
Security Administration and Programming Guide

EAServer
6.0

DOCUMENT ID: DC38035-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Security Administration and Programming Guide iii

About This Book .. vii

CHAPTER 1 Security Concepts... 1
Authentication and authorization.. 1
Public-key cryptography ... 2

Public-key certificates.. 2
SSL, HTTPS, and IIOPS ... 3
TLS and FIPS.. 4

Proxies and firewalls .. 4
Lines of defense... 4

Types of attacks .. 5
Defense against attacks .. 6

CHAPTER 2 Securing Component Access .. 7
Client authentication... 7
Intercomponent authentication... 9

Accessing SSL information ... 10
Non-EJB components ... 10
C++ components ... 11

Intercomponent authentication for EJBs and servlets 12
Intercomponent authentication for EJB 2.0 components......... 12
Authentication of component invocation from servlets 14

Client authorization .. 15
Enterprise JavaBeans ... 16

CHAPTER 3 Using Web Application Security.. 17
Introduction .. 17

Configuring security properties of your Web application 18
Authentication .. 18

Form login requirements in a Web application when using HTTPS
(SSL) .. 20

Authorization .. 21

Contents

iv EAServer

CHAPTER 4 Using SSL in Java Clients... 25
Using SSL in Java applets ... 25
Using SSL in Java applications.. 26

Requirements .. 26
Establishing a secure session ... 26
Using the SSLServiceProvider interface 27
SSL properties... 28
Implementing an SSL callback .. 29
Retrieving session security information................................... 30

Creating HTTP and HTTPS connections in Java applications....... 30
HTTP connections... 31
HTTPS connections .. 31
SSL properties... 34

Using Java Secure Socket Extension classes 36
Possible solutions for JSEE issues ... 40

CHAPTER 5 Using SSL in C++ Clients.. 43
Introduction .. 43
Initializing the SSL security service.. 44
ORB properties for secure sessions .. 45
Creating a manager instance ... 46
Retrieving session security information.. 47
Creating an SSL callback component .. 48

CHAPTER 6 Using TLS and FIPS... 49
Introduction .. 49
SSL/TLS and FIPS support .. 50

JSSE configuration.. 53
FIPS mode for Java-side cryptography usage 53

Compatibility with earlier versions.. 53
Enabling TLS-secure listeners ... 54

CHAPTER 7 Creating and Using Custom Security Components 59
Introduction .. 59
Using a custom authentication service... 60

Maintaining authenticated sessions .. 60
Retrieving HTTP session information...................................... 61

Using a custom role service ... 61
Creating a role service .. 62

Using a custom authorization service .. 62
Deciding whether to use the authorization services or role service

62

Contents

Security Administration and Programming Guide v

Creating the authorization service... 63

CHAPTER 8 Using the JAAS API .. 65
Introduction .. 65
JAAS in EAServer .. 67

Enabling JAAS for a domain ... 67
JAAS for connectors .. 67

CHAPTER 9 Deploying Applications Around Proxies and Firewalls............. 69
Connecting through proxy servers ... 69
Using Web proxies ... 70

Properties that affect Web proxy use 71
Using reverse proxies .. 73

Reverse-proxy configuration ... 73
Properties that affect reverse proxy use.................................. 74

CHAPTER 10 Security Configuration Tasks .. 77
Configuring domains .. 77

Login methods... 81
JACC (JSR-115) support... 84

Managing users.. 85
Configuring roles .. 86

Admin role granularity ... 88
Inherited roles.. 89

Configuring OS authentication ... 89
Configuring security profiles... 90
Associating a listener with a security profile................................... 95

Sample configuration... 95
Configuring JSSE... 96

Sample configuration... 98
Configuring database set-proxy for CMP 99

CHAPTER 11 Managing Keys and Certificates.. 101
SSL overview ... 101
Managing keys and certificates on EAServer 102

Set-certificate .. 102
Keytool examples .. 102

Client-side security... 103
Using SSL in PowerBuilder clients .. 103
Client-side SSL.. 104
Client-side security certificate tool (sc-tool) 104

Contents

vi EAServer

Index ... 107

Security Administration and Programming Guide vii

About This Book

This book describes the features in EAServer with which you can define
the security characteristics of client/server communications.

Audience Use this document if you are responsible for creating or deploying secure
components, applications, and Web applications, or for defining secure
EAServer listeners with which clients communicate.

How to use this book Use this document to understand EAServer security.

• Chapter 1, “Security Concepts” – an overview of security terms and
concepts and describes how to protect server resources.

• Chapter 2, “Securing Component Access” – how to authenticate base
clients, other components, or servlets and JSPs. Also describes how
to pass credentials from EJBs and servlets between servers.

• Chapter 3, “Using Web Application Security” – how to secure Web
applications and the resources contained within Web applications.

• Chapter 4, “Using SSL in Java Clients” – describes how to use SSL
in Java clients.

• Chapter 5, “Using SSL in C++ Clients” – describes how to use SSL
in C++ clients.

• Chapter 6, “Using TLS and FIPS” – how to use TLS and FIPS
protocols to create secure EAServer connections.

• Chapter 7, “Creating and Using Custom Security Components” –
how to create and implement custom role and service components to
meet your specific authentication and authorization needs.

• Chapter 8, “Using the JAAS API” – how to implement the Java
Authentication and Authorization Support (JAAS) module in clients,
EAServer, and as connectors to other servers.

• Chapter 9, “Deploying Applications Around Proxies and Firewalls”
– how to deploy applications around firewalls and how to use reverse
proxies.

viii EAServer

• Chapter 10, “Security Configuration Tasks” – the major security tasks you
perform from the Web Management Console’s EAServer Manager plug-
in, including:

• Role mapping

• OS-based authentication

• Defining security profiles that use SSL

• Assigning security profiles to EAServer listeners

• Chapter 11, “Managing Keys and Certificates” – how to manage all
aspects of SSL keys and certificates.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software installation and
on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

• Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

 About This Book

Security Administration and Programming Guide ix

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

x EAServer

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions The formatting conventions used in this manual are:

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than the Web Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Web Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

 About This Book

Security Administration and Programming Guide xi

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

xii EAServer

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web Management Console supports working without a mouse. For more
information, see “Keyboard navigation” in Chapter 2, “Management Console
Overview,” in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

 About This Book

Security Administration and Programming Guide xiii

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xiv EAServer

Security Administration and Programming Guide 1

C H A P T E R 1 Security Concepts

Keeping resources secure is an ongoing challenge. As defenses are
implemented, new methods are devised to circumvent them. The
following is a short list of the many excellent sites that contain security
related information:

• A good source of cryptographic related information is available from
RSA laboratories at ftp://ftp.rsasecurity.com/pub/labsfaq/labsfaq4.pdf.

• The Java security page at http://java.sun.com/security/

Authentication and authorization
Authentication means that a person, client, or server has been verified to
either a server or a client. In contrast, authorization means that a person,
client, or server has permission to use a resource or file. An entity must be
authenticated before it can be authorized to use a resource or file. This
book describes authentication and authorization services provided for:

• Components and packages

• Web clients

• Java, C++, and PB clients

• Web applications

• Client/application server connections

Topic Page
Authentication and authorization 1

Public-key cryptography 2

Proxies and firewalls 4

Lines of defense 4

Public-key cryptography

2 EAServer

Public-key cryptography
To maintain secure communications between a client and host, public-key
cryptography techniques are used for:

• Authentication – verifying the identity of both the client and the server;
Public-key cryptography techniques use digitally signed certificates that
identify network entities.

• Encryption – modifying data so that it can be read only by the party for
whom it is intended. When used with a user’s private key, certificates
encrypt and decrypt messages.

Unencrypted messages are known as plain text. Encoding the contents of a
message is called encryption. This encrypted message is the cipher text.
Decryption is the process of retrieving the plain text from the cipher text. A key
is usually required to perform encryption and decryption. A cipher suite
defines the parameters and methods supported by both the client and server that
perform the encryption and decryption.

Public-key encryption uses a pair of keys for encryption and decryption. One
key is secret (the private key) and the other is distributed (the public key). You
send your digitally signed public key (certificate) to anyone you want to
communicate with.

Messages that are sent to you are encrypted with your distributed public key
and decrypted by your private key, while messages sent by you are encrypted
with your private key and decrypted with your distributed public key. RSA
encryption is a widely used public-key encryption system.

For more information on RSA and public-key encryption, see the RSA Web site
at http://www.rsa.com.

Public-key certificates
Public-key certificates provide a method to identify and authenticate clients
and servers on the Internet. Public-key certificates are administered and issued
by a third party known as a certification authority (CA). A subject (individual,
system, or other entity on the network) uses a program to generate a key pair
and submits the public key to the CA along with identifying information (such
as name, organization, e-mail address, and so on). This is known as a certificate
request. The CA issues a digitally signed certificate. A digital signature is a
block of data that is created using a private key.

CHAPTER 1 Security Concepts

Security Administration and Programming Guide 3

The CA ties the certificate owner to the public key within the certificate. The
subject then uses the certificate, along with his private key to establish his
identity. Once this is done, whomever the subject is communicating with
knows that a third party has vouched for his identity.

The process requires these steps:

1 Use the set-certificate script located in the bin subdirectory of your
EAServer installation to map a user name to a certificate. These are the
only client certificates that EAServer 6.0 trusts.

2 The client supplies its certificate and negotiates a secure connection with
the server.

SSL, HTTPS, and IIOPS
SSL provides security for network connections. Specifically, SSL uses public-
key encryption to provide:

• Client and server authentication using certificates

• Encryption, which prevents third parties from understanding transmitted
data

• Integrity checking, which detects whether transmitted data has been
altered

Packets for other protocols can be embedded inside of SSL packets. A
connection in which the application protocol is embedded inside of SSL is an
SSL-tunnelled connection.

Both IIOP and HTTP can be tunnelled inside SSL, which means that these
protocols take advantage of SSL security features. For example, HTTPS
connections embed HTTP packets inside of SSL packets. Your Web browser
creates a secure HTTP connection any time you load a page from a URL that
begins with “https:”

See Chapter 11, “Managing Keys and Certificates”

Proxies and firewalls

4 EAServer

TLS and FIPS
TLS (Transport Layer Security) is a protocol from the IETF based on SSL and
provides similar services as SSL. FIPS (Federal Information Processing
Standard) are the standards and guidelines for information processing
developed by NIST and approved by the Secretary of Commerce as
requirements for the Federal Government for information assurance and
interoperability.

See Chapter 6, “Using TLS and FIPS,” for complete information.

Proxies and firewalls
A firewall is a system that enforces an access control policy between networks.
Located on a gateway into the network, the firewall blocks traffic that does not
have permission to access the network. An organization establishes a firewall
so that it can control access to resources. For example, an organization that
allows intranet users access to the Internet installs a firewall to prevent external
users from accessing internal resources.

Proxy servers are typically used to constrain and secure connections from an
organization’s computers to sites that require connecting across the Internet. To
enhance security, some network configurations require all Internet connections
to go through a proxy server, including IIOP connections to an application
server.

See Chapter 9, “Deploying Applications Around Proxies and Firewalls” for
more information.

Lines of defense
This section describes types of attacks and some strategies for defending
against them.

CHAPTER 1 Security Concepts

Security Administration and Programming Guide 5

Types of attacks
There are several ways in which data can be tampered with, compromised, and
stolen. In addition, systems can be overwhelmed with traffic to the point that
they are rendered useless.

Integrity attacks Data integrity is a measure of the quality of the information
stored and transmitted on a system. Types of attacks on data integrity include
deleting or modifying files or information on the file system or over a network.

Spoofing IP spoofing occurs when an intruder attempts to deceive the target
system into accepting packets that appear to the target as coming from someone
other than the intruder. If the target system already has an authenticated TCP
session with another system and mistakenly accepts spoofed IP packets, the
intruder can access sensitive information and lead the target to execute
commands in that packet, as though they came from the authenticated
connection.

Availability attacks Availability attacks occur when a resource such as a
Web site or HTTP port becomes unavailable due to a high volume of traffic.
Someone can use a program to generate thousands of simultaneous requests
aimed at the same site, which then is unable to respond to legitimate requests.

Capture-and-replay Capture-and-replay refers to an intruder capturing data
as it moves from one system to another. User names, passwords, authentication
information, and so on, can be tampered with or used by the intruder to gain
access to protected resources.

There are a variety of ways and tools that intruders use to gain access to system
resources. Some of these attacks may go undetected, while others destroy or
alter information. Following is a few examples of how an intruder gains access
to system resources:

• A brute force attack involves using many combinations until the right
key/password is located.

• A trojan horse attack occurs when an intruder secretly inserts a program
or file that either steals or destroys information, such as a virus. Another
simple example would be for someone to place a bogus program on your
system that prompts for a user name and password. The program simply
logs the user name and password information. The intruder accesses this
information and can then use your user name and password to access
resources to which you are permitted.

• A person-in-the-middle attack intercepts communication between two
parties without their knowledge.

Lines of defense

6 EAServer

Defense against attacks
This section discusses some of the methods by which you can protect data and
restrict access to resources.

Protecting ports and listeners You can provide various levels of security to
EAServer listeners by assigning security profiles to HTTPS and IIOPS
listeners. See Chapter 10, “Security Configuration Tasks” for more
information.

Protecting application server resources and securing clients EAServer
provides several methods to protect server resources and secure client/server
connections:

• Set authentication and authorization levels using the Web Management
Console. See Chapter 3, “Using Web Application Security.”

• Create custom authentication and authorization components. See Chapter
7, “Creating and Using Custom Security Components.”

• Use the Java authentication and authorization service (JAAS). See
Chapter 8, “Using the JAAS API.”

• Establish minimum levels of protection for listeners using quality of
protection (QOP). See Chapter 2, “Securing Component Access.”

• Propagate client principal information from one server to another and use
run-as support so an EJB can perform method invocations on other EJBs
using a different identity. See Chapter 2, “Securing Component Access.”

Protecting data Use public-key certificates when exchanging sensitive data
over a network to protect it from being viewed by intruders. See Chapter 11,
“Managing Keys and Certificates” for more information.

Security Administration and Programming Guide 7

C H A P T E R 2 Securing Component Access

Components can be invoked by clients, other components, or servlets and
JSPs. This chapter describes the various methods used to authenticate and
authorize each type of client.

Client authentication
Users are authenticated when a client application creates a proxy or stub
object (a connection is made when the application creates the first proxy
or stub; other proxies or stubs may use the same connections or allocate
new connections as needed).

Authentication options for base clients include:

• Authentication methods There are nine in total; cts-auth, ftp, http,
jaas, jndi, local-hash (the default), none, and os-auth. See “Login
methods” on page 81 of Chapter 10, “Security Configuration Tasks”
for a description of each.

Topic Page
Client authentication 7

Intercomponent authentication 9

Intercomponent authentication for EJBs and servlets 12

Client authorization 15

Client authentication

8 EAServer

• SSL certificate-based authentication Alternatively, you can map a
client certificate to a user using the bin/set-certificate script located in the
EAServer directory. Then, if the client connects to an IIOPS or HTTPS
listener configured for mutual authentication (for Web applications, the
Web application must also be configured for CLIENT-CERT
authentication) the certificate is mapped to a user name. In the IIOP case,
if you use a certificate and provide a password, the password must also be
correct. However you do not need to provide a password.

Note Using “keytool” to add client certificates is not sufficient, only the
bin/set-certificate script configures the necessary certificate to user
mapping (which is stored in the “default” Security Domain properties
file). See Chapter 11, “Managing Keys and Certificates” for information
about using keytool commands and set-certificate.

You can configure a secure IIOP port that requires mutual (client and
server) authentication. Clients must have a valid SSL certificate to connect
to this port, and the certificate must be issued by a certificate authority that
is trusted by EAServer.

When clients connect with an SSL client-side certificate, the client also
supplies an EAServer user name and password for the connection in
addition to the certificate. EAServer performs authorization checking
based on the EAServer user name. The SSL user name and certificate
information are available through the built-in CtsSecurity/SessionInfo
component.

EAServer provides native SSL support without the use of proxies. On the
client side, the EAServer Java ORB supports SSL. Java applets and Java
applications, C++, and PowerBuilder can use SSL natively. Other types of
clients require the use of an SSL proxy.

C++ and PowerBuilder™ clients require that a public-key infrastructure
(PKI) system be available on the client to manage those certificates. Use
sctool.exe to manage the certificate database.

See “Configuring security profiles” on page 90 for information about the
various authentication levels you can establish for a client-EAServer
connection.

• Custom authentication You can code a service component to perform
your own authentication checks. For example, you can retrieve the client
user name and password and check to see if they allow a login to a remote
database server. See “User installed authentication services” on page 9 for
more information.

CHAPTER 2 Securing Component Access

Security Administration and Programming Guide 9

EAServer provides a special user name, admin@system, for the EAServer
Administrator login. Administrator authentication is performed independently
of the authentication option you configure. By default, the admin@system user
name has no password. Use the set-admin-password batch file located in the
EAServer bin directory to establish the admin@system password.

Set the administrator password for new servers Immediately after you
create a new server, you must secure access to the server by defining the
admin@system password and configuring the authentication mechanism of
your choice. See “Administration password and OS authentication” in the
EAServer System Administration Guide for more information.

For backwards compatibility, you can use “jagadmin” as an alias for
“admin@system”. However by default you cannot have an empty password.
To allow an empty password (which is not recommended) you must set the
“minimum password length” property of the “default” Security Domain to “0”.

By default, the admin@system user name has no password. Use the set-admin-
password batch file located in the EAServer bin subdirectory to establish the
admin@system password, otherwise the server will not start.

The “admin@system” password must be the same for all members of a cluster.

User installed authentication services You can install your own service
component to authenticate clients for any EAServer. For example, if you
require the client user name to match a remote database user name, you can
code the component to retrieve the client user name and password and attempt
to log in to the remote database. For more information, see Chapter 7,
“Creating and Using Custom Security Components.”

Intercomponent authentication
This section describes various security features that are available ton
components, including:

• Retrieving SSL information

• Restricting access to EJBs

• Authenticating non-EJB components within a server and for standalone
clients

• Issuing intercomponent calls using SSL

Intercomponent authentication

10 EAServer

Accessing SSL information
Clients can connect to a secure IIOP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/SessionInfo
component to retrieve the client certificate data, including the:

• Distinguished SSL user name

• Client certificate fingerprint (MD5 message digest)

• Client certificate data

• Chain of issuing certificates

This component implements the CtsSecurity::SessionInfo IDL interface. HTML
documentation is available for the interface in the html/ir subdirectory of your
EAServer installation. View it by loading the main EAServer HTML page,
then clicking the “Interface Repository” link.

CtsSecurity::UserCredentials interface has been replaced The
CtsSecurity::UserCredentials interface, which is implemented by the
CtsSecurity/UserCredentials component, has been replaced by the
CtsSecurity::SessionInfo interface, which provides additional functionality such
as certificate parsing. EAServer supports the CtsSecurity::UserCredentials
interface for backward compatibility. Use the CtsSecurity::SessionInfo interface
if you are developing new components.

Non-EJB components
For non-EJB CORBA components, use the following mechanism for
authentication within a server and for standalone clients:

Embed the user name and password in the URL when creating a component
instance. For example:

Module::Interface_var compInstance = Module::Interface::narrow(
"iiop[s]://user:password:host:port/EAServerPackage/EAServerComponent");

Preferred API usage patterns

The preferred access pattern for CORBA clients (using Java example code) is:

Manager manager = ManagerHelper.narrow(orb.string_to_object(url));
Session session = manager.createSession(username, password);
Factory factory =

CHAPTER 2 Securing Component Access

Security Administration and Programming Guide 11

FactoryHelper.narrow(session.lookup("MyPackage/MyComp"));
MyComp comp = MyCompHelper.narrow(factory.create());

The last two lines can alternatively be replaced with:

MyCompHome home =
MyCompHomeHelper.narrow(session.loookup("MyPackage/MyComp"));
MyComp come = home.create();

The second style is recommended because it allows you to pass one or more
parameters to the called EJB stateful session’s home.create(...) method. This is
why the factory.create(username, password) API was deprecated, since it
conflicts with the home.create methods for stateful session beans with
initialization parameters.

CosNaming APIs Explicit use of CosNaming APIs in CORBA clients is not recommended,
because it might lead you to use the deprecated (or in the non-Java case,
unsupported) factory.create(username, password) API.

For inter-component calls, you can use the shortcut:

MyComp comp =
MyCompHelper.narrow(orb.string_to_object("MyPackage/MyComp"))

Or you can use an URL of “iiop://0:0” with the full style using explicit
Manager, Session, and so on.

PowerBuilder clients
and components

PowerBuilder clients can use the “Connection.CreateInstance” method, and
can also use the explicit CORBA style shown above.

PowerBuilder components doing intercomponent calls can use the
“TransactionServer.CreateInstance” method, and can also use the explicit
CORBA style shown above.

C++ components
C++ components (and PowerBuilder NVOs) can make intercomponent calls
across different servers using SSL in much the same way as any other C++
client. However, be aware that the SSLServiceProvider interface is not available
to components. Instead, set ORB-level SSL properties to initiate server-to-
server intercomponent calls using SSL.

For information about developing C++ components and clients, see these
chapters in the EAServer CORBA Component’s Guide:

• Chapter 8, “Developing CORBA/C++ Components”

• Chapter 9, “Developing CORBA/C++ Clients”

Intercomponent authentication for EJBs and servlets

12 EAServer

Intercomponent authentication for EJBs and servlets
EAServer implements J2EE version 1.3 security requirements, including Java
and C++ ORB support and CORBA Secure Interoperable version 2 protocol
(CSIv2). CSIv2 is part of EJB version 2.0 interoperability requirements, and
supports:

• EJB 2.0 security features including:

• Caller propagation on remote servers from EJB 2.0 clients using
RMI/IIOP

• Run-as support

• Trust identities

• Servlet 2.3 security enhancements including:

• Caller propagation on remote servers

• Run-as support

• Java Authentication and Authorization Service (JAAS) – see Chapter 8,
“Using the JAAS API” for more information.

Other references For more information about J2EE, see the Java Web site at
http://java.sun.com/j2ee.

For more information about servlet technology, see the Java Web site at
http://java.sun.com/products/servlet/index.html.

For more information about CSIv2, see the OMG Web site at
http://www.omg.org/technology/documents/formal/omg_security.htm

Intercomponent authentication for EJB 2.0 components
EJB 2.0 components use caller propagation to pass client information between
servers for authentication, whereas run-as support allows EJB 2.0 components
to perform method invocations on other components using a different identity.

CHAPTER 2 Securing Component Access

Security Administration and Programming Guide 13

Caller propagation

Caller propagation allows an EJB 2.0 RMI/IIOP client to pass principal
information to a server and have that information propagated to other servers.
In other words, EAServer can pass a client’s user name or X.509 certificate
information from an EJB on one server, to an EJB on a different server. For
example:

1 The client passes principal information to EAServer1, where the
information is authenticated.

2 EAServer1 retrieves the remote client’s authentication information by
calling getCallerPrincipal().

3 EJBA, on EAServer1, makes a call to another bean, which resides on
EAServer2.

4 The propagated caller information is retrieved on EAServer2 using the
getCallerPrincipal() method.

To enable caller propagation for EJB component calls made in servlet or
component code when communicating with a third-party EJB server, specify a
corbaname URL in the EJB Reference properties for the EJB component,
servlet, or JSP that issues the call.

EAServer supports RMI/IIOP interoperability with other EAServer 6.0
servers, even when using “iiop:...” format URLs.

Caller principal propagation for inter-component calls (on the same server) is
automatic (if you use ejb-refs or ejb-local-refs with no special configuration).

For information on interoperable naming URLs, see Chapter 5,
“Interoperability,” in the EAServer EJB User’s Guide.

Run-as support

Normally, when a component calls another component, the invocation uses the
client’s credentials. You can use identities to specify alternate credentials for
intercomponent calls. Identities map logical identity names to a user name,
password, and required SSL session characteristics. The identity names are
used in the run-as mode settings for components and component methods.

Intercomponent authentication for EJBs and servlets

14 EAServer

Run-as support enables an EJB 2.0 component to perform method invocations
on other components using a specified identity. This identity can be configured
at deployment time. In the standard EJB 2.0 deployment descriptor, the run-as
property is expressed in terms of a role. The role is a name of a security-role
element defined in the same deployment descriptor. It is expected that at
deployment time, or when configuring a new EJB, the role name should be
defined. Further, the deployer selects an identity that is expected to be present
in this role. This identity is used while invoking another EJB. The run-as
feature can be enabled in the Web Management Console.

To enable use of the run-as identity for EJB component calls made in
component code, specify corbaname URLs in the EJB Reference properties
for the EJB component that issues the call. For information on interoperable
naming URLs, see Chapter 5, “Interoperability,” in the EAServer EJB User’s
Guide.

❖ Configuring an EJB 2.0 component to run as a different identity

1 Modify the config/ejbjar-name.xml file (where name is the name of the
EJB) to use <run-as>. If you do not set this property, intercomponent
calls use the client identity. For example:

2 Recompile the component using the recompile batch file located in the
EAServer bin subdirectory.

You can configure a run-as identity application-or server-wide. This provides
a convenient way to globally set the run-as identity for all of the EJBs in an
application or server.

Authentication of component invocation from servlets
This section describes how to propagate servlet credentials between servers
and how to use identities to map logical identity names to a user name,
password, and required SSL session characteristics. The identity names are
used in the run-as mode settings on beans called from servlets.

Basically EAServer receives an HTTP request targeting a certain servlet which
in turn invokes another EJB. The user credentials (either a user name/password
pair, or a X.509 certificate) is passed to the invoked EJB. EAServer, which is
the EJB container, authorizes the user’s credentials.

CHAPTER 2 Securing Component Access

Security Administration and Programming Guide 15

Caller propagation for servlets on remote servers

A servlet’s or JSP’s HTTP client credentials are propagated when EJBs are
invoked on remote servers. Earlier versions of EAServer propagated user
name/password or digital IDs, and only within the same server.

Run-as support

Run-as support for servlets is similar to run-as support for EJBs:

• is defined on a per-servlet basis.

• applies to all method invocations on beans called from the servlet.

To enable run-as support for servlets or JSPs, the servlet or JSP must be
installed in a Web application. Additionally, you must specify corbaname
URLs in the EJB Reference properties for the servlet or JSP that issues the call.
For information on interoperable naming URLs, see Chapter 5,
“Interoperability,” in the EAServer EJB User’s Guide.

Configure the run-as identity as follows:

1 Define the run-as identity using the <run-as> property in the
config/webapp-name.xml file. If you do not set this property,
intercomponent calls use the client identity.

2 Recompile the servlet using the recompile batch file located in the
EAServer bin subdirectory.

Client authorization
EAServer provides component authorization through both roles and custom
components:

Roles EAServer authorization model is based on roles. Use the Sybase
Management Console to define roles. Each role can include and exclude
specific user names and digital certificates. If you use native operating system
authentication, you can also include and exclude operating system group
names; all users in the specified group are affected.

See “Configuring roles” on page 86 for more information on defining roles.

Client authorization

16 EAServer

Custom components EAServer provides role and authorization service
components with which you can create and install your own component to
authorize clients to access resources on EAServer. See Chapter 7, “Creating
and Using Custom Security Components.”

Enterprise JavaBeans
Your EJBs are ready for use after deployment, but if you want to modify access
control properties, you have two options:

1 Modify the JAR or War file that contains the EJB and redeploy.

2 After deploying, modify the EJBs corresponding XML file located in the
config subdirectory of your EAServer installation. For example, originally
ejb.BeanRemote contains a method called foo() that is only accessible to
roles “role1”, if you want to grant access to “role2”:

a locate the ejbjar-ejb.BeanRemote.xml file in the config subdirectory.

b Search for the line:
<permitAccess method="foo()" roles="role1"/>

c In the section defining BeanRemote interface, modify the line to:
<permitAccess method="foo()" roles="role1, role2"/>

d Go to the bin subdirectory of your EAServer installation and
recompile the entity using the recompile command script, and refresh
the module.

Security Administration and Programming Guide 17

C H A P T E R 3 Using Web Application Security

This chapter discusses how to establish authentication and authorization
levels for your Web application elements using declarative security
provided by the Sybase Management Console.

Introduction
A Web container holds your Web application elements, including
components, servlets, JSPs, HTML pages, and so on. The Web
application’s deployment descriptor describes how a Web application is
deployed, including the level of security for the various elements of your
Web application. For example, your Web application may include an
HTML page that is available to all visitors to your site, while other HTML
pages, servlets, and JSPs are restricted to existing or preferred customers.

Web client security requires that Web content be deployed in Web
applications:

• There is no way to secure files deployed in the EAServer HTML root
directory.

• Do not put sensitive information such as passwords in files that can
be downloaded by Web clients.

• Do not put files containing sensitive information in locations that
allow download by Web clients.

Topic Page
Introduction 17

Authentication 18

Authorization 21

Authentication

18 EAServer

Configuring security properties of your Web application
Define the authentication method of your Web application and security
constraints on the various elements within your Web application and redeploy
the Web application.

Refer to the user documentation of your specific development tool for
information about setting Web application security. You can also refer to the
Java Servlet 2.4 specification at http://java.coe.psu.ac.th/J2EE/Servlet2.4/servlet-
2_4-fr-spec.pdf for additional information.

Authentication
The types of Web application authentication methods available include:

• None No authentication is required.

• Basic The server asks the client for its user name and password. You also
provide a Realm name. The realm adds additional information to the client
who is logging in to your site. For example, if you do not provide a realm
name when a client visits your site, the browser displays a message to the
client that states “The server at host:port wants you to log in.” If you enter
a realm name of “Human Resources Web site,” the browser displays “The
server at Human Resources Web site at host:port wants you to log in.”

When an HTTP client sends the HTTP basic authentication header:

• The server authenticates the client using the server-defined
authentication scheme and invokes any defined customized
authentication component.

• If the authentication fails, the request fails and an error message is
sent back to the client. If the request is intended for a Web application,
the Web application manages error handling.

• If the request is intended for a regular static page, the request is
denied, and HTTP status code 401 (Unauthorized) is sent back to the
client.

• Form The Web application developer creates an HTML login page,
where the client enters a user name and password. The entire HTML page
is sent to the server. You also create an error page that is returned to the
client in the event of a server error.

CHAPTER 3 Using Web Application Security

Security Administration and Programming Guide 19

• Login page – enter the location of the login page that is supplied to the
client at login. For example, /login.jsp might be your login page.

• Error page – enter the location of the error page that the client is
directed to should a server error occur during login. For example,
/error.jsp might be your error page.

Login and error pages can vary from a simple HTML page to a complex
page that includes servlets and JSPs.

The location of the error and login pages is relative to the WebApp
directory whether or not a “/” is used. For example, if you specify
/error.jsp or error.jsp as the location of your error page, the servlet engine
assumes that it is contained in the WebApp context.

Below is an example of a form login and error page. The action of the form
login page must always be j_security_check. The user name and password
fields should be j_username and j_password respectively.

Form login page:

<html>
<body>
<h1>Login page</h1>

<form method="POST" action="j_security_check" >
<input type="text" name="j_username">
<input type="password" name="j_password">

<input type="submit" name="j_security_check">
</form>

</body>
</html>

Form error page:

<html>
<head>
<title>Login Error</title>
</head>
<body> Login error -- please try again.
</body>
</html>

Authentication

20 EAServer

These examples assume that login.html is the login page, and that the error
page and login page are in the same directory.

• Client-cert – the client connects to the server using SSL tunneled within
HTTP. The client must provide a certificate that the server accepts and
authenticates. For more information about SSL, see Chapter 10, “Security
Configuration Tasks,” and Chapter 11, “Managing Keys and
Certificates.”

Note You cannot use both “client-cert” and “OS authentication” as Web
application security mechanisms at the same time. If you do, clients will
not connect to the Web application. See “Configuring OS authentication”
on page 89.

Note EAServer does not support HTTP digest authentication. If you specify
digest authentication, the default, Basic, is used instead.

EAServer supports lazy authentication, which means that the server attempts
to identify a client only when the client attempts to access a restricted resource.
As long as the client accesses only resources that do not require authorization,
the server does not attempt to authenticate the client.

When a server authenticates a client, the client is authenticated for all
applications and references on the server. You can implement authentication of
a client for an entire server by using cookies or rewriting the URL. A reference
to the client’s security credentials is saved in a cookie or encoded in the URL.

Form login requirements in a Web application when using HTTPS
(SSL)

To use the form login mechanism in your Web application, the client must
support cookies. The client can be a browser or a standalone HTTP client. To
convert your Web application, which uses the form login mechanism in
conjunction with HTTPS, the transport guarantee for the form login page and
the pages that require authorization must be identical. Otherwise, the client
receives multiple HTTP redirects to the same page, resulting in an error. See
“Defining a security constraint” on page 22 for information about configuring
transport guarantee.

CHAPTER 3 Using Web Application Security

Security Administration and Programming Guide 21

Here are the steps required to enable HTTPS for the eStore application, which
is a large, comprehensive sample application developed by Sun Microsystems
to run on J2EE-compliant servers. eStore simulates an online pet store
implemented with JavaServer Pages, Java servlets, and Enterprise Java Beans.
You can download eStore as part of the Sun Microsystems J2EE Blueprints at
http://java.sun.com/j2ee/blueprints/.

1 Change the transport guarantee for the existing two security constraints
from None to Confidentiality or Integrity.

2 Add a new security constraint. Set the transport guarantee for the new
security constraint to the same value as the existing two security
constraints.

3 Add a Web resource collection to the new security constraint. Define a
Web resource, and set the URL pattern to “/login.jsp”, which is the URL
of the form login page.

4 Redeploy the eStore application. Connect to the eStore application from
your browser. The form login and subsequent communication occurs
using HTTPS.

Authorization
Security constraints enable you to set various levels of authorization within the
elements of your Web application. You create J2EE roles and map them to
EAServer roles, then limit access to JSPs, servlets, and HTML pages to entities
that belong to an authorized J2EE role. In addition, you can define which
HTTP methods have access to which URLs, and establish levels of transport
guarantee.

For example, you could create a security constraint that blocks access to all
users at the Web application level. You could then grant access to resources
(HTML pages, JSPs, servlets) within the Web application to authorized users.
To do this, you need at least two security constraints:

1 Create a top-level security constraint and assign to it a Web resource
collection with a URL pattern set to “/*”.

Establish an authorized role for the security constraint that contains no
users. For example, you could create the role of “None” and assign it to the
security constraint.

Authorization

22 EAServer

2 Create another security constraint and assign to it a Web resource
collection with a URL pattern set to the URL locations for which you are
providing access.

Establish an authorized role that contains the users that are allowed access
to the Web resources protected by this security constraint.

3 Create additional security constraints and allow access to other Web
resources as needed.

Use this same approach to define security constraints that require specific
levels of transport guarantee.

❖ Defining a security constraint

1 Defining security constraints for your Web application includes:

• A Web resource collection – a list of URL patterns and HTTP
methods available for those URLs.

The URL pattern can have two forms:

• /url_name – an individual URL.

• /url_location/* – all of the URLs located in the url_location
directory.

• The HTTP operations that are allowed access to the defined URL
patterns. HTTP operations include:

• GET – the most common method used by browsers. GET
receives its input through a query string.

• POST – similar to a GET except that the input data is sent through
standard input instead of using the query string. The POST
method is normally used for an HTML form.

• PUT – same as POST except PUT usually implies that the
operation take effect immediately whereas POSTs action may be
delayed.

• OPTIONS – determines what HTTP options are supported.

• DELETE – removes some entity.

• TRACE – causes a response with a message containing all of the
headers sent in the trace request.

• Authorized roles – the authorized roles that have access to the HTTP
methods for the URLs defined for this security constraint.

CHAPTER 3 Using Web Application Security

Security Administration and Programming Guide 23

• Transport guarantee – establish a level of transport security for each
security constraint appropriate for the Web resources you are
protecting. If you use basic or form-based authentication, passwords
and other sensitive information is not protected for confidentiality. If
you have sensitive information that you want to protect, establish a
security constraint that uses a greater level of protection. Supported
transport guarantee levels are:

• None – uses insecure HTTP. Using SSL-protected sessions has
more overhead than insecure HTTP sessions. Use None for
transport guarantee if you do not need the added confidentiality
of SSL.

• Integral – uses an SSL-protected session that checks for data
integrity.

• Confidential – uses an SSL-protected session to ensure that all
message content, including the client authenticators, are
protected for confidentiality as well as data integrity. A
Confidential transport guarantee has more overhead than None.

2 Redeploy the Web application.

Sample web.xml
configuration

<security-constraint>
 <web-resource-collection>
 <web-resource-name>securityZone</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>DELETE</http-method>
 <http-method>TRACE</http-method>
 <http-method>PUT</http-method>
 <http-method>POST</http-method>
 <http-method>OPTIONS</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>null</description>
 <role-name>admin-role</role-name>
 <role-name>Console_ReadOnly</role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>userdata</description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Authorization

24 EAServer

Security Administration and Programming Guide 25

C H A P T E R 4 Using SSL in Java Clients

EAServer supports SSL connections from Java applets and applications.
In deployment scenarios where clients connect to EAServer over the
Internet, SSL can protect sensitive data transmitted over the network. For
more information about SSL, see Chapter 10, “Security Configuration
Tasks,” and Chapter 11, “Managing Keys and Certificates.”

Using SSL in Java applets
Java applet clients can use the Web browser’s Java SSL implementation
to create SSL connections to an EAServer. SSL connections from a Java
applet require that:

• You connect to a server listener that supports the desired level of
security. You do this by specifying the address as an IOR string as
described in “Creating a Manager instance” in Chapter 10,
“Developing CORBA Java Clients,” of the EAServer Corba Clients
Guide.

• Your Web browser recognizes and accepts the server listener’s SSL
certificate.

• If using mutual authentication, you have a personal certificate
installed in the Web browser’s certificate database, signed by a
certificate authority that is recognized and trusted by the EAServer.

Note For more information about security, including managing client side
certificates, see Chapter 11, “Managing Keys and Certificates.”

Topic Page
Using SSL in Java applets 25

Using SSL in Java applications 26

Creating HTTP and HTTPS connections in Java applications 30

Using Java Secure Socket Extension classes 36

Using SSL in Java applications

26 EAServer

Using SSL in Java applications
Java application clients create SSL connections using the same native
implementation used by C++ clients.

Requirements
Make sure you select the Client Runtime option when installing EAServer. SSL
support in Java applications requires the files installed by these options.

The following environment variable settings are required at runtime:

• JAGUAR_CLIENT_ROOT must specify the full path to the EAServer
client runtime installation directory.

• On Windows platforms, PATH must include the EAServer client dll
subdirectory.

• On UNIX platforms, the system’s shared library search path
(LD_LIBRARY_PATH on Solaris) must include the EAServer client lib
subdirectory.

• CLASSPATH must include the EAServer client runtime classes. Specify
the full path to the easclient.jar and easj2ee.jar files, or include the classes
in these JAR files in a JAR that you build yourself.

Establishing a secure session
To ensure a secure session between your Java application and EAServer, you
must configure SSL settings before using one of the standard techniques to
instantiate proxies for the EAServer components.

You can configure the settings required for SSL connections using two
techniques:

1 By setting ORB properties The required SSL settings must be known
in advance, and your application can connect only to servers that use
certificates issued by a known, trusted certificate authority.

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 27

2 By using the SSLServiceProvider interface The SSLServiceProvider
interface allows your application to determine what options are available
at runtime. In addition, you can supply a callback class with methods that
supply settings as needed and respond to exceptional cases. For example,
the client ORB invokes callback methods if the application specified an
invalid certificate password or if a connection is made to a server that uses
certificate issued by an unknown certificate authority.

Applications that run without user interaction typically configure SSL settings
with the ORB properties. Interactive applications typically use the
SSLServiceProvider interface and install a callback. When a callback is
installed, you can rely on user interaction in the callback methods to configure
necessary settings. For example, if the certificate password has not been
supplied, the ORB invokes the getPin callback method.

Once you have correctly configured the required SSL settings, use the standard
technique to instantiate proxies, as described in Chapter 10, “Developing
CORBA Java Clients,” of the EAServer Corba Components Guide. Proxies are
created in a secure session as long as the server supports the requested level of
security.

Using the SSLServiceProvider interface
The CtsSecurity.SSLServiceProvider interface provides setGlobalProperty and
getGlobalProperty methods to set and retrieve the SSL properties listed in
Table 4-1 on page 34. After initializing an ORB instance, you can instantiate a
proxy for the SSLServiceProvider interface with the
ORB.resolve_initial_references method, as shown below:

import CtsSecurity.*;

SSLServiceProvider sslServProv =
SSLServiceProviderHelper.narrow
(orb.resolve_initial_references
("SSLServiceProvider"));

You can then call the setGlobalProperty method to set properties, as in the
example below:

prov.setGlobalProperty("qop", "sybpks_intl");

Properties set with the SSLServiceProvider interface affect all ORB instances
used by the application. However, if an equivalent property has been set for an
ORB instance, the ORB property value takes precedence.

Using SSL in Java applications

28 EAServer

You can retrieve property values using the getGlobalProperty method. For
example:

String availQop[] = prov.getGlobalProperty("availableQop");
String qopDesc[] = prov.getGlobalProperty("availableQopDesc");

getGlobalPropertyMethod returns an array of strings. When retrieving
properties that take a single value, the value is returned in an array of length 1.

These methods are also documented in the generated Interface Repository
documentation for the CtsSecurity::SSLCallback interface. The generated
documentation is linked to your EAServer’s main HTML page.

SSL properties
Refer to the Interface Repository Documentation at
http://hostname:portnumber/ir/CtsSecurity__SSLSessionInfo.html#JaguarSec
uritySSLProperties for a description of the ORB and SSLServiceProvider
properties that govern the use of SSL, where hostname is the host on which
EAServer is running, and portnumber is the HTTP listener number (8000 for
example). In addition, you need to connect to a server address that can support
your chosen level of security, as described in “Secure server addresses” on
page 29.

Some properties, if not set or set incorrectly, cause the ORB to invoke an SSL
callback method. If you do not install an SSL callback, the default callback
implementation aborts the connection attempt.

Choosing a security
characteristic

To use SSL, you must specify a value for the qop property in ORB properties
or by using the SSLServiceProvider interface. Specify the name of an available
security characteristic. The characteristic describes the CipherSuites the client
uses when negotiating an SSL connection. When connecting, the client sends
the list of CipherSuites that it uses to the server, and the server selects a cipher
suite from that list. The server chooses the first cipher suite in the list that it can
use. If the server cannot use any of the available CipherSuites, the connection
fails.

“Configuring security profiles” on page 90 describes the security
characteristics that are provided with EAServer. At runtime, you can retrieve a
list of characteristics and their descriptions by retrieving the availableQop and
availableQopDesc properties.

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 29

Set the qop property to sybpks_none to prevent any use of SSL on a
connection. This setting can be useful if you have set the property globally for
all ORBs using the SSLServiceProvider interface, and you want to override the
setting for an individual ORB instance.

Secure server
addresses

The client ORB connects only to a server listener that uses an equivalent or
greater level of security as requested in the qop setting. If you use the
CosNaming or JNDI interfaces to instantiate proxies, the name service URL
cannot specify a server address that uses a higher level of security than
specified by the qop property. For example, if your server uses the typical port
configuration, you can specify port 9000 (no SSL) in the name service URL if
the qop specifies mutual authentication. However, you cannot specify port
9002 (mutual authentication) in the name service URL and set the qop to
request server-only authentication. When you use ORB.string_to_object to
instantiate a SessionManager::Manager proxy, the listener specified by the
server address must use a security profile that matches the client’s qop setting.

For more information on instantiating proxies, see Chapter 10, “Developing
CORBA Java Clients,” of the EAServer Corba Components Guide.

Implementing an SSL callback
An SSL callback class must implement the CtsSecurity.SSLCallback interface
(described in the Interface Repository Documentation at
http://hostname:portnumber/ir/CtsSecurity__SSLCallback.html, where
hostname is the host on which EAServer is running, and portnumber is the
HTTP listener number (8000 for example). The ORB invokes callback methods
when required SSL settings have not been configured or a setting has an
incorrect value. To install the callback, call
SSLServiceProvider.setGlobalProperty to set the callbackImpl property, as in the
example below:

sslprov.setGlobalProperty("callbackImpl",
"Sample.ClientSSL.SSLCallbackExample.SSLCallbackExampleImpl");

The SSLCallback method is trustVerify, which is called when the correct PIN for
the certificate database has not been set, or if the server has presented a
questionable certificate. The callback response determines whether the
connection is allowed and, optionally, whether the certificate should be added
to the local EAServer client certificate database.

Creating HTTP and HTTPS connections in Java applications

30 EAServer

You must implement this method in your class. If your implementation of a
method does not process the request, throw an
org.omg.CORBA.NO_IMPLEMENT exception so that the ORB uses the default
response.

For more information about the callback method, see the documentation for the
CtsSecurity::SSLCallback interface in the generated Interface Repository
documentation.

Retrieving session security information
The CtsSecurity.SSLSession and CtsSecurity.SSLSessionInfo classes allow you
to determine whether SSL is used on connections from a proxy to the server,
and if so, retrieve the SSL session settings. The code below illustrates the
sequence of calls:

... code to set ORB ssl properties, create session,
instantiate proxy myComp ...

SSLSession sslSession =
SSLSessionHelper.narrow(myComp);

try {
SSLSessionInfo sslSessionInfo =

sslSession.getSessionInfo();
} catch (CtsSecurity.SSLNotEnabledError e) {

 ... this means the proxy does not use SSL ...
}

You can call SSLSessionHelper.narrow to obtain the session information
associated with any CORBA object.

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the server
certificate in use, and so forth. For more information, see the Interface
Repository documentation for the CtsSecurity::SSLSessionInfo interface.

Creating HTTP and HTTPS connections in Java
applications

You can create HTTP connections in Java applications using the HTTP
protocol handling code built in to the Java Developer’s Kit, and HTTPS
connections using the HTTPS protocol handler provided with EAServer.

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 31

HTTP connections
The standard Java virtual machine provides HTTP connectivity with these
classes in java.net package:

• URL allows you to use Uniform Resource Locator strings for HTTP
connections and other protocol connections that can be represented by
URLs.

• URLConnection represents a connection to a server and resource indicated
by a URL.

• HttpURLConnection extends URL with additional methods that are specific
to the HTTP protocol.

For details on these classes, see the JDK documentation. The following code
shows a typical example. This code opens a connection, retrieves the data (text
is assumed), and prints it:

URL url = new URL("http://www.sybase.com/");
URLConnection conn = url.openConnection();
conn.connect();
InputStreamReader content

= new InputStreamReader(conn.getInputStream());
for (int i=0; i != -1; i = content.read())
{

System.out.print((char) i);
}

HTTPS connections
The procedure for creating HTTPS connections is similar to that for HTTP
connections, except that you must install EAServer’s HTTPS protocol handler
in the Java virtual machine and configure SSL parameters before opening a
connection.

System requirements EAServer’s HTTPS protocol handler uses the same
SSL implementation as used by Java and C++ IIOP clients and requires a full
client runtime install. For information on system requirements, see
“Requirements” on page 26.

Installing the HTTPS protocol handler

The EAServer HTTPS protocol handler can be installed two ways:

Creating HTTP and HTTPS connections in Java applications

32 EAServer

• By configuring the java.protocol.handler.pkgs Java system
property, making it the default handler for all HTTPS URLs. This is the
recommended approach if you do not need to use another vendor’s HTTPS
protocol handler in addition to the EAServer implementation.

• By calling one of the java.net.URL constructors that takes a
java.net.URLStreamHandler as a parameter. This approach must be used if
you must use more than one HTTPS protocol handler in one EAServer or
in one client application.

Specifying protocol handlers at runtime

If you must use more than one HTTPS protocol handler in one EAServer or in
one client application, you must call one of the java.net.URL constructors that
takes a java.net.URLStreamHandler as a parameter. The specified
java.net.URLStreamHandler instance overrides the default handler for the
protocol specified by the URL. For example, to specify the EAServer HTTPS
handler, use code like this:

import java.net.*;
import com.sybase.jaguar.net.JagURLStreamHandlerFactory;
import com.sybase.jaguar.net.HttpsURLConnection;

....

String url_string = "https://localhost:8081/index.html";

// The URL stream handler factory is required to create a stream
// handler.
JagURLStreamHandlerFactory fact = new JagURLStreamHandlerFactory();

// Extract the protocol from the front of the URL string
String protocol = url_string.substring(0, url_string.indexOf(":"));

// If the protocol is HTTPS, use the EAServer HTTPS handler. Otherwise,
// use the default handler
java.net.URL url;
if (protocol.equals("https"))
{

url = new URL((URL)null, url_string,
fact.createURLStreamHandler(protocol));

} else
{

url = new URL(url_string);
}

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 33

❖ Creating HTTPS connections

1 Configure or install the EAServer HTTPS protocol handler as described in
“Installing the HTTPS protocol handler” on page 31.

2 Create URL and URLConnection instances. If connecting to an EAServer,
specify the address of an HTTPS listener that supports the desired level of
security. For example:

URL url = new URL("https://myhost:8081/index.html");
URLConnection conn = url.openConnection();

3 Verify that the object returned by URL.openConnection is of class
com.sybase.jaguar.net.HttpsURLConnection, then set SSL properties for
the connection. “SSL properties” on page 34 describes the SSL properties
that can be set. At a minimum, you must specify the qop and pin
properties, as well as the certificateLabel property if using mutual
authentication. For example:

if (conn instanceof HttpsURLConnection)
{

HttpsURLConnection https_conn =
(HttpsURLConnection) conn;

try
{
https_conn.setSSLProperty("qop","sybpks_intl"

);
https_conn.setSSLProperty("pin", "secret");
https_conn.setSSLProperty(

"certificateLabel", "John Smith");
}
catch (CtsSecurity.InvalidPropertyException ipe)
{
System.err.println(ipe);

}
catch (CtsSecurity.InvalidValueException ive)
{
System.err.println(ive);

}

4 Open the connection, for example:

conn.connect();

Once the connection is open, you can perform any valid operation for a
connection that uses java.net.HTTPUrlConnection. You can also call the
getSessionInfo method to retrieve a CtsSecurity.SSLSessionInfo instance that
allows you to verify the SSL connection parameters. For example:

Creating HTTP and HTTPS connections in Java applications

34 EAServer

java.net.URLConnection conn;
... deleted code that constructed URLConnection ...
if (conn instanceof HttpsURLConnection)
{

HttpsURLConnection https_conn =
(HttpsURLConnection) conn;

CtsSecurity.SSLSessionInfo sessInfo =
https_conn.getSessionInfo();

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the server
certificate in use, and so forth. For more information, see the Interface
Repository documentation for the CtsSecurity::SSLSessionInfo interface.

SSL properties
Table 4-1 lists the properties that can be set and retrieved with the
HttpsURLConnection getSSLProperty, getGlobalProperty, setSSLProperty, and
setGlobalProperty methods. Global properties are set and read with the
getGlobalProperty and setGlobalProperty methods. Global properties affect all
HTTPS connections, not just the HttpsUrlConnection instance on which they are
set. The right column in Table 4-1 lists which methods are valid for each
property.

Some properties, if not set or set incorrectly, cause the connection to invoke an
SSL callback method. You can install a callback to respond to these cases with
the callbackImpl global property. If you do not install an SSL callback, the
default callback implementation aborts the connection attempt.

Table 4-1: HTTPS Properties

Property name Description Valid for methods

pin Always required when using SSL.

Specifies the PKCS #11 token PIN. This is
required for logging in to a PKCS #11 token
for client authentication and for retrieving
trust information.

This property cannot be retrieved.

If not set, set to “any”, or set incorrectly, the
connection invokes the getPin callback
method.

setSSLProperty
setGlobalProperty

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 35

certificateLabel Required when using mutual authentication.

Specifies the client certificate to use if the
connection requires mutual authentication.
The label is a simple name that identifies an
X.509 certificate/private key in a PKCS #11
token. If the property is not set and the
connection requires mutual authentication,
the connection invokes the getCertificateLabel
callback method, passing an array of available
certificate names as an input parameter.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

qop Always required when using SSL.

Specifies the name of a security characteristic
to use. See “Choosing a security
characteristic” on page 36 for more
information.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

userData Specifies user data (String datatype). This is
an optional property. Client code can set user
data during connection initialization and
access it using SSLSessionInfo::getProperty
method in the SSL callback implementation.
This may be useful as a mechanism to store
connection-level context information that is
otherwise not available through the
SSLSessionInfo interface.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

callbackImpl Specifies the name of a Java class that
implements the CtsSecurity.SSLCallbackIntf
interface. For example:

com.acme.AcmeSSLCallback

See “Implementing an SSL callback” on page
29 for more information.

setGlobalProperty
getGlobalProperty

availableQop Retrieve only. A list of available security
characteristics. The qop property can be set
only to values that appear in this list.

getGlobalProperty

availableQopDesc Retrieve only. A list of descriptions for the
available security characteristics, in the same
order as listed in the value of the
availableQop property.

getGlobalProperty

Property name Description Valid for methods

Using Java Secure Socket Extension classes

36 EAServer

Choosing a security
characteristic

To use SSL, you must specify the name of an available security characteristic
as the value for the qop property. The characteristic describes the CipherSuites
the client uses when negotiating an SSL connection. When connecting, the
client sends the list of CipherSuites that it uses to the server, and the server
selects a cipher suite from that list. The server chooses the first cipher suite in
the list that it can use. If the server cannot use any of the available CipherSuites,
the connection fails.

Chapter 10, “Security Configuration Tasks” describes the security
characteristics that are provided with EAServer. At runtime, you can retrieve a
list of characteristics and their descriptions by retrieving the availableQop and
availableQopDesc properties.

Using Java Secure Socket Extension classes
The Java Secure Socket Extension (JSSE) is a set of Java packages that
implements SSL and Transport Layer Security, which enables data encryption,
server authentication, message integrity, and client authentication. JSSE is a
client-side feature, which can be used with EAServer when it has been
configured for SSL communication. For more information on SSL, see
Chapter 11, “Managing Keys and Certificates.”.

Note JSSE does not contain any actual cryptographic logic. You must obtain
an API package that performs the cryptographic functions, such as Bouncy
Castle or Cryptix, which are available free over the Internet.

❖ Setting up your JSSE environment

1 Download and install the JSSE according to the documentation on the
Java Web page at http://java.sun.com/products/jsse. The basic steps are:

• Copy the JSSE JAR files to the jre/lib/ext directory in your JDK
installation.

• Edit the jre/lib/security/java.security file in your JDK installation, and
add this line:

security.provider.2=com.sun.net.ssl.internal.ssl.Provider

2 Download and install the Java Plug-in HTML Converter, either version
1.3.1 or 1.4.

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 37

If you install version 1.3.1:

a Download and install JSSE 1.0.2 in the JDK 1.3.1 jre/lib/ext
subdirectory of the JDK installation.

b Set up jre/lib/security/java.security according to the JSSE 1.0.2
directions.

3 The JSSE Samples Web page at
http://java.sun.com/j2se/1.4/docs/guide/security/jsse/samples/index.html
includes samples that create clients using JSSE. Verify that the samples
compile and run with your JDK. You must be able to use the Java samples
to request the secure VeriSign Web page at https://www.verisign.com.

4 Using the Java keytool, import the eas.crt file; for example:

keytool -import -file eas.crt -keystore
DJC_HOME/_JDK13/jre/lib/security/
[cacerts | jssecacerts] -trustcacerts

To simplify things, use the default certificate store cacerts; the password is
“changeit”.

5 To run a JSSE client application; for example, ClientApp:

a Create a ClientApp.bat file with these lines:

set CLASSPATH=%DJC_HOME%\lib\eas-client-14.jar;%CLASSPATH%
java -Djava.protocol.handler.pkgs=

com.sun.net.ssl.internal.www.protocol ClientApp

If using JDK 1.5 rather than 1.4, change the reference to
eas-client-14.jar to refer to eas-client-15.jar.

b Run ClientApp.bat.

If you do not have a Web proxy, remove the Web proxy settings from your
client, and enter the server information; for example:

iiops://localhost:9001, or
iiops://<host_name>:9001

Note The following steps apply only to HTML applets.

6 Remove these client ORB properties from your HTML applet client, if
appropriate:

• com.sybase.CORBA.WebProxyHost=localhost

• com.sybase.CORBA.WebProxyPort=80

Using Java Secure Socket Extension classes

38 EAServer

• com.sybase.CORBA.LogFile=.\iiop.log

7 To access your Web page from a Web browser, enter:

http://<host_name>:8080/jssehtml/yourAppClient.html

Where yourAppClient.html is your HTML applet client.

8 In the applet, enter iiops://<host_name>:9001 as the connection
parameter, and click Connect.

Note Sybase recommends using a Web browser that supports the Java Plug-in
1.3.1 or higher and the Java Plug-in Converter 1.3.1 or higher

Configuring ORB
settings

Direct IIOP connections using JSSE are not supported.

❖ Tunnelling IIOP through HTTPS (JSSE socket) using HTTP GET requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

❖ Tunnelling IIOP through HTTPS (JSSE socket) using HTTP POST
requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 39

❖ Tunnelling IIOP through an HTTPS connect (JSSE socket) using HTTP
GET requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

❖ Tunnelling IIOP through an HTTPS connect (JSSE socket) using HTTP
POST requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

com.sybase.jms.HttpUsePost com.sybase.CORBA.HttpUsePost true

JMS property CORBA property Vale

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.WebProxyHost com.sybase.CORBA.WebProxyHost <web_proxy_host_name>

com.sybase.jms.WebProxyPort com.sybase.CORBA.WebProxyPort <web_proxy_port>

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.HttpUsePost com.sybase.CORBA.HttpUsePost true

com.sybase.jms.WebProxyHost com.sybase.CORBA.WebProxyHost <web_proxy_host_name>

com.sybase.jms.WebProxyPort com.sybase.CORBA.WebProxyPort <web_proxy_port>

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

Using Java Secure Socket Extension classes

40 EAServer

Note The first time you connect may take a while because JSSE goes through
an SSL authentication process.

Using an unsigned
JAR

To improve performance when using an unsigned JAR, you can edit Java’s
default security policy file using the instructions in Sun’s security
documentation. To enable EAServer’s ORB to work in an unsigned
environment:

• You must grant the ORB permission to read the proxy host settings, using
one of these methods:

permission java.util.PropertyPermission “*”, “read”

or

permission java.util.PropertyPermission “javaplugin.proxy.config.*”,
“read”

• The ORB may require socket connect permissions to connect to a proxy
server.

• If you are using the sample test certificate generated by EAServer, the
EAServer certificate authority must be installed. You can do this in either
the cacerts or the jssecacerts keystore using this syntax:

keytool -import -file <file_name> -keystore [cacerts | jssecacerts]

The password for the cacerts keystore is “changeit”.

Note With a signed applet, you do not need to set permissions at the plug-in
level. A signed JAR file describes the type of permissions it requires.

Sample security file You can find a sample JDK security file in the JDK installation, in file
jre/lib/security/java.security.

Possible solutions for JSEE issues
Cannot load applet If you cannot load an HTML applet from your Web browser:

1 In the Tools | Internet Options dialog box:

• On the Connections tab, select Settings, then deselect Use a Proxy
Server. Or, if you use a proxy server, verify the information is valid.

CHAPTER 4 Using SSL in Java Clients

Security Administration and Programming Guide 41

• On the Advanced tab, under Browsing, select Browse in a New
Process.

2 In the Control Panel, double-click Java Plug-in 1.3.1_02. In the Java
Plug-in Control Panel:

• On the Basic tab, select Enable Java plug-in and Show Java Console.

• On the Proxies tab, either select Use Browser Settings, or verify the
Proxy Settings.

• Verify settings on the other tabs.

3 Shut down all Web browser sessions.

4 Close all Java console sessions; for example, from the Java Plug-in.

5 Restart your Web browser.

6 Delete all your temporary and cache files.

7 Reload the HTML applet page.

Debugging If necessary, use the Java Plug-in console for debugging; set to debug level 5.
If you reset the debug level, refresh the HTML applet.

Using Java Secure Socket Extension classes

42 EAServer

Security Administration and Programming Guide 43

C H A P T E R 5 Using SSL in C++ Clients

Introduction
A C++ client can use IIOP tunnelled within SSL (also called IIOPS) to
establish a secure session with EAServer.

Note For more information about security, including managing client side
certificates, see Chapter 11, “Managing Keys and Certificates.”

To establish a secure session with EAServer, follow these steps:

Topic Page
Introduction 43

Initializing the SSL security service 44

ORB properties for secure sessions 45

Creating a manager instance 46

Retrieving session security information 47

Creating an SSL callback component 48

Step What it does Detailed explanation

1 Initialize the SSL security service
as an ORB.

“Initializing the SSL security
service” on page 44

2 Initialize the client ORB and create
an ORB reference.

“ORB properties for secure
sessions” on page 45

3 Use the ORB reference to create a
Manager instance for the server.

“ORB properties for secure
sessions” on page 45

4 Use the Session instance to create
stub component instances. This
step is the same regardless of
whether the application uses SSL.

Chapter 6, “Developing
CORBA/C++ Clients,” of the
EAServer Corba Components
Guide.

5 Optionally, you can retrieve
security information about the
session.

“Retrieving session security
information” on page 47

Initializing the SSL security service

44 EAServer

Initializing the SSL security service
To initialize the SSL security service, you must retrieve the SSL security
service context and set the quality of security services as well as any global
properties for that context.

You must decide if you want to respond to any authentication request by the
server.

Retrieve the SSL
security service
context

In this example, you use CORBA::ORB_init to initialize the ORB as an instance,
orb1.

CORBA::ORB_var orb1 =
CORBA::ORB_init(argc,argv, "");

Use resolve_initial_references to obtain the initial context from the SSL security
service URL string (SSLServiceProvider) as an object reference, object, on
orb1. You must use SSLServiceProvider as the URL string. You use
CtsSecurity::SSLServiceProvider::_narrow to convert object to the sslServProv
instance (an instance of the SSLServiceProvider interface).

object = orb1->resolve_initial_references
("SSLServiceProvider");

sslServProv = CtsSecurity::SSLServiceProvider
::_narrow(object);

Set the quality of
security services and
global properties

To return the available qualities of security services from the availableQop
property, call getGlobalProperty on the sslServProv instance. The qualities of
security services refer to the security profile characteristic, which specifies the
supported CipherSuites.

// query Available quality of services and set
// whatever we want.
CtsSecurity::StringSeq_var * availQop =

sslServProv->getGlobalProperty("availableQop");

At this time, you can also set any global properties, such as the callback
component with the callbackImpl property. You specify the callback component
using the setGlobalProperty method. The setGlobalProperty method takes the
name of the global property, callbackImpl, and the name of the callback
component. The name of the component is the DLL or shared library name
(without the file extension) followed by a forward slash, and the package and
component name separated by forward slashes as shown in this example:

// Set callbacks.

sslServProv->setGlobalProperty
("callbackImpl", "myDLL/myPackage/myComponent");

CHAPTER 5 Using SSL in C++ Clients

Security Administration and Programming Guide 45

Enable client
authentication

To respond to a server’s request for client authentication, you can:

• Use the setGlobalProperty method to set the certificateLabel property to
the client certificate to use when the server asks for one, or

• Use the callback interface to provide a dialog (GUI- or text-based) where
the user can enter a certificate to be sent back to the server.

ORB properties for secure sessions
You must set the ORBqop property when initializing the client ORB in order to
use one of the available security profile characteristics. The security profile
characteristic lists the CipherSuites the client uses when negotiating an SSL
connection. The client sends the list of CipherSuites that it uses to the server,
and the server selects a cipher suite from that list. The server must choose the
first cipher suite in the list that it can use.

In this example, the ORBqop property is specified as sybpks_strong (strong
128-bit encryption) and the ORBuserdata property is specified as myUserData.
The CORBA::ORB_init method initializes the client ORB (orb2) with these
properties.

// Now configure a specific ORB instance,
// overriding the default Quality of
// service. Might want to connect to a server
// only using 128bit encryption.
Properties props(argc, argv);
props.put("ORBqop", "sybpks_strong");
props.put("ORBuserData", myUserData);
orb2 = CORBA::ORB_init(props.argc(),

props.argv(), "");

You can also set these properties when initializing the client ORB:

• ORBcertificateLabel Specifies the client certificate to use, if the server
requests mutual authentication. The label is a simple name that identifies
an X.509 certificate/private key in a PKCS #11 token. You must set this
property if the server will request the client's certificate. If this property is
not set and the server requests client authentication, credentialCallback is
invoked. If you set this property to “any”, then the getCertificateLabel
method in the SSLCallback interface is invoked. If client authentication is
requested and neither the certificateLabel property nor the
credentialCallback is set, the SSL session fails.

Creating a manager instance

46 EAServer

• ORBpin Specifies the PKCS #11 token PIN. This is required for logging
in to a PKCS #11 token for client authentication and for retrieving trust
information. If this property is not set and the server requests client
authentication, the Login callback implementation is invoked to get the
PKCS #11 PIN. If this property is set to the value any, then the getPin
method in SSLCallback interface is invoked. If a PKCS #11 token login is
required and neither the Login callback property nor the PIN property are
set, the SSL session fails. This property can be set application-wide using
the SSLServiceProvider context. This property cannot be retrieved once it
has been set.

• ORBuserData Specifies user data (string datatype). This is an optional
property. Client code can set user data during ORB initialization and
access it using SSLSessionInfo::getProperty method in the SSL callback
implementation. This may be useful as a mechanism to store ORB-level
context information that is otherwise not available through the
SSLSessionInfo interface.

Creating a manager instance
Creating the manager instance for an SSL session is exactly like creating a
manager instance for a non-SSL session, except that instead of specifying an
IIOP port for the manager session in the string_to_object method, you specify
the secure IIOP (specify iiops) port (the IIOPS default port number for mutual
client-server authentication is 9002). You must specify a port that supports the
at least the level of security specified by the QOP setting.

CHAPTER 5 Using SSL in C++ Clients

Security Administration and Programming Guide 47

Retrieving session security information
To retrieve security information about the session, narrow the component
object reference, typeObj, to an SSL session, sslSession. Then use the
getSessionInfo method to retrieve the session information from the SSL session
and create an object reference for the session information. Use individual get
methods to retrieve information about each SSL session property.

Note You cannot use the getName, getPassword, getAuthenticationStatus,
getListener, getPeerAddress, getHostName. These methods are inherited from
the SessionInfo interface.

// Obtain SSLSession information from
// typesObj.
CtsSecurity::SSLSession_var sslSession =

CtsSecurity::SSLSession::
_narrow(typesObj);

CtsSecurity::SSLSessionInfo_var
sslSessionInfo = sslSession->getSessionInfo();

// Obtain user data (similar usage in user's
// SSL callback implementation)
String_var currentUserData =

sslSessionInfo->getProperty("userData");

// Obtain details about server's certificate.
CtsSecurity::X509Certificate_var serverX509=

sslSessionInfo->getPeerCertificate();
cout << "Connected to server: <<

serverX509->getSubjectDN() << endl";

// get details about my certificate
CtsSecurity::X509Certificate_var clientX509=

sslSessionInfo->getCertificate();

Creating an SSL callback component

48 EAServer

Creating an SSL callback component
An SSL callback component is a component that the client uses to execute
callback methods. A callback method is a method that responds to SSL
requests from EAServer. An SSL callback component resides on the client
machine. To create an SSL callback, you must create a component DLL or
shared library and deploy it on the client machine in a directory specified by
the PATH environment variable. You can create the component in the same
manner that you would create any other server-side component—using
EAServer Manager and a C++ IDE.

You must specify the component DLL or shared library by using the
setGlobalProperty method in the CtsSecurity::SSLServiceProvider interface to
set the callbackImpl global property. For information, see “Set the quality of
security services and global properties” on page 44.

Implementing callback
methods

Although default implementations of the following callback methods are
included with the EAServer client ORB, you can implement your own logic for
these callback methods. To implement the default response for callback
methods, code them to return the CORBA::NO_IMPLEMENT exception.

• getCertificateLabel The user is prompted with the available certificate
labels and asked to choose one of them for client authentication.

• getCredentialAttribute The EAServer SSL client runtime engine
retrieves credential attributes from the user on request.

• getPin The user is prompted with the PKCS #11 token password
information and asked to provide a PIN for logging into the PKCS #11
token.

• trustVerify The user is prompted with server certificate information and
asked to determine if the server certificate chain can be trusted and if the
SSL session can proceed.

For more information about these callback methods, see the
CtsSecurity::SSLCallback interface in the interface repository documentation.
The interface repository documentation can be viewed in a Web browser by
connecting to your server with this URL:

http://yourhost:yourport/ir/

where yourhost is the EAServer’s host name and yourport is the HTTP port
number.

Security Administration and Programming Guide 49

C H A P T E R 6 Using TLS and FIPS

This chapter describes TLS and FIPS protocols and how to use them to
create secure EAServer connections.

Introduction
The National Institute of Standards and Technology (NIST) develops
standards and guidelines for security and interoperability for federal
computer systems. These guidelines are called the Federal Information
Processing Standards (FIPS).

EAServer uses a cryptographic module to perform encryption and
decryption, signing and verification, computing a checksum (or MAC) of
data, and protecting security-sensitive data. These operations are invoked
by the Transport Layer Security (TLS) runtime, a software
implementation of a PKCS #12 interface, and key management utility
routines.

EAServer utilizes a FIPS 140-2-certified cryptographic module provided
by Certicom Cryptographic libraries.

For more information, see these Web sites:

• Cryptographic Module Validation Program Web site at
http://csrc.nist.gov/cryptval/ – describes the FIPS standards, contains
related documents and specifications, and answers commonly asked
questions.

Topic Page
Introduction 49

SSL/TLS and FIPS support 50

Compatibility with earlier versions 53

Enabling TLS-secure listeners 54

SSL/TLS and FIPS support

50 EAServer

• Certicom Security Builder Government Standard Edition (GSE) Web site at
http://www.certicom.com/index.php?action=product,sbgse – describes the
FIPS 140-2 certified cryptographic module that is integrated into
EAServer.

• Certificate and cryptographic module information at
http://csrc.nist.gov/cryptval/140-1/1401val2003.htm#351 – contains a list of
certificates issued by NIST, including a copy of the Certicom certificate.

TLS is a protocol based on Secure Sockets Layer (SSL) that is used to establish
secure connections between a client and server. TLS can authenticate both the
client and the server, and create an encrypted connection between the two.

The TLS protocol addresses some of the security concerns of SSL v3. FIPS
requires TLS for use with a FIPS cryptographic module.

See RFC 2246 at http://www.faqs.org/rfcs/rfc2246.html for a complete description
of TLS.

SSL/TLS and FIPS support
EAServer security includes support for SSL, certificate handling, and TLS,
including:

1 keytool – a command line tool used to configure and modify the certificate
database, generate certificate requests, and so on. See “Managing keys and
certificates on EAServer” on page 102 for more information.

2 set-certificate – a command line script used to map certificates to users.
See “Set-certificate” on page 102 for more information.

3 Two implementations for handling SSL/TLS protocol and related
ciphersuites:

• JSSE – JDK1.4 includes support for JSSE (Java Secure Socket
Extension), allowing you to use existing applications with little
modification.

• Certicom SSL-J – includes a Java implementation of the SSL/TLS
protocol that supports more ciphersuites than JSSE and is certified
against FIPS140-2.

Set the ORB option com.sybase.ejb.useJSSE to choose between JSSE
and Certicom implementations on the client side. Certicom is the
default if the variable is not set.

CHAPTER 6 Using TLS and FIPS

Security Administration and Programming Guide 51

By default, the TLS version 1 protocol is enabled on the server and
client.

❖ Enabling FIPS using the Certicom Java libraries

FIPS mode requires Certicom Java 1.4 libraries to be installed and running.

When FIPS mode is enabled, any SSL listener not using a FIPS-supported
security profile is considered invalid, and does not start. See “Security
characteristics” on page 55 for a list.

1 On the server – from the Web Management Console, select FIPS Mode
Enabled for the server on which you are enabling FIPS. See “JSSE
configuration” on page 53 for instructions.

If you set the “-fips false” option, the server is started using the JSSE
library.

With FIPS enabled, you can use only certain algorithms (security
characteristics) for quality of protection (QOP). See “Security
characteristics” on page 55 for a list.

2 On the client – set the com.sybase.ejb.fips connection property to
specify FIPS usage. Additional client-side properties added to support
FIPS include:

• com.sybase.ejb.keystore

• com.sybase.ejb.truststore

• com.sybase.ejb.keystoreType

• com.sybase.ejb.truststoreType

• com.sybase.ejb.keystorePassword

• com.sybase.ejb.truststorePassword

• com.sybase.ejb.qop

• com.sybase.ejb.useJSSE

• com.sybase.ejb.certificateLabel

• com.sybase.ejb.pin

com.sybase.ejb.pin is used to support backward compatibility.
When this property is set and keystorePassword and
truststorePassword are not specified, the pin property is used.

With FIPS enabled, typical client code used to access an EJB on the server
could look like:

SSL/TLS and FIPS support

52 EAServer

Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,
“com.sybase.ejb.InitialContextFactory”);
props.put(Context.PROVIDER_URL, “iiops://” + “localhost” + “:” + port1);
props.put(Context.SECURITY_PRINCIPAL, “admin@system”);
props.put(Context.SECURITY_CREDENTIALS, “sybase1”);
props.put(“com.sybase.ejb.qop”, “intl”);
Context ctx = new InitialContext(props);
Object obj = ctx.lookup(“ejb”);

JMS clients
For JMS clients, set the com.sybase.jms.fips connection property to
specify FIPS usage. Additional client-side properties added to support FIPS are
the same as mentioned above for EJBs, except the property names use jms
instead of ejb. For example, com.sybase.ejb.keystore becomes
com.sybase.jms.keystore. You also need the proper Java libraries in the
classpath, namely under the lib/fips/ subdirectory.

If FIPS mode is enabled, EAServer logs the message FIPS 140-2 mode
enabled to the console. If the mode is not set, no message is logged.

Enabling FIPS has the following effect on EAServer:

• Permits TLS protocol only by the SSL/TLS runtime engine.

• Permits the use of cipher suites and security characteristics listed in
Table 6-1 on page 55.

• Accepts X.509 certificates signed using a SHA1WithRsa algorithm.
Certificates signed with any other algorithm are not accepted and generate
an error.

• Other cryptographic functionality that normally employ a non-FIPS
approved algorithm now fail. For example, a PKCS #12 certificate
containing a private key shrouded (signed) with a
pbeWithSHA1And40bitRc4 algorithm fails to import, since RC4 is not a
FIPS 140-2-approved algorithm. The private key and public keys must be
shrouded using pbeWithSHA1And3KeyTripleDescbc.

For FIPS certification:

• When EAServer runs with JDK 1.4, it is FIPS certified.

• When EAServer runs with JDK 1.5, it is not FIPS certified.

CHAPTER 6 Using TLS and FIPS

Security Administration and Programming Guide 53

JSSE configuration
The Java Secure Socket Extension (JSSE) is a set of Java packages that
implements SSL and Transport Layer Security, which enables data encryption,
server authentication, message integrity, and client authentication. JSSE is a
client-side feature, which can be used with EAServer when it has been
configured for SSL communication. See “Configuring JSSE” on page 96 for
more information.

FIPS mode for Java-side cryptography usage
On the server, you must use the Certicom library to enable FIPS mode. The
Java client uses the Certicom library by default to make SSL/TLS connections.
To disable the Certicom Java library and use JSSE instead, set
-Djsse=true or use the com.sybase.ejb.UseJSSE property in the ORB.

C/C++ clients use native calls into the SSL handler.

Java clients using JSSE to establish an SSL connection should use a FIPS-
approved JSSE provider. EAServer SSL client runtime is not a JSSE provider.

Java clients and components that utilize a Java Cryptography Extension (JCE)
provider should install a FIPS-enabled JCE provider to operate in a FIPS 140
mode. Further, Java components hosted in EAServer that also use a JCE
provider should install a FIPS-enabled FIPS provider.

Compatibility with earlier versions
There is a new class in EAServer 6.0 called
com.sybase.djc.security.SSLGlobalProperties, which can be invoked in two
ways:

SSLGlobalProperties.callBackImpl=foo

In this case, foo is the fully qualified name for the class implementing the
SSLCallBack interface, or

SSLGlobalProperties.callBackImpl=foo/bar

In this case, foo/bar refers to a component residing in the server.

You must use the Certicom library to use this SSLCallBack.

Enabling TLS-secure listeners

54 EAServer

The EAServer SSL client runtime earlier than version 5.2 offers a mechanism
to query the user and obtain the PKCS#11 pin, determine whether to trust the
server certificate and set a client-side certificate to use for the SSL connection
(if necessary).

The method getCertificateLabel() in the SSLCallback interface queries the user
to determine which client-side certificate to use during the SSL handshake. The
server asks the client to authenticate itself during mutual authentication, by
sending a message as part of the SSL handshake requesting a client certificate.
When this request arrives at the client, and the client has not set its client
certificate, the SSL client runtime queries the user through the
getCertificateLabel() method. For more details on this, see the corresponding
IDL documentation.

The post-5.1 EAServer SSL client runtime does not invoke the
getCertificateLabel() callback. If your client application relies on the
getCertificateLabel() method being invoked/executed during mutual
authentication using SSL, do the following after installing EAServer 5.2 or
later:

1 In the shell used to run the client program, set the environment variable
JAGSSL to true. This has the effect of using the earlier version of the
EAServer SSL client runtime. The earlier version of the SSL runtime does
not support TLS.

PowerBuilder client applications that rely on mutual authentication should
also set JAGSSL to true before running the application, but for a Java
client you must set -DuseJSSE to true.

2 If you do require TLS support now, you must recode your client
application. For example, if this is an EJB client application, set the client
certificate label using the com.sybase.ejb.certificateLabel ORB property.

Enabling TLS-secure listeners
Define security profiles in EAServer using the Sybase Management Console.
Associate the profile with a server listener and determine the SSL
characteristics of the listener. The profile is used on the client side to set the
SSL connection parameters. Follow the same procedures to assign a profile
containing TLS characteristics to a listener. A profile has a security
characteristic, which is a combination of the following properties:

• SSL or TLS cipher suite

CHAPTER 6 Using TLS and FIPS

Security Administration and Programming Guide 55

• Authentication mode – server only, mutual, or none

Table 6-1 displays a list of the security characteristics and cipher suites used to
support TLS. A characteristic that includes _mutual_ specifies:

• For a client – the client wants to authenticate to the server, or

• For a server – the client’s certificate is necessary.

Table 6-1 lists the name, the level of authentication, the supported cipher suites
for each TLS security characteristic, and if it supports FIPS.

FIPS-supported cipher suites for each TLS security characteristic are enabled
when a server or client is operating in a FIPS 140-2 mode.

When EAServer or a client is operating in a FIPS-compliant mode, only the
TLS protocol should be used. FIPS 140-2 has an approved list of algorithms.
Due to this requirement, not all cipher suites are available while operating in a
FIPS mode.

❖ Modifying security profile properties

1 From the Web Management Console, expand the Security folder.

2 Expand the Profiles folder.

3 Highlight the security profile whose properties you want to modify. The
General Properties pane appears, from which you can define or modify
these general profile properties:

1 Certificate Label – the name of the certificate label for this profile.
The certificate label identifies the certificate used for authentication.

2 Security Characteristic – select a security characteristic to use for the
security profile from the drop-down list. The characteristic defines the
required level of security, including authentication. Table 6-1 lists the
characteristics, cipher suite support, and authentication level.

Table 6-1: Security characteristics

 Name of characteristic Authenticates Cipher suites
Supports
FIPS?

domestic server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA

Yes

Enabling TLS-secure listeners

56 EAServer

domestic_anon_tls neither DH_anon_WITH_3DES_EDE_CBC_SHA
DH_anon_WITH_RC4_128_MD5
DH_anon_WITH_DES_CBC_SHA
DH_anon_EXPORT_WITH_RC4_40_MD5
DH_anon_EXPORT_WITH_DES40_CBC_SHA

The _anon profiles are used for anonymous
Diffie-Hellman communications. Neither the
client nor the server is authenticated.

No

domestic_mutual client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

Yes

domestic_mutual_tls client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

Yes

domestic_tls server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA

Yes

intl_mutual_tls client/server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

No

intl_tls server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

No

simple_tls server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

No

simple_mutual_tls client/server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

No

 Name of characteristic Authenticates Cipher suites
Supports
FIPS?

CHAPTER 6 Using TLS and FIPS

Security Administration and Programming Guide 57

strong server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

Yes

strong_mutual client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

Yes

strong_tls server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

Yes

strong_mutual_tls client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

Yes

tls_rsa_with_3des_ede_cbc
_sha

server rsa_with_3des_ede_cbc_sha Yes

tls_rsa_with_3des_ede_cbc
_sha_mutual

client/server rsa_with_3des_ede_cbc_sha Yes

tls_rsa_with_aes_256_cbc_
sha

server rsa_with_aes_256_cbc_sha Yes

tls_rsa_with_aes_256_cbc_
sha_mutual

client/server rsa_with_aes_256_cbc_sha Yes

tls_rsa_with_aes_128_cbc_
sha

server rsa_with_aes_128_cbc_sha Yes

tls_rsa_with_aes_128_cbc_
sha_mutual

client/server rsa_with_aes_128_cbc_sha Yes

tls_rsa_with_des_cbc_sha server rsa_with_des_cbc_sha Yes

tls_rsa_with_des_cbc_sha_
mutual

client/server rsa_with_des_cbc_sha Yes

tls_rsa_with_rc4_128_sha server rsa_with_rc4_128_sha Yes

tls_rsa_with_rc4_128_sha_
mutual

client/server rsa_with_rc4_128_sha Yes

tls_rsa_export_with_rc4_40
_md5

server rsa_export_with_rc4_40_md5 No

tls_rsa_export_with_rc4_40
_md5_mutual

client/server rsa_export_with_rc4_40_md5 No

 Name of characteristic Authenticates Cipher suites
Supports
FIPS?

Enabling TLS-secure listeners

58 EAServer

Security Administration and Programming Guide 59

C H A P T E R 7 Creating and Using Custom
Security Components

This chapter describes how to use custom components to perform security
tasks such as user authentication and authorization. These features allow
you to create your own components to customize EAServer security and
to integrate with third-party enterprise security software such as Netegrity
SiteMinder.

Introduction
Custom authentication service components, authorization service
components, and role service components are security-domain-based. You
can specify a specific component name or the full Java class name in the
corresponding property for the security domain.

For example, you can name an authorization service component
authservicecomponent-foo.bar, which is an authorization service
component for the package foo, and component bar.

See “Configuring domains” on page 77 for information about defining
custom service components used to enforce domain security.

Topic Page
Introduction 59

Using a custom authentication service 60

Using a custom role service 61

Using a custom authorization service 62

Using a custom authentication service

60 EAServer

Using a custom authentication service
You can specify different authentication service components for individual
security domains in EAServer 6.0 using a custom authentication service
component. For example, to configure the security domain named bar to use a
custom authentication service component, choose an authentication method of
“cts-auth”, see “Login methods” on page 81, and enter the name of the
customized service component. All users registered under the bar domain are
authenticated by this component.

As an example, if you require the client user name to match a remote database
user name, code the component to retrieve the client user name and password
and attempt to log in to the remote database.

The security domain delegates authentication requests to this component or
class:

• If using a CORBA component, specify its name in the form
“MyPackage/MyComp”. The component must implement the
CtsSecurity::AuthService IDL interface.

This interface contains the method checkSession. Your code for this
method can check the client’s user name and password and the status of
other authentication checks, that is, whether the client’s credentials have
passed OS authentication or SSL authentication checks. Your code can
perform additional authentication checks and auditing. For more
information, see the documentation for the CtsSecurity::AuthService IDL
interface.

• You can also use a Java class with the simplified authenticate API, which
is recommended if your implementation is in Java, rather than using a
component. If you use a Java class, specify its fully qualified class name.
The class must contain a method with the signature:

public boolean authenticate(String username, String password)
{
...
}

Maintaining authenticated sessions
EAServer provides a mechanism by which applications can extend and
maintain the authenticated session beyond the lifetime enforced by EAServer.
This mechanism uses the methods CtsSecurity::SessionInfo::setName and
CtsSecurity::SessionInfo::getCallerPrincipal.

CHAPTER 7 Creating and Using Custom Security Components

Security Administration and Programming Guide 61

If these methods are implemented, you must also handle the authorization of
the user by either implementing a role service or authorization service. The
internal role checking performed by EAServer does not work unless the
alternate user name is added to the authorized user’s list for the role. As the
alternate user name that is set using the setName API can be dynamic, the role
service or authorization service should work in tandem with the authentication
service to authorize the user.

CtsSecurity::SessionInfo::setName is a method that can be called only when
your custom authentication component is running. When this method is called
from the custom authentication component, the server sets the reference to the
authenticated security credentials. When the client needs to be authenticated
again, the custom authentication component returns the original principal name
by calling CtsSecurity::SessionInfo::getCallerPrincipal(string alternate_name).

The CtsSecurity::SessionInfo::setName method has no effect if clients obtain
component instances using CSIv2. If you are using CSIv2, you must use a
JAAS module in addition to an authentication or other component. See Chapter
8, “Using the JAAS API.”

Retrieving HTTP session information
In a custom authentication component implemented in Java, you can call the
com.sybase.jaguar.server.Jaguar.getHttpServletRequest() method to retrieve the
HTTP servlet request (if any) that triggered the authentication event. This
method returns null if the authentication event is not associated with an HTTP
request (for example, if the authentication is for a component invocation).

Using a custom role service
You can install your own component that performs access control based on role
membership. The component must implement the CtsSecurity::RoleService
IDL interface. Your custom role service evaluates user membership in
EAServer roles, so authorization in your application is still dependent on the
role names associated with a package, component, method, or Web resource
collection. Using a role service eliminates the need to define role memberships
in the Sybase Management Console. For example, you might code your
component to retrieve role membership information from a database.

Using a custom authorization service

62 EAServer

You can also use a Java class with the simplified isUSerInRole API. This is
recommended if the implementation is in Java, rather than using a component.
If using a Java class, specify its fully qualified class name. The class must
contain a method with the signature:

public boolean isUserInRole(String user, String role)
{
...
}

Creating a role service
The role service must be a stateless component that implements the
CtsSecurity::RoleService IDL interface:

 interface RoleService {
 boolean isMember(
 in CtsSecurity::SessionInfo sessionInfo,
 in string role);
 };

isMember checks if the authenticated client is a member of the role. The client’s
credentials are obtained from sessionInfo. The server first checks if the role is
defined in the repository. If the role is defined, membership checks are
performed. If the role is not defined, the server assumes that the user is not a
member of the role, and the role service is invoked. The result from this method
is cached by the server, where it can be referenced for the same client/role
combination, provided the internal cache has the relevant information.

Using a custom authorization service
You can create and install your own component to authorize clients to access
resources (packages, Web applications, or applications) on any EAServer.

Deciding whether to use the authorization services or role service
Using an authorization service offers greater control than using a role service,
but the API is more complicated than the role service API.

CHAPTER 7 Creating and Using Custom Security Components

Security Administration and Programming Guide 63

The role service acts server-wide, and evaluates user membership in declared
EAServer roles associated with a resource (package, component, method, or
Web resource collection).

An authorization service can control access to all resources on a server, or only
those in a particular application, Web application, or package. With the
authorization service, you can allow or deny access to resources with no
dependencies on roles configured in EAServer.

You can use both a role service and an authorization service. For example, you
could use a role service to configure role-based resource permissions in the
Web Management Console, but use an authentication service to create audit
logs to track user access to resources.

Creating the authorization service
An authorization service component must implement the
CtsSecurity::AuthorizationService IDL interface, and be stateless to support
refresh. It must be one of:

• Java CORBA

• PowerBuilder Non-Visual User Object (NVO)

• C++ CORBA

• Stateless Component Object Model (COM)

Usage

 interface AuthorizationService {
 boolean isAuthorized(
 in CtsSecurity::SessionInfo sessionInfo,
 in StringSeq resource,
 in StringSeq roles,
 in boolean isMember,
 in long permTimeDelta);

isAuthorized checks if the client is authorized to access a resource. The client’s
credentials can be obtained from sessionInfo.

resource is the entity the client is trying to access. The resource is represented
as an ordered array of strings, and each string represents a scoped entity. A
string starts with one of these prefixes:

• A: – application

• WA: – Web application

Using a custom authorization service

64 EAServer

• P: – package

• C: – component

• M: – method

• S: – servlet

• HM: – HTTP method (GET, PUT, POST, and so on)

• URL: – complete URL being accessed

For example, if the resource being accessed is a servlet or a JSP that belongs to
a Web application, which belongs to an application, then the array might
contain the following string sequence:

A:ApplicationName; WA:WebApplicationName; S:servletName; HM:httpMethod;

roles lists all the roles associated with the resource (if any). The server first
checks if the role is defined in the repository. If the role is defined, then
membership checks are performed and if the user is in at least one of the roles,
the authorization check succeeds. isAuthorized is still invoked, and the caller
can audit the resource access. isMember is set to AUTH_OK to indicate that the
authorization succeeded. If a role is not defined, it is assumed that the user is
not a member of the role.

If the user is not a member of all the roles, then isMember is set to
AUTH_FAILED. isAuthorized then determines whether to authorize the client.
isAuthorized returns true if the user is allowed access to the resource, and
returns false otherwise.

permTimeDelta is the time difference in seconds, since the last time isAuthorized
was invoked for this particular user and resource combination. This value can
be used by the authorization component logic to determine whether to audit the
event. A value of zero (0) implies that the isMember was not determined from
the internal permission cache. A positive value indicates that the isMember was
determined from the internal permission cache. permTimeDelta is always less
than or equal to the server-wide authorization permission cache timeout value
(see the Permission Cache Timeout property described in Table 10-1 on
page 78).

Security Administration and Programming Guide 65

C H A P T E R 8 Using the JAAS API

Introduction
The Java Authentication and Authorization Service (JAAS) provides a
framework and standard programming interface for authenticating users
and assigning privileges. JAAS is based on the Pluggable Authentication
Module (PAM) standard, which extends the access-control architecture of
the Java 2 platform to support user-based authentication and
authorization.

JAAS support is provided in EAServer as an alternative authentication
mechanism. EAServer supports user-name and password-based JAAS
authentication. The code-level authorization component of JAAS is not
supported in this version of EAServer.

EAServer 6.0 does not support the use of JAAS in clients. The security
principal and credentials for EJB or JMS InitialContext are used
exclusively. EAServer 6.0 support for JAAS with EJB, JMS and Web
clients is limited to the JAAS loginMethod method for a security domain.
See “Login methods” on page 81 for more information.

See the Java software Web site at http://www.java.sun.com/products/jaas/
for more information about JAAS.

There are several new terms that are used throughout this chapter:

Principal represents a user identity that is used to gain access to a
computing service. Typically, a user’s login name or public key.

Topic Page
Introduction 65

JAAS in EAServer 67

JAAS for connectors 67

Introduction

66 EAServer

Credentials represents a security attribute of a principal. Typically, a user's
password or public-key certificate. The credential is set in the subject when a
principal is authenticated successfully.

Subject is an entity that has one or more principals and corresponding security
attributes.

A login context is a JAAS framework for developing applications independent
of underlying authentication technology.

A login module is an authentication module that can be plugged in under a Java
application using JAAS framework. The module implements the JAAS
javax.security.auth.spi.LoginModule interface. It performs any authentication
either on its own or by interacting with any external authentication service such
as Kerberos.

A callback is a mechanism by which a login module retrieves authentication
parameter values needed for authentication from the Java application. The
callback is implemented in a Java application to pass required parameters to the
login module. It implements the javax.security.auth.callback interface.

The JAAS configuration file ($EAServer/config/eas_jaas.cfg) specifies:

• One or more authentication modules for an application

• The order in which authentication modules are invoked

• Other parameters and options

This is the interaction between an application, login module, and the JAAS
configuration file:

1 The Java application program instantiates a login context that consults the
JAAS configuration file to load all of the login modules configured for that
application.

2 The login module requests the Java program to provide the user name and
password using the JAAS callback mechanism.

3 The login module executes custom code to authenticate the user and set up
the subject with valid principals and credentials if successfully
authenticated.

The subject can then be used to gain access to controlled resources or to
perform privileged actions.

CHAPTER 8 Using the JAAS API

Security Administration and Programming Guide 67

JAAS in EAServer
Over time, you may need to modify or replace authentication infrastructure due
to deficiencies, enhancements, or applications requiring a different security
policy. EAServer support for JAAS login modules simplifies replacement and
modification of the underlying authentication mechanism.

Configure domain-wide login modules that are used to authenticate clients
trying to gain access to applications, Web applications, and servlets/JSPs. The
JAAS login method (see “Login methods” on page 81) points to the JAAS
configuration file, which determines the login module to use for a specific
domain.

Based on the contents of the configuration file, EAServer invokes any
specified login modules. If a login module is not defined, JAAS is bypassed
and the server uses the regular mechanism, if any, for authentication. For
example, if credentials are passed to a server and no login module is defined,
the server uses operating system authentication, if enabled.

If a login module is defined, it overrides any other authentication service that
may be installed, and passes the request for authentication to the login module.

Enabling JAAS for a domain
To enable JAAS, specify JAAS as the login method for the domain (see
“Configuring domains” on page 77), from which you specify the JAAS
configuration file and section name in the server properties. EAServer uses the
login module in that section for authentication.

Your EAServer installation contains a JAAS configuration file, eas_jaas.cfg,
in the config subdirectory.

JAAS for connectors
The J2EE connector architecture enables you to write portable Java
applications that can access multiple transactional enterprise information
systems. A resource adapter is a specialized connection factory that provides
connections for EJBs, Java servlets, JSPs, and CORBA-Java components.

JAAS for connectors

68 EAServer

Each resource adapter has a set of managed connection factories with their own
property files. The Java Connection Manager (JCM) classes create the
connection factories and manage a pool of connections for a resource adapter.
You can use JAAS to authenticate a resource adapter, resource principal, or the
application component’s caller principal when accessing enterprise
information systems.

See “Configuring connectors” Chapter 4, “Database Access” in the EAServer
System Administration Guide for more information about connectors.

Enabling JAAS-based
authentication for
connectors

To use JAAS for authentication, you must enable JAAS on the EAServer where
the resource adapter is located. See “JAAS in EAServer” on page 67.

An entry in the login configuration file is identified by the name of the resource
adapter for which JAAS is used. If container-managed authentication is set,
any component that tries to obtain a connection from resource adapter’s
connection factory is authenticated by the login module defined by the
configuration file entry.

Security Administration and Programming Guide 69

C H A P T E R 9 Deploying Applications Around
Proxies and Firewalls

Proxy servers are typically used to isolate computers on a corporate
network from the Internet. Connections to and from the Internet must go
through the organization’s proxy servers. EAServer does not include
proxy server software, but supports client connections through proxy
servers to EAServer.

This chapter describes security features for clients that connect over the
Internet or through proxy servers. You should understand the basics of
your client model before reading this chapter.

Connecting through proxy servers
Proxy servers are typically used to constrain and secure connections from
an organization’s computers to sites that require connecting across the
Internet. To enhance security, some network configurations require all
Internet connections to go through a proxy server, including IIOP
connections to EAServer.

EAServer supports two types of proxy servers for clients, Web proxies and
reverse proxies.

Topic Page
Connecting through proxy servers 69

Using Web proxies 70

Using reverse proxies 73

Using Web proxies

70 EAServer

Using Web proxies
Web proxies typically act as a gateway for outgoing connections from a group
of workstations. Web proxies can be used to enhance network security, for
example, a proxy may constrain which servers clients can connect to and which
protocols may be used, and log outgoing connections. Web proxies may also
be used to improve network performance, by caching the results of frequently
executed Web requests. Web proxies are also referred to as HTTP-connect-
based proxies. Figure 9-1 illustrates how clients connect to servers through a
Web proxy.

Figure 9-1: Connecting through a Web proxy

Clients connect to EAServer through a Web proxy as follows:

1 Using the HTTP protocol, the client connects over the Internet to the Web
proxy, embedding the destination server address inside a specially
formatted HTTP connect request.

2 The Web proxy connects to the host and port indicated in the initial HTTP
connect request.

3 Subsequent traffic is forwarded unchanged between the client and server
until the connection is closed.

Java applets can use the built-in proxy configuration provided by Web
browsers such as Netscape Navigator. See your Web browser’s documentation
for information on configuring proxy addresses. For applets running in a Web
browser, HTTP and HTTPS-tunnelled IIOP connections automatically use the
browser’s proxy connection settings. HTTP-tunnelled IIOP connections go
through the browser’s configured HTTP proxy. HTTPS-tunnelled IIOP
connections go through the browser’s configured secure proxy.

Other applications must specify the Web proxy address by setting the Web
proxy host and port in the properties described below.

CHAPTER 9 Deploying Applications Around Proxies and Firewalls

Security Administration and Programming Guide 71

Properties that affect Web proxy use
Table 9-1 describes the client properties that configure connections that must
be opened through a Web proxy. You must set these properties in addition to
any properties that you would set to connect directly to EAServer. For JMS
clients, see the JMS User’s Guide.

Table 9-1: Properties that affect Web proxy use

C++/
PowerBuilder
property CORBA property EJB property Specifies

ORBWebProxyHost or
environment variable
JAG_WEBPROXYHOST

com.sybase.CORBA.

WebProxyHost

com.sybase.ejb.

WebProxyHost

Specifies the host name or IP address
of the Web proxy server. Does not
apply to Java applets running in a Web
browser, which use the proxy address
specified by the browser’s proxy
configuration. There is no default for
this property, and you must specify
both the host name and port number
properties.

ORBWebProxyPort or
environment variable
JAG_WEBPROXYPORT

com.sybase.CORBA.

WebProxyPort

com.sybase.ejb.

WebProxyPort

Specifies the port number at which the
Web proxy server accepts
connections. Does not apply to Java
applets running in a Web browser,
which use the proxy address specified
by the browser’s proxy configuration.
There is no default for this property,
and you must specify both the host
name and port properties.

ORBHttp or environment
variable JAG_HTTP

com.sybase.CORBA.

http

com.sybase.ejb.

http

By default, the client ORB attempts to
open IIOP connections, then attempts
an HTTP-tunnelled connection if
plain IIOP fails. Since Web proxy
connections require HTTP tunnelling,
set this to true to eliminate the
performance overhead of trying plain
IIOP connections before trying
HTTP-tunnelled IIOP.

Using Web proxies

72 EAServer

ORBHttpExtraHeader
or environment variable
JAG_HTTPEXTRAHEADER

com.sybase.CORBA.

HttpExtraHeader

com.sybase.ejb.

HttpExtraHeader

An optional setting to specify what
extra information is appended to the
header of each HTTP packet sent to
the Web proxy server. There is no
need to set this property unless your
HTTP proxy server has special
protocol requirements. By default, the
following line is appended to each
packet:

User-agent:
Jaguar/major.minor

where major and minor are the major
and minor version numbers of your
EAServer client software,
respectively.

You can set this property to specify
text to be included at the end of each
HTTP header. If multiple lines are
included in the setting, they must be
separated by carriage return and line
feed characters. If the setting does not
include a “User-agent:” line, then the
default setting above is included in the
HTTP header.

N/A com.sybase.CORBA.

useJSSE

com.sybase.ejb.

useJSSE

Use the Java Secure Sockets
Extension (JSSE) classes for secure
HTTP-tunnelled (HTTPS protocol)
connections. JSSE provides an
alternative to the built-in SSL
implementations when secure
connections are needed from an applet
running in a Web browser. Additional
configuration may be required to use
this option.

C++/
PowerBuilder
property CORBA property EJB property Specifies

CHAPTER 9 Deploying Applications Around Proxies and Firewalls

Security Administration and Programming Guide 73

Using reverse proxies
Reverse proxies typically act as a gateway for incoming connections to an
organization’s network servers, preventing direct connections from clients
outside the firewall to servers inside the firewall. The reverse proxy can
enhance security, by restricting protocols and logging connection activity.
Reverse proxies may also act as caches to respond to common requests. In
some cases, multiple reverse proxies may be deployed to cache results from
one server, as a form of load balancing. Figure 9-2 shows how clients connect
through a reverse proxy.

Figure 9-2: Connecting through a reverse proxy

Clients connect to EAServer through a reverse proxy as follows:

1 The client connects to the reverse proxy, and sends each IIOP packet
tunnelled inside an HTTP or HTTPS packet. The destination server
address is encoded in the HTTP packet header as:

GET /host/port/HIOP/1.0/...

Where host is the target EAServer host name, and port is the target
EAServer port number.

2 The reverse proxy uses its URL mapping configuration (shown as a
database in the figure) to determine the destination server address.

3 The reverse proxy opens a connection to the destination server, or reuses
an existing connection, and forwards the request to the server, then
forwards the response to the client.

Reverse-proxy configuration
For use with EAServer, you must configure your reverse proxy server’s URL
mapping table to recognize the EAServer addresses embedded in the HTTP
requests sent by the client runtime. For each EAServer that clients can connect
to through the server, configure a mapping for the following URL prefix:

Using reverse proxies

74 EAServer

GET /host/port/HIOP/1.0/

Where host is the target EAServer listener host name, and port is the target
EAServer listener port number. For each EAServer that you deploy behind the
reverse proxy, add a mapping for each IIOP, IIOPS, and Message Service
listener address. If you deploy an EAServer cluster behind a reverse proxy, add
mappings for each server in the cluster.

Properties that affect reverse proxy use
To connect through a reverse-proxy server, you can set the properties in Table
9-2. You must set these properties in addition to any properties that you would
set to connect directly to EAServer. For JMS clients, see the JMS User’s Guide.

Table 9-2: Properties that affect reverse proxy use

C++/
PowerBuilder
property CORBA property EJB property To indicate

ORBProxyHost or
environment variable
JAG_PROXYHOST

com.sybase.CORBA.

ProxyHost

com.sybase.ejb.

ProxyHost

Specifies the machine name or
the IP address of the reverse-
proxy server.

ORBProxyPort or
environment variable
JAG_PROXYPORT

com.sybase.CORBA.

ProxyPort

com.sybase.ejb.

ProxyPort

Specifies the port number of the
reverse-proxy server, typically 80
for HTTP-tunnelled connections
or 443 for SSL (HTTPS-
tunnelled) connections.

ORBHttp or
environment variable
JAG_HTTP

com.sybase.CORBA.

http

com.sybase.ejb.

http

Set this property to true if the
reverse-proxy server requires
HTTP-tunneled connections. If
you do not set this property,
connections still go through, but
only after the client ORB first
tries to open an IIOP connection.
Setting the property eliminates
the overhead that is incurred by
trying plain IIOP each time a
connection is made.

ORBforceSSL or
environment variable
JAG_FORCESSL

com.sybase.CORBA.

forceSSL

com.sybase.ejb.

forceSSL

Set this property to true if the
connection to the reverse proxy
must use SSL (HTTPS)
tunnelling, but the connection
from the proxy to the EAServer
does not use SSL tunnelling.

CHAPTER 9 Deploying Applications Around Proxies and Firewalls

Security Administration and Programming Guide 75

ORBqop or
environment variable
JAG_QOP

com.sybase.CORBA.

qop

com.sybase.ejb.

qop

In applications that connect to a
proxy using SSL (HTTPS)
tunnelling, set the quality of
protection (QOP) to a security
characteristic that matches the
one supported by the reverse-
proxy server. See “Configuring
security profiles” on page 90 for
more information. If the
connection to the proxy server
requires SSL, but the connection
from the proxy does not, do not
set the QOP; instead, set the
forceSSL property to true.

Do not set QOP in Java applets
that use SSL. Instead, code the
applet to connect to a listener that
supports the required security
level.

N/A com.sybase.CORBA.

autoProxy

com.sybase.ejb.

autoProxy

In Java applets, set this property
to true to enable connections to a
reverse-proxy server. You must
also configure your applet to
download through the reverse-
proxy server itself. The default is
false. This property is ignored if
the client is not a Java applet, or
has not initialized the Java ORB
with the ORB.init method that
takes an Applet parameter.

When automatic proxy is
enabled, the ORB uses the
applet’s download address as the
reverse-proxy server address. If
the port number is 443, SSL
(HTTPS tunnelling) is used;
otherwise, HTTP tunnelling is
used.

C++/
PowerBuilder
property CORBA property EJB property To indicate

Using reverse proxies

76 EAServer

Security Administration and Programming Guide 77

C H A P T E R 1 0 Security Configuration Tasks

This chapter describes the most common declarative security mechanisms
provided by EAServer and configured with the Sybase Management
Console.

Configuring domains
EAServer 6.0 uses the “user@domain” style for user security. This
improves the ability for administrators to separate different user security
settings into different domains. For example, you can separate users into
different domains, and use a different access control policy for each
domain.

As a result, every user is a member of a domain. For example,
admin@system represents the admin user in the system domain. If you
provide only the user name, the server assigns it to the ‘default’ domain;
user@default. Any user, in any domain, can have “admin-role” assigned
to it. “admin@system” is the default. EAServer includes two preinstalled
domains; system, and default.

In addition, there is no default password set for the user 'admin@system'.
When you install EAServer, you are asked to provide an admin password.
Otherwise use the set-admin-password command to set the admin
password. You must set this password before you can start EAServer.

Topic Page
Configuring domains 77

Managing users 85

Configuring roles 86

Configuring OS authentication 89

Configuring security profiles 90

Associating a listener with a security profile 95

Configuring JSSE 96

Configuring database set-proxy for CMP 99

Configuring domains

78 EAServer

❖ Adding a new domain

1 From the Web Management Console, expand the Security folder.

2 Right-click the Domains folder and select Add.

3 The New Domain wizard guides you through adding a new security
domain. You can then set domain properties.

❖ Setting domain properties

1 From the Web Management Console, expand the Security folder.

2 Select Domains | domain_name, where domain_name is the domain for
which you are setting properties. The right pane displays the domain
properties.

3 Select the General, Password Settings, or Login Properties tab to access
the properties. See Table 10-1 (General) and Table 10-2 (Password
Settings) for a description of the properties.

The Login Properties tab contains one property, Certificate Digest
Algorithm, which defines the Secure Hash Algorithm (SHA) used for
logins to this domain. SHA-512 is the default.

4 Select Apply to apply your changes, or Reset to restore them to their
previous values.

Table 10-1: General domain properties

Property name Description

Login Method Select the method used for login from the drop-down list. See “Login
methods” on page 81 for a description of each.

Login Cache Timeout Specifies how long to cache login information before timing out. The
value is in seconds.

Once a user is logged in, the login information (user name and
password) is maintained in the system. The next time the same user
logs in, the system checks the cached information and compares it with
the password. This way, normal authentication is bypassed and
performance enhanced.

Login Failure Lock Threshold Specifies the number of times the client can retry with wrong
credentials before being locked out.

Login Failure Lock Timeout Specifies the amount of time a user is locked out when the login failure
lock threshold is reached.

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 79

Access Control Policy The access control policy for the selected login method.

The Access Control Policy should be configured to the name of the
policy class for all security domains which might be associated with
JACC-enabled modules. The policy class selected for this purpose is
expected to perform JACC policy checks only. See “JACC (JSR-115)
support” on page 84.

JRE-related policy can be separately enabled (if required) using
standard JRE security policy mechanisms.

Audit Access Denied When set to true, any failure caused by a user trying to access a server
resource is logged to the server’s log file
($EAServer/logs/server_name.log).

Audit Access Permitted When set to true, any success caused by a user trying to access a server
resource is logged to the server’s log file
($EAServer/logs/server_name.log).

Permission Cache Timeout The number of seconds that the result of an authorization (access
control) check is cached. This applies to both denied access and
permitted access. Caching of authorization results improves
performance.

Authentication Service The name and path to your custom authentication service component
(if any). This allows you to customize EAServer security and to
integrate with third-party enterprise security software. See Chapter 7,
“Creating and Using Custom Security Components.”

FTP Host Name(s) The host name of the FTP server to which the security domain
delegates authentication requests. A comma-separated list can be used
to specify multiple servers (for high availability, not load balancing).

FTP Port Number The port number of the FTP server to which the security domain
delegates authentication requests.

Http Resource URL(s) The URL for an HTTP resource which the security domain attempts to
access when delegating authentication requests to an HTTP server. A
comma-separated list can be used to specify multiple URLs (for high
availability, not load balancing).

JAAS Login Context The name of a JAAS (Java Authentication and Authorization Service)
login context that has been configured in jaas.conf. Refer to the JDK
documentation for details on jaas.conf.

JDBC Driver Class The JDBC driver class to be used for database authentication.

JDBC Database URL(s) The URL for a JDBC database which the security domain attempts to
access when delegating authentication requests to a database server. A
comma-separated list can be used to specify multiple URLs (for high
availability, not load balancing).

JNDI Initial Context Factory The name of an initial context factory class to be used for JNDI
authentication.

Property name Description

Configuring domains

80 EAServer

JNDI Provider URL The provider URL which the security domain attempts to access when
delegating authentication requests to a JNDI server.

JNDI Lookup Name The name of a JNDI-bound object which the security domain attempts
to lookup when delegating authentication requests to a JNDI server.

Role Service Component The name and path to your custom role service component (if any).
This allows you to customize EAServer security and to integrate with
third-party enterprise security software. See Chapter 7, “Creating and
Using Custom Security Components.”

Web Realm Names EAServer contains a default security realm. The security realm is a
container used to store the roles used to allow and limit access to your
Web services. When you connect to EAServer from the Web
Management Console, you see the security realm.

Property name Description

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 81

Table 10-2: Domain password properties

Login methods
This section describes the various login methods supported by EAServer 6.0:

• CTS-Auth – enter the name of the authentication service component in the
field provided. See Chapter 7, “Creating and Using Custom Security
Components.”

• FTP – enter one or more host names for FTP login validation. If there are
multiple host names (allowing for fault tolerance), use a comma as a
separator.”). The default value is “localhost”. You must also enter the FTP
port number.

Property name Description

Password Hash Algorithm The algorithm used to encrypt the
password. The strongest supported
algorithm is used (currently SHA-512).

Minimum Password Length The minimum total number of characters.

Maximum Password Length Defines the maximum password length.
Used only if the Login Method is Local-
hash. The default value is 14.

Minimum Password Letters The minimum number of letters
contained in the password.

Require Mixed Case Passwords When true, the password must contain
both uppercase and lowercase letters.

Password Start Characters When set, the password must start with
one of the characters in the string you
enter here. For example: a, B, r, t, 3.

Minimum Password Digits The minimum number of digits (0 – 9)
the password contains.

Minimum Password Special Characters The minimum number of special
characters (*, &, #, and so on) the
password contains.

Password Special Characters A comma-separated list of special
characters the password can contain.

Password End Characters A comma-separated list of characters
required to end the password. If left
blank, any character can end the
password.

Retain Old Passwords The number or historical passwords
saved for this user.

Configuring domains

82 EAServer

• HTTP – enter one or more resource URLs to be used for HTTP login
validation. If there are multiple URLs (allowing for fault tolerance), use
double-semicolons as a separator.”). The default value is
http://host_name:8000/wsh/login.

• JAAS – supply the name of a JAAS (Java Authentication and
Authorization Service) login context in the Access Control Policy field
which has been configured in the JAAS configuration file. See Chapter 8,
“Using the JAAS API.”

• JDBC – supply the name of the jConnect driver in the Access Control
Policy field. The default value is com.sybase.jdbc2.jdbc.SybDriver. You
must also supply one or more database URLs to be used for JDBC login
validation. If there are multiple URLs (allowing for fault tolerance), use
double-semicolons as a separator.

• JNDI – supply the name of the initial context factory class, the provider
URL to be used for initialization of the context factory, and the name to be
looked up to determine that the login was successful. Upon login, the user
name and password are verified against the JNDI entry.

• Local-hash – The default login method. Local-hash uses a hashing
algorithm to encrypt the password and store it on a local table using either
Secure Hash Algorithm 1 (SHA1) or Secure Hash Algorithm 512 (SHA-
512).

• None – requires no authentication.

• OS Auth – native operating system authentication. User names for an
EAServer connection map directly to a login name on the host operating
system. To enable OS Auth, EAServer 6.0 must be running under a process
that has local admin privileges. Ensure that the user that is running the
process is a member of the Local Administrator Group. You may need to
log off and log back on in order for this to take effect. You must also:

a Select Start Menu | Control Panel | Administrator Tools | Local
Security Policy. This starts the Local Security Settings Window.

b Choose Local Policies | User Rights Assignment | Act As Part of the
Operating System.

c Use “Add User or Group” to add the user that EAServer will be
running under.

d Log off and log back in for this to take effect.

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 83

e Define a domain definition that proxies the authentication to the
OSLoginModule. The following is a sample domain definition. You
should modify files only through the Web Management Console or a
configuration script.

#Instance Properties
#Mon Aug 08 15:43:51 EDT 2005
#Location:
${djc.home}/Repository/Instance/com/sybase/djc/security/?SecurityDo
main/sybase.com.properties
jdbcDriverClass=com.sybase.jdbc2.jdbc.SybDriver
passwordSpecialCharacters=
loginFailureLockTimeout=600
webRealmNames=
maximumPasswordLength=14
accessControlPolicy=${javax.security.jacc.policy.provider}
requireMixedCasePasswords=false
auditAccessPermitted=false
passwordHashAlgorithm=SHA-512
jndiProviderURL=
user-roles\:delafran=wmc.admin
minimumPasswordSpecialCharacters=0
minimumPasswordLetters=2
jdbcDatabaseURL=jdbc\:sybase\:Tds\:localhost\:2638
all-roles\:=all
all-users\:=delafran
ftpPortNumber=21
minimumPasswordLength=6
httpResourceURL=http\://???\:8000/wsh/login
loginMethod=os-auth
permissionCacheTimeout=3600
retainOldPasswords=8
loginCacheTimeout=3600
role-users\:all=delafran
ftpHostName=localhost
jndiInitialContextFactory=
passwordEndCharacters=
minimumPasswordDigits=1
jndiLookupName=
passwordStartCharacters=
auditAccessDenied=false
jaasLoginContext=${jaas.login.context}
loginFailureLockThreshold=5

Configuring domains

84 EAServer

JACC (JSR-115) support
This section describes how to use JACC (Java Authorization Contract for
Containers) in EAServer. For details about JACC see the JACC specification at
http://java.sun.com/j2ee/javaacc.

If you intend to use JACC as the access control mechanism for EJB or web
modules, you must specify the name of the JACC policy implementation class
in each security domain which defines users who access the EJB or web
modules. The default value of this property is taken from a Java system
property in accordance with the JACC specification. If this property was not
previously set, then you should redeploy all EJB and web modules for which
you wish to use JACC.

You may find it easier to use role-based access control. See Chapter 7,
“Creating and Using Custom Security Components” for information.

JACC support requires you to pass an extra command-line option to the deploy
command, as these examples illustrate:

• deploy myweb.jar -jacc

• deploy myweb.war -jacc

• deploy myweb.ear -jacc

Deploying with the -jacc option creates additional Ant configuration scripts,
for example:

• ejbjar-myejb-jacc.xml

• webapp-myweb-jacc.xml

• application-myapp-jacc.xml, as well as one script for each EJB Jar file and
Web application in the application.

Redeploying discards the previously generated JACC script(s), if any.

Each generated JACC configuration script contains “configure” and “delete”
targets. Refer to the “Provider Configuration Subcontract” in the JACC
specification for details.

Run the config-jacc and delete-jacc command line tools to configure and delete
targets. For example:

• delete-jacc webapp-myweb

• config-jacc ejbjar-myejb

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 85

You must create and edit an Ant script named jacc-provider-info.xml, and set
the property jacc.factory to the name of your JACC
PolicyConfigurationFactory class. If this property is not set, the
PolicyConfiguration object returned by the default factory simply echos
configuration information to the console when you run the config-jacc
command.

Running config-jacc or delete-jacc for an application runs it on all EJBs and
Web modules in the application (similar to the existing configure and
recompile commands).

When run, the config-jacc command extends (does not delete) the previous
provider configuration. To replace the provider configuration, first run delete-
jacc.

After running config-jacc or delete-jacc, refresh the security domain(s)
configured with a JACC policy.

Run the configure jacc-on command to enable JACC globally for all subsequent
deployment. You can turn it off again using configure jacc-off.

Managing users
This section describes how to add and manage users in EAServer 6.0.

❖ Adding a new user

1 From the Web Management Console, expand the Security folder.

2 Right-click the Users folder and select Add.

3 The New User wizard guides you through the process of adding a new
user. When you click Finish, you can define roles assigned to the user.

❖ Modifying user properties

1 From the Web Management Console, expand the Security folder.

2 Expand the Users folder.

3 Highlight the user whose properties you want to modify. The General
Properties pane displays the inherited and excluded roles for the user. See
“Configuring roles” on page 86 for more information. The Assigned Roles
Properties pane allows you to define or modify the roles assigned to the
selected user.

Configuring roles

86 EAServer

To modify the roles assigned to a user, select:

• All – assigns all defined roles to the user.

• None – no roles are assigned to the user.

• Select – allows you to select individual roles, and assign them to the
user.

Configuring roles
This section describes how to add roles to a domain and control role
membership.

The EAServer authorization model is based on roles, which are defined in the
Sybase Management Console. Each role can include and exclude specific user
names or digital IDs. If you use native operating system authentication, you
can also include and exclude operating system group names; all users in the
specified group are affected.

All roles belong to the default security domain. For example, role1@system
would not exist.

There are a couple of things to keep in mind when configuring roles:

1 You do not need to specify a domain name when defining a role, since all
roles belongs in the default domain.

2 Role changes take effect after a Security Domain refresh. But the
permissionCacheTimeout is relevant, successful and failed authorization
results are cached and even after a refresh of the domain, it requires
waiting for the timeout before cached results for any given user are
automatically dropped.

3 A user can only be authorized by the domain to which it belongs.
Authentication and authorization are limited to a domain for the particular
user.

4 foo@default and foo@system are considered the same as far as
authorization, although they are different entities in the server. For
example:

a You can create and authorize a user called testuser@default to access
the Sybase Management Console.

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 87

b There is a user called testuser@default. Since testuser belongs to the
default security domain, you must create a role called admin-role and
add the user to the newly created role.

c Since the Sybase Management Console is authorized only by admin-
role, testuser@default is authorized.

You must either refresh or restart EAServer for any role changes to take effect.

❖ Adding a role to a domain

1 From the Web Management Console, expand the Security folder.

2 Right-click the Roles folder and select Add.

3 Follow the New Role wizard instructions to define a new role. When
prompted for Security Role Name, enter the name of a role in the form
role_name. The role is assigned to the “default” domain.

❖ Controlling role membership

1 From the Web Management Console, expand the Security folder.

2 Expand the Roles folder.

3 Select the role that you are modifying.

4 Control role membership by selecting these tabs:

• General – provides general information about the role, including
name, inherited roles, and role membership.

• Assigned Roles – allows you to grant authorization to groups by
selecting All (all users of a group are authorized members), None (no
user belonging to the group is authorized), and Select (allows you to
individually select groups to which you grant authorization).

• Excluded Roles – allows you to exclude authorization to individual
groups by selecting All (all users within the group are excluded),
None (no group is excluded), and Select (allows you to individually
select groups to exclude).

• Excluded Users – allows you to exclude users by denying access to
the users based on their user names and not the authorized groups to
which they belong.

❖ Refreshing the roles

1 Right-click the Roles folder.

2 Select Refresh Node.

Configuring roles

88 EAServer

❖ Defining a new role

1 Right-click the Roles folder.

2 Select Add. Enter the required information in the subsequent dialogs:

• Security Role Name – the name of the role you are defining.

• Click Finish – define the Assigned Roles, Excluded Roles, and
Excluded Users for this role by selecting the corresponding tab. See
“Controlling role membership” on page 87.

❖ Deleting an existing role

1 Highlight the Roles folder. You see a list of existing roles.

2 Highlight the role you want to delete.

3 Right-click the role and select Delete. This option is available only to the
owner of the role or the admin user.

4 Click Yes to confirm deletion of the selected role.

Note Only the owner or a member of the role named Admin-Role can delete a
role, except for Admin-Role itself, which cannot be deleted.

❖ Modifying an existing role

1 Highlight the Roles folder. You see a list of existing roles.

2 Highlight the role you want to modify.

3 Select any of the tabs to make your modifications.

4 Make your modifications and click Apply.

Admin role granularity
This feature allows you to control access with greater precision, and is
configured in the security domain.

For example the following command indicates the role “foo” is authorized to
call the method refresh, which resides in the
com.sybase.jaguar.server.ManagementImpl component, whose first parameter
is “WebApplication” and second parameter is “bar”:

role-
access\:foo=com.sybase.jaguar.server.ManagementImpl.refresh(Webapplication,

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 89

bar)

Supported parameter types are:

• int

• float

• double

• java.lang.String

• java.lang.Integer

• java.lang.Float

• java.lang.Double

Supported components include com.sybase.jaguar.server.managementImpl.

Inherited roles
Inherited roles are those roles that are included indirectly. For example, if you
include roleB in roleA, and roleB includes roleC, roleC displays as an inherited
role in roleA’s property page.

Configuring OS authentication
To enable OS authentication for an EAServer domain, follow the procedures
described in “Configuring domains” on page 77, and use OS Auth as the Login
Method. See “Login methods” on page 81.

Configuring security profiles

90 EAServer

Configuring security profiles
This section describes how to add security profiles to a domain. See Chapter 6,
“Using TLS and FIPS” for information about FIPS/TLS security profiles.

Note EAServer contains two predefined security profiles; sample1, which
features the domestic security characteristic, and sample2, which features the
domestic_mutual security characteristic.

Security profiles define the security characteristics of a client-EAServer
session. Assign a security profile to a listener, which is a port that accepts client
connection requests of various protocols. EAServer can support multiple
listeners. Clients that support the same characteristics can communicate to
EAServer via the port defined in the listener.

Each security profile has an associated security characteristic. A security
characteristic is a name that has a set of cipher suites associated with it. A
security characteristic, along with the cipher suites, defines these
characteristics of a client/server connection:

• Protocol All profiles use SSL version 3 as the underlying protocol.
IIOPS and HTTPS traffic is tunneled through SSL.

• Authentication Whether or not authentication is used. Profiles can
support:

• No authentication – neither client nor server need to provide a
certificate for authentication.

• Server authentication – only the server must provide a certificate to be
accepted or rejected by the client.

• Client and server authentication – both the client and server supply
certificates to be accepted or rejected by the other.

• Encryption strength and method Whether or not data is encrypted,
and if so, the key strength and method of the encryption.

• International use All cipher suites are available domestically, but not all
are suitable for export outside of the United States and Canada.

• Hashing method The method used to create the message digest.

For example, the cipher suite SSL_RSA_WITH_NULL_MD5 can be interpreted
as:

• SSL – the protocol used. All profiles use SSL.

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 91

• RSA – the key exchange algorithm used.

• NULL – no encryption.

• MD5 – the hash method used to compute the message digest.

Table 10-3 and Table 10-4 clarify the relationship between cipher suite
terminology and security characteristics.

Table 10-3: Cipher suite terms

Note Browsers do not support anonymous cipher suites.

❖ Adding a new security profile

1 From the Web Management Console, expand the Security folder.

2 Right-click the Profiles folder and select Add.

 Name Defines Description

SSL Protocol SSL protocol uses public-key encryption to establish secure
Internet communications.

RSA
DH_anon

Key exchange
algorithm

RSA and DH (Diffie-Hellman) are public-key cryptography
systems, which define both authentication and encryption:

• RSA provides full encryption and authentication support.

• DH_anon provides only encryption support.

EXPORT Suitable for
export

Because of export regulations, some cipher suites are not
suitable for export. Only cipher suites that contain the word
EXPORT are suitable for international use.

NULL No encryption Data is not encrypted.

DES
3DES
DES40
RC4_40
RC4_128

Encryption
algorithms

System: Key length:

DES 56
3DES 168
DES40 40
RC4_40 40
RC4_128 128

The greater the key length, the greater the encryption strength.

EDE
CBC

Encryption and
decryption
modes

CBC and EDE are modes by which DES algorithms are
encrypted and decrypted.

SHA
MD5

Hash function SHA and MD5 are hash methods used to compute the message
digest when generating a digital signature.

Configuring security profiles

92 EAServer

3 The New Security Profile wizard guides you through adding a new
security profile. After you click Finish, define the security profile
properties.

❖ Modifying security profile properties

1 From the Web Management Console, expand the Security folder.

2 Expand the Profiles folder.

3 Highlight the security profile whose properties you want to modify. The
General Properties pane appears, from which you can define or modify
these general profile properties:

1 Certificate Label – the name of the certificate label for this profile.
The certificate label identifies the certificate used for authentication:

• For server and Java clients, certificate label corresponds to the
name of the key entry retrieved by the keytool -list command.

• For C++ clients, certificate label corresponds to the certificate
names generated by the sc-tool -list command.

2 Security Characteristic – select a security characteristic to use for the
security profile from the drop-down list. The characteristic defines the
required level of security, including authentication. Table 10-4 lists
the characteristics, cipher suite support, and authentication level.

Table 10-4: Security characteristics

 Name of characteristic Authenticates Cipher suites

domestic server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA

domestic_anon neither DH_anon_WITH_3DES_EDE_CBC_SHA
DH_anon_WITH_RC4_128_MD5
DH_anon_WITH_DES_CBC_SHA
DH_anon_EXPORT_WITH_RC4_40_MD5
DH_anon_EXPORT_WITH_DES40_CBC_SHA

The _anon profiles are used for anonymous
Diffie-Hellman communications. Neither the
client nor the server is authenticated.

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 93

domestic_anon_tls neither DH_anon_WITH_3DES_EDE_CBC_SHA
DH_anon_WITH_RC4_128_MD5
DH_anon_WITH_DES_CBC_SHA
DH_anon_EXPORT_WITH_RC4_40_MD5
DH_anon_EXPORT_WITH_DES40_CBC_SHA

The _anon profiles are used for anonymous
Diffie-Hellman communications. Neither the
client nor the server is authenticated.

domestic_mutual client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

domestic_mutual_tls client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

domestic_tls server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA

intl server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

intl_mutual client/server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

intl_mutual_tls client/server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

intl_tls server RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

simple server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

 Name of characteristic Authenticates Cipher suites

Configuring security profiles

94 EAServer

❖ Deleting a security profile

1 Right-click the profile entry you want to delete and select Delete.

2 Follow the wizard instructions to delete the security profile.

simple_mutual client/server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

simple_tls server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

simple_mutual_tls client/server RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

ssl_rsa_with_3des_ede_cbc_sha server rsa_with_3des_ede_cbc_sha

ssl_rsa_with_3des_ede_cbc_sha_mutual client/server rsa_with_3des_ede_cbc_sha

ssl_with_rc4_128_sha server rsa_with_rc4_128_sha

ssl_with_rc4_128_sha_mutual client/server rsa_with_rc4_128_sha

strong server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

strong_mutual client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

strong_tls server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

strong_mutual_tls client/server RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA

tls_rsa_with_3des_ede_cbc_sha server rsa_with_3des_ede_cbc_sha

tls_rsa_with_3des_ede_cbc_sha_mutual client/server rsa_with_3des_ede_cbc_sha

tls_rsa_with_aes_256_cbc_sha server rsa_with_aes_256_cbc_sha

tls_rsa_with_aes_256_cbc_sha_mutual client/server rsa_with_aes_256_cbc_sha

tls_rsa_with_aes_128_cbc_sha server rsa_with_aes_128_cbc_sha

tls_rsa_with_aes_128_cbc_sha_mutual client/server rsa_with_aes_128_cbc_sha

tls_rsa_with_des_cbc_sha server rsa_with_des_cbc_sha

tls_rsa_with_des_cbc_sha_mutual client/server rsa_with_des_cbc_sha

tls_rsa_with_rc4_128_sha server rsa_with_rc4_128_sha

tls_rsa_with_rc4_128_sha_mutual client/server rsa_with_rc4_128_sha

tls_rsa_export_with_rc4_40_md5 server rsa_export_with_rc4_40_md5

tls_rsa_export_with_rc4_40_md5_mutual client/server rsa_export_with_rc4_40_md5

 Name of characteristic Authenticates Cipher suites

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 95

Associating a listener with a security profile
This section describes how to add HTTP(S), and IIOP(S) listeners, and
associate them with a security profile.

❖ Adding an EAServer listener

1 Right-click the Listeners folder and select Add.

2 Follow the wizard instructions to create/add a listener. Include:

• Name – the name of the new listener

• Protocol – select https or iiops from the drop-down list.

• Host name – the name of the host name/server to which this listener
belongs. Once defined the listener is automatically associated with the
server.

• Port number – the port number of the host used as the listener. For
example, 8001.

• Security Profile – the name of the security profile used by the listener.
For example, default.

3 Click Finish when done.

❖ Modifying an EAServer listener

1 You can modify a listener from either the Servers or Listeners folder. This
procedure uses the Servers folder. From the Servers folder, expand the
server from which you are modifying the listener.

2 Select the Listeners tab and click the listener you are modifying.

3 Select the General tab and make your modifications. For example:

• Protocol – https

• Port – 8001

• Security Profile – default

4 Click Apply to apply your changes.

Sample configuration
This section provides a sample HTTPS listener configuration.

Configuring JSSE

96 EAServer

1 Modify the listener property. See “Configuring listeners” on page 39 in
Chapter 3, “Creating and Configuring Servers” of the EAServer System
Administration Guide for instructions.

 Add a new listener with these settings:

port=8001
host=${host.name}
securityProfile=default
protocol=https

2 Add the new listener to the server.

3 Associate a truststore and keystore files with the server (they can be the
same file). Supported file types are JKS and PKCS12. See “Configuring
JSSE” on page 96 for instructions.

See “Managing keys and certificates on EAServer” on page 102 for
information about managing the keystore.

4 Restart the server.

Use the same procedure for associating an IIOPS listener with a server, except
add a new IIOPS listener instead of HTTPS.

Configuring JSSE
The Java Secure Socket Extension (JSSE) is a set of Java packages that
implements SSL and Transport Layer Security, which enable data encryption,
server authentication, message integrity, and client authentication. JSSE is a
client-side feature, which can be used with EAServer when it has been
configured for SSL communication.

❖ Configuring JSSE on the server

1 From the Web Management Console, expand the Servers folder.

2 Expand the server for which you are configuring JSSE.

3 Select the Security tab.

4 Configure JSSE by completing these properties:

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 97

• SSL Trust Store – the path of an SSL truststore. The trust store is a
trusted keystore. For example, if you receive data from an entity that
you already trust, and if you can verify that the entity is the one it
claims to be, then you can assume that the data really came from that
entity.

Add an entry to a truststore only if the user makes a decision to trust
that entity. By generating a keypair or importing a certificate, you
grant trust to that entry, and any entry in the keystore is considered a
trusted entry.

• SSL Trust Store Password – the password used to access the trust
store.

• SSL Trust Store Type – the format of the truststore. Possible values
are JKS and PKCS12.

• SSL Key Store – the path to the key store. A key store is a database of
key material (certificates or key pairs for example), which are used for
authentication and data integrity. Supported key store types include
PKCS12 and JKS.

• SSL KeyStore Password – the password used to access the keystore.

• FIPS Mode Enabled – enable FIPS, which has the following effect on
EAServer:

• Permits TLS protocol only by the SSL/TLS runtime engine.

• Permits the use of TLS cipher suites and security characteristics.

• Accepts X.509 certificates signed using a SHA1WithRsa
algorithm. Certificates signed with any other algorithm are not
accepted and generate an error.

• Other cryptographic functionality that normally employs a non-
FIPS approved algorithm now fails. For example, a PKCS #12
certificate containing a private key shrouded (signed) with a
pbeWithSHA1And40bitRc4 algorithm fails to import, since RC4
is not a FIPS 140-2-approved algorithm. The private key and
public keys must be shrouded using
pbeWithSHA1And3KeyTripleDescbc.

• JSSE Key Store Type – valid options are PKCS12 or JKS.

Configuring JSSE

98 EAServer

Sample configuration
This example illustrates how you might configure EAServer to use JSSE:

❖ Configuring JSSE and adding an HTTPS listener

1 From the Web Management Console, expand the Servers folder.

2 Expand the server for which you are configuring JSSE.

3 Select the JSSE Configuration tab.

4 Modify these properties:

• SSL Key Store and SSL Trust Store – point to the keystore file named
keystore.jks.

• SSL Key Store Type and SSL Trust Store Type – JKS.

• SSL Key Store Password – changeit.

• SSL Trust Store Password – changeit, if you are using default trust
store that ships with the JDK.

• FIPS Mode Enabled – select this option.

There are four entries in the keystore.jks file, one of which is a key entry
used to start an SSL listener.

5 Specify a key entry name for the associated profile.

6 Create a new security profile that uses a TLS security characteristic:

1 From the Security folder, right-click Profiles and select Add.

2 Follow the wizard to create a new security profile using these values:

• Security Profile Name – test_tls.

• Certificate Label – use keytool commands to identify a label. For
example:

keytool -list -keystore ${keystore}

You can see keyentry and any associated alias. Use the desired
entry name as the certificate label.

• Security Characteristics – select domestic_tls from the drop-
down list.

3 Click Apply to apply your changes.

7 Define an HTTPS listener:

CHAPTER 10 Security Configuration Tasks

Security Administration and Programming Guide 99

1 From the Servers folder, expand the server to which you are adding
the listener.

2 Select the Listeners properties tab and click https1.

3 Select the General tab and add an HTTPS listener at port 8001 using
these settings:

• Protocol – https

• Port – 8001

• Security Profile – test_tls

4 Click Apply to apply your changes.

8 Add the listener to the listener properties.

Configuring database set-proxy for CMP
Current versions of Adaptive Server Enterprise and Adaptive Server
Anywhere allow a user to assume the identity and privileges of another user.
You can use this feature with any database that recognizes this command:

set session authorization “login-name”

When proxy support is enabled, connections retrieved from the cache are set to
act as a proxy for the user name associated with the EAServer client. The user
name specified in the cache properties must have set-proxy privileges in the
database and server used by the cache.

DataSource contains:

• A new Boolean property: setSessionAuth, with the default set to false.

• A new string property: setSessionAuthSystemID, default is “ ” (an empty
string). If this property is not specified, Datasource defaults to the user
name property for the DataSource when the user is the system user.

DatabaseType contains a new Boolean property: supportsSetSessionAuth, with
the default set to false. For Adaptive Sever Anywhere and Adaptive Server
Enterprise, the default configuration script value is set to true.

If setSessionAuth is enabled for a DataSource and the DatabaseType supports
this feature, when a connection is retrieved from the ConnectionPool set
session authorization “login-name” on the connection is called, where login-
name is the client identity.

Configuring database set-proxy for CMP

100 EAServer

If the current client identity is the system user, the setSessionAuthSystemID is
used.

To support this feature, these com.sybase.djc.sql.ConnectionPool methods are
changed to call set session authorization:

• public Object getConnection(ConnectionWrapper wrapper)

• public Object getConnection()

Note Adaptive Server Enterprise users may also have to set the database
option ddl in tran.

Security Administration and Programming Guide 101

C H A P T E R 1 1 Managing Keys and Certificates

This chapter describes how to manage keys and certificates for SSL
security in EAServer.

SSL overview
You can configure EAServer to accept client connections over secure
protocols IIOPS and HTTPS using:

• keytool commands to manage key pairs and certificates for EAServer.

• Sybase Management Console to define security profiles that establish
various levels of security on EAServer and assign them to a listener.
Profiles allow you to determine:

• Client and server authentication requirements

• Encryption and decryption algorithms

See “Configuring security profiles” on page 90 and “Associating a
listener with a security profile” on page 95 for information on
establishing security profiles and assigning them to EAServer
listeners.

• EAServer to use certificates and listeners to authenticate clients, if
necessary, and encrypt and decrypt data.

Topic Page
SSL overview 101

Managing keys and certificates on EAServer 102

Client-side security 103

Managing keys and certificates on EAServer

102 EAServer

Managing keys and certificates on EAServer
EAServer includes SSL support, using the JDK’s built-in keystore and keytool
commands to manage the certificates and keys in the key store (both on
EAServer and for Java clients). The keytool executable is located in the
jdk/jdk1.4/bin subdirectory of your EAServer installation. You can list the
installed keys using the keytool command with the -storetype option set to
“pkcs12”:

keytool -list -storetype pkcs12

For information about all of the keytool commands, enter:

keytool -help

For more information, see the Sun keytool command page at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html.

Set-certificate
The set-certificate script (located in the bin subdirectory of your EAServer
installation) is required for client certificate to user name mappings. You
cannot use mutual authentication in EAServer 6.0 without this mapping.

set-certificate sets mapping information for a given username by using the
keytool alias “user.” For example, user:jim@mydomain.com (or just
user:jim if “jim” is in the “default” domain). You cannot just use keytool to
directly set up the mapping, because some mapping information is also needed
in the “default” security domain properties file. However, you can use keytool
to examine or export the certificate after you use set-certificate for a user.

Keytool examples
This section describes keytool commands used to manage a keystore, and
assumes that your keystore is located in
m:\target1.4\Repository\Security\keystore.jks:

• To see what is contained in the keystore:

keytool -list -keystore m:\target1.4\Repository\Security\keystore.jks
-storepass <storepass>

<storepass> is the keystore’s password.

• To import a certificate:

CHAPTER 11 Managing Keys and Certificates

Security Administration and Programming Guide 103

keytool -import -file <certificate file> -keystore
m:\target1.4\Repository\Security\keystore.jks -storepass <storepass>
-noprompt -trustcacerts -alias <alias>

<alias> is the logical name for the certificate stored in the keystore.

• To delete a certificate:

keytool -delete -alias <alias> -keystore
m:\target1.4\Repository\Security\keystore.jks -storepass <storepass>

<alias> is the logical name for the certificate you want to delete.

• To create a new keyentry in a keystore:

keytool -genkey -keystore m:\target1.4\Repository\Security\keystore.jks

The certificate request must be signed by a CA. Alternatively, you can
self-sign the certificate by using the -selfcert keytool option.

Note keytool can read/manipulate PKCS12 type keystores (specify a
-storetype pkcs12 in the command line), but cannot import it into another jks
type keystore. jks is the default keystore type for keytool commands.

Client-side security
This section describes the commands and procedures used for client-side
security.

Using SSL in PowerBuilder clients
You can create PowerBuilder clients that connect to EAServer using SSL
connections, using techniques similar to that used in other client types. Since
PowerBuilder connects to EAServer using the C++ client ORB, SSL in
PowerBuilder requires a full EAServer C++ client installation, and uses sc-tool
commands to manage client-side certificates. See “Client-side security
certificate tool (sc-tool)” on page 104 for more information about sc-tool and
your PowerBuilder documentation.

Client-side security

104 EAServer

Client-side SSL
When the client communicates with EAServer over SSL, the client must obtain
and manage its certificates. Client-side SSL is separated into two parts:

• Java clients – uses keytool commands, which are included in the JDK
distribution. keytool can modify the certificate database, generate
certificate request, and so on. See “Managing keys and certificates on
EAServer” on page 102.

• C/C++ clients – uses sc-tool commands, included as a batch file in the bin
subdirectory of your EAServer installation, to manage certificates and the
certificate database. See “Client-side security certificate tool (sc-tool)” on
page 104.

Client-side security certificate tool (sc-tool)
When the client communicates with EAServer over SSL, the client must obtain
and manage its certificates. sc-tool is a command line client tool used for
managing the client-side C/C++ certificate database.

To use sc-tool (sc-tool.bat on Windows, and sc-tool.sh on UNIX), set
JAGUAR_CLIENT_ROOT on the client to the location of DJC_HOME (in
order for the client to pick up the correct certificate database), and add the
location of the tool to the client’s path.

❖ Using sc-tool

1 Run sc-tool from the bin directory of your EAServer installation.

2 Enter sc-tool -help for information about all sc-tool options, including:

• Request a Certificate:

sc-tool -certreq [-alias <alias>] [-keyStrength <sigalg>] [-
keyStrength <keystrength>] [-CN <CommonName>] [-UserID <UserID>] [-
EmailID <EmailID>] [-Org <Orgnization>] [-OrgUnit OrgnizationUnit>]
[-Locality <Locality>] [-State <state>] [-Country <Country>] [-
ReqName <requestor name>] <-SrvAdmin server admin> [-file <csr_file>]
<-Phone phone number> <-UTF8>

csr_file – the file name to which the request is saved. The remaining
certificate parameters are used so a CA can sign it.

alias – the new certificate name.

sigalg – the length for the key, can be 512, 1024, and so on.

CHAPTER 11 Managing Keys and Certificates

Security Administration and Programming Guide 105

keypass – the password used to protect the certificate.

• Delete a client-side certificate:

sc-tool -delete -alias <alias> [-storepass <storepass>]

alias – the name or the certificate label which you are deleting.

storepass – the name of the keystore that contains the certificate.

• Export a certificate:

sc-tool -export [-alias <alias>] [-file <cert_file>] [-storepass
<storepass>] [-exportType <exportType>]

alias – the name or the certificate label in the certificate database
which you are exporting.

file – the path/name of the file to which the exported certificate is
written.

storepass – the name of the keystore that contains the certificate.

exportType – only pkcs7 is allowed as the type.

• Import a certificate:

sc-tool -import [-file <cert_file>] [-keypass <keypass>] [-storepass
<storepass>]

file – the certificate file to be imported.

keypass – required if importing a private key. keypass is not needed
when cert_file does not include a private key.

storepass – the password for the certificate database.

If cert_file trails with pfx or p12, it is a PKCS12 file, and keypass
must be specified. Keypass is the password for recovering the private
key.

• List all available certificates in the database:

sc-tool -list -storepass password [-userCerts true/false] [-
trustedCerts true/false] [-CACerts true/false] [-otherCerts
true/false] [-verbose]

You can choose what certificates to list. -verbose displays detailed
information of the certificate(s).

• Change the database password:

sc-tool -changepin -storepass [-new <new_storepass>]
[-storepass <storepass>]

Client-side security

106 EAServer

Changes the PIN for the certificate database.

Security Administration and Programming Guide 107

A
access control

role service component 109
Admin role

granting permissions to other roles 150
required to run EAServer Manager 149

assigning users and groups to roles 145
authenticated sessions

authentication service component 108
authentication 2

configuration options for 9
error page 31
JAAS API for 125, 127
login page 31
using JAAS API 125
Web application security 1

authentication methods
form-based 31, 34
none 30
Web application security 30

authentication service component
for Web resources 108

authorization
of components 24
of packages 24

authorization service component
and pseudocomponents 114
for Web resources 111

authorized roles and security constraints 36
authorizing

groups 145
users 145

B
base64 user certificate 170
basic authentication method and PowerDynamo 31
binary user certificate 170

C
C++ components

issuing intercomponent calls from 12
CA, See certificate authority 3
callback component

callback methods 72
getCertificateLabel method 49, 72, 84
getCredentialAttribute method 49, 72, 85
getPin method 50, 73, 85
setGlobalProperty 72
SSL 72
trustVerify method 50, 73, 86

callbackImpl global property 72
Certicom

FIPS cryptographic libraries
Web site 94

certificate authority
certificate request 3
certificates 178
digital signature 3
obtaining a certificate 184

certificate information
EAServer Manager | Certificates folder 180

certificate management
EAServer Manager | Certificates folder 174
generating a key pair and requesting a certificate

174
certificate requests, digital certificates 3
certificate usage

SSL client 170
SSL server 170

certificates
CA 178
deleting 182
other 178
processing a request 170
renaming 181
saving 171
signed by the test CA 168

Index

Index

108 EAServer

trusted 178
user 178

changing the Sybase PKCS #11 PIN
Netscape or EAServer Manager | Certificates folder

183
cipher suites

and security characteristics 96, 97, 156
defining encryption and decryption parameters 2
FIPS-supported 97
security profile 153
terms 154

cipher text
encrypted messages 2

client-side security
managing certificates 182
PIN 183
Sybase security module 183

com.sybase.CORBA.ProxyHost
Java ORB property name 140

com.sybase.ejb.certificateLabel
and TLS 95

components
controlling access to 24

confidential
transport guarantee 37

configuring
EAServer Manager | Certificates folder 166
listeners 161
security profile 157

connectors
JAAS 131

conventions x
creating

listeners 161
security constraints 35
security profile 157
test CA 168
user certificate 168

crt
.crt file extension 173

CtsSecurity IDL module 12
CtsSecurity::SessionInfo IDL interface 12
CtsSecurity::UserCredentials IDL interface 12

D
decryption, definition 2
defining

security characteristics 96, 97, 156
deleting

certificates 182
key pairs 174
listeners 161
roles 144
security profile 157
test CA 182

digital certificates 3
disabling TLS 99

usingJAGSSL 99
displaying

PKCS #11 module information 167

E
EAServer Manager

enabling FIPS 98, 99
EAServer Manager | Certificates folder

.crt file extension 173
base64 certificate 170
certificate format 170
certificate types 178
certificate validity period 171
changing the PIN 167
configuring 166
creating the test CA 168
deleting certificates 182
deleting keys 174
deleting test CA 182
exporting the test CA 172
generating a key pair and requesting certificate

174
generating user certificate 168
installing certificates 177
Jaguar user test CA 168
logging out 167
managing certificates 174
managing keys 173
managing the security module 166
PKCS #11 module information 167
processing a certificate request 170

Index

Security Administration and Programming Guide 109

renaming certificates 181
saving certificates 171
test CA 168
trust information 180
user certificate information 169
verifying certificate information 181
viewing certificate information 180
viewing keys 173

EJB components, role references in 24
enabling FIPS 98, 99
encrypted messages, cipher text 2
encryption 2

encrypted messages 2
security profile 154

Entrust
configuration 158
integration into Jaguar 187
mixed environments 188
usage scenarios 189

error pages
and authentication 31

excluded
groups 147
users 146, 147

exporting
test CA 172

F
failover

listeners 160
FIPS

and the getCertificateLabelmethod 94
compatibility with previous EAServer versions
enabling 98, 99
enabling with jagtool ORB property 98
introduction 93
standards 93
supported cipher suites 97
troubleshooting 103

FIPS certificate and module information
Web site 94

FIPS mode
and Java clients 103

FIPS standards

Web site 94
format type

user certificate 170
form-based

authentication method 31, 34

G
generating, certificate request 174
getCertificateLabel

and FIPS 94
getCertificateLabel method 49, 72, 84
getCredentialAttribute method 49, 72, 85
getfipsmode 101
getPin method 50, 73, 85

H
HTTPS 3

ports and listeners 159

I
IIOPS 3

ports and listeners 159
importing test CA in Netscape 172
installing certificates 177
integral transport guarantee 37
intercomponent calls

issuing from C++ components 12
introduction,FIPS and TLS 93

J
JAAS

all that 126
and connectors 131
authentication API 125
configuration file for 126
debugging of 133
definition of 125
requirements for using 127

Index

110 EAServer

runtime operation of 126
samples for 133
using in EAServer 127

jagadmin user account 10
JAGSSL

disable TLS 99
JAGSSL environment variable 95
jagtool

enabling FIPS with 98
jagtool commands

getfipsmode and setfipsmode 101
Jaguar Manager. See EAServer Manager
Java clients

and FIPS 103
and proxy servers 135

K
key management, EAServer Manager | Certificates folder

173

L
lazy authentication and Web application security 32
listeners

configuring 161
creating 161
default host name 160
default settings 160
deleting 161
enabling TLS 95
failover 160
Jaguar ports 159
modifying 161
preconfigured 160
properties 162
TDS 39
TLS cipher suites 96

loading the test CA in Netscape 172
localhost default listener settings 160
login names. See user names
login page

and authentication 31

M
managing

certificates 174
key pairs 173

managing client certificates
installing the PKCS #11 module 182
using Netscape 182

mapping
J2EE roles to EAServer roles 38

MASP
security for 39
security issues 39

modifying
listeners 161
security profile 157
Sybase PKCS #11 PIN 183

module
PKCS #11 167

N
Netscape

loading the test CA 172
obtaining a certificate 184

NIST
standards 93

none
authentication method 30
transport guarantee 37

O
Open Server security issues 40
ORB properties, setting for SSL 75
ORB, C++ use in C++ components 12

P
package, controlling access to EAServer 24
passwords

See also authentication
use of for authentication 9

permissions, granting 150

Index

Security Administration and Programming Guide 111

PIN
changing 183
changing in EAServer Manager | Certificates folder

167
PKCS #11 module 183

PKCS #11
EAServer Manager | Certificates folder and

Netscape sharing files 183
installing security module in Netscape 182
libjsybcki.dll 183
PIN 183
security module 182

PKCS #11 token 167
PowerBuilder

clients, using SSL in 75
PowerBuilder client applications

and JAGSSL environment variable 95
PowerDynamo

authentication methods 31
preconfigured listeners

default settings 160
security profiles 160

private key 2
processing user certificate request 170
profile, security 153
properties

listeners 162
Web application security 30
Web application security wizard 30

protocol
security profile 97, 154

proxy servers
connecting to 135
reverse 139
Web 136

pseudocomponent, authorization service component
114

public key 2
public-key cryptography 2
public-key encryption

CA 3
certificate request 3
certificates 3
digital signature 3
issuing a certificate 3
key pair 2

signing authority 3

Q
quality of protection 20

R
renaming certificates 181
requesting

certificates 174
requirements

for using JAAS 127
reverse proxies 139
role references, EJB component property 24
role service component

for Web resources 109
roles

adding to a package 144
authorizing groups 145
authorizing users 145
defining 144
deleting 144
excluded groups 147
excluded users 146, 147
Jaguar server 143
mapping 38
modifying 144
use of for authorization 24

RSA
public-key cryptography 2
Web site 2

S
sample certificates

and Netscape 182
sample, using JAAS API 133
saving user certificate 171
secure ports, listeners 159
secure protocols

HTTPS 3
IIOPS 3

Index

112 EAServer

security
adding a role to a package 144
and MASP clients 39
assigning users and groups to a role 145
authenticating 2
authentication 1, 9
authentication methods 30
authorization 24
authorization service component 111
authorizing groups 145
authorizing users 145
CA 3
certificate authority 3
certificate requests 3
changing the EAServer Manager | Certificates folder

PIN 167
cipher suite 2
cipher text 2
decryption 2
defining a new role 144
deleting a role 144
digital signature 3
displaying PKCS #11 module 167
EAServer Manager | Certificates folder 166
encryption 2
excluded groups 147
excluded users 146, 147
for MASP clients 39
for Open Server listeners 40
IIOPS 3
installing the PKCS #11 module in Netscape 182
issuing digital certificates 3
lazy authentication 32
logging out of PKCS #11 token 167
managing client certificates 182
modifying a role 144
NIS password 151
obtaining a certificate 184
plain text or unencrypted messages 2
private key 2
properties 30
public key 2
public-key certificates 3
public-key cryptography 2
public-key encryption 2
roles 143

RSA encryption 2
sample certificates 182, 184
secure socket layer, HTTPS 3
sharing PKCS #11 files 183
signing authority 3
SSL public-key encryption 3
Sybase PKCS #11 PIN 183
Sybase security module 183
terminology 2
user authentication 151
Windows domain password 151
wizard 30

security characteristic
categories 155
cipher suite 96, 97, 156
defining 96, 97, 156
security profile 153

security constraints
and authorized roles 36
creating 35
for Web applications 34
scenarios for Web applications 35
transport guarantee 37
Web resource collections 35

Security Manager
enabling FIPS 98, 99

security profile 153
authentication 154
cipher suite 153
cipher suite terms 154
configuring 157
creating 157
deleting 157
domestic use 154
encryption 154
international use 154
modifying 157
protocol 97, 154
security characteristic 153, 155
SSL 154
TLS 97

SessionInfo IDL interface in module CtsSecurity 12
setfipsmode 101
setGlobalProperty method 72
signing authority

signing digital certificates 3

Index

Security Administration and Programming Guide 113

test CA 168
SSL

callback component 72
certificate-based authentication 10
client and server certificates 170
for user authentication 9
mutual authentication support 9
ORB properties, setting 75
security profile 154
SSLServiceProvider interface, using 75
using in PowerBuilder clients 75

SSL certificates
use of for authentication 9

SSLServiceProvider interface, using 75
standards

FIPS 93
starting listeners

failover 160
Sybase security module

using Netscape libjsybcki.dll 183

T
TDS listeners 39
terminology, security 2
test CA

creating 168
deleting 182
EAServer Manager | Certificates folder 168
exporting 172
generating user certificate 168
Jaguar user test CA 168
loading in Netscape 172
processing a certificate request 170
supplying certificate information 169

TLS
and the com.sybase.ejb.certificateLabelORB

property 95
disabling 99
introduction 93
security profile 97
Transport Layer Protocol 93
troubleshooting 103

TLS description
Web site 94

TLS listeners
enabling in EAServer 95

TLS supported cipher suites 96
transport guarantee and security constraints 37
Transport Layer Protocol

TLS 93
troubleshooting

FIPS and TLS 103
trusted CA, EAServer Manager | Certificates folder

180
trusted certificates 178
trustVerify method 50, 73, 86
tunneling

HTTPS 3
IIOPS 3

tutorial, security 191
typographical conventions x

U
unencrypted messages

plain text 2
upgradeCerts.bat

upgrading test CA and sample certificates with
100

upgrading test CA and sample certificates
upgradeCerts.bat 100

user authentication
Jaguar server security 151
NIS password 151
Windows domain password 151

user certificate 178
saving 171

user names, authentication of 9
UserCredentials IDL interface in module CtsSecurity

12

V
validity period, user certificate 171
verifying certificate information 181
viewing

certificate information 180
key pairs 173

Index

114 EAServer

W
Web application security

and security constraints 34
authentication 1
authentication methods 30
lazy authentication 32
properties 30
wizard 30

Web proxies
connecting through 136
explanation of 136

Web resource collections
and security constraints 35

Web security
authorization service component 111
maintaining authenticated sessions 108
role service component 109

Web site
Certicom module 94
FIPS certificate and module information 94
FIPS standards 94
TLS description 94

	Security Administration and Programming Guide
	About This Book
	CHAPTER 1 Security Concepts
	Authentication and authorization
	Public-key cryptography
	Public-key certificates
	SSL, HTTPS, and IIOPS
	TLS and FIPS

	Proxies and firewalls
	Lines of defense
	Types of attacks
	Defense against attacks

	CHAPTER 2 Securing Component Access
	Client authentication
	Intercomponent authentication
	Accessing SSL information
	Non-EJB components
	Preferred API usage patterns

	C++ components

	Intercomponent authentication for EJBs and servlets
	Intercomponent authentication for EJB 2.0 components
	Caller propagation
	Run-as support

	Authentication of component invocation from servlets
	Caller propagation for servlets on remote servers
	Run-as support

	Client authorization
	Enterprise JavaBeans

	CHAPTER 3 Using Web Application Security
	Introduction
	Configuring security properties of your Web application

	Authentication
	Form login requirements in a Web application when using HTTPS (SSL)

	Authorization

	CHAPTER 4 Using SSL in Java Clients
	Using SSL in Java applets
	Using SSL in Java applications
	Requirements
	Establishing a secure session
	Using the SSLServiceProvider interface
	SSL properties
	Implementing an SSL callback
	Retrieving session security information

	Creating HTTP and HTTPS connections in Java applications
	HTTP connections
	HTTPS connections
	Installing the HTTPS protocol handler

	SSL properties

	Using Java Secure Socket Extension classes
	Possible solutions for JSEE issues

	CHAPTER 5 Using SSL in C++ Clients
	Introduction
	Initializing the SSL security service
	ORB properties for secure sessions
	Creating a manager instance
	Retrieving session security information
	Creating an SSL callback component

	CHAPTER 6 Using TLS and FIPS
	Introduction
	SSL/TLS and FIPS support
	JSSE configuration
	FIPS mode for Java-side cryptography usage

	Compatibility with earlier versions
	Enabling TLS-secure listeners

	CHAPTER 7 Creating and Using Custom Security Components
	Introduction
	Using a custom authentication service
	Maintaining authenticated sessions
	Retrieving HTTP session information

	Using a custom role service
	Creating a role service

	Using a custom authorization service
	Deciding whether to use the authorization services or role service
	Creating the authorization service

	CHAPTER 8 Using the JAAS API
	Introduction
	JAAS in EAServer
	Enabling JAAS for a domain

	JAAS for connectors

	CHAPTER 9 Deploying Applications Around Proxies and Firewalls
	Connecting through proxy servers
	Using Web proxies
	Properties that affect Web proxy use

	Using reverse proxies
	Reverse-proxy configuration
	Properties that affect reverse proxy use

	CHAPTER 10 Security Configuration Tasks
	Configuring domains
	Login methods
	JACC (JSR-115) support

	Managing users
	Configuring roles
	Admin role granularity
	Inherited roles

	Configuring OS authentication
	Configuring security profiles
	Associating a listener with a security profile
	Sample configuration

	Configuring JSSE
	Sample configuration

	Configuring database set-proxy for CMP

	CHAPTER 11 Managing Keys and Certificates
	SSL overview
	Managing keys and certificates on EAServer
	Set-certificate
	Keytool examples

	Client-side security
	Using SSL in PowerBuilder clients
	Client-side SSL
	Client-side security certificate tool (sc-tool)

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

