metadata. Table 1-1 on page 41 lists type mappings.

Usage Use the set<Object> methods to specify values for non-NULL column values.
If a column’s value is NULL, call setNull(int).

You can set values for columns within a row in any order.

See also JServerResultSetMetaData.setColumnType(int, int),
setBigDecimal(int, BigDecimal, int), java.sql.ResultSet

jaguar.sql.JServerResultSetMetaData interface
Description package com.sybase.jaguar.sql;

public interface JServerResultSetMetaData
extends ResultSetMetaData

Provides methods to describe a result set’s metadata. Metadata specifies the
number of columns in each row as well as the datatype, format, nullability, and
so forth for each column.

Constructors The JContext.createServerResultSetMetaData() method returns a class instance
that implements this interface.

Methods • setAutoIncrement(int, boolean) – (Not yet supported.) Specifies whether a
column has the auto-increment property.

• setCaseSensitive(int, String) – (Not yet supported.) Specifies whether a
column’s values are case-sensitive.

• setCatalogName(int, String) – (Not yet supported.) Specifies the name of
the column’s catalog (database).

• setColumnCount(int) – Specifies the number of columns that will be sent in
result-set rows.
36 EAServer

CHAPTER 1 Java Classes and Interfaces
• setColumnDisplaySize(int, int) – Specifies the column’s normal maximum
width in characters.

• setColumnLabel(int, String) – Recommends a display title for the column.

• setColumnName(int, String) – Specifies the column’s name.

• setColumnType(int, int) – Specifies the column’s SQL (java.sql.Types)
datatype.

• setColumnTypeName(int, String) – (Not yet supported.) Specifies a
column’s data-source-specific type name.

• setCurrency(int, boolean) – Specifies whether the column represents a cash
value.

• setNullable(int, int) – Specifies whether column values can be null.

• setPrecision(int, int) – Specifies the column’s precision. The precision
equals the number of decimal digits in a value.

• setScale(int, int) – Specifies the column’s scale. The scale equals the
number of decimal digits to the right of the decimal point.

• setSchemaName(int, String) – (Not yet supported.) Specifies the schema
name of the column’s table.

• setSearchable(int, boolean) – (Not yet supported.) Specifies whether a
column can be used in a SQL where clause.

• setSigned(int, boolean) – (Not yet supported.) Specifies whether the
column represents a signed number.

• setTableName(int, String) – (Not yet supported.) Specifies the name of the
table that contains the column.

Note
The current version does not support some interface methods. The list above
indicates the methods that are not yet supported. These methods throw a
JException with a “Unsupported Functionality” message.

Usage JServerResultSetMetaData provides set methods that correspond to the get
methods defined in java.sql.ResultSetMetaData. Since
JServerResultSetMetaData extends ResultSetMetaData, you can call the get
methods directly on a JServerResultSetMetaData object.

You can use an initialized JServerResultSetMetaData object to create one or
more JServerResultSet objects by calling
JContext.createServerResultSet(JServerResultSetMetaData).
API Reference 37

jaguar.sql.JServerResultSetMetaData interface
“Sending result sets with Java” in the EAServer Programmer’s Guide
summarizes the call sequences to send result sets and contains an example.

See also java.sql.ResultSetMetaData

JServerResultSetMetaData.setColumnCount(int)
Description Specifies the number of columns that will be sent in result-set rows.

Syntax

public abstract void setColumnCount(int columnCount)
throws SQLException

Parameters columnCount
The number of columns.

Usage You must call setColumnCount() before you can call any other methods to
describe an individual column’s metadata. Once the number of columns is
specified, it cannot be changed without discarding any column descriptions
that you have set. That is, if you call setColumnCount() again, you must reset
each column’s metadata.

See also ResultSetMetaData.getColumnCount()

JServerResultSetMetaData.setColumnDisplaySize(int, int)
Description Specifies the column’s normal maximum width in characters.

Syntax

public abstract void setColumnDisplaySize
(int columnIndx, int size)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

size
The maximum width in characters.

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData
38 EAServer

CHAPTER 1 Java Classes and Interfaces
Usage setColumnDisplaySize determines the maximum length of variable length
columns (CHAR, VARCHAR, LONGVARCHAR, BINARY, VARBINARY,
LONGVARBINARY).

If you do not call setColumnDisplaySize to set a default display size, the
implementation-specific default is used. To avoid excessive memory
allocation, you must explicitly set the display size. In particular, the default
display sizes for LONGVARCHAR and LONGVARBINARY columns can be
larger than a Gigabyte.

See also ResultSetMetaData.getColumnDisplaySize(int)

JServerResultSetMetaData.setColumnLabel(int, String)
Description Recommends a display title for the column.

Syntax

public abstract void setColumnLabel
(int columnIndex, String label)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

label
The recommended display title. The default is the column name specified
with setColumnName(int, String).

See also ResultSetMetaData.getColumnLabel(int), setColumnName(int, String)

JServerResultSetMetaData.setColumnName(int, String)
Description Specifies the column’s name.

Syntax

public abstract void setColumnName
(int columnIndex, String columnName)
throws SQLException

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData
API Reference 39

jaguar.sql.JServerResultSetMetaData interface
Parameters columnIndex
The index of the column. The first column has index 1.

columnName
The name of the column. The default is “” (0-length string).

See also ResultSetMetaData.getColumnName(int)

JServerResultSetMetaData.setColumnType(int, int)
Description Specifies the column’s SQL (java.sql.Types) datatype.

Syntax

public abstract void setColumnType
(int columnIndex, int SQLType)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

SQLType
A symbolic constant that indicates the column’s Java datatype. Constants
are defined statically in the class java.sql.Types. The table below lists the
supported java.sql.Types and lists, for each type, the corresponding Java type
and the JServerResultSet.set<Object>(int, <Object>) method that must be
called to set values for the column.

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData
40 EAServer

CHAPTER 1 Java Classes and Interfaces
Table 1-1: Mapping type constants to Java types and setXXX methods

Note
java.sql.Types.OTHER and java.sql.Types.BIGINT are not supported.

Usage setColumnType(int, int) specifies the datatype for a column. There is no default.
For java.math.BigDecimal columns, you must also call setPrecision(int, int) and
setScale(int, int) to specify the column’s precision and scale, respectively.

For columns that represent cash values, you must use
JServerResultSet.setCurrency(int, long) to set values for the column.

See also java.sql.Types, ResultSetMetaData.getColumnType(int), setPrecision(int, int),
setScale(int, int)

JServerResultSetMetaData.setCurrency(int, boolean)
Description Specifies whether the column represents a cash value.

java.sql.Types constant Java datatype
JServerResultSet
method to set values

BINARY byte[] setBinaryStream or
setBytes

BIT boolean setBoolean

CHAR java.lang.String setASCIIStream or
setString

DECIMAL java.math.BigDecimal setBigDecimal

DOUBLE double setDouble

FLOAT double setDouble

INTEGER int setInt

LONGVARBINARY java.io.InputStream or
byte[]

setBinaryStream or
setBytes

LONGVARCHAR String setASCIIStream or
setString

NUMERIC java.math.BigDecimal setBigDecimal

REAL float setFloat

SMALLINT short setShort

TIMESTAMP java.sql.Timestamp setTimestamp

TINYINT byte setByte

VARCHAR java.lang.String setString

VARBINARY byte[] setBytes
API Reference 41

jaguar.sql.JServerResultSetMetaData interface
Syntax

public abstract void

 setCurrency
(int columnIndex, boolean property)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

property
true if the column represents a cash value, false otherwise. The default is
false.

See also ResultSetMetaData.isCurrency(int)

JServerResultSetMetaData.setNullable(int, int)
Description Specifies whether column values can be null.

Syntax

public abstract void setNullable
(int columnIndex, int property)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

property
A symbolic constant that takes the following values:

The default is columnNullableUnknown.

See also JServerResultSet.setNull(int), ResultSetMetaData.isNullable(int)

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Value To indicate

columnNullable Values for the column can be null.

columnNoNulls Values for the column cannot be null.

columnNullableUnknown Nullability of the column is not known.
42 EAServer

CHAPTER 1 Java Classes and Interfaces
JServerResultSetMetaData.setPrecision(int, int)
Description Specifies the column’s precision. The precision equals the number of decimal

digits in a value.

Syntax

public abstract void setPrecision
(int columnIndex, int precision)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

precision
The precision of the column. The default is 0.

Usage This method applies to java.math.BigDecimal columns only.

See also ResultSetMetaData.getPrecision(int), setScale(int, int)

JServerResultSetMetaData.setScale(int, int)
Description Specifies the column’s scale. The scale equals the number of decimal digits to

the right of the decimal point.

Syntax

public abstract void setScale
(int columnIndex, int scale)
throws SQLException

Parameters columnIndex
The index of the column. The first column has index 1.

scale
The scale for the column. The default is 0.

Usage This method applies to java.math.BigDecimal columns only.

See also ResultSetMetaData.getScale(int), setPrecision(int, int)

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData

Package com.sybase.jaguar.sql

Interface JServerResultSetMetaData
API Reference 43

jaguar.util.JException class
jaguar.util.JException class
Description package com.sybase.jaguar.util;

public class JException
extends Exception

JException is the generic exception that is thrown by methods in the EAServer
classes or in generated client stub classes.

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also JConnectionNotFoundException, java.sql.SQLException

jaguar.util.<object>Holder class
Description package com.sybase.jaguar.util;

public class <object>Holder extends Object

For components that use the Jaguar-JDBC type mappings, holder classes are
used to pass INOUT parameters to component method calls. Each holder class
has a value field that contains instances of a specific object or base Java type.

Additional holder classes are defined in packages
com.sybase.jaguar.util.jdbc102 and com.sybase.jaguar.util.jdbc11.

com.sybase.jaguar.util holder classes are summarized in the Table 1-2.
44 EAServer

CHAPTER 1 Java Classes and Interfaces
Table 1-2: Holder classes

 Warning! Null parameter values are not supported. For StringHolder or
BytesHolder parameters, use the constructor that takes an initial value, or set
the value field explicitly.

Constructors <object>Holder()

Default constructor that assigns the default value specified in Table 1-2 on
page 45.

<object>Holder(<object> initialValue)

Constructor that takes an initial value specified as initialValue. initialValue is
an instance of the appropriate datatype as specified in Table 1-2 on page 45.

Fields value
The current value contained by the holder object. Table 1-2 on page 45 lists the
datatypes and default values for the value field.

Usage Java component methods on the server receive INOUT parameters as a holder
object. The method should set the value field of each holder object before
returning.

The examples below illustrate how to construct and use holder objects:

• Each holder object has a default constructor that takes no arguments. For
example:

StringHolder str_holder = new StringHolder();
IntegerHolder int_holder = new IntegerHolder();

Holder class Datatype for value field Default for value

BooleanHolder boolean false

ByteHolder byte 0

BytesHolder byte[] null

CharHolder char \u0000
(null character)

FloatHolder float 0.0

DoubleHolder double 0.0

IntegerHolder int 0

LongHolder long 0

ShortHolder short 0

StringHolder java.lang.String null
API Reference 45

jaguar.util.jdbc102.<object>Holder class
• Each holder object has an additional constructor that takes an initial value
as a parameter. For example:

StringHolder str_holder =
new StringHolder(“hello”);

IntegerHolder int_holder = new IntegerHolder(43);

float f = 3.141;
FloatHolder float_holder = new FloatHolder(f);

• Each holder object has a value member that allows access to the base
object value. For example:

IntegerHolder i_hold = new IntegerHolder();
System.out.println(

“IntegerHolder default value is:“
+ i_hold.value);

See also jaguar.util.jdbc102.<object>Holder class, jaguar.util.jdbc11.<object>Holder class

jaguar.util.jdbc102.<object>Holder class
Description package com.sybase.jaguar.util.jdbc102;

public class <object>Holder extends Object

The com.sybase.jaguar.util.jdbc102 holder classes are used to pass jdbc.sql and
jdbc.math objects as INOUT parameters.

For code that runs in a JDK 1.0.2 virtual machine, use these imports:

import jdbc.sql.*;
import jdbc.math.*;
import com.sybase.jaguar.util.jdbc102.*;

The jdbc.sql package contains classes that are equivalent to JDK 1.1 java.sql
classes that have the same name. The jdbc.math package contains classes that
are equivalent to JDK 1.1 java.math classes that have the same name. For
details, see the JDK 1.1 documentation of the java.math and java.sql packages.

The holder classes for JDK 1.0.2 are summarized in Table 1-3:
46 EAServer

CHAPTER 1 Java Classes and Interfaces
Table 1-3: Holder classes for use with JDK 1.0.2

 Warning! Null parameter values are not supported. Use the constructor that
takes an initial value, or set the value field explicitly.

Constructors <object>Holder()

Default constructor that assigns the default value specified in Table 1-3.

<object>Holder(<object> initialValue)

Constructor that takes an initial value specified as initialValue. initialValue is
an instance of the appropriate datatype as specified in Table 1-3.

Fields value
The current value contained by the holder object.Table 1-3 lists the datatypes
and default values for the value field.

See also jaguar.util.<object>Holder class, jaguar.util.jdbc11.<object>Holder class

jaguar.util.jdbc11.<object>Holder class
Description package com.sybase.jaguar.util.jdbc11;

public class <object>Holder extends Object

The com.sybase.jaguar.util.jdbc11 holder classes are used to pass java.sql and
java.math objects as INOUT parameters. Use these classes in code that runs in
a JDK 1.1 or later virtual machine. See jaguar.util.jdbc102.<object>Holder class
for similar classes that are compatible with JDK 1.0.2.

For code that will be run in a JDK 1.1 or later virtual machine, use these
imports:

import java.sql.*;
import java.math.*;
import com.sybase.jaguar.util.jdbc11.*;

The holder classes for JDK 1.1 are summarized in Table 1-4:

Holder class Datatype for value field Default for value

BigDecimalHolder jdbc.math.BigDecimal null

DateHolder jdbc.sql.Date null

TimeHolder jdbc.sql.Time null

TimestampHolder jdbc.sql.Time null
API Reference 47

jaguar.util.jdbc11.<object>Holder class
Table 1-4: Holder for use with JDK 1.1

 Warning! Null parameter values are not supported. Use the constructor that
takes an initial value, or set the value field explicitly.

Constructors <object>Holder()

Default constructor that assigns the default value specified in Table 1-4.

<object>Holder(<object> initialValue)

Constructor that takes an initial value specified as initialValue. initialValue is
an instance of the appropriate datatype as specified in Table 1-4.

Fields value
The current value contained by the holder object.Table 1-4 lists the datatypes
and default values for the value field.

See also jaguar.util.<object>Holder class, jaguar.util.jdbc102.<object>Holder class

Holder class Datatype for value field Default for value

BigDecimalHolder java.math.BigDecimal null

DateHolder java.sql.Date null

TimeHolder java.sql.Time null

TimestampHolder java.sql.Timestamp null
48 EAServer

C H A P T E R 2 ActiveX C++ Interface Reference

This chapter documents the custom interfaces for the EAServer server-
side ActiveX objects. These interfaces are defined in the C++ header file
jagctx.h. Some objects also provide an IDispatch interface that allows the
object to be used in ActiveX automation IDEs such as PowerBuilder.
Chapter 3, “ActiveX IDispatch Interface Reference,” provides reference
pages for the IDispatch interfaces.

Header files and link libraries
All the interfaces documented here are defined in jagctx.h. Link
information is in libjdispatch.lib. You must include jagctx.h in source
code that uses these interfaces, and link libjdispatch.lib when building the
DLL. Add the EAServer include subdirectory to your compiler’s header-
file search path. Add the EAServer lib subdirectory to your compiler’s
library-file search path.

To use the ISharedPropertyGroupManager, ISharedPropertyGroup, and
ISharedProperty interfaces, you must include JagSharedProp.h.
Additionally, you must include JagSharedProp_i.c in one—and only
one—source file for your component DLL. JagSharedProp.h contains
interface definitions for the documented interfaces. JagSharedProp_i.c
declares symbols that are required by the ActiveX CoCreateInstance
routine. (CoCreateInstance is called to create
ISharedPropertyGroupManager interface pointers.)

 Warning! If you include JagSharedProp_i.c in more than one source file
for your component DLL, you will get duplicate-symbol errors when
linking.
API Reference 49

List of interfaces
List of interfaces
• GetObjectContext routine – Retrieves the object context interface that is

associated with your component instance.

• IJagServer interface – Provides utility methods for use in EAServer
ActiveX components.

• IJagServerResults interface – Provides methods to send rows to a
EAServer client application.

• IObjectContext interface – Provides methods that allow your component to
influence the transaction outcome. Nontransactional components can call
the IObjectContext methods to cause early deactivation of an instance.

• IObjectControl interface – Allows components to support EAServer’s
instance pooling model. The component dispatcher calls the IObjectControl
methods to indicate transitions in the lifecycle of an ActiveX component.

• ISharedProperty interface – Represents a property value that is shared
among all ActiveX component instances in a EAServer package.

• ISharedPropertyGroup interface – Represents a group of properties that are
shared by all ActiveX components in a EAServer package. Contains
methods to create, access, and destroy shared properties.

• ISharedPropertyGroupManager interface – Contains methods to create,
access, and destroy shared property groups.

GetObjectContext routine
Description Retrieves the object context interface that is associated with your component

instance.

Syntax #include <jagctx.h>

HRESULT GetObjectContext (
IObjectContext ** ppInstCtx

);

Parameters ppInstCtx
The address of an IObjectContext interface pointer.
50 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Return value

Usage Call GetObjectContext to obtain an IObjectContext interface pointer.

GetObjectContext is defined in mtx.h; to call it, you must link mtx.lib with your
component.

The IObjectContext interface is not available unless GetObjectContext is called
from code that is executing in the context of a component method invocation.

The IObjectContext interface is not available in the component’s class
constructor.

An IObjectContext reference is not valid after an instance has been deactivated.
If your component implements the IObjectControl interface, you can obtain an
IObjectContext pointer in the Activate method and release it when Deactivate is
called. Components that do not implement IObjectControl can obtain an
IObjectContext pointer and release it in the destructor.

See also IObjectContext interface

IJagServer interface
Description Provides utility methods for use in EAServer ActiveX components.

Methods • WriteLog – Writes a message to the server’s log file.

Usage To create an IJagServer interface pointer, use the ProgID, “Jaguar.JagServer.1”.
Call the OLE routines CLSIDfromProgID and CoCreateInstance.
CoCreateInstance returns an interface pointer for a given ActiveX class ID
string. CLSIDfromProgID obtains the class ID string that CoCreateInstance
requires.

Return value To indicate

S_OK Successful retrieval of the IObjectContext
interface pointer.

E_INVALIDARG ppInstCtx was NULL.

CONTEXT_E_NOCONTEXT GetObjectContext was called from code that was
not executing as part of a component method
invocation. This can happen if you run your code
outside of EAServer or if you call
GetObjectContext from the component’s
constructor.
API Reference 51

IJagServer interface
To use the IJagServer and IJagServerResults interfaces, you must include
JagAxWrap.h. Additionally, you must include JagAxWrap_i.c in only one
source file for your component DLL. JagAxWrap.h contains interface
definitions for the documented interfaces. JagAxWrap_i.c declares symbols
that are required by the ActiveX CoCreateInstance routine.

 Warning! You will get duplicate-symbol link errors if you include
JagAxWrap_i.c in more than one source file for your component DLL.

See also Chapter 19, “Creating ActiveX Components,” in the EAServer Programmer’s
Guide

IJagServer::WriteLog
Description Writes a message to the server’s log file.

Syntax #include <JagAxWrap.h>

HRESULT IJagServer::WriteLog(
VARIANT_BOOL useTimeStamp,
BSTR message)

Parameters useTimeStamp
VARIANT_TRUE if the current date and time should be prepended to the log
message; VARIANT_FALSE otherwise.

message
A message to be written to the server’s log file.

Return value

Usage This method records a message in the server’s log file.

By convention, errors that occur on the server are recorded in the log. Log
messages should contain enough detail for an administrator or programmer to
troubleshoot the cause of the error.

Return value To indicate

S_OK Successful execution.

E_OUTOFMEMORY Out of memory.

E_FAIL Failure. WriteLog fails if the log file cannot be
opened or if message is NULL. If the log file
cannot be opened, log messages are written to the
server process’ standard error device.
52 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
After recording error information in the log, you can also send a concise
description of the error by raising an OLE automation exception.

For information on configuring the log file used by the server, see Chapter 3,
“Creating and Configuring Servers,” in the EAServer System Administration
Guide.

When coding in C++, you can call the C routine JagLog instead of
IJagServer::WriteLog. Calling the C routine avoids the overhead incurred by
creating an IJagServer interface pointer.

Example

The following C++ code fragment creates an IJagServer interface pointer and
calls WriteLog to log the message “Hello, logfile”:

HRESULT hr;
IJagServer *p_ijs;
CLSID clsid_js;
BSTR msg;

// Create an IJagServer interface pointer
hr = CLSIDFromProgID(L"Jaguar.JagServer.1", &clsid_js)
;
// ... deleted error checking ...

hr = CoCreateInstance(clsid_js, NULL,
CLSCTX_INPROC_SERVER,
IID_IJagServer,
(void**)&p_ijs);

// ... deleted error checking ...

msg = SysAllocString(L"Hello, logfile\n");
// ... deleted error checking ...
hr = p_ijs->WriteLog(VARIANT_TRUE, msg);
// ... deleted error checking ...

See also Chapter 19, “Creating ActiveX Components,” in the EAServer Programmer’s
Guide

JagLog in Chapter 5, “C Routines Reference.”

IJagServerResults interface
Description Provides methods to send rows to a EAServer client application.
API Reference 53

IJagServerResults interface
Methods • BeginResults – Begins the sequence of calls that sends a result set to the
client.

• BindCol – Binds a program variable to a column in a result set.

• ColAttributes – Specifies additional metadata for a column to be sent in a
result set.

• DescribeCol – Describes a result-set column.

• EndResults – Indicates that all rows in a result set have been sent.

• ResultsPassthrough – Forwards results from a remote database query to
the client

• SendData – Sends one row in a result set.

Usage To create an IJagServer interface pointer, use the ProgID,
“EAServer.JagServerResults.1”. Call the OLE routines CLSIDfromProgID and
CoCreateInstance. CoCreateInstance returns an interface pointer for a given
ActiveX class ID string. CLSIDfromProgID obtains the class ID string that
CoCreateInstance requires.

To use the IJagServerResults and IJagServer interfaces, you must include
JagAxWrap.h. Additionally, you must include JagAxWrap_i.c in only one
source file for your component DLL. JagAxWrap.h contains interface
definitions for the documented interfaces. JagAxWrap_i.c declares symbols
that are required by the ActiveX CoCreateInstance routine.

 Warning! You will get duplicate-symbol link errors if you include
JagAxWrap_i.c in more than one source file for your component DLL.

See also Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::BeginResults
Description Begins the sequence of calls that sends a result set to the client.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::BeginResults(
short numColumns
)

Parameters numColumns
The number of columns in the result set to be sent.
54 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Return value

See also DescribeCol

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::BindCol
Description Binds a program variable to a column in a result set.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::BindCol(
short item,
VARIANTARG sourceBuf,
long maxBuflen,
short *indicator)

Parameters item
The column number. The first column is 1.

sourceBuf
A VARIANTARG structure that describes the C datatype of the variable that
holds data values. The table below summarizes how to set the VARIANTARG
fields. You must set the vt field to indicate the C type for the supplied column
data, then use the indicated field to specify the address of another variable
that holds column values. Subsequent calls to SendData read values from
the variable at the indicated address; the address must remain valid until
EndResults is called.

Return value To indicate

S_OK Successful execution

E_INVALIDARG numColumns was not a positive number

E_OUTOFMEMORY Out of memory

E_FAIL Failure. Check the server’s log file for
information about the cause of failure
API Reference 55

IJagServerResults interface

Table 2-1: VARIANTARG settings for BindCol

Use BSTR for string values and SAFE_ARRAY for binary values. Decimal
and currency values can be specified as string data (BSTR) or any other type
that can be converted to a numeric fraction, such as SHORT, LONG, FLOAT
or DOUBLE. “ActiveX to SQL Datatype conversion” on page 58 describes
the supported conversions between SQL and ActiveX datatypes.

BindCol copies the structure contents before returning, consequently:

• You can use one VARIANTARG structure to set up binds for all
columns in a result set, and

• Changes made to the structure after BindCol returns have no effect.

maxBuflen
For string or binary values, the maximum length for column values that can
be sent. Ignored for other datatypes.

indicator
The address of a variable that acts as a null-indicator for column values.
Subsequent calls to SendData read the null-indicator value to determine
whether a null value should be sent to the client. Null-indicator values are as
follows:

C datatype vt field setting

Field that specifies
bound variable
address

SHORT * VT_I2 | VT_BYREF piVal

LONG * VT_I4 | VT_BYREF plVal

FLOAT * VT_R4 | VT_BYREF pfltVal

DOUBLE * VT_R8 | VT_BYREF pdblVal

VARIANT_BOOL * VT_BOOL |
VT_BYREF

pbool

DATE * VT_DATE |
VT_BYREF

pdate

SAFEARRAY * VT_ARRAY |
VT_UI1

 |

VT_BYREF

pparray

BSTR * VT_BSTR |
VT_BYREF

pbstrVal

Value To indicate

0 Column value is not null and must be read from the variable indicated
by the sourceBuf Variant buffer.
56 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
The indicator reference must remain valid until EndResults is called.

Return value

Usage BindCol associates a program variable with a column in a result set. When
SendData is called to send a row, it reads the column value for the current row
from the variable that is bound to the column.

-1 Column value is null.

Value To indicate

Return value To indicate

S_OK Successful execution.

E_INVALIDARG At least one parameter contained an invalid value.
Check the server’s log file for more information.

E_OUTOFMEMORY Out of memory.

E_FAIL Failure. Check the server’s log file for
information about the cause of failure.
API Reference 57

IJagServerResults interface
ActiveX to SQL Datatype conversion

The SQLDatatype value passed to DescribeCol determines the datatype with
which column values are sent over the network. If the program variable type
does not map directly to the column’s SQL datatype, SendData attempts to
convert the value. The figure below shows the supported conversions between
SQL datatypes and bind variable types. An X indicates a supported conversion.

See also DescribeCol, EndResults, SendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::ColAttributes
Description Specifies additional metadata for a column to be sent in a result set.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::ColAttributes(
short item,
BSTR descType,
58 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
VARIANTARG descBuf
)

Parameters item
The column number. The first column is 1.

descType
A BSTR; must be initialized to “COLUMN_MONEY”.

descBuf
A VARIANTARG structure initialized to contain a VARIANT_BOOL. A
value of TRUE means that the column represents a cash value.

Return value

Usage If a column in a result set represents a cash value, you must call ColAttributes
to set the “COLUMN_MONEY” attribute to TRUE. This attribute defaults to
FALSE.

See also DescribeCol

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::DescribeCol
Description Describes a result-set column.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::DescribeCol(
short item,
BSTR columnName,
BSTR SQLDatatype,
long columnSize,
long precision,
short scale,
VARIANT_BOOL nullable

)

Parameters item
The column number. The first column is 1.

Return value To indicate

S_OK Successful execution.

E_INVALIDARG At least one parameter contained an invalid value.
Check the server’s log file for more information.

E_FAIL Failure. Check the server’s log file for
information about the cause of failure.
API Reference 59

IJagServerResults interface
columnName
A BSTR containing the column’s name.

SQLDatatype
A BSTR containing the name of the column’s SQL datatype. This value
determines the datatype of values sent to the client. Values are specified in a
buffer that is bound to the column with BindCol. The following table lists the
datatype strings. See BindCol for details on how to bind column values.

Table 2-2: SQL datatypes for DescribeCol

SQL datatype string Description

“SQL_BIT” Boolean. A single bit of data.

“SQL_TINYINT” A 1-byte integer.

“SQL_SMALLINT” A 2-byte integer.

“SQL_INTEGER” A 4-byte integer.

“SQL_REAL” A 4-byte floating point number.

“SQL_FLOAT” An 8-byte floating point number.

“SQL_DOUBLE” Same as “SQL_FLOAT”.

“SQL_NUMERIC” A fixed-point fractional decimal number.

“SQL_DECIMAL” Same as “SQL_DECIMAL”.

“SQL_CHAR” A string of characters. Values do not vary in
length, and the specified length (columnSize)
must be less than 256.

“SQL_VARCHAR” A string of characters. Values may vary in length
and have maximum length specified by
columnSize. columnSize must be < 256.

“SQL_LONGVARCHAR” A string of characters. Values may vary in length
and have maximum length specified by
columnSize. columnSize is constrained by
available memory.

“SQL_DATE” An ODBC date value.

“SQL_TIME” An ODBC time value.

“SQL_TIMESTAMP” An ODBC timestamp value.

“SQL_BINARY” An array of bytes that does not vary in length. The
specified length (columnSize) must be less than
256.

“SQL_VARBINARY” An array of bytes that can vary in length. The
specified maximum length (columnSize) must be
less than 256.

“SQL_LONGVARBINARY” An array of bytes that can vary in length. The
specified maximum length (columnSize) is
constrained by available memory.
60 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
columnSize
For character or binary columns, the maximum length for column values.

precision
The precision of column values. For “SQL_NUMERIC” or
“SQL_DECIMAL” columns, precision indicates the maximum number of
decimal digits that a value may have. For other datatypes, precision is
ignored.

scale
The scale for column values. For “SQL_NUMERIC” or “SQL_DECIMAL”
columns, scale indicates the number of decimal digits to the right of the
decimal point. For other datatypes, scale is ignored.

nullable
VARIANT_TRUE if the column may have null values.

Return value

Usage DescribeCol describes the datatype, name, and format of a result column. The
ColAttributes method specifies additional metadata.

See also BindCol, ColAttributes

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::EndResults
Description Indicates that all rows in a result set have been sent.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::EndResults(long rowCount);

Parameters rowCount
The number of rows that were sent.

Return value To indicate

S_OK Successful execution.

E_INVALIDARG At least one parameter contained an invalid value.
Check the server’s log file for more information.

E_OUTOFMEMORY Out of memory.

E_FAIL Failure. Check the server’s log file for more
information.
API Reference 61

IJagServerResults interface
Return value

See also BeginResults

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::ResultsPassthrough
Description Forwards results from a remote database query to the client.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::ResultsPassthrough(
BSTR conlibName,
VARIANTARG *conlibPtr,
BSTR pthruType,
long *pInfo

)

Parameters conlibName
A BSTR with one of the following values:

• “ODBC” to indicate that conlibPtr contains the address of an ODBC
HSTMT control structure.

• “CTLIB” to indicate that conlibPtr contains the address of a Client-
Library CS_COMMAND control structure.

conlibPtr
A VARIANTARG structure containing the ODBC HSTMT or Client-
Library CS_COMMAND control structure. Set the VARIANTARG vt field
to VT_BYREF and the byref field to the address of the control structure.

When using ODBC, the HSTMT must be in a state that allows SQLFetch to
be called without error.

When using Client-Library, the CS_COMMAND structure must be in a
state that allows ct_results to be called without error.

Return value To indicate

S_OK Successful execution.

E_FAIL Failure. EndResults fails if rowCount was
negative. Check the server’s log file for
information about the cause of failure.
62 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
pthruType
A BSTR with one of the following values:

• “CURRENT_RESULTS” to indicate that only the current result set
should be forwarded to the client. When using this option, you must
ensure that all result sets are processed. You can call
ResultsPassthrough in a loop (see examples in “Comments” below).
You can also retrieve or cancel subsequent result sets by directly calling
ODBC or Client-Library routines.

• “ALL_RESULTS” to indicate that all result sets should be forwarded to
the client.

pInfo
Pass as NULL if using ODBC or if using the “ALL_RESULTS” option to
forward all results with one call.

When forwarding individual Client-Library result sets, pass the address of
long variable as pInfo. ResultsPassthrough sets the pInfo variable to specify
whether all results have been retrieved from the CS_COMMAND structure,
as follows:

Return value

Usage ResultsPassthrough forwards ODBC or Client-Library result sets to the client.

All results from a query can be forwarded with one call using the
“ALL_RESULTS” option for the pthruType parameter. To forward single
result sets, use the “CURRENT_RESULTS” option.

When using the JAG_PTHRU_ALL_RESULTS option with Client-Library,
any result type other than row results (CS_ROW_RESULTS) causes
ResultsPassthrough to fail.

*pInfo value To indicate

NoInfo

(0)
More results remain to be processed.

NoMoreResults

(1)
All results have been processed.

Return value To indicate

S_OK Successful execution.

E_INVALIDARG At least one parameter contained an invalid value.
Check the server’s log file for more information.

E_FAIL Failure. Check the server’s log file for
information about the cause of failure.
API Reference 63

IJagServerResults interface
When forwarding single result sets, you must ensure that you retrieve or cancel
all results. The sections below describe the loop algorithms for forwarding
individual result sets.

Forwarding Individual Result Sets with Client-Library

When using the “CURRENT_RESULTS” option with Client-Library, call
ResultsPassthrough in place of calling ct_results. You must pass the address of
a LONG as the pInfo variable. If this variable is 1 when ResultsPassthrough
returns, no more results are available from the CS_COMMAND structure. The
code fragment below illustrates how ResultsPassthrough can be called in a
loop:

HRESULT hr;
CS_RETCODE retcode;
CS_CHAR *sqlCmd =

"select * from titles select * from authors"
CS_COMMAND *cmd;
VARIANT theVariant;
long info;
IJagServerResults *pResApis;

// Deleted code which retreived the pointer to the
// JagServerResults interface.
// Also, deleted the code which did CT-Lib
// initialization, connected to the SQL Server,
// and allocated the CS_COMMAND structure.

retcode = ct_command(cmd, CS_LANG_CMD, sqlCmd,
CS_NULLTERM, CS_UNUSED);

if (retcode != CS_SUCCEED)
{

// handle failure
}
retcode = ct_send(cmd);
if (retcode != CS_SUCCEED)
{

// handle failure
}

theVariant.vt = VT_BYREF;
theVariant.byref = cmd;
while ((hr = pResApis-
>ResultsPassthrough("CTLIB", theVariant,

"CURRENT_RESULTS", &info)) == S_OK)
{

if (info == NoMoreResults)
64 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
{
break;

}
}
if (hr != S_OK)
{

// handle failure
}

Forwarding Individual Result Sets with ODBC

When using the “CURRENT_RESULTS” option with ODBC, call
ResultsPassthrough before calling SQLMoreResults, instead of the usual
SQLFetch row processing. The code fragment below illustrates how
ResultsPassthrough and SQLMoreResults can be called in a loop to forward all
result sets to the client.

HRESULT hr;
RETCODE odbcRet;
CS_CHAR *sqlCmd =

"select * from titles select * from authors"
HSTMT hstmt;
VARIANT theVariant;
long info;
IJagServerResults *pResApis;

// Deleted code which retreived the pointer to the
// JagServerResults interface.
// Also, deleted the code which did ODBC initializatio
n,
// connected to the SQL Server, and allocated the HSTM
T.

odbcRet = SQLExecDirect(hstmt, (SQLCHAR *)sqlCmd, SQL_
NTS);
if (odbcRet != SQL_SUCCESS)
{

// handle failure
}

theVariant.vt = VT_BYREF;
theVariant.byref = &hstmt;
do
{

hr = pResApis-
>ResultsPassthrough("ODBC", theVariant,

"CURRENT_RESULTS", &info);
API Reference 65

IObjectContext interface
if (hr != S_OK)
{

// handle failure
}

} while (SQLMoreResults == SQL_SUCCESS);
if (odbcRet != SQL_NO_DATA_FOUND)
{

// handle failure
}

See also Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults::SendData
Description Sends one row in a result set.

Syntax #include <JagAxWrap.h>

HRESULT IJagServerResults::SendData(void);

Return value

Usage After you have described columns with DescribeCol and bound program
variables to supply column data, call SendData to send each row of data.

See also DescribeCol, BindCol, EndResults

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IObjectContext interface
Description Provides methods that allow your component to influence the transaction

outcome. Nontransactional components can call the IObjectContext methods to
cause early deactivation of an instance.

Return value To indicate

S_OK Successful execution.

E_INVALIDARG At least one parameter contained an invalid value.
Check the server’s log file for more information.

E_FAIL Failure. Check the server’s log file for
information about the cause of failure.
66 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Methods • DisableCommit – Indicates that the current transaction cannot be
committed because the component’s work has not been completed; the
instance remains active after the current method returns.

• EnableCommit – Indicates that the component should not be deactivated
after the current method invocation; allow the current transaction to be
committed if the component instance is deactivated.

• IsInTransaction – Determines whether the current method is executing in a
transaction.

• IsSecurityEnabled – Determines whether login security and component
authorization are enabled for the server.

• SetAbort – Indicates that the component cannot complete its work for the
current transaction and that the transaction should be rolled back. The
component instance will be deactivated when the method returns.

• SetComplete – Indicates that the component’s work for the current
transaction was successfully finished and that this component instance
should be deactivated when the method returns.

The following methods are not supported and always return an HRESULT
status of DISP_E_NOTIMPLEMENTED:

• CreateInstance

• IsCallerInRole

• SafeRef

Usage The IObjectContext interface contains methods that allow your component to
influence the transaction outcome.

Call the GetObjectContext routine to obtain an IObjectContext interface pointer.

See also GetObjectContext routine, IObjectControl interface

IObjectContext::DisableCommit
Description Indicates that the current transaction cannot be committed because the

component’s work has not been completed; the instance remains active after
the current method returns.

Syntax #include <jagctx.h>

HRESULT IObjectContext::DisableCommit (void);
API Reference 67

IObjectContext interface
Return value

Usage DisableCommit specifies that the component instance should not be
automatically deactivated after the current method completes. If the instance is
deactivated before the next method invocation, the current transaction is rolled
back.

When a method calls DisableCommit, the component instance is not deactivated
until one of the following happens:

• The component’s stub is destroyed explicitly by the client.

• The client disconnects without explicitly destroying the stub (the current
transaction is always rolled back in this case).

• The component instance calls IObjectContext::SetComplete or
IObjectContext::SetAbort during a subsequent method invocation.

EnableCommit and DisableCommit allow a component maintain state between
method calls. If a component is not transactional, these two methods have the
same effect: both prevent immediate deactivation of the component.

If a method calls none of DisableCommit, EnableCommit, SetAbort, or
SetComplete, the default behavior is that of EnableCommit.

See also EnableCommit, SetAbort, SetComplete

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

IObjectContext::EnableCommit
Description Indicates that the component should not be deactivated after the current method

invocation; allow the current transaction to be committed if the component
instance is deactivated.

Syntax #include <jagctx.h>

HRESULT IObjectContext::EnableCommit (void);

Return value To indicate

S_OK Successfully set transactional state.

CONTEXT_E_NOCONTEXT DisableCommit was called from code that was not
executing as part of a component method
invocation.
68 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Return value

Usage EnableCommit specifies that the component instance should not be
automatically deactivated after the current method completes. If the instance is
deactivated before the next method invocation, the current transaction is
committed.

When a method calls EnableCommit, the component instance is not deactivated
until one of the following happens:

• The transaction times out or the client’s instance reference expires. In
either case, the current transaction is rolled back.

• The transaction’s root component calls SetComplete or SetAbort.

• The component instance calls SetComplete or SetAbort during a
subsequent method invocation.

EnableCommit and DisableCommit allow a component maintain state between
method calls. If a component is not transactional, these two methods have the
same effect: both prevent immediate deactivation of the component.

If a method calls none of DisableCommit, EnableCommit, SetAbort, or
SetComplete, the default behavior is that of EnableCommit.

See also DisableCommit, SetAbort, SetComplete

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

IObjectContext::IsInTransaction
Description Determines whether the current method is executing in a transaction.

Syntax #include <jagctx.h>

BOOL IObjectContext::IsInTransaction (void);

Return value

Return value To indicate

S_OK Successfully set transactional state.

CONTEXT_E_NOCONTEXT EnableCommit was called from code that was not
executing as part of a component method
invocation.

Return value To indicate

TRUE The current method invocation is executing
within a EAServer transaction.
API Reference 69

IObjectContext interface
Usage Methods can call IsInTransaction to determine whether they are executing
within a transaction. Methods in components that are declared to be
transactional always execute as part of a transaction.

See also Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

IObjectContext::IsSecurityEnabled
Description Determines whether login security and component authorization are enabled

for the server.

Syntax #include <jagctx.h>

BOOL IObjectContext::IsSecurityEnabled (void);

Return value

Usage By default, login security and component authorization are disabled for newly
installed servers.

Note
In the current release, IsSecurityEnabled returns TRUE regardless of whether
security has been enabled in the server configuration.

IObjectContext::SetAbort
Description Indicates that the component cannot complete its work for the current

transaction and that the transaction should be rolled back. The component
instance will be deactivated when the method returns.

Syntax #include <jagctx.h>

HRESULT IObjectContext::SetAbort (void);

FALSE The current method invocation is not executing
within a EAServer transaction.

Return value To indicate

Return value To indicate

TRUE Security is enabled.

FALSE Security is not enabled.
70 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Return value

Usage SetAbort specifies that the component cannot complete its work for the current
transaction. The transaction will be rolled back when the initiating component
is deactivated.

If a component is not transactional, then SetAbort and SetComplete have the
same effect: both cause the component instance to deactivate after the currently
executing method returns.

If a method calls none of DisableCommit, EnableCommit, SetAbort, or
SetComplete, the default behavior is that of EnableCommit.

See also DisableCommit, EnableCommit, IsInTransaction, SetComplete

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

IObjectContext::SetComplete
Description Indicates that the component’s work for the current transaction was

successfully finished and that this component instance should be deactivated
when the method returns.

Syntax #include <jagctx.h>

HRESULT IObjectContext::SetComplete (void);

Return value

Usage SetComplete specifies that the component has successfully completed its
contribution to the current transaction. The component instance deactivates
when control returns from the current component method invocation.

Return value To indicate

S_OK Successfully set transactional state.

CONTEXT_E_NOCONTEXT SetAbort was called from code that was not
executing as part of a component method
invocation.

Return value To indicate

S_OK Successfully set transactional state.

CONTEXT_E_NOCONTEXT SetComplete was called from code that was not
executing as part of a component method
invocation.
API Reference 71

IObjectControl interface
If the component instance is the initiator of the transaction (that is, it was
instantiated directly by a base client), then EAServer attempts to commit the
transaction. The transaction commits unless the commit is disallowed or
vetoed; depending on the components that are participating, this can happen in
any of the following ways:

• A participating C component has called JagDisallowCommit.

• A participating Java component throws an exception from its
ServerBean.deactivate() method.

• A participating ActiveX component has called
IObjectContext::DisableCommit.

If a component is not transactional, then SetAbort and SetComplete have the
same effect: both cause the component instance to deactivate after the currently
executing method returns.

If a method calls none of DisableCommit, EnableCommit, SetAbort, or
SetComplete, the default behavior is that of EnableCommit.

See also DisableCommit, EnableCommit, IsInTransaction, SetAbort

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

IObjectControl interface
Description Allows components to support EAServer’s instance pooling model. The

component dispatcher calls the IObjectControl methods to indicate transitions in
the lifecycle of an ActiveX component.

Methods • Activate – Indicates that a component instance has been activated.

• CanBePooled – Determines whether a component instance is eligible for
reuse.

• Deactivate – Indicates that a component instance has been deactivated.

Usage Implement the IObjectControl interface:

• If you want to determine, at runtime, whether a specific instance should be
pooled (do not check the Pooling option on the component’s Instances
tab—otherwise, the CanBePooled method in the IObjectControl interface
will not be called), or
72 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
• If you need to reset the component’s state after deactivation.

Note
To pool instances every time they are deactivated without resetting the
component’s state, check the Pooling option on the component’s Instances
tab.

The server can maintain a cache of idle component instances and bind them to
individual clients only as needed. This strategy allows the server to service
more clients without the performance drain caused by allocating a component
instance for each request.

The Activate method indicates that an instance is being removed from the pool
to service a client. The Deactivate method indicates that the instance is finished
servicing the client. Instance reuse is optional (see “Support for instance
pooling” on page 75). However, components that support it will achieve
greater scalability.

If you are coding the component in C++, you can directly implement
IObjectControl. However, some automation controllers such as PowerBuilder
7.0 provide built-in, implicit support. See your IDE’s documentation for more
information.

The instance-pooling lifecycle is tightly coupled with the EAServer transaction
model. See Chapter 2, “Understanding Transactions and Component
Lifecycles,” in the EAServer Programmer’s Guide for a description of how
components participate in transactions.

The next section discusses the ActiveX component lifecycle in detail.

ActiveX component lifecycle

The following figure illustrates the states and state transitions in the lifecycle
of an ActiveX component.
API Reference 73

IObjectControl interface
Figure 2-1: States in the ActiveX component lifecycle

The state transitions are as follows:

• New instance – The EAServer runtime allocates a new instance of the
component class. The default constructor is called if one exists. The
instance remains idle until the first method invocation.

• Activation – Activation prepares a component instance for use by a client.
Activate is called. Once an instance is activated, it is bound to one client
and can service no other client until it has been deactivated.

• In Method – In response to a method invocation request from the client,
the EAServer runtime calls the corresponding class method in the
component. The next state depends on the method’s execution, as follows:

• If the method throws an uncaught exception, the instance is
deactivated. If the method is participating in a transaction, the
transaction is rolled back.

• If the method has called IObjectContext::SetComplete or
IObjectContext::SetAbort, the instance is deactivated.
74 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
• If the method has called IObjectContext::EnableCommit or
IObjectContext::DisableCommit, the instance is not deactivated. The
client’s next method invocation is serviced by the same instance
unless the client destroys its reference or disconnects.

• Deactivation – Deactivation occurs when the instance has called either
IObjectContext::SetComplete or IObjectContext::SetAbort, the client has
destroyed its stub instance, or the client has disconnected. The EAServer
runtime calls the component’s Deactivate method to indicate deactivation.
After deactivation, the server calls the component’s CanBePooled method
(unless the Pooling option in the component’s Instances tab is checked). If
CanBePooled returns TRUE the instance is placed back in the idle pool for
reuse. Otherwise, the instance is destroyed.

• Destruction – The EAServer runtime destroys the component reference.
The component’s destructor is called.

Support for instance pooling

To support instance pooling using the IObjectControl interface, you must code
your component as follows:

• Code the class to implement the IObjectControl interface.

• Code the CanBePooled method to return TRUE if the instance state can be
reset.

• In the Activate method, add code to reset any class variables to their initial
values, as if the component were freshly constructed. If the component
keeps references to stateful objects across activation cycles, you must reset
these objects to an initial state as well.

The decision whether to reuse a specific instance can be made at runtime.

Note
CanBePooled is not called if the Pooling option on the component’s Instances
Tab is checked.

Header file requirements

IObjectControl is defined in jagctx.h, which is provided in the EAServer include
subdirectory.

You must include initguid.h in only one source file that is linked into your
component DLL. If you do not include initguid.h in one file or you include it
several files, your project will not link.
API Reference 75

IObjectControl interface
initguid.h is not included with EAServer. It is part of the Win32 SDK. Both
Microsoft Visual C++ and Powersoft Power++™ provide this file. Other
ActiveX C++ builder tools may provide it as well.

See also IObjectContext interface

Chapter 19, “Creating ActiveX Components,” in the EAServer Programmer’s
Guide

IObjectControl::Activate
Description Indicates that a component instance has been activated.

Syntax #include <jagctx.h>

HRESULT IObjectControl::Activate (void);

Return value

Usage Activate and Deactivate allow a component’s instances to be pooled. If a
component supports instance pooling, Activate must reset any class variables to
the initial values, as if the component instance were being freshly constructed.
To prohibit instance pooling, code the CanBePooled method to return FALSE.

See “ActiveX component lifecycle” on page 73 for more information on when
Activate and Deactivate are called.

If a component is declared to be transactional and its Activate method returns
an error (any value other than S_OK), the component dispatcher rolls back the
transaction in which the component is about to participate.

See also CanBePooled, Deactivate

IObjectControl::CanBePooled
Description Determines whether a component instance is eligible for reuse.

Return value To indicate

S_OK Success.

Any other value. Interpreted as an error. If the component is
transactional, the component dispatcher rolls back
the transaction in which the component is about to
participate.
76 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Note
CanBePooled is not called if the Pooling option on the component’s Instances
Tab is checked.

Syntax #include <jagctx.h>

BOOL IObjectControl::CanBePooled (void);

Return value

Usage If a component implements the IObjectControl interface, a single instance can
be activated and deactivated many times to serve different clients. After
deactivation, the component dispatcher calls the component’s CanBePooled
method to determine whether the current instance can be reused. If
CanBePooled returns FALSE, the dispatcher destroys the instance.

Components that support instance pooling must be coded such that a recycled
instance behaves the same as a newly allocated instance. See “Support for
instance pooling” on page 75 for more information.

See also Activate, Deactivate

IObjectControl::Deactivate
Description Indicates that a component instance has been deactivated.

Syntax #include <jagctx.h>

void IObjectControl::Deactivate (void);

Usage The EAServer runtime calls Deactivate to indicate that the component instance
is being deactivated. See “ActiveX component lifecycle” on page 73 for more
information on when Activate and Deactivate are called.

If your component caches data changes, you can code the Deactivate method to
send cached changes to the remote database server.

Deactivate can be used to deallocate or reset the state of objects that are
initialized in the Activate method.

See also Activate, CanBePooled

Return value To indicate

TRUE The instance can be reused.

FALSE The instance cannot be reused and should be
deallocated.
API Reference 77

ISharedProperty interface
ISharedProperty interface
Description Represents a property value that is shared among all ActiveX component

instances in a EAServer package.

Methods • get_Value – Retrieves a shared property value.

• put_Value – Sets a shared property value.

Usage Use the ISharedPropertyGroup methods to create or retrieve ISharedProperty
objects.

A shared property can be assigned any value that can be represented by an
ActiveX VARIANT structure. However, VARIANT values with the
VT_BYREF bit set are not allowed.

See also ISharedPropertyGroup interface, ISharedPropertyGroupManager interface

ISharedProperty::get_Value
Description Retrieves a shared property value.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedProperty::get_Value (
VARIANT* pValue
);

Parameters pValue
The address of a VARIANT structure to which the property’s current value
is copied.

Return value

See also put_Value

ISharedProperty::put_Value
Description Sets a shared property value.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

Return value To indicate

S_OK Successful retrieval of the property.

E_INVALIDARG pValue was NULL.
78 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
HRESULT ISharedProperty::put_Value (
VARIANT newValue
);

Parameters newValue
A VARIANT structure containing the new value for the property.

Return value

See also get_Value

ISharedPropertyGroup interface
Description Represents a group of properties that are shared by all ActiveX components in

a EAServer package. Contains methods to create, access, and destroy shared
properties.

Methods • CreateProperty – Creates a new shared property by name.

• CreatePropertyByPosition – Creates a new shared property by position.

• get_Property – Retrieves a reference to a named property.

• get_PropertyByPosition – Retrieves a reference to an indexed property.

Usage Call the ISharedPropertyGroupManager methods to create a new
ISharedPropertyGroup object or to obtain a reference to an existing property
group.

Property groups can be shared only among components that are installed in the
same EAServer package.

See also ISharedProperty interface, ISharedPropertyGroupManager interface

Return value To indicate

S_OK Successful retrieval of the property.

E_INVALIDARG The VT_BYREF bit is set in the VARIANT that
was passed as newValue.

DISP_E_ARRAYISLOCKED The VARIANT that was passed as newValue
contains an array that is locked.

DISP_E_BADVARTYPE The VARIANT that was passed as newValue
contains an invalid type.
API Reference 79

ISharedPropertyGroup interface
ISharedPropertyGroup::CreateProperty
Description Creates a new shared property by name.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedPropertyGroup::CreateProperty (
BSTR propertyName,
VARIANT_BOOL* pfAlreadyExisted;
ISharedProperty ** ppProperty,

);

Parameters propertyName
A string containing the name by which the property will be referred.

pfAlreadyExisted
The address of a VARIANT_BOOL variable. On output, set to
VARIANT_TRUE if the property already existed or VARIANT_FALSE
otherwise. pfAlreadyExisted can be NULL if you do not care whether the
property existed previously.

ppProperty
On output, a reference to an ISharedProperty object for the property or
NULL if an error occurred.

Return value

Usage CreateProperty creates named properties that can be retrieved with the
get_Property method. Properties can be referenced either by name or by
position but not by both.

Newly created properties are set to a default value, which is a VARIANT of
type VT_I4 (4-byte integer), with a value of 0.

Call CreatePropertyByPosition to create indexed properties (retrieved with
CreatePropertyByPosition).

See also CreateProperty, get_Property, CreatePropertyByPosition, ISharedProperty
interface

ISharedPropertyGroup::CreatePropertyByPosition
Description Creates a new shared property by position.

Return value To indicate

S_OK Success.

E_INVALIDARG Either name or ppProperty was NULL.
80 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedPropertyGroup::CreatePropertyByPosition (
INT position,
VARIANT_BOOL* pfAlreadyExisted,
ISharedProperty ** ppProperty

);

Parameters position
The index by which the property will be referred.

pfAlreadyExisted
The address of a VARIANT_BOOL variable. On output, set to
VARIANT_TRUE if the property already existed or VARIANT_FALSE
otherwise. pfAlreadyExisted can be NULL if you do not care whether the
property existed previously.

ppProperty
On output, a reference to a ISharedProperty object for the property or NULL
if an error occurred.

Return value

Usage CreatePropertyByPosition creates indexed properties that can be retrieved with
the get_PropertyByPosition method. Properties can be referenced either by
name or by position but not by both means.

Newly created properties are set to a default value, which is a VARIANT of
type VT_I4 (4-byte integer), with a value of 0.

Call CreateProperty to create named properties (retrieved with get_Property).

See also CreateProperty, get_Property, get_PropertyByPosition

ISharedPropertyGroup::get_Property
Description Retrieves a reference to a named property.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedPropertyGroup::get_Property (
BSTR propertyName,

Return value To indicate

S_OK Success.

E_INVALIDARG Either name or ppProperty was NULL.
API Reference 81

ISharedPropertyGroup interface
ISharedProperty ** ppProp
);

Parameters propertyName
The name of the property to be retrieved.

ppProp
On output, a reference to a ISharedProperty object for the property or NULL
if an error occurred.

Return value

Usage Named properties are created with the CreateProperty method.

get_Property fails if the requested property has not been created. Call
CreateProperty when you are not sure whether a property exists yet.
CreateProperty retrieves existing properties or creates them if they do not
already exist.

See also CreateProperty, CreatePropertyByPosition, get_PropertyByPosition

ISharedPropertyGroup::get_PropertyByPosition
Description Retrieves a reference to an indexed property.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedPropertyGroup::get_PropertyByPosition (
INT position,
ISharedProperty ** ppProp

);

Parameters position
The index of the property to be retrieved.

ppProp
On output, a reference to a ISharedProperty object for the property or NULL
if an error occurred.

Return value To indicate

S_OK Success.

E_INVALIDARG Either name or ppProp was NULL or no property
with the specified name exists in this property
group.
82 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
Return value

Usage Indexed properties are created with the CreatePropertyByPosition method.

get_PropertyByPosition fails if the requested property has not been created. Call
CreatePropertyByPosition when you are not sure whether a property exists yet.
CreatePropertyByPosition retrieves existing properties or creates them if they
do not already exist.

See also CreateProperty, CreatePropertyByPosition, get_Property

ISharedPropertyGroupManager interface
Description Contains methods to create, access, and destroy shared property groups.

Methods • CreatePropertyGroup – Creates a new property group or retrieve a
reference to the existing group with the specified name.

• get_Group – Retrieves a reference to an existing property group.

• get__NewEnum – Not supported.

Usage The ISharedPropertyGroupManager interface allows you to create new shared
property groups and find out about existing groups.

To create a ISharedPropertyGroupManager interface pointer, use the ProgID,
“Jaguar.SharedPropertyGroupManager.” Call the OLE routines
CLSIDfromProgID and CoCreateInstance. CoCreateInstance returns an interface
pointer for a given ActiveX class ID string. CLSIDfromProgID obtains the class
ID string that CoCreateInstance requires.

Return value To indicate

S_OK Success.

E_INVALIDARG ppProp was NULL or no property with the
specified index exists in this property group.
API Reference 83

ISharedPropertyGroupManager interface

To use the ISharedPropertyGroupManager, ISharedPropertyGroup, and
ISharedProperty interfaces, you must include JagSharedProp.h. Additionally,
you must include JagSharedProp_i.c in only one source file for your
component DLL. JagSharedProp.h contains interface definitions for the
documented interfaces. JagSharedProp_i.c declares symbols that are required
by the ActiveX CoCreateInstance routine.

 Warning! You will get duplicate-symbol link errors if you include
JagSharedProp_i.c in more than one source file for your component DLL.

See also ISharedProperty interface, ISharedPropertyGroup interface

ISharedPropertyGroupManager::CreatePropertyGroup
Description Creates a new property group or retrieve a reference to the existing group with

the specified name.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

HRESULT ISharedPropertyGroupManager::CreatePropertyGroup (
BSTR groupName,
LONG* plIsolationMode,
LONG* plReleaseMode,
VARIANT_BOOL* pfExists,
ISharedPropertyGroup ** ppGroup

);

Parameters groupName
The name by which the property group is referred. Cannot be NULL, but a
zero-length string is a valid name.

plIsolationMode
A pointer to a LONG variable that describes the isolation (locking) mode for
access to the property group. On input, must be the following symbolic
constant:

Isolation mode Value Meaning
LockMethod 1 The property group is locked from the first access

until the current method returns. Use this isolation
mode to prevent other component instances from
accessing a property group while you retrieve or set
multiple properties in the group.
84 EAServer

CHAPTER 2 ActiveX C++ Interface Reference
If the property group already exists, the input value is ignored and output
value is set to reflect the isolation mode of the existing property group.

plReleaseMode
A pointer to a LONG variable that describes the release mode for the
property group. On input, must be the following symbolic constant:

If the property group already exists, the input value is ignored and output
value is set to reflect the release mode of the existing property group.

pfAlreadyExisted
On output, set to VARIANT_TRUE if the property group already existed or
VARIANT_FALSE otherwise. Can be NULL if you do not care whether the
group existed previously.

ppGroup
The address of a ISharedPropertyGroup interface pointer. On output,
contains a reference to a ISharedPropertyGroup object for the property group
or NULL if an error occurred.

Return value

Usage CreatePropertyGroup creates a new shared property group or returns a
reference to an existing group that has the specified name.

Property groups can be shared only among components that are installed in the
same EAServer package. A group created by a component that is installed in
one package cannot be retrieved by a component that is installed in a different
package.

See also get_Group, ISharedPropertyGroup interface

ISharedPropertyGroupManager::get_Group
Description Retrieves a reference to an existing property group.

Syntax #include <jagctx.h>
#include <JagSharedProp.h>

Release mode Value Meaning
Process 1 The property group is not destroyed even when all

references have been released.

Return value To indicate

S_OK Success.

E_INVALIDARG One or more parameters contained invalid input
values.
API Reference 85

ISharedPropertyGroupManager interface
HRESULT ISharedPropertyGroupManager::get_Group (
BSTR name,
ISharedPropertyGroup ** ppGroup,

);

Parameters name
The name of the group to be retrieved.

ppGroup
On output, a reference to a ISharedPropertyGroup object for the property
group or NULL if an error occurred.

Return value

Usage get_Group returns a reference to the property group with the same name.
get_Group fails if no group has been created with the specified name. Call
CreatePropertyGroup when you are not sure whether a group already exists.

Property groups can be shared only among components that are installed in the
same EAServer package. A group created by a component that is installed in
one package cannot be retrieved by a component that is installed in a different
package.

See also CreatePropertyGroup, ISharedPropertyGroup interface

Return value To indicate

S_OK Success.

E_INVALIDARG Either name or ppGroup was NULL or no
property group exists with the specified name.
86 EAServer

C H A P T E R 3 ActiveX IDispatch Interface
Reference

This chapter documents the IDispatch interfaces for EAServer’s server-
side ActiveX objects. The IDispatch interface is used by ActiveX
automation controllers such as Microsoft Visual Basic.

Most objects also provide a custom interface defined in a C++ header file.
See Chapter 2, “ActiveX C++ Interface Reference” for descriptions of
these interfaces.

How to use these reference pages
These reference pages show the syntax of method calls using Microsoft’s
Visual Basic language. For other development tools, use the tool’s OLE
object browser to see method syntax displayed as appropriate for the tool’s
script syntax.

The reference page for each interface will list the interface’s ProgID and
the name of the type library that defines it. You may need this information
to create object references. For example, in Visual Basic, you must add
references to the project for each EAServer type library that contains an
interface used by your application. In your Visual Basic code, objects that
implement the interface can be declared using this syntax:

Dim myobject As typelib.interface

where typelib is the name of the type library that defines the interface, and
interface is the name of the interface. If code that follows this rule does
not compile, you most likely have not added a reference to the type library
in your project.
API Reference 87

IDispatch interface index
IDispatch interface index
• IJagServer interface – Contains utility methods for use in EAServer

ActiveX components.

• IJagServerResults interface – Provides methods to send rows to a
EAServer client application.

• SharedProperty interface – Represents a property value that is shared
among all ActiveX component instances in a EAServer package.

• SharedPropertyGroup interface – Represents a group of properties that are
shared by all ActiveX components in a EAServer package. Contains
methods to create, access, and destroy shared properties.

• SharedPropertyGroupManager interface – Contains methods to create,
access, and destroy shared property groups.

IJagServer interface
Description

Contains utility methods for use in EAServer ActiveX components.

Methods • WriteLog – Writes a message to the server’s log file.

See also Chapter 19, “Creating ActiveX Components,” in the EAServer Programmer’s
Guide

IJagServer.WriteLog
Description Writes a message to the server’s log file.

Syntax IJagServer.WriteLog(useTimeStamp, message)

Parameters useTimeStamp
TRUE if the current date and time should be prepended to the log message;
FALSE otherwise.

message
A message to be written to the server’s log file.

Type Library JAGAXWrapLib

ProgID Jaguar.JagServer
88 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
Examples The following Visual Basic fragment declares a function that writes a string to
the server’s log, prepended with the name of the component:

Private Function writeToLog(msg As String)
Dim jserver As JAGAXWrapLib.JagServer
Set jserver = New JAGAXWrapLib.JagServer
jserver.WriteLog True, Format("MyComponent: " & msg)

End Function

See also Chapter 19, “Creating ActiveX Components,” in the EAServer Programmer’s
Guide

IJagServerResults interface
Description

Provides methods to send rows to a EAServer client application.

Methods • BeginResults – Begins the sequence of calls that sends a result set to the
client.

• BindCol – Deprecated equivalent of BindColumn. The two methods are
equivalent, except that the BindCol sourceBuf and indicator parameters are
not explicitly declared as [in, out] in the type library.

• BindColumn – Binds a program variable to a column in a result set.

• ColAttributes – Specifies additional metadata for a column to be sent in a
result set.

• DescribeCol – Describes a result set column.

• EndResults – Indicates that all rows in a result set have been sent.

• ResultsPassthru – Deprecated equivalent of ResultSetsPassthrough. The
methods are equivalent except that the ResultsPassthrough pInfo
parameter is not explicitly declared [in, out] in the type library.

• ResultSetsPassthrough – Forwards results from a remote database query
to the client.

• SendData – Sends one row in a result set.

See also Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

Type Library JAGAXWrapLib

ProgID Jaguar.JagServerResults
API Reference 89

IJagServerResults interface
IJagServerResults.BeginResults
Description Begins the sequence of calls that sends a result set to the client.

Syntax IJagServerResults.BeginResults(ByVal numColumns as Integer)

Parameters numColumns
An integer that specifies the number of columns in the result set to be sent.

See also EndResults

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults.BindCol
Description Deprecated equivalent of BindColumn. The two methods are equivalent, except

that the BindCol sourceBuf and indicator parameters are not explicitly declared
as [in, out] in the type library.

Syntax IJagServerResults.BindColumn(
ByVal itemNumber As Integer,
sourceBuf,
ByVal maxBuflen As Integer,
indicator As Integer

)

Parameters itemNumber
See BindColumn.

sourceBuf
See BindColumn.

maxBufLen
See BindColumn.

indicator
See BindColumn.

Usage BindCol is a deprecated equivalent of BindColumn. The two methods are
equivalent, except that the BindCol sourceBuf and indicator parameters are not
explicitly declared as [in, out] in the type library. You must use BindColumn in
Visual Basic applications and with most other tools that use the ActiveX
IDispatch interface.

See also BindColumn
90 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
IJagServerResults.BindColumn
Description Binds a program variable to a column in a result set.

Syntax IJagServerResults.BindColumn(
ByVal itemNumber As Integer,
sourceBuf,
ByVal maxBuflen As Integer,
indicator As Integer

)

Parameters itemNumber
An integer specifying the column number. The first column is 1.

sourceBuf
A variable to supply values for this column when row data is sent with the
SendData method. The variable must be of a datatype that can be converted
to the SQL datatype that was specified when DescribeCol was called for the
column. “ActiveX to SQL datatype conversions” on page 92 lists SQL
datatypes and allowable bind types. You must use a different variable for
each column, even if two columns have the same datatype.

maxBufLen
For character and binary data, the maximum length that values for this
column can have.

indicator
An integer passed by reference. Before calling the SendData method to send
each row, set the indicator variable to indicate whether the column’s current
value is null. You must use a different indicator variable for each column.
Indicator values are as follows:

Value To indicate

0 Column value is not null and must be read from the sourceBuf
Variant buffer.

-1 Column value is null.
API Reference 91

IJagServerResults interface
Usage BindCol associates a program variable with a column in a result set. When
SendData is called to send a row, it reads the column value for the current row
from the variable that is bound to the column.

ActiveX to SQL datatype conversions

The SQLDatatype value passed to DescribeCol determines the datatype with
which column values are sent over the network. If the program variable type
does not map directly to the column’s SQL datatype, SendData attempts to
convert the value. The figure below shows the supported conversions between
SQL datatypes and bind variable types. An X indicates a supported conversion.

See also ColAttributes, DescribeCol, SendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServer.ColAttributes
Description Specifies additional metadata for a column to be sent in a result set.
92 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
Syntax IJagServerResults.ColAttributes(
ByVal itemNumnber as Integer,
“COLUMN_MONEY”,
ByVal trueFalse as Boolean

)

Parameters itemNumber
An integer specifying the column number. The first column is 1.

trueFalse
A Boolean value. A value of True means that the column represents a cash
value.

See also DescribeCol

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults.DescribeCol
Description Describes a result set column.

Syntax IJagServerResults.DescribeCol(
ByVal itemNumber as Integer,
ByVal columnName as String,
ByVal SQLDatatype as String,
ByVal columnSize as Long,
ByVal precision as Long,
ByVal scale as Long,
ByVal nullable as Boolean

)

Parameters itemNumber
An integer specifying the column number. The first column is 1.

columnName
A string specifying the column’s name.

SQLDatatype
A string specifying the name of the column’s SQL datatype. This value
determines the datatype of values sent to the client. Values are specified in a
buffer that is bound to the column with BindColumn. The table below lists
the SQL datatype strings. See BindColumn for details on how to bind column
values.
API Reference 93

IJagServerResults interface
Table 3-1: SQL datatypes for DescribeCol

columnSize
For character or binary columns, a long integer that specifies the maximum
length for column values.

precision
A long integer that specifies the precision of column values. For
“SQL_NUMERIC” or “SQL_DECIMAL” columns, precision indicates the
maximum number of decimal digits that a value may have. For other
datatypes, precision is ignored.

SQL datatype string Description

“SQL_BIT” A boolean value (1 bit of data).

“SQL_TINYINT” A one-byte integer.

“SQL_SMALLINT” A two-byte integer.

“SQL_INTEGER” A four-byte integer.

“SQL_REAL” A four-byte IEEE floating point value.

“SQL_FLOAT” An 8-byte IEEE floating point value.

“SQL_DOUBLE” Same as “SQL_FLOAT”

“SQL_NUMERIC” A fixed-point fractional number with
precision and scale specified by
parameters precision and scale.

“SQL_DECIMAL” Same as “SQL_NUMERIC”.

“SQL_CHAR” A string of a fixed length not greater than
255 characters. Values shorter than the
length specified by columnSize are padded
with spaces.

“SQL_VARCHAR” A string of varying length, limited to 255
characters in length.

“SQL_LONGVARCHAR” A string of varying length, with no length
limit.

“SQL_DATE” An ODBC date value.

“SQL_TIME” An ODBC time value.

“SQL_TIMESTAMP” An ODBC timestamp value.

“SQL_BINARY” An array of bytes, whose values have a
fixed length not greater than 255
characters.

“SQL_VARBINARY” An array of bytes, whose values have
varying length not greater than 255
characters.

“SQL_LONGVARBINARY” An array of bytes, whose values have
varying length with no length limit.
94 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
scale
An integer that specifies the scale for column values. For
“SQL_NUMERIC” or “SQL_DECIMAL” columns, scale indicates the
number of decimal digits to the right of the decimal point. For other
datatypes, scale is ignored.

nullable
A Boolean value that specifies whether the column can contain null values.
True indicates that the column may have null values.

See also BindColumn, ColAttributes

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServer.EndResults
Description Indicates that all rows in a result set have been sent.

Syntax IJagServerResults.EndResults(ByVal rowCount as Long)

Parameters rowCount
A positive long integer that specifies the number of rows that were sent to
the client.

See also BeginResults, SendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServer.ResultsPassthru
Description Deprecated equivalent of ResultSetsPassthrough. The methods are equivalent

except that the ResultsPassthrough pInfo parameter is not explicitly declared
[in, out] in the type library.

Syntax IJagServerResults.ResultsPassthrough(
ByVal conlibName as String,
ByVal conlibPtr,
ByVal pthruType as String,
pInfo as Long

)

Parameters conlibName
See ResultSetsPassthrough.

conlibPtr
See ResultSetsPassthrough.
API Reference 95

IJagServerResults interface
pthruType
See ResultSetsPassthrough.

pInfo
See ResultSetsPassthrough.

Usage ResultsPassthrough is a deprecated equivalent of ResultSetsPassthrough. The
methods are equivalent except that the ResultsPassthrough pInfo parameter is
not explicitly declared [in, out] in the type library.

You must use ResultSetsPassthrough in Visual Basic and other tools that use
the IDispatch interface.

See also ResultSetsPassthrough

IJagServer.ResultSetsPassthrough
Description Forwards results from a remote database query to the client.

Syntax IJagServerResults.ResultsPassthrough(
ByVal conlibName as String,
ByVal conlibPtr,
ByVal pthruType as String,
pInfo as Long

)

Parameters conlibName
A string with one of the following values:

• “ODBC” to indicate that conlibPtr contains the address of an ODBC
HSTMT control structure.

• “CTLIB” to indicate that conlibPtr contains the address of a Client-
Library CS_COMMAND control structure.

conlibPtr
The “handle” for the connectivity library control structure used to retrieve
results. When using ODBC, pass a handle to an HSTMT control structure as
conlibPtr. The HSTMT must be in a state that allows SQLFetch to be called
without error.

When using Client-Library, set conlibPtr to a Client-Library
CS_COMMAND control structure. The CS_COMMAND must be in a state
that allows ct_results to be called without error.
96 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
pthruType
A string with one of the following values:

• “CURRENT_RESULTS” to indicate that only the current result set
should be forwarded to the client. When using this option, you must
ensure that all result sets are processed. You can call
ResultSetsPassthrough in a loop (see examples in “Comments” below).
You can also retrieve or cancel subsequent result sets by directly calling
ODBC or Client-Library routines.

• “ALL_RESULTS” to indicate that all result sets should be forwarded to
the client.

pInfo
Pass as NULL if using ODBC or whenever using the “ALL_RESULTS”
option to forward all results with one call.

When forwarding individual Client-Library result sets, you must pass an
integer variable by reference as pInfo. ResultSetsPassthrough sets the pInfo
variable to specify whether all results have been retrieved from the
CS_COMMAND structure, as follows:

Usage ResultSetsPassthrough forwards ODBC or Client-Library result sets to the
client.

All results from a query can be forwarded with one call using the
“ALL_RESULTS” option for the pthruType parameter. To forward single
result sets, use the “CURRENT_RESULTS” option.

See also Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

IJagServerResults.SendData
Description Sends one row in a result set.

Syntax IJagServerResults.SendData();

Usage SendData sends a row of data to the client. Values for each are read from the
variables that were bound to the column with the BindColumn method.

See also BeginResults, DescribeCol, EndResults

pInfo value To indicate

NoInfo
(0)

More results remain to be processed.

NoMoreResults

(1)
All results have been processed.
API Reference 97

SharedProperty interface
Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

SharedProperty interface
Description

Represents a property value that is shared among all ActiveX component
instances in a EAServer package.

Properties • Value – The value of the property. A shared property can be assigned any
value that can be represented by an ActiveX VARIANT structure.
However, VARIANT values with the VT_BYREF bit set are not allowed.

Usage Call the SharedPropertyGroup interface methods to create a new
SharedProperty object or to obtain a reference to an property.

See also SharedPropertyGroup interface, SharedPropertyGroupManager interface

SharedPropertyGroup interface
Description

Represents a group of properties that are shared by all ActiveX components in
a EAServer package. Contains methods to create, access, and destroy shared
properties.

Methods • CreateProperty – Creates a new shared property by name.

• CreatePropertyByPosition – Creates a new shared property by position.

• Property – Retrieves a reference to a named property.

• PropertyByPosition – Retrieves a reference to an indexed property.

Usage Call the SharedPropertyGroupManager methods to create a new
SharedPropertyGroup object or to obtain a reference to an existing property
group.

Type Library JAGSHAREDPROPLib

ProgID Jaguar.SharedProperty

Type Library JAGSHAREDPROPLib

ProgID Jaguar.SharedPropertyGroup
98 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
Property groups can be shared only among components that are installed in the
same EAServer package.

See also SharedProperty interface, SharedPropertyGroupManager interface

SharedPropertyGroup.CreateProperty
Description Creates a new shared property by name.

Syntax Dim myProp as JAGSHAREDPROPLib.SharedProperty

myProp = SharedPropertyGroup.CreateProperty (
ByVal propertyName as String,
alreadyExisted as Boolean)

Parameters myProp
A variable to receive the SharedProperty interface pointer. On return, the
variable is a SharedProperty that accesses the property, or NULL if an error
occurred.

propertyName
Specifies the name by which the property is referred.

alreadyExisted
A Boolean variable passed by reference. On output, set to TRUE if the group
existed before the call, and FALSE otherwise.

Usage CreateProperty creates named properties that can be retrieved with the Property
method. Properties can be referenced either by name or by position but not by
both.

Newly created properties are set to a default value, which is a VARIANT of
type VT_I4 (4-byte integer), with a value of 0.

Call CreatePropertyByPosition to create indexed properties (retrieved with
PropertyByPosition).

See also CreatePropertyByPosition, Property, PropertyByPosition, SharedProperty
interface

SharedPropertyGroup.CreatePropertyByPosition
Description Creates a new shared property by position.

Syntax Dim myProp as JAGSHAREDPROPLib.SharedProperty
API Reference 99

SharedPropertyGroup interface
myProp = SharedPropertyGroup.CreatePropertyByPosition(
ByVal position as Integer,
alreadyExisted as Boolean)

Parameters myProp
A variable to receive the SharedProperty interface pointer. On return, the
variable is a SharedProperty that accesses the property, or NULL if an error
occurred.

position
The integer index by which the property is referred.

alreadyExisted
A Boolean variable passed by reference. On output, set to TRUE if the group
existed before the call, and FALSE otherwise.

Usage CreatePropertyByPosition creates indexed properties that can be retrieved with
the PropertyByPosition method. Properties can be referenced either by name or
by position but not by both.

Newly created properties are set to a default value, which is a VARIANT of
type VT_I4 (4-byte integer), with a value of 0.

Call CreateProperty to create named properties (retrieved with Property).

See also CreateProperty, Property, PropertyByPosition

SharedPropertyGroup.Property
Description Retrieves a reference to a named property.

Syntax Dim myProp as JAGSHAREDPROPLib.SharedProperty

myProp = SharedPropertyGroup.CreateProperty(
ByVal name as String)

Parameters myProp
A variable to receive the SharedProperty interface pointer. On return, the
variable is set to a SharedProperty that accesses the property, or NULL if an
error occurred.

name
The name of the property to be retrieved.

Usage Named properties are created with the CreateProperty method.
100 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
Property fails if the requested property has not been created. Call
CreateProperty when you are not sure whether a property exists yet.
CreateProperty retrieves existing properties or creates them if they do not
already exist.

See also CreateProperty, CreatePropertyByPosition, PropertyByPosition

SharedPropertyGroup.PropertyByPosition
Description Retrieves a reference to an indexed property.

Syntax Dim myProp as JAGSHAREDPROPLib.SharedProperty

myProp = SharedPropertyGroup.PropertyByPosition(
ByVal position as Integer)

Parameters myProp
A variable to receive the SharedProperty interface pointer. Set to a
SharedProperty that accesses the property or NULL if an error occurred.

position
The index of the property to be retrieved.

Usage Indexed properties are created with the CreatePropertyByPosition method.

PropertyByPosition fails if the requested property has not been created. Call
CreatePropertyByPosition when you are not sure whether a property exists yet.
CreatePropertyByPosition retrieves existing properties or creates them if they
do not already exist.

See also CreateProperty, CreatePropertyByPosition, Property

SharedPropertyGroupManager interface
Description

Contains methods to create, access, and destroy shared property groups.

Methods • CreatePropertyGroup – Creates a new property group or retrieve a
reference to the existing group with the specified name.

• Group – Retrieves a reference to an existing property group.

Type Library JAGSHAREDPROPLib

ProgID Jaguar.SharedPropertyGroupManager
API Reference 101

SharedPropertyGroupManager interface

Usage The SharedPropertyGroupManager interface allows you to create new shared
property groups and find out about existing groups.

See also SharedProperty interface, SharedPropertyGroup interface

SharedPropertyGroupManager.CreatePropertyGroup
Description Creates a new property group or retrieve a reference to the existing group with

the specified name.

Syntax Dim propgroup as JAGSHAREDPROPLib.SharedPropertyGroup

propgroup = SharedPropertyGroupManager.CreatePropertyGroup(
ByVal groupName as String,
isololationMode as Integer,
releaseMode as Integer,
alreadyExisted as Boolean)

Parameters propGroup
A variable to receive the SharedPropertyGroup interface pointer for the new
or existing property group. Set to NULL if an error occurs.

groupName
A string initialized to the name by which the property group is referred. A
zero-length string is a valid name.

isolationMode
An Integer variable passed by reference. Specifies the isolation mode,
which determines how properties within the group are accessed. The input
value must be the following symbolic constant:

If the property group already exists, the input value is ignored and the output
value is set to reflect the isolation mode of the existing property group.

Isolation mode Value Meaning

LockMethod 1 The property group is locked from the first access
until the current method returns. Use this isolation
mode to prevent other component instances from
accessing a property group while you retrieve or set
multiple properties in the group.
102 EAServer

CHAPTER 3 ActiveX IDispatch Interface Reference
releaseMode
An Integer variable passed by reference. The variable describes the release
mode for the property group. On input, must be the following symbolic
constant:

If the property group already exists, the input value is ignored and output
value is set to reflect the release mode of the existing property group.

alreadyExisted
A Boolean variable passed by reference. On output, set to TRUE if the
property group already existed or FALSE otherwise.

Usage CreatePropertyGroup creates a new shared property group or returns a
reference to an existing group that has the specified name.

Property groups can be shared only among components that are installed in the
same EAServer package. A group created by a component that is installed in
one package can not be retrieved by a component that is installed in a different
package.

See also Group, SharedPropertyGroup interface

SharedPropertyGroupManager.Group
Description Retrieves a reference to an existing property group.

Syntax Dim propgroup as JAGSHAREDPROPLib.SharedPropertyGroup

propgroup = SharedPropertyGroupManager.Group(
ByVal groupName as String)

Parameters propGroup
A variable to receive the SharedPropertyGroup interface pointer for the
property group. Set to NULL if an error occurs.

groupName
The name of the group to be retrieved. A zero-length string is a valid name.

Usage Group returns a reference to the property group with the same name. Group fails
if no group has been created with the specified name. Call
CreatePropertyGroup when you are not sure whether a group already exists.

Release mode Value Meaning

Process 1 The property group is not destroyed even when all
references have been released.
API Reference 103

SharedPropertyGroupManager interface
Property groups can be shared only among components that are installed in the
same EAServer package. A group created by a component that is installed in
one package can not be retrieved by a component that is installed in a different
package.

See also CreatePropertyGroup, SharedPropertyGroup interface
104 EAServer

C H A P T E R 4 ActiveX Client Interfaces

This chapter documents the interfaces that ActiveX clients use to interact
with EAServer components.

For an overview of ActiveX clients, see Chapter 20, “Creating ActiveX
Clients,” in the EAServer Programmer’s Guide.

How to use these reference pages
These reference pages show the syntax of method calls in the Microsoft
Visual Basic language. For other development tools, use the tool’s OLE
object browser to see method syntax displayed as appropriate for the tool’s
script syntax. The reference page for each interface lists the ActiveX type
library that defines the interface and the interface’s ProgID.

The reference page for each interface lists the interface’s ProgID and the
name of the type library that defines it. You may need this information to
create object references. For example, in Visual Basic, you must add
references to the project for each EAServer type library that contains an
interface used by your application. In your Visual Basic code, objects that
implement the interface can be declared using this syntax:

Dim myobject As typelib.interface

where typelib is the name of the type library that defines the interface, and
interface is the name of the interface. If code that follows this rule does
not compile, you most likely have not added a reference to the type library
in your project.

Interface index
• Field – Represents one column in a row of tabular data. Modeled after

Field in Microsoft’s ActiveX Data Objects (ADO) interface.
API Reference 105

Field interface
• Fields – A collection of Field objects that represents a row of tabular data.
Modeled after Fields in Microsoft’s ActiveX Data Objects (ADO)
interface.

• JagORBClientErrNum – Defines symbolic constants for errors that can
occur in the ActiveX client proxy.

• JagORBSrvErrNum – Defines symbolic constants for errors that can occur
during server-side execution of a method call.

• JCollection – Represents a collection of objects or primitive data values;
the ActiveX mapping for CORBA IDL sequences used as method
parameter or return types in EAServer component methods.

• Object – A generic proxy object that must be narrowed to another
interface.

• Orb – The core interface used by clients that use CORBA-style proxy
instantiation.

• RecordSet – Represents a set of tabular data returned by a component
method invocation. Provides methods to iterate through the rows in each
result set. Modeled after RecordSet in Microsoft’s ActiveX Data Objects
(ADO) interface.

Field interface
Description

Represents one column in a row of tabular data.

Properties • Type – Integer. Returns a constant that indicates the column’s datatype.
Table 4-1 lists possible values.

• Value – Variant. Returns the column’s value in the Variant type that
matches the column’s database type. Table 4-1 lists SQL datatypes and the
corresponding Variant types.

• ActualSize – Integer. For string and binary data, returns the length of the
current value.

• DefinedSize – Integer. For string and binary data, returns the maximum
length that values in the column may have.

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
106 EAServer

CHAPTER 4 ActiveX Client Interfaces
• Name – String. Returns the column’s name.

• NumericScale – Integer. For fixed-precision numeric values, returns the
column’s scale. The scale is the number of decimal digits to the right of the
decimal point.

• OriginalValue – Same as the Value property.

• Precision – Integer. For fixed-precision numeric values, returns the
column’s precision. The precision is the number of decimal digits in the
value.

• UnderlyingValue – Same as the Value property.

Usage For sample code that accesses a Field object’s properties, see Chapter 20,
“Creating ActiveX Clients,” in the EAServer Programmer’s Guide.

Table 4-1 lists SQL datatypes, the corresponding values for the Type property,
and the corresponding Variant datatypes for the Value property. Values for the
type property are defined in the DataTypeEnum enumeration. The table lists
both the symbolic DataTypeEnum values and the numeric constants that they
represent. Some automation controllers may not be able to use symbolic values
from an enumeration; in these controllers, use the numeric constant instead.

Table 4-1: The Field.Type and Field.Value properties

SQL datatype Field.Type constant
Field.Value return
type

BIT, or 1 bit of data adBoolean (11) VT_BOOL
(1 maps to true)

TINYINT, an 1-byte
integer

adTinyInt (16) VT_UI1

SMALLINT, a 2-byte
integer

adSmallInt (2) VT_I2

INTEGER, a 4-byte
integer

adInteger (3) VT_I4

FLOAT, an 8-byte floating
point number

adDouble (5) VT_R8

CHAR, string values that
do not vary in length

adChar (129) VT_BSTR

VARCHAR, string values
that can vary in length

adVarChar (200) VT_BSTR

BINARY, an array of
bytes that does not vary in
length

adBinary (128) VT_ARRAY
API Reference 107

Fields collection
See also RecordSet interface, Fields

Fields collection
Description

A collection of Field objects that represents a row of tabular data. Modeled after
Fields in Microsoft’s ActiveX Data Objects (ADO) interface.

Properties • Count – Integer. Returns the number of columns in the row.

• Item – Returns the Field object that represents the column at a given
position within the row.

Usage The RecordSet Fields property returns Fields collections.

For example code, see Chapter 20, “Creating ActiveX Clients,” in the
EAServer Programmer’s Guide.

See also RecordSet interface, Field

VARBINARY, an array of
bytes that may vary in
length

adVarBinary (204) VT_ARRAY

NUMERIC, a fixed-point
decimal number

adNumeric (131) VT_R8
(No direct mapping exists.
Mapped to 8-byte floating
point)

DECIMAL, a fixed-point
decimal number

adDecimal (14) VT_R8
(No direct mapping exists.
Mapped to 8-byte floating
point)

DATE, a date value
including the time-of-day

adDate (7) VT_DATE

MONEY, a cash value adCurrency (6) VT_CY

SQL datatype Field.Type constant
Field.Value return
type

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
108 EAServer

CHAPTER 4 ActiveX Client Interfaces
Fields.Item
Description Returns the Field object that represents the column at a given position within

the row. Modeled after Field in Microsoft’s ActiveX Data Objects (ADO)
interface.

Syntax Fields.Item(index)

Parameters index
An integer that specifies the position of the column of interest. The first
column in the row is 0. The last item is Field.Count - 1.

See also Field

JagORBClientErrNum enumeration
Description

Defines symbolic constants to errors that can occur in the ActiveX client proxy.

Table 4-2 lists the codes for client-side error numbers defined in the
JagORBClientErrNum enumeration:

Table 4-2: JagORBClientErrNum error codes

Type library name JaguarTypeLibrary

DLL name jagproxy.dll

Symbolic error code Number Description

jagClNonByteArrayErr 8000 Method arguments of type array can only
have a base element type of byte.

jagClMultiDimArrayErr 8001 Multidimensional arrays not supported as
an argument to a method.

jagClArrayRedimErr 8002 A fatal internal error was encountered
while attempting to resize a method
argument of type array.

jagClArrayProcErr 8003 A fatal internal error was encountered
while processing a method argument of
type array.

jagClArrayEmptyErr 8004 An array of size 0 was passed as
parameter to a method.

jagClArrayBoundsErr 8005 A fatal internal error was encountered
while attempting to determine the upper
bound on a method argument of type
array.
API Reference 109

JagORBClientErrNum enumeration
jagClNotJagComponentErr 8006 The component being instantiated is not a
valid EAServer component or was not
registered in the Windows Registry.

jagClOutOfMem 8007 The application failed to acquire memory
from the operating system.

jagClCreateFactErr 8008 The EAServer proxy server cannot
instantiate a Factory object. Please
contact Sybase Technical Support.

jagClTypeLibErr 8009 The type library for the Component
cannot be read from the NT Registry.
Please check if a valid directory location
was specified for the Type Library while
registering the component.

jagClTypeInfoErr 8010 The type information for the Component
cannot be read from the Type Library.
Regenerate TLB and REG files for the
component.

jagClMethInfoErr 8011 The metadata for the method or
component cannot be read from the NT
Registry or the method is using
parameter types that are not presently
supported in the EAServer ActiveX
proxy.

jagClMethNameErr 8012 The metadata for the method invoked on
component cannot be read from the NT
Registry. Regenerate TLB and REG files
for the component.

jagClCompNameErr 8013 The component name for the component
being instantiated cannot be read from
the NT Registry.

jagClPkgNameErr 8014 The package name for the Component
being instantiated cannot be read from
the NT Registry.

jagClPxyCreateErr 8015 Component creation failed.

jagClPxyDestroyErr 8016 Component deletion failed.

jagClPxyFuncDescErr 8017 The metadata information for the method
cannot be read from the type library.

jagClArgCountErr 8018 There was a mismatch between the
number of parameters passed to method
and the number of parameters as
described by the information in the type
library.

Symbolic error code Number Description
110 EAServer

CHAPTER 4 ActiveX Client Interfaces
jagClInternalErr 8019 An error was encountered while invoking
a component method.

jagClParamInfoErr 8020 The type information for a method
parameter cannot be read from the Type
Library.

jagClTypeMismatchErr 8021 There is a mismatch between type of the
value passed as an argument with its
specified type in the Type Library.

jagClConversionErr 8022 The data conversion attempted is
presently not supported.

jagClArgUpdateErr 8023 An error was encountered while updating
an input-output or output parameter for a
method.

jagClRetValSetErr 8024 An error was encountered while updating
the return value for a

method.

jagClRecsetArgErr 8025 The ResultSet type cannot be passed as a
parameter in either the input or input-
output modes by a EAServer ActiveX
application.

jagClUnsuppTypeErr 8026 An unsupported OLE Automation type
was used as a parameter in a method.

jagClAxConvertErr 8027 An error was encountered while
converting a input-output method
parameter received from the server.

jagClJagConvertErr 8028 An error was encountered while
converting a input parameter prior to
method invocation.

jagClNoInitErr 8029 A component instance must be created
prior to invoking a method.

jagClRecordsetCreateErr 8030 An internal error was encountered while
creating the Recordset object.

jagClRecordsetMoveErr 8031 Attempt to call MoveNext on a RecordSet
which has its EOF property as TRUE.

jagClIteratorPosErr 8032 An invalid position was specified while
attempting to retrieve an element from a
collection.

jagClInvalidMethodErr 8033 The only method supported on the
generic EAServer Object type is
Narrow_.

Symbolic error code Number Description
API Reference 111

JagORBClientErrNum enumeration
Usage In Visual Basic, exceptions are mapped to the built-in Err object. The exception
number maps to Err.Number and the description is available as Err.Description.
You can handle exceptions by activating error handling code with On Error
Goto statement or by checking whether Err.Number is > 0.

The proxy type library defines error numbers for client-side errors in the
JagORBClientErrNum enumeration and server-side error numbers in the
JagORBSrvErrNum enumeration.

See also JagORBSrvErrNum enumeration

jagClNarrowFailErr 8034 The object reference cannot be narrowed
to the interface name specified.

jagClInvalidIntfErr 8035 The fully scoped interface name passed
as an argument to the Narrow_ method is
invalid.

jagClOrbInitErr 8036 An internal error was encountered while
initializing client-side ORB.

jagClOrbStrToObjErr 8037 An internal error was encountered while
invoking the ORB.string_to_object
method.

jagClNotJagCollErr 8038 he parameter of the sequence type passed
to the method is not a valid EAServer
ActiveX Collection Object.

jagClInternalCollErr 8039 A fatal internal error occured while
performing an operation on a

EAServer Collection object.

jagClAxSSLCBRegErr 8040 A fatal internal error occured while
registering user's ActiveX SSL Callback
component. Verify that the directory
containing the file jagproxy.dll is in the
PATH.

jagClDuplicAxSSLCBCompErr 8041 The "AXSSLCBComponent" ORB
property cannot be set more than once per
session. An ActiveX SSL Callback
component with a ProgID of progid has
previously been registered for the present
client session.

Symbolic error code Number Description
112 EAServer

CHAPTER 4 ActiveX Client Interfaces
JagORBSrvErrNum enumeration
Description

Defines symbolic constants for errors that can occur during server-side
execution of a method call.

Table 4-3 lists the codes for server-side error numbers defined in the
JagORBServerErrNum enumeration. User-defined IDL exceptions are not
supported and are mapped to error number 9000.

Table 4-3: JagORBServerErrNum error codes

Type library name JaguarTypeLibrary

DLL name jagproxy.dll

Symbolic Error Code Number Description

jagSrvMethExcepErr 9000 The method implementation threw a
user-defined exception while executing
in EAServer.

jagSrvMethInvalidErr 9001 The method name is either invalid or is
presently not defined in the component's
interface.

jagSrvMethInvalidArgErr 9002 The invocation of the component method
failed because an invalid number of
parameters was passed or a parameter
type mismatch occurred.

jagSrvMethNotImplErr 9003 The invocation of the component method
failed because the component does not
implement the method.

jagSrvCompPermErr 9004 The invocation of the method in
EAServer failed because user does not
have the permissions to instantiate the
component.

jagSrvCompDeployErr 9005 The invocation of the method in
EAServer failed because component
implementation was not deployed in
EAServer.

jagSrvInternalErr 9006 The invocation of the method in
EAServer failed due a fatal internal error.

jagSrvArgCountErr 9007 The invocation of the method in
EAServer failed because an invalid
parameter type was used by the method.

jagSrvSrvConnectErr 9008 The requested operation failed since the
client cannot to acquire connection to the
server.
API Reference 113

JCollection interface
Usage In Visual Basic, exceptions are mapped to the built-in Err object. The exception
number maps to Err.Number and the description is available as Err.Description.
You can handle exceptions by activating error handling code with On Error
Goto statement or by checking whether Err.Number is > 0.

The proxy type library defines error numbers for client-side errors in the
JagORBClientErrNum enumeration and server-side error numbers in the
JagORBSrvErrNum enumeration.

See also JagORBClientErrNum enumeration

JCollection interface
Description

jagSrvConversionErr 9009 The invocation of the method in
EAServer failed due to a data conversion
error.

jagSrvFreeMemErr 9010 The invocation of the method in
EAServer failed while releasing memory
resources.

jagSrvIntfReposErr 9011 The invocation of the method in
EAServer failed while trying to access
the interface repository.

jagSrvOutOfMemErr 9012 The invocation of the method in
EAServer failed while trying to acquire
memory from the operating system.

jagSrvOutOfResErr 9013 The invocation of the method in
EAServer failed since it cannot acquire
the necessary resources.

jagSrvSrvRespErr 9014 The invocation of the method in
EAServer failed because there was no
valid response from the server.

jagSrvInvObjrefErr 9015 The invocation of the method in
EAServer failed because the object
reference is invalid.

Symbolic Error Code Number Description

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
114 EAServer

CHAPTER 4 ActiveX Client Interfaces
Represents a collection of objects or primitive data values; the ActiveX
mapping for CORBA IDL sequences used as method parameter or return types
in component methods.

Properties Count as Integer
The number of available items.

Item(index as Integer) as Object
Set or retrieve an item’s value. The first item has index 0. All VARIANT values
are allowed, except for arrays. When setting item values, index can be any
positive integer starting with 0, and the value can be any type supported by the
ActiveX client proxy and ActiveX component dispatcher. See Chapter 20,
“Creating ActiveX Clients,” in the EAServer Programmer’s Guide for a list of
supported types.

Usage JCollection represents an IDL sequence. Any return value or parameter that is
defined as an IDL sequence in a EAServer IDL interface is represented as a
JCollection in the equivalent ActiveX proxy interface. The JCollection contains
the ActiveX equivalent for the base type of the IDL sequence. Nested IDL
sequences map to nested JCollection instances.

Iterating over a collections items

You can iterate over the items in a JCollection instance using a For ... To loop or
a For Each ... In loop. The following example shows a For ... To loop:

Dim stringJColl as JaguarTypeLibrary.JCollection

Set stringJColl = myComp.methodThatReturnsSequenceOfString()

Dim stringItem as String
Dim iter as Integer

For iter = 1 To stringJColl.Count
stringItem = Format(stringJColl.Item(iter - 1))

Next iter

The following example shows a For Each ... In loop that iterates through all
items in the collection myJColl:

Dim myJColl as JaguarTypeLibrary.JCollection

Set myJColl = myComp.methodThatReturnsSequenceOfString()

Dim myObject as Object
For Each myObject in myJColl

Dim strItem as String
strItem = format(MyObject)
API Reference 115

Object interface
Next

Nested collections

The following example shows how to iterate over items in a nested collection.
In the example, outerC is a JCollection instance that contains JCollection
instances as items:

Dim outerC as JaguarTypeLibrary.JCollection

set outerC = myComp.methodThatReturnsNestedSequence()

Dim innerC as JaguarTypeLibrary.JCollection
Dim strItem as String
Dim i as Integer
Dim j as Integer

For i=1 to outerC.Count
innerC = outerC.Item(i - 1)
For j=1 to innerC.Count
strItem = Format(innerC.Item(j - 1))

Next j
Next i

In a collection innerC nested inside another collection outerC, the j’th item in
the i’th nested collection can be accessed directly as follows:

Dim outerC as JaguarTypeLibrary.JCollection

set outerC = myComp.methodThatReturnsNestedSequence()

Dim innerC as JaguarTypeLibrary.JCollection
Dim myObject as Object
i as Integer
Dim j as Integer

myObject = outerC.Item(i).Item(j)

See also Chapter 20, “Creating ActiveX Clients,” in the EAServer Programmer’s Guide

Object interface
Description

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
116 EAServer

CHAPTER 4 ActiveX Client Interfaces
A generic proxy object that must be narrowed to another interface.

Methods • Narrow_ – Narrows the object to an instance of a named IDL interface.

See also SessionManager.Session, Orb.resolve_initial_references

Object.Narrow_
Description Narrows the object to an instance of a named IDL interface.

Syntax Object.Narrow_(idlName as String) as JaguarTypeLibrary.Object

Parameters idlName
The name of the IDL interface to be narrowed to, in the form
"module/interface", where module is the IDL module name and interface is
the IDL interface name.

Return value An instance of the requested interface, which should be assigned to a variable
declared as the equivalent ActiveX interface. An error is raised if the Object
instance cannot support the requested interface.

Examples This example calls Orb.resolve_initial_references to obtain a proxy for the SSL
service provider, then calls Object.Narrow_ to narrow to the
CtsSecurity::SSLServiceProvider interface:

Dim orbRef As JaguarTypeLibrary.ORB
Dim ssp As CtsSecurity.SSLServiceProvider
Dim CORBAObj As Object

' Initialize the ORB
Set orbRef = New JaguarTypeLibrary.ORB
orbRef.Init ("")

' Get a proxy for the SSLServiceProvider
Set CORBAObj = _

orbRef.resolve_initial_references("SSLServiceProvider")
Set ssp = CORBAObj.Narrow_("CtsSecurity/SSLServiceProvider")

Orb interface
Description

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
API Reference 117

Orb interface
The core interface used by clients that use CORBA-style proxy instantiation.

Methods • Init – Initializes the Orb instance.

• resolve_initial_references – Obtains a proxy for a client-side service.

• object_to_string – Obtains a serialized string Interoperable Object
Reference (IOR) for a proxy instance.

• string_to_object – Deserializes a string that contains a CORBA IOR
representing a proxy for an EAServer component.

Usage Orb is the core interface used by clients for CORBA-style proxy instantiation.
In Visual Basic, construct an instance with the new keyword, as in this
example:

Dim orbRef as JaguarTypeLibrary.Orb
set orbRef = new JaguarTypeLibrary.Orb

You can create multiple Orb instances, though there is no need to do so unless
each is initialized differently by passing different properties to the Init method.

Orb.Init
Description Initializes the Orb instance.

Syntax Orb.Init (options as String)

Parameters options
A string containing zero or more initialization parameter settings, formatted
as follows:

orb.init("param1=setting1,param2=setting2")

As shown in the example, parameter names and values must be separated by
an equals sign, ‘=’, and each name/value pair must be separated from the
next with a comma and no white space.

Usage Init initializes an Orb instance. You must call Init once for each Orb instance
before calling any other method. It is an error to call Init more than once on one
instance. You can create several Orb instances and initialize them with different
parameters.
118 EAServer

CHAPTER 4 ActiveX Client Interfaces
Initialization Parameters

You can pass initialization parameters to the driver class by embedding settings
in a formatted string, or setting environment variables. If both the environment
variable and initialization parameter are set, the value of the initialization
parameter is used. You can set any initialization parameter to a value of none,
which overrides the value of the environment variable and sets the value to the
default, if any.

You can pass settings for the following propertys to the driver class:

• -ORBAXSSLCBComponent Specifies the ProgID for an ActiveX
component that implements the methods in the CtsSecurity.SSLCallback
interface. When using SSL connections, you can install a callback to
handle requests for required data, such as a certificate label or password,
and exceptional conditions, such as server certificate signed by an
unknown authority.

• -ORBcertificateLabel When using SSL, specifies the client certificate to
use, if the server requests mutual authentication. The label is a simple
name that identifies an X.509 certificate/private key in the Sybase PKCS
#11 token or the Entrust token.

• -ORBCodeSet This sets the code set that the client uses. This parameter
can also be set in an environment variable, JAG_CODESET. The default
setting is iso_1.

• -ORBentrustIniFile When using SSL with an Entrust personal
certificate, specifies the path name for the Entrust INI file that provides
information on how to access Entrust. This is required when the
useEntrustID property is set to true.

• -ORBentrustUserProfile When using SSL with an Entrust personal
certificate, specifies an Entrust user profile path name. This property is
optional when the Entrust single-login feature is available and required
when this feature is not available.

• -ORBentrustPassword When using SSL with an Entrust personal
certificate, specifies the password for logging in to Entrust with the
specified user profile. This property is a null-terminated string, which is
optional when the Entrust single-login feature is available and required
when this feature is not available. If the password is required but not set,
the getPin method in CtsSecurity.SSLCallback is invoked to get the Entrust
password. If there is no callback or if the callback does not return a
password, the SSL session fails.
API Reference 119

Orb interface
• -ORBHttp Specifies whether the ORB should use HTTP-tunnelling to
connect to the server. A setting of of "true" specifies HTTP tunnelling. The
default is "false". This parameter can also be set in an environment
variable, JAG_HTTP. Some firewalls may not allow IIOP packets
through, but most all allow HTTP packets through. When connecting
through such firewalls, set this property to “true”.

• -ORBLogIIOP Specifies whether the ORB should log IIOP protocol
trace information. A setting of “true” enables logging. The default is
"false". This parameter can also be set in an environment variable,
JAG_LOGIIOP. When this parameter is enabled, you must set the
ORBLogFile option (or the corresponding environment variable) to specify
the file where protocol log information is written.

• -ORBLogFile Specifies the path and name of the file to which to log
client execution status and error messages. This parameter can also be set
in an environment variable, JAG_LOGFILE. There is no default; logging
is not enabled unless you specify a filename to receive the log trace.

• -ORBpin When using SSL, specifies the PKCS #11 token PIN. This is
required for logging in to a PKCS #11 token for client authentication and
for retrieving trust information. If this property is not set and the server
requests client authentication, the Login callback implementation is
invoked to get the PKCS #11 PIN. If this property is set to the value any,
then the getPin method in SSLCallback interface is invoked. If a PKCS #11
token login is required and neither the Login callback property nor the PIN
property are set, the SSL session fails. This property can be set
application-wide using the SSLServiceProvider context. This property
cannot be retrieved once it has been set.

• -ORBqop When using SSL, specifies the name of a security profile
characteristic. The security profile characteristic lists the CipherSuites the
client uses when negotiating an SSL connection. If the qop is set, the ORB
will connect only to listeners with an equal or greater level of security than
required by the qop security profile. “Configuring security profiles” in the
EAServer System Administration Guide describes the security
characteristics that are provided with EAServer. At run time, you can
retrieve a list of characteristics and their descriptions using the
CtsSecurity.SSLServiceProvider interface. The default setting is “none”,
which allows connections to listeners that do not use SSL at all.

• -ORBProxyHost Specifies the machine name or the IP address of an
SSL proxy. There is no default.

• -ORBProxyPort Specifies the port number of the SSL proxy. There is no
default.
120 EAServer

CHAPTER 4 ActiveX Client Interfaces
• -ORBRetryCount Specifies the number of times to retry when the initial
attempt to connect to the server fails. This parameter can also be set in an
environment variable, JAG_RETRYCOUNT. The default is 5.

• -ORBRetryDelay Specifies the delay, in milliseconds, between retry
attempts when the initial attempt to connect to the server fails.This
parameter can also be set in an environment variable,
JAG_RETRYDELAY. The default is 2000.

• ORBSocketReuseLimit Specifies the number of times that a network
connection may be reused to call methods from one server. The default is
0, which indicates no limit. The default is ideal for short-lived clients. The
default may not be appropriate for a long-running client program that calls
many methods from servers in a cluster. If sockets are reused indefinitely,
the client may build an affinity for servers that it has already connected to
rather than randomly distributing its server-side processing load among all
the servers in the cluster. In these cases, the property should be tuned to
best balance client performance against cluster load distribution. In Sybase
testing, a setting of 10 to 30 proved to be a good starting point. If the reuse
limit is too low, client performance degrades.

• -ORBuseEntrustID When using SSL, specifies whether to use the
Entrust ID or the Sybase PKCS #11 token for authentication. This is a
Boolean (true or false) property. If this property is set to false, Sybase
PKCS #11 token properties are valid and Entrust-specific properties are
ignored. If this property is set to true, Entrust-specific properties are valid
and Sybase PKCS #11 token properties are ignored. Entrust software is not
included with EAServer, however, if your site uses Entrust for personal
certificate management, this property allows you to connect to servers
using Entrust certificates.

• -ORBuserData When using SSL, specifies user data (String datatype).
This is an optional property. Client code can set user data during ORB
initialization and access it using SSLSessionInfo.getProperty method in the
SSL callback implementation. This may be useful as a mechanism to store
ORB-level context information that is otherwise not available through the
SSLSessionInfo interface.

Properties that configure SSL connections can also be set using the
CtsSecurity.SSLServiceProvider interface, or by callback methods in a
CtsSecurity.SSLCallback object that you install using the
ORBAXSSLCBComponent property.
API Reference 121

Orb interface
Example

This example creates an Orb instance and configures the -ORBlogFile
property and the -ORBpin property, to specify a file name for logging errors
and the Sybase SSL-certificate-database password, respectively:

Dim orb as JaguarTypeLibrary.Orb
set orb = new JaguarTypeLibrary.Orb
orb.init("-ORBlogFile=d:\jagorb.log,-ORBpin=sybase")

See also CtsSecurity.SSLServiceProvider interface

Orb.resolve_initial_references
Description Obtains a proxy for a client-side service.

Syntax Orb.resolve_initial_references (
serviceName as String
) as Object

Parameters serviceName
A string containing the name of the service. The following names are
recognized:

Return value An Object (IDispatch pointer) that must be narrowed to the interface
implemented by the service by calling the Object.Narrow_ method, as follows:

Orb.object_to_string
Description Obtains a serialized string Interoperable Object Reference (IOR) for a proxy

instance.

Syntax Orb.object_to_string(objRef as JaguarTypeLibrary.Object) as String

Parameters objRef
The proxy instance to be serialized. The instance must have been obtained
from the EAServer ActiveX proxy server.

Return value A string that encodes the proxy object in CORBA IOR format.

Service name Returned object

SSLServiceProvider An instance of
CtsSecurity.SSLServiceProvider.

Service name Type name for Object.Narrow_

SSLServiceProvider CtsSecurity/SSLServiceProvider
122 EAServer

CHAPTER 4 ActiveX Client Interfaces
Usage object_to_string serializes a proxy object into a string, using the CORBA IOR
format. You can call string_to_object to deserialize the object later.

See also string_to_object

Orb.string_to_object
Description Deserializes a string that contains a CORBA IOR representing a proxy for a

EAServer comonent.

Syntax Orb.string_to_object(ior as String) as Object

Parameters ior
A string that was returned by object_to_string, or as a special case when
obtaining a SessionManager.Manager instance, a URL formatted as follows:

protocol://host:port

Where protocol is iiop or iiops and host:port is the server’s listener host
address and port number. See SessionManager.Manager for more
information.

Return value An Object (IDispatch pointer) that must be narrowed to an instance of the
appropriate interface by calling the Object.Narrow_ method.

Usage string_to_object deserializes an object that was serialized using
object_to_string.

The following restrictions apply when serializing and deserializing component
proxy references:

• Unless the proxy is for an Enterprise Java EntityBean, the serialized
reference remains valid only as long as the server has not been restarted
since the time when proxy was first instantiated. When deserializing, the
proxy instance will connect back to the same host and port as was used to
create the original instance. An EntityBean proxy can be deserialized at
any time, as long as the EntityBean is still installed on the original server.

• If the original proxy instance was created by connecting to a secure port
with a client-side SSL certificate, the proxy must be deserialized in a
session that connects using the same client certificate and equal or greater
security constraints. For example, if you create an object with session that
uses 128-bit SSL encryption, serialize the object, then later try to
deserialize the object using during a session that uses 40-bit SSL
encryption, the ORB will throw the CORBA::NO_PERMISSION exception.
Access is allowed when objects created using less secure session are later
accessed using a more secure session.
API Reference 123

RecordSet interface
See also object_to_string

RecordSet interface
Description

Represents a set of tabular data returned by a component method invocation.
Provides methods to iterate through the rows in each result set. Modeled after
RecordSet in Microsoft’s ActiveX Data Objects (ADO) interface.

Properties • Fields – Returns a Fields collection that contains a Field object for each
column in the current row.

• EOF – Boolean. When tested after calling the MoveNext method, indicates
whether the application has iterated over all rows in a result set. When
tested after calling the NextRecordSet method, indicates whether the
application has iterated through all available result sets.

• RecordCount – Integer. Specifies the number of rows in the current result
set.

Methods • MoveFirst – Positions the row pointer before the first row in the current
result set.

• MoveNext – Moves the row pointer one row forward. Sets the EOF
property to true if the row pointer has moved past the last row.

• NextRecordSet – Returns a RecordSet that represents the next result set
that was returned by the method invocation. If all result sets have been
viewed, returns an empty RecordSet and sets the EOF property to true.

Usage RecordSet allows ActiveX client applications to retrieve result sets returned by
a component method invocation. Each proxy component interface contains a
GetRecordSet method. You can call this method after each method invocation
to obtain a RecordSet object that contains the result sets returned by the
method. If the method returned no result sets, GetRecordSet returns an empty
RecordSet object. (You can test for this condition with the EOF property.)

For example code that uses RecordSet objects, see Chapter 20, “Creating
ActiveX Clients,” in the EAServer Programmer’s Guide.

See also Fields collection, Field interface

Type library name JaguarTypeLibrary

DLL name jagproxy.dll
124 EAServer

CHAPTER 4 ActiveX Client Interfaces
RecordSet.MoveFirst
Description Positions the row pointer before the first row in the current result set.

Syntax RecordSet.MoveFirst()

Usage Newly created RecordSet objects always have the row pointer positioned
before the first record.

See also MoveNext

RecordSet.MoveNext
Description Moves the row pointer one row forward. Sets the EOF property to true if the

row pointer has moved past the last row.

Syntax RecordSet.MoveNext()

Usage MoveNext is typically called in a loop while the EOF property tests as true.

See also MoveFirst

RecordSet.NextRecordSet
Description Returns a RecordSet that represents the next result set that was returned by the

method invocation. If all result sets have been viewed, returns an empty
RecordSet and sets the EOF property to true.

Syntax RecordSet.NextRecordSet()

Usage NextRecordSet is typically called in a loop until the EOF property tests as true.
API Reference 125

RecordSet interface
126 EAServer

C H A P T E R 5 C Routines Reference

This chapter contains reference pages for the C routines that are provided
for use by EAServer C or C++ components. Routines are indexed in the
following sections:

• “Alphabetical list of all routines” on page 127

• “Routines for managing component instance data” on page 130

• “Routines for managing transaction flow” on page 130

• “Routines for sharing data between components” on page 131

• “Routines for managing cached connections” on page 132

• “Routines for sending result sets” on page 132

• “Routines for handling errors in C or C++ components” on page 133

• “Routines for managing memory in C or C++ components” on page
133

• “Routines to obtain user login information” on page 133

Detailed reference pages for each routine follow the index sections.
Routines are listed in alphabetical order by routine name.

Alphabetical list of all routines
• JagAlloc – Allocate memory for use in C component code.

• JagBeginResults – Begin the sequence of calls that sends a result set
to the client.

• JagBindCol – Bind a memory address to a column in a result set.

• JagCmCacheProps – Retrieve connection cache properties.

• JagCmGetCachebyName – Retrieve the handle for the cache with the
specified name.
API Reference 127

Alphabetical list of all routines
• JagCmGetCachebyUser – Retrieve a cache handle for connections that use
a specified set of values for server, user name, password, and connectivity
library.

• JagCmGetConnection – Retrieve a connection from a specified cache or
from any cache that matches a specified set of values for server, user name,
password, and connectivity library.

• JagCmGetCtx – Obtain the connectivity-library-specific context reference
that is used to allocate cached connections in a cache.

• JagCmGetProxyConnection – Retrieve a cached connection, specifying an
alternate login name to set-proxy to.

• JagCmReleaseConnection – Place a connection back in the cache for
reuse.

• JagColAttributes – Specify additional metadata for a column to be sent in
a result set.

• JagCompleteWork – Indicate that the component’s work for the current
transaction was successfully finished and that this component instance
should be deactivated.

• JagContinueWork – State indicator routine to specify that the component’s
work for the current transaction may be committed.

• JagDescribeCol – Describe a column to be sent as part of a result set.

• JagDisallowCommit – State indicator routine to specify that the current
transaction cannot be committed because the component’s work has not
been completed.

• JagEndResults – Indicate that all rows in a result set have been sent.

• JagFree – Free memory that was allocated with JagAlloc.

• JagFreeCollectionHandle – Release the reference to a collection.

• JagFreeCollectionList – Release the memory allocated for the JagNameList
structure.

• JagFreeSharedDataHandle – Release the shared variable handle.

• JagGetCollection – Retrieve a shared-data collection handle.

• JagGetCollectionList – Retrieve a list of all the collections defined in the
server.

• JagGetHostName – Retrieve the client host name for the client connection
that is associated with a C or C++ component instance.
128 EAServer

CHAPTER 5 C Routines Reference
• JagGetInstanceData – Retrieve the address of C component instance data.

• JagGetPassword – Retrieve the password for the client connection that is
associated with a C or C++ instance.

• JagGetPeerAddress – Retrieve the client host IP address for the client
connection that is associated with a C or C++ component instance.

• JagGetSharedData – Use the shared variable name to retrieve a shared
variable handle.

• JagGetSharedDataByIndex – Use the shared variable index number to
retrieve a shared variable handle.

• JagGetSharedValue – Retrieve a shared variable value.

• JagGetUserName – Retrieve the user name for the client connection that
is associated with a C or C++ component instance.

• JagInTransaction – Determine whether the current method is executing in
a transaction.

• JagIsRollbackOnly – Query whether the current transaction is doomed to
be rolled back or is still viable.

• JagLockCollection – Lock a collection.

• JagLockNoWaitCollection – Lock a collection but do not wait for a locked
collection to be unlocked.

• JagLog – Write a message to the server’s log file.

• JagNewCollection – Create a shared-data collection or return a reference to
an existing collection.

• JagNewSharedData – Create a shared variable with a specified name or
retrieve the handle for the existing variable with the specified name.

• JagNewSharedDataByIndex – Create a shared variable with the specified
index number or retrieve the existing variable with the specified index.

• JagResultsPassthrough – Forward results from an ODBC or Client–
Library remote database command to the client.

• JagRollbackWork – Indicate that the component cannot complete its work
for the current transaction. The component instance will be deactivated
when the method returns.

• JagSendData – Send one row in a result set.
API Reference 129

Alphabetical list of all routines
• JagSendMsg – Send an error message to the calling client application from
a C or C++ component.

• JagSetInstanceData – Associate a reference to instance data with the
current C component instance.

• JagSetSharedValue – Set a shared variable value.

• JagSleep – Suspend execution of the thread in which your component is
running.

• JagUnlockCollection – Unlock a collection.

Routines for managing component instance data
These routines manage instance data in C components.

• JagGetInstanceData – Retrieve the address of C component instance data.

• JagSetInstanceData – Associate a reference to instance data with the
current C component instance.

Routines for managing transaction flow
A component that participates in transactions can call these routines to
influence the outcome of the current transaction. See Chapter 2,
“Understanding Transactions and Component Lifecycles,” in the EAServer
Programmer’s Guide for more information.

• JagCompleteWork – Indicate that the component’s work for the current
transaction was successfully finished and that this component instance
should be deactivated when the method returns.

• JagContinueWork – Indicate that the component should not be deactivated
after the current method invocation; allow the current transaction to be
committed if the component instance is deactivated.

• JagDisallowCommit – Indicate that the current transaction cannot be
committed because the component’s work has not been completed; the
instance remains active after the current method returns.

• JagInTransaction – Determine whether the current method is executing in
a transaction.
130 EAServer

CHAPTER 5 C Routines Reference
• JagIsRollbackOnly – Query whether the current transaction is doomed to
be rolled back or is still viable.

• JagRollbackWork – Indicate that the component cannot complete its work
for the current transaction. The component instance will be deactivated
when the method returns.

Routines for sharing data between components
These routines allow C or C++ components to share data.

• JagFreeCollectionHandle – Release the reference to a collection.

• JagFreeCollectionList – Release the memory allocated for the JagNameList
structure.

• JagFreeSharedDataHandle – Release the shared variable handle.

• JagGetCollection – Retrieve a shared-data collection handle.

• JagGetCollectionList – Retrieve a list of all the collections defined in the
server.

• JagGetSharedData – Use the shared variable name to retrieve a shared
variable handle.

• JagGetSharedDataByIndex – Use the shared variable index number to
retrieve a shared variable handle.

• JagGetSharedValue – Retrieve a shared variable value.

• JagLockCollection – Lock a collection.

• JagLockNoWaitCollection – Lock a collection but do not wait for a locked
collection to be unlocked.

• JagNewCollection – Create a shared-data collection or return a reference to
an existing collection.

• JagNewSharedData – Create a shared variable with a specified name or
retrieve the handle for the existing variable with the specified name.

• JagNewSharedDataByIndex – Create a shared variable with the specified
index number or retrieve the existing variable with the specified index.

• JagSetSharedValue – Set a shared variable value.

• JagUnlockCollection – Unlock a collection.
API Reference 131

Alphabetical list of all routines
Routines for managing cached connections
For an overview of connection management, see “Chapter 26, “Using
Connection Management,” in the EAServer Programmer’s Guide.

EAServer provides the following routines to manage cached connections:

• JagCmCacheProps – Retrieve connection cache properties.

• JagCmGetCachebyName – Retrieve the handle for the cache with the
specified name.

• JagCmGetCachebyUser – Retrieve a cache handle for connections that use
a specified set of values for server, user name, password, and connectivity
library.

• JagCmGetConnection – Retrieve a connection from a specified cache or
from any cache that matches a specified set of values for server, user name,
password, and connectivity library.

• JagCmGetCtx – Obtain the connectivity-library-specific context reference
that is used to allocate cached connections in a cache.

• JagCmGetProxyConnection – Retrieve a cached connection, specifying an
alternate login name to set-proxy to.

• JagCmReleaseConnection – Place a connection back in the cache for
reuse.

Routines for sending result sets
For information on how these routines are used to send results, see Chapter 25,
“Sending Result Sets,” in the EAServer Programmer’s Guide.

• JagBeginResults – Begin the sequence of calls that sends a result set to the
client.

• JagBindCol – Bind a memory address to a column in a result set.

• JagColAttributes – Specify additional metadata for a column to be sent in
a result set.

• JagDescribeCol – Describe a column to be sent as part of a result set.

• JagEndResults – Indicate that all rows in a result set have been sent.

• JagResultsPassthrough – Forward results from an ODBC or Client-
Library remote database command to the client.
132 EAServer

CHAPTER 5 C Routines Reference
• JagSendData – Send one row in a result set.

Routines for handling errors in C or C++ components
These routines are useful for handling errors in C components.

• JagSendMsg – Send an error message to the calling client application from
a C component.

• JagLog – Write a message to the server’s log file.

Routines for managing memory in C or C++ components
• JagAlloc – Allocate memory for use in C component code.

• JagFree - Free memory that was allocated with JagAlloc.

Routines to obtain user login information
You can call these routines in C or C++ component code to obtain information
about the client connection that is associated with the current instance:

• JagGetHostName – Retrieve the client host name for the client connection
that is associated with a C or C++ component instance.

• JagGetPassword – Retrieve the password for the client connection that is
associated with a C or C++ component instance.

• JagGetPeerAddress – Retrieve the client host IP address for the client
connection that is associated with a C or C++ component instance.

• JagGetUserName – Retrieve the user name for the client connection that
is associated with a C or C++ component instance.

JagAlloc
Description Allocate memory for use in C component code.
API Reference 133

JagBeginResults
Syntax void * JAG_PUBLIC JagAlloc(
SQLINTEGER len
);

Parameters len
The number of bytes to be allocated.

Return value A pointer to newly allocated memory or NULL if the requested block of
memory can not be allocated.

Usage In C components, memory used to store output parameters for variable-length
types (string and binary) must be allocated with JagAlloc.

Memory allocated with JagAlloc must be freed with JagFree.

In C++ components, use the standard CORBA memory allocation and
deallocation routines.

See also JagFree

JagBeginResults
Description Begin the sequence of calls that sends a result set to the client.

Syntax JagStatus JagBeginResults (
SQLSMALLINT numColumns)

Parameters numColumns
The number of columns in each row of the result set.

Return value

Usage JagBeginResults is the first call in the sequence of calls that sends a result set
to the client.

See also Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

JagBindCol
Description Bind a program variable to a column in a result set.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure. Check the server log file for error descriptions.
134 EAServer

CHAPTER 5 C Routines Reference
Syntax JagStatus JagBindCol(
SQLSMALLINT columnNumber,
JagDataType dataType,
SQLSMALLINT sourceType,
SQLPOINTER sourceBuf,
SQLINTEGER maxBuflen,
SQLINTEGER *buflen,

SQLSMALLINT *indicator)

Parameters columnNumber
The column number to bind to. The first column is 1.

dataType
One of the following symbolic constants:

sourceType
The sql.h type value that represents the C datatype of the bound variable.
See the “Comments” section below for more information on datatypes.

sourceBuf
The memory address from which column values are to be read. Subsequent
calls to JagSendData read values from the buffer. The sourceBuf address
must remain valid until JagEndResults is called.

maxBuflen
The length, in bytes, of the sourceBuf buffer. For fixed-length types,
maxBuflen is ignored.

buflen
The address of a SQLINTEGER variable that contains the length, in bytes,
of the current value at the sourceBuf address. For columns with a variable-
length datatype, JagSendData reads the length of the current value from
*buflen. The buflen address must remain valid until JagEndResults is called.

For fixed-length types, buflen is ignored.

JAG_CS_TYPE To indicate that Sybase Open Client Client-Library
datatypes are being used.

JAG_ODBC_TYPE To indicate that ODBC datatypes are being used.
API Reference 135

JagBindCol
indicator
The address of a SQLSMALLINT variable that acts as a null-indicator for
column values. JagSendData reads this variable to determine whether the
column value is null. The indicator address must remain valid until
JagEndResults is called. Acceptable indicator values are:

SQL_NULL_DATA and CS_NULLDATA can be used interchangeably.

Return value

Check the server’s log file for more information when JagBindCol fails.

Usage JagBindCol binds a program variable to a column in a result set. Binding
associates the program variable with the result column: when JagSendData is
called to send a row of data, it reads the current contents of the bound variable
as the value of the column.

JagBindCol can use either ODBC or Open Client Client-Library datatypes. Set
the dataType parameter to specify which set of type constants should be used.

ODBC datatypes

When the dataType parameter is JAG_ODBC_TYPE, JagBindCol interprets
the columnDatatype parameter as an ODBC (sql.h) type constant. The C
declaration of the bound variable must be an ODBC type that agrees with the
C datatype. If necessary, JagSendData will perform conversion to the SQL
datatype that was specified by JagDescribeCol. “C-to-SQL datatype
conversions” on page 137 describes supported conversions between SQL
datatypes and C datatypes.

Table 5-1 lists the ODBC C datatypes:

Value To indicate

CS_GOODATA or any value
greater than or equal to 0.

Not null.

CS_NULLDATA Null value.

SQL_NULL_DATA Null value.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
136 EAServer

CHAPTER 5 C Routines Reference
Table 5-1: ODBC C datatypes for JagBindCol

C-to-SQL datatype conversions If the C datatype indicated by source type
does not map directly to the column’s SQL datatype (specified when
JagDescribeCol was called), JagSendData will attempt to convert the value
before sending it. The figure below shows which conversions are supported.

ODBC C type
constant

ODBC type
definition Equivalent C declaration

SQL_C_CHAR UCHAR * unsigned char *

SQL_C_SSHORT SWORD short int

SQL_C_LONG SDWORD long int

SQL_C_SLONG SDWORD long int

SQL_C_ULONG UDWORD unsigned long int

SQL_C_FLOAT SFLOAT float

SQL_C_DOUBLE SDOUBLE double

SQL_C_BIT UCHAR unsigned char

SQL_C_STINYI
NT

SCHAR signed char

SQL_C_UTINYI
NT

UCHAR unsigned char

SQL_C_BINARY UCHAR * unsigned char *

SQL_C_DATE DATE_STRUCT struct {
SQLSMALLINT year;
SQLUINTEGER month;
SQLUINTEGER day;

} DATE_STRUCT;

SQL_C_TIME TIME_STRUCT struct {
SQLUSMALLINT hour;
SQLUSMALLINT

minute;
SQLUSMALLINT

second;
} TIME_STRUCT;

SQL_C_TIMEST
AMP

TIMESTAMP_STRU
CT

struct {
SWORD year;
UWORD month;
UWORD day
UWORD hour;
UWORD minute;
UWORD second;
UDWORD fraction;

}

fraction represents billionths of a
second (1/1000000000)
API Reference 137

JagCmCacheProps
An X indicates a supported conversion.

Client-Library datatypes

When the dataType parameter is JAG_CS_TYPE, JagBindCol interprets the
sourceDatatype parameter as an Open Client Client-Library/C type constant.
See your Client-Library documentation for descriptions of the Open Client
datatypes. JagBindCol accepts any type constant that can be used with ct_bind
except for CS_TEXT_TYPE and CS_IMAGE_TYPE. These types can be
mapped to CS_LONGCHAR_TYPE and CS_LONGBINARY_TYPE,
respectively.

See also JagBeginResults, JagDescribeCol, JagSendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

JagCmCacheProps
Description Retrieve connection cache properties.
138 EAServer

CHAPTER 5 C Routines Reference
Syntax JagStatus JagCmCacheProps (
JagCmCache cache,
JagAction cmd,
JagCmCachePropEnum prop,
SQLPOINTER bufp,
SQLINTEGER buflen,
SQLINTEGER *outlen
);

Parameters cache
A JagCmCache control handle. You can call JagCmGetCachebyUser to
obtain a cache handle for any cache that is defined in EAServer Manager. A
non-null, valid cache handle is required to access any property other than
JAG_CM_CACHEBYNAME.

When retrieving the JAG_CM_CACHEBYNAME value, you can pass a
null cache handle, as described in “Determining whether by-name access is
allowed” on page 141.

cmd
Must be JAG_GET.

prop
A symbolic constant that indicates the property of interest. Table 5-2 on
page 140 lists possible values.

bufp
The address of a buffer or variable to receive the property value. Table 5-2
on page 140 lists the datatypes to pass for each property.

buflen
The length, in bytes, of *bufp. If buflen indicates insufficient space for the
value to be retrieved, JagCmCacheProps sets outlen to the required number
of bytes and returns JAG_FAIL.

outlen
The address of a SQLINTEGER variable that receives the number of bytes
written to *bufp. For string properties, outlen includes the null-terminator.

Return value

JagCmCacheProps fails for the following reasons:

• The cache, cmd, or prop parameters are invalid.

• bufp is NULL.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 139

JagCmCacheProps
• buflen indicates that *bufp contains insufficient space.

Check the server’s log file for more information when JagCmCacheProps fails.

Usage Table 5-2 summarizes connection cache properties. Access to all properties
except JAG_CM_CACHEBYNAME requires a valid cache handle:

Table 5-2: Connection cache properties

Property Specifies *bufp datatype

JAG_CM_CACHEBYNAME Whether a cache can be
retrieved by calling
JagCmGetCachebyName.
This property can be accessed
before retrieving a cache
handle, as described in
“Determining whether by-name
access is allowed” on page 141.

A SQLCHAR
array

For input,
specifies the
cache name of
interest.

On return,
unchanged.

JAG_CM_CACHENAME The name of the cache (as it
appears in EAServer Manager).

A SQLCHAR
array.

Input value is
ignored.

Output value is
the cache name.

JAG_CM_CACHESIZE The configured size of the
cache.

SQLINTEGER

Input is ignored.

Output is the
cache size.

JAG_CM_CONLIB The connectivity library:
“ODBC”, “CTLIB_110”,
“OCI_7”, or “OCI_8”.

A SQLCHAR
array.

Input is ignored.

Output is the
connectivity
library name.

JAG_CM_MUTEX (UNIX only.) A Server-Library
mutex that is used to single-
thread ODBC calls. For more
information, see Chapter 26,
“Using Connection
Management,” in the EAServer
Programmer’s Guide.

A Server-
Library
SRV_OBJID
mutex key.

Input is ignored.

Output is the
mutex key.
140 EAServer

CHAPTER 5 C Routines Reference
Determining whether by-name access is allowed

The JagCmGetCachebyName method allows you to retrieve a connection
cache by specifying only the cache name, rather than specifying values for the
cache user name, password, and server name. However, by-name access must
be enabled for the cache in EAServer Manager to allow retrieval with
JagCmGetCachebyName.

You can call JagCmCacheProps to determine whether by-name access is
allowed for a specified cache, before attempting to retrieve the cache handle
with JagCmGetCachebyName. Pass the address of the cache name as the bufp
parameter and the address of a SQLINTEGER for the outlen parameter. The
*outlen value will be non-zero if the cache can be accessed with
JagCmGetCachebyName. The example below illustrates the call syntax:

JagStatus status;
SQLINTEGER outval;
SQLCHAR myCacheName[] = “mycache”;

status = JagCmCacheProps((JagCMCache)NULL, JAG_GET,
JAG_CM_CACHEBYNAME,
(SQLPOINTER)myCacheName,
strlen(myCacheName),

&outval);
if (status != JAG_SUCCEED)

... log the error ...
}

JAG_CM_PASSWORD The password used by
connections in the cache.

A SQLCHAR
array.

Input is ignored.

Output is the
password.

JAG_CM_SERVER The name of the server to which
the cache’s connections
connect.

A SQLCHAR
array.

Input is ignored.

Output is the
server name.

JAG_CM_USERNAME The user name for connections
in the cache.

A SQLCHAR
array.

Input is ignored.

Output is the
server name.

Property Specifies *bufp datatype
API Reference 141

JagCmGetCachebyName
if (outval == JAG_TRUE) {
... by-name access is not allowed for the cache ...

}

After retrieving a valid cache handle, you can determine whether by-name
access is allowed as shown in the example below:

SQLINTEGER outval;
JagCmCache myValidCache;
JagStatus status;

status = JagCmCacheProps(myValidCache, JAG_GET,
JAG_CM_CACHEBYNAME,
(SQLPOINTER)NULL,
0, &outval);

if (status != JAG_SUCCEED) {
... log the error ...

}
if (outval == JAG_TRUE) {

... by-name access is not allowed for the cache ...
}

See also JagCmGetCachebyUser, JagCmGetCtx

JagCmGetCachebyName
Description Retrieve the handle for the cache with the specified name.

Syntax JagStatus JagCmGetCachebyName (
SQLCHAR *cachename,
JagCmCache *cache
);

Parameters cachename
The cache name.

cache
The address of a JagCmCache handle. If a matching cache is available, its
handle is returned as *cache. If no matching cache exists, *cache is set to
NULL.

Return value
Return value To indicate

JAG_SUCCEED Success. *cache is set to the address of the matching cache.

JAG_FAIL Failure.
142 EAServer

CHAPTER 5 C Routines Reference
JagCmGetCachebyName fails for the following reasons:

• A NULL value was passed for cachename.

• No matching cache was found.

• A matching cache is installed, but the cache properties do not allow
retrieval with JagCmGetCachebyName. The “Enable cache-by-name
access” option must be enabled in the Connection Cache Properties dialog.

JagCmGetCachebyName records a message that describes the failure reason in
the server log file.

Usage JagCmGetCachebyName allows you to retrieve connections without specifying
the user name, password, and other parameters that are required by the
JagCmGetCachebyUser routine.

You can retrieve a cache handle with either JagCmGetCachebyUser or
JagCmGetCachebyName. Calling JagCmGetCachebyName allows you to
change the cache user name, password, or server in EAServer Manager without
requiring corresponding changes to your component source code.

In order for components to retrieve a cache with JagCmGetCachebyName, the
EAServer Administrator must select the “Enable cache-by-name access”
option for the cache in EAServer Manager. JagCmGetCachebyName fails if the
cache does not have this option enabled.

Connection caches can be created, viewed, and modified with EAServer
Manager. See Chapter 26, “Using Connection Management,” in the EAServer
System Administration Guide for details.

See also JagCmGetCachebyUser

JagCmGetCachebyUser
Description Retrieve a cache handle for connections that use a specified set of values for

server, user name, password, and connectivity library.

Syntax JagStatus JagCmGetCachebyUser (
SQLCHAR *username,
SQLCHAR *password,
SQLCHAR *server,
SQLCHAR *con_lib,
JagCmCache *cache
);
API Reference 143

JagCmGetCachebyUser
Parameters username
The user name for connections in the desired cache.

password
The password used by connections in the desired cache.

server
For ODBC connections, the ODBC data source name (as you would use to
call SQLConnect). For Client-Library connections, the server name (as you
would use to call ct_connect).

con_lib
A string value indicating the connectivity library used by connections in the
cache. Allowable values are:

cache
The address of a JagCmCache handle. If a matching cache is available, its
handle is returned as *cache. If no matching cache exists, *cache is set to
NULL.

Return value

JagCmGetCachebyUser fails for the following reasons:

• A NULL value was passed for username, password, server, or con_lib.

• An invalid value was passed for con_lib.

• No matching cache was found.

Usage JagCmGetCachebyUser allows you to retrieve connections that match the
desired characteristic values for:

• Server name

• User name

• Password

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x

Return value To indicate

JAG_SUCCEED Success. *cache is set to the address of the matching cache.

JAG_FAIL Failure.
144 EAServer

CHAPTER 5 C Routines Reference
• Connectivity library

You can use this routine when you are not sure if a cache is configured for a
particular set of characteristic values. If no such cache is available,
JagCmGetCachebyUser sets the *cache parameter to NULL. If one or more
matching caches exist, JagCmGetCachebyUser sets *cache to the handle for
the first matching cache that it finds.

Connection caches can be created, viewed, and modified with EAServer
Manager. See Chapter 26, “Using Connection Management,” in the EAServer
System Administration Guide for details.

See JagCmGetConnection for an example that calls JagCmGetCachebyUser.

See also JagCmGetCachebyName

JagCmGetConnection
Description Retrieve a connection from a specified cache or from any cache that matches a

specified set of values for server, user name, password, and connectivity
library.

Syntax JagStatus JagCmGetConnection (
JagCmCache *cache,
SQLCHAR *username,
SQLCHAR *password,
SQLCHAR *server,
SQLCHAR *con_lib,
SQLPOINTER *connection,
JagCmOpt opt
);

Parameters cache
The address of a JagCmCache cache handle variable. The input value
determines how the parameter is used:

• If *cache is not NULL, it must specify a valid cache handle.
JagCmGetConnection attempts to return a connection from the specified
cache. You can call JagCmGetCachebyUser to obtain a cache handle for
any cache that is defined in EAServer Manager.

• If *cache is NULL, characteristic values for username, password,
server, and con_lib must be supplied. If a matching cache is found,
*cache is set to handle for the cache.
API Reference 145

JagCmGetConnection
username
When *cache is NULL, the user name for connections in the desired cache.
Ignored when *cache is not NULL.

password
When *cache is NULL, the password used by connections in the desired
cache. Ignored when *cache is not NULL.

server
When *cache is NULL, the name of the server to which cached connections
are made. Ignored when *cache is not NULL.

con_lib
When *cache is NULL, indicates a string value indicating the connectivity
library used by connections in the cache. Ignored when *cache is not NULL.

When *cache is NULL, allowable values for con_lib are:

connection
The address of a variable that receives the connection handle. Declare a
variable of the appropriate type, as follows:

• For ODBC connections, pass the address of an SQLHDBC variable

• For Client-Library connections, pass the address of a
CS_CONNECTION * variable

• For Oracle 7.x connections, pass the address of an OCI Lda_Def
variable

• For Oracle 8.x connections, pass the address of an OCI OCISvcCtx
variable

On successful return, the connection will be open and in a state that allows
commands to be sent to the remote server.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x
146 EAServer

CHAPTER 5 C Routines Reference
opt
A symbolic value that indicates the desired behavior if all connections in a
cache are in use. Allowable values are:

Return value

Usage JagCmGetConnection returns a connection that was allocated and opened with
the specified connectivity library and that has matching values for server, user
name, and password.

JagCmGetConnection behaves differently depending on whether the *cache
parameter is NULL.

Value of opt
JagCmGetConnection behavior when all
connections are in use

JAG_CM_NOWAIT Fails with an error if no connection can be returned.

JAG_CM_WAIT Does not return until a connection becomes available.

JAG_CM_FORCE Allocates and opens a new connection. The new
connection is not cached and will be destroyed when
JagCmReleaseConnection is called.

Return value To indicate

ODBC status code The result of a SQLAllocConnect or SQLConnect call, or
SQL_SUCCESS in the case where a previously opened
connection is returned.

Client-Library status
code

The result of a ct_con_alloc or ct_connect call, or
CS_SUCCEED in the case where a previously opened
connection is returned.

OCI_SUCCESS (An
OCI 7.x and 8.x status
code)

Successful retrieval of an OCI 7.x or 8.x connection.

OCI_FAIL (An OCI
7.x and 8.x status
code)

Failure to retrieve an OCI 7.x or 8.x connection. Check the
server log for errors, and verify that the connection can be
pinged in EAServer Manager.

JAG_FAIL Failure. JagCmGetConnection returns JAG_FAIL when the
call specifies an invalid con_lib value.
API Reference 147

JagCmGetConnection
Calls that pass a NULL cache handle

If *cache is NULL, CmGetConnection looks for a cache with settings that
match the values of the username, password, server, and con_lib parameters.
If a cache is found and a connection is available, a connection is returned from
that cache and *cache is set to reflect the cache from which the connection
came. If no cache is found, then a connection structure is allocated, a
connection is opened using the specified connectivity library and the new
connection structure is returned. If a cache was found, con_lib is ignored. The
following table summarizes the JagCmGetConnection call when *cache is
NULL.

Table 5-3: JagCmGetConnection behavior when *cache is NULL

Cached and uncached connections

A connection obtained with JagCmGetConnection is either cached or uncached.

A cached connection is one that was taken from a configured connection cache.
When JagCmGetConnection returns a cached connection, it sets *cache to
indicate the cache to which the connection belongs. Cached connections must
be released to the cache from which they were taken: pass the cache reference
obtained in the JagCmGetConnection call when calling
JagCmReleaseConnection.

An uncached connection is one that was not taken from a cache.
JagCmGetConnection returns an uncached connection in either of the following
cases:

• There is no cache configured with the specified
username/password/server/con_lib parameter values.

Cache
found?

Connection
available in
cache? Result

Yes Yes The call returns a connection handle in
*connection and sets *cache to reflect the
cache from which the connection came.

Yes No Depending on the value of the opt
parameter, the call fails, waits for an
available connection, or allocates and opens
a new, uncached connection. *cache is
returned as NULL.

No N/A The call attempts to allocate and open a new,
uncached connection. *cache is returned as
NULL.
148 EAServer

CHAPTER 5 C Routines Reference
• There is a matching cache, all its connections are in use, and the
JagCmGetConnection call specifies JAG_CM_FORCE as the value of the
opt parameter.

Calls that pass a non-NULL cache handle

When a cache handle is passed in *cache, JagCmGetConnection looks for an
available connection in that cache. If none is available, then the value of the opt
parameter determines whether the call waits for a connection to be released,
fails, or opens a new, uncached connection.

See also JagCmReleaseConnection

JagCmGetCtx
Description Obtain the connectivity-library-specific context reference that is used to

allocate cached connections in a cache.

Syntax JagStatus JagCmGetCtx (

JagCmCache *cache,

SQLCHAR *username,

SQLCHAR *password,

SQLCHAR *server,

SQLCHAR *con_lib,

SQLPOINTER *ctx

);

Parameters cache
The address of a JagCmCache cache handle variable. The input value
determines how the parameter is used:

• When *cache is NULL, the values of username, password, server, and
con_lib are used to search for a matching cache. If found, *ctx is set to
the address of the connectivity-library context handle, and *cache is set
to the matching cache handle.

• If *cache contains a valid cache handle, JagCmGetCtx retrieves the
connectivity-library context for the indicated cache. You can call
JagCmGetCachebyUser or JagCmGetCachebyName to obtain a cache
handle for any cache that is defined in EAServer Manager.
API Reference 149

JagCmGetCtx
username
When *cache is NULL, the user name for connections in the desired cache.
Ignored when *cache is not NULL.

password
When *cache is NULL, the password used by connections in the desired
cache. Ignored when *cache is not NULL.

server
When *cache is NULL, the name of the server to which cached connections
are made. Ignored when *cache is not NULL.

con_lib
When *cache is NULL, a string value indicating the connectivity library
used by connections in the cache. Ignored when cache is not NULL.

When cache is NULL, con_lib must be one of the following:

ctx
The address of a variable that receives the connectivity library context used
to allocate cached connections. The returned type depends on the
connectivity library, as follows:

Return value

JagCmGetCtx fails for the following reasons:

• The cache parameter is passed as NULL.

• The value of cache is not NULL, and *cache references an invalid cache.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library

Connectivity library Value returned in *ctx

Client-Library A pointer to a CS_CONTEXT structure. Each
connection cache uses a separate CS_CONTEXT
structure.

ODBC An ODBC SQLHENV environment handle. This
handle is shared by all ODBC connection caches.

Returns To indicate

JAG_SUCCEED Successful retrieval of the CS_CONTEXT for a Client-
Library connection cache.

JAG_FAIL Failure. JagCmGetCtx fails when con_lib specifies an
invalid value.
150 EAServer

CHAPTER 5 C Routines Reference
• The value of cache is NULL, and there is no cache matching the values
specified for the username, password, server, and con_lib parameters.

Usage JagCmGetCtx retrieves the context or environment handle that is used to
allocate connections in a cache.

See also JagCmGetConnection

JagCmGetProxyConnection
Description Retrieve a cached connection, specifying an alternate login name to set-proxy

to.

Not all connection caches support set-proxy
JagCmGetProxyConnection cannot be used with OCI connections. You must
be connected to a database server, such as Adaptive Server Enterprise 11.5, that
supports the set session authorization command. Set-proxy support must be
enabled for caches in EAServer Manager before you can use this feature. See
Chapter 4, “Database Access,” in the EAServer System Administration Guide
for more information.

Syntax JagStatus JAG_PUBLIC JagCmGetProxyConnection (

 JagCmCache *cache,

 SQLCHAR *username,

 SQLCHAR *password,

 SQLCHAR *server,

 SQLCHAR *con_lib,

 SQLPOINTER *connection,

 JagCmOpt opt,

 SQLCHAR *proxy

);
API Reference 151

JagCmGetProxyConnection
Parameters cache
The address of a JagCmCache cache handle variable. The input value
determines how the parameter is used:

• When *cache is NULL, the values of username, password, server, and
con_lib are used to search for a matching cache. If found, *ctx is set to
the address of the connectivity-library context handle, and *cache is set
to the matching cache handle.

• If *cache contains a valid cache handle, JagCmGetProxyConnection
retrieves the connectivity-library context for the indicated cache. You
can call JagCmGetCachebyUser or JagCmGetCachebyName to obtain
a cache handle for any cache that is defined in EAServer Manager.

username
When *cache is NULL, the user name for connections in the desired cache.
Ignored when *cache is not NULL.

password
When *cache is NULL, the password used by connections in the desired
cache. Ignored when *cache is not NULL.

server
When *cache is NULL, the name of the server to which cached connections
are made. Ignored when *cache is not NULL.

con_lib
When *cache is NULL, a string value indicating the connectivity library
used by connections in the cache. Ignored when cache is not NULL.

When cache is NULL, con_lib must be one of the following:

connection
The address of a variable that receives the connection handle. Declare a
variable of the appropriate type, as follows:

• For ODBC connections, pass the address of an SQLHDBC variable

• For Client-Library connections, pass the address of a
CS_CONNECTION * variable

On successful return, the connection will be open and in a state that allows
commands to be sent to the remote server.

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC implementation library
152 EAServer

CHAPTER 5 C Routines Reference
opt
A symbolic value that indicates the desired behavior if all connections in a
cache are in use. Allowable values are:

proxy
The user name to set-proxy to.

Return value

Usage JagCmGetProxyConnection retrieves a cached connection, specifying an
alternate login name to set-proxy to. Set-proxy support must be enabled for a
cache in EAServer Manager. If support is enabled, connections retrieved from
the cache with JagCmGetConnection set-proxy to the client user name. Call
JagCmGetProxyConnection to specify a different user name to set-proxy to.

Other than the set-proxy behavior, JagCmGetProxyConnection is identical to
JagCmGetConnection.

See Chapter 4, “Database Access,” in the EAServer System Administration
Guide for information on defining caches and enabling set-proxy support.

See also JagCmGetConnection

JagCmReleaseConnection
Description Place a connection back in the cache for reuse.

Syntax JagStatus JagCmReleaseConnection (

Value of opt
JagCmGetConnection behavior when all
connections are in use

JAG_CM_NOWAIT Fails with an error if no connection can be returned.

JAG_CM_WAIT Does not return until a connection becomes available.

JAG_CM_FORCE Allocates and opens a new connection. The new
connection is not cached and will be destroyed when
JagCmReleaseConnection is called.

Return value To indicate

ODBC status code The result of a SQLAllocConnect or SQLConnect call, or the
set session authorization command.

Client-Library status
code

The result of a ct_con_alloc or ct_connect call, or the set
session authorization command.

JAG_FAIL Failure. JagCmGetConnection returns JAG_FAIL when the
call specifies an invalid con_lib value.
API Reference 153

JagCmReleaseConnection
JagCmCache *cache,

SQLCHAR *username,

SQLCHAR *password,

SQLCHAR *server,

SQLCHAR *con_lib,

SQLPOINTER connection,

SQLINTEGER opt

);

Parameters cache
The address of a JagCmCache cache handle variable. *cache can be NULL
or a valid cache handle.

If *cache is not NULL, must be the cache handle that was used to obtain the
connection by calling JagCmGetConnection.

If *cache is NULL, JagCmReleaseConnection attempts to place the
connection in a cache that has available space and that uses the same values
for username, password, server, and con_lib. If no such cache has available
space, the connection is closed and deallocated.

username
The user name of the connection. Ignored unless cache is NULL.

password
The password used by the connection. Ignored unless cache is NULL.

server
The name of the server to which the connection is made. Ignored unless
cache is NULL.

con_lib
A string value indicating the connectivity library used by the connection.
Ignored unless cache is NULL. Allowable values for con_lib are:

con_lib value To indicate

“CTLIB_110” Sybase Open Client Client-Library

“ODBC” An ODBC driver library

“OCI_7” Oracle Call Interface 7.x

“OCI_8” Oracle Call Interface 8.x
154 EAServer

CHAPTER 5 C Routines Reference
connection
The connection handle to be released. The connection must be in a state that
allows commands to be sent to the remote server. If commands were sent
using the connection, the results of the commands must have been
completely processed.

opt
One of the following symbolic constants:

Use JAG_CM_DROP to destroy a connection when errors have made it
unusable.

Return value

Usage JagCmReleaseConnection releases control of a connection that was obtained
from JagCmGetConnection.

 Warning! Do not release a connection more than once.

See also JagCmGetConnection

Chapter 26, “Using Connection Management,” in the EAServer Programmer’s
Guide for examples.

opt value To indicate

JAG_CM_DROP The connection should be forced closed and
deallocated. If the connection came from a cache, a
new connection will be created in its place.

JAG_CM_UNUSED Normal behavior: a connection taken from a cache is
placed back in the cache; a connection created outside
of a cache is closed and destroyed.

Returns To indicate

ODBC or Client-
Library return status

The result of connectivity library calls to close and
deallocate a connection that was not released to a cache.

CS_SUCCEED A Client-Library connection was returned to a cache.

SQL_SUCCESS An ODBC connection was returned to a cache.

JAG_FAIL Failure. JagCmReleaseConnection fails when cache is
NULL and con_lib specifies an invalid value.
API Reference 155

JagColAttributes
JagColAttributes
Description Specify additional metadata for a column to be sent in a result set.

Syntax JagStatus JagColAttributes(
SQLSMALLINT item,
SQLSMALLINT descType,
SQLPOINTER descBuf,
SQLINTEGER buflen)

Parameters item
The number of the column of interest. Column numbers start at 1.

descType
Must be SQL_COLUMN_MONEY.

descBuf
The address of a JagBoolean variable. Set the variable to JAG_TRUE to
specify that the column represents a cash value; set the variable to
JAG_FALSE otherwise. By default, columns do not represent a cash value.

buflen
The number of bytes in the descBuf buffer.

Usage JagColAttributes specifies additional column attributes beyond those specified
when JagDescribeCol is called. The only supported attribute is
SQL_COLUMN_MONEY, which indicates that a column represents a cash
value.

If you set the SQL_COLUMN_MONEY attribute to JAG_TRUE for a column,
the column’s values must be convertible to numeric values. Integer, floating-
point, and fixed-point numeric data can be converted. Strings can be converted
if the string values have the proper syntax to represent decimal numbers. Other
datatypes can not be converted.

Note
If you are using Open Client datatypes with JagDescribeCol and JagBindCol,
do not call JagColAttributes. Use the CS_MONEY datatype if a column
represents a cash value.

See also JagBindCol, JagDescribeCol
156 EAServer

CHAPTER 5 C Routines Reference
JagCompleteWork
Description Indicate that the component’s work for the current transaction has been

successfully completed and is ready to be committed.

Syntax void JagCompleteWork();

Usage JagCompleteWork specifies that the component has successfully completed its
contribution to the current transaction. The component instance deactivates
when control returns from the current component method invocation.

If the component instance is the initiator of the transaction (that is, it was
instantiated directly by a base client), then the component dispatcher attempts
to commit the transaction. The transaction commits unless the commit is
disallowed or vetoed; depending on the components that are participating, this
can happen in any of the following ways:

• A participating C or C++ component has called JagDisallowCommit.

• A participating Java component throws an exception from its
ServerBean.deactivate() method.

• A participating ActiveX component has called
IObjectContext::disableCommit().

If a component is not transactional, then JagCompletework and
JagRollbackWork have the same effect: both cause the component instance to
deactivate after the currently executing method returns.

If a method calls none of JagCompleteWork, JagContinueWork,
JagDisallowCommit, or JagRollbackWork, the default behavior is that of
JagContinueWork.

See also JagContinueWork, JagDisallowCommit, JagRollbackWork

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagContinueWork
Description Indicate that the component should not be deactivated after the current method

invocation; allow the current transaction to be committed if the component
instance is deactivated.

Syntax void JagContinueWork();
API Reference 157

JagDescribeCol
Usage JagContinueWork specifies that the component instance should not be
automatically deactivated after the current method completes. If the instance is
deactivated before the next method invocation, the current transaction is
committed.

When a method calls JagContinueWork, the component instance is not
deactivated until one of the following happens:

• The component’s stub is destroyed explicitly by the client.

• The client disconnects without explicitly destroying the stub (the current
transaction is always rolled back in this case).

• The component instance calls JagCompleteWork or JagRollbackWork
during a subsequent method invocation.

JagContinueWork and JagDisallowCommit allow components that maintain
state between method calls (using JagGetInstanceData and
JagSetInstanceData). If a component is not transactional, JagContinueWork
and JagDisallowCommit have the same effect: both prevent immediate
deactivation of the component.

If a method calls none of JagCompleteWork, JagContinueWork,
JagDisallowCommit, or JagRollbackWork, the default behavior is that of
JagContinueWork.

See also JagCompleteWork, JagDisallowCommit, JagRollbackWork

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagDescribeCol
Description Describe a column to be sent as part of a result set.

Syntax JagStatus JagDescribeCol(
SQLSMALLINT item,
JagDataType dataType,
SQLPOINTER columnName,
SQLSMALLINT SQLDatatype,
SQLUINTEGER columnSize,
SQLUINTEGER precision,
SQLSMALLINT scale,
SQLSMALLINT nullable)
158 EAServer

CHAPTER 5 C Routines Reference
Parameters item
The column number. Column numbers begin with 1.

dataType
One of the following symbolic constants:

columnName
A null-terminated string containing the column’s name.

columnDatatype
The ODBC or Client-Library type constant that indicates the column’s
datatype. See the “Comments” section below for more information on
datatypes.

colLen
The maximum length for column values.

precision
The precision of column values. For SQL_NUMERIC or SQL_DECIMAL
columns, precision indicates the maximum number of decimal digits that a
value may have. For other datatypes, precision is ignored.

scale
The scale for column values. For SQL_NUMERIC or SQL_DECIMAL
columns, scale indicates the number of decimal digits to the right of the
decimal point. For other datatypes, scale is ignored.

nullable
One of the following symbolic constants:

Return value

Check the server’s log file for more information when JagDescribeCol fails.

JAG_CS_TYPE To indicate that Sybase Open Client Client-Library
datatypes are being used.

JAG_ODBC_TYPE To indicate that ODBC datatypes are being used.

Value To indicate

SQL_NULLABLE Column can contain null values.

SQL_NO_NULLS Column values cannot be null.

SQL_NULLABLE_UNKNOWN Equivalent to SQL_NULLABLE.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 159

JagDescribeCol
Usage JagDescribeCol describes the datatype and format of a column to be sent as part
of a result set. The JagColAttributes routine specifies additional column
metadata.

JagDescribeCol accepts either ODBC or Sybase Open Client type constants.
Set the dataType parameter to specify which set of type constants should be
used.

ODBC datatypes

When the dataType parameter is JAG_ODBC_TYPE, JagDescribeCol
interprets the columnDatatype parameter as an ODBC (sql.h) type constant.
The table below lists the supported ODBC SQL type constants. The first
column is the SQL type constant and the second is the C datatype constant
representing that type.

Table 5-4 describes the supported ODBC C datatypes.

Table 5-4: ODBC datatypes for JagDescribeCol

ODBC SQL type constant Description
SQL_BINARY,
SQL_VARBINARY,
SQL_LONGBINARY

An array of bytes.

SQL_CHAR, SQL_VARCHAR,
SQL_LONGVARCHAR

A string of one or more characters.

SQL_DECIMAL A fixed point, fixed precision, fractional
number.

SQL_NUMERIC Same as SQL_DECIMAL.

SQL_SMALLINT A 2-byte integer.

SQL_INTEGER A 4-byte integer.

SQL_REAL A 4-byte floating point value.

SQL_FLOAT An 8-byte floating point value.

SQL_TIMESTAMP An ODBC timestamp value. Timestamps
are sent over the network in the same
format as SQL_DATE.

SQL_DATE A date value.

SQL_TIME A time value.

SQL_BIT A binary value.

SQL_TINYINT A one-byte integer.
160 EAServer

CHAPTER 5 C Routines Reference
Client-Library datatypes

When the dataType parameter is JAG_CS_TYPE, JagDescribeCol interprets
the columnDatatype parameter as an Open Client Client-Library/C type
constant. JagDescribeCol accepts any type constant that can be used with
ct_bind. See your Client-Library documentation for descriptions of these
datatypes.

See also JagBeginResults, JagBindCol, JagColAttributes, JagSendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide

JagDisallowCommit
Description Indicate that the current transaction cannot be committed because the

component’s work has not been completed; the instance remains active after
the current method returns.

Syntax void JagDisallowCommit();

Usage JagDisallowCommit specifies that the component instance should not be
automatically deactivated after the current method completes. If the instance is
deactivated before the next method invocation, the current transaction is rolled
back.

When a method calls JagDisallowCommit, the component instance is not
deactivated until one of the following happens:

• The component’s stub is destroyed explicitly by the client.

• The client disconnects without explicitly destroying the stub (the current
transaction is always rolled back in this case).

• The component instance calls JagCompleteWork or JagRollbackWork
during a subsequent method invocation.

JagContinueWork and JagDisallowCommit allow components to maintain state
between method calls (using JagGetInstanceData and JagSetInstanceData). If
a component is not transactional, JagContinueWork and JagDisableCommit
have the same effect: both prevent immediate deactivation of the component.

If a method calls none of JagCompleteWork, JagContinueWork,
JagDisallowCommit, or JagRollbackWork, the default behavior is that of
JagContinueWork.

See also JagCompleteWork, JagContinueWork, JagIsRollbackOnly, JagRollbackWork
API Reference 161

JagEndResults
Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagEndResults
Description Indicate that all rows in a result set have been sent.

Syntax JagStatus JagEndResults(SQLINTEGER rowCount)

Parameters rowCount
The number of rows that were sent in the result set.

Return value

Check the server’s log file for more information when JagEndResults fails.

Usage JagEndResults indicates that all rows in a result set have been sent.

You must call JagEndResults after sending a result set.

See also JagBindCol, JagDescribeCol, JagSendData

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide.

JagFree
Description Free memory that was allocated with JagAlloc.

Syntax void JAG_PUBLIC JagFree(
void *ptr
);

Parameters ptr
A pointer to the memory to be freed.

See also JagAlloc

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
162 EAServer

CHAPTER 5 C Routines Reference
JagFreeCollectionHandle
Description Release the reference to a collection.

Syntax JagStatus JagFreeCollectionHandle (
JagDataCollection * pCollection)

Parameters pCollection
The address of the collection handle.

Return value

Check the server’s log file for more information when JagFreeCollectionHandle
fails.

Usage This routine does not free any other resources besides the collection handle.
See “Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeSharedDataHandle, JagGetCollection, JagNewCollection

JagFreeCollectionList
Description Release the memory allocated for the JagNameList structure.

Syntax JagStatus JagFreeCollectionList (
JagNameList ** pList)

Parameters pList
The pointer to the address of the JagNameList structure.

Return value

Check the server’s log file for more information when JagFreeCollectionList
fails.

Usage See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 163

JagFreeSharedDataHandle
See also JagGetCollectionList

JagFreeSharedDataHandle
Description Release the shared variable handle.

Syntax JagStatus JagFreeSharedDataHandle (
JagSharedData * pData)

Parameters pData
The address of the shared variable handle.

Return value

Check the server’s log file for more information when
JagFreeSharedDataHandle fails.

Usage You must release the shared variable handle, otherwise a memory leak will
occur.

Before releasing the shared variable handle, you must release the handle of the
collection to which the shared variable belongs.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeCollectionHandle, JagGetSharedData, JagGetSharedDataByIndex,
JagNewSharedData, JagNewSharedDataByIndex

JagGetCollection
Description Retrieve a shared data collection handle.

Syntax JagStatus JagGetCollection (
SQLPOINTER name,
JagDataCollection ** ppCollection)

Parameters name
The name of the collection.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
164 EAServer

CHAPTER 5 C Routines Reference
ppCollection
The address of a JagDataCollection handle. ppCollection is set to NULL if
the specified collection does not exist.

Return value

Check the server’s log file for more information when JagGetCollection fails.

Usage JagGetCollection retrieves a shared data collection handle. The collection must
have been previously created by JagNewCollection.

Collections can be shared only among components that are installed in the
same EAServer package. A collection created by a component that is installed
in one package can not be retrieved by a component that is installed in a
different package.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeCollectionHandle, JagGetCollection, JagLockCollection,
JagLockNoWaitCollection, JagNewCollection, JagUnlockCollection

JagGetCollectionList
Description Retrieve a list of all the collections defined in the server.

Syntax JagStatus JagGetCollectionList (
JagNameList ** pList)

Parameters pList
A pointer to the address of the JagNameList structure.

Return value

Check the server’s log file for more information when JagGetCollectionList
fails.

Usage The JagNameList structure is:

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 165

JagGetHostName
typedef struct _jagnamelist
{
 SQLINT num_names;
 SQLPOINTER *names;
} JagNameList;

where:

num_names is the number of array elements.

*names is an array of num_names elements; each element points to a null-
terminated collection name.

You must use the JagFreeCollectionList method to free the memory allocated
for the JagNameList structure.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeCollectionList

JagGetHostName
Description Retrieve the client host name for the client connection that is associated with a

C or C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetHostName(
SQLPOINTER hostName,
SQLINTEGER hostNameLen,
SQLINTEGER *returnLen)

Parameters hostName
The address of a character array to receive the client host name or, if the
client software did not supply a host name, a zero-length string.

Java clients and JagGetHostName
Java clients do not supply the client host name (there is no mechanism to
retrieve the host name in Java).

hostNameLen
The length, in bytes, of the hostName array. The length must include space
for a null-terminator.
166 EAServer

CHAPTER 5 C Routines Reference
returnLen
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes,
of the hostName value. The host name is null-terminated and the length
includes the null-terminator.

Return value

JagGetHostName fails for the following reasons:

• hostName was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a
component method call.

Check the server’s log file for more information when JagGetHostName fails.

See also JagGetPeerAddress

JagGetInstanceData
Description Retrieve the address of C component instance data.

Syntax #include <jagpublic.h>

JagStatus JagGetInstanceData(CS_VOID **datapp);

Parameters datapp
The address of a pointer to be set to the address of instance data. If no
instance data has been installed, the pointer is set to NULL.

Return value JagGetInstanceData returns JAG_SUCCEED unless a serious error occurs, in
which case JAG_FAIL is returned.

Usage JagSetInstanceData and JagGetInstanceData allow you to associate data with a
particular instance of a C component. For example, you might save a counter
and use it to keep track of how many times a particular method has been called.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 167

JagGetPassword
JagSetInstanceData saves a pointer to component instance data;
JagGetInstanceData retrieves the address of the saved data. For an introduction
to these routines, see Appendix C, “Creating C Components,” in the EAServer
Programmer’s Guide.

Note
To associate instance data with a C++ component, use class member variables.

See also JagSetInstanceData

Appendix C, “Creating C Components,” in the EAServer Programmer’s Guide

JagGetPassword
Description Retrieve the password for the client connection that is associated with a C or

C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetPassword(
SQLPOINTER password,
SQLINTEGER passwordLen,
SQLINTEGER *returnLen)

Parameters password
The address of a character array to receive the client password. If the
connection has a NULL password, JagGetPassword writes a null-terminator
to the password buffer.

passwordLen
The length, in bytes, of the password array. The length must include space
for a null-terminator.

returnLen
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes,
of the password value. The host name is null-terminated and the length
includes the null-terminator.

Return value
Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
168 EAServer

CHAPTER 5 C Routines Reference
JagGetPassword fails for the following reasons:

• password was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a
component method call.

Check the server’s log file for more information when JagGetPassword fails.

See also JagGetHostName, JagGetUserName

JagGetPeerAddress
Description Retrieve the client host IP address for the client connection that is associated

with a C or C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetPeerAddress(
SQLPOINTER peerAddress,
SQLINTEGER bufLen,
SQLINTEGER *returnLen)

Parameters peerAddress
The address of a character array to receive the client IP address. The output
value is “0.0.0.0” if the client’s IP address is unavailable.

bufLen
The length, in bytes, of the peerAddress array. The length must include
space for a null-terminator.

returnLen
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length, in bytes,
of the peerAddress value. The host name is null-terminated and the length
includes the null-terminator.

Return value

JagGetPeerAddress fails for the following reasons:

• peerAddress was NULL.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 169

JagGetSharedData
• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a
component method call.

Check the server’s log file for more information when JagGetPeerAddress
fails.

See also JagGetHostName

JagGetSharedData
Description Use the shared variable name to retrieve a shared variable handle.

Syntax JagStatus JagGetSharedData (
JagDataCollection * pCollection,
SQLPOINTER name,
JagSharedData ** ppProp)

Parameters pCollection
The handle of the collection to which the shared variable belongs.

name
The name of the shared variable.

ppProp
The shared variable handle. JagGetSharedData sets *ppProp to NULL if the
shared variable does not exist.

Return value

Check the server’s log file for more information when JagGetSharedData fails.

Usage This routine can retrieve only the handle of a property that has been created
using the JagNewSharedData routine.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeSharedDataHandle, JagGetSharedDataByIndex, JagNewSharedData,
JagNewSharedDataByIndex

Return value To indicate

JAG_SUCCEED Success, even if the property does not exist

JAG_FAIL Failure
170 EAServer

CHAPTER 5 C Routines Reference
JagGetSharedDataByIndex
Description Use the shared variable index number to retrieve a shared variable handle.

Syntax JagStatus JagGetSharedData (
JagDataCollection * pCollection,
SQLINTEGER index,
JagSharedData ** ppData)

Parameters pCollection
The handle of the collection to which the shared variable belongs.

index
 The index of the shared variable.

ppProp
The shared variable handle. *ppProp is set to NULL if the shared variable
does not exist.

Return value

Check the server’s log file for more information when
JagGetSharedDataByIndex fails.

Usage This routine can retrieve only the handle of a property that has been created
using the JagNewSharedDataByIndex routine.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeSharedDataHandle, JagGetSharedData, JagGetSharedDataByIndex,
JagNewSharedData

JagGetSharedValue
Description Retrieve a shared variable value.

Syntax JagStatus JagGetSharedData (
JagSharedData * pData,
SQLPOINTER buf,
SQLINTEGER buflen,
SQLINTEGER * outlen)

Return value To indicate

JAG_SUCCEED Success, even if the property does not exist

JAG_FAIL Failure
API Reference 171

JagGetUserName
Parameters pData
The shared variable handle.

buf
The buffer to which the shared variable value is to be copied.

buflen
The length, in bytes, of the buffer addressed by buf.

outlen
The address of a SQLINTEGER variable. On output, contains the length of
the copied value. If no value has been set for the property, the length will be
zero.

Return value

JagGetSharedValue fails if the size of the value is too large for the buffer.

Check the server’s log file for more information when JagGetSharedValue
fails.

Usage You must create the buffer before you retrieve the shared variable value. Make
sure the buffer is large enough to hold any value that can be stored in the shared
variable.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagGetSharedData, JagGetSharedDataByIndex, JagLockCollection,
JagLockNoWaitCollection, JagNewSharedData, JagNewSharedDataByIndex,
JagSetSharedValue, JagUnlockCollection

JagGetUserName
Description Retrieve the user name for the client connection that is associated with a C or

C++ component instance.

Syntax JagStatus JAG_PUBLIC JagGetUserName(
SQLPOINTER userName,
SQLINTEGER userNameLen,
SQLINTEGER *returnLen)

Return value To indicate

JAG_SUCCEED Success, even if there was no value to copy

JAG_FAIL Failure
172 EAServer

CHAPTER 5 C Routines Reference
Parameters userName
The address of a character array to receive the user name. The user name can
have 0 length if no user name was supplied. In this case, only a null-
terminator will be written to *userName. (In practice, a user name is
required to connect to the server unless user authentication is disabled.)

userNameLen
The length, in bytes, of the userName array. The length must include space
for a null-terminator.

returnLen
NULL or the address of a SQLINTEGER variable.

returnLen is an optional output parameter that receives the length in bytes of
the userName value. The user name is null-terminated and the length
includes the null-terminator.

Return value

JagGetUserName fails for the following reasons:

• userName was NULL.

• The buffer length is insufficient.

• The routine was called in code that was not executing in the context of a
component method call.

Check the server’s log file for more information when JagGetUserName fails.

See also JagGetHostName, JagGetPassword

JagInTransaction
Description Determine whether the current method is executing in a transaction.

Syntax JagBoolean JagInTransaction();

Usage Methods can call JagInTransaction to determine whether they are executing
within a transaction. Methods in components that are declared to be
transactional always execute as part of a transaction.

See also JagIsRollbackOnly

Return value To indicate

JAG_SUCCEED Success.

JAG_FAIL Failure.
API Reference 173

JagIsRollbackOnly
Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagIsRollbackOnly
Description Query whether the current transaction is doomed to be rolled back or is still

viable.

Syntax JagBoolean JagIsRollbackOnly()

Return value JAG_TRUE if the current transaction is doomed, in other words, it can never
be committed. If executing outside of any transaction, returns JAG_FALSE.

Usage Transactional components that issue intercomponent method calls should call
JagIsRollbackOnly afterward to determine whether the current transaction is
still viable. If not, the method should clean up and call JagRollbackWork to
deactivate the current instance.

Transactions are doomed when a participating component has called
JagRollbackWork (or its equivalent if the component is a Java or ActiveX
component). Work performed by participating components is rolled back when
the root component of the transaction deactivates.

See also JagInTransaction, JagRollbackWork

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagLockCollection
Description Lock a collection.

Syntax JagStatus JagLockCollection (
JagDataCollection * pCollection)

Parameters pCollection
The handle of the collection.

Return value
Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
174 EAServer

CHAPTER 5 C Routines Reference
JagLockCollection fails if the collection’s isolation mode is JAG_LOCKDATA.

Check the server’s log file for more information when JagLockCollection fails.

Usage Locking a collection is strictly advisory. Even though a collection is locked, the
JagGetSharedValue and JagSetSharedValue methods can still read and update
the shared variables in the collection. If the collection is locked,
JagLockCollection waits until the lock is released. To ensure that multiple read
and update operations on any shared variable in a collection is atomic, lock the
collection before executing read or update operations on the shared variables
in the collection.

The JagLockCollection method prevents other JagLockCollection and
JagLockNoWaitCollection requests from locking the collection until the lock is
released. If the lock is successful, JAG_SUCCEED is returned. If the
collection has already been locked by the calling object, this method does not
lock the collection and JAG_SUCCEED is returned.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagGetSharedValue, JagLockNoWaitCollection, JagSetSharedValue,
JagUnlockCollection

JagLockNoWaitCollection
Description Lock a collection but do not wait for a locked collection to be unlocked.

Syntax JagStatus JagLockCollection (
JagDataCollection * pCollection,
JagBoolean * pLocked)

Parameters pCollection
The handle of the collection.

pLocked
The address of a JagBoolean variable that will be set to indicate the lock
status, as follows:

Value To indicate

JAG_TRUE The collection was not locked or the collection was already
locked by the same calling object

JAG_FALSE The collection was locked by another object
API Reference 175

JagLog
Return value

JagLockNoWaitCollection fails for the following reason:

• The collection’s isolation mode is JAG_LOCKDATA.

Check the server’s log file for more information when
JagLockNoWaitCollection fails.

Usage Locking a collection is strictly advisory. Even though a collection is locked, the
JagGetSharedValue and JagSetSharedValue methods can still read and update
the shared variables in the collection. If the collection is locked,
JagLockNoWaitCollection does not wait until the lock is released and execution
immediately returns to the calling method. To ensure that multiple read and
update operations on any shared variable in a collection is atomic, lock the
collection before executing read or update operations on the shared variables
in the collection.

The JagLockNoWaitCollection method prevents other JagLockCollection and
JagLockNoWaitCollection requests from locking the collection until the lock is
released. If the lock is successful, JAG_SUCCEED is returned. If the
collection has already been locked by the same calling object, this method does
not lock the collection and JAG_SUCCEED is returned.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagGetSharedValue, JagLockCollection, JagSetSharedValue,
JagUnlockCollection

JagLog
Description Write a message to the server’s log file.

Syntax #include <jagpublic.h>

JagStatus JagLog(
JagBoolean use_date,
SQLPOINTER logmsg)

Return value To indicate

JAG_SUCCEED Success, even if the collection was locked by another object

JAG_FAIL Failure
176 EAServer

CHAPTER 5 C Routines Reference
Parameters use_date
Pass as JAG_TRUE to indicate that the message should be preceded by a
timestamp in the log; pass as JAG_FALSE to log the message without a
timestamp.

logmsg
A null-terminated string containing the message to be logged. The message
must include a newline at the end.

Return value

Usage JagLog writes a message to the server’s log file.

By convention, errors that occur on the server are written to the log. C or C++
components should use JagLog to record error messages in the log rather than
printing to the console.

You can call JagSendMsg to send error messages to the client. When a method
invocation fails you should log any details that will help debug the cause of
failure, then send a descriptive error to the client.

For information on configuring the log file used by the server, see Chapter 3,
“Creating and Configuring Servers,” in the EAServer System Administration
Guide.

See also JagSendMsg

Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide.

JagNewCollection
Description Create a shared-data collection or return a reference to an existing collection.

Syntax JagStatus JagNewCollection (
SQLPOINTER name,
JagLockLevel * pLockLevel,
JagBoolean * pExists,
JagDataCollection ** ppCollection)

Return value To indicate

JAG_SUCCEED Success.

JAG_FAIL Failure. JagLog fails if the log file can not be opened or if
logmsg is NULL. If the log file cannot be opened, log
messages are written to the server process’ standard error
device.
API Reference 177

JagNewCollection
Parameters name
The name of the collection.

pLockLevel

pExists
 is set to one of the following values:

ppCollection
A pointer to the address of the collection handle.

Return value

Check the server’s log file for more information when JagNewCollection fails.

Usage The JagNewCollection method:

• Creates a new collection with the specified name and lock level, returns a
reference to that collection, and sets *pExists to JAG_FALSE, or

• Returns a reference to the existing collection with the specified name and
sets *pExists to JAG_TRUE. The method’s lock level is ignored and the
collection’s current lock level is returned in *pLockLevel.

Collections can be shared only among components that are installed in the
same EAServer package. A collection created by a component that is installed
in one package can not be retrieved by a component that is installed in a
different package.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeCollectionHandle, JagFreeSharedDataHandle, JagGetCollection,
JagLockCollection, JagLockNoWaitCollection, JagUnlockCollection

Value To indicate

JAG_LOCKCOLLECTION Allows locks to be set on collections

JAG_LOCKDATA Does not allow locks to be set on
collections

Return value To indicate

JAG_TRUE If a collection with the specified name already exists

JAG_FALSE If a collection with the specified name is created

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
178 EAServer

CHAPTER 5 C Routines Reference
JagNewSharedData
Description Create a shared variable with a specified name or retrieve the handle for the

existing variable with the specified name.

Syntax JagStatus JagNewSharedData (
JagDataCollection * pCollection,
SQLPOINTER name,
JagBoolean * pExists,
JagSharedData ** ppProp)

Parameters pCollection
The handle of the collection in which you want to create the shared variable.

name
 The name of the shared variable.

ppProp
The shared variable handle.

pExists
The address of a JagBoolean status variable. *pExists is set to one of the
following values:

Return value

Check the server’s log file for more information when JagNewSharedData
fails.

Usage The JagNewSharedData creates a shared variable with the specified name or
returns a reference to the existing shared variable. Newly created variables are
initialized to NULL and a reference to the new variable is returned.

Shared variables are either named or indexed. Named variables are created
with JagNewSharedData and retrieved with JagGetSharedData. Indexed
variables are created with JagNewSharedDataByIndex and retrieved with
JagGetSharedDataByIndex.

Named shared variables are uniquely identified by the collection which
contains them (see JagGetCollection) and the name assigned when the property
is created with JagNewSharedData.

Return value To indicate

JAG_TRUE If a shared variable with the specified name already exists

JAG_FALSE If a shared variable with the specified name is created

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 179

JagNewSharedDataByIndex
See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeSharedDataHandle, JagGetSharedData, JagGetSharedDataByIndex,
JagGetSharedValue, JagNewSharedDataByIndex, JagSetSharedValue

JagNewSharedDataByIndex
Description Create a shared variable with the specified index number or retrieve the

existing variable with the specified index.

Syntax JagStatus JagNewSharedData (
JagDataCollection * pCollection,
SQLINTEGER index,
JagBoolean * pExists,
JagSharedData ** ppProp)

Parameters pCollection
The handle of the collection in which you want to create the shared variable.

index
An integer that uniquely identifies the shared variable within the collection.
index can be any number within the range of the SQLINTEGER datatype.

ppProp
The shared variable handle.

pExists
The address of a JagBoolean status variable. *pExists is set to one of the
following values:

Return value

Check the server’s log file for more information when
JagNewSharedDataByIndex fails.

Return value To indicate

JAG_TRUE If a shared variable with the specified index number already
exists

JAG_FALSE If a shared variable with the specified index number is
created

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
180 EAServer

CHAPTER 5 C Routines Reference
Usage The JagNewSharedDataByIndex creates a shared variable with the specified
index number or returns a reference to the existing shared variable with that
index. Newly created variables are initialized to NULL and a reference to the
new variable is returned.

Shared variables are either named or indexed. Indexed variables are created
with JagNewSharedDataByIndex and retrieved with
JagGetSharedDataByIndex. Named variables are created with
JagNewSharedData and retrieved with JagGetSharedData.

Indexed shared variables are uniquely identified by the collection which
contains them (see JagGetCollection) and the index assigned when the property
is created with JagNewSharedDataByIndex.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagFreeSharedDataHandle, JagGetSharedData, JagGetSharedDataByIndex,
JagGetSharedValue, JagNewSharedData, JagSetSharedValue

JagResultsPassthrough
Description Forward results from an ODBC or Client-Library remote database command

to the client.

Syntax #include <jagpublic.h>

JagResultsPassthrough(
JAGPOINTER conlib,
JAGPOINTER conlib_ptr,
JagPthruType pthruType)

Parameters conlib
One of the following strings:

• “ODBC” to indicate that conlib_ptr is the address of an ODBC HSTMT
control structure.

• “CTLIB” to indicate that conlib_ptr is the address of a Client-Library
CS_COMMAND control structure.
API Reference 181

JagResultsPassthrough
conlib_pointer
The address of the control structure used to access result rows for the
connectivity library that you are using.

When using Client-Library, set conlib_ptr to the address of a
CS_COMMAND structure. The CS_COMMAND structure must be in a
state that allows ct_results to be called without error.

When using ODBC, set conlib_ptr to the address of an HSTMT control
structure. The HSTMT must be in a state that allows SQLFetch to be called
without error.

pthruType
One of the following symbolic constants to indicate how results are to be
processed:

Return value

Check the server’s log file for more information when JagSendMsg fails.

Usage JagResultsPassthru forwards results from an ODBC or Client-Library remote
database command to the client.

All results from a query can be forwarded with one call using the
JAG_PTHRU_ALL_RESULTS option for the pthruType parameter. To
forward single result sets, use the JAG_PTHRU_ALL_RESULTS option.

When using the JAG_PTHRU_ALL_RESULTS option with Client-Library,
any result type other than row results (CS_ROW_RESULTS) causes
JagResultsPassthrough to fail.

pthruType value To indicate

JAG_PTHRU_ALL_RESULTS All results from the current
command will be retrieved and
sent to the client.

JAG_PTHRU_CURRENT_RESULTS Only rows from the current result
set will be returned.

Return value To indicate

JAG_SUCCEED Successfully sent results.

JAG_NO_MORE_RESULTS Applies only when using Client-Library and
the JAG_PTHRU_CURRENT_RESULTS
option for pthruType. Indicates that all results
have been retrieved from the CS_COMMAND
structure.

JAG_FAIL Failure
182 EAServer

CHAPTER 5 C Routines Reference
When forwarding single result sets, you must ensure that you retrieve or cancel
all results. The sections below describe the loop algorithms for forwarding
individual result sets.

Forwarding individual result sets with Client-Library

When using the JAG_PTHRU_CURRENT_RESULTS option with Client-
Library, call JagResultsPassthrough in place of calling ct_results.
JagResultsPassthrough returns JAG_NO_MORE_RESULTS when
CS_COMMAND structure. The code fragment below illustrates how
JagResultsPassthrough can be called in a loop:

JagStatus jagRet;
CS_RETCODE retcode;
CS_CHAR *sqlCmd = "select * from titles select * f
rom authors"
CS_COMMAND *cmd;

// Deleted the code which did CT-Lib
// initialization, connected to the SQL Server,
// and allocated the CS_COMMAND structure.

retcode = ct_command(cmd, CS_LANG_CMD, sqlCmd,
CS_NULLTERM, CS_UNUSED);

if (retcode != CS_SUCCEED)
{

// handle failure
}
retcode = ct_send(cmd);
if (retcode != CS_SUCCEED)
{

// handle failure
}
while ((jagRet = JagResultsPassthrough("CTLIB", cmd,

JAG_PTHRU_CURRENT_RESULTS)) == JAG_SUCCEED)
{

// No code needed here. JagResultsPassthru
// did all the work

;
}
if (jagRet != JAG_NO_MORE_RESULTS)
{

// handle failure
}

API Reference 183

JagResultsPassthrough
Forwarding individual result sets with ODBC

When using the JAG_PTHRU_CURRENT_RESULTS option with ODBC,
call JagResultsPassthrough before calling SQLMoreResults, instead of the
usual SQLFetch row processing. The code fragment below illustrates how
JagResultsPassthrough and SQLMoreResults can be called in a loop to forward
all result sets to the client.

RETCODE odbcRet;
CS_CHAR *sqlCmd =

"select * from titles select * from authors"
HSTMT hstmt;

// Deleted the code which did ODBC initialization,
// connected to the SQL Server, and allocated
// the HSTMT.

odbcRet = SQLExecDirect(hstmt, (SQLCHAR *)sqlCmd, SQL_
NTS);
if (odbcRet != SQL_SUCCESS)
{

// handle failure
}
do
{

jagRet = JagResultsPassthrough("ODBC", &hstmt,
JAG_PTHRU_CURRENT_RESULTS);

if (jagRet != JAG_SUCCEED)
{

// handle failure
}

} while (SQLMoreResults(hstmt) == SQL_SUCCESS);
if (odbcRet != SQL_NO_DATA_FOUND)
{

// handle failure
}

See also JagBindCol, JagDescribeCol, JagEndResults

Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide
184 EAServer

CHAPTER 5 C Routines Reference
JagRollbackWork
Description Indicate that the component cannot complete its work for the current

transaction. The component instance will be deactivated when the method
returns.

Syntax void JagRollbackWork();

Usage JagRollbackWork specifies that the component cannot complete its work for the
current transaction. The transaction will be rolled back when the initiating
component is deactivated.

Calling JagRollbackWork does not automatically cause the current method
invocation to fail. Appendix C, “Creating C Components,” in the EAServer
Programmer’s Guide describes how to code graceful method failures.

If a component is not transactional, then JagRollbackWork and
JagRollbackWork have the same effect: both cause the component instance to
deactivate after the currently executing method returns.

If a method calls none of JagCompleteWork, JagContinueWork,
JagDisallowCommit, or JagRollbackWork, the default behavior is that of
JagContinueWork.

See also JagCompleteWork, JagContinueWork, JagDisallowCommit, JagInTransaction,
JagIsRollbackOnly

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide

JagSendData
Description Send one row in a result set.

Syntax JagStatus JagSendData()

Return value

Check the server’s log file for more information when JagSendData fails.

Usage JagSendData sends a row of data to the client. Data for the columns in the row
is copied from the program variables bound with JagBindCol.

Return value To indicate

JAG_SUCCEED Success

JAG_FAIL Failure
API Reference 185

JagSendMsg
After you have sent all rows with JagSendData, you must call JagEndResults
to indicate the end of the result set.

See Chapter 25, “Sending Result Sets,” in the EAServer Programmer’s Guide
for more information on sending result sets.

See also JagBindCol, JagDescribeCol, JagEndResults

JagSendMsg
Description Send an error message to the calling client application from a C component.

Syntax #include <jagpublic.h>

JagStatus JagSendMsg(
JagSeverity severity,
SQLINTEGER errnum,
SQLPOINTER msgtext)

Parameters severity
Must be JAG_SEVERITY_ERROR.

errnum
An integer code for the error.

msgtext
A null-terminated string containing a description of the error.

Return value JAG_SUCCEED for successful execution.

If an error occurs, JagSendMsg writes error descriptions to the server log file
and returns JAG_FAIL.

Usage JagSendMsg sends an error message to the client application that invoked the
currently executing method. JagSendMsg provides a C facility similar to Java
exceptions.

Note
Do not call JagSendMsg in C++ components. Instead, throw a user-defined or
CORBA system exception.
186 EAServer

CHAPTER 5 C Routines Reference
JagSendMsg should be called only to describe errors that prevent successful
completion of a method call. JagSendMsg causes an exception to be thrown in
a Java or ActiveX client; in these clients, the exception may preempt the arrival
of INOUT parameter values. To return additional status information from a
successful call, use additional INOUT parameters.

JagSendMsg should be called only once per method execution, because clients
may not be able to process more than one message.

How clients process messages

Clients process the received message differently depending on the type of
client:

• JagSendMsg and Java Clients

For Java clients, a JagSendMsg call on the server causes the stub method
call to throw a Java exception on the client. Note that a component can call
JagSendMsg multiple times, however, a Java client receives an exception
for only the first call. The message is embedded in a client exception as
follows:

• If the active method’s definition has a raises clause that lists an
exception that contains a string, the client stub throws an instance of
that exception. The exception’s string field contains the message text.

• Otherwise, the client stub throws an instance of
org.omg.CORBA.UNKNOWN that contains the message text.

• JagSendMsg and ActiveX Clients

For ActiveX clients, a JagSendMsg call on the server causes an ActiveX
automation exception on the client.

See also JagLog

Appendix C, “Creating C Components,” in the EAServer Programmer’s Guide

JagSetInstanceData
Description Associate a reference to instance data with the current C component instance.

Syntax #include <jagpublic.h>

JagStatus JagSetInstanceData(CS_VOID *datap);
API Reference 187

JagSetSharedValue
Parameters datap
A pointer to instance data.

Return value JagSetInstanceData returns JAG_SUCCEED unless a serious error occurs, in
which case JAG_FAIL is returned.

Usage JagSetInstanceData and JagGetInstanceData allow you to associate data with a
particular instance of a C component. For example, you might save a counter
and use it to keep track of how many times a particular method has been called.

JagSetInstanceData saves a pointer to component instance data;
JagGetInstanceData retrieves the address of the saved data. For an introduction
to these routines, see Appendix C, “Creating C Components,” in the EAServer
Programmer’s Guide.

Note
To associate instance data with a C++ component, use class member variables.

See also JagGetInstanceData

Appendix C, “Creating C Components,” in the EAServer Programmer’s Guide

JagSetSharedValue
Description Set a shared variable value.

Syntax JagStatus JagSetSharedData (
JagSharedData * pData,
SQLPOINTER pValue,
SQLINTEGER len)

Parameters pData
The shared variable handle.

pValue
 A buffer containing the new value.

len
 The size (in bytes) of the value. If the value is a null-terminated string, you
must include the length of the null terminator in the length of the string.

Return value
Return value To indicate

JAG_SUCCEED Success
188 EAServer

CHAPTER 5 C Routines Reference
Check the server’s log file for more information when JagSetSharedData fails.

Usage The JagSetSharedValue method copies a value to a specified shared variable.
You must have retrieved the shared variable reference before executing this
method. You must pass a pointer to the value you want to copy to the shared
variable. You must specify the size of the value.

There are two possible strategies for using shared data values:

• Pass a pointer to the value so that JagSetSharedValue copies the new
value.

This approach is easier to implement, however it should not be used for
sharing large data values. Repeated copying of large values can adversely
affect performance.

• Pass the address of a pointer to the value, so that JagSetSharedValue
copies only the address of memory that contains the value.

Use this approach for data structures that contain pointers or for large
values. When you use this approach, you must allocate and free the
memory used to store shared values yourself. Memory must be allocated
with malloc or its equivalent; do not use local variables.

When using this approach, your component must always lock the property
during the time that the property data is in use to ensure that the data is not
overwritten or freed while it is in use. Locking can be achieved one of two
ways:

• Lock the collection – Create the collection with the pLockLevel option
set to JAG_LOCKCOLLECTION when calling JagNewCollection.
Call JagLockCollection or JagLockNoWaitCollection to lock the
collection.

• Use system calls for locking – Use system calls to create a semaphore
or mutex that is stored with the data. You can use the semaphore or
mutex to prevent concurrent access.

The first approach is preferable because it is simpler to implement and
portable to different platforms.

JAG_FAIL Failure

Return value To indicate
API Reference 189

JagSetSharedValue
Note
JagSetSharedValue does not follow pointers in structures when copying
data. If the shared variable is a structure that contains pointers, then only
the addresses are copied, not the memory contents at those addresses.

Example storing data values directly

The code below calls JagSetSharedValue to save “tombstone” as a shared data
value. The len parameter is passed as 1 byte more than the string length to
ensure that the null-terminator is copied:

SQLCHAR buf[20];
JagSharedData *pData

strcpy(buf, "tombstone");
retcode = JagSetSharedValue(pData, buf, strlen(buf) +
1);

Example storing pointers to shared data

The code below allocates a SQLCHAR pointer, then calls JagSetSharedValue
to save the pointer as shared data.

SQLCHAR *ptrToData;
JagSharedData *pData

ptrToData = (SQLCHAR *)malloc(20);
strcpy(ptrToData, "tombstone");

/*
** Pass the address of the pointer to save the pointer;
** the length of the shared data is the size of the
** pointer
*/

retcode = JagSetSharedValue(pData,
&ptrToData,

sizeof(ptrToData));

Here is code to retrieve the value that was set in the example above:

SQLCHAR *ptrToData;
JagSharedData *pData
SQLINTEGER outlen;

retcode = JagGetSharedValue(pData, &ptrToData,
sizeof(ptrToData),

&outlen);
190 EAServer

CHAPTER 5 C Routines Reference
See also JagGetSharedData, JagGetSharedDataByIndex, JagGetSharedValue,
JagNewSharedData, JagNewSharedDataByIndex

Appendix C, “Creating C Components,” in the EAServer Programmer’s Guide

JagSleep
Description Suspend execution of the thread in which your component is running.

Syntax void JAG_PUBLIC JagSleep (
JagLong seconds)

Parameters seconds
The number of seconds to sleep.

Usage JagSleep suspends execution of the thread in which the current component
instance is running. JagSleep is useful in service components that perform
background processing in the run method. run typically loops forever, and
calling JagSleep prevents your component from dominating the server’s CPU
execution time.

JagSleep can only be called by a component that is executing within EAServer.
This routine is not available to clients.

 Warning! In EAServer components, never call the sleep system routine or any
other routine that suspends execution of the current process. Doing so suspends
execution of the server. JagSleep suspends only the current thread, allowing
components running in other threads to continue execution.

JagUnlockCollection
Description Unlock a collection.

Syntax JagStatus JagUnlockCollection (
JagDataCollection * pCollection)

Parameters pCollection
The handle of the collection to unlock.
API Reference 191

JagUnlockCollection
Return value

Check the server’s log file for more information when JagUnlockCollection
fails.

Usage The JagUnlockCollection method releases a lock on a collection. A locked
collection is automatically released when the object’s method execution is
completed. However, to make your application more efficient and prevent
deadlocks, unlock a collection when you are finished updating or reading the
shared variable in the collection so that other objects can access the collection
right away.

See Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide for more information.

See also JagLockCollection, JagLockNoWaitCollection

Return value To indicate

JAG_SUCCEED Success, even if the calling method has not locked the
collection

JAG_FAIL Failure
192 EAServer

A P P E N D I X A Deprecated Java Classes and
Interfaces

This appendix documents obsolete EAServer Java classes and interfaces,
which are based on an obsolete version (version 0.4) of the Enterprise Java
Beans specification.

Rather than using these models for developing Java components, use the
following:

• The latest EJB version, for portability to other J2EE based application
servers.

• The CORBA component model, for compatibility with CORBA
based application servers. If using CORBA, you can achieve lifecycle
semantics similar to the EJB model by configuring the component to
use the control interface CtsComponents::ObjectControl. For
documentation of this interface, see the following file in your
EAServer installation directory:

html/ir/CtsComponents__ObjectControl.html

Package Index

com.sybase.jaguar.beans.enterprise
Classes and interfaces used to implement Java components and to create
stubs for remote communication. These classes are based on an early draft
of the Enterprise JavaBeans specification. Future releases of the Java
Developer’s Kit will likely provide built-in classes with the same
functionality:
API Reference 193

jaguar.beans.enterprise.EnterpriseBeanException class
• jaguar.beans.enterprise.EnterpriseBeanException class – Exception that
can be thrown by components that implement the ServerBean interface..

• jaguar.beans.enterprise.InstanceContext interface – An InstanceContext
object allows a Java component to influence the outcome of the
transaction in which it is participating.

• jaguar.beans.enterprise.ServerBean interface – Interface for EAServer
Java components, with methods that support transactional behavior and
reuse of component instances.

• jaguar.beans.enterprise.SharedObjectException class – Class representing
exceptions that are thrown by SharedObjects interface methods.

• jaguar.beans.enterprise.SharedObjects interface – Interface to support
sharing data between instances of the same component.

jaguar.beans.enterprise.EnterpriseBeanException
class
Description package com.sybase.jaguar.beans.enterprise;

public class JCM extends Exception

Exception that can be thrown by components that implement the ServerBean
interface.

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also ServerBean

jaguar.beans.enterprise.InstanceContext interface
Description package com.sybase.jaguar.beans.enterprise;

public interface InstanceContext extends Object
194 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
An InstanceContext object allows a Java component to influence the outcome
of the transaction in which it is participating. A component method’s calls to
the InstanceContext state primitives also determine the component’s state after
the method completes. See “ServerBean lifecycle” on page 200 for more
information.

Constructors None. A component that implements the ServerBean interface receives an
InstanceContext object as a parameter to the method activate(InstanceContext,
String). A component that does not implement the ServerBean interface can call
Jaguar.getInstanceContext() to obtain an InstanceContext object.

Methods • completeWork() – For transactional components, indicate that the
transaction in which a component is participating should be committed.
For any component, indicate that the instance should be deactivated.

• continueWork() – Indicate that the current component instance cannot be
deactivated automatically when control returns from the current
component method invocation.

• getSharedObjects() – Get a SharedObjects object that allows access to data
shared among instances of a component.

• inTransaction() – Determine whether the current component instance is
executing in the context of a transaction.

• isRollbackOnly() – Determine if the current transaction is doomed.

• rollbackWork() – For transactional components, indicate that the
transaction in which a component is participating should be aborted and
rolled back. For any component, indicate that the instance should be
deactivated.

Usage See Chapter 2, “Understanding Transactions and Component Lifecycles,” in
the EAServer Programmer’s Guide for a description of how components
participate in transactions.

See also jaguar.beans.enterprise.ServerBean interface,
jaguar.beans.enterprise.SharedObjects interface

InstanceContext.completeWork()
Description For transactional components, indicate that the transaction in which a

component is participating should be committed. For any component, indicate
that the instance should be deactivated.
API Reference 195

jaguar.beans.enterprise.InstanceContext interface
Syntax

public abstract void completeWork();

Usage For a transactional component, completeWork() indicates that the component’s
contribution to the current transaction has been successfully completed. For
any component, completeWork() indicates that the component instance should
be deactivated when control returns from the current component method
invocation.

If the component is transactional and the component instance is the initiator of
the transaction (that is, it was instantiated directly by a base client), then
EAServer attempts to commit the transaction. The transaction commits unless
the commit is vetoed. Depending on the components that are participating, a
veto can happen in any of the following ways:

• A participating Java component throws an exception from its
ServerBean.deactivate() method.

• A participating C component has called JagDisallowCommit.

• A participating ActiveX component has called
IObjectContext.disableCommit().

If the component instance is not the initiator of the transaction, the transaction
may be rolled back when another participating instance calls rollbackWork() in
addition to any of the cases listed above.

You can call completeWork(), continueWork(), and rollbackWork() many times in
one method. Only the last call to execute takes effect. If you call none of these,
the default behavior is that specified by continueWork().

See also continueWork(), rollbackWork(), isRollbackOnly(), inTransaction()

InstanceContext.continueWork()
Description Indicate that the current component instance cannot be deactivated

automatically when control returns from the current component method
invocation.

Syntax

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext
196 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
public abstract void continueWork();

Usage Calling continueWork() indicates that the component instance should not be
deactivated when the method returns. The component instance is not
deactivated until one of the following happens:

• The transaction times out or the client’s instance reference expires. In
either case, the current transaction is rolled back.

• The transaction’s root component calls completeWork() or rollbackWork().
If your component implements the ServerBean interface, it can veto the
transaction by throwing an exception in the deactivate() method.

• The component instance calls completeWork() or rollbackWork() during a
subsequent method invocation.

You can call completeWork(), continueWork(), and rollbackWork() many times in
one method. Only the last call to execute takes effect. If you call none of these,
the default behavior is that specified by continueWork().

See also completeWork(), rollbackWork(), isRollbackOnly(), inTransaction()

InstanceContext.getSharedObjects()
Description Get a SharedObjects object that allows access to data shared among instances

of a component.

Syntax

public abstract SharedObjects getSharedObjects();

See also jaguar.beans.enterprise.SharedObjects interface

InstanceContext.inTransaction()
Description Determine whether the current component instance is executing in the context

of a transaction.

Syntax

public abstract boolean inTransaction();

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext
API Reference 197

jaguar.beans.enterprise.InstanceContext interface
Return value true if the current component instance is executing as part of a transaction;
false otherwise.

Usage Java component methods can call inTransaction() to determine whether they are
executing within a transaction. Methods in components that are declared to be
transactional always execute as part of a transaction. See Chapter 2,
“Understanding Transactions and Component Lifecycles,” in the EAServer
Programmer’s Guide for more information.

See also completeWork(), continueWork(), isRollbackOnly(), rollbackWork()

InstanceContext.isRollbackOnly()
Description Determine if the current transaction is doomed.

Syntax

public abstract boolean isRollbackOnly();

Return value true if the current transaction is doomed; false if the transaction is in a
committable state or if the current component instance is not executing as part
of a transaction.

Usage Call isRollbackOnly() to determine whether the current transaction is still viable.

If a component participates in a multi-component transaction, you should call
isRollbackOnly() in the following places:

• After issuing intercomponent calls

• At the start of methods that can be executed by intercomponent calls.

If the transaction is no longer viable, there is no point in continuing execution.
The method should clean up and call rollbackWork() to deactivate the
component instance.

See also completeWork(), continueWork(), inTransaction(), rollbackWork()

InstanceContext.rollbackWork()
Description For transactional components, indicate that the transaction in which a

component is participating should be aborted and rolled back. For any
component, indicate that the instance should be deactivated.

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext
198 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
Syntax

public abstract void rollbackWork();

Usage For a transactional component, rollbackWork() indicates that the component
cannot complete its contribution to the current transaction. After the method
returns, the transaction is doomed: the transaction flow continues until all
participating components are deactivated. At that point, the transaction is
rolled back.

In any component, rollbackWork() indicates that the component instance should
be deactivated when control returns from the current component method
invocation.

You can call rollbackWork(), continueWork(), and completeWork() many times in
one method; only the last call to execute takes effect. If you call none of these,
the default behavior is that specified by continueWork().

Transactional components that make intercomponent method calls can call
isRollbackOnly() to determine whether the current transaction is still viable or
has been set to rollback only.

See also completeWork(), continueWork(), inTransaction(), isRollbackOnly()

jaguar.beans.enterprise.ServerBean interface
Description package com.sybase.jaguar.beans.enterprise;

public interface ServerBean

Interface for EAServer Java components, with methods that support
transactional behavior and reuse of component instances.

Constructors None required. If a component’s implementation class provides a default
constructor, the EAServer runtime server calls the default constructor when
creating a new component instance.

Methods • activate(InstanceContext, String) – Indicates that this component instance
has been activated.

• canReuse() – Specify whether this component instance is eligible for
reuse.

• deactivate() – Indicates that this component instance has been deactivated.

Package com.sybase.jaguar.beans.enterprise

Interface InstanceContext
API Reference 199

jaguar.beans.enterprise.ServerBean interface
• destroy() – Indicates that this component instance is being released and
will not be activated again.

Usage A component that implements ServerBean can participate in instance pooling.
The server can maintain a cache of idle component instances and bind them to
individual clients only as needed. This strategy allows the server to service
more clients without the performance drain caused by allocating a component
instance for each request.

The activate(InstanceContext, String) method indicates that an instance is being
removed from the pool to service a client. The deactivate() method indicates
that the instance is finished servicing the client. Instance reuse is optional (see
“Support for instance pooling” on page 202). However, components that
support it will achieve greater scalability.

The ServerBean lifecycle is tightly coupled with the EAServer transaction
model. See Chapter 2, “Understanding Transactions and Component
Lifecycles,” in the EAServer Programmer’s Guide for a description of how
components participate in transactions.

ServerBean lifecycle

Figure A-1 illustrates the states and state transitions in the lifecycle of a Java
component that implements ServerBean.
200 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
Figure A-1: States in the ServerBean lifecycle

The state transitions are as follows:

• New instance – The EAServer runtime allocates a new instance of the
component class. The default constructor is called if one exists. The
instance remains idle until the first method invocation.

• Activation – Activation prepares a component instance for use by a client.
activate(InstanceContext, String) is called. Once an instance is activated, it
is bound to one client and can service no other client until it has been
deactivated.

• In Method – In response to a method invocation request from the client,
the EAServer runtime calls the corresponding class method in the
component. The next state depends on the method’s execution, as follows:

• If the method throws an uncaught exception, the instance is
deactivated. If the method is participating in a transaction, the
transaction is rolled back.

• If the method has called InstanceContext.rollbackWork() or
InstanceContext.completeWork(), the instance is deactivated.
API Reference 201

jaguar.beans.enterprise.ServerBean interface
• If the method has called InstanceContext.continueWork(), the instance
is not deactivated. The client’s next method invocation is serviced by
the same instance unless the client destroys its reference or
disconnects.

• Deactivation – Deactivation occurs when:

• The instance has called either InstanceContext.rollbackWork() or
InstanceContext.completeWork()

• The current transaction times out, or

• The client’s instance reference has expired.

The EAServer runtime calls the component’s deactivate() method to
indicate deactivation.

You can define your component so that instances are recycled after
deactivation, as described in “Support for instance pooling” on page 202.

• Destruction – The EAServer runtime calls destroy() to indicate that
references to the class instance are being released. The instance is
deallocated at a later time by the Java garbage collector thread.

Support for instance pooling

Instance pooling allows a single component instance to be activated and
deactivated many times to serve different clients. Instance pooling can increase
the performance of your application, since it eliminates unnecessary instance
allocations. There are two ways to support pooling:

• In EAServer Manager, you can configure your component so instances are
always pooled by selecting the Pooling option on the Instances tab in the
Component Properties window.

• Alternatively, you can implement the ServerBean.canReuse() method to
specify at runtime whether an instance can be pooled. If canReuse()
returns true, the instance is pooled. Otherwise, the instance is destroyed.

If the component’s Pooling option is enabled in EAServer Manager, EAServer
never calls the canReuse() method since instances are always pooled.

If your component supports pooling, you must add code to the
activate(InstanceContext, String) method that resets any class variables to their
initial values. When activate returns, the component state must be the same as
if the component were freshly constructed. If the component keeps references
to stateful objects across activation cycles, you must reset these objects to an
initial state as well.

See also InstanceContext
202 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
ServerBean.activate(InstanceContext, String)
Description Indicate that this component instance has been activated.

Syntax

public abstract void activate
(InstanceContext ctx, String instanceKey)
throws EnterpriseBeanException;

Parameters ctx
An InstanceContext that is associated with the current component instance.
activate should save a reference to the instance context for use in later
method calls. This reference becomes invalid and must be discarded when
deactivate() is called.

instanceKey
Not used.

Usage activate and deactivate allow a component’s instances to be pooled. If a
component supports instance pooling, activate must reset any class variables to
the initial values, as if the component instance were being freshly constructed.
To prohibit instance pooling, code the canReuse() method to return false.

See “ServerBean lifecycle” on page 200 for more information on when activate
and deactivate are called.

If a component is declared to be transactional and its activate method throws an
exception, the EAServer runtime server rolls back the transaction in which the
component is about to participate.

See also deactivate(), canReuse()

ServerBean.canReuse()
Description Specify whether this component instance is eligible for reuse.

Syntax

public abstract boolean canReuse()

Return value true or false to indicate whether the component instance is eligible to be
recycled.

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean
API Reference 203

jaguar.beans.enterprise.ServerBean interface
Usage If the Pooling option is not set for your component in EAServer Manager,
EAServer calls the component’s canReuse method after deactivating each
instance to determine whether the instance can be reused. If canReuse returns
false, EAServer destroys the instance. If the Pooling option is set, EAServer
never calls the canReuse method. For more information on component
properties, see the EAServer Manager online help.

Components that support instance pooling must be coded such that a recycled
instance behaves the same as a newly allocated instance. Your implementation
of the activate(InstanceContext, String) method must ensure that the instance
state is reset to that of a newly allocated instance.

See also activate(InstanceContext, String), deactivate(), destroy()

ServerBean.deactivate()
Description Indicates that this component instance has been deactivated.

Syntax

public abstract void deactivate()
throws EnterpriseBeanException;

Usage The EAServer runtime calls deactivate() to indicate that the component
instance is being deactivated. See “ServerBean lifecycle” on page 200 for
more information on when activate and deactivate are called.

If your component caches data changes, you can code the deactivate() method
to send cached changes to the remote database server. deactivate() can call
InstanceContext.isRollbackOnly() to determine whether the current transaction
is being committed or rolled back. If the transaction is being committed,
deactivate() must send any cached database changes to the remote server(s).

If deactivate() throws an exception, the current transaction (if any) is rolled
back; the caller of the component method that attempted to commit the
transaction receives the exception as a JException with the message text
included.

If your component is transactional and it maintains state (it calls
InstanceContext.continueWork() from one or more methods), then deactivate()
must verify that the current component state is ready for commit and throw an
exception if it is not.

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean
204 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
Note
deactivate should release references to the InstanceContext object that was
received in the activate(InstanceContext, String) method. The InstanceContext
is meaningless after deactivate has been called.

See also activate(InstanceContext, String), canReuse(), destroy()

ServerBean.destroy()
Description Indicates that this component instance is being released and will not be

activated again.

Syntax

public abstract void destroy();

Usage destroy should release any resources that were allocated by the component’s
constructor.

See also activate(InstanceContext, String), deactivate(), canReuse()

jaguar.beans.enterprise.SharedObjectException class
Description package com.sybase.jaguar.beans.enterprise;

public class SharedObjectException
extends Exception

Class representing exceptions that occur during SharedObjects processing.

Constructors Same as java.lang.Exception.

Methods Same as java.lang.Exception.

See also SharedObjects

Package com.sybase.jaguar.beans.enterprise

Interface ServerBean
API Reference 205

jaguar.beans.enterprise.SharedObjects interface
jaguar.beans.enterprise.SharedObjects interface
Description package com.sybase.jaguar.beans.enterprise;

public interface SharedObjects

Interface to support sharing data between instances of the same component.

Constructors None. See InstanceContext.getSharedObjects(),
ServerBean.activate(InstanceContext, String).

Methods • get(int) – Retrieve the value of a property.

• lock(int) – Place an advisory lock on a property.

• lockNoWait(int) – Place an advisory lock on a property. If the property is
currently locked, do not wait for the current lock to be released and
execution immediately returns to the calling method.

• set(int, Object) – Set the value of a property.

• unlock(int) - Unlock a property locked by the same instance executing the
unlock method.

See also jaguar.beans.enterprise.InstanceContext interface

SharedObjects.get(int)
Description Retrieve the value of a property.

Syntax

public abstract Object get
(int index)
throws SharedObjectException;

Parameters index
An arbitrary integer that identifies the property from which you want to
retrieve the value.

Usage To retrieve a property value, retrieve an object reference to the property using
the get method and then assign the object reference to a variable with the
desired datatype. If the property has not been initialized, the property and
variable are initialized to null.

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects
206 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
Executing a single get method on a property is atomic. Atomic means that an
operation on data will complete before any other operations can access that
data.

See also set(int, Object), lock(int), lockNoWait(int), unlock(int)

SharedObjects.lock(int)
Description Place an advisory lock on a property.

Syntax

public abstract void lock
(int index)
throws SharedObjectException;

Parameters index
An integer that identifies the property you want to lock.

Usage Use the lock method in combination with the lockNoWait and unlock methods to
synchronize multiple updates to and reads from the same property value. The
lock method places an advisory lock on a property. An advisory lock prevents
another instance from locking the property but does not prevent another
instance from using the get and set methods to retrieve and update the property
value. If the property is currently locked, the lock method waits for the current
lock to be released.

You must lock a property before using the get or set method to retrieve or
update the property value. When you lock a property that has not been set, the
property is created and its value is initialized to null. You can lock the same
property more than once as long as all locks are executed from the same
component instance. However, these multiple locks are not iterative and you
only have to unlock the property once.

See also lockNoWait(int), unlock(int), get(int), set(int, Object)

SharedObjects.lockNoWait(int)
Description Place an advisory lock on a property. If the property is currently locked, do not

wait for the current lock to be released and execution immediately returns to
the calling method.

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects
API Reference 207

jaguar.beans.enterprise.SharedObjects interface
Syntax

public abstract void lockNoWait
(int index)
throws SharedObjectException;

Parameters index
An integer that identifies the property you want to lock.

Usage Use the lockNoWait method in combination with the lock and unlock methods to
synchronize multiple updates to and reads from the same property value. The
lockNoWait method places an advisory lock on a property. An advisory lock
prevents another instance from locking the property but does not prevent
another instance from using the get and set methods to retrieve and update the
property value. If the property is currently locked, the lockNoWait method does
not wait for the current lock to be released and execution immediately returns
to the calling method.

You must lock a property before using the get or set method to retrieve or
update the property value. When you lock a property that has not been set, the
property is created and its value is initialized to null. You can lock the same
property more than once as long as all locks are executed from the same
component instance. However, these multiple locks are not iterative and you
only have to unlock the property once.

See also lock(int), unlock(int), get(int), set(int, Object)

SharedObjects.set(int, Object)
Description Set the value of a property.

Syntax

public abstract Object set
(int index)
Object obj)

throws SharedObjectException;

Parameters index
An integer that identifies the property for which you want to set a value.

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects
208 EAServer

APPENDIX A Deprecated Java Classes and Interfaces
obj
An object containing the new property value.

Usage To set a property value, assign a value an object and pass that object as the obj
parameter in the set method.

Executing a single set method on a property is atomic. That is, the call will
complete before any other operations can access the property being set.

See also get(int), lock(int), lockNoWait(int), unlock(int)

SharedObjects.unlock(int)
Description Unlock a property locked by the same instance executing the unlock method.

Syntax

public abstract void unlock
(int index)
throws SharedObjectException

Parameters index
An integer that identifies the property to be locked.

Usage Use the unlock method in combination with the lock and lockNoWait methods to
synchronize multiple updates to and reads from the same property value. The
unlock method releases an advisory lock on a property that has been locked by
the instance executing the unlock method. An advisory lock prevents another
instance from locking the property but does not prevent another instance from
using the get and set methods to retrieve and update the property value.

You can unlock a property that has not been set. Even if a property has been
locked more than once, you only have to unlock the property once.

See also lock(int), lockNoWait(int), get(int), set(int, Object)

Package com.sybase.jaguar.beans.enterprise

Interface SharedObjects
API Reference 209

jaguar.beans.enterprise.SharedObjects interface
210 EAServer

Index
B
BigDecimalHolder

Java class 47, 48
BooleanHolder

Java class 45
byNameAllowed

method in Java class
com.sybase.jaguar.jcm.JCMCache 15

byNameAllowed method in Java class
com.sybase.jaguar.jcm.JCM 12

ByteHolder
Java class 45

BytesHolder
Java class 45

C
character sets

specifying for C++ clients 119
CharHolder

Java class 45
com.sybase.jaguar.jcm.JCM Java class

JCM.getCache method 12
JCM.getCacheByName method 13

com.sybase.jaguar.jcm.JCMJava class
overview of 11

com.sybase.jaguar.jcm.JCMCache Java class
 16
overview of 14
byNameAllowed method 15
dropConnection method 16
getConnection method 17, 18
getName method 20
getPassword method 20
getPoolSizeMax method 18
getPoolSizeMin method 18
getRemoteServerName method 21
getUserNamemethod 21
API Reference
JCM_FORCE field 14
JCM_NOWAIT field 14
JCM_WAIT field 14
releaseConnection method 21

com.sybase.jaguar.jcm.JCMJava class
JCM.getCacheByName method 12

com.sybase.jaguar.jcm.JConnectionNotFound
Java class 22

com.sybase.jaguar.server.Jaguar Java class
overview 23
getHostName method 24
getPeerAddress method 25
getServerName method 24, 25
inJaguar method 26
writeLog method 26

com.sybase.jaguar.server.JContext Java class
overview 27
createServerResultSet method 28
forwardResultSet method 28

com.sybase.jaguar.server.JContext java class
createServerResultSetMetaData method 28

com.sybase.jaguar.sql.JServerResultSet Java interface
overview 30
 34
done method 31
findColumn method 31
getMetaData method 32
next method 32
setASCIIStream method 35
setBigDecima method 33
setBinaryStream method 35
setBoolean method 35
setByte method 35
setCurrency method 34
setDouble method 35
setFloat method 35
setInt method 35
setShort method 35
setString method 35
setTimestamp method 36
211

Index
com.sybase.jaguar.sql.JServerResultSetMetaData Java
interface

overview 36
setColumnCount method 38
setColumnNamemethod 39
setColumnType method 40
setCurrency method 41
setNullable method 42
setPrecision method 43
setScale method 43

com.sybase.jaguar.sql.JServerResultSetMetaDataJava
interface

setColumnLabel method 39
com.sybase.jaguar.util.BigDecimalHolder Java class 47,

48
com.sybase.jaguar.util.BooleanHolderJava class 45
com.sybase.jaguar.util.ByteHolder

Java class 45
com.sybase.jaguar.util.BytesHolder

Java class 45
com.sybase.jaguar.util.CharHolder Java class 45
com.sybase.jaguar.util.DateHolder Java class 47, 48
com.sybase.jaguar.util.DoubleHolder Java class 45
com.sybase.jaguar.util.FloatHolder Java class 45
com.sybase.jaguar.util.IntegerHolder Java class 45
com.sybase.jaguar.util.JException Java class

overview 44
com.sybase.jaguar.util.LongHolder Java class 45
com.sybase.jaguar.util.ShortHolder Java class 45
com.sybase.jaguar.util.StringHolder Java class 45
com.sybase.jaguar.util.TimeHolder Java class 47, 48
com.sybase.jaguar.util.TimestampHolder Java class 47,

48
connection caches

C routines for 132
Java class for 14

connection management
C routines for 132
Java classes for 11, 14

conventions ix
createServerResultSet

method in com.sybase.jaguar.server.JContext Java class
28

createServerResultSetMetaData
method in com.sybase.jaguar.server.JContext Java class

28
212
D
DateHolder

Java class 47, 48
done

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 31

DoubleHolder
Java class 45

dropConnection
method in Java class

com.sybase.jaguar.jcm.JCMCache 16

F
findColumn

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 31

FloatHolder
Java class 45

forwardResultSet
method in com.sybase.jaguar.server.JContext Java

class 28

G
getCache method in Java class

com.sybase.jaguar.jcm.JCM 12
getCacheByName method in Java class

com.sybase.jaguar.jcm.JCM 13
getConlibName

method in Java class
com.sybase.jaguar.jcm.JCMCache 16

getConnection
method in Java class

com.sybase.jaguar.jcm.JCMCache 17, 18
getHostName

method in Java class
com.sybase.jaguar.server.Jaguar 24

getMetaData
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 32
getPassword

method in Java class
com.sybase.jaguar.jcm.JCMCache 20
EAServer

Index
getPeerAddress
method in Java class

com.sybase.jaguar.server.Jaguar 25
getPoolSizeMax

method in Java class
com.sybase.jaguar.jcm.JCMCache 18

getPoolSizeMin
method in Java class

com.sybase.jaguar.jcm.JCMCache 18
getRemoteServerName

method in Java class
com.sybase.jaguar.jcm.JCMCache 21

getServerName
method in Java class

com.sybase.jaguar.server.Jaguar 24, 25
getUserName

method in Java class
com.sybase.jaguar.jcm.JCMCache 21

I
inJaguar

method in Java class
com.sybase.jaguar.server.Jaguar 26

IntegerHolder
Java class 45

J
JAG_CODESET environment variable 119
JAG_HTTP environment variable 120
JAG_LOGFILE environment variable 120
JAG_RETRYCOUNT environment variable 121
JAG_RETRYDELAY environment variable 121
JagCmCacheProps

CM-Library routine 138
JagCmGetCachebyName

CM-Library routine 142
JagCmGetCachebyUser

CM-Library routine 143
JagCmGetConnection

CM-Library routine 145
JagCmGetCtx

CM-Library routine 149
API Reference
JagCmReleaseConnection
CM-Library routine 153

Jaguar
Java class 23

Java
classes and interfaces, index of 1, 193
EAServer packages 1, 193

JCM
Java connection management class 11

JCM_FORCE
field in Java class com.sybase.jaguar.jcm.JCMCache

14
JCM_NOWAIT

field in Java class com.sybase.jaguar.jcm.JCMCache
14

JCM_WAIT
field in Java class com.sybase.jaguar.jcm.JCMCache

14
JCMCache

Java connection cache class 14
JConnectionNotFoundException

Java class 22
JContext

Java class 27
JException

Java class 44
JServerResultSet

Java interface 30
JServerResultSetMetaData

Java interface 36

L
LongHolder

Java class 45

N
next

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 32

NO_PERMISSION CORBA system exception 123
213

Index
O
ORBCodeSet

C++ ORB property name 119
ORBHttp

C++ ORB property name 120
ORBLogFile

C++ ORB property name 120
ORBProxyHost

C++ ORB property name 120
ORBProxyPort

C++ ORB property name 120
ORBRetryCount

C++ ORB property name 121
ORBRetryDelay

C++ ORB property name 121

R
releaseConnection

method in Java class com.sybase.jaguar.jcm.JCMCache
21

S
setASCIIStream

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 35

setBigDecimal
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 33
setBinaryStream

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 35

setBoolean
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 35
setByte

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 35

setColumnCount
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaData
38

setColumnLabel
214
method in Java interface 39
setColumnName

method in Java interface
com.sybase.jaguar.sql.JServerResultSetMetaDat
a 39

setColumnType
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 40

setCurrency
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 34
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 41

setDouble
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 35
setFloat

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 35

setInt
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 35
setNull

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 34

setNullable
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 42

setPrecision
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 43

setScale
method in Java interface

com.sybase.jaguar.sql.JServerResultSetMetaDat
a 43

setShort
method in Java interface

com.sybase.jaguar.sql.JServerResultSet 35
setString

method in Java interface
com.sybase.jaguar.sql.JServerResultSet 35

setTimestamp
EAServer

Index
method in Java interface
com.sybase.jaguar.sql.JServerResultSet 36

ShortHolder
Java class 45

socketReuseLimit
C++ ORB property name 121

StringHolder
Java class 45

T
TimeHolder

Java class 47, 48
TimestampHolder

Java class 47, 48
typographical conventions ix

W
writeLog

method in Java class
com.sybase.jaguar.server.Jaguar 26
API Reference
 215

Index
216
 EAServer

	About This Book
	CHAPTER 1 Java Classes and Interfaces
	Package index
	com.sybase.CORBA.jdbc102
	com.sybase.CORBA.jdbc11
	com.sybase.jaguar.jcm
	com.sybase.jaguar.server
	com.sybase.jaguar.sql
	com.sybase.jaguar.util
	com.sybase.jaguar.util.jdbc102
	com.sybase.jaguar.util.jdbc11

	com.sybase.CORBA.jdbc11.IDL class
	IDL.getDate(java.sql.Date)
	IDL.getDecimal(java.math.BigDecimal)
	IDL.getMoney(java.math.BigDecimal)
	IDL.getResultSet(java.sql.ResultSet)
	IDL.getTime(java.sql.Time)
	IDL.getTimestamp(java.sql.Timestamp)

	com.sybase.CORBA.jdbc11.IdlResultSet
	com.sybase.CORBA.jdbc11.SQL class
	SQL.getBigDecimal(BCD.Decimal)
	SQL.getBigDecimal(BCD.Money)
	SQL.getDate(MJD.Date)
	SQL.getResultSet(TabularResults.ResultSet)
	SQL.getTime(MJD.Time)
	SQL.getTimestamp(MJD.Timestamp)

	jaguar.jcm.JCM class
	JCM.byNameAllowed(String)
	JCM.getCache(String, String, String)
	JCM.getCacheByName(String)

	jaguar.jcm.JCMCache class
	JCMCache.byNameAllowed()
	JCMCache.dropConnection(Connection)
	JCMCache.getConlibName()
	JCMCache.getConnection(int)
	JCMCache.getPoolSizeMax()
	JCMCache.getPoolSizeMin()
	JCMCache.getProxyConnection(int, String)
	JCMCache.getName()
	JCMCache.getPassword()
	JCMCache.getRemoteServerName()
	JCMCache.getUserName()
	JCMCache.releaseConnection(Connection)

	jaguar.jcm.JConnectionNotFoundException class
	jaguar.server.Jaguar class
	Jaguar.getInstanceContext()
	Jaguar.getHostName()
	Jaguar.getPassword()
	Jaguar.getPeerAddress()
	Jaguar.getServerName()
	Jaguar.getUserName()
	Jaguar.inJaguar()
	Jaguar.writeLog(boolean, String)

	jaguar.server.JContext class
	JContext.createServerResultSetMetaData()
	JContext.createServerResultSet(JServerResultSetMetaData)
	JContext.forwardResultSet(ResultSet)
	JContext.getComponentName()
	JContext.getPackageName()

	jaguar.sql.JServerResultSet interface
	JServerResultSet.done()
	JServerResultSet.findColumn(String)
	JServerResultSet.getMetaData()
	JServerResultSet.next()
	JServerResultSet.setBigDecimal(int, BigDecimal, int)
	JServerResultSet.setCurrency(int, long)
	JServerResultSet.setNull(int)
	JServerResultSet.set<Object>(int, <Object>)

	jaguar.sql.JServerResultSetMetaData interface
	JServerResultSetMetaData.setColumnCount(int)
	JServerResultSetMetaData.setColumnDisplaySize(int, int)
	JServerResultSetMetaData.setColumnLabel(int, String)
	JServerResultSetMetaData.setColumnName(int, String)
	JServerResultSetMetaData.setColumnType(int, int)
	JServerResultSetMetaData.setCurrency(int, boolean)
	JServerResultSetMetaData.setNullable(int, int)
	JServerResultSetMetaData.setPrecision(int, int)
	JServerResultSetMetaData.setScale(int, int)

	jaguar.util.JException class
	jaguar.util.<object>Holder class
	jaguar.util.jdbc102.<object>Holder class
	jaguar.util.jdbc11.<object>Holder class

	CHAPTER 2 ActiveX C++ Interface Reference
	Header files and link libraries
	List of interfaces
	GetObjectContext routine
	IJagServer interface
	IJagServer::WriteLog

	IJagServerResults interface
	IJagServerResults::BeginResults
	IJagServerResults::BindCol
	IJagServerResults::ColAttributes
	IJagServerResults::DescribeCol
	IJagServerResults::EndResults
	IJagServerResults::ResultsPassthrough
	IJagServerResults::SendData

	IObjectContext interface
	IObjectContext::DisableCommit
	IObjectContext::EnableCommit
	IObjectContext::IsInTransaction
	IObjectContext::IsSecurityEnabled
	IObjectContext::SetAbort
	IObjectContext::SetComplete

	IObjectControl interface
	IObjectControl::Activate
	IObjectControl::CanBePooled
	IObjectControl::Deactivate

	ISharedProperty interface
	ISharedProperty::get_Value
	ISharedProperty::put_Value

	ISharedPropertyGroup interface
	ISharedPropertyGroup::CreateProperty
	ISharedPropertyGroup::CreatePropertyByPosition
	ISharedPropertyGroup::get_Property
	ISharedPropertyGroup::get_PropertyByPosition

	ISharedPropertyGroupManager interface
	ISharedPropertyGroupManager::CreatePropertyGroup
	ISharedPropertyGroupManager::get_Group

	CHAPTER 3 ActiveX IDispatch Interface Reference
	How to use these reference pages
	IDispatch interface index
	IJagServer interface
	IJagServer.WriteLog

	IJagServerResults interface
	IJagServerResults.BeginResults
	IJagServerResults.BindCol
	IJagServerResults.BindColumn
	IJagServer.ColAttributes
	IJagServerResults.DescribeCol
	IJagServer.EndResults
	IJagServer.ResultsPassthru
	IJagServer.ResultSetsPassthrough
	IJagServerResults.SendData

	SharedProperty interface
	SharedPropertyGroup interface
	SharedPropertyGroup.CreateProperty
	SharedPropertyGroup.CreatePropertyByPosition
	SharedPropertyGroup.Property
	SharedPropertyGroup.PropertyByPosition

	SharedPropertyGroupManager interface
	SharedPropertyGroupManager.CreatePropertyGroup
	SharedPropertyGroupManager.Group

	CHAPTER 4 ActiveX Client Interfaces
	How to use these reference pages
	Interface index
	Field interface
	Fields collection
	Fields.Item

	JagORBClientErrNum enumeration
	JagORBSrvErrNum enumeration
	JCollection interface
	Object interface
	Object.Narrow_

	Orb interface
	Orb.Init
	Orb.resolve_initial_references
	Orb.object_to_string
	Orb.string_to_object

	RecordSet interface
	RecordSet.MoveFirst
	RecordSet.MoveNext
	RecordSet.NextRecordSet

	CHAPTER 5 C Routines Reference
	Alphabetical list of all routines
	Routines for managing component instance data
	Routines for managing transaction flow
	Routines for sharing data between components
	Routines for managing cached connections
	Routines for sending result sets
	Routines for handling errors in C or C++ components
	Routines for managing memory in C or C++ components
	Routines to obtain user login information

	JagAlloc
	JagBeginResults
	JagBindCol
	JagCmCacheProps
	JagCmGetCachebyName
	JagCmGetCachebyUser
	JagCmGetConnection
	JagCmGetCtx
	JagCmGetProxyConnection
	JagCmReleaseConnection
	JagColAttributes
	JagCompleteWork
	JagContinueWork
	JagDescribeCol
	JagDisallowCommit
	JagEndResults
	JagFree
	JagFreeCollectionHandle
	JagFreeCollectionList
	JagFreeSharedDataHandle
	JagGetCollection
	JagGetCollectionList
	JagGetHostName
	JagGetInstanceData
	JagGetPassword
	JagGetPeerAddress
	JagGetSharedData
	JagGetSharedDataByIndex
	JagGetSharedValue
	JagGetUserName
	JagInTransaction
	JagIsRollbackOnly
	JagLockCollection
	JagLockNoWaitCollection
	JagLog
	JagNewCollection
	JagNewSharedData
	JagNewSharedDataByIndex
	JagResultsPassthrough
	JagRollbackWork
	JagSendData
	JagSendMsg
	JagSetInstanceData
	JagSetSharedValue
	JagSleep
	JagUnlockCollection

	APPENDIX A Deprecated Java Classes and Interfaces
	Package Index
	com.sybase.jaguar.beans.enterprise

	jaguar.beans.enterprise.EnterpriseBeanException class
	jaguar.beans.enterprise.InstanceContext interface
	InstanceContext.completeWork()
	InstanceContext.continueWork()
	InstanceContext.getSharedObjects()
	InstanceContext.inTransaction()
	InstanceContext.isRollbackOnly()
	InstanceContext.rollbackWork()

	jaguar.beans.enterprise.ServerBean interface
	ServerBean.activate(InstanceContext, String)
	ServerBean.canReuse()
	ServerBean.deactivate()
	ServerBean.destroy()

	jaguar.beans.enterprise.SharedObjectException class
	jaguar.beans.enterprise.SharedObjects interface
	SharedObjects.get(int)
	SharedObjects.lock(int)
	SharedObjects.lockNoWait(int)
	SharedObjects.set(int, Object)
	SharedObjects.unlock(int)

	Index

