SYBASE

Company

Connecting to Your Database

PowerBuilder® Classic
12.5

DOCUMENT ID: DC37776-01-1250-01
LAST REVISED: July 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Javaand al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. inthe U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

PART 1

CHAPTER 1

PART 2

CHAPTER 2

... XV
INTRODUCTION TO DATABASE CONNECTIONS
Understanding Data Connectionscoovvvvvviieeiiiiiiiiiiiiis e 3
How to find the information you need............ccccooeiiiiiiie e 3
Accessing data in POWerBUIlder..........cccoo e 5
Accessing the EAS DEMO DBoccooviiiiiiiiiee e 7
Using database profiles..........cccoviiioiiiie e 7
About creating database profiles..........ccocooiiiiiiiii 7
Creating a database profileccccee e 10
WHAL t0 dO NEXL ...t 12
WORKING WITH STANDARD DATABASE INTERFACES
Using the ODBC Interface ... 15
About the ODBC iNterface.........ccceeeiiviiiiiiiiiee e 15
What iS ODBC?ccoi ittt snrre e e e e 16
Using ODBC in PowerBuUilder...........c.ccccveiioeieiiieeeiee e 17
Components of an ODBC coNNECtioNcccceeviceeeeriieeeenns 17
Types Of ODBC dIriVEISuuviiiiieiiiiiiiiiieee e 19
Ensuring the proper ODBC driver conformance levels 21
Obtaining ODBC ANVEIS.....cccoviiiiiiiieeeeeeiiiiiiee e esiveeeee e 22
Using ODBC drivers with PowerBuilder Desktop..................... 22
Getting help with ODBC driVErscoccvviiiiiieiiiiiiiiieicee e 23
Preparing ODBC data SOUICES.......ccceeviiiiiiiieeeeeeiiiiieeee e e e ssevieeeens 23
Defining ODBC data SOUICEScvveeeeiiiiiiiiieeeeeesirireee e e e e e snnneeeeas 24
How PowerBuilder accesses the data source..........cccccceueee... 24
Defining multiple data sources for the same data 27
Displaying Help for ODBC drivVerscccoocveeiiieeeeiieee e 28
Selecting an ODBC translatorccccvevveeieiiiiee e 28
Defining the ODBC interfaceuuvvveeeiiiiiiiiiiee e 29

Connecting to Your Database iii

Contents

CHAPTER 3

CHAPTER 4

CHAPTER 5

Sybase SQL ANYWNEIEccoiiiiiiiiiie e 29
Supported versions for SQL Anywhere..........ccccevveeeiiciineenn. 29
Basic software components for SQL Anywhere..............c........ 30
Preparing to use the SQL Anywhere data source.................... 31
Defining the SQL Anywhere data SOUrcecccccoeecvvvvveeennnn. 32
Support for Transact-SQL special timestamp columns........... 34
What t0 dO NEXE ... 35

Using the JIDBC INterface........cccouuveieiiniiiiiiiiieie e 37

About the JIDBC iNterface..........oocueeeiiieieiiie e 37
What iS JIDBC? ...t a e 37
Using the JDBC interfaceoocvvviiiieeeeiiiiiiiieee e 38
Components of a JIDBC CONNECLIONccceevviivvrieeeeeeniiiiiieenn. 39
JDBC registry ENtrieSccceeiiiiiiiiiiiee st e e 40
Supported versions for IDBC..........coocvvvvvieeeeiiiiiiiieee e 41
Supported JDBC datatypes........coeeveiriiiiiiieeeeiiiiiieieeeeeeenieee 41

Preparing to use the JDBC interface.........ccccccceviiiiiiiiiiiee e, 41

Defining the JDBC interface..........cccveiiiieie i 43

Using the OLE DB Interface.....cccccoveeiiiiiiiiiiiiieieeeeeeen 45

About the OLE DB interfacecccoeveuereeiiieee e 45
What iS OLE DB?ouiiiiiiie ittt e e e 46
Components of an OLE DB connectioncccceveeeeveeevvnnen. 48
Obtaining OLE DB data providers..........cccoeceeeeirieereeinieeeeeeee 48
Supported versions for OLE DB.........ccccccveeeeeiiciiiiiee e, 49

Preparing to use the OLE DB interface........ccccccoovvvvvveiiieeniiniinnnn, 49

Defining the OLE DB interfaceccccccoevvvvvieeiieiiiiiiiiiee e 51

Using the ADO.NET INterfaceccccceviiiieiiiiiiiie e 53

ADOUL ADOLNET ...ttt 53

About the PowerBuilder ADO.NET database interface.................. 54
Components of an ADO.NET connection...........ccccceevviivvnnenn. 55
OLE DB data ProVidersuueeveeeiiiiiiiieiieeesssiiiieeeeee s s snsiieees 57

Preparing to use the ADO.NET interfacecccoccoceeviireiicnnens 58

Defining the ADO.NET interfaceccccvvvveeeeeeeiiiiiiieee e 60
Getting identity column valuesccccvvveeeeeeeiciiiiiee e 61

Sharing ADO.NET Database Connectionsccccveeeeeesiiivvnnnnn. 64
Importing an ADO.NET Connection from a Third-Party .NET

ASSEMDBIY ..o 65
Exporting an ADO.NET Connection to a Third-Party .NET
ASSEMDBIY ..o 67

PowerBuilder Classic

Contents

PART 3

CHAPTER 6

CHAPTER 7

CHAPTER 8

WORKING WITH NATIVE DATABASE INTERFACES

Using Native Database Interfacescccccceeivieviiiiiiennnnn,
About native database interfaces...........ccccccceeeviviiiiieee e,
Components of a database interface connection.................
Using a native database interface...........ccccccvveeeeiiiiivriennnnn.

Using Adaptive Server Enterprise......ccccccvvieieiniiieeennen,
Supported versions for Adaptive Serverccccooecvvveeeeennn.
Supported Adaptive Server datatypesccccceevvvivviienneennn.
Basic software components for Adaptive Server
Preparing to use the Adaptive Server database
Defining the Adaptive Server database interface.................
Using Open Client Security SErviCescccccccveeviiivveeenneennn

What are Open Client security services?
Requirements for using Open Client security services..
Security services DBParm parameterscccccceeeenne.
Using Open Client directory ServiCes........cccccceeevvvcvvvveneeennnn
What are Open Client directory services?.....................
Requirements for using Open Client directory services

.......... 82
.......... 83
.......... 83

.......... 85
.......... 85
.......... 85

Specifying the server name with Open Client directory services 86

Directory services DBParm parameters...........ccccccveeesieivvnnenn. 88
Using PRINT statements in Adaptive Server stored procedures ... 88
Creating a report based on a cross-database joincccuvveee.. 89
Installing stored procedures in Adaptive Server databases........... 89

What are the PowerBuilder stored procedure scripts?............ 89

HOW t0 run the SCriPLS.....ccoicviiiiiee e 92

USING INFOMIX oo 97
Supported versions for INFOrmixcccccoecvviiiee e, 97
Supported Informix datatypeseeeeeeeeiiiiiiiieee e e 98

Informix DateTime datatypeccccveveeeeeeiiiiiieiee e, 99

Informix Time datatypPecceeeeeeeiiiiiiieee e 99

Informix Interval datatypeccooevveieeeeeeiiiiiiee e 99
Features supported by the 110 interfacecccccvvevveeeeicccinnnnn. 100

Accessing Unicode datal..........cooeviveviiieeeeiiiiiiiiieee e 100

Assigning an owner to the PowerBuilder catalog tables 101

Support for long object namesccccccceei i 101

Renaming an iNdeXccuvveeviieiiiiiiiiiieee e 102

SQL statement cachingccccuvvvveeeeiiiiiiiiieee e 102

Creating and dropping indexes without locking..................... 102

Column-level encryption.........ccuvvveeeeieiiiiiiee e 103

Connecting to Your Database

Contents

CHAPTER 9

CHAPTER 10

CHAPTER 11

Vi

Using multiple OUT parameters in user-defined routines 103
Basic software components for INformixoccvvveereeeiiiiinnnnnn. 104
Preparing to use the Informix databaseccccevveeiiiiiiinnenn. 105
Defining the Informix database interface............cccoccevveeiiiinnnneen. 106

Specifying the server Name.........ccccoeviiee e 107
Accessing serial values in a PowerBuilder script..........ccccccceeenne. 108

Using Microsoft SQL SErverccccoiiiieieiiieiiieeeeeeeven 109
Supported versions for SQL SEIVErcccccvviieeeeeeeiciiiieeee e 109
Supported SQL Server datatypesccceeeevcvvvveeeeeeeeiiiiiieeeeeeeens 110
Basic software components for Microsoft SQL Server................. 112
Preparing to use the SQL Server databasecccccceeviiivnnnen. 113
Defining the SQL Server database interface..........ccccccccevviivnnen. 114
Migrating from the MSS or OLE DB database interfaces............. 115
SQL Server 2005 featuresccoovvvveiiiiiiiiiiee 118
SQL Server 2008 featuresccooevvveviiiiiiiiiieeeee 119

New database parameterscccvvveeeeeeiiiiiiiieeee e 119

Support for new datatypes in SQL Server 2008.................... 120

T-SQL €nhanCementscoociiiiiiiiiee i 124

Unsupported SQL Server 2008 features............c.ccecvvvvverennnn. 126
Notes on using the SNC interface..........ccoceeviee e 127

USING OracCle.....oooieeeeeeeeers et 129
Supported versions for Oraclecccceeeveiiiiiieee e, 129
Supported Oracle datatypesccccvveveeeeeeiiiiiiiieee e 130

Datatype CONVEISION........uuiiieiiiiiiiieiiieeesisiiiieeeeeessssnrraeeeaeeens 132
Basic software components for Oraclecccoevvvveeiieiiiiiiinnnnn. 133
Preparing to use the Oracle databaseccccvvvvevveeiiiiiiinnenn. 134
Defining the Oracle database interface............cccoccvvveiieeiiiiiiinnnnn. 138

Specifying the Oracle server connect descriptor................... 138
Using Oracle stored procedures as a data SOUrCe................oe.... 139

What is an Oracle stored procedure?..........ccccceeviceeeeiiineenne 139

What you can do with Oracle stored procedures 139

Using Oracle stored procedures with result sets................... 140

Using a large-object output parameter..........cccceeevvecvvvvenennn. 143

RPC calls to stored procedures with array parameters......... 144
Using Oracle user-defined types.......cccocceveeiiiieiiiiee e 144
Support for HA event notificationcccocvvivieee i, 146
ORA driver support for Oracle 11g features............cccvvvvvieerninnnns 146

USING DIr€CLCONNECToiiiiiiiiiiie it 149
Using the DirectConnect interfaceccccvveeeeiiiiiiiiieee e, 149

PowerBuilder Classic

Contents

Connecting through the DirectConnect middleware product. 150
Connecting through the Open ServerConnect middleware product

150
Selecting the type of connectionccccceeeiviiiiiiieniee s 151
Supported versions for the DirectConnect interface 151
Supported DirectConnect interface datatypesccccecvveeriinnnns 152
Basic software components for the DirectConnect interface 153
Preparing to use the database with DirectConnect...................... 154
Defining the DirectConnect interfacecccccccvvvciiiviiieeiiiiciinnn, 157
Creating the extended attribute system tables in DB2 databases 158
Creating the extended attribute system tables..................... 158
Using the DB2SYSPB.SQL SCHPt ..ccveveeiiiieie e 159
PART 4 WORKING WITH DATABASE CONNECTIONS
CHAPTER 12 Managing Database ConnectionS.........ccccceeeeeeviiiiiiieeeeee e 163
About database CONNECHIONS...........eeeiriiiieiriiiee e 163
When database connections OCCUTcccceevieeeericieeesneeenn. 164
Using database profileS..........ccooiieiiiiii e 164
Connecting to a databasecccuviiveeee e 165
Selecting a database profile.........ccccoeviiiiieeie e, 165
What happens when you CONNECccccoevvieeeriiieeenienn. 167
Specifying passwords in database profilesccccccceeens 167
Using the Preview tab to connect in a PowerBuilder application .
168
Maintaining database profilescccccoouviiiiiiiiiiiiiiie s 168
Sharing database profilesccocvviiiiiiiii 169
About shared database profiles.......cccccccoovviiiiiiiiiiiiiiiennnen, 169
Setting up shared database profiles.........ccccccoovviiiiiiinnnnininns 170
Using shared database profiles to connectcccuvveee. 171
Making local changes to shared database profiles 171
Maintaining shared database profiles.........cccccocvciiiiiinnnne 172
Importing and exporting database profilesc.cccoocoieiiiiinnne 173
About the PowerBuilder extended attribute system tables........... 174
Logging in to your database for the first time 174
Displaying the PowerBuilder extended attribute system tables 175
Contents of the extended attribute system tables 177
Controlling system table acCess..........cccvvvvieeeiiiiiiiiiiieeeeees 177
CHAPTER 13 Setting Additional Connection Parameters...........cccccvvvvveeeneen. 181
Basic steps for setting connection parameterscccccovvvvvvenn. 181
About the Database Profile Setup dialog boXcccoecvviieennnnn. 182

Connecting to Your Database Vii

Contents

Setting database parameters.........cccccceveeeeeiiiiiieieee e 183
Setting database parameters in the development environment...
183
Setting database parameters in a PowerBuilder application script
184
Setting database preferencescccccceeeeiviiciiiieee e 186
Setting database preferences in the development environment ..
187
Setting AutoCommit and Lock in a PowerBuilder application script
191
PART 5 WORKING WITH TRANSACTION SERVERS
CHAPTER 14 Troubleshooting Your Connectioncccevvvvviiiiviiiiie e, 197
Overview of troubleshooting toolScccceeiiiiiiiiee e, 197
Using the Database Trace tool..........ccoooeeeiiiiiiiicee e 198
About the Database Trace to0l..........ccceoceereiiiieiiiee e, 198
Starting the Database Trace tool............ccccvveeeeeiiiiiiiiieneennn, 202
Stopping the Database Trace tool.........cccccceeeviiiiiiieeiee s 206
Using the Database Trace 10g.......cccccvveeeiviiiiiiieeee e 208
Sample Database Trace OULPUL..........cccvvvvivieeeeiiiiiiiiiieee e 209
Using the SQL statement trace Utilitycceeeviriiiiiiiieneneiiiinne, 211
Using the ODBC Driver Manager Trace tool...........ccccccceevvinvnnnn. 213
About ODBC Driver Manager TracCe........c.cceueueeeiriereeaieneennns 213
Starting ODBC Driver Manager TraCe........ccccevaceeeeineeeeennenn. 214
Stopping ODBC Driver Manager Trace........cccoocoeeeeerveeennnne. 218
Viewing the ODBC Driver Manager Trace l0g........cc.ccccceenn. 220
Sample ODBC Driver Manager Trace output.............ccc........ 221
Using the JDBC Driver Manager Trace tool..........cccccoveeeernnen.. 221
About JDBC Driver Manager TracCe.........ccccvevveeesiiiiivveneeennnns 221
Starting JDBC Driver Manager TraCe.......ccccceevvvvivvvneeieeeeiinnns 222
Stopping JDBC Driver Manager TracCe........c.ovvvvvveeereeesinnnnns 226
Viewing the JDBC Driver Manager Trace 10g...........ccccueeen.... 228
CHAPTER 15 Making Database Connections in PowerBuilder Components 229
Deploying a component t0 EASEIVEScevveeeviiiiiiiiiieeeeeeniins 229
Supported database connections when using Shared Connection
230
Supported database connections when using Microsoft DTC 230
Supported database connections when using OTS/XA 231
Using the SYJ database interface...........cccccceeveeeeiiicivineneenn, 231
Using the JDB database interface...........cccccvvveeeeiiccivneennennn. 232

viii PowerBuilder Classic

Contents

Specifying AutoCommit MOdecoccveriiieee e 232
DBParm support for PowerBuilder components 233
PART 6 USING EMBEDDED SQL
CHAPTER 16 Using Embedded SQL with ODBC...........coviiiiiiieiiiiiiiiiiiieeeee, 237
ODBC SQL SUPPOIT ..ot 238
ODBC Name qualificationcccvvvieeeiiiiiiiiieee e 238
ODBC SQL fUNCHONS ...t 238
(]2 = 1o o | 239
ODBC Using eScape ClauSEesS..........c.uuvveeeeeiiiiiiiiiee e eecciiiieeee e 239
ODBC Transaction management statementscccccceeeeeriinnns 240
ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
241

ODBC Performance and 10CKiNgcoovvviiiiiiiiineeiiiiiiiieeeeeee 241
ODBC NON-CUISOr StateMENtSoeeeveiiiiiiiiiiieee e 244
ODBC DELETE, INSERT, and UPDATEccccoevieiniieiiieeeeen 245
ODBC SELECT .. 245
ODBC CUrsor StatemMeNtscoeevieviieeiiiiiieieieeeeeeeeeeeeeeee e 248
ODBC Retrieval USING CUISOISccccueiieriiieeaaiiee e e eieee e 248
ODBC FETCH NEXT ...t e 250
ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST 251
ODBC UPALE ...evviieeeecieeee ettt e rae e e e e 251
ODBC Database stored proceduresccccvvveeeeiiiiiinneieeessinnns 252
ODBC REtIHEVAL....ccoiiiii it 253
ODBC DECLARE and EXECUTEccocoviiiieiiieiieeeneee e 253
ODBC DECLARE and EXECUTE with PBNewSPInvocation 255
ODBC FETCH ...ttt 256
ODBC CLOSEciiitiiiite ittt 257
ODBC EXECUTE ...ttt 257

ODBC Using database stored procedures in DataWindow objects 259

CHAPTER 17 Using Embedded SQL with JDBCoevviiiiiiiiiiiiiiiiiiieeeen, 261
JDBC DECLARE and EXECUTEcooeiiiiiee e 261
CHAPTER 18 Using Embedded SQL with OLE DB.......ccccoooviiiiiiiiiiiiiiiieeeeeee. 263
OLE DB SQL SUPPOI....ceiieiiieieeiieeeieeee e 264
OLE DB Name qualificationccccueeeeeeiiiiiiiiiieeee e 264
OLE DB SQL fUNCHONSeeiiiiiiiiieiiiie e 264
OLE DB Using ODBC escape SeqUENCES.........cccccueeeeruereeannenenns 267
OLE DB Transaction management statements............ccccceeevvennns 268

OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

Connecting to Your Database iX

Contents

268
OLE DB Performance and 1ocKiNgcccccuviiiieeiiiiiiiiiiieeeeenns 269
OLE DB NON-CUrsor Statements...........ccoovviirriieeee e 272
OLE DB DELETE, INSERT, and UPDATEocccvvieeeeeeeiinns 272
OLE DB SELECT ..ot 273
OLE DB Cursor StatementS.........ooooieeiiiiiieeeieeeiieie e 275
OLE DB Retrieval USING CUISOISceeeiiuieeeaiiieeaaiieeeeaeeee e 276
OLE DB FETCH NEXT ..o 277
OLE DB Database stored procedures............cccceeerueeeeiiieeesnnnnnn. 278
OLE DB RetrieVval.........cooiiiiiiiiiiieiiiie et 278
OLE DB DECLARE and EXECUTEcccceviuiiiiiiiiieeniee e 279
OLE DB FETCH ..ottt 280
OLE DB CLOSE ..ottt ettt 281
OLE DB EXECUTEciiitiiiiiiiiie ettt 281
OLE DB Using database stored procedures in DataWindow objects .
283
CHAPTER 19 Using Embedded SQL with ADO.NET........cccoviiiiiiiiiiiiiiiiieen, 285
ADO.NET DECLARE and EXECUTEooccivivieeeeee e, 285
CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise...
287
Sybase Adaptive Server Enterprise Name qualification............... 288
Sybase Adaptive Server Enterprise SQL functions..................... 288
Sybase Adaptive Server Enterprise Transaction management
STAEMENTS ... 290
Sybase Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK.........cccoueeiiieiiieanieeeen 290
Sybase Adaptive Server Enterprise Using AutoCommiit 291
Sybase Adaptive Server Enterprise Performance and locking 292
Sybase Adaptive Server Enterprise Non-cursor statements........ 295
Sybase Adaptive Server Enterprise DELETE, INSERT, and UPDATE
296
Sybase Adaptive Server Enterprise SELECTcccccvveveeeniinns 296
Sybase Adaptive Server Enterprise Cursor statements............... 299
Sybase Adaptive Server Enterprise Retrieval Using Cursors 300
Sybase Adaptive Server Enterprise Closing the Cursor 303
Sybase Adaptive Server Enterprise Database stored procedures 304
Sybase Adaptive Server Enterprise Retrievalcccccceveeiiinns 305
Sybase Adaptive Server Enterprise DECLARE and EXECUTE .. 306
Sybase Adaptive Server Enterprise FETCH ..o, 307
Sybase Adaptive Server Enterprise CLOSEccccvvevveeeninnnns 308
Sybase Adaptive Server Enterprise Update............ccccvveeeveeeninnnnns 309

X PowerBuilder Classic

Sybase Adaptive Server Enterprise Return values and output
PArAMELEIS.... .o 311
Sybase Adaptive Server Enterprise Temporary tables................. 313
Sybase Adaptive Server Enterprise System stored procedures... 313
Sybase Adaptive Server Enterprise Using database stored procedures

in DataWindow ODJECEScceeeiiiiiiiiiiiieee e 314
CHAPTER 21 Using Embedded SQL with INfOrmixXcccovvveiiiiiiiiiinniiienen, 315
Informix name qualification.........cccccoeeeiiiiiiee e, 315
Informix transaction management statements.............cccvveeeeeenn. 316
Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
316
Informix performance and 10CKINGcccoeviiiiieiiiiii e, 317
Informix NoN-cursor statemMentsScccvvveveeeeeeiciiiieee e, 320
Informix DELETE, INSERT, and UPDATEccccceviiiiieniiieeene 321
INFOrMIX SELECT ...viiiiiiiii ittt e et e e e e enranne e e e 321
INformix cursor StatemMeNtSccceveiiiiiiiriee e 324
Informix retrieval USING CUISOIS........ccovivviiieeeeiiiiiiiiiee e 325
Informix nonupdatable CUrSorsccccvvvieei i, 326
Informix updatable CUrSOrSccvveiiiiiiiiiiie e 326
Informix FETCH Statementsccveeiiiiieiiiiiie e 327
INFOrMIX FETCH NEXT ...ooiiiiiiiiiiieie e 327
Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST 328
INformix CLOSE fOr CUISOIS......uviiiieeeiiiiieiee e 329
Informix database stored procedures...........cccceeeeeeeeriieeeiicneenne 329
Informix retrieval using database stored procedures.................... 330
Informix DECLARE and EXECUTEccooiiiiiiiiiee e 330
INFOrMIX FETCH ...ttt 332
INFOrMIX CLOSE.......oiiiiiii i 332
Informix update using database stored procedures 333
Informix using database stored procedures in DataWindow objects...
335
Informix database stored procedure summMarycccccvvveeennn. 335
CHAPTER 22 Using Embedded SQL with Microsoft SQL Server................... 337
Microsoft SQL Server Name qualification..........cccccccevviiiiinnennnnn. 338
Microsoft SQL Server FuUnctions...........oooeeeeeeeeii 338
Microsoft SQL Server Transaction management statements....... 339
Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT,
ANA ROLLBACKciiiiieiiiiie e 340
Microsoft SQL Server Using AutoCommitcccceevieeeeiineenne 341
Microsoft SQL Server Performance and lockingcccccccceeenn. 342
Microsoft SQL Server Non-cursor statements............cccceeeeeeenne 345

Connecting to Your Database Xi

Microsoft SQL Server DELETE, INSERT, and UPDATE 345

Microsoft SQL Server SELECTcccciviiieee e 346
Microsoft SQL Server Cursor statements..........occcceeevieeeeiiieeene 348
Microsoft SQL Server Fetching rows........cccccoevviiiiieeeee i, 350
Microsoft SQL Server FETCH NEXT..........cccoo 350
Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH
LA ST e 351
Microsoft SQL Server Closing the CUrsor.........ccccccvveeeviiciiineeneenn, 352
Microsoft SQL Server Database stored procedures..................... 353
Microsoft SQL Server Retrievalcccooveviieieiiee e 354
Microsoft SQL Server DECLARE and EXECUTEcccoccceeene. 355
Microsoft SQL Server FETCHccciiiiiiieeeeeeeee e 356
Microsoft SQL Server CLOSEccooviiviiiieee e 357
Microsoft SQL Server Update..........ccoovuvvieeeeeeiiiiiiiiieee e 358
Microsoft SQL Server Temporary tablescccoccocveiiiiieeiiieene 361
Microsoft SQL Server Using database stored procedures in
DataWindow ODJECESccovviiiiiiiiieeeeecice e 361
Microsoft SQL Server Database stored procedures summary..... 362
CHAPTER 23 Using Embedded SQL with Oracle.........cccccovviiieiiniiiiie e, 363
Oracle Name qualificationcccvevveeeiiiiiiiiieie e 364
Oracle SQL funCtionsS ... 364
Oracle Transaction management statements...........ccccccceveeeviienns 366
Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
366
Oracle Performance and 10CKiNgccoeeeiiiiiiiiiieeee e 367
Oracle Non-cursor statements...........ccceeeviieeeeiiee e 370
Oracle DELETE, INSERT, and UPDATEcccceviieeeiieee e 370
Oracle SELECT ...oiiiiieieee ettt 371
Oracle Cursor StatemMeNtS.ceeiiieiieiiieie e 374
Oracle RetreVal.......c.cueiiiiiii e 374
Oracle UPateooeeiiiiiiiiiee e 376
Oracle Cursor SUPPOrt SUMMATYueveereeeeiiiiiriereeeeasnninnreeeeeeananes 378
Oracle Database stored procedures...........occvvvveeeeeeiiiiivieeeneennns 378
Supported features when using Oracle stored procedures........... 380
Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored
PrOCEAUIES ...t e et et e et e e e e e e eeeeeeens 380
Oracle DECLARE and EXECUTEcoociieeiiiiieeeiee e 381
Oracle FETCH ... 383
Oracle CLOSEoiiiii ittt e e et e e e e e s aanes 383
PART 7 APPENDIX

Xii PowerBuilder Classic

APPENDIX A Adding Functions to the PBODB125 Initialization File............ 387

About the PBODB125 initialization filecccccviiiiiiinnne 387

Adding functions to PBODBI125.INI.........ccccveiiiiiieniiree e 388

Adding functions to an existing section in the file 388

Adding functions to a new section in the file............cccccceeee. 391

15T =SSP 395

Connecting to Your Database Xiii

Xiv PowerBuilder Classic

About This Book

Audience

How to use this book

Related documents

Other sources of
information

Connecting to Your Database

This book is for anyone who uses PowerBuilder® to connect to a
database. It assumesthat you are familiar with the database you are using
and have installed the server and client software required to access the
data.

This book describes how to connect to a database in PowerBuilder by
using a standard or native database interface. It gives procedures for
preparing, defining, establishing, maintaining, and troubleshooting your
database connections. For an overview of the steps you need to take, see
“Basic connection procedure” on page 3.

For detailed information about supported database interfaces, DBParm
parameters, and database preferences, see the Database Connectivity
section in the online Help. For a complete list of PowerBuilder
documentation, see PowerBuilder Getting Sarted.

Use the Sybase® Getting Started CD and the Sybase Product
Documentation Web site to learn more about your product:

* The Getting Started CD contains release bulletins and install ation
guidesin PDF format. It isincluded with your software. To read or
print documents on the Getting Started CD, you need Adobe Acrobat
Reader, which you can download at no charge from the Adobe Web
siteusing alink provided on the CD.

e The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you
will find links to EBFs/Maintenance, Technical Documents, Case
Management, Solved Cases, newsgroups, and the Sybase Devel oper
Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

XV

Conventions The formatting conventions used in this manual are:

Formatting example | Indicates
Retrieve and Update When used in descriptive text, this font indicates:

* Command, function, and method names
» Keywords such astrue, false, and null
» Datatypes such asinteger and char

« Database column names such asemp_id and
f_name

» User-defined objects such asdw_emp or
w_main

variable or file name When used in descriptive text and syntax

descriptions, oblique font indicates:

» Variables, such as myCounter

» Partsof input text that must be substituted, such
as pblname.pbd

 Fileand path names

File>Save Menu namesand menuitemsaredisplayedin plain

text. The greater than symbol (>) shows you how

to navigate menu selections. For example,

File>Save indicates “ select Save from the File

menu.”

dw_1.Update () Monospace font indicates:

» Information that you enter in adialog box or on
acommand line

e Sample script fragments

» Sample output fragments

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

XVi PowerBuilder Classic

PART 1

Introduction to Database
Connections

This part introduces data connections in PowerBuilder. It
helps you understand how to connect to a database in the
PowerBuilder development environment.

CHAPTER 1 Understanding Data Connections

About this chapter This chapter gives an overview of the concepts and procedures for
connecting to a database in the PowerBuilder development environment.

Contents

Topic Page
How to find the information you need 3
Accessing data in PowerBuilder 5
Accessing the EAS Demo DB 7
Using database profiles 7
What to do next 12

How to find the information you need

When you work with PowerBuilder, you can connect to a database in the
development environment or in an application script.

Thisbook describes how to connect to your database in the PowerBuilder
development environment.

For information about connecting to a database in a PowerBuilder
application script, see Application Techniques.

Basic connection The following table gives an overview of the connection procedure and
procedure indicates where you can find detailed information about each step.

Table 1-1: Basic connection procedure

Step | Action Details See

1 (Optional) Get an If necessary, learn more about Chapter 1 (this chapter)
introduction to database how PowerBuilder connectstoa
connectionsin database in the development
PowerBuilder environment

Connecting to Your Database 3

How to find the information you need

Step Action Details See
2 Prepare to use the data QOutside PowerBuilder, install For ODBC data sources: Chapter 2,
source or database before the required network, database | “Using the ODBC Interface”
connecting to it for thefirst | server, and database client For JDBC data sources: Chapter 3,
time in PowerBuilder software and verify that you can | «yg; ng the JDBC Interface’
connect to the database For OLE DB data sources: Chapter
4, “Using the OLE DB Interface”
For ADO.NET data sources:
Chapter 5, “Using the ADO.NET
Interface”
For native database interfaces:
Chapter 6, “Using Native Database
Interfaces’
3 Install the ODBC driver, Install the driver, database For alist of what is supported on
OLE DB data provider, provider, or native database your platform: “ Supported Database
ADO.NET dataprovider, or | interfacerequiredtoaccessyour | Interfaces’ in online Help
native database interface data
4 Define the data source Create the required For ODBC data sources: Chapter 2,
(ODBC connections and configuration for adatasource | “Using the ODBC Interface”
some OLE DB drivers) accessed through ODBC
5 Define the database Create the database profile For ODBC data sources: Chapter 2,
interface “Using the ODBC Interface”
For JDBC data sources: Chapter 3,
“Using the JDBC Interface”
For OLE DB data sources: Chapter
4,“Using the OLE DB Interface”
For ADO.NET data sources:
Chapter 5, “Using the ADO.NET
Interface”
For native database interfaces:
Chapter 6, “Using Native Database
Interfaces’
For PowerBuilder components:
Chapter 15, “Making Database
Connections in PowerBuilder
Components’
6 Define the EA Server Create an EAServer profile Chapter 15, “Making Database
connection Connections in PowerBuilder
Components’
7 Connect to the data source | Accessthe datain PowerBuilder | Chapter 12, “Managing Database
or database Connections’
4 PowerBuilder Classic

CHAPTER 1 Understanding Data Connections

Step Action Details See
8 (Optional) Set additional If necessary, set DBParm For procedures: Chapter 13,
connection parameters parameters and database “Setting Additional Connection
preferences to fine-tune your Parameters’
database connection andtake | For pBParm descriptions:
advantage of DBM S-specific online Help
zit;gfsthat your interface For database preference
descriptions:
online Help
9 (Optional) Troubleshoot the | If necessary, usethetracetools | Chapter 14, “ Troubleshooting Your
data connection to troubleshoot problems with Connection”
your connection

Accessing data in PowerBuilder

There are several ways to access datain the PowerBuilder development
environment:

¢ Through one of the standard database interfaces such as ODBC,
JDBC,ADO.NET, or OLE DB

e Through one of the native database interfaces

Standard database
interfaces

A standard database interface communi cates with a database through a
standard-compliant driver (in the case of ODBC and JDBC) or data provider
(inthe caseof OLE DB and ADO.NET). The standard-compliant driver or data
provider translatesthe abstract function callsdefined by the standard’sAPI into
callsthat are understood by aspecific database. To useastandard interface, you
need to install the standard’s API and a suitable driver or data provider. Then,
install the standard database interface you want to useto accessyour DBM S by
selecting the interface in the PowerBuilder Setup program.

PowerBuilder currently supports the following standard interfaces:
¢ Open Database Connectivity (ODBC)

¢ JavaDatabase Connectivity (JDBC)

¢ Microsoft's Universal Data Access Component OLE DB

e Microsoft'sADO.NET

Connecting to Your Database 5

Accessing data in PowerBuilder

Native database
interfaces

Loading database
interface libraries

A native database interface communicates with a database through a direct
connection. It communicates to a database using that database’'s native API.

To access data through one of the native database interfaces, you must first
install the appropriate database software on the server and client workstations
at your site. Then, install the native database interface that accesses your
DBMS by selecting the interface in the PowerBuilder Setup program.

For example, if you have the appropriate Sybase Adaptive Server® Enterprise
server and client software installed, you can access the database by installing
the Adaptive Server Enterprise database interface.

PowerBuilder loads the libraries used by adatabase interface when it connects
to the database. PowerBuilder does not automatically free the database
interface libraries when it disconnects.

Although memory use is somewhat increased by this technique (since the
loaded database interface libraries continue to be held in memory), the
technique improves performance and eliminates problems associated with the
freeing and subsequent reloading of libraries experienced by some database
connections.

If you want PowerBuilder to free database interface libraries on disconnecting
from the database (asit did prior to PowerBuilder 8), you can changeitsdefault
behavior:

To change the default

behavior for Do this

Connectionsin the Select the Free Database Driver Libraries On

development Disconnect check box on the General tab of the System

environment Options dialog box

Runtime connections Set the FreeDBL ibraries property of the Application
object to TRUE on the General tab of the Propertiesview
in the Application painter or in a script

EAServer components
This behavior cannot be controlled when components are deployed to

EAServer.

PowerBuilder Classic

CHAPTER 1 Understanding Data Connections

Accessing the EAS Demo DB

PowerBuilder includes astandalone SQL Anywhere® databasecalledtheEAS
Demo DB. Unless you clear this option in the setup program, the database is
installed automatically. You accesstablesin the EAS Demo DB when you use
the PowerBuilder tutorial.

A SQL Anywhere database is considered an ODBC data source, because you
access it with the SQL Anywhere ODBC driver.

Using database profiles

What is a database
profile?

What you can do

For more information

A database profile is a named set of parameters stored in your system registry
that defines a connection to a particular database in the PowerBuilder
development environment. You must create a database profile for each data
connection.

Using database profiles is the easiest way to manage data connectionsin the
PowerBuilder development environment. For example, you can:

e Select adatabase profile to connect to or switch between databases
« Edit adatabase profile to customize a connection
« Delete adatabase profileif you no longer need to access that data

* Import and export database profiles to share connection parameters
quickly

For instructions on using database profiles, see Chapter 12, “Managing
Database Connections.”

About creating database profiles

You work with two dialog boxes when you create a database profilein
PowerBuilder: the Database Profiles dialog box and the interface-specific
Database Profile Setup dialog box.

Using the Database painter to create database profiles]]
You can al so create database profilesfrom the Database painter’ s Objects view.

Connecting to Your Database 7

Using database profiles

Database Profiles
dialog box

The Database Profiles dialog box uses an easy-to-navigate tree control format
todisplay your installed database interfaces and defined database profiles. You
can create, edit, and delete database profiles from this dialog box.

Database Profiles g|
—-E2 010 Oracle 10g A
4 servlig
+-7 Utilities
+-E3 084 Oracle /8
=-E2 090 Oracle 9 Mew, ..

B4 serveral 2
B4 serverdi_t
3 Utilities
+-E3 ODE ODBC
=-E4 OLE Microsoft OLE DB
H-0 Utilities
—-E3 3¥C Sybase ASE
B4 ase151
B4 asels 2
=0 Utilities
=1 Open Client 11
% Directory Services Editor
% Server Confia hd

When you run the PowerBuilder Setup program, it updates the Vendorslistin
the PowerBuilder® section inthe HKEY_LOCAL_MACHINE registry key
with the interfaces you install. The Database Profiles dialog box displays the
same interfaces that appear in the Vendors list.

Where the Vendors list is stored
The Sybase\PowerBuilder\12.5\\endorskey in

HKEY_LOCAL_MACHINE\SOFTWARE is used for InfoMaker aswell as
PowerBuilder.

For detailed instructions on using the Database Profiles dialog box to connect
to a database and manage your profiles, see Chapter 12, “Managing Database
Connections.”

PowerBuilder Classic

CHAPTER 1 Understanding Data Connections

Database Profile
Setup dialog box

Supplying sufficient
information in the
Database Profile
Setup dialog box

Each database interface has its own Database Profile Setup dialog box where
you can set interface-specific connection parameters. For example, if you
install the Adaptive Server Enterprise ASE interface and then select it and click
New in the Database Profiles dialog box, the Database Profile Setup - Adaptive
Server Enterprise dialog box displays, containing settings for the connection
optionsthat apply to thisinterface.

Database Profile Setup - Adaptive Server Enterprise @

Metwork, Security Directory Services Preview

Connection | Regional Settings | System | Tramsaction | Syntax

Prafile Mamne:
Connect Information

Server:

Login IC:

Password:

Database:

Release: 15 v
Other

Isolation Level: | pead Committed w
[autoCommit Mode [IPrompt For Database Information

Cornrit on Disconneck |:| Genetate Trace

[oisplay Runtime Dialog When Passwaord Expires

oo]

The Database Profile Setup dialog box groups similar connection parameters
on the same tab page and lets you easily set their values by using check boxes,
drop-down lists, and text boxes. Basic (required) connection parametersareon
the Connection tab page, and additional connection options (DBParm
parameters and SQL CA properties) are on the other tab pages.

As you compl ete the Database Profile Setup dialog box in PowerBuilder, the
correct PowerScript® connection syntax for each selected option is generated
on the Preview tab. You can copy the syntax you want from the Preview tab
into a PowerBuilder application script.

For some database interfaces, you might not need to supply valuesfor all boxes
in the Database Profile Setup dialog box. If you supply the profile name and
click OK, PowerBuilder displays a series of dialog boxes to prompt you for
additional information when you connect to the database.

Connecting to Your Database 9

Using database profiles

Thisinformation can include:

User ID or login ID
Password or login password
Database name

Server name

For some databases, supplying only the profile name does not give
PowerBuilder enough information to prompt you for additional connection
values. For these interfaces, you must supply valuesfor all applicable boxesin
the Database Profile Setup dialog box.

For information about the values you should supply for your connection, click
Help in the Database Profile Setup dialog box for your interface.

Creating a database profile

To create a new database profile for a database interface, you must complete
the Database Profile Setup dialog box for the interface you are using to access
the database.

10

[_TTo create a database profile for a database interface:

1

Click the Database Profile button in the PowerBar.

The Database Profiles dialog box displays, listing your installed database
interfaces. To see alist of database profiles defined for a particular
interface, click the plus sign to the left of the interface name or
double-click the interface name to expand the list.

Highlight an interface name and click New.

The Database Profile Setup dialog box for the selected interface displays.
For example, if you select the SY C interface, the Database Profile Setup -
Adaptive Server Enterprise dialog box displays.

Client software and interface must be installed
To display the Database Profile Setup dialog box for your interface, the

required client software and native database interface must be properly
installed and configured. For specific instructions for your database
interface, see the chapter on using the interface.

PowerBuilder Classic

CHAPTER 1 Understanding Data Connections

Connecting to Your Database

On the Connection tab page, type the profile name and supply values for
any other basic parameters your interface requires to connect.

For information about the basic connection parameters for your interface
and the values you should supply, click Help.

About the DBMS identifier
You do not need to specify the DBMS identifier in a database profile.

When you create anew profile for any installed database interface,
PowerBuilder generates the correct DBM S connection syntax for you.

(Optional) On the other tab pages, supply values for any additional
connection options (DBParm parameters and SQL CA properties) to take
advantage of DBM S-specific features that your interface supports.

For information about the additional connection parameters for your
interface and the values you should supply, click Help.

(Optional) Click the Preview tab if you want to see the PowerScript
connection syntax that PowerBuilder generates for each selected option.

You can copy the PowerScript connection syntax from the Preview tab
directly into a PowerBuilder application script.

For instructions on using the Preview tab to help you connect in a
PowerBuilder application, see the section on using Transaction objectsin
Application Techniques.

Click OK to save your changesand close the Database Profile Setup dialog
box. (To save your changes on a particular tab page without closing the
dialog box, click Apply.)

The Database Profiles dialog box displays, with the new profile name
highlighted under the appropriate interface. The database profile values
are saved in the system registry in
HKEY_CURRENT_USER\Software\Sybase\Power Builder\12.5\
DatabaseProfiles\Power Builder.

You can look at the registry entry or export the profile as described in
“Importing and exporting database profiles’ on page 173 to see the
settingsyou made. The NewL ogic parameter isset to True by default. This
setting specifies that the password is encrypted using Unicode encoding.

11

What to do next

What to do next

For instructions on preparing to use and then defining an ODBC data source,
see Chapter 2, “Using the ODBC Interface.”

For instructions on preparing to use and then defining a JDBC database
interface, see Chapter 3, “Using the JIDBC Interface.”

For instructions on preparing to use and then defining an OLE DB data
provider, see Chapter 4, “Using the OLE DB Interface.”

For instructions on preparing to use and then defining an ADO.NET data
provider, see Chapter 5, “Using the ADO.NET Interface.”

For instructions on preparing to use and then defining a native database
interface, see Chapter 6, “Using Native Database I nterfaces.”

12 PowerBuilder Classic

PART 2

Working with Standard
Database Interfaces

This part describes how to set up and define database
connections accessed through one of the standard
database interfaces.

CHAPTER 2 Using the ODBC Interface

About this chapter This chapter gives an introduction to the ODBC interface and then
describes how to prepare to use the data source, how to define the data
source, and how to define the ODBC database profile. It also describes
how to use the Sybase SQL Anywhere ODBC driver.

Contents Topic Page
About the ODBC interface 15
Preparing ODBC data sources 23
Defining ODBC data sources 24
Defining the ODBC interface 29
Sybase SQL Anywhere 29
For more information This chapter gives general information about preparing to use and

defining each ODBC data source. For more detailed information:

e Usethe online Help provided by the driver vendor, as described in
“Displaying Help for ODBC drivers’ on page 28. ThisHelp provides
important detail s about using the data source.

e Check to seeif there is atechnical document that describes how to
connect to your ODBC data source. Any updated information about
connectivity issuesis available from the Sybase Support and
Downloads Web site at http://www.sybase.com/support.

About the ODBC interface

You can access awide variety of ODBC data sources in PowerBuilder.
This section describes what you need to know to use ODBC connections
to access your datain PowerBuilder.

Connecting to Your Database 15

About the ODBC interface

What is ODBC?
The ODBC AP

Accessing ODBC data
sources

Accessing Unicode
data

16

Open Database Connectivity (ODBC) isastandard application programming
interface (API) devel oped by Microsoft. It allowsasingle application to access
avariety of data sourcesfor which ODBC-compliant drivers exist. The
application uses Structured Query Language (SQL) asthe standard data access
language.

The ODBC API defines the following:

« Alibrary of ODBC function calls that connect to the data source, execute
SQL statements, and retrieve results

» A standard way to connect and log into aDBMS

* SQL syntax based on the X/Open and SQL Access Group (SAG) CAE
specification (1992)

» A standard representation for datatypes
* A standard set of error codes

Applications that provide an ODBC interface, like PowerBuilder, can access
data sources for which an ODBC driver exists. An ODBC data sourcedriver
isadynamic link library (DLL) that implements ODBC function calls. The
application invokes the ODBC driver to access a particular data source.

Using the ODBC interface, PowerBuilder can connect, save, and retrieve data
in both ANSI/DBCS and Unicode databases but does not convert data between
Unicode and ANSI/DBCS. When character dataor command text is sent to the
database, PowerBuilder sendsaUnicode string. The driver must guarantee that
the datais saved as Unicode data correctly. When PowerBuilder retrieves
character data, it assumes the data is Unicode.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All datamust bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use special
datatypes to store Unicode data. Columns with these datatypes can store only
Unicode data. Any data saved into such a column must be converted to
Unicode explicitly. This conversion must be handled by the database server or
client.

PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Using ODBC in PowerBuilder
What you can do The following ODBC connectivity features are available in PowerBuilder:

¢ Connect to a SQL Anywhere standal one database (including the EAS
Demo DB) using the SQL Anywhere ODBC driver and the ODBC
interface

¢ Create and delete local SQL Anywhere databases
For instructions, see the Users Guide.

e Connect to an installed Sybase 1Q database client through the ODBC
interface.

« Inal editions except PowerBuilder Desktop, use Level 1 or later
ODBC-compliant drivers obtained from vendors other than Sybase to
access your data

See “ Obtaining ODBC drivers’ on page 22.

* UseMicrosoft's ODBC Data Source Administrator to define ODBC data
sources

See “Defining ODBC data sources’ on page 24.

Components of an ODBC connection

How an ODBC When you accessan ODBC data sourcein PowerBuilder, your connection goes

connection is made through several layers before reaching the data source. It isimportant to
understand that each layer represents a separate component of the connection,
and that each component might come from a different vendor.

Because ODBC isa standard API, PowerBuilder uses the same interface to
access every ODBC data source. Aslong as adriver is ODBC compliant,
PowerBuilder can access it through the ODBC interface to the ODBC Driver
Manager. The devel opment environment and the ODBC interface work
together as the application component.

Figure 2-1 shows the general components of an ODBC connection.

Connecting to Your Database 17

About the ODBC interface

Figure 2-1: Components of an ODBC connection

Application ——

Windows development
environment

7'y
|

4

ODBC interface
PBODBnO.DLL

!

ODBC Driver
Manager
ODBC32.DLL

Data
source

v
Friver

Data
source

L
Friuer

Data
source

Component

descriptions shown in the diagram.

Table 2-1 givesthe provider and abrief description of each ODBC component

Table 2-1: Provider and function of ODBC connection components

Component | Provider What it does

Application Sybase Calls ODBC functions to submit SQL
statements, catalog requests, and retrieve results
from a data source.
PowerBuilder uses the sasme ODBC interface to
access all ODBC data sources.

ODBC Driver | Microsoft Installs, loads, and unloads drivers for an

Manager application.

Driver Driver vendor Processes ODBC function calls, submits SQL

18

reguests to a particular data source, and returns
results to an application.

If necessary, translates an application’s request
so that it conformsto the SQL syntax supported
by the back-end database. See “ Types of ODBC
drivers’ next.

PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Component | Provider | What it does

Data source DBMS or Stores and manages data for an application.
database vendor | Consists of the data to be accessed and its
associated DBMSS, operating system, and (if
present) network software that accesses the
DBMS.

Types of ODBC drivers

When PowerBuilder is connected to an ODBC data source, you might see
messages from the ODBC driver that include the words single-tier or
multiple-tier. These terms refer to the two types of drivers defined by the
ODBC standard.

Single-tier driver A single-tier ODBC driver processes both ODBC functions and SQL
statements. In other words, a single-tier driver includes the data access
software required to manage the data source file and catalog tables. An
example of asingle-tier ODBC driver isthe Microsoft Access driver.

Figure 2-2: Single-tier ODBC driver

Application
A

¥

ODBC Driver
Manager

'y

Y

Single-tier CDBC
driver

Data access
software

'y

Data
source

Connecting to Your Database 19

About the ODBC interface

Multiple-tier driver A multiple-tier ODBC driver processes ODBC functions, but sends SQL
statements to the database engine for processing. Unlike the single-tier driver,
amultiple-tier driver does not include the data access software required to
manage the data directly.

An example of amultiple-tier ODBC driver isthe Sybase SQL Anywhere
driver.

Figure 2-3: Multi-tier ODBC driver

Application
&
v

ODBC Driver
Manager

A

¥

Multiple-tier ODBC
driver

A

: 4

Database
engine

Data access
software

A

Data
source

20 PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Ensuring the proper ODBC driver conformance levels

You can access datain PowerBuilder Enterprise or PowerBuilder Professional
with ODBC drivers obtained from vendors other than Sybase, such asDBMS
vendors.

An ODBC driver obtained from another vendor must meet certain
conformance regquirementsto ensure that it works properly with PowerBuilder.
This section describes how to make sure your driver meets these requirements.

What are ODBC conformance levels?

API conformance
levels

PowerBuilder can access many data sources for which ODBC-compliant
drivers exist. However, ODBC drivers manufactured by different vendors
might vary widely in the functions they provide.

To ensure astandard level of compliance with the ODBC interface, and to
provide a means by which application vendors can determine whether a
specific driver provides the functions they need, ODBC defines conformance
levelsfor driversin two areas:

APl Deadswith supported ODBC function calls

e SQL grammar Dealswith supported SQL statements and SQL
datatypes

ODBC defines three API conformance levels, in order of increasing
functionality:

« Core A setof core APl functionsthat correspondsto the functionsinthe
I1SO Call Level Interface (CLI1) and X/Open CLI specification

« Level1 Includesall Core API functionsand several extended functions
usualy available in an OLTP relational DBMS

e Level 2 Includesall Coreand Level 1 APl functions and additional
extended functions

[TTo ensure the proper ODBC driver APl conformance level:

e Sybase recommends that the ODBC drivers you use with PowerBuilder
meet Level 1 or higher API conformance requirements. However,
PowerBuilder might also work with drivers that meet Core level API
conformance requirements.

Connecting to Your Database 21

About the ODBC interface

SQL conformance ODBC definesthree SQL grammar conformance levels, in order of increasing
levels functionality:

*« Minimum A set of SQL statementsand datatypesthat meetsabasic level
of ODBC conformance

* Core Includesall Minimum SQL grammar and additional statements
and datatypes that roughly correspond to the X/Open and SAG CAE
specification (1992)

+ Extended Includesal Minimum and Core SQL grammar and an
extended set of statements and datatypes that support common DBMS
extensions to SQL

[TTo ensure the proper ODBC driver SQL conformance level:

» Sybase recommends that the ODBC drivers you use with PowerBuilder
meet Core or higher SQL conformance requirements. However,
PowerBuilder might also work with driversthat meet Minimum level SQL
conformance requirements.

Obtaining ODBC drivers

You can use the ODBC driver for the SQL Anywhere® devel oper edition from
Sybase, provided with PowerBuilder, to access data. Other Sybase database
clients also include ODBC drivers that you can access through the
PowerBuilder ODBC interface. See your database documentation for details.

PowerBuilder Enterprise and PowerBuilder Professional also let you access
datawith any Level 1 or higher ODBC-compliant drivers obtained from a
vendor other than Sybase. In most cases, these drivers will work with
PowerBuilder.

Using ODBC drivers with PowerBuilder Desktop

Using existing If you already have version 2.0 or later of any of the following Microsoft
c'\j"r'i%’é"ﬂ ODBC ODBC driversinstalled and properly configured, you can use these drivers

with PowerBuilder Desktop to connect to your data source:

Microsoft Access (*.MDB)
Microsoft Btrieve (*.DDF)
Microsoft dBASE (*.DBF)
Microsoft Excel (*.XLS)

Microsoft FoxPro (*.DBF)

22 PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Microsoft Paradox (*.DB)
Microsoft Text (*.CSV, *.TXT)

Getting help with ODBC drivers

To ensure that you have up-to-date and accurate information about using your
ODBC driver with PowerBuilder, get help as needed by doing one or more of

the following:

To get help on

Do this

Using the ODBC Data Source
Administrator

Click the Help button on each tab.

Completing the ODBC setup
diaog box for your driver

Click the Help button (if present) in the ODBC
setup dialog box for your driver.

Using SQL Anywhere

See the SQL Anywhere documentation.

Using an ODBC driver
obtained from a vendor other
than Sybase

See the vendor’s documentation for that driver.

Troubleshooting your ODBC
connection

Preparing ODBC data sources

Check for atechnical document that describes how
to connect to your ODBC data source. Updated
information about connectivity issuesis available
on the Sybase Support and Downloads Web site at
http://www.sybase.com/support.

Thefirst step in connecting to an ODBC data source is preparing the data
source. Thisensuresthat you are able to connect to the data source and use your

datain PowerBuilder.

You prepare to use a data source outside PowerBuilder before you start the
product, define the data source, and connect to it. The requirements differ for
each data source, but in general, preparing to use a data source involves the

following steps.

[TTo prepare to use an ODBC data source with PowerBuilder:

1 If network software is required to access the data source, make sureit is
properly installed and configured at your site and on the client

workstation.

Connecting to Your Database

23

Defining ODBC data sources

If database softwareis required, make sureit is properly installed and
configured on your computer or network server.

Make sure the required datafiles are present on your computer or network
server.

Make sure the names of tables and columns you want to access follow
standard SQL naming conventions.

Avoid using blank spaces or database-specific reserved words in table and
column names. Be aware of the case-sensitivity options of the DBMS. It
is safest to use all uppercase characters when naming tables and columns
that you want to access in PowerBuilder.

If your database requires it, make sure the tables you want to access have
unique indexes.

Install both of the following using the PowerBuilder Setup program:
e The ODBC driver that accesses your data source
* The ODBC interface

Defining ODBC data sources

Each ODBC data source requires a corresponding ODBC driver to accessit.
When you define an ODBC data source, you provide information about the
data source that the driver requiresin order to connect to it. Defining an ODBC
data source is often called configuring the data source.

After you prepare to use the data source, you must define it using Microsoft's
ODBC Data Source Administrator utility. This utility can be accessed from the
Control Panel in Windows or PowerBuilder’'s Database painter.

Therest of this section describes what you need to know to define an ODBC
datasourcein order to accessit in the PowerBuilder devel opment environment.

How PowerBuilder accesses the data source

When you access an ODBC data source in PowerBuilder, there are several
initialization files and registry entries on your computer that work with the
ODBC interface and driver to make the connection.

24

PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

PBODB125 initialization file

Contents PBODB125.INI isinstalled in the Sybase\Shared\Power Builder directory. The
first time the user opens PowerBuilder, thefile is copied to Local
Settings\Application Data\Sybase\PowerBuilder 12.5 in the user’s profile
folder (for example, under C:\Documentsand Settings\username). Thiscopy is
used when running PowerBuilder.PowerBuilder uses PBODB125.INI to
maintain access to extended functionality in the back-end DBMS, for which
ODBC does not provide an API call. Examples of extended functionality are
SQL syntax or DBM S-specific function calls.

Editing In most cases, you do not need to edit PBODB125.INI. In certain situations,
however, you might need to add functions to PBODB125.INI for your
back-end DBMS. Be sure to edit the copy in your user profile folder, not the
original copy.

For instructions, see the Appendix, “Adding Functions to the PBODB125
Initialization File.”

ODBCINST registry entries

Contents The ODBCINST initialization information islocated in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI registry key.
When you install an ODBC-compliant driver, ODBCINST.INI isautomatically
updated with a description of the driver.

This description includes:
« The DBMS or data source associated with the driver

e Thedrive and directory of the driver and setup DLLs (for some data
sources, the driver and setup DLLs are the same)

e Other driver-specific connection parameters

Editing You do not need to edit the registry key directly to modify connection
information. If your driver usesthe information in the ODBCINST.INI registry
key, the key is automatically updated when you install the driver. Thisistrue
whether the driver is supplied by Sybase or another vendor.

Connecting to Your Database 25

Defining ODBC data sources

ODBC registry entries

Contents

Editing

ODBC initialization information is located in the

HKEY_CURRENT _USER\SOFTWARE\ODBC\ODBC.INI registry key. When
you define a data source for a particular ODBC driver, the driver writes the
values you specify in the ODBC setup dialog box to the ODBC.INI registry
key.

The ODBC.INI key contains subkeysnamed for each defined data source. Each
subkey contains the values specified for that data source in the ODBC setup
dialog box. The values might vary for each data source but generally include
the following:

» Database

o Driver

* Optional description

* DBMS-specific connection parameters

Do not edit the ODBC subkey directly to modify connection information.
Instead, use atool designed to define ODBC data sources and the ODBC
configuration automatically, such as the ODBC Data Source Administrator.

Database profiles registry entry

Contents

Editing

Example

26

Database profiles for all data sources are stored in theregistry in
HKEY_CURRENT_USER\SOFTWARE\Sybase\Power Builder\12.5\
DatabaseProfiles.

You should not need to edit the profiles directly to modify connection
information. Thesefiles are updated automatically when PowerBuilder creates
the database profile as part of the ODBC data source definition.

You can also edit the profile in the Database Profile Setup dialog box or
compl etethe Database Preferencesdial og box in PowerBuilder to specify other
connection parameters stored in the registry. (For instructions, see Chapter 13,
“Setting Additional Connection Parameters.”)

The following example shows a portion of the database profile for an EAS
Demo DB data source:

DBMS=0DBC

DBParm=ConnectString="'DSN=EAS Demo DB V125
DB;UID=dba; PWD=00c61737"

Prompt=0

PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Thisregistry entry example showsthe two most important valuesin adatabase
profile for an ODBC data source:

- DBMS TheDBMSvaue(ODBC)indicatesthat you areusingtheODBC
interface to connect to the data source.

« DBParm The ConnectString DBParm parameter controls your ODBC
data source connection. The connect string must specify the DSN (data
source name) value, which tells ODBC which data source you want to
connect to. When you select adatabase profile to connect to adata source,
ODBC looksinthe ODBC.INI registry key for asubkey that corresponds
to the data source name in your profile. ODBC then uses the information
in the subkey to load the required libraries to connect to the data source.
The connect string can also contain the UID (user ID) and PWD
(password) values needed to access the data source.

Defining multiple data sources for the same data

When you define an ODBC data source in PowerBuilder, each data source
name must be unique. You can, however, define multiple data sources that
access the same data, aslong as the data sources have unique names.

For example, assume that your data source is a SQL Anywhere database
located in C:\SQL Anywhere\SALES DB. Depending on your application, you
might want to specify different sets of connection parametersfor accessing the
database, such as different passwords and user IDs.

To do this, you can define two ODBC data sources named Sales] and Sales?
that specify the same database (C:\SQL Anywhere\SALES.DB) but use different
user 1Ds and passwords. When you connect to the data source using a profile
created for either of these data sources, you are using different connection
parameters to access the same data.

Figure 2-4: Using two data sources to access a database

Data Source Name: Sales1
User ID: smith
Password: xxx L

Database: C:\ASA\SALES.DB ——
=
SALES.DB
Data Source Name: Sales2 i
User IO jones
Password: yyy =

Database: C:\ASA\SALES.DB

Connecting to Your Database 27

Defining ODBC data sources

Displaying Help for ODBC drivers

The online Help for ODBC driversin PowerBuilder is provided by the driver
vendors. It gives help on:

* Completing the ODBC setup dialog box to define the data source

» Using the ODBC driver to access the data source

Help for any ODBC driver

Use the following procedure to display vendor-supplied Help when you arein
the ODBC setup dialog box for ODBC drivers.

[TTo display Help for any ODBC driver:
* Click the Help button in the ODBC setup dialog box for your driver.

A Help window displays, describing features in the setup dialog box.

Selecting an ODBC translator

What is an ODBC Some ODBC driversallow you to specify atrans ator when you define the data

translator? source. An ODBC translator isaDLL that translates data passing between an
application and adata source. Typically, trandlators are used to translate data
from one character set to another.

What you do Follow these stepsto select atranslator for your ODBC driver.

[TTo select a translator when using an ODBC driver:

1 Inthe ODBC setup dialog box for your driver, display the Select
Trandator dialog box.

The way you display the Select Trand ator dialog box depends on the
driver and Windows platform you are using. Click Help in your driver's
setup dialog box for instructions on displaying the Select Trandator dialog
box.

Inthe Select Tranglator dialog box, thetranslatorslisted are determined by
the valuesin your ODBCINST.INI registry key.

2 Fromthe Ingtalled Trandators list, select a translator to use.
If you need help using the Select Trandlator dialog box, click Help.

28 PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

3 Click OK.

The Select Translator dialog box closes and the driver performs the
tranglation.

Defining the ODBC interface

To define a connection through the ODBC interface, you must create a
database profile by supplying values for at |least the basic connection
parameters in the Database Profile Setup - ODBC dialog box. You can then
select thisprofile at any timeto connect to your datasourcein the development
environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

Sybase SQL Anywhere

This section describeshow to prepare and define a Sybase SQL Anywhere data
sourcein order to connect to it using the SQL Anywhere ODBC driver.

Name change
For versions 6 through 9, the SQL Anywhere database server was called
Adaptive Server® Anywhere (ASA).

SQL Anywhereincludestwo database servers—a personal database server and
anetwork database server. For information about using Sybase SQL
Anywhere, see the SQL Anywhere documentation.

Supported versions for SQL Anywhere

The SQL Anywhere ODBC driver supports connection to local and remote
databases created with the following:

e PowerBuilder running on your computer

e SQL Anywhere version 11

Connecting to Your Database 29

Sybase SQL Anywhere

* SQL Anywhere version 10.x
* ASA version 9.x
* ASA version 8.x
* ASAversion7.x
* ASA version 6.x

e SQL Anywhereversion 5.x

Basic software components for SQL Anywhere

Figure 2-5 shows the basi ¢ software components required to connect to a SQL
Anywhere data source in PowerBuilder.

30 PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

Figure 2-5: Components of a SQL Anywhere connection

Windows development
environment

ODBC interf;
e SEE PBODBnnn.DLL
v
QDBC Driver }
Manager ODBC32.0LL

b

DBODBCH.DLL

SQL Anywhere

Preparing to use the SQL Anywhere data source

Before you define and connect to a SQL Anywhere data sourcein
PowerBuilder, follow these steps to prepare the data source.

Driver —

Data source

[_1ITo prepare a SQL Anywhere data source:
1 Make sure the database file for the SQL Anywhere data source already
exists. You can create a new database by:

e Launching the Create SQL Anywhere Database utility. You can
access this utility from the Ultilities folder for the ODBC interfacein
the Database profile or Database painter when PowerBuilder is
running on your computer.

Connecting to Your Database 31

Sybase SQL Anywhere

This method creates alocal SQL Anywhere database on your
computer, and also creates the data source definition and database
profile for this connection. (For instructions, see the Users Guide.)

* Creating the database some other way, such as with PowerBuilder
running on another user’s computer or by using SQL Anywhere
outside PowerBuilder. (For instructions, see the SQL Anywhere
documentation.)

2 Make sure you have the log file associated with the SQL Anywhere
database so that you can fully recover the databaseif it becomes corrupted.

If thelog file for the SQL Anywhere database does not exist, the SQL
Anywhere database engine creates it. However, if you are copying or
moving a database from another computer or directory, you should copy
or movethelog filewith it.

Defining the SQL Anywhere data source

Whenyou createalocal SQL Anywhere database, PowerBuilder automatically
creates the data source definition and database profile for you. Therefore, you
need only use the following procedure to define a SQL Anywhere data source
when you want to access a SQL Anywhere database not created using
PowerBuilder on your computer.

[TTo define a SQL Anywhere data source for the SQL Anywhere driver:

1 Select Create ODBC Data Source from the list of ODBC utilitiesin the
Database Profiles dialog box or the Database painter.

2 Select User Data Source and click Next.

3 Onthe Create New Data Source page, select the SQL Anywhere driver
and click Finish.

32 PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

The ODBC Configuration for SQL Anywhere dialog box displays.

ODEC Configuration for SQL Anywhere 10 E|g|

ODBC l Login] Database] Metwork] Advanced]

Data source name: |

Description: |

Isolation level: ’7

™ Microsoft applications (Keys in SQLStatistics)

™ Delphi applications

™ Suppress fetch wamings

™ Prevert driver not capable emors

™ Delay AutoCommit urtil statement close
Describe Cursor Behavior

" MNever + ¥ required " Aways

Translator: [<No Translator>

Select Translator...
Test Connection
QK | Cancel | Help |

4 You must supply the following values:
« Datasource name on the ODBC tab page
e User ID and password on the L ogin tab page
« Database file on the Database tab page
Use the Help button to get information about fields in the dialog box.
5 (Optional) To select an ODBC translator to translate your data from one
character set to another, click the Select button on the ODBC tab.
See “ Selecting an ODBC translator” on page 28.
6 Click OK to save the data source definition.
Specifying a Start Line When the SQL Anywhere ODBC driver cannot find a running personal or
value network database server using the PATH variable and Database Name setting,
it uses the commands specified in the Start Line field to start the database
servers.

Connecting to Your Database

33

Sybase SQL Anywhere

Specify one of the following commandsin the Start Line field on the Database
tab page, where nisthe version of SQL Anywhere you are using.

Specify this command

To

dbengn.exe Start the personal database server and the database
specified in the Database File box
rtengn.exe Start the restricted runtime database server and the

database specified in the Database File box

For information on compl eting the ODBC Configuration For SQL Anywhere
dialog box, see the SQL Anywhere documentation.

Support for Transact-SQL special timestamp columns

When you work with a SQL Anywhere table in the DataWindow®, Data
Pipeline, or Database painter, the default behavior isto treat any column named
timestamp as a SQL Anywhere Transact-SQL® special timestamp column.

Creating special
timestamp columns

34

You can create a Transact-SQL specia timestamp columninaSQL Anywhere

table.

[TTo create a Transact-SQL special timestamp column in a SQL Anywhere

table in PowerBuilder:

1 Givethe nametimestamp to any column having atimestamp datatype that
you want treated as a Transact-SQL special timestamp column. Do thisin
one of the following ways:

* Inthe painter — Select timestamp as the column name. (For
instructions, see the Users Guide.)

* InaSQL CREATE TABLE statement — Follow the “CREATE
TABLE example” next.

2 Specify timestamp as the default value for the column. Do thisin one of

the following ways:

* Inthe painter — Select timestamp as the default value for the column.
(For instructions, see the Users Guide.)

* InaSQL CREATE TABLE statement — Follow the“ CREATE TABLE

example” next.

PowerBuilder Classic

CHAPTER 2 Using the ODBC Interface

CREATE TABLE
example

Not using special
timestamp columns

What to do next

3 If you are working with the table in the Data Pipeline painter, select the
initial value excludefor the special timestamp column from the drop-down
list in the Initial Value column of the workspace.

You must select exclude as the initial value to exclude the specia
timestamp column from INSERT or UPDATE statements.

For instructions, see the Users Guide.

The following CREATE TABLE statement defines a SQL Anywhere table
named timesheet containing three columns: employee_ID (integer datatype),
hours (decimal datatype), and timestamp (timestamp datatype and timestamp
default value):

CREATE TABLE timesheet (
employee ID INTEGER,
hours DECIMAL,
timestamp TIMESTAMP default timestamp)

If you want to change the default behavior, you can specify that PowerBuilder
not treat SQL Anywhere columns named timestamp as Transact-SQL special
timestamp columns.

[_TTo specify that PowerBuilder not treat columns named timestamp as a

Transact-SQL special timestamp column:

¢ Edit the Sybase SQL Anywhere section of the PBODB125 initialization
file to change the value of SQL SrvrTSName from 'Yes' to 'No'.

After making changes in theinitialization file, you must reconnect to the
database to have them take effect. See the Appendix, “Adding Functions
to the PBODB125 Initialization File.”

For instructions on connecting to the ODBC data source, see “ Connecting to a
database” on page 165.

Connecting to Your Database 35

Sybase SQL Anywhere

36 PowerBuilder Classic

CHAPTER 3

About this chapter

Contents

For more information

Using the JDBC Interface

This chapter describesthe JDBC interface and explains how to prepare to
use this interface and how to define the JIDBC database profile.

Topic Page
About the IDBC interface 37
Preparing to use the JDBC interface 41
Defining the JDBC interface 43

For more detailed information about JDBC, go to the Java Web site at
http://java.sun.com/products/jdbc/overview.html.

About the JDBC interface

What is JIDBC?
The JDBC API

Connecting to Your Database

You can access awide variety of databases through JDBC in
PowerBuilder. This section describeswhat you need to know to use JDBC
connections to access your datain PowerBuilder.

Java Database Connectivity (JDBC) is astandard application
programming interface (API) that allows a Java application to access any
database that supports Structured Query Language (SQL) as its standard
data access language.

The JDBC API includes classes for common SQL database activities that
allow you to open connectionsto databases, execute SQL commands, and
process results. Consequently, Java programs have the capability to use
the familiar SQL programming model of issuing SQL statements and
processing the resulting data. The JIDBC classesareincluded in Java 1.1+
and Java 2 as the java.sgl package.

37

About the JDBC interface

The JDBC API defines the following:

A library of JDBC function callsthat connect to a database, execute SQL
statements, and retrieve results

A standard way to connect and log into aDBMS

SQL syntax based on the X/Open SQL Call Level Interface or X/Openand
SQL Access Group (SAG) CAE specification (1992)

A standard representation for datatypes

A standard set of error codes

How JDBC APIs are JDBC API implementations fall into two broad categories: those that

implemented communicate with an existing ODBC driver (aJDBC-ODBC bridge) and those
that communicate with a native database APl (a JDBC driver that converts
JDBC callsinto the communications protocol used by the specific database
vendor). The PowerBuilder implementation of the JDBC interface can be used
to connect to any database for which a JDBC-compliant driver exists.

The PowerBuilder A JavaVirtual Machine (JVM) isrequired to interpret and execute the
JDB interface bytecode of aJavaprogram. The PowerBuilder JDB interface supportsthe Sun
Java Runtime Environment (JRE) versions 1.2 and later.

Using the JDBC interface

You can use the IDBC interface to devel op several types of components and/or
applications in PowerBuilder:

38

Thin client/server applications If aclientisaready runningaJvVM (in
arunning Web browser or inside the operating system), the use of the
JDBC interface to access a database does not require the client-side
installation and administration of a database driver, which is required
when using ODBC.

DataWindow objects to be used in a Datawindow Web control for
ActiveX Using the JDBC interface does not require theinstallation of a

database driver on the client, since the JDBC driver can be downloaded
with the Web ActiveX in a CAB file.

Transactional components to be deployed on EAServer that access
a database through the EAServer JDBC interface Using the JDBC
interface allows a PowerBuilder transactional component to share the

same transaction as another component.

PowerBuilder Classic

CHAPTER 3 Using the JDBC Interface

Components of a JDBC connection

How a JDBC
connection is made

The JDBC DLL

PowerBuilder Java
package

In PowerBuilder when you access a database through the JDBC interface, your
connection goes through several layers before reaching the database. It is
important to understand that each layer represents a separate component of the
connection, and that each component might come from a different vendor.

Because JDBC is astandard API, PowerBuilder uses the same interface to
access every JDBC-compliant database driver.

Figure 3-1 shows the general components of a JDBC connection.

Figure 3-1: Components of a JDBC connection

Development
environment

I

Database PBJDBAnn.OLL
interface DLL

Supplied by Sybase

Java Virtual Sun Java Runtime Supplied by Sybase
Maching Envirenment or Sun
JOBC dri J[lafhd::er Supplied by
river e
Sybase jConnect database vendor

Database

PowerBuilder provides the pbjdb125.dll. This DLL runs with the Sun Java
Runtime Environment (JRE) versions 1.1 and | ater.

PowerBuilder includes a small package of Java classes that gives the JDBC
interface the level of error-checking and efficiency (SQLException catching)
foundin other PowerBuilder interfaces. The packageiscalled pbjdbc12125.jar
and is found in Sybase\Shared\Power Builder.

Connecting to Your Database 39

About the JDBC interface

The Java Virtual
Machine

The JDBC drivers

Accessing Unicode
data

The Java Virtual Machine (JVM) is a component of Java development
software. When you install PowerBuilder, the Sun Java Devel opment Kit
(JDK), including the Java Runtime Environment (JRE), isinstalled on your
system in Sybase\Shared\PowerBuilder. For PowerBuilder 12.5, JDK 1.5is
installed. Thisversion of the VM is started when you use a JDBC connection
or any other process that requiresa JVM and is used throughout the
PowerBuilder session.

If you need to use adifferent VM, seetheinstructionsin “Preparing to use the
JDBC interface” on page 41. For more information about how the VM is
started, see the chapter on deploying your application in Application
Techniques.

The JDBC interface can communicate with any JDBC-compliant driver
including Sybase jConnect™ for JDBC (available with Sybase ASE, 1Q, and
SA database clients) and the Oracle and IBM Informix JDBC drivers. These
drivers are native-protocol, al-Javadrivers—that is, they convert JDBC calls
into the SQL syntax supported by the databases.

Using the ODBC interface, PowerBuilder can connect, save, and retrieve data
in both ANSI/DBCS and Unicode databases but does not convert data between
Unicode and ANSI/DBCS. When character dataor command text is sent to the
database, PowerBuilder sendsaUnicode string. The driver must guarantee that
the datais saved as Unicode data correctly. When PowerBuilder retrieves
character data, it assumes the data is Unicode.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All datamust bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use special
datatypes to store Unicode data. Columns with these datatypes can store only
Unicode data. Any data saved into such a column must be converted to
Unicode explicitly. This conversion must be handled by the database server or
client.

JDBC registry entries

40

When you access data through the PowerBuilder JDBC interface,
PowerBuilder uses an internal registry to maintain definitions of SQL syntax,
DBM S-specific function calls, and default DBParm parameter settings for the
back-end DBMS. Thisinternal registry currently includes subentries for SQL
Anywhere, Adaptive Server Enterprise, and Oracle databases.

PowerBuilder Classic

CHAPTER 3 Using the JDBC Interface

In most cases you do not need to modify the JDBC entries. However, if you do
need to customize the existing entries or add new entries, you can make
changesto the system registry by editing the registry directly or executing a
registry file. Changes you introduce in the system registry override the
PowerBuilder internal registry entries. See the egreg.txt filein
Sybase\Shared\Power Builder for an example of aregistry file you could
execute to change entry settings.

Supported versions for JDBC

The PowerBuilder JIDBC interface uses the pbjdb125.dll to access a database
through a JDBC driver.

To use the IDBC interface to access the jConnect driver, usejConnect Version
4.2 or higher. For information on jConnect, see your Sybase documentation.

To use the IDBC interface to access the Oracle JDBC driver, use Oracle 8
JDBC driver Version 8.0.4 or higher. For information on the Oracle JDBC
driver, see your Oracle documentation.

Supported JDBC datatypes

Like ODBC, the JDBC interface compiles, sorts, presents, and uses alist of
datatypes that are native to the back-end database to emulate as much as
possible the behavior of a native interface.

Preparing to use the JDBC interface

Before you define the interface and connect to a database through the JDBC
interface, follow these steps to prepare the database for use:

1 Configure the database server for its JDBC connection and install its
JDBC-compliant driver and network software.

2 Instal the JDBC driver.

3 Setor verify thesettingsin the CLASSPATH environment variableand the
Javatab of the System Options dialog box.

Connecting to Your Database 41

Preparing to use the JDBC interface

Step 1: Configure the
database server

Step 2: Install the
JDBC driver

Step 3: Verify or set
the settings in the
CLASSPATH variable
and Java tab

Configuring the
jConnect driver

42

You must configure the database server to make JDBC connections as well as
install the JDBC driver and network software.

[TTo configure the database server for its JDBC connection:

1 Make surethe database server is configured to make JDBC connections.
For configuration instructions, see your database vendor’s documentation.

2 Make sure the appropriate JDBC driver software is installed and running
on the database server.

The driver vendor’s documentation should provide the driver name, URL
format, and any driver-specific properties you need to specify in the
database profile. For notes about thejConnect driver, see” Configuring the
jConnect driver” on page 42.

3 Makesuretherequired network software (suchas TCP/IP) isinstalled and
running on your computer and is properly configured so that you can
connect to the database server at your site.

You must install the network communication driver that supports the
network protocol and operating system platform you are using.

For installation and configuration instructions, see your network or
database administrator.

In the PowerBuilder Setup program, select the Typical install, or select the
Custom install and select the JDBC driver.

Verify that the settingsin the PATH and CLASSPATH environment variables
or the Classpaths list on the Java tab of the PowerBuilder System Options
dialog box point to the appropriate, fully qualified file names, or set them.

If you are using the JDK installed with PowerBuilder, you do not need to make
any changes to these environment variables.

If you areusing JDK 1.2 or |ater, you do not need to include any Sun JavaVM
packagesin your CLASSPATH variable, but your PATH environment variable
must include an entry for the Sun JavaVM library, jvm.dll (for example, path\
JDK15\JRE\bin\client).

If you are using the Sybase jConnect driver, make sureto completetherequired
configuration steps such asinstalling the JIDBC stored proceduresin Adaptive
Server databases. Also, verify that the CLASSPATH environment variable on
your computer or the Classpaths list on the Java tab of the PowerBuilder
System Options dialog box includes an entry pointing to the location of the
jConnect driver.

PowerBuilder Classic

CHAPTER 3 Using the JDBC Interface

For example, if you are using jConnect 6.05, you should include an entry
similar to the following:

C:\Program Files\Sybase\jConnect-6.05\classes\jconn3.jar

For more information about configuring jConnect, see the jConnect for JIDBC
documentation.

Defining the JDBC interface

Defining the profile To define aconnection through the JIDBC interface, you must create adatabase
profile by supplying values for at least the basic connection parametersin the
Database Profile Setup - JIDBC dialog box. You can then select this profile at
any time to connect to your database in the devel opment environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

Specifying connection To provide maximum flexibility (as provided in the JDBC API), the JIDBC
parameters interface supports database connections made with different combinations of
connection parameters:

Connecting to Your Database

Driver name, URL, and Properties You should specify values for this
combination of connection parametersif you need to define
driver-specific properties. When properties are defined, you must also
define the user 1D and password in the properties field.

For example, when connecting to the jConnect driver, enter the following
valuesin the Driver-Specific Propertiesfield:

SQLINITSTRING=set TextSize 32000;
user=system; password=manager;

Driver name, URL, User ID, and Password You should specify values
for this combination of connection parametersif you do not need to define
any driver-specific properties.

Driver Name: com.sybase.jdbc3.jdbc.SybDriver

URL: jdbc:sybase:Tds:localhost:2638

Login ID: dba

Password: sql

43

Defining the JDBC interface

44

« Driver name and URL You should specify values for this combination
of connection parameters when the user ID and password are included as
part of the URL.

For example, when connecting to the Oracle JDBC driver, the URL can
include the user ID and password:

jdbc:oracle:thin:userid/password@host :port :dbname

Specifying properties when connecting to jConnect
If you plan to use the blob datatype in PowerBuilder, you should be aware that

jConnect imposes arestriction on blob size. Consequently, before you make
your database connection from PowerBuilder, you might want to reset the blob
sizeto avalue greater than the maximum size you plan to use.

To set blob size, define the jConnect property SQLINITSTRING in the
Driver-Specific Properties box on the Connection page. The
SQLINITSTRING property is used to define commands to be passed to the
back-end database server:

SQLINITSTRING=set TextSize 32000;

Remember that if you define a property in the Driver-Specific Properties box,
you must also define the user ID and password in this box.

PowerBuilder Classic

CHAPTER 4

About this chapter

Contents

For more information

Using the OLE DB Interface

This chapter describesthe OLE DB interface and explains how to prepare
to use this interface and how to define the OLE DB database profile.

Topic Page
About the OLE DB interface 45
Preparing to use the OLE DB interface 49
Defining the OLE DB interface 51

Thischapter givesgeneral information about using the OLE DB interface.
For more detailed information:

¢ Seethe OLE DB Programmer’s Guide in the Microsoft MSDN library
at http://msdn.microsoft.com/en-us/library/ms713643.aspx.

¢ Usethe online Help provided by the data provider vendor.

¢ Check to seeif thereis atechnical document that describes how to
connect to your OLE DB data provider. Any updated information
about connectivity issues is available from Sybase Support and
Downloads Web site at http://www.sybase.com/support.

About the OLE DB interface

Connecting to Your Database

You can access awide variety of datathrough OLE DB data providersin
PowerBuilder. This section describes what you need to know to use OLE
DB connections to access your datain PowerBuilder.

Supported OLE DB data providers
For acomplete list of the OLE DB data providers supplied with

PowerBuilder and the data they access, see “ Supported Database
Interfaces” in the online Help.

45

About the OLE DB interface

What is OLE DB?
OLE DB API

Accessing data
through OLE DB

46

OLE DB isastandard application programming interface (API) developed by
Microsoft. It isacomponent of Microsoft’s Data A ccess Components software.
OLE DB alows an application to access a variety of datafor which OLE DB
data providers exist. It provides an application with uniform access to data
stored in diverse formats, such as indexed-sequential files like Btrieve,
personal databases like Paradox, productivity tools such as spreadsheets and
electronic mail, and SQL -based DBM Ss.

The OLE DB interface supports direct connections to SQL -based databases.

Applications like PowerBuilder that provide an OLE DB interface can access
datafor which an OLE DB data provider exists. An OLE DB dataprovider is
adynamiclink library (DLL) that implements OL E DB function callsto access
aparticular data source.

The PowerBuilder OLE DB interface can connect to any OLE DB data
provider that supports the OLE DB object interfaces listed in Table 4-1. An
OLE DB data provider must support these interfaces in order to adhere to the
Microsoft OLE DB 2.0 specification.

Table 4-1: Required OLE DB interfaces

| Accessor IDBInitialize
|Columnsinfo IDBProperties
|Command 10OpenRowset

| CommandProperties IRowset
|CommandText IRowsetInfo
IDBCreateCommand IDBSchemaRowset
IDBCreateSession I SourcesRowset

In addition to the required OLE DB interfaces, PowerBuilder also uses the
OLE DB interfaceslisted in Table 4-2 to provide further functionality.

Table 4-2: Additional OLE DB interfaces

OLE DB interface Use in PowerBuilder

| CommandPrepare Preparing commands and retrieving column
information.

IDBInfo Querying thedataprovider for itsproperties. If this
interface is not supported, database connections
might fail.

IDBCommandWithParameters | Querying the data provider for parameters.

|Errorinfo Providing error information.

|ErrorRecords Providing error information.

PowerBuilder Classic

CHAPTER 4 Using the OLE DB Interface

Accessing Unicode
data

OLE DB interface Use in PowerBuilder

IIndexDefinition Creating indexes for the extended attribute system
tables. Also creating indexes in the Database
painter. If thisinterface is not supported,
PowerBuilder looks for index definition syntax in
the pbodb125.ini file.

IMultipleResults Providing information.

IRowsetChange Populating the extended attribute system tables
when they are created. Also, for updating blobs.

IRowsetUpdate Creating the extended attribute system tables.

ISQLErrorinfo Providing error information.

I SupportErrorinfo Providing error information.

I TableDefinition Creating the extended attribute system tables and

also for creating tables in the Database painter. If
thisinterface is not supported, the following
behavior results:

» PowerBuilder looks for table definition syntax
in the pbodb125.ini file

¢ PowerBuilder catalog tables cannot be used

« DDL and DML operations, like modifying
columns or editing datain the database painter,
do not function properly

I TransactionLocal Supporting transactions. If thisinterface is not
supported, PowerBuilder defaults to AutoCommit
mode.

Using the OLE DB interface, PowerBuilder can connect, save, and retrieve
datain both ANSI/DBCS and Unicode databases but does not convert data
between Unicode and ANSI/DBCS. When character data or command text is
sent to the database, PowerBuilder sends a Unicode string. The data provider
must guarantee that the datais saved as Unicode data correctly. When
PowerBuilder retrieves character data, it assumes the datais Unicode.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All datamust bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) asits character set might use special
datatypes to store Unicode data. Columns with these datatypes can store only
Unicode data. Any data saved into such a column must be converted to
Unicode explicitly. This conversion must be handled by the database server or
client.

Connecting to Your Database a7

About the OLE DB interface

Components of an OLE DB connection

When you access an OLE DB data provider in PowerBuilder, your connection
goesthrough several layers before reaching the data provider. It isimportant to
understand that each layer represents a separate component of the connection,
and that each component might come from a different vendor.

Because OLE DB is astandard API, PowerBuilder uses the same interface to
access every OLE DB data provider. Aslong as an OLE DB data provider
supports the object interfaces required by PowerBuilder, PowerBuilder can
accessit through the OLE DB interface.

Figure 4-1 shows the general components of a OLE DB connection.

Figure 4-1: Components of an OLE DB connection

Development
anvironment

Database

interface DLL PEOLEnnn.DLL

Supplied by Sybase

r

Supplied by

OLE DB Data Provider — database vendor

Data provider

Database

Obtaining OLE DB data providers

48

PowerBuilder Enterprise lets you access datawith any OLE DB data provider
obtained from a vendor other than Sybase if that data provider supports the
OLE DB object interfaces required by PowerBuilder. In most cases, these
drivers work with PowerBuilder. However, Sybase might not have tested the
driversto verify this.

PowerBuilder Classic

CHAPTER 4 Using the OLE DB Interface

Supported versions for OLE DB

The OLE DB interface usesa DLL named PBOLE125.DLL to access a
database through an OLE DB data provider.

Required OLE DB version
To usethe OLE DB interfaceto access an OL E DB database, you must connect

through an OLE DB data provider that supports OLE DB version 2.0 or later.
For information on OLE DB specifications, see the Microsoft documentation at
http://msdn.microsoft.com/en-us/library/default.aspx.

Preparing to use the OLE DB interface

Before you define the interface and connect to a data provider through OLE
DB:

1 Instal and configure the database server, network, and client software.

2 Ingtall the OLE DB interface and the OLE DB data provider that accesses
your data source.

3 Install Microsoft’'s Data Access Components software on your machine.
4 If required, define the OLE DB data source.

Step 1: Install and You must install and configure the database server and install the network
configure the data software and client software.

[TTo install and configure the database server, network, and client
software:
1 Makesurethe appropriate database softwareisinstalled and running onits
server.

You must obtain the database server software from your database vendor.
For installation instructions, see your database vendor’s documentation.

2 Makesuretherequired network software (such as TCP/IP) isinstalled and
running on your computer and is properly configured so that you can
connect to the data server at your site. You must install the network
communication driver that supports the network protocol and operating
system platform you are using.

For installation and configuration instructions, see your network or data
source administrator.

Connecting to Your Database 49

Preparing to use the OLE DB interface

Step 2: Install the OLE
DB interface and data
provider

Step 3: Install the
Microsoft Data Access
Components software

Step 4: Define the
OLE DB data source

50

3 If required, install the appropriate client software on each client computer
on which PowerBuilder isinstalled.

Client software requirements
To determine client software requirements, see your database vendor’s

documentation.

In the PowerBuilder Setup program, select the Custom install and select the
OLE DB provider that accesses your database. You can install one or more of
the OLE DB data providers shipped with PowerBuilder, or you can install data
providers from another vendor later.

The PowerBuilder OLE DB interface requires the functionality of the
Microsoft Data Access Components (MDAC) version 2.8 or higher software.
Version 2.8 is distributed with Windows XP Service Pack 2 and Windows
Server 2003.

To check the version of MDAC on your computer, you can download and run
the MDAC Component Checker utility from the MDAC Downloads page at
http://msdn.microsoft.com/en-us/data/aa937730.aspx.

On the Windows Vista operating system, Windows Data A ccess Components
(DAC) 6.0 includes some changes to work with Vista but is otherwise
functionally equivalent to MDAC 2.8.

OLE DB data providers installed with MDAC
Several Microsoft OLE DB data providers are automatically installed with

MDAC, including the providers for SQL Server (SQLOLEDB) and ODBC
(MSDASQL).

Oncethe OLE DB dataprovider isinstalled, you might haveto definethe OLE
DB data source the data provider will access. How you define the data source
depends on the OL E DB data provider you are using and the vendor who
provided it.

If you are connecting to an ODBC data provider (such as Microsoft's OLE DB
Provider for ODBC), you must define the ODBC data source as you would if
you were using a direct ODBC connection. To define an ODBC data source,
use Microsoft’'s ODBC Data Source Administrator. You can access this utility
from the Control Panel in Windows or from the Database painter or Database
Profile Setup dialog box in PowerBuilder.

PowerBuilder Classic

CHAPTER 4 Using the OLE DB Interface

Defining the OLE DB interface

Using the OLE DB
Database Profile
Setup

Specifying connection
parameters

Using the Data Link
API

To define a connection through the OLE DB interface, you must create a
database profile by supplying values for at |least the basic connection
parameters in the Database Profile Setup — OLE DB dialog box. You can then
select this profile anytime to connect to your datain the development
environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

You must supply values for the Provider and Data Source connection
parameters. Select adataprovider fromthelist of installed data providersin the
Provider drop-down list. The Data Source value varies depending on the type
of data source connection you are making. For example:

» If youareusing Microsoft'sOLE DB Provider for ODBC to connect to the
EASDemo DB, you select MSDASQL asthe Provider value and enter the
actual ODBC data source name (for example, EAS Demo DB) asthe Data
Source value.

» If youareusing Microsoft’s OLE DB Provider for SQL Server, you select
SQLOLEDB asthe Provider value and enter the actual server name as the
Data Source value. You must also use the Extended Properties field to
provide the database name (for example, Database=Pubs) since you can
have multiple instances of a database.

The Data Link option alows you to access Microsoft’s Data Link API, which
alows you to define afile or use an existing file that contains your OLE DB
connection information. A Data Link fileisidentified with the suffix .udl. If
you use a Data Link file to connect to your data source, all other settings you
make in the OLE DB Database Profile Setup dialog box are ignored.

To launch this option, select the File Name check box on the Connection tab
and double-click on the button next to the File Name box. (You can also launch
the Data Link APl in the Database painter by double-clicking on the Manage
Data Links utility included with the OLE DB interfacein the list of Installed
Database Interfaces.)

For more information on using the Data Link API, seethe OLE DB
Programmer’s Guide in the Microsoft MSDN library at
http://msdn.microsoft.com/en-us/library/ms713643.aspx.

Connecting to Your Database 51

Defining the OLE DB interface

52 PowerBuilder Classic

CHAPTER 5

About this chapter

Contents

For more information

About ADO.NET

Connecting to Your Database

Using the ADO.NET Interface

This chapter describes the ADO.NET interface and explains how to
prepare to use thisinterface and how to define an ADO.NET database
profile.

Topic Page
About ADO.NET 53

About the PowerBuilder ADO.NET database interface

54
Preparing to use the ADO.NET interface 58
Defining the ADO.NET interface 60
Sharing ADO.NET Database Connections 64

This chapter gives general information about using the ADO.NET
interface. For more detailed information:

e SeetheDataAccessand .NET development sectionsin the Microsoft
MSDN library at http://msdn.microsoft.com/en-us/data/default.aspx.

« Usethe online Help provided by the data provider vendor.

e Check to seeif there is atechnical document that describes how to
connect to your ADO.NET data provider. Any updated information
about connectivity issuesis available from the Sybase Customer
Service and Support Web site at http://www.sybase.com/support.

ADO.NET isaset of technologies that provides native accessto datain
the Microsoft .NET Framework. It is designed to support an n-tier
programming environment and to handle adisconnected dataarchitecture.
ADO.NET istightly integrated with XML and uses a common data
representation that can combine data from disparate sources, including
XML.

53

About the PowerBuilder ADO.NET database interface

Accessing Unicode
data

One of the major components of ADO.NET isthe .NET Framework data
provider, which connects to a database, executes commands, and retrieves
results.

Microsoft provides .NET Framework data providersfor SQL Server and OLE
DB with the .NET Framework, and data providers for ODBC and Oracle can
be downloaded from the Microsoft Web site. You can also obtain .NET
Framework data providers from other vendors, such asthe .NET Framework
Data Provider for Adaptive Server Enterprise from Sybase.

To connect to a database using the PowerBuilder ADO.NET database
interface, you must use a .NET Framework data provider.

Using the ADO.NET interface, PowerBuilder can connect, save, and
retrieve datain both ANSI/DBCS and Unicode databases but does not convert
databetween Unicodeand ANSI/DBCS. When character dataor command text
is sent to the database, PowerBuilder sends a Unicode string. The data
provider must guarantee that the datais saved as Unicode data correctly. When
PowerBuilder retrieves character data, it assumes the datais Unicode.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All datamust bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use special
datatypes to store Unicode data. Columns with these datatypes can store only
Unicode data. Any data saved into such a column must be converted to
Unicode explicitly. This conversion must be handled by the database server or
client.

About the PowerBuilder ADO.NET database interface

54

You can use the PowerBuilder ADO.NET database interface to connect to a
data source such as Adaptive Server® Enterprise, Oracle, and Microsoft SQL
Server, aswell asto data sources exposed through OLE DB and XML, inmuch
the same way as you use the PowerBuilder ODBC and OLE DB database
interfaces.

PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Performance
You might experience better performance if you use a native database

interface. The primary purpose of the ADO.NET interface isto support shared
connections with other database constructs such as the .NET DataGrid in
Sybase Datawindow .NET.

Components of an ADO.NET connection

When you access a database using ADO.NET in PowerBuilder, your
connection goes through several layers before reaching the database. It is
important to understand that each layer represents a separate component of the
connection, and that components might come from different vendors.

The PowerBuilder ADO.NET interface consists of adriver (pbado125.di1)
and a server (either Sybase.PowerBuilder.Db.dll or

Sybase.Power Builder.DbEXxt.dll). The server has dependencieson afile called
pbrth125.dll. These DLLs must be deployed with an application that connects
to adatabase using ADO.NET. For Oracle 10g or Adaptive Server 15 or later,
use Sybase.Power Builder .DbExt.dIl. For earlier versions and other DBMSs,
use Sybase.PowerBuilder.Db.dll.

The DataWindow .NET database interface for ADO.NET supports the
ADO.NET data providerslisted in Table 5-1.

Table 5-1: Supported ADO.NET data providers

Data Provider Namespace

.NET Framework Data Provider for OLE DB System.Data.OleDb
.NET Framework Data Provider for SQL Server System.Data.SqlClient
Oracle Data Provider for .NET (ODP.NET) Oracle.DataAccess.Client
Sybase ADO.NET Data Provider for Adaptive Server | Sybase.Data AseClient
Enterprise (ASE)

Additional .NET Framework data providers may be supported in future
rel eases. Please see the release bulletin for the latest information.

Connecting to Your Database 55

About the PowerBuilder ADO.NET database interface

Figure 5-1 shows the general components of an ADO.NET connection using
the OLE DB .NET Framework data provider.

Figure 5-1: Components of an ADO.NET OLE DB connection

Development
environment

!

PBADGN.OLL

i

Sybase.PowerBuilder.Db.dll
Sybase. PowerBuilder. DbExt.dll

i

Database

Supplied by Syb
driver upplied by Sybase

Database server —— Supplied by Sybase

. Supplied by
NET Frame‘nlfork System.Data.OleDb Microsoft or other
Data Provider
vendor
MSDAQRA, SQLOLEDB, - .
OLE DB provide— or other OLE DB _ :“tp';“ed by g
provider atabase vendor
Database

Figure 5-2 shows the general components of an ADO.NET connection using a
native ADO.NET data provider.

56 PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Figure 5-2: Components of a native ADO.NET connection

Development
environment

i

Database driver — PBADOnAR.DLL

l

Sybase, PowerBuilder. Db.dll
Sybase PowerBuilder DbExt.dll

l

Oracle.DataAccess, Client

Supplied by Sybase

Database server —— Supplied by Sybase

~ Supplied by
ADO.MET Data Sybase.Data AseClient Sybase, Microsoft,
Provider or or Oracle

Systern.Data. SqlClient

Database

OLE DB data providers

When you usethe .NET Framework dataprovider for OLE DB, you connect to
adatabase through an OL E DB data provider, such asMicrosoft's SQLOLEDB
or MSDAORA or adata provider from another vendor.

The .NET Framework Data Provider for OLE DB does not work with the
MSDASQL provider for ODBC, and it does not support OLE DB version 2.5
interfaces.

You can use any OLE DB data provider that supports the OLE DB interfaces
listedin Table 5-2 withthe OLE DB .NET Framework data provider. For more
information about supported providers, seethetopic on .NET Framework data
providers in the Microsoft .NET Framework Developer’s Guide.

Connecting to Your Database 57

Preparing to use the ADO.NET interface

The PowerBuilder ADO.NET interface supports connection to SQL
Anywhere, Adaptive Server Enterprise, Microsoft SQL Server, Oracle,
Informix, and Microsoft Access with the OLE DB .NET Framework data

provider.

After youinstall the dataprovider, you might need to define adatasourcefor it.

Table 5-2: Required interface support for OLE DB data providers

OLE DB object

Required interfaces

OLE DB Services

|Datalnitidize

DataSource

IDBInitialize
IDBCreateSession
IDBProperties
|Persist

Session

| SessionProperties
| OpenRowset

Command

|CommandText
| CommandProperties

MultipleResults

IMultipleResults

RowSet

IRowset
| A ccessor
|Columnsinfo

IRowsetInfo (only required if DBTYPE_HCHAPTER is
supported)

Error

|Errorinfo
|ErrorRecords

Preparing to use the ADO.NET interface

Before you define the interface and connect to a database using ADO.NET:

58

1 Install and configure the database server, network, and client software.
2 Ingtal the ADO.NET interface.

3 Ingtall Microsoft’s Data Access Components version 2.6 or higher
software on your machine.

PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Step 1: Install and
configure the data
server

Step 2: Install the
ADO.NET interface

Step 3: Install the
Microsoft Data Access
Components software

You must install and configure the database server and install the network
software and client software.

[TTo install and configure the database server, network, and client

software:
1 Makesuretheappropriate database softwareisinstalled and running onits
server.

You must obtain the database server software from your database vendor.
For installation instructions, see your database vendor’s documentation.

2 Makesuretherequired network software (such as TCP/IP) isinstalled and
running on your computer and is properly configured so that you can
connect to the data server at your site. You must install the network
communication driver that supports the network protocol and operating
system platform you are using.

For installation and configuration instructions, see your network or data
source administrator.

3 If reguired, install the appropriate client software on each client computer
on which PowerBuilder isinstalled.

Client software requirements
To determine client software requirements, see your database vendor’s

documentation.

Inthe PowerBuilder Setup program, select the Custom install and select the
ADO.NET database interface.

The PowerBuilder ADO.NET interface requires the functiondity of the
Microsoft Data Access Components (MDAC) version 2.8 or higher software.
Version 2.8 is distributed with Windows XP Service Pack 2 and Windows
Server 2003.

To check the version of MDAC on your computer, you can download and run
the MDAC Component Checker utility from the MDAC Downloads page at
http://msdn.microsoft.com/en-us/data/aa937730.aspx.

On the Windows Vista operating system, Windows Data Access Components
(DAC) 6.0 includes some changes to work with Vista but is otherwise
functionally equivalent to MDAC 2.8.

Connecting to Your Database 59

Defining the ADO.NET interface

OLE DB data providers installed with MDAC
Several Microsoft OLE DB data providers are automatically installed with

MDAC, including the providers for SQL Server (SQLOLEDB) and ODBC
(MSDASQL).

Defining the ADO.NET interface

Using the ADO.NET
Database Profile
Setup

Specifying connection
parameters

Using the Data Link
API with OLE DB

60

To define a connection using the ADO.NET interface, you must create a
database profile by supplying values for at least the basic connection
parametersin the Database Profile Setup—ADO.NET dialog box. You canthen
select this profile at any time to connect to your datain PowerBuilder.

For information on how to define a database profile, see “Using database
profiles” on page 7.

You must supply avalue for the Namespace and DataSource connection
parameters and for the User ID and Password. When you use the
System.Data.OleDb namespace, you must also select a data provider from the
list of installed data providers in the Provider drop-down list.

The Data Source val ue varies depending on the type of data source connection
you are making. For example, if you are using Microsoft’'s OLE DB Provider
for SQL Server, you select SQLOLEDB as the Provider value and enter the
actual server name as the Data Source value. In the case of Microsoft SQL
Server, you must also usethe Extended Propertiesfield to provide the database
name (for example, Database=Pubs) since you can have multiple instances of
adatabase.

The Data Link option allows you to access Microsoft’s Data Link API, which
allows you to define afile or use an existing file that contains your OLE DB
connection information. A Data Link fileisidentified with the suffix .udl.

To launch this option, select the File Name check box on the Connection page
and double-click the button next to the File Name box. (You can aso launch
the DataLink API inthe Database painter by double-clicking the Manage Data
Links utility included with the OLE DB interfacein thelist of Installed
Database Interfaces.)

For more information on using the Data Link API, see Microsoft's Universal
Data Access Web site at http://msdn.microsoft.com/en-us/data/default.aspx.

PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Using a Data Link file versus setting the database parameters
If you use a Data Link file to connect to your data source, al other

database-specific settings you make in the ADO.NET Database Profile Setup
dialog box are ignored.

Getting identity column values

Setting up a
dbConfiguration
section in a
configuration file

You can usethe standard select @eidentity Syntax toobtainthevalueof an
identity column. You can also use an aternative syntax, such asselect
scope_identity (), by adding sectionsto a.NET configuration file for your
application.

Thefollowing example showsthe general structure of aconfiguration filewith
a database configuration section and one custom configuration section:

<configurations>
<configSections>
<sectionGroup name="dbConfiguration"s>
<section name="mycustomconfig"
type="Sybase.PowerBuilder .Db.DbConfiguration,
Sybase . PowerBuilder .pb"
/>
</sectionGroup>
</configSections>

<dbConfigurations>
<mycustomconfig dbParm="optional value"
getIdentity="optional syntax"
/>
</dbConfigurations>
</configuration>

[TTo add a database configuration section to a .NET configuration file:

1 Inthe <configSections> section of the configuration file, add a
<sectionGroup> element with the name “dbConfiguration”. Thisnameis
case sensitive.

<configSections> must appear at the beginning of the configuration file,
before the <runtime> section if any.

Connecting to Your Database 61

Defining the ADO.NET interface

Sample configuration
file

62

In the dbConfiguration <sectionGroup> element, add one of more
<section> elements.

For each section, specify aname of your choice and atype. Thetypeisthe
strong name of the assembly used to parse this section of the configuration
file

Close the <section> and <configSections> elements and add a
<dbConfiguration> element.

For each section you defined in step 2, add a new element to the
<dbConfiguration> element.

For example, if you defined asection called configi, add aconfigl
element. Each element hastwo attributes: doParm and getldentity. You can
set either or both of these attributes.

The dbParm value sets the value of the DBParm parameter of the
transaction object. It has a maximum length of 1000 characters. If you set
avalue for aparameter in the configuration file, any value that you set in
code or in the Database Profile Setup dialog box is overridden.

The getldentity value specifies the syntax used to retrieve the value of an
identity column. It has a maximum length of 100 characters. If you do not
specify avalue for getldentity, the select eeidentity Syntax is used.

This sample configuration file for PowerBuilder 12.5is called
pb125.exe.config. It contains three custom configurations. The <myconfig>
element sets both the dbParm and getldentity attributes. <myconfigl> sets
getldentity only, and <myconfig2> setsdbParm only. The <runtime> sectionis
in the configuration file that ships with PowerBuilder but would not be
included in the configuration file that you ship with your application, which
would have the same name as your application with the extension exe.config.
For .NET Web Forms targets, you add the custom configurations to the
web.config file.

<configurations
<configSectionss>
<sectionGroup name="dbConfiguration"s>

<section name="myconfig"
type="Sybase.PowerBuilder .Db.DbConfiguration,
Sybase . PowerBuilder . Db

/>

<section name="myconfigl"
type="8Sybase . PowerBuilder .Db.DbConfiguration,
Sybase . PowerBuilder . Db

/>

PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Connecting to Your Database

<section name="myconfig2"
type="Sybase . PowerBuilder .Db.DbConfiguration,
Sybase . PowerBuilder .pb"
/>
</sectionGroup>
</configSections>

<runtime>
<assemblyBinding xmlns=
"urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name=
"Sybase.PowerBuilder.Db"/>
<codeBase href="file:///C:/Program Files/
Sybase/PowerBuilder 12.5/DotNET/bin/
Sybase.PowerBuilder.Db.d1l1l"/>
</dependentAssembly>
<dependentAssembly>
<assemblyIdentity name=
"Sybase.PowerBuilder.WebService.WSDL" />
<codeBase href="file:///C:/Program Files/
Sybase/PowerBuilder 12.5/DotNET/bin/
Sybase.PowerBuilder.WebService.WSDL.d11"/>
</dependentAssembly>
<dependentAssembly>
<assemblyIdentity name=
"Sybase.PowerBuilder.WebService.Runtime"/>
<codeBase href="file:///C:/Program Files/
Sybase/PowerBuilder 12.5/DotNET/bin/
Sybase.PowerBuilder.WebService.
Runtime.dll"/>
</dependentAssembly>
<probing privatePath="DotNET/bin" />
</assemblyBinding>
</runtime>

<dbConfigurations>

<myconfig dbParm="disablebind=1"
getIdentity="select scope identity ()"

/>

<myconfigl getIdentity="select scope_ identity ()"

/>

<myconfig2 dbParm=
"Namespace='0Oracle.DataAccess.Client',
DataSource='oralOgen', DisableBind=1,
NCharBind=1,ADORelease='10.1.0.301""

63

Sharing ADO.NET Database Connections

Specifying the custom
configuration to be
used

/>
</dbConfiguration>
</configuration>

Onthe System tab pagein the Database Profile Setup dialog box for ADO.NET
or in code, specify the name of the custom configuration section you want to
use as the value of the DbConfigSection parameter. For example:

Sglca.DBParm="DbConfigSection="'myconfig'"

If you set any parametersin the profile or in code that are also set in the
configuration file, the value specified in the configuration file takes
precedence.

The configuration file must be present in the same directory as the executable
file and must have the same name with the extension .config.

Sharing ADO.NET Database Connections

64

PowerBuilder Classic applications can share database ADO.NET connections
with third-party .NET assemblies exposed as COM through a connection
proxy. The connection proxy is an instance of type IAdoConnectionProxy.

The IAdoConnectionProxy interface is defined in the
Sybase.PowerBuilder.DataSource.Sharing.dll assembly as follows:

IAdoConnectionProxy {
object Connection; //accepts System.Data.IDbConnection
object Transaction; //accepts System.Data.IDbTransaction

event EventHandler TransactionChanged;

}

Both the PowerBuilder application and the third-party assembly manage
connections and transactions by referencing the proxy.

The assembly must be registered as COM by using regasm.exe under the
Microsoft. NET\Framework\v4.0 folder. Please refer to the Microsoft MSDN
library for information about regasm.exe.

The PowerBuilder Transaction object is the standard PowerBuilder nonvisual
object used in database connections. To manage the shared connection, the
Transaction object references the AdoConnectionProxy object using these
methods:

PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

¢ bool SetAdoConnection (oleobject connectionProxy) — accepts an
imported ADO.NET connection.

« oleobject GetAdoConnection() — accepts an ADO.NET connection
exported from the Transaction object.

Importing an ADO.NET Connection from a Third-Party .NET

Assembly

Sample PowerScript
Code

You canimport an ADO.NET connection from an external .NET assembly into
aPowerBuilder Classic application, enabling the application and the assembly
to share the connection.

Use the SetAdoConnection method:
bool SetAdoConnection(oleobject proxy)

where proxy istheinstance of typelAdoConnectionProxy that ispassed in by the
third-party assembly.

The imported connection and any transaction are assigned to the
IAdoConnectionProxy instance.

The method returns true if the parameter is available (that is, the parameter is
an instance of 1AdoConnectionProxy or null). It returns false if the operation
fals.

Start the connection after invoking SetAdoConnection.

//Sample PowerScript code
SQLCA.DBMS = "ADO.NET"
SQLCA.AutoCommit = true
SQLCA.DBParm = "Namespace='System.Data.Odbc', DataSource='SQL
Anywhere 11 Demo'"
bool retVal = SQLCA.SetAdoConnection (emp.AdoConnectionProxy)
// emp is an instance of a type in the 3rd-party .NET assembly
if (retvVal = true) then

connect using SQLCA;

// db operations
end 1if

Connecting to Your Database 65

Sharing ADO.NET Database Connections

Sample C# Code Hereis an example of C# codein the third-party assembly:

public class Emp
private IDbConnection conn;
private IDbTransaction trans;

private IAdoConnectionProxy proxy;

public object AdoConnectionProxy {
get {
//disposing/clean-up actions.
if (null == proxy) {
proxy = new AdoConnectionProxy () ;
}
proxy.Connection = conn;
proxy.Transaction = trans;
return proxy;
}
set {
//disposing/clean-up actions.
proxy = value as IAdoConnectionProxy;
if (null != proxy) {
if (conn != proxy.Connection as IDbConnection)
this.Disconnect () ;
conn = proxy.Connection as IDbConnection;
trans = proxy.Transaction as IDbTransaction;
proxy.TransactionChanged += new
EventHandler (proxy TransactionChanged) ;
} else {
//disposing/clean-up actions.

66 PowerBuilder Classic

CHAPTER 5 Using the ADO.NET Interface

Exporting an ADO.NET Connection to a Third-Party .NET Assembly

To export an ADO.NET connection from a PowerBuilder Classic application,
use the GetAdoConnection method:

oleobject GetAdoConnection()

The method returns an instance of 1AdoConnectionProxy. The proxy’s ADO
connection object is assigned to property IAdoConnectionProxy.Connection.

When atransaction starts, the proxy’s active Transaction object is assigned to
property IAdoConnectionProxy.Transaction, and AutoCommit is false. When
AutoCommit istrue, the exported IAdoConnectionProxy.Transaction is null..

The method returns null if the connection fails, and falseif the operation fails.

To use the shared connection, your third-party assembly must reference the
exported connection proxy and manage the transaction. To be notified when
the active transaction is changed, you can subscribe the
IAdoConnection.TransactionChanged event . Remember to close the
connection.

Sample PowerScript //Sample PowerScript code
Code SQLCA.DBMS = "ADO.NET"
SQLCA.AutoCommit = false
SQLCA.DBParm = "Namespace='System.Data.Odbc', DataSource='SQL
Anywhere 11 Demo'"
Connect Using SQLCA;
emp . ConnectionProxy = SQLCA.GetAdoConnection ()
// db operations
disconnect using SQLCA;

Sample C# Code Here is an example of C# codein the third-party assembly:

Connecting to Your Database 67

Sharing ADO.NET Database Connections

// Manage the transaction
public class Emp

IAdoConnectionProxy proxy;
IDbTransaction trans;

public object ConnectionProxy {
get { return proxy; }
set {
proxy = value as IAdoConnectionProxy;

proxy.TransactionChanged += new

EventHandler (proxy TransactionChanged) ;

}

void proxy TransactionChanged(object sender, EventArgs e) (

trans = sender as IDbTransaction;

68 PowerBuilder Classic

PART 3 Working with Native
Database Interfaces

This part describes how to set up and define database
connections accessed through one of the native database
interfaces.

CHAPTER 6

About this chapter

Contents

Using Native Database Interfaces

This chapter describes native database interfaces. The following chapters
explain how to prepare to use the database and define any unique database
interface parameters so that you can access your data.

Topic Page
About native database interfaces 71
Components of a database interface connection 72
Using a native database interface 73

About native database interfaces

Connecting to Your Database

The native database interfaces provide native connections to many
databases and DBMSs. This chapter describes how the native database
interfaces access these databases.

The native database interfaces are not provided with the Desktop and
Professional editions of PowerBuilder. You can upgrade to PowerBuilder
Enterprise to use the native database interfaces.

For acomplete list of the supported native database interfaces, see
“Supported Database Interfaces’ in online Help.

A native database interface is a direct connection to your datain
PowerBuilder.

Each native databaseinterface usesitsowninterface DLL to communicate
with a specified database through a vendor-specific database API. For
example, the SQL Native Client interface for Microsoft SQL Server uses
aDLL named PBSNC125.DLL to accessthe database, whereasthe Oracle
11g database interface accesses the database through PBORA125.DLL.

In contrast, a standard database interface uses a standard API to
communicate with the database. For example, PowerBuilder can use a
single-interface DLL (PBODB125.DLL) to communicate withthe ODBC
Driver Manager and corresponding driver to access any ODBC data
source.

71

Components of a database interface connection

Components of a database interface connection

When you use a native database interface to access a database, your connection
goes through several layers before reaching the data. Each layer is a separate
component of the connection and each component might come from adifferent

vendor.

Figure 6-1: Components of a database connection

Development
environment

A

Database interface DLL
or shared library

&

k.

Database client software

Y

Any supported network
protocol

Gateway software
(if any)

Database

Supplied by Sybase

Supplied by Sybase

Supplied by

database vendor

Supplied by network
vendor or database
vendor

Supplied by
gateway vendor

Supplied hy

database vendor

For diagrams showing the specific components of your connection, see“Basic
software components” in the chapter for your native database interface.

72

PowerBuilder Classic

CHAPTER 6 Using Native Database Interfaces

Using a native database interface

About preparing to
use the database

About installing native
database interfaces

About defining native
database interfaces

You perform several basic steps to use a native database interface to access a
database.

Thefirst step in connecting to a database through anative database interfaceis
to prepare to use the database. Preparing the database ensures that you will be
able to access and use your datain PowerBuilder.

You must prepare the database outside PowerBuilder before you start the
product, then define the database interface and connect to it. The requirements
differ for each database—but in general, preparing a database involves four
basic steps.

[TTo prepare to use your database with PowerBuilder:

1 Makesuretherequired database server softwareis properly installed and
configured at your site.

2 If network software isrequired, make sureit is properly instaled and
configured at your site and on the client computer so that you can connect
to the database server.

3 Make sure the required database client software is properly installed and
configured on the client computer. (Typically, the client computer isthe
one running PowerBuilder.)

You must obtain the client software from your database vendor and make
sure that the version you install supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

4 Verify that you can connect to the server and database you want to access
outside PowerBuilder.

For specific instructions to use with your database, see “Preparing to use the
database” in the chapter for your native database interface.

After you prepare to use the database, you must install the native database
interface that accesses the database. See the instructions for each interface for
more information.

Once you are ready to access the database, you start PowerBuilder and define
the database interface. To define a database interface, you must create a
database profile by completing the Database Profile Setup dialog box for that
interface.

Connecting to Your Database 73

Using a native database interface

For general instructions, see* About creating database profiles’ on page 7. For
instructions about defining database i nterface parameters uniqueto aparticul ar
database, see “Preparing to use the database” in the chapter for your database
interface.

For more information The following chapters give general information about using each native
database interface. For more detailed information:

* Checktoseeif thereisatechnical document that describes how to connect
to your database. Any updated information about connectivity issuesis
available from the Sybase Support and Downloads Web site at
http://www.sybase.com/support.

* Ask your network or system administrator for assistance when installing
and setting up the database server and client software at your site.

74 PowerBuilder Classic

CHAPTER 7

About this chapter

Contents

Using Adaptive Server Enterprise

This section describes how to usethe Adaptive Server Enterprise database
interfaces in PowerBuilder.

Topic Page
Supported versions for Adaptive Server 75
Supported Adaptive Server datatypes 76
Basic software components for Adaptive Server 79
Preparing to use the Adaptive Server database 79
Defining the Adaptive Server database interface 82
Using Open Client security services 82
Using Open Client directory services 85
Using PRINT statementsin Adaptive Server stored procedures 88
Creating areport based on a cross-database join 89
Installing stored procedures in Adaptive Server databases 89

Supported versions for Adaptive Server

Connecting to Your Database

You can access Adaptive Server versions 11.x, 12.x, and 15.x using the
SY C Adaptive Server database interface. Use of this interface to access
other Open Server™ programs is not supported. The SY C database
interface uses a DLL named PBSYC125.DLL to access the database
through the Open Client™ CT-Lib API.

You can also access Adaptive Server version 15.x using the ASE Adaptive
Server database interface. Use of this interface to access other Open
Server programsis not supported. The Adaptive Server database interface
uses aDLL named PBASE125.DLL to access the database through the
Open Client CT-Lib API. To use thisinterface, the Adaptive Server 15
client must be installed on the client computer. The ASE interface
supports large identifiers with up to 128 characters.

75

Supported Adaptive Server datatypes

When deploying a
PowerBuilder custom
class user object in
EAServer

Client Library API
The Adaptive Server database interfaces use the Open Client CT-Library

(CT-Lib) application programming interface (API) to access the database.

When you connect to an Adaptive Server database, PowerBuilder makesthe
required callsto the API. Therefore, you do not need to know anything about
CT-Lib to use the database interface.

EAServer uses a dlightly different version of the CT-Lib software. Therefore,
at runtime you need to use the SY J database interface rather than ASE or SYC
to connect to an Adaptive Server database. The SY J Database Profile Setup
dialog box provides a convenient way to set the appropriate connection
parameters and then copy the syntax from the Preview tab into the script for
your Transaction object. The SY J database interface usesa DLL named
PBSYJ125.DLL.

You cannot use the SY J interface, however, to connect to the database in the
PowerBuilder devel opment environment. Therefore, during the devel opment
phase (before the component has been deployed to EAServer), you must use
ASE or SY C to connect to the database.

Supported Adaptive Server datatypes

76

The Adaptive Server interface supports the Sybase datatypes listed in Table 7-
1in reports and embedded SQL.

Table 7-1: Supported datatypes for Adaptive Server Enterprise

Binary NVarChar
Bigint (15.x and later) Real

Bit SmallDateTime
Char (see” Column-length limits” on page 78) Smallint
DateTime SmallMoney
Decimal Text

Double precision Timestamp
Float TinyInt

| dentity UniChar

Image UniText (15.x and later)
Int UniVarChar

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Accessing Unicode
data

Different display
values in painters

Money VarBinary
NChar VarChar
Numeric

In Adaptive Server 15.0 and later, PowerBuilder supports unsigned as well as
signed bigint, int, and smallint datatypes. You can also use the following
datatypes as identity columnsin Adaptive Server 15.0 and later: bigint, int,
numeric, smallint, tinyint, unsigned bigint, unsigned int, and unsigned smallint.

PowerBuilder can connect, save, and retrieve datain both ANSI/DBCS and
Unicode databases. When character data or command text is sent to the
database, PowerBuilder sends a DBCS string if the UTF8 database parameter
issetto O (the default). If UTF8isset to 1, PowerBuilder sendsaUTF-8 string.
The database server must be configured correctly to accept UTF-8 strings. See
the description of the UTF8 database parameter in the online Help for more
information.

The character set used by an Adaptive Server database server appliesto al
databases on that server. The nchar and nvarchar datatypes can store UTF-8
dataif the server character set is UTF-8. The Unicode datatypes unichar and
univarchar were introduced in Adaptive Server 12.5 to support Unicode data.
Columnswith these datatypes can store only Unicode data. Any datasaved into
such a column must be converted to Unicode explicitly. This conversion must
be handled by the database server or client.

In Adaptive Server 12.5.1 and later, additional support for Unicode data has
been added. For more information, see the documentation for your version of
Adaptive Server.

The unichar and univarchar datatypes support UTF-16 encoding, therefore
each unichar or univarchar character requires two bytes of storage. The
following exampl e creates atablewith one unichar column holding 10 Unicode
characters:

create table unitbl (unicol unichar(10))

In the Database painter, the column displays as unichar (20) because the
column requires 20 bytes of storage. Thisis consistent with theway the column
displaysin Sybase Central.

However, the mapping between the Typein the Column Specificationsview in
the Report painter and the column datatype of atablein the database is not one-
to-one. The Typein the Column Specifications view shows the DatawWindow®
column datatype and DataWindow column length. The column length is the
number of characters, therefore an Adaptive Server unichar (20) column
displaysas char (10) inthe Column Specifications view.

Connecting to Your Database 7

Supported Adaptive Server datatypes

Column-length limits

Conversionin
PowerBuilder scripts

78

Adaptive Server 12.5 and earlier have a column-length limit of 255 bytes.
Adaptive Server 12.5.x and later support wider columns for Char, VarChar,
Binary, and VarBinary datatypes, depending on the logical page size and the
locking scheme used by the server.

In PowerBuilder, you can use these wider columns for Char and VarChar
datatypes with Adaptive Server 12.5.x when the following conditions apply:

* The Release database parameter is set to 12.5 or higher.
* You are accessing the database using Open Client 12.5.x or later.

The database must be configured to usealarger page sizeto takefull advantage
of the widest limits.

For detailed information about wide columns and configuration issues, see the
Adaptive Server documentation on the Product Manuals Web site at
http://www.sybase.com/support/manuals/. For more information about the
Release database parameter, see the online Help.

When you retrieve or update columns, PowerBuilder converts data
appropriately between the Adaptive Server datatype and the PowerScript
datatype. Similarly or identically named Adaptive Server and PowerScript
datatypes do not necessarily have the same definitions. For information about
the definitions of PowerScript datatypes, see the Power Script Reference.

A double that has no fractional component is converted to a string with one
decimal placeif the converted string would cause Adaptive Server to have an
overflow error when parsing the string. For example: the double value
12345678901234 would cause an overflow error, so PowerBuilder convertsthe
double to the string value 12345678901234.0.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Basic software components for Adaptive Server

You must install the software componentsin Figure 7-1 to access an Adaptive
Server database in PowerBuilder.

Figure 7-1: Components of an Adaptive Server Enterprise connection

Development
environment

Database PBSYCnnn.DLL or

interface DLL PEASEnnn.DLL

Supplied by Sybase

Sybase Open Client

Database client Client Library for your
— g lied by Syb
software Windows platfarm upplied by Sybase
Network layer Any supported natwork Supplied by network vendor
(if any) protocol or database vendor

Database

Sybase Adaplive
Sarver Enterprise

Preparing to use the Adaptive Server database

Before you define the interface and connect to an Adaptive Server databasein
PowerBuilder, follow these steps to prepare the database for use:

1 Install and configure the required database server, network, and client
software.

2 Ingtall the Adaptive Server database interface.

Connecting to Your Database 79

Preparing to use the Adaptive Server database

Step 1: Install and
configure the
database server

80

3 Verify that you can connect to Adaptive Server outside PowerBuilder.

4

Install the required PowerBuilder stored proceduresin the sybsystemprocs
database.

Preparing an Adaptive Server database for use with PowerBuilder involves
these four basic tasks.

You must install and configure the database server, network, and client
software for Adaptive Server.

[—TTo install and configure the database server, network, and client
software:

1

Make surethe Adaptive Server database softwareisinstalled on the server
specified in your database profile.

You must obtain the database server software from Sybase.
For installation instructions, see your Adaptive Server documentation.

Make sure the supported network software (for example, TCP/IP) is
installed and running on your computer and is properly configured so that
you can connect to the database server at your site.

You must install the network communication driver that supports the
network protocol and operating system platform you are using. The driver
isinstalled as part of the Net-Library client software.

For installation and configuration instructions, see your network or
database administrator.

Install the required Open Client CT-Library (CT-Lib) software on each
client computer on which PowerBuilder isinstalled.

You must obtain the Open Client software from Sybase. Make sure the
version of Open Client you install supports all of the following:

The operating system running on the client computer
The version of Adaptive Server that you want to access
The version of PowerBuilder that you are running

Required client software versions
To use the ASE Adaptive Server interface, you must install Open Client

version 15.x or later. To use the SY C Adaptive Server interface, you must
install Open Client version 11.x or later.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Make sure the Open Client softwareis properly configured so that you can
connect to the database at your site.

Installing the Open Client software places the SQL.INI configuration file
in the Adaptive Server directory on your computer.

SQL.INI provides information that Adaptive Server needsto find and
connect to the database server at your site. You can enter and modify
information in SQL.INI by using the configuration utility that comes with
the Open Client software.

For information about setting up the SQL.INI or other required
configuration file, see your Adaptive Server documentation.

If required by your operating system, make sure the directory containing
the Open Client software isin your system path.

Make sure only one copy of each of thefollowingfilesisinstalled on your
client computer:

e Adaptive Server interface DLL

¢ Network communication DLL (for example, NLWNSCK.DLL for
Windows Sockets-compliant TCP/IP)

e Database vendor DLL (for example, LIBCT.DLL)

Step 2: Install the In the PowerBuilder Setup program, select the Typical install, or select the
database interface Custom install and select the Adaptive Server Enterprise (ASE or SYC)
database interface.

If you work with PowerBuilder and EA Server, you should also select the
Adaptive Server interface for EAServer (SYJ).

Step 3: Verify the Make sure you can connect to the Adaptive Server database server and login
connection to the database you want to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following
tools:

Connecting to Your Database

Accessing the database server Tools such asthe Open Client/Open
Server Configuration utility (or any Ping utility) check whether you can
reach the database server from your computer.

Accessing the database Toolssuch asISQL (interactive SQL utility)
check whether you can log in to the database and perform database
operations. Itisagood ideato specify the same connection parametersyou
plan to usein your PowerBuilder database profile to access the database.

81

Defining the Adaptive Server database interface

Step 4: Install the
PowerBuilder stored
procedures

PowerBuilder requires you to install certain stored proceduresin the
sybsystemprocs database before you connect to an Adaptive Server database
for thefirst time. PowerBuilder usesthese stored proceduresto get information
about tables and columns from the DBM S system catal og.

Run the SQL script or scripts required to install the PowerBuilder stored
procedures in the sybsystemprocs database.

For instructions, see “Installing stored procedures in Adaptive Server
databases’ on page 89.

Defining the Adaptive Server database interface

To define a connection through the Adaptive Server interface, you must create
a database profile by supplying values for at least the basic connection
parameters in the Database Profile Setup - Adaptive Server Enterprise dialog
box. You can then select this profile anytime to connect to your databasein the
development environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

Defining a connection for a PowerBuilder custom class user object
deployed in EAServer
You cannot use the SY J interface to connect to the database in the

PowerBuilder devel opment environment. However, the SY J Database Profile
Setup dialog box provides a convenient way to set the appropriate connection
parameters and then copy the syntax from the Preview tab into the script for
your Transaction object.

Using Open Client security services

82

The Adaptive Server interfaces provide several DBParm parameters that
support Open Client 11.1.x or later network-based security servicesin your
application. If you are using the required database, security, and PowerBuilder
software, you can build applications that take advantage of Open Client
security services.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

What are Open Client security services?

Open Client 11.1.x or later security services alow you to use a supported
third-party security mechanism (such as CyberSafe Kerberos) to provide login
authentication and per-packet security for your application. Login

authenti cati on establishes asecure connection, and per-packet security protects
the data you transmit across the network.

Requirements for using Open Client security services

For you to use Open Client security servicesin your application, all of the
following must be true:

Connecting to Your Database

You are accessing an Adaptive Server database server using Open Client
Client-Library (CT-Lib) 11.1.x or later software.

You have the required network security mechanism and driver.

You have the required Sybase-supported network security mechanism and
Sybase-supplied security driver properly installed and configured for your
environment. Depending on your operating system platform, examples of
supported security mechanisms include: Distributed Computing

Environment (DCE) security serversand clients, CyberSafe Kerberos, and
Windows NT LAN Manager Security Services Provider Interface (SSPI).

For information about the third-party security mechanisms and operating
system platforms that Sybase has tested with Open Client security
services, see the Open Client documentation.

You can access the secure server outside PowerBuilder.

You must be able to access a secure Adaptive Server server using Open
Client 11.1.x or later software from outside PowerBuilder.

To verify the connection, use atool such as ISQL or SQL Advantage to
make sure you can connect to the server and log in to the database with the
same connection parameters and security options you plan to use in your
PowerBuilder application.

You are using aPowerBuilder database interface.

You are using the ASE or SY C Adaptive Server interface to access the
database.

The Release DBParm parameter is set to the appropriate value for your
database.

83

Using Open Client security services

You have set the Release DBParm parameter to 110r higher to specify that
your application should use the appropriate version of the Open Client
CT-Lib software.

For instructions, see Release in the online Help.
* Your security mechanism and driver support the requested service.

The security mechanism and driver you are using must support the service
requested by the DBParm parameter.

Security services DBParm parameters

Login authentication
DBParms

Per-packet security
DBParms

84

If you have met the requirements described in “Requirements for using Open
Client security services’ on page 83, you can set the security servicesDBParm
parametersin the Database Profile Setup dialog box for your connection or in
a PowerBuilder application script.

There are two types of DBParm parameters that you can set to support Open
Client security services: login authentication and per-packet security.

The following login authentication DBParm parameters correspond to Open
Client 11.1.x or later connection properties that allow an application to
establish a secure connection.

Sec_Channel_Bind
Sec_Cred_Timeout
Sec_Delegation
Sec_Keytab File
Sec_Mechanism
Sec_Mutua_Auth
Sec_Network_Auth
Sec_Server_Principal
Sec_Sess_Timeout

For instructions on setting these DBParm parameters, see their descriptionsin
the online Help.

The following per-packet security DBParm parameters correspond to Open
Client 11.1.x or later connection properties that protect each packet of data
transmitted across a network. Using per-packet security services might create
extra overhead for communications between the client and server.

Sec_Confidential
Sec_Data |Integrity
Sec_Data Origin

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Sec_Replay_Detection
Sec_Seq_Detection

For instructions on setting these DBParm parameters, see their descriptionsin
the online Help.

Using Open Client directory services

The Adaptive Server interfaces provide several DBParm parameters that
support Open Client 11.1.x or later network-based directory servicesin your
application. If you are using the required database, directory services, and
PowerBuilder software, you can build applicationsthat take advantage of Open
Client directory services.

What are Open Client directory services?

Open Client 11.1.x or later directory services allow you to use a supported
third-party directory services product (such as the Windows Registry) as your
directory service provider. Directory services provide centralized control and
administration of the network entities (such as users, servers, and printers) in
your environment.

Requirements for using Open Client directory services

For you to use Open Client directory servicesin your application, all of the
following must be true:

¢ You are accessing an Adaptive Server database server using Open Client
Client-Library (CT-Lib) 11.x or later software

¢ You have the required Sybase-supported directory service provider
software and Sybase-supplied directory driver properly installed and
configured for your environment. Depending on your operating system
platform, examples of supported security mechanisms include the
Windows Registry and Distributed Computing Environment Cell
Directory Services (DCE/CDS).

Connecting to Your Database 85

Using Open Client directory services

For information about the directory service providers and operating
system platforms that Sybase has tested with Open Client directory
services, see the Open Client documentation.

You must be able to access a secure Adaptive Server server using Open
Client 11.1.x or later software from outside PowerBuilder.

To verify the connection, use atool such as ISQL or SQL Advantage to
make sure you can connect to the server and log in to the database with the
same connection parameters and directory service optionsyou plan to use
in your PowerBuilder application.

You are using the ASE or SY C Adaptive Server interface to access the
database.

You must use the correct syntax as required by your directory service
provider when specifying the server name in a database profile or
PowerBuilder application script. Different providers require different
syntax based on their format for specifying directory entry names.

For informati on and exampl esfor different directory service providers, see
“ Specifying the server name with Open Client directory services’ next.

You have set the Release DBParm to 11 or higher to specify that your
application should use the behavior of the appropriate version of the Open
Client CT-Lib software.

For instructions, see Rel ease database parameter in the online Help.

The directory service provider and driver you are using must support the
service requested by the DBParm.

Specifying the server name with Open Client directory services

86

When you are using Open Client directory servicesin a PowerBuilder
application, you must use the syntax required by your directory service
provider when specifying the server name in a database profile or
PowerBuilder application script to access the database.

Different directory service providersrequire different syntax based on the
format they use for specifying directory entry names. Directory entry names
can be fully qualified or relative to the default (active) Directory Information
Tree base (DIT base) specified in the Open Client/Server™ configuration
utility.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

TheDIT baseisthe starting nodefor directory searches. Specifying aDITbhase
is analogous to setting a current working directory for UNIX or MS-DOSfile
systems. (You can specify a nondefault DIT base with the DS _DitBase
DBParm. For information, see DS _DitBase in the online Help.)

Windows registry This example shows typical server name syntax if your directory service
server name example provider is the Windows registry.

Node name: SALES:software\sybase\server\SYSi2
DIT base: SALES:software\sybase\server
Server name: SYS12

[_ITo specify the server name in a database profile:

« Typethefollowinginthe Server box onthe Connection tab in the Database
Profile Setup dialog box. Do not start the server name with abackslash (\).

SYS12

[To specify the server name in a PowerBuilder application script:
« Typethefollowing. Do not start the server name with a backslash (\).

SQLCA.ServerName = "SysS12"

If you specify avaluein the Server box in your database profile, this
syntax displays on the Preview tab in the Database Profile Setup dialog
box. You can copy the syntax from the Preview tab into your script.

DCE/CDS server This example shows typical server name syntax if your directory service
name example provider is Distributed Computing Environment Cell Directory Services
(DCE/CDS).

Node name: /.../boston.sales/dataservers/sybase/SYS12
DIT base: /../boston.sales/dataservers
Server name: sybase/SYS12

[_ITo specify the server name in a database profile:

« Typethefollowinginthe Server box onthe Connection tab inthe Database
Profile Setup dialog box. Do not start the server name with aslash (/).

sybase/SYS12

[_ITo specify the server name in a PowerBuilder application script:
e Typethefollowing. Do not start the server name with CN=.

SQLCA.ServerName = "Sysi2a"

Connecting to Your Database 87

Using PRINT statements in Adaptive Server stored procedures

If you specify avalue in the Server box in your database profile, this
syntax displays on the Preview tab in the Database Profile Setup dialog
box. You can copy the syntax from the Preview tab into your script.

Directory services DBParm parameters

If you have met the requirements described in “Requirements for using Open
Client directory services’ on page 85, you can set the directory services
DBParmsin a database profile for your connection or in a PowerBuilder
application script.

The following DBParms correspond to Open Client 11.1.x or later directory
Services connection parameters:

DS Alias

DS _Copy

DS DitBase

DS Failover

DS Password (Open Client 12.5 or later)

DS Principal

DS Provider

DS _TimeLimit

For instructions on setting these DBParms, see their descriptionsin the online
Help.

Using PRINT statements in Adaptive Server stored

procedures

88

The ASE or SY C Adaptive Server database interface allows you to use PRINT
statements in your stored procedures for debugging purposes.

This means, for example, that if you turn on Database Trace when accessing
the database through the ASE or SY Cinterface, PRINT messages appear in the
trace log but they do not return errors or cancel the rest of the stored procedure.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Creating areport based on a cross-database join

The ability to create areport based on a heterogeneous cross-database join is
available through the use of Adaptive Server’s Component Integration
Services. Component Integration Services allow you to connect to multiple
remote heterogeneous database servers and define multiple proxy tables that
reference the tables residing on those servers.

For information on how to create proxy tables, see the Adaptive Server
documentation.

Installing stored procedures in Adaptive Server
databases

This section describes how to install PowerBuilder stored proceduresin an
Adaptive Server Enterprise database by running SQL scripts provided for this
purpose.

Sybase recommends that you run these scripts outside PowerBuilder before
connecting to an Adaptive Server database for the first time through the
Adaptive Server (ASE or SYC DBMS identifier) native database interface.
Although the database interface will work without the PowerBuilder stored
procedures created by these scripts, the stored procedures are required for full
functionality.

What are the PowerBuilder stored procedure scripts?

What you do In order to work with an Adaptive Server database in PowerBuilder, you or
your system administrator should install certain stored proceduresin the
database before you connect to Adaptive Server from PowerBuilder for the
first time.

You must run the PowerBuilder stored procedure scripts only once per database
server, and not before each PowerBuilder session. If you have already installed
the PowerBuilder stored procedures in your Adaptive Server database before
connecting in PowerBuilder on any supported platform, you need not install
the stored procedures again before connecting in PowerBuilder on a different
platform.

Connecting to Your Database 89

Installing stored procedures in Adaptive Server databases

PowerBuilder stored
procedures

SQL scripts

Where to find the
scripts

PBSYC.SQL script
What it does

When to run it

90

A stored procedureisagroup of precompiled and preoptimized SQL
statementsthat performs some database operation. Stored proceduresresideon
the database server where they can be accessed as needed.

PowerBuilder usesthese stored procedures to get information about tables and
columns from the Adaptive Server system catalog. (The PowerBuilder stored
procedures are different from the stored procedures you might create in your
database.)

PowerBuilder provides SQL script files for installing the required stored
procedures in the sybsystemprocs database:

Script Use for
PBSYC.SQL Adaptive Server databases
PBSYC2.QL Adaptive Server databases to restrict the Select Tables|ist

The stored procedure scripts are located in the Server directory on the
PowerBuilder CD-ROM. The Server directory containsserver-sideinstallation
components that are not installed with PowerBuilder on your computer.

The PBSYC.SQL script contains SQL code that overwrites stored procedures
that correspond to the same version of PowerBuilder in the Adaptive Server
sybsystemprocs database and then re-creates them.

The PBSYC.SQL script uses the sybsystemprocs database to hold the
PowerBuilder stored procedures. This database is created when you install
Adaptive Server.

Before you connect to an Adaptive Server database in PowerBuilder for the
first time using the ASE or SYC DBMS identifier, you or your database
administrator must run the PBSYC.SQL script once per database server into the
sybsystemprocs database.

Run PBSYC.SQL if the server at your site will be accessed by anyone using the
PowerBuilder or by deployment machines.

If you or your database administrator have already run the current version of
PBSYC.SQL to install PowerBuilder stored procedures in the sybsystemprocs
database on your server, you need not rerun the script to install the stored
procedures again.

For instructions on running PBSYC.SQL, see“How to run the scripts” on page
92.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Stored procedures it
creates

PBSYC2.SQL script
What it does

The PBSYC.SQL script creates the following PowerBuilder stored procedures
in the Adaptive Server sybsystemprocs database. The procedures are listed in
the order in which the script creates them.

PBSYC.SQL
stored
procedure

What it does

sp_pbl125column

Liststhe columnsin atable.

sp_pb125pkcheck

Determines whether a table has a primary key.

sp_pb125fktable

Lists the tables that reference the current table.

sp_pbl125procdesc

Retrieves a description of the argument list for a specified
stored procedure.

sp_pb125proclist

Lists available stored procedures and extended stored
procedures.

If the SystemProcs DBParm parameter is set to 1 or Yes (the
default), sp_pb125proclist displays both system stored
procedures and user-defined stored procedures. If SystemProcs
isset to 0 or No, sp_pb125proclist displays only user-defined
stored procedures.

sp_pb125text

Retrieves the text of a stored procedure from the
SYSCOMMENTS table.

sp_pb125table

Retrieves information about all tables in a database, including
those for which the current user has no permissions.

PBSY C.SQL contains the default version of sp_pb125table. If
you want to replace the default version of sp_pb125table with
aversionthat restrictsthe tablelist to those tables for which the
user has SELECT permission, you can run the PBSYC2.SQL
script, described in “PBSY C2.SQL script” next.

sp_pb125index

Retrieves information about all indexes for a specified table.

The PBSYC2.9QL script contains SQL code that drops and re-creates one
PowerBuilder stored procedure in the Adaptive Server sybsystemprocs
database: areplacement version of sp_pb125table.

The default version of sp_pb125table isinstalled by the PBSYC.SQL script.
PowerBuilder usesthe sp_pb125table procedure to build alist of all tablesin
the database, including those for which the current user has no permissions.
Thislist displaysin the Select Tables dialog box in PowerBuilder.

Connecting to Your Database

91

Installing stored procedures in Adaptive Server databases

When to run it

Stored procedure it
creates

For security reasons, you or your database administrator might want to restrict
the table list to display only those tables for which a user has permissions. To
do this, you can run the PBSYC2.SQL script after you run PBSYC. QL.
PBSYC2.QL replacesthe default version of sp_pb125table withanew version
that displays arestricted table list including only tables and views:

e Owned by the current user

* For which the current user has SELECT authority

» For which the current user’s group has SELECT authority
* For which SELECT authority was granted to PUBLIC

If you are accessing an Adaptive Server database using the ASE or SYC
DBMS identifier in PowerBuilder, you must first run PBSYC.SQL once per
database server to install the required PowerBuilder stored proceduresin the
sybsystemprocs database.

After you run PBSYC.SQL, you can optionally run PBSYC2.9QL if you want
to replace sp_pb125table with a version that restricts the table list to those
tables for which the user has SELECT permission.

If you do not want to restrict the tablelist, thereisno need to run PBSYC2.SQL.

For instructions on running PBSYC2.SQL, see “How to run the scripts’ on
page 92.

The PBSYC2.9QL script creates the following PowerBuilder stored procedure
in the Adaptive Server sybsystemprocs database:

PBSYC2.SQL
stored procedure What it does
sp_pb125table Retrieves information about those tables in the database

for which the current user has SELECT permission.

Thisversion of sp_pb125table replacesthe default version
of sp_pb125table installed by the PBSYC.SQL script.

How to run the scripts

92

You can use the ISQL or SQL Advantage tools to run the stored procedure
scripts outside PowerBuilder.

PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Using ISQL to run the stored procedure scripts

ISQL isaninteractive SQL utility that comeswith the Open Client software on
the Windows platforms. If you have ISQL installed, use the following
procedure to run the PowerBuilder stored procedure scripts.

For completeinstructionson using 1SQL , see your Open Client documentation.

[ITo use ISQL to run the PowerBuilder stored procedure scripts:

1 Connect to the sybsystemprocs Adaptive Server database as the system
administrator.

2 Open one of the following files containing the PowerBuilder stored
procedure script you want to run:

PBSYC.SQL
PBSYC2.SQL

3 Issuethe appropriate ISQL command to run the SQL script with the user
ID, server name, and (optionally) password you specify. Make sure you
specify uppercase and lowercase exactly as shown:

isql /U sa /S SERVERNAME /i pathname /P { password }

Parameter Description

sa The user ID for the system administrator. Do not
change this user ID.

SERVERNAME | Thename of the computer running the Adaptive Server

database.

pathname The drive and directory containing the SQL script you
want to run.

password (Optional) The password for the sa (system

administrator) user ID. The default Adaptive Server
installation creates the sa user ID without a password.
If you changed the password for sa during the
installation, replace password with your new password.

Connecting to Your Database 93

Installing stored procedures in Adaptive Server databases

For example, if you are using PowerBuilder and are accessing the stored
procedure scripts from the product CD-ROM, type either of the following
(assuming D isyour CD-ROM drive):

isql /U sa /S TESTDB /i d:\server\pbsyb.sqgl /P
isql /U sa /S SALES /i d:\server\pbsyc.sql /P
adminpwd

Using SQL Advantage to run the stored procedure scripts

SQL Advantage is an interactive SQL utility that comes with the Open Client
software on the Windows platform. If you have SQL Advantageinstalled, use
the following procedure to run the PowerBuilder stored procedure scripts.

For complete instructions on using SQL Advantage, see your Open Client
documentation.

[_ITo use SQL Advantage to run the PowerBuilder stored procedure
scripts:

1 Start the SQL Advantage utility.

2 Open aconnection to the sybsystemprocs Adaptive Server database asthe
system administrator.

3 Open one of the following files containing the PowerBuilder stored
procedure script you want to run:

PBSYC.SQL
PBSYC2.5QL

4 Delete the use sybsystemprocs command and the go command at the
beginning of each script.

SQL Advantage requiresthat you issue the use sybsystemprocs command
by itself, with no other SQL commands following it. When you open a
connection to the sybsystemprocs database in step 2, you are in effect
issuing the use sybsystemprocs command. This command should not be
issued again as part of the stored procedure script.

94 PowerBuilder Classic

CHAPTER 7 Using Adaptive Server Enterprise

Therefore, to successfully install the stored procedures, you must delete
the lines shown in the following table from the beginning of the
PowerBuilder stored procedure script before executing the script.

Before executing this script

Delete these lines

PBSYC.SQL

use sybsystemprocs

go

PBSYC2.50L

use sybsystemprocs

go

5 Executeal of the statementsin the SQL script.

6 Exit the SQL Advantage session.

Connecting to Your Database

95

Installing stored procedures in Adaptive Server databases

96

PowerBuilder Classic

CHAPTER 8

About this chapter

Contents

Using Informix

This chapter describes how to use the native IBM Informix database
interfaces in PowerBuilder.

Topic Page
Supported versions for Informix 97
Supported Informix datatypes 98
Features supported by the 110 interface 100
Basic software components for Informix 104
Preparing to use the Informix database 105
Defining the Informix database interface 106
Accessing serial valuesin a PowerBuilder script 108

Supported versions for Informix

Connecting to Your Database

You can accessthe|BM Informix Dynamic Server (IDS) database version
9.x or later using the PowerBuilder IN9 and 110 native Informix database
interfaces. You can also access Informix OnLine and Informix Standard
Engine (SE) databases.

The IN9 interface in PBIN9125.DLL requires the Informix Client SDK
2.8.1 or later for Informix application development and Informix Connect
2.9 for runtime deployment.

Thell0interfacein PBI10125.DLL requiresthe Informix Client SDK 2.9
or later for Informix application development and Informix Connect 2.9
or later for runtime deployment.

Restriction
You cannot use both the IN9 and 110 interfaces in a single PowerBuilder

session.

97

Supported Informix datatypes

For the latest information on using PowerBuilder with Informix databases, see
the Sybase Support Web site at http://www.sybase.com/detail 2d=47934.

Supported Informix datatypes

TheInformix database interfaces support the Informix datatypeslistedin Table
8-1 in Datawindow objects and embedded SQL.

Table 8-1: Supported datatypes for Informix

Blob LVarChar

Boolean Money

Byte (a maximum of 2"31 bytes) NChar

Char NVarChar

Clob Real

Date Serial

DateTime Serial8

Decimal Smalllnt (2 bytes)

Float Text (amaximum of 231 bytes)
Int8 Time

Integer (4 bytes) VarChar (1 to 255 bytes)
Interval

Datatype conversion
When you retrieve or update columns, PowerBuilder converts data

appropriately between the Informix datatype and the PowerScript datatype.
Keep in mind, however, that similarly or identically named Informix and
PowerScript datatypes do not necessarily have the same definitions.

For information about the definitions of PowerScript datatypes, see the
Power Script Reference.

98 PowerBuilder Classic

CHAPTER 8 Using Informix

Informix DateTime datatype

The DateTime datatype isacontiguous sequence of boxes. Each box represents
a component of time that you want to record. The syntax is:

DATETIME largest_qualifier TO smallest_qualifier
PowerBuilder defaultsto year TO Fraction(s).

For alist of qualifiers, see your Informix documentation.

[—To create your own variation of the DateTime datatype:
1 Inthe Database painter, create a table with a DateTime column.
For instructions on creating atable, see the Users Guide.

2 Inthe Columns view, select Pending Syntax from the Objects or pop-up
menu.

The Columns view displays the pending changes to the table definition.
These changes execute only when you click the Save button to save the
table definition.

3 Select Copy from the Edit or pop-up menu or click the Copy button.
The SQL syntax (or the portion you selected) is copied to the clipboard.

4 IntheISQL view, modify the DateTime syntax and execute the CREATE
TABLE statement.

For instructions on using the | SQL view, see the Users Guide.

Informix Time datatype

The Informix database interfaces also support atime datatype. The time
datatypeis asubset of the DateTime datatype. The time datatype uses only the
time qualifier boxes.

Informix Interval datatype

Theinterval datatype is one value or a sequence of values that represent a
component of time. The syntax is.

INTERVAL largest_qualifier TO smallest_qualifier

PowerBuilder defaultsto pay (3) To pay. For more about interval datatypes,
see your Informix documentation.

Connecting to Your Database 99

Features supported by the 110 interface

Features supported by the 110 interface

The 110 interface supports several featuresthat are not available when you use
the IN9 interface. Some of these features require a specific version of the
Informix Dynamic Server database.

Accessing Unicode data

Client_Locale

DB_Locale

100

PowerBuilder can connect, save, and retrieve datain ANSI/DBCS databases
using the IN9 interface, but the IN9 interface does not support Unicode
databases. The Informix 110 interface supports ANSI/DBCS and Unicode
databases.

The 110 native interface uses the Informix GL S (Global Language Support)
API for global language support. The native interface uses three DBParms to
help you set up the locale used in the current connection:

 Client_Locae
« DB_Locae
» StrByCharset

These parameters are available on the Regional Settings tab page in the
Database Profile Setup dialog box.

Client_L ocale specifies the value of the Informix environment variable
CLIENT_LOCALE. Theformat islanguage territory.codeset. For example:

Client_ Locale='en_us.1252'
Client_Locale='en_us.utf8'

The 10 interface usesthis setting to access string datain an Informix database
and to process SQL statements. If you do not set the DBParm, the default locale
value is based on the OS locale.

DB_L ocal e specifies the value of the Informix environment variable
DB_LOCALE. Theformat is language territory.codeset. For example:

DB Locale='en_us.1252'
DB Locale='en us.utfs8'

PowerBuilder Classic

CHAPTER 8 Using Informix

DB_LOCALE specifies the language, territory, and code set that the database
server needsto correctly interpret ocal e-sensitive datatypes such as NChar and
NVarChar in a specific database. The code set specified in DB_LOCALE
determineswhich charactersarevalid in any character column, aswell asinthe
names of database objects such as databases, tabl es, columns, and views. If you
do not set the DBParm, the 110 interface assumesthat the DB_L OCALE value
isthe same asthe CLIENT_LOCALE vaue.

You can set the CLIENT_LOCALE and DB_LOCALE environment variables
directly using the Informix Setnet32 utility, availablein the Utilities folder for
the Informix database interfaces in the Objects view in the Database painter or
the Database Profiles dialog box.

For more information about the Informix CLIENT_LOCALE and
DB_LOCALE environment variables, seethe | BM Informix GLSUser's Guide,
currently available at the Informix library Web site at
http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.gl
sug.doc/glsug.htm.

StrByCharset The StrByCharset DBParm specifies how to convert string data between
PowerBuilder Unicode strings and Informix client multibyte strings. By
default, string conversion for UTF-8 code setsis based on the UTF-8 code set,
and string conversion for non-UTF-8 code setsis based on the current OS code
page. If StrByCharset is set to 1 (true), string conversion is based on the code
set specified in the DBParm Client_L ocale.

Assigning an owner to the PowerBuilder catalog tables

When you usethe 110 interface, you can use the PBCatal ogOwner DBParm on
the System tab page to assign a nondefault owner to the extended attribute
systemtables. For ANSI-compliant databases, the owner namethat you specify
must be unique but the table name does not have to be unique. You can create
multiple sets of catal og tables prefaced with different user names. However, if
the database is not ANSI-compliant, the table name must be unique, so that
only one set of catalog tables can be created with an assigned owner name.

Support for long object names

The 110 interface supports Informix long object names with up to 128
characters.

Connecting to Your Database 101

Features supported by the 110 interface

Renaming an index

With DS 9.2.1 and | ater, you can change the name of an index in the Database
painter when you are connected using the 110 interface. The 110 interface uses
the IDS RENAME INDEX statement to change the name of the index. You
need only drop and recreate the index if you want to make other changes.

SQL statement caching

In1DS9.2.1 and | ater, the database server usesthe SQL statement cache (SSC)
to store SQL statements across user sessions. When any user executes a
statement already stored in the SQL statement cache, the database server does
not parse and optimize the statement again, resulting inimproved performance.
The statement must be a SELECT, UPDATE, DELETE, or INSERT statement,
and it cannot contain user-defined routines.

There are several ways to configure caching on the server. The SET
STATEMENT CACHE statement takes precedence over the STMT_CACHE
environment variable and the STMT_CACHE configuration parameter. You
must enable the SQL statement cache, either by setting the STMT_CACHE
configuration parameter or by using the Informix onmode utility, before the
SET STATEMENT CACHE statement can execute successfully.

You can set the StmtCache DBParm on the System tab page in the Database
Profile Setup dialog box for 110 connections to turn SQL statement caching on
or off on the client. However, the server must be configured to support SQL
statement caching before you can access the cache from the client.

For more information about Informix SQL statement caching, see the IBM
Informix Dynamic Server Performance Guide at
http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.gl
sug.doc/glsug.htm.

Creating and dropping indexes without locking

102

In IDS 10.0 and later, the SQL syntax of CREATE INDEX and DROP INDEX
supports the ONLINE keyword to create or drop an index in an online
environment where the database and its tables are continuously available.
When you use the ONLINE keyword to create or drop an index, data definition
language (DDL) operations execute without applying an exclusive lock on the
table on which the specified index is defined.

PowerBuilder Classic

CHAPTER 8 Using Informix

If you use CREATE INDEX ONLINE to create anindex on atablethat other users
are accessing, the index is not available until no users are updating the table.

If you issue DROP INDEX ONLINE to drop an index, no users can reference the
index, but concurrent data manipulation language (DML) operations can use
theindex until the operationsterminate. Dropping theindex is deferred until no
users are using the index.

You can set the Onlinelndex static DBParm on the System tab page in the
Database Profile Setup dialog box for 110 connections to specify that the
Database painter should use the ONLINE keyword when you create or drop an
index.

Clustered index not supported
You cannot create a clustered index using online mode because it is not

supported by IDS.

Column-level encryption

In DS 10.0 and later, the SQL statement SET ENCRYPTION PASSWORD can
improve the confidentiality of data and support data integrity by defining or
resetting a password for encryption and decryption of data at the column level.

You can set the EncryptionPass and Hint static DBParms on the System tab
page in the Database Profile Setup dialog box for 110 connections to specify a
password and a hint to help you remember the password. The application uses
built-in Informix functionsto encrypt and decrypt character data.

Using multiple OUT parameters in user-defined routines

In a user-defined routine (UDR), an OUT parameter corresponds to avalue
returned through a pointer. Before IDS version 9.4, IDS supported no more
than one OUT parameter in a UDR, and any OUT parameter was required to
appear asthe last item in the parameter list. IDS version 9.4 drops these
restrictions, supporting multiple OUT parameters anywhere in the parameter
list of the UDR. Thisfeature is available when you use the 110 interface. It
provides greater flexibility in defining UDRs, and removes the need to return
collection variables in contexts where multiple returned values are required.

Toreturn OUT parametersfromaUDR, you must use statement local variables
(SLVs).

Connecting to Your Database 103

Basic software components for Informix

In the following statement, the OUT parameter in the UDR myfunc is defined
using the SLV syntax slvname#out_param_type.

SELECT sales FROM mytable WHERE myfunc (10, sales#money)
< 1000

Informix does not support invoking a UDR with OUT parameters using an
EXECUTE statement, therefore multiple OUT parameters are not supported in
PowerBuilder remote procedure calls and embedded SQL EXECUTE
PROCEDURE commands.

Basic software components for Informix

Figure 8-1 shows the basic software components required to access an
Informix database using the native Informix database interfaces.

Figure 8-1: Components of an Informix connection

Development
environment

PEINSnnn.DLL
ar
PEI10nnn.DLL

Database
interface DLL

Supplied by Sybase

Informix
Database client client software for your ;
- Supplied by IBM
software DBMS version PP ¥
-
Network layer Any supported network I Supplied by network wendor
ifany) — protocol or database vendor

Database

104 PowerBuilder Classic

CHAPTER 8 Using Informix

Preparing to use the Informix database

Before you define the database interface and connect to an Informix database
in PowerBuilder, follow these steps to prepare the database for use:

1 Install and configure the required database server, network, and client
software.
2 Ingtall the native Informix IN9 or 110 database interface.
3 Verify that you can connect to the Informix server and database outside
PowerBuilder.
Step 1: Install and You must install and configure the required database server, network, and
configure the client software for Informix.

database server

[TTo install and configure the required database server, network, and client
software:

1

Connecting to Your Database

Make sure the Informix database server software and database network
software isinstalled and running on the server specified in your database
profile.

You must obtain the database server and database network software from
Informix.

For installation instructions, see your Informix documentation.

Install the required Informix client software on each client computer on
which PowerBuilder isinstalled.

Install Informix Connect or the Informix Client SDK (which includes
Informix Connect).

You must obtain the Informix client software from IBM. Make sure the
version of the client software you install supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

For installation instructions, see your Informix documentation.

105

Defining the Informix database interface

3 Makesurethelnformix client softwareis properly configured so that you
can connect to the Informix database server at your site.

Run the SetNet32 utility to configuretheclient registry settings. Whenyou
configure Informix Connect client software, it creates aregistry entry in
HKEY_LOCAL_MACHINE\Software\lnformix\SglHosts. The registry
entry contains parametersthat define your network configuration, network
protocol, and environment variables. If you omit these values from the
database profile when you define the native Informix database interface,
they default to the values specified in the registry entry.

For instructions on configuring your Informix client software, see your
Informix documentation.

4 If required by your operating system, make sure the directory containing
the Informix client softwareisin your system path.

Step 2: Install the In the PowerBuilder Setup program, select the Typical install, or select the
database interface native Informix database interface in the Custom install.

Step 3: Verify the Make sure you can connect to the Informix server and database you want to
connection access from outside PowerBuil der.

To verify the connection, use any Windows-based utility (such asthe Informix
ilogin.exe program) that connects to the database. When connecting, be sureto
specify the same parameters you plan to use in your PowerBuilder database
profile to access the database.

For instructions on using ilogin.exe, see your Informix documentation.

Defining the Informix database interface

To defineaconnection through an Informix databaseinterface, you must create
a database profile by supplying values for at least the basic connection
parameters in the Database Profile Setup dialog box for Informix IN9 or 110.
You can then select this profile at any time to connect to your database in the
development environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

106 PowerBuilder Classic

CHAPTER 8 Using Informix

Specifying the server name

When you specify the server name value, you must use the following format to
connect to the database through the Informix interfaces:

host_name@server_name

Parameter Description

host_name The name of the host computer running the Informix database
server. This corresponds to the Informix HOSTNAME
environment variable.

server_name The name of the server containing the Informix database.
This corresponds to the Informix SERVER environment
variable.

For example, to use a PowerBuilder native interface to connect to an Informix
database server named server01 running on a host machine named sales, do
either of the following:

Connecting to Your Database

In a database profile Typethehost name (sales)intheHost Namebox
and the server name (servero1) in the Server box on the Connection tab
in the Database Profile Setup dialog box. PowerBuilder saves this server
name as saleseserver01 in the database profile entry in the system
registry.

In a PowerBuilder script Type the following in your PowerBuilder
application script:

SQLCA.ServerName = "sales@serverQ0l"

Tip

If you specify avalue for Host Name and Server in your database profile,
this syntax displays on the Preview tab in the Database Profile Setup
dialog box. You can then copy the syntax from the Preview tab into your

script.

107

Accessing serial values in a PowerBuilder script

Accessing serial values in a PowerBuilder script

If you are connecting to an Informix database from a PowerBuilder script, you
can obtain the serial number of the row inserted into an Informix table by
checking the value of the SQL ReturnData property of the Transaction object.

After an embedded SQL INSERT statement executes, SQL ReturnData contains
the serial number that uniquely identifies the row inserted into the table.

PowerBuilder updates SQL ReturnDatafoll owing an embedded SQL statement
only; it does not update it following a DataWindow operation.

108 PowerBuilder Classic

CHAPTER 9

About this chapter

Contents

Using Microsoft SQL Server

Thischapter describes how to usethe Microsoft SQL Server Native Client

database interface in PowerBuilder.

Topic Page
Supported versions for SQL Server 109
Supported SQL Server datatypes 110
Basic software components for Microsoft SQL Server 112
Preparing to use the SQL Server database 113
Defining the SQL Server database interface 114
Migrating from the MSS or OLE DB database interfaces 115
SQL Server 2005 features 118
SQL Server 2008 features 119
Notes on using the SNC interface 127

Supported versions for SQL Server

You can access Microsoft SQL Server 2000 and 2005 databases using the
SQL Native Client interface. The SQL Native Client interfaceusesaDLL
named PBSNC125.DLL to access the database. The interface uses the

SQL Server 2005 Native Client (sglncli.h and sgincli.dll) ontheclient side

Connecting to Your Database

and connects using OLE DB.

For SQL Server 2000, the SQL client SDK was provided with the

Microsoft Database Access Components (MDAC). MDAC does not
support new featuresin SQL Server 2005. To take advantage of these
features, you need to use the SNC interface. The SQL Server 2005 SQL

Native Client software must be installed on the client computer.

109

Supported SQL Server datatypes

PBODB initialization file not used
Connections made directly through OLE DB usethe PBODB initialization file

to set some parameters, but connections made using the SNC interface do not
depend on the PBODB initialization file.

Supported SQL Server datatypes

110

The SQL Native Client databaseinterface supportsthe datatypeslistedin Table
9-1.

Table 9-1: Supported datatypes for Microsoft SQL Server 2005

Binary Real

Bit SmallDateTime
Character (fewer than 255 characters) Smallint
DateTime SmallMoney
Decimal Text

Float Timestamp
Identity Tinylnt

Image VarBinary(max)
Int VarBinary(n)
Money VarChar(max)
Numeric VarChar(n)
NVarChar(max) XML
NVarChar(n)

The XML datatype is a built-in datatype in SQL Server 2005 that enables you
to store XML documents and fragmentsin a SQL Server database. The XML
datatype mapsto the PowerScript String datatype. You can use this datatype as
a column type when you create atable, as avariable, parameter, or function
return type, and with CAST and CONVERT functions.

Additional datatypes are supported for SQL Server 2008. For more
information, see “ Support for new datatypesin SQL Server 2008” on page
120.

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Datatype conversion)
When you retrieve or update columns, PowerBuilder converts data

appropriately between the Microsoft SQL Server datatype and the Power Script
datatype. Keep in mind, however, that similarly or identically named SQL
Server and Power Script datatypes do not necessarily have the same definitions.

For information about the definitions of PowerScript datatypes, see the
Power Script Reference.

In SQL Server 2005, the VarChar(max), NvarChar(max), and VarBinary(max)
datatypes store very large values (up to 231 bytes). The VarChar(max) and
NVarChar(max) datatypes map to the PowerScript String datatype and the
VarBinary(max) datatype maps to the PowerScript Blob datatype. You can use
these datatypes to obtain metadata, define new columns, and query data from
the columns. You can aso use them to pipeline data.

Working with large For large data values of datatypes Text, NText, Image, Varchar(max),
data values NVarchar(max), VarBinary(max), and XML, the SNC interface supports reading
data directly from the database using an embedded SQL statement.

Example 1:

select image_col into :blob_var from mytable where
key col = 1;

Example 2:

declare cur cursor for select id, image col from
mytable;

open cur;

fetch cur into :id_var, :blob_var;

If the result set contains alarge datatype of type Text or Varchar(max), using
ANSI encoding, you must set a maximum size for each large value using the
PBMaxBlobSize database parameter. For other large datatypes, thereis no
limitation on the size of the data. The SNC interface retrieves all the datafrom
the database if thereis sufficient memory.

The SNC interface supports inserting and updating values of large datatypes
using embedded SQL INSERT and UPDATE statements. You must set the
DisableBind database parameter to 0 to enable the SNC interface to bind large
data values. For example:

Insert into mytable (id, blob col) values(1,
:blob_var) ;
Update mytable set blob col = :blob var where id = 1;

Connecting to Your Database 111

Basic software components for Microsoft SQL Server

Basic software components for Microsoft SQL Server

You must install the software components in Figure 9-1 to access a database
with the SQL Native Client interface. Microsoft SQL Server Native Client
software contains a SQL OLE DB provider and ODBC driver inasingle DLL.

Figure 9-1: Components of a Microsoft SQL Server connection

Database
interface DLL

Database client
software

Metwork layer

(if any)

Database

112

Development
environment

h

PESNCnnn.OLL

Microsoft SQL Server
MNative Client software

Any supported network
protocol

Microsoft SQL
Server

Supplied by Sybase

Supplied by Microsoft

Supplied by network vendor
or database vendor

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Preparing to use the SQL Server database

Before you define the database interface and connect to a Microsoft SQL
Server databasein PowerBuilder, follow these stepsto prepare the database for

use:

1

Install and configure the required database server, network, and client
software.

2 Install the SQL Native Client database interface.
3 Verify that you can connect to the Microsoft SQL Server server and
database outside PowerBuilder.
Step 1: Install and You must install and configure the database server, network, and client
configure the software for SQL Server.

database server

[TTo install and configure the database server, network, and client
software:

1

Connecting to Your Database

Make sure the Microsoft SQL Server database software isinstalled and
running on the server specified in your database profile.

You must obtain the database server software and required licenses from
Microsoft Corporation. For installation instructions, see your Microsoft
SQL Server documentation.

Upgrading from an earlier version of SQL Server
For instructionson upgrading to alater version of SQL Server or installing

it alongside an earlier version, see your Microsoft SQL Server
documentation.

If you areaccessing aremote SQL Server database, make sure therequired
network software (for example, TCP/IP) isinstalled and running on your
computer and is properly configured so that you can connect to the SQL
Server database server at your site.

For installation and configuration instructions, see your network or
database administrator.

Install the required Microsoft SQL Native Client software on each client
computer on which PowerBuilder isinstalled.

113

Defining the SQL Server database interface

Step 2: Install the
database interface

Step 3: Verify the
connection

You must obtain the SQL Native Client software from Microsoft. Make
sure the version of the client software you install supports all of the
following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

For installation instructions, see your Microsoft SQL Server
documentation.

4 Makesurethe SQL Native Client client softwareis properly configured so
that you can connect to the SQL Server database server at your site.

For configuration instructions, see your Microsoft SQL Server
documentation.

5 Make sure the directory containing the SQL Native Client softwareisin
your system path.

6 Make sure only one copy of the Sgincli.dll fileisinstaled on your
computer.

In the PowerBuilder Setup program, select the Custom install and select the
SQL Native Client database interface.

Make sure you can connect to the SQL Server server and database you want to
access from outside PowerBuilder.

To verify the connection, use any Windows-based utility that connects to the
database. When connecting, be sure to specify the same parametersyou plan to
use in your PowerBuilder database profile to access the database.

Defining the SQL Server database interface

114

To define a connection through the SQL Native Client interface, you must
create a database profile by supplying values for at least the basic connection
parameters in the Database Profile Setup - SQL Native Client dialog box. You
can then select this profile at any time to connect to your database in the
development environment.

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

For information on how to define a database profile, see “ Creating a database
profile’ on page 10. For new features that require specia settingsin the
database profile, see “ SQL Server 2005 features’” on page 118. For a
comparison of the database parameters you might have used with existing
applications and those used with the SNC database interface, see “Migrating
from the MSS or OLE DB database interfaces’ next.

Migrating from the MSS or OLE DB database interfaces

MSS database
parameters supported
by SNC

In earlier rel eases of PowerBuilder, the M SS native interface was provided for
connection to Microsoft SQL Server. This native interface was based on
Microsoft DB-LIB functionality, which is no longer supported by Microsoft
and isnot Unicode-enabled. The MSSinterface was removed in PowerBuilder
10.0.

Prior to theintroduction of SQL Server 2005 and SQL Native Client, Microsoft
recommended using the OLE DB database interface and MDAC to connect to
SQL Server. You can continue to use this solution if you do not need to take
advantage of new featuresin SQL Server 2005 or SQL Server 2008.

This section provides a comparison between database parameters you might
have used in existing applications with the parameters you can use with the
SNC database interface.

Table 9-2 shows the database parameters and preferences that could be set in
the Database Profile Setup dialog box for the discontinued M SS native
database interface for Microsoft SQL Server, and indicates whether they are
supported by the SNC interface.

The column on the left shows the tab page in the Database Profile Setup dialog
box for MSS. The parameters and preferences may be on different tab pagesin
the SNC profile.

Table 9-2: MSS parameters supported by SNC

MSS SNC

Connection tab:

Language Not supported

Lock Supported (Transaction tab)
AutoCommit Supported
CommitOnDisconnect Supported

System tab:

Connecting to Your Database 115

Migrating from the MSS or OLE DB database interfaces

OLE DB database

parameters supported

by SNC

116

MSS SNC

Log Not supported

SystemProcs Not supported

PBCatal ogOwner Supported

Transaction tab:

Async Not supported

DBGetTime Not supported

CursorLock Not supported

CursorScroll Not supported

StaticBind Supported

MaxConnect Not supported

Syntax tab:

DBTextLimit Supported (as PBMaxTextSize on Transaction tab)
DateTimeAllowed Not supported

OptSelectBlob Not supported

Network tab:

AppName Supported (System tab)

Host Supported (System tab)

PacketSize Supported (System tab)

Secure Supported (as TrustedConnection on General tab)

Table 9-3 shows the database parameters and preferencesthat can be set in the
Database Profile Setup dialog box for the OLE DB standard interface for
Microsoft SQL Server, and indicates whether they are supported by the SNC

interface.

The column on the left shows the tab page in the Database Profile Setup dialog
box for OLE DB. The parameters and preferences may be on different tab

pages in the SNC profile.

Table 9-3: OLE DB parameters supported by SNC

OLE DB SNC

Connection tab:

Provider Not supported

DataSource Supported at runtime (as SQLCA.ServerName)
Datal ink Supported

Location Not supported

ProviderString Supported

System tab:

PBCatal ogOwner Supported

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Additional database
parameters

OLE DB SNC

ServiceComponents Not supported
AutoCommit Supported (General tab)
CommitOnDisconnect Supported (General tab)
StaticBind Supported (Transaction tab)
DisableBind Supported (Transaction tab)
Init_Prompt Not supported

TimeOut Supported

LCID Not supported
Transaction tab:

Block Supported
PBMaxBlobSize Supported

Mode Not supported

Lock Supported

Syntax tab:

Delimitldentifier Supported

| dentifierQuoteChar Not supported

DateFormat Supported

TimeFormat Supported

Decimal Separator Supported

OJSyntax Supported

Security tab:

EncryptPassword Not supported
CacheAuthentication Not supported
PersistSensitive Not supported
MaskPassword Not supported
PersistEncrypted Not supported
IntegratedSecurity Supported (TrustedConnection on General tab)
ImpersonationL evel Not supported
ProtectionLevel Not supported

The SNC interface also supports the ReCheckRows and BinTxtBlob
runtime-only parameters, the Encrypt, TrustServerCertificate, and SPCache
parameters (on the System tab page), and the Identity parameter (on the Syntax

tab page).

Connecting to Your Database

117

SQL Server 2005 features

SPCache database
parameter

You can control how many stored procedures are cached with parameter
information by modifying the setting of the SPCache database parameter. The
default is 100 procedures. To turn off caching of stored procedures, set
SPCache to 0.

For more information about database parameters supported by the SNC
interface, see the Connection Reference in the online Help.

SQL Server 2005 features

Multiple Active Result
Sets

Encryption without
validation

Snapshot isolation

118

The SNC database interface supports several features that were introduced in
SQL Server 2005. For more information about using these features, see the
Microsoft SQL Server 2005 documentation.

The SNC interface supports Multiple Active Result Sets (MARS), which
enable applications to have multiple default result sets open and to interleave
reading from them. Applications can also execute statements such asINSERT,
UPDATE, and DELETE and stored procedure calls while default result sets are
open.

SQL Server 2005 always encrypts network packets associated with logging. If
no certificateis provided on the server when it starts up, SQL Server generates
aself-signed certificate that is used to encrypt login packets.

The SQL Native Client supports encrypting data sent to the server without
validating the certificate. The TrustServerCertificate database parameter,
available on the System page of the database connection profile dialog box,
allows you to control this feature.

The snapshot isolation level is designed to enhance concurrency for online
transaction processing applications. Transactions that start under snapshot
isolation read a database snapshot taken at start up time. Keyset, dynamic, and
static server cursorsin this context behave like static cursors opened within
serializable transactions, but locks are not taken, which can reduce blocking on
the server. The SQLCA .Lock value for snapshot isolation is SS. You can set
thisvalue in the Isolation Level field on the Transaction page of the database
connection profile dialog box.

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

SQL Server 2008 features

PowerBuilder support for connectionsto SQL Server 2008 databases includes
new database parameters aswell as support for new SQL Server datatypes. To
connect to SQL Server 2008 from PowerBuilder, you must install the SNC
10.0 driver.

New database parameters

Provider parameter The Provider DBParm parameter for the SQL Native Client (SNC) interface
alows you to select the SQL Server version that you want to connect to. You
can set this parameter in script to SQLNCLI (for the SNC 9.0 driver that
connect to SQL Server 2005) or to SQLNCLI10 (for the SNC 10.0 driver that
connects to SQL Server 2008). Otherwise, you can select one of these
providers on the Connection tab of the Database Profile Setup dialog box for
the SNC interface.

If you do not set or select aprovider, the default selection is SQLNCLI (SNC
9.0 for SQL Server 2005). This alows existing SNC interface usersto be able
to migrate to PowerBuilder 12.5 without any modifications. If PowerBuilder
failsto connect with the SQLNCLI provider, it will attempt to connect to
SQLNCLI10 provider. However, if you explicitly set the provider and the
connection fails, PowerBuilder displays an error message.

Failover parameter The FailoverPartner DBParm parameter allows you to set the name of amirror
server, thereby maintaining database availability if afailover event occurs. You
can aso set the name of the mirror server on the System tab of the Database
Profile Setup dialog box for the SNC interface.

When failover occurs, the existing PowerBuilder connection to SQL Server is
lost. The SNC driver releases the existing connection and triesto reopeniit. If
reconnection succeeds, PowerBuilder triggers the failover event.

The following conditions must be satisfied for PowerBuilder to trigger the
failover event:

e The FailoverPartner DBParm is supplied at connect time
e TheSQL Server database is configured for mirroring

* PowerBuilder is able to reconnect successfully when the existing
connection is lost

Connecting to Your Database 119

SQL Server 2008 features

When failover occurs:

* PowerBuilder returns an error code (998) and triggers the failover event
» Existing cursors cannot be used and should be closed

* Any failed database operation can be tried again

* Any uncommitted transaction is lost. New transactions must be started

Support for new datatypes in SQL Server 2008

Date and time
datatypes

Filestream datatype

120

Thefollowing tablelists new SQL Server 2008 date and time datatypes and the
PowerScript datatypes that they map to:

SQL Server datatype PowerScript datatype

DATE Date

TIME Time (Supports only up to 6 fractional seconds
precision athough SQL Server datatype supportsup to
7 fractional seconds precision.)

DATETIME2 DateTime (Supports only up to 6 fractional seconds
precision athough SQL Server datatype supportsup to
7 fractional seconds precision.)

The SQL Server 2008 DATETIMEOFFSET datatype is not supported in
PowerBuilder 12.5.

Precision settings When you map to atable columnin a SQL Server 2008
database, PowerBuilder includes a column labeled “Dec” in the Column
Specifications view of the Datawindow painter, and atext box labeled
“Fractional Seconds Precision” in the Column (Object Details) view of the
Database painter. Thesefields allow you to list the precision that you want for
the TIME and DATETIMEZ2 columns.

The precision setting isfor table creation only. When retrieving or updating the
datain acolumn, PowerBuilder usesonly up to six decimal places precisionfor
fractional seconds, even if you enter a higher precision value for the column.

The FILESTREAM datatype allows large binary data to be stored directly in
an NTFSfile system. Transact-SQL statements can insert, update, query,
search, and back up FILESTREAM data.

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

The SQL Server Database Engine implements FILESTREAM asa
Varbinary(max) datatype. The PowerBuilder SNC interface maps the
Varbinary(max) datatype to a BLOB datatype, so to retrieve or update
filestream data, use the SelectBlob or UpdateBlob SQL statements,
respectively. To specify that acolumn should store data on the file system, you
must include the FILESTREAM attribute in the Varbinary(max) column
definition. For example:

CREATE TABLE FSTest (
GuidColl uniqueidentifier ROWGUIDCOL NOT NULL
UNIQUE DEFAULT NEWID(),
IntCol2 int,
varbinaryCol3 varbinary(max) FILESTREAM) ;

Do not use PowerScript file access functions with FILESTREAM data
You can access FILESTREAM data by declaring and using the Win32 AP

functions directly in PowerBuilder applications. However, existing
PowerBuilder file access functions cannot be used to access FILESTREAM
files. For moreinformation about accessing FILESTREAM data using Win32
APIs, see the MSDN SQL Server Developer Center Web site at
http://msdn.microsoft.com/en-us/library/bb933877(SQL.100).aspx.

Using CLR datatypes The binary values of the .NET Common Language Runtime (CLR) datatypes

in PowerBuilder can be retrieved from a SQL Server database as blobs that you could usein
PowerBuilder applications to update other columns in the database. If their
return values are compatible with PowerBuilder datatypes, you can use CLR
datatype methods in PowerScript, dynamic SQL, embedded SQL or in
Datawindow objects, because the SQL script is executed on the SQL Server
side.
The CLR datatypes can a so be mapped to Strings in PowerScript, but the
retrieved data is a hexadecimal string representation of binary data.

You can use the ToString method to work with all datatypes that are
implemented as CLR datatypes, such as the HierarchylD datatype, Spatial
datatypes, and User-defined types.

HierarchyID datatype Hierarchyl D isavariable length, system datatype that can store values
representing nodesin ahierarchical tree, such as an organizational structure. A
value of this datatype represents a position in the tree hierarchy.

Connecting to Your Database 121

SQL Server 2008 features

ISQL Usage You can use HierarchylD columns with CREATE TABLE,
SELECT, UPDATE, INSERT, and DELETE statementsin the ISQL painter.
For example:

CREATE TABLE Emp (
EmpId int NOT NULL,
EmpName varchar (20) NOT NULL,
EmpNode hierarchyid NULL) ;

To insert HierarchylD data, you can use the canonical string representation of
HierarchyID or any of the methods associated with the Hierarchyl D datatype
as shown below.

INSERT into Emp VALUES (1, 'Scott',
hierarchyid: :GetRoot ()) ;
INSERT into Emp VALUES (2, 'Tom' , '/1/');

DECLARE @Manager hierarchyid
SELECT @Manager = hierarchyid::GetRoot () FROM Emp
INSERT into Emp VALUES (2, 'Tom',

@Manager .GetDescendant (NULL,NULL)) ;
DECLARE @Employee hierarchyid
SELECT @Employee = CAST('/1/2/3/4/' AS hierarchyid)
INSERT into Emp VALUES (2, 'Jim' , @Employee) ;

You cannot select the Hierarchyl D column directly sinceit hasbinary data, and
the ISQL painter Results view does not display binary columns. However, you
can retrieve the Hierarchyl D data as a string value using the ToString method
of HierarchylD. For example:

Select EmpId, EmpName, EmpNode.ToString() from Emp;

You can also use thefollowing methods on Hierarchyl D columnsto retrieveits
data: GetAncestor, GetDescendant, GetLevel, GetRoot, IsDescendant, Parse,
and Reparent. If one of these methods returns a HierarchylD node, then use
ToString to convert the data to a string. For example:

Select EmpId, EmpName, EmpNode.GetLevel () from Emp;
Select EmpId, EmpName,
EmpNode.GetAncestor (1) .ToString () from Emp;

HierarchylD columns can be updated using a String value or a HierarchylD

variable:
Update Emp Set EmpNode = '/1/2/' where EmpId=4;
Delete from Emp where EmpNode = '/1/2/';

122 PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Spatial datatypes

PowerScript Usage You can use HierarchylD columns in embedded SQL
statements for SELECT, INSERT, UPDATE, and DELETE operations.
HierarchylD datacan be retrieved either as a String or as a Binary(Blob)
datatype using the SelectBlob statement.

When using a String datatype to retrieve Hierarchyl D data, use the ToString
method. Otherwisethe datawill be ahexadecimal representation of the binary
HierarchylD value.

The following example shows how you can use HierarchylD methodsin
embedded SQL:

long id
String hid,name
Select EmpId, EmpName, EmpNode.ToString/()
into :id, :name, :hid
from Emp where EmpId=3;
Select EmpId, EmpName, EmpNode.GetLevel ()
into :id, :name, :hid
from Emp where EmpId=3;
Blob b
Selectblob EmpNode into :b from Emp where EmpId =2;

DatawWindow Usage Datawindow objects do not directly support the
Hierarchyl D datatype. But you can convert the Hierarchyl D to a string using
the ToString method or an associated HierarchylD method in the data source
SQL. For example:

SELECT EmpId, EmpName, EmpNode.ToString() FROM Emp;
SELECT EmpId, EmpName, EmpNode.GetLevel () FROM Emp;

Microsoft SQL Server 2008 supports two spatial datatypes: the geometry
datatype and the geography datatype. In SQL Server, these datatypes are
implemented as .NET Common Language Runtime (CLR) datatypes.

Although the PowerBuilder SNC interface does not work with CLR
datatypes, you can convert the spatial datatypes into strings (with the ToString
function) and usethem in PowerScript, in the |ISQL painter, in embedded SQL,
and in Datawindow objects. Thisissimilar to theway you usethe Hierarchyl D
datatype. The SelectBlob SQL statement also lets you retrieve binary values
for these datatypes.

The geography and geometry datatypes support eleven different data objects,
or instance types, but only seven of these types are instantiable: Points,
LineStrings, Polygons, and the objects in an instantiable GeometryCollection
(MultiPoints, MultiLineStrings, and Multi Polygons). You can create and work
with these objectsin adatabase, calling methods associated with them, such as
STAsText, STArea, STGeometryType, and so on.

Connecting to Your Database 123

SQL Server 2008 features

User-defined types

For example:

CREATE TABLE SpatialTable (id int IDENTITY (1,1),
GeomCol geometry) ;

INSERT INTO SpatialTable (GeomCol) VALUES (
geometry: : STGeomFromText (

'LINESTRING (100 100,20 180,180 180)',0));
select id, GeomCol.ToString() from SpatialTable;
select id, GeomCol.STAsText (),

GeomCol .STGeometryType (),
GeomCol .STArea () from SpatialTable;

User-defined types (UDTs) areimplemented in SQL Server as CLR types and
integrated with .NET. Microsoft SQL Server 2008 eliminatesthe8 KB limit for
UDTs, enabling the size of UDT datato expand dramatically.

Although the PowerBuilder SNC interface does not directly support UDT
datatypes, you can use the ToString method to retrieve datafor UDTsin the
same way as for other CLR datatypes such as Hierarchyld or the spatial
datatypes. However, if aUDT datatype is mapped to a String datatype in
PowerScript, UDT binary values will be retrieved as hexadecimal strings. To
retrieve or update datain binary form (blob) from aUDT, you can use the
SelectBlob or UpdateBlob SQL statements, respectively.

You can use any of the associated methods of UDT or CLR datatypes that
return compatible data (such as String, Long, Decimal, and so on) for
PowerBuilder applications.

T-SQL enhancements

MERGE statement

124

The MERGE Transact-SQL statement performs INSERT, UPDATE, or

DEL ETE operationson atarget table or view based on the results of ajoinwith
asource table. You can use MERGE statement in the ISQL painter and in
PowerScript using dynamic SQL. For example

String mySQL
mySQL = "MERGE INTO a USING b ON a.keycol = b.keycol " &
+ "WHEN MATCHED THEN "&

+ "UPDATE SET coll = b.coll,col2 = b.col2 " &

+ "WHEN NOT MATCHED THEN " &

+ "INSERT (keycol, coll, col2, col3)" &

+ "VALUES (b.keycol, b.coll, b.col2, b.col3) " &
+ "WHEN SOURCE NOT MATCHED THEN " &

+ "DELETE;"

EXECUTE IMMEDIATE :Mysql;

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Grouping sets

Row constructors

Using the MERGE statement in ISQL
A MERGE statement must be terminated by a semicolon. By default the |SQL

painter uses a semicolon as a SQL terminating character, so to use a MERGE
statement in |SQL, the terminating character must be changed to acolon (3), a
forward dash (/), or some other special character.

GROUPING SETS s an extension of the GROUP BY clause that lets you
define multiple groupings in the same query. GROUPING SETS produce a
single result set, making aggregate querying and reporting easier and faster. It
isequivalent to a UNION ALL operation for differently grouped rows.

The GROUPING SETS, ROLLUP, and CUBE operators are added to the
GROUPBY clause. A new function, GROUPING _ID, returns more
grouping-level information than the existing GROUPING function. (The
WITH ROLLUR, WITH CUBE, and ALL syntax isnot ISO compliant and is
therefore deprecated.)

The following example uses the GROUPING SETS operator and the
GROUPING_ID function:

SELECT EmpId, Month, Yr, SUM(Sales) AS Sales

FROM Sales

GROUP BY GROUPING SETS((EmpId, ROLLUP(Yr, Month)));
SELECT COL1, COL2,

SUM (COL3) AS TOTAL_ VAL,

GROUPING (COL1) AS C1,

GROUPING (COL2) AS C2,

GROUPING ID(COL1l, COL2) AS GRP_ID VALUE

FROM TEST TBL GROUP BY ROLLUP (COL1l, COL2) ;

You can use the GROUPING SETS operator in the ISQL painter, in
PowerScript (embedded SQL and dynamic SQL) and in Datawindow objects
(syntax mode).

Transact-SQL now allows multiple value inserts within asingle INSERT
statement. You can use the enhanced INSERT statement in the ISQL painter
and in PowerScript (embedded SQL and dynamic SQL). For example:

INSERT INTO Employees VALUES ('tom',6 25, 5),
('jerry', 30, 6), ('bok', 25, 3);

When including multiple valuesin asingle INSERT statement with host
variables, you must set the DisableBind DBParm to 1. If you use literal values
asin the above example, you can insert multiple rowsin asingle INSERT
statement regardless of the binding setting.

Connecting to Your Database 125

SQL Server 2008 features

Compatibility level

Table hints

In SQL Server 2008, the ALTER DATABASE statement allows you to set the
database compatibility level (SQL Server version), replacing the
sp_dbcmptlevel procedure. You can use this syntax in the ISQL painter and in
PowerScript (dynamic SQL). For example:

ALTER DATABASE <database names>
SET COMPATIBILITY LEVEL = {80 | 90 | 100}
80 = SQL Server 2000
90 = SQL Server 2005
100 = SQL Server 2008

Compatibility level affectsbehaviorsfor the specified database only, not for the
entire database server. It provides only partial backward compatibility with
earlier versions of SQL Server. You can use the database compatibility level as
an interim migration aid to work around differences in the behaviors of
different versions of the database.

The FORCESEEK table hint overrides the default behavior of the query
optimizer. It provides advanced performance tuning options, instructing the
query optimizer to use an index seek operation as the only access path to the
datain the table or view that is referenced by the query. You can use the
FORCESEEK table hint in the ISQL painter, in PowerScript (embedded SQL
and dynamic SQL), and in DatawWindow objects (syntax mode).

For example:

Select ProductID, OrderQty from SalesOrderDetail
with (FORCESEEK) ;

Unsupported SQL Server 2008 features

126

The PowerBuilder SNC interface does not support the User-Defined Table
Type (auser-defined type that representsthe definition of atable structure) that
was introduced in SQL Server 2008.

PowerBuilder Classic

CHAPTER 9 Using Microsoft SQL Server

Notes on using the SNC interface

Using the DBHandle
PowerScript function

SQL batch statements

Connection pooling

The DBHandle function on the Transaction object returns the | Unknown*
interface of the current session object. You can use this interface to query any
interface in the session object. The interface is not locked by
plUnknown->Addref() in PowerBuilder, therefore you should not call the
plUnknown->Release() to free the interface after using it.

The SNC interface supports SQL batch statements. However, they must be
enclosed in aBEGIN...END block or start with the keyword DECLARE:

. Enclosed in aBEGIN...END block:

BEGIN
INSERT INTO t_1 values(1l, 'sfdfs')
INSERT INTO t_2 values(l, 'sfdfs')

SELECT * FROM t_1
SELECT * FROM t_2
END

e Starting with the keyword DECLARE:

DECLARE @pl int, @p2 varchar(50)
SELECT @pl = 1

EXECUTE sp 4 @pl, @p2 OUTPUT
SELECT @p2 AS 'output'

You can run the batch of SQL statements in the Database painter or in
PowerScript. For example:

String batchSQL //contains a batch of SQL statements
DECLARE my cursor DYNAMIC CURSOR FOR SQLSA ;

PREPARE SQLSA FROM :batchSQL ;

OPEN DYNAMIC my cursor ;

//first result set

FETCH my_cursor INTO .

//second result set

FETCH my_ cursor INTO .

CLOSE my_cursor ;

The SNCinterface pools connections automatically using OL E DB pooling. To
disable OLE DB pooling, type the following in the Extended Propertiesbox on
the Connection tab page in the Database Profile Setup dialog box:

OLE DB Services=-4
You can aso type the following statement in code:

ProviderString='OLE DB Services=-4"')

Connecting to Your Database 127

Notes on using the SNC interface

Triggers and In the Objects view for SNC profilesin the Database painter, triggers display
synonyms in the for tablesin the Tables folder and Microsoft SQL Server 2005 synonyms
Database painter - .

display for tables and views.

128 PowerBuilder Classic

CHAPTER 10 Using Oracle

About this chapter This chapter describes how to use the native Oracle database interfacesin
PowerBuilder.

Contents Topic Page
Supported versions for Oracle 129
Supported Oracle datatypes 130
Basic software components for Oracle 133
Preparing to use the Oracle database 134
Defining the Oracle database interface 138
Using Oracle stored procedures as a data source 139
Using Oracle user-defined types 144
Support for HA event notification 146
ORA driver support for Oracle 11g features 146

Supported versions for Oracle

PowerBuilder provides three Oracle database interfaces. Theseinterfaces
use different DLLs and access different versions of Oracle.

Table 10-1: Supported native database interfaces for Oracle

Oracle interface DLL

090 Oraclegi PBO90125DLL
010 Oracle 10g PBO10125.DLL
ORA Oracle 11g PBORA125.DLL

Support for the O84 Oracle8i interface was discontinued in PowerBuilder
11.5.

Connecting to Your Database 129

Supported Oracle datatypes

For more information
Updated information about supported versions of Oracle might be available

electronically on the Sybase Support and Downloads Web site at
http:/Mmww.sybase.com/detail?id=1011566 or in the PowerBuilder Release
Bulletin.

The ORA database interface allowsyou to connect to Oracle 11g servers using
Oracle 11g Database Client or Oracle 11g Instant Client. It includes partial
support for the XMLType datatype that it maps to the PowerBuilder String
datatype. It also supports session and connection pooling, load balancing, the
Oracle Client Cache, setting of an application driver name, and access through
aproxy. Oracle 11g clients can also connect to Oraclei or Oracle 10g servers.

The 010 database interface allows you to connect to Oracle 10g servers using
Oracle 10g Database Client or Oracle 10g Instant Client. It supports
BINARY_FLOAT and BINARY_DOUBLE datatypes and increased size limits for
CLOB and NCLOB datatypes. Oracle 10g clients can connect to Oraclei or
Oracle 10g servers, they cannot connect to Oracle8i or earlier servers.

Supported Oracle datatypes

130

The Oracle database interfaces support the Oracle datatypes listed in
Table 10-2 in reports and embedded SQL.

Table 10-2: Supported datatypes for Oracle

Binary_Float (Oracle 10g and later only) LongRaw

Binary_Double (Oracle 10g and later only) NChar

Bfile Number

Blob NVarChar2

Char Raw

Clob TimeStamp

Date VarChar

Float VarChar2

Long XMLType (partial support, ORA
driver only)

The ORA driver adds support for the XMLType datatype that was introduced
with Oracle 9i. However, you cannot use this datatype with embedded SQL
statements or in areport.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Accessing Unicode
data

PowerBuilder can connect, save, and retrieve datain both ANSI/DBCS and
Unicode databases, but it does not convert data between Unicode and
ANSI/DBCS. When character data or command text is sent to the database,
PowerBuilder sends a Unicode string. The driver must guarantee that the data
is saved as Unicode data correctly. When PowerBuilder retrieves character
data, it assumes the datais Unicode.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All datamust bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) asits character set might use special
datatypesto store Unicode data. These datatypesare NCHAR and NVARCHAR2.
Columns with this datatype can store only Unicode data. Any data saved into
such acolumn must be converted to Unicode explicitly. This conversion must
be handled by the database server or client.

A constant string is regarded as a char type by Oracle and its character set is
NLS CHARACTERSET. However, if the datatype in the databaseis NCHAR
and its character setisNLS NCHAR_CHARACTERSET, Oracle performs a
conversion from NLS CHARACTERSET to

NLS NCHAR_CHARACTERSET. This can cause loss of data. For example,
if NLS_CHARACTERSET is WE8ISO8859P1 and

NLS NCHAR_CHARACTERSET is UTF8, when the Unicode datais
mapped to WE8ISO8859P1, the Unicode datais corrupted.

If you want to access Unicode data using NCHAR and NVARCHAR2 columns
or stored procedure parameters, use PowerBuilder variables to store the
Unicode datain a script using embedded SQL to avoid using a constant string,
and force PowerBuilder to bind the variables.

By default, the Oracle database interfaces bind all string data to internal
variables asthe Oracle CHAR datatype to avoid downgrading performance. To
ensure that NCHAR and NVARCHAR?2 columns are handled as such on the
server, set the NCharBind database parameter to 1 to have the drivers bind
string data as the Oracle NCHAR datatype.

For example, suppose tablel has a column c1 with the datatype NVARCHAR2.
Toinsert Unicodedatainto thetable, set DisableBind to 0, set NCharBind to 1,
and use this syntax:

string varl
insert into tablel (cl) values(:varl) ;

Connecting to Your Database 131

Supported Oracle datatypes

TimeStamp datatype

If an Oracle stored procedure has an NCHAR or NVARCHAR? input parameter
and the input datais a Unicode string, set the BindSPInput database parameter
to 1 to force the Oracle database to bind the input data. The Oracle database
interfaces are able to describe the procedure to determine its parameters,
therefore you do not need to set the NCharBind database parameter.

For areport to access NCHAR and NVARCHAR?2 columns and retrieve data
correctly, set both DisableBind and StaticBind to 0. Setting StaticBind to O
ensures that PowerBuilder gets an accurate datatype before retrieving.

The TimeStamp datatype in OracleQi and later is an extension of the Date
datatype. It stores the year, month, and day of the Date value plus hours,
minutes, and seconds:

Timestamp[fractional_seconds_precision]

Thefractional _seconds_precision vaueisoptional and providesthe number of
digits for indicating seconds. The range of valid values for use with
PowerBuilder is 0-6.

Datatype conversion

Number datatype
converted to decimal

132

When you retrieve or update columns, in general PowerBuilder converts data
appropriately between the Oracle datatype and the Power Script datatype. Keep
in mind, however, that similarly or identically named Oracle and PowerScript
datatypes do not necessarily have the same definitions.

For information about the definitions of PowerScript datatypes, see the
Power Script Reference.

When a DataWindow object is defined in PowerBuilder, the Oracle datatype
number(size,d) is mapped to adecimal datatype. In PowerBuilder, the precision
of adecimal is 18 digits. If acolumn’s datatype has a higher precision, for
example number(32,30), inserting a number with a precision greater than 18
digits produces an incorrect result when the number isretrieved in a
Datawindow. For example, 1.8E-17 displays as 0.000000000000000018,
whereas 1.5E-25 displays as 0.

You might be able to avoid this problem by using a different datatype, such as
float, for high precision number columns in the Oracle DBMS. The float
datatype is mapped to the number datatype within the DataWindow’s source.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Basic software components for Oracle

You must install the software components in Figure 10-1 to access an Oracle
database in PowerBuilder.

Figure 10-1: Components of an Oracle connection

Dalabase
interface DLL

Database client
software

Network layer
(if any)

Database

Connecting to Your Database

Davelopmeant
environment

k-

PEOS0nnn.DLL
PEO10nnn.DLL
or
PEORAnAN.OLL

[———— Supplied by Sybase

Oracle Net 9g client
software or later

Supplied by Oracle

Any supported network
protocol

Supplied by network vendor
or database vendor

Oracle Version
95, 10g, or 11g

133

Preparing to use the Oracle database

Preparing to use the Oracle database

Step 1: Install and
configure the
database server

134

Before you define the database interface and connect to an Oracle database in
PowerBuilder, follow these steps to prepare the database for use:

1 Install and configure the required database server, network, and client
software.

2 Install the native Oracle database interface for the version of Oracle you
want to access.

3 Veify that you can connect to the Oracle server and database outside
PowerBuilder.

4 (ORA driver only) Determine whether you want to use connection pooling
or session pooling.

Preparing an Oracle database for use with PowerBuilder involves these basic
tasks.

You must install and configure the database server, network, and client
software for Oracle.

[—TTo install and configure the database server, network, and client
software:

1 Make surethe Oracle database software is installed on your computer or
on the server specified in your database profile.

For example, with the Oracle O90 interface you can access an Oracle9i or
Oracle 10g database server.

You must obtain the database server software from Oracle Corporation.
For installation instructions, see your Oracle documentation.

2 Make sure the supported network software (such as TCP/IP) isinstalled
and running on your computer and is properly configured so that you can
connect to the Oracle database server at your site.

The Hosts and Services files must be present on your computer and
properly configured for your environment.

You must obtain the network software from your network vendor or
database vendor.

For installation and configuration instructions, see your network or
database administrator.

PowerBuilder Classic

CHAPTER 10 Using Oracle

3

Install the required Oracle client software on each client computer on
which PowerBuilder isinstalled.

You must obtain the client software from Oracle Corporation. Make sure
the client software version you install supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

Oracle 10g Instant Client is free client software that lets you run
applicationswithout installing the standard Oracle client software. It hasa
small footprint and can be freely redistributed.

Make sure the Oracle client software is properly configured so that you
can connect to the Oracle database server at your site.

For information about setting up Oracle configuration files, see your
Oracle Net documentation.

If required by your operating system, make sure the directory containing
the Oracle client software isin your system path.

Step 2: Install the In the PowerBuilder Setup program, select the Typical install or select the

database interface

Custom install and select the Oracle database interfaces you require.

For alist of the Oracle database interfaces available, see “ Supported versions
for Oracle” on page 129.

Step 3: Verify the Make sure you can connect to the Oracle database server and log in to the

connection

database you want to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following
Oracletools:

Connecting to Your Database

Accessing the database server ToolssuchasOracle TNSPING (or any
other ping utility) check whether you can reach the database server from
your computer.

Accessing the database Toolssuch asOracle SQL*Plus check whether
you can log in to the Oracle database you want to access and perform
database operations. It is agood ideato specify the same connection
parameters you plan to use in your PowerBuilder database profile to
access the database.

135

Preparing to use the Oracle database

Step 4: Determine
whether to use
connection or session
pooling

136

Oracleclient interface (OCI) pooling for PowerBuilder applicationsis created
when you connect to an Oracle server for the first time. The pooling is
identified by the server name and character set which are passed in the
DBPARM parameters SQLCA.ServerNameand NLS_Charset, respectively. If
two Oracle connections are connected to the same Oracle server but use
different character sets, the connections must reside in different connection or
session pools. All pooling-related DBPARM parameters must be set beforethe
initial database connection from PowerBuilder.

Session pooling means that the application creates and maintains a group of
statel ess sessions to the database. These sessions are passed to thin clients as
requested. If no session is available, a new oneis created. When the client is
done with the session, the client releases it to the pool. With session pooling,
the number of sessions in the pool can increase dynamically.

Session pooling does not support external authentication using an OS account.
If aLogin ID isnot specified in a database connection using an existing session
pool, the Login ID of the session pooling creator is used for the connection.

CNNPool parameter maintained for backward compatibiity
The 090 and O10 database driversthat you can usein PowerBuilder to connect

to the 9.x and 10.x versions of the Oracle DBM S support connection pooling
with the DBPARM parameter CNNPool. For backward compatibility
purposes, this parameter is also supported by the ORA driver that you use with
Oracle 11g. However, if the Pooling parameter is used with this driver, the
CNNPool parameter isignored.

Deciding on pooling type Table 10-3 describes the circumstances under
which you should make your pooling selection.

Table 10-3: Pooling types and when or when not to use them

Choose When database sessions are

Session pooling Stateless (reusable by middletier threads) and the number of
back-end server processes can cause database scaling
problems.

Connection pooling | Stateful (not reusable by middle tier threads) and the number
of back-end server processes can cause database scaling
problems. The number of physical connections and back-end
server processes is reduced by using connection pooling.
Therefore many more database sessions can be utilized for
the same back-end server configuration.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Choose

When database sessions are

No pooling

Stateful (not reusable by middletier threads) and the number
of back-end server processes will never be large enough to
cause scaling issues for the database.

EA Server components and M TS components do not support
either type of pooling for Oracle databases.

Setting pooling parameters The database profile dialog box for an Oracle
119 connection includes a Pooling tab that |ets you select the pooling
parameters listed in Table 10-4.

Table 10-4: Pooling parameters for the ORA driver

Pooling parameter

Description

Pooling Type

You can select Session Pooling, Connection Pooling, or
None (default). Sets the Pooling DBPARM.

Runtime Connection
Load Balancing

This check box selected by default. It isignored when you
select Connection Pooling or None for the Pooling Type.
Sets the RTConnBalancing DBPARM.

Homogeneous Session

This check box is not selected by default and is valid for
session pooling only. When selected, all sessionsin the
pool are authenticated with the user name and password in
effect when the session pool was created. The user name
and password in later connection requests are ignored.
Proxy sessions cannot be created in homogeneous
sessioon mode. Sets the SessionHomogeneous DBPARM.

Minimum Number of
Sessions

Integer for the minimum number of database connection
sessions; valueis 1 by default. Setsthe CSMin DBPARM.
This value isignored when the SessionHomogeneous
DBPARM is set to false.

Maximum Number of
Sessions

Integer for the maximum number of database connection
sessions; valueis 100 by default. Sets the CSMax
DBPARM.

Increment

Integer for database connection increments per session;
valueis 1 by default. Setsthe CSIncr DBPARM. This
value isignored when the SessionHomogeneous
DBPARM isset to false.

Pool Creator

Connecting to Your Database

User name used to create the connection or session pool
when the pool isnot already created. Sets the Pool Creator
DBParm to astring for the user name prior to the database
connection. If you do not provide avalue for the

Pool Creator DBParm, the Transaction object’s LoglD and
L ogPass properties are used to create the pooling.

137

Defining the Oracle database interface

Pooling parameter Description

Password Password used to create the connection or session pool
when the pool is not already created. Sets the PoolPwd
DBParm to a string for the password for the pool creator.

Defining the Oracle database interface

To define a connection through an Oracle database interface, you must create
adatabase profile by supplying values for at least the basic connection
parameters in the Database Profile Setup dialog box for your Oracle interface.
You can then select this profile at any time to connect to your database in the
development environment.

For information on how to define a database profile, see “Using database
profiles’” on page 7.

Specifying the Oracle server connect descriptor

Specifying a connect
descriptor

138

To connect to an Oracle database server that resides on a network, you must
specify the proper connect descriptor in the Server box on the Connection tab
of the Database Profile Setup dial og box for your Oracleinterface. The connect
descriptor specifies the connection parameters that Oracle uses to access the
database.

For help determining the proper connect descriptor for your environment, see
your Oracle documentation or system administrator.

The syntax of the connect descriptor depends on the Oracle client software you
areusing.

If you are using Net9 or |ater, the syntax is:
OracleServiceName

If you are using SQL*Net version 2.x, the syntax is:
@ TNS: OracleServiceName

Parameter Description

@ Theat (@) signisrequired

TNS The identifier for the Oracle Transparent Network
Substrate (TNS) technology

PowerBuilder Classic

CHAPTER 10 Using Oracle

Parameter Description

: Thecolon (:) isrequired

OracleServiceName | Theservicenameassignedto your server inthe Oracle
configuration file for your platform

Net9 example To use Net9 client software to connect to the service named
ORAJ9, type the following connect descriptor in the Server box on the
Connectiontab of the Database Profile Setup dialog box for Oracle9i and | ater:
ORAO9.

Using Oracle stored procedures as a data source

This section describes how you can use Oracle stored procedures.

What is an Oracle stored procedure?

Oracle defines a stored procedure (or function) asanamed PL/SQL program
unit that logically groups a set of SQL and other PL/SQL programming
language statements together to perform a specific task.

Stored procedures can take parameters and return one or more result sets (also
called cursor variables). You create stored proceduresin your schemaand store
them in the data dictionary for use by multiple users.

What you can do with Oracle stored procedures

Ways to use Oracle
stored procedures

You can use an Oracle stored procedure in the following waysin your
PowerBuilder application:

e Asadatasource for DataWindow objects

e Cadled by an embedded SQL DECLARE PROCEDURE statement in a
PowerBuilder application (includes support for fetching against stored
procedures with result sets)

e Cadledasanexterna function or subroutinein a PowerBuilder application
by using the RPCFUNC keyword when you declare the procedure

Connecting to Your Database 139

Using Oracle stored procedures as a data source

For information about the syntax for using the DECLARE PROCEDURE
statement with the RPCFUNC keyword, see the Power Script Reference.

Procedures with a single result set You can use stored procedures that
return asingle result set in reports and embedded SQL, but not when using the
RPCFUNC keyword to declare the stored procedure as an external function or
subroutine.

Procedures with multiple result sets You can use procedures that return
multiple result sets only in embedded SQL. Multiple result sets are not
supported in Datawindows, reports, or with the RPCFUNC keyword.

Using Oracle stored procedures with result sets

Overview of basic

steps

Setting up the
Database painter

140

The following procedure assumes you are creating the stored procedure in the
ISQL view of the Database painter in PowerBuilder.

[_ITo use an Oracle stored procedure with a result set:

1 SetupthelSQL view of the Database painter to create the stored
procedure.

2 Create the stored procedure with aresult set asan IN OUT (reference)
parameter.

3 Createreports that use the stored procedure as a data source.

When you create a stored procedure in the I SQL view of the Database painter,
you must change the default SQL statement terminator character to one that
you do not plan to usein your stored procedure syntax.

The default SQL terminator character for the Database painter is a semicolon
(;). If you plan to use asemicolon in your Oracle stored procedure syntax, you
must change the painter’s terminator character to something other than a
semicolon to avoid conflicts. A good choiceisthe backquote (*) character.

[ITo change the default SQL terminator character in the Database painter:

1 Connect to your Oracle database in PowerBuilder as the System user.

For instructions, see “ Defining the Oracle database interface” on page
138.

2 Open the Database painter.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Creating the stored
procedure

Connecting to Your Database

3 Select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

Type the character you want (for example, a backquote) in the SQL
Terminator Character box.

Click Apply or OK.

The SQL Terminator Character setting is applied to the current connection
and al future connections (until you change it).

After setting up the Database painter, you can create an Oracle stored
procedure that has aresult set as an IN OUT (reference) parameter.
PowerBuilder retrieves the result set to populate areport.

There are many ways to create stored procedures with result sets. The
following procedure describes one possible method that you can use.

For information about when you can use stored procedures with single and
multiple result sets, see “What you can do with Oracle stored procedures’ on
page 139.

[_ITo create Oracle stored procedures with result sets:
1 Makesureyour Oracle user account hasthe necessary database accessand

privileges to access Oracle objects (such as tables and procedures).

Without the appropriate access and privileges, you will be unableto create
Oracle stored procedures.

Assume the following table named tt exists in your Oracle database:

a b c
1 Newman sysdate
2 Everett sysdate

Create an Oracle package that holds the result set type and stored
procedure. The result type must match your table definition.

141

Using Oracle stored procedures as a data source

For example, the following statement creates an Oracle package named
spm that holds a result set type named rctl and a stored procedure named
procl. The tt%ROWTY PE attribute defines rctl to contain all of the
columnsin tablett. The procedure procl takes one parameter, a cursor
variable named rc1 that isan IN OUT parameter of type rctl.

CREATE OR REPLACE PACKAGE spm
IS TYPE rctl IS REF CURSOR
RETURN tt%ROWTYPE;
PROCEDURE procl(rcl IN OUT rctl);END; "

4 Create the Oracle stored procedure separately from the package you
defined.

The following examples show how to create two stored procedures:
spm_proc 1 (returns a single result set) and spm_proc2 (returns multiple
result sets).

The IN OUT specification means that PowerBuilder passes the cursor
variable (rc1 or rc2) by reference to the Oracle procedure and expects the
procedure to open the cursor. After the procedure call, PowerBuilder
fetches the result set from the cursor and then closes the cursor.

spm_procl example for reports The following statements create
spm_procl which returns one result set. You can use this procedure as the
data source for areport in PowerBuilder.

CREATE OR REPLACE PROCEDURE spm procl (rcl IN OUT
spm.rctl)
AS
BEGIN
OPEN rcl FOR SELECT * FROM tt;
END; ~

spm_proc2 example for embedded SQL The following statements
create spm_proc2 which returnstwo result sets. You can usethis procedure
only in embedded SQL.

CREATE OR REPLACE PROCEDURE spm proc2 (rcl IN OUT
spm.rctl, rc2 IN OUT spm.rctl)
AS
BEGIN
OPEN rcl FOR SELECT * FROM tt ORDER BY 1;
OPEN rc2 FOR SELECT * FROM tt ORDER BY 2;END; "

Error checking
If necessary, check the Oracle system table public.user_errors for alist of errors.

142 PowerBuilder Classic

CHAPTER 10 Using Oracle

Creating the report

After you create the stored procedure, you can define the report that uses the
stored procedure as a data source.

You can use Oracle stored procedures that return asingle result set in areport.
If your stored procedure returns multiple result sets, you must use embedded
SQL commands to accessit.

The following procedure assumes that your Oracle stored procedure returns
only asingle result set.

[TTo create a report using an Oracle stored procedure with a result set:

1 Select apresentation style onthe DataWindow page of the New dial og box
and click OK.

2 Select the Stored Procedureicon and click OK.

The Select Stored Procedure wizard page displays, listing the stored
procedures available in your database.

3 Select the stored procedure you want to use as a data source, and click
Next.

4 Complete the wizard to define the report.

When you preview the report or call Retrieve, PowerBuilder fetches the
result set from the cursor in order to populate the report. If you selected
Retrieve on Preview on the Choose Data Source page in the wizard, the
result set displaysin the Preview view when the DataWindow opens.

Using a large-object output parameter

You can define alarge object (LOB) as an output parameter for an Oracle
stored procedure or function to retrieve large-object data. Thereisno limit on
the number of LOB output arguments that can be defined for each stored
procedure or function.

In Oracle 10g, the maximum size of LOB datatypes has been increased from 4
gigabytes minus 1 to 4 gigabytes minus 1 multiplied by the block size of the
database. For a database with a block size of 32K, the maximum sizeis 128
terabytes.

Connecting to Your Database 143

Using Oracle user-defined types

RPC calls to stored procedures with array parameters

If your application performs aremote procedure call (RPC) that passesan array
parameter to an Oracle stored procedure, the array sizein the stored procedure
must not be zero. If the array sizeis uninitialized (has no size), the PBVM
returns an error.

Using Oracle user-defined types

Example

144

PowerBuilder supports SQL CREATE TYPE and CREATE TABLE statements
for Oracle user-defined types (objects) in the ISQL view of the Database
painter. It correctly handles SQL SELECT, INSERT, UPDATE, and DELETE
statements for user-defined types in the Database and Report painters.

This means that using the Oracle native database interfaces in PowerBuilder,
you can:

Do this In

Use Oracle syntax to create user-defined types Database painter
Use Oracle syntax to create tables with columns that Database painter
reference user-defined types

View columnsin Oracle tables that reference Database painter

user-defined types
Manipulate datain Oracle tables that have user-defined | Database painter
types Report painter
Datawindow objects
Export Oracletable syntax containing user-defined types | Database painter
toalogfile

Invoke methods Report painter (Compute
tab in SQL Toolbox)

Here is asimple example that shows how you might create and use Oracle
user-defined types in PowerBuilder.

For more information about Oracle user-defined types, see your Oracle
documentation.

[_TTo create and use Oracle user-defined types:

1 InthelSQL view of the Database painter, create two Oracle user-defined
types: ball_stats type and player_type.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Connecting to Your Database

Hereisthe Oracle syntax to create ball_stats_type. Notice that the
ball_stats object of type ball_stats_type has a method associated with it
called get_avg.

CREATE OR REPLACE TYPE ball stats type AS OBJECT
(bat_avg NUMBER(4,3),rbi NUMBER (3),MEMBER FUNCTION
get_avg RETURN NUMBER, PRAGMA RESTRICT REFERENCES
(get_avg, WNDS, RNPS, WNPS)) ;

CREATE OR REPLACE TYPE BODY ball stats_ type ASMEMBER
FUNCTION get avg RETURN NUMBER ISBEGINRETURN
SELF.bat_avg;

END;

END;

Here isthe Oracle SQL syntax to create player_type. Player_type
references the user-defined type ball_stats_type. PowerBuilder supports
such nesting graphically in the Database, Report, and Table painters (see
step 3).

CREATE TYPE player type AS OBJECT (player no
NUMBER (2) ,player name VARCHAR2 (30),ball stats
ball stats_type);

In the Database painter, create a table named lineup that references these
user-defined types.

Hereisthe Oracle SQL syntax to create the lineup table and insert a row.
Lineup references the player_type user-defined type.

CREATE TABLE lineup (position NUMBER (2) NOT NULL,
player player type);

INSERT INTO lineup VALUES (1,player type (15,
'Dustin Pedroia', ball stats type (0.317, 50)));

Display the lineup table in the Database or Report painter.

PowerBuilder uses the following structure->member notation to display
the table:

position

player->player no
player->player name
player->ball stats->bat_avg
player->ball stats->rbi

145

Support for HA event natification

4 To access the get_avg method of the object ball_stats contained in the
object column player, use the following structure->member notation when
defining acomputed column for the report. For example, when workingin
the Report painter, you could use this notation on the Compute tab in the
SQL Toolbox:

player->ball stats->get avg()

Support for HA event notification

Oracle Real Application Clusters (RAC) isacluster database that uses ashared
cache architecture. In Oracle 10g Release 2, aHigh Availability (HA) client
connected to an RAC database can register a callback to indicate that it wants
theserver to notify it in case of adatabasefailure event that affectsaconnection
made by the client.

To take advantage of this feature, PowerBuilder users can script the
DBNotification event of the Transaction object. For more information, seethe
description of the DBNotification event and the HANotification database
parameter in the online Help.

ORA driver support for Oracle 11g features

Client result cache

146

In addition to support for Oracle 11g session pooling and connection pooling,
the ORA driver adds support for other 11g features.

The PowerBuilder ORA driver supports Oracle Client Cache, however this
feature depends on your Oracle Server and Client configuration. You can
configure the Oracle Client Cache with an init.ora or sglnet.ora file. Cached
queries are annotated with “ /+*+ result cache */” hintsto indicate that
results are stored in the query result cache. You enable OCI statement caching
from PowerBuilder applications with the StatementCache DBPARM
parameter.

PowerBuilder Classic

CHAPTER 10 Using Oracle

Application driver
name

Client access through
a proxy (Oracle 10.2
feature)

Load balancing

An OCI application can chooseits own name and set it asadiagnostic aid. The
AppDriverName DPBARM parameter allowsyou to set your own client driver
name for the PowerBuilder ORA interface. The maximum length of the name
is 8 characters. You can display the client driver name with the
V$SESSION_CONNECT_INFO or GV$SESSION_CONNECT_INFO
dynamic performance view queries.

The PowerBuilder ORA driver supports the proxy authentication feature that
was introduced in Oracle 10.2. With proxy authentication, the end user
typically authenticatesto amiddletier (such asafirewall), that in turnlogsinto
the database on the user's behalf—as a proxy user. After logging into the
database, the proxy user can switch to the end user's identity and perform
operations using the authorization accorded to that user.

The ConnectAs DBParm parameter allows you to take advantage of this proxy
connection feature. For example, if the user’s Transaction object LogID is
“Scott” and you set the ConnectAs DBParm parameter to “John”, the OCI
client logsin to database as the proxy user (“ Scott”), then switchesto the end
user identity (“John”).

If you are using connection or session pooling, the proxy user nameisthe
connection or session pooling creator (which you can provide in the

Pool Creator and PoolPwd DBParm parameters), and the Transaction object’s
LoglID isignored. No proxy session can be created if pooling is set to
HomogeneousSession mode.

Limitation on proxy connection without pooling
When using a proxy connection without pooling, you must set the

NLS Charset DBPARM to“Local” or to another non-Unicode character set. I
you do not change the “Unicode” default value for this DBPARM, the
connection fails because the Oracle Client Interface does not accept aUnicode
name string for its proxy client attribute.

The Oracle Real Application Clusters (RAC) database option allows asingle
database to be hosted in multiple instances on multiple nodes of the database
server. This adds high availability and failover capacity to the database.
Availability isimproved since, if one node fails, another node can assumeits
workload. All instances have access to the whole database. The shared disk
method of clustering databases used by the RAC option increases scalability
because nodes can be added or freed as required.

Connecting to Your Database 147

ORA driver support for Oracle 11g features

148

In RAC environments, session pools can use service metrics received from the
RAC load balancing advisory to balance application session requests. The
work reguests coming into the session pool can then be distributed across the
instances of RAC based on current service performance.

Connect time load balancing Balancing of work requests occur at two
different times: connect time and runtime. Connect time load bal ancing occurs
when asessionisfirst created by the application. Thisensuresthat sessionsthat
are part of the pool arewell distributed across RA C instances, and that sessions
on each of the instances get a chance to execute work.

For session pools that support services at one instance only, thefirst available
session in the pool is adequate. When the pool supports services that span
multiple instances, there is a need to distribute the work requests across
instances so that the instances that are providing better service or have greater
capacity get more requests.

Runtime connection load balancing Runtime connection load balancing
basically routs work requests to the sessions in a session pool that best serve
the work. Runtime connection load balancing is enabled by default when an
Oracle11.1 or higher client is connected to a10.2 or higher Oracle server using
OCI session pooling.

The DBPARM parameter, RT ConnBalancing, supports the runtime connection
load balancing feature. It isavailable only when the Pooling parameter is set to
Session Pooling, and it can be set before connection only. By default, whenyou
select Session Pooling for the pooling type, the RTConnBalancing valueis
true.

PowerBuilder Classic

CHAPTER 11

About this chapter

Contents

Using DirectConnect

This chapter describes how to use the DirectConnect™ interfacein
PowerBuilder.

Topic Page
Using the DirectConnect interface 149
Supported versions for the DirectConnect interface 151
Supported DirectConnect interface datatypes 152
Basic software components for the DirectConnect interface 153
Preparing to use the database with DirectConnect 154
Defining the DirectConnect interface 157
Creating the extended attribute system tablesin DB2 databases 158

Using the DirectConnect interface

Accessing Unicode data

Connecting to Your Database

The DirectConnect interface uses Sybase's Open Client CT-Library
(CT-Lib) API to access adatabase through Sybase middleware dataaccess
products such as the DirectConnect for OS/390 component of Mainframe
Connect™ and Open ServerConnect™.

PowerBuilder can connect, save, and retrieve datain both ANSI/DBCS
and Unicode databases. When character data or command text is sent to
the database, PowerBuilder sends a DBCS string if the UTF8 database
parameter isset to O (the default). If UTF8 isset to 1, PowerBuilder sends
aUTF-8 string.

The database server must have the UTF-8 character set installed. See the
description of the UTF-8 database parameter in the online Help for more
information.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8, UTF-16, UCS-2, or UCS-4. All data must bein
Unicode format, and any data saved to the database must be converted to
Unicode dataimplicitly or explicitly.

149

Using the DirectConnect interface

A database that uses ANSI (or DBCS) as its character set might use special
datatypes to store Unicode data. Columns with these datatypes can store only
Unicode data. Any data saved into such a column must be converted to
Unicode explicitly. This conversion must be handled by the database server or
client.

Connecting through the DirectConnect middleware product

Sybase DirectConnect is a data access server that provides a standardized
middleware interface between your applications and your enterprise data
sources. Data access services to a particular database are defined in a
DirectConnect server. Since a DirectConnect server can support multiple
access services, you can access multiple databases through a single server.

When you use the DirectConnect interface to connect to a particul ar database,
your connection is routed through the access service for that database. An
access service consists of anamed set of configuration propertiesand aspecific
access service library.

To access DB2 dataon an |BM mainframethrough aDirectConnect server, you
can use the DirectConnect interface to connect through either a DirectConnect
for MV Saccess service or aDirectConnect Transaction Router Service (TRS).

TRS provides fast access to a DB2/MV S database by using remote stored
procedures. The DirectConnect interface supports both versions of the TRS
library: TRSLU62 and TRSTCP,

The DirectConnect server operatesin two modes: SQL transformation and
passthrough. The DirectConnect interface for DB2/MV S uses passthrough
mode, which allows your PowerBuilder application to have direct accessto the
capabilities of the DB2/MV S data source.

Connecting through the Open ServerConnect middleware product

150

Sybase’s Open ServerConnect supports mainframe applications that retrieve
and update data stored on the mainframe that Sybase client applications can
execute. Client applications can connect directly to aDB2/MV S database
through an Open ServerConnect application residing on the mainframe,
eliminating the need for an intermediate gateway like DirectConnect. (This
type of connection isalso known as agateway-less connection.) In addition, an
Open ServerConnect application presents mainframe Remote Procedure Calls
(RPCs) as database stored procedures to the client application.

PowerBuilder Classic

CHAPTER 11 Using DirectConnect

To access DB2 data on an IBM mainframe through Open ServerConnect, you
can use the DirectConnect interface to connect through Open ServerConnect
for IMSand MVS.

Selecting the type of connection

To select how PowerBuilder accesses the database, use the Choose Gateway
drop-down list on the Connection tab of the DirectConnect Database Profile
Setup dialog box and select one of the following:

* Access Service
e Gatewayless
¢« TRS

All the DBParm parameters defined for the DirectConnect interface are
applicable to all three connections except the following:

¢ HostRegOwner appliesto Access Service and Gatewayless only
¢ Reqguest, ShowWarnings, and SystemOwner apply to Access Service only
» UseProcSyntax appliesto Gatewayless only

See the online help for the complete list of DBParm parameters applicable to
the DirectConnect interface.

Supported versions for the DirectConnect interface

Required
DirectConnect
versions

The DirectConnect interface usesaDLL named PBDIR125.DLL to access a
database through either DirectConnect or Open ServerConnect.

To access a DB2/MV S database through the access service, it is strongly
recommended that you use DirectConnect for MV S access service version
11.1.1p4 or later.

To accessaDB2/MV S database through TRS, it is strongly recommended that
you use DirectConnect TRS version 11.1.1p4 or later.

For information on DirectConnect for MV S and TRS, see your DirectConnect
documentation.

Connecting to Your Database 151

Supported DirectConnect interface datatypes

Required Open To access aDB2/MV S database through Open ServerConnect, it is strongly
sgrg’igacsonned recommended that you use Open ServerConnect IMS and MV Sversion 4.0 or
later.

For information on Open ServerConnect for MV S, see your Open
ServerConnect documentation.

Supported DirectConnect interface datatypes

The DirectConnect interface supports the PowerBuilder datatypeslisted in
Table 11-1 in reports. and embedded SQL .

Table 11-1: Supported datatypes for DirectConnect

Char (fewer than 255 characters) Long VarChar

Char for Bit Data Real

Date Smallint

Decimal Time

Double Precision Timestamp (DateTime)
Float VarChar

Integer VarChar for Bit Data

152 PowerBuilder Classic

CHAPTER 11 Using DirectConnect

Basic software components for the DirectConnect
interface

Figure 11-1 shows the basic software components required to access a
database using the DirectConnect interface and the DirectConnect middleware

data access product.

Figure 11-1: Components of a DirectConnect connection using
DirectConnect middleware

Development
environment

!

Database
interface DLL ~— PEDIRANN.DLL

Sybase Open Client

Supplied by Sybase

Database client CT- Library '

software (CT-Lib) API Supplied by Sybase

Any supported network i
Metwork layer protocol Supplied by network
vendor or dalabase
I vendor
Middleware Sybase DirectConnect Server Supplied by Sybase
Mainframe Sybase Mainframe Connect Supplied by Sybase
Database

Connecting to Your Database 153

Preparing to use the database with DirectConnect

Figure 11-2 shows the basic software components required to access a
database using the DirectConnect interface and the Open ServerConnect
middleware data access product.

Figure 11-2: Components of a DirectConnect connection using Open
ServerConnect middleware

Development
environment

l

Database
interfaca OLL PBEDIRnnn.OLL

Sybase Open Client

Supplied by Sybas

Database client

Supplied by Sybase

software CT- Library
(CT-Lib) API
Any supported network S :
MNetwork layer __ Supplied by network
! protocol vendor or database
vendor

i

Sybase Open ServerConnect

———— Supplied by Sybase

Mainframe
Sybase Mainframe Connect

Database

Preparing to use the database with DirectConnect

Before you define the interface and connect to a database through the
DirectConnect interface, follow these steps to prepare the database for use:

1 Ingtall and configure the Sybase middleware data access products,
network, and client software.

154 PowerBuilder Classic

CHAPTER 11 Using DirectConnect

2 Ingtall the DirectConnect interface.
3 Verify that you can connect to your middleware product and your database
outside PowerBuilder.
4 Create the extended attribute system tables outside PowerBuilder.
Step 1: Install and You must install and configure the Sybase middleware data access product,
configure the Sybase network, and client software.

middleware product

[TTo install and configure the Sybase middleware data access product,
network, and client software:

1

Connecting to Your Database

Make surethe appropriate database softwareisinstalled and running onits
server.

You must obtain the database server software from your database vendor.
For installation instructions, see your database vendor’s documentation.

Make sure the appropriate DirectConnect access service softwareis
installed and running on the DirectConnect server specified in your
database profile

or

Make sure the appropriate Open ServerConnect software isinstalled and
running on the mainframe specified in your database profile.

Make surethe required network software (such as TCP/IP) isinstalled and
running on your computer and is properly configured so you that can
connect to the DirectConnect server or mainframe at your site.

You must install the network communication driver that supports the
network protocol and operating system platform you are using.

For installation and configuration instructions, see your network or
database administrator.

Install the required Open Client CT-Library (CT-Lib) software on each
client computer on which PowerBuilder isinstalled.

You must obtain the Open Client software from Sybase. Make sure the
version of Open Client you install supports both of the following:

The operating system running on the client computer
The version of PowerBuilder that you are running

Open Client required
To use the DirectConnect interface, you must install Open Client.

155

Preparing to use the database with DirectConnect

Step 2: Install the
interface

Step 3: Verify the
connection

156

For information about Open Client, see your Open Client documentation.

Make sure the Open Client software is properly configured so you can
connect to the middleware data access product at your site.

Installing the Open Client software places the SQL.INI configuration file
in the SQL Server directory on your computer. SQL.INI provides
information that SQL Server uses to find and connect to the middleware
product at your site. You can enter and modify information in SQL.INI
with the configuration utility or editor that comes with the Open Client
software.

For information about editing the SQL.INI file, see “Editing the SQL.INI
file” on page 157. For more information about setting up SQL.INI or any
other required configuration file, see your SQL Server documentation.

If required by your operating system, make sure the directory containing
the Open Client software isin your system path.

Make sure only one copy of each of thefollowing filesisinstalled on your
client computer:

e DirectConnect interface DLL

* Network communication DLL (such asNLWNSCK.DLL for Windows
Sockets-compliant TCP/IP)

* Open Client DLLs (such asLIBCT.DLL and LIBCSDLL)

In the PowerBuilder Setup program, select the Typical install, or select the
Custom install and select the Direct Connect Interface (DIR).

Make sure you can connect to your middleware product and your database and
log in to the database you want to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following
tools:

Accessing the database server Tools such asthe Open Client/Open
Server Configuration utility (or any Ping utility) check whether you can
reach the database server from your computer.

Accessing the database Toolssuch asISQL or SQL Advantage
(interactive SQL utilities) check whether you can log in to the database
and perform database operations. It isagood idea to specify the same
connection parameters you plan to use in your PowerBuilder database
profile to access the database.

PowerBuilder Classic

CHAPTER 11 Using DirectConnect

Step 4: Create the
extended attribute
system tables

Editing the SQL.INI
file

PowerBuilder usesacollection of five system tablesto store extended attribute
information. When using the DirectConnect interface, you must create the
extended attribute system tabl es outside PowerBuilder to control the access
rights and location of these tables.

Run the DB2SYSPB.SQL script outside PowerBuilder using the SQL tool of
your choice.

For instructions, see “ Creating the extended attribute system tablesin DB2
databases’ on page 158.

Make sure the SQL.INI file provides an entry about either the access service
being used and the DirectConnect server on which it resides or the Open
ServerConnect program being used and the mainframe on which it resides.

For the server object name, you need to provide the exact access service name
asit isdefined in the access service library configuration file on the
DirectConnect server. You must al so specify the network communication DLL
being used, the TCP/IP address or alias used for the DirectConnect server on
which the access service resides, and the port on which the DirectConnect
server listens for requests:

[access service name]
query=network dll,server alias,server port no

PowerBuilder users must aso specify the access service namein the
SQL CA .ServerName property of the Transaction object.

Defining the DirectConnect interface

To define a connection through the DirectConnect interface, you must create a
database profile by supplying values for at least the basic connection
parametersin the Database Profile Setup - DirectConnect dialog box. You can
then select this profile anytime to connect to your database in the devel opment
environment.

For information on how to define a database profile, see “Using database
profiles’ on page 7.

Connecting to Your Database 157

Creating the extended attribute system tables in DB2 databases

Creating the extended attribute system tables in DB2

databases

This section describes how PowerBuilder createsthe extended attribute system
tables in your DB2 database to store extended attribute information. It then
explains how to use the DB2SYSPB.SQL script to create the extended attribute
system tables outside PowerBuilder.

You can use the DB2SYSPB.SQL script if you are connecting to the IBM DB2
family of databases through any of the following database interfaces:

» ODBC interface

» Sybase DirectConnect interface

Creating the extended attribute system tables

158

When you create or modify atable in PowerBuilder, the information you
provideis stored in five system tablesin your database. These system tables
contain extended attribute information such as the text to use for labels and
column headings, validation rules, display formats, and edit styles. (These
system tables are different from the system tables provided by your DB2
database.)

By default, the extended attribute system tables are created automatically the
first time a user connects to the database using PowerBuilder.

When you use the DirectConnect interface .
Whenyou usethe DirectConnect interface, the extended attribute system tables

are not created automatically. You must run the DB2SYSPB.SQL script to
create the system tables as described in “ Using the DB2SY SPB.SQL script”
on page 159.

[TTo ensure that the extended attribute system tables are created with the

proper access rights:
» Make surethefirst person to connect to the database with PowerBuilder
has sufficient authority to create tables and grant permissions to PUBLIC.

Thismeansthat thefirst person to connect to the database should log in as
the database owner, database administrator, system user, system
administrator, or system owner, as specified by your DBMS.

PowerBuilder Classic

CHAPTER 11 Using DirectConnect

Using the DB2SYSPB.SQL script

Why do this

What you do

Where to find
DB2SYSPB.SQL

If you are a system administrator at a DB2 site, you might prefer to create the
extended attribute system tables outside PowerBuilder for two reasons:

e Thefirst user to connect to the DB2 database using PowerBuilder might
not have the proper authority to create tables.

« When PowerBuilder creates the extended attribute system tables, it places
them in the default tablespace. This might not be appropriate for your
needs.

When using the DirectConnect interface
You must create the extended attribute system tables outside PowerBuilder if

you are using the DirectConnect interface. You need to decide which database
and tablespace should store the system tables. You might also want to grant
update privileges only to specific developers or groups.

To create the extended attribute system tables, you run the DB2SYSPB.SQL
script outside PowerBuilder. This script contains SQL commands that create
and initialize the system tableswith the table owner and tablespace you specify.

The DB2SYSPB.SQL script isin the Server directory on the PowerBuilder
CD-ROM. Thisdirectory contains server-side installation components and is
not installed with PowerBuilder on your computer.

You can access the DB2SYSPB.SQL script directly from your computer’s
CD-ROM drive or you can copy it to your computer.

Use the following procedure from the database server to create the extended
attribute system tables in a DB2 database outside PowerBuilder. This
procedure assumes you are accessing the DB2SYSPB.SQL script from the
product CD in your computer’s CD-ROM drive and the drive letter is Z.

[TTo create the extended attribute system tables in a DB2 database outside

PowerBuilder:
1 Loginto the database server or gateway as the system administrator.

2 Insert the PowerBuilder CD-ROM into the computer’s CD-ROM drive.

Connecting to Your Database 159

Creating the extended attribute system tables in DB2 databases

160

Use any text editor to modify Z:\Server\DB2SYSPB.SQL for your
environment. You can do any of the following:

* Changeall instances of PBOwner to another name.

Specifying SYSIBM is prohibited
You cannot specify SYSIBM as the table owner. Thisis prohibited by
DB2.

» Changeall instances of database.tablespace to the appropriate val ue.

* Add appropriate SQL statement delimiters for the tool you are using
to run the script.

* Remove comments and blank lines if necessary.

PBCatalogOwner
If you changed PBOwner to another name in the DB2SYSPB.SQL script,

you must specify the new owner name as the value for the
PBCatal ogOwner DBParm parameter in your database profile. For
instructions, see PBCatalogOwner in the online Help.

Save any changes you made to the DB2SYSPB.SQL script.

Execute the DB2SYSPB.SQL script from the database server or gateway
using the SQL tool of your choice.

PowerBuilder Classic

PART 4 Working with Database
Connections

This part describes how to establish, manage, and
troubleshoot database connections.

CHAPTER 12

About this chapter

Contents

Terminology

Managing Database Connections

After you install the necessary database software and define the database
interface, you can connect to the database from PowerBuilder. Once you
connect to the database, you can work with the tables and views stored in
that database.

This chapter describes how to connect to a database in PowerBuilder,
maintain database profiles, and share database profiles.

Topic Page
About database connections 163
Connecting to a database 165
Maintaining database profiles 168
Sharing database profiles 169
Importing and exporting database profiles 173
About the PowerBuilder extended attribute system tables 174

In this chapter, the term database refers to both of the following unless
otherwise specified:

e A database or DBMS that you access with a standard database
interface and appropriate driver

e A database or DBM S that you access with the appropriate native
database interface

About database connections

Connecting to Your Database

This section gives an overview of when database connections occur in
PowerBuilder. It also explains why you should use database profilesto
manage your database connections.

163

About database connections

When database connections occur

Connections in
PowerBuilder

How PowerBuilder
determines which
database to access

What's in this book

PowerBuilder connects to your database when you:
* Open apainter that accesses the database

» Compile or save a PowerBuilder script containing embedded SQL
statements (such as a CONNECT statement)

» Execute an application that accesses the database

* Invoke a Datawindow control function that accesses the database while
executing an application

PowerBuilder connects to the database you used last when you open a painter
that accesses the database. PowerBuilder determines which database you used
last by reading a setting in the registry.

Thisbook describes how to connect to your database when you areworking in
the PowerBuilder development environment.

For instructions on connecting to adatabase in a PowerBuilder application, see
Application Techniques.

Using database profiles

What is a database
profile?

Why use database
profiles?

164

A database profileis anamed set of parameters stored in the registry that
definesaconnection to aparticular database in the PowerBuilder devel opment
environment.

Creating and using database profilesis the easiest way to manage your
database connections in PowerBuilder because you can:

» Select adatabase profile to establish or change database connections. You
can easily connect to another database anytime during a PowerBuilder
session. Thisis particularly useful if you often switch between different
database connections.

» Edit adatabase profile to modify or supply additional connection
parameters.

» Usethe Preview tab page to test a connection and copy the connection
syntax to your application code.

» Delete adatabase profile if you no longer need to access that data.

* Import and export profiles.

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Because database profiles are created when you define your dataand are stored
in the registry, they have the following benefits:

e They are always availableto you.

¢ Connection parameters supplied in a database profile are saved until you
edit or delete the database profile.

Connecting to a database

To establish or change a database connection in PowerBuilder, use a database
profile. You can select the database profile for the database you want to access
in the Database Profiles dialog box For how to create a database profile, see
“Creating a database profile” on page 10.

Using the Database painter to select a database profile
You can also select the database profile for the database you want to access

from the Database painter’s Objects view. However, thismethod requires more
system resources than using the Database Profiles dialog box.

Selecting a database profile
You can select a database profile from the Database Profiles dialog box.

[ITo connect to a database using the Database Profiles dialog box:

1 Click the Database Profile button in the PowerBar or select
Tools>Database Profile from the menu bar.

Database Profile button
If your PowerBar does not include the Database Profile button, use the

customize feature to add the button to the PowerBar. Having the Database
Profile button on your PowerBar is useful if you frequently switch
connections between different databases. For instructions on customizing
toolbars, see the Users Guide.

The Database Profiles dialog box displays, listing your installed database
interfaces.

Connecting to Your Database 165

Connecting to a database

Where the interface list comes from
When you run the Setup program, it updatesthe Vendorslist intheregistry

with theinterfaces you install. The Database Profiles dialog box displays
the same interfaces that appear in the Vendors list.

2 Click the plus sign (+) to the | eft of the interface you are using or
double-click the name.

Thelist expandsto display the database profiles defined for your interface.

3 Select the name of the database profile you want to access and click
Connect or display the pop-up menu for a database profile and select
Connect.

PowerBuilder connects to the specified database and returns you to the
painter workspace.

Database painter You can select a database profile from the Database painter Objects view.
Objects view

[ITo connect to a database using the Database painter:
1 Click the Database painter button in the PowerBar.

The Database painter displays. The Objects view lists your installed
database interfaces.

Where the interface list comes from
When you run the Setup program, it updatesthe Vendorslist intheregistry

withtheinterfacesyouinstall. The Database painter Objectsview displays
the same interfaces that appear in the Vendors list.

2 Click the plus sign (+) to the | eft of the interface you are using or
double-click the name.

Thelist expandsto display the database profiles defined for your interface.

3 Select the name of the database profile you want to access and click the
Connect button, or display the pop-up menu for a database profile and
select Connect.

166 PowerBuilder Classic

CHAPTER 12 Managing Database Connections

What happens when you connect

When you connect to adatabase by sel ecting its database profile, PowerBuilder
writes the profile name and its connection parameters to the registry key
HKEY_CURRENT_USER\Software\Sybase\Power Builder\12.5\
DatabaseProfiles\Power Builder.

Each time you connect to a different database, PowerBuilder overwrites the
“most-recently used” profile name in the registry with the name for the new
database connection.

When you open a painter that accesses the database, you are connected to the
database you used last. PowerBuilder determines which database thisis by
reading the registry.

The three-letter abbreviation for the database interface followed by the name
of the database profile displays in PowerBuilder's main title bar. If you are
working withareport, thisvisual cue makesit easier to check that you are using
the right connection.

For example, if you open the PowerBuilder Code Examples workspace and
connect to the EAS Demo database, the title bar displays “pbexamples - ODB
[EAS Demo DB V125] - PowerBuilder.”

Specifying passwords in database profiles

Suppressing display in
the profile registry
entry

Your password does not display when you specify it in the Database Profile
Setup dialog box.

However, when PowerBuilder stores the values for this profile in the registry,
the actual password does display, in encrypted form, in the DatabasePassword
or LogPassword field.

To suppress password display in the profile registry entry, do the following
when you create a database profile.

[ITo suppress password display in the profile registry entry:

1 Select the Prompt For Database | nformation check box on the Connection
tab in the Database Profile Setup dialog box.

Thistells PowerBuilder to prompt for any missing information when you
select this profile to connect to the database.

Connecting to Your Database 167

Maintaining database profiles

What happens

2 Leavethe Password box blank. Instead, specify the password in the dialog
box that displays to prompt you for additional information when you
connect to the database.

When you specify the password in response to a prompt instead of in the
Database Profile Setup dialog box, the password does not display in the
registry entry for this profile.

For example, if you do not supply a password in the Database Profile Setup -
Adaptive Server Enterprise dialog box when creating a database profile, the
Client Library Login dialog box displays to prompt you for the missing
information.

Using the Preview tab to connect in a PowerBuilder application

To access adatabase in a PowerBuilder application, you must specify the
required connection parameters as properties of the Transaction object
(SQLCA by default) in the appropriate script. For example, you might specify
the connection parameters in the script that opens the application.

In PowerBuilder, the Preview tab in the Database Profile Setup dialog box
makes it easy to generate accurate PowerScript connection syntax in the
development environment for use in your PowerBuilder application script.

For instructions on using the Preview tab to help you connect in a
PowerBuilder application, see the section on using Transaction objectsin
Application Techniques.

Maintaining database profiles

What happens

168

You can easily edit or delete an existing database profile in PowerBuilder.

You can edit a database profile to change one or more of its connection
parameters. You can delete a database profile when you no longer need to
accessitsdata. You can also change a profile using either the Database Profiles
dialog box or the Database painter.

When you edit or delete a database profile, PowerBuilder either updates the
database profile entry in the registry or removesit.

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Deleting a profile for an ODBC data source
If you delete a database profile that connects to an ODBC data source,

PowerBuilder does not delete the corresponding data source definition from
the ODBC initiadizationfile. Thisletsyou re-create the database profile later if
necessary without having to redefine the data source.

Sharing database profiles

When you work in PowerBuilder, you can share database profilesamong users.

Sharing database profiles between Sybase tools
Since the database profiles used by PowerBuilder and InfoMaker are stored in

acommon registry location, database profiles you create in any of these tools
are automatically available for use by the others, if the tools are running on the
same computer.

This section describes what you need to know to set up, use, and maintain
shared database profiles in PowerBuilder.

About shared database profiles

Where to store a
shared profile file

You can share database profilesin the PowerBuilder devel opment environment
by specifying the location of afile containing the profiles you want to share.
You specify this location in the Database Preferences dialog box in the
Database painter.

To share database profiles among all PowerBuilder users at your site, storea
profile file on a network file server accessible to all users.

When you share database profiles, PowerBuilder displays shared database
profiles from the file you specify as well asthose from your registry.

Shared database profiles are read-only. You can select a shared profile to
connect to a database—but you cannot edit, save, or delete profiles that are
shared. (You can, however, make changes to a shared profile and save it on
your computer, as described in “Making local changes to shared database
profiles’ on page 171.)

Connecting to Your Database 169

Sharing database profiles

Setting up shared database profiles
You set up shared database profiles in the Database Preferences dialog box.

[_TTo set up shared database profiles:

1 Inthe Database painter, select Design>Options from the menu bar to
display the Database Preferences dialog box.

2 Inthe Shared Database Profiles box on the General tab page, specify the
location of the file containing the database profiles you want to share. Do
thisin either of the following ways:

» Typethelocation (path name) in the Shared Database Profiles box.

» Click the Browse button to navigate to thefile location and display it
in the Shared Database Profiles box.

In the following example, c:\work\share.ini is the location of the file
containing the database profiles to be shared:

Database Preferences §|

General | Object Colors | Script | Editor Font | Prinker Font | Coloring

Application
Shared Database Profiles:

Ciiworklshared.ini

Painter Cptions
Connect to Default Profile [Cread only

Keep Connection Open
Use Extended Attributes

Columns in Table Display: | &

SQL Terminator Character: |;

Refresh Table List: 1800 Seconds
[OF] [Cancel] [Apply] [Help]
3 Click OK.

PowerBuilder applies the Shared Database Profiles setting to the current
connection and all future connections and saves the setting in the registry.

170 PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Using shared database profiles to connect

Database Profiles
dialog box

You select a shared database profile to connect to a database the same way you
select aprofile stored in your registry. You can select the shared profile in the
Database Profiles dialog box or from the File>Connect menu.

You can sel ect and connect to ashared database profilein the Database Profiles

dialog box.

[TTo select a shared database profile in the Database Profiles dialog box:
1 Click the Database Profile button in the PowerBar or select
Tools>Database Profile from the menu bar.

The Database Profiles dialog box displays, listing both shared and local
profiles. Shared profiles are denoted by a network icon and the word

(Shared).

Database Profiles x|

+-E2 110 Informix w10, x

+-E3 TN Inforrmix v3.x

+-E4 108 J0BC

+-E4 010 Oracle 10g

+-E2 090 Oracle 9i

=-E4 ODB ODBC
ﬁf EAS Demo DB Y110
E3 EAS Demo DE Y115 IM
4 EAS Demo DB V115 IM Unicode
{4 EAS Demo DB Y115 Unicode
=1 Crders (Shared)
= Sales (Shared)

H-0 Utilities

+-E3 OLE Microsoft OLE DB

+-E3 ORA Oracle

+-E3 3NC S0L Mative Client

+-E3 3¥C Sybase ASE

+-E4 5¥] Svbase ASE for EAServer

X

& Conneck

Close

Edit...

Delete

Help

2 Select the name of the shared profile you want to access and click Connect.

PowerBuilder connects to the selected database and returns you to the

painter workspace.

Making local changes to shared database profiles

Because shared database profiles can be accessed by multiple users running

PowerBuilder, you should not make changes to these profiles. However, if you
want to modify and save a copy of a shared database profile for your own use,
you can edit the profile and save the modified copy in your computer’sregistry.

Connecting to Your Database

171

Sharing database profiles

[ITo save changes to a shared database profile in your registry:

1

In the Database Profiles dialog box, select the shared profile you want to
edit and click the Edit button.

In the Database Profile Setup dialog box that displays, edit the profile
values as needed and click OK.

A message box displays, asking if you want to save acopy of the modified
profile to your computer.

Click Yes.

PowerBuilder saves the modified profile in your computer’s registry.

Maintaining shared database profiles

If you maintain the database profiles for PowerBuilder at your site, you might
need to update shared database profiles from time to time and make these
changes available to your users.

172

Because shared database profiles can be accessed by multiple users running
PowerBuilder, it is not agood idea to make changes to the profiles over a
network. Instead, you should make any changes locally and then provide the
updated profilesto your users.

[_ITo maintain shared database profiles at your site:

1

Make and save required changes to the shared profiles on your own
computer. These changes are saved in your registry.

For instructions, see “Making local changes to shared database profiles’
on page 171.

Export the updated profile entries from your registry to the existing file
containing shared profiles.

For instructions, see “ Importing and exporting database profiles’ on page
173.

If they have not already done so, have users specify thelocation of the new
profilesfile in the Database Preferences property sheet so that they can
access the updated shared profiles on their computer.

For instructions, see “ Setting up shared database profiles’ on page 170.

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Importing and exporting database profiles

Each database interface provides an Import Profile(s) and an Export Profile(s)
option. You can usethe Import option to import apreviously defined profile for
use with an installed database interface. Conversely, you can use the Export
option to export a defined profile for use by another user.

Theability toimport and export profiles provides away to move profileseasily
between devel opers. It also meansyou no longer have to maintain a shared file
to maintain profiles. It isideal for mobile development when you cannot rely
on connecting to a network to share afile.

[—ITo import a profile:

1

Highlight adatabaseinterface and select Import Profile(s) from the pop-up
menu. (In the Database painter, select Import Profile(s) from the File or
pOop-up menu.)

From the Select Profile File dialog box, select the file whose profiles you
want to import and click Save.

Select the profile(s) you want to import from the Import Profile(s) dialog
box and click OK.

The profiles are copied into your registry. If a profile with the same name
aready exists, you are asked if you want to overwrite it.

[_ITo export a profile:

1

Connecting to Your Database

Highlight adatabaseinterface and sel ect Export Profile(s) from the pop-up
menu. (In the Database painter, select Export Profile(s) from the File or
pOop-up menu.)

Select the profile(s) you want to export from the Export Profile(s) dialog
box and click OK.

The Export Profile(s) dialog box lists all profiles defined in your registry
regardless of the database interface for which they were defined. By
default, the profiles defined for the selected database interface are marked
for export.

From the Select Profile File dialog box, select adirectory and afilein
which to save the exported profile(s) and click Save.

The exported profiles can be saved to anew or existing file. If saved to an
existing file, the profile(s) are added to the existing profiles. If aprofile
with the same name already exists, you are asked if you want to overwrite
it.

173

About the PowerBuilder extended attribute system tables

About the PowerBuilder extended attribute system

tables

PowerBuilder usesa collection of five system tablesto store extended attribute
information (such as display formats, validation rules, and font information)
about tables and columnsin your database. You can aso define extended
attributes when you create or modify atable in PowerBuilder.

This section tells you how to:

» Make sure the PowerBuilder extended attribute system tables are created
with the proper access rights when you log in to your database for the first
time

» Display and open a PowerBuilder extended attribute system table

» Understand the kind of information stored in the PowerBuilder extended
attribute system tables

» Control extended attribute system table access

Logging in to your database for the first time

174

By default, PowerBuilder creates the extended attribute system tables the first
time you connect to a database.

To ensure that PowerBuilder creates the extended attribute system tables with
the proper access rights to make them available to all users, thefirst person to
connect to the database with PowerBuilder must log in with the proper
authority.

[_ITo ensure proper creation of the PowerBuilder extended attribute

system tables:
» Make surethe first person to connect to the database with PowerBuilder
has sufficient authority to create tables and grant permissionsto PUBLIC.

Thismeans that thefirst person to connect to the database should login as
the database owner, database administrator, system user, system
administrator, or system owner, as specified by your DBMS.

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Creating the extended attribute system tables when using the
DirectConnect interface
When you are using the DirectConnect interface, the PowerBuilder extended

attribute system tables are not created automatically thefirst time you connect
to adatabase. You must run the DB2SYSPB.SQL script to create the system
tables, as described in “Using the DB2SY SPB.SQL script” on page 159.

Displaying the PowerBuilder extended attribute system tables

PowerBuilder updates the extended attribute system tables automatically
whenever you change the information for atable or column. The PowerBuilder
extended attribute system tables are different from the system tables provided
by your DBMS.

You can display and open PowerBuilder extended attribute system tablesin the
Database painter just like other tables.

[—TTo display the PowerBuilder extended attribute system tables:
1 Inthe Database painter, highlight Tablesin thelist of database objects for
the active connection and select Show System Tables from the pop-up
menul.

I
- E5 ADO Microsoft 40O NET Ty
#-E4 ASE Sybase ASE 15.x
+-E4 DIR Direct Connect

4 110 Infarmix v10.x

4 IN9 Informix v3.x

+
+
%64 108 10BC
+
+

P ik

4 010 Qracle 10g

4 090 Oradle 5i
=-§4 0D8 CDEC

=g EAS Demo
-] Driver Information
#-(1 Groups
#-(1 Metadata Types
-] Procedures & Functions
o

®-C7 Users| B NewTable..

H-1 '!"\EWS‘ Show System Tables R |

{4 EAS Demc L\\S
4 EAS Deme Table Security...
8 s Demg Refresh

#-(J Lkilities

-4 OLE Microsoft

Connecting to Your Database 175

About the PowerBuilder extended attribute system tables

176

2 The PowerBuilder extended attribute system tables and DBM S system
tables display in the tables list, asfollows:

* PowerBuilder system tables The five system tables are: pbcatcol,
pbcatedt, pbcatfmt, pbcattbl, and pbcatvid.

+ DBMS system tables The system tables supplied by the DBMS
usually have a DBM S-specific prefix (such as sys or dbo).

S
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

] states

g svs.dummy

3 sys.sysarticle

3 sys.sysarticlecol

3 sys.sysattribute

fu sys,sysattributename
3 svs.syscapability

3 svs.syscapabilityname
3 sys.syscheck

g sys.syscallation

4 sys.syscallationmappings
3 sys.syscolperm

3 sys.syscalstat

3 sys.syscalumn

fu sys,sysconskraink

3 sys.sysdomain

3 sys.sysevent

3 sys.syseventtype
3 sys.sysextent

fu sys,sysexternlogins
3 sys.sysfile

3 sys.sysfkeal

3 sys.sysforeignkey
3 sys.sysgroup

3 Digplay the contents of a PowerBuilder system tablein the Object Layout,
Object Details, and/or Columns views.

For instructions, see the Users Guide.

Do not edit the extended attribute system tables
Do not change the values in the PowerBuilder extended attribute system

tables.

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Contents of the extended attribute system tables

PowerBuilder storesfive types of extended attribute information in the system
tables as described in Table 12-1.

Table 12-1: Extended attribute system tables

System table Information about | Attributes

pbcatcol Columns Names, comments, headers, |abels,
case, initial value, and justification

pbcatedt Edit styles Edit style names and definitions

pbcatfmt Display formats Display format names and definitions

pbcattbl Tables Name, owner, default fonts (for data,
headings and labels), and comments

pbcatvid Validation rules Validation rule names and definitions

For more about the PowerBuilder system tables, seethe Appendix in the Users
Guide.

Prefixes in system table names
For some databases, PowerBuilder precedes the name of the system table with

adefault DBM S-specific prefix. For example, the names of PowerBuilder
system tables have the prefix DBO in a SQL Server database (such as
DBO.phcatcol), or SYSTEM in an Oracle database (such as SYSTEM.pbcatfmt).

The preceding table gives the base name of each system table without the
DBM S-specific prefix.

Controlling system table access

To control access to the PowerBuilder system tables at your site, you can
specify that PowerBuilder not create or update the system tables or that the
system tables be accessible only to certain users or groups.

You can control system table access by doing any of the following:

« Setting Use Extended Attributes Set the Use Extended Attributes
database preference in the Database Preferences dialog box in the
Database painter.

Connecting to Your Database 177

About the PowerBuilder extended attribute system tables

Setting Read Only Set the Read Only database preferencein the
Database Preferences dialog box in the Database painter.

Granting permissions on the system tables Grant explicit
permissions on the system tables to users or groups at your site.

Setting Use Extended Attributes or Read Only to control access

178

Database Preferences

=

[TTo control system table access by setting Use Extended Attributes or
Read Only:

1 Select Design>Options from the menu bar to display the Database
Preferences dialog box.

General | Object Colors | Script | Editor Font | Prinker Font | Coloring

Application
Shared Database Profiles:

Ciiworklshared.ini

Painter Cptions

Connect to Default Profile [Cread only
Keep Connection Open

Use Extended Attributes

Columns in Table Display: | &
SQL Terminator Character: |;

Refresh Table List: 1800 Seconds

OF][Cancel][Apply

] [Help

]

PowerBuilder Classic

CHAPTER 12 Managing Database Connections

Preference

2 Onthe General page, set valuesfor Use Extended Attributes or Read Only

asfollows:

What you do

Effect

Use Extended Attributes

Clear the check box

Does not create the PowerBuilder system tablesif they do not
exist. Instead, the painter uses the appropriate default values
for extended attributes (such as headers, labels, and text
color).

If the PowerBuilder system tables already exist,
PowerBuilder does not use them when you create a new
report.

Read Only

Select the check box

3 Click OK.

If the PowerBuilder system tables already exist,
PowerBuilder uses them when you create a new report, but
does not update them.

You cannot modify (update) information in the system tables
or any other database tables in the Report painter when the
Read Only check box is selected.

PowerBuilder appliesthe preference settingsto the current connection and
all future connections and saves them in the registry.

Granting permissions on system tables to control access

If your DBM S supports SQL GRANT and REVOKE statements, you can control
access to the PowerBuilder system tables. The default authorization for each

repository tableis:

GRANT SELECT, UPDATE, INSERT, DELETE ON table TO PUBLIC

After the system tables are created, you can (for example) control accessto
them by granting SELECT authority to end users and SELECT, UPDATE,
INSERT, and DELETE authority to developers. This technique offers security
and flexibility that is enforced by the DBMS itself.

Connecting to Your Database

179

About the PowerBuilder extended attribute system tables

180 PowerBuilder Classic

CHAPTER 13

About this chapter

Contents

Setting Additional Connection
Parameters

To fine-tune your database connection and take advantage of

DBM S-specific features that your interface supports, you can set
additional connection parametersat any time. These additional connection
parameters include:

e Database parameters
e Database preferences

These connection parameters are described in the Database Connectivity
section in the online Help.

This chapter describes how to set database parameters and database
preferencesin PowerBuilder.

Topic Page
Basic steps for setting connection parameters 181
About the Database Profile Setup dialog box 182
Setting database parameters 183
Setting database preferences 186

Basic steps for setting connection parameters

Thissection givesbasic stepsfor setting database parameters and database
preferencesin PowerBuilder.

[TTo set database parameters:

Connecting to Your Database

1 Learn how to set database parameters in the devel opment
environment or in code.

See “ Setting database parameters’ on page 183.

181

About the Database Profile Setup dialog box

Determine the database parametersyou can set for your database interface.

For atable listing each supported database interface and the database
parameters you can use with that interface, see “ Database parameters and
supported database interfaces’ in the online Help.

Read the description of the database parameter you want to set in the
online Help.

4 Set the database parameter for your database connection.

[TTo set database preferences:
1 Learnhow to set database preferencesin the development environment or

PowerBuilder application script.
See " Setting database preferences’ on page 186.
Determine the database preferences you can set for your DBMS.

For atable listing each supported database interface and the database
preferences you can use with that interface, see“ Database parameters and
supported database interfaces’ in the online Help.

Read the description of the database preference you want to set in the
online Help.

4 Set the database preference for your database connection.

About the Database Profile Setup dialog box

The interface-specific Database Profile Setup dialog box makes it easy to set
additional connection parametersin the development environment or in code.
You can:

182

Supply valuesfor connection options supported by your database interface

Each databaseinterface hasits own Database Profile Setup dial og box that
includes settings only for those connection parameters supported by the
interface. Similar parameters are grouped on the same tab page. The
Database Profile Setup dialog box for all interfaces includes the
Connection tab and Preview tab. Depending on the requirements and
features of your interface, one or more other tab pages might also display.

PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

« Easily set additional connection parametersin the development
environment

You can specify additional connection parameters (database parameters
and transaction object properties) with easy-to-use check boxes, drop-
down lists, and text boxes. PowerBuilder generates the proper syntax
automatically when it saves your database profile in the system registry.

* Generate connection syntax for use in your PowerBuilder application
script

As you complete the Database Profile Setup dialog box in PowerBuilder,
the correct connection syntax for each selected option is generated on the
Preview tab. PowerBuilder assigns the corresponding database parameter
or transaction object property name to each option and inserts quotation
marks, commas, semicolons, and other characters where needed. You can
copy the syntax you want from the Preview tab into your PowerBuilder
script.

Setting database parameters

In PowerBuilder, you can set database parameters by doing either of the
following:

« Editing the Database Profile Setup dialog box for your connection in the
devel opment environment

« Specifying connection parametersin an application script

Setting database parameters in the development environment

Editing database To set database parameters for a database connection in the PowerBuilder

profiles devel opment environment, you must edit the database profile for that
connection.

Character limit for Strings containing database parametersthat you specify in the Database Profile

strings Setup dialog box for your connection can be up to 999 charactersin length.

Thislimit applies only to database parametersthat you set in adatabase profile
in the development environment. Database strings specified in code as
properties of the Transaction object are not limited to a specified length.

Connecting to Your Database 183

Setting database parameters

Setting database parameters in a PowerBuilder application script

If you are devel oping an application that connects to a database, you must
specify the required connection parameters in the appropriate script as
properties of the default Transaction object (SQLCA) or a Transaction object
that you create. For example, you might specify connection parametersin the
script that opens the application.

One of the connection parameters you might want to specify inascript is
DBParm. You can do this by:

* (Recommended) Copying DBParm syntax from the Preview tab in the
Database Profile Setup dialog box into your script

* Coding PowerScript to set values for the DBParm property of the
Transaction object

* Reading DBParm values from an external text file

Copying DBParm syntax from the Preview tab

184

The easiest way to specify DBParm parameters in a PowerBuilder application
script isto copy the DBParm syntax from the Preview tab in the Database
Profile Setup dialog box into your code, modifying the default Transaction
object name (SQLCA) if necessary.

Asyou set parametersin the Database Profile Setup dialog box in the

development environment, PowerBuilder generates the correct connection
syntax on the Preview tab. Therefore, copying the syntax directly from the
Preview tab ensures that you use the correct DBParm syntax in your code.

[—ITo copy DBParm syntax from the Preview tab into your code:

1 Ononeor moretab pagesin the Database Profile Setup dial og box for your
connection, supply values for any parameters you want to set.

For instructions, see “ Setting database parameters in the devel opment
environment” on page 183.

For information about the parameters for your interface and the values to
supply, click Help.

2 Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

3 Click the Preview tab.

The correct DBParm syntax for each selected option displaysin the
Database Connection Syntax box.

PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PowerBuilder copies the selected text to the clipboard.
5 Click OK to close the Database Profile Setup dialog box.

6 Pastethe selected text from the Preview tab into your code, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for the DBParm property

Another way to specify connection parametersin ascript is by coding
PowerScript to assign values to properties of the Transaction object.
PowerBuilder uses a specia nonvisual object called a Transaction object to
communicate with the database. The default Transaction object is named
SQLCA, which stands for SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database.
One of the 10 connection propertiesis DBParm. DBParm contains

DBM S-specific parameters that let your application take advantage of various
features supported by the database interface.

[1To set values for the DBParm property in a PowerBuilder script:

1 Open the application script in which you want to specify connection
parameters.

For instructions, see the Users Guide.

2 Usethefollowing PowerScript syntax to specify DBParm parameters.
Make sure you separate the DBParm parameters with commas, and
enclose the entire DBParm string in double quotes.

SQLCA.dbParm = "parameter_1, parameter_2, parameter_n"

For example, the following statement in a PowerBuilder script sets the
DBParm property for an ODBC datasource named Sales. In thisexample,
the DBParm property consists of two parameters. ConnectString and
Async.

SQLCA.dbParm="ConnectString="'DSN=Sales;UID=PB;
PWD=xyz',6Async=1"

3 Compile the PowerBuilder script to save your changes.

For instructions, see the Users Guide.

Connecting to Your Database 185

Setting database preferences

Reading DBParm values from an external text file

Asan alternativeto setting the DBParm property in aPowerBuilder application
script, you can use the PowerScript ProfileString function to read DBParm
values from a specified section of an external text file, such asan
application-specific initialization file.

[ITo read DBParm values from an external text file:

1 Open the application script in which you want to specify connection

parameters.

For instructions, see the Users Guide.

2 Usethefollowing PowerScript syntax to specify the ProfileString function
with the SQLCA.DBParm property:

SQLCA.dbParm = ProfileString (file, section, key,

default)

For example, the following statement in a PowerBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA.dbParm=ProfileString ("APP.INI", "Database",
n dbparmn , nn)

3 Compilethe script to save your changes.

For instructions, see the Users Guide.

Setting database preferences

How to set

186

The way you set connection-related database preferences in PowerBuilder
varies, as summarized in the following table (AutoCommit and L ock are the
only database preferences that you can set in a PowerBuilder application

script).

Table 13-1: Database preferences and where they can be set

Database Set in development Set in PowerBuilder
preference environment by editing application by editing
AutoCommit Database Profile Setup dialog | Application script

box for your connection
Lock Database Profile Setup dialog | Application script

box for your connection
Shared Database Database Preferences —
Profiles property sheet

PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

For more information

Setting database

Database Set in development Set in PowerBuilder
preference environment by editing application by editing
Connect to Default Database Preferences —
Profile property sheet
Read Only Database Preferences —
property sheet
Keep Connection Database Preferences —
Open property sheet
Use Extended Database Preferences —
Attributes property sheet
SQL Terminator Database Preferences —
Character property sheet

The following sections give the steps for setting database preferencesin the
devel opment environment and (for AutoCommit and Lock) in a PowerBuilder
application script.

For information about using a specific database preference, see its description
in the online Help.

preferences in the development environment

There are two ways to set database preferencesin the PowerBuilder
development environment on all supported devel opment platforms, depending
on the preference you want to set:

¢ Set AutoCommit and Lock (Isolation Level) in the Database Profile Setup
dialog box for your connection

ADO.NET
For ADO.NET, Isolation is a database parameter.

e Setall other database preferencesin the Database Preferences dial og box
in the Database painter

Setting AutoCommit and Lock in the database profile

The AutoCommit and Lock (Isolation Level) preferences are properties of the
default Transaction object, SQLCA. For AutoCommit and Lock to take effect
in the PowerBuilder development environment, you must specify them before
you connect to a database. Changes to these preferences after the connection
occurs have no effect on the current connection.

Connecting to Your Database 187

Setting database preferences

To set AutoCommit and Lock before PowerBuilder connectsto your database,
you specify their values in the Database Profile Setup dialog box for your
connection.

[—ITo set AutoCommit and Lock (Isolation Level) in a database profile:
1 Display the Database Profiles dialog box.

2 Click the plus sign (+) to the I eft of the interface you are using or
double-click the interface name.

Thelist expandsto display the database profiles defined for your interface.
3 Select the name of the profile you want and click Edit.
The Database Profile Setup dialog box for the selected profile displays.

4 Onthe Connection tab page, supply values for one or both of the
following:

» Isolation Level If your database supports the use of locking and
isolation levels, select theisolation level you want to use for this
connection from the Isolation Level drop-down list. (The Isolation
Level drop-down list contains valid lock values for your interface.)

* AutoCommit Mode The setting of AutoCommit controls whether
PowerBuilder issues SQL statements outside (True) or inside (False)
the scope of atransaction. If your database supportsit, select the
AutoCommit Mode check box to set AutoCommit to True or clear the
AutoCommit Mode check box (the default) to set AutoCommit to
False.

For example, in addition to values for basic connection parameters
(Server, Login 1D, Password, and Database), the Connection tab page for
the following Sybase Adaptive Server Enterprise profile named Sales
shows nondefault settings for Isolation Level and AutoCommit Mode.

5 (Optiond) In PowerBuilder, click the Preview tab if you want to see the
PowerScript connection syntax generated for Lock and AutoCommit.

PowerBuilder generates correct PowerScript connection syntax for each
option you set in the Database Profile Setup dialog box. You can copy this
syntax directly into a PowerBuilder application script.

For instructions, see “ Copying DBParm syntax from the Preview tab” on
page 184.

6 Click OK to close the Database Profile Setup dialog box.

188 PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

PowerBuilder saves your settings in the database profile entry in the
registry.

Setting preferences in the Database Preferences dialog box

To set the following connection-rel ated database preferences, complete the
Database Preferences dialog box in the PowerBuilder Database painter:

Shared Database Profiles
Connect to Default Profile
Read Only

Keep Connection Open
Use Extended Attributes
SQL Terminator Character

Other database preferences
The Database Preferences dialog box also lets you set other database

preferences that affect the behavior of the Database painter itself. For
information about the other preferences you can set in the Database
Preferences dialog box, see the Users Guide.

[ITo set connection-related preferences in the Database Preferences

dialog box:
1 Openthe Database painter.
2 Select Design>Options from the menu bar.

Connecting to Your Database

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

Specify values for one or more of the connection-related database
preferencesin the following table.

189

Setting database preferences

Preference

Table 13-2: Connection-related database preferences

Description

For details, see

Shared Database Profiles

Specifies the pathname of the file containing the
database profiles you want to share. You can type the
pathname or click Browse to display it.

“Sharing database
profiles’ on page 169

Connect to Default Profile

Controls whether the Database painter establishes a
connection to adatabase using adefault profilewhenthe
painter isinvoked. If not selected, the Database painter
opens without establishing a connection to a database.

Connect to Default Profile
inonline Help

Read Only

Specifies whether PowerBuilder should update the
extended attribute system tables and any other tablesin
your database. Select or clear the Read Only check box
asfollows:

+ Select the check box Does not update the
extended attribute system tables or any other tablesin
your database. You cannot modify (update)
information in the extended attribute system tablesor
any other database tables from the DataWindow
painter when the Read Only check box is selected.

+ Clear the check box (Default) Updates the
extended attribute system tables and any cther tables
in your database.

Read Only in the online
Help

Keep Connection Open

When you connect to a database in PowerBuilder
without using a database profile, specifies when
PowerBuilder closes the connection. Select or clear the
Keep Connection Open check box as follows:

» Select the check box (Default) Staysconnected to
the database throughout your session and closes the
connection when you exit

+ Clear the check box Opens the connection only
when a painter requests it and closes the connection
when you close a painter or finish compiling a script

Not used with profile
This preference has no effect when you connect using a

database profile.

Keep Connection Openin
the online Help

Use Extended Attributes

190

Specifies whether PowerBuilder should create and use
the extended attribute system tables. Select or clear the
Use Extended Attributes check box as follows:

» Select the check box (Default) Creates and uses
the extended attribute system tables

« Clear the check box Does not create the extended
attribute system tables

Use Extended Attributes
in the online Help

PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

Preference | Description | For details, see
Columnsin Table Display | Specify the number of table columns to be displayed

when InfoMaker displays atable graphically. The
default is eight.

4 Do one of the following:

« Click Apply to apply the preference settings to the current connection
without closing the Database Preferences dialog box.

* Click OK to apply the preference settings to the current connection
and close the Database Preferences dialog box.

PowerBuilder saves your preference settings in the database section of
PB.INI.

Setting AutoCommit and Lock in a PowerBuilder application script

If you are developing a PowerBuilder application that connects to a database,
you must specify the required connection parameters in the appropriate script
as properties of the default Transaction object (SQLCA) or a Transaction
object that you create. For example, you might specify connection parameters
in the script that opens the application.

AutoCommit and Lock are properties of SQLCA. Assuch, they are the only
database preferences you can set in a PowerBuilder script. You can do this by:

e (Recommended) Copying PowerScript syntax for AutoCommit and Lock
from the Preview tab in the Database Profile Setup dialog box into your
script

* Coding PowerScript to set valuesfor the AutoCommit and Lock properties
of the Transaction object

* Reading AutoCommit and Lock values from an external text file

For more about using Transaction objects to communicate with adatabasein a
PowerBuilder application, see Application Techniques.

Copying AutoCommit and Lock syntax from the Preview tab

The easiest way to specify AutoCommit and Lock in a PowerBuilder
application script isto copy the PowerScript syntax from the Preview tab inthe
Database Profile Setup dialog box into your script, modifying the default
Transaction object name (SQLCA) if necessary.

Connecting to Your Database 191

Setting database preferences

Asyou complete the Database Profile Setup dialog box in the development
environment, PowerBuilder generates the correct connection syntax on the

Preview tab for each selected option. Therefore, copying the syntax directly
from the Preview tab ensures that you use the correct PowerScript syntax in
your script.

[—ITo copy AutoCommit and Lock syntax from the Preview tab into your
script:
1 Onthe Connection tab in the Database Profile Setup dialog box for your
connection, supply values for AutoCommit and Lock (Isolation Level) as
required.

For instructions, see “ Setting AutoCommit and Lock in the database
profile” on page 187.

For example, in addition to values for basic connection parameters
(Server, Login ID, Password, and Database), the Connection tab for the
following Adaptive Server profile named Sales shows nondefault settings
for Isolation Level and AutoCommit Mode.

For information about the DBParm parameters for your interface and the
values to supply, click Help.

2 Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

3 Click the Preview tab.

The correct PowerScript syntax for each selected option displaysin the
Database Connection Syntax box. For example:

[atabaze Connection Syntas:

Profile Sales

SOLCA DEMS = "5YC Adaptive Server Enterprise’
SOLCA Database = "gadata’

SOLCA LogPass = ¢ 3

SOLCA ServerMame = "45E12"

SOLCA Logld = "galogin®

5 b= True
SOLCA DBPam = "Release="12.5"

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PowerBuilder copies the selected text to the clipboard.

192 PowerBuilder Classic

CHAPTER 13 Setting Additional Connection Parameters

5
6

Click OK to close the Database Profile Setup dialog box.

Paste the sel ected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for AutoCommit and Lock

Another way to specify the AutoCommit and Lock propertiesin ascript is by
coding PowerScript to assign values to the AutoCommit and Lock properties
of the Transaction object. PowerBuilder usesaspecial nongraphic object called
a Transaction object to communicate with the database. The default
Transaction object is named SQLCA, which stands for SQL Communications
Area

SQLCA has 15 properties, 10 of which are used to connect to your database.
Two of the connection properties are AutoCommit and Lock, which you can
set as described in the following procedure.

[To set the AutoCommit and Lock properties in a PowerBuilder script:

1

Connecting to Your Database

Open the application script in which you want to set connection properties.
For instructions, see the Users Guide.

Use the following PowerScript syntax to set the AutoCommit and Lock
properties. (This syntax assumes you are using the default Transaction
object SQLCA, but you can also define your own Transaction object.)

SQLCA.AutoCommit = value

SQLCA.Lock ="value"
For example, the following statements in a PowerBuilder script use the
default Transaction object SQL CA to connect to a Sybase Adaptive Server

Enterprise database named Test. SQLCA.AutoCommit is set to True and
SQLCA.Lock isset toisolation level 3 (Serializable transactions).

SQLCA .DBMS = "gyc"
SQLCA.Database = "Test"
SQLCA.LogID = "Frans"
SQLCA.LogPass = "xxyyzz"
SQLCA.ServerName = "HOST1"
SQLCA.AutoCommit = True
SQLCA.Lock = "3"

For more information, see AutoCommit or Lock in the online Help.
Compile the script to save your changes.

For instructions, see the Users Guide.

193

Setting database preferences

Reading AutoCommit and Lock values from an external text file

As an alternative to setting the AutoCommit and Lock propertiesin a
PowerBuilder application script, you can use the PowerScript ProfileString
function to read the AutoCommit and Lock values from a specified section of
an external text file, such as an application-specific initialization file.

[TTo read AutoCommit and Lock values from an external text file:
1 Opentheapplication script in which you want to set connection properties.

2 Usethefollowing PowerScript syntax to specify the ProfileString function
with the SQLCA.Lock property:

SQLCA.Lock = ProfileString (file, section, key, default)

The AutoCommit property is a boolean, so you need to convert the string
returned by ProfileString to a boolean. For example, the following
statementsin aPowerBuilder script read the AutoCommit and L ock values
from the [Database] section of the APP.INI file:

string ls_string
ls_string=Upper (ProfileString ("APP.INI", "Database",

"Autocommit",""))
if 1s string = "TRUE" then
SQLCA.Autocommit = TRUE
else
SQLCA.Autocommit = FALSE
end if
SQLCA.Lock=ProfileString ("APP.INI", "Database",
"Lock","")

3 Compilethe script to save your changes.

Getting values from the registry

If the AutoCommit and L ock val ues are stored in an application settingskey in
the registry, use the RegistryGet function to obtain them. For example:

string ls_string
RegistryGet ("HKEY CURRENT USER\Software\MyCo\MyApp", &

"Autocommit", RegString!, ls string)
if Upper(ls_string) = "TRUE" then
SQLCA.Autocommit = TRUE
else
SQLCA.Autocommit = FALSE
end if

RegistryGet ("HKEY CURRENT USER\Software\MyCo\MyApp", &
"Lock", RegString!, 1ls_string)

194 PowerBuilder Classic

PART 5 Working with Transaction
Servers

This part describes how to make database connections for
transactional components.

ciarTer 14 Iroubleshooting Your
Connection

About this chapter This chapter describes how to troubleshoot your database connection in
PowerBuilder by using the following tools:

o Database Trace

e SQL Statement Trace

e« ODBC Driver Manager Trace
« JDBC Driver Manager Trace

Contents

Topic Page
Overview of troubleshooting tools 197
Using the Database Trace tool 198
Using the SQL statement trace utility 211
Using the ODBC Driver Manager Trace tool 213
Using the JDBC Driver Manager Trace tool 221

Overview of troubleshooting tools

Whenyou use PowerBuilder, there are several toolsavail ableto traceyour
database connection in order to troubleshoot problems.

Table 14-1: Database trace tools
Use this tool To trace a connection to

Database Trace Any database that PowerBuilder accesses
through one of the database interfaces

ODBC Driver Manager Trace | An ODBC data source only
JDBC Driver Manager Trace A JDBC database only

Connecting to Your Database 197

Using the Database Trace tool

Using the Database Trace tool

This section describes how to use the Database Trace tool.

About the Database Trace tool

The Database Trace tool records the internal commands that PowerBuilder
executeswhile accessing adatabase. You can trace adatabase connectioninthe
development environment or in a PowerBuilder application that connectsto a
database.

PowerBuilder writes the output of Database Trace to alog file named
DBTRACE.LOG (by default) or to anondefault log file that you specify. When
you enable database tracing for the first time, PowerBuilder createsthelogfile
on your computer. Tracing continues until you disconnect from the database.

Using the Database Trace tool with one connection
You can use the Database Trace tool for only one DBMS at atime and for one

database connection at atime.

For example, if your application connectsto both an ODBC data source and an
Adaptive Server Enterprise database, you can trace either the ODBC
connection or the Adaptive Server Enterprise connection, but not both
connections at the same time.

How you can use the Database Trace tool

198

You can use information from the Database Trace tool to understand what
PowerBuilder is doing internally when you work with your database.
Examining the information in the log file can help you:

* Understand how PowerBuilder interacts with your database
» ldentify and resolve problems with your database connection

* Provide useful information to Technical Support if you call them for help
with your database connection

If you are familiar with PowerBuilder and your DBMS, you can use the
information in the log to help troubleshoot connection problems on your own.
If you arelessexperienced or need help, run the Database Tracetool beforeyou
call Technical Support. You can then report or send the results of the trace to
the Technical Support representative who takes your call.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Contents of the Database Trace log

Default contents ofthe By defaullt, the Database Trace tool records the following information in the
trace file log file when you trace a database connection:

Parameters used to connect to the database
Time to perform each database operation (in microseconds)

Theinternal commands executed to retrieve and display table and column
information from your database. Examples include:

e Preparing and executing SQL statements such as SELECT, INSERT,
UPDATE, and DELETE

e Getting column descriptions
e Fetching table rows

e Binding user-supplied values to columns (if your database supports
bind variables)

e Committing and rolling back database changes
Disconnecting from the database

Shutting down the database interface

You can opt to include the names of DBI commands and the time elapsed from
thelast database connection to the completion of processing for each log entry.
You can exclude binding and timing information as well as the data from all
fetch requests.

Database Trace dialog The Database Trace dialog box letsyou select thefollowingitemsfor inclusion
box selections in or exclusion from a database trace file:

Connecting to Your Database

Bind variables Metadata about the result set columns obtained from the
database

Fetch buffers Data values returned from each fetch request
DBl names Database interface commands that are processed

Time to implement request Time required to process DBI commands;
the interval is measured in thousandths of milliseconds (microseconds)

Cumulative time Cumulative total of timings since the database
connection began; the timing measurement is in thousandths of
milliseconds

199

Using the Database Trace tool

Registry settings for
DBTrace

INI file settings for
DBTrace

Error messages

200

The selections made in the Database Trace dialog box are saved to the registry
of the machine from which the database connections are made. Windows
registry settingsfor the database trace utility configuration are stored under the
HKEY_CURRENT_USER\Software\Sybase\lnfoMaker\12.5\

DBTrace key. Registry strings under this key are: ShowBindings,
FetchBuffers, ShowDBINames, Timing, SumTiming, LogFileName, and
ShowDiaog. Except for the LogFileName string to which you can assign afull
file name for the trace output file, all strings can be set to either O or 1.

The ShowDialog registry string can be set to prevent display of the Database
Trace dialog box when a database connection is made with tracing enabled.
Thisisthe only one of the trace registry strings that you cannot change from
the Database Trace dialog box. You must set ShowDialogto 0 intheregistry to
keep the configuration dialog box from displaying.

If you do not have access to the registry, you can use PB.INI to store trace file
settings. Add a[DbTrace] section to the INI file with at least one of the
following values set, then restart PowerBuilder:

[DbTrace]
ShowDBINames=0
FetchBuffers=1
ShowBindings=1
SumTiming=1
Timing=1
ShowDialog=1
LogFileName=dbtrace.log

Thekeywordsarethe sameasin theregistry and have the same meaning. When
you connect to the database again, the initial settings are taken from the INI
file, and when you modify them, the changes are written to the INI file.

If the file namefor LogFileName does not include an absolute path, thelog file
iswritten to the following path, where <username> is your login ID:
Documents and Settings\< username>\Application Data\Power Builder12.5. I
there are no DbTrace settings in the INI file, the registry settings are used.

If the database trace utility cannot open the trace output file with write access,
an error message letsyou know that the specified trace file could not be created
or opened. If the trace utility driver cannot be loaded successfully, a message
box informsyou that the selected Trace DBM Sisnot supported in your current
installation.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Format of the Database Trace log

Example

The specific content of the Database Trace | og file depends on the database you

are accessing and the operationsyou are performing. However, the log usesthe

following basic format to display output:

COMMAND: (time)
{additional_information}

Parameter Description

COMMAND Theinternal command that PowerBuilder executes
to perform the database operation.

time The number of microsecondsit takes PowerBuilder

to perform the database operation. The precision
used depends on your operating system’stiming
mechanism.

additional_information | (Optional) Additional information about the
command. The information provided depends on
the database operation.

The following portion of the log file shows the commands PowerBuilder
executes to fetch two rows from a SQL Anywhere database table:

FETCH NEXT: (0.479 MS)

COLUMN=400 COLUMN=Marketing COLUMN=Evans
FETCH NEXT: (0.001 MS)

COLUMN=500 COLUMN=Shipping COLUMN=Martinez

If you opt to include DBI Names and Sum Time information in the trace log
file, thelog for the same two rows might look like this:

FETCH NEXT: (DBI_FETCHNEXT) (1.459 MS / 3858.556 MS)
COLUMN=400 COLUMN=Marketing COLUMN=Evans

FETCH NEXT: (DBI_FETCHNEXT) (0.001 MS / 3858.557 MS)
COLUMN=500 COLUMN=Shipping COLUMN=Martinez

For amore compl ete example of Database Trace output, see* Sample Database
Trace output” on page 209.

Connecting to Your Database 201

Using the Database Trace tool

Starting the Database Trace tool

By default, the Database Tracetool isturned off in PowerBuilder. You can start
it in the PowerBuilder development environment or in a PowerBuilder
application to trace your database connection.

Turning tracing on and off
To turn tracing on or off you must reconnect. Setting and resetting are not
sufficient.

Starting Database Trace in the development environment

To start the Database Trace tool in the PowerBuilder devel opment
environment, edit the database profile for the connection you want to trace, as
described in the following procedure.

[_TTo start the Database Trace tool by editing a database profile:

1 Open the Database Profile Setup dialog box for the connection you want
to trace.

2 Onthe Connection tab, select the Generate Trace check box and click OK
or Apply. (The Generate Trace check box islocated on the System tabin
the OLE DB Database Profile Setup dialog box.)

The Database Profiles dialog box displays with the name of the edited
profile highlighted.

For example, here is the relevant portion of a database profile entry for
Adaptive Server 12.5 Test. The setting that starts Database Traceis

DBMS:
[Default] [value not set]
AutoCommit "FALSE"
Database "gadata"
DatabasePassword "0O0"
DBMS "TRACE SYC Adaptive Server Enterprise"
DbParm "Release='12.5"'"
Lock nn
LogId "galogin"
LogPassword "00171717171717"
Prompt "FALSE"
ServerName "Host1l25"
UserID mn

202 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

3 Click Connect in the Database Profiles dialog box to connect to the
database.

The Database Trace dialog box displays, indicating that database tracing
is enabled. You can enter the file location where PowerBuilder writesthe
trace output. By default, PowerBuilder writes Database Trace output to a
log file named DBTRACE.LOG. You can change the log file name and
location in the Database Trace dialog box.

The Database Trace dialog box also lets you select the level of tracing
information that you want in the database trace file.

4 Select thetypes of items you want to includein thetrace fileand click OK.

PowerBuilder connects to the database and starts tracing the connection.

Starting Database Trace in a PowerBuilder application

Copying DBMS trace
syntax from the
Preview tab

InaPowerBuilder application that connectsto adatabase, you must specify the
reguired connection parametersin the appropriate script. For example, you
might specify them in the script that opens the application.

To trace a database connection in a PowerBuilder script, you specify the name

of the DBM S preceded by the word trace and a single space. You can do this

by:

e Copying the PowerScript DBMS trace syntax from the Preview tab in the
Database Profile Setup dialog box into your script

e Coding PowerScript to set avalue for the DBMS property of the
Transaction object

* Reading the DBMS value from an external text file

For more about using Transaction objects to communicate with adatabasein a
PowerBuilder application, see Application Techniques.

Oneway to start Database Trace in a PowerBuilder application script isto copy
the PowerScript DBM S trace syntax from the Preview tab in the Database
Profile Setup dialog box into your script, modifying the default Transaction
object name (SQLCA) if necessary.

As you complete the Database Profile Setup dialog box in the devel opment
environment, PowerBuilder generates the correct connection syntax on the
Preview tab for each selected option, including Generate Trace. Therefore,
copying the syntax directly from the Preview tab ensuresthat it is accurate in
your script.

Connecting to Your Database 203

Using the Database Trace tool

Coding PowerScript to
set a value for the
DBMS property

204

[_ITo copy DBMS trace syntax from the Preview tab into your script:

1

On the Connection tab (or System tab in the case of OLE DB) in the
Database Profile Setup dial og box for your connection, select the Generate
Trace check box to turn on Database Trace.

For instructions, see “ Starting Database Trace in the development
environment” on page 202.

Click Apply to save your changes to the Connection tab without closing
the Database Profile Setup dialog box.

Click the Preview tab.

The correct PowerScript connection syntax for the Generate Trace and
other selected options displays in the Database Connection Syntax box.

Select the SQLCA.DBMS line and any other syntax you want to copy to
your script and click Copy.

PowerBuilder copies the selected text to the clipboard.
Click OK to close the Database Profile Setup dialog box.

Paste the sel ected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Another way to start the Database Trace tool in a PowerBuilder script isto
specify it as part of the DBM S property of the Transaction object. The
Transaction object isaspecial nonvisual object that PowerBuilder usesto
communicate with the database. The default Transaction object is named
SQLCA, which stands for SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database.
One of the 10 connection propertiesis DBMS. The DBMS property contains
the name of the database to which you want to connect.

[TTo start the Database Trace tool by specifying the DBMS property:

Use the following PowerScript syntax to specify the DBMS property.
(This syntax assumes you are using the default Transaction object
SQLCA, but you can also define your own Transaction object.)

SQLCA.DBMS = "trace DBMS_name"

For example, the following statements in a PowerBuilder script set the
SQL CA properties required to connect to an Adaptive Server database
named Test. The keyword trace in the DBMS property indicates that you
want to trace the database connection.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

SQLCA .DBMS = "trace SYC"
SQLCA.database = "Test"
SQLCA.logId = "Frans"
SQLCA.LogPass = "xxyyzz"
SQLCA . ServerName = "Tomlin"
Reading the DBMS As an dternative to setting the DBMS property in your PowerBuilder

value from an external 55jcation script, you can use the Power Script ProfileString function to read the
text file or the registry irn . .
DBMS value from a specified section of an external text file, such asan
application-specificinitialization file, or from an application settingskey inthe
registry.
Thefollowing procedure assumes that the DBM S value read from the database
section in your initialization file uses the following syntax to enable database
tracing:

DBMS = trace DBMS_name

[TTo start the Database Trace tool by reading the DBMS value from an
external text file:

« Usethefollowing PowerScript syntax to specify the ProfileString function
with the DBMS property:
SQLCA.DBMS = ProfileString(file, section, variable, default_value)

For example, the following statement in a PowerBuilder script reads the
DBMS value from the [Database] section of the APP.INI file:

SQLCA.DBMS=ProfileString ("APP.INI", "Database",
"DBMS" , nn)

For how to get avaluefrom aregistry fileinstead, see“ Getting valuesfrom the
registry” on page 194.

Starting a trace in PowerScript with the PBTrace parameter

Instead of tracing all database commands from the start of a database
connection, you can start and end a trace programmatically for specific
database queries. To start atrace, you can assign the string value pair
“PBTrace=1" to the transaction object DBParm property; to end atrace, you
assign the string value pair “PBTrace=0".

Connecting to Your Database 205

Using the Database Trace tool

For example, if you wanted data to be logged to the trace output for asingle
retrieve command, you could disable tracing from the start of the connection
and then surround the retrieve call with DBParm property assignments as
follows:

SQLCA.DBMS = "TRACE ODBC"
SQLCA .DBParm="PBTrace=0"
Connect using SQLCA;

SQLCA.DBParm="PBTrace=1"
dw_1.Retrieve ()
SQLCA.DBParm="PBTrace=0"

When you first connect to adatabase after setting the DBM S parameter to
“Trace DBMSName” , a configuration dialog box displays. The configuration
parameters that you set in this dialog box are saved to the registry.
Configuration parameters are retrieved from the registry when you begin
tracing by assigning the DBParm parameter to "PBTrace=1".

You can start and stop the SQL statement trace utility in the same way if you
set the DBMS value to “ TRS DBMSName” instead of “ Trace DBMSName”.
For information about the SQL statement trace utility, see “ Using the SQL
statement trace utility” on page 211.

Stopping the Database Trace tool

Once you start tracing a particular database connection, PowerBuilder
continues sending trace output to the log until you do one of the following:

* Reconnect to the same database with tracing stopped

» Connect to another database for which you have not enabled tracing

Stopping Database Trace in the development environment

206

[TTo stop the Database Trace tool by editing a database profile:

1 Inthe Database Profile Setup dialog box for the database you are tracing,
clear the Generate Trace check box on the Connection tab.

2 Click OK in the Database Profile Setup dialog box.

The Database Profiles dialog box displays with the name of the edited
profile highlighted.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

3 Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PowerBuilder connects to the database and stops tracing the connection.

Stopping Database Trace in a PowerBuilder application

Editing the DBMS
property

Reading the DBMS
value from an external
text file

To stop Database Trace in a PowerBuilder application script, you must delete
the word trace from the DBM S property. You can do this by:

e Editing the value of the DBM S property of the Transaction object
* Reading the DBMS value from an external text file

You must reconnect for the change to take effect.

[TTo stop Database Trace by editing the DBMS value in a PowerBuilder

script:

e Delete the word trace from the DBM S connection property in your
application script.

For example, here isthe DBMS connection property in a PowerBuilder
script that enablesthe Database Trace. (This syntax assumesyou are using
the default Transaction object SQLCA, but you can a so define your own
Transaction object.)

SQLCA.DBMS = "trace SYC"
Here is how the same DBMS connection property should ook after you
edit it to stop tracing:

SQLCA.DBMS = "SycC"

As an alternative to editing the DBMS property in your PowerBuilder

application script, you can use the PowerScript ProfileString function toread the

DBMS value from a specified section of an external text file, such asan
application-specific initiaization file.

This assumes that the DBMS value read from your initialization file does not
include the word trace, as shown in the preceding example in “Editing the
DBMS property.”

Connecting to Your Database 207

Using the Database Trace tool

Using the Database Trace log

PowerBuilder writes the output of the Database Trace tool to afile named
DBTRACE.LOG (by default) or to anondefault log file that you specify. To use
the trace log, you can do the following anytime:

* View the Database Trace log with any text editor
* Annotate the Database Trace log with your own comments

» Delete the Database Trace log or clear its contents when it becomes too
large

Viewing the Database Trace log
You can display the contents of the log file anytime during a PowerBuilder
session.
[TTo view the contents of the log file:

* Openthelog filein one of the following ways:

» Usethe File Editor in PowerBuilder. (For instructions, seethe Users
Guide.)

» Useany text editor outside PowerBuilder.

Leaving the log file open
If you leavethelog file open asyou work in PowerBuilder, the Database Trace

tool does not update the log.

Annotating the Database Trace log

When you use the Database Trace log as a troubleshooting tool, it might be
helpful to add your own comments or notes to the file. For example, you can
specify the date and time of a particular connection, the versions of database
server and client software you used, or any other useful information.

[ITo annotate the log file:

1 Openthe DBTRACE.LOG filein one of the following ways:

» UsetheFile Editor in PowerBuilder. (For instructions, see the Users
Guide.)

e Useany text editor outside PowerBuilder.

208 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

2 Edit thelog file with your comments.

3 Saveyour changesto thelog file.

Deleting or clearing the Database Trace log

Each time you connect to a database with tracing enabled, PowerBuilder
appendsthe trace output of your connection to the existing log. Asaresult, the
log file can become very large over time, especially if you frequently enable
tracing when connected to a database.

[ITo keep the size of the log file manageable:
» Do either of the following periodically:

* Openthelogfile, clear its contents, and save the empty file.

Provided that you use the default DBTRACE.LOG or the same
nondefault file the next time you connect to a database with tracing
enabled, PowerBuilder will write to this empty file.

« Deletethelogfile.

PowerBuilder will automatically create a new log file the next time
you connect to a database with tracing enabled.

Sample Database Trace output

This section gives an example of Database Trace output that you might seein
the log file and briefly explains each portion of the output.

The example traces a connection with Sum Timing enabled. The output was
generated while running a PowerBuilder application that displaysinformation
about authors in a publications database. The SELECT statement shown
retrieves information from the Author table.

The precision (for example, microseconds) used when Database Trace records
internal commands depends on your operating system’s timing mechanism.
Therefore, the timing precision in your Database Trace log might vary from
this example.

Connect to database CONNECT TO TRACE SYC Adaptive Server Enterprise:
DATABASE=pubs?2
LOGID=bob
SERVER=HOST12
DPPARM=Release='12.5.2"',StaticBind=0

Connecting to Your Database 209

Using the Database Trace tool

Prepare SELECT
statement

Get column
descriptions

Bind memory buffers
to columns

Execute SELECT
statement

Fetch rows from result
set

Update and commit
database changes

Disconnect from
database

Shut down database
interface

210

PREPARE:

SELECT authors.au_ id, authors.au lname, authors.state
FROM authors

WHERE (authors.state not in ('CA'))

ORDER BY authors.au lname ASC (3.386 MS / 20.349 MS)

DESCRIBE: (0.021 MS / 20.370 MS)

name=au_id, len=12, type=CHAR, pbt=1,dbt=1,ct=0,prec=0,
scale=0

name=au_lname, len=41, type=CHAR, pbt=1,dbt=1,ct=0,
prec=0,scale=0

name=state, len=3, type=CHAR,pbt=1,dbt=1,ct=0,prec=0,
scale=0

BIND SELECT OUTPUT BUFFER (DataWindow) :
(0.007 MS / 20.377 MS)
name=au_id,len=12, type=CHAR, pbt=1,dbt=1,ct=0,prec=0,
scale=0
name=au_lname, len=41, type=CHAR, pbt=1,dbt=1,ct=0,
prec=0,scale=0
name=state, len=3, type=CHAR, pbt=1,dbt=1,ct=0,prec=0,
scale=0

EXECUTE: (0.001 MS / 20.378 MS)

FETCH NEXT: (0.028 MS / 20.406 MS)
au_1d=648-92-1872 au_ lname=Blotchet-Hall state=0R
FETCH NEXT: (0.012 MS / 20.418 MS)
au_1d=722-51-5454 au_lname=DeFrance state=IN

FETCH NEXT: (0.010 MS / 20.478 MS)
au_1d=341-22-1782 au_lname=Smith state=KS
FETCH NEXT: (0.025 MS / 20.503 MS)

*** DBI FETCHEND *** (rc 100)

PREPARE:

UPDATE authors SET state = 'NM'

WHERE au_id = '648-92-1872' AND au_lname = 'Blotchet-
Halls' AND state = 'OR' (3.284 MS / 23.787 MS)

EXECUTE: (0.001 MS / 23.788 MS)

GET AFFECTED ROWS: (0.001 MS / 23.789 MS)
* 1 Rows Affected

COMMIT: (1.259 MS / 25.048 MS)

DISCONNECT: (0.764 MS / 25.812 MS)

SHUTDOWN DATABASE INTERFACE: (0.001 MS / 25.813 MS)

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Using the SQL statement trace utility

SQL statement tracing

Server-side
timestamps

A separate database trace utility lets you add date and time entriesto alog file
for each SQL statement issued to the database, along with the syntax of the
SQL statement. By default, this utility saves all log entries to afile named
PBTRSQL.log in theinitialization path directory. You can set theinitialization
path in the on the General tab of the System Options dialog box.

You can also change thelog file location and log file namein the registry or in
the DbTrace section of the PB.INI file in the same way you change the trace
output file name for the main database trace utility (see “INI file settings for
DBTrace” on page 200):

[DbTrace]
SglTraceFile=c:\myApplication\tracesqgl.log

Theregistry string for the log file nameis Sql TraceFile. It islocated under the
HKEY_CURRENT_USER\Software\Sybase\Power Builder\12.5\DBTrace key.
If the DbTrace section in the PB.INI file has at |east one entry, the registry
valueisignored. The default file nameis used only if both the registry value
and the PB.INI value are not set.

You start the SQL statement trace utility in PowerScript code by invoking the
driver for the DBM S that you want to use with a TRS modifier. You set the
driver in the DBMS property of a connection object. For example, for the
default SQLCA connection object, if you wanted to use ODBC with SQL
tracing, you would code the following:

SQLCA.DBMS="TRS ODBC"

You can start and stop the SQL statement trace utility in PowerScript in the
same way you start and stop the main database utility: you can start trace
logging by setting the DBParm parameter to “PBTrace=1" and you can stop
trace logging by setting the parameter to “PBTrace=0".

For more information, see “ Starting a trace in Power Script with the PBTrace
parameter” on page 205.

Server-side timestamps can be used instead of client-side timestampsif the
connecting PowerBuilder database driver supports the
DBI_GET_SERVER_TIME commandtype. Currently, server-sidetimestamps
are available for the ASE, SYC, SYJ, and ODBC drivers.

Connecting to Your Database 211

Using the SQL statement trace utility

Log file headers

212

PBTRS125.DLL obtainsthe date and time from the server only once during the
database connection processing. Each time a new timestamp needs to be
generated, it determines the number of milliseconds that have transpired since
the connection was establi shed and computes the new server-side date and time
by adding the elapsed interval to the initial connection timestamp obtained
from the server.

Output to the log file is always appended. For ease of reading, the
PBTRS125.DLL produces abanner inside the log file each time anew database
connection is established. The banner lists the date and time of the database
connection using the system clock on the client workstation. The DBParms for
the database connection are listed immediately under the banner. If a server
timestamp is used for subsequent entriesin the log file, the statement “Using
timestamp from DBM S server” is entered immediately under the DBParm
listings.

When you are running an application with a database trace utility, one of the
DBParm values should include the DisableBind parameter. You should set
DisableBind to 1. Otherwise the syntax that is logged in the trace output file
will contain parameter markers instead of human-readabl e values.

The following output shows a banner from atrace file that uses a client-side
timestamp in the banner itself, and server-side timestamps el sewhere:

/* ___ */
/* 1/10/2007 16:08 */
/* ___ */

(60ec068) : CONNECT TO TRS ODBC: DBPARM=ConnectString='DSN=EAS
Demo DB V125;UID=dba; PWD=sqgl' SERVER=EASDemoDB125

(60ec068) : Using timestamp from DBMS server. (1/10/2007
16:08:28.079)

(60ec068) : PREPARE: (1/10/2007 16:08:44.513) SELECT
DISTINCT ‘'"pbcattbl"."pbt tnam" , "pbcattbl"."pbt cmnt"
FROM "pbcattbl" ORDER BY "pbcattbl".'"pbt tnam" ASC

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Using the ODBC Driver Manager Trace tool

This section describes how to use the ODBC Driver Manager Trace tool.

About ODBC Driver Manager Trace

What this tool does

What both tools do

When to use this tool

SQL.LOG file

You can use the ODBC Driver Manager Tracetool to trace a connection to any
ODBC data source that you access in PowerBuilder through the ODBC
interface.

Unlike the Database Trace tool, the ODBC Driver Manager Trace tool cannot
trace connections through one of the native database interfaces.

ODBC Driver Manager Trace records information about ODBC API calls
(such as SQLDriverConnect, SQLGetInfo, and SQLFetch) made by
PowerBuilder while connected to an ODBC data source. It writesthis
information to a default log file named SQL.LOG or to alog file that you
specify.

Theinformation from ODBC Driver Manager Trace, like Database Trace, can
help you:

e Understand what PowerBuilder is doing internally while connected to an
ODBC data source

e ldentify and resolve problems with your ODBC connection

e Provide useful information to Technical Support if you call them for help
with your database connection

Use ODBC Driver Manager Trace instead of the Database Trace tool if you
want more detailed information about the ODBC API calls made by
PowerBuilder.

Performance considerations)
Turning on ODBC Driver Manager Trace can low your performance while

working in PowerBuilder. Therefore, use ODBC Driver Manager Trace for
debugging purposes only and keep it turned off when you are not debugging.

PowerBuilder writes ODBC Driver Manager Trace output to adefault log file
named SQL.LOG or to alog file that you specify. The default location of
OL.LOG isinyour root directory.

Connecting to Your Database 213

Using the ODBC Driver Manager Trace tool

Starting ODBC Driver Manager Trace

By default, ODBC Driver Manager Trace is turned off in PowerBuilder. You
can start it in order to trace your ODBC connection in two ways:

Edit your database profile in the PowerBuilder development environment

Edit a script in a PowerBuilder application

Starting ODBC Driver Manager Trace in the development environment

214

To start ODBC Driver Manager Trace in the PowerBuilder development
environment, edit the database profile for the connection you want to trace, as
described in the following procedure.

[TTo start ODBC Driver Manager Trace by editing the database profile:
1 Open the Database Profile Setup-ODBC dialog box for the ODBC

connection you want to trace.
On the Options tab, select the Trace ODBC API Calls check box.

(Optional) To specify alog file where you want PowerBuilder to write the
output of ODBC Driver Manager Trace, type the path name in the Trace

File box

or

(Optional) Click Browseto display the pathname of an existing log filein
the Trace File box.

By default, if the Trace ODBC API Calls check box is selected and no
trace fileis specified, PowerBuilder sends ODBC Driver Manager Trace
output to the default SQL.LOG file.

QDEC Trace Cpkions
[]Trace ODEC API Calls

Trace File: Browse...

Click OK or Apply

or

Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

The Database Profiles dialog box displays with the name of the edited
profile highlighted.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

PowerBuilder saves your settings in the database profile entry in the
registry in the HKEY_CURRENT_USER\Software\Sybase\12.5\
DatabaseProfiles key.

For example, hereistherelevant portion of a database profile entry for an
ODBC data source named Employee. The settingsthat start ODBC Driver
Manager Trace (corresponding to the ConnectOption DBParm parameter)
are emphasized.

DBMS "ODBC"

DbParm "ConnectString='DSN=Emloyee;UID=dba;
PWD=00c61737"', ConnectOption="'SQL OPT TRACE, SQL OPT
TRACE_ON; SQL_OPT TRACEFILE,C:\Temp\odbctrce.log'”

Click Connect in the Database Profiles dialog box to connect to the
database

or

Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PowerBuilder connects to the database, starts tracing the ODBC
connection, and writes output to the log file you specified.

Starting ODBC Driver Manager Trace in a PowerBuilder application

To start ODBC Driver Manager Tracein a PowerBuilder application, you must
specify certain values for the ConnectOption DBParm parameter in the
appropriate script. For example, you might include them in the script that opens
the application.

You can specify the required ConnectOption valuesin a PowerBuilder script

by:

(Recommended) Copying the PowerScript ConnectOption DBParm
syntax from the Preview tab in the Database Profile Setup dialog box into
your script

Coding PowerScript to set avalue for the DBParm property of the
Transaction object

Reading the DBParm values from an external text file

For more about using Transaction objects to communicate with adatabasein a
PowerBuilder application, see Application Techniques.

Connecting to Your Database

215

Using the ODBC Driver Manager Trace tool

About the ConnectOption includes several parameters, two of which control the

ConnectOption
DBParm parameter

operation of ODBC Driver Manager Trace for any ODBC-compatible driver
you are using in PowerBuilder.

Table 14-2: ConnectOption parameters for ODBC Driver Manager Trace

Parameter

Description

SQL_OPT_TRACE

Purpose Startsor stops ODBC Driver Manager
Tracein PowerBuilder.

Values The vauesyou can specify are:

+ SQL_OPT TRACE_OFF
(Default) Stops ODBC Driver Manager Trace

+ SQL_OPT TRACE_ON
Starts ODBC Driver Manager Trace

SQL_OPT_TRACEFILE

Purpose Specifiesthe name of the tracefile
where you want to send the output of ODBC Driver
Manager Trace. PowerBuilder appends the output
to thetrace file you specify until you stop the trace.
To display thetracefile, you can use the File Editor
(in PowerBuilder) or any text editor (outside
PowerBuilder).

Values You can specify any filenamefor thetrace
file, following the naming conventions of your
operating system. By default, if tracing ison and
you have not specified a trace file, PowerBuilder
sends ODBC Driver Manager Trace output to afile
named SQL.LOG.

For information about the location of SQL.LOG on
different platforms, see “ About ODBC Driver
Manager Trace” on page 213.

Copying The easiest way to start ODBC Driver Manager Trace in a PowerBuilder
ConnectOption syntax gnnljcation script is to copy the PowerScript ConnectString DBParm syntax

from the Preview tab

from the Preview tab in the Database Profile Setup - ODBC dialog box into

your script, modifying the default Transaction object name (SQLCA) if

necessary.

Asyou complete the Database Profile Setup dialog box in the development
environment, PowerBuilder generates the correct connection syntax on the
Preview tab. Therefore, copying the syntax directly from the Preview tab into
your script ensures that it is accurate.

216

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

[_1To copy ConnectOption syntax from the Preview tab into your script:

1 OntheOptionstab in the Database Profile Setup - ODBC diaog box for
your connection, select the Trace ODBC API Calls check box and
(optionally) specify alog filein the Trace File box to start ODBC Driver
Manager Trace.

2 Click Apply to save your changes to the Options tab without closing the
dialog box.

3 Click the Preview tab.

The correct PowerScript syntax for ODBC Driver Manager Trace and
other selected options displays in the Database Connection Syntax box.

The following exampl e shows the PowerScript syntax that starts ODBC
Driver Manager Trace and sends output to the file
C\TEMP\ODBCTRCE.LOG.

// Profile Employee

SQLCA.DBMS = "ODBC"

SQLCA.AutoCommit = False

SQLCA.DBParm = "Connectstring='DSN=Employee',
ConnectOption="'SQL _OPT TRACE,SQL_OPT TRACE ON;
SQL_OPT TRACEFILE, c:\temp\odbctrce.log’"

4 Select the SQLCA.DBParm line and any other syntax you want to copy to
your script and click Copy.

PowerBuilder copies the selected text to the clipboard.

5 Pastethe selected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to Another way to start ODBC Driver Manager Trace in a PowerBuilder
SDeBtga‘:ﬁlUF‘frg%gr';; application script is to include the ConnectOption parameters that control
tracing as values for the DBParm property of the Transaction object.

[To start ODBC Driver Manager Trace by setting the DBParm property:

« Inyour application script, set the SQL_OPT_TRACE and (optionally)
SQL_OPT_TRACEFILE ConnectOption parametersto start the trace and
to specify a nondefault trace file, respectively.

For example, the following statement starts ODBC Driver Manager Tracein
your application and sends output to a file named MYTRACE.LOG. Insert a
commato separate the ConnectString and ConnectOption values.

Connecting to Your Database 217

Using the ODBC Driver Manager Trace tool

This example assumes you are using the default Transaction object SQLCA,
but you can aso define your own Transaction object.

SQLCA .DBParm="ConnectString='DSN=Test ; UID=PB;
PWD=xyz',ConnectOption='SQL OPT TRACE,
SQL_OPT TRACE_ON;SQL OPT TRACEFILE,C:\TRC.LOG'"

Reading the DBParm As an alternative to setting the DBParm property in your PowerBuilder
;/;lltjﬁlferom anexternal gnplication script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such asan
application-specific initialization file.
Thisassumesthat the DBParm value read from your initialization fileincludes
the ConnectOption parameter to start ODBC Driver Manager Trace, as shown
in the preceding example.

[TTo start ODBC Driver Manager Trace by reading DBParm values from an
external text file:

» Usethefollowing PowerScript syntax to specify the ProfileString function
with the DBParm property:

SQLCA.dbParm = ProfileString(file, section, variable,
default_value)

For example, the following statement in a PowerBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA.dbParm =
ProfileString ("APP.INI", "Database", "DBParm","")

Stopping ODBC Driver Manager Trace

Once you start tracing an ODBC connection with ODBC Driver Manager
Trace, PowerBuilder continues sending trace output to the log file until you
stop tracing. After you stop tracing as described in the following sections, you
must reconnect to have the changes take effect.

Stopping ODBC Driver Manager Trace in the development environment

[_ITo stop ODBC Driver Manager Trace by editing a database profile:

1 Open the Database Profile Setup - ODBC dialog box for the connection
you are tracing.

For instructions, see “ Starting ODBC Driver Manager Trace in the
development environment” on page 214.

218 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

2 OntheOptionstab, clear the Trace ODBC API Calls check box.

If you supplied the pathname of alog file in the Trace File box, you can
leave it specified in case you want to restart tracing later.

3 Click OK inthe Database Profile Setup - ODBC dialog box.

The Database Profiles dialog box displays, with the name of the edited
profile highlighted.

4 Click Connect in the Database Profiles dialog box or right-click on the
connected database and select Re-connect from the drop-down menu in
the Database Profiles dialog box.

PowerBuilder connects to the database and stops tracing the connection.

Stopping ODBC Driver Manager Trace in a PowerBuilder application

To stop ODBC Driver Manager Tracein aPowerBuilder application script, you
must change the SQL_OPT_TRACE ConnectOption parameter to
SQL_OPT_TRACE_OFF. You can do this by:

« Editing the value of the DBParm property of the Transaction object
* Reading the DBParm values from an external text file

Editing the DBParm Oneway to change the ConnectOption valuein a PowerBuilder script isto edit
property the DBParm property of the Transaction object.

[1ITo stop ODBC Driver Manager Trace by editing the DBParm property:

* Inyour application script, edit the DBParm property of the Transaction
object to change the value of the SQL_OPT_TRACE ConnectOption
parameter to SQL_OPT_TRACE_OFF.

For example, the following statement starts ODBC Driver Manager Tracein
your application and sends the output to afile named MYTRACE.LOG. (This
example assumesyou are using the default Transaction object SQL CA, but you
can aso define your own Transaction object.)

SQLCA .DBParm="ConnectString='DSN=Test ; UID=PB;
PWD=xyz’ ,ConnectOption="’ SQL OPT TRACE,
SQL OPT TRACE_ON;SQL_ OPT_TRACEFILE,C: \TRC.LOG' "

Connecting to Your Database 219

Using the ODBC Driver Manager Trace tool

Here is how the same statement should look after you edit it to stop ODBC
Driver Manager Trace. (You can leave the name of the trace file specified in
case you want to restart tracing later.)

SQLCA .DBParm="ConnectString='DSN=Test ; UID=PB;
PWD=xyz',ConnectOption='SQL OPT TRACE,
SQL OPT TRACE OFF;SQL OPT TRACEFILE,C:\TRC.LOG'"

Reading DBParm As an alternative to editing the DBParm property in your PowerBuilder
values application script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such asan
application-specific initialization file.
This assumes that the DBParm value read from your initialization file sets the
value of SQL_OPT_TRACE to SQL_OPT_TRACE_OFF, as shownin the
preceding example.

Viewing the ODBC Driver Manager Trace log

You can display the contents of the ODBC Driver Manager Tracelog file
anytime during a PowerBuilder session.

Location of SQL.LOG
For information about where to find the default SQL.LOG file, see “ About

ODBC Driver Manager Trace” on page 213.

[_TTo view the contents of the log file:
e Open SQL.LOG or thelog fileyou specified in one of the following ways.

» UsetheFile Editor in PowerBuilder. (For instructions, see the Users
Guide.)

e Useany text editor outside PowerBuilder.

Leaving the log file open
If you leave the log file open as you work in PowerBuilder, ODBC Driver

Manager Trace does not update it.

220 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Sample ODBC Driver Manager Trace output

This section shows a partial example of output from ODBC Driver Manager
Traceto give you an idea of theinformation it provides. The exampleis part of
the trace on an ODBC connection to the EAS Demo DB.

For more about a particular ODBC API call, see your ODBC documentation.

PB125 179:192 EXIT SQLSetConnectOption with return
code 0 (SQL_SUCCESS)

HDBC 0x036e1300

UWORD 104 <SQL_OPT_TRACE>

UDWORD 1

PB125 179:192 EXIT SQLGetInfoW with return code 0
(SQL_SUCCESS)

HDBC 0x036e1300

UWORD 25 <SQL DATA SOURCE_READ ONLY>

PTR 0x036e3c88 [2] N

SWORD 512

SWORD * 0x0012cc32 (2)

Using the JDBC Driver Manager Trace tool

This section describes how to use the JDBC Driver Manager Trace tool.

About JDBC Driver Manager Trace

You can use the JDBC Driver Manager Trace tool to trace a connection to any
database that you access in PowerBuilder through the JDBC interface.

Unlike the Database Trace tool, the JIDBC Driver Manager Trace tool cannot
trace connections through one of the native database interfaces.

What this tool does JDBC Driver Manager Trace logs errors and informational messages
originating from the Driver object currently loaded (such as Sybase'sjConnect
JDBC driver) when PowerBuilder connects to a database through the JDBC
interface. It writes thisinformation to a default log file named JDBC.LOG or
to alog file that you specify. The amount of trace output varies depending on
the JDBC driver being used.

Connecting to Your Database 221

Using the JDBC Driver Manager Trace tool

What both tools do The information from JDBC Driver Manager Trace, like Database Trace, can
help you:

* Understand what PowerBuilder is doing internally while connected to a
database through the JDBC interface

e ldentify and resolve problems with your JDBC connection

* Provide useful information to Technical Support if you call them for help
with your database connection

When to use this tool Use JDBC Driver Manager Trace instead of the Database Trace tool if you
want more detailed information about the JDBC driver.

Performance considerations)
Turning on JDBC Driver Manager Trace can slow your performance while

working in PowerBuilder. Therefore, use JDBC Driver Manager Trace for
debugging purposes only and keep it turned off when you are not debugging.

JDBC.LOG file PowerBuilder writes JDBC Driver Manager Trace output to a default log file
named JDBC.LOG or to alog file that you specify. The default location of
JDBC.LOG isatemp directory.

Starting JDBC Driver Manager Trace

By default, JDBC Driver Manager Trace is turned off in PowerBuilder. You
can start it in order to trace your JDBC connection in two ways:

» Edit your database profile in the PowerBuilder development environment

» Edit ascript in a PowerBuilder application

Starting JDBC Driver Manager Trace in the development environment
To start JDBC Driver Manager Tracein the PowerBuilder devel opment
environment, edit the database profile for the connection you want to trace, as
described in the following procedure.
[TTo start JDBC Driver Manager Trace by editing the database profile:

1 Open the Database Profile Setup - JDBC dialog box for the JDB
connection you want to trace.

2 Onthe Optionstab, select the Trace JDBC Calls check box.

222 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

3 (Optional) To specify alog file where you want PowerBuilder to write the
output of JDBC Driver Manager Trace, type the path name in the Trace
File box, or click Browse to display the path name of an existing log file
in the Trace File box.

By default, if the Trace IDBC Calls check box is selected and no
dternative trace file is specified, PowerBuilder sends JDBC Driver
Manager Trace output to the default IDBC.LOG file.

JDEBC Trace Cptions

Browse. ..

4 Click OK or Apply.

The Database Profiles dialog box displays with the name of the edited
profile highlighted. PowerBuilder saves your settings in the database
profile entry in the registry.

For example, here arethe DBM S and DBParm string val ues of adatabase
profile entry for adatabase named Employee. The settingsthat start JDBC
Driver Manager Trace (corresponding to the TraceFile DBParm
parameter) are emphasi zed.

DBMS "TRACE JDBC"

DbParm "Driver='com.sybase.jdbc3.jdbc.SybDriver',
URL="'7jdbc:sybase:Tds:199.93.178.151:
5007/tsdata', TraceFile="'c:\temp\jdbc.log"'"

5 Click Connect in the Database Profiles dialog box to connect to the
database
or
Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dial og box.

PowerBuilder connects to the database, starts tracing the JDBC
connection, and writes output to the log file you specified.

Connecting to Your Database 223

Using the JDBC Driver Manager Trace tool

Starting JDBC Driver Manager Trace in a PowerBuilder application

About the TraceFile
DBParm parameter

Copying TraceFile
syntax from the
Preview tab

224

To start IDBC Driver Manager Trace in a PowerBuilder application, you must
specify the TraceFile DBParm parameter in the appropriate script. For
example, you might include it in the script that opens the application.

You can specify the TraceFile parameter in a PowerBuilder script by:

* (Recommended) Copying the PowerScript TraceFile DBParm syntax from
the Preview tab in the Database Profile Setup dialog box into your script

* Coding PowerScript to set a value for the DBParm property of the
Transaction object

* Reading the DBParm values from an external text file

For more about using Transaction objectsto communicate with adatabasein a
PowerBuilder application, see Application Techniques.

TraceFile controls the operation of JDBC Driver Manager Trace for any
JDBC-compatible driver you are using in PowerBuilder.

The easiest way to start JDBC Driver Manager Trace in a PowerBuilder
application script is to copy the PowerScript TraceFile DBParm syntax from
the Preview tab in the Database Profile Setup - JDBC dialog box into your
script, modifying the default Transaction object name (SQLCA) if necessary.

Asyou complete the Database Profile Setup dial og box in the development
environment, PowerBuilder generates the correct connection syntax on the
Preview tab. Therefore, copying the syntax directly from the Preview tab into
your script ensures that it is accurate.

[TTo copy TraceFile syntax from the Preview tab into your script:

1 Onthe Optionstab in the Database Profile Setup - JDBC dialog box for
your connection, select the Trace JDBC Calls check box and (optionally)
specify alog file in the Trace File box to start JDBC Driver Manager
Trace.

For instructions, see “ Stopping JDBC Driver Manager Trace in the
development environment” on page 226.

2 Click Apply to save your changes to the Options tab without closing the
dialog box.

3 Click the Preview tab.

The correct PowerScript syntax for JDBC Driver Manager Trace and other
selected options displays in the Database Connection Syntax box.

PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Coding PowerScript to

set a value for the
DBParm property

Reading the DBParm
value from an external
text file

Connecting to Your Database

The following exampl e shows the PowerScript syntax that starts JDBC
Driver Manager Trace and sends output to the file C:ATEMP\JDBC.LOG.

// Profile Employee

SQLCA.DBMS = "TRACE JDBC"

SQLCA.DBParm =
"Driver='com.sybase.jdbc3.jdbc.SybDriver"',
URL="'jdbc:sybase:Tds:199.93.178.151:5007/tsdata’,
TraceFile='c:\temp\jdbc.log'"

Select the DBParm line and any other syntax you want to copy to your
script and click Copy.

PowerBuilder copies the selected text to the clipboard.

Paste the sel ected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Another way to start JDBC Driver Manager Trace in a PowerBuilder
application script is to include the TraceFile parameter as avalue for the
DBParm property of the Transaction object.

[_TTo start JDBC Driver Manager Trace by setting the DBParm property:

Inyour application script, include the TraceFile parameter to start thetrace
and specify anondefault trace file.

For example, this statement starts JDBC Driver Manager Trace in your
application and sends output to afile named MYTRACE.LOG. (This
example assumes you are using the default Transaction object SQLCA,
but you can also define your own Transaction object.)

SQLCA.DBParm =
"Driver='com.sybase.jdbc3.jdbc.SybDriver"',
URL="'jdbc:sybase:Tds:199.93.178.151:5007/tsdata’',
TraceFile='c:\MYTRACE.LOG'"

As an alternative to setting the DBParm property in your PowerBuilder
application script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such asan
application-specific initiaization file.

Thisassumes that the DBParm value read from your initialization fileincludes
the TraceFile parameter to start JDBC Driver Manager Trace, as shown in the
preceding example.

225

Using the JDBC Driver Manager Trace tool

[TTo start JDBC Driver Manager Trace by reading DBParm values from an
external text file:

» Usethefollowing PowerScript syntax to specify the ProfileString function
with the DBParm property:

SQLCA.dbParm = ProfileString(file, section, variable,
default_value)

For example, the following statement in a PowerBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA.dbParm =
ProfileString ("APP.INI", "Database", "DBParm", "")

Stopping JDBC Driver Manager Trace

Once you start tracing a JDBC connection with JDBC Driver Manager Trace,
PowerBuilder continues sending trace output to the log file until you stop
tracing.

Stopping JDBC Driver Manager Trace in the development environment

[_ITo stop JDBC Driver Manager Trace by editing a database profile:

1 OpentheDatabase Profile Setup - JDBC diaog box for the connection you
are tracing.

For instructions, see “ Starting JDBC Driver Manager Trace’ on page 222.
2 Onthe Optionstab, clear the Trace JDBC Calls check box.

If you supplied the path name of alog file in the Trace File box, you can
leave it specified in case you want to restart tracing later.

3 Click OK in the Database Profile Setup - JDBC dialog box.

The Database Profiles dialog box displays, with the name of the edited
profile highlighted.

4 Click Connect in the Database Profiles dialog box or right click on the
connected database and select Re-connect from the drop-down menu in
the Database Profiles dialog box.

PowerBuilder connects to the database and stops tracing the connection.

226 PowerBuilder Classic

CHAPTER 14 Troubleshooting Your Connection

Stopping JDBC Driver Manager Trace in a PowerBuilder application

Editing the DBParm
property

Reading DBParm
values

To stop JDBC Driver Manager Tracein a PowerBuilder application script, you
must delete the TraceFile parameter. You can do this by:

« Editing the value of the DBParm property of the Transaction object
* Reading the DBParm values from an external text file

One way to change the TraceFile parameter in a PowerBuilder script isto edit
the DBParm property of the Transaction object.

[—ITo stop JDBC Driver Manager Trace by editing the DBParm property:

¢ Inyour application script, edit the DBParm property of the Transaction
object to delete the TraceFile parameter.

For example, the following statement starts JDBC Driver Manager Trace
in your application and sends the output to afile named MYTRACE.LOG.
(This example assumes you are using the default Transaction object
SQLCA, but you can also define your own Transaction object.)

SQLCA.DBParm =
"Driver='com.sybase.jdbc3.jdbc.SybDriver"',
URL="'jdbc:sybase:Tds:199.93.178.151:5007/tsdata’',
TraceFile='c:\MYTRACE.LOG'"

Hereis how the same statement should look after you edit it to stop JDBC
Driver Manager Trace.

SQLCA.DBParm =
"Driver='com.sybase.jdbc3.jdbc.SybDriver"',
URL="'jdbc:sybase:Tds:199.93.178.151:5007/tsdata'"

As an dternative to editing the DBParm property in your PowerBuilder
application script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such asan
application-specific initialization file, or you can use RegistryGet to obtain
values from aregistry key.

This assumes that the DBParm isno longer read from your initialization file or
registry key, as shown in the preceding example. You must disconnect and
reconnect for thisto take effect.

Connecting to Your Database 227

Using the JDBC Driver Manager Trace tool

Viewing the JDBC Driver Manager Trace log

You can display the contents of the JDBC Driver Manager Trace log file
anytime during a PowerBuilder session.

Location of JDBC.LOG
For information about where to find the default JDBC.LOG file, see “ About
JDBC Driver Manager Trace” on page 221.

[—TTo view the contents of the log file:

* Open JDBC.LOG or thelog file you specified in one of the following

ways:
» Usethe File Editor in PowerBuilder. (For instructions, seethe Users
Guide.)

» Useany text editor outside PowerBuilder.

Leaving the log file open
If you leave the log file open as you work in PowerBuilder, JDBC Driver
Manager Trace does not update the log.

228 PowerBuilder Classic

CHAPTER 15

Making Database Connections in
PowerBuilder Components

This chapter describes the database connections you can make if you are
developing a PowerBuilder component that will be deployed to a
transaction server. It aso describes how to create a profile to smplify
connections to EAServer.

Topic Page
Deploying a component to EA Server 229
DBParm support for PowerBuilder components 233

Deploying a component to EAServer

Connecting to Your Database

If you are devel oping a PowerBuilder custom class user object containing
businesslogic that will be deployed to atransaction server, there are some
database connectivity issuesto keep in mind.

For detailed information about the files you need to deploy with
applications or components you build in PowerBuilder, see the chapter on
deploying your application in Application Techniques.

If you want the component you are devel oping to take advantage of

EA Server’s support for connection pooling and transaction management,
you must use one of the database interfaces supported by the transaction
coordinator being used by EAServer. EAServer supports the Microsoft
Distributed Transaction Coordinator (DTC) and the Java Transaction
Service (JTS) for OTS/XA Transactions.

The default coordinator isthe JT'S coordinator.

Setting the transaction coordinator
The transaction coordinator is set through EA Server Manager using the

Transaction tab of the Server Properties dialog box.

229

Deploying a component to EAServer

Supported database connections when using Shared Connection

The pseudo-coordinator shared connection is built into EAServer. In this
model, all components participating in atransaction share a single connection.
To use thismodel, al of your application data must reside on one data server,
and all componentsthat participatein atransaction must use a connection with
the same user name, password and server name or the same EA Server
connection cache name as defined in the CacheName DBParm. It supportsthe
following database interfaces to connect to the database:

» ODBC database interface, which provides connectivity to a variety of
databases through ODBC drivers. The same ODBC drivers shipped with
PowerBuilder are also supported on EA Server.

* Sybase SY J database interface, which provides connectivity to Adaptive
Server Enterprise 11.5 or later. (Some versions of Open Client and
Adaptive Server currently do not support OTS/XA transactions on
Windows NT.)

» JDB database interface, which provides connectivity through Sun’s Java
Virtual Machine to a JDBC driver such as Sybase jConnect.

e Oracle 090, 010, and ORA database interfaces, which provide
connectivity to Oracle9i, Oracle 10g, and Oracle 11g, databases.

Supported database connections when using Microsoft DTC

Microsoft Distributed Transaction Coordinator (DTC) uses two-phase commit
to coordinate transactions among multiple databases. This transaction
coordinator supports the following database interfaces to connect to the
database:

» ODBC database interface. Support is limited to the following ODBC
drivers: Microsoft SQL Server 6.5 or later and Microsoft ODBC driver for
Oracle.

» JDB database interface, which provides connectivity through Sun’s Java
Virtual Machine to a JDBC driver that acts as a JDBC-ODBC bridge.

230 PowerBuilder Classic

CHAPTER 15 Making Database Connections in PowerBuilder Components

Supported database connections when using OTS/XA

This option uses the Transarc Encina transaction coordinator that is built into
EA Server. The Encina transaction coordinator uses two-phase commit to
coordinate transactions among multiple databases. This transaction
coordinator supports the following database interfaces to connect to the
database:

¢ The SYJdatabase interface, which provides connectivity to Adaptive
Server Enterprise 11.5 or later.

¢ The JDB database interface, which provides connectivity through Sun’'s
JavaVirtual Machine (JRE 1.2 or later) to aJDBC driver that supportsthe
Java Transaction APl (JTA) such as Sybase jConnect 5.2.

¢ Oracle 090, 010, and ORA database interfaces, which provide
connectivity to Oracle9i, Oracle 10g, and Oracle 119 databases.

Using the SYJ database interface

EAServer uses adlightly different version of the Sybase Open Client CT-
Library (CT-Lib) softwarefrom PowerBuilder. Therefore, at runtime, you need
to use SY Jrather than ASE or SY Cto connect to an Adaptive Server Enterprise
database. The SY J Database Profile Setup dialog box provides a convenient
way to set the appropriate connection parameters and then copy the syntax
from the Preview tab into the script for your Transaction object.

You cannot use the SY Jinterface, however, to connect to the database in the
PowerBuilder development environment. Therefore, during the devel opment
phase (before the component has been deployed to EA Server), you must use
ASE or SY C to connect to the database.

Note that the SY J database interface supports only those DBParms relevant at
runtime. It does not support any DBParm parameters that have to be set before
PowerBuilder establishes a database connection. The following DBParms,
which are included on the SY J Profile Setup dialog box, are not supported by
SYJ.

e All the DBParms on the Regional Settings tab including CharSet,
Language, and Locale

* All the Directory services DBParms on the Directory Services tab
* All the Security services DBParms on the Security tab

Connecting to Your Database 231

Deploying a component to EAServer

» All the DBParms on the Network tab including AppName, Host,
MaxConnect, PacketSize, and PWEnNcrypt

* The Release DBParm on the Connection tab
e The TableCriteria DBParm on the System tab

* The Asynchronous Operations DBParms, Async and DBGetTime, on the
Transaction tab

Using the JDB database interface

When you deploy a component developed using the JDB interface to

EA Server, PowerBuilder checks the version of the VM EAServer isusing
against the version PowerBuilder isusing. If the versions do not match, a
warning is entered in the EAServer log file. PowerBuilder uses the version
loaded by EA Server. The EAServer log file records errorsrelating to
component execution. You can view its contents using the EA Server Manager
File Viewer.

Specifying AutoCommit mode

For those DBM Ss and database interfaces that support it (ODBC, SY J, and
JDB), AutoCommit controls whether PowerBuilder issues SQL statements
outside or inside the scope of atransaction. When AutoCommit is set to False
(the default), PowerBuilder issues SQL statements inside the scope of a
transaction. When AutoCommit is set to True, PowerBuilder issues SQL
statements outside the scope of atransaction. AutoCommit is set using the
AutoCommit Mode check box on the Connection tab in the Database Profile
Setup dialog box or by giving it avalue in a PowerBuilder application script.

However, if the component you are devel oping participates in an EA Server
transaction, the AutoCommit setting isignored. Instead, EA Server determines
how the component’s database operations execute as part of the transaction.

232 PowerBuilder Classic

CHAPTER 15 Making Database Connections in PowerBuilder Components

DBParm support for PowerBuilder components

There are several connection options that are relevant only to a PowerBuilder
custom class user object that is deployed as a transaction server component.
These DBParm parameters can be set through the EA Server tab of the
Database Profile Setup dialog box for the appropriate database interface or by
giving them avalue in a PowerBuilder application script:

e UseContextObject

e CacheName (not applicable when using OTS/XA)
* GetConnectionOption

e ProxyUserName

* ReleaseConnectionOption

« ODBCU_CONLIB

For more information on these DBParms, refer to the online Help.

Connecting to Your Database 233

DBParm support for PowerBuilder components

234 PowerBuilder Classic

PART 6 Using Embedded SQL

This part describes how to use embedded SQL when
accessing a database with that interface in a PowerBuilder

application.

CHAPTER 16

About this chapter

Overview

ODBC API

See also

Connecting to Your Database

Using Embedded SQL with
ODBC

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When you use the ODBC interface to connect to a backend database, you
can use embedded SQL in your scripts.

You can embed the following types of SQL statementsin scripts and user-
defined functionsif the ODBC driver you are using and the backend
DBMS you are accessing supports this functionality. (Not all backend
databases support cursor statements and database stored procedures.)

« Transaction management statements
* Non-cursor statements

e Cursor statements

e Database stored procedures

The ODBC interface uses the ODBC application programming interface
(API) to interact with the backend database.

When you use embedded SQL, PowerBuilder makesthe required callsto
the backend database. Therefore, you do not need to know anything about
the ODBC API to use embedded SQL with PowerBuilder.

Chapter 2, “Using the ODBC Interface”
ODBC SQL Support

ODBC Transaction management statements
ODBC Non-cursor statements

ODBC Cursor statements

ODBC Database stored procedures

237

ODBC SQL Support

ODBC SQL Support

PowerBuilder embedded SQL supportsthe name qualification conventionsand
functions used in the databases accessible through the ODBC interface.

See also ODBC Name qualification
ODBC SQL functions

ODBC Name qualification

PowerBuilder does not inspect all SQL statement syntax, so you can qualify
database catalog entities as necessary.

For example, the following qualifications are acceptable for an ODBC
interface to a SQL Anywhere database:

+ emp_name

» employee.emp_name

ODBC SQL functions

In SQL statements, you can use any function that your backend DBMS
supports (such as aggregate or mathematical functions). For example, if your
DBM S supportsthe function Sum, you can use the function Sumin aSELECT
Statement:

SELECT Sum(salary)
INTO :salary sum var
FROM employee;

Calling ODBC While PowerBuilder provides access to alarge percentage of the features

functions within ODBC, in some cases you may decide that you need to call one or more
ODBC functions directly for a particular application. PowerBuilder provides
access to most Windows DL Ls by using external function declarations.

The ODBC cals qualify for this type of access. Most ODBC callsrequire a
pointer to a connection handle (of the variable type HDBC) to a structure as
their first parameter. If you want to call ODBC without reconnecting to the
database to get a connection handle, use the PowerScript DBHandle function.

238 PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

DBHandle

DBHandl e takes atransaction object asaparameter and returnsalong variable,
which is the handle to the database for the transaction. This handle is actually
the connection handle PowerBuilder uses internally to communicate with the
database. You can use this returned long value in the ODBC DLLs and passit
as one of the parametersin your function.

After you obtain the connection handle, you can use the ODBC SQL Getlnfo
call to obtain the environment handle of the variable type HENV.

Example This exampleillustrates how to use DBHandle. As with other examples,
assume a successful connection has occurred using the default transaction

object (SQLCA).

// Define a variable to hold the DB connection
// handle
long ODBCConnectionHandle

// Go get the handle.
ODBCConnectionHandle = SQLCA.DBHandle()

// Now that you have the ODBC connection pointer,
// call the DLL function.
MyDLLFunction (ODBCConnectionHandle, parml, parm2)

Inyour DLL, cast the incoming connection handle of the type HDBC:

See also

MyDLLFunction (long 10DBCConnectionHandle,
parml_ type parml,
parm2_type Parm2, ...)
{
HDBC * pDatabase;
pDatabase = (HDBC *) 10DBCConnectionHandle;
// ODBC functions can be called using pDatabase.

}
ODBC Using escape clauses

ODBC Using escape clauses

ODBC defines extensionsthat are common to most backend DBM Ss. To cover

vendor-specific extensions, the syntax defined by ODBC uses the escape
clause provided by the X/Open and SQL Access Group (SAG) SQL draft

specifications.

Connecting to Your Database

239

ODBC Transaction management statements

Maximum portability

Syntax

Example

For example, some of the extensions defined in ODBC are:
» Date, time, and timestamp data

» Scalar functions (such as data type, numeric, and string converstion
functions)

e Outer joins
e Procedures

For maximum portability, you should use escape sequences in your
applications.

For example, PowerBuilder usesthe date, time, and timestamp escape clauses
asthe default formats for data manipulation. The syntax for each of these
escape clausesis:

{ a yyyy-mm-dd }
{ t hh:mm:ss }
{ ts yyyy-mm-dd hh:mm:ss: [fff[£fff]] }

Each of the following statements updates employee Henry Joness start timein
the Employeetable. Thefirst statement uses the escape clause, and the second
statement uses native syntax for atime column:

UPDATE Employee
SET start_time {t 08:30:00}
WHERE emp name = "Henry Jones"
UPDATE Employee
SET start_ time (08:30:00)
WHERE emp name = "Henry Jones"

ODBC Transaction management statements

240

If the database you are connecting to supports transaction management, you
can use the following transaction management statements with one or more
transaction objects to manage connections and transactions for a database:

« CONNECT

* DISCONNECT
« COMMIT

* ROLLBACK

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

See also ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

ODBC Using CONNECT, DISCONNECT, COMMIT, and

ROLLBACK

Thefollowing tablelists each transaction management statement and describes
how it works when you use the ODBC interface to connect to a database:

Statement

Description

CONNECT

Establishesthe database connection. After you assign valuesto
the required properties of the transaction object, you can
execute a CONNECT. When you connect to the database, the
DBMS name returned by the ODBC SQL GetInfo call is
returned in the transaction object property SQL ReturnData.

DISCONNECT

Terminates asuccessful connection. When aDISCONNECT is
executed, PowerBuilder internally executesa COMMIT
WORK statement to commit all changes and then issues a
CLOSE DATABA SE statement to terminate the logical unit of
work.

COMMIT

Applies al changes made to the database since the beginning
of the current unit of work.

ROLLBACK

Undoesall changes madeto the database since the beginning of
the current logical unit of work.

See also ODBC Performance and locking

ODBC Performance and locking

After aconnection isestablished, SQL statements can cause locksto be placed
on database entities. The more locks there are in place at a given moment in
time, the more likely it is that the locks will hold up another transaction.

Rules No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the

following:

Connecting to Your Database

241

ODBC Performance and locking

Isolation feature

Example 1

242

* Long-running connections Determine whether you can afford to have
long-running connections. If not, your application should connect to the
database only when absolutely necessary. After all the work for that
connection is compl ete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be
issued as often as possible to guarantee that al changes do in fact occur.
More importantly, COMMITs should be issued to release any locks that
may have been placed on database entities as aresult of the statements
executed using the connection.

« SetTrans or SetTransObject function Determine whether you want to
use default DataWindow transaction processing (the SetTrans function) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DataWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

Switching during a connection
To switch between transaction processing and AutoCommit during a

connection, change the setting of AutoCommit in the transaction object.

ODBC uses the isolation feature to support assorted database lock options. In
PowerBuilder, you can usethe Lock property of thetransaction object to set the
isolation level when you connect to the database.

The following example shows how to set the Lock property to RU (Read
uncommitted):

// Set the lock property to read uncommitted
// in the default transaction object SQLCA.
SQLCA.Lock = "RU"

PowerBuilder uses the ODBC API call SQ2.SetConnectOption
(SetlsolationLevel) to set the isolation level. The lock value is passed to the
function as a 32-bit mask.

This script uses embedded SQL to connect to adatabase and attempts to insert
arow inthe ORDER_HEADER table and arow in the ORDER_ITEM table.

The script then executesaCOMMIT or ROLLBACK depending on the success
of all statementsin the script.

// Set the SQLCA connection properties.
SQLCA.DBMS = "ODBC"

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

Example 2

SQLCA.DBParm = "connectstring = 'DSN = orders'"

// Connect to the database.
CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.
INSERT INTO ORDER_HEADER (ORDER_ID,CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER_HEADER insertion.
// A ROLLBACK is required only if the first row
// was inserted successfully.

if SQLCA.sglcode = 0 then

// Since the ORDER HEADER is inserted,
// try to insert ORDER_ITEM.
INSERT INTO ORDER ITEM
(ORDER_ID, ITEM NBR, PART NBR, QTY)
VALUES (7891, 1, '991PLS', 456) ;
// Test return code for ORDER_ITEM insertion.
if SQLCA.sglcode = -1 then

// Disconnect from the database.
DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example uses scripts for the Open and Close events for awindow and the
Clicked event for a CommandButton to illustrate how you can manage
transactions for a Datawindow control. Assume awindow contains a
Datawindow control dw_1 and a CommandButton Cb_Update. Also assume
the user enters datain dw_1 and then clicks the Cb_Update button to update
the database with the data.

The window OPEN event script:

// Set the transaction object properties

// and connect to the database.

// Set the SQLCA connection properties.
SQLCA.DBMS = "ODBC"

SQLCA.DBParm = "connectstring = 'DSN = orders'"

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object

Connecting to Your Database 243

ODBC Non-cursor statements

// to use.
dw_1.SetTransObject (sglca)

The CommandButton CLICKED event script:

// Declare ReturnValue an integer.
integer ReturnValue
ReturnValue = dw_1.Update()

// Test to see if updates were successful.
if ReturnvValue = -1 then

// Updates were not successful. Since we used
// SetTransObject, roll back any changes made
// to the database.

ROLLBACK USING SQLCA;
else

// Updates were successful. Since we used
// SetTransObject, commit any changes made
// to the database.

COMMIT USING SQLCA;
end if

The window CLOSE event script:

// Disconnect from the database.
DISCONNECT USING SQLCA;

ODBC Non-cursor statements
The statements that do not involve cursors are;
» DELETE (ODBC DELETE, INSERT, and UPDATE)
* INSERT (ODBC DELETE, INSERT, and UPDATE)
« UPDATE (ODBC Update)
* ODBC SELECT (singleton)

244 PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

ODBC DELETE, INSERT, and UPDATE

Internally, PowerBuilder processesDELETE, INSERT, and UPDATE thesame
way. PowerBuilder inspects these statements for variabl e references and
replaces all variable references with a constant that conforms to the backend
database's rules for that data type.

Example Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var is a PowerScript variable with the data type of
integer that has been defined within the scope of the script that contains the
DELETE statement.

Before the DELETE statement is executed, emp_id_var isassigned avalue
(say 691) so when the DELETE statement executes, the database receives the
following command:

DELETE FROM employee WHERE emp id = 691;
When is this Thisvariable substitution technique is used for all PowerScript variable types.

a:ggtj)tution technique \when you use embedded SQL, precede all PowerScript variables with acolon
' (1)

See also ODBC SELECT

ODBC SELECT

The SELECT statement contains input and output variables.

» Input variables are passed to the database as part of the execution, and
the substitution is as described for DELETE, INSERT, and UPDATE.

« Output variables return values based on the result of the SELECT
statement.

Example 1 Assume you enter the following statement:

SELECT emp name, emp salary
INTO :emp_name_var, :emp_salary var
FROM employee WHERE emp id = :emp id var;

Connecting to Your Database 245

ODBC SELECT

Example 2

246

In thisexample, emp_id_var, emp_salary _var, and emp_name_var are
PowerScript variables defined within the scope of the script containing the
SELECT statement, and emp_id_var isan input variable and is processed as
described in the DELETE example above.

Bothemp_name_var and emp_salary_var areoutput variablesthat will be used
to return values from the database. The data types of emp_name_var and
emp_salary_var should be the PowerScript datatypes that best match the data
typein the database. When the data types do not match perfectly, PowerBuilder
converts them.

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives this command:

SELECT emp_name, emp salary
FROM employee WHERE emp_id = 691;

If no errors are returned when the statement executes, datalocations are bound
internally for the result fields. The data returned into these locationsis
converted if necessary, and the appropriate PowerScript variables are set to
those values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employee table is
CHARACTER[10]. The user enters an employee ID into the single line edit
field le_ Emp and clicks the button Cb_Delete.

The script for the Clicked event in the CommandButton Cb_Deleteiis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, let's try to delete
// it.

DELETE FROM employee

WHERE emp_id = :sle_Emp.text;

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

// It seems to have worked; let user know.
MessageBox ("Delete", &
"The delete has been successfully "&

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

Example 3

+"processed!")
else

// It didn't work.
MessageBox ("Error", &
"The delete failed. Employee ID "&
+"is not valid.")
end 1if
else

// No input value. Prompt user.
MessageBox ("Error", &
"An employee ID is required for "&
+"deletel!l™)
end if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees. The extraction occurs when the user clicks the
button Ch_Extract. The boolean variable YoungWorkersis set to TRUE or
FAL SE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

integer EmployeeAgeLowerLimit
integer mployeeAgeUpperLimit

// Do they have young workers?
if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgelowerLimit = 16

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

// No - set the age limit in the OLDER range.
EmployeeAgelowerLimit = 43

// Pick an upper limit that includes all employees.
EmployeeAgeUpperLimit = 200

Connecting to Your Database 247

ODBC Cursor statements

end 1if

INSERT INTO extract employees (emp id, emp name)
SELECT emp_id, emp_name FROM employee
WHERE emp age >= :EmployeeAgeLowerLimit
AND emp_age <= :EmployeeAgeUpperLimit;

ODBC Cursor statements

In embedded SQL, statementsthat retrieve dataand statementsthat update data
can both involve cursors. Not all backend DBM Ss support cursor statements.

Retrieval statements

Update statements

See also

Theretrieval statements that involve cursors are:

DECLARE cursor_name CURSOR FOR ...
OPEN cursor_name
FETCH cursor_name INTO ...

CLOSE cursor_name

The update statements that involve cursors are:

UPDATE ... WHERE CURRENT OF cursor_name
DELETE ... WHERE CURRENT OF cursor_name

ODBC Retrieva using cursors

ODBC FETCH NEXT

ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST
ODBC Update

ODBC Retrieval using cursors

Retrieval using cursorsis conceptualy similar to the singleton SELECT
discussed earlier. The main difference is that since there can be multiple rows
in aresult set, you control when the next row is fetched into PowerScript
variables.

248

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

Declaring and opening
a cursor

Example

For example, if you expect only asingle row to exist in the employee table for
each emp_id, useasingleton SELECT statement. In asingleton SELECT, you
specify the SELECT statement and destination variables in one concise SQL
statement:

SELECT emp name, emp salary
INTO :emp name var, :emp_ salary var
FROM employee WHERE emp id = :emp id var;

However, if the SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which conceptually executes the SELECT).

3 Fetch rows as needed.

4 Closethe cursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesiit.

Declaring a cursor is similar to declaring avariable. A cursor declaration isa
nonexecutabl e statement just like a variable declaration. The first stepin
declaring a cursor is to define how the result set looks. To do this, you need a
SEL ECT statement, and since you must refer to the result set in subsequent
SQL statements, you must associate the result set with alogical name.

Assume the SingleLineEdit sle_1 contains the state code for the retrieval :

// Declare cursor emp_ curs for employee table
// retrieval.
DECLARE emp_curs CURSOR FOR
SELECT emp_id, emp name FROM EMPLOYEE
WHERE emp_state = :sle_1l.text;

// Declare local variables for retrieval.
string emp_id var
string emp name var

// Execute the SELECT statement with
// the current value of sle 1.text.
OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further
// processing.

Connecting to Your Database 249

ODBC FETCH NEXT

Scrolling and locking

Fetching rows

Use the DBParm parameters CursorScroll and CursorL ock to specify the
scrolling and locking options.

Note Not all DBM Ss support these scrolling and locking options.

The ODBC interface supports the following FETCH statements. You can use
them if they are supported by your backend DBMS.

« FETCH NEXT
» FETCHFIRST
« FETCH PRIOR
* FETCHLAST

Note Not all DBMSs support al of these FETCH statements.

ODBC FETCH NEXT

Example

250

Inthe singleton SELECT, you specify variablesto hold valuesfor the columns
within the selected row. The syntax of the FETCH statement is similar to the
singleton SELECT statement syntax. Values are returned INTO aspecified list
of variables.

This exampl e continues the previous example by retrieving some data:

// Go get the first row from the result set.
FETCH emp_curs INTO :emp_id var, :emp_name_var;

If at least onerow isretrieved, thisFETCH placesthe values of theemp_id and
emp_name columns from the first row in the result set into the PowerScript
variablesemp_id var and emp_name_var. FETCH statements typically occur
in aloop that processes several rows from aresult set (one row at atime), but
thisis not the only way they are used.

What happens when the result set is exhausted? o
FETCH returns +100 (not found) in the SQL Code property within the

referenced transaction object. Thisis an informational return code; -1 in
SQL Code indicates an error.

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

See also ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

In addition to the conventional FETCH NEXT statement, the ODBC interface
supports FETCH FIRST, FETCH PRIOR, and FETCH LAST statements.

What happens if you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

Closing the cursor The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the same time, you should close the cursors as soon as
possible for efficiency reasons.

See also ODBC FETCH NEXT

ODBC Update

After aFETCH statement compl etes successfully, you are positioned on a
current row within the cursor. At this point, you can execute an UPDATE or
DELETE statement using the WHERE CURRENT OF cursor_name syntax to
update or delete the row. PowerBuilder enforces the cursor update restrictions
of the backend database, and violations will result in an execution error.

Example Thiscursor exampleillustrates how to loop through aresult set. It assumes that
the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. The statements retrieve rows from
the employee table, and then display a message box with the employee name
for each row that is found.

// Declare the emp curs.

DECLARE emp_curs CURSOR FOR
SELECT emp name FROM EMPLOYEE
WHERE emp_state = :sle_1l.text;

// Declare a destination variable for employee
// names.

Connecting to Your Database 251

ODBC Database stored procedures

string emp name_var

// Execute the SELECT statement with the
// current value of sle_1.text.
OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp curs INTO :emp name_ var;

// Loop through result set until exhausted.
DO WHILE sqglca.sglcode = 0

// Display a message box with the employee name.
MessageBox ("Found an employee!",emp name_var)

// Fetch the next row from the result set.
FETCH emp curs INTO :emp name_ var;
LOOP

// All done; close the cursor.
CLOSE emp curs;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

ODBC Database stored procedures

Retrieval and update You can use database stored procedures for:

* Retrieva only

* Update only

» Retrieval and update
Your DBMS Not all DBM Ss support these retrieval and update options.
Using stored When you use database stored procedures in a PowerBuilder application, keep
procedures the following pointsin mind:

* Manipulating stored procedures PowerBuilder provides SQL
statementsthat are similar to cursor statements for manipulating database
stored procedures.

252 PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

See also

ODBC Retrieval

See also

Retrieval and update PowerBuilder supportsretrieval, update, or a
combination of retrieval and update in database stored procedures,
including procedures that do not return aresult set and those that return a
result set.

Transactions and stored procedures without result sets When a
procedure executes using a particular connection (transaction) and the
procedure does not return aresult set, the procedureis no longer active. No
result set is pending, and therefore you do not execute a CL OSE statement.

ODBC Retrieval
ODBC Using database stored procedures in DataWindow objects

PowerBuilder uses a construct similar to cursors to support retrieval using
database stored procedures. PowerBuilder supports four embedded SQL
statements that involve database stored procedures:

DECLARE procedure_name PROCEDURE FOR ...
EXECUTE procedure_name

FETCH procedure_name INTO ...

CLOSE procedure_name

ODBC DECLARE and EXECUTE
ODBC EXECUTE

ODBC FETCH

ODBC CLOSE

ODBC DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored
procedure that is being used and to specify alogical name for the procedure.
The logical nameis used to reference the procedure in subsequent SQL
statements.

Connecting to Your Database

The genera syntax for declaring a procedureis:

253

ODBC DECLARE and EXECUTE

DECLARE logical procedure name PROCEDURE FOR
procedure name
{@paramil = value, @param2 = value2, ...}
{USING transaction object};

where logical _procedure_name can be any valid PowerScript identifier and
procedure_name is the name of a stored procedure in the database.

The parameter references can take the form of any valid parameter string the
database accepts. PowerBuilder inspects the parameter list format only for
variable substitution. The USING clause isrequired only if you are using a
transaction object other than the default transaction object (SQLCA).

Output parameters might not be returned when you use an embedded SQL
command to call astored procedure. You can set the PBNewSPInvocation
database parameter to "Yes" to use an alternative method to invoke a stored
procedure. The behavior of the PowerBuilder ODBC driver whenthisDBParm
is set is consistent with the default behavior of the OLE DB and JDBC drivers.

If PBNewSPInvocationissetto"Yes," theaternative method is used when you
retrieve datainto a Datawindow object that uses a stored procedure. See
ODBC DECLARE and EXECUTE with PBNewSPInvocation

Example Assume a stored procedure named procl is defined on the server. To declare
procl for processing within PowerBuilder, enter:

DECLARE emp_proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutabl e statement, just like a cursor
declaration. However, where cursors have an OPEN statement, procedures
have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto thelogical procedure name, in this example emp_proc:

EXECUTE emp_proc;

See also ODBC EXECUTE
ODBC DECLARE and EXECUTE with PBNewSPInvocation

254 PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

ODBC DECLARE and EXECUTE with
PBNewSPInvocation

Example 1

PowerBuilder requires a declarative statement to identify the database stored
procedure that is being used and to specify alogical name for the procedure.
The logical nameis used to reference the procedure in subsequent SQL
Statements.

The general syntax for declaring a procedureiis:

DECLARE logical_ procedure name PROCEDURE FOR
procedure name
@paraml = value, @param2 = value2,
@PARAM3 = VALUE3 OUTPUT

{USING transaction object};

where logical_procedure_name can be any valid PowerScript identifier and
procedure_name is the name of a stored procedure in the database. Use the
OUT or OUTPUT keyword to obtain the value of the output parameter.

The parameter references can take the form of any valid parameter string the
database accepts. PowerBuilder inspects the parameter list format only for
variable substitution. The USING clause is required only if you are using a
transaction object other than the default transaction object (SQLCA).

You must set the PBNewSPInvocation database parameter to ‘ Yes' to usethis
method to invoke astored procedure. The behavior of the PowerBuilder ODBC
driver when this DBParm is set is consistent with the default behavior of the
OLE DB and JDBC drivers.

If PBNewSPInvocation is set to ‘ Yes', this method is used when you retrieve
datainto a Datawindow object that uses a stored procedure. This DBParm has
no effect when you use RPC to invoke a stored procedure.

If PBNewSPInvocation is set to ‘No’, use the syntax described in ODBC
DECLARE and EXECUTE.

Assume a stored procedure named procl is defined on the server as:

CREATE PROCEDURE procl AS
SELECT emp name FROM employee

To declare procl for processing within PowerBuilder, enter:
DECLARE emp_proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutabl e statement, just like a cursor
declaration. However, where cursors have an OPEN statement, procedures
have an EXECUTE statement.

Connecting to Your Database 255

ODBC FETCH

Example 2

ODBC FETCH

Example

256

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto thelogical procedure name, in this example emp_proc:

EXECUTE emp proc;
To declare a procedure with input and output parameters, enter:

DECLARE sp_duration PROCEDURE FOR pr date diff prd ken

@var_date 1 = :ad_start,
@var_date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

If the stored procedure contains result sets, you must fetch the result setsfirst.
If the stored procedure has areturn value and you want to obtain it, use the
format RC=procedure_name:

DECLARE sp_duration PROCEDURE FOR
RC=pr date diff prd ken

@var _date 1 = :ad_start,
@var _date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

To accessrowsreturned in aresult set, use the FETCH statement the same way
you use it for cursors. The FETCH statement can be executed after any
successful EXECUTE statement for a procedure that returns aresult set.

FETCH emp_proc INTO :emp_name_var;

Using FETCH after EXECUTE
Following an EXECUTE statement for a procedure, you can use the FETCH

statement only to access val ues produced by the SELECT statement in the
database stored procedure.

Since PowerBuilder cannot determine at compile time what result set will be
returned when a database stored procedure executes, you must code FETCH
statements so that the stored procedure exactly matchesthe format of the result
set during execution. Assume you coded the second FETCH statement in the
example above as:

FETCH emp_ proc INTO :varl, :var2, :var3;

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

See also

ODBC CLOSE

Example

The statement compiles without errors. However, you will get an execution
error indicating that the number of columnsin the FETCH statement does not
match the number of columnsin the result set.

ODBC EXECUTE
ODBC FETCH NEXT
ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

If a database stored procedure returns a result set, you must close the stored
procedure when processing is complete. The procedure remains open until you
closeit, executea COMMIT or ROLLBACK, or end the database connection.

Do you have to retrieve all the rows?
You do not have to retrieve all rowsin aresult set to close arequest or

procedure.

Closing a procedure looks the same as closing a cursor:

CLOSE emp_proc;

ODBC EXECUTE

Using the SQLCode
property

Database stored proceduresthat perform only updates and do not return aresult
set are handled in much the same way as proceduresthat return aresult set. The
only difference isthat after the EXECUTE procedure_name statement
executes, no result set is pending, so a CLOSE statement is not required.

If a specific procedure can never return aresult set, only the EXECUTE
statement isrequired. If aprocedure may or may not return aresult set, you can
test the SQL Code property of the referenced transaction object for +100 (the
code for NOT FOUND) after the EXECUTE.

The possible values for SQL Code after an EXECUTE are:

Connecting to Your Database 257

ODBC EXECUTE

Example 1

Example 2

258

Return code Means

0 The EXECUTE was successful and aresult set is pending.
Regardless of the number of FETCH statements executed, the
procedure must be explicitly closed with a CLOSE statement.

Fetched row not found.

+100 Fetched row not found.

-1 The EXECUTE was not successful and no result set was
returned.

Thisexampleillustrates how to execute a stored procedure that does not return
aresult set. It assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has been executed.

// good_employee is a database stored procedure.
// Declare the procedure.
DECLARE good_emp_ proc PROCEDURE

FOR good_employee;

// Execute it.
EXECUTE good emp proc;

// Test return code. Allow for +100 since you
// do not expect a result set.
if SQLCA.sglcode = -1 then

// Issue an error message since it failed.
MessageBox ("Stored Procedure Error!", &
SQLCA.sglerrtext)

end if

Error checking
Although you should test the SQL Code after every SQL statement, these

exampl es show statements to test the SQL Code only to illustrate a specific
point.

Thisexampleillustrates how to pass parametersto adatabase stored procedure.
It assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has been executed. Emp_id_var was set to
691 elsewhere.

// get_employee is a database stored procedure.

// Declare the procedure.

DECLARE get_emp proc PROCEDURE FOR
get_employee @emp_id parm = :emp_id var;

// Declare a destination variable for emp_ name.

PowerBuilder Classic

CHAPTER 16 Using Embedded SQL with ODBC

string emp name_var

// Execute the stored procedure using the
// current value for emp_id var.
EXECUTE get_emp proc;

// Test return code to see if it worked.
if SQLCA.sglcode = 0 then

// Since we got a row, fetch it and display it.
FETCH get_emp proc INTO :emp name_var;

// Display the employee name.
MessageBox ("Got my employee!",emp name_ var)

// You are all done, so close the procedure.
CLOSE Get_emp proc;
end if

ODBC Using database stored procedures in
DataWindow objects

You can use database stored procedures as a data source for DatawWindow
objects. The following rules apply:

Connecting to Your Database

Result set definition You must define what the result set looks like in
the Datawindow painter. PowerBuilder cannot determinethisinformation
from the stored procedure definition in the database.

Stored procedure arguments The DataWindow painter provides the
arguments for stored procedures only if the ODBC driver you are using to
connect gives PowerBuilder the required information. If theargumentsfor
the database stored procedure are not provided, you must define them.

Datawindow updates Updates are not alowed for stored proceduresin
a Datawindow object. Only retrieval is allowed.

*ODBC syntax PowerBuilder supports the syntax appropriate for all
backend databases supported by the ODBC interface. In the Datawindow
painter, PowerBuilder displays the most general stored procedure syntax.
It then convertsit to the syntax appropriate for the backend database
before passing it to the database.

259

ODBC Using database stored procedures in DataWindow objects

260 PowerBuilder Classic

CHAPTER 17

Using Embedded SQL with JDBC

When you use the JDBC interface to connect to a database, you can use
embedded SQL in your scripts.

JDBC DECLARE and EXECUTE

Example 1

Connecting to Your Database

PowerBuilder reguires a declarative statement to identify the database
stored procedure that is being used and alogical name that can be
referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE logical_ procedure name PROCEDURE FOR
procedure name
@Paraml = valuel, @Param2 = value2 ,
@Param3 = value3 OUTPUT,
{USING transaction object} ;

where logical_procedure_name can be any valid PowerScript data
identifier and procedure_name is the name of the stored procedure in the
database.

The parameter references can take the form of any valid parameter string
that JDBC accepts. PowerBuilder does not inspect the parameter list
format except for purposes of variable substitution. You must use the
reserved word OUTPUT to indicate an output parameter. The USING
clauseisrequired only if you are using a transaction object other than the
default transaction object (SQLCA).

Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT emp_name FROM employee

To declare that procedure for processing within PowerBuilder, enter:

DECLARE emp_ proc PROCEDURE FOR procl;

261

JDBC DECLARE and EXECUTE

Note that this declaration is a nonexecutabl e statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto thelogical procedure name:

EXECUTE emp proc;
Example 2 To declare a procedure with input and output parameters, enter:

DECLARE sp duration PROCEDURE FOR pr date diff prd ken

@var_date 1 = :ad_start,
@var_date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

262 PowerBuilder Classic

CHAPTER 18

About this chapter

Overview

OLE DB Programming
Models

See also

Connecting to Your Database

Using Embedded SQL with OLE
DB

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When you use the PowerBuilder OLE DB interface to connect to a
backend database, you can use embedded SQL in your scripts.

You can embed the following types of SQL statementsin scripts and user-
defined functionsif the OLE DB driver you are using and the backend
DBMS you are accessing supports this functionality. (Not all backend
databases support cursor statements and database stored procedures.)

« Transaction management statements
* Non-cursor statements

e Cursor statements

e Database stored procedures

OLE DB isaset of COM (Component Object Model) interfaces that
provide uniform access to data stored in multiple, diverse data sources.
These data sources al so enabl e applicationsto provide additional database
services.

When you use embedded SQL, PowerBuilder makesthe required callsto
the backend database. Therefore, you do not need to know anything about
the OLE DB interface to use embedded SQL with PowerBuilder.

Chapter 4, “Using the OLE DB Interface”
OLE DB SQL support

OLE DB Transaction management statements
OLE DB Non-cursor statements

OLE DB Cursor statements

OLE DB Database stored procedures

263

OLE DB SQL support

OLE DB SQL support

PowerBuilder embedded SQL supportsthe name qualification conventionsand
functions used in the databases accessible through the PowerBuilder OLE DB
interface.

See also OLE DB Name qualification
OLE DB SQL functions

OLE DB Name qualification

PowerBuilder does not inspect all SQL statement syntax, so you can qualify
database catalog entities as necessary.

For example, the following qualifications are acceptable for a PowerBuilder
OLE DB interface to a SQL Anywhere database:

+ emp_name

» employee.emp_name

OLE DB SQL functions

In SQL statements, you can use any function that your backend DBMS
supports (such as aggregate or mathematical functions). For example, if your
DBM S supportsthe function Sum, you can use the function Sumin aSELECT
Statement:

SELECT Sum(salary)
INTO :salary sum var
FROM employee;

Calling OLE DB While PowerBuilder provides access to alarge percentage of the features

functions within OLE DB, in some cases you might decide that you need to call one or
more OLE DB functions directly for a particular application. PowerBuilder
provides access to most Windows DLLs by using external function
declarations.

264 PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

DBHandle

Example 1

PowerBuilder OLE DB can export OLE DB data source objects or session
objects to users using the PowerScript function DBHandle. Users can create
their own session objects using the exported data source object, so they can get
anew independent connection that has connection properties similar to those
used by PowerBuilder OLE DB. With the exported session object, users can
aso create their own command object that is under PowerBuilder OLE DB’s
transaction scope. The behavior is like using DBHandle() with the
PowerBuilder ODBC interface.

DBHandl e takes atransaction object asaparameter and returnsalong variable,
which is an interface pointer to a data source object or a session object. By
default PowerBuilder OLE DB exports a data source object. If the DBParm
“ReturnCommandHandle=1" is set, PowerBuilder OLE DB exports a session
object.

This example illustrates how to use DBHandle to get an OLE DB data source
object. Aswith other examples, assume a successful connection has occurred
using the default transaction object (SQLCA).

// Define a variable to hold the DB connection handle.
Long OleDbCnnInterface

// Get OLE DB Data Source Object
OleDbCnnInterface = SQLCA.DBHandle ()

// Now that you have the OLE DB data source object,
// call the DLL function.
MyDLLFunction (OleDbCnnInterface, parml, parm2)

// In your DLL, cast the incoming handle to the
// IUnknown* interface

MyDLLFunction (long OleDbCnnInterface,
parml_type parml,
parm2_type Parm2, ...)

IUnknown* pUnkDataSource = &
(IUnknown*)OleDbCnnInterface;
IDBCreateSession* pIDBCreateSession = NULL;

pUnkDataSource-
>QueryInterface (IID_ IDBCreateSession,
(void**) &pIDBCreateSession)) ;

// now you have the OLE DB IDBCreateSession interface,
// you can create your own independent session object
// from the PowerBuilder OLE DB driver

IUnknown ** ppUnkSession;

Connecting to Your Database 265

OLE DB SQL functions

Example 2

See also

266

pIDBCreateSession->CreateSession (NULL, //pUnkOuter
IID IDBCreateCommand, //riid
ppUnkSession //ppSession
)i

}

This example illustrates how to use DBHandle to get an OLE DB session
object.

// Before connection, set DBParm ReturnCommandHandle=1

SQLCA.DBParm = "ReturnCommandHandle = 1"
CONNECT;

// After successful connection
// Define a variable to hold the DB connection handle.
long OleDbCnnInterface

// Get OLE DB session object
OleDbCnnInterface = SQLCA.DBHandle ()

// Now you have the OLE DB session object,
// call the DLL function.
MyDLLFunction (OleDbCnnInterface, parml, parm2)

// In your DLL, cast the incoming handle to
// IUnknown* interface

MyDLLFunction (long OleDbCnnInterface,
parml_type parml,
parm2_type Parm2, ...)

IUnknown* pUnkSession = &
(IUnknown*)OleDbCnnInterface;
IDBCreateCommand * pIDBCreateCommand = NULL;

pUnkSession->QueryInterface &
(IID_IDBCreateCommand,
(void**) &pIDBCreateCommand)) ;

With the IDBCreateCommand interface used by the PowerBuilder OLE DB
interface, you can create your own command object. Your command object and
the PowerBuilder command object will be in the same transaction scope.

OLE DB Using ODBC escape Sequences

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

OLE DB Using ODBC escape Sequences

Syntax

Example

ODBC defines extensionsthat are common to most backend DBM Ss. To cover
vendor-specific extensions, the syntax defined by ODBC uses the escape
clause provided by the X/Open and SQL Access Group (SAG) SQL draft
specifications. OLE DB supports ODBC escape sequences directly.

For example, some of the extensions defined in ODBC are:
e Date, Time, and Timestamp Literals

e Scalar functions (such as data type, numeric, and string conversion
functions)

e Outerjoins
e Procedure Calls

Note For maximum portability, you should use escape sequences in your
applications.

For example, PowerBuilder uses the date, time, and timestamp escape clauses
as the default formats for data manipulation. The syntax for each of these
escape clausesis:

{ a yyyy-mm-dd }
{ t hh:mm:ss }
{ ts yyyy-mm-dd hh:mm:ss: [f£f£f[£f£ff]] }

Each of the following statements updates employee Henry Joness start timein
the Employeetable. Thefirst statement uses the escape clause, and the second
statement uses native syntax for atime column:

UPDATE Employee
SET start time
WHERE emp name

{t 08:30:00}
"Henry Jones"

UPDATE Employee
SET start_time
WHERE emp name

(08:30:00)
"Henry Jones"

Connecting to Your Database 267

OLE DB Transaction management statements

OLE DB Transaction management statements

If the database you are connecting to supports transaction management, you
can use the following transaction management statements with one or more
transaction objects to manage connections and transactions for a database:

« CONNECT
 DISCONNECT
« COMMIT
* ROLLBACK
See also OLE DB Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK
OLE DB Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK
Thefollowing tablelists each transaction management statement and describes
how it works when you use the PowerBuilder OLE DB interface to connect to
adatabase:
Statement Description
CONNECT Establishes the database connection. After you assign
values to the required properties of the transaction object,
you can execute a CONNECT. After the CONNECT
compl etes successfully, by default PowerBuilder
automatically starts atransaction. Set
SQLCA .AutoCommit=TRUE to tell PowerBuilder not to
start atransaction automatically.
DISCONNECT Terminates a successful connection. When a
DISCONNECT is executed, PowerBuilder internally
executes a COMMIT WORK statement to commit all
changesand thenissuesa CLOSE DATABA SE statement to
terminate the logical unit of work.
COMMIT Applies al changes made to the database since the
beginning of the current unit of work.
ROLLBACK Undoes al changes made to the database since the
beginning of the current logical unit of work.
See also OLE DB Performance and locking

268

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

OLE DB Performance and locking

Rules

Isolation feature

After aconnection isestablished, SQL statements can cause locksto be placed
on database entities. The more locks there are in place at a given moment in
time, the more likely it is that the locks will hold up another transaction.

No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the
following:

e Long-running connections Determine whether you can afford to have
long-running connections. If not, your application should connect to the
database only when absolutely necessary. After al the work for that
connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be
issued as often as possible to guarantee that all changes do in fact occur.
More importantly, COMMITs should be issued to release any locks that
may have been placed on database entities as a result of the statements
executed using the connection.

« SetTrans or SetTransObject function Determine whether you want to
use default DatawWindow transaction processing (the SetTransfunction) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DatawWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

Switching during a connection
To switch between transaction processing and AutoCommit during a

connection, change the setting of AutoCommit in the transaction object.

OLE DB uses theisolation feature to support assorted database lock options.
In PowerBuilder, you can usethe Lock property of the transaction object to set
the isolation level when you connect to the database.

The following example shows how to set the Lock property to RU (Read
uncommitted):

// Set the lock property to read uncommitted
// in the default transaction object SQLCA.
SQLCA.Lock = "RU"

Connecting to Your Database 269

OLE DB Performance and locking

Example 1

270

This script uses embedded SQL to connect to a database and attemptsto insert
arow inthe ORDER_HEADER table and arow in the ORDER_ITEM table.

The script then executesaCOMMIT or ROLLBACK depending on the success
of al statementsin the script.

// Set the SQLCA connection properties.

SQLCA.DBMS = "OLE DB"

SQLCA.DBParm = "PROVIDER='SAOLEDB.10',6K DATASOURCE= &
'SQL Anywhere 10 Demo'”

// Connect to the database.
CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.
INSERT INTO ORDER HEADER (ORDER_ID,CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER HEADER insertion.
// A ROLLBACK is required only if the first row
// was inserted successfully.

if SQLCA.sglcode = 0 then

// Since the ORDER_HEADER is inserted,
// try to insert ORDER_ITEM.
INSERT INTO ORDER_ITEM
(ORDER_ID, ITEM NBR, PART NBR, QTY)
VALUES (7891, 1, '991PLS', 456);
// Test return code for ORDER_ITEM insertion.
if SQLCA.sglcode = -1 then

// If insert failed, ROLLBACK insertion of
// ORDER_HEADER.

ROLLBACK USING SQLCA;

end if
end if

// Disconnect from the database.
DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

Example 2 This example uses scripts for the Open and Close events for awindow and the
Clicked event for a CommandButton to illustrate how you can manage
transactions for a Datawindow control. Assume awindow contains a
Datawindow control dw_1 and a CommandButton Cb_Update. Also assume
the user enters datain dw_1 and then clicks the Cb_Update button to update
the database with the data.

The window OPEN event script:

// Set the transaction object properties

// and connect to the database.

// Set the SQLCA connection properties.

SQLCA.DBMS = "OLE DB"

SQLCA.DBParm = "PROVIDER='SAOLEDB.10',6K DATASOURCE= &
'SQL Anywhere 10 Demo'”

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object
// to use.
dw_1.SetTransObject (sglca)

The CommandButton CLICKED event script:

// Declare ReturnValue an integer.
integer ReturnValue
ReturnValue = dw_1.Update()

// Test to see if updates were successful.
if ReturnvValue = -1 then

// Updates were not successful. Since we used
// SetTransObject, roll back any changes made
// to the database.

ROLLBACK USING SQLCA;
else

// Updates were successful. Since we used
// SetTransObject, commit any changes made
// to the database.

COMMIT USING SQLCA;
end if

The window CLOSE event script:

// Disconnect from the database.
DISCONNECT USING SQLCA;

Connecting to Your Database 271

OLE DB Non-cursor statements

OLE DB Non-cursor statements

The statements that do not involve cursors are:

» DELETE
* INSERT

* UPDATE
« SELECT

OLE DB DELETE, INSERT, and UPDATE

Example

See also

272

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE the same
way. PowerBuilder ingpects these statements for variable references and
replaces al variable references with a constant that conforms to the backend
database’s rules for that data type.

Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var isa PowerScript variable with the data type of
integer that has been defined within the scope of the script that contains the
DELETE statement.

Before the DELETE statement is executed, emp_id var isassigned avalue
(say 691) so when the DELETE statement executes, the database receivesthe
following command:

DELETE FROM employee WHERE emp id = 691;

When is this substitution technique used?)
Thisvariable substitution technique is used for all PowerScript variable types.

When you use embedded SQL, precede all PowerScript variableswith acolon
(:)

OLE DB SELECT

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

OLE DB SELECT

Example 1

Example 2

The SELECT statement contains input and output variables.

e Input variables are passed to the database as part of the execution, and the
substitution is as described for DELETE, INSERT, and UPDATE.

e Output variables return values based on the result of the SELECT
Statement.

Assume you enter the following statement:

SELECT emp name, emp salary
INTO :emp_name_var, :emp_salary var
FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var, emp_salary_var, and emp_name _var are
Power Script variables defined within the scope of the script containing the
SELECT statement, and emp_id_var isan input variable and is processed as
described in the DELETE example above.

Bothemp_name _var and emp_salary_var areoutput variablesthat will be used
to return values from the database. The data types of emp_name_var and
emp_saary_var should be the PowerScript data types that best match the data
typein the database. When the data types do not match perfectly, PowerBuilder
converts them.

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives this command:

SELECT emp name, emp salary
FROM employee WHERE emp_id = 691;

If no errorsare returned when the statement executes, datalocations are bound
internally for the result fields. The data returned into these locationsis
converted if necessary, and the appropriate PowerScript variables are set to
those values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employee tableis
CHARACTER[10]. The user enters an employee ID into the single line edit
field de_Emp and clicks the button Cb_Delete.

Connecting to Your Database 273

OLE DB SELECT

The script for the Clicked event in the CommandButton Cb_Deleteiis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, let's try to
// delete it.

DELETE FROM employee

WHERE emp id = :sle Emp.text;

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

// It seems to have worked; let user know.
MessageBox ("Delete", &
"The delete has been successfully "&
+"processed!")
else

// It didn't work.
MessageBox ("Error", &
"The delete failed. Employee ID "&
+"is not wvalid.")
end if
else

// No input value. Prompt user.
MessageBox ("Error", &
"An employee ID is required for "&
+"delete!™)
end if

Error checking
Although you should test the SQL Code after every SQL statement, these

exampl es show statements to test the SQL Code only to illustrate a specific
point.

Example 3 This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees. The extraction occurs when the user clicks the
button Cb_Extract. The boolean variable YoungWorkersis set to TRUE or
FAL SE elsewherein the application.

The script for the Clicked event for the CommandButton Ch_Extract is:

integer EmployeeAgelLowerLimit
integer EmployeeAgeUpperLimit

274 PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

// Do they have young workers?
if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgelowerLimit = 16

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

// No - set the age limit in the OLDER range.
EmployeeAgelowerLimit = 43

// Pick an upper limit that includes all employees.
EmployeeAgeUpperLimit = 200
end 1if

INSERT INTO extract employees(emp id,emp name)
SELECT emp_ id, emp name FROM employee
WHERE emp_age >= :EmployeeAgeLowerLimit
AND emp age <= :EmployeeAgeUpperLimit;

OLE DB Cursor statements

In embedded SQL, statements that retrieve data can involve cursors.
PowerBuilder OLE DB supports only forward, read-only cursors.

Retrieval statements The retrieval statements that involve cursors are:
e DECLARE cursor_name CURSOR FOR ...
e OPEN cursor_name
e FETCH cursor_name INTO ...
e CLOSE cursor_name

Update statements UPDATE ... WHERE CURRENT OF cursor name and DELETE ... WHERE
CURRENT OF cursor name are not supported.

See also OLE DB Retrieval using cursors
OLE DB FETCH NEXT

Connecting to Your Database 275

OLE DB Retrieval using cursors

OLE DB Retrieval using cursors

Declaring and opening
a cursor

Example

276

Retrieval using cursorsis conceptualy similar to the singleton SELECT
discussed earlier. The main difference is that since there can be multiple rows
in aresult set, you control when the next row is fetched into PowerScript
variables.

For example, if you expect only asinglerow to exist in the employee table for
each emp_id, useasingleton SELECT statement. In asingleton SELECT, you
specify the SELECT statement and destination variablesin one concise SQL
Statement:

SELECT emp_ name, emp salary
INTO :emp_name_var, :emp salary var
FROM employee WHERE emp_id = :emp id var;

However, if the SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which conceptually executes the SELECT).

3 Fetch rows as needed.

4 Closethe cursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesit.

Declaring a cursor is similar to declaring avariable. A cursor declarationisa
nonexecutable statement just like a variable declaration. Thefirst stepin
declaring a cursor is to define how the result set looks. To do this, you need a
SELECT statement, and since you must refer to the result set in subsequent
SQL statements, you must associate the result set with alogical name.

Assume the SingleLineEdit e 1 contains the state code for the retrieval:

// Declare cursor emp curs for employee table
// retrieval.
DECLARE emp_curs CURSOR FOR
SELECT emp id, emp name FROM EMPLOYEE
WHERE emp state = :sle 1.text;

// Declare local variables for retrieval.
string emp_id var
string emp_name var

// Execute the SELECT statement with
// the current value of sle 1.text.

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further
// processing.

Fetching rows The PowerBuilder OLE DB interface supports FETCH statements.
See also OLE DB FETCH NEXT

OLE DB FETCH NEXT

Inthe singleton SEL ECT, you specify variablesto hold valuesfor the columns
within the selected row. The syntax of the FETCH statement is similar to the
singleton SELECT statement syntax. Values arereturned INTO aspecified list
of variables.

Example This example continues the previous example by retrieving some data:

// Go get the first row from the result set.
FETCH emp curs INTO :emp id var, :emp name var;

If at least onerow isretrieved, thisFETCH placesthe values of theemp_id and
emp_name columns from the first row in the result set into the PowerScript
variablesemp_id var and emp_name var. FETCH statementstypically occur
in aloop that processes several rows from aresult set (one row at atime), but
thisis not the only way they are used.

What happens when the result set is exhausted?
FETCH returns +100 (not found) in the SQL Code property within the

referenced transaction object. Thisisan informational return code; -1in
SQL Code indicates an error.

Closing the cursor The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the same time, you should close the cursors as soon as
possible for efficiency reasons.

Connecting to Your Database 277

OLE DB Database stored procedures

OLE DB Database stored procedures

Retrieval and update You can use database stored procedures for:
* Retrieva only
* Update only
» Retrieval and update
Your DBMS Not all DBM Ss support these retrieval and update options.
Using stored When you use database stored procedures in a PowerBuilder application, keep
procedures the following pointsin mind:

See also

Manipulating stored procedures PowerBuilder provides SQL
statementsthat are similar to cursor statements for manipulating database
stored procedures.

Retrieval and update PowerBuilder supports retrieval, update, or a
combination of retrieval and update in database stored procedures,
including procedures that do not return aresult set and those that return a
result set.

Transactions and stored procedures without result sets Whena
procedure executes using a particular connection (transaction) and the
procedure does hot return aresult set, the procedureisno longer active. No
result set is pending, and therefore you do not execute a CL OSE statement.

OLE DB Retrieval
OLE DB Using database stored procedures in Datawindow objects

OLE DB Retrieval

PowerBuilder uses a construct similar to cursors to support retrieval using
database stored procedures. PowerBuilder supports four embedded SQL
statements that involve database stored procedures:

See also

278

DECLARE procedure_name PROCEDURE FOR ...
EXECUTE procedure_name

FETCH procedure_name INTO ...

CLOSE procedure_name

OLE DB DECLARE and EXECUTE

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

OLE DB EXECUTE
OLEDB FETCH
OLE DB CLOSE

OLE DB DECLARE and EXECUTE

Example 1

PowerBuilder requires a declarative statement to identify the database stored
procedure that is being used and to specify alogical name for the procedure.
The logical nameis used to reference the procedure in subsequent SQL
Statements.

The general syntax for declaring a procedureiis:

DECLARE logical procedure name PROCEDURE FOR
[RC=] procedure name
{@parami = value [OUTPUT], @param2 = &
value2 [OUTPUT], ...}
{USING transaction object};

where logical_procedure_name can be any valid PowerScript identifier and
procedure_name is the name of a stored procedure in the database.

The parameter references can take the form of any valid parameter string the
database accepts. PowerBuilder inspects the parameter list format only for
variable substitution.

You must use the reserved word OUTPUT or OUT to indicate an output
parameter if you want to get the output parameter value. If the stored procedure
has a return value and you want to get it, use the syntax
“RC=procedure_name”. If the procedure hasone or moreresult sets, only after
al the result set has been retrieved can you get the output parameter or return
value. The USING clauseisrequired only if you are using atransaction object

other than the default transaction object (SQLCA).

Assume a stored procedure named procl is defined on the server. To declare
procl for processing within PowerBuilder, enter:

DECLARE emp proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutable statement, just like a cursor
declaration. However, where cursors have an OPEN statement, procedures
have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto the logical procedure name, in this example emp_proc:

Connecting to Your Database 279

OLE DB FETCH

Example 2

See also

EXECUTE emp proc;

This example declares a stored procedure with two input and one output
parameters:

DECLARE sp_duration PROCEDURE FOR pr date diff prd ken

@var_date 1 = :ad_start,
@var_date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

If the stored procedure contains result sets, you must fetch the result setsfirst.
If the stored procedure has areturn value and you want to obtain it, use the
format RC=procedure_name:

DECLARE sp_ duration PROCEDURE FOR&
RC=pr date diff prd ken

@var _date 1 = :ad_start,
@var _date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

OLE DB EXECUTE

OLE DB FETCH

Example

280

To accessrowsreturned in aresult set, use the FETCH statement the same way
you use it for cursors. The FETCH statement can be executed after any
successful EXECUTE statement for a procedure that returns aresult set.

FETCH emp_proc INTO :emp_name_var;

Using FETCH after EXECUTE
Following an EXECUTE statement for a procedure, you can use the FETCH

statement only to access val ues produced by the SELECT statement in the
database stored procedure.

Since PowerBuilder cannot determine at compile time what result set will be
returned when a database stored procedure executes, you must code FETCH
statements so that the stored procedure exactly matchesthe format of the result
set during execution. Assume you coded the second FETCH statement in the
example above as:

FETCH emp_ proc INTO :varl, :var2, :var3;

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

See also

The statement compiles without errors. However, you will get an execution
error indicating that the number of columnsin the FETCH statement does not
match the number of columnsin the result set.

OLE DB EXECUTE
OLE DB FETCH NEXT

OLE DB CLOSE

Example

If a database stored procedure returns a result set, you must close the stored
procedure when processing is complete. The procedure remains open until you
closeit, executea COMMIT or ROLLBACK, or end the database connection.

Do you have to retrieve all the rows?
You do not have to retrieve all rowsin aresult set to close arequest or

procedure.

Closing a procedure looks the same as closing a cursor:

CLOSE emp_proc;

OLE DB EXECUTE

Using the SQLCode
property

Database stored proceduresthat perform only updates and do not return aresult
set are handled in much the same way as proceduresthat return aresult set. The
only difference isthat after the EXECUTE procedure_name statement
executes, no result set is pending, so a CLOSE statement is not required.

If a specific procedure can never return aresult set, only the EXECUTE
statement isrequired. If aprocedure may or may not return aresult set, you can
test the SQL Code property of the referenced transaction object for +100 (the
code for NOT FOUND) after the EXECUTE.

The possible values for SQL Code after an EXECUTE are:

Connecting to Your Database 281

OLE DB EXECUTE

Example 1

Example 2

282

Return code Means

0 The EXECUTE was successful and aresult set is pending.
Regardless of the number of FETCH statements executed, the
procedure must be explicitly closed with a CLOSE statement.

This code isreturned even if the result set is empty.

+100 Fetched row not found.
-1 The EXECUTE was not successful and no result set was
returned.

Thisexampleillustrates how to execute a stored procedure that does not return
aresult set. It assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has been executed.

// good_employee is a database stored procedure.
// Declare the procedure.
DECLARE good_emp_ proc PROCEDURE

FOR good_employee;

// Execute it.
EXECUTE good emp proc;

// Test return code. Allow for +100 since you
// do not expect a result set.
if SQLCA.sglcode = -1 then

// Issue an error message since it failed.
MessageBox ("Stored Procedure Error!", &
SQLCA.sglerrtext)

end if

Error checking
Although you should test the SQL Code after every SQL statement, these

exampl es show statements to test the SQL Code only to illustrate a specific
point.

Thisexampleillustrates how to pass parametersto adatabase stored procedure.
It assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has been executed. Emp_id_var was set to
691 elsewhere.

// get_employee is a database stored procedure.

// Declare the procedure.

DECLARE get_emp proc PROCEDURE FOR
get_employee @emp_id parm = :emp_id var;

// Declare a destination variable for emp_ name.

PowerBuilder Classic

CHAPTER 18 Using Embedded SQL with OLE DB

string emp name_var

// Execute the stored procedure using the
// current value for emp_id var.
EXECUTE get_emp proc;

// Test return code to see if it worked.
if SQLCA.sglcode = 0 then

// Since we got a row, fetch it and display it.
FETCH get_emp proc INTO :emp name_var;

// Display the employee name.
MessageBox ("Got my employee!",emp name_ var)

// You are all done, so close the procedure.
CLOSE Get_emp proc;
end if

OLE DB Using database stored procedures in
DataWindow objects

You can use database stored procedures as a data source for DatawWindow
objects. The following rules apply:

» Result set definition You must define what the result set looks likein
the Datawindow painter. PowerBuilder cannot determinethisinformation
from the stored procedure definition in the database.

« Stored procedure arguments The DataWindow painter provides the
argumentsfor stored proceduresonly if thedriver you are using to connect
gives PowerBuilder the required information. If the arguments for the
database stored procedure are not provided, you must define them.

« Datawindow updates Updatesare not alowed for stored proceduresin
a Datawindow object. Only retrieval is allowed.

Connecting to Your Database 283

OLE DB Using database stored procedures in DataWindow objects

284 PowerBuilder Classic

CHAPTER 19

Using Embedded SQL with
ADO.NET

When you use the ADO.NET interface to connect to a database, you can
use embedded SQL in your scripts.

ADO.NET DECLARE and EXECUTE

Example 1

Connecting to Your Database

PowerBuilder reguires a declarative statement to identify the database
stored procedure that is being used and alogical name that can be
referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE logical procedure name PROCEDURE FOR
procedure name
@Paraml = valuel, @Param2 = value2 ,
@Param3 = value3 OUTPUT,
{USING transaction object} ;

where logical_procedure_name can be any valid PowerScript data
identifier and procedure_name is the name of the stored procedure in the
database.

The parameter references can take the form of any valid parameter string
that ADO.NET accepts. PowerBuilder does not inspect the parameter list
format except for purposes of variable substitution. You must use the
reserved word OUTPUT to indicate an output parameter. The USING
clauseisrequired only if you are using atransaction object other than the
default transaction object (SQLCA).

Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT emp_name FROM employee

To declare that procedure for processing within PowerBuilder, enter:

DECLARE emp_ proc PROCEDURE FOR procl;

285

ADO.NET DECLARE and EXECUTE

Note that this declaration is a nonexecutabl e statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto thelogical procedure name:

EXECUTE emp proc;
Example 2 To declare a procedure with input and output parameters, enter:

DECLARE sp_duration PROCEDURE FOR pr date diff prd ken

@var_date 1 = :ad_start,
@var_date 2 = :ad_end,
@rtn diff prd = :1s_duration OUTPUT;

286 PowerBuilder Classic

CHAPTER 20

About this chapter

Overview

Client Library API

See also

Connecting to Your Database

Using Embedded SQL with
Sybase Adaptive Server
Enterprise

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When you use the Sybase Adaptive Server Enterprise interface, you can
use embedded SQL inyour scripts. You can embed the following types of
SQL statements in scripts and user-defined functions:

« Transaction management statements
* Non-cursor statements

e Cursor statements

« Database stored procedures

The Sybase Adaptive Server Enterprise database interface usesthe Client
Library (CT-Lib) application programming interface (API) to interact
with the database.

When you use embedded SQL, PowerBuilder makesthe required callsto
the API. Therefore, you do not need to know anything about CT-Libto use
embedded SQL in PowerBuilder.

Chapter 7, “Using Adaptive Server Enterprise’

Sybase Adaptive Server Enterprise SQL functions

Sybase Adaptive Server Enterprise Transaction management
statements

Sybase Adaptive Server Enterprise Non-cursor statements
Sybase Adaptive Server Enterprise Cursor statements

Sybase Adaptive Server Enterprise Database stored procedures
Sybase Adaptive Server Enterprise Name qualification

287

Sybase Adaptive Server Enterprise Name qualification

Sybase Adaptive Server Enterprise Name qualification

Since PowerBuilder doesnot inspect all SQL statement syntax, you can qualify
Adaptive Server Enterprise catalog entities as necessary.

For example, the following qualifications are all acceptable:
* emp_name

» employee.emp_name

* dbo.employee.emp_name

» emp_db.dbo.employee.emp_name

Sybase Adaptive Server Enterprise SQL functions

Calling Client Library
functions

288

You can use any function that Adaptive Server Enterprise supports (such as
aggregate or mathematical functions) in SQL statements.

This example shows how to use the Adaptive Server Enterprise function
UPPER in a SELECT statement:

SELECT UPPER (emp_name)
INTO :emp_name_var
FROM employee;

While PowerBuilder provides access to alarge percentage of the features
within Adaptive Server Enterprise, in some casesyou may decidethat you need
to call one or more Client Library (CT-Lib) functions directly for a particular
application. PowerBuilder provides access to any Windows DLL by using
external function declarations.

CT-Lib calsrequire a pointer to one of the following structures as their first
parameter:

» CS_CONNECTION
* CS CONTEXT
+ CS COMMAND

You can obtain the current CS_CONNECTION pointer by using the
PowerScript DBHandle function.

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Using DBHandle to
obtain the
CS_CONNECTION
pointer

Obtaining the
CS_CONTEXT
pointer

Allocating a new
command pointer

DBHandl e takes atransaction object asaparameter and returnsalong variable,
which isthe CS_CONNECTION pointer that PowerBuilder usesinternally to
communicate with the database. You can pass this value as one of the
parameters to your external function.

This example shows how to use DBHandle. Assume a successful connection
has occurred using the default transaction object (SQLCA):

// Define a variable to hold our DB handle.
long SQLServerHandle

// Go get the handle.
SQLServerHandle = SQLCA.DBHandle()

// Now that you have the CS_CONNECTION pointer,
// call the DLL function.
MyDLLFunction(SQLServerHandle, parml, parm2, ...)

Inyour DLL, cast the incoming long value into a pointer to a
CS_CONNECTION structure:

MyDLLFunction(long 1SQLServerHandle,
parml_ type parml,
parm2_type Parm2, ...)

{

CS_CONNECTION * pConnect;
pConnect = (CS_CONNECTION *) 1SQLServerHandle;
// CT-LIB functions can be called using pConnect.

}

Within your external function, you can obtain the CS_CONTEXT pointer with
the following function call:

CS_RETCODE RC;
CS_CONNECTION * PConnect;
CS_INT outlen;
CS_CONTEXT * pContext;

rc = ct_con props (pConnect,CS GET,CS PARENT HANDLE,
(CS_VOID *) &pContext, CS_UNUSED,
&outlen) ;

Likewise, you can allocate a new command pointer with the following code:

CS_COMMAND * pCommand;
rc = ct_cmd _alloc (pConnect, &pCommand) ;

Connecting to Your Database 289

Sybase Adaptive Server Enterprise Transaction management statements

Sybase Adaptive Server Enterprise Transaction
management statements

You use the following transaction management statements with transaction
obj ectsto manage connections and transactionsfor Adaptive Server Enterprise

databases:
e CONNECT
e COMMIT

» DISCONNECT
* ROLLBACK

Transaction You should not use transaction statementsintriggers. A trigger isaspecial kind
management of stored procedure that takes effect when you issue a statement such as
statements in triggers 2 -
INSERT, DELETE, or UPDATE on a specified table or column. Triggers can
be used to enforce referential integrity.

For example, assumethat acertain condition within atrigger isnot met and you
want to executeaROLLBACK. Instead of coding the ROLLBACK directly in
thetrigger, you should use RAISERROR and test for that particular return code
in the DBM S-specific return code (SQLDBCode) property within the
referenced transaction object.

See also Sybase Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK

Sybase Adaptive Server Enterprise Using CONNECT,
COMMIT, DISCONNECT, and ROLLBACK

Thefollowing table lists each transaction management statement and describes
how it works when you use the Sybase Adaptive Server Enterpriseinterfaceto

connect to a database:
Statement Description
CONNECT Establishes the database connection. After you assign values to

therequired properties of the transaction object, you can execute
a CONNECT. After the CONNECT completes successfully,
PowerBuilder automatically starts atransaction. Thisisthe start
of alogica unit of work.

If AutoCommit istrue, PowerBuilder does not start atransaction.

290 PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Statement Description

COMMIT COMMIT terminatesthelogical unit of work, guaranteesthat all
changes made to the database since the beginning of the current
unit of work become permanent, and starts anew logical unit of
work.

If AutoCommit is false (the default), a COMMIT
TRANSACTION executes, then aBEGIN TRANSACTION
executes to start anew logica unit of work.

If AutoCommit istrue, the COMMIT isissued but has no effect
because al previous database changes were already
automatically committed.

DISCONNECT | Terminates a successful connection. DISCONNECT
automatically executesa COMMIT to guarantee that all changes
made to the database since the beginning of the current unit of
work are committed.

If AutoCommit isfalse,aCOMMIT TRANSACTION executes
automatically to guarantee that all changes made to the database
since the beginning of the current logical unit of work are
committed.

ROLLBACK ROLLBACK terminatesalogical unit of work, undoes all
changes made to the database since the beginning of thelogical
unit of work, and starts anew logical unit of work.

If AutoCommit isfalse, aROLLBACK TRANSACTION
executes, thenaBEGIN TRANSACTION executesto start anew
logical unit of work.

If AutoCommit istrue, aROLLBACK TRAN executes but has
no effect because al previous database changes were already
committed.

See also Sybase Adaptive Server Enterprise Performance and locking
Sybase Adaptive Server Enterprise Using AutoCommit

Sybase Adaptive Server Enterprise Using AutoCommit

The setting of the AutoCommit property of the transaction object determines
whether PowerBuilder issues SQL statements inside or outside the scope of a
transaction. When AutoCommit is set to false or O (the default), SQL
statements are issued inside the scope of a transaction. When you set
AutoCommit to true or 1, SQL statements are issued outside the scope of a
transaction.

Connecting to Your Database 291

Sybase Adaptive Server Enterprise Performance and locking

See also

Adaptive Server Enterprise requires you to execute Data Definition Language
(DDL) statements outside the scope of atransaction unlessyou set the database
option “ddl in tran” to true. If you execute a database stored procedure that
contains DDL statements within the scope of atransaction, an error messageis
returned and the DDL statements are rejected. When you use the transaction
object to execute a database stored procedure that creates atemporary table,
you do not want to associate the connection with a transaction.

To execute Adaptive Server Enterprise stored procedures containing DDL
statements, you must either set “ddl intran” to true, or set AutoCommit to true
so PowerBuilder issues the statements outside the scope of atransaction.
However, if AutoCommit is set to true, you cannot issue a ROLLBACK.
Therefore, you should set AutoCommit back to false (the default) immediately
after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder
issues a COMMIT statement by default.

Sybase Adaptive Server Enterprise Performance and locking
Sybase Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK

Sybase Adaptive Server Enterprise Performance and

locking

Rules

292

Animportant consideration when designing a database application isdeciding
when CONNECT and COMMIT statements should occur to maximize
performance and limit locking and resource use. A CONNECT takes acertain
amount of time and can tie up resourcesduring thelife of the connection. If this
timeis significant, then limiting the number of CONNECT statementsis
desirable.

In addition, after a connection is established, SQL statements can cause locks
to be placed on database entities. The more locks at a given moment in time,
the more likely it isthat the locks will hold up another transaction.

No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the
following:

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Isolation feature

Long-running connections Determine whether you can afford to have
long-running connections. If not, your application should connect to the
database only when absolutely necessary. After al the work for that
connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be
issued as often as possible to guarantee that all changes do in fact occur.
More importantly, COMMITs should be issued to release any locks that
may have been placed on database entities as a result of the statements
executed using the connection.

SetTrans or SetTransObject function Determine whether you want to
use default Datawindow transaction processing (the SetTransfunction) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DataWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

Sybase Adaptive Server Enterprise databases use the isolation feature to

support assorted database lock options. In PowerBuilder, you can use the L ock
property of the transaction object to set theisolation level when you connect to
the database.

The following example shows how to set the Lock property to Read
uncommitted:

Example 1

This script uses embedded SQL to connect to a database and insert arow in

the ORDER_HEADER table and arow in the ORDER_ITEM table.
Depending on the success of the statements in the script, the script executes
either aCOMMIT or aROLLBACK.

Connecting to Your Database

// Set the SQLCA connection properties.
SQLCA.DBMS = "SYC"

SQLCA.servername = "SERVER24"
SQLCA.database = "ORDERS"

SQLCA.logid = "JPL"

SQLCA.logpass = "TREESTUMP"

// Connect to the database. AutoCommit is set to
// False by default.
CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.
// A ROLLBACK is required only if the first row
// was inserted successfully.

293

Sybase Adaptive Server Enterprise Performance and locking

INSERT INTO ORDER_HEADER (ORDER_ID,CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER HEADER insertion.
if SQLCA.sglcode = 0 then

// Since the ORDER HEADER is inserted,
// try to insert ORDER_ITEM.
INSERT INTO ORDER_ITEM(ORDER_ID, ITEM NBR,
PART NBR, QTY)
VALUES (7891, 1, '991PLS', 456);

// Test return code for ORDER ITEM insertion.
if SQLCA.sglcode = -1 then

// If insert failed, roll back insertion of
// ORDER_HEADER.

ROLLBACK USING SQLCA;

end 1if
end if

// Commit changes and disconnect from the database.
DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

exampl es show statements to test the SQL Code only to illustrate a specific
point.

Example 2 This example uses the scripts for the Open and Close events in awindow and
the Clicked event in a CommandButton to illustrate how you can manage
transactions in a DataWindow control. Assume that the window contains a
Datawindow control dw_1 and that the user entersdatain dw_1 and then clicks
the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the
programmer is responsible for managing the transaction.

The window OPEN event script:

// Set the transaction object properties
// and connect to the database.

// Set the SQLCA connection properties.
SQLCA.DBMS = "SycC"

SQLCA.servername = "SERVER24"
SQLCA.database = "ORDERS"

SQLCA.logid = "JPL"

SQLCA.logpass = "TREESTUMP"

294 PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object
// to use.
SetTransObject (dw_1, SQLCA)

The CommandButton CLICKED event script:

// Declare ReturnValue an integer.
integer ReturnValue
ReturnValue = Update(dw_1)

// Test to see if updates were successful.
if ReturnValue = -1 then

// Updates were not successful. Since we used
// SetTransObject, roll back any changes made
// to the database.

ROLLBACK USING SQLCA;
else

// Updates were successful. Since we used
// SetTransObject, commit any changes made
// to the database.

COMMIT USING SQLCA;
end if

The window CLOSE event script:

See also

// Disconnect from the database.
DISCONNECT USING SQLCA;

Sybase Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK

Sybase Adaptive Server Enterprise Non-cursor

statements

The statements that do not involve cursors or procedures are:

Connecting to Your Database

DELETE (Sybase Adaptive Server Enterprise DELETE, INSERT, and
UPDATE)

INSERT (Sybase Adaptive Server Enterprise DELETE, INSERT, and
UPDATE)

295

Sybase Adaptive Server Enterprise DELETE, INSERT, and UPDATE

e SELECT (singleton) (Sybase Adaptive Server Enterprise SELECT)

» UPDATE (Sybase Adaptive Server Enterprise DELETE, INSERT, and
UPDATE)

Sybase Adaptive Server Enterprise DELETE, INSERT,
and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE
statements the same way. PowerBuilder inspects them for any PowerScript
data variable references and replaces all such references with a constant that
conforms to Adaptive Server Enterprise rules for the data type.

Example Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var is a PowerScript data variable with the data type
of integer that has been defined within the scope of the script that contains the
DELETE statement. Beforethe DEL ETE statement isexecuted, emp_id_var is
assigned a value (say 691) so that when the DELETE statement executes, the
database receives the following statement:

DELETE FROM employee WHERE emp id = 691;
When is this This variable substitution technique is used for all PowerScript variable types.

3;‘23@}”“0” technique \when you use embedded SQL, precede all PowerScript variableswith acolon
' (1)

See also Sybase Adaptive Server Enterprise SELECT

Sybase Adaptive Server Enterprise SELECT

The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the
substitution as described above for DELETE, INSERT, and UPDATE.

* Output variables are used to return values based on the result of the
SELECT statement.

296 PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Example 1

Example 2

Assume you enter the following statement:

SELECT emp name, emp salary
INTO :emp name var, :emp_ salary var
FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var, emp_salary var, and emp_name var are
variables defined within the scope of the script that contains the SELECT
statement, and emp_id_var is processed as described in the DELETE example
above.

Both emp_name _var and emp_salary_var areoutput variablesthat will beused
to return values from the database. The data types of emp_name _var and
emp_salary_var should be the PowerScript data types that best match the
Adaptive Server Enterprise data type. When the data types do not match
perfectly, PowerBuilder converts them.

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives the following statement:

SELECT emp name, emp salary
FROM employee WHERE emp id = 691;

If the statement executes with no errors, data locations for the result fields are
bound internally. The data returned into these locations is then converted as
necessary and the appropriate PowerScript data variables are set to those
values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employee tableis
CHARACTER[10].

The user enters an employee ID into the single line edit field sle Emp and
clicks the button Cb_Delete to delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, try to delete it.
DELETE FROM employee
WHERE emp id = :sle Emp.text;

Connecting to Your Database 297

Sybase Adaptive Server Enterprise SELECT

Example 3

298

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

// It seems to have worked, let user know.
MessageBox ("Delete", &
"The delete has been successfully "&
+" processed!")
COMMIT;
else

//It didn't work.
MessageBox ("Error", &
"The delete failed. Employee ID is not "&
+"valid.")
ROLLBACK;
end 1if
else

// No input value. Prompt user.
MessageBox ("Error", &
"An employee ID is required for "&
+"deletel")
end if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees. The extraction occurs when the user clicks the
button Cb_Extract. The boolean variable YoungWorkersis set to TRUE or
FAL SE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

integer EmployeeAgelLowerLimit
integer EmployeeAgeUpperLimit
// Do they have young workers?

if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgelLowerLimit = 16

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

See also

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

// No - set the age limit in the OLDER range.
EmployeeAgelowerLimit = 43

// Pick an upper limit that includes all
// employees.

EmployeeAgeUpperLimit = 200
end if

INSERT INTO extract employee (emp id,emp name)
SELECT emp_id, emp_name FROM employee
WHERE emp age >= :EmployeeAgeLowerLimit
AND emp age <= :EmployeeAgeUpperLimit;

// If there are no errors, commit the changes.
if SQLCA.sglcode = 0 then

COMMIT;
else

// If there are errors, roll back the changes and
// tell the user.

ROLLBACK;

MessageBox ("Insert Failed", SQLCA.sglerrtext)
end if

Sybase Adaptive Server Enterprise DELETE, INSERT, and UPDATE

Sybase Adaptive Server Enterprise Cursor statements

Inembedded SQL, statementsthat retrieve dataand statementsthat update data
can both involve cursors.

Retrieval statements

Update statements

Connecting to Your Database

The retrieval statements that involve cursors are:

DECLARE cursor_name CURSOR FOR ...
OPEN cursor_name
FETCH cursor_name INTO ...

CLOSE cursor_name

The update statements that involve cursors are:

UPDATE ... WHERE CURRENT OF cursor_name

299

Sybase Adaptive Server Enterprise Retrieval Using Cursors

Setting CursorUpdate
to use updatable
cursors

See also

 DELETE ... WHERE CURRENT OF cursor_name

TOousetheUPDATE ... WHERE CURRENT OF Of DELETE ... WHERE CURRENT
oF statements, you must set the CursorUpdate DBParm parameter to 1 before
declaring the cursor. (By default, CursorUpdate is set to 0.)

For example:
SQLCA.DBParm = "CursorUpdate = 1"

You can set the CursorUpdate parameter at any time before or after connecting
to the database. You can aso change its setting at any time.

Sybase Adaptive Server Enterprise Retrieval Using Cursors
Sybase Adaptive Server Enterprise Closing the Cursor

Sybase Adaptive Server Enterprise Retrieval Using

Cursors

Declaring and opening
a cursor

300

Retrieval using cursorsis conceptualy similar to retrieval in the singleton
SELECT. The main difference is that since there can be multiple rowsin a
result set, you control when the next row is fetched into the PowerScript data
variables.

If you expect only asinglerow to exist in the employee table with the specified
emp_id, use the singleton SELECT. In asingleton SELECT, you specify the
SELECT statement and destination variablesin one concise SQL statement:

SELECT emp_name, emp salary
INTO :emp name var, :emp_salary var
FROM employee WHERE emp_id = :emp id var;

However, when a SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which conceptually executes the SELECT).

3 Fetch rows as needed.

4 Closethe cursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesit.

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Example

Fetching rows

Declaring acursor issimilar to declaring avariable; acursor isanonexecutable
statement just like avariable declaration. The first step in declaring acursor is
to define how the result set looks. To do this, you need a SELECT statement.

Since you must refer to the result set in subsequent SQL statements, you must
associate the result set with alogical name.

Multiple cursors
The CT-Lib API lets you declare and open multiple cursors without having to

open additional database connections.

Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

// Declare cursor emp curs for employee table retrieval.
DECLARE emp_curs CURSOR FOR

SELECT emp_id, emp name FROM EMPLOYEE

WHERE emp state = :sle 1.text;

// Declare local variables for retrieval.
string emp_id var
string emp name var

// Execute the SELECT statement with
// the current value of sle 1.text.
OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further
// processing.

In the singleton SELECT, you specify variables to hold the values for the
columnswithin the sel ected row. The FETCH statement syntax issimilar to the
syntax of the singleton SELECT. Values are returned INTO a specified list of
variables.

This example continues the previous example by retrieving some data:

// Go get the first row from the result set.
FETCH emp curs INTO :emp id var, :emp _name var;

If at least onerow can beretrieved, thisFETCH placesthevaluesof theemp_id
and emp_name columnsfrom thefirst row in theresult set into the Power Script
datavariablesemp_id_var and emp_name_var. Executing another FETCH
statement will place the variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from
aresult set (onerow at atime): fetch the row, process the variables, and then
fetch the next row.

Connecting to Your Database 301

Sybase Adaptive Server Enterprise Retrieval Using Cursors

What happens when the result set is exhausted?
FETCH returns +100 (not found) in the SQL Code property within the

referenced transaction object. Thisis an informational return code; -1 in
SQL Code indicates an error.

Example This cursor exampleillustrates how you can loop through aresult set. Assume
the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

The statements retrieve rows from the employee table and then display a
message box with the employee name in each row that is found.

// Declare the emp curs.

DECLARE emp_curs CURSOR FOR
SELECT emp name FROM EMPLOYEE
WHERE emp state = :sle 1.text;

// Declare a destination variable for employee
// names.
string emp_name_var

// Execute the SELECT statement with the
// current value of sle 1.text.
OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp_curs INTO :emp_name_var;

// Loop through result set until exhausted.
DO WHILE SQLCA.sglcode = 0

// Pop up a message box with the employee name.
MessageBox ("Found an employee!",emp name var)

// Fetch the next row from the result set.
FETCH emp_curs INTO :emp_name_var;
LOOP

Error checking
Although you should test the SQL Code after every SQL statement, these

exampl es show statements to test the SQL Code only to illustrate a specific
point.

302 PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Sybase Adaptive Server Enterprise Closing the Cursor

Example

The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the same time, you should close the cursors as soon as
possible for efficiency reasons.

Unlike the DB-Library interface to SQL Server, the CT-Library interface lets
you issue other commands while a cursor is open.

In this example, the additional request for the empl oyee name (shown in bold)
isissued while the cursor is open. Under the DB-Library interface, thisrequest
would have failed and returned a Results Pending message. Under the CT-
Library interface, it succeeds.

string dname
long depthead
string fname
string lname

SQLCA.dbms = "SyC"
SQLCA.database = "mzctest"
SQLCA.logid = "mikec"
SQLCA.logpass = "mikecx"
SQLCA.servername "SYB1001"
SQLCA.autocommit = "false"

CONNECT USING SQLCA;
if SQLCA.sglcode <> 0 then

MessageBox ("Connect Error",SQLCA.sglerrtext)
end if

DECLARE dept_curs CURSOR FOR SELECT dept_name,
dept _head id FROM department;
OPEN dept_curs;
if SQLCA.sglcode < 0 then
MessageBox ("Open Cursor",SQLCA.sglerrtext)
end if

DO WHILE SQLCA.sglcode = 0
FETCH dept_curs INTO :dname, :depthead;
if SQLCA.sglcode < 0 then
MessageBox ("Fetch Error", SQLCA.sglerrtext)
elseif SQLCA.sglcode = 0 then
SELECT emp fname, emp lname INTO
:fname, : lname FROM employee
WHERE emp_id = :depthead;

Connecting to Your Database 303

Sybase Adaptive Server Enterprise Database stored procedures

See also

if SQLCA.sqglcode <> 0 then
MessageBox ("Singleton Select", &
SQLCA.sqglerrtext)
end if
end if
LOOP

CLOSE dept curs;
if SQLCA.sglcode <> 0 then

MessageBox ("Close Cursor", SQLCA.sglerrtext)
end if

Sybase Adaptive Server Enterprise SELECT

Sybase Adaptive Server Enterprise Database stored

procedures

Using AutoCommit
with database stored
procedures

304

One of the most significant features of Sybase Adaptive Server Enterpriseis
database stored procedures. You can use database stored procedures for:

* Retrieva only

* Update only

* Update and retrieval

PowerBuilder supports all these usesin embedded SQL.

The setting of the AutoCommit property of the transaction object determines
whether PowerBuilder issues SQL statements inside or outside the scope of a
transaction. When AutoCommit is set to false or O (the default), SQL
statements are issued inside the scope of atransaction. When you set
AutoCommit to true or 1, SQL statements are issued outside the scope of a
transaction.

Adaptive Server Enterprise requires you to execute Data Definition Language
(DDL) statements outside the scope of atransaction unlessyou set the database
option “ddl in tran” to true. If you execute a database stored procedure that
contains DDL statementswithin the scope of atransaction, an error messageis
returned and the DDL statements are rejected. When you use the transaction
object to execute a database stored procedure that creates atemporary table,
you do not want to associate the connection with a transaction.

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

To execute Adaptive Server Enterprise stored procedures containing DDL
statements, you must either set “ddl in tran” to true, or set AutoCommit to true
so PowerBuilder issues the statements outside the scope of atransaction.
However, if AutoCommit is set to true, you cannot issue a ROLLBACK.
Therefore, you should set AutoCommit back to fal se (the default) immediately
after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder
issues a COMMIT statement by default.

Using transaction Transaction statementsin database stored procedures are not honored when the
statements in stored procedure is executing within the scope of atransaction. For example, a
database stored . . .

procedures ROLLBACK statement will not be honored if the following are all true:

¢ The AutoCommit property is FALSE (process transactions normally)
when the transaction is connected.

* The database stored procedure executes using a transaction.
¢ The procedure contains a ROLLBACK statement.

You should use alternative means to execute the ROLLBACK. For example,
you can use return values as described in the information about triggersin
Transaction management statements (Sybase Adaptive Server Enterprise
Transaction management statements).

See also Sybase Adaptive Server Enterprise Retrieval
Sybase Adaptive Server Enterprise Temporary tables
Sybase Adaptive Server Enterprise Update
Sybase Adaptive Server Enterprise Return values and output parameters
Sybase Adaptive Server Enterprise System stored procedures
Sybase Adaptive Server Enterprise Using database stored proceduresin
Datawindow objects

Sybase Adaptive Server Enterprise Retrieval

PowerBuilder usesaconstruct that isvery similar to cursorsto support retrieval
using database stored procedures. In the PowerBuilder-supported embedded
SQL, there are four commands that involve database stored procedures:

» DECLARE procedure_name PROCEDURE FOR ...
e EXECUTE procedure_name
e FETCH procedure_nameINTO ...

Connecting to Your Database 305

Sybase Adaptive Server Enterprise DECLARE and EXECUTE

See also

e CLOSE procedure_name

Sybase Adaptive Server Enterprise DECLARE and EXECUTE
Sybase Adaptive Server Enterprise FETCH
Sybase Adaptive Server Enterprise CLOSE

Sybase Adaptive Server Enterprise DECLARE and

EXECUTE

Example

306

PowerBuilder reguires a declarative statement to identify the database stored
procedure that is being used and alogical name that can be referenced in
subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE logical procedure name PROCEDURE FOR
{erv = } SQL Server procedure name
@Paraml = valuel, @Param2 = value2 ,
{USING transaction object} ;

where logical_procedure_name can be any valid PowerScript data identifier,
QL_Server_procedure_name is the name of the stored procedurein the
database, and @rv is an optional return value.

The parameter references can take the form of any valid parameter string that
Adaptive Server Enterprise accepts. PowerBuilder does not inspect the
parameter list format except for purposes of variable substitution. The USING
clauseisrequired only if you are using atransaction object other than the
default transaction object (SQLCA).

Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT emp _name FROM employee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE emp proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto thelogical procedure name:

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

EXECUTE emp proc;

Sybase Adaptive Server Enterprise FETCH

To accessrows returned in aresult set, you use the FETCH statement the same
way you useit for cursors. The FETCH statement can be executed after any
EXECUTE statement that refers to a procedure that returns a result set.

For example:

FETCH emp proc INTO :emp_name_var;

Note You can usethis FETCH statement only to access values produced with
a SELECT statement in a database stored procedure. You cannot use the
FETCH statement to access computed rows.

Example 1 Database stored procedures can return multiple result sets. Assume you define
a database stored procedure proc2 as:

CREATE PROCEDURE proc2 AS
SELECT emp name FROM employee
SELECT part name FROM parts

PowerBuilder provides access to both result sets:

// Declare the procedure.
DECLARE emp proc2 PROCEDURE FOR proc2;

// Declare some variables to hold results.
string emp_name_var
string part name_var

// Execute the stored procedure.
EXECUTE emp proc2;

// Loop through all rows in the first result
// set.
DO WHILE SQLCA.sglcode = 0

// Fetch the next row from the first result set.
FETCH emp proc2 INTO :emp name_var;
LOOP

// At this point we have exhausted the first
// result set. After this occurs,
// PowerBuilder notes that there is another

Connecting to Your Database 307

Sybase Adaptive Server Enterprise CLOSE

Example 2

// result set and internally shifts result sets.
// The next FETCH executed will retrieve the
// first row from the second result set.
// Fetch the first row from the second result
// set.
if SQLCA.sglcode = 100 then
FETCH emp proc2 INTO :part name var;
end if

// Loop through all rows in the second result
// set.
DO WHILE SQLCA.sglcode = 0

// Fetch the next row from the second result

// set.
FETCH emp proc2 INTO :part name_ var;
LOOP

// Close the procedure.
CLOSE emp_proc2;

Theresult setsthat will be returned when a database stored procedure executes
cannot be determined at compile time. Therefore, you must code FETCH
statements that exactly match the format of aresult set returned by the stored
procedure when it executes.

In the preceding example, if instead of coding the second fetch statement as:
FETCH emp_ proc2 INTO :part_name_var;
you coded it as:

FETCH emp proc2
INTO :part_varl, :part_var2, :part_var3;

the statement would compile without errors. But an execution error would
occur: the number of columnsin the FETCH statement does not match the
number of columnsinthe current result set. The second result set returnsvalues
from only one column.

Sybase Adaptive Server Enterprise CLOSE

308

If a database stored procedure returns aresult set, it must be closed when
processing is complete. You do not have to retrieve all the rowsin aresult set
to close arequest or procedure.

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

Closing a procedure looks the same as closing a cursor:
CLOSE emp proc;

If aprocedure executes successfully and returns at | east oneresult set and isnot
closed, aresult set is pending and no SQL commands other than the FETCH
can be executed. Procedures with result sets should be closed as soon as
possible.

Sybase Adaptive Server Enterprise Update

Database stored procedures that perform updates only and do not return result
setsare handled in much the sameway as proceduresthat return result sets. The
only difference isthat after the EXECUTE procedure_name statement is
executed, no result sets are pending and no CL OSE statement is required.

Using the SQL Code If you know for sure that a particular procedure can never return result sets,

property then the EXECUTE statement is all that is needed. If thereis a procedure that
may or may not return a result set, you can test the SQL Code property of the
referenced transaction object for +100 (the code for NOT FOUND) after the
EXECUTE.

The following table shows al the possible values for SQL Code after an
EXECUTE:

Return code Means

0 The EXECUTE was successful and at least oneresult setis
pending. Regardless of the number of FETCH statements
executed, the procedure must be explicitly closed with a CLOSE

Statement.
This code is returned even if the result set is empty.
+100 Fetched row not found.
-1 The EXECUTE was not successful and no result sets were

returned. The procedure does not require a CLOSE. If a CLOSE
is attempted against this procedure an error will be returned.

Example 1 Assumethe default transaction object (SQLCA) hasbeen assigned valid values
and a successful CONNECT has been executed. Also assume the description
of the Adaptive Server Enterprise procedure good_employeeis:

// Adaptive Server Enterprise good employee
// stored procedure:
CREATE PROCEDURE good_ employee AS

Connecting to Your Database 309

Sybase Adaptive Server Enterprise Update

Example 2

310

UPDATE employee
SET emp salary=emp salary * 1.1
WHERE emp_status = 'EXC'

Thisexampleillustrates how to execute a stored procedure that does not return
any result sets:

// Declare the procedure.
DECLARE good_emp proc PROCEDURE
FOR good employee;

// Execute it.
EXECUTE good emp proc;

// Test return code. Allow for +100 since you do
// not expect result sets.
if SQLCA.sglcode = -1 then

// Issue error message since it failed.
MessageBox ("Stored Procedure Error!", &
SQLCA.sglerrtext)

end if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Assumethe default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has been executed. Also assume the description
of the Adaptive Server Enterprise procedure get_employeeis:

// Adaptive Server Enterprise get employee

// stored procedure:
CREATE PROCEDURE get_employee @emp_id parm
int AS SELECT emp name FROM employee
WHERE emp id = @emp_id parm

Thisexampleillustrates how to pass parametersto adatabase stored procedure.
Emp_id_var has been set elsewhereto 691.

// Declare the procedure.
DECLARE get_emp proc PROCEDURE FOR
get employee @emp_ id parm = :emp_id var;

// Declare a destination variable for emp name.
string emp name_var

// Execute the stored procedure using the

PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

// current value for emp_ id var.
EXECUTE get_emp_ proc;

// Test return code to see if it worked.
if SQLCA.sglcode = 0 then

// Since we got a row, fetch it and display it.
FETCH get_emp proc INTO :emp name_var;

// Display the employee name.
MessageBox ("Got my employee!",emp name var)

// You are all done, so close the procedure.
CLOSE Get_emp_ proc;

end if

Sybase Adaptive Server Enterprise Return values and
output parameters

In addition to result sets, Sybase Adaptive Server Enterprise stored procedures
may return along integer return value and output parameters of any datatype.
After al of theresult setshave been returned, PowerScript requiresyou to issue
onefinal FETCH procedure_nameINTO . .. statement to obtain these values.
The order in which these values are returned is:

return value, output parml, output parm2,

Example 1 The following stored procedure contains one input parameter (@deptno) and
returnsaresult set containing employee namesand salariesfor that department.
It also returnstwo output parameters (@totsal and @avgsal), and areturn value
that is the count of employeesin the department.

Connecting to Your Database

integer fetchcount = 0

long 1Deptno, rc

string fname, lname

double dSalary, dTotSal, dAvgSal

1Deptno = 100

DECLARE deptproc PROCEDURE FOR
@rc = dbo.deptroster
@deptno = :1Deptno,

@totsal = 0 output,
@avgsal = 0 output
USING SQLCA;

311

Sybase Adaptive Server Enterprise Return values and output parameters

EXECUTE deptproc;
CHOOSE CASE SQLCA.sglcode
CASE 0
// Execute successful. There is at least one
// result set. Loop to get the query result set
// from the table SELECT.
DO
FETCH deptproc INTO :fname, :1lname, :dSalary;
CHOOSE CASE SQLCA.sglcode
CASE 0
fetchcount++
CASE 100
MessageBox ("End of Result Set", &
string (fetchcount) " rows fetched")
CASE -1
MessageBox ("Fetch Failed", &
string (SQLCA.sgldbcode) " = " &
SQLCA.sqglerrtext)
END CHOOSE
LOOP WHILE SQLCA.sglcode = 0

// Issue an extra FETCH to get the Return Value
// and Output Parameters.

FETCH deptproc INTO :rc, :dTotSal, :dAvgSal;
CHOOSE CASE SQLCA.sglcode

CASE 0
MessageBox ("Fetch Return Value and Output" &
"Parms SUCCESSFUL", "Return Value is: " &
string (rc) &
"~r~nTotal Salary: " string (dTotSal) &
"~r~nAverage Sal: " string (dAvgSal))
CASE 100
MessageBox ("Return Value and Output Parms" &
"NOT FOUND", "")
CASE ELSE
MessageBox ("Fetch Return Value and Output" &
"Parms FAILED", "SQLDBCode is " &
string (SQLCA.sgldbcode) " = " &
SQLCA.sqglerrtext)
END CHOOSE

CLOSE deptproc;

CASE 100
// Execute successful; no result set.
// Do not try to close.
MessageBox ("Execute Successful", "No result set")

312 PowerBuilder Classic

CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise

CASE ELSE
MessageBox ("Execute Failed", &
string (SQLCA.sgldbcode) " = " &

SQLCA.sglerrtext)

END CHOOSE

Sybase Adaptive Server Enterprise Temporary tables

Database stored procedures frequently contain temporary tables that are used
as repositories when accumulating rows during processing within the
procedure. Since Adaptive Server Enterprise requires you to execute Data
Definition Language (DDL) statements outside the scope of atransaction
unlessyou set the database option “ddl in tran” to true, PowerBuilder provides
the boolean AutoCommit property in the transaction object to allow you to
handle these cases.

The setting of AutoCommit determines whether PowerBuilder issues SQL
statements inside or outside the scope of a transaction. When AutoCommit is
set to false or O (the default), SQL statements are issued inside the scope of a
transaction. When you set AutoCommit to trueor 1, SQL statements areissued
outside the scope of atransaction.

To execute Adaptive Server Enterprise stored procedures containing DDL
statements, you must either set “ddl in tran” to true, or set AutoCommit to true
so PowerBuilder issues the statements outside the scope of atransaction.
However, if AutoCommit is set to true, you cannot issue a ROLLBACK.
Therefore, you should set AutoCommit back to fal se (the default) immediately
after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder
issuesa COMMIT statement.

Sybase Adaptive Server Enterprise System stored
procedures

You can access system database stored procedures the same way you access
user-defined stored procedures. You can use the DECLARE statement against
any procedure and can qualify procedure names if necessary.

Connecting to Your Database 313

Sybase Adaptive Server Enterprise Using database stored procedures in DataWindow objects

Sybase Adaptive Server Enterprise Using database
stored procedures in DataWindow objects

You can use a database stored procedures as a data source for Datawindow
objects. The following rules apply:

Using stored
procedures as
DataWindow data
sources

Database stored
procedures summary

314

Result set definition Youmust definewhat theresult set lookslike. The
Datawindow object cannot determine this information from the stored
procedure definition in the database.

Datawindow updates You cannot perform DataWindow updates
through stored procedures (that is, you cannot update the database with
changes made in the DatawWindow object); only retrieval is alowed.
(However, the Datawindow can have update characteristics set manually
through the DataWindow painter.)

Result set processing You can specify only one result set to be
processed when you define the stored procedure result set in the
Datawindow painter. However, the result set you select does not have to
be the first result set.

Computed rows Computed rows cannot be processed in aDatawindow.

When you use database stored procedures in a PowerBuilder application, keep
the following pointsin mind:

Manipulating stored procedures To manipulate database stored
procedures, PowerBuilder provides SQL statements that are similar to
cursor statements.

Retrieval and update PowerBuilder supports retrieval, update, or a
combination of retrieval and update in database stored procedures,
including proceduresthat return no results sets and those that return one or
more result sets.

Transactions and stored procedures with result sets When a
procedure executes successfully using a specific connection (transaction)
and returns at least one result set, no other SQL commands can be
executed using that connection until the procedure has been closed.

Transactions and stored procedures without result sets Whena
procedure executes successfully using a specific transaction but does not
return aresult set, the procedure is no longer active. No result sets are
pending, and therefore you should not execute a CLOSE statement.

PowerBuilder Classic

CHAPTER 21

About this chapter

Overview

Informix API

See also

Using Embedded SQL with
Informix

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When you use the Informix IN9 database interface to connect to a
database, you can use embedded SQL in your scripts. You can embed the
following types of SQL statements in scripts and user-defined functions:

« Transaction management statements
* Non-cursor statements

e Cursor statements

e Database stored procedures

The Informix database interfaces use the Informix application
programming interface (API) to interact with the database.

When you use embedded SQL, PowerBuilder makesthe required callsto
the API. Therefore, you do not need to know anything about the Informix
API in order to use embedded SQL in PowerBuilder.

Chapter 8, “Using Informix”

Informix transaction management statements
Informix non-cursor statements

Informix cursor statements

Informix database stored procedures
Informix name qualification

Informix name qualification

Connecting to Your Database

Since PowerBuilder does not inspect all SQL statement syntax, you can
qualify Informix catal og entities as necessary.

315

Informix transaction management statements

Functions

For example, these qualifications are all acceptable:
e emp_name

* employee.emp_name

* Informix.employee.emp_name

You can use any function that Informix supports (such as aggregate or
mathematical functions) in SQL statements.

This exampleillustrates how to call the Informix function HEX in a SELECT
statement:

SELECT HEX (emp_num)
INTO :emp_ name_ var
FROM employee; DBMS=0DB

Informix transaction management statements

Qualification

See also

You can use the following transaction management statementswith transaction
objects to manage connections and transactions for Informix databases:

For example, these qualifications are all acceptable:
» CONNECT

« COMMIT

 DISCONNECT

* ROLLBACK

Informix using CONNECT, COMMIT, DISCONNECT, and
ROLLBACK

Informix using CONNECT, COMMIT, DISCONNECT, and

ROLLBACK

316

This table lists each transaction management statement and describes how it
works when you use the Informix IN9 interface to connect to a database:

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

See also

Statement Description

CONNECT Establishesthe database connection. After you assign valuesto the
required properties of the transaction object, you can execute a
CONNECT. After this call completes successfully, PowerBuilder
issuesa BEGIN WORK to start alogical unit of work for the
transaction.

COMMIT Terminates the logical unit of work, guarantees that all changes
made to the database since the beginning of the current unit of
work become permanent, and starts a new logical unit of work.

DISCONNECT | Terminates a successful connection. DISCONNECT
automatically executesa COMMIT to guarantee that all changes
made to the database since the beginning of the current unit of
work are committed.

ROLLBACK Terminatesalogical unit of work, undoesall changes madeto the
database since the beginning of thelogical unit of work, and starts
anew logica unit of work.

Informix performance and locking

Informix performance and locking

Rules

An important consideration when designing a database application is deciding
when connect and commit statements should occur to maximize performance
and limit locking and resource use. A connect takes a certain amount of time
and can tie up resources during the life of the connection. If thistimeis
significant, then limiting the number of connectsis desirable.

After aconnection isestablished, SQL statements can cause locksto be placed
on database entities. The more locks there are in place at a given moment in
time, the more likely it is that the locks will hold up another transaction.

No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the
following:

¢ Long-running connections

Determine whether you can afford to have long-running connections. If
not, your application should connect to the database only when absolutely
necessary. After al the work for that connection is complete, the
transaction should be disconnected.

Connecting to Your Database 317

Informix performance and locking

Isolation feature

Example 1

318

If long-running connections are acceptabl e, then commits should beissued
as often as possible to guarantee that all changes do in fact occur. More
importantly, COMMITs should be issued to release any locks that may
have been placed on database entities asaresult of the statements executed
using the connection.

» Background color

SetTrans or SetTransObject function Determine whether you want to use
default Datawindow transaction processing (the SetTrans function) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DatawWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

Informix-OnLine databases use the isolation feature to support assorted
database lock options. In PowerBuilder, you can use the Lock property of the
transaction object to set the isolation level when you connect to the database.

Thefollowing example shows how to set the Lock property to Committed read:

// Set the lock property to committed read
// in the default transaction object SQLCA.
SQLCA.Lock = "Committed read"

Informix-SE databases do not support Lock
The Lock property applies only to Informix-OnLine databases. Informix-SE

(Standard Edition) databases do not support the use of lock valuesand isolation
levels.

This script uses embedded SQL to connect to a database and insert arow in
the ORDER_HEADER table and arow in the ORDER_ITEM table.
Depending on the success of the statements in the script, the script executes a
COMMIT or ROLLBACK:

// Set the SQLCA connection properties.
SQLCA.DBMS = "IN9"
SQLCA.database = "ORDERS"// Connect to the database.

CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.

// A ROLLBACK is required only if the first row
// was inserted successfully.

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

INSERT INTO ORDER_HEADER (ORDER_ID,CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER HEADER insertion
if SQLCA.sglcode = 0 then

// Since the ORDER_HEADER is inserted,
// try to insert ORDER_ITEM
INSERT INTO ORDER_ITEM
(ORDER_ID, ITEM NBR, PART NBR, QTY)
VALUES (7891, 1, '991PLS', 456);

// Test return code for ORDER_ITEM insertion.
if SQLCA.sglcode = -1 then

// 1If insert failed

// ROLLBACK insertion of ORDER_ HEADER.
ROLLBACK USING SQLCA;
end if

end 1if

// Disconnect from the database.
DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Example 2 This example uses the scripts for the Open and Close events in awindow and
the Clicked event in a CommandButton to illustrate how you can manage
transactions in a Datawindow control. Assume the window contains a
Datawindow control dw_1 and the user entersdatain dw_1 and then clicksthe
Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the
programmer is responsible for managing the transaction.

Window Open event script // Set the transaction object
properties
// and connect to the database.
// Set the SQLCA connection properties.
SQLCA.DBMS = "INO9"
SQLCA.database = "ORDERS"

Connecting to Your Database 319

Informix non-cursor statements

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object
// to use.
SetTransObject (dw_1, SQLCA)

CommandButton Clicked event script // Declare ReturnValue an
integer.
// integerReturnValue
ReturnValue = Update(dw_1)

// Test to see if updates were successful.
if ReturnvValue = -1 then

// Updates were not successful. Since we used
// SetTransObject, rollback any changes made
// to the database.

ROLLBACK USING SQLCA;
else

// Updates were successful. Since we used
// SetTransObject, commit any changes made
// to the database.

COMMIT USING SQLCA;
end if

Window Close event script // Disconnect from the database.
DISCONNECT USING SQLCA;

Informix non-cursor statements

The statements that do not involve cursors or stored procedures are:

e DELETE
e INSERT
« UPDATE
e SELECT (singleton)
See also Informix DELETE, INSERT, and UPDATE
Informix SELECT

320 PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Informix DELETE, INSERT, and UPDATE

Example

See also

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE
statements the same way. PowerBuilder inspects them for any PowerScript
variable references and replaces all such references with a constant that
conforms to Informix rules for that data type.

Row serial number
The serial number of the row is stored in the SQL ReturnData property of the

transaction object after an INSERT statement executes. (The SQLReturnData
property is updated after embedded SQL only; it is not updated after a
Datawindow operation.)

Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp_ id var;

In this example, emp_id_var is a PowerScript variable with the data type of
integer that has been defined within the scope of the script that contains the
DELETE statement. Beforethe DELETE statement isexecuted, emp_id _varis
assigned a value (for example, 691) so that when the DELETE statement
executes, the database receives the following statement:

DELETE FROM employee WHERE emp id = 691;

When is this substitution technique used?
This variable substitution technique is used for all PowerScript variable types.

When you use embedded SQL, precede all PowerScript variables with a colon
(1)

Informix SELECT

Informix SELECT

Example 1

The SELECT statement contains input variables and output variables. Input
variables are passed to the database as part of the execution and the substitution
asdescribed abovefor DELETE, INSERT, and UPDATE. Output variablesare
used to return values based on the result of the SELECT statement.

Assume you enter the following statement:

Connecting to Your Database 321

Informix SELECT

Example 2

322

SELECT emp_ name, emp salary
INTO :emp name var, :emp salary var
FROM employee WHERE emp_id = :emp id var;

Hereemp_id var, emp_salary var, and emp_name_var are PowerScript
variables defined within the scope of the script that contains the SELECT
statement, emp_id_var is processed as described in the DELETE example
above.

Both emp_name _var and emp_salary_var areoutput variablesthat will be used
to return values from the database. The data types of emp_name_var and
emp_salary_var should be the PowerScript data types that best match the
Informix datatype. When the data types do not match perfectly, PowerBuilder
converts them.

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives the following statement:

SELECT emp_ name, emp salary
FROM employee WHERE emp id = 691;

If no errors are returned on the execution, data locations are internally bound
for the result fields. The data returned into these locationsis converted if
necessary and the appropriate PowerScript variables are set to those values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employeetableis
CHARACTER[10].

The user entersan employee | D into theline edit sle_Emp and clicksthe button
Cb_Delete to delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, let's try to delete it.
DELETE FROM employee WHERE emp id = :sle Emp.text;

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Example 3

// It seems to have worked, let user know.

MessageBox ("Delete", &

"The delete has been successfully processed!")
else

// It didn't work.

MessageBox ("Error", &

"The delete failed. Employee ID is not valid.")
end if

else

// No input value. Prompt user.

MessageBox ("Error", &

"An employee ID is required for "+"deletel!")
end if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees.

The extraction occurs when the user clicksthe button Cb_Extract. The boolean
variable YoungWorkersisset to TRUE or FAL SE el sewherein the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

integerEmployeeAgelLowerLimit
integerEmployeeAgeUpperLimit

// Do they have young workers?
if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgeLowerLimit = 16

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

Connecting to Your Database 323

Informix cursor statements

// No - set the age limit in the OLDER range.
EmployeeAgeLowerLimit = 43

// Pick an upper limit that includes all
// employees.
EmployeeAgeUpperLimit = 200
end if
INSERT INTO extract employees(emp id, emp name)
SELECT emp_id, emp_name FROM employee
WHERE emp age >= :EmployeeAgeLowerLimit
AND emp_age <= :EmployeeAgeUpperLimit;

Informix cursor statements

In embedded SQL, statementsthat retrieve dataand statementsthat update data
can both involve cursors.

Retrieval statements

Update statements

See also

324

Theretrieval statements that involve cursors are:

DECLARE cursor_name CURSOR FOR . . .
OPEN cursor_name
FETCH cursor_name INTO.. ..

CLOSE cursor_name

The update statements that involve cursors are:

UPDATE . .. WHERE CURRENT OF cursor_name
DELETE. .. WHERE CURRENT OF cursor_name

Informix retrieval using cursors
Informix FETCH statements
Informix CLOSE for cursors

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Informix retrieval using cursors

Declaring and opening
a cursor

Scroll cursors

See also

Retrieval using cursorsis conceptually similar to the singleton SELECT
discussed earlier. The main differenceis that there can be multiple rowsin a
result set when you use a cursor and you control when the next row is fetched
into PowerScript variables.

If you expect only asingle row to exist in the employee table with the specified
emp_id, use the singleton SELECT. In asingleton SELECT, you specify the
SEL ECT statement and destination variables in one concise SQL statement:

SELECT emp name, emp salary
INTO :emp_name_var, :emp_salary var
FROM employee WHERE emp id = :emp id var;

However, when a SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which effectively executes the SELECT).

3 Fetch rows as needed.

4 Closethe cursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesit.

When you fetch rowsin an Informix databasetable, using ascroll cursor allows
you to fetch rows in the active set in any sequence. That is, you can fetch the
next row, previous row, last row, or first row.

To specify that you want to use a scroll cursor when connecting to an Informix
database, set the Scroll DBParm parameter to 1. By default, PowerBuilder does
not use scroll cursorsin an Informix connection (the Scroll parameter is set to
0).

You cannot update scroll cursors
Scroll cursors are not updatable. If you try to declare ascroll cursor and make

it updatable, it will fail.

Informix nonupdatable cursors
Informix updatable cursors

Connecting to Your Database 325

Informix nonupdatable cursors

Informix nonupdatable cursors

Example

Declaring acursor issimilar to declaring avariable; acursor isanonexecutable
statement just like a variable declaration. Thefirst step in declaring a
nonupdatable cursor is to define how the result set looks. To do this, you need
aSELECT statement. You must associate the result set with alogical name so
you can refer to it in subsequent SQL statements.

Assume the SingleLineEdit control sle_1 contains the state code for the
retrieval:

The script for the Clicked event for the CommandButton Ch_Extract is:

// Declare cursor emp curs for employee table.
// retrieval

DECLARE emp_curs CURSOR FOR
SELECT emp_id, emp_name FROM Employee
WHERE emp state = :sle 1.text;

// Declare local variables for retrieval.
stringemp_id_ var
stringemp name var

// Execute the SELECT statement with
// the current value of sle 1.text.
OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further processing.

Informix updatable cursors

Example

326

To declare an updatable cursor, use the FOR UPDATE keywords in the
declaration.

This statement uses the FOR UPDATE syntax to declare an updatable cursor:

DECLARE emp_curs CURSOR FOR
SELECT emp id, emp name FROM Employee
WHERE emp_ state = :sle_1.text
FOR UPDATE;

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Informix FETCH statements

Qualification

See also

The Informix database interfaces support the following FETCH statements:
« FETCH NEXT

« FETCHFIRST

« FETCH PRIOR

« FETCHLAST

Informix FETCH NEXT
Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

Informix FETCH NEXT

See also

In the singleton SELECT, you specify variablesto hold the values for the
columnswithin the sel ected row. The FETCH statement syntax issimilar to the
syntax of the singleton SELECT. Values are returned INTO a specified list of
variables.

// Go get the first row from the result set
FETCH emp_curs INTO :emp_id var, :emp_name_var;

If at least onerow can beretrieved, thisFETCH placesthevaluesof theemp_id
and emp_name columnsfrom thefirst row in theresult set into the Power Script
variables emp_id_var and emp_name_var. Executing another FETCH
statement will place the variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from
aresult set (onerow at atime); fetch the row, process the variables, and then
fetch the next row.

What happens when the result set is exhausted?)
When aresult set has been exhausted, FETCH returns +100 (not found) in the

SQL Code property within the referenced transaction object. Thisisan
informational return code; -1 in SQL Code indicates an error.

Informix FETCH statements
Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

Connecting to Your Database 327

Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

Informix FETCH FIRST, FETCH PRIOR, and FETCH
LAST

In addition to the conventional FETCH NEXT, the Informix interface supports
FETCH FIRST, FETCH PRIOR, and FETCH LAST statements.

What if you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

Example This cursor exampleillustrates how you can loop through aresult set. Assume
the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

The statements retrieve rows from the employee table and then display a
message box with the employee name in each row that is found.

// Declare the emp_ curs

DECLARE emp_curs CURSOR FOR
SELECT emp name FROM EMPLOYEE
WHERE emp_state = :sle_1.text;

// Declare a destination variable for employee
// names.

stringemp name_var

// Get current value of sle_1.text.
OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp curs INTO :emp name_ var;

// Loop through result set until exhausted
DO WHILE SQLCA.sglcode = 0

// Pop up a message box with the employee name
MessageBox ("Found an employee!",emp name var)

// Fetch the next row from the result set
FETCH emp_curs INTO :emp_name_var;

LOOP

// All done, so close the cursor
CLOSE emp_curs;

328 PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

See also Informix FETCH statements
Informix FETCH NEXT

Informix CLOSE for cursors

The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the same time, you should close the cursors as soon as
possible for efficiency reasons.

Informix database stored procedures

Qualification One of the most significant features of Informix is support for database stored
procedures. You can use database stored procedures for:

¢ Retrieval only

e Update only

e Update and retrieval

PowerBuilder supports all of these usesin embedded SQL.

See also Informix retrieval using database stored procedures
Informix update using database stored procedures
Informix database stored procedures
Informix retrieval using database stored procedures

Connecting to Your Database 329

Informix retrieval using database stored procedures

Informix retrieval using database stored procedures

Qualification

See also

PowerBuilder usesaconstruct that isvery similar to cursorsto support retrieval
using database stored procedures. In PowerBuilder embedded SQL, there are
four commands that involve database stored procedures:

» DECLARE procedure_name PROCEDURE FOR . . .
 EXECUTE PROCEDURE procedure_name

* FETCH procedure nameINTO. ..

* CLOSE procedure_nameRetrieval only

Informix DECLARE and EXECUTE
Informix FETCH
Informix CLOSE

Informix DECLARE and EXECUTE

Creating a stored
procedure

330

PowerBuilder reguires a declarative statement to identify the database stored
procedure that is being used and specify alogical name. The logical nameis
used to reference the procedure in subsequent SQL statements. The general
syntax for declaring a procedure is:

DECLARE logical procedure name PROCEDURE FOR
Informix procedure name
({:arg1,:arg2 , ...}
{USING transaction object};

where logical _procedure_name can be any valid PowerScript identifier and
Informix_procedure_nameisthe name of the stored procedure in the Informix
database. The parentheses after Informix_procedure_namearerequired even if
the procedure has no parameters.

The default SQL terminator character for the Database painter is a semicolon
(;)- Informix also usesasemicoloninits stored procedure syntax. Therefore, to
create a stored procedure in the Database painter, you must change the SQL
terminator character to something other than a semicolon, such as abackquote
O)-

To change the Database painter's SQL terminator character, type the character
you want in the SQL Terminator Character box in the Database Preferences
dialog box.

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Example

Issuing EXECUTE
statements

The parameter references can take the form of any valid parameter string that
Informix accepts. PowerBuilder does not inspect the parameter list format
except for purposes of variable substitution. The USING clause is required
only if you are using a transaction object other than the default transaction
object (SQLCA).

Assume a stored procedure procl is defined as.

CREATE PROCEDURE procl AS
SELECT emp name FROM employee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE emp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When an EXECUTE statement is executed, the procedure is invoked. The
EXECUTE refersto the logical procedure name:

EXECUTE emp_proc;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Use PowerBuilder embedded SQL syntax when you enter an embedded
EXECUTE statement in ascript; do not enter the PROCEDURE keyword. Use
this syntax:

EXECUTE procedure name;

Specify the EXECUTE statement the same way whether or not a stored
procedure takes arguments. The arguments used in the DECL ARE statement
get passed automatically, without your having to state them in the EXECUTE
Statement.

Connecting to Your Database 331

Informix FETCH

Informix FETCH

Example 1

Example 2

To accessrowsreturned in aresult set, you use the FETCH statement the same
way you use it for cursors. The FETCH statement can be executed after any
EXECUTE statement that refersto a procedure that returns a result set.

Informix syntax
PowerBuilder supportsInformix syntax; however, the default syntax displayed

inthe DataWindow painter isthe most general syntax. You canleavethe syntax
unchanged or edit the displayed syntax to conform to the Informix syntax rules.
If you do not change the syntax, PowerBuilder convertsit to Informix syntax
before passing it to the Informix database.

FETCH emp_proc INTO :emp_name_var;

You can use this FETCH statement only to access values produced with a
SELECT statement in adatabase stored procedure. You cannot usethe FETCH
statement to access computed rows.

Theresult setsthat will be returned when a database stored procedure executes
cannot be determined at compile time. Therefore, you must code FETCH
statements that exactly match the format of aresult set returned by the stored
procedure when it executes.

Assume you changed the second fetch statement in the preceding statement to:

FETCH emp proc2
INTO :part_varl, :part_var2, :part_var3;

The code would compile without errors, but an execution error would occur
because the number of columnsin the FETCH statement does not match the
number of columnsinthe current result set. The second result set returnsvalues
from only one column.

Informix CLOSE

332

If a database stored procedure returns aresult set, it must be closed when
processing is complete.

PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Do you have to retrieve all the rows?
You do not have to retrieve all rowsin aresult set to close arequest or

procedure.

Closing a procedure looks the same as closing a cursor:
CLOSE emp_proc;

Aswith cursors, if a procedure executes successfully and returns at least one
result set and isnot closed, aresult set is pending and no SQL commands other
than the FETCH can be executed. Procedures with result sets should be closed
as soon as possible.

The procedure remains open until you close it, execute a COMMIT or a
ROLLBACK, or end the database connection.

Informix update using database stored procedures

Using the SQLCode
property

Example 1

Database stored proceduresthat only perform updates and do not return aresult
set are handled in much the same way as proceduresthat return aresult set. The
only difference isthat after the EXECUTE procedure_name statement
executes, no result set is pending and no CLOSE statement is required.

If you know that a particular procedure can never return aresult set, only the
EXECUTE statement is required. If there is a procedure that may or may not
return aresult set, you can test the SQL Code property of the referenced
transaction object for +100 (the code for not found) after the EXECUTE.

This table shows all possible values for SQL Code after an EXECUTE:

Return code | Means

0 The EXECUTE PROCEDURE was successful and aresult setis
pending. Regardless of the number of FETCH statements
executed, the procedure must be explicitly closed with a CLOSE

Statement.
This code is returned even if the result set is empty.
+100 Fetched row not found
-1 The EXECUTE was not successful and no result set was returned.

This example illustrates how to execute a database stored procedure that does
not return aresult set:

Connecting to Your Database 333

Informix update using database stored procedures

// good_employee is an Informix stored procedure.

// Declare the procedure.

DECLARE good _emp p lroc PROCEDURE FOR good employee;
EXECUTE good_emp_ proc;

// Test return code. Allow for +100 since you do
// not expect a result set.

if SQLCA.sglcode = -1 then

// Issue error message since it failed.

MessageBox ("Stored Procedure Error!", &
SQLCA.sglerrtext)
end if
Example 2 Thisexampleillustrates how to pass parametersto a database stored procedure

that returns aresult set. Emp_id_var has been set elsewhere to 691:

// Get_employee is an Informix stored procedure.
// Declare the procedure.
DECLARE get_emp proc PROCEDURE FOR

get_employee @emp_id parm = :emp_id var;

// Declare a destination variable for emp name
stringemp name_ var

// Execute the stored procedure using the
// current value for emp_id var.
EXECUTE get emp proc;

// Test return code to see if it worked.
if SQLCA.sglcode = 0 then

// We got a row, so fetch it and display it.
FETCH get_emp_proc INTO :emp name_var;

// Display the employee name.
MessageBox ("Got my employee!",emp name var)

// You are all done, close the procedure.

CLOSE Get_emp_proc;
end if

334 PowerBuilder Classic

CHAPTER 21 Using Embedded SQL with Informix

Informix using database stored procedures in
DataWindow objects

You can use database stored procedures as a data source for DatawWindow
objects. The following considerations apply:

¢ Result set definition

You must define what the result set looks like. The DataWindow object
cannot determine thisinformation from the stored procedure definition in
the database.

e Datawindow updates

You cannot perform DataWindow updates through stored procedures (that
is, you cannot update the database with changes made in the Datawindow
object); only retrieval is alowed. (However, the DataWindow can have
update characteristics set manually through the Datawindow painter.)

* Result set processing

You can specify only one result set to be processed when you define the
stored procedure result set in the DataWindow painter.

e Computed rows
Computed rows cannot be processed in DataWindows.
e Informix syntax

PowerBuilder supports Informix syntax; however, the syntax displayed in
the DataWindow painter is the most general syntax. You can leave the
syntax unchanged or edit the displayed syntax to conform to the Informix
syntax rules. If you do not change the syntax, PowerBuilder convertsit to
Informix syntax before passing it to the Informix database.

Informix database stored procedure summary

When you use database stored proceduresin a PowerBuilder application, keep
the following points in mind:

e Manipulating stored procedures

To manipulate database stored procedures, PowerBuilder provides SQL
statements that are similar to cursor statements.

Connecting to Your Database 335

Informix database stored procedure summary

* Retrieval and update

PowerBuilder supportsretrieval, update, or acombination of retrieval and
update in database stored procedures, including procedures that do not
return aresult set and those that return aresult set.

» Transactions and procedures without result sets

When a procedure executes using aparticular connection (transaction) and
the procedure does not return aresult set, the procedureisno longer active.
No result set is pending and, therefore, you do not execute a CLOSE
statement.

336 PowerBuilder Classic

CHAPTER 22

About this chapter

Overview

DB-Library API

See also

Connecting to Your Database

Using Embedded SQL with
Microsoft SQL Server

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When your PowerBuilder application connectsto a SQL Server database,
you can use embedded SQL in your scripts. This interface uses the DB-
Library (DB-Lib) client API to access the database.

When you use the SQL Server database interface, you can embed the
following types of SQL statements in scripts and user-defined functions:

« Transaction management statements
* Non-cursor statements

e Cursor statements

e Database stored procedures

The Microsoft SQL Server database interface uses the DB-Library (DB-
Lib) application programming interface (API) to access the database.
When you use embedded SQL, PowerBuilder makesthe required callsto
the API. Therefore, you do not need to know anything about DB-Lib to
use embedded SQL in PowerBuilder.

Microsoft SQL Server Functions

Microsoft SQL Server Transaction management statements
Microsoft SQL Server Non-cursor statements

Microsoft SQL Server Cursor statements

Microsoft SQL Server Using database stored proceduresin
Datawindow objects

Microsoft SQL Server Name qualification

337

Microsoft SQL Server Name qualification

Microsoft SQL Server Name qualification

Since PowerBuilder doesnot inspect all SQL statement syntax, you can qualify
SQL Server catalog entities as hecessary.

For example, the following qualifications are all acceptable:
* emp_name

» employee.emp_name

* dbo.employee.emp_name

» emp_db.dbo.employee.emp_name

Microsoft SQL Server Functions

Calling DB-Library
functions

DBHandle

338

You can use any function that SQL Server supports (such as aggregate or
mathematical functions) in SQL statements.

Thisexampl e shows how to use the SQL Server function UPPER inaSELECT
statement:

SELECT UPPER (emp_name)
INTO :emp_name_var
FROM employee;

While PowerBuilder provides access to alarge percentage of the features
within SQL Server, in some cases you may decide that you need to call one or
more DB-Lib functions directly for a particular application. PowerBuilder
provides access to any Windows DLL by using external function declarations.

The DB-Lib calls qualify for this type of access. Most DB-Lib callsrequire a
pointer to a DBPROCESS structure as their first parameter. 1f you want to call
DB-Lib without reconnecting to the database to get a DBPROCESS pointer,
use the PowerScript DBHandle function.

DBHandletakes atransaction object asaparameter and returnsalong variable,
which is the handle to the database for the transaction. This handle is actually
the DBPROCESS pointer that PowerBuilder uses internally to communicate
with the database. You can use this returned long value in the SQL Server
DLLsand passit as one of the parameters in your function.

This example shows how to use DBHandle. Assume a successful connection
has occurred using the default transaction object (SQLCA):

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

// Define a variable to hold our DB handle.
long SQLServerHandle

// Go get the handle.
SQLServerHandle = SQLCA.DBHandle()

// Now that you have the DBPROCESS pointer,
// call the DLL function.
MyDLLFunction(SQLServerHandle, parml, parm2, ...)

Inyour DLL, cast the incoming long value into a pointer to a DBPROCESS
structure:

MyDLLFunction(long 1SQLServerHandle,
parml_type parml,
parm2_type Parm2, ...)

{

DBPROCESS * pDatabase;
pDatabase = (DBPROCESS *) 1SQLServerHandle;
// DB-Lib functions can be called using pDatabase.

}

Microsoft SQL Server Transaction management
statements

Transaction You use the following transaction management statements with transaction
management objects to manage connection and transactions for a SQL Server database:
statements

e CONNECT

« COMMIT

 DISCONNECT
* ROLLBACK

Transaction You should not use transaction statementsin triggers. A trigger is a special
mggggsemem in kind of stored procedure that takes effect when you issue a statement such as

INSERT, DELETE, or UPDATE on a specified table or column. Triggers can
be used to enforce referential integrity.

Connecting to Your Database 339

Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK

For example, assumethat acertain condition within atrigger isnot met and you
want to execute aROLLBACK. Instead of coding the ROLLBACK directly in
thetrigger, you should use RAISERROR and test for that particul ar return code
in the DBM S-specific return code (SQLDBCode) property within the
referenced transaction object.

See also Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT,
and ROLLBACK

Microsoft SQL Server Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK

Thefollowing tablelists each transaction management statement and describes
how it works when you use the SQL Server interface to connect to a database:

Statement

Description

CONNECT

Establishes the database connection. After you assign values to
therequired properties of the transaction object, you can execute
a CONNECT. After the CONNECT completes successfully,
PowerBuilder automatically starts a SQL Server transaction.
Thisisthe start of alogical unit of work.

COMMIT

COMMIT terminatesthelogical unit of work, guaranteesthat all
changes made to the database since the beginning of the current
unit of work become permanent, and starts anew logical unit of
work.

If AutoCommitisfalse, aCOMMIT TRANSACTION executes,
then aBEGIN TRANSACTION executesto start anew logical
unit of work. If AutoCommit istrue, an error occurs when a
COMMIT executes.

DISCONNECT

340

Terminates a successful connection. DISCONNECT
automatically executesa COMMIT to guarantee that all changes
made to the database since the beginning of the current unit of
work are committed.

If AutoCommitisfalse, aCOMMIT TRANSACTION executes
automatically to guarantee that all changes made to the database
since the beginning of the current logical unit of work are
committed.

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

See also

Statement Description

ROLLBACK ROLLBACK terminatesalogical unit of work, undoes all
changes made to the database since the beginning of the logical
unit of work, and starts a new logical unit of work.

I1f AutoCommit isfalse,aROLLBACK TRANSACTION
executes, then aBEGIN TRANSACTION executesto start a
new logical unit of work. If AutoCommit istrue, an error occurs
when aROLLBACK executes.

Microsoft SQL Server Performance and locking
Microsoft SQL Server Temporary tables
Microsoft SQL Server Using AutoCommit

Microsoft SQL Server Using AutoCommit

Using AutoCommit

See also

The setting of the AutoCommit property of the transaction object determines
whether PowerBuilder issues SQL statementsinside or outside the scope of a
transaction. When AutoCommit is set to false or O (the default), SQL
statements are issued inside the scope of a transaction. When you set
AutoCommit to true or 1, SQL statements are issued outside the scope of a
transaction.

Versions of SQL Server prior to SQL Server 2000 require you to execute Data
Definition Language (DDL) statements outside the scope of atransaction. If
you execute a database stored procedure that contains DDL statements within
the scope of atransaction, an error messageisreturned and the DDL statements
arerejected. When you use the transaction object to execute a database stored
procedure that creates atemporary table, you do not want to associate the
connection with a transaction.

To execute SQL Server stored procedures containing DDL statementsin SQL
Server 7 and earlier, you must set AutoCommit to true so PowerBuilder issues
the statements outside the scope of a transaction. However, if AutoCommit is
set to true, you cannot issue a ROLLBACK. Therefore, you should set
AutoCommit back to false (the default) immediately after completing the DDL
operation.

When you change the value of AutoCommit from false to true, PowerBuilder
issues a COMMIT statement by default.

Microsoft SQL Server Performance and locking
Microsoft SQL Server Temporary tables

Connecting to Your Database 341

Microsoft SQL Server Performance and locking

Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT,
and ROLLBACK

Microsoft SQL Server Performance and locking

Rules

342

Animportant consideration when designing a database application isdeciding
when CONNECT and COMMIT statements should occur to maximize
performance and limit locking and resource use. A CONNECT takes acertain
amount of time and can tieup resources during thelife of the connection. If this
timeis significant, then limiting the number of CONNECT statementsis
desirable.

In addition, after a connection is established, SQL statements can cause locks
to be placed on database entities. The more locks at a given moment in time,
the more likely it isthat the locks will hold up another transaction.

No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the
following:

* Long-running connections Determine whether you can afford to have
long-running connections. If not, your application should connect to the
database only when absolutely necessary. After all the work for that
connection is compl ete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be
issued as often as possible to guarantee that al changes do in fact occur.
More importantly, COMMITs should be issued to release any locks that
may have been placed on database entities as aresult of the statements
executed using the connection.

* SetTrans or SetTransObject function Determine whether you want to
use default DataWindow transaction processing (the SetTransfunction) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DatawWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Isolation feature

Example 1

SQL Server usestheisolation feature to support assorted database | ock options.
In PowerBuilder, you can use the Lock property of the transaction object to set
the isolation level when you connect to a SQL Server database.

The following example shows how to set the Lock property to RU (Read
uncommitted):

// Set the lock property to read uncommitted
// in the default transaction object SQLCA.
SQLCA.Lock = "RU"

This script uses embedded SQL to connect to a database and insert arow in
the ORDER_HEADER table and arow in the ORDER_ITEM table.
Depending on the success of the statements in the script, the script executes
either aCOMMIT or aROLLBACK.

// Set the SQLCA connection properties.
SQLCA.DBMS = "SQLServer"
SQLCA.servername = "SERVER24"
SQLCA.database = "ORDERS"

SQLCA.logid = "JPL"

SQLCA.logpass = "TREESTUMP"

// Connect to the database.
CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.

// A ROLLBACK is required only if the first row

// was inserted successfully.

INSERT INTO ORDER HEADER (ORDER_ID,CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER_HEADER insertion.
if SQLCA.sglcode = 0 then

// Since the ORDER_HEADER is inserted,
// try to insert ORDER_ITEM.
INSERT INTO ORDER_ITEM(ORDER_ID, ITEM NBR,
PART NBR, QTY)
VALUES (7891, 1, '991PLS', 456);

// Test return code for ORDER_ITEM insertion.
if SQLCA.sglcode = -1 then

// If insert failed.

// ROLLBACK insertion of ORDER_HEADER.
ROLLBACK USING SQLCA;
end if

end if

// Commit changes and disconnect from the database.

Connecting to Your Database 343

Microsoft SQL Server Performance and locking

Example 2

344

DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example uses the scripts for the Open and Close events in awindow and
the Clicked event in a CommandButton to illustrate how you can manage
transactions in a DataWindow control. Assume that the window contains a
Datawindow control dw_1 and that the user entersdatain dw_1 and then clicks
the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the
programmer is responsible for managing the transaction.

The window OPEN event script:

// Set the transaction object properties
// and connect to the database.

// Set the SQLCA connection properties.
SQLCA.DBMS = "SQLServer"
SQLCA.servername = "SERVER24"
SQLCA.database = "ORDERS"

SQLCA.logid = "JPL"

SQLCA.logpass = "TREESTUMP"

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object
// to use.
SetTransObject (dw_1, SQLCA)

The CommandButton CLICKED event script:

// Declare ReturnValue an integer.
integer ReturnValue
ReturnValue = Update(dw_1)

// Test to see if updates were successful.
if ReturnValue = -1 then

// Updates were not successful. Since we used
// SetTransObject, rollback any changes made
// to the database.

ROLLBACK USING SQLCA;
else

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

See also

// Updates were successful. Since we used
// SetTransObject, commit any changes made
// to the database.

COMMIT USING SQLCA;
end if

The window CLOSE event script:

// Disconnect from the database.
DISCONNECT USING SQLCA;

Microsoft SQL Server Temporary tables

Microsoft SQL Server Non-cursor statements

The statements that do not involve cursors or procedures are:

e DELETE (Microsoft SQL Server DELETE, INSERT, and UPDATE)
e INSERT (Microsoft SQL Server DELETE, INSERT, and UPDATE)
e SELECT (Microsoft SQL Server SELECT) (singleton)

e UPDATE (Microsoft SQL Server DELETE, INSERT, and UPDATE)

Microsoft SQL Server DELETE, INSERT, and UPDATE

Example

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE
statements the same way. PowerBuilder inspects them for any PowerScript
data variable references and replaces al such references with a constant that
conforms to SQL Server rulesfor the data type.

Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp_ id var;

Inthisexample, emp_id_var is a PowerScript data variable with the datatype
of integer that has been defined within the scope of the script that contains the
DELETE statement. Beforethe DELETE statement isexecuted, emp_id varis
assigned a value (say 691) so that when the DELETE statement executes, the
database receives the following statement:

DELETE FROM employee WHERE emp id = 691;

Connecting to Your Database 345

Microsoft SQL Server SELECT

When is this This variable substitution techniqueis used for all PowerScript variable types.

3223?”“0” technique \when you use embedded SQL, precede all PowerScript variableswith acolon
' (1)

See also Microsoft SQL Server SELECT

Microsoft SQL Server SELECT

The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the
substitution as described above for DELETE, INSERT, and UPDATE.

» Output variables are used to return values based on the result of the
SELECT statement.

Example 1 Assume you enter the following statement:

SELECT emp name, emp salary
INTO :emp name var, :emp salary var
FROM employee WHERE emp_id = :emp id var;

In thisexample, emp_id_var, emp_salary _var, and emp_name_var are
variables defined within the scope of the script that contains the SELECT
statement, and emp_id_var is processed as described in the DELETE example
above.

Bothemp_name_var and emp_salary_var are output variablesthat will be used
to return values from the database. The data types of emp_name_var and
emp_salary_var should be the PowerScript datatypesthat best match the SQL
Server datatype. When the data types do not match perfectly, PowerBuilder
converts them.

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives the following statement:

SELECT emp_ name, emp salary
FROM employee WHERE emp_id = 691;

346 PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Example 2

If the statement executes with no errors, data locations for the result fields are
bound internally. The data returned into these locations is then converted as
necessary and the appropriate PowerScript data variables are set to those
values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employee tableis
CHARACTERJ[10].

The user enters an employee ID into the single line edit field sle Emp and
clicksthe button Cb_Delete to del ete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, try to delete it.
DELETE FROM employee
WHERE emp_id = :sle_Emp.text;

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

// It seems to have worked, let user know.
MessageBox ("Delete", &
"The delete has been successfully "&
+" processed!")
else

//It didn't work.
MessageBox ("Error", &
"The delete failed. Employee ID is not "&
+"valid.")
end if
else

// No input value. Prompt user.
MessageBox ("Error", &
"An employee ID is required for "&
+"delete!")
end if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Connecting to Your Database 347

Microsoft SQL Server Cursor statements

Example 3

See also

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees. The extraction occurs when the user clicks the
button Cb_Extract. The boolean variable YoungWorkersis set to TRUE or
FAL SE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

integer EmployeeAgelLowerLimit
integer EmployeeAgeUpperLimit

// Do they have young workers?
if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgelLowerLimit = 16

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

// No - set the age limit in the OLDER range.
EmployeeAgeLowerLimit = 43

// Pick an upper limit that includes all
// employees.
EmployeeAgeUpperLimit = 200
end if
INSERT INTO extract employee (emp id,emp name)
SELECT emp_id, emp_name FROM employee
WHERE emp age >= :EmployeeAgeLowerLimit
AND emp_age <= :EmployeeAgeUpperLimit;

Microsoft SQL Server DELETE, INSERT, and UPDATE

Microsoft SQL Server Cursor statements

348

In embedded SQL, statements that retrieve data can involve cursors. These
statements are:

DECLARE cursor_name CURSOR FOR ...
OPEN cursor_name
FETCH cursor_name INTO ...

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Retrieval

Declaring and opening
a cursor

Scrolling and locking

Example

e CLOSE cursor_name

Note UPDATE ... WHERE CURRENT OF cursorﬁnameandDELETE e
WHERE CURRENT OF cursor name are not supportedin SQL Server.

Retrieval using cursorsis conceptually similar to retrieval in the singleton
SELECT. The main difference is that since there can be multiple rowsin a
result set, you control when the next row is fetched into the PowerScript data
variables.

If you expect only asinglerow to exist in the employee table with the specified
emp_id, use the singleton SELECT. In asingleton SELECT, you specify the
SELECT statement and destination variables in one concise SQL statement:

SELECT emp name, emp salary
INTO :emp name var, :emp_ salary var
FROM employee WHERE emp id = :emp id var;

However, when a SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which conceptually executes the SELECT).

3 Fetch rows as needed.

4 Closethecursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesit.

Declaring acursor issimilar to declaring avariable; acursor isanonexecutable
statement just like avariable declaration. Thefirst step in declaring acursor is
to define how the result set looks. To do this, you need a SELECT statement.

Since you must refer to the result set in subsequent SQL statements, you must
associate the result set with alogical name.

Use the CursorScroll and CursorLock DBParm parameters to specify the
scrolling and locking options.

Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

// Declare cursor emp_ curs for employee table
// retrieval.
DECLARE emp_curs CURSOR FOR
SELECT emp_id, emp name FROM EMPLOYEE
WHERE emp state = :sle 1.text;

Connecting to Your Database 349

Microsoft SQL Server Fetching rows

// Declare local variables for retrieval.
string emp id var
string emp name var

// Execute the SELECT statement with
// the current value of sle_1.text.
OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further
// processing.

See also Microsoft SQL Server Fetching rows
Microsoft SQL Server Closing the cursor

Microsoft SQL Server Fetching rows

The SQL Server interfaces support the following FETCH statements
(Microsoft_SQL_Server FETCH):

* FETCH NEXT (Microsoft SQL Server FETCH NEXT)

* FETCH FIRST (Microsoft SQL Server FETCH FIRST, FETCH PRIOR,
and FETCH LAST)

* FETCH PRIOR (Microsoft SQL Server FETCH FIRST, FETCH PRIOR,
and FETCH LAST)

* FETCH LAST (Microsoft SQL Server FETCH FIRST, FETCH PRIOR,
and FETCH LAST)

Microsoft SQL Server FETCH NEXT

In the singleton SELECT, you specify variables to hold the values for the
columnswithin the selected row. The FETCH statement syntax issimilar to the
syntax of the singleton SELECT. Values are returned INTO a specified list of
variables.

This exampl e continues the previous example by retrieving some data:

// Go get the first row from the result set.
FETCH emp_curs INTO :emp id var, :emp name var;

350 PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

What happens when
the result set is
exhausted?

See also

If at least onerow can beretrieved, thisFETCH placesthevaluesof theemp_id
and emp_name columnsfrom thefirst row in theresult set into the PowerScript
datavariablesemp_id_var and emp_name_var. Executing another FETCH
statement will place the variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from
aresult set (onerow at atime): fetch the row, process the variables, and then
fetch the next row.

FETCH returns +100 (not found) in the SQL Code property within the
referenced transaction object. Thisisan informational return code; -1 in
SQL Code indicates an error.

Microsoft SQL Server FETCH NEXT
Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH
LAST

Microsoft SQL Server FETCH FIRST, FETCH PRIOR,
and FETCH LAST

Example

SQL Server support the FETCH FIRST, FETCH PRIOR, and FETCH LAST
statements in addition to the conventional FETCH NEXT statement.

What if you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

This cursor exampleillustrates how you can loop through aresult set. Assume
the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

The statements retrieve rows from the employee table and then display a
message box with the employee name in each row that is found.

// Declare the emp curs.

DECLARE emp_curs CURSOR FOR
SELECT emp name FROM EMPLOYEE
WHERE emp_state = :sle_1l.text;

// Declare a destination variable for employee
// names.
string emp_name_var

// Execute the SELECT statement with the

Connecting to Your Database 351

Microsoft SQL Server Closing the cursor

See also

// current value of sle 1.text.
OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp_curs INTO :emp_name_var;

// Loop through result set until exhausted.
DO WHILE sqglca.sglcode = 0

// Pop up a message box with the employee name.
MessageBox ("Found an employee!",emp name var)

// Fetch the next row from the result set.
FETCH emp_ curs INTO :emp_name_var;
LOOP

// All done, so close the cursor.
CLOSE emp curs;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Microsoft SQL Server FETCH
Microsoft SQL Server FETCH NEXT

Microsoft SQL Server Closing the cursor

352

The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the sametime, you should close the cursors as soon as
possible for efficiency reasons.

In SQL Server, there is an additional reason to close cursors as soon as
possible. When an OPEN statement completes successfully, there is a result
pending for the current connection. FETCH statements can be executed aslong
astherearerowsin theresult set to be processed. However, aslong astheresult
set is pending, no other commands can be executed using the connection. To
execute other commands using the connection, you must release the result set
by closing the cursor.

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Example

Internally, PowerBuilder issues a DB-Lib dbcancel statement when the cursor
isclosed. After the CLOSE has been executed, the connection can be used for
other SQL statements.

This example illustrates the pending result set problem in SQL Server. These
statements use the cursor emp_cursto retrieve rows from the employee table,
then attempt to execute another SQL statement while the cursor is open:

// Declare the emp curs.

DECLARE emp_curs CURSOR FOR
SELECT emp_name FROM EMPLOYEE
WHERE emp_state = :sle_1l.text;

// Declare a destination variable for employee
// names.
string emp_name_var

// Execute the SELECT statement with the current
// value of sle 1.text.
OPEN emp_curs;

// Execute an INSERT statement.
INSERT INTO office (office_id, office city)
VALUES (1234, 'Boston');

// This INSERT statement would fail because of
// the pending result set from the emp curs

// cursor. If we had never opened the cursor, or
// if we had completed processing of the cursor
// and then closed it, the INSERT statement

// would work.

Microsoft SQL Server Database stored procedures

Retrieval and update

One of the most significant features of SQL Server is database stored
procedures. You can use database stored procedures for:

e Retrieva only

e Update only

e Update and retrieval

PowerBuilder supports all these uses in PowerBuilder embedded SQL.

Connecting to Your Database 353

Microsoft SQL Server Retrieval

Using AutoCommit
with database stored
procedures

System database
stored procedures

See also

Database stored procedures often create temporary table that hold rows
accumulated during processing. To create these tables, the stored procedure
executes SQL Data Definition Language (DDL) statements. Versions of SQL
Server prior to SQL Server 2000 do not allow you to execute DDL statements
within the scope of atransaction.

To execute SQL Server stored procedures that contain DDL statements
statementsin SQL Server 7 and earlier, you must set the AutoCommit property
of the transaction object to true so PowerBuilder issues the statements outside
the scope of atransaction. However, if AutoCommit is set to true, you cannot
issueaROLLBACK. Therefore, you should set AutoCommit back to false (the
default) immediately after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder
issues a COMMIT statement by default.

You can access system database stored procedures the same way you access
user-defined stored procedures. You can use the DECL ARE statement agai nst
any procedure and can qualify procedure namesif necessary.

Microsoft SQL Server Retrieval

Microsoft SQL Server Temporary tables

Microsoft SQL Server Update

Microsoft SQL Server Using database stored procedures in DatawWindow
objects

Microsoft SQL Server Database stored procedures summary

Microsoft SQL Server Retrieval

See also

354

PowerBuilder usesaconstruct that isvery similar to cursorsto support retrieval
using database stored procedures. In the PowerBuilder-supported embedded
SQL, there are four commands that involve database stored procedures:

* DECLARE procedure_name PROCEDURE FOR ...
* EXECUTE procedure_name

* FETCH procedure name INTO ...

» CLOSE procedure_name

Microsoft SQL Server DECLARE and EXECUTE
Microsoft SQL Server FETCH
Microsoft SQL Server CLOSE

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Microsoft SQL Server DECLARE and EXECUTE

Example 1

Example 2

PowerBuilder requires a declarative statement to identify the database stored
procedure that is being used and alogical name that can be referenced in
subsequent SQL statements.

The general syntax for declaring a procedureiis:

DECLARE logical procedure name PROCEDURE FOR
SQL Server procedure name
@Paraml = valuel, @Param2 = value2,
@Param3 = value3 OUTPUT,
{USING transaction object} ;

where logical_procedure_name can be any valid PowerScript data identifier
and SQL_Server_procedure_name is the name of the stored procedure in the
database.

The parameter references can take the form of any valid parameter string that
SQL Server accepts. PowerBuilder does not inspect the parameter list format
except for purposes of variable substitution. You must use the reserved word
OUTPUT to indicate an output parameter. The USING clause isrequired only
if you are using atransaction object other than the default transaction object

(SQLCA).
Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT emp name FROM employee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE emp proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The
EXECUTE refersto the logical procedure name:

EXECUTE emp proc;
To declare a procedure with input and output parameters, enter:

DECLARE sp_duration PROCEDURE FOR pr_date diff prd ken

@var_date_ 1 = :ad_start,
@var _date 2 = :ad_end,
@rtn diff prd = :1s duration OUTPUT;

Connecting to Your Database 355

Microsoft SQL Server FETCH

Microsoft SQL Server FETCH

Example 1

356

To accessrowsreturned in aresult set, you use the FETCH statement the same
way you use it for cursors. The FETCH statement can be executed after any
EXECUTE statement that refersto a procedure that returns a result set.

FETCH emp proc INTO :emp name_ var;

You can use this FETCH statement only to access val ues produced with a
SEL ECT statement in adatabase stored procedure. You cannot usethe FETCH
statement to access computed rows.

Database stored procedures can return multiple result sets. Assume you define
a database stored procedure proc2 as follows:

CREATE PROCEDURE proc2 AS
SELECT emp_name FROM employee
SELECT part_name FROM parts

PowerBuilder provides access to both result sets:

// Declare the procedure.
DECLARE emp proc2 PROCEDURE FOR proc2;

// Declare some variables to hold results.
string emp_name_var
string part _name_ var

// Execute the stored procedure.
EXECUTE emp_ proc2;

// Fetch the first row from the first result
// set.
FETCH emp proc2 INTO :emp name var;

// Loop through all rows in the first result
// set.
DO WHILE sglca.sglcode = 0

// Fetch the next row from the first result set.
FETCH emp proc2 INTO :emp name_var;
LOOP

// At this point we have exhausted the first

// result set. After this occurs,

// PowerBuilder notes that there is another

// result set and internally shifts result sets.
// The next FETCH executed will retrieve the

// first row from the second result set.

// Fetch the first row from the second result

// set.

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Example 2

See also

FETCH emp proc2 INTO :part name_var;

// Loop through all rows in the second result
// set.
DO WHILE sglca.sglcode = 0

// Fetch the next row from the second result
// set.

FETCH emp proc2 INTO :part name_var;
LOOP

Theresult setsthat will be returned when adatabase stored procedure executes
cannot be determined at compile time. Therefore, you must code FETCH
statements that exactly match the format of aresult set returned by the stored
procedure when it executes.

In the preceding example, if instead of coding the second fetch statement as:
FETCH emp proc2 INTO :part name var;
you coded it as:

FETCH emp_proc2
INTO :part_varl, :part_var2, :part_var3;

the statement would compile without errors. But an execution error would
occur: the number of columnsin the FETCH statement does not match the
number of columnsinthe current result set. The second result set returnsvalues
from only one column.

Microsoft SQL Server FETCH NEXT
Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH
LAST

Microsoft SQL Server CLOSE

If adatabase stored procedure returns a result set, it must be closed when
processing is compl ete.

Closing a procedure looks the same as closing a cursor:
CLOSE emp proc;

Aswith cursors, if a procedure executes successfully and returns at least one

result set and isnot closed, aresult set is pending and no SQL commands other
than the FETCH can be executed. Procedures with result sets should be closed
as soon as possible.

Connecting to Your Database 357

Microsoft SQL Server Update

You do not have to retrieve al the rows in aresult set to close arequest or
procedure.

Microsoft SQL Server Update

Using the SQL Code
property

Example 1

358

If you know for sure that a particular procedure can never return result sets,
then the EXECUTE statement is all that is needed. If there is a procedure that
may or may not return aresult set, you can test the SQL Code property of the
referenced transaction object for +100 (the code for NOT FOUND) after the
EXECUTE.

The following table shows all the possible values for SQL Code after an
EXECUTE:

Return code Means

0 The EXECUTE was successful and at least one result set is
pending. Regardless of the number of FETCH statements
executed, the procedure must be explicitly closed with aCLOSE

Statement.
This code is returned even if the result set is empty.
+100 Fetched row not found.
-1 The EXECUTE was not successful and no result sets were

returned. The procedure does not requirea CLOSE. If a CLOSE
is attempted against this procedure an error will be returned.

Assumethe default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has been executed. Also assume the description
of the SQL Server procedure good_employeeis:

// SQL Server good_employee stored procedure:
CREATE PROCEDURE good employee AS

UPDATE employee

SET emp salary=emp_ salary * 1.1

WHERE emp_status = 'EXC'

Thisexampleillustrates how to execute a stored procedure that does not return
any result sets:

// Declare the procedure.
DECLARE good emp proc PROCEDURE
FOR good employee;

// Execute it.

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

EXECUTE good emp proc;

// Test return code. Allow for +100 since you do
// not expect result sets.
if SQLCA.sglcode = -1 then

// Issue error message since it failed.
MessageBox ("Stored Procedure Error!", &
SQLCA.sglerrtext)

end 1if

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Example 2 Assumethe default transaction object (SQLCA) hasbeen assigned valid values
and a successful CONNECT has been executed. Also assume the description
of the SQL Server procedure get_employeeis:

// SQL Server get_ employee stored procedure:
CREATE PROCEDURE get employee @emp id parm
int AS SELECT emp name FROM employee
WHERE emp_id = @emp_id parm

Thisexampleillustrates how to pass parametersto adatabase stored procedure.
Emp_id_var has been set elsewhere to 691:

// Declare the procedure.
DECLARE get_emp proc PROCEDURE FOR
get employee @emp_id parm = :emp id var;

// Declare a destination variable for emp name.
string emp_name_var

// Execute the stored procedure using the
// current value for emp_id var.
EXECUTE get emp proc;

// Test return code to see if it worked.
if SQLCA.sglcode = 0 then

// Since we got a row, fetch it and display it.
FETCH get_emp_proc INTO :emp name_var;

// Display the employee name.
MessageBox ("Got my employee!",emp_name_var)

// You are all done, so close the procedure.
CLOSE Get_emp proc;

Connecting to Your Database 359

Microsoft SQL Server Update

Example 3

360

end 1if

PowerBuilder also provides accessto return valuesand output parameters. The
return values and output parameters are alwaysin the last result set returned by
the stored procedure and they are in this order:

return value, output parml, output parm 2

Assumethe default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has been executed. Also assume the description
of the SQL Server procedurereturnis:

CREATE PROCEDURE emp_ return @ml int, @m2 int,
@resultp int output

AS SELECT @RESULTP = @ml*@m2

RETURN O

where @m1, @m2, and @resultp are integers.
This example shows how PowerBuilder provides access to return values:

//Stored procedure syntax

CREATE PROCEDURE sp outputs @eml int, @m2 int,
@result int output as SELECT

@result = @ml*@m2;

//Declare syntax in script.
DECLARE myproc PROCEDURE for sp outputs @ml = 3,
@m2 = 3, @result = 0 output;

//Note: The parameters in the declare must match
//exactly the parameters in the sp.
EXECUTE myproc;

//Execute fetches needed until rc = 100
//then fetch output parameters.
int myresult

FETCH myproc into :myresult;
CLOSE myproc;

PowerBuilder Classic

CHAPTER 22 Using Embedded SQL with Microsoft SQL Server

Microsoft SQL Server Temporary tables

Database stored procedures frequently contain temporary tables that are used
as repositories when accumulating rows during processing within the
procedure. Since versions of SQL Server prior to SQL Server 2000 do not
allow Data Definition Language (DDL) to be executed within the scope of a
transaction, PowerBuilder provides the boolean AutoCommit property in the
transaction object to allow you to handle these cases.

When AutoCommit is false (the default), normal transaction processing takes
place: aBEGIN TRANSACTION isinternally issued on a successful connect
and this transaction is terminated by a COMMIT TRANSACTION or
ROLLBACK TRANSACTION.

When AutoCommit is set to true, no transaction management is performed.
Therefore, stored proceduresthat create temporary tables can be executed. This
option should be used with great care because of the recovery implications. If
AutoCommit istrue, ROLLBACK cannot be issued.

See also Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT,
and ROLLBACK
Microsoft SQL Server Performance and locking

Microsoft SQL Server Using database stored
procedures in DataWindow objects

You can use database stored procedures as a data source for DatawWindow
objects. The following rules apply:

» Result set definition Youmust definewhat theresult set lookslike. The
Datawindow object cannot determine this information from the stored
procedure definition in the database.

« Datawindow updates You cannot perform DataWindow updates
through stored procedures (that is, you cannot update the database with
changes made in the DataWindow object); only retrieval is allowed.
(However, the Datawindow can have update characteristics set manually
through the Datawindow painter.)

* Result set processing You can specify only one result set to be
processed when you define the stored procedure result set in the
Datawindow painter.

Connecting to Your Database 361

Microsoft SQL Server Database stored procedures summary

Computed rows Computed rows cannot be processed in aDatawWindow.

Microsoft SQL Server Database stored procedures

summary

362

When you use database stored procedures in a PowerBuilder application, keep
the following pointsin mind:

Manipulating stored procedures To manipulate database stored
procedures, PowerBuilder provides SQL statementsthat are similar to
cursor statements.

Retrieval and update PowerBuilder supports retrieval, update, or a
combination of retrieval and update in database stored procedures,
including proceduresthat return no results sets and those that return one or
more result sets.

Transactions and stored procedures with result sets When a
procedure executes successfully using a specific connection (transaction)
and returns at least one result set, no other SQL commands can be
executed using that connection until the procedure has been closed.

Transactions and stored procedures without result sets Whena
procedure executes successfully using a specific transaction but does not
return aresult set, the procedure is no longer active. No result sets are
pending, and therefore a CL OSE statement is not required.

PowerBuilder Classic

CHAPTER 23

About this chapter

Overview

Oracle Call Interface (OCI)

See also

Connecting to Your Database

Using Embedded SQL with
Oracle

When you create scripts for a PowerBuilder application, you can use
embedded SQL statements in the script to perform operations on the
database. Thefeatures supported when you use embedded SQL depend on
the DBM S to which your application connects.

When your PowerBuilder application connectsto an Oracle database, you
can use embedded SQL in your scripts.

If you are using these interfaces to connect to an Oracle database, you can
embed the following types of SQL statements in scripts and user-defined
functions:

« Transaction management statements
* Non-cursor statements

e Cursor statements

e Database stored procedures

When you use Oracle database interfaces, PowerBuilder supports SQL
CREATETY PE and CREATE TABLE statementsfor Oracle user-defined
types (objects) in the ISQL view of the Database painter. It correctly
handles SQL SELECT, INSERT, UPDATE, and DELETE statementsfor
user-defined typesin the Database and DataWindow painters.

The Oracle database interfaces use the Oracle Call Interface (OCI) to
interact with the database.

When you use embedded SQL, PowerBuilder makesthe required callsto
the OCI. Therefore, you do not need to know anything about the OCI to
use embedded SQL in PowerBuilder.

Chapter 10, “Using Oracle”

Oracle SQL functions

Oracle Transaction management statements
Oracle Non-cursor statements

Oracle Cursor statements

Oracle Database stored procedures

363

Oracle Name qualification

Oracle Name qualification

Oracle Name qualification

Since PowerBuilder doesnot inspect all SQL statement syntax, you can qualify
Oracle catal og entities as necessary.

For example, al of the following qualifications are acceptable:
s emp_name
» employee.emp_name

* jpl.employee.emp_name

Oracle SQL functions

Calling OCI functions

DBHandle

364

In SQL statements, you can use any function that Oracle supports (such as
aggregate or mathematical functions).

For example, you can use the Oracle function UPPER in a SELECT statement:

SELECT UPPER (emp_name)
INTO :emp_name_var
FROM employee;

While PowerBuilder provides access to alarge percentage of the features
within Oracle, in some cases you may want to call one or more OCI functions
directly. In PowerBuilder you can use external function declarations to access
any WindowsDLL.

The OCI calls qualify for thistype of access. Most OCI calls reguire a pointer
to an LDA_DEF structure as their first parameter. If you want to call OCI
functions without reconnecting to the database to get an LDA_DEF pointer,
use the PowerScript DBHandle function.

DBHandletakes atransaction object asaparameter and returnsalong variable,
which is the handle to the database for the transaction. This handle is actually
the LDA_DEF pointer that PowerBuilder uses internally to communicate with
the database. You can use the returned value in your DLLs and passit as one
of the parameters in your function.

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

Example This example shows how to use DBHandle. Assume a successful connection
has occurred using the default transaction object (SQLCA):

// Define a variable to hold our DB handle.
long OracleHandle

// Get the handle.
OracleHandle = SQLCA.DBHandle()

// Now that you have the LDA DEF pointer,
// call the DLL function.
MyDLLFunction(OracleHandle, parml, parm2, ...)

Inyour DLL, cast the incoming long value into a pointer to an ORA_CSA:

Connecting to Your Database

VOID FAR PASCAL MyDLLFunction(long lOracleHandle,
parml_type parml,
parm2_type parm2, ...)

{

// pLda will provide addressability to the Oracle
// logon data area
Lda_Def FAR *pLda = (Lda Def FAR *)lOracleHandle;

// pCda will point to an Oracle cursor
Cda_Def FAR *pCda = &

GlobalAllocPtr (GMEM_MOVEABLE, sizeof (Cda_ Def)) ;
if (1 pCda)

// handle error...
if (open(pCda, pLda,NULL, -1, -1, NULL, -1))

// handle error...
#ifdef Oracle?

// parse the DELETE statement
if (osqgl3 (pCda,
"DELETE FROM EMPLOYEE WHERE Emp ID = 100", -1);

#telse
if (oparse (pCda,
"DELETE FROM EMPLOYEE
WHERE Emp ID = 100", -1, 0, 1)
#endif

// handle error...
if (oclose (pCda))

// handle error...
GlobalFreePtr (pCda) ;
}

365

Oracle Transaction management statements

Oracle Transaction management statements

You can use the following transaction management statements with one or
more transaction objects to manage connections and transactionsfor an Oracle

database:
« CONNECT
 DISCONNECT
« COMMIT
* ROLLBACK
See also Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

Oracle Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK

Thefollowing tablelists each transaction management statement and describes
how it works when you use any Oracle interface to connect to a database:

366 PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

See also

Statement Description

CONNECT Establishes the database connection. After you assign vauesto
the required properties of the transaction object, you can execute
a CONNECT. After the CONNECT completes successfully,
PowerBuilder automatically starts an Oracle transaction. Thisis
the start of alogical unit of work.

DISCONNECT | Terminates a successful connection. DISCONNECT
automatically executesaCOMMIT to guarantee that all changes
made to the database since the beginning of the current unit of
work are committed.

COMMIT COMMIT terminatesthelogical unit of work, guaranteesthat all
changes made to the database since the beginning of the current
unit of work become permanent, and starts anew logical unit of
work.

ROLLBACK ROLLBACK terminatesalogical unit of work, undoes all
changes made to the database since the beginning of the logical
unit of work, and starts a new logical unit of work.

Note Oracle does not support the AutoCommit property of the transaction
object.

Oracle Performance and locking

Oracle Performance and locking

Rules

An important consideration when designing a database application is deciding
when CONNECT and COMMIT statements should occur to maximize
performance and limit locking and resource use. A CONNECT takesacertain
amount of time and cantie up resources during thelife of the connection. If this
timeis significant, then limiting the number of CONNECTSs is desirable.

After aconnection isestablished, SQL statements can cause locksto be placed
on database entities. The more locks there are in place at a given moment in
time, the more likely it is that the locks will hold up another transaction.

No set of rules for designing a database application is totally comprehensive.
However, when you design a PowerBuilder application, you should do the
following:

Connecting to Your Database 367

Oracle Performance and locking

Example 1

368

* Long-running connections Determine whether you can afford to have
long-running connections. If not, your application should connect to the
database only when absolutely necessary. After all the work for that
connection is compl ete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be
issued as often as possible to guarantee that al changes do in fact occur.
More importantly, COMMITs should be issued to release any locks that
may have been placed on database entities as aresult of the statements
executed using the connection.

« SetTrans or SetTransObject function Determine whether you want to
use default DataWindow transaction processing (the SetTrans function) or
control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have
many short-lived transactions, use the default DataWindow transaction
processing. If you want to keep connections open and issue periodic
COMMITs, use the SetTransObject function and control the transaction
yourself.

This script uses embedded SQL to connect to a database and insert arow in
the ORDER_HEADER table and arow in the ORDER_ITEM table.
Depending on the success of the statements in the script, the script executes a
COMMIT or ROLLBACK.

// Set the SQLCA connection properties.

SQLCA.DBMS = "O73"
SQLCA.servername = "@TNS:SHOPFLR"
SQLCA.logid = "JPL"

SQLCA.logpass = "STUMP"

// Connect to the database.
CONNECT USING SQLCA;

// Insert a row into the ORDER_HEADER table.

// A ROLLBACK is required only if the first row

// was inserted successfully.

INSERT INTO ORDER HEADER (ORDER_ID, CUSTOMER_ID)
VALUES (7891, 129);

// Test return code for ORDER HEADER insertion.
If SQLCA.sglcode = 0 then

// Since the ORDER_HEADER is inserted,
// try to insert ORDER_ITEM.
INSERT INTO ORDER ITEM &
(ORDER_ID, ITEM NBR, PART NBR,QTY)

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

VALUES (7891, 1, '991PLS', 456);

// Test return code for ORDER_ITEM insertion.
If SQLCA.sglcode = -1 then

// The insert failed.
// Roll back insertion of ORDER_HEADER.
ROLLBACK USING SQLCA;
End If
End If

COMMIT USING SQLCA;

// Disconnect from the database.
DISCONNECT USING SQLCA;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Example 2 This example uses the scripts for the Open and Close events in awindow and
the Clicked event in a CommandButton to illustrate how you can manage
transactions in a Datawindow control. Assume the window contains a
Datawindow control dw_1 and the user entersdatain dw_1 and then clicksthe
Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the
programmer is responsible for managing the transaction.

The window Open event script:

// Set the transaction object properties
// and connect to the database.
// Set the SQLCA connection properties.

SQLCA.DBMS = "O73"
SQLCA.servername = "@TNS:SHOPFLR"
SQLCA.logid = "JPL"

SQLCA.logpass = "STUMP"

// Connect to the database.
CONNECT USING SQLCA;

// Tell the DataWindow which transaction object
// to use.
dw_1.SetTransObject (SQLCA)

The CommandButton Clicked event script:

Connecting to Your Database 369

Oracle Non-cursor statements

// Declare ReturnValue an integer.
integer ReturnValue

// Update dw_1.
ReturnValue = dw_1.Update()

// Test to see whether the updates were successful.
If ReturnvValue = -1 then

// The updates were not successful.

// Roll back any changes made to the database.
ROLLBACK USING SQLCA;

Else

// The updates were successful.

// Commit any changes made to the database.
COMMIT USING SQLCA;

End If

The window Close event script:

// Since we used SetTransObject,
// disconnect from the database.
DISCONNECT USING SQLCA;

Oracle Non-cursor statements
The statements that do not involve cursors are;
* DELETE (Oracle DELETE, INSERT, and UPDATE)
* INSERT (Oracle DELETE, INSERT, and UPDATE)
* Oracle SELECT (singleton)
» UPDATE (Oracle DELETE, INSERT, and UPDATE)

Oracle DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE
statements the same way. PowerBuilder inspects them for any PowerScript
variablereferences and replaces all references with aconstant that conformsto
Oraclerulesfor the data type.

370 PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

Example

When is this
substitution technique
used?

See also

Assume you enter the following statement:
DELETE FROM employee WHERE emp id = :emp id var;

In this example, emp_id var is aPowerScript variable with the data type of
integer that has been defined within the scope of the script that contains the
DELETE statement. Beforethe DEL ETE statement isexecuted, emp_id varis
assigned a value (say 691) so that when the DELETE statement executes, the
database receives the following statement:

DELETE FROM employee WHERE emp id = 691;

This variable substitution technique is used for all PowerScript variable types.
When you use embedded SQL, precede all PowerScript variables with a colon

(1)
Oracle SELECT

Oracle SELECT

Example 1

The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the
substitution as described above for DELETE, INSERT, AND UPDATE.

e Output variables are used to return values based on the result of the
SELECT statement.

Assume you enter the following statement:

SELECT emp name, emp_ salary
INTO :emp name var, :emp_salary var
FROM employee WHERE emp id = :emp id var;

In this example, emp_id_var, emp_salary_var, and emp_name _var are
variables defined within the scope of the script that contains the SELECT
statement, and emp_id_var is processed as described in the DELETE example
above.

Bothemp_name _var and emp_salary_var areoutput variablesthat will be used
to return values from the database. The data types of emp_name_var and
emp_saary_var should be the PowerScript data types that best match the
Oracle data type. When the data types do not match perfectly, PowerBuilder
converts them.

Connecting to Your Database 371

Oracle SELECT

Example 2

372

How big should numeric output variables be?
For numeric data, the output variable must be large enough to hold any value

that may come from the database.

Assumethevaluefor emp_id_var is691 asin the previous example. When the
SELECT statement executes, the database receives the following statement:

SELECT emp_name,emp_salary
FROM employee WHERE emp 1d=691;

If the statement executes with no errors, datalocations for the result fields are
bound internally. The data returned into these locations is then converted as
necessary, and the appropriate PowerScript variables are set to those values.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. It also
assumes the data type of the emp_id column in the employee table is
CHARACTERJ[10].

The user entersan employee | D into theline edit se_Emp and clicksthe button
Cb_Delete to delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteiis:

// Make sure we have a value.
if sle Emp.text <> "" then

// Since we have a value, let's try to delete it.
DELETE FROM employee
WHERE emp_id = :sle_Emp.text;

// Test to see if the DELETE worked.
if SQLCA.sglcode = 0 then

// It seems to have worked, let user know.
MessageBox ("Delete", &
"The delete processed successfully!")
else

// It didn't work.
MessageBox ("Error", &
"The delete failed. Invalid Employee ID")
end if
else

// No input value. Prompt user.

MessageBox ("Error", &

"An employee ID is required for delete!")
end if

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

Example 3

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

This example assumes the default transaction object (SQLCA) has been
assigned valid values and a successful CONNECT has executed. The user
wants to extract rows from the employee table and insert them into the table
named extract_employees. The extraction occurs when the user clicks the
button Cb_Extract. The boolean variable YoungWorkersis set to TRUE or
FAL SE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

integer EmployeeAgelLowerLimit
integer EmployeeAgeUpperLimit

// Do they have young workers?
if (YoungWorkers = TRUE) then

// Yes - set the age limit in the YOUNG range.
// Assume no employee is under legal working age.
EmployeeAgelowerLimit = 16

// Pick an upper limit.
EmployeeAgeUpperLimit = 42
else

// No - set the age limit in the OLDER range.
EmployeeAgelowerLimit = 43

// Pick an upper limit that includes all
// employees.

EmployeeAgeUpperLimit = 200
end if

INSERT INTO extract employee (emp id,emp name)
SELECT emp_id, emp_name FROM employee
WHERE emp_age >= :EmployeeAgeLowerLimit AND
emp age <= :EmployeeAgeUpperLimit;

Connecting to Your Database 373

Oracle Cursor statements

Oracle Cursor statements

In embedded SQL, statementsthat retrieve dataand statementsthat update data
can both involve cursors.

Retrieval statements The retrieval statements that involve cursors are;
 DECLARE cursor_name CURSOR FOR ...
* OPEN cursor_name
e FETCH cursor_nameINTO ...
e CLOSE cursor_name

Update statements The update statements that involve cursors are:
e UPDATE ... WHERE CURRENT OF cursor_name
e DELETE... WHERE CURRENT OF cursor_name
PowerBuilder supports all Oracle cursor features.

See also Oracle Cursor support summary
Oracle Retrieval
Oracle Update

Oracle Retrieval

Retrieval using cursorsis conceptualy similar to retrieval in the singleton
SELECT. The main difference is that since there can be multiple rowsin a
result set, you control when the next row is fetched into the PowerScript
variables.

If you expect only asinglerow to exist in the employee table with the specified
emp_id, use the singleton SELECT. In asingleton SELECT, you specify the
SELECT statement and destination variablesin one concise SQL statement:

SELECT emp name, emp salary
INTO :emp_name_var, :emp salary var
FROM employee WHERE emp_id = :emp id var;

However, if the SELECT may return multiple rows, you must:
1 Declareacursor.

2 Openit (which conceptually executes the SELECT).

374 PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

Declaring and opening
a cursor

Example

Fetching Rows

3 Fetch rows as needed.
4 Closethe cursor.

Declaring a cursor istightly coupled with the OPEN statement. The
DECLARE specifiesthe SELECT statement to be executed, and the OPEN
actually executesit.

Declaring acursor issimilar to declaring avariable; acursor isanonexecutable
statement just like avariable declaration. The first step in declaring acursor is
to define how the result set looks. To do this, you need a SELECT statement,
and since you must refer to the result set in subsequent SQL statements, you
must associate the result set with alogical name.

Note For UPDATE ... WHERE CURRENT OF cursor_name and DELETE ...
WHERE CURRENT OF cursor_name statements to execute successfully, the
SELECT statement must contain the FOR UPDATE clause.

Assume the SingleLineEdit sle_1 contains the state code for the retrieval :

// Declare cursor emp_curs for employee table
// retrieval.
DECLARE emp_curs CURSOR FOR
SELECT emp_id, emp name FROM EMPLOYEE
WHERE emp_state = :sle_1l.text;

// For UPDATE WHERE CURRENT OF cursor_ name and
// DELETE WHERE CURRENT OF cursor_ name to work
// correctly in Oracle 7, include the FOR UPDATE
// clause in the SELECT statement.

// Declare local variables for retrieval.
string emp_id_var
string emp name_var

// Execute the SELECT statement with
// the current value of sle 1.text.
OPEN emp_curs;

// At this point, if there are no errors,
// the cursor is available for further processing.

In the singleton SELECT, you specify variables to hold the values for the
columnswithin the selected row. The FETCH statement syntax issimilar to the
syntax of the singleton SELECT. Values are returned INTO a specified list of
variables.

This example continues the previous example by retrieving some data:

Connecting to Your Database 375

Oracle Update

Closing the cursor

Oracle Update

Example 1

376

// Get the first row from the result set.
FETCH emp_curs INTO :emp id var, :emp name var;

If at least onerow can beretrieved, thisFETCH placesthevauesof theemp id
and emp _name columnsfrom thefirst row in the result set into the PowerScript
variablesemp id _var andemp name_var. FETCH statementstypically occur
in aloop that processes several rows from aresult set (one row at atime), but
that is not the only way they are used.

What happens when the result set is exhausted?
FETCH returns +100 (not found) in the SQL Code property within the

referenced transaction object. Thisis an informational return code; -1 in
SQL Code indicates an error.

The CLOSE statement terminates processing for the specified cursor. CLOSE
rel eases resources associ ated with the cursor, and subsequent referencesto that
cursor are allowed only if another OPEN is executed. Although you can have
multiple cursors open at the sametime, you should close the cursors as soon as
possible for efficiency reasons.

After aFETCH statement compl etes successfully, you are positioned on a
current row within the cursor. At this point, you can execute an UPDATE or
DELETE statement using the WHERE CURRENT OF cursor_name syntax to
update or delete the row. PowerBuilder enforces Oracle cursor update
restrictions, and any violation results in an execution error.

This cursor exampleillustrates how you can loop through aresult set. Assume
the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

The statements retrieve rows from the employee table and then display a
message box with the employee name in each row that is found.

// Declare the emp curs cursor.
DECLARE emp_ curs CURSOR FOR
SELECT emp_name FROM EMPLOYEE
WHERE emp state = :sle_1.text;

// For UPDATE WHERE CURRENT OF cursor name and
// DELETE WHERE CURRENT OF cursor_ name to work

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

// correctly in Oracle 7, include the FOR UPDATE
// clause in the SELECT statement.

// Declare a destination variable for employee
// names.
string emp name_var

// Execute the SELECT statement with the
// current value of sle 1.text.
OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp curs INTO :emp_name_var;

// Loop through result set until exhausted.
DO WHILE SQLCA.sglcode = 0

// Display a message box with the employee name.
MessageBox ("Found an employee!",emp name var)

// Fetch the next row from the result set.
FETCH emp curs INTO :emp_name_var;
LOOP

// All done, so close the cursor.
CLOSE emp curs;

Error checking
Although you should test the SQL Code after every SQL statement, these

examples show statements to test the SQL Code only to illustrate a specific
point.

Example 2 This cursor example illustrates how to use a cursor to update or delete rows.
The statements use emp_curs to retrieve rows from the employee table and
then ask whether the user wants to del ete the employee:

Connecting to Your Database

// Declare the emp curs cursor.
DECLARE emp_curs CURSOR FOR
SELECT emp name FROM employee
WHERE emp state = :sle 1.text;

// Declare a destination variable for employee
// names.
string emp name var

// Declare a return variable for the MessageBox.
int return var

// Execute the SELECT statement with the current
// value of sle 1l.text.

377

Oracle Cursor support summary

OPEN emp_curs;

// Fetch the first row from the result set.
FETCH emp_curs INTO :emp_name_var;

// Loop through result set until it is
// exhausted.
DO WHILE SQLCA.sglcode = 0

// Ask the user to confirm the deletion.
return var = MessageBox("Want to delete?", &
emp var name, Question!, YesNo!, 2)

// Delete?
If (return var = 1) then

// Yes - delete the employee.
DELETE FROM employee
WHERE CURRENT OF emp_ curs;
End If

// Fetch the next row from the result set.
FETCH emp_curs INTO :emp_name_var;
LOOP

// All done, so close the cursor.
CLOSE emp curs;

Oracle Cursor support summary

When you use cursors with any Oracle interface, keep the following pointsin
mind:

» Oracle provides native support for cursors.
» PowerBuilder supports retrieval using cursors.

» PowerBuilder supports delete or update using cursors.

Oracle Database stored procedures

Oracle stored If your database is Oracle Version 7.2 or higher, you can use an Oracle stored
procedures procedure that has a result set asan IN OUT (reference) parameter.

378 PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

Methods for using
Oracle stored
procedures

See also

Procedures with a single result set You can use stored procedures that
return asingle result set in DataWindow objects, reports, and embedded SQL,
but not when using the RPCFUNC keyword to declare the stored procedure as
an external function or subroutine.

Procedures with multiple result sets You can use stored procedures that
return multiple result sets only in embedded SQL. Multiple result sets are not
supported in Datawindow objects, reports, or with the RPCFUNC keyword.

The 090 database interface supports SQL CREATE TY PE and CREATE
TABLE statementsfor Oracle user-defined types (objects) in the ISQL view of
the Database painter. It correctly handles SQL SELECT, INSERT, UPDATE,
and DEL ETE statements for user-defined types in the Database and
Datawindow painters. For more information, see Chapter 10, “Using Oracle.”

There are three methods for using Oracle stored procedures in a PowerBuilder
application:

» Asadatasource for Datawindow objects.

« RPCFUNC keyword (Recommended) Usethe RPCFUNC keyword to
declarethe stored procedure as an external function or external subroutine.
You cannot use the RPCFUNC keyword with Oracle stored procedures
that return result sets. Using the RPCFUNC keyword to declare the stored
procedure provides the best performance and has more supported features
and fewer limitations than the DECLARE Procedure and PBDBMS
methods.

 DECLARE Procedure statement Use the DECLARE Procedure
(Oracle DECLARE and EXECUTE) statement to declare the stored
procedure as an external function or external subroutine. Thisincludes
support for fetching against Oracle stored procedures that return result
sets.

Supported features when using Oracle stored procedures
Using DECLARE, EXECUTE, FETCH, and CL OSE with Oracle stored
procedures

Connecting to Your Database 379

Supported features when using Oracle stored procedures

Supported features when using Oracle stored

procedures

Supported features
with RPCFUNC
keyword

Supported features
with DECLARE
Procedure statement

The following are supported and unsupported Oracle PL/SQL features when
you use the RPCFUNC keyword to declare the stored procedure:

You can

You cannot

Use N, OUT, and IN OUT parameters

Pass and return records

Use an unlimited number of parameters

Overload procedures

Pass and return PowerScript arrays
(PL/SQL tables)

Use function return codes

Use blobs up to 32,512 bytes long as
parameters

The following are supported and unsupported Oracle PL/SQL features when
you use the DECL ARE Procedure statement:

You can

You cannot

Use IN and OUT parameters

Use IN OUT parameters

Use up to 256 parameters

Pass and return records

Use more than 256 parameters

Pass and return PowerScript arrays
(PL/SQL tables)

Overload procedures

For an example that uses a REF CURSOR variable of type IN OUT, see

Chapter 10, “Using Oracle.”

Using DECLARE, EXECUTE, FETCH, and CLOSE with
Oracle stored procedures

PowerBuilder provides SQL statements that are very similar to cursor
operations to support retrieval using database stored procedures. In
PowerBuilder embedded SQL, there are four commands that involve database

380

stored procedures:

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

¢« DECLARE procedure_name PROCEDURE FOR ... (Oracle DECLARE
and EXECUTE)

e EXECUTE procedure_name (Oracle DECLARE and EXECUTE)
¢« FETCH procedure_name INTO ... (Oracle FETCH)
¢ CLOSE procedure_name (Oracle CLOSE)

Oracle DECLARE and EXECUTE

Example 1

PowerBuilder requires a declarative statement to identify the database stored
procedure that is being used and alogical name that can be referenced in
subsequent SQL statements. The general syntax for declaring a procedure is:

DECLARE logical procedure name PROCEDURE FOR
Oracle procedure name(:InParaml,:InParam2, ...)
{USING transaction object};

where logical_procedure_name can be any valid PowerScript data identifier
and Oracle_procedure_name is the name of the stored procedure in the
database.

The parameter references can take the form of any valid parameter string that
Oracle accepts. PowerBuilder does not inspect the parameter list format except
for purposes of variable substitution. The USING clauseisrequired only if you
are using atransaction object other than the default transaction object.

You can use Oracle Named or Positional notation to specify the procedure
arguments. Positional is simpler to specify, but you must use Named if any
output parameters are defined to the left of any input parameters.

If astored procedure is defined as:

CREATE PROCEDURE spml
(dept varchar2, mgr_name OUT varchar2)
IS lutype varchar2(10) ;
BEGIN
SELECT manager INTO mgr name FROM mgr_ table
WHERE dept name = dept;
END;

To declare that procedure for processing within PowerBuilder, you code:

DECLARE dept proc PROCEDURE FOR
spml (:dept) ;

Connecting to Your Database 381

Oracle DECLARE and EXECUTE

Example 2

Example 3

382

Note that this declaration is a non-executable statement, just like a cursor
declaration. Where cursors have an OPEN statement, procedures have an
EXECUTE statement.

When the EXECUTE statement executes, the procedure is invoked. The
EXECUTE refersto thelogical procedure name.

EXECUTE dept proc;

The following example that declares afunction in a service object that reads a
pipe shows the use of named notation:

public function integer f GetId (string as_PipeName)
double 1dbl Id

DECLARE f GetId PROCEDURE FOR
f GetId (pipe name => :as_PipeName) USING SQLCA;

EXECUTE f GetId;
FETCH f GetId INTO :1dbl Id;
CLOSE f_GetId;
RETURN 1dbl Id;
Given this procedure:

CREATE OR REPLACE PROCEDURE spu edt object (
o_id object OUT NUMBER,

o _message OUT VARCHAR2,

a_id object NUMBER,

a_param VARCHAR2 := NULL,
a_value VARCHAR2 := NULL

) as

begin

o_id object := 12345;

o _message := 'Hello World';
end;

The DECL ARE statement must use named notation because output parameters
are defined to the left of input parameters:

dec{0} o _id object, id obiect = 54321
string o_message, param = 'Test'

DECLARE proc_update PROCEDURE FOR spu_edt object (
a_id object => :id object,

a_param => :param

)

USING SQLCA;

PowerBuilder Classic

CHAPTER 23 Using Embedded SQL with Oracle

EXECUTE proc_update;

if SQLCA.SglCode 0 then
SQLCA.f out error()
RETURN -1

end if

FETCH proc_update INTO :o0 id object, o message;
if SQLCA.SglCode 0 then
SQLCA.f out error()

RETURN -1
end if

Oracle FETCH

To access rows returned by a procedure, you use the FETCH statement as you
did for cursors. You can execute the FETCH statement after any EXECUTE
statement that executes a procedure that has output parameters.

Example FETCH dept proc INTO :name_var;

The FETCH FROM procedure statements must exactly match the output
parameters returned by the stored procedure when it executes.

Oracle CLOSE

If a database stored procedure has output parameters, it must be closed when
processing is complete.

Closing a procedure looks the same as closing a cursor.

Example CLOSE dept_proc;

Connecting to Your Database 383

Oracle CLOSE

384 PowerBuilder Classic

PART 7 Appendix

The Appendix describes how to modify the PBODB125
initialization file.

APPENDIX [[Adding Functions to the
PBODB125 Initialization File]

[[[About this appendix] [Usually, [you do not need to modify the PBODB125 initializationfile]. In
certain situations, however, you might need to add functions to the
PBODB125 initialization file for connections to your back-end DBMS
through the ODBC or OLE DB interface in PowerBuilder.]]

[This appendix describes how to add functions to the PBODB125
initialization file if necessary.]

[[[Contents] [Topic] [Page]
[[About the PBODB125 initialization fil€]] [[387]]
[[Adding functions to PBODB125.INI]] [[388]]

[[About the PBODB125 initialization file]

[[What is the PBODB125 [When you access data through the ODBC interface, PowerBuilder uses

initialization file?] the PBODB125 nitialization file ((PBODB125.INI]) to maintain accessto
extended functionality in the back-end DBM S for which ODBC does not
providean API call. Examples of extended functionality are [SQL] syntax
or function calls specific to a particular DBMS.]]

[[Editing PBODB125.INI] [In most cases, you do [not] need to modify [PBODB125.INI]. Changesto
thisfile can adversely affect PowerBuilder. Change [PBODB125.INI]
only if you are asked to do so by a Technical Support representative.]

[However, you [can] edit [PBODB125.INI] if you need to add functions
for your back-end DBMS.]

[If you modify [PBODB125.INI], first make a copy of the existing file.
Then keep arecord of all changesyou make. If you call Technical Support
after modifying [PBODB125.INI], tell therepresentativethat you changed
the file and describe the changes you made.]]]

Connecting to Your Database 387

Adding functions to PBODB125.INI

[[Adding functions to PBODB125.INI]

[[PBODB125.INI] lists the functions for certain DBM Ss that have ODBC
drivers. If you need to add a function to [PBODB125.INI] for use with your
back-end DBMS, you can do either of the following:

* [[[[Existing sections] [Add the function to the Functions section for
your back-end database if this section existsin [PBODB125.INI].]]]

* [[[New sections] [Create new sections for your back-end DBMSin
[PBODB125.INI] and add the function to the newly created Functions
section.]]]1]

[[Adding functions to an existing section in the file]

388

[If sectionsfor your back-end DBMS [already exist] in [PBODB125.INI], use
the following procedure to add new functions.]

[J[[To add functions to an existing section in PBODB125.INI:]
1 [[[Open[PBODB125.INI] in one of the following ways:

e [[[Usethe File Editor in PowerBuilder. (For instructions, seethe
[Users Guidg].)]]

* [[Useany text editor outside PowerBuilder.]]]]]

2 [[Locate the entry for your back-end DBMSin the DBMS Driver/DBMS
Settings section of [PBODB125.INI].]

[For example, here isthePBODB125.INI] entry for SQL Anywhere:]

[***]

[
[;DBMS Driver/DBMS Settings see comments at end]
[;of file]

[***]
[...1]

[[[SQL] Anywhere]]

[PBSyntax="'WATCOM50 SYNTAX']
[PBDateTime="'STANDARD DATETIME']
[PBFunctions="'ASA FUNCTIONS']]

[[PBDefaultValues="'autoincrement, current date,]
[current time,current timestamp,timestamp,]
[null,user']

[PBDefaultCreate='YES']

[PBDefaultAlter='YES']

PowerBuilder Classic

APPENDIX Adding Functions to the PBODB125 Initialization File

3

Connecting to Your Database

[PBDefaultExpressions='YES']
[DelimitIdentifier='YES"']
[PBDateTimeInvalidInSearch="'NO"]
[PBTimeInvalidInSearch="'YES']
[PBQualifierIsOwner='NO"']]

[[PBSpecialDataTypes="'WATCOM SPECIALDATATYPES']
[IdentifierQuoteChar="'""]
[PBSystemOwner="'sys,dbo"']

[PBUseProcOwner="'YES']

[SQLSrvrTSName="'YES']

[SQLSrvrTSQuote="'YES']

[SQLSrvrTSDelimit="'YES"']
[ForeignKeyDeleteRule='Disallow if Dependent Rows]
[Exist (RESTRICT),Delete any Dependent Rows]
[(CASCADE) , Set Dependent Columns to NULL]

[(SET NULL) ']

[TableListType='GLOBAL TEMPORARY’']]]

[[Find the name of the sectionin [PBODB125.INI] that contains function
information for your back-end DBMS]

[To find this section, look for aline similar to the following in the DBMS
Driver/DBMS Settings entry:

[PBFunctions="' [section name] ']]

[For example, the following linein the DBMS Driver/DBMS Settings
entry for SQL Anywhere indicates that the name of the Functions section
isASA_FUNCTIONS:

[PBFunctions="'ASA FUNCTIONS']]]

[[Find the Functions section for your back-end DBMSin
[PBODB125.INI].]

[For example, here is the Functions section for SQL Anywhere:]

[[;***]

[;Functions]
[;***]

[[ASA FUNCTIONS]]

[AggrFuncs=avg (x) ,avg(distinct x),count (x),]

[count (distinct x),count(*),list(x),]

[list (distinct X),max(x),max(distinct x),]

[min(x),min (distinct x),sum(x),sum(distinct x)]]

[[Functions=abs (x) ,acos (x) ,asin (x),atan(x),]
[atan2 (x,y) ,ceiling(x) ,cos (x),cot (x) ,degrees (x),

]

389

Adding functions to PBODB125.INI

390

11
[

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[
[
[
[
[
[
[
[
[
[
[

exp (x) ,floor (x),log(x),logl0 (x),]

mod (dividend, divisor) ,pi (*) ,power (x,y) ,]
radians (x) ,rand () ,rand(x),]

remainder (dividend,divisor) , round (x,y) ,]
sign(x),sin(x),sqgrt (x),tan(x),]

"truncate" (x,y),ascii (x),byte length(x),]

byte substr(x,y,z),char(x),char length(x),]
charindex (x,y) ,difference (x,y) insertstr(x,vy, z),

lcase(x),left(x,y),length(x), locate(x,y,z),]
lower (x) ,ltrim(x) ,patindex('x"',y),repeat(x,y),]
replicate (x,y) ,right (x,y),rtrim(x),]
similar (x,y),soundex (x), space(x),str(x,y,2z),
string(x,...),stuff(w,x,y,z),substr(x,y,2z),]
trim(x) ,ucase (x),upper (x),date(x),]
dateformat (x,y) ,datename (x,y) ,day (x),]
dayname (x) ,days (x) ,dow (x) , hour (x) ,hours (x) ,]
minute (x) ,minutes (x) ,minutes (x,y) ,month (x),]
monthname (x) ,months (x) ,months (x,y) ,now (*) ,]
quarter (x) , second (x) , seconds (x) , seconds (x,Vy) ,]
today (*) ,weeks (x) ,weeks (x,y) ,year (x) ,years (x) ,]
years (x,y) ,ymd(x,y,z) ,dateadd(x,y,2z),]
datediff (x,y,z),datename (x,y) ,datepart (x,y),]
getdate () ,cast (x as y),convert (x,y,z),]1]

]

hextoint (x) ,inttohex (x),]

connection property(x,...),datalength(x),]
db id(x),db name (x),db property(x),]

next connection(x),next database (x),]
property (x) ,property name (x),]
property number (x),property description(x),]
argn(x,y,...),coalesce(x,...),]
estimate(x,y,z),estimate source(x,y,z),]
experience estimate(x,y,z),ifnull (x,y,z),]
index estimate(x,y,z),isnull(x,...),]
number (*) ,plan(x), traceback(*)]1]]

[[To add anew function, type acomma followed by the function name at
the end of the appropriate function list, as follows:

[[[[Aggregate functions] [Add aggregate functions to the end of

the AggrFuncs list.]]]

[[[All other functions] [Add all other functions to the end of the
Functions list.]]1]]

PowerBuilder Classic

APPENDIX Adding Functions to the PBODB125 Initialization File

6

[[Case sensitivity]
[If the back-end DBM S you are using is case sensitive, be sureto use the

required case when you add the function name.]]

[The following example shows a new function for SQL Anywhere added
at the end of the Functions list:

[;***]

[;Functions]
[;***]

[[ASA_FUNCTIONS]]

[AggrFuncs=avg (x) ,avg(distinct x),count (x),]

[count (distinct x),count (*),list(x),]

[list (distinct x),max(x),max(distinct x),]

[min(x),min (distinct x),sum(x),sum(distinct x)]
[Functions=abs (x) ,acos (x) ,asin(x) ,atan(x),]

[atan2 (x,y),ceiling(x),cos(x),cot (x),degrees (x),
]

[exp (x) ,floor (x),log(x),1logl0 (x),]

[mod (dividend, divisor) ,pi (*) ,power (x,y),]

[radians (x),rand(),rand(x),]

[L]

[number (*) ,plan (x) , traceback (*) ,newfunction()]1]1]

[[Save your changes to [PBODB125.INI].]111]

[[Adding functions to a new section in the file]

[If entriesfor your back-end DBM S [do not exist] in[PBODB125.INI], usethe
following procedure to create the required sections and add the appropriate
functions.]

[[Before you start]
[For more about the settings to supply for your back-end DBMSin

[PBODB125.1NI], read the comments at the end of the file.]]

[J[[To add functions to a new section in PBODB125.INI:]

1

Connecting to Your Database

[[[Open [PBODB125.INI] in one of the following ways:

[[[Usethe File Editor in PowerBuilder. (For instructions, see the
[Users Guide].)]]

[[Use any text editor outside PowerBuilder.]]]]]

391

Adding functions to PBODB125.INI

392

2

[[Edit the DBMS Driver/DBM S Settings section of the PBODB125
initialization file to add an entry for your back-end DBMS.]

[[Finding the name]
[The name required to identify the entry for your back-end DBMSin the

DBMS Driver/DBMS Settings section isin [PBODB125.INI].]]

[Make sure that you:

[[[Follow the instructionsin the comments at the end of
[PBODB125.INI].]]

[[Usethe same syntax asexisting entriesin the DBMS Driver/DBM S
Settings section of [PBODB125.INI].]]

[[1nclude a section name for PBFunctions.]]]]

[For example, hereistherelevant portion of an entry for aDB2/2 database:

***]

[;

[;DBMS Driver/DBMS Settings]
[,***]
[[DB2/2]]

[...]

[PBFunctlons_'DB22 FUNCTIONS']

[...111]

[[Edit the Functions section of [PBODB125.INI] to add an entry for your
back-end DBMS.]

[Make sure that you:

[[[Follow the instructionsin the comments at the end of
[PBODB125.INI].]]

[[Use the same syntax as existing entries in the Functions section of
[PBODB125.INI].]]

[[Give the Functions section the name that you specified for
PBFunctionsin the DBMS Driver/DBMS Settings entry.]]]]

[For example:

;***]
;Functions]
;***]
[DB22_ FUNCTIONS]]

AggrFuncs=avg () ,count () ,list () ,max (), min(),sum()]
Functions=curdate (), curtime () ,hour(), ...]11]1]

[
[
[
[
[
[

PowerBuilder Classic

APPENDIX Adding Functions to the PBODB125 Initialization File

4

5

Connecting to Your Database

[[Type acomma followed by the function name at the end of the
appropriate function list, asfollows:

* [[[[Aggregate functions] [Add aggregate functionsto the end of
the AggrFuncslist.]]]

* [[[All other functions] [Add al other functionsto the end of the
Functions list.]]1]]

[[Case sensitivity]
[If the back-end DBM S you are using is case sensitive, be sure to use the

required case when you add the function name.]]

[The following example shows (in bold) a new DB2/2 function named
[substr]() added at the end of the Functions list:

[;***]

[;Functions]
[;***]
[[DB22_ FUNCTIONS]]

[AggrFuncs=avg () ,count () ,list () ,max () ,min(),sum()]
[Functions=curdate (), curtime (), hour (),
[substr()]1]1]

[[Save your changesto [PBODB125.INIT. 1111111

393

Adding functions to PBODB125.INI

394 PowerBuilder Classic

Index

A
accessing databases
ODBC datasources 24
troubleshooting any connection 198
troubleshooting JDBC connections 221
troubleshooting ODBC connections 213
Adaptive Server Enterprise database interface 287
Adaptive Server Enterprise database interface, using
embedded SQL 287
ADO.NET interface
components 55
gettinghelp 53
getting identity column values 61
installing data providers 59
specifying connection parameters 60
using DataLink 60
API conformance levelsfor ODBC 21
applications
connecting to databasesfrom 191
in database interface connections 72
in ODBC connections 17
setting AutoCommit and Lock 194
setting database preferences 191
setting DBParm parameters 184, 186
tracing any database connection from 203
tracing JDBC connectionsfrom 224
tracing ODBC connectionsfrom 215
using Preview tab to set connection options 9,
168, 183, 184, 191
using Preview tab to set trace options 203, 216,
224
ASE DBMSidentifier 75
AutoCommit database preference
displayed on Preview tab 191
setting in database profile 187
setting in PowerBuilder script 191
AutoCommit Transaction object property 193

Connecting to Your Database

B

basic procedures
defining database interfaces 73
editing database profiles 168
importing and exporting database profiles 173
preparing ODBC data sources 23
selecting a database profile to connect 165
setting database parameters 181
setting database preferences 186
setting DBParm parameters 183
sharing database profiles 169
starting JDBC Driver Manager Trace 224
starting ODBC Driver Manager Trace 215
stopping Database Trace 206
stopping JDBC Driver Manager Trace 226
stopping ODBC Driver Manager Trace 218

C

case sengitivity, in PBODB initidization file 391, 393
client software
DirectConnect 155
Informix 97, 105
Microsoft SQL Server 113
Oracle 134
Sybase Adaptive Server Enterprise 80
CLOSE Cursor 303, 329, 352
CLOSE Procedure 257, 281, 308, 332, 357
columns
identity, Sybase Adaptive Server Enterprise 76
in extended attribute system tables 177
special timestamp, in Sybase SQL Anywhere 34
SQL naming conventions 24
COMMIT 241, 268, 290, 316, 340, 366
conformance levels for ODBC drivers 21
CONNECT 241, 268, 290, 316, 340, 366
Connect DB at Startup database preference 189
connect descriptors

395

Index

ODBC 27
Oracle 138
connecting to databases
about 11, 163, 167
and extended attribute system tables creation 174
at startup or from apainter 164
by selecting adatabase profile 165
during application execution 191
troubleshooting any connection 198
troubleshooting JDBC connections 221
troubleshooting ODBC connections 213
using database profiles 164
ConnectString DBParm in ODBC connections 27
conventions ~ xvi
CT-Library client software
for DirectConnect 155
for Sybase Adaptive Server Enterprise 75, 80
for Sybase Systems 49
CT-Library client software for Sybase Systems 59
cursor statements 248, 275, 299, 324, 348, 374

D

data providers
and OLE DB interface 46
obtaining 48
database connections for transactional components 229
database interfaces
about 71
connecting to databases 165
connection components 72
cregting database profiles 24
defining 73
DirectConnect 149
editing database profiles 168
importing and exporting database profiles 173
Informix 97
JDBC 38
Microsoft SQL Server 109
not supported in PowerBuilder Professional and
PowerBuilder Desktop 71
Orecle 129
preparing databases 73
sharing database profiles 169
Sybase Adaptive Server Enterprise 75

396

troubleshooting 198
Database painter, changing SQL terminator character
140
database parameters
character limit for strings in database profiles 183
ConnectString 27
DBConfigSection 61
displayed on Preview teab 183, 184
for Sybase Open Client directory services 88
howtoset 181
in ODBC connections 27
setting in PowerBuilder scripts 184
database preferences
AutoCommit 187, 191
AutoCommit and Lock displayed on Preview tab
191
howtoset 181
Keep Connection Open 189
Lock 187,191
Read Only 178, 189
setting in Database Preferences dialog box 189
setting in database profiles 9, 187
setting in PowerBuilder scripts 191
Shared Database Profiles 170, 189
SQL Terminator Character 189
Use Extended Attributes 178, 189
using ProfileString functiontoread 194
Database Preferences dialog box
about 189
General page, valuesfor 189
SQL Terminator Character box 140
Database Preferences property sheet
General property page, valuesfor 170
Database Profile button 165
Database Profile Setup dialog box
Auto Commit Mode check box 187
character limit for DBParm strings 183
editing profiles 168
Generate Trace check box 206
Isolation Level box 187
JDBC Driver Manager Trace, stopping 226
ODBC Driver Manager Trace, stopping 218
Preview tab 168, 183, 184, 191, 203, 216, 224
supplying sufficient information to connect 10
TraceFilebox 223
Trace JDBC Calscheck box 222

PowerBuilder Classic

Trace ODBC API Callscheck box 214
database profiles
about 7,164
character limit for DBParm strings 183
connect string for ODBC data sources 27
DBMS value for ODBC datasources 27
editing 168
importing and exporting 173
JDBC Driver Manager Trace, starting 222
JDBC Driver Manager Trace, stopping 226
Microsoft SQL Native Client database interface
114
ODBC Driver Manager Trace, stopping 218
Oracle database interfaces 138
selecting in Database Profilesdialog box 165
server name for Sybase Open Client directory
services 86
setting Isolation Level and AutoCommit Mode
187
shared 169, 171, 172
suppressing password display 167
Sybase Adaptive Server Enterprise database
interface 82
Sybase DirectConnect interface 157
Database Profiles dial og box
about 165
displaying shared profiles 171
Database section in initialization files 167
database stored procedures 252, 278, 304, 329, 330,
353, 378
Database Trace
about 198
annotating thelog 208
deleting or clearing thelog 209
log file contents 199
log fileformat 201
sampleoutput 209
starting in PowerBuilder scripts 203
stopping in PowerBuilder scripts 207
syntax displayed on Preview tab 203
viewingthelog 208
databases
accessing 24
connecting at startup or fromapainter 164
connecting with database profiles 164, 165
in database interface connections 72

Connecting to Your Database

Index

logging on for thefirst time 174
datatypes
Adaptive Server 76
conversion in PowerBuilder scripts 78
DirectConnect 152
Informix 98
Microsoft SQL Server 110
Oracle 130
special timestamp, Transact-SQL 34
SQL Server 110
Sybase Adaptive Server Enterprise 76
DateTime datatype, Informix 99
DB2/CS, IBM, DB2SY SPB.SQL script, using 158
DB2/MVS, IBM
accessing through DirectConnect 149
accessing through Open ServerConnect 149
DB2SYSPB.SQL script, using 158
DB2SY SPB.SQL script 159
DBConfigSection database parameter 61
DBHandle
Microsoft SQL Server example 338
ODBC example 239
OLEDB example 264
Oracleexample 364
Sybase Adaptive Server Enterprise example 288
DBMS
back end, adding ODBC functionsfor 388
entriesin PBODB initialization file 388, 392
system tables, displaying 175
trace keyword, adding to PowerBuilder application
script 204
trace keyword, displayed on Preview tab 203
trace keyword, removing from PowerBuilder
application script 207
value in database profiles 27
DBMS identifier
ASE 75
DIR 149
110 97
IN9 97
010 129
09 129
ORA 129
SNC 109
SYc 75
DBParm parameters

397

Index

displayed on Preview tab 168
for Sybase Open Client security services 84
PBCatalogOwner 160
using ProfileString functiontoread 186
DBParm Transaction object property 185
DBTRACE.LOGfile
about 198
annotating 208
contents 199
deleting or clearing 209
format 201
leaving open 208
sample output 209
viewing 208
DECLARE Procedure 253, 255, 261, 279, 285, 306, 330,
355, 381
DECLARE PROCEDURE statement 139
defining database interfaces
about 73
DirectConnect 157
editing database profiles 168
importing and exporting database profiles 173
Microsoft SQL Server 114
Orecle 138
sharing database profiles 169
Sybase Adaptive Server Enterprise 82
defining ODBC data sources
about 24
creating configurations and database profiles 24
editing database profiles 168
multiple data sources 27
sharing database profiles 169
Sybase SQL Anywhere 32
DELETE statement 245, 272, 296, 321, 345, 370
DIR DBMSidentifier 149
DirectConnect interface. See Sybase DirectConnect
interface
directory services, Sybase Open Client. See Sybase Open
Client directory services
DISCONNECT 241, 268, 290, 316, 340, 366
display formats, in extended attribute system tables 177
DIT base for Sybase Open Client directory services 86
DLL files
in database interface connections 72
in JDBC connections 39
in ODBC connections 17

398

ODBC.DLL 17
ODBC32.DLL 17
PBODB<version>DLL 17
DSN (data source name) value, in ODBC connect strings
27

E

EASDemoDB 17
edit styles, in extended attribute system tables 177
editing
database profiles 168
PBODB initidization file 387
shared database profiles 171
embedded SQL 237, 263, 287, 315, 337, 363
EXECUTE 253, 255, 257, 261, 279, 281, 285, 306,
330, 355, 381
exporting a database profile 173
extended attribute system tables
about 158,174
contents 177
controlling creation with Use Extended Attributes
database preference 178
controlling permissions 179
controlling updates with Read Only database
preference 178
cregting in DB2 databases 158
displaying 175
ensuring proper crestion 174
PBOwner in DB2SY SPB.SQL script 160
Extended SQL conformance level for ODBC 22

F

FETCH 256, 280, 307, 332, 350, 356, 383
FETCH FIRST 251, 328
FETCH LAST 251, 328
FETCH NEXT 250, 277, 327, 350
FETCH PRIOR 251, 328
FreeDBLibraries 6
functions, ODBC
adding to existing section in PBODB initiaization
file 388
adding to new section in PBODB initialization file

PowerBuilder Classic

391

G

General pagein Database Preferencesdidlogbox 189

General property page in Database Preferences
property sheet 170

Generate Trace check box in Database Profile Setup
dialogbox 206

granting permissions on extended attribute system
tables 179

H

help 23
datasource 15
Database Trace, using 198
for ODBC drivers 23,28
JDBC Driver Manager Trace, using 222
JDBC Website 37,53
Microsoft Universal Data Access 45, 53
ODBC Driver Manager Trace, using 213
onlineHelp, using 15, 23
Sybase Web site 45

heterogeneous cross-database joins 89

110 DBMSidentifier 97
IBM database interface, DB2SY SPB.SQL script, using
158
identity columns and datatype, Sybase Adaptive Server
Enterprise 76
identity columns, ADO.NET 61
importing a database profile 173
IN9 DBMS identifier 97
Informix client software 97, 105
Informix database interface 315
client softwarerequired 105
connection components 104
databases supported 97
datatypes supported 98
features supported by 110 100

Connecting to Your Database

Index

installing 106
preparing the database 105
verifying the connection 106
Informix database interface, using embedded SQL
315
initialization files
DBMS PROFILES section 172
in ODBC connections 24
locating when sharing database profiles 169
ODBC 26
ODBCINST 25
PBODB adding functionsto 387
reading DBMSvaluefrom 205, 207
reading DBParm valuesfrom 186, 218, 220, 225,
227
storing connection parameters 11, 167
suppressing password display 167
INSERT statement 245, 272, 296, 321, 345, 370
installing
Javavirtual machines 40
interval datatype, Informix 99
1Q
using JDBC interface 40
using ODBC interface 17
isolation levels and lock values, setting in database
profiles 187
ISQL, using to install stored procedures 93

J

Javavirtua machines, installing 40
JavaWeb site 37
JDBC connections, troubleshooting 221
JDBC database interface, troubleshooting 221
JDBC Driver Manager Trace
about 221
availability on different platforms 222
performance considerations 222
specifying anondefault log file 223
starting in database profiles 222
starting in PowerBuilder scripts 224
stopping in database profiles 226
stopping in PowerBuilder scripts 227
syntax displayed on Preview tab 224
viewingthelog 228

399

Index

JDBC drivers, troubleshooting 221
JDBC interface
about 37
components 39
data types supported 41
database server configuration 42
DLL filesrequired 39
drivers 40
Java classes package 39
Javavirtual machines 40
PBJDB<version>.DLL 41
registry entries 40
specifying connection parameters 43
using 38
JDBC Website 37
JDBC.LOG file
about 221
leaving open 228
performance considerations 222
using nondefault log fileinstead 223
viewing 228

K

Keep Connection Open database preference 189

L

large datatypes, and SQL Server 111
large object, as output parameter in Oracle stored procedure
143
Level 1 API conformance level for ODBC 21
Lock database preference
displayed on Preview tab 191
setting in database profiles 187
setting in PowerBuilder script 191
Lock Transaction object property 193
lock values and isolation levels, setting in database profiles
187
LOG files
JOBC.LOG 221, 228
PBTRACE.LOG 198, 208
specifying nondefault for JDBC Driver Manager Trace
223

400

SQL.LOG 213,220
logging in to databases for thefirst time 174

M

maintaining shared database profiles 172
Microsoft Data Link
using with ADO.NET interface 60
Microsoft Data Link, using with OLE DB interface 51
Microsoft SQL Native Client database interface
client softwarerequired 113

connection components

112

datatypes supported 110

defining 114

installing 114
preparing the database 113

verifying the connection

114

versions supported 109
Microsoft SQL Server database interface 337
Microsoft SQL Server database interface, using

embedded SQL 337

Microsoft Universal Data Access Web site 45, 53
Minimum SQL conformance level for ODBC 22
multiple ODBC data sources, defining 27
multiple-tier ODBC drivers 20

N

naming conventions, tablesand columns 24
NewLogic, database profile setting 11

non-cursor statements

O

244, 272, 295, 320, 345, 370

010 DBMSiidentifier 129
010 Oracle 10g Driver 129
090 DBMSidentifier 129
090 Oracle 9i Driver 129
OoDBC 23

ODBC (Open Database Connectivity)

about 16
components 17
defining datasources 24

PowerBuilder Classic

defining multiple data sources 27
driver conformance levels 21
ODBC initidization file 26
ODBCINST initidization file 25
preparing data sources 23
trandators, selecting for drivers 28
ODBC connect strings 27
ODBC data sources
accessing 24
creating configurations and database profiles 24
defining 24
defining multiple 27
editing database profiles 168
in ODBC connections 17
in ODBC initidization file 26
in ODBCINST initialization file 25
PBODB initidization file 387
preparing 23
sharing database profiles 169
Sybase SQL Anywhere 29
translators, selecting for drivers 28
troubleshooting 198, 213
ODBC database interface 237
ODBC database interface, using embedded SQL 237
ODBC Driver Manager 17
ODBC Driver Manager Trace
about 213
performance considerations 213
sample output 221
starting in database profiles 214
starting in PowerBuilder scripts 215
stopping in database profiles 218
stopping in PowerBuilder scripts 219
syntax displayed on Preview tab 216
viewingthelog 220
ODBC drivers
about 16
API conformancelevels 21
conformance levels, recommendations for 21
displaying Help 15, 23, 28
in ODBC connections 17
multiple-tier 20
PBODB initidization file 387
SQL conformancelevels 22
Sybase SQL Anywhere 29
trangators, selecting 28

Connecting to Your Database

Index

troubleshooting 198, 213
using 17
ODBC functions
adding to existing section in PBODB initialization
file 388
adding to new section in PBODB initialization file
391
ODBC initidization file
about 26
and PBODB initidization file 392
ODBC interface
about 16
connecting to data sources 165
DLL filesrequired 17
initialization filesrequired 24
ODBC initidlization file 26
PBODB initiadization file 387
troubleshooting 198, 213
using 17
ODBCINST initidizationfile 25
OLEDB interface 46
components 48
dataprovider 46
getting help 45
installing data providers 50
object interfaces supported 46
obtaining data providers, from other vendors 48
PBOLE<version>.DLL 49
specifying connection parameters 51
using DataLink 51
OLEDB databaseinterface 263
OLEDB database interface, using embedded SQL 263
Open Client software, Sybase 49, 59, 80, 155
ORA DBMSidentifier 129
ORA Oracle 11g Driver 129
Oracle database interface 363
Oracle database interface, using embedded SQL 363
Oracle database interfaces
client softwarerequired 134
connect strings or descriptors, specifying 138
connection components 133
datatypes supported 130
defining 138
preparing the database 134
using Oracle stored procedures 139
verifying the connection 135

401

Index

versions supported 129
Oracle SQL*Net client software 134
Oracle stored procedure

RPCcalsto 144

using LOB output parameter 143

P

passwords, suppressing display 167
PBCatalogOwner DBParm parameter, and
DB2SY SPB.SQL script 160
pbcatcol table 177
pbcatedt table 177
pbcatfmt table 177
pbcattbl table 177
pbcatvid table 177
PBIN9<version>.DLL file 104
PBJDB<version>.DLL 41
PBNewSPInvocation, ODBC DECLARE and EXECUTE
255
PBO10<version>.DLL file 129
PBO90<version>.DLL file 129
PBODB initiaization file
about 387
adding functionsto existing section 388
adding functions to new section 391
case sensitivity 391, 393
finding DBMS section namesin ODBC initidization file
392
special timestamp column support 35
PBODB<version>.DLL file 17
PBOLE<version>.DLL file 49
PBORA<version>.DLL file 129
PBSNC120.DLL file 112
PBSY C.SQL script
about 90
compared to PBSYC2.SQL script 92
finding 90
running with ISQL 93
running with WISQL 94
whentorun 90
PBSY C2.SQL script
about 91
compared to PBSYC.SQL script 92
finding 90

402

running with ISQL 93
running with WISQL 94
whentorun 91
PBTRSQL.LOG 211
permissions, granting on system tables 179
PowerBuilder Desktop
database interfaces, not supported 71
PowerBuilder initidization file
about 168
locating when sharing database profiles 169
saving shared database profileslocaly 171
setting Shared Database Profiles database preference
170
suppressing password display 167
PowerBuilder Professional
database interfaces not supported 71
PowerScript syntax, on Preview tab 11
preparing databases for use with database interfaces
about 73
DirectConnect 154
Informix 105
Microsoft SQL Server 113
Orecle 134
Sybase Adaptive Server Enterprise 49, 79
preparing databases for use with Sybase Adaptive Server
Enterprise 58
preparing ODBC data sources
about 23
Sybase SQL Anywhere 31
Preview tab
about 9, 11, 168, 183, 184
copying AutoCommit and Lock properties 191
copying Database Trace syntax 203
copying DBParm parameters 183, 184
copying DBParm properties 9, 168
copying JDBC Driver Manager Trace syntax 224
copying ODBC Driver Manager Trace syntax 216
PRINT statementsin SQL Server stored procedures 88
ProfileString function
setting AutoCommit and Lock in scripts 194
setting DBParm parametersin scripts 186
starting Database Tracein scripts 205
starting JDBC Driver Manager Trace in scripts
225
starting ODBC Driver Manager Trace in scripts
218

PowerBuilder Classic

stopping Database Trace in scripts 207
stopping JDBC Driver Manager Trace in scripts
227
stopping ODBC Driver Manager Tracein scripts
220
Prompt for Database Information check box 167

R

Read Only database preference 178, 189
registry, Windows

ODBCiinitidization file 26

ODBCINST initidization file 25
result sets, using Oracle stored procedures 140
ROLLBACK 241, 268, 290, 316, 340, 366
RPCFUNC keyword 139

S

scope_identity, usingin ADO.NET 61
scripts, PowerBuilder
datatype conversions 78
setting database preferences 191
setting DBParm values 184
starting Database Trace 203
starting JDBC Driver Manager Trace 224
starting ODBC Driver Manager Trace 215
using Preview tab to set connection options 9,
168, 183, 184, 191
using Preview tab to set trace options
224
using ProfileString functiontoread 186, 194
security services, Sybase Open Client. See Sybase
Open Client security services
SELECT 245, 273, 321, 346, 371
Select Tables dialog box, Show system tables check
box 175
Select Trandator dialogbox 28
semicolons, as default SQL terminator character 140
SERVER directory files
for creating repository in DB2 databases 159
for installing stored proceduresin Adaptive Server
Enterprise databases 90

203, 216,

Connecting to Your Database

Index

server name, specifying for Sybase Open Client
directory services 86
shared database profiles
maintaining 172
savinginloca initiaization file 171
settingup 170
Show system tables check box 175
SNC DBMSidentifier 109
sp_pb<version>table stored procedure
inPBSYC.SQL script 91
in PBSYC2.SQL script 92
SQL Anywhere ODBC Configuration dialog box 32
SQL conformance levelsfor ODBC 22
SQL files
DB2SYSPB.SQL 159
PBSYC.SQL 90
PBSYC2.S5QL 91
SQL naming conventions for tables and columns 24
SQL terminator character, changing in Database painter
140, 189
SQL*Net client software, Oracle 134
SQL.LOG file
about 213
leaving open 220
performance considerations 213
sampleoutput 221
viewing 220
SQL_OPT_TRACE parameter in ConnectOption
DBParm
adding to PowerBuilder application script 217
changing to SQL_OPT_TRACE_OFFin
PowerBuilder application script 219
SQL_OPT_TRACEFILE parameter in ConnectOption
DBParm
adding to PowerBuilder application script 217
SQLCA Transaction object
setting AutoCommit property 193
setting ConnectOption DBParm 217
setting DBParm property 185
setting Lock property 193
setting TraceFileDBParm 225
trace keyword in DBMS property 204, 207
starting
Database Trace in PowerBuilder application 203
JDBC Driver Manager Trace in devel opment
environment 222

403

Index

JDBC Driver Manager Trace in PowerBuilder
application 224
ODBC Driver Manager Trace in PowerBuilder
application 215
stopping
Database Trace in PowerBuilder application 207
JDBC Driver Manager Trace in development
environment 226
JDBC Driver Manager Trace in PowerBuilder
application 227
ODBC Driver Manager Trace in development
environment 218
ODBC Driver Manager Trace in PowerBuilder
application 219
stored procedures 252, 278, 304, 329, 330, 353, 378
about 89
created by PBSYC.SQL script 91
created by PBSYC2.SQL script 92
installing in Adaptive Server Enterprise databases 89
ISQL, usingtoinstall 93
not required for Microsoft SQL Server database interface
89
running scripts 92
whereto find scripts 90
WISQL, usingtoinstall 94
stored procedures, Oracle
about 139
changing SQL terminator character 140, 189
creating DataWindows and reports 143
with result sets, examples 141
with result sets, using 140
stored procedures, SQL Server, using PRINT statements
88
Sybase Adaptive Server Anywhere. See Sybase SQL
Anywhere
Sybase Adaptive Server Enterprise database interface 287
client softwarerequired 49, 59, 80
creating a DW based on a heterogeneous cross-database
join 89
datatypes supported 76
defining 82
directory services, using 85
identity columns 76
installing 81
installing stored procedures 89
platforms supported 75

404

preparing the database 49, 58, 79
security services, using 82
using SY J database interface for EAServer 76
verifying the connection 81
versions supported 75
Sybase Adaptive Server Enterprise database interface,
using embedded SQL 287
Sybase DirectConnect interface
client softwarerequired 155
data types supported 152
DB2SY SPB.SQL script, using 158
defining 157
platforms supported 151
preparing the database 154
using DirectConnect middleware 150
using Open ServerConnect middleware 150
verifying the connection 156
versions supported 151
Sybase EA Server, database connectionsfor transactional
components 229
Sybase Open Client directory services
about 85
DBParm parameters 88
requirementsfor using 85
specifying the server name 86
Sybase Open Client security services
about 82
DBParm parameters, login authentication 84
DBParm parameters, per-packet security 84
requirementsfor using 83
Sybase Open Client software 49, 59
about 80, 155
Sybase SQL Anywhere
accessing remote databases 29
adding functionsto PBODB initiaization file 388
connection components 30
creating configurations and database profiles 24
defining the data source 32
LOG files 32
network server, not included 29
platforms supported 29
preparingtouse 31
special timestamp columns 34
startup options, specifying 33
using 17
versionssupported 29

PowerBuilder Classic

Sybase, getting help from 23

sybsystemprocs database, Sybase Adaptive Server
Enterprise 93, 94

SYC DBMSiderntifier 75

SYSIBM, prohibited as DB2 table owner 160

system tables, displaying 175

T

tables
extended attribute, creating in DB2 databases
158
in extended attributes 177
PBOwner in DB2SY SPB.SQL script 160
SQL naming conventions 24
system, displaying 175
technical documents, Sybase, getting help from 15,
74
time datatype, Informix 99
timestamp, Transact-SQL special 34
Trace File box in Database Profile Setup dia og box
223
Trace JDBC Calls check box in Database Profile Setup
dialog box 222
trace keyword
adding to PowerBuilder application script 204
displayed on Preview tab 203
removing from PowerBuilder application script
207
Trace ODBC API Calls check box in Database Profile
Setup dialogbox 214
tracing database connections
about 197
Database Trace 198
JDBC Driver Manager Trace 221
ODBC Driver Manager Trace 213
sample output, Database Trace 209
sample output, ODBC Driver Manager Trace 221
transaction management statements 240, 268, 290,
316, 327, 339, 366
Transaction object, SQLCA
setting AutoCommit property 193
setting ConnectOption DBParm 217
setting DBParm property 185
setting Lock property 193

Connecting to Your Database

Index

setting TraceFile DBParm 225

trace keyword in DBMS property 204, 207
Transact-SQL specia timestamp in Sybase SQL

Anywhere 34

transators, ODBC 28
troubl eshooting database connections

about 197

Database Trace 198

JDBC Driver Manager Trace 221

ODBC Driver Manager Trace 213
typographica conventions xvi

U

Unicode

Adaptive Server 77

ADO.NET 54

database password encryption 11

DirectConnect 149

ODBC 16,40

OLEDB 47

Oracle9i, Oracle10g 131

support 16, 40
UNIX, using SY Jdatabase interface for Adaptive Server

76
UPDATE statement
345, 358, 370

Use Extended Attributes database preference 178, 189
using embedded SQL 237, 263, 287, 337, 363

245, 251, 272, 296, 309, 321,

V

validation rules, in extended attribute system tables
177

W

WISQL, for installing stored procedures 94
with PBNewSPInvocation 255

405

Index

406 PowerBuilder Classic

	PART 1 Introduction to Database Connections
	CHAPTER 1 Understanding Data Connections 3
	How to find the information you need 3
	Accessing data in PowerBuilder 5
	Accessing the EAS Demo DB 7
	Using database profiles 7
	About creating database profiles 7
	Creating a database profile 10
	What to do next 12
	PART 2 Working with Standard Database Interfaces

	CHAPTER 2 Using the ODBC Interface 15
	About the ODBC interface 15
	What is ODBC? 16
	Using ODBC in PowerBuilder 17
	Components of an ODBC connection 17
	Types of ODBC drivers 19
	Ensuring the proper ODBC driver conformance levels 21
	Obtaining ODBC drivers 22
	Using ODBC drivers with PowerBuilder Desktop 22
	Getting help with ODBC drivers 23
	Preparing ODBC data sources 23
	Defining ODBC data sources 24
	How PowerBuilder accesses the data source 24
	Defining multiple data sources for the same data 27
	Displaying Help for ODBC drivers 28
	Selecting an ODBC translator 28
	Defining the ODBC interface 29
	Sybase SQL Anywhere 29
	Supported versions for SQL Anywhere 29
	Basic software components for SQL Anywhere 30
	Preparing to use the SQL Anywhere data source 31
	Defining the SQL Anywhere data source 32
	Support for Transact-SQL special timestamp columns 34
	What to do next 35

	CHAPTER 3 Using the JDBC Interface 37
	About the JDBC interface 37
	What is JDBC? 37
	Using the JDBC interface 38
	Components of a JDBC connection 39
	JDBC registry entries 40
	Supported versions for JDBC 41
	Supported JDBC datatypes 41
	Preparing to use the JDBC interface 41
	Defining the JDBC interface 43

	CHAPTER 4 Using the OLE DB Interface 45
	About the OLE DB interface 45
	What is OLE DB? 46
	Components of an OLE DB connection 48
	Obtaining OLE DB data providers 48
	Supported versions for OLE DB 49
	Preparing to use the OLE DB interface 49
	Defining the OLE DB interface 51

	CHAPTER 5 Using the ADO.NET Interface 53
	About ADO.NET 53
	About the PowerBuilder ADO.NET database interface 54
	Components of an ADO.NET connection 55
	OLE DB data providers 57
	Preparing to use the ADO.NET interface 58
	Defining the ADO.NET interface 60
	Getting identity column values 61
	Sharing ADO.NET Database Connections 64
	Importing an ADO.NET Connection from a Third-Party .NET Assembly 65
	Exporting an ADO.NET Connection to a Third-Party .NET Assembly 67
	PART 3 Working with Native Database Interfaces

	CHAPTER 6 Using Native Database Interfaces 71
	About native database interfaces 71
	Components of a database interface connection 72
	Using a native database interface 73

	CHAPTER 7 Using Adaptive Server Enterprise 75
	Supported versions for Adaptive Server 75
	Supported Adaptive Server datatypes 76
	Basic software components for Adaptive Server 79
	Preparing to use the Adaptive Server database 79
	Defining the Adaptive Server database interface 82
	Using Open Client security services 82
	What are Open Client security services? 83
	Requirements for using Open Client security services 83
	Security services DBParm parameters 84
	Using Open Client directory services 85
	What are Open Client directory services? 85
	Requirements for using Open Client directory services 85
	Specifying the server name with Open Client directory services 86
	Directory services DBParm parameters 88
	Using PRINT statements in Adaptive Server stored procedures 88
	Creating a report based on a cross-database join 89
	Installing stored procedures in Adaptive Server databases 89
	What are the PowerBuilder stored procedure scripts? 89
	How to run the scripts 92

	CHAPTER 8 Using Informix 97
	Supported versions for Informix 97
	Supported Informix datatypes 98
	Informix DateTime datatype 99
	Informix Time datatype 99
	Informix Interval datatype 99
	Features supported by the I10 interface 100
	Accessing Unicode data 100
	Assigning an owner to the PowerBuilder catalog tables 101
	Support for long object names 101
	Renaming an index 102
	SQL statement caching 102
	Creating and dropping indexes without locking 102
	Column-level encryption 103
	Using multiple OUT parameters in user-defined routines 103
	Basic software components for Informix 104
	Preparing to use the Informix database 105
	Defining the Informix database interface 106
	Specifying the server name 107
	Accessing serial values in a PowerBuilder script 108

	CHAPTER 9 Using Microsoft SQL Server 109
	Supported versions for SQL Server 109
	Supported SQL Server datatypes 110
	Basic software components for Microsoft SQL Server 112
	Preparing to use the SQL Server database 113
	Defining the SQL Server database interface 114
	Migrating from the MSS or OLE DB database interfaces 115
	SQL Server 2005 features 118
	SQL Server 2008 features 119
	New database parameters 119
	Support for new datatypes in SQL Server 2008 120
	T-SQL enhancements 124
	Unsupported SQL Server 2008 features 126
	Notes on using the SNC interface 127

	CHAPTER 10 Using Oracle 129
	Supported versions for Oracle 129
	Supported Oracle datatypes 130
	Datatype conversion 132
	Basic software components for Oracle 133
	Preparing to use the Oracle database 134
	Defining the Oracle database interface 138
	Specifying the Oracle server connect descriptor 138
	Using Oracle stored procedures as a data source 139
	What is an Oracle stored procedure? 139
	What you can do with Oracle stored procedures 139
	Using Oracle stored procedures with result sets 140
	Using a large-object output parameter 143
	RPC calls to stored procedures with array parameters 144
	Using Oracle user-defined types 144
	Support for HA event notification 146
	ORA driver support for Oracle 11g features 146

	CHAPTER 11 Using DirectConnect 149
	Using the DirectConnect interface 149
	Connecting through the DirectConnect middleware product 150
	Connecting through the Open ServerConnect middleware product 150
	Selecting the type of connection 151
	Supported versions for the DirectConnect interface 151
	Supported DirectConnect interface datatypes 152
	Basic software components for the DirectConnect interface 153
	Preparing to use the database with DirectConnect 154
	Defining the DirectConnect interface 157
	Creating the extended attribute system tables in DB2 databases 158
	Creating the extended attribute system tables 158
	Using the DB2SYSPB.SQL script 159
	PART 4 Working with Database Connections

	CHAPTER 12 Managing Database Connections 163
	About database connections 163
	When database connections occur 164
	Using database profiles 164
	Connecting to a database 165
	Selecting a database profile 165
	What happens when you connect 167
	Specifying passwords in database profiles 167
	Using the Preview tab to connect in a PowerBuilder application 168
	Maintaining database profiles 168
	Sharing database profiles 169
	About shared database profiles 169
	Setting up shared database profiles 170
	Using shared database profiles to connect 171
	Making local changes to shared database profiles 171
	Maintaining shared database profiles 172
	Importing and exporting database profiles 173
	About the PowerBuilder extended attribute system tables 174
	Logging in to your database for the first time 174
	Displaying the PowerBuilder extended attribute system tables 175
	Contents of the extended attribute system tables 177
	Controlling system table access 177

	CHAPTER 13 Setting Additional Connection Parameters 181
	Basic steps for setting connection parameters 181
	About the Database Profile Setup dialog box 182
	Setting database parameters 183
	Setting database parameters in the development environment 183
	Setting database parameters in a PowerBuilder application script 184
	Setting database preferences 186
	Setting database preferences in the development environment 187
	Setting AutoCommit and Lock in a PowerBuilder application script 191
	PART 5 Working with Transaction Servers

	CHAPTER 14 Troubleshooting Your Connection 197
	Overview of troubleshooting tools 197
	Using the Database Trace tool 198
	About the Database Trace tool 198
	Starting the Database Trace tool 202
	Stopping the Database Trace tool 206
	Using the Database Trace log 208
	Sample Database Trace output 209
	Using the SQL statement trace utility 211
	Using the ODBC Driver Manager Trace tool 213
	About ODBC Driver Manager Trace 213
	Starting ODBC Driver Manager Trace 214
	Stopping ODBC Driver Manager Trace 218
	Viewing the ODBC Driver Manager Trace log 220
	Sample ODBC Driver Manager Trace output 221
	Using the JDBC Driver Manager Trace tool 221
	About JDBC Driver Manager Trace 221
	Starting JDBC Driver Manager Trace 222
	Stopping JDBC Driver Manager Trace 226
	Viewing the JDBC Driver Manager Trace log 228

	CHAPTER 15 Making Database Connections in PowerBuilder Components 229
	Deploying a component to EAServer 229
	Supported database connections when using Shared Connection 230
	Supported database connections when using Microsoft DTC 230
	Supported database connections when using OTS/XA 231
	Using the SYJ database interface 231
	Using the JDB database interface 232
	Specifying AutoCommit mode 232
	DBParm support for PowerBuilder components 233
	PART 6 Using Embedded SQL

	CHAPTER 16 Using Embedded SQL with ODBC 237
	ODBC SQL Support 238
	ODBC Name qualification 238
	ODBC SQL functions 238
	DBHandle 239
	ODBC Using escape clauses 239
	ODBC Transaction management statements 240
	ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK 241
	ODBC Performance and locking 241
	ODBC Non-cursor statements 244
	ODBC DELETE, INSERT, and UPDATE 245
	ODBC SELECT 245
	ODBC Cursor statements 248
	ODBC Retrieval using cursors 248
	ODBC FETCH NEXT 250
	ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST 251
	ODBC Update 251
	ODBC Database stored procedures 252
	ODBC Retrieval 253
	ODBC DECLARE and EXECUTE 253
	ODBC DECLARE and EXECUTE with PBNewSPInvocation 255
	ODBC FETCH 256
	ODBC CLOSE 257
	ODBC EXECUTE 257
	ODBC Using database stored procedures in DataWindow objects 259

	CHAPTER 17 Using Embedded SQL with JDBC 261
	JDBC DECLARE and EXECUTE 261

	CHAPTER 18 Using Embedded SQL with OLE DB 263
	OLE DB SQL support 264
	OLE DB Name qualification 264
	OLE DB SQL functions 264
	OLE DB Using ODBC escape Sequences 267
	OLE DB Transaction management statements 268
	OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK 268
	OLE DB Performance and locking 269
	OLE DB Non-cursor statements 272
	OLE DB DELETE, INSERT, and UPDATE 272
	OLE DB SELECT 273
	OLE DB Cursor statements 275
	OLE DB Retrieval using cursors 276
	OLE DB FETCH NEXT 277
	OLE DB Database stored procedures 278
	OLE DB Retrieval 278
	OLE DB DECLARE and EXECUTE 279
	OLE DB FETCH 280
	OLE DB CLOSE 281
	OLE DB EXECUTE 281
	OLE DB Using database stored procedures in DataWindow objects 283

	CHAPTER 19 Using Embedded SQL with ADO.NET 285
	ADO.NET DECLARE and EXECUTE 285

	CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise 287
	Sybase Adaptive Server Enterprise Name qualification 288
	Sybase Adaptive Server Enterprise SQL functions 288
	Sybase Adaptive Server Enterprise Transaction management statements 290
	Sybase Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK 290
	Sybase Adaptive Server Enterprise Using AutoCommit 291
	Sybase Adaptive Server Enterprise Performance and locking 292
	Sybase Adaptive Server Enterprise Non-cursor statements 295
	Sybase Adaptive Server Enterprise DELETE, INSERT, and UPDATE 296
	Sybase Adaptive Server Enterprise SELECT 296
	Sybase Adaptive Server Enterprise Cursor statements 299
	Sybase Adaptive Server Enterprise Retrieval Using Cursors 300
	Sybase Adaptive Server Enterprise Closing the Cursor 303
	Sybase Adaptive Server Enterprise Database stored procedures 304
	Sybase Adaptive Server Enterprise Retrieval 305
	Sybase Adaptive Server Enterprise DECLARE and EXECUTE 306
	Sybase Adaptive Server Enterprise FETCH 307
	Sybase Adaptive Server Enterprise CLOSE 308
	Sybase Adaptive Server Enterprise Update 309
	Sybase Adaptive Server Enterprise Return values and output parameters 311
	Sybase Adaptive Server Enterprise Temporary tables 313
	Sybase Adaptive Server Enterprise System stored procedures 313
	Sybase Adaptive Server Enterprise Using database stored procedures in DataWindow objects 314

	CHAPTER 21 Using Embedded SQL with Informix 315
	Informix name qualification 315
	Informix transaction management statements 316
	Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK 316
	Informix performance and locking 317
	Informix non-cursor statements 320
	Informix DELETE, INSERT, and UPDATE 321
	Informix SELECT 321
	Informix cursor statements 324
	Informix retrieval using cursors 325
	Informix nonupdatable cursors 326
	Informix updatable cursors 326
	Informix FETCH statements 327
	Informix FETCH NEXT 327
	Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST 328
	Informix CLOSE for cursors 329
	Informix database stored procedures 329
	Informix retrieval using database stored procedures 330
	Informix DECLARE and EXECUTE 330
	Informix FETCH 332
	Informix CLOSE 332
	Informix update using database stored procedures 333
	Informix using database stored procedures in DataWindow objects 335
	Informix database stored procedure summary 335

	CHAPTER 22 Using Embedded SQL with Microsoft SQL Server 337
	Microsoft SQL Server Name qualification 338
	Microsoft SQL Server Functions 338
	Microsoft SQL Server Transaction management statements 339
	Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK 340
	Microsoft SQL Server Using AutoCommit 341
	Microsoft SQL Server Performance and locking 342
	Microsoft SQL Server Non-cursor statements 345
	Microsoft SQL Server DELETE, INSERT, and UPDATE 345
	Microsoft SQL Server SELECT 346
	Microsoft SQL Server Cursor statements 348
	Microsoft SQL Server Fetching rows 350
	Microsoft SQL Server FETCH NEXT 350
	Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST 351
	Microsoft SQL Server Closing the cursor 352
	Microsoft SQL Server Database stored procedures 353
	Microsoft SQL Server Retrieval 354
	Microsoft SQL Server DECLARE and EXECUTE 355
	Microsoft SQL Server FETCH 356
	Microsoft SQL Server CLOSE 357
	Microsoft SQL Server Update 358
	Microsoft SQL Server Temporary tables 361
	Microsoft SQL Server Using database stored procedures in DataWindow objects 361
	Microsoft SQL Server Database stored procedures summary 362

	CHAPTER 23 Using Embedded SQL with Oracle 363
	Oracle Name qualification 364
	Oracle SQL functions 364
	Oracle Transaction management statements 366
	Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK 366
	Oracle Performance and locking 367
	Oracle Non-cursor statements 370
	Oracle DELETE, INSERT, and UPDATE 370
	Oracle SELECT 371
	Oracle Cursor statements 374
	Oracle Retrieval 374
	Oracle Update 376
	Oracle Cursor support summary 378
	Oracle Database stored procedures 378
	Supported features when using Oracle stored procedures 380
	Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored procedures 380
	Oracle DECLARE and EXECUTE 381
	Oracle FETCH 383
	Oracle CLOSE 383
	PART 7 Appendix
	APPENDIX A Adding Functions to the PBODB125 Initialization File 387

	About the PBODB125 initialization file 387
	Adding functions to PBODB125.INI 388
	Adding functions to an existing section in the file 388
	Adding functions to a new section in the file 391

	About This Book
	CHAPTER 1 Understanding Data Connections
	How to find the information you need
	Accessing data in PowerBuilder
	Accessing the EAS Demo DB
	Using database profiles
	About creating database profiles
	Creating a database profile

	What to do next

	CHAPTER 2 Using the ODBC Interface
	About the ODBC interface
	What is ODBC?
	Using ODBC in PowerBuilder
	Components of an ODBC connection
	Types of ODBC drivers
	Ensuring the proper ODBC driver conformance levels
	What are ODBC conformance levels?

	Obtaining ODBC drivers
	Using ODBC drivers with PowerBuilder Desktop
	Getting help with ODBC drivers

	Preparing ODBC data sources
	Defining ODBC data sources
	How PowerBuilder accesses the data source
	PBODB125 initialization file
	ODBCINST registry entries
	ODBC registry entries
	Database profiles registry entry

	Defining multiple data sources for the same data
	Displaying Help for ODBC drivers
	Help for any ODBC driver

	Selecting an ODBC translator

	Defining the ODBC interface
	Sybase SQL Anywhere
	Supported versions for SQL Anywhere
	Basic software components for SQL Anywhere
	Preparing to use the SQL Anywhere data source
	Defining the SQL Anywhere data source
	Support for Transact-SQL special timestamp columns
	What to do next

	CHAPTER 3 Using the JDBC Interface
	About the JDBC interface
	What is JDBC?
	Using the JDBC interface
	Components of a JDBC connection
	JDBC registry entries
	Supported versions for JDBC
	Supported JDBC datatypes

	Preparing to use the JDBC interface
	Defining the JDBC interface

	CHAPTER 4 Using the OLE DB Interface
	About the OLE DB interface
	What is OLE DB?
	Components of an OLE DB connection
	Obtaining OLE DB data providers
	Supported versions for OLE DB

	Preparing to use the OLE DB interface
	Defining the OLE DB interface

	CHAPTER 5 Using the ADO.NET Interface
	About ADO.NET
	About the PowerBuilder ADO.NET database interface
	Components of an ADO.NET connection
	OLE DB data providers

	Preparing to use the ADO.NET interface
	Defining the ADO.NET interface
	Getting identity column values

	Sharing ADO.NET Database Connections
	Importing an ADO.NET Connection from a Third-Party .NET Assembly
	Exporting an ADO.NET Connection to a Third-Party .NET Assembly

	CHAPTER 6 Using Native Database Interfaces
	About native database interfaces
	Components of a database interface connection
	Using a native database interface

	CHAPTER 7 Using Adaptive Server Enterprise
	Supported versions for Adaptive Server
	Supported Adaptive Server datatypes
	Basic software components for Adaptive Server
	Preparing to use the Adaptive Server database
	Defining the Adaptive Server database interface
	Using Open Client security services
	What are Open Client security services?
	Requirements for using Open Client security services
	Security services DBParm parameters

	Using Open Client directory services
	What are Open Client directory services?
	Requirements for using Open Client directory services
	Specifying the server name with Open Client directory services
	Directory services DBParm parameters

	Using PRINT statements in Adaptive Server stored procedures
	Creating a report based on a cross-database join
	Installing stored procedures in Adaptive Server databases
	What are the PowerBuilder stored procedure scripts?
	PBSYC.SQL script
	PBSYC2.SQL script

	How to run the scripts
	Using ISQL to run the stored procedure scripts
	Using SQL Advantage to run the stored procedure scripts

	CHAPTER 8 Using Informix
	Supported versions for Informix
	Supported Informix datatypes
	Informix DateTime datatype
	Informix Time datatype
	Informix Interval datatype

	Features supported by the I10 interface
	Accessing Unicode data
	Assigning an owner to the PowerBuilder catalog tables
	Support for long object names
	Renaming an index
	SQL statement caching
	Creating and dropping indexes without locking
	Column-level encryption
	Using multiple OUT parameters in user-defined routines

	Basic software components for Informix
	Preparing to use the Informix database
	Defining the Informix database interface
	Specifying the server name

	Accessing serial values in a PowerBuilder script

	CHAPTER 9 Using Microsoft SQL Server
	Supported versions for SQL Server
	Supported SQL Server datatypes
	Basic software components for Microsoft SQL Server
	Preparing to use the SQL Server database
	Defining the SQL Server database interface
	Migrating from the MSS or OLE DB database interfaces
	SQL Server 2005 features
	SQL Server 2008 features
	New database parameters
	Support for new datatypes in SQL Server 2008
	T-SQL enhancements
	Unsupported SQL Server 2008 features

	Notes on using the SNC interface

	CHAPTER 10 Using Oracle
	Supported versions for Oracle
	Supported Oracle datatypes
	Datatype conversion

	Basic software components for Oracle
	Preparing to use the Oracle database
	Defining the Oracle database interface
	Specifying the Oracle server connect descriptor

	Using Oracle stored procedures as a data source
	What is an Oracle stored procedure?
	What you can do with Oracle stored procedures
	Using Oracle stored procedures with result sets
	Using a large-object output parameter
	RPC calls to stored procedures with array parameters

	Using Oracle user-defined types
	Support for HA event notification
	ORA driver support for Oracle 11g features

	CHAPTER 11 Using DirectConnect
	Using the DirectConnect interface
	Connecting through the DirectConnect middleware product
	Connecting through the Open ServerConnect middleware product
	Selecting the type of connection

	Supported versions for the DirectConnect interface
	Supported DirectConnect interface datatypes
	Basic software components for the DirectConnect interface
	Preparing to use the database with DirectConnect
	Defining the DirectConnect interface
	Creating the extended attribute system tables in DB2 databases
	Creating the extended attribute system tables
	Using the DB2SYSPB.SQL script

	CHAPTER 12 Managing Database Connections
	About database connections
	When database connections occur
	Using database profiles

	Connecting to a database
	Selecting a database profile
	What happens when you connect
	Specifying passwords in database profiles
	Using the Preview tab to connect in a PowerBuilder application

	Maintaining database profiles
	Sharing database profiles
	About shared database profiles
	Setting up shared database profiles
	Using shared database profiles to connect
	Making local changes to shared database profiles
	Maintaining shared database profiles

	Importing and exporting database profiles
	About the PowerBuilder extended attribute system tables
	Logging in to your database for the first time
	Displaying the PowerBuilder extended attribute system tables
	Contents of the extended attribute system tables
	Controlling system table access
	Setting Use Extended Attributes or Read Only to control access
	Granting permissions on system tables to control access

	CHAPTER 13 Setting Additional Connection Parameters
	Basic steps for setting connection parameters
	About the Database Profile Setup dialog box
	Setting database parameters
	Setting database parameters in the development environment
	Setting database parameters in a PowerBuilder application script
	Copying DBParm syntax from the Preview tab
	Coding PowerScript to set values for the DBParm property
	Reading DBParm values from an external text file

	Setting database preferences
	Setting database preferences in the development environment
	Setting AutoCommit and Lock in the database profile
	Setting preferences in the Database Preferences dialog box

	Setting AutoCommit and Lock in a PowerBuilder application script
	Copying AutoCommit and Lock syntax from the Preview tab
	Coding PowerScript to set values for AutoCommit and Lock
	Reading AutoCommit and Lock values from an external text file
	Getting values from the registry

	CHAPTER 14 Troubleshooting Your Connection
	Overview of troubleshooting tools
	Using the Database Trace tool
	About the Database Trace tool
	How you can use the Database Trace tool
	Contents of the Database Trace log
	Format of the Database Trace log

	Starting the Database Trace tool
	Starting Database Trace in the development environment
	Starting Database Trace in a PowerBuilder application
	Starting a trace in PowerScript with the PBTrace parameter

	Stopping the Database Trace tool
	Stopping Database Trace in the development environment
	Stopping Database Trace in a PowerBuilder application

	Using the Database Trace log
	Viewing the Database Trace log
	Annotating the Database Trace log
	Deleting or clearing the Database Trace log

	Sample Database Trace output

	Using the SQL statement trace utility
	Using the ODBC Driver Manager Trace tool
	About ODBC Driver Manager Trace
	Starting ODBC Driver Manager Trace
	Starting ODBC Driver Manager Trace in the development environment
	Starting ODBC Driver Manager Trace in a PowerBuilder application

	Stopping ODBC Driver Manager Trace
	Stopping ODBC Driver Manager Trace in the development environment
	Stopping ODBC Driver Manager Trace in a PowerBuilder application

	Viewing the ODBC Driver Manager Trace log
	Sample ODBC Driver Manager Trace output

	Using the JDBC Driver Manager Trace tool
	About JDBC Driver Manager Trace
	Starting JDBC Driver Manager Trace
	Starting JDBC Driver Manager Trace in the development environment
	Starting JDBC Driver Manager Trace in a PowerBuilder application

	Stopping JDBC Driver Manager Trace
	Stopping JDBC Driver Manager Trace in the development environment
	Stopping JDBC Driver Manager Trace in a PowerBuilder application

	Viewing the JDBC Driver Manager Trace log

	CHAPTER 15 Making Database Connections in PowerBuilder Components
	Deploying a component to EAServer
	Supported database connections when using Shared Connection
	Supported database connections when using Microsoft DTC
	Supported database connections when using OTS/XA
	Using the SYJ database interface
	Using the JDB database interface
	Specifying AutoCommit mode

	DBParm support for PowerBuilder components

	CHAPTER 16 Using Embedded SQL with ODBC
	ODBC SQL Support
	ODBC Name qualification
	ODBC SQL functions
	DBHandle

	ODBC Using escape clauses
	ODBC Transaction management statements
	ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	ODBC Performance and locking
	ODBC Non-cursor statements
	ODBC DELETE, INSERT, and UPDATE
	ODBC SELECT
	ODBC Cursor statements
	ODBC Retrieval using cursors
	ODBC FETCH NEXT
	ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST
	ODBC Update
	ODBC Database stored procedures
	ODBC Retrieval
	ODBC DECLARE and EXECUTE
	ODBC DECLARE and EXECUTE with PBNewSPInvocation
	ODBC FETCH
	ODBC CLOSE
	ODBC EXECUTE
	ODBC Using database stored procedures in DataWindow objects

	CHAPTER 17 Using Embedded SQL with JDBC
	JDBC DECLARE and EXECUTE

	CHAPTER 18 Using Embedded SQL with OLE DB
	OLE DB SQL support
	OLE DB Name qualification
	OLE DB SQL functions
	OLE DB Using ODBC escape Sequences
	OLE DB Transaction management statements
	OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	OLE DB Performance and locking
	OLE DB Non-cursor statements
	OLE DB DELETE, INSERT, and UPDATE
	OLE DB SELECT
	OLE DB Cursor statements
	OLE DB Retrieval using cursors
	OLE DB FETCH NEXT
	OLE DB Database stored procedures
	OLE DB Retrieval
	OLE DB DECLARE and EXECUTE
	OLE DB FETCH
	OLE DB CLOSE
	OLE DB EXECUTE
	OLE DB Using database stored procedures in DataWindow objects

	CHAPTER 19 Using Embedded SQL with ADO.NET
	ADO.NET DECLARE and EXECUTE

	CHAPTER 20 Using Embedded SQL with Sybase Adaptive Server Enterprise
	Sybase Adaptive Server Enterprise Name qualification
	Sybase Adaptive Server Enterprise SQL functions
	Sybase Adaptive Server Enterprise Transaction management statements
	Sybase Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	Sybase Adaptive Server Enterprise Using AutoCommit
	Sybase Adaptive Server Enterprise Performance and locking
	Sybase Adaptive Server Enterprise Non-cursor statements
	Sybase Adaptive Server Enterprise DELETE, INSERT, and UPDATE
	Sybase Adaptive Server Enterprise SELECT
	Sybase Adaptive Server Enterprise Cursor statements
	Sybase Adaptive Server Enterprise Retrieval Using Cursors
	Sybase Adaptive Server Enterprise Closing the Cursor
	Sybase Adaptive Server Enterprise Database stored procedures
	Sybase Adaptive Server Enterprise Retrieval
	Sybase Adaptive Server Enterprise DECLARE and EXECUTE
	Sybase Adaptive Server Enterprise FETCH
	Sybase Adaptive Server Enterprise CLOSE
	Sybase Adaptive Server Enterprise Update
	Sybase Adaptive Server Enterprise Return values and output parameters
	Sybase Adaptive Server Enterprise Temporary tables
	Sybase Adaptive Server Enterprise System stored procedures
	Sybase Adaptive Server Enterprise Using database stored procedures in DataWindow objects

	CHAPTER 21 Using Embedded SQL with Informix
	Informix name qualification
	Informix transaction management statements
	Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	Informix performance and locking
	Informix non-cursor statements
	Informix DELETE, INSERT, and UPDATE
	Informix SELECT
	Informix cursor statements
	Informix retrieval using cursors
	Informix nonupdatable cursors
	Informix updatable cursors
	Informix FETCH statements
	Informix FETCH NEXT
	Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST
	Informix CLOSE for cursors
	Informix database stored procedures
	Informix retrieval using database stored procedures
	Informix DECLARE and EXECUTE
	Informix FETCH
	Informix CLOSE
	Informix update using database stored procedures
	Informix using database stored procedures in DataWindow objects
	Informix database stored procedure summary

	CHAPTER 22 Using Embedded SQL with Microsoft SQL Server
	Microsoft SQL Server Name qualification
	Microsoft SQL Server Functions
	Microsoft SQL Server Transaction management statements
	Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	Microsoft SQL Server Using AutoCommit
	Microsoft SQL Server Performance and locking
	Microsoft SQL Server Non-cursor statements
	Microsoft SQL Server DELETE, INSERT, and UPDATE
	Microsoft SQL Server SELECT
	Microsoft SQL Server Cursor statements
	Microsoft SQL Server Fetching rows
	Microsoft SQL Server FETCH NEXT
	Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST
	Microsoft SQL Server Closing the cursor
	Microsoft SQL Server Database stored procedures
	Microsoft SQL Server Retrieval
	Microsoft SQL Server DECLARE and EXECUTE
	Microsoft SQL Server FETCH
	Microsoft SQL Server CLOSE
	Microsoft SQL Server Update
	Microsoft SQL Server Temporary tables
	Microsoft SQL Server Using database stored procedures in DataWindow objects
	Microsoft SQL Server Database stored procedures summary

	CHAPTER 23 Using Embedded SQL with Oracle
	Oracle Name qualification
	Oracle SQL functions
	Oracle Transaction management statements
	Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	Oracle Performance and locking
	Oracle Non-cursor statements
	Oracle DELETE, INSERT, and UPDATE
	Oracle SELECT
	Oracle Cursor statements
	Oracle Retrieval
	Oracle Update
	Oracle Cursor support summary
	Oracle Database stored procedures
	Supported features when using Oracle stored procedures
	Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored procedures
	Oracle DECLARE and EXECUTE
	Oracle FETCH
	Oracle CLOSE

	APPENDIX Adding Functions to the PBODB125 Initialization File
	About the PBODB125 initialization file
	Adding functions to PBODB125.INI
	Adding functions to an existing section in the file
	Adding functions to a new section in the file

	Index

