
Security Administration and Programming Guide
EAServer
Version 5.2

DOCUMENT ID: DC38035-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Security Concepts... 1
Authentication and authorization.. 1
Public-key cryptography ... 2

Public-key certificates.. 3
SSL, HTTPS, and IIOPS ... 3
TLS and FIPS.. 4

Proxies and firewalls .. 4
Lines of defense... 5

Types of attacks .. 5
Defense against attacks .. 6

CHAPTER 2 Securing Component Access .. 9
Client authentication... 9
Intercomponent authentication... 11

Accessing SSL information ... 11
Non-EJB components ... 12
C++ components ... 12

Intercomponent authentication for EJBs and servlets 13
Intercomponent authentication for EJB 2.0 components......... 14
Authentication of component invocation from servlets 18

Quality of protection ... 20
Usage scenarios.. 20

Client authorization .. 25
Enterprise JavaBeans ... 25

CHAPTER 3 Using Web Application Security.. 29
Introduction .. 29
Authentication .. 30

Form login requirements in a Web application when using HTTPS
(SSL) .. 33

Web application direct form login .. 34
Security Administration and Programming Guide iii

Contents
Authorization .. 34
Role mapping ... 38

CHAPTER 4 Securing TDS Client Access... 39
TDS and MASP listeners ... 39
MASP client security .. 39
Open Server client security .. 40

CHAPTER 5 Using SSL in Java Clients... 43
Using SSL in Java applets ... 43
Using SSL in Java applications.. 44

Requirements .. 44
Establishing a secure session ... 44
Using the SSLServiceProvider interface 45
SSL properties... 46
Implementing an SSL callback .. 49
Retrieving session security information................................... 51
Sample Java applications that use SSL.................................. 51

Creating HTTP and HTTPS connections in Java applications....... 52
HTTP connections... 52
HTTPS connections .. 52
SSL properties... 57

Using Java Secure Socket Extension classes 60
Possible solutions for JSEE issues ... 65

CHAPTER 6 Using SSL in C++ Clients.. 67
Introduction .. 67
Initializing the SSL security service.. 68
ORB properties for secure sessions .. 69
Creating a manager instance ... 71
Retrieving session security information.. 71
Creating an SSL callback component .. 72

CHAPTER 7 Using SSL in PowerBuilder Clients ... 75

CHAPTER 8 Using SSL in ActiveX Clients ... 77
Requirements... 77
Establishing a secure session.. 78
Using the SSLServiceProvider interface .. 79
SSL properties ... 80

Choosing a security characteristic... 82
iv EAServer

Contents
Secure server addresses .. 83
Other useful ORB properties ... 83

Implementing an SSL callback... 84
Retrieving session security information.. 89

Example: inspecting SSL session properties 89
Example: inspecting X.509 certificate properties 91

CHAPTER 9 Using TLS and FIPS in EAServer .. 93
Introduction .. 93
Compatibility with previous versions .. 94
Enabling TLS-secure listeners ... 95
Enabling FIPS .. 98

Enabling FIPS mode from EAServer Manager and Security
Manager ... 99

Upgrading the test CA and sample certificates 100
FIPS-related jagtool commands... 101
FIPS mode for Java-side cryptography usage 103
Troubleshooting ... 103

CHAPTER 10 Creating and Using Custom Security Components................. 107
Using a custom authentication service... 107

Maintaining authenticated sessions 108
Retrieving HTTP session information.................................... 109

Using a custom role service ... 109
Creating a role service .. 109
Installing the role service... 110

Using a custom authorization service .. 111
Deciding whether to use the authorization services and role service

111
Creating the authorization service... 111
Installing the authorization service .. 113

Supporting external single sign-on providers 115
Netegrity SiteMinder Integration... 115

Configuring your security scenario .. 117
Configuring the SiteMinder Policy Server.............................. 117
Configuring reverse-proxy access to EAServer 119
Enabling Policy Server logging.. 120
Configuring EAServer for SiteMinder security....................... 121

CHAPTER 11 Using the JAAS API .. 125
Introduction .. 125
Requirements... 127
Security Administration and Programming Guide v

Contents
JAAS in EAServer .. 127
Enabling JAAS for a server ... 128
Retrieving additional user session details in a JAAS login module

129
JAAS on the client .. 130
JAAS for connectors .. 131
Samples and debugging .. 133

CHAPTER 12 Deploying Applications Around Proxies and Firewalls 135
Connecting through proxy servers ... 135
Using Web proxies ... 136

Properties that affect Web proxy use 137
Using reverse proxies .. 139

Reverse-proxy configuration ... 141
Properties that affect reverse proxy use................................ 141

CHAPTER 13 Security Configuration Tasks... 145
Configuring EAServer roles.. 145

Assigning users and groups to roles 147
Determining authorization ... 150
Predefined roles .. 151

Configuring OS authentication ... 153
Configuring OS user and group authorization.............................. 155
Configuring security profiles... 155

Security characteristics ... 157
Defining security profiles ... 159

Configuring listeners .. 161
Preconfigured listeners.. 162
Configuring listener properties .. 163

Configuring identities.. 164
Configuring identity properties... 165

CHAPTER 14 Managing Keys and Certificates .. 167
SSL overview ... 167
Managing keys and certificates on EAServer 168

EAServer Manager | Certificates folder management........... 168
Test CA management ... 170
Key management .. 175
Certificate management .. 176

Using Netscape to manage certificates on the client 184
Installing Sybase PKCS #11 into Netscape 4.0x................... 184
Obtaining a key pair and certificate 186
vi EAServer

Contents
SSL certificate information in servlets 186

CHAPTER 15 Entrust PKI Integration... 189
Overview .. 189
Scenarios ... 190

Both client and EAServer use non-Entrust certificates.......... 190
Entrust client and non-Entrust server (and vice versa) 190
Both client and server use Entrust certificates 191

CHAPTER 16 Tutorial: Using SSL... 193
Overview of the security tutorial ... 193
Tutorial requirements ... 194
Setting up your browser ... 194

Start the server, EAServer Manager, and connect to the Certificates
folder... 195

Obtain and install a personal certificate 195
Setting up EAServer... 197

Creating and assigning a security profile to a listener........... 198
Running the SSL sample applet... 200
Debugging the SSL sample applet... 201

Index ... 203
Security Administration and Programming Guide vii

Contents
viii EAServer

About This Book

This book describes the features in EAServer with which you can define
the security characteristics of client/server communications.

Audience Use this document if you are responsible for creating or deploying secure
components, applications, and Web applications, or for defining secure
EAServer listeners with which clients communicate.

How to use this book Use this document to understand EAServer security.

The contents of this book are:

• Chapter 1, “Security Concepts” – provides an overview of security
terms and concepts and describes how to meet the challenge of
protecting server resources.

• Chapter 2, “Securing Component Access” – describes how to
authenticate base clients, other components, or servlets and JSPs.
Also describes how to pass credentials from EJBs and servlets
between servers.

• Chapter 3, “Using Web Application Security” – Describes how to
secure Web applications and the resources contained within Web
applications.

• Chapter 4, “Securing TDS Client Access” – describes how TDS and
MASP clients can securely communicate with EAServer.

• Chapter 5, “Using SSL in Java Clients” – describes how to use SSL
in Java clients.

• Chapter 6, “Using SSL in C++ Clients” – describes how to use SSL
in C++ clients.

• Chapter 7, “Using SSL in PowerBuilder Clients” – describes how to
use SSL in PowerBuilder® clients.

• Chapter 8, “Using SSL in ActiveX Clients” – describes how to use
SSL in ActiveX clients.

• Chapter 9, “Using TLS and FIPS in EAServer” – describes how to
use TLS and FIPS protocols to create secure EAServer connections.
Security Administration and Programming Guide ix

• Chapter 10, “Creating and Using Custom Security Components” –
describes how to create and implement custom role and service
components to meet your specific authentication and authorization needs.

• Chapter 11, “Using the JAAS API” – describes how to implement the Java
Authentication and Authorization Support (JAAS) module in clients,
EAServer, and as connectors to other servers.

• Chapter 12, “Deploying Applications Around Proxies and Firewalls” –
describes how to deploy applications around firewalls and how to use
reverse proxies.

• Chapter 13, “Security Configuration Tasks” – describes the major security
tasks you perform from EAServer Manager, including:

• Role mapping

• OS-based authentication

• Defining security profiles that use SSL

• Assigning security profiles to EAServer listeners

• Chapter 14, “Managing Keys and Certificates” – describes how to
manage all aspects of SSL keys and certificates.

• Chapter 15, “Entrust PKI Integration” – describes how to use the Entrust
public-key infrastructure (PKI) for secure client/server communication.

• Chapter 16, “Tutorial: Using SSL” – steps you through the process of
using SSL in a browser and EAServer for secure communication.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager
x EAServer

 About This Book
Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with jagtool

The EAServer Programmer’s Guide explains how to:

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in EAServer Manager, a command line, or as program text

• Example program fragments

• Example output fragments

Formatting example To indicate
Security Administration and Programming Guide xi

• Create, deploy, and configure components and component-based
applications

• Create, deploy, and configure Web applications, Java servlets, and
JavaServer Pages

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes, ActiveX interfaces, and C routines.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:
xii EAServer

 About This Book
• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.
Security Administration and Programming Guide xiii

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box
xiv EAServer

 About This Book
4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
Security Administration and Programming Guide xv

xvi EAServer

C H A P T E R 1 Security Concepts

Keeping resources secure is an ongoing challenge. As defenses are
implemented, new methods are devised to circumvent them. The
following is a short list of the many excellent sites that contain security
related information:

• The JavaWorld’s bookstore security reference page at
http://www.javaworld.com/javaworld/books/jw-books-security.html

• A good source of cryptographic related information is available from
RSA laboratories at ftp://ftp.rsasecurity.com/pub/labsfaq/labsfaq4.pdf.

• The Java security page at http://java.sun.com/security/

Authentication and authorization
Authentication means that an entity’s (person, client, or server) identity
has been verified to either a server or a client. In contrast, authorization
means that an entity has permission to use a resource or file. An entity
must be authenticated before it can be authorized to use a resource or file.
This book describes authentication and authorization services provided
for:

• Components and packages

• Web clients

• Java, C++, and ActiveX clients

• TDS and MASP clients

Topic Page
Authentication and authorization 1

Public-key cryptography 2

Proxies and firewalls 4

Lines of defense 5
Security Administration and Programming Guide 1

Public-key cryptography
• Web applications

• Client/application server connections

Public-key cryptography
To maintain secure communications between a client and host, public-key
cryptography techniques are used for:

• Authentication – verifying the identity of both the client and the server;
Public-key cryptography techniques use digitally signed certificates that
identify network entities.

• Encryption – modifying data so that it can be read only by the party for
whom it is intended. When used with a user’s private key, certificates
encrypt and decrypt messages.

Unencrypted messages are known as plain text. Encoding the contents of a
message is called encryption. This encrypted message is the cipher text.
Decryption is the process of retrieving the plain text from the cipher text. A key
is usually required to perform encryption and decryption. A CipherSuite
defines the parameters and methods supported by both the client and server that
perform the encryption and decryption.

Public-key encryption uses a pair of keys for encryption and decryption. One
key is secret (the private key) and the other is distributed (the public key). You
send your digitally signed public key (certificate) to anyone with whom you
wish to communicate using encoded data.

Messages that are sent to you are encrypted with your distributed public key
and decrypted by your private key, while messages sent by you are encrypted
with your private key and decrypted with your distributed public key. RSA
encryption is a widely used public-key encryption system.

For more information on RSA and public-key encryption, see the RSA Web site
at http://www.rsa.com.
2 EAServer

CHAPTER 1 Security Concepts
Public-key certificates
Public-key certificates provide a method to identify and authenticate clients
and servers on the Internet. Public-key certificates are administered and issued
by a third party known as a certification authority (CA). A subject (individual,
system, or other entity on the network) uses a program to generate a key pair
and submits the public key to the CA along with identifying information (such
as name, organization, e-mail address, and so on). This is known as a certificate
request. The CA issues a digitally signed certificate. A digital signature is a
block of data that is created using a private key.

The CA ties the certificate owner to the public key within the certificate. The
subject then uses the certificate, along with his private key to establish his
identity. Once this is done, whomever the subject is communicating with
knows that a third party has vouched for his identity.

The process requires these steps:

1 A client submits a request for, and receives, a certificate from the CA.

2 An administrator installs the CA’s certificate on the server and marks it
trusted. Any client certificate signed by the same CA will now be trusted
and accepted by the server.

3 The client supplies its certificate and negotiates a secure connection with
the server.

SSL, HTTPS, and IIOPS
SSL provides security for network connections. Specifically, SSL uses public-
key encryption to provide:

• Client and server authentication using certificates

• Encryption, which prevents third parties from understanding transmitted
data

• Integrity checking, which detects whether transmitted data has been
altered

Packets for other protocols can be embedded inside of SSL packets. A
connection in which the application protocol is embedded inside of SSL is an
SSL-tunnelled connection.
Security Administration and Programming Guide 3

Proxies and firewalls
Both IIOP and HTTP can be tunnelled inside SSL, which means that these
protocols take advantage of SSL security features. For example, HTTPS
connections embed HTTP packets inside of SSL packets. Your Web browser
creates a secure HTTP connection any time you load a page from a URL that
begins with “https:”

See the following SSL-related chapters:

• Chapter 5, “Using SSL in Java Clients”

• Chapter 6, “Using SSL in C++ Clients”

• Chapter 8, “Using SSL in ActiveX Clients”

• Chapter 14, “Managing Keys and Certificates”

• Chapter 16, “Tutorial: Using SSL”

TLS and FIPS
TLS (Transport Layer Security) is a protocol from the IETF based on SSL and
provides similar services as SSL. FIPS (Federal Information Processing
Standard) are the standards and guidelines for information processing
developed by NIST and approved by the Secretary of Commerce as
requirements for the Federal Government for information assurance and
interoperability.

See the following TLS and FIPS-related chapter:

Chapter 9, “Using TLS and FIPS in EAServer”

Proxies and firewalls
A firewall is a system that enforces an access control policy between networks.
Located on a gateway into the network, the firewall blocks traffic that does not
have permission to access the network. An organization establishes a firewall
so that it can control access to resources. For example, an organization that
allows intranet users access to the Internet installs a firewall to prevent external
users from accessing internal resources.
4 EAServer

CHAPTER 1 Security Concepts
Proxy servers are typically used to constrain and secure connections from an
organization’s computers to sites that require connecting across the Internet. To
enhance security, some network configurations require all Internet connections
to go through a proxy server, including IIOP connections to an application
server.

See Chapter 12, “Deploying Applications Around Proxies and Firewalls” for
more information.

Lines of defense
This section describes types of attacks and some strategies for defending
against them.

Types of attacks
There are several ways in which data can be tampered with, compromised, and
stolen. In addition, systems can be overwhelmed with traffic to the point that
they are rendered useless.

Integrity attacks Data integrity is a measure of the quality of the information
stored and transmitted on a system.

Types of attacks on data integrity include deleting or modifying files or
information on the file system or over a network.

Spoofing IP spoofing occurs when an intruder attempts to deceive the target
system into accepting packets that appear to the target as coming from someone
other than the intruder. If the target system already has an authenticated TCP
session with another system and mistakenly accepts spoofed IP packets, the
intruder can access sensitive information and lead the target to execute
commands in that packet, as though they came from the authenticated
connection.

Availability attacks Availability attacks occur when a resource such as a
Web site or HTTP port becomes unavailable due to a high volume of traffic.
Someone can use a program to generate thousands of simultaneous requests
aimed at the same site which then is unable to respond to legitimate requests.
Security Administration and Programming Guide 5

Lines of defense
Capture-and-replay Capture-and-replay refers to an intruder capturing data
as it moves from one system to another. User names, passwords, authentication
information, and so on, can be tampered with or used by the intruder to gain
access to protected resources.

There are a variety of ways and tools that intruders use to gain access to system
resources. Some of these attacks are undetected, while others destroy or alter
information. Following is a few examples of how an intruder gains access to
system resources:

• A brute force attack involves using many combinations until the right
key/password is located. Although it may seem like an expensive
operation, both in time and resources, tools are available that can speed-up
the process.

• A trojan horse attack occurs when an intruder secretly inserts a program
or file that either steals or destroys information, such as a virus. Another
simple example would be for someone to place a bogus program on your
system that prompts for a user name and password. The program simply
logs the user name and password information. The intruder accesses this
information and can then use your user name and password to access
resources to which you are permitted.

• A person-in-the-middle attack intercepts communication between two
parties without their knowledge. This attack allows two parties to
communicate without knowing a third party has access to the same
information.

Defense against attacks
This section discusses some of the methods by which you can protect data and
restrict access to resources.

Protecting ports and listeners You can provide various levels of security to
EAServer listeners by assigning security profiles to HTTPS and IIOPS
listeners. See Chapter 13, “Security Configuration Tasks” for more
information.

Protecting application server resources and securing clients EAServer
provides several methods to protect server resources and secure client/server
connections:

• Set authentication and authorization levels using EAServer Manager. See
Chapter 3, “Using Web Application Security.”
6 EAServer

CHAPTER 1 Security Concepts
• Create custom authentication and authorization components. See Chapter
10, “Creating and Using Custom Security Components.”

• Use the Java authentication and authorization service (JAAS). See
Chapter 11, “Using the JAAS API.”

• Use SSL to protect your Java, C++, and ActiveX clients. See Chapter 5,
“Using SSL in Java Clients,” Chapter 6, “Using SSL in C++ Clients,” and
Chapter 8, “Using SSL in ActiveX Clients”.

• Establish minimum levels of protection for components, packages, and
methods using quality of protection (QOP). See Chapter 2, “Securing
Component Access.”

• Propagate client principal information from one server to another and use
run-as support so an EJB can perform method invocations on other EJBs
using a different identity. See Chapter 2, “Securing Component Access.”

Protecting data Use public-key certificates when exchanging sensitive data
over a network to protect it from being viewed by intruders. See Chapter 14,
“Managing Keys and Certificates” for more information.
Security Administration and Programming Guide 7

Lines of defense
8 EAServer

C H A P T E R 2 Securing Component Access

Components can be invoked by clients, other components, or servlets and
JSPs. This chapter describes the various methods used to authenticate and
authorize each type of client.

Client authentication
Users are authenticated when a client application creates a proxy or stub
object (a connection is made when the application creates the first proxy
or stub; other proxies or stubs may use the same connections or allocate
new connections as needed).

Authentication options for base clients include:

• No authentication No user name/password authentication of
session user names is performed. This is the default configuration for
new servers.

• Native operating system authentication User names for an
EAServer connection map directly to a login name on the host
operating system. For example, for UNIX, you would use network
information service (NIS) passwords, and for Windows, you would
use your Windows domain password. See “Configuring OS
authentication” on page 153 for more information. You can enable
native authentication with EAServer Manager using the server’s
property sheet.

Topic Page
Client authentication 9

Intercomponent authentication 11

Intercomponent authentication for EJBs and servlets 13

Quality of protection 20

Client authorization 25
Security Administration and Programming Guide 9

Client authentication
• SSL certificate-based authentication You can configure a secure IIOP
port that requires mutual (client and server) authentication. Clients must
have a valid SSL certificate to connect to this port, and the certificate must
be issued by a certificate authority that is trusted by EAServer.

When clients connect with an SSL client-side certificate, the client also
supplies an EAServer user name and password for the connection in
addition to the certificate. EAServer performs authorization checking
based on the EAServer user name. The SSL user name and certificate
information are available through the built-in CtsSecurity/SessionInfo
component.

EAServer provides native SSL support without the use of proxies. On the
client side, the EAServer Java ORB supports SSL when run in Netscape
4.0. Java applets and Java applications, C++, PowerBuilder, and ActiveX
components can use SSL natively. Other types of clients require the use of
an SSL proxy.

C++ and PowerBuilder clients require that a public-key infrastructure
(PKI) system be available on the client to manage digital certificates. You
can use EAServer Manager, which manages EAServer’s certificate
database, or you can use Entrust/Entelligence, available separately from
Entrust Technologies at http://www.entrust.com.

See “Configuring security profiles” on page 155 for information about the
various authentication levels you can establish for a client-EAServer
connection. See Chapter 15, “Entrust PKI Integration” for Entrust
information.

• Custom authentication You can code a service component to be
installed in EAServer to perform your own authentication checks. For
example, you can retrieve the client user name and password and check to
see if they allow a login to a remote database server. See “User installed
authentication services” on page 11 for more information.

• Quality of protection EAServer Manager allows you to set the quality
of protection (QOP) for EAServer packages, components, and methods.
QOP establishes a minimum level of encryption and authentication that a
client must meet before it can access your business logic. See “Quality of
protection” on page 20 for more information.

EAServer provides a special user name, jagadmin, for the Jaguar Administrator
login. Administrator authentication is performed independently of the
authentication option you configure. By default, the “jagadmin” user name has
no password.
10 EAServer

CHAPTER 2 Securing Component Access
Set the administrator password for new servers Immediately after you
create a new server, you must secure access to the server by defining the
jagadmin password and configuring the authentication mechanism of your
choice. See “Administration password and OS authentication” in the EAServer
System Administration Guide for more information.

User installed authentication services You can install your own service
component to authenticate clients for any EAServer. For example, if you
require the client user name to match a remote database user name, you can
code the component to retrieve the client user name and password and attempt
to log in to the remote database. For more information, see Chapter 10,
“Creating and Using Custom Security Components.”

Intercomponent authentication
This section describes various security features available to components,
including:

• Retrieving SSL information

• Restricting access to EJBs

• Authenticating non-EJB components within a server and for standalone
clients

• Issuing intercomponent calls using SSL

Accessing SSL information
Clients can connect to a secure IIOP port using an SSL client certificate. You
can issue intercomponent calls to the built-in CtsSecurity/SessionInfo
component to retrieve the client certificate data, including:

• The distinguished SSL user name

• The client certificate fingerprint (MD5 message digest)

• The client certificate data

• The chain of issuing certificates
Security Administration and Programming Guide 11

Intercomponent authentication
This component implements CtsSecurity::SessionInfo IDL interface. HTML
documentation is available for the interface in the html/ir subdirectory of your
EAServer installation. You can view it by loading the main EAServer HTML
page, then clicking the “Interface Repository” link.

The CtsSecurity::UserCredentials interface is deprecated The
CtsSecurity::UserCredentials interface, which is implemented by the
CtsSecurity/UserCredentials component, has been replaced by the
CtsSecurity::SessionInfo interface, which provides additional functionality such
as certificate parsing. EAServer supports the CtsSecurity::UserCredentials
interface for backward compatibility. Use the CtsSecurity::SessionInfo interface
if you are developing new components.

Non-EJB components
For non-EJB CORBA components, the following mechanisms are used for
authentication within a server and for standalone clients:

1 Embed the user name and password in the URL when creating a
component instance. For example:

Module::Interface_var compInstance = Module::Interface::narrow(
"iiop[s]://user:password:host:port/EAServerPackage/EAServerComponent");

2 Use the lookup method on SessionManager::Factory. You cannot embed a
user name/password in the URL.

See the SessionManager IDL documentation for more information and
these chapters:

• Chapter 5, “Using SSL in Java Clients”

• Chapter 6, “Using SSL in C++ Clients”

• Chapter 8, “Using SSL in ActiveX Clients”

C++ components
C++ components (and PowerBuilder NVOs) can make intercomponent calls
across different servers using SSL in much the same way as any other C++
client. However, be aware of these considerations:
12 EAServer

CHAPTER 2 Securing Component Access
• The SSLServiceProvider interface is not available to components. Instead,
set ORB-level SSL properties to initiate server-to-server intercomponent
calls using SSL.

• Components use $JAGUAR/Repository/Security path to locate certificates
and key database files if not using Entrust IDs. That is, components
making intercomponent calls use the EAServer’s certificate and key
database managed by EAServer Manager.

For information about developing C++ components and clients, see these
chapters in the EAServer Programmer’s Guide:

• Chapter 14, “Creating CORBA C++ Components”

• Chapter 15, “Creating CORBA C++ Clients”

Your EAServer installation includes a sample C++ component that
demonstrates how to call the CtsSecurity/SessionInfo component methods. See
the following file in your EAServer installation for more information:

sample/SecurityDemo/readme.txt

Intercomponent authentication for EJBs and servlets
EAServer 4.0 implements J2EE version 1.3 security requirements, including
Java and C++ ORB support and CORBA Secure Interoperable version 2
protocol (CSIv2). CSIv2 is part of EJB version 2.0 interoperability
requirements, and supports:

• EJB 2.0 security features including:

• Caller propagation on remote servers from EJB 2.0 clients using
RMI/IIOP.

• Run-as support

• Trust identities

• Servlet 2.3 security enhancements including:

• Caller propagation on remote servers

• Run-as support

• Java Authentication and Authorization Service (JAAS) – see Chapter 11,
“Using the JAAS API” for more information.
Security Administration and Programming Guide 13

Intercomponent authentication for EJBs and servlets
Other references For more information about J2EE version 1.3, see the Java Web site at
http://java.sun.com/j2ee.

For more information about servlet technology, see the Java Web site at
http://java.sun.com/products/servlet/index.html.

For more information about CSIv2, see the OMG Web site at
http://www.omg.org/technology/documents/formal/omg_security.htm

Intercomponent authentication for EJB 2.0 components
EJB 2.0 components use caller propagation to pass client information between
servers for authentication, whereas run-as support allows EJB 2.0 components
to perform method invocations on other components using a different identity.

Caller propagation

Caller propagation allows an EJB 2.0 RMI/IIOP client to pass principal
information to a server and have that information propagated to other servers.
In other words, EAServer 4.0 can pass a client’s user name or X.509 certificate
information from an EJB on one server, to an EJB on a different server. For
example:

1 The client passes principal information to EAServer1, where the
information is authenticated.

2 EAServer1 retrieves the remote client’s authentication information by
calling getCallerPrincipal().

3 EJBA, on EAServer1, makes a call to another Bean, which resides on
EAServer2.

4 The propagated caller information is retrieved on EAServer2 using the
getCallerPrincipal() method.

To enable caller propagation for EJB component calls made in servlet or
component code, you must specify a corbaname URL in the EJB Reference
properties for the EJB component, servlet, or JSP that issues the call.

For information on interoperable naming URLs, see Chapter 9, “EAServer
EJB Interoperability,” in the EAServer Programmer’s Guide.
14 EAServer

CHAPTER 2 Securing Component Access
Run-as support

Normally, when a component calls another component, the invocation uses the
client’s credentials. You can use identities to specify alternate credentials for
intercomponent calls. Identities map logical identity names to a user name,
password, and required SSL session characteristics. The identity names are
used in the run-as mode settings for components and component methods.

Run-as support enables an EJB 2.0 component to perform method invocations
on other components using a specified identity. This identity can be configured
at deployment time. In the standard EJB 2.0 deployment descriptor, the run-as
property is expressed in terms of a role. The role is a name of a security-role
element defined in the same deployment descriptor. It is expected that at
deployment time, or when configuring a new EJB, the role name should be
defined. Further, the deployer selects a Jaguar identity that is expected to be
present in this role. This Jaguar identity is used while invoking another EJB.
The run-as feature can be enabled via EAServer Manager.

To enable use of the run-as identity for EJB component calls made in
component code, you must specify corbaname URLs in the EJB Reference
properties for the EJB component that issues the call. For information on
interoperable naming URLs, see Chapter 9, “EAServer EJB Interoperability,”
in the EAServer Programmer’s Guide.

❖ Configuring an EJB 2.0 component to run as a different identity

1 If necessary, define the identity to be used as described in “Configuring
identities” on page 164.

2 Highlight the EJB 2.0 component for which you are establishing a run-as
identity.

3 Display the Run As Identity tab and configure the settings as follows:

• Run as – choose specified.

• Role – specify a role name. The identity specified in the Mapped to
Jaguar identity field should be in this role. This name is used if the
component is exported to an EJB-JAR file.

• Run as identity – specify a logical identity name.

• Mapped to Jaguar identity – choose an EAServer identity from the
pull down menu. This is the identity with which the component
executes.
Security Administration and Programming Guide 15

Intercomponent authentication for EJBs and servlets
• Description – enter an optional text comment. This field can be used
to provide identity mapping instructions for the deployer when the
component is deployed to another server.

The Existing Mappings on the Package table displays logical identity
names that are mapped to EAServer identities by components in the same
package.

You can configure a run-as identity application or server-wide. This provides a
convenient way to globally set the run-as identity for all of the EJBs in an
application or server.

❖ Configuring EJB 2.0 components or servlets to run as a different identity
at the application or server level

1 If necessary, define the identity to be used as described in “Configuring
identities” on page 164.

2 Select the server or application for which you are configuring the run-as
identity.

3 Select File | Server Properties or File | Application Properties.

4 Select the Security tab.

5 For a server, click the Set Trusted and Security Identities button. Select the
run-as identity from the Run-as Identity drop-down list.

To set the run-as identity application-wide, select the run-as identity from
the Run-as Identity drop-down list.

You can check the setting of your run-as identity from the Advanced tab by
viewing the com.sybase.jaguar.server.security.runasidentity
property, and the
com.sybase.jaguar.application.security.runasidentity property.
Do not set the run-as identity in the Advanced tab since these values are
overwritten by the values set in the Security tab.
16 EAServer

CHAPTER 2 Securing Component Access
Trusted identities

Identities defined in EAServer Manager configure client identities (user
names, SSL certificates, or Entrust users) that can be assumed by executing
components. For caller propagation, EAServer requires an identity to
propagate a remote client’s credentials to another server when it cannot
include, as part of the request, the client’s authentication data (password or a
private key corresponding to a X.509 certificate). You configure a server (or
container) to trust a set of identities that vouch for the client. These identities
are known as trusted identities.

If a target server trusts an intermediate server, it is implied that the target server
trusts all servers trusted by the intermediate server.

A server or container needs to establish a list of identities it trusts. Servers and
containers use identities for the purpose of authentication. Other servers need
to know the list of trusted identities for a server while connecting to it.

Configuring an identity
for outgoing credential
propagation

An identity is required when a server is making remote IIOP or IIOPS
connections to other servers, and is not necessary for in-server or in-memory
component calls. Use EAServer Manager to establish this identity at the server
or application level.

❖ Configuring a security identity for outgoing interserver calls

1 If necessary, define the identity to be used as described in “Configuring
identities” on page 164.

2 Select the server or application for which you are configuring the security
identity.

3 Select File | Server Properties or File | Application Properties.

4 Select the Security tab.

5 For a server, click the Set Trusted and Security Identities button. Select the
security identity from the Security Identity drop-down list.

For an application, select the security identity from the Security Identity
drop-down list.

You can check the setting of your security identity from the Advanced tab by
viewing the com.sybase.jaguar.server.security.identity property,
and the com.sybase.jaguar.application.security.identity property.
Do not set the security identity in the Advanced tab since these values are
overwritten by the values set in the Security tab.
Security Administration and Programming Guide 17

Intercomponent authentication for EJBs and servlets
Enabling trusted
identities on the peer

A trusted identity vouches for someone else and is always authenticated by the
peer. Establish a list of trusted identities at the server or application level.

❖ Establishing a list of trusted identities for incoming interserver calls

1 If necessary, define identities to be trusted as described in “Configuring
identities” on page 164.

2 Select the server or application for which you are establishing trusted
identities.

3 Select File | Server Properties or File | Application Properties.

4 Select the Security tab.

5 For a server, click the Set Trusted and Security Identities button. Click the
Add button and highlight the identity you are adding from the drop-down
list. Add as many identities as you want, one at a time.

For an application, click the Add button and highlight the identity you are
adding from the drop-down list. Add as many identities as you want, one
at a time.

Use the Remove button to remove a trusted identity.

You can check the settings of your trusted identities from the Advanced tab by
viewing the com.sybase.jaguar.server.trustedidentities property,
and the com.sybase.jaguar.server.applicaiton.trustedidentities
property. Do not set trusted identities in the Advanced tab since these values
are overwritten by the values set in the Security tab.

Authentication of component invocation from servlets
This section describes how to propagate servlet credentials between servers
and how to use identities to map logical identity names to a user name,
password, and required SSL session characteristics. The identity names are
used in the run-as mode settings on Beans called from a servlets.

Caller propagation for servlets on remote servers

A servlet’s or JSP’s HTTP client credentials are propagated when EJBs are
invoked on remote servers. Earlier versions of EAServer propagated user
name/password or digital IDs, and only within the same server.
18 EAServer

CHAPTER 2 Securing Component Access
Run-as support

Run-as support for servlets is similar to run-as support for EJBs:

• Run-as support is defined on a per-servlet basis.

• Run-as support applies to all method invocations on Beans called from the
servlet.

To enable run-as support for servlets or JSPs, the servlet or JSP must be
installed in a Web application. Additionally, you must specify corbaname
URLs in the EJB Reference properties for the servlet or JSP that issues the call.
For information on interoperable naming URLs, see Chapter 9, “EAServer
EJB Interoperability,” in the EAServer Programmer’s Guide.

From EAServer Manager, configure the run-as identity as follows:

1 Expand the icon for your Web application.

2 Highlight the servlet for which you are configuring run-as support.

3 Display the Run As Identity tab and configure the settings as follows:

• Run as – choose specified.

• Role – specify a role name. The identity specified in the Mapped to
Jaguar identity field should be in this role. This name is used if the
Web application exported to a WAR file.

• Run as identity – specify a logical identity name.

• Mapped to Jaguar identity – choose an EAServer identity from the
drop-down list. This is the identity with which the servlet invokes
components.

• Description – enter an optional text comment. This field can be used
to provide identity mapping instructions for the deployer when the
Web application is deployed to another server.

The Existing Mappings on the Web Application table displays logical
identity names that are mapped to EAServer identities by servlets in the
same Web application.

You can configure a run-as identity application or server-wide. This provides a
convenient way to globally set the run-as identity for all of the servlets/JSPs in
an application or server. See “Configuring EJB 2.0 components or servlets to
run as a different identity at the application or server level” on page 16 for
more information.
Security Administration and Programming Guide 19

Quality of protection
Quality of protection
EAServer Manager allows you to set the quality of protection (QOP) for
EAServer packages, components, and methods. QOP establishes a minimum
level of encryption and authentication that a client must meet before it can
access your business logic. For example, if you do not set a QOP at the package
level, all clients can access the package. You can then set a QOP that restricts
access to components within that package, and a different QOP that further
restricts access to methods within those components.

This chapter discusses setting server-side QOP. For information about
configuring client-side QOP, see:

• Chapter 5, “Using SSL in Java Clients”

• Chapter 6, “Using SSL in C++ Clients”

• Chapter 8, “Using SSL in ActiveX Clients”

Note The component’s QOP setting is ignored if the user is the system user; in
other words, the user is jagadmin or the component is being called by a service
or other component that runs with the system identity.

Naming service
support

The client’s QOP, EAServer listener’s security profile, and the package,
component, and method QOP work together to establish end-to-end security.
To accommodate naming services and reduce connection time, a special
CORBA component tag is set in the interoperable object reference (IOR). The
naming service sends only profiles with QOPs that match a client’s QOP so that
the client tries to access only listeners and packages, components, and methods
for which the client has a compatible QOP.

Usage scenarios
Table 2-1 provides a hierarchy of QOP settings. For a given client to access
your business logic:

• A QOP-compatible listener must be available on the server, and

• Either the same or weaker QOP or no QOP restrictions must be placed on
the package/component/method.
20 EAServer

CHAPTER 2 Securing Component Access
Table 2-1: QOP hierarchy

Figure 2-1 illustrates two clients trying to access component A. A QOP of
sybpks_strong is set for the component. To access the component, the client
must use a QOP that meets the minimum requirements of the component’s
QOP, and communicate with a listener that also meets the minimum
requirements of the component’s QOP.

Figure 2-1: QOP usage

 In Figure 2-1:

• Client 1 accesses the server at listener port 9001, but cannot access the
component because the client’s QOP does not meet the minimum
requirements of component A.

QOP hierarchy from
weaker to stronger Comments

syb_osauth
sybpks_domestic_anon
sybpks_simple
sybpks_simple_mutual_auth
sybpks_intl
sybpks_intl_mutual_auth
sybpks_domestic
sybpks_domestic_mutual_auth
sybpks_strong
sybpks_strong_mutual_auth

Some QOP profiles overlap. For example,
sybpks_domestic supports both 128-bit encryption and
40-bit encryption. If you use sybpks_domestic as a
package QOP, a client QOP of sybpks_intl meets the
minimum requirement of 40-bit encryption.
sybpks_strong supports only 128-bit encryption and is
compatible with only one of the domestic or strong
profiles.

For a list of CipherSuites supported by each QOP
profile, see Table 13-2 on page 158.

sybpks_domestic

sybpks_intl

port 9002

port 9001

Component
A

sybpks_strong

EAServer

sybpks_domestic_mutual_auth

port 9003

Client 2

sybpks_domestic

Client 1
sybpks_intl
Security Administration and Programming Guide 21

Quality of protection
• Client 2 accesses the server at listener port 9002. The listener and client
negotiate a cipher suite that both support. The highest cipher suite that
both client and listener support uses 40-bit encryption and does not meet
the minimum requirement of component A, since sybpks_strong supports
only 128-bit encryption. Even though the client supports the minimum
QOP required to communicate with component A, it is blocked because
the listener does not support this minimum requirement.

See Table 2-1 on page 21 and Table 13-2 on page 158 for more
information about QOP compatibility.

• Neither client supports mutual authentication; consequently, neither can
access the listener at port 9003.

If a client has a QOP that includes mutual authentication, it can access a
package, component, or method that does not, as long as there is a listener
available to authenticate the client and the client’s QOP meets the
minimum level of security established at the package, component, or
method. Figure 2-2 illustrates this scenario.

Figure 2-2: QOP-compatible listener

Controlling access to
methods

Assuming that a compatible listener is configured on the server, Figure 2-3
illustrates a situation in which the client:

• Cannot access method 1 because the client’s QOP does not match the
minimum required by the method.

• Can access method 2 because sybpks_intl meets the security requirements
of the method and component A, and the package has no QOP restrictions.

• Cannot access method 3 or 4 because it is blocked at the component level.

Setting a weaker QOP at the method than the component serves no purpose
since the client will already be blocked at the component.

Component
A

sybpks_intl

EAServer

sybpks_intl_mutual_auth

port 9003

sybpks_domestic_mutual_auth
Client
22 EAServer

CHAPTER 2 Securing Component Access
Figure 2-3: Using QOP to limit access to methods

syb_osauth In addition to setting a QOP that establishes minimum encryption
requirements, Jaguar provides another QOP, syb_osauth, for operating system
authentication. You can set two QOP settings at the package, component, or
method level, as long as one of them is syb_osauth:

• If syb_osauth is requested by the client and is not present in the package,
component, or method QOP, the client ORB returns COMM_FAILURE
and the message “no suitable profiles found.”

• If the client does not request syb_osauth and the component, method, or
listener QOP requires OS authentication, it is considered compatible (for
backward compatibility with Jaguar 3.x and 2.0 clients). In this case, the
user name and password are used for OS authentication.

Note For syb_osauth to work properly, you must enable operating-system-
based authentication server-wide (not at the listener level). If you do not, you
cannot load packages, components, or methods that have the syb_osauth QOP
set. See “Configuring OS authentication” on page 153 for information about
enabling authentication for your operating system.

In Figure 2-4:

• Client 1 has a compatible QOP and supplies a user name and password to
access method 1. Client 1 can access method 2 without authentication.

Component B

Method

Package

Component A

Method

Method

Method

sybpks_intl

sybpks_strong

sybpks_domestic

sybpks_strong

Client

sybpks_intl

1

2

3

4

Security Administration and Programming Guide 23

Quality of protection
• Client 2 has a compatible QOP and uses authentication to access method
1 but gets a COMM_FAILURE error if it tries to access method 2.

Figure 2-4: Using syb_osauth

❖ Configuring QOP from EAServer Manager

Highlight the package, component, or method for which you want to establish
a QOP.

1 Select File | Package, Component, or Method Properties.

2 Select the Advanced tab and set:

• The com.sybase.package.qop property for a package.

• The com.sybase.component.qop property for a component.

• The com.sybase.method.qop property for a method.

3 If the property already exists, you can highlight it and click Modify.
Otherwise, click Add.

4 Enter the appropriate property name in the Property Name field and one
(or two if using syb_osauth) of the values from Table 2-1 in the Property
Value field.

After configuring QOP, you must either refresh or restart the server for your
changes to take effect.

Package Component A

Method

Method

sybpks_intl

syb_osauth
Client 1

sybpks_intl

1

2

Client 2

sybpks_intl

os authentication requested
24 EAServer

CHAPTER 2 Securing Component Access
Client authorization
EAServer provides component authorization through both roles and custom
components:

Roles EAServer’s authorization model is based on roles. Define roles in
EAServer Manager. Each role can include and exclude specific user names and
digital certificates. If you use native operating system authentication, you can
also include and exclude operating system group names; all users in the
specified group are affected.

Roles are attached to EAServer packages, components, and methods.
Attaching a role to a package controls access to all components in the package.
To use a component, a user must be allowed component access by both the
roles that are attached to the component and the roles that are attached to the
package that contains the component.

See “Configuring EAServer roles” on page 145 for more information on
defining roles.

Custom components EAServer provides role and authorization service
components with which you can create and install your own component to
authorize clients to access resources on EAServer. See Chapter 10, “Creating
and Using Custom Security Components.”

Enterprise JavaBeans
EJB 1.0 components use the package, component, and method role-based
access control model used by all other component types. “Configuring
EAServer roles” on page 145 describes how to configure roles and associate
them with packages, components, and methods.

EJB 2.0 and 1.1 component security uses method-level constraints rather than
the package and component role constraints used for other component models.
The Roles folder does not display for EJB 2.0 or 1.1 components, or for
packages that contain only EJB 2.0 or 1.1 components. If EJB 2.0 or 1.1
components are installed in a package that contains other component types, the
package role folder has no effect on the EJB 2.0 or 1.1 components.

To restrict access beyond the configured permissions, you can call the
isCallerInRole Java method to check the user’s role membership. If you call the
isCallerInRole Java method, you must configure role references to map names
used in isCallerInRole calls to J2EE role names that are configured in the
package properties.
Security Administration and Programming Guide 25

Client authorization
❖ Configuring logical role mappings

Role settings in EJB 2.0 and 1.1 method permission use logical J2EE role
names which must be mapped to EAServer role names in the properties of the
package where the component is installed. The logical names are used when
exporting the component to an EJB-JAR file. Configure role mappings as
follows:

1 If necessary, define new EAServer roles to be used in the method level
constraints. See “Configuring EAServer roles” on page 145 for details.

2 Display the package properties.

3 Display the Role Mapping tab and configure the mappings as follows:

• To add a logical J2EE role name, click Add and enter the role name.

• To specify the mapped EAServer role, click in the right column,
opposite the J2EE role to be mapped, then use the pull-down menu to
choose the mapped role.

❖ Configuring EJB 2.0 or 1.1 method permissions

1 If necessary, define new EAServer roles to be used by callers of the
component and map them to J2EE roles in the package properties. You
must map a J2EE role name for each role to be used in method
permissions.

2 For each method that requires limited access, display the Method
Properties dialog and highlight the Permissions tab. A check box displays
for each mapped J2EE role in the package that contains the component.
Select the check box by each role that can call the method.

Several predefined roles are available. For example, select the predefined
“everybody” role if all users are to have access, or select “nobody” if all
users are to be denied access. “Predefined roles” on page 151 describes the
other predefined EAServer roles.

If the logical J2EE role is not mapped to an EAServer role, then at runtime,
the server defaults to performing role checks against the logical J2EE role.
The server assumes there exists an EAServer role with the same name as
that of the logical J2EE role.

❖ Configuring EJB 2.0 or 1.1 role references

1 If necessary, define new EAServer roles to be used by callers of the
component. and map them to J2EE roles in the package properties. You
must map a J2EE role name for each role to be used in role references.
26 EAServer

CHAPTER 2 Securing Component Access
2 For each component that calls the isCallerInRole method, display the
Component Properties dialog and highlight the Role Refs tab. Add or
modify roles as follows:

• To add a role, click Add and edit the new entry as described below.

• To modify a role, edit the Reference Name (used in isCallerInRole
calls), and choose the mapped J2EE role (configured in the properties
of the package where the component is installed).

EJB 2.0 authorization of methods with no defined permissions

For EJB 2.0 components, if there are no roles associated with a method, then
access is denied to everyone, which is different from EJB version 1.x. Keep this
in mind when upgrading from EJB version 1.x to 2.0.

Note The com.sybase.jaguar.server.ejb.role.default property affects only EJB
2.0 components, not EJB 1.1 or 1.0 components.

Usually a role reference is mapped to a J2EE role. However, sometimes the
mapping to the J2EE role may be missing, either intentionally, or due to
mappings or customization not being performed after you deploy a J2EE
application. In some cases, the mapping of the J2EE role to the EAServer role
is missing. The following describes the behavior of the server in such cases:

1 If a role reference to J2EE role mapping is located, then a mapping
between the J2EE role and an EAServer role is searched. If the search fails,
role checks are performed against the J2EE role directly. If the search
succeeds, then role checks are performed against the EAServer role.

2 If the role reference to J2EE role mapping search fails, then a mapping
between the role reference and an EAServer role is performed. If a match
is found, role checks are performed against the EAServer role. Otherwise,
role checks are performed against the role reference directly.

In some EAServer and application configurations, the role reference name, the
J2EE role name, and EAServer role name may be the same. In such cases, even
though the mappings have not been explicitly set by the deployer at run time
the server uses the default behavior, and EAServer performs the role checks
internally against the EAServer role. In some application environments, this
may be the intended and desired behavior, while in other environments, this
may be unintended.
Security Administration and Programming Guide 27

Client authorization
Role checks performed against a role that is not defined in the repository fail.
If there is a role service or an authorization service, these services are
consulted. See Chapter 10, “Creating and Using Custom Security
Components.”

EJB 2.0 authorization For an EJB 2.0 bean, if there are no method
permissions defined for all methods, no authorization checks are performed,
and access is granted to any user. If however, any one method has a permission
assigned to it, then you must assign permissions to all methods to allow client
access, otherwise, your clients will be denied access due to an authorization
failure.
28 EAServer

C H A P T E R 3 Using Web Application Security

This chapter discusses how to establish authentication and authorization
levels for your Web application elements using declarative security
provided by EAServer Manager.

Introduction
A Web container holds your Web application elements, including
components, servlets, JSPs, HTML pages, and so on. The Web
application’s deployment descriptor describes how a Web application is
deployed, including the level of security for the various elements of your
Web application. For example, your Web application may include an
HTML page that is available to all visitors to your site, while other HTML
pages, servlets, and JSPs are restricted to existing or preferred customers.

Web client security requires that Web content be deployed in Web
applications:

• There is no way to secure files deployed in EAServer’s HTML root
directory.

• Do not put sensitive information such as passwords in files that can
be downloaded by Web clients.

• Do not put files containing sensitive information in locations that
allow download by Web clients.

Topic Page
Introduction 29

Authentication 30

Authorization 34

Role mapping 38
Security Administration and Programming Guide 29

Authentication
❖ Accessing the security properties of your Web application from
EAServer Manager

1 Highlight the Web Applications or the Installed Web Applications folder.

2 Highlight the Web application for which you are establishing security.

3 Select File | Properties.

4 Select the Security tab from the Web Applications Property window.

You can now define the authentication method of your Web application
and security constraints on the various elements within your Web
application.

❖ Defining Web application security from the Web application Security
wizard

As an alternative to setting Web application security from the Web Application
Properties dialog, you can use the Web Application Security wizard, which
guides you through the security configuration process.

1 Highlight the Web Applications or the Installed Web Applications folder.

2 Highlight the Web application for which you are establishing security.

3 Select File | Security Configuration Wizard.

4 Follow the instructions in the wizard to define the authentication method
of your Web application and security constraints on the various elements
within your Web application.

Authentication
The types of Web application authentication methods available include:

• None no authentication is required.

• Basic the server asks the client for its user name and password. You also
provide a Realm name. The realm adds additional information to the client
who is logging in to your site. For example, if you do not provide a realm
name when a client visits your site, the browser displays a message to the
client that states “The server at host:port wants you to log in.” If you enter
a realm name of “Human Resources Web site,” the browser displays “The
server at Human Resources Web site at host:port wants you to log in.”

When an HTTP client sends the HTTP basic authentication header:
30 EAServer

CHAPTER 3 Using Web Application Security
• The server authenticates the client using the server-defined
authentication scheme and invokes any defined customized
authentication component.

• If the request is intended for PowerDynamo, the server still
authenticates the client, and if the request is denied, HTTP status code
401 (Unauthorized) is sent back to the client.

• If the authentication fails, the request fails and an error message is
sent back to the client. If the request is intended for a Web application,
the Web application manages error handling.

• If the request is intended for a regular static page, the request is
denied, and HTTP status code 401 (Unauthorized) is sent back to the
client.

• Form the Web application developer creates an HTML login page,
where the client enters a user name and password. The entire HTML page
is sent to the server. You also create an error page that is returned to the
client in the event of a server error.

• Login page – enter the location of the login page that is supplied to the
client at login. For example, /login.jsp might be your login page.

• Error page – enter the location of the error page that the client is
directed to should a server error occur during login. For example,
/error.jsp might be your error page.

Login and error pages can vary from a very simple HTML page to a
complex page that includes servlets and JSPs.

The location of the error and login pages is relative to the WebApp
directory whether or not a “/” is used. For example, if you specify
/error.jsp or error.jsp as the location of your error page, the servlet engine
assumes that it is contained in the WebApp context.

Below is an example of a form login and error page. The action of the form
login page must always be j_security_check. The user name and password
fields should be j_username and j_password respectively.

Form login page:

<html>
<body>
<h1>Login page</h1>

<form method="POST" action="j_security_check" >
<input type="text" name="j_username">
<input type="password" name="j_password">
Security Administration and Programming Guide 31

Authentication
<input type="submit" name="j_security_check">
</form>

</body>
</html>

Form error page:

<html>
<head>
<title>Login Error</title>
</head>
<body> Login error -- please try again.
</body>
</html>

These examples assume that login.html is the login page, and that the error
page and login page are in the same directory.

• Client-cert – the client connects to the server using SSL tunneled within
HTTP. The client must provide a certificate that the server accepts and
authenticates. For more information about SSL, see Chapter 13, “Security
Configuration Tasks,” and Chapter 14, “Managing Keys and
Certificates.”

Note You cannot use both “client-cert” and “OS authentication” as Web
application security mechanisms at the same time. If you do, clients will
not connect to the Web application. See “Configuring OS authentication”
on page 153.

Note EAServer does not support HTTP digest authentication. If you specify
digest authentication, the default, Basic, is used instead.

EAServer supports lazy authentication, which means that the server attempts
to identify a client only when the client attempts to access a restricted resource.
As long as the client accesses only resources that do not require authorization,
the server does not attempt to authenticate the client.
32 EAServer

CHAPTER 3 Using Web Application Security
When a server authenticates a client, the client is authenticated for all
applications and references on the server. You can implement authentication of
a client for an entire server by using cookies or rewriting the URL. A reference
to the client’s security credentials is saved in a cookie or encoded in the URL.

Form login requirements in a Web application when using HTTPS
(SSL)

To use the form login mechanism in your Web application, the client must
support cookies. The client can be a browser or a standalone HTTP client. To
convert your Web application, which uses the form login mechanism in
conjunction with HTTPS, the transport guarantee for the form login page and
the pages that require authorization must be identical. Otherwise, the client will
receive multiple HTTP redirects to the same page, resulting in an error. See
“Defining a security constraint from the Web Application Properties Security
tab” on page 35 for information about configuring transport guarantee.

Here are the steps required to enable HTTPS for the eStore application, which
is a large, comprehensive sample application developed by Sun Microsystems
to run on J2EE-compliant servers. eStore simulates an online pet store
implemented with Java Server Pages, Java servlets, and Enterprise Java Beans.
You can download eStore as part of the Sun Microsystems J2EE Blueprints at
http://java.sun.com/j2ee/blueprints/.

1 Change the transport guarantee for the existing two security constraints
from None to Confidentiality or Integrity.

2 Add a new security constraint. Set the transport guarantee for the new
security constraint to the same value as the existing two security
constraints.

3 Add a Web resource collection to the new security constraint. Define a
Web resource, and set the URL pattern to “/login.jsp”, which is the URL
of the form login page.

4 Refresh the eStore application. Connect to the eStore application from
your browser. The form login and subsequent communication occurs
using HTTPS.
Security Administration and Programming Guide 33

Authorization
Web application direct form login
EAServer supports direct form login, which allows you to access a Web
application’s protected content directly without requiring the user to visit the
Web application’s form login page.

To enable direct form login, set the following session property:

com.sybase.jaguar.servlet.session.redirecturl

This property specifies the URL of the protected page that you want to access.
With the property set, submit a post request to the form login URL with the user
name and password specified in the request parameters. If the login succeeds,
EAServer redirects the user to the specified page.

If you do not specify a page to redirect to before posting a request to the login
form, EAServer redirects the user to the page specified by this Web application
property:

com.sybase.jaguar.webapplication.default.protectedpage

If this property is not set, EAServer redirects the user to the Web application’s
welcome page.

Also, when authentication fails, the following properties are set in the servlet
session before invoking the error page:

• com.sybase.jaguar.servlet.session.username – the user name
specified in the failed login attempt.

• com.sybase.jaguar.servlet.session.password – the password
specified in the failed login attempt.

These settings are removed when authentication succeeds.

Authorization
Security constraints enable you to set various levels of authorization within the
elements of your Web application. You create J2EE roles and map them to
EAServer roles, then limit access to JSPs, servlets, and HTML pages to entities
that belong to an authorized J2EE role. In addition, you can define which
HTTP methods have access to which URLs, and establish levels of transport
guarantee.
34 EAServer

CHAPTER 3 Using Web Application Security
For example, you could create a security constraint that blocks access to all
users at the Web application level. You could then grant access to resources
(HTML pages, JSPs, servlets) within the Web application to authorized users.
To do this, you need at least two security constraints:

1 Create a top-level security constraint and assign to it a Web resource
collection with a URL pattern set to “/*”.

Establish an authorized role for the security constraint that contains no
users. For example, you could create the role of “None” and assign it to the
security constraint.

2 Create another security constraint and assign to it a Web resource
collection with a URL pattern set to the URL locations for which you are
providing access.

Establish an authorized role that contains the users that are allowed access
to the Web resources protected by this security constraint.

3 Create additional security constraints and allow access to other Web
resources as needed.

Use this same approach to define security constraints that require specific
levels of transport guarantee.

❖ Defining a security constraint from the Web Application Properties
Security tab

1 Create a security constraint – click Add to create a security constraint.
Security constraints are automatically named SC0, SC1, and so on.

To delete a security constraint, highlight the constraint and click Delete.

2 Define a Web resource collection – Web resource collections contain a list
of URL patterns and HTTP methods available for those URLs. To define
a Web resource collection:

a Highlight the security constraint to which the Web resource collection
belongs, and click Edit.

b Click Add to create a collection name. Provide a description.

c Highlight the collection to which you are adding the Web resources
you are protecting.

d Add a URL pattern to be protected by clicking Add in the URL
Patterns window.

e Double-click “urlPattern” and enter the URL to be protected. Add
additional URL patterns for this collection by repeating this step.
Security Administration and Programming Guide 35

Authorization
The URL pattern can have two forms:

• /url_name – specifies an individual URL.

• /url_location/* – specifies all of the URLs located in the
url_location directory.

f Select the HTTP operations that are allowed access to the defined
URL patterns. HTTP operations include:

• GET – the most common method used by browsers. GET
receives its input through a query string.

• POST – similar to a GET except that the input data is sent through
standard input instead of using the query string. The POST
method is normally used for an HTML form.

• PUT – same as POST except PUT usually implies that the
operation take effect immediately whereas POSTs action may be
delayed.

• OPTIONS – determines what HTTP options are supported.

• DELETE – removes some entity.

• TRACE – causes a response with a message containing all of the
headers sent in the trace request.

3 Establish authorized roles – define the authorized roles that have access to
the HTTP methods for the URLs defined for this security constraint.
Before establishing an authorized role, you must map EAServer roles to
J2EE roles. See “Role mapping” on page 38 for more information.

To configure role checking for a security constraint:

a Highlight the security constraint to which you are adding authorized
roles.
36 EAServer

CHAPTER 3 Using Web Application Security
b Select Enable Authorization if role checking is to be performed for
this role. If this option is not selected, all users have access to pages
associated with this security constraint.

Note To deny all users access to pages associated with the security
constraint, select Enable Authorization, but do not assign any roles.

To allow access to all users, deselect the Enable Authorization option.

To force authentication to happen, but allow access to all users, create
a J2EE role named ‘everybody’ and map it to the EAServer role of the
same name. Pages that require this role will trigger authentication if
the user is not already authenticated, and allow access to all users.

c Click the Authorized Roles Edit button.

d A list of mapped EAServer roles displays. Click the check box for the
roles that have permission for the Web resources protected by this
security constraint.

4 Transport guarantee – establish a level of transport security for each
security constraint appropriate for the Web resources you are protecting. If
you use basic or form-based authentication, passwords and other sensitive
information is not protected for confidentiality. If you have sensitive
information that you want to protect, establish a security constraint that
uses a greater level of protection. Supported transport guarantee levels are:

• None uses insecure HTTP. Using SSL-protected sessions has more
overhead than insecure HTTP sessions. Use None for transport
guarantee if you do not need the added confidentiality of SSL.

• Integral uses an SSL-protected session that checks for data
integrity.

• Confidential uses an SSL-protected session to ensure that all
message content, including the client authenticators, are protected for
confidentiality as well as data integrity. A Confidential transport
guarantee has more overhead than None.
Security Administration and Programming Guide 37

Role mapping
Role mapping
This section describes how to map EAServer roles to J2EE roles. Members of
J2EE roles can be granted permission (authorized) to access Web resources
protected by security constraints.

❖ Mapping an EAServer role to a J2EE role

1 Select the Role Mapping tab from the Web application properties window.

2 Click Add. Double-click the J2EE role and enter a name. You can also
enter a description for the role in the provided field.

3 Select an EAServer role from the drop-down list. This is the role from
which the J2EE role inherits its permissions and members.

See “Configuring EAServer roles” on page 145 for more information.
38 EAServer

C H A P T E R 4 Securing TDS Client Access

This chapter describes how Tabular DataStream (TDS) and Methods As
Stored Procedures (MASP) clients access EAServer and the security
features provided for these clients.

TDS and MASP listeners
TDS and MASP clients access EAServer through the TDS listener, which
does not support SSL. The default EAServer TDS listener is located on
port 7878.

See “Configuring listeners” on page 161 for information about
establishing a TDS listener for your TDS and MASP clients. For added
security, if you do not require a TDS listener, delete the associated listener
from EAServer.

MASP client security
MASP clients can connect to EAServer and invoke components as if they
were a Sybase database stored procedure. Authentication consists of
operating system based authentication. Authorization consists of the same
role-based authorization mechanism as used for IIOP clients.

Topic Page
TDS and MASP listeners 39

MASP client security 39

Open Server client security 40
Security Administration and Programming Guide 39

Open Server client security
See “Configuring OS authentication” on page 153 for information about
authentication, and “Configuring EAServer roles” on page 145 for
information about establishing role-based authorization. See Appendix A,
“Executing Methods As Stored Procedures,” in the EAServer Programmer’s
Guide for more information about MASP clients.

Open Server client security
Open Server™ clients use the same security mechanisms when communicating
with EAServer as regular Open Server applications except that EAServer does
not support Kerberos or DCE. Open Server clients can also use EAServer
supported OS based authentication. See “Configuring OS authentication” on
page 153.

Open Server client security mechanisms include:

• Login authentication services The fundamental security service is
login authentication, or confirming that users are who they say they are.
Login authentication involves user names and passwords. Users identify
themselves by their user name, then supply their passwords as proof of
their identity.

• Per-packet security services You can protect your Open Server
applications with a number of per-packet security services, including:

• Data confidentiality – encrypts all transmitted data and assures that
strangers cannot understand in-transit data.

• Data integrity – detects attempts to tamper with in-transit data.

• Data origin time stamping – assures that received data was really sent
by the client or the server.

• Replay detection – detects attempts by strangers to replay captured
transmissions.

• Sequence verification – detects transmissions that arrive in a different
order than they were sent.

• Channel binding – stamps each transmission with an encrypted
description of the client’s and server’s addresses.

See the Open Client/Server documentation for detailed information about
Open Server security.
40 EAServer

CHAPTER 4 Securing TDS Client Access
For information about migrating your Open Server applications to EAServer,
see Appendix B, “Migrating Open Server Applications to EAServer,” in the
EAServer Programmer’s Guide.
Security Administration and Programming Guide 41

Open Server client security
42 EAServer

C H A P T E R 5 Using SSL in Java Clients

EAServer supports SSL connections from Java applets and applications.
In deployment scenarios where clients connect to EAServer over the
Internet, SSL can protect sensitive data transmitted over the network. For
more information about SSL, see Chapter 13, “Security Configuration
Tasks,” and Chapter 14, “Managing Keys and Certificates.”

Using SSL in Java applets
Java applet clients can use the Web browser’s Java SSL implementation
to create SSL connections to an EAServer. SSL connections from a Java
applet require that:

• You connect to a server listener that supports the desired level of
security. You do this by specifying the address as an IOR string as
described in “Creating a Manager instance” in Chapter 12, “Creating
CORBA Java Clients,” of the EAServer Programmer’s Guide.

• Your Web browser recognizes and accepts the server listener’s SSL
certificate.

• If using mutual authentication, you have a personal certificate
installed in the Web browser’s certificate database, signed by a
certificate authority that is recognized and trusted by the EAServer.

Chapter 16, “Tutorial: Using SSL” contains a security tutorial that walks
you through the tasks of configuring certificates and running a sample
applet that connects to EAServer using SSL.

Topic Page
Using SSL in Java applets 43

Using SSL in Java applications 44

Creating HTTP and HTTPS connections in Java applications 52

Using Java Secure Socket Extension classes 60
Security Administration and Programming Guide 43

Using SSL in Java applications
Using SSL in Java applications
Java application clients create SSL connections using the same native
implementation used by C++ and ActiveX clients.

Requirements
Make sure you select the C++ Runtime and SSL Runtime options when
installing the EAServer client runtime. SSL support in Java applications
requires the files installed by these options, including the
$JAGUAR_CLIENT_ROOT/DB directory that contains the client-side security
database which contains the certificates used to make SSL connections and the
standalone Security Manager used to manage these certificates.

The client installation must also be correctly configured to load the native
EAServer client libraries when you run your application. See the EAServer
Installation Guide for more information. The following environment variable
settings are required at runtime:

• JAGUAR_CLIENT_ROOT must specify the full path to the EAServer
client runtime installation directory.

• On Windows platforms, PATH must include the EAServer client dll
subdirectory.

• On UNIX platforms, the system’s shared library search path
(LD_LIBRARY_PATH on Solaris) must include the EAServer client lib
subdirectory.

• CLASSPATH must include the EAServer client runtime classes. Specify
the full path to the easclient.jar and easj2ee.jar files, or include the classes
in these JAR files in a JAR that you build yourself.

Establishing a secure session
To ensure a secure session between your Java application and EAServer, you
must configure SSL settings before using one of the standard techniques to
instantiate proxies for the EAServer components.

You can configure the settings required for SSL connections using two
techniques:
44 EAServer

CHAPTER 5 Using SSL in Java Clients
1 By setting ORB properties The required SSL settings must be known
in advance, and your application can connect only to servers that use
certificates issued by a known, trusted certificate authority.

2 By using the SSLServiceProvider interface The SSLServiceProvider
interface allows your application to determine what options are available
at runtime. In addition, you can supply a callback class with methods that
supply settings as needed and respond to exceptional cases. For example,
the client ORB invokes callback methods if the application specified an
invalid certificate password or if a connection is made to a server that uses
certificate issued by an unknown certificate authority.

Applications that run without user interaction typically configure SSL settings
with the ORB properties. Interactive applications typically use the
SSLServiceProvider interface and install a callback. When a callback is
installed, you can rely on user interaction in the callback methods to configure
necessary settings. For example, if the certificate password has not been
supplied, the ORB invokes the getPin callback method.

Once you have correctly configured the required SSL settings, use the standard
technique to instantiate proxies, as described in Chapter 12, “Creating CORBA
Java Clients,” in the EAServer Programmer’s Guide. Proxies are created in a
secure session as long as the server supports the requested level of security.

Using the SSLServiceProvider interface
The CtsSecurity.SSLServiceProvider interface provides setGlobalProperty and
getGlobalProperty methods to set and retrieve the SSL properties listed in
Table 5-1 on page 46. After initializing an ORB instance, you can instantiate a
proxy for the SSLServiceProvider interface with the
ORB.resolve_initial_references method, as shown below:

import CtsSecurity.*;

SSLServiceProvider sslServProv =
SSLServiceProviderHelper.narrow
(orb.resolve_initial_references
("SSLServiceProvider"));

You can then call the setGlobalProperty method to set properties, as in the
example below:

prov.setGlobalProperty("qop", "sybpks_intl");
Security Administration and Programming Guide 45

Using SSL in Java applications
Properties set with the SSLServiceProvider interface affect all ORB instances
used by the application. However, if an equivalent property has been set for an
ORB instance, the ORB property value takes precedence.

You can retrieve property values using the getGlobalProperty method. For
example:

String availQop[] = prov.getGlobalProperty("availableQop");
String qopDesc[] = prov.getGlobalProperty("availableQopDesc");

getGlobalPropertyMethod returns an array of strings. When retrieving
properties that take a single value, the value is returned in an array of length 1.

These methods are also documented in the generated Interface Repository
documentation for the CtsSecurity::SSLCallback interface. The generated
documentation is linked to your EAServer’s main HTML page.

SSL properties
Table 5-1 lists the ORB and SSLServiceProvider properties that govern the use
of SSL. In addition, you need to connect to a server address that can support
your chosen level of security, as described in “Secure server addresses” on
page 49.

Some properties, if not set or set incorrectly, cause the ORB to invoke an SSL
callback method. If you do not install an SSL callback, the default callback
implementation aborts the connection attempt.

Table 5-1: SSL Properties

Property name for
ORB.init

Property name for
SSLServiceProvider Description

com.sybase.CORBA.
pin

pin Always required when using SSL.

Specifies the PKCS #11 token PIN. This is required for
logging in to a PKCS #11 token for client authentication and
for retrieving trust information.

This property cannot be retrieved.

If not set, set to “any”, or set incorrectly, the ORB invokes the
getPin callback method.
46 EAServer

CHAPTER 5 Using SSL in Java Clients
com.sybase.CORBA.
certificateLabel

certificateLabel Required when using mutual authentication.

Specifies the client certificate to use if the connection requires
mutual authentication. The label is a simple name that
identifies an X.509 certificate/private key in a PKCS #11
token. If the property is not set and the connection requires
mutual authentication, the ORB invokes the
getCertificateLabel callback method, passing an array of
available certificate names as an input parameter.

com.sybase.CORBA.
qop

qop Always required when using SSL.

Specifies the name of a security characteristic to use. See
“Choosing a security characteristic” on page 48 for more
information.

com.sybase.CORBA.
userData

userData Specifies user data (String datatype). This is an optional
property. Client code can set user data during ORB
initialization and access it using SSLSessionInfo::getProperty
method in the SSL callback implementation. This may be
useful as a mechanism to store ORB-level context information
that is otherwise not available through the SSLSessionInfo
interface.

com.sybase.CORBA.
useEntrustID

useEntrustID Specifies whether to use the Entrust ID or the Sybase PKCS
#11 token for authentication. This is a Boolean (true or false)
property. If this property is set to false, Sybase PKCS #11
token properties are valid and Entrust-specific properties are
ignored. If this property is set to true, Entrust-specific
properties are valid and Sybase PKCS #11 token properties are
ignored.

com.sybase.CORBA.
entrustUserProfile

entrustUserProfile Specifies the full path to the file containing an Entrust user
profile. This property is optional when the Entrust single-login
feature is available and required when this feature is not
available. If not set, the ORB invokes the
getCredentialAttribute callback method.

com.sybase.CORBA.
entrustPassword

entrustPassword Specifies the password for logging in to Entrust with the
specified user profile. This property is optional when the
Entrust single-login feature is available and required when this
feature is not available. If the password is required but not set,
or set incorrectly, the ORB invokes the getPin callback
method.

This property cannot be retrieved.

Property name for
ORB.init

Property name for
SSLServiceProvider Description
Security Administration and Programming Guide 47

Using SSL in Java applications
Choosing a security
characteristic

To use SSL, you must specify a value for the qop property in ORB properties
or by using the SSLServiceProvider interface. Specify the name of an available
security characteristic. The characteristic describes the CipherSuites the client
uses when negotiating an SSL connection. When connecting, the client sends
the list of CipherSuites that it uses to the server, and the server selects a cipher
suite from that list. The server chooses the first cipher suite in the list that it can
use. If the server cannot use any of the available CipherSuites, the connection
fails.

“Configuring security profiles” on page 155 describes the security
characteristics that are provided with EAServer. At runtime, you can retrieve a
list of characteristics and their descriptions by retrieving the availableQop and
availableQopDesc properties.

Set the qop property to sybpks_none to prevent any use of SSL on a
connection. This setting can be useful if you have set the property globally for
all ORBs using the SSLServiceProvider interface, and you want to override the
setting for an individual ORB instance.

com.sybase.CORBA.
entrustIniFile

entrustIniFile Specifies the path name for the Entrust INI file that provides
information on how to access Entrust. This is required when
the useEntrustid property is set to true.

If not set, the ORB invokes the getCredentialAttribute callback
method.

none callbackImpl Name of a Java class that implements the
CtsSecurity.SSLCallbackIntf interface. For example:

com.acme.AcmeSSLCallback

See “Implementing an SSL callback” on page 49 for more
information.

none availableQop Retrieve only. A list of available security characteristics. The
qop property can be set only to values that appear in this list.

none availableQopDesc Retrieve only. A list of descriptions for the available security
characteristics, in the same order as listed in the value of the
availableQop property.

none entrustReady Retrieve only. Returns true if Entrust PKI software is available
on the client, false otherwise.

Property name for
ORB.init

Property name for
SSLServiceProvider Description
48 EAServer

CHAPTER 5 Using SSL in Java Clients
Secure server
addresses

The client ORB connects only to a server listener that uses an equivalent or
greater level of security as requested in the qop setting. If you use the
CosNaming or JNDI interfaces to instantiate proxies, the name service URL
cannot specify a server address that uses a higher level of security than
specified by the qop property. For example, if your server uses the typical port
configuration, you can specify port 9000 (no SSL) in the name service URL if
the qop specifies mutual authentication. However, you cannot specify port
9002 (mutual authentication) in the name service URL and set the qop to
request server-only authentication. When you use ORB.string_to_object to
instantiate a SessionManager::Manager proxy, the listener specified by the
server address must use a security profile that matches the client’s qop setting.

For more information on instantiating proxies, see Chapter 12, “Creating
CORBA Java Clients,” in the EAServer Programmer’s Guide.

Implementing an SSL callback
An SSL callback class must implement the CtsSecurity.SSLCallbackIntf
interface. The ORB invokes callback methods when required SSL settings have
not been configured or a setting has an incorrect value. To install the callback,
call SSLServiceProvider.setGlobalProperty to set the callbackImpl property, as in
the example below:

sslprov.setGlobalProperty("callbackImpl",
"Sample.ClientSSL.SSLCallbackExample.SSLCallbackExampleImpl");

The SSLCallbackIntf methods are as follows:

• getCertificateLabel Called when the session requires mutual
authentication and a certificate label has not been provided in ORB
properties or in SSLServiceProvider global properties. The callback
receives an array of available certificate labels as an input parameter, and
must return one of them or throw an exception to abort the connection
attempt.

• getCredentialAttribute Called when additional information is required
to use an Entrust certificate, such as the path to the Entrust profile file, or
the path to the entrust.ini file.
Security Administration and Programming Guide 49

Using SSL in Java applications
• getPin Called when the certificate password has not been specified in
ORB or SSLServiceProvider properties, or if the supplied password was
incorrect. The implementation should check the “tokenName” property of
the SSLSessionInfo instance to determine whether the requested password
is for the Sybase certificate database or for an Entrust profile. Your
implementation can throw an CtsSecurity.UserAbortedException to abort
the connection attempt.

• trustVerify Called when the correct PIN for the certificate database has
not been set, or if the server has presented a questionable certificate. The
callback response determines whether the connection is allowed and,
optionally, whether the certificate should be added to the local EAServer
client certificate database.

You must implement all of these methods in your class. If your implementation
of a method does not process the request, throw an
org.omg.CORBA.NO_IMPLEMENT exception so that the ORB uses the default
response.

For more information about these callback methods, see the documentation for
the CtsSecurity::SSLCallback interface in the generated Interface Repository
documentation. “Sample Java applications that use SSL” on page 51 describes
the SSL sample applications. These samples include an example SSL callback
that interacts with the user.

Reason code Description

CtsSecurity.
REASON_TRUSTDBPINNOTSET.
value

The password for the certificate database has not been set.
Return CtsSecurity.TRUST_FAILED.value to cause the
ORB to call the getPin callback method.

CtsSecurity.
REASON_TRUSTDBLOGINFAILED.
value

The password for the certificate database was incorrect.
Return CtsSecurity.TRUST_FAILED.value to cause the
ORB to call the getPin callback method.

CtsSecurity.
REASON_UNKNOWN_CA.
value

The root CA in the server’s certificate chain is not listed in
the Sybase certificate database.

CtsSecurity.
REASON_CHAIN_EXPIRED.
value

At least one certificate in the server’s certificate chain has
expired.

CtsSecurity.
REASON_CHAIN_INCOMPLETE.
value

Servers certificate chain is incomplete. The ORB cannot
complete the chain using the CA certificates in the Sybase
certificate database.
50 EAServer

CHAPTER 5 Using SSL in Java Clients
Retrieving session security information
The CtsSecurity.SSLSession and CtsSecurity.SSLSessionInfo classes allow you
to determine whether SSL is used on connections from a proxy to the server,
and if so, retrieve the SSL session settings. The code below illustrates the
sequence of calls:

... code to set ORB ssl properties, create session,
instantiate proxy myComp ...

SSLSession sslSession =
SSLSessionHelper.narrow(myComp);

try {
SSLSessionInfo sslSessionInfo =

sslSession.getSessionInfo();
} catch (CtsSecurity.SSLNotEnabledError e) {

 ... this means the proxy does not use SSL ...
}

You can call SSLSessionHelper.narrow to obtain the session information
associated with any CORBA object.

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the server
certificate in use, and so forth. For more information, see the Interface
Repository documentation for the CtsSecurity::SSLSessionInfo interface.
“Sample Java applications that use SSL” on page 51 describes the SSL sample
applications. These examples show how to retrieve and print the SSL session
information.

Sample Java applications that use SSL
Two sample Java applications that use SSL are in the
html/classes/Sample/ClientSSL directory of your EAServer installation. The
SSLDemo application allows you to configure SSL sessions using ORB
properties set on the command line. The application uses the SSLSessionInfo
interface to print a description of the SSL session. The SSLCbDemo application
uses the SSLServiceProvider interface and an SSL callback class to query the
user for SSL settings.
Security Administration and Programming Guide 51

Creating HTTP and HTTPS connections in Java applications
Creating HTTP and HTTPS connections in Java
applications

You can create HTTP connections in Java applications using the HTTP
protocol handling code built in to the Java Developer’s Kit, and HTTPS
connections using the HTTPS protocol handler provided with EAServer.

HTTP connections
The standard Java virtual machine provides HTTP connectivity with these
classes in java.net package:

• URL allows you to use Uniform Resource Locator strings for HTTP
connections and other protocol connections that can be represented by
URLs.

• URLConnection represents a connection to a server and resource indicated
by a URL.

• HttpURLConnection extends URL with additional methods that are specific
to the HTTP protocol.

For details on these classes, see the JDK documentation. The following code
shows a typical example. This code opens a connection, retrieves the data (text
is assumed), and prints it:

URL url = new URL("http://www.sybase.com/");
URLConnection conn = url.openConnection();
conn.connect();
InputStreamReader content

= new InputStreamReader(conn.getInputStream());
for (int i=0; i != -1; i = content.read())
{

System.out.print((char) i);
}

HTTPS connections
The procedure for creating HTTPS connections is similar to that for HTTP
connections, except that you must install EAServer’s HTTPS protocol handler
in the Java virtual machine and configure SSL parameters before opening a
connection.
52 EAServer

CHAPTER 5 Using SSL in Java Clients
System requirements EAServer’s HTTPS protocol handler uses the same
SSL implementation as used by Java and C++ IIOP clients and requires a full
client runtime install. For information on system requirements, see
“Requirements” on page 44.

Installing the HTTPS protocol handler

The EAServer HTTPS protocol handler can be installed two ways:

• By configuring the java.protocol.handler.pkgs Java system
property, making it the default handler for all HTTPS URLs. This is the
recommended approach if you do not need to use another vendor’s HTTPS
protocol handler in addition to the EAServer implementation.

• By calling one of the java.net.URL constructors that takes a
java.net.URLStreamHandler as a parameter. This approach must be used if
you must use more than one HTTPS protocol handler in one EAServer or
in one client application.

Configuring the default protocol handlers

The java.protocol.handler.pkgs Java system property configures the
Java virtual machine default URL protocol handlers. To use the EAServer
handlers, you must add com.sybase.jaguar.net to the list. For more information
on this property, see the documentation for java.net.URL in JDK 1.2 at
http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html.

In a client application, specify this property on the command line; for example:

jre -Djava.protocol.handler.pkgs=com.sybase.jaguar.net ...

For an EAServer, set the JVM options property using the Advanced tab in the
Server Properties dialog box:

You can specify more than one package by separating package names with a |
(pipe) character, but you can configure only one handler per protocol.

Property Value

com.sybase.jaguar.server.jvm.options If not already set, set to:

-Djava.protocol.handler.pkgs=com.sybase.jaguar.net

If already set, verify that the value includes this option. JVM options
must be separated with a comma.
Security Administration and Programming Guide 53

Creating HTTP and HTTPS connections in Java applications
Specifying protocol handlers at runtime

If you must use more than one HTTPS protocol handler in one EAServer or in
one client application, you must call one of the java.net.URL constructors that
takes a java.net.URLStreamHandler as a parameter. The specified
java.net.URLStreamHandler instance overrides the default handler for the
protocol specified by the URL. For example, to specify the EAServer HTTPS
handler, use code like this:

import java.net.*;
import com.sybase.jaguar.net.JagURLStreamHandlerFactory;
import com.sybase.jaguar.net.HttpsURLConnection;

....

String url_string = "https://localhost:8081/index.html";

// The URL stream handler factory is required to create a stream
// handler.
JagURLStreamHandlerFactory fact = new JagURLStreamHandlerFactory();

// Extract the protocol from the front of the URL string
String protocol = url_string.substring(0, url_string.indexOf(":"));

// If the protocol is HTTPS, use the EAServer HTTPS handler. Otherwise,
// use the default handler
java.net.URL url;
if (protocol.equals("https"))
{

url = new URL((URL)null, url_string,
fact.createURLStreamHandler(protocol));

} else
{

url = new URL(url_string);
}

EAServer’s HttpsURLConnection class

EAServer provides the com.sybase.jaguar.net.HttpsURLConnection class to
support HTTPS connectivity. This class extends java.net.URLConnection and
implements all methods of java.net.HttpURLConnection. HttpsURLConnection
provides these additional methods specifically for SSL support:

• A setSSLProperty method with signature:
54 EAServer

CHAPTER 5 Using SSL in Java Clients
void setSSLProperty (String prop, String value) throws
CtsSecurity.InvalidPropertyException,
CtsSecurity.InvalidValueException

Call this method to set the SSL properties described in “SSL properties”
on page 57.

• A setSSLProperties method with signature:

void setSSLProperty (java.util.Properties props) throws
CtsSecurity.InvalidPropertyException,
CtsSecurity.InvalidValueException

This method is the same as setSSLProperty, but allows you to set multiple
properties with one call.

• A getSSLProperty method with signature:

String[] setSSLProperty (String prop) throws
CtsSecurity.InvalidPropertyException

Call this method to retrieve the SSL properties described in “SSL
properties” on page 57.

• A setGlobalProperty method with signature:

void setGlobalProperty (String prop, String value) throws
CtsSecurity.InvalidPropertyException,
CtsSecurity.InvalidValueException

Call this method to set the global SSL properties described in “SSL
properties” on page 57. Properties set with this method affect the handling
of all HTTPS connections, not just the current one.

• A getGlobalProperty method with signature:

String[] getGlobalProperty(String prop) throws
CtsSecurity.InvalidPropertyException;

Call this method to retrieve the global SSL properties described in “SSL
properties” on page 57.

• A getSessionInfo method with signature:

CtsSecurity.SSLSessionInfo getSessionInfo() throws
CtsSecurity.SSLException

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the
server certificate in use, and so forth. For more information, see the
Interface Repository documentation for the CtsSecurity::SSLSessionInfo
IDL interface. getSessionInfo throws an a SSLException instance if SSL is
not used on the connection.
Security Administration and Programming Guide 55

Creating HTTP and HTTPS connections in Java applications
❖ Creating HTTPS connections

1 Configure or install the EAServer HTTPS protocol handler as described in
“Installing the HTTPS protocol handler” on page 53.

2 Create URL and URLConnection instances. If connecting to an EAServer,
specify the address of an HTTPS listener that supports the desired level of
security. For example:

URL url = new URL("https://myhost:8081/index.html");
URLConnection conn = url.openConnection();

3 Verify that the object returned by URL.openConnection is of class
com.sybase.jaguar.net.HttpsURLConnection, then set SSL properties for
the connection. “SSL properties” on page 57 describes the SSL properties
that can be set. At a minimum, you must specify the qop and pin
properties, as well as the certificateLabel property if using mutual
authentication. For example:

if (conn instanceof HttpsURLConnection)
{

HttpsURLConnection https_conn =
(HttpsURLConnection) conn;

try
{

https_conn.setSSLProperty("qop","sybpks_intl"
);

https_conn.setSSLProperty("pin", "secret");
https_conn.setSSLProperty(

"certificateLabel", "John Smith");
}
catch (CtsSecurity.InvalidPropertyException ipe)
{

System.err.println(ipe);
}
catch (CtsSecurity.InvalidValueException ive)
{

System.err.println(ive);
}

4 Open the connection, for example:

conn.connect();

Once the connection is open, you can perform any valid operation for a
connection that uses java.net.HTTPUrlConnection. You can also call the
getSessionInfo method to retrieve a CtsSecurity.SSLSessionInfo instance that
allows you to verify the SSL connection parameters. For example:
56 EAServer

CHAPTER 5 Using SSL in Java Clients
java.net.URLConnection conn;
... deleted code that constructed URLConnection ...
if (conn instanceof HttpsURLConnection)
{

HttpsURLConnection https_conn =
(HttpsURLConnection) conn;

CtsSecurity.SSLSessionInfo sessInfo =
https_conn.getSessionInfo();

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the server
certificate in use, and so forth. For more information, see the Interface
Repository documentation for the CtsSecurity::SSLSessionInfo interface.

SSL properties
Table 5-2 lists the properties that can be set and retrieved with the
HttpsURLConnection getSSLProperty, getGlobalProperty, setSSLProperty, and
setGlobalProperty methods. Global properties are set and read with the
getGlobalProperty and setGlobalProperty methods. Global properties affect all
HTTPS connections, not just the HttpsUrlConnection instance on which they are
set. The right column in Table 5-2 lists which methods are valid for each
property.

Some properties, if not set or set incorrectly, cause the connection to invoke an
SSL callback method. You can install a callback to respond to these cases with
the callbackImpl global property. If you do not install an SSL callback, the
default callback implementation aborts the connection attempt.

Table 5-2: HTTPS Properties

Property name Description Valid for methods

pin Always required when using SSL.

Specifies the PKCS #11 token PIN. This is
required for logging in to a PKCS #11 token
for client authentication and for retrieving
trust information.

This property cannot be retrieved.

If not set, set to “any”, or set incorrectly, the
connection invokes the getPin callback
method.

setSSLProperty
setGlobalProperty
Security Administration and Programming Guide 57

Creating HTTP and HTTPS connections in Java applications
certificateLabel Required when using mutual authentication.

Specifies the client certificate to use if the
connection requires mutual authentication.
The label is a simple name that identifies an
X.509 certificate/private key in a PKCS #11
token. If the property is not set and the
connection requires mutual authentication,
the connection invokes the getCertificateLabel
callback method, passing an array of available
certificate names as an input parameter.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

qop Always required when using SSL.

Specifies the name of a security characteristic
to use. See “Choosing a security
characteristic” on page 59 for more
information.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

userData Specifies user data (String datatype). This is
an optional property. Client code can set user
data during connection initialization and
access it using SSLSessionInfo::getProperty
method in the SSL callback implementation.
This may be useful as a mechanism to store
connection-level context information that is
otherwise not available through the
SSLSessionInfo interface.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

useEntrustID Specifies whether to use the Entrust ID or the
Sybase PKCS #11 token for authentication.
This is a Boolean (true or false) property. If
this property is set to false, Sybase PKCS #11
token properties are valid and Entrust-specific
properties are ignored. If this property is set to
true, Entrust-specific properties are valid and
Sybase PKCS #11 token properties are
ignored.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

entrustUserProfile Specifies the full path to the file containing an
Entrust user profile. This property is optional
when the Entrust single-login feature is
available and required when this feature is not
available. If not set, the connection invokes
the getCredentialAttribute callback method.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

Property name Description Valid for methods
58 EAServer

CHAPTER 5 Using SSL in Java Clients
Choosing a security
characteristic

To use SSL, you must specify the name of an available security characteristic
as the value for the qop property. The characteristic describes the CipherSuites
the client uses when negotiating an SSL connection. When connecting, the
client sends the list of CipherSuites that it uses to the server, and the server
selects a cipher suite from that list. The server chooses the first cipher suite in
the list that it can use. If the server cannot use any of the available CipherSuites,
the connection fails.

entrustPassword Specifies the password for logging in to
Entrust with the specified user profile. This
property is optional when the Entrust single-
login feature is available and required when
this feature is not available. If the password is
required but not set or set incorrectly, the
connection invokes the getPin callback
method.

This property cannot be retrieved.

setSSLProperty
setGlobalProperty

entrustIniFile Specifies the path name for the Entrust INI
file that provides information on how to
access Entrust. This is required when the
useEntrustid property is set to true.

If not set, the connection invokes the
getCredentialAttribute callback method.

setSSLProperty
getSSLProperty
setGlobalProperty
getGlobalProperty

callbackImpl Specifies the name of a Java class that
implements the CtsSecurity.SSLCallbackIntf
interface. For example:

com.acme.AcmeSSLCallback

See “Implementing an SSL callback” on page
49 for more information.

setGlobalProperty
getGlobalProperty

availableQop Retrieve only. A list of available security
characteristics. The qop property can be set
only to values that appear in this list.

getGlobalProperty

availableQopDesc Retrieve only. A list of descriptions for the
available security characteristics, in the same
order as listed in the value of the
availableQop property.

getGlobalProperty

entrustReady Retrieve only. Returns true if Entrust PKI
software is available on the client, false
otherwise.

getGlobalProperty

Property name Description Valid for methods
Security Administration and Programming Guide 59

Using Java Secure Socket Extension classes
Chapter 13, “Security Configuration Tasks” describes the security
characteristics that are provided with EAServer. At runtime, you can retrieve a
list of characteristics and their descriptions by retrieving the availableQop and
availableQopDesc properties.

Using Java Secure Socket Extension classes
The Java Secure Socket Extension (JSSE) is a set of Java packages that
implements SSL and Transport Layer Security, which enables data encryption,
server authentication, message integrity, and client authentication. JSSE is a
client-side feature, which can be used with EAServer when it has been
configured for SSL communication. For more information on SSL, see
Chapter 14, “Managing Keys and Certificates.”.

Note JSSE does not contain any actual cryptographic logic. You must obtain
an API package that performs the cryptographic functions, such as Bouncy
Castle or Cryptix, which are available free over the Internet.

❖ Setting up your JSSE environment

1 Download and install the JSSE according to the documentation on the
Java Web page at http://java.sun.com/products/jsse. The basic steps are:

• Copy the JSSE JAR files to the jre/lib/ext directory in your JDK
installation.

• Edit the jre/lib/security/java.security file in your JDK installation, and
add this line:

security.provider.2=com.sun.net.ssl.internal.ssl.Provider

From the Sun documentation, note the following:

• JSSE 1.0.2 requires JDK 1.2.2 or higher.

• JRE 1.3.1_02 includes the Java plug-in HTML Converter 1.3.1_02,
which works best with JDK 1.3.

• JDK/JRE 1.3 or higher is recommended to run HTML applets.

• The Java plug-in HTML Converter is recommended for HTML applet
clients.
60 EAServer

CHAPTER 5 Using SSL in Java Clients
2 Download and install the Java Plug-in HTML Converter, either version
1.3.1 or 1.4.

If you install version 1.3.1:

a Download and install JSSE 1.0.2 in the JDK 1.3.1 jre/lib/ext
subdirectory of the JDK installation.

b Set up jre/lib/security/java.security according to the JSSE 1.0.2
directions.

3 The JSSE Samples Web page at
http://java.sun.com/j2se/1.4/docs/guide/security/jsse/samples/index.html
includes samples that create clients using JSSE. Verify that the samples
compile and run with your JDK. You must be able to use the Java samples
to request the secure VeriSign Web page at https://www.verisign.com.

4 Start EAServer and connect using EAServer Manager | Certificates folder.

5 In the User Certificates folder, highlight the Sample 1 Test ID certificate,
and select File | Certificate Info. Confirm that the Sample1 Test ID
certificate is valid; that is, that the current date falls between the
certificate’s Not Valid Before and Not Valid After dates.

6 From the User Certificates folder, export Sample1 Test ID as a Binary
Encoded X509 Certificate (*.crt). For example, save to a file named
eas.crt.

7 Using the Java keytool, import the eas.crt file; for example:

keytool -import -file eas.crt -keystore $JAGUAR_JDK13/jre/lib/security/
[cacerts | jssecacerts] -trustcacerts

To simplify things, use the default certificate store cacerts; the password is
“changeit”.

8 To run a JSSE client application; for example, ClientApp:

a Create a ClientApp.bat file with these lines:

set classpath=%JAGUAR%\java\lib\easclient.jar; \
%JAGUAR%\java\lib\easj2ee.jar;%classpath%

java -Djava.protocol.handler.pkgs=
com.sun.net.ssl.internal.www.protocol ClientApp

b Run ClientApp.bat.

If you do not have a Web proxy, remove the Web proxy settings from your
client, and enter the server information; for example:

iiops://localhost:9001, or
Security Administration and Programming Guide 61

Using Java Secure Socket Extension classes
iiops://<host_name>:9001

Note The following steps apply only to HTML applets.

9 Remove these client ORB properties from your HTML applet client, if
appropriate:

• com.sybase.CORBA.WebProxyHost=localhost

• com.sybase.CORBA.WebProxyPort=80

• com.sybase.CORBA.LogFile=.\iiop.log

10 To access your Web page from a Web browser, enter:

http://<host_name>:8080/jssehtml/yourAppClient.html

Where yourAppClient.html is your HTML applet client.

11 In the applet, enter iiops://<host_name>:9001 as the connection
parameter, and click Connect.

Note Sybase recommends using a Web browser that supports the Java Plug-in
1.3.1 or higher and the Java Plug-in Converter 1.3.1 or higher

Configuring ORB
settings

Direct IIOP connections using JSSE are not supported.

❖ Tunnelling IIOP through HTTPS (JSSE socket) using HTTP GET requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

❖ Tunnelling IIOP through HTTPS (JSSE socket) using HTTP POST
requests

IIOP is contained within the HTTP packets.

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true
62 EAServer

CHAPTER 5 Using SSL in Java Clients
1 Set the client URL to iiops://<host_name>:9001

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names..

❖ Tunnelling IIOP through an HTTPS connect (JSSE socket) using HTTP
GET requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

❖ Tunnelling IIOP through an HTTPS connect (JSSE socket) using HTTP
POST requests

IIOP is contained within the HTTP packets.

1 Set the client URL to iiops://<host_name>:9001.

2 Set the following client ORB properties. To enable the EAServer message
service to access the ORB properties, set the properties using the JMS
property names; otherwise, use the CORBA property names.

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

com.sybase.jms.HttpUsePost com.sybase.CORBA.HttpUsePost true

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true

com.sybase.jms.WebProxyHost com.sybase.CORBA.WebProxyHost <web_proxy_host_name>

com.sybase.jms.WebProxyPort com.sybase.CORBA.WebProxyPort <web_proxy_port>

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

JMS property CORBA property Vale

org.omg.CORBA.ORBClass org.omg.CORBA.ORBClass com.sybase.CORBA.ORB

com.sybase.jms.https com.sybase.CORBA.https true
Security Administration and Programming Guide 63

Using Java Secure Socket Extension classes
Note The first time you connect may take a while because JSSE goes through
an SSL authentication process.

Using an unsigned
JAR

When using an unsigned JAR, your code runs with the default EAServer
Manager | Certificates folder, which is fairly restrictive. To improve
performance, you can edit Java’s default security policy file using the
instructions in Sun’s security documentation. To enable EAServer’s ORB to
work in an unsigned environment:

• You must grant the ORB permission to read the proxy host settings, using
one of these methods:

permission java.util.PropertyPermission “*”, “read”

or

permission java.util.PropertyPermission “javaplugin.proxy.config.*”,
“read”

• The ORB may require socket connect permissions to connect to a proxy
server.

• If you are using the sample test certificate generated by EAServer, the
EAServer certificate authority must be installed. You can do this in either
the cacerts or the jssecacerts keystore using this syntax:

keytool -import -file <file_name> -keystore [cacerts | jssecacerts]

The password for the cacerts keystore is “changeit”.

Note With a signed applet, you do not need to set permissions at the plug-in
level. A signed JAR file describes the type of permissions it requires.

Sample security file You can find a sample JDK security file in the JDK installation, in file
jre/lib/security/java.security.

com.sybase.jms.HttpUsePost com.sybase.CORBA.HttpUsePost true

com.sybase.jms.WebProxyHost com.sybase.CORBA.WebProxyHost <web_proxy_host_name>

com.sybase.jms.WebProxyPort com.sybase.CORBA.WebProxyPort <web_proxy_port>

com.sybase.jms.useJSSE com.sybase.CORBA.useJSSE true

com.sybase.jms.forceSSL com.sybase.CORBA.forceSSL true

JMS property CORBA property Vale
64 EAServer

CHAPTER 5 Using SSL in Java Clients
Possible solutions for JSEE issues
Cannot load applet If you cannot load an HTML applet from your Web browser:

1 In the Tools | Internet Options dialog box:

• On the Connections tab, select Settings, then deselect Use a Proxy
Server. Or, if you use a proxy server, verify the information is valid.

• On the Advanced tab, under Browsing, select Browse in a New
Process.

2 In the Control Panel, double-click Java Plug-in 1.3.1_02. In the Java
Plug-in Control Panel:

• On the Basic tab, select Enable Java plug-in and Show Java Console.

• On the Proxies tab, either select Use Browser Settings, or verify the
Proxy Settings.

• Verify settings on the other tabs.

3 Shut down all Web browser sessions.

4 Close all Java console sessions; for example, from the Java Plug-in.

5 Restart your Web browser.

6 Delete all your temporary and cache files.

7 Reload the HTML applet page.

Debugging If necessary, use the Java Plug-in console for debugging; set to debug level 5.
If you reset the debug level, refresh the HTML applet.
Security Administration and Programming Guide 65

Using Java Secure Socket Extension classes
66 EAServer

C H A P T E R 6 Using SSL in C++ Clients

Introduction
A C++ client can use IIOP tunnelled within SSL (also called IIOPS) to
establish a secure session with EAServer.

Note For more information about security, including issuing certificates,
see Chapter 14, “Managing Keys and Certificates.”

To establish a secure session with EAServer, follow these steps:

Topic Page
Introduction 67

Initializing the SSL security service 68

ORB properties for secure sessions 69

Creating a manager instance 71

Retrieving session security information 71

Creating an SSL callback component 72

Step What it does Detailed explanation

1 Initialize the SSL security service
as an ORB.

“Initializing the SSL security
service” on page 68

2 Initialize the client ORB and create
an ORB reference.

“ORB properties for secure
sessions” on page 69

3 Use the ORB reference to create a
Manager instance for the server.

“ORB properties for secure
sessions” on page 69

4 Use the Session instance to create
stub component instances. This
step is the same regardless of
whether the application uses SSL.

Chapter 15, “Creating CORBA
C++ Clients,” in the EAServer
Programmer’s Guide

5 Optionally, you can retrieve
security information about the
session.

“Retrieving session security
information” on page 71
Security Administration and Programming Guide 67

Initializing the SSL security service
An example that illustrates all of these steps is in the sample/ClientSSL
subdirectory of your EAServer installation.

Initializing the SSL security service
To initialize the SSL security service, you must retrieve the SSL security
service context and set the quality of security services as well as any global
properties for that context.

You must decide if you want to:

• Respond to any authentication request by the server.

• Use the Sybase PKCS #11 token (the default) or an Entrust ID.

Retrieve the SSL
security service
context

In this example, you use CORBA::ORB_init to initialize the ORB as an instance,
orb1.

CORBA::ORB_var orb1 =
CORBA::ORB_init(argc,argv, "");

Use resolve_initial_references to obtain the initial context from the SSL security
service URL string (SSLServiceProvider) as an object reference, object, on
orb1. You must use SSLServiceProvider as the URL string. You use
CtsSecurity::SSLServiceProvider::_narrow to convert object to the sslServProv
instance (an instance of the SSLServiceProvider interface).

object = orb1->resolve_initial_references
("SSLServiceProvider");

sslServProv = CtsSecurity::SSLServiceProvider
::_narrow(object);

Set the quality of
security services and
global properties

To return the available qualities of security services from the availableQop
property, call getGlobalProperty on the sslServProv instance. The qualities of
security services refer to the security profile characteristic, which specifies the
supported CipherSuites.

// query Available quality of services and set
// whatever we want.
CtsSecurity::StringSeq_var * availQop =

sslServProv->getGlobalProperty("availableQop");
68 EAServer

CHAPTER 6 Using SSL in C++ Clients
At this time, you can also set any global properties, such as the callback
component with the callbackImpl property. You specify the callback component
using the setGlobalProperty method. The setGlobalProperty method takes the
name of the global property, callbackImpl, and the name of the callback
component. The name of the component is the DLL or shared library name
(without the file extension) followed by a forward slash, and the package and
component name separated by forward slashes as shown in this example:

// Set callbacks.

sslServProv->setGlobalProperty
("callbackImpl", "myDLL/myPackage/myComponent");

Enable client
authentication

To respond to a server’s request for client authentication, you can:

• Use the setGlobalProperty method to set the certificateLabel property to
the client certificate to use when the server asks for one, or

• Use the callback interface to provide a dialog (GUI- or text-based) where
the user can enter a certificate to be sent back to the server.

ORB properties for secure sessions
You must set the ORBqop property when initializing the client ORB in order to
use one of the available security profile characteristics. The security profile
characteristic lists the CipherSuites the client uses when negotiating an SSL
connection. The client sends the list of CipherSuites that it uses to the server,
and the server selects a cipher suite from that list. The server must choose the
first cipher suite in the list that it can use.

In this example, the ORBqop property is specified as sybpks_strong (strong
128-bit encryption) and the ORBuserdata property is specified as myUserData.
The CORBA::ORB_init method initializes the client ORB (orb2) with these
properties.

// Now configure a specific ORB instance,
// overriding the default Quality of
// service. Might want to connect to a server
// only using 128bit encryption.
Properties props(argc, argv);
props.put("ORBqop", "sybpks_strong");
props.put("ORBuserData", myUserData);
orb2 = CORBA::ORB_init(props.argc(),

props.argv(), "");
Security Administration and Programming Guide 69

ORB properties for secure sessions
You can also set these properties when initializing the client ORB:

• ORBcertificateLabel Specifies the client certificate to use, if the server
requests mutual authentication. The label is a simple name that identifies
an X.509 certificate/private key in a PKCS #11 token. You must set this
property if the server will request the client's certificate. If this property is
not set and the server requests client authentication, credentialCallback is
invoked. If you set this property to “any”, then the getCertificateLabel
method in the SSLCallback interface is invoked. If client authentication is
requested and neither the certificateLabel property nor the
credentialCallback is set, the SSL session fails.

• ORBpin Specifies the PKCS #11 token PIN. This is required for logging
in to a PKCS #11 token for client authentication and for retrieving trust
information. If this property is not set and the server requests client
authentication, the Login callback implementation is invoked to get the
PKCS #11 PIN. If this property is set to the value any, then the getPin
method in SSLCallback interface is invoked. If a PKCS #11 token login is
required and neither the Login callback property nor the PIN property are
set, the SSL session fails. This property can be set application-wide using
the SSLServiceProvider context. This property cannot be retrieved once it
has been set.

• ORBuserData Specifies user data (string datatype). This is an optional
property. Client code can set user data during ORB initialization and
access it using SSLSessionInfo::getProperty method in the SSL callback
implementation. This may be useful as a mechanism to store ORB-level
context information that is otherwise not available through the
SSLSessionInfo interface.

• ORBuseEntrustID Specifies whether to use the Entrust ID or the Sybase
PKCS #11 token for authentication. This is a Boolean (true or false)
property. If this property is set to false, Sybase PKCS #11 token properties
are valid and Entrust-specific properties are ignored. If this property is set
to true, Entrust-specific properties are valid and Sybase PKCS #11 token
properties are ignored.

• ORBentrustPassword Specifies the password for logging in to Entrust
with the specified user profile. This property is a null-terminated string,
which is optional when the Entrust single-login feature is available and
required when this feature is not available. If the password is required but
not set, the getPin method in CtsSecurity::SSLCallback is invoked to get the
Entrust password. If there is no callback or if the callback does not return
a password, the SSL session fails.
70 EAServer

CHAPTER 6 Using SSL in C++ Clients
• ORBentrustIniFile Specifies the path name for the Entrust INI file that
provides information on how to access Entrust. This is required when the
useEntrustID property is set to true.

• ORBentrustUserProfile Specifies an Entrust user profile path name.
This property is optional when the Entrust single-login feature is available
and required when this feature is not available.

Creating a manager instance
Creating the manager instance for an SSL session is exactly like creating a
manager instance for a non-SSL session, except that instead of specifying an
IIOP port for the manager session in the string_to_object method, you specify
the secure IIOP (specify iiops) port (the IIOPS default port number for mutual
client-server authentication is 9002). You must specify a port that supports the
at least the level of security specified by the QOP setting.

Retrieving session security information
To retrieve security information about the session, narrow the component
object reference, typeObj, to an SSL session, sslSession. Then use the
getSessionInfo method to retrieve the session information from the SSL session
and create an object reference for the session information. Use individual get
methods to retrieve information about each SSL session property.

Note You cannot use the getName, getPassword, getAuthenticationStatus,
getListener, getPeerAddress, getHostName. These methods are inherited from
the SessionInfo interface.

// Obtain SSLSession information from
// typesObj.
CtsSecurity::SSLSession_var sslSession =

CtsSecurity::SSLSession::
_narrow(typesObj);

CtsSecurity::SSLSessionInfo_var
sslSessionInfo = sslSession->getSessionInfo();
Security Administration and Programming Guide 71

Creating an SSL callback component
// Obtain user data (similar usage in user's
// SSL callback implementation)
String_var currentUserData =

sslSessionInfo->getProperty("userData");

// Obtain details about server's certificate.
CtsSecurity::X509Certificate_var serverX509=

sslSessionInfo->getPeerCertificate();
cout << "Connected to server: <<

serverX509->getSubjectDN() << endl";

// get details about my certificate
CtsSecurity::X509Certificate_var clientX509=

sslSessionInfo->getCertificate();

Creating an SSL callback component
An SSL callback component is a component that the client uses to execute
callback methods. A callback method is a method that responds to SSL
requests from EAServer. An SSL callback component resides on the client
machine. To create an SSL callback, you must create a component DLL or
shared library and deploy it on the client machine in a directory specified by
the PATH environment variable. You can create the component in the same
manner that you would create any other server-side component—using
EAServer Manager and a C++ IDE.

You must specify the component DLL or shared library by using the
setGlobalProperty method in the CtsSecurity::SSLServiceProvider interface to
set the callbackImpl global property. For information, see “Set the quality of
security services and global properties” on page 68.

Implementing callback
methods

Although default implementations of the following callback methods are
included with the EAServer client ORB, you can implement your own logic for
these callback methods. To implement the default response for callback
methods, code them to return the CORBA::NO_IMPLEMENT exception.

• getCertificateLabel The user is prompted with the available certificate
labels and asked to choose one of them for client authentication.

• getCredentialAttribute The EAServer SSL client runtime engine
retrieves credential attributes from the user on request.
72 EAServer

CHAPTER 6 Using SSL in C++ Clients
• getPin The user is prompted with the PKCS #11 token or Entrust
password information and asked to provide a PIN for logging into the
PKCS #11 token or Entrust.

• trustVerify The user is prompted with server certificate information and
asked to determine if the server certificate chain can be trusted and if the
SSL session can proceed.

For more information about these callback methods, see the
CtsSecurity::SSLCallback interface in the interface repository documentation.
The interface repository documentation can be viewed in a Web browser by
connecting to your server with this URL:

http://yourhost:yourport/ir/

where yourhost is the EAServer’s host name and yourport is the HTTP port
number.

Example The sample/ClientSSL subdirectory in your EAServer installation contains an
example program that installs an SSL callback to interact with the user.
Security Administration and Programming Guide 73

Creating an SSL callback component
74 EAServer

C H A P T E R 7 Using SSL in PowerBuilder
Clients

You can create PowerBuilder clients that connect to EAServer using SSL
connections, using techniques similar to that used in other client types.
Since PowerBuilder connects to EAServer using the C++ client ORB,
SSL in PowerBuilder requires a full EAServer C++ client installation.

You can configure the settings required for SSL connections using two
techniques:

• By setting ORB properties When using this technique, the
required SSL settings must be known in advance, and your
application can connect only to servers that use certificates issued by
a known, trusted certificate authority. To use this technique, set the
required properties in the options string for the Connection or
JaguarORB object. The SSL options for PowerBuilder clients are the
same as listed for C++ clients in “ORB properties for secure
sessions” on page 69.

• By using the SSLServiceProvider interface The
SSLServiceProvider interface allows your application to determine
what options are available at runtime. In addition, you can supply a
callback class with methods that supply settings as needed and
respond to exceptional cases. For example, the client ORB invokes
callback methods if the application specifies an invalid certificate
password or if a connection is made to a server that uses a certificate
issued by an unknown certificate authority. PowerBuilder provides
implementations of the SSLServiceProvider and SSLCallback objects
that you can use in PowerScript®. You can create your own callback
implementation by creating a standard custom class user object
inherited from the SSLCallback object and implement the callback
functions you need.

For more information on using these APIs, see the Application Techniques
manual in the PowerBuilder documentation.
Security Administration and Programming Guide 75

76 EAServer

C H A P T E R 8 Using SSL in ActiveX Clients

Beginning with version 3.5, EAServer allows you to use SSL connections
between ActiveX clients and EAServer. Among other security features,
SSL provides for certificate-based authentication of the server, optional
certificate-based authentication of the client, and optional encryption of
data transmitted over the network.

For more information about EAServer and SSL, see Chapter 14,
“Managing Keys and Certificates.”

For more information on ActiveX clients, see Chapter 20, “Creating
ActiveX Clients,” in the EAServer Programmer’s Guide.

Requirements
SSL support in ActiveX clients is provided through the C++ client ORB.
Therefore, a complete C++ client installation is required, including the
%JAGUAR_CLIENT_ROOT%\DB directory that contains the client side
security database, SSL support libraries, and the stand-alone Security
Manager.

Topic Page
Requirements 77

Establishing a secure session 78

Using the SSLServiceProvider interface 79

SSL properties 80

Implementing an SSL callback 84

Retrieving session security information 89
Security Administration and Programming Guide 77

Establishing a secure session
The client installation must also be correctly configured to load the native
EAServer client libraries when you run your application. See the EAServer
Installation Guide for more information. Specifically, at runtime, the
JAGUAR_CLIENT_ROOT variable must specify the full path to the
EAServer client runtime installation directory, and the location of the
EAServer client libraries must be in your system’s shared library or DLL
search path.

 Warning! Make sure you select the C++ Runtime and SSL Runtime options
when installing the EAServer client runtime. SSL support in ActiveX
applications requires the files installed by these options.

Establishing a secure session
To create a secure session between your application and EAServer, you must
configure SSL settings before using one of the standard techniques to
instantiate proxies for EAServer components.

You can configure the settings required for SSL connections using two
techniques:

• By setting ORB properties When using this technique, the required
SSL settings must be known in advance, and your application can connect
only to servers that use certificates issued by a known, trusted certificate
authority.

• By using the SSLServiceProvider interface The SSLServiceProvider
interface allows your application to determine what options are available
at runtime. In addition, you can supply a callback class with methods that
supply settings as needed and respond to exceptional cases. For example,
the client ORB invokes callback methods if the application specifies an
invalid certificate password or if a connection is made to a server that uses
a certificate issued by an unknown certificate authority.

Applications that run without user interaction typically configure SSL settings
with the ORB properties. Interactive applications typically use the
SSLServiceProvider interface and install a callback. When a callback is
installed, you can rely on user interaction in the callback methods to configure
necessary settings. For example, if the certificate password has not been
supplied, the ORB invokes the getPin callback method.
78 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
If you have correctly configured the required SSL settings, then you can use
any of the standard techniques to instantiate proxies as described in
“Instantiating proxies using CORBA-style interfaces” in Chapter 20,
“Creating ActiveX Clients,” of the EAServer Programmer’s Guide. Proxies
are created in a secure session as long as you connect to a listener that supports
the requested level of security.

Using the SSLServiceProvider interface
The CtsSecurity.SSLServiceProvider interface provides setGlobalProperty and
getGlobalProperty methods to set and retrieve the SSL properties listed in
Table 8-1 on page 80. After initializing an ORB instance, you can instantiate a
proxy for the SSLServiceProvider interface with the
ORB.resolve_initial_references method, as shown below:

Dim orbRef As JaguarTypeLibrary.ORB
Dim ssp As CtsSecurity.SSLServiceProvider
Dim CORBAObj As Object ' Generic unnarrowed CORBA object

' Initialize the ORB
Set orbRef = New JaguarTypeLibrary.ORB
orbRef.Init ("")

' Get a proxy for the SSLServiceProvider
Set CORBAObj = _

orbRef.resolve_initial_references("SSLServiceProvider")
Set ssp = CORBAObj.Narrow_("CtsSecurity/SSLServiceProvider")

You can then call the setGlobalProperty method to set properties, as in the
example below:

ssp.setGlobalProperty("qop", "sybpks_intl");

Properties set with the SSLServiceProvider interface affect all ORB instances
used by the application. However, if an equivalent property has been set when
initializing an ORB instance, the ORB property value takes precedence.

You can retrieve property values using the getGlobalProperty method, which
returns a JCollection instance. For example, this code retrieves the value of the
availableQop property, which specifies the list of valid settings for the qop
property:

Dim availQop As JaguarTypeLibrary.JCollection
Security Administration and Programming Guide 79

SSL properties
' Retrieve available QOP settings and populate combo box
Set availQop = ssp.getGlobalProperty("availableQOP")

Dim iter As Integer

comboQOP.Text = "<none>"
Call comboQOP.AddItem("<none>", 0)

For iter = 1 To availQop.Count
Call comboQOP.AddItem(_
Format(availQop.Item(iter - 1)), iter)

Next iter

When retrieving properties that take a single value, the value is returned in a
JCollection with one item.

SSL properties
Table 8-1 lists the ORB and SSLServiceProvider properties that govern the use
of SSL. In addition, you need to connect to a server address that can support
your chosen level of security, as described in “Secure server addresses” on
page 83.

Some properties, if not set or set incorrectly, cause the ORB to invoke an SSL
callback method. If you do not install an SSL callback, the default callback
implementation aborts the connection attempt.

Table 8-1: SSL Properties

Property name for
ORB.init

Property name for
SSLServiceProvider Description

-ORBpin pin Always required when using SSL.

Specifies the PKCS #11 token PIN. This is required for
logging in to a PKCS #11 token for client authentication
and for retrieving trust information.

This property cannot be retrieved.

If not set, set to "any", or set incorrectly, the ORB
invokes the getPin callback method.
80 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
-ORBcertificateLabel certificateLabel Required when using mutual authentication.

Specifies the client certificate to use if the connection
requires mutual authentication. The label is a simple
name that identifies an X.509 certificate/private key in a
PKCS #11 token. If the property is not set and the
connection requires mutual authentication, the ORB
invokes the getCertificateLabel callback method,
passing the list of available certificate names as an input
parameter.

-ORBqop qop Always required when using SSL.

Specifies the name of a security characteristic to use.
See “Choosing a security characteristic” on page 82 for
more information.

-ORBuserData userData Specifies user data (String datatype). This is an optional
property. Client code can set user data during ORB
initialization and access it using
SSLSessionInfo::getProperty method in the SSL
callback implementation. This may be useful as a
mechanism to store ORB-level context information that
is otherwise not available through the SSLSessionInfo
interface.

-ORBuseEntrustID useEntrustID Specifies whether to use the Entrust ID or the Sybase
PKCS #11 token for authentication. If this property is
set to “false” (the default), Sybase PKCS #11 token
properties are valid and Entrust-specific properties are
ignored. If this property is set to “true”, Entrust-specific
properties are valid and Sybase PKCS #11 token
properties are ignored.

-ORBentrustUserProfile entrustUserProfile Specifies the full path to the file containing an Entrust
user profile. This property is optional when the Entrust
single-login feature is available and required when this
feature is not available. If not set, the ORB invokes the
getCredentialAttribute callback method.

-ORBentrustPassword entrustPassword Specifies the password for logging in to Entrust with the
specified user profile. This property is optional when the
Entrust single-login feature is available and required
when this feature is not available. If the password is
required but not set or set incorrectly, the ORB invokes
the getPin callback method.

This property cannot be retrieved.

Property name for
ORB.init

Property name for
SSLServiceProvider Description
Security Administration and Programming Guide 81

SSL properties
Choosing a security characteristic
To use SSL, you must specify a value for the qop property in ORB properties
or using the SSLServiceProvider interface. Set the qop to the name of an
available security characteristic. The characteristic describes the CipherSuites
the client uses when negotiating an SSL connection. When connecting, the
client sends the list of CipherSuites that it uses to the server, and the server
selects a cipher suite from that list. The server chooses the first cipher suite in
the list that it can use. If the server cannot use any of the available CipherSuites,
the connection fails.

-ORBentrustIniFile entrustIniFile Specifies the path name for the Entrust INI file that
provides information on how to access Entrust. This is
required when the useEntrustid property is set to true.

If not set, the ORB invokes the getCredentialAttribute
callback method.

-ORBAXSSLCBComponent none The PROGID for an ActiveX component that acts as an
SSL callback.

none callbackImpl DLL, package, and component name of a C++
pseudocomponent that acts as an SSL callback,
specified as:

myDLL/myPackage/myComponent

See “Implementing an SSL callback” on page 84 for
more information.

none availableQop Retrieve only. A list of available security characteristics.
The qop property can be set only to values that appear in
this list.

none availableQopDesc Retrieve only. A list of descriptions for the available
security characteristics, in the same order as listed in the
value of the availableQop property.

none entrustReady Retrieve only. Returns “true” if Entrust PKI software is
available on the client, “false” otherwise.

none loginTimeout The time in seconds before the login to the Sybase
certificate database expires. The default timeout is
indefinite. Before the login times out, the certificate
password is cached and used for multiple SSL
connections. In other words, the PIN must be presented
only once before the timeout expires or the client
program terminates, whichever occurs first.

Property name for
ORB.init

Property name for
SSLServiceProvider Description
82 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
Chapter 13, “Security Configuration Tasks” describes the security
characteristics that are provided with EAServer. At runtime, you can retrieve a
list of characteristics and their descriptions by retrieving the availableQop and
availableQopDesc properties.

Set the qop to “sybpks_none” to prevent any use of SSL on a connection. This
setting can be useful if you have set the qop globally for all ORBs using the
SSLServiceProvider interface, and you want to override the qop for an
individual ORB instance.

Secure server addresses
The client ORB connects only to a server listener that uses an equivalent or
greater level of security as requested in the qop setting. When you use
ORB.string_to_object to instantiate a SessionManager::Manager proxy, the
listener specified by the server address must use a security profile that matches
the client’s qop setting.

For more information on instantiating proxies, see “Instantiating proxies using
CORBA-style interfaces” in Chapter 20, “Creating ActiveX Clients,” of the
EAServer Programmer’s Guide.

Other useful ORB properties
The following ORB properties are not required in programs that use SSL, but
affect the behavior of programs that use SSL:

Property Description

-ORBLogFile Specifies the name of a file to receive error logging information
from the client ORB. There is no default, and logging is enabled by
specifying a file name as this property. The file name is recreated
each time a client program is run with the same setting. You can also
specify a log file by setting the JAG_LOGFILE environment
variable. (The latter is useful when troubleshooting an executable).

-ORBretryCount The number of times to retry a connection attempt that has failed; the
default is 5. You can also configure this property by setting the
-ORB_RETRYCOUNT environment variable.
Security Administration and Programming Guide 83

Implementing an SSL callback
Implementing an SSL callback
When developing applications that interact with end users and support SSL,
you should provide an SSL callback. The ORB invokes callback methods when
required SSL settings have not been configured, or a setting has an incorrect
value.

The callback can respond to exceptional conditions, such as server certificates
that have expired. When using mutual authentication, the callback
getCertificateLabel method allows you to present available certificates to the
end user for them to choose. Lastly, the callback simplifies the handling of retry
logic in the case where the user enters an invalid certificate password.

You can install a C++ callback or an ActiveX callback, but not both.

An ActiveX SSL callback must implement the methods in the
CtsSecurity.SSLCallbackIntf interface. To install the callback, add a setting for
the -ORBAXSSLCBComponent property in the ORB initialization string passed
to the Orb.init method, as in the example below:

Dim orbOptions as String
orbOptions = "-ORBAXSSLCBComponent=mySSLCBProj.mySSLCBComponent,"
orbOptions = orbOptions & "-ORBqop=sybpks_intl"
Set orbRef = New JaguarTypeLibrary.ORB
orbRef.Init (orbOptions)

The SSLCallbackIntf methods are as follows:

• getCertificateLabel Called when the session requires mutual
authentication and a certificate label has not been provided in ORB
properties or in SSLServiceProvider global properties.

The Visual Basic syntax of this method is:

Public Function getCertificateLabel(_
ByVal sessionInfo As Object, _
ByVal labels As JaguarTypeLibrary.JCollection _
) As String

where:

• sessionInfo contains details of the potential SSL session. You can
retrieve information about the session using the getProperty method.

• labels is a JCollection containing available certificate labels. The
callback must return one of them, or raise an ActiveX error to abort
the connection attempt.
84 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
• getCredentialAttribute Called when additional information is required
to use an Entrust certificate, such as the path to the Entrust profile file, or
the path to the entrust.ini file.

 The Visual Basic syntax is:

Public Function getCredentialAttribute(_
ByVal sessionInfo As CtsSecurity.SSLSessionInfo, _
ByVal attr As Long, _
ByVal attrValues As JaguarTypeLibrary.JCollection _
) As String

where:

• sessionInfo contains details of the potential SSL session. You can
retrieve information about the session using the getProperty method.

• attr is one of the following numeric codes for the type of request:

• attrValues is not currently used.

getCredentialAttribute must return a String containing the requested
information, or raise an ActiveX error to abort the SSL session.

• getPin Called when the certificate password has not been specified in
ORB or SSLServiceProvider properties, or if the supplied password was
incorrect.

The Visual Basic syntax of this method is:

Public Function getPin(_
ByVal sessionInfo As Object, _
ByVal timedOut As Boolean _
) As JaguarTypeLibrary.JCollection

where:

• sessionInfo contains details of the potential SSL session. You can
retrieve information about the session using the getProperty method.

Attr value To request

CtsSecurity.
CRED_ATTR_ENTRUST_INIFILE
(1)

The full path and file name of the
Entrust initialization file, which
is usually
%SYSTEMROOT%\entrust.ini.

CtsSecurity.
CRED_ATTR_ENTRUST_USERPROFILE
(2)

The full path and file name for
the Entrust profile (.epf file).
Security Administration and Programming Guide 85

Implementing an SSL callback
• timedOut value is true if a time limit was set for caching the certificate
password and the time has expired (time limits are set as the
loginTimeout property in the SSLServiceProvider interface).

The implementation should check the tokenName property of the
SSLSessionInfo instance to determine whether the requested password is
for the Sybase certificate database or for an Entrust profile, then clearly
identify which password is required when prompting the user.

Your implementation can raise an ActiveX error to abort the connection
attempt.

The getPin method must return the characters of the PIN as individual
items in a JCollection instance. The following Visual Basic code shows
how to populate a JCollection (coll in the example) with characters from a
string (pin in the example):

Dim coll As JCollection
Set coll = New JCollection

Dim c As Byte
Dim iter As Integer
For iter = 1 To Len(pin)

c = Asc(Mid(pin, iter, 1))
coll.Item(iter - 1) = c

Next iter

• trustVerify Called when the correct PIN for the certificate database has
not been set, or if the server has presented a questionable certificate. The
callback response determines whether the connection is allowed and,
optionally, whether the certificate should be added to the local EAServer
client certificate database.

The Visual Basic syntax of this method is:

Public Function trustVerify(_
ByVal sessionInfo As CtsSecurity.SSLSessionInfo, _
ByVal reason As Long _
) As Long

where:

• sessionInfo contains details of the potential SSL session. You can
retrieve information about the session using the getProperty method.

• reason is a numeric code from Table 8-2:
86 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
Table 8-2: trustVerify reason codes

trustVerify must return one of the integer codes listed in Table 8-3:

Reason code Description

CtsSecurity.
REASON_CHAIN_INCOMPLETE
(1)

Server's certificate chain is incomplete.
The ORB cannot complete the chain
using the CA certificates in the Sybase
certificate database.

CtsSecurity.
REASON_UNKNOWN_CA
(2)

The root CA in the server’s certificate
chain is not listed in the Sybase
certificate database.

CtsSecurity.
REASON_CHAIN_EXPIRED
(3)

At least one certificate in the server’s
certificate chain has expired.

CtsSecurity.
REASON_TRUSTDBPINNOTSET
(4)

The password for the certificate database
has not been set. Return
CtsSecurity.TRUST_FAILED to cause the
ORB to call the getPin callback method.

CtsSecurity.
REASON_TRUSTDBLOGINFAILED
(5)

The password for the certificate database
was incorrect. Return
CtsSecurity.TRUST_FAILED to cause the
ORB to call the getPin callback method.
Security Administration and Programming Guide 87

Implementing an SSL callback
Table 8-3: trustVerify return codes

Your implementation of the getPin, getCertificateLabel, and
getCredentialAttribute method should allow the user to cancel the connection
attempt. In response to a user cancel, raise an ActiveX error exception to abort
the SSL session. In Visual Basic, you can do this by raising an error with
vbObjectError as the error number. If you provide an error description, and error
logging has been enabled with the -ORBlogFile Orb property, the error
description is written to the log. After an SSL session is cancelled, the client
program receives a connection-fail error as it would from any other failed
connection attempt.

For more information about these callback methods, see the documentation for
the CtsSecurity::SSLCallback interface in the generated Interface Repository
documentation.

Return code Specified response

CtsSecurity.TRUST_ONCE
(1)

Accept the certificate, but only trust for
one SSL connection.

CtsSecurity.TRUST_FAIL
(2)

Fail the session, or if the reason is
REASON_TRUSTDBPINNOTSET (4) or
REASON_TRUSTDBLOGINFAILED (5),
call the getPin method.

CtsSecurity.TRUST_ALWAYS
(3)

Accept the certificate and add the
server’s CA to the list of trusted CAs in
the Sybase certificate database.

CtsSecurity.TRUST_NEVER
(4)

Reject the connection and mark the CA
as not trusted in the Sybase certificate
database.

CtsSecurity.TRUST_SESSION
(5)

Trust the server certificate chain only
during this client program’s sessions. If
the client program is restarted, the
certificate chain is not trusted.

CtsSecurity.TRUST_FAIL_SESSION
(6)

Reject the certificate now and any time it
reappears during the life of this client
program. Do not mark the certificate as
untrusted in the Sybase certificate
database.
88 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
Retrieving session security information
The CtsSecurity.SSLSession and CtsSecurity.SSLSessionInfo classes allow you
to determine whether SSL is used on connections from a proxy to the server,
and if so, retrieve the SSL session settings. The code below illustrates the
sequence of calls:

... deleted code to set ORB ssl properties,
create session, instantiate proxy myComp ...

Dim sslSess As CtsSecurity.SSLSession
Dim sslSessInfo As CtsSecurity.SSLSessionInfo
sslSess = myComp.Narrow_("CtsSecurity/SSLSession")
On Error Go To noSSLError
Set sslSessInfo = _

sslSess.getSessionInfo.Narrow_(_
"CtsSecurity/SSLSessionInfo")

noSSLError:
 ... an error raised by getSessionInfo most likely

means that the proxy does not use SSL ...

You can narrow the proxy for any CORBA object to CtsSecurity/SSLSession to
obtain information about the session in which the proxy was created. When
narrowing the SSLSession proxy to CTSSecurity/SSLSessionInfo, the proxy
server raises an error if the session is not using SSL.

The SSLSessionInfo methods allow you to determine the SSL session
properties, such as the server’s address, the client certificate in use, the server
certificate in use, and so forth. For more information, see the generated
Interface Repository documentation for the CtsSecurity::SSLSessionInfo
interface.

Example: inspecting SSL session properties
The Visual Basic fragment below prints a description of the SSL session in
which a SesssionManager::Session proxy was created:

Public Function SessionDetails(_
title As String, _
obj As JaguarTypeLibary.Object _
)
Me.Caption = title
Call clearOutput
output (title & ":" & vbCrLf)
Dim sslSess As CtsSecurity.SSLSession
Dim sslSessInfo As CtsSecurity.SSLSessionInfo
Security Administration and Programming Guide 89

Retrieving session security information
Dim host, port, prop As String
Dim inError As Boolean
inError = False

On Error GoTo errorGetSession
Set sslSess = obj.Narrow_("CtsSecurity/SSLSession")
Set sslSessInfo = sslSess. _
getSessionInfo.Narrow_("CtsSecurity/SSLSessionInfo")

On Error GoTo errorGetProperties
host = sslSessInfo.getProperty("host")
port = sslSessInfo.getProperty("port")

output ("Connected to " & host & ":" & port & vbCrLf)

prop = sslSessInfo.getProperty("cipherSuite")
output ("Negotiated CipherSuite: " & prop & vbCrLf)

' Print the server certificate details
On Error GoTo errorGetServerCert
Dim cert As CtsSecurity.X509Certificate
Set cert = sslSessInfo.getPeerCertificate().Narrow_("CtsSecurity/X509Certi

ficate")
output (vbCrLf & "Server certificate info:" & vbCrLf)
output (certInfo(cert))

' Print the client certificate details
On Error GoTo errorGetClientCert
Set cert = sslSessInfo.

getCertificate().Narrow_("CtsSecurity/X509Certificate")

output (vbCrLf & "Personal certificate info:" & vbCrLf)

output (certInfo(cert))
inError = True ' Fall through error cases

' Error handling code. Labels are in reverse order of the
' On Error activations.
' Code to handle errors when retrieving the client certificate.
' Sessions will not have a client certificate unless mutual
' authentication is used. So, this is not necessarily an error.
errorGetClientCert:

If Not inError Then
inError = True
output (vbCrLf & "No personal certificate in use." & vbCrLf)

End If
' Code to handle errors raised when getting the server certificate.
90 EAServer

CHAPTER 8 Using SSL in ActiveX Clients
' If a connection uses SSL, it should at least have a server certificate,
' so errors raised are likely due to coding errors.
errorGetServerCert:

If Not inError Then
inError = True
output (vbCrLf & "** Error retrieving server certificate properties. **

" _
& vbCrLf)

End If
' Code for errors raised when retrieving session properties. Any error
' raised is likely due to a coding error.
errorGetProperties:

If Not inError Then
inError = True
output ("Error retrieving SSL session properties." & vbCrLf)

End If
' Code for errors raised when retrieving the session information.
' Errors here most likely mean that the connection does not use SSL.
errorGetSession:

If Not inError Then
inError = True
output ("SSL not used on this connection.")

End If

' All error handlers must fall through to here.
Me.Show

End Function

Example: inspecting X.509 certificate properties
The previous example calls the following function to print a description of an
SSL certificate represented in a CtsSecurity::X509Certificate instance:

Private Function certInfo(_
cert As CtsSecurity.X509Certificate _
) As String

Dim description As String
Dim prop As String

description = ""

prop = cert.getSubjectDN()
description = description _
Security Administration and Programming Guide 91

Retrieving session security information
& " Subject name: " & prop & vbCrLf

prop = cert.getIssuerDN()
description = description _
& " Issuer name: " & prop & vbCrLf

description = description _
& " Not valid before: " & Format(cert.getNotBefore()) & vbCrLf

description = description _
& " Not valid after: " & Format(cert.getNotAfter()) & vbCrLf

certInfo = description

End Function
92 EAServer

C H A P T E R 9 Using TLS and FIPS in EAServer

Beginning with version 5.2, EAServer supports TLS and FIPS. This
chapter describes these protocols and how to use them to create secure
EAServer connections.

Introduction
The National Institute of Standards and Technology (NIST) develops
standards and guidelines for such things as security and interoperability
for federal computer systems. These guidelines are called the Federal
Information Processing Standards (FIPS).

EAServer uses a cryptographic module to perform encryption and
decryption, signing and verification, computing a checksum (or MAC) of
data, and protecting security-sensitive data. These operations are invoked
by the Transport Layer Security (TLS) runtime, a software
implementation of a PKCS #11 interface, and key management utility
routines.

EAServer utilizes a FIPS 140-2-certified cryptographic module provided
by Certicom Cryptographic libraries.

For more information, see these Web sites:

Topic Page
Introduction 93

Compatibility with previous versions 94

Enabling TLS-secure listeners 95

Enabling FIPS 98

Upgrading the test CA and sample certificates 100

FIPS-related jagtool commands 101

FIPS mode for Java-side cryptography usage 103

Troubleshooting 103
Security Administration and Programming Guide 93

Compatibility with previous versions
• Cryptographic Module Validation Program Web site at
http://csrc.nist.gov/cryptval/ – describes the FIPS standards, contains related
documents and specifications, and answers commonly asked questions.

• Certicom Security Builder Government Standard Edition (GSE) Web site at
http://www.certicom.com/index.php?action=product,sbgse – describes the
FIPS 140-2 certified cryptographic module that is integrated into
EAServer.

• Certificate and cryptographic module information at
http://csrc.nist.gov/cryptval/140-1/1401val2003.htm#351 – contains a list of
certificates issued by NIST, including a copy of the Certicom certificate.

TLS is a protocol based on Secure Sockets Layer (SSL) that is used to establish
secure connections between a client and server. TLS can authenticate both the
client and the server, and create an encrypted connection between the two.

The TLS protocol addresses some of the security concerns of SSL v3. FIPS
requires TLS for use with a FIPS cryptographic module.

See RFC 2246 at http://www.faqs.org/rfcs/rfc2246.html for a complete description
of TLS.

Compatibility with previous versions
The EAServer SSL Client runtime prior to version 5.2 offers a mechanism to
query the user and obtain the PKCS#11 pin, determine whether to trust the
server certificate and set a client side Certificate to use for the SSL connection
(if necessary).

The method getCertificateLabel() in the SSLCallback interface queries the user
to determine which client-side certificate to use during the SSL handshake. The
server asks the client to authenticate itself during mutual authentication, by
sending a message as part of the SSL handshake requesting a client certificate.
When this request arrives at the client, and the client has not set it’s client
certificate, the SSL Client runtime queries the user through the
getCertificateLabel() method. For more details on this, see the corresponding
IDL documentation and these chapters:

• Chapter 5, “Using SSL in Java Clients”

• Chapter 6, “Using SSL in C++ Clients”

• Chapter 7, “Using SSL in PowerBuilder Clients”
94 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
• Chapter 8, “Using SSL in ActiveX Clients”

The post-5.1 EAServer SSL Client runtime does not invoke the
getCertificateLabel() callback. Due to this restriction, if your client application
relies on the getCertificateLabel() method being invoked/executed during
mutual authentication using SSL, you must do the following after installing
EAServer 5.2 or later:

1 Set the environment variable JAGSSL to true in the shell used to run the
client program. This has the effect of using the previous version of the
EAServer SSL Client runtime. The previous version of the SSL runtime
does not support TLS. See “Disabling TLS support” on page 99 for more
information.

PowerBuilder client applications that rely on mutual authentication should
also set the environment variable JAGSSL to true before running the
application.

2 If you do require TLS support now, then you must re-code your client
application. For example, if this is an EJB client application, set the client
certificate label using the com.sybase.ejb.certificateLabel ORB property.

Enabling TLS-secure listeners
Define security profiles in EAServer using Security Manager. Associate the
profile with a server listener and determine the SSL characteristics of the
listener. The profile is used on the client side to set the SSL connection
parameters. Follow the same procedures to assign a profile containing TLS
characteristics to a listener. A profile has a security characteristic, which is a
combination of the following properties:

• SSL or TLS cipher suite

• Authentication mode – server only, mutual, or none

Table 9-1 displays a list of the security characteristics and cipher suites used to
support TLS. A profile that includes _mutual_auth specifies:

• For a client – the client wants to authenticate to the server, or

• For a server – the client’s certificate is necessary.

Table 9-1 lists the name, the level of authentication, and the supported cipher
suites for each TLS security characteristic.
Security Administration and Programming Guide 95

Enabling TLS-secure listeners
Table 9-1: TLS-supported cipher suites

 Name of characteristic Authenticates
Cipher suites in decreasing order of
preference/strength

sybpks_strong_tls server TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_RC4_128_MD5

sybpks_strong_mutual_auth_tls client/server Same as sybpks_strong_tls

sybpks_domestic_tls server TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

sybpks_domestic_tls_mutual_auth client/server Same as sybpks_domestic_tls

sybpks_intl_tls server TLS_RSA_EXPORT_WITH_RC4_40_MD4
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_NULL_MD5

sybpks_intl_mutual_auth_tls client/server Same as sybpks_intl_tls

sybpks_simple_tls server TLS_RSA_WITH_NULL_MD5

sybpks_simple_tls_mutual_auth client/server Same as sybpks_simple_tls

sybpks_<ciphersuite>

Valid cipher suites are:

sybpks_tls_rsa_with_3des_ede_cbc_sha

sybpks_tls_rsa_with_aes_256_cbc_sha

sybpks_tls_rsa_with_aes_128_cbc_sha

sybpks_tls_rsa_with_des_cbc_sha

sybpks_tls_rsa_with_rc4_128_sha

sybpks_tls_rsa_export_with_rc4_40_md5

sybpks_ssl_rsa_with_3des_ede_cbc_sha

sybpks_ssl_rsa_with_rc4_128_sha

server This is a new special characteristic. One cipher suite
can be listed in the string. For example,
sybpks_SSL_RSA_WITH_3DES_EDE_CBC_SHA
selects only one cipher suite.

Note SSL_ implies SSLv3 and v2.

sybpks_<ciphersuite>_mutual_auth client/server Same as sybpks_<ciphersuite>. For example:

sybpks_ssl_rsa_with_3des_ede_cbc_sha_mutual_auth
96 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
Table 9-2 lists the name, level of authentication, and the FIPS-supported cipher
suites for each TLS security characteristic. These cipher suites are enabled
when a server or client is operating in a FIPS 140-2 mode; they are a subset of
the characteristics listed in Table 9-1.

When EAServer or a client is operating in a FIPS-compliant mode, only the
TLS protocol should be used. FIPS 140-2 has an approved list of algorithms.
Due to this requirement, not all cipher suites are available while operating in a
FIPS mode.

Table 9-2: FIPS-supported cipher suites

 Name of characteristic Authenticates
Cipher suites in decreasing order of
preference/strength

sybpks_strong_tls server TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA

sybpks_strong_mutual_auth_tls client/server TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA

sybpks_domestic_tls server TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA

sybpks_domestic_tls_mutual_auth client/server Same as sybpks_domestic_tls plus mutual
authentication

sybpks_<ciphersuite>

Valid FIPS supported cipher suites are:

sybpks_tls_rsa_with_3des_ede_cbc_sha

sybpks_tls_rsa_with_aes_256_cbc_sha

sybpks_tls_rsa_with_aes_128_cbc_sha

sybpks_tls_rsa_with_des_cbc_sha

server This is a new special characteristic. One cipher suite
can be listed in the string. For example,
sybpks_TLS_RSA_WITH_3DES_EDE_CBC_SHA
selects only one ciphersuite.

Note SSL_ implies SSLv3 and v2.

sybpks_<ciphersuite>_mutual_auth client/server Same as sybpks_<ciphersuite>. For example:

sybpks_tls_rsa_with_des_cbc_sha_mutual_auth
Security Administration and Programming Guide 97

Enabling FIPS
Note Existing security profiles (sbpks_simple, sybpks_intl, sybpks_domestic,
sybpks_strong), have been modified to accept TLS and SSL. This allows:

• pre-5.2 clients to connect to EAServer version 5.2 and greater using
SSLv3

• 5.2 and greater clients to connect to EAServer version 5.2 and greater
using FIPS and TLS

• 5.2 and greater clients connecting to a pre-5.2 EAServer installation (or a
5.2 or greater installation that has FIPS disabled) to connect using SSL

Existing client applications continue to work without any change to SSL
settings. However, to use only the TLS protocol in your applications, use the
new security profiles that support TLS. See Table 9-1 on page 96.

By default, FIPS mode is disabled. To enable FIPS, see “Enabling FIPS,”
below.

Enabling FIPS
You can enable or disable FIPS from either:

• EAServer Manager or the standalone Security Manager—“Enabling FIPS
mode from EAServer Manager and Security Manager” on page 99, or

• jagtool, which is a Java command line management toolkit used in
EAServer. jagtool provides a command to enable FIPS. See “FIPS-related
jagtool commands” on page 101.

If FIPS mode is enabled, EAServer logs the message FIPS 140-2 mode
enabled to the console. If the mode is not set, no message is logged.

Enabling FIPS has the following effect on EAServer:

• Permits TLS protocol only by the SSL/TLS runtime engine.

• Permits the use of cipher suites and security characteristics listed in
Table 9-2 on page 97.

• Accepts X.509 certificates signed using a SHA1WithRsa algorithm.
Certificates signed with any other algorithm are not accepted and generate
an error.
98 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
• Other cryptographic functionality that normally employ a non-FIPS
approved algorithm now fail. For example, a PKCS #12 certificate
containing a private key shrouded (signed) with a
pbeWithSHA1And40bitRc4 algorithm fails to import, since RC4 is not a
FIPS 140-2-approved algorithm. The private key and public keys must be
shrouded using pbeWithSHA1And3KeyTripleDescbc.

Enabling FIPS mode from EAServer Manager and Security Manager
You can enable or disable FIPS on EAServer from EAServer Manager. Or use
the standalone Security Manager to enable or disable FIPS in client-side
applications, such as PowerBuilder, stand-alone Java, C++, CORBA, Web
server redirectors, and so on.

Expand the EAServer Manager (or Security Manager) icon, highlight the
Cryptographic Modules folder, and select the FIPS mode icon. A dialog box
displays Enabled or Disabled and allows you to change the setting.

❖ Enabling FIPS from EAServer Manager or Security Manager

1 Select the Certificates folder.

2 Select the Cryptographic Modules folder. Enter the PIN that allows you to
connect to the EAServer’s PKCS #11 token. The default value is “sybase”.

3 Right-click the FIPS mode icon and select Properties. Click the Enable
FIPS mode check box to enable FIPS.

4 Restart each server or Web server (for redirector plug-ins) for which you
want to enable FIPS. If there are multiple EAServers, you must restart
each one to enable FIPS. The same is true if you disable FIPS.

Disabling TLS support

To disable TLS support, and only support SSL, set the environment variable
JAGSSL to true in the serverstart.bat file before you start EAServer. You can
also set this environment variable in an EAServer client installation:

set JAGSSL=true
Security Administration and Programming Guide 99

Upgrading the test CA and sample certificates
Upgrading the test CA and sample certificates
Your EAServer installation (including client-only installations) includes a test
CA and two sample certificates, which are signed by the test CA. The
EAServer pre-5.2 test CA and sample certificates are signed using the
MD5WithRSA algorithm, which is not FIPS approved. Running the post-5.1
installation program upgrades the test CA and sample certificates and signs
them with the SHA1WithRSA algorithm, which is FIPS approved. When the
server or client is FIPS-enabled, EAServer ensures that only FIPS-approved
algorithms are used. If not, an error displays and is logged to the EAServer log
file.

In the unlikely event that the sample certificates or db files used by the SSL
runtime get deleted, you can upgrade the test CA and sample certificates by
running the upgradeCerts.bat script from the command line if needed.

❖ Running upgradeCerts.bat

1 Go to the bin subdirectory on each EAServer installation that contains a
test CA and sample certificates.

2 Run upgradeCerts.bat to upgrade the test CA and sample certificates. This
script requires the PKCS #11 PIN be set to “sybase”.

3 The console displays a message indicating that the test CA and sample
certificates have been upgraded. For example:

Warning: About to upgrade server and client certificates
Please ensure that the sever is not running in the following location:
JAGUAR = d:\52
Press enter to proceed with the upgrade..
Press any key to continue . . .
Upgrading Server Certificates: d:\52
Upgrading Sybase Jaguar Test CA
Sybase Test CA installed.
...
Certificate Label: Sybase Jaguar User Test CA
Subject CN : Sybase EAServer User Test CA (TEST USE ONLY)
Issuer CN : Sybase EAServer User Test CA (TEST USE ONLY)
Finger Print : 0x MD5 ce c8 8c 11 ab 11 10 c3 a8 f4 a9 07 6c 8c bb b4
SHA1 64 71 ee 44 95 9f 3d b7 ac 29 3d fb 87 43 5f 82 41 2f fa ab
Signature algorithm: PKCS #1 SHA1 with RSA Encryption
Serial Number : 0x 01
Valid From : Thu Oct 09 14:37:57 2003
Valid To : Thu Jan 08 08:44:37 2015
...
Installed Sample1 Test ID
100 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
Private Key Info: 1024 bit RSA Key
...
Certificate Label: Sample1 Test ID
Subject CN : Sample1 Test ID
Issuer CN : Sybase EAServer User Test CA (TEST USE ONLY)
Finger Print : 0x MD5 d5 9a 56 3d 22 5d 2d 59 72 87 a2 db b6 48 b0 bf
SHA1 6b 2c 86 2a 5b ee 3c d6 fc 2e 9f 6b 75 a4 25 c6 0e ff 28 69
Signature algorithm: PKCS #1 SHA1 with RSA Encryption
Serial Number : 0x 02
Valid From : Fri Jun 25 15:26:59 2004
Valid To : Thu Jun 25 15:26:59 2009
...
Installed Sample2 Test ID
Private Key Info: 1024 bit RSA Key
...
Certificate Label: Sample2 Test ID
Subject CN : Sample2 Test ID
Issuer CN : Sybase EAServer User Test CA (TEST USE ONLY)
Finger Print : 0x MD5 3a 47 b3 b2 e9 9a 53 ba 34 4e e3 b6 8b f0 b8 e7
SHA1 ab f9 5a 28 3e 50 bb 66 36 ed f1 3f 8c f7 07 2a 4b 34 a5 04
Signature algorithm: PKCS #1 SHA1 with RSA Encryption
Serial Number : 0x 03
Valid From : Fri Jun 25 15:27:39 2004
Valid To : Thu Jun 25 15:27:39 2009
...

FIPS-related jagtool commands
This section describes the jagtool commands getfipsmode and setfipsmode. For
complete instructions on using jagtool, see Chapter 12, “Using jagtool and
jagant” in the EAServer System Administration Guide.

getfipsmode Displays true if FIPS is enabled for an EAServer client or server’s runtime;
false if FIPS is not enabled.

Syntax Local mode support: No.

Command line:

getfipsmode [connect-args] -pkcs11pin value -active value

Ant build file, specifying properties from an optional file:

<jag_get_fipsmode pkcs11pin=”value” active=”true” />

Ant build file, specifying properties directly:
Security Administration and Programming Guide 101

FIPS-related jagtool commands
<jag_get_fipsmode pkcs11pin=”value” >
<active=”true” />

</jag_enablefips>

Examples This example indicates whether or not FIPS is enabled for the PKCS #11
module, which is using the default PIN.

• Command line:

jagtool getfipsmode -pkcs11pin sybase -active true

• Ant build file:

<jag_get_fipsmode pkcs11pin="sybase" active=”true” />

setfipsmode Turns FIPS mode on or off for an EAServer server or client.

Syntax Local mode support: No.

Command line:

setfipsmode [connect-args] -pkcs11pin value -mode value

Ant build file, specifying properties from an optional file:

<jag_set_fipsmode pkcs11pin=”value” mode=”true | false” />

Ant build file, specifying properties directly:

<jag_set_fipsmode pkcs11pin=”value” >
<mode=”true” />

</jag_enablefips>

Option Description Required

connect-args Arguments to specify a connection to the server
or run in local mode.

In connected mode, jagtool connects to an
EAServer using a network connection.

Yes

pkcs11pin The PIN of the PKCS #11 module. Yes

active Returns the mode that the client or server is
using. True if in FIPS mode; false if not.

Yes

Option Description Required

connect-args Arguments to specify a connection to the server
or run in local mode.

In connected mode, jagtool connects to an
EAServer using a network connection.

Yes

pkcs11pin The PIN of the PKCS #11 module. The default
value is “sybase.”

Yes
102 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
Examples This example turns FIPS mode on for the PKCS #11 module, which is using
the default PIN.

• Command line:

jagtool setfipsmode -pkcs11pin sybase -mode true

• Ant build file:

<jag_set_fipsmode pkcs11pin="sybase" mode=”true” />

FIPS mode for Java-side cryptography usage
Java clients using the Java Secure Socket Extension (JSSE) to establish a SSL
connection should use a FIPS-approved JSSE provider. EAServer SSL client
runtime is not a JSSE provider.

Java clients and components that utilize a Java Cryptography Extension (JCE)
provider should install a FIPS-enabled JCE provider to operate in a FIPS 140
mode. Further, Java components hosted in EAServer that also use a JCE
provider should install a FIPS-enabled FIPS provider.

EAServer does not invoke native (Java language) cryptographic functionality
directly. The SSL functions provided by the EAServer Java runtime is
implemented in C. If there is any Java code in EAServer that invokes a JCE
provider, or JSSE, a FIPS-enabled JCE provider must be installed in the
JDK/JRE used by EAServer.

Troubleshooting
Table 9-3 lists some common problems and solutions encountered when
configuring EAServer to run in FIPS mode using TLS.

mode Changes the mode of the PKCS #11 module.
True turns FIPS mode on, false (the default)
turns FIPS mode off.

No.

Option Description Required
Security Administration and Programming Guide 103

Troubleshooting
Table 9-3: Common FIPs and TLS problems

Problem or symptom Possible cause or solution

EAServer does not start and displays this error message on the console:
Certicom Security Builder GSE not installed.
Please refer to EAServer troubleshooting guide.
Failed to load library:
d:\52\EAServer\dll\defaultmem, reason: The
specified module could not be found. [126]
Failed to locate library in the following search
path:
[.;D:\52\EAServer\jdk\jdk1.3.1_06\bin;D:\52\EASer
ver\cpplib;D:\52\EAServer\jdk\jdk1.3.1_06\jre\bin
;

This indicates the Certicom
installation failed. Verify that the
EAServer installation program ran
successfully. Also verify the
Certicom Registry key is configured
correctly. Use the regedit Windows
utility to view registry entries.

EAServer starts, but displays this error message on the console:
Certicom Security Builder GSE not installed.
Please refer to EAServer troubleshooting guide.
Failed to load library:
d:\52\EAServer\dll\defaultmem, reason: The
specified module could not be found. [126]
Failed to locate library in the following search
path:
[.;D:\52\EAServer\jdk\jdk1.3.1_06\bin;D:\52\EASer
ver\cpplib;D:\52\EAServer\jdk\

This indicates that the defaultmem.dll
file cannot be located. This file is part
of the EAServer installation and must
be in
%JAGUAR%\dll\defaultmem.dll.

A dialog box displays this message:
The procedure entry point sb_memcpy could not be
located in the dynamic link library

defaultmem.dll

and this error message displays on the console:
Sybase, Inc. One Sybase Drive, Dublin, CA 94568
USA.
Failed to load library:
d:\52\EASErver\dll\libjctssecsrv_f140, reason:
The specified module could not be found [126]
Failed to locate library in the following search
path:
[.;D:\52\EAServer\jdk\jdk1.3.1_06\bin;D:\52\EASer
ver\cpplib;D:\52\EAServer\jdk\jdk1.3.1_06\jre\bin

Verify that
%JAGUAR%\dll\defaultmem.dll is
installed from the EAServer
installation. View the file properties
using the File Explorer. The version
and author string should contain
“Sybase”.

EAServer starts, but freezes while starting, or takes a long time to start. The random seeding may be taking
longer than normal. Set the
JAGUAR_RANDOMSEED
variable. See Chapter 3, “Creating
and Configuring Servers,” in the
EAServer System Administration
Guide.
104 EAServer

CHAPTER 9 Using TLS and FIPS in EAServer
The EAServer listener is set to sybpks_domestic, but the Web browser
cannot connect to a secure port on EAServer.

Check the following:

• Refer to the server log file to
determine if the secure listener is
active or not.

• Ensure that the server certificate is
valid and has not expired.

• Ensure that the host/port settings
are valid. The port should not be
use in by another application. The
most common reason for this is
that another instance of EAServer
is running.

The EAServer listener is set to sybpks_domestic_tls, but the Web browser
cannot connect.

All security profiles that end with tls
and the sypbks_tls_xxx security
profiles accept only TLS.

Verify that your Web browser is
configured to handle TLS. By default,
most browsers disable TLS.

See the Web browser documentation
for instructions on how to configure
the settings for your browser.

The EAServer secure protocol listeners configured with
sybpks_domestic, sybpks_intl, and sybpks_simple do not start.

Verify that the EAServer certificate is
valid and has not expired.

If FIPS 140-2 mode is enabled in
EAServer, then only a subset of the
security profiles are valid.
sybpks_domestic, sybpks_intl, and so
on are disabled. See Table 9-2 on
page 97 for a list of FIPS supported
cipher suites.

When FIPS is enabled, a message
displays on the console. The FIPS
setting can be determined using
EAServer Manager or the
getfipsmode jagtool command.

Problem or symptom Possible cause or solution
Security Administration and Programming Guide 105

Troubleshooting
106 EAServer

C H A P T E R 1 0 Creating and Using Custom
Security Components

This chapter describes how to use custom components to perform security
tasks such as user authentication and authorization. These features allow
you to create your own components to customize EAServer security and
to integrate with third-party enterprise security software such as Netegrity
SiteMinder.

Using a custom authentication service
You can install your own component to authenticate clients for any
EAServer. For example, if you require the client user name to match a
remote database user name, you can code the component to retrieve the
client user name and password and attempt to log in to the remote
database.

The component must implement the CtsSecurity::AuthService IDL
interface, and you must set the com.sybase.jaguar.server.authservice
server property to specify the name of your component (this property must
be set using the Advanced tab in the Server Properties dialog).

Topic Page
Using a custom authentication service 107

Using a custom role service 109

Using a custom authorization service 111

Supporting external single sign-on providers 115

Netegrity SiteMinder Integration 115
Security Administration and Programming Guide 107

Using a custom authentication service
This interface contains the method, checkSession. Your code for this method
can check the client’s user name and password and the status of other
authentication checks, that is, whether the client’s credentials have passed OS
authentication or SSL authentication checks. Your code can perform additional
authentication checks and auditing. For more information, see the
documentation for the CtsSecurity::AuthService IDL interface.

A sample Java implementation is provided in the EAServer
html/classes/Sample/AuthServiceDemo directory in your EAServer
installation. A sample C++ implementation is available in the
sample/AuthServiceDemo subdirectory.

Maintaining authenticated sessions
EAServer provides a mechanism by which applications can extend and
maintain the authenticated session beyond the lifetime enforced by EAServer.
This mechanism uses the methods CtsSecurity::SessionInfo::setName and
CtsSecurity::AuthService::getCallerPrincipal.

If these methods are implemented, then you must also handle the authorization
of the user by either implementing a role service or authorization service. The
internal role checking performed by EAServer will not work unless the
alternate user name is added to the authorized user’s list for the role. As the
alternate user name that is set using the setName API can be dynamic, the role
service or authorization service should work in tandem with the authentication
service to authorize the user.

CtsSecurity::SessionInfo::setName is a method that can be called only when
your custom authentication component is running. When this method is called
from the custom authentication component, the server sets the reference to the
authenticated security credentials. When the client needs to be authenticated
again, the custom authentication component returns the original principal name
by calling CtsSecurity::AuthService::getCallerPrincipal(string alternate_name).

The CtsSecurity::SessionInfo::setName method has no effect if clients obtain
component instances using CSIv2. If you are using CSIv2, you must use a
JAAS module in addition to an authentication or other component. See Chapter
11, “Using the JAAS API” for more information.

For more information, see the documentation for the CtsSecurity::AuthService
and CtsSecurity::SessionInfo IDL interface.
108 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Retrieving HTTP session information
In a custom authentication component implemented in Java, you can call the
com.sybase.jaguar.server.Jaguar.getHttpServletRequest() method to retrieve the
HTTP servlet request (if any) that triggered the authentication event. This
method returns null if the authentication event is not associated with an HTTP
request (for example, if the authentication is for a component invocation).

Using a custom role service
You can install your own component that performs access control based on role
membership. The component must implement the CtsSecurity::RoleService
IDL interface. Your custom role service evaluates user membership in
EAServer roles, so authorization in your application is still dependent on the
role names associated with a package, component, method, or Web resource
collection. Using a role service eliminates the need to define role memberships
in EAServer Manager. For example, you might code your component to
retrieve role membership information from a database.

Creating a role service
The role service must be a stateless component that implements the
CtsSecurity::RoleService IDL interface:

 interface RoleService {
 boolean isMember(
 in CtsSecurity::SessionInfo sessionInfo,
 in string role);
 };

isMember checks if the authenticated client is a member of the role. The client’s
credentials are obtained from sessionInfo. The server first checks if the role is
defined in the repository. If the role is defined, then membership checks are
performed. If the role is not defined, the server assumes that the user is not a
member of the role, and the role service is invoked. The result from this method
is cached by the server, where it can be referenced for the same client/role
combination, provided the internal cache has the relevant information.

For more information, see the generated CtsSecurity::RoleService IDL interface
documentation.
Security Administration and Programming Guide 109

Using a custom role service
Installing the role service
Use EAServer Manager to enable the role service. You can write an
implementation of the RoleService interface and configure a server-level role
service by setting the com.sybase.jaguar.server.roleservice property
to the URL that accesses the component that implements this interface. Set this
property using the Advanced tab of the Server Properties window.

There are two accepted forms for the URL:

• You can set the URL to the EAServerPackage/EAServerComponent if the
component is a Java CORBA, C++ CORBA, stateless COM or
PowerBuilder NVO. The component must be installed in the server.

For example, to set the role check service, set the server-level property to
com.sybase.jaguar.server.roleservice=Security/RoleService
where Security is the name of the package that contains the RoleService
component that implements the RoleService interface.

• You can access Java CORBA and C++ CORBA components using the
pseudocomponent object URL. The syntax for a Java pseudocomponent
is:

pseudo://java/JavaClass/EAServerPackage/EAServerComponent

The syntax for a C++ pseudocomponent is:

pseudo://cpp/SharedLibraryName/EAServerPackage/EAServerComponent

You can also set the authorization service property to the
pseudocomponent object URL. For example, you can set the server-level
authorization service to:

 pseudo://cpp/libAuthorize/Security/RoleService

where libAuthorize is the name of the shared library that contains the C++
Security/RoleService component’s implementation.

Components implemented for pseudocomponent access must be thread-
safe. Pseudocomponents cannot be refreshed. You must restart the server
to refresh the role service component.

For more information on pseudocomponents, refer to Chapter 34,
“Creating and Using EAServer Pseudocomponents,” in the EAServer
Programmer’s Guide.
110 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Using a custom authorization service
You can create and install your own component to authorize clients to access
resources (packages, Web applications, or applications) on any EAServer.

Deciding whether to use the authorization services and role service
Using an authorization service offers greater control than using a role service,
but the API is more complicated than the role service API.

The role service acts server-wide, and evaluates user membership in declared
EAServer roles associated with a resource (package, component, method, or
Web resource collection).

An authorization service can control access to all resources on a server, or only
those in a particular application, Web application, or package. With the
authorization service, you can allow or deny access to resources with no
dependencies on roles configured in EAServer.

You can use both a role service and an authorization service. For example, you
may wish to use a role service to preserve the ability to configure role-based
resource permissions in EAServer Manager, but use the authentication service
to create audit logs of user access to resources.

Creating the authorization service
An authorization service component must implement the
CtsSecurity::AuthorizationService IDL interface, and be stateless to support
refresh. It must be one of:

• Java CORBA

• PowerBuilder Non-Visual User Object (NVO)

• C++ CORBA

• Component Object Model (COM)

Usage

 interface AuthorizationService {
 boolean isAuthorized(
 in CtsSecurity::SessionInfo sessionInfo,
 in StringSeq resource,
 in StringSeq roles,
Security Administration and Programming Guide 111

Using a custom authorization service
 in boolean isMember,
 in long permTimeDelta);

isAuthorized checks if the client is authorized to access a resource. The client’s
credentials can be obtained from sessionInfo.

resource is the entity the client is trying to access. The resource is represented
as an ordered array of strings, and each string represents a scoped entity. A
string starts with one of these prefixes:

• A: – application

• WA: – Web application

• P: – package

• C: – component

• M: – method

• S: – servlet

• HM: – HTTP method (GET, PUT, POST, and so on)

For example, if the resource being accessed is a servlet or a JSP that belongs to
a Web application, which belongs to an application, then the array might
contain the following string sequence:

A:ApplicationName; WA:WebApplicationName; S:servletName; HM:httpMethod;

roles lists all the roles associated with the resource (if any). The server first
checks if the role is defined in the repository. If the role is defined, then
membership checks are performed and if the user is in at least one of the roles,
the authorization check succeeds. isAuthorized is still invoked, and the caller
can audit the resource access. isMember is set to AUTH_OK to indicate that the
authorization succeeded. If a role is not defined, it is assumed that the user is
not a member of the role.

If the user is not a member of all the roles, then isMember is set to
AUTH_FAILED. isAuthorized then determines whether to authorize the client.
isAuthorized returns true if the user is allowed access to the resource, and
returns false otherwise.
112 EAServer

CHAPTER 10 Creating and Using Custom Security Components
permTimeDelta is the time difference in seconds, since the last time isAuthorized
was invoked for this particular user and resource combination. This value can
be used by the authorization component logic to determine whether to audit the
event. A value of zero (0) implies that the isMember was not determined from
the internal permission cache. A positive value indicates that the isMember was
determined from the internal permission cache. permTimeDelta is always less
than or equal to the server-wide authorization permission cache timeout value
(see the
com.sybase.jaguar.server.authorization.permcachetimeout

property).

For more information, see the generated documentation for the
CtsSecurity::AuthorizationService IDL interface.

Installing the authorization service
Use EAServer Manager to install the authorization service component in the
server, application, package, or Web application. There are two ways in which
you can make the authorization service available to all components on
EAServer:

• Allow multiple packages, Web applications, or applications to share the
same authorization service by setting the same value for the authorization
service component. If the application utilizes a particular authorization
service, then all components accessed by the application also utilize the
same authorization service. To configure an authorization service:

• At the package level, set the
com.sybase.jaguar.package.authorization.service property to the URL
for the component that implements this interface in the Advanced tab
of the Package Properties window.

• At the Web application level, set the
com.sybase.jaguar.webapplication.authorization.service property to the
URL for the component that implements this interface in the
Advanced tab of the Web Applications Properties window.

• At the application level, set the
com.sybase.jaguar.application.authorization.service property to the
URL for the component that implements this interface in the
Advanced tab of the Applications Properties window.
Security Administration and Programming Guide 113

Using a custom authorization service
• Enable the interface on the entire server. Set the
com.sybase.jaguar.server.authorization.service property to the URL for the
component that implements this interface in the Advanced tab of the
Server Properties window. Packages, Web applications, and applications
can utilize the authorization service.

Component URLs for the authorization service

There are two accepted forms of the URL:

• For all component types, the URL can be set to the
EAServerPackage/EAServerComponent; the component must be installed
in the server.

For example, to set the authorization service at the server level, set the
server-level property to:

com.sybase.jaguar.server.authorization.service=Security/Aut
horizer

Where Security is the name of the Jaguar package that contains an
EAServer component called Authorizer that implements this interface.

• Java CORBA and C++ CORBA components can be accessed using the
pseudocomponent object URL. The syntax for a Java pseudocomponent
is:

pseudo://java/JavaClass/EAServerPackage/EAServerComponent

The syntax for a C++ pseudocomponent is:

pseudo://cpp/SharedLibraryName/EAServerPackage/EAServerComponent

You can also set the authorization service property to the
pseudocomponent object URL. For example, set the server-level
authorization service to:

pseudo://cpp/libAuthorizer/Security/Authorizer

where libAuthorizer is the name of the shared library that contains the C++
Security/Authorizer component’s implementation.

Components implemented for pseudocomponent access must be thread-
safe, and you must restart EAServer to refresh the component.

For more information on pseudocomponents, see Chapter 34, “Creating
and Using EAServer Pseudocomponents,” in the EAServer Programmer’s
Guide.
114 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Supporting external single sign-on providers
EAServer allows integration with external single sign-on authentication
software such as Netegrity SiteMinder. EAServer includes custom security
components to support Netegrity, and you can implement support for other
services by implementing your own custom security components.

The API CtsSecurity::CallerPrincipalService allows you to implement a
component that tells EAServer the effective user ID when authentication
occurs outside of EAServer. For details on creating and installing a caller
principal service, see the HTML reference documentation for this interface in
file html/ir/CtsSecurity.html in your EAServer installation directory.

The com.sybase.jaguar.server.http.sso server property specifies whether sign-
on occurs externally. Set this property to true if you are using an external
single-sign on provider.

Netegrity SiteMinder Integration
EAServer supports integration with Netegrity SiteMinder security software.
Netegrity SiteMinder provides single sign-on and centralized management of
Web, database, and software resources in enterprise applications. For more
information, see the Netegrity Web site at http://www.netegrity.com/.

The following configurations are supported:

• Web access to EAServer through a secure reverse-proxy server. This
configuration provides global single sign-on support for all applications
and servers that are protected by the proxy server, as well as centralized
user and user rights management. In this configuration, no direct user
connections are allowed to EAServer. Instead, users access EAServer via
the proxy server. Users log in to the secure proxy server using basic (user
name plus password) authentication or by presenting an SSL certificate.
This configuration requires a reverse-proxy server that supports Netegrity
single sign-on, such as Apache with the Netegrity Web Agent installed or
the Netegrity Secure Proxy Server.
Security Administration and Programming Guide 115

Netegrity SiteMinder Integration
• Direct client access to EAServer with Netegrity authentication. In this
configuration, users present their login credentials (user name and
password or SSL certificate) to EAServer. The Netegrity agent installed in
EAServer forwards the credentials to the Netegrity Policy Server for
validation. While this configuration does not support global single sign-
on, it does allow you to take advantage of centralized user and user-rights
management provided by the Netegrity Policy Server.

• Mixed access, which is a combination of these two approaches. For
example, you can enable access through a proxy server to provide global
single sign-on support to Web client users, while still supporting direct
IIOP or IIOPS connections to EAServer from other client applications.

EAServer integration with SiteMinder is provided by Java Authentication and
Authorization Service (JAAS) modules installed in EAServer, along with
custom role service and caller principal service components. These
components use the Netegrity Agent API to connect to the Netegrity Policy
Server to verify user credentials, login status, and role membership.

When using Netegrity, EAServer authorization is based on the EAServer roles
that are associated with components and Web resources, with role membership
evaluated by the Netegrity Policy Server. The required roles for resource
access are determined based on the component or Web application properties,
as set in EAServer Manager or jagtool. When a resource requires role
membership for access, EAServer calls the Netegrity role service, which
determines whether the user is a member of the required role based on settings
maintained in the Netegrity Policy Server.

These JAAS login modules are provided for Netegrity/EAServer integration:

• An HTTP login module, which allows EAServer Web applications to
support Netegrity single sign-on in reverse-proxy configurations.

• A X.509 certificate login module, which validates client SSL certificates
presented to EAServer by forwarding them to the Netegrity Policy Server.

• A basic login module, which validates client user names and passwords
presented to EAServer by forwarding them to the Netegrity Policy Server.
116 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Configuring your security scenario
The Netegrity integration login modules are defined in the Netegrity JAAS
configuration file, netegrity_jaas.cfg. On Windows, this file is installed in the
ini subdirectory of your EAServer installation. On UNIX platforms, the file is
installed in the config directory. You must configure the security scenario that
you want to use by modifying the attributes of each login module in this file.
The attributes for each scenario are listed below:

• For Web only access via the Netegrity Secure Proxy Server, use these
settings in netegrity_jaas.cfg:

• For direct client access using basic authentication without support for
single sign-on, use these settings in netegrity_jaas.cfg:

• For mixed access, use these settings in netegrity_jaas.cfg:

Configuring the SiteMinder Policy Server
The following configuration can be performed in the Netegrity Policy Server
User Interface Console. For detailed instructions, see the Netegrity
documentation. These settings are required for all scenarios.

❖ Policy Server setup

1 Create a Web agent named easagent, configured with the Policy Server
host name and password.

Login module Attribute

HTTP LoginModule Requisite

X.509 LoginModule Optional

Basic LoginModule Optional

Login module Attribute

HTTP LoginModule Optional

X.509 LoginModule Optional

Basic LoginModule Requisite

Login module Attribute

HTTP LoginModule Sufficient

X.509 LoginModule Sufficient

Basic LoginModule Sufficient
Security Administration and Programming Guide 117

Netegrity SiteMinder Integration
2 Create a user directory with all the user names to be authenticated. Also,
add a user “Anonymous” with password “Anonymous”. The anonymous
user is required to allow IIOP login without user credentials, such as for a
client accessing a message-driven bean.

3 If you use client certificates in your application, enter the common name
of each certificate in the user directory.

4 Configure an authentication scheme to match your Netegrity
configuration scenario, as described in “Authentication methods for
EAServer and SiteMinder” on page 123.

5 Configure a domain named Sybase that uses the user directory. Create a
realm named “EAS” with these properties:

a Agent is “easagent”.

b Resource Filter is “/EAS”.

c Default Resource Protection is “Unprotected”.

d Authentication Scheme matches the scheme you configured
previously.

6 For the EAS realm, create a rule named “DummyResource” with resource
“/DummyResource”. This rule must be enabled with the “Allow Access”
option selected. This rule is the default resource for authentication.

7 For the EAS realm, create additional rules for each EAServer role with the
following properties:

a Set the resource to:

/ROLE/role-name

Where role-name is the EAServer role name, as displayed in
EAServer Manager. For example, “Admin Role” in EAServer
requires the resource /Role/Admin Role.

b Set Web Agent Actions to “Get, Post, Put.”

c Enable the rule and select the “Allow Access” option.

8 Create a new policy, for example, Policy01. For each role used in your
application, create mappings for the client user names and certificate
common names that belong to the role. These mappings are used for role-
based authorization of resource access.
118 EAServer

CHAPTER 10 Creating and Using Custom Security Components
9 If you use client certificates in your application, configure the certificate
mapping properties. Create a mapping for each issuing certificate, that is,
the distinguished name of each root certificate that corresponds to a
certificate authority used by your application. Map this distinguished
name to the user directory type that matches the user directory that you
created earlier. For each mapping, select the Single Attribute mapping
option, and select the Common Name (CN) as the attribute to map.

10 To ensure the changes you have made take effect, flush the Policy Server
cache.

Configuring reverse-proxy access to EAServer
To support Netegrity single sign-on in your application, you must configure a
compatible reverse-proxy server. EAServer has been tested with the Apache
Web server running as a reverse-proxy with the Netegrity Web Agent installed.
See the Netegrity SiteMinder Web Agent Installation Guide and Web Agent
Guide for instructions on configuring Apache to run with the Netegrity Web
Agent installed.

Reverse-proxy access requires the additional Policy Server settings described
below.

❖ Policy Server configuration for reverse-proxy server access

Use the Netegrity Policy Server User Interface Console to perform this
configuration. For detailed instructions on each step, see the Netegrity
documentation:

1 Create a new Web agent to represent the proxy server, for example,
ApacheAgent.

2 Create an Agent Conf object for the proxy server agent. Highlight the
ApacheDefaultSettings object, then create a new object from it. Set the
DefaultAgentName parameter to match the name of the Web agent created
in step 1, for example, “ApacheAgent.”

3 Create a Host Conf object for the proxy server. Highlight the
DefaultHostSettings object, then create a new object from it. Configure the
Policy Server IP address and listener ports to match your installation.
Security Administration and Programming Guide 119

Netegrity SiteMinder Integration
4 Configure authentication schemes to match your Netegrity configuration
scenario. For user name/password access, configure a scheme that uses
BASIC or FORM authentication. For client certificate authentication,
configure a scheme that uses X.509 template authentication. For FORM
and X.509 schemes, configure the proxy server itself as the Server name
setting.

5 Create a new realm for the Web agent that represents the proxy server with
these settings:

a For Agent, select the name of the Web agent, for example,
“ApacheAgent”.

b Add “/” to the resource filter.

c For Default Resource Protection, select Unprotected.

d Select an appropriate authentication scheme.

6 Create a rule named “All” in the realm with these settings:

a Set the resource to “*”.

b Select “Get, Post, Put” for the Web agent actions.

c Select Allow Access.

d Select Enabled.

7 In the policy configuration, set up mappings for the All rule to include the
client user names and certificate common names that are used in your
application.

8 To ensure the changes you have made take effect, flush the Policy Server
cache.

Enabling Policy Server logging
To troubleshoot problems, enable debug logging in the Policy Service
Management Console. Select “Log to File” and “Append” options. Do not
select “Log to Console”.
120 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Configuring EAServer for SiteMinder security

❖ Configuring EAServer to use SiteMinder security

1 Install the Netegrity JAAS configuration file into your server. The file is
netegrity_jaas.cfg, located in the EAServer ini subdirectory on Windows
platforms and config subdirectory on UNIX platforms. Install the JAAS
module as follows:

a Using EAServer Manager, display the Server Properties dialog box.
On the Security tab, set the JAAS Configuration File to the full path
to the netegrity_jaas.cfg file.

b If you are running a server other than the preconfigured Jaguar server,
display the Advanced tab. Set the
com.sybase.jaguar.server.jaas.section property to Jaguar. If this
property is not present, add it.

2 Follow the instructions for your platform below to copy necessary files
from the Netegrity SDK installation to the JDK installation that you use to
run EAServer.

On UNIX platforms, verify the JDK location by checking the values of the
JAGUAR_JDK13 or JAGUAR_JDK14 variables in the EAServer
bin/setenv.sh file. Copy these files from the Netegrity SDK installation to
the JDK jre/lib/sparc subdirectory:

• libsmagentapi.so

• libsmjavaagentapi.so

On Windows platforms, verify the JDK location by checking the values of
the JAGUAR_JDK13 or JAGUAR_JDK14 variables in the EAServer
bin\setenv.bat file. Copy these files from the Netegrity SDK installation to
the JDK jre\bin subdirectory:

• smAgentAPI.dll

• smJavaagentapi.dll

3 Copy the following JAR files from the Netegrity SDK to the java/lib
subdirectory of your EAServer installation:

• smjavaagentapi.jar

• smjavaskd2.jar
Security Administration and Programming Guide 121

Netegrity SiteMinder Integration
4 On the Advanced tab in the Server Properties dialog box, set the property
com.sybase.jaguar.server.callerprincipalservice to:

pseudo://java/com.sybase.jaguar.security.netegrity/CtsSecurity/Netegrit
yCallerPrincipal

5 On the Advanced tab in the Server Properties dialog box, set the property
com.sybase.jaguar.server.roleservice to:

pseudo://java/com.sybase.jaguar.security.netegrity/CtsSecurity/Netegrit
yRoleService

6 Also on the Advanced tab, set the properties listed in the table below:

7 For each EAServer Web application, display the Web Application
Properties in EAServer Manager. Configure the authentication method as
described in “Authentication methods for EAServer and SiteMinder” on
page 123.

Property Value

com.sybase.jaguar.server.http.sso If you have configured single sign-on support using a reverse-
proxy server, set to true to enable external single sign-on
support in EAServer. If your configuration allows direct client
connections to EAServer, set to false.

com.sybase.jaguar.server.smAgentName The agent name used in the SiteMinder Policy Server, for
example, “easagent”.

com.sybase.jaguar.server.smAgentPassword.e The agent password used to connect to the SiteMinder Policy
Server. The password is stored in encrypted form in the
EAServer repository.

com.sybase.jaguar.server.smServerAddress The host name of the SiteMinder Policy Server.

com.sybase.jaguar.server.smAgentDebug
(optional)

Optionally set to true to enable debug message logging from
the Netegrity integration components installed in EAServer.

com.sybase.jaguar.server.smAuthorizationPort
(optional)

Authorization port for the SiteMinder Policy Server. If not set,
the default is 44443.

com.sybase.jaguar.server.smAuthenticationPort
(optional)

Authentication port for the SiteMinder Policy Server. If not
set, the default is 44442.

com.sybase.jaguar.server.smAccountingPort
(optional)

Accounting port for the SiteMinder Policy Server. If not set,
the default is 44441.

com.sybase.jaguar.server.server.smTimeout
(optional)

The SiteMinder cache lifetime limitation in seconds. If not set,
the default is two times of EAServer Authorization cache
timeout, specified by the server property
com.sybase.jaguar.server.authorization.permcachetimeout

com.sybase.jaguar.server.smSize
(optional)

The SiteMinder cache size. If not set, the default is 600.
122 EAServer

CHAPTER 10 Creating and Using Custom Security Components
Authentication
methods for EAServer
and SiteMinder

You must configure the Netegrity and EAServer authentication methods
differently depending on whether you allow direct log in to EAServer. If you
allow direct login to EAServer, configure the EAServer and SiteMinder
authentication methods to match according to Table 10-1. If you use FORM
authentication, the login and error page must be set and deployed in EAServer.
Do not mix certificate based authentication with user name/password based
authentication. In other words, all EAServer Web applications must use FORM
or BASIC, or all must use CLIENT-CERT.

Table 10-1: Authentication methods for scenarios that allow direct
EAServer login

If you use a reverse-proxy server to support Netegrity single sign-on, use
BASIC in EAServer. In SiteMinder, use BASIC, FORM, or X.509 as required
by the application. In this case, authentication is performed within the reverse-proxy
server and the Netegrity setting supersedes the EAServer setting.

EAServer authentication
method

SiteMinder authentication
scheme type

FORM BASIC

BASIC BASIC

CLIENT-CERT X.509
Security Administration and Programming Guide 123

Netegrity SiteMinder Integration
124 EAServer

C H A P T E R 1 1 Using the JAAS API

Introduction
The Java Authentication and Authorization Service (JAAS) provides a
framework and standard programming interface for authenticating users
and assigning privileges. JAAS is based on the Pluggable Authentication
Module (PAM) standard, which extends the access-control architecture of
the Java 2 platform to support user-based authentication and
authorization.

JAAS support is provided in EAServer as an alternative authentication
mechanism. EAServer supports user name-password based JAAS
authentication. The code-level authorization component of JAAS is not
supported in this version of EAServer.

JAAS required when using corbaname URLs in clients If an EJB
client uses corbaname or corbaloc interoperable naming URLs, you must
specify the user name and password using the JAAS API. See Chapter 9,
“EAServer EJB Interoperability,” in the EAServer Programmer’s Guide
for more information on corbaname URLs and other interoperability
features.

See the Java software Web site at http://www.javasoft.com/products/jaas for
more information about JAAS.

There are several new terms that are used throughout this chapter:

Topic Page
Introduction 125

Requirements 127

JAAS in EAServer 127

JAAS on the client 130

JAAS for connectors 131

Samples and debugging 133
Security Administration and Programming Guide 125

Introduction
Principal represents a user identity that is used to gain access to a computing
service. Typically, a user's login name or public key.

Credentials represents a security attribute of a principal. Typically, a user's
password or public-key certificate. The credential is set in the subject when a
principal is authenticated successfully.

Subject is an entity that has one or more principals and corresponding security
attributes.

A login context is a JAAS framework for developing applications independent
of underlying authentication technology.

A login module is an authentication module that can be plugged in under a Java
application using JAAS framework. The module implements the JAAS
javax.security.auth.spi.LoginModule interface. It performs any authentication
either on its own or by interacting with any external authentication service such
as Kerberos.

A callback is a mechanism by which a login module retrieves authentication
parameter values needed for authentication from the Java application. The
callback is implemented in a Java application to pass required parameters to the
login module. It implements the javax.security.auth.callback interface.

The JAAS configuration file specifies:

• One or more authentication modules for an application

• The order in which authentication modules are invoked

• Other parameters and options

This is the interaction between an application, login module, and the JAAS
configuration file:

1 The Java application program instantiates a login context that consults the
JAAS configuration file to load all of the login modules configured for that
application.

2 The login module requests the Java program to provide the user name and
password using the JAAS callback mechanism.

3 The login module executes custom code to authenticate the user and set up
the subject with valid principals and credentials if successfully
authenticated.

The subject can then be used to gain access to controlled resources or to
perform privileged actions.
126 EAServer

CHAPTER 11 Using the JAAS API
Requirements
If your client application uses JAAS APIs, you need JDK 1.3 or later. If your
client is JAAS-enabled, you do not need JDK 1.3 or later on EAServer unless
you are using JAAS in EAServer as well.

JAAS in EAServer
Over time, you may need to modify or replace authentication infrastructure due
to deficiencies, enhancements, or applications requiring a different security
policy. EAServer support for JAAS login modules simplifies replacement and
modification of the underlying authentication mechanism.

Configure server-wide login modules that are used to authenticate clients
trying to gain access to applications, Web applications, and servlets/JSPs.
Figure 11-1 illustrates how JAAS is enabled on EAServer. The
com.sybase.jaguar.server.jaas.config server property (defined in EAServer
Manager) points to the JAAS configuration file, which determines the login
module to use for a specific server. The configuration file requires a section
specified by the server property com.sybase.jaguar.server.jaas.section. If you
do not set this property, the section name must match the server name.

Based on the contents of the configuration file, EAServer invokes any
specified login modules. If a login module is not defined, then JAAS is
bypassed and the server uses the regular mechanism, if any, for authentication.
For example, if credentials are passed to a server and no login module is
defined, the server uses operating system authentication, if enabled.

If a login module is defined, it overrides any other authentication service that
may be installed, and passes the request for authentication to the login module.
Security Administration and Programming Guide 127

JAAS in EAServer
Figure 11-1: EAServer login design

Enabling JAAS for a server
To enable JAAS for a server, you must specify the JAAS configuration file and
section name in the server properties. EAServer uses the login module in that
section for authentication.

❖ Enabling JAAS for a server:

1 Highlight the Servers folder.

2 Highlight the server for which you are identifying the configuration file.

3 Select File | Properties, and highlight the Security tab.

4 In the JAAS Configuration File window, enter the name of the JAAS
configuration file, or use the browse button to search for the file.
128 EAServer

CHAPTER 11 Using the JAAS API
You can verify the JAAS configuration file setting in the Advanced tab by
viewing the com.sybase.jaguar.server.jaas.config property.

Note To disable JAAS, remove the entry from the JAAS Configuration
File window.

5 Optionally specify the name of a section in the JAAS configuration file by
setting the property com.sybase.jaguar.server.jaas.section on the
Advanced tab. If you do not specify a section name, the file must contain
a section with the same name as the server.

This message indicates that JAAS is disabled, or there is a JAAS error; for
example, the configuration file is not valid, or there is a problem loading the
login module:

May 30 16:30:35 2001: Note: No configuration found for 'Jaguar' in the JAAS
configuration file.
May 30 16:30:35 2001: WARNING: JAAS setup for Authentication is ignored.

Your EAServer installation contains a sample JAAS configuration file,
jaas.cfg, in the html/classes/Sample/JAAS directory.

Retrieving additional user session details in a JAAS login module
EAServer allows you to retrieve additional IIOP or HTTP user session
information when using the JAAS API to install custom security
implementations. A sample that demonstrates these features is installed in the
html/classes/Sample/JAAS directory of your EAServer installation.

When authenticating HTTP client access, you can retrieve the servlet request
details associated with the client request, returned as an instance of
javax.servlet.http.HttpServletRequest . EAServer provides a JAAS callback
implementation in class
com.sybase.jaguar.security.HttpServletRequestCallback. To retrieve servlet
sessions, add an instance of this class to the callback stack in your
implementation’s login method. Call the
HttpServletRequestCallback.getHttpServletRequest() method to retrieve the
servlet request. The method returns null if the request is not an HTTP request.
Security Administration and Programming Guide 129

JAAS on the client
When authenticating IIOP client access, you can retrieve details about the
client session as an instance of the CtsSecurity/SessionInfo built-in component.
To do so, add the EAServer callback class
com.sybase.jaguar.security.SessionInfoCallback to the callback stack in your
implementation’s login method. Call the SessionInfoCallback.getSessionInfo()
method to retrieve the CtsSecurity.SessionInfo class instance that describes the
user session. For details on the CtsSecurity.SessionInfo methods, see the
documentation in the following file in your EAServer installation:

html/ir/CtsSecurity__SessionInfo.html

JAAS on the client
EAServer includes a JAAS login module
com.sybase.jaguar.security.auth.module.JaguarLoginModule. It uses the JAAS
callback mechanism to obtain the client’s user name and password and
generate credentials.The credentials are passed to the server when the client
attempts to invoke any component on the server. This login module must be
used if you want your EJB client or Java CORBA client to obtain credentials
from the user using JAAS.

❖ To enable JAAS on the client:

1 Make sure a login module is defined in the JAAS configuration file that
requires com.sybase.jaguar.security.auth.module.JaguarLoginModule, for
example:

/*
This section can be used by Jaguar clients which invoke
JaguarLoginModule to setup proper credentials.
*/
JaguarClient{

com.sybase.jaguar.security.auth.module.JaguarLoginModule required
debug=true;

};

2 Set the name of the JAAS configuration file in the Java interpreter’s
-Djava.security.auth.login.config property on the client’s
machine.
130 EAServer

CHAPTER 11 Using the JAAS API
3 Create an instance of the login module, using code like this. In this
fragment, JaguarClient is the name of the the name of the JAAS
configuration section that requires the module
com.sybase.jaguar.security.auth.module.JaguarLoginModule:

LoginContext lc = null;
try {
lc = new LoginContext("JaguarClient", new MyCallbackHandler());
} catch (LoginException le) {
System.err.println("Cannot create LoginContext. "
+ le.getMessage());
System.exit(-1);
} catch (SecurityException se) {
System.err.println("Cannot create LoginContext. " + se.getMessage());
System.exit(-1);
}
Initial Context ic = new InitialContext();
... regular code to look and invoke methods on an EJB.

JAAS for connectors
The J2EE connector architecture enables you to write portable Java
applications that can access multiple transactional enterprise information
systems. A resource adapter is a specialized connection factory that provides
connections for: EJBs, Java servlets, JSPs, and CORBA-Java components.

Each resource adapter has a set of managed connection factories with their own
property files. The Java Connection Manager (JCM) classes create the
connection factories and manage a pool of connections for a resource adapter.
You can use JAAS to authenticate a resource adapter, resource principal, or the
application component’s caller principal when accessing enterprise
information systems.

See “Configuring connectors” in the EAServer System Administration Guide
for more information about connectors.

Container-managed
authentication

EAServer is responsible for connector security when a component accessing
enterprise information systems requests container-managed authentication. In
this case, “container-managed” means “EAServer-managed.”

To enable container-managed authentication from EAServer Manager:

1 Highlight the Component folder.
Security Administration and Programming Guide 131

JAAS for connectors
2 Highlight the component for which you are establishing container-
managed authentication.

3 Select File | properties.

4 Select the Advanced tab.

5 Set the deployment property of the component to container managed:

res-auth=Container

Container is the default setting.

If res-auth=Application, a null subject is passed to the connector and
connection security is handled by the application.

Basic password
authentication

EAServer 4.0 supports basic password authentication. For connectors, this
means establishing a user name and password for the resource adapter’s
managed connection factory (MCF). To set basic password authentication from
the Advanced tab, click com.sybase.jaguar.connector.auth-mechanism and set
auth-mech-type to “basic-password.”

To establish a user name and password for the resource adapter’s MCF from
EAServer Manager:

1 Select the Connectors folder.

2 Select the connector for which you are setting a user name and password
authentication.

3 Select the MCF for which you are enabling authentication.

4 Select File | Managed Connection Factory Properties.

5 Select the Security Properties tab and enter the user name and password
for the MCF.

If you do not supply a user name and password in the resource adapter’s MCF,
they are obtained from the CallerPrincipal (the user name and password that are
retrieved from the calling component).

Enabling JAAS-based
authentication for
connectors

To use JAAS for authentication, you must enable JAAS on the EAServer where
the resource adapter is located. See “JAAS in EAServer” on page 127.

An entry in the login configuration file is identified by the name of the resource
adapter for which JAAS is used. If container-managed authentication is set,
any component that tries to obtain a connection from resource adapter’s
connection factory is authenticated by the login module defined by the
configuration file entry.
132 EAServer

CHAPTER 11 Using the JAAS API
Samples and debugging
A JAAS sample that includes a login module, configuration file, and so on,
ships with EAServer. See the README file in the html/classes/Sample/JAAS
directory of your EAServer installation.

You can enable the login module’s internal tracing by setting “debug=true” in
the JAAS configuration file.

For additional debugging information for JAAS-based custom authentication
in EAServer, set com.sybase.jaguar.server.jaas.debug=true in the server’s
Advanced tab.

For additional debugging information for connectors, set
com.sybase.jaguar.server.jcm.trace=true in the server’s Advanced tab.
Security Administration and Programming Guide 133

Samples and debugging
134 EAServer

C H A P T E R 1 2 Deploying Applications Around
Proxies and Firewalls

Proxy servers are typically used to isolate computers on a corporate
network from the Internet. Connections to and from the Internet must go
through the organization’s proxy servers. EAServer does not include
proxy server software, but supports client connections through proxy
servers to EAServer.

This chapter describes security features for clients that connect over the
Internet or through proxy servers. You should understand the basics of
your client model before reading this chapter.

Connecting through proxy servers
Proxy servers are typically used to constrain and secure connections from
an organization’s computers to sites that require connecting across the
Internet. To enhance security, some network configurations require all
Internet connections to go through a proxy server, including IIOP
connections to EAServer.

EAServer supports two types of proxy servers for clients, Web proxies and
reverse proxies.

Topic Page
Connecting through proxy servers 135

Using Web proxies 136

Using reverse proxies 139
Security Administration and Programming Guide 135

Using Web proxies
Using Web proxies
Web proxies typically act as a gateway for outgoing connections from a group
of workstations. Web proxies can be used to enhance network security, for
example, a proxy may constrain which servers clients can connect to and which
protocols may be used, and log outgoing connections. Web proxies may also
be used to improve network performance, by caching the results of frequently
executed Web requests. Web proxies are also referred to as HTTP-connect-
based proxies. Figure 12-1 illustrates how clients connect to servers through a
Web proxy:

Figure 12-1: Connecting through a Web proxy

Clients connect to EAServer through a Web proxy as follows:

1 Using the HTTP protocol The client connects over the Internet to the Web
proxy, embedding the destination server address inside a specially
formatted HTTP connect request.

2 The Web proxy connects to the host and port indicated in the initial HTTP
connect request.

3 Subsequent traffic is forwarded unchanged between the client and server
until the connection is closed.

Client
Web
Proxy

Firewall

Internet

EAServer
136 EAServer

CHAPTER 12 Deploying Applications Around Proxies and Firewalls
Java applets can use the built-in proxy configuration provided by Web
browsers such as Netscape Navigator. See your Web browser’s documentation
for information on configuring proxy addresses. For applets running in a Web
browser, HTTP and HTTPS-tunnelled IIOP connections automatically use the
browser’s proxy connection settings. HTTP-tunnelled IIOP connections go
through the browser’s configured HTTP proxy. HTTPS-tunnelled IIOP
connections go through the browser’s configured secure proxy.

Other applications must specify the Web proxy address by setting the Web
proxy host and port in the properties described below.

Properties that affect Web proxy use
Table 12-1 describes the client properties that configure connections that must
be opened through a Web proxy. You must set these properties in addition to
any properties that you would set to connect directly to EAServer.

Table 12-1: Properties that affect Web proxy use

C++/ActiveX/
PowerBuilder
property CORBA property EJB property Specifies

ORBWebProxyHost or
environment variable
JAG_WEBPROXYHOST

com.sybase.CORBA.

WebProxyHost

com.sybase.ejb.

WebProxyHost

Specifies the host name or IP address
of the Web proxy server. Does not
apply to Java applets running in a Web
browser, which use the proxy address
specified by the browser’s proxy
configuration. There is no default for
this property, and you must specify
both the host name and port number
properties.

ORBWebProxyPort or
environment variable
JAG_WEBPROXYPORT

com.sybase.CORBA.

WebProxyPort

com.sybase.ejb.

WebProxyPort

Specifies the port number at which the
Web proxy server accepts
connections. Does not apply to Java
applets running in a Web browser,
which use the proxy address specified
by the browser’s proxy configuration.
There is no default for this property,
and you must specify both the host
name and port properties.
Security Administration and Programming Guide 137

Using Web proxies
ORBHttp or environment
variable JAG_HTTP

com.sybase.CORBA.

http

com.sybase.ejb.

http

By default, the client ORB attempts to
open IIOP connections, then attempts
an HTTP-tunnelled connection if
plain IIOP fails. Since Web proxy
connections require HTTP tunnelling,
set this to true to eliminate the
performance overhead of trying plain
IIOP connections before trying
HTTP-tunnelled IIOP.

ORBHttpExtraHeader
or environment variable
JAG_HTTPEXTRAHEADER

com.sybase.CORBA.

HttpExtraHeader

com.sybase.ejb.

HttpExtraHeader

An optional setting to specify what
extra information is appended to the
header of each HTTP packet sent to
the Web proxy server. There is no
need to set this property unless your
HTTP proxy server has special
protocol requirements. By default, the
following line is appended to each
packet:

User-agent:
Jaguar/major.minor

where major and minor are the major
and minor version numbers of your
EAServer client software,
respectively.

You can set this property to specify
text to be included at the end of each
HTTP header. If multiple lines are
included in the setting, they must be
separated by carriage return and line
feed characters. If the setting does not
include a “User-agent: ” line, then the
default setting above is included in the
HTTP header.

C++/ActiveX/
PowerBuilder
property CORBA property EJB property Specifies
138 EAServer

CHAPTER 12 Deploying Applications Around Proxies and Firewalls
Using reverse proxies
Reverse proxies typically act as a gateway for incoming connections to an
organization’s network servers, preventing direct connections from clients
outside the firewall to servers inside the firewall. The reverse proxy can
enhance security, by restricting protocols and logging connection activity.
Reverse proxies may also act as caches to respond to common requests. In
some cases, multiple reverse proxies may be deployed to cache results from
one server, as a form of load balancing. Figure 12-2 shows how clients connect
through a reverse proxy.

N/A. com.sybase.CORBA.

useJSSE

com.sybase.ejb.

useJSSE

Use the Java Secure Sockets
Extension (JSSE) classes for secure
HTTP tunnelled (HTTPS protocol)
connections. JSSE provides an
alternative to the built-in SSL
implementations when secure
connections are needed from an applet
running in a Web browser. Additional
configuration may be required to use
this option. See “Using Java Secure
Socket Extension classes” on page 60
for more information.

C++/ActiveX/
PowerBuilder
property CORBA property EJB property Specifies
Security Administration and Programming Guide 139

Using reverse proxies
Figure 12-2: Connecting through a reverse proxy

Clients connect to EAServer through a reverse proxy as follows:

1 The client connects to the reverse proxy, and sends each IIOP packet
tunnelled inside an HTTP or HTTPS packet. The destination server
address is encoded in the HTTP packet header as:

GET /host/port/HIOP/1.0/...

Where host is the target EAServer host name, and port is the target
EAServer port number.

2 The reverse proxy uses its URL mapping configuration (shown as a
database in the figure) to determine the destination server address.

3 The reverse proxy opens a connection to the destination server, or reuses
an existing connection, and forwards the request to the server, then
forwards the response to the client.

Firewall URL mapping
table

Reverse
Proxy EAServerClient

Internet
140 EAServer

CHAPTER 12 Deploying Applications Around Proxies and Firewalls
Reverse-proxy configuration
For use with EAServer, you must configure your reverse proxy server’s URL
mapping table to recognize the EAServer addresses embedded in the HTTP
requests sent by the client runtime. For each EAServer that clients can connect
to through the server, configure a mapping for the following URL prefix:

GET /host/port/HIOP/1.0/

Where host is the target EAServer listener host name, and port is the target
EAServer listener port number. For each EAServer that you deploy behind the
reverse proxy, add a mapping for each IIOP, IIOPS, and Message Service
listener address. If you deploy an EAServer cluster behind a reverse proxy, add
mappings for each server in the cluster.

Properties that affect reverse proxy use
To connect through a reverse-proxy server, you can set the properties in Table
12-2. You must set these properties in addition to any properties that you would
set to connect directly to EAServer.

Table 12-2: Properties that affect reverse proxy use

C++/ActiveX/
PowerBuilder
property CORBA property EJB property To indicate

ORBProxyHost or
environment variable
JAG_PROXYHOST

com.sybase.CORBA.

ProxyHost

com.sybase.ejb.

ProxyHost

Specifies the machine name or
the IP address of the reverse-
proxy server.

ORBProxyPort or
environment variable
JAG_PROXYPORT

com.sybase.CORBA.

ProxyPort

com.sybase.ejb.

ProxyPort

Specifies the port number of the
reverse-proxy server, typically 80
for HTTP-tunnelled connections
or 443 for SSL (HTTPS-
tunnelled) connections.

ORBHttp or
environment variable
JAG_HTTP

com.sybase.CORBA.

http

com.sybase.ejb.

http

Set this property to true if the
reverse-proxy server requires
HTTP-tunneled connections. If
you do not set this property,
connections still go through, but
only after the client ORB first
tries to open an IIOP connection.
Setting the property eliminates
the overhead that is incurred by
trying plain IIOP each time a
connection is made.
Security Administration and Programming Guide 141

Using reverse proxies
ORBforceSSL or
environment variable
JAG_FORCESSL

com.sybase.CORBA.

forceSSL

com.sybase.ejb.

forceSSL

Set this property to true if the
connection to the reverse proxy
must use SSL (HTTPS)
tunnelling, but the connection
from the proxy to the EAServer
does not use SSL tunnelling.

ORBqop or
environment variable
JAG_QOP

com.sybase.CORBA.

qop

com.sybase.ejb.

qop

In applications that connect to a
proxy using SSL (HTTPS)
tunnelling, set the Quality Of
Protection (QOP) to a security
characteristic that matches the
one supported by the reverse-
proxy server. See “Configuring
security profiles” on page 155 for
more information. If the
connection to the proxy server
requires SSL, but the connection
from the proxy does not, do not
set the QOP; instead, set the
forceSSL property to true.

Do not set QOP in Java applets
that use SSL. Instead, code the
applet to connect to a listener that
supports the required security
level. See “Using SSL in Java
applets” on page 43 for more
information.

C++/ActiveX/
PowerBuilder
property CORBA property EJB property To indicate
142 EAServer

CHAPTER 12 Deploying Applications Around Proxies and Firewalls
N/A. com.sybase.CORBA.

autoProxy

com.sybase.ejb.

autoProxy

In Java applets, set this property
to true to enable connections to a
reverse-proxy server. You must
also configure your applet to
download through the reverse-
proxy server itself. The default is
false. This property is ignored if
the client is not a Java applet, or
has not initialized the Java ORB
with the ORB.init method that
takes an Applet parameter.

When automatic proxy is
enabled, the ORB uses the
applet’s download address as the
reverse-proxy server address. If
the port number is 443, SSL
(HTTPS tunnelling) is used;
otherwise, HTTP tunnelling is
used.

C++/ActiveX/
PowerBuilder
property CORBA property EJB property To indicate
Security Administration and Programming Guide 143

Using reverse proxies
144 EAServer

C H A P T E R 1 3 Security Configuration Tasks

This chapter describes the most common declarative security mechanisms
provided by EAServer and configured with EAServer Manager.

Configuring EAServer roles
EAServer’s authorization model is based on roles, which are defined in
EAServer Manager. Each role can include and exclude specific user
names or digital IDs. If you use native operating system authentication,
you can also include and exclude operating system group names; all users
in the specified group are affected.

Roles are attached to EAServer packages and components. A package or
component’s role controls access as follows:

• If any roles are assigned to a package, the user must have all of these
roles to use any component in the package.

• If any roles are assigned to a component, the user must have all of
these roles to use the component.

• If roles are assigned to both a component and the package that
contains it, the user must have all of the roles that are assigned to the
package and component.

You must either refresh or restart EAServer for any role changes to take
effect.

Topic Page
Configuring EAServer roles 145

Configuring OS authentication 153

Configuring OS user and group authorization 155

Configuring security profiles 155

Configuring listeners 161

Configuring identities 164
Security Administration and Programming Guide 145

Configuring EAServer roles
❖ Refreshing EAServer

1 Highlight the Roles folder.

2 Select File | Refresh.

❖ Defining a new role

1 Highlight the Roles folder.

2 Select File | New Role. Enter the required information in the subsequent
dialogs:

• New Role – the name of the role you are defining.

• Description – the description, up to 255 characters, of the role.

• Owner – the owner of the role.

❖ Deleting an existing role

1 Highlight the Roles folder. You see a list of existing roles.

2 Highlight the role you want to delete.

3 Right-click the role and select Delete. This option is available only to the
owner of the role or the jagadmin user.

4 Click Yes to confirm deletion of the selected role.

Note Only the owner or a member of the role named Admin Role can delete a
role, except for Admin Role itself, which cannot be deleted. See “Admin role
in EAServer” on page 151 for more information.

❖ Modifying an existing role

1 Highlight the Roles folder. You see a list of existing roles.

2 Highlight the role you want to modify.

3 Select File | Properties.

4 Make your modifications and click OK.

❖ Adding an existing role, or creating and adding a new role to a package,
component, or method

1 Double-click the icon for the package, component, or method to expand
the folders beneath it. Highlight the Role Membership folder.

2 Select File | Install Role. Then select one of the following options from the
Role wizard:
146 EAServer

CHAPTER 13 Security Configuration Tasks
• Install an Existing Role – a list of uninstalled roles appears in the
dialog. Highlight the role to be installed and click OK.

• Create and Install a New Role – enter the name of the new role to be
installed. Complete the role property sheet. The properties are
described in “Defining a new role” on page 146.

Note A package, component, or method with no roles or role memberships
defined has no access restrictions.

Assigning users and groups to roles
Each role can include and exclude specific user names and digital IDs. If you
use native operation system authentication, you can also include and exclude
operating system group names; all users in the specified group are affected.

❖ Assigning authorized users to a role of a component or a package

1 Double-click the component or package to which the role belongs.

2 Highlight the Roles folder.

3 Double-click the role to which you want to add authorized users.

4 Highlight the Authorized User folder.

5 Select File | Add Authorized User.

6 Enter the name of the authorized user in the dialog, and click Add
Authorized User. On Windows, you can provide the name of the domain
as part of the authorized user name; for example,
\\domain_name\user_name. The user is authenticated using the domain
name controller for that domain.

The user’s name appears on the right side of the window when you highlight
the Authorized Users folder.

To remove an existing authorized user, highlight the member and select File |
Remove Member.

❖ Assigning authorized groups to a role of a component or a package

1 Double-click the component or package to which the role belongs.

2 Highlight the Roles folder.

3 Double-click the role to which you want to add authorized groups.
Security Administration and Programming Guide 147

Configuring EAServer roles
4 Highlight the Authorized Group folder.

5 Select File | Add Authorized Group.

6 Enter the name of the authorized group in the dialog, and click Add
Authorized Group.

The group’s name appears on the right side of the window when you highlight
the Authorized Groups folder.

To remove an existing authorized group, highlight the member and select
File | Remove Member.

Note The users and groups of a role are mapped to operating system users and
groups. To validate users and groups, you must click Enable User and Group
Validation from the server’s Security property sheet. You can only add
validated groups to roles. When Enable User and Group Validation is disabled,
package and component authorizations stop at the user level. There is no
attempt to check group level authorization.

❖ Assigning authorized digital IDs (certificates) to a component or a
package

1 Double-click the component or package to which the role belongs.

2 Highlight the Roles folder.

3 Double-click the role to which you want to add authorized digital IDs.

4 Highlight the Authorized Digital IDs folder.

5 Select File | Add Authorized Digital ID.

6 A list of digital IDs appears. Double-click the name of the digital ID that
you want to authorize, and click Add Authorized Digital ID.

Only certificates that appear in the EAServer Manager | Certificate folder
| User Certificates folder and Other Certificates folder can be authorized.
This requires that you install the certificate using EAServer Manager |
Certificate folder. See Chapter 14, “Managing Keys and Certificates” for
more information.

The user’s name appears on the right side of the window when the Authorized
Digital IDs folder is highlighted.

To remove an existing authorized digital ID, highlight the member and select
File | Remove Member.
148 EAServer

CHAPTER 13 Security Configuration Tasks
You can verify, export, or view information about an authorized digital ID by
highlighting the digital ID and selecting the corresponding option from the file
menu. See Chapter 14, “Managing Keys and Certificates” for more
information about these options.

❖ Excluding users from a component or a package

1 Double-click the component or package to which the role belongs.

2 Highlight the Roles folder.

3 Double-click the role from which you want to exclude users.

4 Highlight the Excluded User folder.

5 Select File | Add Excluded User.

6 Enter the name of the excluded user in the dialog, and click Add Excluded
User. On Windows, you can provide the name of the domain as part of the
excluded user name; for example, \\domain_name\user_name. The user is
authenticated using the domain name controller for that domain.

The user’s name appears on the right side of the window when the Excluded
Users folder is highlighted.

To remove an existing excluded user, highlight the member and select File |
Remove Member.

❖ Excluding groups from a component or a package

1 Double-click the component or package to which the role belongs.

2 Highlight the Roles folder.

3 Double-click the role from which you want to exclude groups.

4 Highlight the Excluded Group folder.

5 Select File | Add Excluded Group.

6 Enter the name of the excluded group in the dialog box, and click Add
Excluded Group.

The group’s name appears on the right side of the window when you highlight
the Excluded Groups folder.

To remove an existing excluded group, highlight the member and select File |
Remove Member.

❖ Excluding digital IDs (certificates) from a component or a package

1 Double-click the component or package to which the role belongs.
Security Administration and Programming Guide 149

Configuring EAServer roles
2 Highlight the Roles folder.

3 Double-click the role from which you want to exclude digital IDs.

4 Highlight the Excluded Digital IDs folder.

5 Select File | Add Excluded Digital ID.

6 A list of digital IDs appears. Double-click the name of the digital ID that
you want to exclude, and click Add Excluded Digital ID.

Only certificates that appear in the EAServer Manager | Certificate folder
| User Certificates folder and Other Certificates folder can be excluded.
This requires you to install the certificate using EAServer Manager |
Certificate folder. See Chapter 14, “Managing Keys and Certificates” for
more information.

The user’s name appears on the right side of the window when the Excluded
Digital IDs folder is highlighted.

To remove an existing excluded authorized digital ID, highlight the member
and select File | Remove Member.

You can verify, export, or view information about an excluded digital ID by
highlighting the digital ID and selecting the corresponding option from the file
menu.

Determining authorization
The following order is used to determine role based authorization:

1 If the user is authorized, the search terminates and authorization is granted.

2 If the user is excluded, the user is declined access to the resource.

3 If the user is in an authorized group:

a Check if the role is a member of the authorized group.

b If this check succeeds, check if the role is a member of an excluded
group list—if not, grant access to the resource.
150 EAServer

CHAPTER 13 Security Configuration Tasks
Purpose of excluded
lists

Excluded lists simplify the task of granting authorization to a small number of
users by denying access to the users based on their user names and not the
authorized groups to which they belong when using group-based authorization.

Note If a user is a member of an excluded user or group list, EAServer does
not invoke the Role Service (CtsSecurity/RoleService) if defined for that
server.

Predefined roles
EAServer includes a number of predefined, read-only roles that you can use to
facilitate authorization to EAServer resources. Role names are case sensitive
and include:

ServiceControl Prevents clients from invoking service components.

anonymous Allows access to an ‘anonymous’ user.

everybody Allows access to all authenticated users.

system Prevents access by any client. The system user is a member, so
components with this role can run as EAServer services.

nobody Prevents all access to a method or component. No user is a member
of this role, not even the EAServer system user.

Admin role in EAServer

Every EAServer contains an Admin package and an Admin role. You must be
a member of the Admin role to run EAServer Manager.

Initially, only jagadmin is a member of this role. The jagadmin user can set up
additional members.

Even though other users can belong to the Admin role and run EAServer
Manager, only the jagadmin user can:

1 Set the following options from EAServer Manager | Servers folder |
server_name | Properties | Security tab:

• The jagadmin password

• Enable OS Authentication

• Enable User & Groups Validation
Security Administration and Programming Guide 151

Configuring EAServer roles
2 Modify users, groups, or digital IDs belonging to the EAServer Manager |
Roles | Admin role.

❖ Granting permissions to EAServer roles

Beginning with EAServer 5.0, members of the Admin role can use EAServer
Manager or jagtool to grant permissions to other EAServer roles; for example,
permission to start or shut down a server.

Note Although users with the Admin role can grant permission to other roles
to perform certain tasks, these tasks must be performed using jagtool because
only members of the Admin role can access EAServer Manager.

1 In EAServer Manager, expand the Roles folder, highlight the role to which
you want to grant permissions, right-click, and select Properties.

2 In the Role Properties dialog box, select any of the tabs described below.

Application Authorities To grant users with the current role permission
to create, modify, or delete an application, select Add Application, and
enter the application name.

To remove an application from the list of those that users with this role
have permission to access, highlight the application name, and select
Delete Application.

Package Authorities To grant users with the current role permission to
create, modify, or delete a package, select Add Package, and enter the
package name.

To remove a package from the list of those that users with this role have
permission to access, highlight the package name, and select Delete
Package.

Server Authorities To authorize users with the current role permission to
perform an action on the server, select the action:

• Restart Server

• Refresh Server

• Shut down Server

To revoke permission to perform an action, unselect the action.

Servlet Authorities To grant users with the current role permission to
create, modify, or delete a servlet, select Add Servlet, and enter the servlet
name.
152 EAServer

CHAPTER 13 Security Configuration Tasks
To remove a servlet from the list of those that users with this role have
permission to access, highlight the servlet name, and select Delete Servlet.

Web Application Authorities To grant users with the current role
permission to create, modify, or delete a Web application, select Add Web
Application, and enter the Web application name.

To remove a Web application from the list of those that users with this role
have permission to access, highlight the Web application name, and select
Delete Web Application.

For information about using jagtool to grant and revoke permissions, see the
reference pages for the commands grantroleauth or removeroleauth in Chapter
12, “Using jagtool and jagant,” in the EAServer System Administration Guide.

Configuring OS authentication
To enable OS authentication on EAServer:

1 From EAServer Manager, double-click the server you want to configure.

2 Select File | Properties.

3 Select the Security tab.

 Enable OS Authentication – if selected, this option maps EAServer client
users to operating system user names and passwords. You must supply a
user name and password that is valid for the machine where the EAServer
is running. For example, for UNIX, you would use network information
service (NIS) passwords, and for Windows, you would use your Windows
domain password. Windows users can provide a domain name as part of
their user name; for example, \\domain_name\username.

For Windows, Active Directory Services style accounts are supported. The
format of Active Directory Service (ADS) accounts is
username@domain. For example, username@sybase.com.

To use OS authentication on Windows, the user who runs EAServer must
be included in the “Administrators” group on your Windows machine.

❖ Enabling OS authentication on UNIX

• Select the Enable OS Authentication option on the Security tab.
Security Administration and Programming Guide 153

Configuring OS authentication
❖ Enabling OS authentication on Windows 2000

1 Select Start | Settings | Control Panel.

2 Double-click Administrative Tools.

3 Double-click Local Security Settings.

4 In the left pane, click Local Policies.

5 Select and open User Rights Assignment.

6 Double-click Act as Part of the Operating System.

7 Click Add in the new pop-up window to add the desired users. This
provides the required privileges to EAServer to authenticate a user by
querying the underlying operating system.

8 Log out, then log back in to your Windows 2000 system to enable
authentication.

9 From EAServer Manager, select Enable OS Authentication on the Server
Properties Security tab.

❖ Enabling OS authentication on Windows XP

1 Select Start | Settings | Control Panel.

2 Double-click Administrative Tools.

3 Double-click Local Security Policy.

4 Expand the Local Policies folder, then select User Rights Assignment.

5 Double-click Act as Part of the Operating System.

6 In the new dialog box, click Add User or Group to add users.

7 In the Select Users or Groups dialog box:

a Click Object Types, and select Users.

b Click Locations, and select the network domain.

c Enter the user names that are authorized to start, shutdown, and
refresh EAServer.

This provides the required privileges to EAServer to authenticate a user by
querying the underlying operating system.

8 Log out, then log back in to your Windows XP system to enable
authentication.
154 EAServer

CHAPTER 13 Security Configuration Tasks
9 From EAServer Manager, select Enable OS Authentication on the Server
Properties Security tab.

10 Restart EAServer.

Note The password for the jagadmin account is always defined in EAServer
Manager. Even if jagadmin is defined as an OS user name and OS
authentication is enabled, the password defined in EAServer Manager is
required to log in as jagadmin.

Configuring OS user and group authorization
Enable User & Groups Validation – if enabled this option, the user and group
names are validated against their operating system user and group name before
being added to any of the following folders located in the Role folder:

• Authorized User

• Authorized Group

• Excluded User

• Excluded Group

To enable user and group validation, select the Enable User and Groups
Validation option on the server’s Security tab.

Configuring security profiles
Security profiles define the security characteristics of a client-EAServer
session. You assign a security profile to a listener, which is a port that accepts
client connection requests of various protocols. EAServer can support multiple
listeners. Clients that support the same characteristics can communicate to
EAServer via the port defined in the listener.

Each security profile has an associated security characteristic. A security
characteristic is a name that has a set of cipher suites associated with it. A
security characteristic, along with the cipher suites, defines these
characteristics of a client/server connection:
Security Administration and Programming Guide 155

Configuring security profiles
• Protocol All profiles use SSL version 3 as the underlying protocol.
IIOPS and HTTPS traffic is tunneled through SSL.

• Authentication Whether or not authentication is used. Profiles can
support:

• No authentication – neither client nor server need to provide a
certificate for authentication.

• Server authentication – only the server needs to provide a certificate
to be accepted or rejected by the client.

• Client and server authentication – both the client and server supply
certificates to be accepted or rejected by the other.

• Encryption strength and method Whether or not data is encrypted,
and if so, the key strength and method of the encryption.

• International use All cipher suites are available domestically, but not all
are suitable for export outside of the United States and Canada.

• Hashing method The method used to create the message digest.

For example, the cipher suite SSL_RSA_WITH_NULL_MD5 can be interpreted
as:

SSL – the protocol used. All profiles use SSL.

RSA – the key exchange algorithm used.

NULL – no encryption.

MD5 – the hash method used to compute the message digest.

Table 13-1 and Table 13-2 clarify the relationship between cipher suite
terminology and security characteristics.

Table 13-1: Cipher suite terms

 Name Defines Description

SSL Protocol SSL protocol uses public-key encryption to establish secure
Internet communications.

RSA
DH_anon

Key exchange
algorithm

RSA and DH (Diffie-Hellman) are public-key cryptography
systems, which define both authentication and encryption:

• RSA provides full encryption and authentication support.

• DH_anon provides only encryption support.

EXPORT Suitable for
export

Because of export regulations, some CipherSuites are not
suitable for export. Only CipherSuites that contain the word
EXPORT are suitable for international use.

NULL No encryption Data is not encrypted.
156 EAServer

CHAPTER 13 Security Configuration Tasks
Note Browsers do not support anonymous cipher suites.

Security characteristics
There are four categories of security characteristics:

• Simple The predefined characteristics sybpks_simple and
sybpks_simple_mutual_auth offer authentication but no encryption.

• Strong The predefined characteristics sybpks_strong and
sybpks_strong_mutual_auth offer greater domestic encryption strength.

• Domestic All characteristics are suitable for domestic use. Clients using
international cipher suites can connect to servers using domestic security
characteristics.

• International Because of export regulations, only these characteristics
are suitable for export:

• sybpks_simple

• sybpks_simple_mutual_auth

• sybpks_intl

• sybpks_intl_mutual_auth

Table 13-2 lists the name, the level of authentication, and the supported cipher
suites for each security characteristic. Table 13-1 describes the cipher suites
listed here.

DES
3DES
DES40
RC4_40
RC4_128

Encryption
algorithms

System: Key length:

DES 56
3DES 168
DES40 40
RC4_40 40
RC4_128 128

The greater the key length, the greater the encryption strength.

EDE
CBC

Encryption and
decryption
modes

CBC and EDE are modes by which DES algorithms are
encrypted and decrypted.

SHA
MD5

Hash function SHA and MD5 are hash methods used to compute the message
digest when generating a digital signature.

 Name Defines Description
Security Administration and Programming Guide 157

Configuring security profiles
Table 13-2: Security characteristics

 Name of characteristic Authenticates Cipher suites

sybpks_simple server SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_simple_mutual_auth client/server SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_strong server SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5

sybpks_strong_mutual_auth client/server SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5

sybpks_intl server SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_intl_mutual_auth client/server SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_domestic server SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_domestic_mutual_auth client/server SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_NULL_MD5

sybpks_domestic_anon none SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
SSL_DH_anon_WITH_DES_CBC_SHA

The sybpks_domestic_anon profile is used for
anonymous Diffie-Hellman communications.
Neither the client nor the server is authenticated.
158 EAServer

CHAPTER 13 Security Configuration Tasks
Defining security profiles
This section describes how to create, modify, and delete a security profile. All
of the configuration tasks require you to first access the Security Profiles
folder. To do this, highlight the Security Profiles folder from EAServer
Manager.

See Table 13-3 on page 159 when creating, modifying, or deleting a security
profile.

❖ Creating a new security profile

1 Highlight the Security Profiles folder and choose File | New Security
Profile. The Security Profile wizard displays.

2 Follow the wizard pages to configure the profile properties. For more
information on these settings, click Help in the Wizard or see Table 13-3.

The new security profile now appears on the right side of the window when the
Security Profiles folder on the left side of the window is highlighted.

❖ Modifying an existing security profile

1 Highlight the security profile you wish to modify.

2 Choose File | Properties to display the Security Profile Properties dialog
box with fields described in Table 13-3.

Alternatively, choose File | Configuration Wizard to run the configuration
wizard. For more information on the wizard settings, click Help in the
Wizard or see Table 13-3.

❖ Deleting a security profile

1 Highlight the profile entry you want to delete.

2 Select File | Delete Security Profile.

Table 13-3: General, advanced, and Entrust profile properties

 Property Description Comments/example

Name The name you give to the security
profile.

Description A description of the security profile.

Use Entrust Select this check box to use an Entrust
ID instead of a certificate contained in
the Sybase PKCS #11 token.

Selecting this check box prevents access to the
certificates contained in the Sybase token.

Security
Characteristic

Select a name from the drop-down list
of predefined security characteristics to
use for this profile.

See Table 13-2 on page 158 for a description of
security characteristics and the CipherSuites they
support.
Security Administration and Programming Guide 159

Configuring security profiles
Description A description of the selected security
characteristic.

Each security characteristic comes with a description
of its features.

Sybase PKCS
#11 Token
Certificate
Label

From the drop-down list, enter the
certificate label you want to use for this
security profile.

If you have not provided the PIN for the
Sybase PKCS #11 token, you are
prompted for one. This is the same PIN
that you enter to access the EAServer
Manager | Certificates folder.

If you are using an Entrust ID and click the Use
Entrust check box, this property does not appear.

See Chapter 14, “Managing Keys and Certificates”
for more information on certificates.

SSL Cache
Size

The number of entries in SSL session
cache maintained by the server. The
default cache size is 30.

See “SSL session caching and reuse” on page 161.

SSL Session
Share

The number of concurrent connections
that can simultaneously use the same
session entry (ID) in the session cache.
The default session share size is 10.

See “SSL session caching and reuse” on page 161.

SSL Session
Linger

The duration for which a session entry is
kept in the SSL session cache after the
last SSL session using this session ID
was closed. The default session linger
value is eight hours.

See “SSL session caching and reuse” on page 161.

Log SSL
Errors

When selected, additional information
about SSL errors is logged.

Set Defaults Select the Set Defaults check box to
restore all of the advanced settings to
their default levels.

Specify the
Entrust INI
File

Enter the complete path to the Entrust
initialization file.

You can use the browse feature to locate this file. For
example, on Windows, %SystemRoot%\entrust.ini.

Entrust User
Profile

Enter the complete path to the Entrust
user profile file.

You can also use the browse feature to locate this file.
There is no default.

Entrust
Password

The password to the Entrust login for
this Entrust user profile.

Allow non-
Entrust client

Click this check box to allow non-
Entrust clients to connect to listeners
that use an Entrust ID.

 Property Description Comments/example
160 EAServer

CHAPTER 13 Security Configuration Tasks
SSL session caching and reuse

For improved performance, EAServer caches SSL session identifiers and
allows clients to reuse them. Since creating an SSL session requires CPU-
intensive computations, SSL session reuse results in a relatively large
performance gain over setting up completely new security sessions for each
connection. The settings on the Advanced tab control how SSL clients can
reuse sessions for subsequent and simultaneous connections.

Cached sessions allow the client to reuse a session in a subsequent connection.
The SSL Cache Size setting controls how many entries can be cached. Set this
to a number less than or equal to the maximum connections setting for the
server. The cache requires approximately 64 bytes per entry. The SSL Session
Linger value specifies how long cached session IDs remain valid.

The SSL Session Share setting specifies how many simultaneous connections can share
one session ID. Session sharing can improve performance when the client opens
multiple connections simultaneously. For example, a browser client may open
several connections at once to download images linked to an HTML page.
Session sharing allows the client to reuse the session for the second and
subsequent connections, up to the number of concurrent connections specified
by the SSL Session Share value.

Note These are advanced SSL parameters. They should be set only by
someone who is knowledgeable about SSL.

Configuring listeners
A listener is an EAServer port that communicates to clients using various
protocols. For protocols that use SSL security features (HTTPS and IIOPS),
you assign a security profile to the listener. The profile defines security
characteristics of the listener. For protocols that do not use SSL (HTTP, IIOP,
and TDS), no security profile is required.

This section describes the tasks required to configure listeners. You can:

• Create a new listener and assign a profile to it.

• Assign a profile to an existing listener.

• Modify listener settings for both secure (IIOPS and HTTPS) and unsecure
protocols (TDS, IIOP, and HTTP).
Security Administration and Programming Guide 161

Configuring listeners
Preconfigured listeners
EAServer comes with preconfigured listeners for all protocols. Secure
protocols are assigned a predefined security profile.

The default settings for the preconfigured listeners are described in Table 13-
4. Only secure listeners use security profiles.

Table 13-4: Default listener settings

The default host for these listeners is “localhost.” Sybase recommends that
after you install EAServer, log in to EAServer Manager and change the default
host setting to the actual host name or IP address of your machine. If you do
not, only connection requests originating from the EAServer host machine are
accepted. This means that, until you modify your settings, EAServer Manager
must also be on the same machine as the server. You can also modify port
number settings for the preconfigured listeners. For more information, see
“Configuring listeners” on page 161.

The OpenServer listener is intended for migrating existing Open Server
applications to EAServer. See the EAServer Programmer’s Guide for more
information.

Note You must restart EAServer for your changes to take effect. If you have
changed the server’s host name and port number, you must also restart
EAServer Manager and reconnect to the server using the new host name and
port number.

Listener failover

If a server cannot retrieve listener information from the repository for an IIOP
listener or if an IIOP listener has not been configured, the server attempts to
open a listener at this address:

 Listener name Port Security profile

http 8080

https1 8081 sample1

https2 8082 sample2

iiop 9000

iiops1 9001 sample1

iiops2 9002 sample2

tds 7878

OpenServer 7979
162 EAServer

CHAPTER 13 Security Configuration Tasks
IIOP: localhost, 9000

Listener start-up can fail if a port is already in use. You can verify the listener
addresses in use by viewing the initial log entries in the srv.log file. If the log
messages indicate a listener configuration problem, use EAServer Manager to
connect to the indicated IIOP address and reconfigure the server’s listener
properties.

Configuring listener properties
This section describes how to create, modify, and delete a listener. All of the
configuration tasks require you to first access the Listeners folder from
EAServer Manager:

1 Double-click the Servers folder.

2 Double-click the server for which you want to create, modify, or delete a
listener.

3 Click the Listeners folder on the left side of the window.

❖ Creating a new listener

1 Select File | New Listener.

2 Enter the name of the new listener, then click Create New Listener.

3 Complete the information in the Listener Info window. See Table 13-5.

The new listener appears on the right side of the window when you highlight
the Listeners folder.

❖ Modifying an existing listener

1 Highlight the listener you want to modify.

2 Select File | Properties.

3 Make your modifications and click Save. Listener properties are described
in Table 13-5.

❖ Deleting a listener

1 Highlight the listener you want to delete.

2 Select File | Delete Listener Profile.
Security Administration and Programming Guide 163

Configuring identities
Table 13-5: Listener profile properties

Configuring identities
Identities define a user name, password, and SSL session characteristics to be
used by components or servlets that call other components. Identities are also
used for inter-server authentication when propagating caller credentials in a
call sequence that involves multiple servers. EAServer provides a System and
Anonymous identity by default.

Property Description Comments/example

Protocol Select the protocol from the
drop-down list:

• HTTP

• IIOP

• TDS

• HTTPS

• IIOPS

HTTPS and IIOPS are secure protocols that provide all of
the security features made available by SSL, including
authentication and encryption.

TDS, IIOP, and HTTP do not provide encryption. TDS and
IIOP provide user name and password-based authentication.

Host The name or IP address of the
EAServer host to which the
listener is being assigned.

For predefined listeners, change the initial setting from
“localhost” to the actual machine name or IP address. This
allows clients from other machines access to EAServer.

Note Sybase recommends that you provide the IP address of
the host instead of the host name. In certain cases, a client
may not be able to resolve a host name; for example, the
client’s DNS server or hosts file may not have an entry for
the specified host.

Port The port number on the host to
which the listener is assigned.

Make sure that the port is not in use by any other service.

Jaguar
Security
Profile

Select one of the preconfigured
security profiles from the drop-
down list. This field is enabled
for only the secure protocols
(HTTPS or IIOPS).

You can create new security profiles that can be assigned to
a listener. See “Configuring security profiles” on page 155
for information on security profiles.

Enable Open
Server Events

When selected, the TDS port
accepts open server client
connections, if not, only MASP
requests are accepted.

You must use TDS as the protocol for Open Server events.
164 EAServer

CHAPTER 13 Security Configuration Tasks
❖ Defining a new identity

1 Highlight the Identities folder.

2 Select File | New Identity. Follow the wizard screens to configure the
properties.

❖ Modifying or deleting an identity

1 Expand the Identities folder and highlight the icon for the identity of
interest.

2 Choose one of the following:

• File | Configuration Wizard to display a wizard that walks you
through the configuration of the most commonly configured
properties

• File | Properties to display the Identity Properties dialog box described
in “Configuring identity properties” on page 165

• File | Delete to delete the identity

Configuring identity properties
The Identity Properties dialog has these tabs:

• “Identity properties/basic” on page 165 defines the user name and
password.

• “Identity properties/SSL” on page 165 specifies whether connections
made using the identity will use SSL and if so, the SSL session
characteristics.

• “Identity properties/Entrust” on page 166 configures Entrust specific
properties for SSL connections.

Identity properties/basic

Enter the user name and password for inter-server connections made using the
identity.

Identity properties/SSL

Settings on this tab specify whether connections made using the identity will
use SSL and if so, the SSL session characteristics.
Security Administration and Programming Guide 165

Configuring identities
❖ Configuring the SSL settings

1 If SSL is not to be used at all, choose <none> for the security
characteristic. Otherwise choose the characteristic that defines the
required level of security. See Table 13-2 on page 158 for descriptions of
the security characteristics.

2 Check Use Entrust if your site uses Entrust for SSL certificate
management and you wish connections made with this identity to use an
Entrust certificate.

3 If the specified security characteristic requires mutual authentication,
choose a client certificate.

Client certificate field may require a password If you have not connected
to the EAServer Manager | Certificates folder, you are prompted for the Sybase
token PIN when you put the focus on the Certificate Label field. You must
connect to EAServer Manager | Certificates folder or enter the correct PIN
before you can view certificate names.

Identity properties/Entrust

If you enabled Entrust support in the SSL tab, the Entrust tab settings specify
the Entrust certificate to be used.

❖ Configuring the Entrust settings

1 Browse to or type the path to the entrust.ini file (typically located in the
Windows installation directory on Windows machines, and in the Entrust
clients subdirectory on UNIX systems.

2 Browse or type the path to the Entrust profile file (.epf extension) that
defines the certificate to be used.

3 Enter the password required to use the specified Entrust profile.
166 EAServer

C H A P T E R 1 4 Managing Keys and Certificates

This chapter describes how to use EAServer Manager | Certificates folder
to manage keys and certificates for SSL security in EAServer. See Chapter
9, “Using TLS and FIPS in EAServer,” for information about managing
TLS security in EAServer.

SSL overview
You can configure EAServer to accept client connections over secure
protocols IIOPS and HTTPS using:

• EAServer Manager | Certificates folder to manage key pairs and
certificates for EAServer.

See “Managing keys and certificates on EAServer” on page 168 for
more information about EAServer Manager | Certificates folder.

• EAServer Manager to define security profiles that establish various
levels of security on EAServer and assign them to a listener. Profiles
allow you to determine:

• Client and server authentication requirements

• Encryption and decryption algorithms

See “Configuring security profiles” on page 155 and “Configuring
listeners” on page 161 for information on establishing security
profiles and assigning them to EAServer listeners.

• EAServer to use certificates and listeners to authenticate clients, if
necessary, and encrypt and decrypt data.

Topic Page
SSL overview 167

Managing keys and certificates on EAServer 168

Using Netscape to manage certificates on the client 184
Security Administration and Programming Guide 167

Managing keys and certificates on EAServer
Managing keys and certificates on EAServer
EAServer Manager | Certificates folder allows you to manage keys and
certificates used by EAServer.

• “EAServer Manager | Certificates folder management” on page 168

• “Test CA management” on page 170

• “Key management” on page 175

• “Certificate management” on page 176

EAServer Manager | Certificates folder management
This section describes the tasks involved in accessing and managing the server
certificate database or the certificate database used by client applications. To
manage the server certificate database, configure the top-level Certificates
folder in EAServer Manager, while connected to the server. To manage the
client certificate database, you must run the standalone Security Manager.
Other than the tool used, the management tasks are identical for the client and
server certificate database.

You can install and use the standalone Security Manager on a client machine
to manage client keys, certificates, and trust information in a local database.
The standalone Security Manager is completely independent of EAServer
Manager and server installations. Except for the login screen, the standalone
Security Manager is identical to EAServer Manager | Certificates folder used
to manage server keys and certificates.

The Standalone Security Manager allows C++ CORBA clients and Java
applications to access servers using SSL features over IIOPS connections. For
more information, see these chapters:

• Chapter 5, “Using SSL in Java Clients”

• Chapter 6, “Using SSL in C++ Clients”

• Chapter 8, “Using SSL in ActiveX Clients”

❖ Accessing the server certificate database in EAServer Manager

To begin managing the server certificate database:

1 Start EAServer Manager as described in “Using EAServer Manager” in
the EAServer System Administration Guide.
168 EAServer

CHAPTER 14 Managing Keys and Certificates
2 Expand the top level Certificates folder. The first time you put the focus
on this folder in your session, you must enter the PIN for the PKCS #11
token. The default for new installations is “sybase”.

❖ Starting the standalone Security Manager

1 Change to the EAServer bin subdirectory.

2 Run sasecmgr to start Sybase Central.

3 In Sybase Central, choose Tools | Connect.

4 Choose Security Manager.

5 Enter the PIN for the PKCS #11 token. The default for new installations is
“sybase”. Make sure the Client Root setting matches the installation you
want to configure; this field should match the value of the JAGUAR or
JAGUAR_CLIENT_ROOT environment variable as set for the
installation to be configured.

❖ Changing the user PIN

The initial PIN for the PKCS #11 token is “sybase”. You can also use the same
PIN to log in to EAServer Manager | Certificates folder and, if installed, the
Sybase PKCS #11 token in Netscape. To change to a more secure PIN:

1 Select the Private Keys folder.

2 Select File | Change PIN.

3 Enter and verify the new PIN.

Restart Netscape for the new PIN to propagate to the Sybase PKCS #11 token.

❖ Displaying PKCS #11 module information

1 Select the Private Keys folder.

2 To view information about the Sybase PKCS #11 module, including the
library version and the Cryptoki version, select File | Module Information.

To view information about the Sybase PKCS #11 token that manages your
key and certificate information, including status and version information,
select File | Token Information.

❖ Logging out of the PKCS #11 module

1 Select the Private Keys folder.

2 Select File | Logout.
Security Administration and Programming Guide 169

Managing keys and certificates on EAServer
You are still logged in to EAServer Manager but can no longer access keys or
certificates.

Test CA management
The test CA is a signing authority that signs user certificate requests. These
certificates can be used by clients and EAServer to test the security features of
your applications. Certificates signed by the test CA are not intended for
commercial applications. If you already have an in-house CA or other signing
authority, you may not need to use the test CA.

Note The test CA must exist before you can access the Process Certificate
Request and Generate User Test Certificate options.

❖ Creating a test CA

To verify that the test CA is available, highlight the CA Certificates folder. You
should see the Sybase Jaguar User Test CA on the right side of the window. If
not, you must generate the test CA.

1 Select the CA Certificates folder.

2 Select File | Generate Test CA.

The Sybase Jaguar User Test CA displays on the right side of the window. You
can now generate test certificates signed by the test CA and process certificate
requests.

❖ Generating a user certificate signed by the test CA

1 Select the CA Certificates folder.

2 Select File | Generate User Test Certificate. The Generate User Test
Certificate wizard displays.

3 Supply the required information described in Table 14-1. Click Back and
Next to review and modify information.

4 You can use any of the following characters for the label:

• Letters A – Z and a – z

• Numeric values 0 – 9

• (space) ’ () + , - . / : = ?

5 Click Finish to exit the wizard and generate the certificate.
170 EAServer

CHAPTER 14 Managing Keys and Certificates
6 Click OK in the Info dialog. The certificate displays when you highlight
the User Certificates folder.

Table 14-1: User test certificate information

Property Description Comments/example

Key Strength Select the authentication key strength.
The greater the number, the stronger the
encryption. Your options are:

• 512 bits

• 768 bits

• 1024 bits

For international users, key strength
is 512.

Key Label The name that identifies the certificate. Required field. The label must be
unique among all labels used for all
certificates.

Validity Period From the drop-down list, select the
length of time that the certificate is
valid.

When a client (or server) presents a
certificate for authentication,
EAServer (or the browser) checks to
see if the certificate has expired.

Cert Usage Click the check box for either or both:

• SSL Client

• SSL Server

The same certificate can be used by a
client and/or EAServer.

Common
Name

Your first and last name. Required field.

User ID Any ID that would further identify you.

Organization The name of your company, university,
or other organization.

Required field.

Organization
Unit

The name of a department within your
organization.

Locality The location of your organization. You must supply at least one of:

• Locality

• State/Province

• Country

State/Province State or province name.

Country Your two-digit country code; for
example, “U.S.”

Requester
Name

The person requesting the certificate.

Server Admin The name, if any, of the server
administrator.

E-Mail Your e-mail address.
Security Administration and Programming Guide 171

Managing keys and certificates on EAServer
❖ Processing a certificate request

EAServer Manager | Certificates folder can process a certificate request
generated from elsewhere. The test CA signs the request and generates the
certificate.

1 Select the CA Certificates folder.

2 Select File | Process Certificate Request.

3 Paste the certificate request into the window as indicated. Here is an
example of a base64 certificate request. You must include the entire
contents, including the BEGIN and END lines:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIH4MIGjAgEAMD4xCjAIBgNVBAMTAWExCjAIBgNVBAoTAWExCjA
IBgNVBAcTAWEx
CzAJBgNVBAgTAmNhMQswCQYDVQQGEwJ1czBcMA0GCSqGSIb3DQE
BAQUAA0sAMEgC
QQC9Yn9AOzflqIarPCC7eRdr3C0wrIG+3B2T+pEs9sdgEjnc/bw
1GfxcZKYamWXg
G1KQycFqkdrFNP79fgRCOd3xAgMBAAGgADANBgkqhkiG9w0BAQQ
FAANBAIEljmCB
HbFdNj0MtFDa002f/Trl6FtGCh7Gs23pZlWIUzDlGFowiuJY6iM
Dzd/1bJz5yYB+
IvlM9Ath/zTF2eY=
-----END NEW CERTIFICATE REQUEST-----

4 Set the following certificate properties:

• Format Type Identifies the format type of the request, either
“base64” or “binary.”

• Cert Usage Depending on how you will use the certificate, select
SSL Client, SSL Server, or both.

Mark Private
Key Exportable

Checked by default, this property
allows you to export this certificate
along with its private key.

See “Installing and exporting
certificates” on page 179 for more
information.

Note If checked, you can later
uncheck this property. Once
unchecked, you cannot change this
property. If unchecked, you cannot
export this certificate and private
key.

Property Description Comments/example
172 EAServer

CHAPTER 14 Managing Keys and Certificates
• Validity Period Select the length of time that the certificate is valid.

5 Click Next. The certificate is generated and displays in the dialog. Here is
the signed base64 certificate:

-----BEGIN CERTIFICATE-----
MIICYTCCAcqgAwIBAgIBBzANBgkqhkiG9w0BAQQFADCBgjEzMDE
GA1UEAxMqU3li
YXNlIEphZ3VhciBVc2VyIFRlc3QgQ0EgKFRFU1QgVVNFIE9OTFk
pMSAwHgYDVQQK
ExdTeWJhc2UgSmFndWFyIFVzZXIgVGVzdDEpMCcGA1UEBxMgU3l
iYXNlIEphZ3Vh
ciBVc2VyIFRlc3QgTG9jYWxpdHkwHhcNOTgwNzAyMDIzOTEzWhc
NOTgwOTAyMDIz
OTEzWjBHMQ0wCwYDVQQDEwR0ZXN0MQ0wCwYDVQQKEwR0ZXN0MQ0
wCwYDVQQHEwR0
ZXN0MQswCQYDVQQIEwJjYTELMAkGA1UEBhMCdXMwXDANBgkqhki
G9w0BAQEFAANL
ADBIAkEAvzvqs9yjW/PDCt/Rotp9x9PHrULLeGOLlVSubo9poY1
f5OYwsrjfaOtT
bkhWDrakuwJJk8smDNSAl93tdP9r8wIDAQABo2UwYzAMBgNVHRM
EBTADAQEAMB0G
A1UdDgQWBBTAT0n9qsvdfqc9NzGPA5oLKsMzJjAhBgNVHSMEGjA
YoBYEFGLT8qZb
3LtGjw84nxna9YBHb7q6MBEGCWCGSAGG+EIBAQQEAwIAwDANBgk
qhkiG9w0BAQQF
AAOBgQB3OStVqhoWT66yXNsrznCg9t8yNClobnKGOJTqt+VbhV7
BUgBH+fVSjf7v
xJyV4twwlBvU08PsKYQGj4sJ1Ao3lsOXWrr6YZIHZZ6p9P8JXjY
016Vg9g5SDmEV
jgGbwy6ZOZYx27npp4X31WXY27KDZrV/FrwvF6/Pv6mZY7ijUw=
=
-----END CERTIFICATE-----

6 Select Save to File and enter the full path name to save the generated
certificate as a file. You can also select Browse to specify the location for
the file.

If you want to use this certificate for authentication, you must install the
certificate on the same machine that generated the certificate request, since
this is where the private key is stored.

Note Certificates signed by the test CA are intended for testing only. In a real-
life situation, the CA would verify user information to establish identity.
Security Administration and Programming Guide 173

Managing keys and certificates on EAServer
❖ Exporting the test CA certificate

You can export certificates, including the test CA certificate. Exporting the test
CA certificate allows you to load it into Netscape 4.0x browsers and mark it
trusted. This prevents Netscape from displaying warnings about untrusted
certificate authorities when you use listeners that use certificates signed by the
test CA.

1 Select the CA Certificates folder.

2 Highlight the Sybase Jaguar User Test CA.

3 Select File | Export Certificate.

4 From the Export Certificate wizard, select the format type for the exported
certificate. For the Test CA, select Binary Encode X509 Certificate. Click
Next.

5 Select Save to File and enter the full path name to a file that will contain
the test CA.

Do not add any extension to the file name. A .crt extension is
automatically added to the exported certificate. Netscape 4.0x recognizes
this extension as a X.509 certificate and handles it accordingly.

6 Click Finish to export the certificate to the file you specified.

For general information about the Export Certificate wizard and certificate
types, see “Installing and exporting certificates” on page 179.

❖ Loading the test CA’s certificate into Netscape 4.0x

You must be logged in to the Netscape token.

1 Enter the full path of the file that contains the exported test CA’s certificate
in Netscape’s URL/Netsite field.

2 Select Open and click OK.

3 Click Install Certificate. Netscape recognizes the .crt extension as
belonging to a certificate authority and displays a series of dialogs asking
if you want to accept the CA.

If Netscape does not recognize the .crt file extension, perform these steps
and restart Netscape before trying to load the test CA:

a From Netscape, select Edit | Preferences.

b Under Category, click Applications.

c Under Description, scroll down and select “Internet Security
Certificate.” Click Edit.
174 EAServer

CHAPTER 14 Managing Keys and Certificates
d Verify that the Mime Type field contains:

application/x-x509-ca-cert

e Click OK.

Note If you are using UNIX, make sure the following line is in your
~/.mime.types file before you start Netscape:

application/x-x509-ca-cert crt cer ber der

This line ensures that Netscape recognizes the .crt file extension.

4 Follow the instructions in the dialogs to accept this certificate.

Netscape now allows you to connect to EAServer ports that require
authentication, and accepts the certificates signed by the test CA without
displaying warnings.

Key management
This section describes the tasks involved in key management.

To view the private keys installed in the security module, select the Private
Keys folder. The private keys display on the right side of the window.

EAServer Manager | Certificates folder displays any private key that does not
have a certificate associated with it, including private keys that have an
outstanding certificate request. For example, you may generate a key pair and
request a certificate from a CA at the same time. It may take several days to
receive your certificate. In the meantime, the private key displays when you
highlight the Private Keys folder.

Sybase recommends that you delete any private key that does not have an
outstanding certificate request associated with it.

❖ Viewing information about a private-key

1 Select the Private Keys folder.

2 Highlight the key whose information you want to view.

3 Select File | Key Information. The Key Information dialog box displays
the length of the key.
Security Administration and Programming Guide 175

Managing keys and certificates on EAServer
❖ Deleting a private key

1 Select the Private Keys folder. The private keys display on the right side
of the window.

2 Select the key that you want to delete.

3 Select File | Delete Key.

Certificate management
EAServer Manager | Certificates folder comes with several preinstalled CA
certificates. EAServer accepts client certificates only if they have been signed
by a trusted CA. You can modify the trust attribute for any of the preinstalled
certificates. See “Viewing certificate, trust, and export information” on page
182 for more information.

❖ Generating a key pair and requesting a certificate

You can generate a key pair and send the certificate request to a CA to be
signed. Once the CA has signed and returned the request, you can install the
certificate.

1 Select the Private Keys folder.

2 Select File | Key/Cert Wizard.

3 Supply the required information, described in Table 14-2. Use Back and
Next to review or change any information.

You can use any of the following characters:

• Letters A – Z and a – z

• Numeric values 0 – 9

• (space) ’ () + , - . / : = ?

In Asian-language editions of EAServer, you can enter an Asian-language
date in the Certificate Signing Request wizard in Security Manager.
Before generating requests that contain UTF-8 characters, check with your
certificate authority (CA) whether UTF-8 data is supported.

4 Click Finish to exit the wizard. EAServer Manager | Certificates folder
generates the key pair and saves the certificate request to a file that you
specify, or installs a certificate if you have pasted one into the certificate
dialog.
176 EAServer

CHAPTER 14 Managing Keys and Certificates
5 Send your certificate request to a CA for signing. Depending on the CA,
this could be through e-mail or by attaching to the CA’s URL.

6 When you receive it, install the certificate. See “Installing and exporting
certificates” on page 179.

The new private key appears on the right side of the window when you
highlight the Private Keys folder. Once the certificate is received and installed,
the private key is removed from the private key list.

Table 14-2: Certificate request information

 Property Description Comments/example

Key Strength Select the authentication key strength.
The greater the number, the stronger the
encryption. Your options are:

• 512 bits

• 768 bits

• 1024 bits

For international users, key strength is 512.

Key Label The name that identifies the private
key/certificate.

Required field. The label must be unique
among all labels used for certificates.

Mark Private
Key
Exportable

Check this box to allow the export of
this certificate along with its private key.

See “Installing and exporting certificates” on
page 179 for more information.

Note If checked, you can later uncheck this
property. Once unchecked, you cannot change
this property. If unchecked, you cannot export
this certificate and private key.

UTF-8
Encoding

Check this box to allow entry of UTF-8
encoded characters.

Allows entry of Asian-language text.
Before generating requests that contain
UTF-8 characters, check with your
certificate authority (CA) whether UTF-8
data is supported.

Common
Name

This could be your first and last name or
name of a university or EAServer host
name.

Required field.

User ID Any user ID that would further identify
you.

Organization The name of your company, university,
or other organization.

Required field.

Organization
Unit

The name of a department within your
organization.
Security Administration and Programming Guide 177

Managing keys and certificates on EAServer
Certificate file extensions and types

When installing or exporting a certificate, EAServer Manager | Certificates
folder determines the type of certificate based on the file extension. The
extensions and the type of certificates they represent are:

• .p7c Belongs to a PKCS #7 certificate chain.

• .crt Belongs to X.509 certificates, including CA certificates. In addition,
Netscape certificate chains end with a .crt extension.

• .p12 and .pfx Belong to transferred user certificates. Sybase’s PKCS
#12 implementation generates PKCS #12 files with a .p12 file extension.
This extension is recognized by both Netscape and Internet Explorer. The
earlier PKCS #12 standard specified a .pfx file extension. You can install
a PKCS #12 file that uses either extension into Sybase’s PKCS #11 token.

Locality The location of your organization. You must supply at least one of:

• Locality

• State/Province

• Country

State/Province The name of your state or province.

Country Your two-digit country code; for
example, “U.S.”

Requester
Name

The person requesting the certificate.

Server Admin The name, if any, of the server
administrator.

E-Mail Your e-mail address.

Server
Certificate
Request

Displays the request information along
with the generated public key.

Depending on the CA, you might be able to
copy and paste the certificate request from this
window into an e-mail and forward it for
signing.

Save to File Select this option and enter the full path
name to save the generated certificate
request as a text file.

You can also use the browse feature to
locate and save the file.

If you do not immediately send the certificate
request to be signed, save the certificate
request to a file and send it for signature later.

Cut and Paste
the Certificate

If available, paste the signed certificate
in this window for installation.

If you do not install the signed certificate now,
you can use the Install Certificate option when
you receive your signed certificate.

Format Type Identifies the format of the certificate
request. Your options are “base64” or
“binary.”

For server certificates, you would normally
use a base64 format.

 Property Description Comments/example
178 EAServer

CHAPTER 14 Managing Keys and Certificates
• Binary and base64 Certificates can either be encoded/decoded using a
binary or base64 scheme. Base64 is based on an ASCII format and
certificates of this type can be installed from a file or pasted into the
appropriate window. Binary certificates, on the other hand, must be read
from a file. The encoding scheme has no effect on a certificate’s file
extension.

Transferring versus importing and exporting: Transferring user
certificates and private keys allows you to use the certificate and private key in
the target security environment. Exporting, installing, and marking a CA
certificate trusted in the target security environment simply allows you to
accept certificates that have been signed by that CA.

❖ Installing and exporting certificates

EAServer Manager | Certificates folder allows you to export or import (install):

1 Certificates signed by the test CA.

2 Certificates signed by another CA.

3 Certificate chains – a certificate chain is a certificate that has been signed
by a CA, which in turn has been signed by a CA, and so on. The certificate
contains information that traces the path of the certificate back to the root
CA (the original signer).

4 A signer’s (CA) certificate. You need to install a signer’s certificate and
mark it as trusted so that EAServer accepts certificates signed by that CA.

5 User certificates and their corresponding private key using the PKCS #12
standard.

PKCS #12 is an RSA standard that specifies a transfer syntax for personal
identity information. EAServer’s support of the PKCS #12 standard
allows you to move user certificates and private keys between systems and
programs that support the PKCS #12 standard, such as Netscape
Communicator and Microsoft’s Internet Explorer.

Sybase’s PKCS #12 implementation allows you to transfer certificates and
private keys in either a domestic format (128-bit encryption) or
international format (40-bit encryption). You can find more information
about domestic and international support in “Configuring security
profiles” on page 155.
Security Administration and Programming Guide 179

Managing keys and certificates on EAServer
❖ Installing a certificate

1 Select the folder that corresponds to the type of certificate you are
installing.

2 Select File | Install Certificate.

3 Either paste the entire contents of the certificate into the box (base64
encoded certificates only), or click the Import from File box.

If you select Import from File, the cut and paste area is dimmed. Use the
browse feature to locate the certificate.

4 Click Install. If the certificate is of type .crt or .p7c, it is installed. If the
file is a PKCS #12 type (has either a .p12 or .pfx extension) the PKCS #12
Certificate/Private Key window displays:

a Enter the password that allows access to the file. This is the password
you entered when you exported the certificate and private key.

b To export the certificate and its private key at a later time you must
check the Mark private key as exportable check box, which is, by
default, already selected.

c Click Done.

The certificate is assigned to a folder based on its type:

• User Your certificates and other user certificates, including
certificates signed by the test CA used to authenticate EAServer.
These are the certificates that have a matching private key stored in
the PKCS #11 token.

• CA Certificates obtained from CAs. These identify the signers of
certificates that EAServer recognizes.

• Trusted A subset of the CA certificates. These are the signers of
certificates that EAServer trusts. EAServer accepts the certificates
from clients that have been signed by trusted CAs. You must mark a
CA as trusted before it appears in the Trusted folder. See “Viewing
certificate, trust, and export information” on page 182 for more
information.

• Other Certificates obtained from other users or organizations that
cannot be identified as User or CA.

Once installed, you can assign a user certificate to a security profile. For more
information, see “Configuring security profiles” on page 155.
180 EAServer

CHAPTER 14 Managing Keys and Certificates
After installing a signer’s certificate, mark it as trusted if you want to accept
certificates signed by that signer. See “Viewing certificate, trust, and export
information” on page 182 for more information.

❖ Exporting a certificate

1 Select the Certificates folder that contains the certificate to be exported.

2 Highlight the certificate to be exported.

3 Select File | Export Certificate.

4 From the Export Certificate wizard, select the format type of the certificate
to be exported.

If you have chosen Export Certificate from the User Certificate folder, and
you selected “Mark Private Key Exportable” when you generated the key
pair and requested a certificate, the PKCS #12 option is available.

5 Depending on the type of certificate you select, one of two windows
appears:

• If you have selected a certificate format that is not PKCS #12, select
Save to File and enter the full path name to a file that contains the
certificate.

Do not add any extension to the file name. The appropriate extension
is automatically added to the exported certificate.

• If you have selected PKCS #12, enter and confirm a password used to
protect access to the exported certificate and its private key. When you
try to install the certificate, you are prompted for this password; there
are also several advanced options you can configure that affect the
exported certificate. See “Advanced PKCS #12 options” on page
181. When you are finished, click Next.

Select Save to File and enter the full path name to a file to contain the
certificate.

Do not add any extension to the file name. The appropriate extension
is automatically added to the exported certificate.

6 Click Finish to export the certificate to the file you specified.

Advanced PKCS #12
options

The advanced screen allows you to modify the PKCS #12 options listed below.
The default settings are appropriate in most cases and should only be modified
by experienced users:
Security Administration and Programming Guide 181

Managing keys and certificates on EAServer
• Include certificate trust chain If the certificate is part of a chain,
clicking this box adds information about the CAs in the certificate’s chain.
See “Verifying a certificate” on page 183 for additional information about
certificate chains.

• Private key encoding algorithm The password-based algorithm used
to protect the contents of the exported private key. The default algorithm
is 40BitRC2, which is accepted by most browsers. If you want to export
the private key using stronger or weaker encryption, select an algorithm
from the drop-down list, but be sure that the target browser accepts the
stronger encryption. EAServer Manager | Certificates folder can export or
import private keys that are shrouded with any of the listed algorithms.

• Certificate encoding algorithm The password-based algorithm used to
protect the contents of the exported user certificate. The default algorithm
is 40BitRC2, which is accepted by most browsers. If you want to export
the certificate using stronger or weaker encryption, select an algorithm
from the drop-down list, but be sure that the target browser accepts the
stronger encryption. EAServer Manager | Certificates folder can export or
import user certificates that are shrouded with any of the listed algorithms.
See “Configuring security profiles” on page 155 for a description of the
various encryption methods and terms.

❖ Viewing certificate, trust, and export information

You can view the information about the certificates that you have installed and
your own certificates, including identifying, trust, and usage information. To
view certificate information:

1 Select the folder for the type of certificate you want to view:

• User

• CA

• Trusted

• Other

2 Select the certificate you want to view.

3 Select File | Certificate Info.

The Certificate Information dialog appears. Use the scroll bar to view all of the
information.
182 EAServer

CHAPTER 14 Managing Keys and Certificates
The Certificate dialog includes a Trusted Certificate check box. Based on the
policies of your organization, trustworthiness of the certificate signer, and
other considerations, specify whether or not to mark a certificate as trusted.
Only CA certificates can be marked as trusted or untrusted.

Certificates that are marked as trusted display when you select the Trusted
folder.

For user certificates, an Exportable Private Key check box is provided. If this
box is checked, you can export the certificate, along with its private key. To
prevent future exports, you can uncheck the box. Once unchecked, the private
key can never be exported. See “Installing and exporting certificates” on page
179 for more information.

❖ Verifying a certificate

EAServer Manager | Certificates folder verifies the signature, expiration date,
and validity of a certificate. If the certificate is part of a chain of certificates, it
verifies each certificate in the chain.

A chain involves more than one certificate. Each certificate in the chain is
signed by the preceding certificate. For the certificate to be verified, the entire
chain must be verified. If a peer offers a certificate for authentication that
belongs to a chain, at least one CA within the chain must be trusted for the
certificate to be accepted.

To verify a certificate:

1 Select the folder for the type of certificate you want to verify.

2 Highlight the certificate you want to verify.

3 Select File | Verify.

A dialog appears that either verifies the certificate or informs you that
verification was unsuccessful. Do not use certificates that fail verification.

❖ Renaming a certificate

Only the label of the certificate is changed. The content of the certificate
remains the same.

1 Select the folder type for the certificate you want to rename.

2 Highlight the certificate to rename.

3 Select File | Rename Certificate.

4 Enter the new name of the certificate. Click Done.
Security Administration and Programming Guide 183

Using Netscape to manage certificates on the client
❖ Deleting a certificate and its associated private key

EAServer Manager | Certificates folder allows you to delete your own
certificates and associated private keys, the test CA, and certificates that you
have obtained from others.

1 Select the folder for the type of certificate you want to delete.

2 Highlight the certificate you want to delete.

3 Select File | Delete Certificate.

Note If you delete the test CA, certificates that were signed by the test CA are
no longer useful. In this case, you need to generate a new test CA and new
certificates signed by the new test CA to test your security scenarios.

Using Netscape to manage certificates on the client
PKCS #11 is an RSA standard that specifies an API called Cryptoki, which
performs cryptographic functions, such as key-pair and certificate
management.

Netscape 4.0x supplies a PKCS #11 module that allows you to manage the
client-side certificates. Sybase also provides a PKCS #11 module that allows
you to manage your certificates. Sybase recommends that you install the
Sybase PKCS #11 module into Netscape, which provides immediate access to
the EAServer sample server certificates.

Installing Sybase PKCS #11 into Netscape 4.0x
Start Netscape 4.0x, then:

1 Select Communicator | Security Info from the window. Or, you can click
the Security icon (the padlock) in the tool bar.

2 Click on Cryptographic Modules.

3 Click Add. You see a new dialog, Create a New Security Module.

4 For Security Module Name, enter “Sybase PKCS”.
184 EAServer

CHAPTER 14 Managing Keys and Certificates
5 For Security Module File, type the full path to your libjsybcki file, then
click OK. For example, on Windows, enter:

i:\Program Files\Sybase\Jaguar CTS\dll\libjsybcki.dll

On UNIX, enter:

/work/JagPKS/lib/libjsybcki_r.so

6 You should see a prompt asking for a Sybase password or PIN. Enter
“sybase”. If you do not see this prompt, verify the path to the DLL/shared
object.

7 After entering the password, you see Sybase PKCS listed as a security
module. Click on the Sybase PKCS module, then select View/Edit. A new
window, the Edit Security Module window, displays. This window
contains controls for the Sybase PKCS module.

8 Click “More Info” in the new window, and verify that the state is “Ready”
in the Token/Slot Information window. Click OK to close the Token/Slot
Information window.

9 You can change the Sybase PKCS module password by clicking Change
Password in the Edit Security Module window. Click OK to close this
window.

When both EAServer and Netscape run on the same machine, they share
Sybase PKCS #11 database files. If you change the PIN, you must use the
new PIN when you log in to either EAServer or Netscape. Sybase suggests
that you change your PIN through EAServer Manager | Certificates folder,
which automatically propagates the PIN changes to the security profiles.
If you change the PIN through Netscape, you must also change the PIN in
all of the security profiles; otherwise EAServer secure listeners using
those security profiles may not start the next time you restart the server.
See “Changing the user PIN” on page 169 for information about changing
the PIN in EAServer Manager | Certificates folder.

If you modify the PIN through EAServer Manager | Certificates folder,
you need to restart Netscape for the changes to take effect. If you modify
the PIN through Netscape, while the server is running, shut down and
restart the server. Supply the new PIN to connect to EAServer Manager |
Certificates folder.
Security Administration and Programming Guide 185

Using Netscape to manage certificates on the client
Obtaining a key pair and certificate
Sybase PKCS #11 includes two sample server certificates. You can use these
certificates when communicating with EAServer from your browser. You can
also request new certificates from your CA or certificate server and install them
in your browser.

 In general, the steps involved in obtaining a certificate from a CA are:

1 Initiate a certificate request operation by connecting to a Web server
hosting the public-key infrastructure (PKI) administration HTML pages
for the CA/PKI.

2 On the PKI administration Web page, complete the identity information
form required by the CA.

3 Netscape generates a key pair, and stores the private key in the PKCS #11
module. The public key is digitally signed and forwarded to the CA.

You must be logged in to the PKCS #11 module to store or access the
private key.

4 The CA approves the request, generates the certificate, and makes the
certificate downloadable by way of a URL.

5 The CA notifies you of certificate approval and URL location through
e-mail.

6 Open the URL to get the certificate. You must log in to the PKCS #11
module using the previously established PIN. The browser automatically
installs the certificate, locates the previously stored matching private key
using the key ID, and sets the user-specified label.

SSL certificate information in servlets
This section describes how to include the client’s certificate information into
Java servlets that are hosted by EAServer.

You can obtain SSL certificate information about the client as follows:

java.security.cert.X509Certificate peerX509;
ServletRequest request;

peerX509 = (java.security.cert.X509Certificate)
 request.getAttribute
 ("javax.servlet.request.X509Certificate");
186 EAServer

CHAPTER 14 Managing Keys and Certificates
Where request is the ServletRequest parameter passed in the
doXXX()method.

The ServletRequest technique is portable to other J2EE based application
servers. See section 5.7 of the Java Servlet Specification version 2.2 for more
information on these APIs.

You can also obtain the client’s SSL certificate information using the EAServer
CtsSecurity APIs, as follows:

import CtsSecurity.*;

CtsSecurity.X509Certificate peerX509;

peerX509 =
(CtsSecurity.X509Certificate)request.getAttribute(
"com.sybase.jaguar.servlet.request.X509Certificate");

Note Methods in CtsSecurity.X509Certificate and
java.security.cert.X509Certificate are very similar.
java.security.cert.X509Certificate documentation is available as part
of the JDK documentation. CtsSecurity.X509Certificate documentation
is available in the EAServer repository documentation.
Security Administration and Programming Guide 187

Using Netscape to manage certificates on the client
188 EAServer

C H A P T E R 1 5 Entrust PKI Integration

Overview
EAServer integrates an Entrust public-key infrastructure (PKI) that
enables servers and clients to use Entrust IDs for client/server
authentication. To assign an Entrust ID (Entrust profile) to an EAServer
listener:

1 Install and use Entrust/Entelligence software to manage Entrust keys
and obtain an Entrust ID. See the Entrust documentation for more
information.

2 Use EAServer Manager to configure a security profile that specifies
the Entrust ID you obtained in step 1. You can configure the security
profile to accept either non-Entrust clients or only clients that supply
an Entrust ID. See “Defining security profiles” on page 159 for more
information.

3 Assign the security profile to a listener. See “Configuring listener
properties” on page 163 for more information.

In client applications, set the appropriate ORB properties to use Entrust
IDs. This chapter describes server-side Entrust configuration. For client-
side use of Entrust and non-Entrust certificates, see the following
chapters:

• Chapter 5, “Using SSL in Java Clients.”

• Chapter 6, “Using SSL in C++ Clients.”

• Chapter 8, “Using SSL in ActiveX Clients.”

Topic Page
Overview 189

Scenarios 190
Security Administration and Programming Guide 189

Scenarios
The current version of EAServer does not use Entrust encryption operations
other than SSL signing by the private key.

For more information about Entrust, see their Web site at
http://www.entrust.com.

Scenarios
There are three usage scenarios involving Entrust IDs and non-Entrust
certificates:

• Both client and EAServer use non-Entrust certificates

• Entrust client and non-Entrust server (and vice versa)

• Both client and server use Entrust certificates

Both client and EAServer use non-Entrust certificates
In this scenario, you use EAServer’s EAServer Manager | Certificates folder to
access the Sybase PKCS #11 token to manage EAServer’s keys and
certificates. On the client, you use either the browser’s mechanism to manage
keys and certificates for Java applets or the standalone Security Manager to
access the Sybase PKCS #11 token to manage keys and certificates for C++
and Java applications.

See Chapter 14, “Managing Keys and Certificates” for information about
EAServer Manager | Certificates folder, the standalone Security Manager, and
Netscape certificate management.

Entrust client and non-Entrust server (and vice versa)
In a mixed environment of Entrust IDs and non-Entrust certificates, each side
(client and server) must import the other’s CA certificate so that it will be
recognized and accepted as coming from a trusted CA. For example, import the
Entrust CA certificate into the non-Entrust server’s PKCS #11 token using
EAServer Manager | Certificates folder (the Entrust CA certificate is imbedded
in the user profile’s .key file). Mark the CA certificate trusted.
190 EAServer

CHAPTER 15 Entrust PKI Integration
See Chapter 14, “Managing Keys and Certificates” for information about
importing CAs and marking certificates as trusted.

You can then use the certificates and Entrust IDs as follows:

• Client side client applications establish security through the
ORB/global property or callback feature.

• Server side to allow non-Entrust clients, select the allow non-Entrust
client check box when you configure a security profile. See “Configuring
security profiles” on page 155 for more information.

Both client and server use Entrust certificates
When both the client and server use Entrust IDs, use Entrust to manage the IDs
and use EAServer Manager to establish a security profile that uses those IDs.

See “Defining security profiles” on page 159 for information on configuring
security profiles to use either Entrust IDs or non-Entrust certificates and
enabling non-Entrust clients to connect to a listener using Entrust IDs.
Security Administration and Programming Guide 191

Scenarios
192 EAServer

C H A P T E R 1 6 Tutorial: Using SSL

In this tutorial, you will run an applet that uses the SSL security features
supported by EAServer. This tutorial will familiarize you with how to
create and manage security certificates using EAServer Manager |
Certificates folder, and how to use EAServer Manager to define listeners
that use these certificates and other SSL features.

Overview of the security tutorial
You should be familiar with SSL concepts and terms before you run this
tutorial. Refer to Chapter 1, “Security Concepts” for an overview of SSL
concepts and Chapter 14, “Managing Keys and Certificates” to learn how
to use EAServer Manager | Certificates folder, and the standalone Security
Manager.

This tutorial has three phases:

1 Setting up your browser – export a personal certificate signed by
Jaguar’s test Certificate Authority (CA) certificate and import it in to
a browser. You will use this certificate to authenticate yourself when
you connect to EAServer listeners that require client authentication.

2 Setting up EAServer – use EAServer Manager | Certificates folder
and to:

• Generate a user certificate signed by the test CA. This certificate
is used for EAServer authentication.

Topic Page
Overview of the security tutorial 193

Tutorial requirements 194

Setting up your browser 194

Setting up EAServer 197

Running the SSL sample applet 200

Debugging the SSL sample applet 201
Security Administration and Programming Guide 193

Tutorial requirements
• Create a security profile that uses the generated certificate. The
security profile defines various aspects of a secure connection,
encryption strength, whether the client and/or server require
authentication, and so on.

• Define a listener and assign to it a security profile. This establishes the
security parameters of an EAServer port.

3 Running the SSL sample applet – connect to the HTML page that contains
the applet from your browser on a secure HTTPS listener and run the
sample applet.

Tutorial requirements
To run the tutorial, you need:

• The EAServer software. For installation instructions, see the EAServer
Installation Guide.

• A Netscape Navigator or Microsoft Internet Explorer Web browser that
supports security certificates.

Note Other browsers that support security certificates may work, but have
not been tested with this tutorial.

Setting up your browser
In this tutorial, your browser connects to EAServer through a listener that
requires client authentication. This requires you to install a personal certificate
in the browser that authenticates your identity.

To install a personal certificate in your browser:

1 Start the server, EAServer Manager, and connect to the Certificates folder.

2 Export a personal (user) certificate signed by the Jaguar test CA.

3 Import the user certificate to your browser.
194 EAServer

CHAPTER 16 Tutorial: Using SSL
Start the server, EAServer Manager, and connect to the Certificates
folder

If the server is not already running, follow the instructions under “Starting the
server” in the EAServer System Administration Guide to start the server.

If you are not connected to EAServer Manager, follow the instructions in
“Using EAServer Manager” in the EAServer System Administration Guide to
connect to EAServer Manager. After connecting, browse to the Certificates
folder, double-click on it, then enter your certificate database PIN.

Obtain and install a personal certificate
You need a personal certificate installed in your browser before the sample
applets can attach to EAServer listener ports that require client authentication.

There are a variety of ways to get a personal certificate:

• Attach to an in-house CA Supply the required information to request a
personal certificate.

• Use a public CA You can obtain your certificate from any public CA. A
number of public CAs are available through your browser. To request a
certificate through a Netscape browser:

a Click the Security icon on the tool bar.

b Click Yours on the left side of the window. This displays a list of your
certificates.

c If no certificates are displayed, you need to get one. Click Get a
Certificate. You see a Web page of public CAs.

You need to obtain a certificate from a CA that EAServer recognizes,
or use EAServer Manager | Certificates folder to install the CA’s
certificate and mark it trusted. In EAServer Manager | Certificates
folder, click the Trusted CAs folder to display a list of the trusted
certificate signers that EAServer recognizes.

d Select a CA and follow the instructions to obtain your certificate.

• Use the sample certificates EAServer comes with two sample
personal (user) certificates signed by the test CA that you can use to
authenticate yourself when connecting to EAServer listeners that require
client authentication.
Security Administration and Programming Guide 195

Setting up your browser
For this tutorial, export a user certificate using EAServer Manager |
Certificates folder and import it in to your browser.

❖ Exporting the sample user certificate from EAServer

1 In EAServer Manager | Certificates folder, highlight the User Certificates
folder.

2 Highlight one of the sample certificates.

3 Select File | Export Certificate.

4 In the Export Certificate wizard, select the PKCS#12 formatted data
option. This option exports the private key and the certificate so that you
can import it in to a browser and use it to authenticate yourself. Click Next.

5 Enter and confirm a password. You need to provide this password when
you import the certificate in to a browser. Click Next.

6 Click the Browse button on the wizard and enter the path and file name of
the exported certificate. Do not supply an extension; .p12 extension is
automatically appended to the certificate. Click Finish.

An information box appears confirming that the user certificate has been
successfully exported. Click OK.

❖ Importing the sample user certificate in to Netscape

1 In Netscape, click the security icon.

2 Highlight “Yours” to view your certificate.

3 Click the Import a Certificate button.

4 Locate and highlight the certificate you exported from EAServer Manager
| Certificates folder. Click Open.

5 Enter the password you used when you exported the certificate.

6 The certificate is imported to Netscape. You can view and verify its
validity.

When your browser connects to EAServer listeners that require client
authentication, you can select this certificate when Netscape prompts you
for a user certificate.

❖ Importing the sample user certificate in to Internet Explorer

1 In Internet Explorer, select View | Internet Options (version 4.0) or Tools
| Internet Options (version 5.0).

2 Select the Content tab.
196 EAServer

CHAPTER 16 Tutorial: Using SSL
3 Click the Personal Certificates button (version 4.0) or the Certificates
button (version 5.0).

4 Click the Import button. Enter the complete path and file name and
password of the exported certificate (version 4.0) or follow the wizard
instructions to locate the certificate and enter the password (version 5.0).

5 The certificate is imported in to Internet Explorer. You can view and verify
its validity.

When your browser connects to EAServer listeners that require client
authentication, you can select this certificate when Internet Explorer
prompts you for a user certificate.

Setting up EAServer
In this section, you will create a user certificate that is signed by the test CA
and used for server authentication. You will assign this certificate to a security
profile, and assign the security profile to a listener.

❖ Creating a user certificate from EAServer Manager | Certificates folder

1 Highlight the CA Certificates folder.

2 Select File | Generate User Test Certificate.

3 Provide the information in the Generate User Test Certificate wizard as
follows:

• Key Strength Select 512 from the drop-down list.

• Validity Period Select two months from the drop-down list. The
validity period determines how long the certificate is valid. When
EAServer authenticates itself using this certificate, Netscape
examines the validity period to see if it has expired.

• Key Label Enter Tutorial_cert for the name that identifies the
certificate.

• SSL Server Select this box since you will use this certificate to
authenticate EAServer.

• SSL Client The same certificate can also be used by clients for
authentication. Since this certificate will not be used to authenticate
the client, do not select this box.
Security Administration and Programming Guide 197

Setting up EAServer
• Mark Private Key as Exportable Since you are not using this
certificate on other systems, do not check this box.

4 Click Next. Provide your personal and site information as requested in the
Certificate Request Information window. Refer to “User test certificate
information” in Chapter 14, “Managing Keys and Certificates” for
information on these fields.

5 Click Finish. EAServer Manager | Certificates folder generates a user
certificate that is signed by the test CA. To view the certificate, highlight
the Users Certificates folder.

Creating and assigning a security profile to a listener
In this section, you will define a new security profile, which includes a security
characteristic. The security characteristic determines characteristics of the
client-EAServer connection, such as:

• Authentication The security profile you create for this tutorial requires
certificates for authentication from both the client and server.

• Encryption The strength and method of encryption. The security profile
you create for this tutorial will not encrypt data.

❖ Creating a security profile

1 Double-click the EAServer Manager icon.

2 Click the Security Profiles folder.

3 Select File | New Security Profile.

4 Enter user_test as the name of the security profile and click Create New
Security Profile.

5 Enter the information in the SSL tab of the Security Profile Properties
window as follows:

• Description Enter sample security profile as the description
of this security profile.

• Use Entrust Uncheck this box. You would check this box if you
were using an Entrust ID for authentication.

• Security Characteristic Select sybpks_intl_mutual_auth from the
drop-down list. A description of this security characteristic displays
in the Description window.
198 EAServer

CHAPTER 16 Tutorial: Using SSL
Refer to “Configuring security profiles”in Chapter 13, “Security
Configuration Tasks” for more information about security
characteristics.

• Certificate Label Select Tutorial_cert from the drop-down list. This
is the label of the certificate you created earlier. The security profile
uses this certificate to authenticate EAServer. If you have not logged
in to EAServer Manager | Certificates folder, you are prompted for a
PIN.

• PIN Enter the password (PIN) and press ENTER. This is the same PIN
that allows access to EAServer Manager | Certificates folder. The
default PIN is sybase. If you have changed this PIN, enter the new
PIN. See Chapter 13, “Security Configuration Tasks” and Chapter
14, “Managing Keys and Certificates” for more information.

6 Click Save. EAServer Manager displays the new security profile.

You can now assign the user_test security profile to a listener.

See “Configuring security profiles” on page 155 for more information.

Assign a security profile to a listener

A listener identifies EAServer ports that accepts connection requests from
clients using the following protocols:

HTTP
HTTPS
IIOP
IIOPS
TDS

When you define a listener, you choose a port number, the protocol, and, for
secure protocols IIOPS and HTTPS, assign a security profile.

❖ Assigning the test_profile security profile to a listener

1 Double-click the EAServer Manager icon.

2 Double-click the Servers folder.

3 Double-click the Jaguar icon.

4 Click the Listeners folder.

5 Select File | New Listener.

6 Enter https3 for the listener name and click Create New Listener.
Security Administration and Programming Guide 199

Running the SSL sample applet
7 When you see the Listener info window, supply the following:

• Protocol Select HTTPS from the drop-down list. You will use
HTTPS as the protocol to retrieve the HTML page that contains the
sample applet.

• Host Enter the name of the EAServer host.

• Port Enter the port number on the host machine for this listener. If
not in use by any other service, enter 8083.

• Jaguar Security Profile Select the user_test security profile from
the drop-down list.

8 Click Save.

9 Restart EAServer:

a Highlight the server to which this listener belongs.

b Select File | Restart.

You now have a listener that accepts HTTPS connection requests at port 8083
(https://hostname:8083) and requires client and server authentication.

See “Configuring listeners” on page 161 for more information.

Running the SSL sample applet
The SSL sample applet contains code for both a Java and a C++ server
component. The applet instantiates and runs the JUserCredentialTest (Java) or
CUserCredentialTest (C++) component. The component retrieves and the
applet displays information about the client certificate.

Complete instructions for running the applet are in the file
html\classes\Sample\SecurityDemo\readme.html in your EAServer installation
directory.

❖ Using readme.html

1 Import the SecurityDemo package into EAServer Manager.

The SecurityDemo package contains a Java and a C++ component. These
components both implement the SecurityDemo::UserCredentialTest
interface.

2 Generate stubs and skeletons.
200 EAServer

CHAPTER 16 Tutorial: Using SSL
You need to generate the stub files for the Java applet and the skeleton files
for the server component.

3 Compile the Java source files.

4 Run the applet.

You are instructed to load the HTML page that contains the applet at port
8080. If you connect to port 8080, authentication requirements are
determined by the IIOP listener to which the applet connects.

You can also load the HTML page by connecting to the HTTPS listener
port 8083 (https://hostname:8083) that you created earlier. Before the
browser loads the page, you need to accept EAServer’s certificate and
supply the user certificate that you imported in to your browser for client
authentication.

The SSL sample applet connects to the preconfigured IIOP listeners, IIOP
at port 9000, IIOPS at port 9001, and IIOPS at port 9002. For the applet to
run successfully, verify that the host name for these listeners is the same
as the host name for the HTTPS listener (8083). Refer to “Preconfigured
listeners” in Chapter 13, “Security Configuration Tasks” for more
information.

Debugging the SSL sample applet
If you have difficulty running the sample:

• View the srv.log file to verify that the listeners are running.

• Check the Java console in your browser for error messages. To view the
console, select Communicator | Java Console.

• If the srv.log or Java console indicates an untrusted certificate error, make
sure you have loaded the test CA’s certificate from EAServer Manager |
Certificates folder in the browser. If you use a personal certificate signed
by a CA other than the Jaguar test CA, make sure you have installed the
signer’s certificate (of your personal certificate) in EAServer Manager |
Certificates folder.

• Make sure that the listener’s Host Name field for all preconfigured
listeners and the listener you created for this tutorial are set to the actual
name or IP address of the host and not localhost.
Security Administration and Programming Guide 201

Debugging the SSL sample applet
202 EAServer

Index
A
access control

role service component 109
Admin role

granting permissions to other roles 150
required to run EAServer Manager 149

assigning users and groups to roles 145
authenticated sessions

authentication service component 108
authentication 2

configuration options for 9
error page 31
JAAS API for 125, 127
login page 31
using JAAS API 125
Web application security 1

authentication methods
form-based 31, 34
none 30
Web application security 30

authentication service component
for Web resources 108

authorization
of components 24
of packages 24

authorization service component
and pseudocomponents 114
for Web resources 111

authorized roles and security constraints 36
authorizing

groups 145
users 145

B
base64 user certificate 170
basic authentication method and PowerDynamo 31
binary user certificate 170
Security Administration and Programming Guide
C
C++ components

issuing intercomponent calls from 12
CA, See certificate authority 3
callback component

callback methods 72
getCertificateLabel method 49, 72, 84
getCredentialAttribute method 49, 72, 85
getPin method 50, 73, 85
setGlobalProperty 72
SSL 72
trustVerify method 50, 73, 86

callbackImpl global property 72
Certicom

FIPS cryptographic libraries
Web site 94

certificate authority
certificate request 3
certificates 178
digital signature 3
obtaining a certificate 184

certificate information
EAServer Manager | Certificates folder 180

certificate management
EAServer Manager | Certificates folder 174
generating a key pair and requesting a certificate

174
certificate requests, digital certificates 3
certificate usage

SSL client 170
SSL server 170

certificates
CA 178
deleting 182
other 178
processing a request 170
renaming 181
saving 171
signed by the test CA 168
203

Index
trusted 178
user 178

changing the Sybase PKCS #11 PIN
Netscape or EAServer Manager | Certificates folder

183
cipher suites

and security characteristics 96, 97, 156
defining encryption and decryption parameters 2
FIPS-supported 97
security profile 153
terms 154

cipher text
encrypted messages 2

client-side security
managing certificates 182
PIN 183
Sybase security module 183

com.sybase.CORBA.ProxyHost
Java ORB property name 140

com.sybase.ejb.certificateLabel
and TLS 95

components
controlling access to 24

confidential
transport guarantee 37

configuring
EAServer Manager | Certificates folder 166
listeners 161
security profile 157

connectors
JAAS 131

conventions x
creating

listeners 161
security constraints 35
security profile 157
test CA 168
user certificate 168

crt
.crt file extension 173

CtsSecurity IDL module 12
CtsSecurity::SessionInfo IDL interface 12
CtsSecurity::UserCredentials IDL interface 12
204
D
decryption, definition 2
defining

security characteristics 96, 97, 156
deleting

certificates 182
key pairs 174
listeners 161
roles 144
security profile 157
test CA 182

digital certificates 3
disabling TLS 99

usingJAGSSL 99
displaying

PKCS #11 module information 167

E
EAServer Manager

enabling FIPS 98, 99
EAServer Manager | Certificates folder

.crt file extension 173
base64 certificate 170
certificate format 170
certificate types 178
certificate validity period 171
changing the PIN 167
configuring 166
creating the test CA 168
deleting certificates 182
deleting keys 174
deleting test CA 182
exporting the test CA 172
generating a key pair and requesting certificate

174
generating user certificate 168
installing certificates 177
Jaguar user test CA 168
logging out 167
managing certificates 174
managing keys 173
managing the security module 166
PKCS #11 module information 167
processing a certificate request 170
EAServer

Index
renaming certificates 181
saving certificates 171
test CA 168
trust information 180
user certificate information 169
verifying certificate information 181
viewing certificate information 180
viewing keys 173

EJB components, role references in 24
enabling FIPS 98, 99
encrypted messages, cipher text 2
encryption 2

encrypted messages 2
security profile 154

Entrust
configuration 158
integration into Jaguar 187
mixed environments 188
usage scenarios 189

error pages
and authentication 31

excluded
groups 147
users 146, 147

exporting
test CA 172

F
failover

listeners 160
FIPS

and the getCertificateLabelmethod 94
compatibility with previous EAServer versions
enabling 98, 99
enabling with jagtool ORB property 98
introduction 93
standards 93
supported cipher suites 97
troubleshooting 103

FIPS certificate and module information
Web site 94

FIPS mode
and Java clients 103

FIPS standards
Security Administration and Programming Guide
Web site 94
format type

user certificate 170
form-based

authentication method 31, 34

G
generating, certificate request 174
getCertificateLabel

and FIPS 94
getCertificateLabel method 49, 72, 84
getCredentialAttribute method 49, 72, 85
getfipsmode 101
getPin method 50, 73, 85

H
HTTPS 3

ports and listeners 159

I
IIOPS 3

ports and listeners 159
importing test CA in Netscape 172
installing certificates 177
integral transport guarantee 37
intercomponent calls

issuing from C++ components 12
introduction,FIPS and TLS 93

J
JAAS

all that 126
and connectors 131
authentication API 125
configuration file for 126
debugging of 133
definition of 125
requirements for using 127
205

Index
runtime operation of 126
samples for 133
using in EAServer 127

jagadmin user account 10
JAGSSL

disable TLS 99
JAGSSL environment variable 95
jagtool

enabling FIPS with 98
jagtool commands

getfipsmode and setfipsmode 101
Jaguar Manager. See EAServer Manager
Java clients

and FIPS 103
and proxy servers 135

K
key management, EAServer Manager | Certificates folder

173

L
lazy authentication and Web application security 32
listeners

configuring 161
creating 161
default host name 160
default settings 160
deleting 161
enabling TLS 95
failover 160
Jaguar ports 159
modifying 161
preconfigured 160
properties 162
TDS 39
TLS cipher suites 96

loading the test CA in Netscape 172
localhost default listener settings 160
login names. See user names
login page

and authentication 31
206
M
managing

certificates 174
key pairs 173

managing client certificates
installing the PKCS #11 module 182
using Netscape 182

mapping
J2EE roles to EAServer roles 38

MASP
security for 39
security issues 39

modifying
listeners 161
security profile 157
Sybase PKCS #11 PIN 183

module
PKCS #11 167

N
Netscape

loading the test CA 172
obtaining a certificate 184

NIST
standards 93

none
authentication method 30
transport guarantee 37

O
Open Server security issues 40
ORB properties, setting for SSL 75
ORB, C++ use in C++ components 12

P
package, controlling access to EAServer 24
passwords

See also authentication
use of for authentication 9

permissions, granting 150
EAServer

Index
PIN
changing 183
changing in EAServer Manager | Certificates folder

167
PKCS #11 module 183

PKCS #11
EAServer Manager | Certificates folder and

Netscape sharing files 183
installing security module in Netscape 182
libjsybcki.dll 183
PIN 183
security module 182

PKCS #11 token 167
PowerBuilder

clients, using SSL in 75
PowerBuilder client applications

and JAGSSL environment variable 95
PowerDynamo

authentication methods 31
preconfigured listeners

default settings 160
security profiles 160

private key 2
processing user certificate request 170
profile, security 153
properties

listeners 162
Web application security 30
Web application security wizard 30

protocol
security profile 97, 154

proxy servers
connecting to 135
reverse 139
Web 136

pseudocomponent, authorization service component
114

public key 2
public-key cryptography 2
public-key encryption

CA 3
certificate request 3
certificates 3
digital signature 3
issuing a certificate 3
key pair 2
Security Administration and Programming Guide
signing authority 3

Q
quality of protection 20

R
renaming certificates 181
requesting

certificates 174
requirements

for using JAAS 127
reverse proxies 139
role references, EJB component property 24
role service component

for Web resources 109
roles

adding to a package 144
authorizing groups 145
authorizing users 145
defining 144
deleting 144
excluded groups 147
excluded users 146, 147
Jaguar server 143
mapping 38
modifying 144
use of for authorization 24

RSA
public-key cryptography 2
Web site 2

S
sample certificates

and Netscape 182
sample, using JAAS API 133
saving user certificate 171
secure ports, listeners 159
secure protocols

HTTPS 3
IIOPS 3
207

Index
security
adding a role to a package 144
and MASP clients 39
assigning users and groups to a role 145
authenticating 2
authentication 1, 9
authentication methods 30
authorization 24
authorization service component 111
authorizing groups 145
authorizing users 145
CA 3
certificate authority 3
certificate requests 3
changing the EAServer Manager | Certificates folder

PIN 167
cipher suite 2
cipher text 2
decryption 2
defining a new role 144
deleting a role 144
digital signature 3
displaying PKCS #11 module 167
EAServer Manager | Certificates folder 166
encryption 2
excluded groups 147
excluded users 146, 147
for MASP clients 39
for Open Server listeners 40
IIOPS 3
installing the PKCS #11 module in Netscape 182
issuing digital certificates 3
lazy authentication 32
logging out of PKCS #11 token 167
managing client certificates 182
modifying a role 144
NIS password 151
obtaining a certificate 184
plain text or unencrypted messages 2
private key 2
properties 30
public key 2
public-key certificates 3
public-key cryptography 2
public-key encryption 2
roles 143
208
RSA encryption 2
sample certificates 182, 184
secure socket layer, HTTPS 3
sharing PKCS #11 files 183
signing authority 3
SSL public-key encryption 3
Sybase PKCS #11 PIN 183
Sybase security module 183
terminology 2
user authentication 151
Windows domain password 151
wizard 30

security characteristic
categories 155
cipher suite 96, 97, 156
defining 96, 97, 156
security profile 153

security constraints
and authorized roles 36
creating 35
for Web applications 34
scenarios for Web applications 35
transport guarantee 37
Web resource collections 35

Security Manager
enabling FIPS 98, 99

security profile 153
authentication 154
cipher suite 153
cipher suite terms 154
configuring 157
creating 157
deleting 157
domestic use 154
encryption 154
international use 154
modifying 157
protocol 97, 154
security characteristic 153, 155
SSL 154
TLS 97

SessionInfo IDL interface in module CtsSecurity 12
setfipsmode 101
setGlobalProperty method 72
signing authority

signing digital certificates 3
EAServer

Index
test CA 168
SSL

callback component 72
certificate-based authentication 10
client and server certificates 170
for user authentication 9
mutual authentication support 9
ORB properties, setting 75
security profile 154
SSLServiceProvider interface, using 75
using in PowerBuilder clients 75

SSL certificates
use of for authentication 9

SSLServiceProvider interface, using 75
standards

FIPS 93
starting listeners

failover 160
Sybase security module

using Netscape libjsybcki.dll 183

T
TDS listeners 39
terminology, security 2
test CA

creating 168
deleting 182
EAServer Manager | Certificates folder 168
exporting 172
generating user certificate 168
Jaguar user test CA 168
loading in Netscape 172
processing a certificate request 170
supplying certificate information 169

TLS
and the com.sybase.ejb.certificateLabelORB

property 95
disabling 99
introduction 93
security profile 97
Transport Layer Protocol 93
troubleshooting 103

TLS description
Web site 94
Security Administration and Programming Guide
TLS listeners
enabling in EAServer 95

TLS supported cipher suites 96
transport guarantee and security constraints 37
Transport Layer Protocol

TLS 93
troubleshooting

FIPS and TLS 103
trusted CA, EAServer Manager | Certificates folder

180
trusted certificates 178
trustVerify method 50, 73, 86
tunneling

HTTPS 3
IIOPS 3

tutorial, security 191
typographical conventions x

U
unencrypted messages

plain text 2
upgradeCerts.bat

upgrading test CA and sample certificates with
100

upgrading test CA and sample certificates
upgradeCerts.bat 100

user authentication
Jaguar server security 151
NIS password 151
Windows domain password 151

user certificate 178
saving 171

user names, authentication of 9
UserCredentials IDL interface in module CtsSecurity

12

V
validity period, user certificate 171
verifying certificate information 181
viewing

certificate information 180
key pairs 173
209

Index
W
Web application security

and security constraints 34
authentication 1
authentication methods 30
lazy authentication 32
properties 30
wizard 30

Web proxies
connecting through 136
explanation of 136

Web resource collections
and security constraints 35

Web security
authorization service component 111
maintaining authenticated sessions 108
role service component 109

Web site
Certicom module 94
FIPS certificate and module information 94
FIPS standards 94
TLS description 94
210
 EAServer

	About This Book
	CHAPTER 1 Security Concepts
	Authentication and authorization
	Public-key cryptography
	Public-key certificates
	SSL, HTTPS, and IIOPS
	TLS and FIPS

	Proxies and firewalls
	Lines of defense
	Types of attacks
	Defense against attacks

	CHAPTER 2 Securing Component Access
	Client authentication
	Intercomponent authentication
	Accessing SSL information
	Non-EJB components
	C++ components

	Intercomponent authentication for EJBs and servlets
	Intercomponent authentication for EJB 2.0 components
	Authentication of component invocation from servlets

	Quality of protection
	Usage scenarios

	Client authorization
	Enterprise JavaBeans

	CHAPTER 3 Using Web Application Security
	Introduction
	Authentication
	Form login requirements in a Web application when using HTTPS (SSL)
	Web application direct form login

	Authorization
	Role mapping

	CHAPTER 4 Securing TDS Client Access
	TDS and MASP listeners
	MASP client security
	Open Server client security

	CHAPTER 5 Using SSL in Java Clients
	Using SSL in Java applets
	Using SSL in Java applications
	Requirements
	Establishing a secure session
	Using the SSLServiceProvider interface
	SSL properties
	Implementing an SSL callback
	Retrieving session security information
	Sample Java applications that use SSL

	Creating HTTP and HTTPS connections in Java applications
	HTTP connections
	HTTPS connections
	SSL properties

	Using Java Secure Socket Extension classes
	Possible solutions for JSEE issues

	CHAPTER 6 Using SSL in C++ Clients
	Introduction
	Initializing the SSL security service
	ORB properties for secure sessions
	Creating a manager instance
	Retrieving session security information
	Creating an SSL callback component

	CHAPTER 7 Using SSL in PowerBuilder Clients
	CHAPTER 8 Using SSL in ActiveX Clients
	Requirements
	Establishing a secure session
	Using the SSLServiceProvider interface
	SSL properties
	Choosing a security characteristic
	Secure server addresses
	Other useful ORB properties

	Implementing an SSL callback
	Retrieving session security information
	Example: inspecting SSL session properties
	Example: inspecting X.509 certificate properties

	CHAPTER 9 Using TLS and FIPS in EAServer
	Introduction
	Compatibility with previous versions
	Enabling TLS-secure listeners
	Enabling FIPS
	Enabling FIPS mode from EAServer Manager and Security Manager

	Upgrading the test CA and sample certificates
	FIPS-related jagtool commands
	FIPS mode for Java-side cryptography usage
	Troubleshooting

	CHAPTER 10 Creating and Using Custom Security Components
	Using a custom authentication service
	Maintaining authenticated sessions
	Retrieving HTTP session information

	Using a custom role service
	Creating a role service
	Installing the role service

	Using a custom authorization service
	Deciding whether to use the authorization services and role service
	Creating the authorization service
	Installing the authorization service

	Supporting external single sign-on providers
	Netegrity SiteMinder Integration
	Configuring your security scenario
	Configuring the SiteMinder Policy Server
	Configuring reverse-proxy access to EAServer
	Enabling Policy Server logging
	Configuring EAServer for SiteMinder security

	CHAPTER 11 Using the JAAS API
	Introduction
	Requirements
	JAAS in EAServer
	Enabling JAAS for a server
	Retrieving additional user session details in a JAAS login module

	JAAS on the client
	JAAS for connectors
	Samples and debugging

	CHAPTER 12 Deploying Applications Around Proxies and Firewalls
	Connecting through proxy servers
	Using Web proxies
	Properties that affect Web proxy use

	Using reverse proxies
	Reverse-proxy configuration
	Properties that affect reverse proxy use

	CHAPTER 13 Security Configuration Tasks
	Configuring EAServer roles
	Assigning users and groups to roles
	Determining authorization
	Predefined roles

	Configuring OS authentication
	Configuring OS user and group authorization
	Configuring security profiles
	Security characteristics
	Defining security profiles

	Configuring listeners
	Preconfigured listeners
	Configuring listener properties

	Configuring identities
	Configuring identity properties

	CHAPTER 14 Managing Keys and Certificates
	SSL overview
	Managing keys and certificates on EAServer
	EAServer Manager | Certificates folder management
	Test CA management
	Key management
	Certificate management

	Using Netscape to manage certificates on the client
	Installing Sybase PKCS #11 into Netscape 4.0x
	Obtaining a key pair and certificate
	SSL certificate information in servlets

	CHAPTER 15 Entrust PKI Integration
	Overview
	Scenarios
	Both client and EAServer use non-Entrust certificates
	Entrust client and non-Entrust server (and vice versa)
	Both client and server use Entrust certificates

	CHAPTER 16 Tutorial: Using SSL
	Overview of the security tutorial
	Tutorial requirements
	Setting up your browser
	Start the server, EAServer Manager, and connect to the Certificates folder
	Obtain and install a personal certificate

	Setting up EAServer
	Creating and assigning a security profile to a listener

	Running the SSL sample applet
	Debugging the SSL sample applet

	Index

