SYBASE

Embedded SQL™/COBOL Programmers Guide

Open Client™
15.0

DOCUMENT ID: DC37696-01-1500-04
LAST REVISED: December 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N o Lo U A I T S = X Yo PERPR iX
CHAPTER 1 INEFOAUCTION i 1
Embedded SQL OVEIVIEWccoooeiiiiiiiiiiii 1

Embedded SQL features...........ccoooeeeiiiiiiiiiii 2

New features and enhanCementsccccoocveverrieeeinen e 2

New datatypes SUPPOIE........ceueviiiiiiiiieeee e 2

Scrollable cursors SUPPOrted..........cueeviiiiiiieiieeeiiiiiiiieeee e 3

Transact-SQL support in Embedded SQL..........cccocceveeniiiiiiinnennnnn, 3

GettiNg SLAMEA.evviiiii it 4

Using the eXamplesS ... 5

Backward compatibilityceeeeiiiiiiiiiiie 5

Creating and running an Embedded SQL program..........cccccceeeevnes 5

How the precompiler processes your applications..............cccceeee.... 6

Multiple Embedded SQL source filescccvvevvieeiiiiciiiinnnennn, 7

Precompiler-generated fileScccooevviiieeie i 7

Group element referencCing........ccccvvveeeeeiiiiiiiieee e 7

CHAPTER 2 General INfOrmMation ... 9
Five tasks of an Embedded SQL programcccccceveeniiniiiineenennnn, 9

Simplified Embedded SQL program..........ccccccevviniivineeiinenninnns 10

General rules for Embedded SQL...........cuuvveeeeiiiviieieeeiiiieeeniennnnnnnn 11

Statement PlaCemMEeNtcooviiiiiiiiiiie e 12

COMMENTS ...t 12

IAENEITIEIS ..o 13

Quotation Marks ... 13

RESEIVEA WOISuvviiiei ittt 13

Variable naming CONVENLiONSccceeeviiiiiiieniee s esiiieeee e 13

SCOPING TUIES ...ttt 14

Statement BatChes ..., 14

Embedded SQL CONSIIUCESuvviiieeeeiiiiiiiiiee e 14

Embedded SQL/COBOL Programmers Guide iii

Contents

CHAPTER 3 Communicating with Adaptive Serveroccccccciiiiiiiiiiiee, 17
Scoping rules: SQLCA, SQLCODE, and SQLSTATE...........c........ 18
Declaring SQLCAo 18

MUItIPIE SQLCAS ...ttt 18
SQLCA variabIes...........cuuuuiiiiieiiieieieeieieeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeees 18
Accessing SQLCA variablesccccccevvviiiiiiiiieeeeeen 19
SQLCODE within SQLCAoiiiiieiie e 20
Declaring SQLCODE as a standalone area...........ccccccveeeeeievvnnnen. 20
USING SQLSTATE ...ttt e e e e 21
Obtaining SQLSTATE codes and error messages.................. 22

CHAPTER 4 USING VariablesS ..o 23

Declaring variables...........cooiiiiii i 23
Declaring a charaCter arrayocccvvveeeeeeiiiiiiiieeeeeeensiiieeeens 24
UsSiNg hOSt VariableScooiiiiiiiiiie e 25
Host input variables...........cccccoiiiiiii 25
Host result variables...........cccoocieieiiiiiie e 26
Host status variables ..o 26
Host output variables.........cccccoviiiiiiiiiee e 27
Using indicator variablesc..uuviieeiiicciiiice e 27
Indicator variables and server restrictions..............cccceeeiieeens 27
Using host variables with indicator variables........................... 27
Host variable CONVENtIONScooiiiiiiiiiiiee e 30
USING @ITAYS wvvvvvieeeeeeiiitiieeeeesaseitreeseaessaassttaaeesaeessanstsasseaasssannssennees 31
MUIIPIE AITAYS ...vvviiiee ittt 31
SCOPING TUIES ..ttt eeeeees 31
DaAlAlYPES ..o 33
Elementary data itemS.......c.coovviiiiiiiiiiie e 34
Group data itEIMSeviieriiiiiiee et 34
Special data itemMScooviiiiii 35
Comparing COBOL and Adaptive Server datatypes............... 35
Converting datatyPesccoovereeiiiiee e 36
CHAPTER 5 Connecting to Adaptive Serverccooccviiieieieeie e 39
CONNECHING 10 @ SEIVET ...uviiiie ettt e e 39
(U] TP PP PPPP PP PPPP 39
022 1YY 0] o [U ERPUR 40
CONNECLION_NAME ...uiiiiieeiiiciiiiee et e e e e s e e e s nneeaee s 40
SEIVEI .ttt 40
CONNECE EXAMPIEvvveiiiiiiiiiiie e 40
Changing the current CONNECHIONoooviiiiiiieeeiiiiiiieee e 41
Establishing multiple connectionscccccceviviiiiiieeee e, 41
Naming & CONNECTHION........ceiieiiiiiiiiiiiiee et 42

iv Open Client

Contents

Using Adaptive Server CONNECLIONScccevveevvviereeeesiiiiiinnn, 43
Disconnecting from @ SEIVETNuvveeeeeiiiiiiiiieee e 44
CHAPTER 6 Using Transact-SQL Statementsccccceeerniiiiiiiiiiiiieeieeee e, 45
Transact-SQL statements in Embedded SQL...........cccccvvvevveeniinnns 45
EXEC SOl SYNTAX...cueveieiieei ittt 45
INvalid StAteMENTScooiiiiieeiee e 46
Transact-SQL statements that differ in Embedded SQL 46
SEIECHNG FOWS ...eviiii ettt 46
SelECtiNG ONE FOWueiiiiiiiiiiiiiecee et 47
Selecting multiple rows through arrayscccceeeveeiiiiiinnenn. 47
Using Stored ProCeAUIESuuvvieeeeeiiiiiiiieeeeeeesirreee e e e e e 60
Grouping StAtEMENTScvvieii i 63
Grouping statements by batches...........ccccccvii i, 63
Grouping statements by transactions.............ccccccevee v iicvinnenn. 64
Including files and dir€CtONES........cccevviiviiiiiieee e 66
CHAPTER 7 UsSiNg DYNAMIC SQLuuiiiiiiiiaiiiiiiiieeece e 67
When to use dynamic SQLcceeeeiiiiiiiiiiiieee e 67
Dynamic SQL ProtoColcccuvvvieiiieiiiiiiiiiee e 68
Method 1: Using execute immediate.........ccccceevvviiiiiieenee v, 69
Method 1 eXampPleSoocuviiiiiiieiie e 70
Method 2: Using prepare and eXECULEcoeevviiiiriieereeenniniiiiieens 71
1T 012 1T TP PP P P PP P PP PPPPPPPPPPPPPPPPRt 71
EXECULE ...euviiiiie ettt 72
Method 2 eXamPlE......cco v 73
Method 3: Using prepare and fetch with a cursorccuvvee... 74
PIEPAIE ...ttt ettt e et et e e s 74

(0 [<Tol o = T U 74

(0] 01T o HO TR UPUTTPPTTRRTSUPPPN 75
fetch and ClOSEccoiiiiiii e 76
Method 3 eXamPlE......cco i 76
Method 4: Using prepare and fetch with system descriptors 78
Method 4 dynamic descCriptorscccveevieeiiiiiiieenie e 78
Dynamic descriptor statements..........ccccveevviiiiiieeniee i, 79
Method 4 eXampPle ... 80
ADOUE SQLDASceiiiiiii ittt 84
USiNg SYBSETSQLDA ...t 86
Method 4 example using SQLDASccccceviivviiieeieees e, 89
CHAPTER 8 [F= U Lo T o I = o] SRR, 95
TESHNG TOF ©ITOIS ...uiiiiiii et 96

Embedded SQL/COBOL Programmers Guide v

Contents

CHAPTER 9

Vi

USING SQLCODE.........ciiiiiiiiiiiee ettt 96
Testing for warning conditionscceeevviiiiiiiii e 96
Trapping errors with the whenever statement............cccccceevveeniiins 97

whenever testing conditionsccoovviiiiiiiiee e 98

WHENEVET ACHIONSeeiiiiiiiee it 99
Using get diagnNOSLCSvviieeiiiiiiiiee e 100
Writing routines to handle warnings and errors.............cccccvveeeen... 100
Precompiler-detected errors.........ccceeeiiciiiiiiiee e 101

Embedded SQL Statements: Reference Pagescccceveeeeen. 103
allocate dESCIIPLOrNccciiiiiie et a e 105
begin declare SECHON ... 106
Degin tranSaCtioNvvvii i 107
ClOS it 109
COMMIT. ettt e e e es e s e s enrneeas 110
(010] 1 =T o! SO P PP 113
dEallOCALE CUISON ... et 115
deallocate deSCrPLOruuviieeii ittt e e 116
deallocate PreParecccuvvieeei i 118
declare cursor (AYNAMIC)........cciicciriiiiee e iiiiieee e e e e 119
declare Cursor (StatiC).......uuvueeeeiiciiiiieiee e e 121
declare cursor (stored proCedure)cccccevvveceviveereeeesiiciiieeeeeeen 123
declare scrollable CUISOrcuiii i 125
delete (POSIIONE CUISOI)....uuiii ittt 126
delete (Searched)cuuvviiiiiiiiii 128
describe input (SQL deSCrPLOr)vvvieiieeeiiiiiiiiieee e eesiiiieee e 130
describe iNPUt (SQLDA)cvviiiiiiiiiieiee st 132
describe output (SQL deSCriptor)ccueeeiiiiiiiiiiieeee i 134
describe output (SQLDA)ccoiiiiiiiiiiiie e 136
ISCONNECT ... 138
L2 =TT PO PP TP PPPTPPPRPPPN 140
(23 oo | RSP ERRRR 142
EXEBCULEceiiiiiiiiiii ittt 144
eXeCUte IMMEAIALEcceiiiiei i 146
BTttt 147
FRICH Lo 148
SCIOH FRICH ... 151
[0 T=] o [T 1ot o] (o] SO PP OT PR 152
0L dIAGNOSHICS ..vvviiiiiiiiiiiiiie e 155
iNClude “fileNAME”coiiiiii e 156
INCIUAE SOICA ..evvviieiiiiiie e 158
INCIUAE SAIA@ ...eeeie e 158
initialize_appliCationccccvuiiiiie i 159
0PEN (AYNAMIC CUMSON) ..vvvvriieeeiieiriieeeeeeesssasieeeeeaeesssssnreeeesaaessannnes 160

Open Client

Contents

OPEN (SLALIC CUISON) .eiiieiiiiiiiiiiee e s ettt e e e s s sttt r e e e e s s ennrraeeeaeeeeannes 162

open scrollable CUISOr ... 164

0] =] 0= L (= 2RSSR 164

FOIDACK ...t 166

SEIBCT ..ttt 167

SEL CONNECHION ...ttt 168

a0 [T ol]] (o] S RRP P TTTPUPPRPTRN 170

(U] oo F= 1= T PR PRPTR PP 171

WHRENEVET ...t 173

CHAPTER 10 Open Client/Server Configuration Filecccccccvvvveeeiiiiiiiinns 179
Purpose of the Open Client/Server configuration file 179

Accessing the configuration functionality............cccccceeiviiiiiinnnnn.. 179

Default SELtNGS......c.vvviiiie e 180

Syntax for the Open Client/Server configuration file..................... 181

)1 VPP PPPPPPPRPNS 181

SaMPIE PrOgraMS ...cc.vvvieiiee e e ittt e e e e s e e e e e e s s et e e e e e e s e sneraees 183

Embedded SQL/COBOL sample programs............cccvvveeeeennn. 184

Embedded SQL program version for use with the -x option.. 184

Same Embedded SQL program with the -e option................ 186

APPENDIX A Precompiler Warning and Error MeSSages........cccuveeeeeeeeeenennnn. 189
Understanding the codes in the tablesc.cccovviiiiiiiiinnen, 189

(€10 11 7= 1 PP PP PPPTP TP 203
10T L= PSP PRRUUPRUORIRR 211

Embedded SQL/COBOL Programmers Guide Vii

Contents

Viii Open Client

About This Book

Audience

How to use this book

The Open Client Embedded SQL/COBOL Programmers Guide explains
how to use Embedded SQL ™ and the Embedded SQL precompiler with
COBOL applications. Embedded SQL is a superset of Transact-SQL®
that lets you place Transact-SQL statements in application programs
written in languages such as COBOL and C.

Theinformation in this guide is platform-independent. For platform-
specific instructions on using Embedded SQL, see the Open Client and
Open Server Programmer’s Supplement.

Thisguideisintended for application developers and othersinterested in
Embedded SQL concepts and uses. To use this guide, you should:

e Befamiliar with the information in the Adaptive Server Enterprise
Reference Manual

* Have COBOL programming experience

The first two chapters of this guide are introductory. If you are an
experienced Embedded SQL user, you may go directly to Chapter 3,
“Communicating with Adaptive Server.” The manua is organized as
follows:

e Chapter 1, “Introduction,” presents a brief overview of Embedded
SQL and describes its advantages and capabilities.

e Chapter 2, “General Information,” describes the tasks of an
Embedded SQL program and providesgeneral rulesfor programming
with Embedded SQL.

e Chapter 3, “Communicating with Adaptive Server,” describes how
to establish and use acommunication areawith SQLCA, SQLCODE,
and SQL STATE. This chapter also describes the system variables
used in the communication area.

e Chapter 4, “Using Variables,” explains how to declare and use host
and indicator variablesin Embedded SQL . This chapter also
describes arrays and explains datatype conversions.

Embedded SQL/COBOL Programmers Guide iX

Related documents

Other sources of
information

Chapter 5, “ Connecting to Adaptive Server,” explains how to use
Embedded SQL to connect an application program to Adaptive Server®
Enterprise(called “SQL Server” inversionsprior to 11.5), and dataservers
in general.

Chapter 6, “Using Transact-SQL Statements,” describes how to use
Transact-SQL in an Embedded SQL application program. This chapter
describes how to select rows using arrays and batches, and how to group
Transact-SQL statements.

Chapter 7, “Using Dynamic SQL,” describes how to create Embedded
SQL statements that your application’s users can enter interactively at
runtime.

Chapter 8, “Handling Errors,” describes return codes and the Embedded
SQL precompiler’s facilities for detecting and handling errors.

Chapter 9, “Embedded SQL Statements. Reference Pages,” provides a
reference page for each Embedded SQL statement.

Chapter 10, “ Open Client/Server Configuration File,” describesthe use of
an external configuration file with Embedded SQL.

Appendix A, “Precompiler Warning and Error Messages,” lists
precompiler and runtime messages.

The Glossary defines many of the terms used in this manual.

This guide is one of several manuals you will need to have a complete
understanding of Embedded SQL and the Embedded SQL precompiler with
COBOL applications. Following isalist of the other manualsyou may need to
consullt.

The Open Server and SDK New Features for Microsoft Windows, Linux,
and UNIX, which describes new features available for Open Server and
the Software Devel oper’s Kit. This document is revised to include new
features as they become available.

Adaptive Server Enterprise Reference Manual

Open Client Client-Library/C Reference Manual

Software Developer’s Kit and Open Server Installation Guide
Open Client Embedded SQL/C Programmers Guide

Open Client and Open Server Programmer’s Supplement

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

Open Client

About This Book

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTM L -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manual s Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

[JFinding the latest information on product certifications

1

4

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click Certification Report.

Inthe Certification Report filter select a product, platform, and timeframe
and then click Go.

Click a Certification Report title to display the report.

[JFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Embedded SQL/COBOL Programmers Guide Xi

Sybase EBFs and
software
maintenance

Xii

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybase isafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Open Client

About This Book

Conventions

Online help

Accessibility
features

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly braces indicate that you choose at least one of the

enclosed options. Do not include bracesin your option.

[Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

/ The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

Note Embedded SQL keywords are not case sensitive. You can enter them in
uppercase, lowercase, or mixed case. This guide lists Embedded SQL
keywords in lowercase.

This distinguishes Embedded SQL statements from COBOL commands,
which this guide shows in upper case. For example:

DISPLAY "PLEASE ENTER USER-ID".

If you have access to Adaptive Server release 10.0 or later, you can use
sp_syntax, a Ssystem procedure, to retrieve the syntax of Embedded SQL
statements. For information on how to install sp_syntax, see the System
Administration Guide. For information on how to run sp_syntax, See sp_syntax
in the Adaptive Server Enterprise Reference Manual.

Note When using sp_syntax to retrieve a statement’s syntax, enclose the
procedure namein quotation marks. For example, to get adisplay of the syntax
for the exec sql statement, enter this command:

sp_syntax “exec sql”

This document is availablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Embedded SQL/COBOL Programmers Guide Xiii

If you need help

Xiv

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Open Client

CHAPTER 1 Introduction

This chapter includes the following topics to introduce Embedded SQL
and the Embedded SQL precompiler.
Topic Page
Embedded SQL overview
Embedded SQL features
New features and enhancements
Transact-SQL support in Embedded SQL
Getting started
Creating and running an Embedded SQL program
How the precompiler processes your applications

OO B WININ|F

Embedded SQL overview

Embedded SQL is a superset of Transact-SQL that lets you place
Transact-SQL statementsin application programs written in languages
such as COBOL and C.

Embedded SQL is a product that enables you to create programs that
access and update Adaptive Server data. Embedded SQL programmers
write SQL statements directly into an application program written in a
conventional programming language such as C or COBOL. A
preprocessing program—the Embedded SQL precompiler—processesthe
completed application program, resulting in a program that the host
language compiler can compile. The program is linked with Open Client
Client-Library beforeit is executed.

Embedded SQL isone of the two programming methods Sybase provides
for accessing Adaptive Server. The other programming method isthe call-
level interface. Withthecall-level interface, you place Client-Library calls
directly into an application program and then link with Client-Library.

Embedded SQL/COBOL Programmers Guide 1

Embedded SQL features

You can place Embedded SQL statements anywhere in ahost program and
mix them with host language statements. All Embedded SQL statements must
begin with the keywords exec sgl and end with end-exec.

You can use host variablesin Embedded SQL statementsto store dataretrieved
from Adaptive Server and as parametersin Embedded SQL statements; for
example, in the where clause of aselect statement. In Dynamic SQL , host
variables can also contain text for Embedded SQL statements.

Embedded SQL features

Embedded SQL provides several advantages over a call-level interface:

» Embedded SQL iseasy to use because it is simply Transact-SQL with
some added features that facilitate using it in an application.

* Itisan ANSI/ISO-standard programming language.
* Itrequireslesscoding to achieve the same results as a cal-level approach.

» Embedded SQL isessentially identical across different host languages.
Programming conventions and syntax change very little. Therefore, to
write applications in different languages, you need not learn new syntax.

» The precompiler can optimize execution time by generating stored
procedures for the Embedded SQL statements.

New features and enhancements

The following are new features and enhancements for Embedded SQL .

New datatypes supported

Thefollowing new datatypes are supported by Open Client and Open Server™
for 15.0:

» Bigint. An Open Client and Open Server-defined datatype called
CS_BIGINIT. It isan internal C programming, signed, 8-byte integer
datatype for use on 32-bit and 64-bit UNIX platforms.

Open Client

CHAPTER 1 Introduction

e Largeidentifiers. Limits on lengths of object names and identifiers. This
is 255 bytes for identifiers.

e Unsigned int. Open Client and Open Server-defined datatypes called
CS_USMALLINT (2-byte unsigned integer), CS_UINT (4-byte unsigned
integer) and CS_UBIGINT (8-byte unsigned integer). Sybase provides
related conversion routines to access these unsigned int datatypes from the
dataserver.

e XML. An Open Client and Open Server-defined datatype called CS_XML.
Itisaninternal C programming, unsigned character datatype for al
platforms. It includes related conversion routines to access the variable-
width XML datafrom the server. The CS_XML datatype behaves similar
tothestandard CS_TEXT and CS_IMAGE datatypes, but it represents XML
data.

Scrollable cursors supported

Embedded SQL/COBOL now supports scrollable cursors, which allow you to
set the current cursor position anywherein the result set by specifying the fetch
orientation. Both singlerow fetches and multiplerow fetches are supported. By
default, if the row count is hot set at cursor open time, afetch returns only one
row. This behavior isillustrated in COBOL samples, example3.pco and
example4.pco.

Embedded SQL/COBOL scrollable cursors are read-only with INSENSITIVE
or SEMI_SENSITIVE properties. example3.cpo shows usage of an
INSENSITIVE scrollable cursor; exampled.cpo shows usage of a
SEMI_SENSITIVE scrollable cursor.

The existing cursor declare statement and the fetch statement have been
enhanced for this new festure.

Transact-SQL support in Embedded SQL

With the exception of print, raiserror, readtext, and writetext, al Transact-SQL
statements, functions, and control -of-flow language are valid in Embedded
SQL. You can develop an interactive prototype of your Embedded SQL
application in Transact-SQL to facilitate debugging your application, then
easily incorporate it into your application.

Embedded SQL/COBOL Programmers Guide 3

Getting started

Most Adaptive Server datatypes have an equivalent in Embedded SQL. Also,
you can use host language datatypes in Embedded SQL. Many datatype
conversions occur automatically when a host language datatype does not
exactly match an Adaptive Server datatype.

You can place host language variablesin Embedded SQL statementswherever
literal quotes are valid in Transact-SQL. Enclose the literal with either single
(‘) or double (*) quotation marks. For information on delimiting literals that
contain quotation marks, see the Adaptive Server Enterprise Reference
Manual.

Embedded SQL has several features that Transact-SQL does not have:

» Automatic datatype conversion occurs between host language types and
Adaptive Server types.

e Dynamic SQL lets you define SQL statements at runtime.

e SQLCA, SQLCODE, and SQLSTATE lets you communicate between
Adaptive Server and the application program. The three entities contain
error, warning, and informational message codes that Adaptive Server
generates.

» Return code testing routines detect error conditions during execution.

Getting started

Before attempting to run the precompiler, make sure that Client-Library™
version 11.1 or later isinstalled, since the precompiler usesit asthe runtime
library. Also, make sure Adaptive Server version 11.1 or later isinstalled. If
products are missing, contact your System Administrator.

Invoke the precompiler by issuing the appropriate command at the operating
system prompt. See the Open Client and Open Server Programmer’s
Supplement for details.

The precompiler command can include several flags that let you determine
options for the precompiler, including the input file, login user name and
password, invoking HA failover, and precompiler modes. The Open Client and
Open Server Programmer’s Supplement contains operating system-specific
information on precompiling, compiling, and linking your Embedded SQL
application.

Open Client

CHAPTER 1 Introduction

Using the examples

The examplesin this guide use the pubs2 database. To run the examples,
specify the pubs2 database with the Transact-SQL use statement.

This product is shipped with severa online examples. For information on
running these exampl es, see the Open Client and Open Server Programmer’s
Supplement.

Backward compatibility

The precompiler is compatible with precompilers that are ANSI SQL-89-
compliant. However, you may have applications created with earlier
Embedded SQL versionsthat are not ANSI-compliant. This precompiler uses
most of the same Embedded SQL statements used in previous precompiler
versions, but it processes them differently.

To migrate applications created for earlier precompiler versions:

1 Remove thefollowing SQL statements and keywords from the
application, because System 11 and later does not support them:

e release connection_name
* recompile

* noparse

* noproc

* pcoptions sp_syntax

* cancel

release causes a precompiler error; the precompiler ignores the other
keywords. The cancel statement causes a runtime error.

2 Usethe precompiler to precompile the application again.

Creating and running an Embedded SQL program

Follow these stepsto create and run your Embedded SQL application program:

1 Writethe application program and include the Embedded SQL statements
and variable declarations.

Embedded SQL/COBOL Programmers Guide 5

How the precompiler processes your applications

Save the application in a.pco file.

Precompile the application. If there are no severe errors, the precompiler
generatesafile containing your application program. Thefile hasthe same
name as the original sourcefile, with a different extension, depending on
the requirements of your COBOL compiler. For details, see the Open
Client and Open Server Programmer’s Supplement.

Compile the new source code as you would compile a standard COBOL
program.

Link the compiled code, if necessary, with the required libraries.

If you specified the precompil er option to generate stored procedures, load
them into Adaptive Server by executing the generated script with isgl.

Run the application program as you woul d any standard COBOL program.

How the precompiler processes your applications

The Embedded SQL precompiler trand ates Embedded SQL statementsinto
COBOL data declarations and call statements. After precompiling, you can
compile the resulting source program as you would any conventional COBOL
program.

The precompiler processes your application in two passes. In thefirst pass, the
precompiler parses the Embedded SQL statements and variable declarations,
checking the syntax and displaying messages for any errors it detects. If the
precompiler detects no severe errors, it proceeds with the second pass, wherein
it does the following:

Adds declarations for the precompiler variables, which begin with
“SQL--". To prevent confusion, do not begin your variable nhames with

“ wL n i
Convertsthe text of the original Embedded SQL statements to comments.

Generates stored procedures and calls to stored procedures if you set this
option in the precompile command line.

Converts Embedded SQL statements to calls to runtime routines.

Open Client

CHAPTER 1 Introduction

e Generates up to threefiles: atarget file, an optional listing file, and an
optional isgl script file.

Note For detailed descriptions of precompiler command line options, see the
Open Client and Open Server Programmer’s Supplement.

Multiple Embedded SQL source files

If the Embedded SQL application consists of more than one source file, the
following statements apply:

« Connection names are unique and global to the entire application.
e Cursor names are unique for a given connection.
* Prepared statement names are global to the connection.

« Dynamic descriptors are global to the application.

Precompiler-generated files

Thetarget fileissimilar to the original input file, except that all SQL
statements are converted to runtime calls.

The listing file contains the input file and its source statements, plus any
informational, warning, or error messages.

Theisql script file contains the precompiler-generated stored procedures. The
stored procedures are written in Transact-SQL.

Group element referencing

The Embedded SQL COBOL precompiler supports the COBOL language
structure syntax for host variables in exec sqgl statements. For example, for a
structure A containing structure B, which in turn contains a fundamental
structure dataitem C, A.B.C isequivaent to C OF B OF A.

White spaces are allowed between the elements and the period (). Itisillegal
to mix thetwo syntaxes, such asC OF A .B . Following isan example of group
element referencing:

Embedded SQL/COBOL Programmers Guide 7

How the precompiler processes your applications

EXEC SQL BEGIN DECLARE SECTION END-EXEC

01 AU-IDPIC X (15).
01 GROUP1.
05 GROUP2.

10 LNAME PIC X(40).
10 FNAME PIC X(40).
10 PHONE PIC X (15).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL USE pubs2 END-EXEC.

MOVE "724-80-9391" TO AU-ID.
EXEC SQL SELECT INTO :GROUP1. GROUP2.LNAME,
:GROUP2 .FNAME, :PHONE
au_lname, au_ fname, phone
FROM authors
WHERE au_id = :AU-ID END-EXEC.

DISPLAY "LAST NAME = ", LNAME.
DISPLAY "FIRST NAME = ", FNAME.
DISPLAY "PHONE # = ", PHONE.

* This SELECT does the same thing. You can use
: GROUP1 . GROUP2

* which refers to the entire structure, but partially

qualified
* names such as :LNAME OF GROUP1 do not work.

EXEC SQL SELECT INTO :GROUP1. GROUP2
au_lname, au_fname, phone
FROM authors
WHERE au_id = :AU-ID END-EXEC.

DISPLAY Moo m o s oo oo oo o e m e
DISPLAY "GROUP LISTING FROM ENTIRE STRUCTURES".
DISPLAY Mmoo oo m oo

DISPLAY "LAST NAME = ", LNAME.
DISPLAY "FIRST NAME = ", FNAME.
DISPLAY "PHONE # = ", PHONE.

Open Client

CHAPTER 2

General Information

This chapter provides general information about Embedded SQL.

Topic Page
Five tasks of an Embedded SQL program 9
General rules for Embedded SQL 11
Embedded SQL constructs 14

Five tasks of an Embedded SQL program

Embedded SQL/COBOL Programmers Guide

In addition to containing the host language code, an Embedded SQL
program performsfivetasks. Each Embedded SQL program must perform
all these tasks, to successfully precompile, compile, and execute.
Subsequent chapters discuss these five tasks.

1 Establish SQL communication using SQL CA, SQL CODE, or

SQLSTATE.

Set up the SQL communication area (SQLCA, SQLCODE, or

SQL STATE) to provide a communication path between the
application program and Adaptive Server. These structures contain
error, warning and information message codes that Adaptive Server
and Client-Library generate. See Chapter 3, “Communicating with
Adaptive Server.”

Declare Variables.

I dentify host variables used in Embedded SQL statementsto the
precompiler. See Chapter 4, “Using Variables.”

Connect to Adaptive Server.

Connect the application to Adaptive Server. See Chapter 5,
“Connecting to Adaptive Server.”

4 Send Transact-SQL statements to Adaptive Server.

Five tasks of an Embedded SQL program

Send Transact-SQL statements to Adaptive Server to define and
manipulate data. See Chapter 6, “Using Transact-SQL Statements.”

5 Handle errors and return codes.

Handle and report errors returned by Client-Library and Adaptive Server
using SQLCA, SQLCODE, or SQLSTATE. See Chapter 8, “Handling
Errors.”

Simplified Embedded SQL program

10

Following isasimplified Embedded SQL program. At this point, you need not
understand everything shown in the program. Its purpose isto demonstrate the
parts of an Embedded SQL program. The details are explained in subsequent
chapters.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Communicating with Adaptive Server - Chapter 3
exec sqgl include sglca end-exec.

* Declaring variables - Chapter 4
exec sgl begin declare section end-exec
01 MY-ID PIC X(30).

01 MYPASS PIC X(30).

01 MYSERVER PIC X(30).

exec sgl end declare section end-exec.

PROCEDURE DIVISION.
MAIN-SECTION.
PARA-1.

* Initializing error-handling routines - Chapter 8

exec sgl whenever sglerror perform ERR-PARA
through ERR-PARA-END end-exec.

* Connecting to Adaptive Server - Chapter 5
DISPLAY "PLEASE ENTER USER-ID".

ACCEPT MY-ID.
DISPLAY "PLEASE ENTER PASSWORD".

Open Client

CHAPTER 2 General Information

ACCEPT MYPASS.

DISPLAY "SERVER TO USE?".

ACCEPT MYSERVER.

exec sqgl connect :MY-ID identified by :MYPASS
using :MYSERVER end-exec.

*Issuing Transact-SQL statements - Chapter 6
exec sqgl update alltypes set account = account * 2 end-
exec.

exec sgl commit work end-exec.

*Closing connection to the server - Chapter 5

exec sgl disconnect default end-exec.

STOP RUN.
Error-handling routine - Chapter 8
ERR-PARA.
DISPLAY " ERROR CODE " SQLCODE
" ERROR MESSAGE: " SQLERRMC.

ERR-PARA-END.
END PROGRAM.

General rules for Embedded SQL

The following rules apply to Embedded SQL statements:

Embedded SQL statements begin with these keywords:
exec sql

Embedded SQL requires continuation charactersin column 7 and tokens
from column 8 to column 72. Place exec sq| at the beginning of the
Statement.

The exec sql begin declare section statement must be aligned at the correct
column for data declarations for the generated declaration section to be
properly aligned, and to avoid compiler warnings.

Embedded SQL keywords are not case sensitive. exec sql, EXEC SQL,
Exec Sql, or any other of case mix is equally valid. This manual
consistently shows Embedded SQL keywordsin lowercase. For example:

exec sgl commit work end-exec.

Embedded SQL/COBOL Programmers Guide 11

General rules for Embedded SQL

e All Embedded SQL statements end with the keyword end-exec. Place a
period after end-exec when your program’s syntax or logic requiresit. For
example, the following code requires a period after end-exec because a
COBOL paragraph must end with a period:

PARA-1.
IF SQLCODE = 0
exec sgl commit work end-exec.
PARA-2.

In the next example, there is no period after the first end-exec because
COBOL does not allow periods between if and else.

IF SQLCODE NOT = 0
exec sgl rollback transaction disconnect
end-exec
ELSE
exec sgl commit work end-exec.

» Embedded SQL statements can extend across several lines. end-exec must
be at the end of the statement’slast line or on anew line following the last
line of code.

Statement placement

Comments

12

In general, an application program can have Embedded SQL statements
wherever COBOL statements are valid. However, Embedded SQL statements
cannot be made until the WORKING-STORAGE SECTION of a program's
DATA DIVISION has been defined. Thus, the FILE SECTION, for example,
cannot contain Embedded SQL statements.

Comments placed within Embedded SQL and COBOL statements must follow
one of three conventions.

The Transact-SQL conventioniis:
/* comments */

The COBOL conventionis:

* (in column 7)

The ANSI conventionis:

Open Client

CHAPTER 2 General Information

Identifiers

Quotation marks

Reserved words

-- comments

Comments placed outside SQL statements must conform to COBOL
programming conventions.

Identifiers are used as procedure names or data names within your application.
You cannot split identifiers across lines.

Enclose literal character stringsin Embedded SQL statementswithin single or
double quotation marks. If a character string begins with a double quotation
mark, end it with a double quotation mark. If a character string beginswith a
single quotation mark, end it with a single quotation mark.

Do not use COBOL, Transact-SQL, or Embedded SQL reserved words except
asintended by the respective languages.

You can write Embedded SQL keywords in uppercase, lowercase, or mixed
case. This guide shows Embedded SQL keywordsin lowercase.

Variable naming conventions

Embedded SQL variables must conform to COBOL naming conventions. Do
not place variable names within quotation marks. Applicable quotations marks
are inserted automatically when the variable names are replaced with actual
values. While parsing your application, the precompiler adds declarations for
variables. These declarations begin “ SQL--". So, to avoid confusion, do not
begin variable names with “ SQL".

Embedded SQL/COBOL Programmers Guide 13

Embedded SQL constructs

Scoping rules

Embedded SQL and precompil er-generated statements adhere to host language
scoping rules. The whenever statement and cursor names are exceptions.

Statement batches

Asin Transact-SQL, you can batch several SQL statementsin asingle exec sql
statement. Batches are useful and more efficient when an application executes
afixed set of Transact-SQL statements each time it runs.

For example, some applications create temporary tables and indexeswhen they
start up. You could send these statementsin a single batch. See the Adaptive
Server Enterprise Reference Manual for rules about statement batches.

The following restrictions apply to statement batches:

» Statementsin abatch cannot return resultsto the program. That is, abatch
cannot contain select statements.

» All statementsin a batch must be valid Transact-SQL statements. You
cannot place Embedded SQL statements such as declare cursor and
prepare in a statement batch.

* Thesamerulesthat apply to Transact-SQL batches apply to Embedded
SQL batches. For example, you cannot put ause database Statement in an
Embedded SQL batch.

Embedded SQL constructs
Table 2-1 displays valid constructs in Embedded SQL statements:

14 Open Client

CHAPTER 2 General Information

Table 2-1: Embedded SQL constructs

begin declare section
begin tran

begin work

checkpoint

close cursor_name
commit tran

commit work

connect

create database

create default

create table

create index

create unique index
create clustered index
create nonclustered index
create unique clustered index
create unique nonclustered index
create proc

create rule

create trigger

create view

declare cursor

delete

disconnect

drop table

drop default

drop index

drop proc

drop rule

drop trigger

drop view

dump database

dump tran

end declare section
exec procedure_name
execute name
execute immediate
fetch cursor_name
grant

include sqlca or file
insert

open CUrsor_name
prepare statement_name
revoke

rollback tran

rollback work

select

set

truncate

update

use

whenever condition action

Embedded SQL/COBOL Programmers Guide

15

Embedded SQL constructs

16 Open Client

CHAPTER 3

Communicating with Adaptive
Server

This chapter explains how to enable an application program to receive
status information from Adaptive Server. The topics covered include:

Topic Page
Scoping rules: SQLCA, SQLCODE, and SQLSTATE 18
Declaring SQLCA 18
Declaring SQLCODE as a standalone area 20
Using SQLSTATE 21

To create a communication path and declare system variables to be used
in communications from Adaptive Server to the application, you must
create one of the following entities:

e A SQL Communication Area (SQLCA), which includes SQL CODE
¢ A standalone SQL CODE long integer
e A SQLSTATE character array

SQLCODE, SQLCA, and SQLSTATE are system variablesused in
communication from Adaptive Server to the application.

After Adaptive Server executes each Embedded SQL statement, it stores
return codesin SQLCA, SQLCODE, or SQLSTATE. An application
program can access the variables to determine whether the statement
succeeded or failed.

Note The precompiler automatically sets SQLCA, SQLCODE, and
SQLSTATE variables, which are critical for runtime access to the
database. You need not initialize or modify them.

For details on detecting and handling errors, multiple error messages, and
other return codes, see Chapter 8, “Handling Errors.”

Embedded SQL/COBOL Programmers Guide 17

Scoping rules: SQLCA, SQLCODE, and SQLSTATE

Scoping rules: SQLCA, SQLCODE, and SQLSTATE

You can declare SQLCA anywhere in the application program where a
COBOL variable can be declared. The scope of the structure follows COBOL
scoping rules.

If you declare SQLCA, SQLCODE, or SQL STATE within your file, each
variable must be in scope for all executable Embedded SQL statementsin the
file. The precompiler generates code to set each of these status variables for
each Embedded SQL statement. So, if the variables are not in scope, the
generated code will not compile.

Declaring SQLCA

Multiple SQLCAs

SQLCA variables

18

Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
thisversion of the precompiler supportsonly SQLCODE. A futureversion will
fully support both SQLCA and SQL STATE.

Declare SQLCA in your application program’s WORKING-STORA GE
SECTION. The syntax for declaring SQLCA is:

exec sql include sglca [is external] [is global]
end-exec.

Because a single file can contain multiple COBOL programs, you may have
multiple SQLCAs. However, each SQLCA must be in a separate WORKING-
STORAGE SECTION.

When the precompiler encounters the include sglca statement, it inserts the
SQL CA structure declaration into the application program. SQLCA is adata
structure containing 26 precompiler-determined system variables, each of
which can be accessed independently.

Open Client

CHAPTER 3 Communicating with Adaptive Server

SQL CA variables pass information to your application program about the
status of the most recently executed Embedded SQL statement.

Table 3-1 describes the SQL CA variables that hold status information, return
codes, error codes, and error messages generated by Adaptive Server:

Table 3-1: ASE SQLCA variables

Variable Datatype Description

SQLCAID PIC X(8) Text string that contains “ SQLCA”.

SQLCABC PIC S9(9) COMP Length of SQLCA.

SQLCODE PIC S9(9) COMP Contains the return code of the most
recently executed SQL statement. See
the SQLCODE valuesin Table 3-2 on
page 21 for return code definitions.

RLWARNO PIC X(1) Warning flags. Each flag indicates

to whether awarning has been issued: a

SQLWARN7 “W” for warning, or ablank spacefor no
warning.

Chapter 8 describes the SQLWARN
flags.

LERRMC PIC X(256) Error message.

SQLERRML PIC S9(9) COMP Error message length.

VLERRP PIC X(8) Procedure that detected error/warning.

SQLERRD PIC S9(9) COMP Details of error/warning. SQLERRD(3)

OCCURS6 TIMES

is number of rows affected.

Accessing SQLCA variables

The SQLCA variables listed in the previous section provide additional
information about errorsand return codesto help in debugging aswell asinthe
normal processing of your application.

Warning! Do not define both a SQLCODE and a SQLCA as SQLCODE, as
SQLCODE is afield within the SQLCA structure.

Embedded SQL/COBOL Programmers Guide

19

Declaring SQLCODE as a standalone area

SQLCODE within SQLCA

The application should test SQL CODE after each statement executes, because
Adaptive Server updatesit after each execution. Asarule, use the whenever
statement, described in Chapter 8, “Handling Errors,” to perform the
SQLCODE test.

Following are examples of using SQL CODE:

IF SQLCODE = 100
PERFORM END-DATA-PARA.

or

DISPLAY "SQL status code is" SQLCODE.

Declaring SQLCODE as a standalone area

Note Although SQLSTATE is preferred over SQLCODE and SQLCA, this
version of the precompiler supports only SQLCODE. A future version will
fully support both SQLCA and SQL STATE.

Asan dternative to creating a SQL CA, use SQL CODE independently. It
contains the return code of the most recently executed SQL statement. The
benefit of declaring SQLCODE as a standalone areais that it executes code
faster. If you have no need to review the other information that SQL CA holds
and are interested only in return codes, consider using SQL CODE.

Despite SQL CODE's faster execution speed, SQLSTATE is preferred over
SQL CODE because SQL CODE isadeprecated feature that is compatible with
earlier versions of Embedded SQL.

Warning! Do not declare SQL CODE within a declare section.

Following is an example of declaring SQL CODE as a standalone area:

01 SQLCODE S9(9) COMP.
exec sgl open cursor pub id end-exec.

PARAGRAPH-1:
exec sqgl fetch pub id into :PUB NAME end-exec.
IF SQLCODE = 0 GOTO PARAGRAPH-1.

20 Open Client

CHAPTER 3 Communicating with Adaptive Server

For details on debugging any errors SQL CODE indicates, see Chapter 8,
“Handling Errors.”

Table 3-2 displays SQLCODE values:
Table 3-2: SQLCODE values

Value Description
0 Statement executed successfully.
-n Error occurred. See Server-Library or Client-Library

error messages. -n represents the number associated
with the error or exception.

+100 No dataexists, no rowsleft after fetch, or no rowsmet
search condition for update, delete, or insert.

Using SQLSTATE

Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
thisversion of the precompiler supports only SQLCODE. A futureversion will
fully support both SQLCA and SQL STATE.

SQL STATE is a status parameter. Its codes indicate the status of the most
recently attempted statement—either the statement compl eted successfully or
an error occurred during the execution of the statement.

The following example illustrates a declaration of SQLSTATE:
WORKING-STORAGE SECTION.

01 SQLSTATE PIC x(5)

exec sqgl whenever sglerror perform ERR-PARA

end-exec
ERR-PARA.

IF sglstate = "ZDO0OO0OO" or
sglstate = "ZEOOO" or
sglstate = "ZF000" or
sglstate = "ZG0OOO" or
sglstate = "ZHOOO"

DISPLAY "Unexpected results were ignored"

Embedded SQL/COBOL Programmers Guide 21

Using SQLSTATE

ELSE

IF sglstate = "08001" or sglstate = "08000"
DISPLAY "Connection failed-quitting"
STOP RUN

ELSE

DISPLAY "A non-results, non-connect
— error occurred"

END IF

END TF

Table 3-3 lists SQLSTATE values:
Table 3-3: SQLSTATE values

Value Description

00X XX Successful execution

01XXX Warning

02X XX No data exists; no rows affected
Any other value Error

Obtaining SQLSTATE codes and error messages

SQL STATE can contain alist of one or more error and/or warning messages.
The messages can be informational, warning, severe, or fatal messages. Open
Client Client-Library and Open Server Server Library generate the majority of
SQL STATE messages. See the appropriate documentation for a complete list
of SQLSTATE codes and error messages.

See Appendix A, “ Precompiler Warning and Error Messages,” for the table of
SQL STATE messages that the precompiler can generate.

22 Open Client

CHAPTER 4 Using Variables

Topic Page
Declaring variables 23
Using host variables 25
Using indicator variables 27
Using arrays 31
Scoping rules 31
Datatypes 33

This chapter details the following two types of variables that pass data
between your application and Adaptive Server:

e Host variables, which are COBOL variables you use in Embedded
SQL statementsto hold datathat is retrieved from and sent to
Adaptive Server

e Indicator variables, which you associate with host variables to
indicate null data and data truncation

Declaring variables

Asdiscussed in Chapter 3, “ Communicating with Adaptive Server,” the
precompiler automatically sets the system variables when you include
SQLCA, SQLCODE, or SQLSTATE in the application program.
However, you must explicitly declare host and indicator variablesin a
declare section before using them in Embedded SQL statements.

Warning! The precompiler generates some variables, all of which begin
with “SQL--". Do not begin your variables with “SQL,” or you may
receive an error message or unreliable data.

You cannot use COPY statementsin a declare section. The syntax for a
declare sectionis:

Embedded SQL/COBOL Programmers Guide 23

Declaring variables

exec sgl begin declare section end-exec
declarations ...
exec sgl end declare section end-exec.

Host variable declarations must conform to the COBOL rules for data
declarations. You need not declare all variablesin one declare section, since
you can have an unlimited number of declare sectionsin a program.

Note Version 11.1 and later does not support updates to the PIC clause.

When declaring variables, you must al so specify the picture and usage clauses.
For valid picture and usage clauses, see the section “ Comparing COBOL and
Adaptive Server datatypes’ on page 35.

The following example shows a sample declare section:

exec sgl begin declare section end-exec

01 E-NAME PIC X (30).
01 E-TYPE PIC X (3).
01 TINY-INT PIC S9(2) COMP.

01 SHORT-INT PIC S9(4) COMP.
01 MONEY-DATA CS-MONEY.
exec sgl end declare section end-exec.

Declaring a character array

24

The precompiler supports compl ex definitions, which are structuresand arrays.
You can nest structures, but you cannot have an array of structures.

The precompiler recognizes single-dimensional arrays of all datatypes. The
precompiler also recognizes double-dimensional arrays of characters, as
demonstrated in the following example:

01 NUMSALES PIC S9(9) OCCURS 25 TIMES.

exec sgl begin declare section end-exec.
01 DAYS-OF-THE-WEEK PIC X(31) OCCURS 7 TIMES.
exec sgl end declare section end-exec.

For details on arrays, see “Using arrays’ on page 31.

Open Client

CHAPTER 4 Using Variables

Using host variables

Host variables let you transfer values between Adaptive Server and the
application program.

Declare the host variable within the application program’s Embedded SQL
declare section. Only then can you use the variable in SQL statements.

When you use the variable within an Embedded SQL statement, prefix the host
variablewith acolon. When you use the variable el seawhere in the program, do
not use a colon. When you use several host variables successively in an
Embedded SQL statement, separate them with commas or follow the grammar
rules of the SQL statement.

The following example demonstrates correct host variable usage. PAR-1,
PAR-2, and PAR-3 are declared as host variables and are then used as
parameters to the myproc procedure:

exec sgl begin declare section end-exec

01 PAR-1 PIC X(10).
01 PAR-2 PIC X (10).
01 PAR-3 PIC X (10).

exec sgl end declare section end-exec

exec sqgl exec myproc :PAR-1, :PAR-2, :PAR-3 end-exec.
There are four ways to use host variables:
e Input variablesfor SQL statements and procedures
* Result variables
e Statusvariables from callsto SQL procedures
e Output variablesfor SQL statements and procedures

Regardless of their function, declare all host variables as described in
“Declaring variables’ on page 23. Following are instructions for using host
variables.

Host input variables

These variables passinformation to Adaptive Server. The application program
assigns values to them. They hold data used in executable statements such as
stored procedures, select statements with where clauses, insert statements with
values clauses, and update statements with set clauses.

Embedded SQL/COBOL Programmers Guide 25

Using host variables

The following example uses the TITLE-ID1, TITLE-ID2, and PUB-ID
variables asinput variables:

exec sgl begin declare section end-exec

01 TITLE-ID1 PIC X (6).
01 TITLE-ID2 PIC X(6).
01 PUB-ID PIC X(4).

exec sgl end declare section end-exec

exec sgl delete from titles

where title id = :TITLE-ID1 end-exec.
exec sgl update titles set pub_id = :PUB-ID
where title_id = :TITLE-ID2 end-exec.

Host result variables
These variables receive the results of select and fetch statements.

The following example uses the TITLE-ID variable as aresult variable;

exec sgl begin declare section end-exec
01 TITLE-ID PIC X(6).
exec sgl end declare section end-exec

exec sqgl select title_id into :TITLE-ID from titles
where pub _id = "0736"
and type = "business" end-exec.

Host status variables

These variables receive the return status values of stored procedures. Status
variablesindicate whether the stored procedure completed successfully or the
reasonsit failed. You must use a variable that can be converted from the
Adaptive Server type to smallint.

The following example uses the RET-CODE variable as a status variable:

exec sqgl begin declare section end-exec
01 RET-CODE PIC S9(4) COMP.
exec sgl end declare section end-exec.

exec sgl exec :RET-CODE = update pubs end-exec.

IF RET-CODE NOT = O
exec sgl rollback transaction end-exec.

26 Open Client

CHAPTER 4 Using Variables

Host output variables

These variables pass data from stored procedures to the application program.
Use host output variables when stored procedures return the value of
parameters declared as out. For more information on stored procedures, see
“Using stored procedures’ on page 60.

Thefollowing exampl e uses the PARL and PAR2 variables as output variables:

exec sgl exec a_proc :PAR1 out, :PAR2 out end-exec.

Using indicator variables

You can associate indicator variables with host variables to indicate when a
database value is null. Use a space and, optionally, the indicator keyword to
separate each indicator variable from the host variable with which it is
associated. Each indicator variable must immediately follow its host variable.

Without indicator variables, Embedded SQL cannot indicate null values.

Indicator variables and server restrictions

Embedded SQL is a generic interface that can run on avariety of servers,
including Adaptive Server.

Becauseit is generic, Embedded SQL does not enforce or reflect any particular
server’s restrictions. For example, Embedded SQL allows text and image
stored procedure parameters, but Adaptive Server does not.

When writing an Embedded SQL application, keep the application’s ultimate
target server inmind. If you are unsure about what islegal on aserver and what
is not, consult your server documentation.

Using host variables with indicator variables

Declare host and indicator variablesin a declare section before using them
anywhere in an application program containing Embedded SQL statements.

You must declare indicator variables as one of the following in adeclare
section:

Embedded SQL/COBOL Programmers Guide 27

Using indicator variables

PIC S9(4) COMP

DISPLAY SIGN LEADING (and, optionally, SEPARATE)
DISPLAY SIGN TRAILING (and, optionally, SEPARATE)
COMP-3

COMP-4

COMP-5

BINARY

Prefix indicator variables with a colon when using them in an Embedded SQL
statement. The syntax for associating an indicator variable with ahost variable
is:

:host variable [[indicator] :indicator variable]

The association between an indicator and host variable lasts only for the
duration of one exec sql statement.

ASE sets the indicator variable only when you assign a value to the host
variable. Therefore, you can declare an indicator variable once and reuse it
with different host variables in different statements.

You can use indicator variables with output, result, and input variables. When
used with output and result variables, Embedded SQL sets the variable to
indicate the null status of the associated host variable. When used with input
variables, you set the value of the indicator variable to show the null status of
the input variable before submitting it to Adaptive Server.

Note You can useindicator variables with output, result, and input variables.

Using indicator variables with host output and result variables

28

When you associate an indicator variable with an output or result variable,
Client-Library automatically setsit to one of the following valuesin Table 4-1:

Open Client

CHAPTER 4 Using Variables

Table 4-1: Indicator variable values used with output or result variable

Value Meaning
-1 The corresponding database column in Adaptive Server contains
anull value.
0 A non-null value was assigned to the host variable.
>0 An overflow occurred while data was being converted for the

host variable. The host variable contains truncated data. The
positive number represents the length, in bytes, of the value
before it was truncated.

The following example demonstrates associating the INDIC-V indicator
variable with the PUB-NAME result variable:

exec sgl begin declare section end-exec

01 INDIC-V PIC S9(4) COMP.
01 PUB-ID PIC X(4).
01 PUB-NAME PIC X(20).

exec sgl end declare section end-exec

exec sgl select pub name into :PUB-NAME :INDIC-V

from publishers where pub id = :PUB-ID
end-exec.
if INDIC-V = -1
display "No Publisher name"
else
display "Publisher Name is: " PUB-NAME.

Using indicator variables with host input variables

When you associate an indicator variable with an input variable, you must
explicitly set the indicator variable, using the valuesin Table 4-2 as aguide.

Table 4-2: Indicator variable values used with input variable

Value Meaning
-1 Treat the corresponding input as a null value.
0 Assign the value of the host variable to the column.

You must supply host language code to test for a null input value and set the
indicator variableto -1. Thisinforms Client-Library of anull value. When you
set the indicator variable to -1, null is used regardless of the host variable’'s
actual value.

Embedded SQL/COBOL Programmers Guide 29

Using indicator variables

Thefollowing example demonstrates associating an indicator variable with an
input variable. The database royalty column will be set to a null value because
R-INDIC is set to -1. Changing the value of R-INDIC changes the value of
royalty.

exec sgl begin declare section end-exec
01 R-INDIC PIC S9(4) COMP.

01 R-VAR PIC X(10).

exec sgl end declare section end-exec.

MOVE -1 TO R-INDIC.
exec sgl update titles
set royalty = :R-VAR :R-INDIC
where pub i1d="0736" end-exec.

Host variable conventions

30

A host variable name must conform to COBOL naming conventions.

You can use ahost variable in an Embedded SQL statement only if a Transact-
SQL literal can be used in a Transact-SQL statement at the same location.

A host variable must conform to the valid precompiler datatypes. The datatype
of ahost variable must be compatible with the datatype of the database column
values that are returned. See Table 4-3 on page 37 and Table 4-4 on page 38
for details.

Do not use host language reserved words and Embedded SQL keywords as
variable names.

A host variable cannot represent Embedded SQL keywords or database
objects, except as specified in dynamic SQL. For more information on using
host variables to represent keywords for database objects, see Chapter 4,
“Using Variables.”

When a host variable represents a character string in a SQL statement, do not
place it within quotes.

The following example isinvalid because the precompiler inserts quotes
around values when necessary. You should not type the quotes.

exec sgl select pub id from publishers
where pub id like ":PUB-ID"

end-exec

The following example isvalid:

Open Client

CHAPTER 4 Using Variables

exec sgl select pub id from publishers
where pub id like :PUB-ID

end-exec

Using arrays

An array isagroup of related pieces of data associated with one variable. You
can use arrays as output variables for the into clause of select and fetch
statements. For example:

01 author-array.
10 author-name PIC X (30) occurs 100 times.

exec sql
select au_ lname
from authors
into :au_array

end-exec.

Note You can fetch asingle item anywhere into an array. However, you can
fetch multiple rows only into the beginning of an array.

For details on using arrays with select and fetch into, see“ Selecting multiple
rows through arrays’ on page 47 in Chapter 6.

Multiple arrays

When you use multiple arrays within asingle SQL statement, they must be the
same size. Otherwise, you will receive an error message.

Scoping rules

The precompiler supports nested COBOL programs and COBOL 'srules for
variable scoping. Host variables can use the is global and is external clauses.
Following is a nested example:

Embedded SQL/COBOL Programmers Guide 31

Scoping rules

IDENTIFICATION DIVISION.
PROGRAM-ID. outer.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. xyZz.
OBJECT-COMPUTER. xyz.
DATA DIVISION.
WORKING-STORAGE SECTION.
exec sqgl begin declare section end-exec.
01 global-var is global pic x(10).
01 not-global-var pic x(10).
01 shared-var is external pic x(10).
exec sgl end declare section end-exec.
procedure division.

pO.

IDENTIFICATION DIVISION.
PROGRAM-ID. inner.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. Xy=z.
OBJECT-COMPUTER. xyz.
DATA DIVISION.
WORKING-STORAGE SECTION.

procedure division.

poO.

* This is legal because global-var was
* declared using is global

exec sql
select au_lname into :global-var
where au_id = "998-72-3567"
end-exec.

* This is not legal because not-global-var was
* not declared using is global

exec sql
select au_lname into :not-global-var
where au_id = "998-72-3567"
end-exec.

end program inner.

end program outer.
IDENTIFICATION DIVISION.
PROGRAM-ID. nonest.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

32 Open Client

CHAPTER 4 Using Variables

Datatypes

SOURCE-COMPUTER. Xy=z.
OBJECT-COMPUTER. Xyz.
DATA DIVISION.
WORKING-STORAGE SECTION.
exec sqgl begin declare section end-exec.
01 local-var pic x(10).
01 shared-var is external pic x(10).
exec sgl end declare section end-exec.

procedure division.
poO.

* This is legal.

exec sqgl
select au_lname into :local-var
where au_id = "998-72-3567"
end-exec.
* So is this.
exec sql
select au lname into :shared-var
where au_id = "998-72-3567"
end-exec.

end program nonest.

The COBOL veneer layer isalibrary used by the precompiled application
along with Open Client Client-Library. The COBOL code generated by the
precompiler calls functionsin the veneer layer, each of which calls a specific
Client-Library function. The veneer layer performs conversions and other
operations that make it possible for COBOL to communicate with Client-
Library. The veneer layer also provides conversions that translate between
COBOL host variables and Adaptive Server datatypes.

There are two types of ESQL/COBOL veneer layers: static and shared
dynamic. The following table lists the shared dynamic veneer layer libraries

that are released on all 32-bit and 64-bit platforms:

Plaform Library name Reentrant version
HP-UX PA-RISC 32-bit libsybcobct.d libsybcobct_r.d
HP-UX PA-RISC 64-bit libsybcobct64.d libsybcobct_r64.d

Embedded SQL/COBOL Programmers Guide

33

Datatypes

Plaform Library name Reentrant version
All other 32-bit platforms that libsybcobct.so libsybcobct_r.so
support ESQL/COBOL

All other 64-bit platforms that libsybcobct64.s0 libsybcobct_r64.s0
support ESQL/COBOL

The existing static version of the ESQL/COBOL veneer layer library iscalled
libsybcabct.a.

There are two types of dataitems: elementary and group dataitems. The
following subsections describe these types of dataitems.

Elementary data items

Group data items

34

An elementary data itemisacompleteitem that cannot be broken into separate
parts. You can use elementary data items as host variables.

Following is an example of an elementary data item:
01 MYSTR PIC X(26).

You can use MYSTR as a host variable (:MYSTR) because it is an elementary
dataitem.

When multiple elementary dataitems combineto form agroup of related items
they become agroup dataitem. You can use group dataitems as host variables.
Declare group data items in declare sections.

Following is an example of a group item:

01 AUTH-REC.

10 AUTH-NAME PIC X(25).
10 STATE PIC X(25).
10 TOTAL-SALES PIC S9(9) COMP SYNC

Following is an example of selecting into a group item whose dataitems are
host variables:

exec sgl select au lname, salary, tot_ sales
from table into :AUTH-REC end-exec

The preceding example has the same effect as the following code:

Open Client

CHAPTER 4 Using Variables

exec sgl select au lname, salary, tot_ sales
from table into :AUTH-NAME, :SALARY, :TOTAL-SALES

Another equivalent exampleis:

exec sgl select au_lname, salary, tot_sales
from table into :AUTH-NAME OF AUTH-REC,
:SALARY OF AUTH-REC, :TOTAL-SALES OF AUTH-REC

Embedded SQL/COBOL also supports C language structure syntax for host
variablesin exec sql statements. For example, the preceding example could be
rewritten as follows:

exec sgl select au lname, salary, tot_ sales
from table into :AUTH-REC.AUTH-NAME,
:AUTH-REC.SALARY, :AUTH-REC.TOTAL-SALES

Use SYNC with COMP, COMP-4, COMP-5, and BINARY dataitems
declared within group data items.

Special data items

Specia Sybase datatypes, such asCS MONEY, CS-TEXT, and CS-IMAGE
are declared as shown in the following example;

01 MYTEXT PIC x(100) USAGE IS CS-TEXT.

Comparing COBOL and Adaptive Server datatypes

Host variable datatypes must be compatible with the datatypes of the
corresponding database columns. So, before writing your application program,
check the datatypes of the database columns.

The following rules apply to datatypes:

e When you use any of the host variablesin the “To: COBOL Datatype’
column as input or output, the appropriate conversions occur
automatically.

e Indicator variables must be of usage COMP, COMP-3, COMP-4, COMP-
5, BINARY, or avariant of DISPLAY . They must have a picture string of
S9(4) or equivalent.

e You can use any value with PIC S9(1-9) COMP. If decimal truncation
occurs, no truncation message results. Instead, a SQLCA or SQLSTATE
error message results, which specifically indicates digital truncation.

Embedded SQL/COBOL Programmers Guide 35

Datatypes

For example, if you select thevalue“ 1234” into aPIC S9(4), no truncation
message occurs because the valuefitsin the given bytes. However, if you
select “1234567” into PIC S9(3), atruncation message results because the
value does not fit in the given bytes.

Converting datatypes

The precompiler automatically compares the datatypes of host variables with
the datatypes of table columnsin Adaptive Server. If the Adaptive Server
datatype and the host language datatype are compatible but not identical, the
COBOL veneer layer converts one type to the other. Datatypes are compatible
if the precompiler can convert the data from one type to the other. If the
datatypes are incompatible, a conversion error occurs at runtime and
SQLCODE or SQLSTATE is set to a hegative number.

Be careful when converting alonger datatype into ashorter one, such asalong
integer into PIC S9(4) COMP, because there is always a possibility of
truncating data. If atruncation occurs, SQLWARNL1 is set.

Note Do not fetch Adaptive Server datainto COBOL numeric fields that
contain editing characters such as commas and decimal characters. Instead,
fetch the data into an unedited field such as comp or display sign leading
separate and then move the datainto an edited field.

Converting datatypes for result variables

36

Table 4-3 shows which data conversionsare valid for result variables. A bullet
indicates that conversion is possible, but be aware that certain types of errors
can result if you are not careful when choosing host variable datatypes.

Open Client

CHAPTER 4 Using Variables

Table 4-3: Datatype conversions for result variables
To: COBOL datatype

. P
i .o
.z 2 G 2
- <t
% < ('7) T O O
o £ 02 ,Cl -n’ -3
. © o TEE =Ps O
From: S el -~ 30Q zZz
Adapti L o << < £ 200 o)e)
aptive | o <
Server 422 oaoaQ E - =3
500 nnHw O Fow N N
datatype noo (CRSNS) o noo SRS)
char o
varchar
blt . . °
tinyint
smallint
int
bigint
ubigint
uint o . . .
usmallint
float
money o . B .
money4
numeric
real
date .
time .
datetime . .
datetime4 . .

Key: DSL = Display Sign Leading
DSLS = Display Sign Leading Separate
DST = Display Sign Trailing

DSTS = Display Sign Trailing Separate

Converting datatypes for input variables

Table 4-4 shows which data conversions are valid for input variables. A bullet
indicates that conversion is possible. Errors, including truncation, can result if
you choose nonconvertible host variable datatypes.

Embedded SQL/COBOL Programmers Guide 37

Datatypes

38

Table 4-4: Datatype conversions for input variables

From:
COBOL datatype

To: Adaptive Server datatype

varchar

money

date, time,

int, smallint,

bigint

ubigint

uint

usmallint

bit

float

char
numeric
real, float

S9(1—9) COMP,
COMP-4, COMP-5
BINARY

CS-DATE,
CS-TIME,
CS-DATETIME,
CS-DATETIME4

PIC X(n)

S9(m)V9(n) DSLS
DSL, DSTS, DST
COMP-3

CS-MONEY,
CS-MONEY4

Key: DSL = Display Sign Leading
DSLS = Display Sign Leading Separate

DST = Display Sign Trailing

DSTS = Display Sign Trailing Separate

Open Client

CHAPTER 5

Connecting to Adaptive Server

This chapter explains how to connect an Embedded SQL program to
Adaptive Server and describes how to specify servers, user names, and
passwords. Topics include:

Topic Page
Connecting to a server 39
Changing the current connection 41
Establishing multiple connections 41
Disconnecting from a server 44

Connecting to a server

user

Use the connect statement to establish a connection between an
application program and Adaptive Server. If an application uses both C
and COBOL languages, the first connect statement must beissued from a
COBOL program.

The syntax for the connect statement is:
exec sgl connect :user [identified by :password]
[at :connection name] [using :server]
[label name label name label value label value...]
end-exec

Each of the following sections describes one of the connect statement’s
arguments. Only the user argument is required for the connect statement.
The other arguments are optional.

user isahost variable or quoted string that represents a Adaptive Server
user name. The user name must be valid for the server specified.

Embedded SQL/COBOL Programmers Guide 39

Connecting to a server

password

password is a host variable or quoted string that represents the password
associated with the specified user name. This argument is necessary only if a
password is required to access Adaptive Server. If the password argument is
null, the user does not need to supply a password.

connection_name

server

connect example

40

connection_name uniquely identifiesthe Adaptive Server connection. It can be
adouble-quoted or an unquoted literal. You can create an unlimited number of
connectionsin an application program, one of which can be unnamed.
connection_name has a maximum size of 255 characters.

When you use connection_name in a connect statement, all subsequent
Embedded SQL statementsthat specify the same connection automatically use
the server indicated in the connect statement. If the connect statement specifies
no server, the default server is used. See the Open Client and Open Server
Programmer’s Supplement for details on how the default server is determined.

Note To changethe current server connection, usethe set connection statement
described in “ Changing the current connection” on page 41.

An Embedded SQL statement should reference only a connection_name
specified in aconnect statement. At least one connect statement isrequired for
each server that the application program uses.

server isahost variable or quoted string that represents a server name. server
must be a character string that uniquely and completely identifies a server.

The following example uses the UNIX format to connect to the server
SYBASE.

exec sgl begin declare section end-exec

01 USER PIC X (16) VALUE "myname"

Open Client

CHAPTER 5 Connecting to Adaptive Server

01 PASSWD PIC X (16) VALUE "abcdefg".
01 SERV-NAME PIC X(16).
01 MY-SERVER PIC X (512).

exec sgl end declare section end-exec.
MOVE "SYBASE" TO SERV-NAME.

exec sgl connect :USER identified by :PASSWD
using :SERV-NAME end-exec.

Changing the current connection

Use the set connection statement to change the current connection. The
statement’s syntax is:

exec sqgl set connection {connection name | default}
where “default” isthe unnamed connection, if any.
The following example changes the current connection:

exec sgl connect "ME" at connectl using "SERVER1" end-
exec

exec sgl connect "ME" at connect2 using "SERVER2" end-
exec

exec sgl set connection connectl end-exec

exec-sgl select user id()into :MYID end-exec

Establishing multiple connections

Some Embedded SQL applications require or benefit from having more than
one active Adaptive Server connection. For example:

e An application that requires multiple Adaptive Server login names can
have a connection for each login account name.

e By connecting to more than one server, an application can simultaneously
access data stored on different servers.

A single application can have multiple connections to a single server or
multiple connections to different servers. Use the connect statement’s at
connection_name clause to name additional connections for an application.

Embedded SQL/COBOL Programmers Guide 41

Establishing multiple connections

If you open one connection and then another new named or unnamed
connection, the new connection is the current connection.

Note If you are creating stored procedures with the precompiler for
appropriate SQL statements with the precompiler, then for each Embedded
SQL file, the precompiler will generate asinglefile for all stored procedures
on al servers. You can load thisfile into the appropriate server(s). Although
the server(s) will report warnings and errors about being unable to read the
procedures intended for other servers, ignore them. The stored procedures
appropriate for each server will load properly onthat server. Be sureto load the
stored procedures on all applicable servers or your queries will fail.

Naming a connection

Table 5-1 shows how a connection is named:

Table 5-1: How a connection is named

If this clause is Without

used this clause The connection name is

at connection_name connection_name

using server_name at server_name

None The actual name of the connection

“DEFAULT”

Invalid statements with the at clause

42

The following statements are invalid with the at clause:
* connect

* begin declare section

* end declare section

* include file

* include sgica

* setconnection

e whenever

Open Client

CHAPTER 5 Connecting to Adaptive Server

Using Adaptive Server connections

Specify aconnection name for any Embedded SQL statement that you want to
execute on a connection other than the default unnamed connection. If your
application program uses only one connection, you can leave the connection
unnamed and omit the at clause.

The syntax for using multiple connectionsis:
exec sgl [at connection name]l sqgl statement
end-exec

where sgl_statement is a Transact-SQL statement.

The following example shows how two connections can be established to
different servers and used in consecutive statements:

exec sgl begin declare section end-exec

01 USER PIC X(16) VALUE "myname".
01 PASSWD PIC X(16) VALUE "mypass".
01 AU-NAME PIC X (20)

01 A-VALUE PIC S9(9) COMP.

01 A-TEST PIC S9(9) COMP.

01 SERVER-1 PIC X(16)

01 SERVER-2 PIC X(16)

exec sgl end declare section end-exec.

MOVE "sybasel" TO SERVER-1.
MOVE "sybase2" TO SERVER-2.

exec sgl connect :USER identified by :PASSWD
using :SERVER-1 end-exec.

exec sgl connect :USER identified by :PASSWD
at connection-2 using :SERVER-2 end-exec.

* This statement uses the current connection
* (connection-2)
exec sqgl select royalty into :A-VALUE from pubs
where author = :AU-NAME end-exec.

* This statement uses connection "SERVER-1"
IF A-VALUE = A-TEST
exec sgl at SERVER-1 update titles
set column = :A-VALUE * 2
where author = :AU-NAME end-exec.

Embedded SQL/COBOL Programmers Guide 43

Disconnecting from a server

Disconnecting from a server

The connections your application program establishes remain open until you
explicitly close them or until your program terminates. Use the disconnect
statement to close a connection between the application program and Adaptive
Server.

The statement’s syntax is as follows:

exec sqgl disconnect {connection name current |
default | all} end-exec

where;

» current specifies the current connection.

» default specifies the unnamed default connection.
» all specifies all connections currently open.

The disconnect statement:

1 Rollsback the transaction, ignoring any established savepoints.
2 Closes the connection.

3 Dropsall temporary objects, such as tables.

4 Closesall open cursors.

5 Releaseslocks established for the current transactions.

6 Terminates accessto the server’s databases.

disconnect does not implicitly commit current transactions.

Warning! Before the program exits, make sure you perform an exec sql
disconnect or exec sql disconnect all statement for each open connection. In
some configurations, Adaptive Server may not be notified when a client exits
without disconnecting. If this happens, resources held by the application will
not be released.

44 Open Client

CHAPTER 6 Using Transact-SQL Statements

This chapter explains how to use Transact-SQL statements with
Embedded SQL and host variables. It also explains how to use stored
procedures, which are collections of SQL statements stored in Adaptive
Server. Since stored procedures are compiled and saved in the database,
they execute quickly without being recompiled each time you invoke

them.
Topic Page
Transact-SQL statements in Embedded SQL 45
Selecting rows 46
Grouping statements 63
Including files and directories 66

Transact-SQL statements in Embedded SQL

exec sql syntax

Embedded SQL statements must begin with the keywords exec sgl and
end with the keyword end-exec. The syntax for Embedded SQL
statementsiis:

exec sqgl [at connection name]l sql statement end-exec
where:

e connection_name specifies the connection for the statement. See
Chapter 5, “ Connecting to Adaptive Server,” for a description of
connections. The at keyword is valid for Transact-SQL statements
and the disconnect statement.

e ggl_statement is one or more Transact-SQL statements.

Embedded SQL/COBOL Programmers Guide 45

Selecting rows

Invalid statements

Except for the following Transact-SQL statements, all Transact-SQL
statements are valid in Embedded SQL.:

* print

* raiserror

* readtext

* writetext

Transact-SQL statements that differ in Embedded SQL

While most Transact-SQL statements retain their functionality and syntax
when used in Embedded SQL, the select, update, and delete statements (the
Data Manipulation Language, or DML, statements) can be dlightly differentin
Embedded SQL:

» Thefollowing four items are specific to the into clause of the select
Statement.

Selecting rows

Theinto clause can assign one row of data to scalar host variables.
Thisclauseisvalid only for select statements that return just one row
of data. If you select multiple rows, anegative SQL CODE results, and
only thefirst row is returned.

If the variablesin an into clause are arrays, you can select multiple
rows. If you select more rows than the array holds, an exception of
SQLCODE <0 israised, and the extrarows are lost.

select cannot return multiple rows of datain host variables, except
through a cursor or by selecting into an array.

The update and delete statements can use the search condition where
current of CUrsor_name.

There can be amaximum of 1024 columns in a select statement. For the
complete listing of the select statement’s syntax, see the Adaptive Server
Enterprise Reference Manual.

46

Open Client

CHAPTER 6 Using Transact-SQL Statements

Selecting one row

When you use the select statement without a cursor or array, it can return only
one row of data. Embedded SQL requires a cursor or an array to return more
than one row of data.

In Embedded SQL, a select statement must have an into clause. The clause
specifiesalist of host variables to be assigned values.

Note The current Embedded SQL precompiler version does not support into
clauses that specify tables.

The syntax of the Embedded SQL select statement is:

exec sgl [at connect name]
select [all | distinct] select list into
:host variablel[[indicator] :indicator variable]
[, :host variable
[[indicator] :indicator variable]...]
end-exec

For additional information on select statement clauses, seethe Adaptive Server
Enterprise Reference Manual.

Thefollowing select statement exampl e accesses the authors tablein the pubs2
database and assigns the value of au_id to the host variable ID:

exec sgl select au_id into :ID from authors
where au_lname = "Stringer"
end-exec

Selecting multiple rows through arrays

select into arrays

You can return multiple rows with arrays. The two array actionsinvolve
selecting and fetching into arrays.

Usethe select into array method when you know the maximum number of rows
that will bereturned. If aselectinto statement attemptsto return more rowsthan
the array can hold, the statement returns the maximum number of rowsthat the
smallest array can hold.

Following is an example of selecting into an array:

Embedded SQL/COBOL Programmers Guide 47

Selecting rows

exec sgl begin declare section end-exec
01 TITLEID-ARRAY PIC X(6) OCCURS 100 TIMES.
exec sgl end declare section end-exec

exec sgl select title id into :titleid-array
from titles end-exec.

Indicator arrays

To useindicatorswith array fetches, declare an array of indicators of the same
length as the host_variable array, and use the syntax for associating the
indicator with the host variable.

Example

exec sgl begin declare section end-exec
01 ITEM-NUMBERS S9(9) OCCURS 100 TIMES.
01 I-ITEM-NUMBERS S9(4) OCCURS 100 TIMES.
exec sgl end declare section end-exec

exec sql select it _n from item.info
into :item-numbers :i-item-numbers end-exec.

Arrays and structures as indicator variables

For tables with alarge number of columns, you can use arrays and structures
asaset of host variablesthat isreferenced in a SQL statement. For thisfeature
to work correctly, you must declare the indicator array or indicator structure
elementswith aPIC S9(4) clause and a COMP-5 clause. Aswith ESQL/C, use
of structures and arrays as indicator variables removes the time consuming
process of coding singleton indicator variablesin ESQL/COBOL for every
nullable column of every Embedded SQL statement in the application.

Examples Example 1 Thisis an example of declaring indicator arrays and executing a
query on the indicator arrays:

* Declare variables
01 HOST-STRUCTURE-M1.
03 M-TITLE PIC X(64).

03 M-NOTES PIC X(200).
03 M-PUBNAME PIC X (40).

48 Open Client

CHAPTER 6 Using Transact-SQL Statements

03 M-PUBCITY PIC X(20).
03 M-PUBSTATE PIC X (2).

01 INDICATOR-TABLE.
03 I-NOTES-ARR PIC S9(4) COMP-5 OCCURS 5 TIMES.

* Execute query
EXEC SQL
SELECT substring(title, 1, 64), notes, pub name,
city, state
INTO :HOST-STRUCTURE-M1:I-NOTES-ARR
FROM titles, publishers
WHERE titles.pub id = publishers.pub id
AND title_id = :USER-TITLEID
END-EXEC.

Example 2 Thisis an example declaring indicator structures and executing a
guery on the indicator structures:

* Declare variables

01 HOST-STRUCTURE-M1.
03 M-TITLE PIC X(64).
03 M-NOTES PIC X(200) .
03 M-PUBNAME PIC X(40).
03 M-PUBCITY PIC X(20).
03 M-PUBSTATE PIC X (2).

01 INDICATOR-STRUCTURE-I1.
03 I-TITLE PIC S9(4) COMP-5.
03 I-NOTES PIC S9(4) COMP-5.
03 I-PUBNAME PIC S9(4) COMP-5.
03 I-PUBCITY PIC S9(4) COMP-5.
03 I-PUBSTATE PIC S9(4) COMP-5.

* Execute query

EXEC SQL

SELECT substring(title, 1, 64), notes, pub name, city,
state

INTO :HOST-STRUCTURE-M1:INDICATOR-STRUCTURE-I1
FROM titles, publishers

Embedded SQL/COBOL Programmers Guide 49

Selecting rows

Usage

Error messages

WHERE titles.pub id =
AND title id =

END-EXEC.

publishers.pub id

:USER-TITLEID

When using structs and arrays as indicator variables:

» Thenumber of elementsintheindicator array or struct must be exactly the
same asthe number of elementsin the host variable structure. A mismatch
causes cobpre or cobpre64 to stop processing, and code is not generated.

* Thecolumnsin the SELECT list must match by sequence, and datatype,
the chosen structure name in the INTO list. A mismatch causes ct_bind()

runtime errors and stops processing.

Table 6-1 describes the Embedded SQL internal error messages created to
handle host variable versusindicator variable mismatch errors for thisfeature.

Table 6-1: New internal error messages

Message ID Message text Severity | Fix

M_INVTYPE_V | Incorrect type of indicator variable Fatal Make sure that the same indicator
found in the structure. variable is used in the hostvar and

indicator declarations.

M_INVTYPE_VI | Mismatch between number of structure | Fatal Declare the same number of elements
elementsin the indicator structure and in theindicator structure and hostvar
hostvar structure. structure.

M_INVTYPE_VII | Mismatch between number of elements | Fatal Declare the same number of elements
in the indicator array and hostvar in the indicator array and hostvar
structure. structure.

Limitation You cannot mix singleton host variables or singleton indicator variables with

hostvar structures, and indicator arrays or structures.

fetch into: batch arrays

50

fetch returns the specified number of rows from the currently active set. Each
fetch returns the subsequent batch of rows. For example, if the currently active
set has 150 rows and you select and fetch 60 rows, thefirst fetch returnsthefirst
60 rows. The next fetch returns the following 60 rows. The third fetch returns

the last 30 rows.

Note To find the total number of rows fetched, see the SQLERRD variablein
the SQLCA, as described in “SQL CA variables’ on page 18.

Following is an example of selecting into an array:

Open Client

CHAPTER 6 Using Transact-SQL Statements

Cursors and arrays

Using cursors

exec sgl begin declare section end-exec
TITLEID-ARRAY PIC X(6) occurs 100 times.
exec sgl end declare section end-exec
exec sql
select title id into :titleid array
from titles
end-exec
IF (SQLERRD OF SQLCA LESS THAN 50)

DISPLAY "No of title ids is less than 50");
ENDIF.

Use the fetch into array method when you do not know the number of rowsto
be returned into the array. Declare and open a cursor, then use fetch to retrieve
groups of rows. If afetch into attemptsto return more rows than the array can
hold, the statement returns the maximum number of rows that the smallest
array can hold and SQL CODE displays a negative value, indicating that an
error or exception occurred.

A cursor isadataselector that passes multiple rows of datato the host program,
one row at atime. The cursor indicates the first row, also called the current
row, of dataand passes it to the host program. With the next fetch statement,
the cursor advances to the next row, which has now become the current row.
This continues until al requested rows are passed to the host program.

Use acursor when aselect statement returns more than one row of data. Client-
Library tracks the rows Adaptive Server returns and buffers them for the
application. To retrieve data with a cursor, use the fetch statement.

The cursor mechanism is composed of these statements:

e declare
* open
e fetch

* update and delete where current of

* close

Embedded SQL/COBOL Programmers Guide 51

Selecting rows

Cursor scoping rules

Declaring cursors

The scope of acursor declaration isthe filein which it is declared. The open
statement(s) for a cursor must reside in the same file in which the cursor is
declared. Once a cursor is open, its scope is the connection on which it was
opened.

The same cursor name can be opened for multiple connections. Cursor fetch,
update, delete, and close operations can occur in files other than the onein
which the cursor was declared, as long as they are executed on the same
connection on which the cursor was opened.

Cursor names must be unique within a program. If, at runtime, an application
attemptsto declaretwo identically named cursors, the application failswith the
following error message:

There is already another cursor with the name ‘XXX'.

The declare cursor statement is a declaration, not an executable statement.
Therefore, it may appear anywhere in afile; SQLCODE, SQLSTATE, and
SQLCA are not set after this statement.

Declare a cursor for each select statement that returns multiple rows of data.
You must declare the cursor before using it, and you cannot declare it within a
declare section.

The syntax for declaring a cursor is:

exec sgl declare cursor _name cCursor
for select statement end-exec.

where:

» cursor_name identifies the cursor. The name must be unique and have a
maximum of 255 characters. The name must begin with aletter of the
alphabet or with the symbols# or _.

* select_statement isaselect statement that can return multiple rows of data.
The syntax for select is the same as that shown in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

Example: Declaring a cursor

52

The following example demonstrates declaring cursors:

Open Client

CHAPTER 6 Using Transact-SQL Statements

exec sqgl declare Cl cursor for
select type, price from titles
where type like :WK-TYPE end-exec

Inthisexample, C1 isdeclared asacursor for the rowsthat will be returned for
the type and price columns. The precompiler generates no code for the declare
cursor statement. It Ssmply stores the select statement associated with the
Ccursor.

When the cursor opens, the select statement or procedurein the declare cursor
statement executes. When the data is fetched, the results are copied to the host
variables.

Note Each cursor’sopen and declare statements must bein the sasmefile. Host
variables used within the declare statement must have the same scope as the
one in which the open statement is defined. However, once the cursor is open,
you can perform fetch and update/delete where current of on the cursor in any
file.

Declaring scrollable cursors
The syntax for declaring a scrollable cursor is:

exec sqgl declare cursor name [cursor sensitivity]
[cursor scrollability] cursor
for select statement ;

where:

e cursor_name identifies the cursor. The name must be unique and have a
maximum of 255 characters. The name must begin with aletter of the
alphabet or with the symbols“#" or “_".

e cursor sengitivity specifies the sensitivity of the cursor. The options are:

* semi_sensitive. |If semi_sensitive is specified in the declare statement,
scrollability isimplied. The cursor is semi_sensitive, scrollable, and
read-only.

* insensitive. If insensitive is specified in the declare statement, the
cursor isinsensitive. Scrollability is determined by specifying
SCROLL inthe declare part. If SCROLL isomitted or NOSCROLL
is specified, the cursor isinsensitive only and non-scrollable. Itisalso
read-only.

Embedded SQL/COBOL Programmers Guide 53

Selecting rows

Opening cursors

54

If cursor sensitivity is not specified, the cursor is non-scrollable and read-
only.

e cursor scrollability specifies the scrollability of the cursor. The options
are:

e scroll. If scroll is specified in the declare statement and sensitivity is
not specified, the cursor isinsensitive and scrollable. It is also read-
only.

e no scroll. If the SCROLL option is omitted or NOSCROLL is
specified, the cursor is non-scrollable and read-only. See the previous
cursor sensitivity description for cursor behavior.

If cursor scrollability is not specified, the cursor is non-scrollable and
read-only.

» select_statement isaselect statement that can return multiple rows of data.
The syntax for select is the same as that shown in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

To retrieve the contents of selected rows, you must first open the cursor. The
open statement executes the select statement associated with the cursor in the
declare statement.

The open statement’s syntax for opening a cursor is:

exec sgl open cursor name [ROW_COUNT = size] end-exec.

Note ROW_COUNT should be specified with cursorswhen arraysare used as
host variables and multi-row retrieval is required.

After you declare a cursor, you can open it wherever you can issue a select
statement. When the open statement executes, Embedded SQL substitutes the
values of any host variables referenced in the declare cursor statement’swhere
clause.

The number of cursors you may have open depends on the resource demands
of the current session. Adaptive Server does not limit the number of open
cursors. However, you cannot open a currently open cursor. Doing so resultsin
an error message.

Open Client

CHAPTER 6 Using Transact-SQL Statements

While an application executes, you can open a cursor as many times as
necessary, but you must close it before reopening it. You need not retrieve all
the rows from a cursor result set before retrieving rows from another cursor
result set.

Fetching data using cursors

exec sql
whenever
end-exec.
exec sql
whenever

end-exec.

Use afetch statement to retrieve data through a cursor and assign it to host
variables. The syntax for the fetch statement is:

exec sqgl [at connect name] fetch cursor name
into : host variable
[[indicator]: indicator variable]
[,: host variable
[[indicator]: indicator variable]...];

where there is one host_variable for each column in the result rows.

Prefix each host variable with a colon and separate it from the next host
variable with acomma. The host variables listed in the fetch statement must
correspond to Adaptive Server valuesthat the select statement retrieves. Thus,
the number of variables must match the number of returned values, they must
be in the same order, and they must have compatible datatypes.

Anindicator_variableisa2-byte signed integer declared in aprevious declare
section. If avalue retrieved from Adaptive Server is null, the runtime system
sets the corresponding indicator variable to -1. Otherwise, the indicator is set
to 0.

The data that the fetch statement retrieves depends on the cursor position. The
cursor pointsto the current row. The fetch statement always returnsthe current
row. The first fetch retrieves the first row and copies the values into the host
variables indicated. Each fetch advances the cursor to the next result row.

Normally, you should place the fetch statement within aloop so al values
returned by the select statement can be assigned to host variables. Following is
aloop that is commonly used:

sglerror perform err-para thru err-para-end

not found go to read-end

* 0 is never equal to 1, so the perform will run
* until the whenever NOT FOUND clause causes

Embedded SQL/COBOL Programmers Guide 55

Selecting rows

* a jump to READ-END

PERFORM READ-PARA UNTIL 0 = 1.

READ-END.

READ-PARA.
exec sqgl fetch cursor name into host-variable-list
end-exec.

OTHER-PARA.

Thisloop continuesuntil all rowsarereturned or an error occurs. In either case,
SQLCODE or SQLSTATE, which the whenever statement checks after each
fetch, indicates the reason for exiting the loop. The error-handling routines
ensure that an action is performed when either condition arises, asdescribed in
Chapter 8, “Handling Errors”

Fetching data using scrollable cursors

56

Use afetch statement to retrieve data through a cursor and assign it to host
variables. The syntax for the fetch statement is:

exec sqgl [at connect name] fetch [fetch
orientation] cursor name

into : host variable

[[indicator]: indicator variable]

[,: host variable

[[indicator]: indicator variable]...];

where one host_variable exists for each column in the result rows.

Prefix each host variable with a colon, and separate it from the next host
variable with acomma. The host variables listed in the fetch statement must
correspond to Adaptive Server valuesthat the select statement retrieves. Thus,
the number of variables must match the number of returned values, they must
be in the same order, and they must have compatible datatypes.

The fetch orientation specifies the fetch direction of the row to befetched, if a
cursor isscrollable. The options are: NEXT, PRIOR, FIRST, LAST, ABSOLUTE
fetch_offset and RELATIVE fetch offset. If fetch orientation is not specified,
next is default. If fetch orientation is specified, the cursor must be scrollable.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Example for declaring
a scrollable cursor
and fetching rows

The data that the fetch statement retrieves depends on the cursor position. The
fetch statement typically retrievessingle or multiplerowsfrom the cursor result
set, depending on the ROW_COUNT specification at cursor open time. If a
cursor is not scrollable, fetch retrieves the next row in the result set. If acursor
is scrollable, commands in the fetch statement specify the row position to be
fetched.

To declare a scrollable cursor and fetch rows at random, specify the scroll
sensitivity and scrollability in the declare cursor, then specify the fetch
orientation at fetch time. The following example demonstrates declaring an
insensitive scrollable cursor and fetching rows at random:

exec sgl declare cl insensitive scroll cursor for
select title id, royalty, ytd sales from authors
where royalty < 25;

exec sgl open cl;

Inthisexample, scroll and insensitive are specified in thedeclare cursor. A fetch
orientation can be specified at fetch timeto indicate which row isrequired from
the result set.

Onceacursor hasbeen declared as scrollable and opened, aFETCH orientation
can be specified at fetch time to indicate which row is wanted from the result
Set.

The following fetch example fetches the specified columns of the first row
from the result set:

exec sqgl fetch first from cl into :title, :roy, :sale;

Thefollowing fetch exampl e fetches the specified columns of the previousrow
from the result set:

exec sqgl fetch prior from cl into :title, :roy, :sale;

Thefollowing fetch exampl e fetches the specified columns of row twenty from
the result set:

exec sqgl fetch absolute 20 from cl into :title, :roy, :sale;

Use sglcode or sglstate to determine if fetch statements return valid rows. For
scrollable cursors, it is possible to fetch O rows if the cursor is positioned
outside of result set boundaries, for example, before the first row or after the
last row. In these circumstances, fetching O rows is not an error.

Embedded SQL/COBOL Programmers Guide 57

Selecting rows

Using cursors to update and delete rows

Closing cursors

58

To update or delete the current row of a cursor, specify where current of
cursor_name as the search condition in an update or delete statement.

To update rows through a cursor, the result columns to be used in the updates
must be updatable. They cannot be the result of SQL expressions such as
max(colname). In other words, there must be a valid correspondence between
the result column and the database column to be updated.

The following example demonstrates how to use a cursor to update rows:

exec sqgl declare cl cursor for
select title id, royalty, ytd sales
from titles
where royalty < 12
end-exec

exec sgl open Cl end-exec

PERFORM READ-PARA UNTIL SQLCODE = 100.
exec sgl close Cl end-exec.
STOP RUN.
READ-PARA.
exec sqgl fetch Cl1 into :TITLE-ID, :ROYALTY,
:SALES end-exec.
IF SALES > 10000
exec sqgl update titles
set royalty = :roy + 2
where current of Cl end-exec.

The Embedded SQL syntax of the update and delete statementsisthe same as
in Transact-SQL, with the addition of the where current of cursor_name search
condition.

For details on determining table update protocol and locking, see the Transact-
0L User’'s Guide.

Use the close statement to close an open cursor. The syntax for the close
statement is:

exec sgl [at connection] close cursor name end-exec

To reuse a closed cursor, issue ancther open statement. When you reopen a
cursor, it pointsto thefirst row. Do not issue aclose statement for a cursor that
isnot open or an error will result.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Cursor example

The following example shows how to nest two cursors. Cursor C2 depends
upon the value fetched into TITLE-ID from cursor C1.

The program gets the value of TITLE-ID at open time, not at declare time.

exec sqgl declare Cl cursor for
select title id, title, royalty from titles
end-exec

exec sqgl declare C2 cursor for
select au_ lname, au_ fname, from authors
where au_id in
(select au_id from titleauthor
where title id = :TITLE-ID)
end-exec

exec sqgl open Cl end-exec.
PERFORM READ-TITLE UNTIL SQLCODE = 100.

READ-END.

READ-TITLE.
exec sqgl fetch C1 into
:TITLE-ID, :TITLE, :ROYALTY end-exec.
IF SQLCODE NOT = 100
MOVE ROYALTY TO DISP-ROY
DISPLAY "Title ID: " TITLE-ID
", Royalty: " DISP-ROY
IF ROYALTY > 10
exec sgl open C2 end-exec
PERFORM READ-AUTH UNTIL SQLCODE = 100
exec sqgl close C2 end-exec.

READ-AUTH.
exec sql fetch C2 into :AU-LNAME, :AU-FNAME
end-exec
IF SQLCODE NOT = 100
DISPLAY " AUTHOR: " AU-LNAME " "

AU-FNAME.

See the online sample programs for more examples using cursors. For details
on accessing the online examples, see the Open Client and Open Server
Programmer’s Supplement.

Embedded SQL/COBOL Programmers Guide 59

Selecting rows

Using stored procedures

There are two types of stored procedures: user-defined and precompiler-
generated. Both types run faster than standal one statements because Adaptive
Server preoptimizes the queries. You create user-defined stored procedures,
and the precompiler generates stored procedures.

User-defined stored procedures

With Embedded SQL version 11.1 and later, you can execute stored procedures
with select statements that return data rows. Stored procedures can return
results to your program through output parameters and through areturn status
variable.

Stored procedure parameters can be either input or both input and output. For
details on stored procedures, see the Transact-QL User’s Guide.

Syntax

Valid stored procedure names consist of uppercase and lowercase letters and
the characters $, _, and #.

Do not include the use statement in a stored procedure.
To execute a stored procedure, use the following syntax:

exec sql [at connection name]

exec [:status variable = status value] procedure name
[([[@parameter name =]parameter value [out[putll]l,...)]
[into :hostvar 1 [:indicator 1]

[, hostvar n [indicator n, ...]]]
[with recompile]
end-exec

where;

e status variablecanreturn either an Adaptive Server return statusvalue or
areturn code, which either indicates that the stored procedure compl eted
successfully or givesthe reasonsfor the failure. Negative status values are
reserved for Adaptive Server use. See the Transact-SQL User’s Guide for
alist of return status values for stored procedures.

» status valueisthe value of the stored procedure return status variable
status variable.

e procedure_name isthe name of the stored procedure to execute.

60 Open Client

CHAPTER 6 Using Transact-SQL Statements

e parameter_nameisthe nameof avariableinthestored procedure. You can
pass parameters either by position or by name, using the
@parameter_nameformat. If one parameter isnamed, all of them must be
named. For more information on stored procedures, see the Transact SQL
User’s Guide.

e parameter_valueisaliteral constant or host variable whose valueis
passed to the stored procedure. If it isahost variable, you can associate an
indicator with it. Note that this variable has no keyword associated with it.

e output indicates that the stored procedure returns a parameter value. The
matching parameter in the stored procedure must also have been created
using the output keyword.

e into:hostvar_1 causes row data returned from the stored procedure to be
stored in the specified host variables (hostvar_1 through hostvar_n). Each
host variable can have an indicator variable.

e indicator_nisatwo-byte host variable declared in a previous declare
section. If the value for the associated hostvar_n is null, the indicator
variableisset to-1 when therow dataisretrieved. If truncation occurs, the
indicator variable is set to the actual length of the result column.
Otherwise, the indicator variableis 0.

e with recompile causes Adaptive Server to create a new query plan for this
stored procedure each time the procedure executes.

Note In Embedded SQL, the exec keyword is required to execute a stored
procedure. You cannot substitute execute for exec.

Stored procedure example

The following example shows a call to a stored procedure where RET-CODE
isastatusvariable, a_proc isthe stored procedure, PAR-1 isan input parameter,
and PAR-2 is an output parameter:

exec sqgl begin declare section end-exec

01 PAR-1 PIC S9(9) COMP.
01 PAR-2 PIC S9(9) COMP.
01 RET-CODE PIC S9(4) COMP.

exec sgl end declare section end-exec

exec sqgl exec :RET-CODE=a_ proc :PAR-1,
:PAR-2 out end-exec.

Embedded SQL/COBOL Programmers Guide 61

Selecting rows

Conventions

The next example demonstrates the use of astored procedurethat retrievesdata
rows. The name of the stored procedureis“get_publishers’:

exec sgl begin declare section end-exec.

01 PUB-ID PIC X(4).
01 NAME PIC X (45).
01 CITY PIC X (25).
01 STATE PIC X (2).
01 RET-CODE PIC S9(9).

exec sgl end declare section end-exec.

exec sgl exec :RET-CODE = get publishers :PUB-ID
into :NAME :CITY :STATE END-EXEC.

See Chapter 10, “Open Client/Server Configuration File” for amore detailed
example of the exec statement.

The datatypes of the stored procedure parameters must be compatible with the
COBOL host variables. Client-Library only converts certain combinations. See
Chapter 4, “Using Variables’ for atable of compatible datatypes.

Precompiler-generated stored procedures

62

You can set an optional command line switch so that the precompiler
automatically generates stored procedures that can optimize the execution of
Transact-SQL statementsin your program.

For thelist of precompiler command line option switches, see the Open Client
and Open Server Programmer’s Supplement.

Follow these steps to activate precompiler-generated stored procedures:

1 Set the appropriate command line switch so that the precompiler
automatically generates stored procedures for the Transact-SQL
statements to be optimized.

The precompiler generates an isqg| file containing statements that generate
the stored procedures.

2 Useinteractive SQL (theisgl program) to execute thefile.

Thisloadsthe stored procedures on Adaptive Server. The precompiler also
creates the stored procedure callsin its output file.

Open Client

CHAPTER 6 Using Transact-SQL Statements

By default, precompiler-generated stored procedures have the same name as
the source program, minus any file extensions. The stored procedures are
numbered sequentially and the file name and number are separated by a
semicolon (;).

For example, the stored procedures for a source program named test1.pco,
would be named test1;1 through test1;n, where nis the number of the source
program’s last stored procedure.

Optionally, you can set acommand line flag that lets you alter the stored
procedures’ names. By using this flag, you can test a modified application
without deleting a stored procedure already in production. After successfully
testing the application, you can precompile it without the flag to install the
stored procedure.

Note When you issue the declare cursor statement, only the select clauseis
saved asastored procedure. If an application has syntax errors, the precompiler
generates neither the target file nor stored procedures.

Grouping statements

Statements can be grouped for execution by batch or by transactions.

Grouping statements by batches

A batchisagroup of statements you submit as one unit for execution. The
precompiler executes all Transact-SQL statements within the exec sgl and end-
exec keywordsin batch mode.

Although the precompiler saves stored procedures, it does not save batchesfor
re-execution. The batch is effective only for the current execution.

The precompiler supportsonly batch mode statementsthat return no result sets.

exec sqgl insert into TABLEl values (:vall)
insert into TABLE2 values (:val2)
insert into TABLE3 values (:val3)
end-exec.

Embedded SQL/COBOL Programmers Guide 63

Grouping statements

The three insert statements are processed as a group, which is more efficient
than being processed individually. Use the get diagnostics method of error
handling with batches. For details, see “Using get diagnostics’ on page 100.

These statements are legal within abatch because none of them returnsresults.
For more information on batches, see the Transact-SQL User’s Guide.

Grouping statements by transactions

A transaction is a single unit of work, whether the unit consists of one or 100
statements. The statements in the transaction execute as a group, so either all
or none of them execute.

The precompiler supports two transaction modes: default ANSI/ISO and
optional Transact-SQL . Inthe Transact-SQL transaction mode, each statement
isimplicitly committed unlessit is preceded by abegin transaction statement.

The Transact-SQL mode uses relatively few system resources, while the
default ANSI/ISO transaction mode can dramatically affect system response
time. For details on choosing the appropriate mode for your application, seethe
Transact-SQL User’s Guide.

You can use a precompiler option to determine the transaction mode of the
connections your application opens. See the Open Client and Open Server
Programmer’s Supplement for details.

Transact-SQL transaction mode

64

In this optional Transaction mode, the Embedded SQL syntax is the same as
that used in Transact-SQL . The begin transaction statement explicitly initiates
transactions.

The syntax of the Embedded SQL transaction statementsiis:

exec sqgl [at connect name]
begin transaction [transaction name] end-exec

exec sgl [at connect name]
save transaction [savepoint name] end-exec

exec sqgl [at connect name] commit transaction
[transaction name] end-exec
exec sqgl [at connect name] rollback transaction

Open Client

CHAPTER 6 Using Transact-SQL Statements

[savepoint name | transaction name] end-exec

Note disconnect rollsback all open transactions. For details on this statement,
see Chapter 5, “Connecting to Adaptive Server.”

When you issue abegin transaction on aconnection, you must also issueasave,
commit, Of roll back transaction on the same connection. Otherwise, an error is
generated.

Default ANSI/ISO transaction mode

ANSI/ISO SQL does not provide a save transaction or begin transaction
statement. Instead, transactions begin implicitly when the application program
executes one of the following statements:

e delete
* insert
* select
* update
* open
* exec

Thetransaction ends explicitly when you issue either acommit work or rollback
work statement. You must use the ANSI/ISO forms of the commit and rollback
statements.

The syntax is:
exec sqgl commit [work] end-exec

exec sgl rollback [work] end-exec

Extended transactions

An extended transaction is aunit of work that has multiple Embedded SQL
statements. In the Transact-SQL transaction mode, you surround an extended
transaction statement with the begin transaction and commit transaction
Statements.

Embedded SQL/COBOL Programmers Guide 65

Including files and directories

In the default ANSI mode, you are constantly within an extended transaction.
When you issue acommit work statement, the current extended transaction ends
and another begins. For details, see the Transact-SQL User’s Guide.

Note Unlessthe database option allow ddl in tran isset, do not use thefollowing
Transact-SQL statements in an extended, ANSI-mode transaction: alter
database, create database, create index, create table, create view, disk init, grant,
load database, load transaction, revoke, truncate table, and update statistics.

Including files and directories

Theinclude statement is essentially the same as the COBOL COPY command,
except that file search and copy occur at precompiletime. At precompiletime,
include searchesfor thefile in the directory or directories specified in the
precompile statement. See the Open Client and Open Server Programmer’s
Supplement for details about using the precompile statement and the COBOL
compiler in your environment.

You can use the Embedded SQL include statement to add any source codefile
to your application, such as common data definitions, just as you use the
COBOL copry command. Hence, the following exampleis valid:

exec sgl include "myfile" end-exec.

The precompiler changes include statements into COBOL COPY commands,
surrounding the file name with quotation marks.

You can also set a precompiler command option to specify an include file
directory. At precompile time, the precompiler searches the path specified in
the COBOL compile command. When you specify a directory using this
option, the precompiler adds the directory to the file name and encloses the
entire path namein quotation marks. Thefile's path isthen hard-coded into the
target program. See the Open Client and Open Server Programmer’s
Supplement for details.

66 Open Client

CHAPTER 7

Using Dynamic SQL

This chapter explains dynamic SQL, an advanced methodology that lets
your Embedded SQL application users enter SQL statements while the
application is running. While static SQL will suffice for most of your
needs, dynamic SQL provides the flexibility to build diverse SQL
statements at runtime.

Topic Page
When to use dynamic SQL 67
Dynamic SQL protocol 68
Method 1: Using execute immediate 69
Method 2: Using prepare and execute 71
Method 3: Using prepare and fetch with a cursor 74
Method 4: Using prepare and fetch with system descriptors 78

Dynamic SQL is aset of Embedded SQL statements that permit users of
online applications to access the database interactively at runtime.

Use dynamic SQL when one or more of the following conditionsis not
known until runtime;

* SQL statement the user will execute
e Column, index, and table references
e Number of host variables or their datatypes

Dynamic SQL ispart of ANSI and the | SO SQL 2 standard. It is useful for
running interactive applications.

When to use dynamic SQL

If the application accepts only asmall set of SQL statements, you can
embed them within the program. However, if the application accepts
many types of SQL statements, you can benefit from constructing SQL
statements, and then binding and executing them dynamically.

Embedded SQL/COBOL Programmers Guide 67

Dynamic SQL protocol

The following type of situation would benefit from using dynamic SQL: The
application program searches a bookseller’s database of books for sale. A
potential buyer can apply many criteria, including price, subject matter, type of
binding, number of pages, publication date, language, and so on.

A customer might say, “I want a nonfiction book about business that costs
between $10 and $20.” Thisrequest is readily expressed as a Transact-SQL
statement:

select * from titles where
type = "business"
and price between $10 and $20

It is not possible to anticipate the combinations of criteriathat all buyers will
apply to their book searches. Therefore, without using dynamic SQL, an
Embedded SQL program can not easily generate alist of prospective books
with asingle query.

With dynamic SQL, the bookseller can enter a query with a different where
clause search condition for each buyer. The seller can vary requests based on
the publication date, book category, and other data, and can vary the columns
to be displayed. For example:

select * from titles
where type = ?
and price between ? and ?

The question marks (“?") are dynamic parameter markersthat represent places
where the user can enter search values.

Dynamic SQL protocol

68

Note The precompiler does not generate stored procedures for dynamic SQL
statements because the statements are not complete until runtime. At runtime,
Adaptive Server stores them as temporary stored proceduresin the tempdb
database. The tempdb database must contain the user name "guest", which in
turn must have create procedure permission. Otherwise, attempting to execute
one of these temporary stored procedures generates the error message " Server
user id user_idisnot avalid user in database database_name", where user_id
isthe user’s user ID, and database _name is the name of the user’s database.

Open Client

CHAPTER 7 Using Dynamic SQL

The dynamic SQL prepare statement sends the actual SQL statement, which
can be any Data Definition Language (DDL) or Data Manipulation Language
(DML) statements or any Transact-SQL statement, except create procedure, to
the server.

The dynamic SQL facility performs these actions:
1 Trandatestheinput datainto a SQL statement.
2 Verifiesthat the SQL statement can execute dynamically.

3 Preparesthe SQL statement for execution, sending it to Adaptive Server,
which compilesand savesit as atemporary stored procedure (for methods
2, 3, and 4).

4 Bindsall input parameters or descriptor (for methods 2, 3, and 4).
Executes the statement.

For avarying-list select, it usesadescriptor to referencethe dataitemsand
rows returned (for method 2 or 4).

6 Bindsthe output parameters or descriptor (for method 2, 3, or 4).
7 Obtainsresults (for method 2, 3, or 4).

8 Dropsthe statement (for methods 2, 3, and 4) by reactivating the stored
procedure in Adaptive Server.

9 Handlesall error and warning conditions from Adaptive Server and
Client-Library.

Method 1: Using execute immediate

Use execute immediate to send a compl ete Transact-SQL statement, stored in a
host variable or literal string, to Adaptive Server. The statement cannot return
any results—you cannot use this method to execute a select statement.

Thedynamically entered statement executes as many times as the user invokes
it during a session. With this method:

1 The Embedded SQL program passes the text to Adaptive Server.

2 ASE verifiesthat the statement can execute dynamically and does not
return rows.

3 ASE compiles and executes the statement.

Embedded SQL/COBOL Programmers Guide 69

Method 1: Using execute immediate

With execute immediate, you can | et the user enter all or part of a Transact-SQL
statement.

The syntax for execute immediate is:

exec sqgl [at connection name] execute immediate
{:host _variable | "string"} end-exec

where:

» host_variableisa character-string variable defined in a declare section.
Before calling execute immediate, the host variable should contain a
complete and syntactically correct Transact-SQL statement.

» dringisaliteral Transact-SQL statement string that can be used in place
of host_variable.

Embedded SQL sends the statement in host_variable or string to Adaptive
Server without any processing or checking. If the statement attemptsto return
results or fails, an error occurs. You can test the value of SQLCODE after
executing the statement or use the whenever statement to set up an error
handler. See Chapter 8, “Handling Errors’ for information about handling
errorsin Embedded SQL programs.

Method 1 examples

The following two examples demonstrate using method 1, execute immediate.
The first example prompts the user to enter a statement and then executes it:

exec sgl begin declare section end-exec

01 CMD-1 PIC X (50).
01 SRC-COND PIC X(50).
01 SQLSTR1 PIC X (200).

exec sgl end declare section end-exec

DISPLAY "ENTER statement".
ACCEPT SQLSTR1.
exec sgl execute immediate :SQLSTR1 end-exec.

The next example prompts the user to enter a search condition to specify rows
in the titles table to update. Then, it concatenates the search condition to an
update statement and sends the complete statement to Adaptive Server.

MOVE "UPDATE titles SET price = price*1.10 WHERE "
TO CMD-1.
DISPLAY "ENTER SEARCH CONDITION:".

70 Open Client

CHAPTER 7 Using Dynamic SQL

ACCEPT SRC-COND.

STRING CMD-1 delimited by size SRC-COND DELIMITED BY
SIZE INTO SQLSTRI1.

exec sqgl execute immediate :SQLSTR1 end-exec.

Method 2: Using prepare and execute

prepare

Use method 2, prepare and execute, when one of the following casesistrue:

e You are certain that no datawill be retrieved and you want the statement
to execute more than once.

e A select statement is to return asingle row. With this method, you cannot
associate a cursor with the select statement.

This processis also called asingle-row select. If auser needsto retrieve
multiple rows, use method 3 or 4.

This method uses prepare and execute to substitute data from COBOL
variablesinto a Transact-SQL statement before sending the statement to
Adaptive Server. The Transact-SQL statement is stored in a character buffer
with dynamic parameter markers to show where to substitute values from
COBOL variables.

Because this statement is prepared, Adaptive Server compiles and savesit asa
temporary stored procedure. Then, the statement executes repeatedly, as
needed, during the session.

Theprepare statement associates the buffer with astatement nameand prepares
the statement for execution. The execute statement substitutes values from a
list of COBOL variables into the buffer and sends the completed statement to
Adaptive Server. You can execute any Transact-SQL statement this way.

The syntax for the prepare statement is:

exec sgl [at connection name] prepare
statement name from {:host variable | "string"}
end-exec

where;

Embedded SQL/COBOL Programmers Guide 71

Method 2: Using prepare and execute

execute

72

statement_name is a name up to 255 characters long that identifies the
statement. It is not a COBOL variable or aliteral string. Itisasymbolic
name that the precompiler uses to associate an execute statement with a
prepare statement.

host_variable is a dynamic parameter marker.

Precede the dynamic parameter marker with a colon in standard
Embedded SQL statements.

string is aliteral string that can be used in place of host_variable.

The syntax for the execute statement is:

exec sgl [at connection name] execute statement name
[into {host var list | sqgl descriptor
descriptor name | descriptor sglda name }]
[using {host var list | sql descriptor
descriptor name | descriptor sglda_name}]
end-exec

where:

statement_nameisthe name assigned in the prepare statement. into isused
for asingle-row select.

into is used for asingle-row select.

using specifiesthe COBOL variables or descriptorsthat are substituted for
dynamic parameter markersin variablesin the host_var_list. The
variables, which you must definein adeclare section, are substituted inthe
order listed. You need only this clause when the statement contains
variables using dynamic parameter markers.

descriptor_name represents the area of memory that holds a description of
the dynamic SQL statement’s dynamic parameter markers.

host_var_listisalist of host variables to substitute into the parameter
markers (“?") in the query.

sglda_name is the name of the SQLDA.

Open Client

CHAPTER 7 Using Dynamic SQL

Method 2 example

The following example demonstrates using prepare and execute in method 2.
In this example, the user is prompted to enter awhere clause that determines

which rowsin thetitles table to update. For example, entering “1.1” increases
the price by 10 percent.

01 CUST-TYPE PIC X.
88 BIG-CUSTOMER VALUE "B".
88 OTHER-CUSTOMER VALUE "O".

exec sqgl begin declare section end-exec

01 MULTIPLIER PIC S9(2) COMP.
01 CMD-1 PIC X(50).
01 SRC-COND PIC X(50).
01 SQLSTR1 PIC X (200) .

exec sgl end declare section end-exec

MOVE "UPDATE titles SET
" price = price + (price * ? / 100)
WHERE "
TO CMD-1.
DISPLAY "ENTER SEARCH CONDITION:".
ACCEPT SRC-COND.
STRING CMD-1 SRC-COND DELIMITED BY SIZE
INTO SQLSTR1.

exec sqgl prepare statementl from :SQLSTR1
end-exec.

IF BIG-CUSTOMER
MOVE 10 TO MULTIPLIER
ELSE

MOVE 25 TO MULTIPLIER.

exec sqgl execute statementl using :MULTIPLIER
end-exec.

Embedded SQL/COBOL Programmers Guide 73

Method 3: Using prepare and fetch with a cursor

Method 3: Using prepare and fetch with a cursor

prepare

declare

74

Method 3 uses the prepare statement with cursor statements to return results
from a select statement. Use this method for fixed-list select statements that
may return multiple rows. That is, use it when the application has determined
in advance the number and type of select column list attributes to be returned.
You must anticipate and define host variables to accommodate the results.

When you use method 3, include the declare, open, fetch, and close cursor
statements to execute the statement. This method is required because the

statement returns more than one row. There is an association between the
prepared statement identifier and the specified cursor name. You can also
include update and delete where current of cursor statements.

Aswith method 2, a Transact-SQL select statement isfirst stored in acharacter
host variable or string. It can contain dynamic parameter markers to show
where to substitute values from input variables. The statement is given aname
to identify it in the prepare, declare, and open statements.

Method 3 requires five steps:

1 prepare

2 declare

3 open

4 fetch (and, optionally, update and delete)
5 close

These steps are described bel ow.

The prepare statement is the same as that used with method 2. For details, see
“prepare” on page 71.

The declare statement is similar to the standard declare statement for cursors.
In dynamic SQL, however, you declare the cursor for a prepared
statement_name instead of for aselect statement, and any input host variables
are referenced in the open statement instead of in the declare statement.

Open Client

CHAPTER 7 Using Dynamic SQL

A dynamic declare statement is an executable statement rather than a
declaration. As such, it must be positioned in the code where executable
statements are legal, and the application should check status codes
(SQLCODE, SQLCA, or SQLSTATE) after executing the declaration.

The dynamic SQL syntax for the declare statement is:

exec sqgl [at connection name] declare cursor name
cursor for statement name end-exec

where:

« atconnection_name specifies the Adaptive Server connection the cursor
will use.

e cursor_name identifies the cursor, used with the open, fetch, and close
Statements.

e statement_nameisthe name specified in the prepare statement, and
represents the select statement to be executed.

open

The open statement substitutes any input variablesin the statement buffer, and
sends the result to Adaptive Server for execution. The syntax for the open
statement is:

exec sql [at connection name] open cursor name
[using {host variable list |
sql descriptor descriptor name | descriptor sglda name}]
end-exec

where;
e cursor_name isthe name given to the cursor in the declare statement.

¢ host_variable list consists of the names of the host variables that contain
the value for a dynamic parameter marker.

e descriptor_name isthe name of the descriptor that contains the value for
the dynamic parameter markers.

* sglda_nameisthe name of the SQLDA.

Embedded SQL/COBOL Programmers Guide 75

Method 3: Using prepare and fetch with a cursor

fetch and close

After acursor opens, the result sets are returned to the application. Then, the
datais fetched and loaded into the application program host variables.
Optionally, you can update or delete the data. The fetch and close statements
are the same asin static Embedded SQL.

The syntax for the fetch statement is:

exec sqgl [at connection name] fetch cursor name
into :host variable
[[indicator] : indicator variable]
[, :host _variable
[[indicator] :indicator variable]...]
end-exec

where;
e cursor_nameisthe name given to the cursor in the declare statement.

e Thereisone COBOL host_variable for each column in the result rows.
The variables must have been defined in a declare section, and their
datatypes must be compatible with the results returned by the cursor.

The syntax for the close statement is:

exec sql [at connection name] close cursor name
end-exec

where cursor_name isthe name assigned to the cursor in the declare statement.

Method 3 example

76

The following example uses prepare and fetch, and prompts the user for an
order by clause in a select statement:

exec sqgl begin declare section end-exec

01 AGE PIC S9(2) COMP.
01 R-AGE PIC S9(2).

01 ROYALTY PIC S9(9) COMP.
01 TITLE PIC X(25).

01 MANAGER PIC X(25).

01 SQLSTR2 PIC X(100).

01 I-TITLE PIC S9(4) COMP.
01 I-AGE PIC S9(4) COMP.

exec sgl end declare section end-exec

01 DSP-AGE PIC 9(2).

Open Client

CHAPTER 7 Using Dynamic SQL

01 DSP-ROYALTY

PROCEDURE DIVISION.

MOVE 60 TO R-AGE.

MOVE "select age,

MOVE 0 TO I-A

PIC -227Z,Z77,72727Z.

royalty, title, manager from

inprogr where age !=?" TO SQLSTR2

GE.

exec sqgl prepare statement2 from :SQLSTR2
end-exec.
exec sqgl declare Cl cursor for statement2
end-exec

exec sqgl whenever not found goto NOT-FOUND

end-exec

exec sqgl open Cl using :R-AGE indicator :I-AGE

end-exec.

RET-LOOP.

MOVE 0 TO I-TITLE.

exec sqgl fetch C1 into

:AGE,

:ROYALTY,
:TITLE indicator :I-TITLE,
:MANAGER end-exec.

MOVE AGE TO DSP-AGE.

MOVE ROYALTY TO DSP-ROYALTY.
IF I-TITLE = -1
"Null" TO TITLE.

MOVE

DISPLAY

DISPLAY

"Age = "

n

Royalty
Title =

Manager
n

GO TO RET-LOOP.

NOT-FOUND.

exec sqgl close C1

Embedded SQL/COBOL Programmers Guide

DSP-AGE

= " DSP-ROYALTY
" TITLE
= " MANAGER.

end-exec.

77

Method 4: Using prepare and fetch with system descriptors

Method 4: Using prepare and fetch with system

descriptors

Thismethod permitsvarying-list select statements. That is, when you writethe
application, you need not know the formats and number of items the select
statement will return.

Use this method when you cannot define the host variablesin advance because
you do not know how many variables are needed or of what type they should
be.

Method 4 dynamic descriptors

78

A dynamic descriptor isadata structure that holds a description of the
variables used in adynamic SQL statement. There are two kinds of dynamic
descriptors—SQL descriptors and SQLDA structures. Both are described later
in this chapter.

When a cursor opens, it can have an input descriptor associated with it. The
input descriptor contains the values to be substituted for the dynamic SQL
statement’s parameter markers.

Before the cursor is opened, the user fillsin the input descriptor with the
appropriate information, including the number of parameters, and, for each
parameter, itstype, length, precision, scale, indicator, and data.

Associated with the fetch statement is an output descriptor, which holds the
resultant data. Adaptive Server fillsin the dataitem’s attributes, including its
type and the actual data being returned. If you are using an SQL descriptor, use
the get descriptor statement to copy the datainto host variables.

Dynamic SQL method 4 performs the following:

1 Preparesthe statement for execution.

2 Associates acursor with the statement.

3 Definesand binds the input parameters or descriptor and:
e If using an input descriptor, allocatesit

e If using an input host variable, associates it with the statement or
cursor

4 Opensthe cursor with the appropriate input parameter(s) or descriptor.

Open Client

CHAPTER 7 Using Dynamic SQL

8
9

Allocates the output descriptor if different from the input descriptor and
binds the output descriptor to the statement.

Retrieves the data by using fetch cursor and the output descriptor.

Copies datafrom the dynamic descriptor into host program variables. If
you are using an SQLDA, this step does not apply; the datais copied in

step 6.

Closes the cursor.

Deallocates the dynamic descriptors.

10 Drops the statement (ultimately, the stored procedure).

Dynamic descriptor statements

There are statements that associate the descriptor with a SQL statement and
with a cursor associated with the SQL statement. The following list briefly
describes dynamic SQL statements for method 4:

Statement

Description

allocate descriptor

Notifies Client-Library to allocate a SQL descriptor.

describe input

Obtains information about the dynamic parameter
marker in the prepare statement.

set descriptor

Inserts or updates data in the system descriptor.

get descriptor

Moves row or parameter information stored in a
descriptor into host variables, thereby alowing the
application program to use the information.

execute

Executes a prepared statement.

open cursor

Associates a descriptor with a cursor and opens the
Cursor.

describe output

Obtainsinformation about the select list columnsin the
prepared dynamic SQL statement.

fetch cursor

Retrieves arow of datafor adynamically declared
Cursor.

deallocate descriptor

Dedllocates a dynamic descriptor.

For compl ete descriptions of these statements, see Chapter 9, “ Embedded SQL
Statements: Reference Pages.”

Embedded SQL/COBOL Programmers Guide

79

Method 4: Using prepare and fetch with system descriptors

About SQL descriptors

A SQL descriptor isan areaof memory that storesadescription of the variables
used in a prepared dynamic SQL statement. A SQL descriptor can contain the
following information about data attributes.

precision — integer.
scale —integer.

nullable—1 (cs_true) if the column can contain nulls; 0 (cs_false) if it
cannot. Valid only with get descriptor statement.

indicator —value for the indicator parameter associated with the dynamic
parameter marker.

name — name of the dynamic parameter marker. Valid only with get
descriptor statement.

data — value for the dynamic parameter marker specified by the item
number. If the value of indicator is -1, the value of data is undefined.

count —number of dynamic parameter markers described in the descriptor.
type — datatype of the dynamic parameter marker or host variable.
returned_length — actual length of the datain an output column.

See the descriptions of the set descriptor and get descriptor commandsin
Chapter 9, “Embedded SQL Statements: Reference Pages.”

Method 4 example

The following example uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

80

exec sqgl begin declare section end-exec.

01 COLTYPE IS GLOBAL PIC S9(9) COMP.
01 INDEX-COLCNT IS GLOBAL PIC S9(9) COMP.
01 INT-BUFF IS GLOBAL PIC S9(9) COMP.
01 CHAR-BUFF IS GLOBAL PIC (255)

01 MISC-BUFF IS GLOBAL PIC X (255).
01 TYPE IS GLOBAL PIC X (255).
01 TITLE IS GLOBAL PIC X (255).
01 COLNAME IS GLOBAL PIC X (255).
01 SALES IS GLOBAL PIC S9(9) COMP.
01 DESCNT IS GLOBAL PIC S9(9) COMP.
01 OCCUR IS GLOBAL PIC S9(9) COMP.

Open Client

CHAPTER 7 Using Dynamic SQL

01
01
01
01
01
01
01
01
01
01
01

CNT
CONDCNT
DIAG-CNT
NUM-MSGS
USER-ID
PASS
SERVER-NAME
STR1
STR2
STR3
STR4

IS
IS
Is
Is
IS
IS
IS
IS
IS
IS
IS

GLOBAL PIC S9(9
GLOBAL PIC S9(9
GLOBAL PIC S9(9
GLOBAL PIC S9(9
GLOBAL PIC X (30
GLOBAL PIC X
GLOBAL PIC X
GLOBAL PIC X
GLOBAL PIC X
GLOBAL PIC X
GLOBAL PIC X

exec sgl end declare section end-exec.

PROCEDURE
PO.

DIVISION.

DISPLAY "Dynamic sgl Method 4".

DISPLAY

"Enter in a Select statement to retrieve

any kind "

DISPLAY "of information from the pubs database:".

accept s

DISPLAY "Enter in the larger of the columns to be "

DISPLAY

ACCEPT o

tr4.

"retrieved or the number "
DISPLAY "of ? in the SQL statement:".

ccur.

exec sqgl prepare S4 from :str4 end-exec

exec sqgl declare c2 cursor for s4 end-exec

COMP .
COMP .
COMP .
COMP .

exec sgl describe input s4 using sqgl descriptor dinout

end-exec

call

"filldesc".

exec sgl open c2 using sqgl descriptor dinout

end-exec

PERFORM UNTIL SQLCODE

100 OR SQLCODE < 0

exec sqgl fetch c2 into sqgl descriptor dinout end-exec

PERFORM "

prtdesc".

END-PERFORM.

exec sgl close c2 end-exec

exec sgl deallocate descriptor dinout end-exec

exec sqgl deallocate prepare s4 end-exec

Embedded SQL/COBOL Programmers Guide

81

Method 4: Using prepare and fetch with system descriptors

DISPLAY "Dynamic SQL Method 4 completed".
goback.
END PROGRAM dyn-mé.

IDENTIFICATION DIVISION.
PROGRAM-ID. prtdesc is common.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. XxXyz.
OBJECT-COMPUTER. XyZz.

DATA DIVISION.
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
PO.

exec sgl get descriptor dinout :descnt = count
end-exec

DISPLAY "Column name Column data'.

DISPLAY M- - mmmmmme oo e "
DISPLAY "----o-mmmmommoo "

PERFORM VARYING CNT FROM 1 BY 1 UNTIL cnt > descnt

* get each column attribute
exec sgl get descriptor dinout

VALUE :index-colcnt :coltype = TYPE end-exec
IF coltype = 1

* character type

exec sgl get descriptor dinout VALUE :index-colcnt
:colname = NAME, :char-buff = data end-exec

DISPLAY colname char-buff.

ELSE IF coltype = 4
* integer type

exec sgl get descriptor dinout
VALUE :index-colcnt :colname = NAME, :int-buff = DATA
end-exec

DISPLAY colname int-buff.
else

* other types

82 Open Client

CHAPTER 7 Using Dynamic SQL

exec sgl get descriptor dinout
VALUE :index-colcnt

:colname = NAME, :misc-buff = DATA end-exec
DISPLAY colname misc-buff
end-perform.
goback.

END PROGRAM prtdesc.

PROCEDURE DIVISION.
PO.

exec sqgl get descriptor dinout :descnt = count
end-exec

PERFORM varying cnt from 1 by 1 UNTIL cnt >
descnt

DISPLAY "Enter in the data type of the " cnt "
2,

accept &coltype.

IF coltype = 1

* character type
DISPLAY "Enter in the value of the data:".

ACCEPT char-buff.
exec sgl set descriptor dinout
VALUE :cnt TYPE = 1,

LENGTH = 255, DATA = :char-buff
end-exec

ELSE IF coltype = 4
* integer type
DISPLAY "Enter in the value of the data:".
ACCEPT int-buff.
exec sgl set descriptor dinout

VALUE :cnt TYPE = :coltype,
DATA = :int-buff END-EXEC
ELSE
DISPLAY "non-supported column type.".
END-IF.

END-PERFORM
GOBACK

END PROGRAM filldesc.

Embedded SQL/COBOL Programmers Guide 83

Method 4: Using prepare and fetch with system descriptors

About SQLDASs

84

SQLDA isahost-language structure that, like an SQL descriptor, describesthe
variables used in adynamic SQL prepared statement. Unlike SQL descriptors,
SQLDAs are public data structures whose fields you can access. Statements
using SQLDAs may execute faster than equivalent statements using SQL
descriptors.

The SQLDA structureis not part of the SQL standard. Different
implementations of Embedded SQL define the SQLDA structure differently.
Embedded SQL version 11.1 and later supportsthe SQL DA defined by Sybase;
it does not support SQLDA datatypes defined by other vendors.

Embedded SQL does not limit the number of SQLDA structures that can be
created by a program.

Table 7-1 describes the fields of the SQLDA structure.

Open Client

CHAPTER 7 Using Dynamic SQL

Table 7-1: Fields of the SQLDA structure

Field Datatype Description

SD-SQLN PIC S9(9) The size of the sd_column array.
COMP

SD-SQLD PIC S9(9) The number of columnsin the
COMP query being described, or 0 if the

statement being described is not a
query. For fetch, open, and execute
statements, this field indicates the
number of host variables described
by occurrencesof sd_column or the
number of dynamic parameter

markers for the describe input

statement.
SD-DATAFMT OF SD- Dataformat The Client-Library
COLUMN structure CS DATAFMT structure

associated with this column. Refer
to descriptions of ct_bind,
ct_param and ct_describe in the
Open Client Client-Library/C
Reference Manual for more

information.
SD-SQLDATA OF SD- PIC S9(9) For fetch, open, and execute
COLUMN COMP statements, stores the address of
or the statement’s host variable. This

field is not used for describe or

El(c):l\/ls 3(18) prepare statements.

SD-SQLIND OF SD- PIC S9(4) For fetch, open, and execute

COLUMN COMP statements, thisfield actsas an
indicator variable for the column
being described. If the column’s
valueisnull, thisfield is set to -1.
Thisfieldis not used for describe
or prepare statements. Set thisfield
using SYBSETSQLDA (see
“Using SYBSETSQLDA” onpage
86).

SD-SQLLEN OF SD- PIC S9(9) The actual size of the Client

COLUMN COMP Library CS_ DATAFMT structure

associated with this column.

Embedded SQL/COBOL Programmers Guide 85

Method 4: Using prepare and fetch with system descriptors

Field Datatype Description
SD-SQLMORE OF SD- PIC S9(9) Reserved.
COLUMN COMP

or

PIC S9(18)

COMP

Using SYBSETSQLDA

Syntax

86

Since definitions of SQLDA fields do not correspond clearly to COBOL
declarations, the SYBSETSQL DA function is provided so that you can use
familiar COBOL terms. SYBSETSQLDA allows you to set the fields of a
Sybase-style SQLDA. It setsthe

ITEM-NUMBER SQLDA-SQLDATA field of the given SQLDA to point to a
given buffer, and sets datafmt fields appropriately.

01 SQLDA-NAME.
< rest of sglda declaration >

01 ITEM-NUMBER PIC S9(9) COMP.

01 DATA-BUFFER < picture >.

01 PICTURE-TYPE PIC S9(9) COMP.

01 M PIC S9(9) COMP.

01 N PIC S9(9) COMP.

01 USAGE-TYPE PIC S9(9) COMP.

01 SIGN-TYPE PIC S9(9) COMP

CALL “SYBSETSQLDA” USING SQLDA-NAME ITEM-NUMBER
DATA-BUFFER PICTURE-TYPE M N USAGE-TYPE SIGN-TYPE

where:

e SQLDA-NAME isthe SQLDA to set theinformationin.
+ ITEM-NUMBER istheitem to set the information for.

* DATA-BUFFER isthe host variable with data.

 PICTURE-TYPE isthekind of picture clause the data has. See Table 7-2
for possible values.

* M isthevalue of “m” in the picture clause, as described in the table, or 0
if no picture.

Open Client

CHAPTER 7 Using Dynamic SQL

 Nisthevaueof “n” in the picture clause as described above, or 0 if no
picture.

e SIGN-TYPE isthe sign clause used to define the data.
SeeTable 7-2 for possible values.

« USAGE-TY PE isthe usage clause used to define the data. See Table 7-2
for possible values.

Embedded SQL/COBOL Programmers Guide 87

Method 4: Using prepare and fetch with system descriptors

88

Table 7-2: Values for SYBSETSQLDA

Argument Value Meaning

USAGE- SYB-BINARY-USAGE USAGE ISBINARY
TYPE

USAGE- SYB-COMP-USAGE USAGE ISCOMP
TYPE

USAGE- SYB-COMP1-USAGE USAGE ISCOMP-1
TYPE

USAGE- SYB-COMP2-USAGE USAGE IS COMP-2
TYPE

USAGE- SYB-COMP3-USAGE USAGE ISCOMP-3
TYPE

USAGE- SYB-COMP4-USAGE USAGE ISCOMP-4
TYPE

USAGE- SYB-COMP5-USAGE USAGE ISCOMP-5
TYPE

USAGE- SYB-COMP6-USAGE USAGE ISCOMP-6
TYPE

USAGE- SYB-COMPX-USAGE USAGE ISCOMP-X
TYPE

USAGE- SYB-DISPLAY-USAGE USAGE ISDISPLAY
TYPE

USAGE- SYB-POINTER-USAGE USAGE ISPOINTER
TYPE

USAGE- SYB-INDEX-USAGE USAGE ISINDEX
TYPE

USAGE- SYB-MONEY-USAGE USAGE ISCS-MONEY
TYPE

USAGE- SYB-MONEY4-USAGE USAGE ISCS-MONEY4
TYPE

USAGE- SYB-DATE-USAGE USAGE ISCS-DATE
TYPE

USAGE- SYB-TIME-USAGE USAGE ISCS-TIME
TYPE

USAGE- SYB-DATETIME- USAGE ISCS-DATETIME
TYPE USAGE

USAGE- SYB-DATETIME4- USAGE ISCS-DATETIME4
TYPE USAGE

USAGE- SYB-NO-USAGE No usage clause

TYPE

Open Client

CHAPTER 7 Using Dynamic SQL

Argument Value Meaning

PICTURE- SYB-NO-PIC No picture clause

TYPE

PICTURE- SYB-SNINES-PIC PIC S9(m)

TYPE

PICTURE- SYB-NINES-PIC PIC 9(m)

TYPE

PICTURE- SYB-SVNINES-PIC PIC S9(m)V9(n) or SVI(n)

TYPE

PICTURE- SYB-VNINES-PIC PIC 9(m)V9I(n) or VI(n)

TYPE

PICTURE- SYB-X-PIC PIC X(m)

TYPE

SIGN-TYPE SYB-NO-SIGN No sign clause (not an unsigned

PIC clause)

SIGN-TYPE SYB-LEADING- SIGN LEADING SEPARATE
SEPARATE-SIGN

SIGN-TYPE SYB-TRAILING- SIGN TRAILING SEPARATE
SEPARATE-SIGN

SIGN-TYPE = SYB-LEADING-SIGN SIGN LEADING

SIGN-TYPE SYB-TRAILING-SIGN SIGN TRAILING

Returns

No return value.

Method 4 example using SQLDASs

Following is an example that uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

IDENTIFICATION DIVISION.
PROGRAM-ID. unittest.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. XyZz.
OBJECT-COMPUTER. XxXyz.

DATA DIVISION.

Embedded SQL/COBOL Programmers Guide

89

Method 4: Using prepare and fetch with system descriptors

WORKING-STORAGE SECTION.
exec sgl begin declare section end-exec
01 uid pic x(10).
01 pass pic x(10).
exec sgl end declare section end-exec
01 input-descriptor.
09 SD-SQLN PIC S9(4) COMP.
09 SD-SQLD PIC S9(4) COMP.
09 SD-COLUMN OCCURS 3 TIMES.
19 SD-DATAFMT.
29 SQL--NM PIC X (132).
29 SQL--NMLEN PIC S9(9) COMP.
29 SQL--DATATYPE PIC S9(9) COMP.

29 SQL--FORMAT PIC S9(9) COMP.

29 SQL--MAXLENGTH PIC S9(9) COMP.

29 SQL--SCALE PIC S9(9) COMP.
29 SQL--PRECISION PIC S9(9) COMP.
29 SQL--STTUS PIC S9(9) COMP.
29 SQL--COUNT PIC S9(9) COMP.

29 SQL--USERTYPE PIC S9(9) COMP.
29 SQL--LOCALE PIC S9(9) COMP.

19 SD-SQLDATA PIC S9(9) COMP.

19 SD-SQLIND PIC S9(4) COMP.

19 SD-SQLLEN PIC S9(9) COMP.

19 SD-SQLMORE PIC S9(9) COMP.

01 output-descriptor.

09 SD-SQLN PIC S9(4) COMP.

09 SD-SQLD PIC S9(4) COMP.

09 SD-COLUMN OCCURS 3 TIMES.

19 SD-DATAFMT.

90

Open Client

CHAPTER 7 Using Dynamic SQL

29

29

29

29

29

SQL--NM PIC X(132).
SQL--NMLEN PIC S9(9) COMP.
SQL--DATATYPE PIC S9(9) COMP.

SQL--FORMAT PIC S9(9) COMP.

29 SQL--MAXLENGTH PIC S9(9) COMP.

29 SQL--SCALE PIC S9(9) COMP.

29 SQL--PRECISION PIC S9(9) COMP.
29 SQL--STTUS PIC S9(9) COMP.
SQL--COUNT PIC S9(9) COMP.

29 SQL--USERTYPE PIC S9(9) COMP.

29 SQL--LOCALE PIC S9(9) COMP.

19 SD-SQLDATA PIC S9(9) COMP.

19 SD-SQLIND PIC S9(4) COMP.

19 SD-SQLLEN PIC S9(9) COMP.

19 SD-SQLMORE PIC S9(9) COMP.

01 conversion-tester pic s9(4) comp-3.

01 charvar pic x(20).

01 temp-int-1 pic s9(9) comp.

01 temp-int-2 pic s9(9) comp.

01 temp-int-3 pic s9(9) comp.

01 temp-int-4 pic s9(9) comp.

01 SQLCODE pic s9(9)

01 retcode pic s9(9)

PROCEDURE DIVISION.

comp .

comp .

exec sqgl connect :uid identified by :pass end-exec.

PO.
MOVE "sa" TO uid.
move" "to pass.

* setup

exec sqgl whenever sglwarning perform err-paraend-exec.

Embedded SQL/COBOL Programmers Guide

91

Method 4: Using prepare and fetch with system descriptors

92

exec sqgl drop table example end-exec.

exec sqgl create table example (fruit char(30),
number int)end-exec.

exec sgl insert example values (‘tangerine’, 1) end-exec.
exec sgl insert example values (‘pomegranate’, 2) end-exec.

exec sgl insert example values (‘banana’, 3) end-exec.

* test functionality using execute

exec sqgl prepare statement from
"select fruit from example where number = ?" end-exec.

exec sgl describe input statement using descriptor
input-descriptor end-exec.

if sd-sgld of input-descriptor not equal 1
or sqgl--datatype of sd-datafmt of sd-column of
input-descriptor (1) not equal cs-int-type

display "failed on first describe input"
move cs-fail to p-retcode

end-if.

move 1 to temp-int-1.

move 4 to temp-int-2.

move 0 to temp-int-3.

call "SYBSETSQLDA" using retcode input-descriptor
temp-int-1 conversion-tester syb-snines-pic
temp-int-2 temp-int-3 syb-comp3-usage syb-no-sign

move 2 to conversion-tester.
exec sgl describe output statement using descriptor
output-descriptor end-exec.

if sd-sgld of output-descriptor not equal
or sqgl--datatype of sd-datafmt of sd-column of
output-descriptor (1) not equal cs-char-type
display "failed on first describe output"

move cs-fail to p-retcode
end-if.
move 1 to temp-int-1.

move 20 to temp-int-2.

Open Client

CHAPTER 7 Using Dynamic SQL

move 0 to temp-int-3.

call "SYBSETSQLDA" using retcode output-descriptor
temp-int-1 charvar syb-x-pic temp-int-2
temp-int-3 syb-no-usage syb-no-sign

exec sgl execute statement into descriptor
output-descriptor using descriptor
input-descriptor end-exec.

display "Expected pomegranate, got "charvar.
exec sgl deallocate prepare statement end-exec.

exec sgl prepare statement from
"select number from example where fruit = ?" end-exec.

exec sgl declare c cursor for statement end-exec.

exec sgl describe input statement using descriptor
input-descriptor end-exec.

move 1 to temp-int-1.
move 20 to temp-int-2.
move 0 to temp-int-3.

call "SYBSETSQLDA" using retcode input-descriptor
temp-int-1 charvar syb-x-pic temp-int-2
temp-int-3 syb-no-usage syb-no-sign

move "banana" to charvar.
exec sgl open c using descriptor input-descriptor end-exec.

exec sgl describe output statement using descripto
output-descriptor end-exec.

move 1 to temp-int-1.
move 20 to temp-int-2.
move 0 to temp-int-3.

call "SYBSETSQLDA" using retcode output-descriptor
temp-int-1 charvar syb-x-pic temp-int-2 temp-int-3
syb-no-usage syb-no-sign

exec sgl fetch ¢ into descriptor output-descriptor
end-exec.

display "Expected 3, got "charvar.

exec sgl commit work end-exec.

Embedded SQL/COBOL Programmers Guide 93

Method 4: Using prepare and fetch with system descriptors

end program unittest.

94 Open Client

CHAPTER 8

Handling Errors

This chapter discusses how to detect and correct errors that can occur
during the execution of Embedded SQL programs. It coversthe whenever
and get diagnostics statements, which you can useto processwarningsand
errors, and the SQL CA variables that pertain to warnings and errors.

Topic Page
Testing for errors 96
Testing for warning conditions 96
Trapping errors with the whenever statement 97
Using get diagnostics 100
Writing routines to handle warnings and errors 100
Precompiler-detected errors 101

While an Embedded SQL application is running, some events may occur
that interfere with the application’s operation. Following are examples:

e Adaptive Server becomes inaccessible.

e The user enters an incorrect password.

e The user does not have access to a database object.
e A database object is deleted.

e A column’s datatype changes.

e A query returns an unexpected null value.

e A dynamic SQL statement contains a syntax error.

You can anticipate these events by writing warning and error handling
code to recover gracefully when one of these situations occurs.

Embedded SQL/COBOL Programmers Guide 95

Testing for errors

Testing for errors

Embedded SQL places areturn code in the SQLCODE variableto indicate the
success or failure of each SQL statement sent to Adaptive Server. You can
either test the value of SQLCODE after each Embedded SQL statement or use
the whenever statement to instruct the precompiler to write the test code for
you. The whenever statement is described later in this chapter.

Using SQLCODE
Table 8-1 lists the values SQLCODE can contain:

Table 8-1: SQLCODE return values
Value Meaning

0 No warnings or errors occurred.

<0 Error occurred and the SQLCA variables contain useful information
for diagnosing the error.

100 No rows returned from last statement athough the statement

executed successfully. Thisconditionisuseful for driving aloop that
fetchesrowsfrom acursor. When SQL CODE becomes 100, theloop
and all rowsthat have been fetched end. Thistechniqueisillustrated
in Chapter 6, “Using Transact-SQL Statements.”

Testing for warning conditions

Even when SQL CODE indicates that a statement has executed successfully, a
warning condition may still have occurred. The 8-character array

SQL CA.SQLWARN indicates such warning conditions. Each SQLWARN
array element (or “flag”) stores either the space character (blank) or the
character “W”. In each flag, “W" indicates that a warning condition has
occurred; the kind of warning condition differs for each flag.

Table 8-2 describes what the space character or “W” means in each flag:

96 Open Client

CHAPTER 8 Handling Errors

Table 8-2: SQLWARN flags

Flag Description

SQLWARN1 If blank, no warning condition of any kind occurred, and all
other SQLWARN flags are blank. If SQLWARNL1 is set to
“W,” one or more warning conditions occurred, and at least
one other flag isset to “W.”

SQLWARN2 If setto“W,” the character string variabl e that you designated
in afetch statement was too short to store the statement’s
result data, so the result data was truncated. You designated
noindicator variableto receivethe original length of the data
that was truncated.

SQLWARN3 If set to “W,” the input sent to Adaptive Server contained a
null valueinanillega context, such asin an expression or as
an input value to atable that prohibits null values.

SQLWARN4 The number of columnsin aselect statement’s result set
exceeds the number of host variables in the statement’s into
clause.

SQLWARNS Reserved.

SQLWARNG6 Adaptive Server generated a conversion error while
attempting to execute this statement.

SQLWARN7 Reserved.

SQLWARNS Reserved.

Test for awarning after you determine that a SQL statement executed
successfully. Use the whenever statement, as described in the next section, to
instruct the precompiler to write the test code for you.

Trapping errors with the whenever statement

Use the Embedded SQL whenever statement to trap errors and warning
conditions. It specifies actions to be taken depending on the outcome of each
Embedded SQL statement sent to Adaptive Server.

Thewhenever statement is not executable. Instead, it directsthe precompiler to
generate COBOL code that tests for specified conditions after each executable
Embedded SQL statement in the program.

The syntax of the whenever statement is;

exec sqgl whenever {sglwarning | sglerror
not found]

Embedded SQL/COBOL Programmers Guide 97

Trapping errors with the whenever statement

{continue | goto label |

program call [using param . . .]) |
perform paragraph 1 [through paragraph 2] |
stop};

whenever testing conditions

98

Each whenever statement can test for one of the following three conditions:
* sqglwarning

e sqlerror

* not found

The precompiler generates warning messages if you do not write a whenever
statement for each condition. If you write your own code to check for errors
and warnings, suppress the precompiler warnings by writing a
whenever...continue clausefor each condition. Thisinstructsthe precompiler to
ignore errors and warnings.

If you precompile with the verbose option, the precompiler generates a
ct_debug() function call as part of each connect statement. This causes Client-
Library to display informational, warning, and error messages to your screen
as your application runs. The whenever statement does not disable these
messages. For more information about precompiler options, see the Open
Client and Open Server Programmer’s Supplement.

After an Embedded SQL statement executes, the values of SQLCODE and
SQLWARNL1 determine if one of the conditions exists. Table 8-3 shows the
criteriawhenever uses to detect the conditions:

Table 8-3: Criteria for the whenever statement

Condition Criteria

sqlwarning SQLCODE =0 and SQLWARN1 =W
sqlerror SQLCODE<O0

not found SQLCODE =100

To change the action of awhenever statement, write anew whenever statement
for the same condition. whenever appliesto all Embedded SQL statementsthat
follow it, up to the next whenever statement for the same condition.

Thewhenever statement ignores the application program’slogic. For example,
if you place whenever at the end of aloop, it does not affect the preceding
statements in subsequent passes through the loop.

Open Client

CHAPTER 8 Handling Errors

whenever actions
The whenever statement specifies one of the following five actions:

Table 8-4: whenever actions

Action Description

continue Causes no special action when a SQL statement returns the
specified condition. Normal processing continues.

goto Causes a branch to an error-handling procedure within your

application program. You can enter goto as either “goto” or
“goto”, followed by avalid paragraph name. The
precompiler does not detect an error if the paragraph nameis
not defined in the program, but the COBOL compiler does.

call Calls another COBOL program and, optionally, passes
variables.
perform Names at |east one paragraph to execute when a SQL

statement results in the specified condition. You can use the
COBOL perform statement formats 1, 2, 3, and 4 in the
perform clause. If you use a paragraph name, the paragraph
must be in the section where the whenever condition applies.

stop Terminates the program when a SQL statement triggers the
specified condition.

exec SQL whenever sglerror perform ERR-PARA
thru ERR-PARA-END
end-exec

exec SQL select au lname from authors
into :AU-LNAME

where au id = :AU-ID
end-exec

exec SQL update authors set au lname = :AU-LNAME
where au id = :AU-ID

end-exec

Embedded SQL/COBOL Programmers Guide 99

Using get diagnostics

Using get diagnostics

The get diagnostics statement retrieves error, warning, and informational
messages from Client-Library. It is similar to— but more powerful than—the
whenever statement because you can expand it to retrieve more details of the
detected errors.

If, within awhenever statement, you specify the application to go to or call
another application or paragraph, specify get diagnostics in the procedure code,
asfollows:

err-handler.

exec sgl get diagnostics :num-msgs = number
end-exec.

perform varying condcnt from 0 by 1

until condcnt greater or equal num-msgs
exec sgl get diagnostics exception :condcnt

:sglca = sglca info end-exec
display "sglcode is " sglcode
display "message text is " sglerrmc

end-perform.

Writing routines to handle warnings and errors

100

A good strategy for handling errors and warnings in an Embedded SQL
application isto write custom procedures to handle them, then install the
procedures with the whenever...perform statement.

Thefollowing exampl e shows samplewarning and error handling routines. For
simplicity, both routines omit certain conditions that should normally be
included: warn_para omits the code for SQLWARN1, and err_para omits the
code that handles Client-Library errors and operating system errors:

* Declare the sglca. *

exec sgl include sglca end-exec

exec sgl whenever sglerror call "ERR-PARA"
end-exec

exec sgl whenever sglwarning call
"WARN-PARA" end-exec

exec sgl whenever not found continue end-exec

WARN-PARA.
* Displays error codes and numbers from the sqglca

Open Client

CHAPTER 8 Handling Errors

* and exits with an ERREXIT status.

DISPLAY "Warning code is " SQLCODE.
DISPLAY "Warning message is " SQLERRMC.

IF SQLWARN2 EQUAL “W”
DISPLAY "Data has been truncated.".
IF SQLWARN3 EQUAL “W”
DISPLAY "A null value was eliminated from
- " the argument set of a function.".
IF SQLWARN4 EQUAL “W”
DISPLAY "An into clause had too many or too
- " few host variables.".
IF SQLWARN5 EQUAL “W”
DISPLAY "A dynamic update or delete was
- " lacking a where clause.".
IF SQLWARN6 EQUAL “W”
DISPLAY "A server conversion or truncation
- " error occurred.".
WARN-PARA-END.
EXIT.

ERR-PARA.

* Print the error code, the error message, and the
* line number of the command that caused the

* error.

DISPLAY "Error code is " SQLCODE.
DISPLAY "Error message is " SQLERRMC.
STOP RUN.

Precompiler-detected errors

The Embedded SQL precompiler detects Embedded SQL errors at precompile
time. The precompiler detects syntax errors such as missing semicolons and
undeclared host variables in SQL statements. These are severe errors, so
appropriate error messages are generated.

You can also have the precompiler check Transact-SQL syntax errors.
Adaptive Server parses Transact-SQL statements at precompile timeif the
appropriate precompiler command options are set. See the precompiler
reference page in the Open Client and Open Server Programmer’s Supplement.

Embedded SQL/COBOL Programmers Guide 101

Precompiler-detected errors

102

The precompiler substitutes host variables in Embedded SQL statements with
dynamic parameter markers (“?"). Occasionally, substituting host variables
with parameter markers causes syntax errors (for example, when rules or
triggers do not allow the parameters).

The precompiler does not detect the error in the following example, inwhich a
tableiscreated and datais selected from it. The error isthat the host variables

datatypes do not match the columnsretrieved. The precompiler does not detect
the error because the table does not yet exist when the precompiler parses the
statements:

exec sgl begin declare section end-exec
01 VARI1 PIC S9(9) COMP.
02 VAR2 PIC X(20).
exec sgl end declare section end-exec

exec sqgl create table T1

(coll int, col2 varchar(20)) end-exec

exec sqgl select * from Tl into
:VAR2, :VAR1l end-exec.

Note that the error will be detected and reported at runtime.

Open Client

CHAPTER 9

Embedded SQL Statements:
Reference Pages

This chapter consists of areference page for each Embedded SQL

statement that either does not exist in Transact-SQL or works differently
fromtheway it worksin Transact-SQL . Refer to the Transact-SQL User’s
Guidefor descriptions of al other Transact-SQL statementsthat are valid

in Embedded SQL.
Command Statements Page
allocate descriptor 105
begin declare section 106
begin transaction 107
close 109
commit 110
connect 113
deallocate cursor 115
deallocate descriptor 116
deallocate prepare 118
declare cursor (dynamic) 119
declare cursor (static) 121
declare cursor (stored procedure) 123
declare scrollable cursor 125
delete (positioned cursor) 126
delete (searched) 128
describe input (SQL descriptor) 130
describe input (SQLDA) 132
describe output (SQL descriptor) 134
describe output (SQLDA) 136
disconnect 138
exec 140
exec sql 142
execute 144
execute immediate 146
exit 147
103

Embedded SQL/COBOL Programmers Guide

104

Command Statements Page
fetch 148
scroll fetch 151
get descriptor 152
get diagnostics 155
include “filename” 156
include sglca 158
include sqglda 158
initialize_application 159
open (dynamic cursor) 160
open (static cursor) 162
open scrollable cursor 164
prepare 164
rollback 166
select 167
set connection 168
set descriptor 170
update 171
whenever 173

Except for print, raiserror, readtext, and writetext, all Transact-SQL statements
can be used in Embedded SQL, although the syntax of some statementsdiffers,

as described in this chapter.

The reference pagesin this chapter are arranged al phabetically. Each

statement’s reference page:

Briefly states what the statement does
Describes the statement’s syntax

Explains the statement’s keywords and options
Comments on the statement’s proper use

Lists related statements, if any

Demonstrates the statement’s use in a brief example

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

allocate descriptor

Description Allocates a SQL descriptor.

Syntax exec sql allocate descriptor descriptor_name
[with max [host_variable | integer_literal]]
end-exec

Parameters descriptor_name

The name of the SQL descriptor that will contain information about the
dynamic parameter markersin a prepared statement.

with max
The maximum number of columnsin the SQL descriptor.

host_variable
An integer host variable defined in a declare section.

integer_literal
A numeric valuerepresenting the size, in number of occurrences, of the SQL
descriptor.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 COLTYPE PIC S9(9) COMP.
01 NUMCOLS PIC S9(9) COMP.
01 COLNUM PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL ALLOCATE DESCRIPTOR big desc WITH MAX 1000 END-EXEC.
EXEC SQL PREPARE dynstmt FROM "select * from huge table" END-EXEC.

* Assume that the select returns only 1 row.
EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big desc END-EXEC.

EXEC SQL GET DESCRIPTOR big desc :NUMCOLS = COUNT END-EXEC.

MOVE 1 TO COLNUM.
PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.

EXEC SQL DEALLOCATE DESCRIPTOR big desc END-EXEC.

EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.

GET-DESC-LOOP.

Embedded SQL/COBOL Programmers Guide 105

begin declare section

Usage

See also

EXEC SQL GET DESCRIPTOR big desc VALUE

:COLNUM :COLTYPE = TYPE END-EXEC.

DISPLAY "COLUMN ",COLNUM," IS OF TYPE ", COLTYPE.
ADD 1 TO COLNUM.

The allocate descriptor command specifies the number of item descriptor
areas that Adaptive Server allocates.

You can allocate any number of SQL descriptors.
When a SQL descriptor is alocated, its fields are undefined.

If you try to allocate a SQL descriptor that is aready allocated, an error
occurs.

If you do not specify avalue for the with max clause, one item descriptor
is assigned.

When a SQL descriptor is alocated, the value of each of itsfieldsis
undefined.

deallocate descriptor, get descriptor, set descriptor

begin declare section

Description

Syntax

Parameters

Examples

Usage

106

Begins adeclare section, which declares host language variables used in an
Embedded SQL sourcefile.

exec sqgl begin declare section end-exec
host_variable_declaration.

exec sqgl end declare section end-exec

host_variable declaration

The declaration of one or more host language variables.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE PIC X (80).
01 VARIPIC S9(9) COMP.
01 VAR2 PIC X(100).
EXEC SQL END DECLARE SECTION END-EXEC.

A declare section must end with the Embedded SQL statement
end declare section.

A source file can have any number of declare sections.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

See also

« declare sections can be placed anywhere that variables can be declared.
The declare section that declares a variable must precede any statement
that references the variable.

* Variable declarationsin adeclare section must conform to the rules of the
host language.

« Nested structuresare valid in adeclare section; arrays of structuresare not.

e A declare section can contain any number of Embedded SQL include
statements.

e When processing Embedded SQL include statements within adeclare
section, the Embedded SQL precompiler treats the contents of the
included file as though had been entered directly into the file being
precompiled.

exec sgl include "filename"

begin transaction

Description

Syntax

Parameters

Examples

*

* Use

* two
*

Marks the starting point of an unchained transaction.

exec sqgl [at connection_name]
begin {transaction | tran} [transaction_name]
end-exec

transaction | tran
The keywords transaction and tran are interchangeabl e.

transaction_name
The namethat you are assigning to thistransaction. The name must conform
to therules for Transact-SQL identifiers.

explicit transactions to synchronize tables on
servers.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 TITLE-ID PIC X (6) .
01 NUM-SOLD PIX S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

Embedded SQL/COBOL Programmers Guide 107

begin transaction

Usage

108

EXEC SQL WHENEVER SQLERROR PERFORM ABORT-TRAN END-EXEC.

EXEC SQL CONNECT :UID IDENTIFIED BY :PASS

AT connectl END-EXEC.
EXEC SQL CONNECT :UID IDENTIFIED BY :PASS

AT connect2 END-EXEC.

PERFORM TRY-UPDATE.

TRY-UPDATE.
EXEC SQL AT connectl BEGIN TRANSACTION END-EXEC.
EXEC SQL AT connect2 BEGIN TRANSACTION END-EXEC.

EXEC SQL AT connectl SELECT sum(gty) INTO :NUM-SOLD
FROM salesdetail
WHERE title_id = :TITLE-ID END-EXEC.

EXEC SQL AT connect2 UPDATE current_sales
SET num_sold = :NUM-SOLD
WHERE title id = :TITLE-ID END-EXEC.

EXEC SQL AT connect2 COMMIT TRANSACTION END-EXEC.
EXEC SQL AT connectl COMMIT TRANSACTION END-EXEC.

IF SQLCODE <> 0
DISPLAY "OOPS! Should have used 2-phase commit".

ABORT-TRAN.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "Error code is " SQLCODE.
DISPLAY "Error message is " SQLERRMC.
EXEC SQL AT connect2 ROLLBACK TRANSACTION END-EXEC.
EXEC SQL AT connectl ROLLBACK TRANSACTION END-EXEC.
PERFORM TRY-UPDATE.

e Thisreference page describes aspects of the Transact-SQL
begin transaction statement that differ when used with Embedded SQL.
See the Adaptive Server Enterprise Reference Manual for more
information about begin transaction and Transact-SQL transaction
management.

e Thebegin transaction statement is valid only in unchained transaction
mode. In chained transaction mode, you cannot explicitly mark the starting
point of atransaction.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

See also

close

Description

Syntax

Parameters

Examples

* When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.

e Unlessyou set the database option ddl in tran, Adaptive Server does not
alow the following statements inside an unchained transaction: create
database, create table, create index, create view, drop statements, select into
table_name, grant, revoke, alter database, alter table, truncate table, update
statistics, load database, load transaction, and disk init.

e A transactionincludes only statementsthat execute on the connection that
is current when the transaction begins.

« Remote procedures execute independently of any transaction in which
they are included.

commit transaction, commit work, rollback transaction, rollback work

Closes an open cursor.

exec sgl [at connection_name] close cursor_name
end-exec

Cursor_name
Thename of the cursor to be closed; that is, the name that you assigned when
declaring the cursor.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 LNAME PIC X (40).
01 FNAME PIC X (20).
01 PHONE PIC X(12).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE authorlist CURSOR FOR
SELECT au_lname, au_fname, phone
FROM authors END-EXEC.

EXEC SQL OPEN authorlist END-EXEC.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

Embedded SQL/COBOL Programmers Guide 109

commit

EXEC SQL CLOSE authorlist END-EXEC,

FETCH-LOOP.
EXEC SQL FETCH authorlist INTO
:LNAME, :FNAME, :PHONE END-EXEC.
DISPLAY LNAME, FNAME, PHONE.

Usage * Theclose statement closes an open cursor. Unfetched rows are cancel ed.

» Reopening aclosed cursor executes the associated query again,
positioning the cursor pointer before the first row of the result set.

* A cursor must be closed before it is reopened.
» Attempting to close a cursor that is not open causes aruntime error.

. The commit transaction, rollback transaction, commit work, and rollback work
statements close a cursor automatically unless you set a precompiler
option to disable the feature.

» Closing and then reopening a cursor lets your program see any changesin
the tables from which the cursor retrieves rows.

See also declare cursor, fetch, open, prepare

commit

Description Ends a transaction, preserving changes made to the database during the
transaction.

Syntax exec sql [at connection_name]

commit [transaction | tran | work]
[transaction_name] end-exec

Parameters transaction | trans | work
The keywordstransaction, trans, and work areinterchangeablein therollback
statement, except that only work is ANSI-compliant.

transaction_name
A name assigned to the transaction.

Examples

Example 1

110 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

* Using unchained transaction mode to

Example 2

Embedded

* synchronize tables on two servers.
*
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X (7).
01 NUM-SOLD PIC S9(9).
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL CONNECT :UID IDENTIFIED BY :PASS

AT connectl END-EXEC.
EXEC SQL CONNECT :UID IDENTIFIED BY :PASS

AT connect2 END-EXEC.

PERFORM TRY-UPDATE.
TRY-UPDATE.
EXEC SQL AT connectl BEGIN TRANSACTION END-EXEC.
EXEC SQL AT connect2 BEGIN TRANSACTION END-EXEC.
EXEC SQL AT connectl SELECT sum(gty) INTO :NUM-SOLD
FROM salesdetail
WHERE title id = :TITLE-ID END-EXEC.
EXEC SQL AT connect2 UPDATE current sales
SET num sold = :NUM-SOLD
WHERE title id = :TITLE-ID END-EXEC.
EXEC SQL AT connect2 COMMIT TRANSACTION END-EXEC.

EXEC SQL AT connectl COMMIT TRANSACTION END-EXEC.

IF SQLCODE <> 0

DISPLAY "Oops! Should have used 2-phase commit".

* Using chained transaction mode to synchronize
* tables on two servers.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X (7).
01 NUM-SOLD PIX S9(9) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

SQL/COBOL Programmers Guide

111

commit

Usage

See also

112

EXEC SQL WHENEVER SQLERROR PERFORM ABORT-TRAN END-EXEC.
PERFORM TRY-UPDATE.

TRY-UPDATE.

EXEC SQL AT connectl SELECT sum(gty) INTO :NUM-SOLD
FROM salesdetail
WHERE title_id = :TITLE-ID END-EXEC.

EXEC SQL AT connect2 UPDATE current_sales
SET num_sold = :NUM-SOLD
WHERE title id = :TITLE-ID END-EXEC.

EXEC SQL AT connect2 COMMIT WORK END-EXEC.
EXEC SQL AT connectl COMMIT WORK END-EXEC.

IF SQLCODE <> 0
DISPLAY "OOPS! Should have used 2-phase commit".

ABORT-TRAN.

DISPLAY "ERROR! ABORTING TRAN".

DISPLAY "Error code is " SQLCODE.

DISPLAY "Error message is " SQLERRMC.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL AT connect2 ROLLBACK WORK END-EXEC.
EXEC SQL AT connectl ROLLBACK WORK END-EXEC.
PERFORM TRY-UPDATE.

e Thisreference page mainly describes aspects of the Transact-SQL commit
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for more information about commit
and Transact-SQL transaction management.

» Transaction names must conform to the Transact-SQL rulesfor identifiers.
Transaction names are a Transact-SQL extension: they cannot be used
with the ANSI-compliant keyword work.

* When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.

begin transaction, commit work, rollback transaction, rollback work

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

connect
Description Creates a connection to Adaptive Server.
Syntax exec sgl connect user_name
[identified by password] [at connection_name]
[using server_name] [labelname label_name labelvalue label_value ...] end-
exec
Parameters user_name
The user name to be used when logging into Adaptive Server.
password
The password to use to log in to Adaptive Server.
connection_name
A name that you choose to uniquely identify the Adaptive Server
connection.
server_name
The server name of the Adaptive Server to which you are connecting.
Examples

Usage

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 UID PIC X(32).
01 PASS PIC X(32).
01 SERVER PIC X (100) .

EXEC SQL END DECLARE SECTION END-EXEC.

DISPLAY "UID NAME?".

ACCEPT UID.

DISPLAY "PASSWORD ?".

ACCEPT PASS.

DISPLAY "SERVER TO CONNECT TO ?2".
ACCEPT SERVER.

EXEC SQL CONNECT :UID IDENTIFIED BY :PASS
USING :SERVER END-EXEC.

* Inevery Embedded SQL program, the connect statement must be executed
before any other executable SQL statement except allocate descriptor.

e Thelabe_nameand label value clauses, if used, must be the last clauses
of the connect statement.

e If aprogram uses both C and COBOL languages, the first connect
statement must be issued from a COBOL program.

Embedded SQL/COBOL Programmers Guide 113

connect

See also

114

If a program has multiple connections, only one can be unnamed.

If an Embedded SQL statement does not have an at connection_name
clausetodirect it to aspecific named connection, the statement isexecuted
on the current connection.

To specify anull password, omit the identified by clause or use an empty
string.

If the connect statement does not specify an Adaptive Server, the server
named by the DSQUERY environment variable or logical nameisused. If
DSQUERY is not defined, the default server is SYBASE.

Client-Library looks up the server namein theinterfacesfilelocated in the
directory specified by the SY BASE environment variable or logical name.

The Adaptive Server connection ends when the Embedded SQL program
exits or issues a disconnect statement.

Opening a new connection, named or unnamed, results in the new
connection becoming the current connection.

A program that requires multiple Adaptive Server login names can have a
connection for each login account.

By connecting to more than one server, a program can simultaneously
access data stored on different servers.

A single program can have multiple connections to a single server or
multiple connections to different servers.

Table 9-1 shows how a connection is named:

Table 9-1: How a connection is named

Then, the ConnectionName

If this clause is used But without is

at connection_name connection_name
using server_name at server_name
None DEFAULT

at connection_name, exec sql, disconnect, set connection

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

deallocate cursor

Description

Syntax

Parameters

Examples

Deallocates a cursor for a static SQL statement or for a dynamic SQL
statement.

exec sqgl [at connection_name] deallocate cursor cursor_name end-exec

Cursor_name
The name of the cursor to be deallocated. The cursor_name must be a
character string enclosed in double quotation marks or in no quotation
marks—for example "my_cursor" or my_cursor. It cannot be a host
variable.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 TITLE-ID PIC X (7).
01 BOOK-NAME PIC X (80).
01 TTYPE PIC X (12).
01 TITLE-INDIC S9(9) .
01 TYPE-INDIC S9(9) .

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE titlelist CURSOR FOR
SELECT type, title id, title FROM titles
order by type END-EXEC.
EXEC SQL OPEN titlelist END-EXEC.

PERFORM FETCH-PARA UNTIL SQLCODE = 100.

EXEC SQL CLOSE titlelist END-EXEC.
EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.

FETCH-PARA.
EXEC SQL FETCH titlelist INTO
:TTYPE :TYPE-INDIC,
:TITLE-ID,
:BOOK-NAME :TITLE-INDIC END-EXEC.

IF TYPE-INDIC <> -1

DISPLAY "TYPE : ", TTYPE
ELSE

DISPLAY "TYPE : UNDECIDED"

Embedded SQL/COBOL Programmers Guide 115

deallocate descriptor

Usage

See also

END-IF.

DISPLAY

"TITLE ID : ",TITLE-ID.

IF TITLE-INDIC <> -1

DISPLAY "TITLE : ", BOOK-NAME
ELSE

DISPLAY "TITLE : Null value"
END-IF.

END-FETCH-PARA.

Deallocating a cursor releases al resources allocated to the cursor. In
particular, deallocate cursor dropsthe Client-Library command handle and
CS_COMMAND structure associated with the cursor.

A dtatic cursor can be deallocated at any time after it isopened. A dynamic
cursor can be deallocated at any time after it is declared.

If cursor_name is open, deallocate cursor closes it and then deallocatesiit.

You cannot reference a deallocated cursor, nor can you reopen it. If you
try, an error occurs.

You can declare a new cursor having the same name asthat of a
deallocated cursor. Opening a cursor with the same name as a deallocated
cursor is not the same as reopening the deallocated cursor. Other than the
name, the new cursor shares nothing with the deall ocated cursor.

Declaring anew cursor with the same name asthat of adeallocated cursor
can cause the precompiler to generate a warning message.

The deallocate cursor statement is a Sybase extension; it is not defined in
the SQL standard.

Note If you are using persistent binding in your Embedded SQL program, use
the deallocate cursor statement carefully. Needlessly deallocating cursors can
negate the advantage of persistent binding.

close cursor, declare cursor, open (static cursor)

deallocate descriptor
Deallocates a SQL descriptor.

Description

116

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Syntax exec sql deallocate descriptor descriptor_name
end-exec
Parameters descriptor_name

The name of the SQL descriptor that contains information about the
dynamic parameter markers or return valuesin a prepared statement.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 NUMCOLS PIC S9(9) COMP.
01 COLNUM PIC S9(9) COMP.
01 COLTYPE PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL ALLOCATE DESCRIPTOR big desc WITH MAX 100 END-EXEC.
EXEC SQL PREPARE dynstmt FROM "select * from huge table" END-EXEC.

* Assume that only one row of data is returned.
EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big desc END-EXEC.
EXEC SQL GET DESCRIPTOR big desc :NUMCOLS = COUNT END-EXEC.

MOVE 1 TO COLNUM.
PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.

EXEC SQL DEALLOCATE DESCRIPTOR big desc END-EXEC.

GET-DESC-LOOP.
EXEC SQL GET DESCRIPTOR big desc VALUE
:COLNUM :COLTYPE = TYPE END-EXEC.

DISPLAY "COLUMN TYPE = ",COLTYPE.
ADD 1 TO COLNUM.
Usage e |If you attempt to deallocate a SQL descriptor that has not been allocated,

an error occurs.

See also allocate descriptor

Embedded SQL/COBOL Programmers Guide 117

deallocate prepare

deallocate prepare

Description Deallocates a dynamic SQL statement that was prepared in a prepare
statement.
Syntax exec sql [at connection_name]
deallocate prepare statement_name end-exec
Parameters statement_name
Theidentifier assigned to the dynamic SQL statement when the statement
was prepared.
Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 CMDBUF PIC X(120).

01 STATE PIC X (3).
EXEC SQL END DECLARE SECTION END-EXEC.

* The 'select into table' statement returns no results
* to the program, so it does not need a cursor.

MOVE "select * into tmp from authors where state = ?"
TO CMDBUF.

DISPLAY "STATE ? ".
ACCEPT STATE.

EXEC SQL PREPARE dynstmt FROM :CMDBUF END-EXEC.
EXEC SQL EXECUTE dynstmt USING :STATE END-EXEC.

EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

Usage e A statement must be prepared before it is deallocated. Attempting to
deallocate a statement that has not been prepared resultsin an error.

e statement_name must uniquely identify a statement buffer and must
conformto the SQL identifier rulesfor naming variables. statement_name
can be either aliteral or acharacter array host variable.

118 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

See also

e Thedeallocate prepare statement closes and deall ocates any dynamic
cursors declared for statement_name.

Warning! If you are using persistent binds in your Embedded SQL program,
use the deallocate prepare statement carefully. Needlessly deallocating
prepared statements can negate the advantage of persistent binds.

declare cursor (dynamic), execute, execute immediate, prepare

declare cursor (dynamic)

Description

Syntax

Parameters

Examples

Declaresacursor for processing multiplerowsreturned by aprepared dynamic
select statement.

exec sql [at connection_name]
declare cursor_name
cursor for prepped_statement_name end-exec

Ccursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s hame must be unique on each connection and must
have no more than 255 characters.

prepped_statement_name
The name (specified in a previous prepare statement) that represents the
select statement to be executed.

EXEC SQL BEGIN DECLARE SECTION END-EXEC

01 QUERY PIC X(100).
01 DATAVAL PIC X(100).
01 COUNTER PIC S9(9) COMP.
01 NUMCOLS PIC S9(9) COMP.
01 COLNAME PIC X (32).
01 COLTYPE PIC S9(9) COMP.
01 COLLEN PIC S9(9) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

Embedded SQL/COBOL Programmers Guide

119

declare cursor (dynamic)

EXEC SQL WHENEVER SQLERROR PERFORM ERR-PARA END-EXEC.
EXEC SQL WHENEVER SQLWARNING PERFORM WARN-PARA END-EXEC
EXEC SQL WHENEVER NOT FOUND STOP END-EXEC.

EXEC SQL

MOVE

EXEC
EXEC
EXEC
EXEC

SQL
SQL
SQL
SQL

PERFORM FETCH-LOOP UNTIL SQLCODE =

* Clean-up all open cursors,

EXEC
EXEC
EXEC
EXEC
EXEC

SQL
SQL
SQL
SQL
SQL

STOP

RUN.

USE pubs2 END-EXEC.

"SELECT * FROM publishers " TO QUERY.

ALLOCATE DESCRIPTOR dout WITH MAX 100 END-EXEC.
PREPARE dynstmt FROM :QUERY END-EXEC.

DECLARE dyncur CURSOR FOR dynstmt END-EXEC.
OPEN dyncur END-EXEC.

100.

descriptors and dynamic statements.

CLOSE dyncur END-EXEC.

DEALLOCATE CURSOR dyncur END-EXEC.
DEALLOCATE PREPARE dynstmt END-EXEC.
DEALLOCATE DESCRIPTOR dout END-EXEC.
COMMIT WORK END-EXEC.

FETCH-LOOP.

EXEC SQL FETCH dyncur INTO SQL DESCRIPTOR dout END-EXEC
EXEC SQL GET DESCRIPTOR dout :NUMCOLS = COUNT END-EXEC
DISPLAY "COLS = ", NUMCOLS

MOVE 1 TO COUNTER

PERFORM GET-DESC-PARA UNTIL COUNTER > NUMCOLS.

END-FETCH-LOOP.

GET-DESC-PARA.

120

EXEC SQL GET DESCRIPTOR dout VALUE :COUNTER

:COLNAME = NAME,
:COLTYPE = TYPE,
:COLLEN = LENGTH
END-EXEC
DISPLAY "NAME :", COLNAME
DISPLAY "TYPE :", COLTYPE
DISPLAY "LENGTH :", COLLEN

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

EXEC SQL GET DESCRIPTOR dout VALUE :COUNTER
:DATAVAL = DATA END-EXEC
DISPLAY "DATA : ", DATAVAL
DISPLAY " "
ADD 1 TO COUNTER.
END-GET-DESC-PARA.

Usage e Theprepped statement_name must not have a compute clause.

e Thecursor_name must be declared on the connection where
prepped_statement_name was prepared.

e Thedynamic declare cursor statement is an executabl e statement, whereas
the static declare cursor statement is simply a declaration. The dynamic
declare statement must be located where the host language allows
executable statements and the program should check return codes
(SQLCODE, SQLCA, or SQLSTATE).

e Thefor update and read only clauses for a dynamic cursor are not part of
the declare cursor statement but rather should be included in the prepared
statement’s select query.

See also close, connect, fetch, open, prepare

declare cursor (static)

Description Declares a cursor for processing multiple rows returned by a select statement.

Syntax exec sql declare cursor_name
cursor for select_statement
[for update [of col_name_1 [, col_name_n]...]|
for read only] end-exec
Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s hame must be unique on each connection and must
have no more than 255 characters.

select_statement
The Transact-SQL select statement to be executed when the cursor is
opened. See the description of the select statement in the Adaptive Server
Enterprise Reference Manual for more information.

Embedded SQL/COBOL Programmers Guide 121

declare cursor (static)

for update
Specifies that the cursor’s result list can be updated. (To update the result
list, you use the update statement.

of col_name n
The name of a column to be updated.

for read only
Specifies that the cursor’s result list cannot be updated.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6).
01 BOOK-NAME PIC X(25).
01 TYPE PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

01 ANSWER PIC X (1).

DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".
ACCEPT BOOK-TYPE.
EXEC SQL DECLARE titlelist CURSOR FOR
SELECT title id, substring(title,1,25) FROM
titles WHERE type = :BOOK-TYPE END-EXEC.

EXEC SQL OPEN titlelist END-EXEC.

PERFORM FETCH-PARA UNTIL SQLCODE = 100.

EXEC SQL CLOSE titlelist END-EXEC.

EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

FETCH-PARA.
EXEC SQL FETCH titlelist INTO
:TITLE-ID, :BOOK-NAME END-EXEC.
DISPLAY "TITLE ID : ",TITLE-ID
DISPLAY "TITLE : ", BOOK-NAME
IF SQLCODE = 100
DISPLAY "NO RECORDS TO FETCH. END OF PROGRAM RUN."
ELSE
DISPLAY "UPDATE/DELETE THIS RECORD (U/D)? "
ACCEPT ANSWER.

IF ANSWER = "U"

122 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

DISPLAY "ENTER NEW TITLE :"

ACCEPT BOOK-NAME

EXEC SQL UPDATE titles SET title = :BOOK-NAME
WHERE CURRENT OF titlelist END-EXEC

ELSE
IF ANSWER = "D"
EXEC SQL DELETE titles
WHERE CURRENT OF titlelist END-EXEC
END-IF
END-IF
END-IF.

END-FETCH-PARA.

Usage e The Embedded SQL precompiler generates no code for the declare cursor
statement.

e Theselect_statement doesnot execute until your program opensthe cursor
by using the open cursor statement.

e Thesyntax of the select_statement isidentical to that shownin the
Adaptive Server Enterprise Reference Manual, except that you cannot use
the compute clause in Embedded SQL.

* Theselect_statement can contain host variables. The values of the host
variables are substituted when your program opens the cursor.

e |f you omit either the for update or read only clause, Adaptive Server
determines whether the cursor is updatable.

See also close, connect, deallocate cursor, declare cursor (stored procedure),
declare cursor (dynamic), fetch, open, update

declare cursor (stored procedure)

Description Declares a cursor for a stored procedure.

Syntax exec sql declare cursor_name
cursor for execute procedure_name
([[@param_name =]:host_var]
[[[@param_name =]:host_var]...) end-exec
Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s hame must be unique on each connection and must
have no more than 255 characters.

Embedded SQL/COBOL Programmers Guide 123

declare cursor (stored procedure)

procedure_name
The name of the stored procedure to be executed.

param_name
The name of a parameter in the stored procedure.
host_var
The name of a host variable to be passed as a parameter value.
Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6) .
01 BOOK-NAME PIC X(65).
01 BOOK-TYPE PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

01 ANSWER PIC X(1).

* Create the stored procedure.

EXEC SQL create procedure p titles (@p_ type varchar(30))
as
select title id, substring(title,1,64)
from titles
where type = @p_ type
END-EXEC.

* To execute stored procedures, you must disable chained mode.
EXEC SQL SET CHAINED OFF END-EXEC.

DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".
ACCEPT BOOK-TYPE.
EXEC SQL DECLARE titlelist CURSOR FOR
execute p titles :BOOK-TYPE END-EXEC.
EXEC SQL OPEN titlelist END-EXEC.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
EXEC SQL CLOSE titlelist END-EXEC.
EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH titlelist INTO
:TITLE-ID, :BOOK-NAME END-EXEC
DISPLAY "TITLE ID : ", TITLE-ID

124 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

DISPLAY "TITLE : ", BOOK-NAME
IF SQLCODE = 100
DISPLAY "NO RECORDS TO FETCH. END OF PROGRAM RUN."

ELSE
DISPLAY "UPDATE/DELETE THIS RECORD ? "
ACCEPT ANSWER
IF ANSWER = "U"
DISPLAY "ENTER NEW TITLE :"
ACCEPT BOOK-NAME
EXEC SQL UPDATE titles SET title = :BOOK-NAME
WHERE CURRENT OF titlelist END-EXEC.
ELSE
IF ANSWER = "D"
EXEC SQL DELETE titles WHERE CURRENT OF
titlelist END-EXEC
END-IF
END-IF.
END-IF.
Usage e procedure_name must consist of only one select statement.
e Itisnot possible to retrieve output parameter values from a stored
procedure executed using a cursor.
e Itisnot possible to retrieve the return status value of a stored procedure
executed using a cursor.
See also close, deallocate cursor, declare cursor (static), declare cursor (dynamic), fetch,

open, update

declare scrollable cursor

Description Declares a scrollable cursor.

Syntax EXEC SQL DECLARE <curs_name>
[<cursor sensitivity>]
[<cursor scrollability>] CURSOR
FOR <cursor specification>
<cursor sensitivity> : : =
SEMI_SENSITIVE
| INSENSITIVE
<cursor scrollability> : : =
SCROLL
| NO SCROLL
<cursor specification> : : =

Embedded SQL/COBOL Programmers Guide 125

delete (positioned cursor)

Parameters

Examples

<select statement> [<updatability clause>]
<updatability clause> : : =

FOR {READ ONLY | UPDATE [OF <column name list>]}
END-EXEC

Ccursor sensitivity
Declares a cursor semi-sensitive or insensitive.

cursor scrollability
Declares a cursor scrollable or non-scrollable.

Note A scrollable cursor does not use fetch loops but rather singlefetch calls.
Only non-scrollable and forward-only cursors use fetch loops.

EXEC SQL DECLARE cl INSENSITIVE SCROLL CURSOR FOR

select tit

le id, royalty

from authors
where royalty < 25 END-EXEC.

EXEC SQL OPEN

Usage

See also

delete (positio

Description

126

cl END-EXEC.

e If cursor sensitivity is specified as INSENSITIVE, SCROLL is not
implied.

e If cursor sensitivity is not specified as INSENSITIVE or
SEMI_SENSITIVE, and SCROLL is also not specified in the declare
cursor, the cursor is scrollable and read-only with the specified sensitivity.

» If cursor sensitivity isnot specified, the cursor isdeclared asnon-sensitive,
non-scrollable and read-only.

e If cursor scrollability is specified as SCROLL, the cursor is
INSENSITIVE.

» If cursor scrollability is not specified, the defaultisNO SCROLL, and the
cursor is declared as non-scrollable and read-only.

scroll fetch, open

ned cursor)

Removes, from atable, the row indicated by the current cursor position for an
open Ccursor.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Syntax exec sql [at connection_name] delete
[from] table_name
where current of cursor_name end-exec

Parameters table_name
The name of the table from which the row will be deleted.

where current of cursor_name
Causes Adaptive Server to delete the row of the table indicated by the
current cursor position for the cursor cursor_name.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PUB-NAME PIC X (40).
01 PUB-ID PIC X(4).
01 PUB-CTY PIC X (15).
01 PUB-ST PIC X (2).
01 ANSWER PIC X(1).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE delcursor CURSOR FOR
SELECT * FROM publishers END-EXEC.

EXEC SQL OPEN delcursor END-EXEC.

PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE delcursor END-EXEC.

EXEC SQL DEALLOCATE CURSOR delcursor END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH delcursor INTO
:PUB-ID, :PUB-NAME,
:PUB-CTY, PUB-ST END-EXEC.

DISPLAY "PUB ID :", PUB-ID
DISPLAY "PUB NAME :", PUB-NAME
DISPLAY "PUB CITY :", PUB-CTY
DISPLAY "PUB STATE :", PUB-ST

IF SQLCODE = 100

Embedded SQL/COBOL Programmers Guide 127

delete (searched)

Usage

See also

DISPLAY "NO MORE RECORDS TO FETCH. END OF PROGRAM RUN."

ELSE
DISPLAY "DELETE THIS RECORD ?(Y/N) "
ACCEPT ANSWER
IF ANSWER = "Y"
EXEC SQL DELETE publishers WHERE CURRENT OF
delcursor END-EXEC
END-IF.

» Thisreference page mainly describes aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL . See the Adaptive
Server Enterprise Reference Manual for moreinformation about the delete
Statement.

» Thisform of the delete statement must execute on the connection where
the cursor cursor_name was opened. If the delete statement includes the
atconnection_name clause, the clause must match the
atconnection_nameclause of the open cursor statement that opened
Cursor_name.

* Thedelete statement failsif the cursor was declared for read only, or if the
select statement included an order by clause.

close, declare cursor, fetch, open, update

delete (searched)

Description

Syntax

Parameters

128

Removes rows specified by search conditions.

exec sql [at connection_name] delete table_name_1
[from table_name_n

[, table_name_n]...]

[where search_conditions] end-exec

table name 1
The name of the table from which this delete statement deletes rows.

from table_name n
The name of atable to be joined with table name_1 to determine which
rows of table_name_1 will be deleted. The delete statement does not delete
rows from table_name n.

where search_conditions
Specifieswhich rowswill bedeleted. If you omit thewhere clause, thedelete
statement deletes all rows of table name 1.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 AU-FNAME PIC X(30).
01 AU-LNAME PIC X(30).
01 AU-ID PIC X(11).
01 TITLE-ID PIC X(6).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL WHENEVER SQLERROR PERFORM ROLLBACK-PARA.
EXEC SQL USE pubs2 END-EXEC.

DISPLAY "AUTHOR FIRST NAME ? "
ACCEPT AU-FNAME.
DISPLAY "AUTHOR LAST NAME ? "
ACCEPT AU-LNAME.

EXEC SQL SELECT au_id FROM authors INTO :AU-ID
WHERE au_ fname = :AU-FNAME
AND au_lname = :AU-LNAME END-EXEC.

EXEC SQL BEGIN TRANSACTION END-EXEC.

* Delete matching records from the 'au pix' table.
EXEC SQL DELETE au pix WHERE au id = :AU-ID END-EXEC.

* Delete matching records from the 'blurbs' table.
EXEC SQL DELETE blurbs WHERE au id = :AU-ID END-EXEC.

* Delete matching records from the titleauthor table. Since
* we can't have titles associated with this author in other
* related tables, we delete those records too.
EXEC SQL DECLARE selcursor CURSOR FOR
SELECT title id FROM titleauthor
WHERE au_id = :AU-ID END-EXEC.
EXEC SQL OPEN selcursor END-EXEC.
PERFORM FETCH-DEL-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE selcursor END-EXEC.
EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.

* Delete matching records from the 'authors' table.
EXEC SQL DELETE authors WHERE au id = :AU-ID END-EXEC.

Embedded SQL/COBOL Programmers Guide 129

describe input (SQL descriptor)

* Commit all the transactions to the database.
EXEC SQL COMMIT TRANSACTION END-EXEC.

FETCH-DEL-LOOP.
EXEC SQL FETCH selcursor INTO :TITLE-ID END-EXEC
IF SQLCODE <> 100

EXEC SQL DELETE salesdetail WHERE title id = :TITLE-ID END-EXEC

EXEC SQL DELETE roysched WHERE title id = :TITLE-ID END-EXEC

EXEC SQL DELETE titles WHERE title id = :TITLE-ID END-EXEC

EXEC SQL DELETE titleauthor WHERE CURRENT OF selcursor END-EXEC
END-IF.

END-FETCH-LOOP.

* Rollback the transacion in case of errors.

ROLLBACK-PARA.

DISPLAY "ERROR! ROLLING BACK TRANSACTION!"
DISPLAY "Error code is " SQLCODE.
DISPLAY "Error message is " SQLERRMC.

EXEC SQL ROLLBACK TRANSACTION END-EXEC.

Usage e Thisreference page describes mainly aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual for moreinformation about the delete
statement.

» If you need to remove rows specified by the current position of a cursor
pointer, use the delete (positioned cursor) statement.

See also close, declare cursor, fetch, open, update

describe input (SQL descriptor)

Description Obtains information about dynamic parameter markersin aprepared dynamic
SQL statement and stores that information in a SQL descriptor.

For alist of possible SQL descriptor datatype codes, see Table 9-5 on
page 176.

130 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Syntax

exec sql describe input statement_name
using sql descriptor descriptor_name end-exec

Parameters Statement_name

Examples

The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.

sql descriptor
I dentifies descriptor_name as a SQL descriptor.

descriptor_name
The name of the SQL descriptor that isto store information about the
dynamic parameter markersin the prepared statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 QUERY PIC X (100).

01 NIN PIC S9(9) COMP.

01 COUNTER PIC S9(9) COMP.

01 COLTYPE PIC S9(9) COMP.

01 COLLEN PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL ALLOCATE DESCRIPTOR din WITH MAX 256 END-EXEC.

DISPLAY "ENTER QUERY :"
ACCEPT QUERY.

EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
EXEC SQL DESCRIBE INPUT dynstmt USING
SQL DESCRIPTOR din END-EXEC.

EXEC SQL GET DESCRIPTOR din :NIN = COUNT END-EXEC.
MOVE 1 TO COUNTER.

PERFORM GET-DESC-LOOP UNTIL COUNTER > NIN.

EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.

EXEC SQL DEALLOCATE DESCRIPTOR din END-EXEC.

GET-DESC-LOOP.
EXEC SQL GET DESCRIPTOR din VALUE
:COUNTER :COLTYPE = TYPE END-EXEC
EXEC SQL GET DESCRIPTOR din VALUE
:COUNTER :COLLEN = LENGTH END-EXEC

Embedded SQL/COBOL Programmers Guide 131

describe input (SQLDA)

DISPLAY
DISPLAY

"TYPE OF INPUT ", COLTYPE
"INPUT LENGTH ", COLLEN

ADD 1 TO COUNTER .

END-GET-DESC-

Usage .

LOOP.

Information about the statement is written into the descriptor provided in
the using clause. Use the get descriptor statement after executing the
describe input statement to extract information from the descriptor into
host variables.

Thedescriptor must be alocated before the describe input statement can be
executed.

See also allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,
set descriptor

describe input (SQLDA)

Description Obtainsinformation about dynamic parameter markersin aprepared dynamic
SQL statement and stores that information in a SQLDA structure.

Syntax exec sql describe input statement_name
using descriptor descriptor_name end-exec

Parameters statement_name

The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.

descriptor

Identifies descriptor_name as a SQLDA structure.

descriptor_name

Examples

The name of the SQLDA structure that is to store information about the
dynamic parameter markers in the prepared statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 QUERY

PIC X (100).

EXEC SQL END DECLARE SECTION END-EXEC.

01 din.

132

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

05 SD-SQLN PIC S9(4) COMP.

05 SD-SQLD PIC S9(4) COMP.

05 SD-COLUMN OCCURS 3 TIMES.
10 SD-DATAFMT.

10
10
10
10
01 TMP PIC

15 SQL--NM PIC X(132).

15 SQL--NMLEN PIC S9(9) COMP.

15 SQL--DATATYPE PIC s9(9) COMP.

15 SQL--FORMAT PIC S9(9) COMP.

15 SQL--MAXLENGTH PIC S9(9) COMP.

15 SQL--SCALE PIC S9(9) COMP.

15 SQL--PRECISION PIC S9(9) COMP.

15 SQL--STTUS PIC S9(9) COMP.

15 SQL--COUNT PIC S9(9) COMP.

15 SQL--USERTYPE PIC S9(9) COMP.

15 SQL--LOCALE PIC S9(9) COMP.
SD-SQLDATA PIC S9(9) COMP.
SD-SQLIND PIC S9(9) COMP.
SD-SQLLEN PIC S9(9) COMP.
SD-SQLMORE PIC S9(9) COMP.

Z(8)9.

DISPLAY "ENTER QUERY :"
ACCEPT QUERY.

EXEC SQL ALLOCATE DESCRIPTOR din WITH MAX 256 END-EXEC.
EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
EXEC SQL DECLAR selcursor CURSOR FOR dynstmt END-EXEC.

EXEC SQL DESCRIBE INPUT dynstmt USING DESCRIPTOR din END-EXEC.

* SD-SQLD contains the number of columns in the query being described
MOVE SD-SQLD TO TMP.
DISPLAY "Number of input parameters = ", SD-SQLD.

Usage

See also

Information about the statement is written into the descriptor specified in the
using clause. After the get descriptor statement is executed, you can read the
information out of the SQLDA structure.

allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,
set descriptor

Embedded SQL/COBOL Programmers Guide

133

describe output (SQL descriptor)

describe output (SQL descriptor)

Description

Syntax

Parameters

Examples

Obtains row format information about the result set of a prepared dynamic
SQL statement.

For alist of possible SQL descriptor datatype codes, see Table 9-5 on
page 176.

exec sql describe [output] statement_name
using sql descriptor descriptor_name end-exec

output
An optional keyword that has no effect on the describe output statement but
provides conformance to the SQL standard.

statement_name
The name (specified in aprepare statement) that represents the select
statement to be executed.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of aSQL descriptor that isto storetheinformation returned by the
describe output statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01
01
01
01
01
01
01
01

QUERY PIC X(100).
NOUT PIC S9(9) COMP.
DATAVAL PIC X(100).
COUNTER PIC S9(9) COMP.
NUMCOLS PIC S9(9) COMP.
COLNAME PIC X(32).
COLTYPE PIC S9(9) COMP.
COLLEN PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

DISPLAY
ACCEPT QUERY.

"ENTER QUERY :"

EXEC SQL ALLOCATE DESCRIPTOR desc_out WITH MAX 256 END-EXEC.
EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.

EXEC SQL DECLARE selcursor CURSOR FOR dynstmt END-EXEC.

EXEC SQL OPEN selcursor USING SQL DESCRIPTOR desc out END-EXEC.

134

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

EXEC SQL DESCRIBE OUTPUT dynstmt USING SQL DESCRIPTOR desc_out END-EXEC.

PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE selcursor END-EXEC.

EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.
EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
EXEC SQL DEALLOCATE DESCRIPTOR desc out END-EXEC.

FETCH-LOOP.

Usage

See also

EXEC SQL FETCH selcursor INTO SQL DESCRIPTOR desc out END-EXEC
EXEC SQL GET DESCRIPTOR desc_out :NOUT = COUNT END-EXEC
DISPLAY "COLS RETRIEVED = ", NOUT

MOVE 1 TO COUNTER

PERFORM GET-DESC-PARA UNTIL COUNTER > NOUT.

END-FETCH-LOOP.

GET-DESC-PARA.

EXEC SQL GET DESCRIPTOR desc out VALUE :COUNTER
:COLNAME = NAME,

:COLTYPE = TYPE,
:COLLEN = LENGTH
END-EXEC
DISPLAY "NAME :", COLNAME
DISPLAY "TYPE :", COLTYPE
DISPLAY "LENGTH :", COLLEN

EXEC SQL GET DESCRIPTOR desc out VALUE :COUNTER
:DATAVAL = DATA END-EXEC

DISPLAY "DATA :", DATAVAL

DISPLAY " "

ADD 1 TO COUNTER.

END-GET-DESC-PARA.

* Theinformation obtained isthetype, name, length (or precision and scale,
if anumber), nullable status, and number of itemsin the result set.

* Theinformation is about the result columns from the select column list.

« Executethis statement before the prepared statement executes. If you
perform a describe output statement after you execute and before you
perform a get descriptor, the results will be discarded.

allocate descriptor, describe input, execute, get descriptor, prepare

Embedded SQL/COBOL Programmers Guide 135

describe output (SQLDA)

describe output (SQLDA)

Description Obtains row format information about the result set of a prepared dynamic

SQL statement and stores that information in a SQLDA structure.

Syntax exec sql describe [output] statement_name
using descriptor sqlda_name end-exec

Parameters output

An optional keyword that has no effect on the describe output statement but

provides conformance to the SQL standard.

statement_name

The name (specified in aprepare statement) that represents the select

statement to be executed.

descriptor

Identifies descriptor_name as a SQLDA structure.

sglda_name

The name of a SQLDA structure that is to store the information returned by

the describe output Statement:

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 QUERY PIC X(100).
01 CHARVAR PIC X(100).
EXEC SQL END DECLARE SECTION END-EXEC.
01 dout.
05 SD-SQLN PIC S9(4) COMP.
05 SD-SQLD PIC S9(4) COMP.
05 SD-COLUMN OCCURS 3 TIMES.
10 SD-DATAFMT.
15 SQL--NM PIC X(132).
15 SQL--NMLEN PIC S9(9)
15 SQL--DATATYPE PIC s9(9)
15 SQL--FORMAT PIC S9(9)
15 SQL--MAXLENGTH PIC s9(9)
15 SQL--SCALE PIC S9(9)
15 SQL--PRECISION PIC s9(9)
15 SQL--STTUS PIC S9(9)
15 SQL--COUNT PIC S9(9)
15 SQL--USERTYPE PIC S9(9)
15 SQL--LOCALE PIC s9(9)
10 SD-SQLDATA PIC S9(9) COMP.
10 SD-SQLIND PIC S9(9) COMP.
136

COMP.

COMP.

COMP.
COMP.
COMP.
COMP.
COMP.
COMP.
COMP.
COMP.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage

See also

10 SD-SQLLEN PIC S9(9) COMP.
10 SD-SQLMORE PIC S9(9) COMP.
01 TMP PIC Z(8)9.
01 COLNUM PIC S9(9) COMP.
01 TMP1 PIC S9(9) COMP.
01 TMP2 PIC S9(9) COMP.
01 RETCODE PIC S9(9) COMP.

DISPLAY "ENTER QUERY :"
ACCEPT QUERY.

EXEC SQL ALLOCATE DESCRIPTOR dout WITH MAX 256 END-EXEC.

EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.
EXEC SQL DECLARE selcursor CURSOR FOR dynstmt END-EXEC.
EXEC SQL OPEN selcursor END-EXEC.
EXEC SQL DESCRIBE OUTPUT dynstmt
USING DESCRIPTOR dout END-EXEC.

MOVE 1 TO COLNUM.
MOVE 25 TO TMP1.
MOVE 0 TO TMP2.

CALL "SYBSETSQLDA" USING RETCODE dout COLNUM
CHARVAR SYB-X-PIC TMP1 TMP2 SYB-NO-USAGE
SYB-NO-SIGN.

EXEC SQL FETCH selcursor INTO DESCRIPTOR dout END-EXEC.
DISPLAY "CHARVAR = ", CHARVAR.

EXEC SQL CLOSE selcursor END-EXEC.

EXEC SQL DEALLOCATE CURSOR selcursor END-EXEC.
EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
EXEC SQL DEALLOCATE DESCRIPTOR dout END-EXEC.

* Theinformation obtained is data held in the SQLDA fields, such asthe
type, name, length (or precision and scale, if a number), nullable status,

and number of itemsin the result set.

* Theinformation is about the result columns from the select column list.

describe input, execute, prepare

Embedded SQL/COBOL Programmers Guide

137

disconnect

disconnect

Description

Syntax

Closes one or more connections to a Adaptive Server.

exec sql disconnect
{connection_name | current | DEFAULT]| all} end-exec

Parameters connection_name

Examples

138

The name of a connection to be closed.

current
Specifies that the current connection is to be closed.

DEFAULT
Specifiesthat the default connection isto be closed. This keyword must be
in uppercase lettersif you specify the default connection_name using a
character string variable, for example:

exec sqgl disconnect :hv;

all
Specifiesthat all active connections be closed.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SERV-NAME PIC X (25).
01 USER-NAME PIC X (25).
01 PASSWORD PIC X (25).
01 CONN-NAME PIC X(25).

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "sa" TO USER-NAME.
MOVE "" TO PASSWORD.

Make a default connection.

EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD END-EXEC.
EXEC SQL SELECT @@servername into :srvname END-EXEC.

DISPLAY "NOW CONNECTED TO SERVER ", srvname.

Accept a server name from the user and make a new connection.
DISPLAY "SERVER NAME? ".
ACCEPT SERV-NAME.
EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD
At conn2 USING :SERV-NAME END-EXEC.

EXEC SQL SELECT @@servername into :srvname END-EXEC

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage

See also

DISPLAY "NOW CONNECTED TO SERVER ", srvname.

Make a third connection.
EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD
At conn3 USING :SERV-NAME END-EXEC.

EXEC SQL SELECT @@servername into :srvname END-EXEC.
DISPLAY "NOW CONNECTED TO SERVER ", srvname.

Now set the current connection to DEFAULT.
EXEC SQL SET CONNECTION DEFAULT END-EXEC.

Now disconnect the first connection which is the default.
DISPLAY "DISCONNECTING DEFAULT!".
EXEC SQL DISCONNECT DEFAULT END-EXEC.

Now sdet the current connection to connection2.
EXEC SQL SET CONNECTION conn2 END-EXEC.

Now disconnect the third connection.
DISPLAY "DISCONNECTING THIRD!".
EXEC SQL DISCONNECT conn3 END-EXEC.

Disconnect remaining connections - case 'conn2' will be closed.
DISPLAY "DISCONNECTING ALL!"™.
EXEC SQL DISCONNECT ALL END-EXEC.

e By itsdf, thedisconnect keyword is not avalid statement. Instead, it must

be followed by connection_name, current, DEFAULT, or all.

e Closing a connection releases all memory and resources associated with

that connection.

« disconnect does not commit current transactions; it rolls them back. If an
unchained transaction is active on the connection, disconnect rollsit back,

ignoring any savepoints.

e Closing a connection closes open cursors, drops temporary Adaptive
Server objects, releases any locks the connection has in the Adaptive

Server, and closes the network connection to the Adaptive Server.

commit work, commit transaction, connect, rollback transaction, rollback work

Embedded SQL/COBOL Programmers Guide

139

exec

exec
Description Runs a system procedure or a user-defined stored procedure.
Syntax exec sql [at connection_name]
exec [:status_var = status_value] procedure_name
[([[@parameter_name =]param_value [out[put]]],...)]
[into :hostvar_1 [:indicator_1]
[, hostvar_n [indicator_n,...]]]
[with recompile] end-exec
Note Do not confuse the exec statement with the Embedded SQL execute
statement; they are not related. The Embedded SQL exec statement is,
however, the equivalent of the Transact-SQL execute statement.
Parameters status_var
A host variable to receive the return status of the stored procedure.
status value
The value of the stored procedure return status variable status var.
procedure_name
The name of the stored procedure to be executed.
parameter_name
The name(s) of the stored procedure’s parameter(s).
param value
A host variable or literal value.
output
Indicates that the stored procedure returns a parameter value. The matching
parameter in the stored procedure must also have been created using the
output keyword.
into :hostvar_1
Causes row data returned from the stored procedure to be stored in the
specified host variables (hostvar_1 through hostvar_n). Each host variable
can have an indicator variable.
with recompile
Causes Adaptive Server to create anew query plan for this stored procedure
each time the procedure executes.
Examples Example 1

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6).

140 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

01 TOTAL-DISC PIC S9(9).
01 RET-STATUS PIC S9(9).
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL CREATE PROC get sum discounts(@title id tid,
@discount int output) as

begin
select @discount = sum (gty*discount)
from salesdetail
where title id = etitle_id
end

END-EXEC.

EXEC SQL SET CHAINED ON END-EXEC.
DISPLAY "TITLE ID 2 ".
ACCEPT TITLE-ID.

EXEC SQL EXEC :RET-STATUS = get sum discounts
:TITLE-ID, :TOTAL-DISC OUT END-EXEC.

DISPLAY "TOTAL DISCOUNTS FOR TITLE ID ", TITLE-ID," =

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PUB-ID PIC X (4).
01 NAME PIC X (25).
01 CITY PIC X (25).
01 STATE PIC X(2).
01 RET-STATUS PIC S9(9).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL CREATE PROC get publishers (@pubid char(4))
as
select pub name, city, state from
publishers where pub id = epubid
END-EXEC.

DISPLAY " DETAIL RECORD FOR PUBLISHER ? ".
ACCEPT PUB-ID.

EXEC SQL EXEC :RET-STATUS = get publishers :PUB-ID

Embedded SQL/COBOL Programmers Guide

", TOTAL-DISC.

141

exec sql

INTO :NAME, :CITY, :STATE END-EXEC.

IF RET-STATUS = 0

Usage

See also

exec sql

Description

Syntax

Parameters

142

DISPLAY " PUBLISHER NAME : ", NAME
DISPLAY " CITY : ", CITY
DISPLAY " STATE : ", STATE

e Only one select statement can return rows to the client application.

» |f the stored procedure contai ns select statementsthat can return row data,
you must use one of two methods to store the data. You can either use the
into clause of the exec statement or declare a cursor for the procedure. If
you usetheinto clause, the stored procedure must not return morethan one
row of data, unless the host variables that you specify are arrays.

e Thevaue param value can be ahost variable or literal value. If you use
the output keyword, param_value must be a host variable.

e You can specify the output keyword for parameter_name only if that
keyword was also used for the corresponding parameter of the create
procedure statement that created procedure_name.

e The Embedded SQL exec statement works much like the Transact-SQL
execute statement.

declare cursor (stored procedure), select

Marks the beginning of a SQL statement embedded in a host language
program.

exec sql [at connection_name] sql_statement end-exec

at
Causesthe SQL statement sgl_statementto execute at the Adaptive Server
connection connection_name.

connection_name
The connection name that identifies the Adaptive Server connection where
sgl_statement is to execute. The connection_name must be defined as a
previous connect statement.

sgl_statement
A Transact-SQL statement or other Embedded SQL statement.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC
EXEC

EXEC

EXEC
EXEC

EXEC

MOVE
EXEC

EXEC
EXEC

Usage

01 SITE1 PIC X(25).
01 SALES1 PIC S9(9) COMP.
SQL END DECLARE SECTION END-EXEC.

SQL CONNECT "user" identified by "password"
AT serverl USING "serverl" END-EXEC.
SQL CONNECT "user" identified by "password"
AT server2 USING "server2" END-EXEC.

SQL AT serverl USE pubs2 END-EXEC.
SQL AT server2 USE pubmast END-EXEC.

SQL AT serverl SELECT count (*) FROM sales
INTO :salesl END-EXEC.

"serverl" TO SITELl.

SQL SET CONNECTION server2 END-EXEC.

SQL INSERT numsales VALUES (:SITEl, :SALES1) END-EXEC.

SQL COMMIT WORK END-EXEC.

SQL statements embedded in a host |anguage must begin with “exec sql”.
The keywords exec sql can appear anywhere that a host language
statement can begin.

The statement sgl_statement can occupy one or more program lines;
however, it must conform to host language rules for line breaks and
continuation lines.

Theat clause affects only the statement sgl_statement. The clause does not
affect subsequent SQL statements, and does not reset the current
connection.

Theat clauseisnot valid when sql_statement is one of the following SQL
statements:

Embedded SQL/COBOL Programmers Guide 143

execute

See also

execute

Description

Syntax

Parameters

144

Table 9-2: Statements that cannot use the at clause of exec sql

allocate descriptor begin declare section connect

deallocate descriptor declare cursor end declare section
(dynamic)

exit get diagnostics include file

include sqglca set connection set diagnostics

whenever

e connection_name must be defined in a previous connect statement.

e Each Embedded SQL statement must end with a terminator. In COBOL,
the terminator is the keyword end-exec.

begin declare section, connect, disconnect, set connection

Executes a dynamic SQL statement from a prepared statement.
See execute immediate on page 146.

exec sql [at connection_name] execute statement_name
[into {host_var_list |

descriptor descriptor_name |

sql descriptor descriptor_name}]
[using {host_var_list |

descriptor descriptor_name |

sql descriptor descriptor_name}] end-exec

Note Do not confuse the Embedded SQL execute statement with the
Embedded SQL exec statement or the Transact-SQL execute statement.

statement_name
A unique identifier for the statement, defined in a previous prepare
statement.

descriptor_name
Specifies the area of memory, or the SQLDA structure, that describes the
statement’s dynamic parameter markers or select column list.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

into
Aninto clause is required when the statement executes a select statement,
which must be asingle-row select. Thetarget of theinto clause can beaSQL
descriptor, a SQLDA structure, or alist of one or more Embedded SQL host
variables.

Each host variable in the host_var_list must first be defined in a declare
section. Anindicator variable can be associated with ahost variable to show
when anull datavalueisretrieved.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

using
The host variables that are substituted for dynamic parameter markersin
host_var_list. The host variables, which you must define in adeclare
section, are substituted in the order listed. Use this clause only when
statement_name contains dynamic parameter markers. The dynamic
descriptor can also contain the values for the dynamic parameter markers.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DEMO-BUF PIC X(100).
01 TITLE-ID PIC X(6).
01 ORDER-NO PIC X(20).
01 QTY PIC S9(9).

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "INSERT salesdetail (ord num, title id, gty) VALUES(:?, :?, :?)"
- TO DEMO-BUF.
EXEC SQL PREPARE ins_stmt FROM :DEMO-BUF END-EXEC.

DISPLAY "RECORDING BOOK SALES".
DISPLAY "ORDER # ? ".

ACCEPT ORDER-NO.

DISPLAY "TITLE ID? ".

ACCEPT TITLE-ID.

DISPLAY "QTY SOLD? ".

ACCEPT QTY.

EXEC SQL EXECUTE ins_ stmt USING :ORDER-NO, :TITLE-ID, :QTY END-EXEC.

Embedded SQL/COBOL Programmers Guide 145

execute immediate

Usage » execute isthe second step in method 2 of dynamic SQL. Thefirst step is
the prepare statement.

» prepare and execute are valid with any SQL statement except a multirow
select statement. For multirow select statements, use either dynamic
CUrsor.

* Thestatement in statement_name can contain dynamic parameter markers
“?"). They mark the positions where host variable values are to be
substituted before the statement executes.

» Theexecute keyword distinguishesthis statement from exec. Seethe exec
on page 140 reference page for information on exec.

See also declare section, get descriptor, prepare, set descriptor

execute immediate

Description Executesadynamic SQL statement stored in acharacter-string host variable or
quoted string.
Syntax exec sql [at connection_name] execute immediate

{:host_variable | “string"} end-exec

Parameters host_variable
A character-string host variable defined in adeclare section. Before calling
execute immediate, the host variable should contain a compl ete and
syntactically correct Transact-SQL statement.

string
A quoted literal Transact-SQL statement string that can be used in place of
host_variable.

Examples EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 HOST-VAR PIC X(100).
EXEC SQL END DECLARE SECTION END-EXEC.

DISPLAY "ENTER A NON-SELECT SQL STATEMENT: ".
ACCEPT HOST-VAR.

EXEC SQL EXECUTE IMMEDIATE :HOST-VAR END-EXEC.

146 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage

See also

exit

Description

Syntax

Examples

e Using the execute immediate statement is dynamic SQL method 1. See
Chapter 7, “Using Dynamic SQL,” for information about the four
dynamic SQL methods.

* Except for messages, the statement in host_variable cannot return results
to the your program. Thus, the statement cannot be, for example, a select
Statement.

e The Embedded SQL precompiler does not check the syntax of the
statement stored in host_variable before sending it to Adaptive Server. If
the statement’s syntax is incorrect, Adaptive Server returns an error code
and message to your program.

» Useprepare and execute (dynamic SQL method 2) to substitute values
from host variables into adynamic SQL statement.

e Useprepare, open, and fetch (dynamic SQL method 3) to execute select
statements with dynamic SQL statements that return results.

execute, prepare

Closes Client-Library and deallocates all Embedded SQL resources allocated
to your program.

exec sql exit end-exec

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HOST-VAR PIC X (100).
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL SELECT getdate() INTO :HOST-VAR END-EXEC.

DISPLAY "THE CURRENT DATE AND TIME IS: ", HOST-VAR.

* Note that the exit statement must be the last embedded SQL statement

Embedded SQL/COBOL Programmers Guide 147

fetch

* in the program.

Usage

See also

fetch

Description

Syntax

Parameters

148

EXEC SQL EXIT END-EXEC.

» Theexit statement closes all connectionsthat your program opened. Also,
exit deall ocates all Embedded SQL resourcesand Client-Library resources
allocated to your program.

» Although the exit statement isvalid on all platforms, it isrequired only on
some. For more information, see the Open Client and Open Server
Programmer’s Supplement.

* You cannot use Client-Library functions after using the exit statement,
unless you initialize Client-Library again. See the Open Client Client-
Library/C Programmers Guide for information about initializing Client-
Library.

* Theexit statement is a Sybase extension; it is not defined in the SQL
standard.

disconnect

Copiesdatavaluesfrom the current cursor row into host variables or adynamic
descriptor.

exec sql [at connection_name] fetch [rebind | norebind] cursor_name
into {:host_variable [[indicator]:indicator_variable]

[,:host_variable

[[indicator]:indicator_variable]]... |

descriptor descriptor_name |

sql descriptor descriptor_name} end-exec

rebind | norebind
Specifies whether host variables require rebinding for this fetch statement.
The rebind clause overrides precompiler options that control rebinding.

Ccursor_name
The name of the cursor. The name is defined in a preceding declare cursor
statement.

host_variable
A host language variable defined in adeclare section.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

indicator_variable
A 2-byte host variable declared in aprevious declare section. If thevaluefor
the associated variable is null, fetch setsthe indicator variable to -1. If
truncation occurs, fetch setstheindicator variable to the actual length of the
result column. Otherwise, it setsthe indicator variable to O.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of the dynamic descriptor that isto hold aresult set.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6).
01 BOOK-NAME PIC X(80).
01 BOOK-TYPE PIC X(12).
01 I-TITLE PIC S9(9).
01 I-TYPE PIC S9(9).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE title_list CURSOR FOR
SELECT type, title id, title FROM titles
ORDER BY type END-EXEC.

EXEC SQL OPEN title list END-EXEC.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.
EXEC SQL CLOSE title list END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH title list INTO
:BOOK-TYPE :I-TYPE,

:TITLE-ID,
:BOOK-NAME :I-TITLE END-EXEC
* Check the indicator value - if not null display the value, else

* display UNDECIDED.
IF I-TYPE <> -1
DISPLAY "TYPE : ", BOOK-TYPE
ELSE
DISPLAY "TYPE : UNDECIDED"

Embedded SQL/COBOL Programmers Guide 149

fetch

Usage

150

END-IF

DISPLAY "TITLE ID : ", TITLE-ID

IF I-TITLE <> -1

DISPLAY "TITLE : ", BOOK-NAME
ELSE

DISPLAY "TITLE : UNDECIDED"
END-IF.

END-FETCH-LOOP.

* Thefetch statement can be used both with static cursors and with cursors
in dynamic SQL.

» Theopen statement must execute before the fetch statement executes.

» Thefirst fetch on an open cursor returnsthefirst row or group of rowsfrom
the cursor’s result table. Each subsequent fetch returns the next row or
group of rows.

* You can fetch multiple rows into an array.

* The“current row” isthe row most recently fetched. To update or deleteit,
use the where current of cursor_name clause with the update or delete
statement. These statements are not valid until after arow has been
fetched.

» After al rows have been fetched from the cursor, calling fetch sets
SQLCODE to 100. If the select statement furnishes no results on
execution, SQLCODE is set to 100 on the first fetch.

» There must be one, and only one, host_variable for each column of the
result set.

* When neither the rebind nor the norebind option is specified, the binding
behavior is determined by the precompiler option -b. See the Open Client
and Open Server Programmer’s Supplement for details on precompiler
options.

* Anindicator_variable must be provided for a host_variable that can
receive anull value. A runtime error occurs when anull value is fetched
for ahost variable that has no indicator variable.

* When possible, Client-Library converts the datatype of aresult column to
the datatype of the corresponding host variable. If Client-Library cannot
convert adatatype, it issuesan error message. |f conversionisnot possible,
an error occurs.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

See also

scroll fetch

Description

Syntax

Parameters

Examples

allocate descriptor, close, declare, delete (positioned cursor), open, prepare,
update

Fetches single or multiple rows from the cursor result set, depending on the
ROW_COUNT specification at CURSOR OPEN time.

If acursor is specified as scrollable, the fetch orientation in the FETCH
statement specifies the fetch direction.

If the cursor is not specified as scrollable, FETCH retrieves the next row in the
result set.

EXEC SQL FETCH [<fetch orientation>]
[FROM] <cursor name>
{[INTO <fetch target list>] |
[SQL DESCRIPTOR <>]
<fetch orientation> : : =
| NEXT
| PRIOR
| FIRST
| LAST
| ABSOLUTE <fetch_offset>
| RELATIVE <fetch_offset>

<fetch offset>: : =

<signed_numeric_literal>
<fetch target list>: : =

<target specification>

[{ <comma> <target specification> }]
END-EXEC

fetch orientation
Specified as NEXT, PRIOR, FIRST, LAST, ABSOLUTE, or RELATIVE.

fetch offset
Specified as an exact, signed numeric value with a scale of zero.

To fetch arow when a cursor is declared and open:

EXEC SQL FETCH LAST FROM cl INTO :title,:roy END-EXEC.
To fetch a previous row:

EXEC SQL FETCH PRIOR FROM cl INTO :title, :roy END-EXEC.

To fetch row 20:

Embedded SQL/COBOL Programmers Guide 151

get descriptor

EXEC SQL FETCH ABSOLUTE 20 FROM cl INTO :title, :roy
END-EXEC.

Usage If fetch orientation is not specified, NEXT is the default.

Note If you specify fetch orientation as any type except NEXT on anon-
scrollable cursor, you receive the following message:

The fetch type can only be used with scrollable cursors.

If fetch orientation positions the cursor beyond the last row or before the first
row, sglca.sglcode is set to 100, indicating that no rows are found. If an error
handler isinstalled, it may provide additional information.

See also declare, open

get descriptor

Description Retrieves attribute information about dynamic parameter markers and select
column list attributes and data from a SQL descriptor.

For alist of SQL descriptor datatype codes, see Table 9-5 on page 176.

Syntax exec sql get descriptor descriptor_name
{:host_variable = count |
value item_number :host_variable = item_name
[, :host_variable = item_name]...} end-exec

Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers or return columnsin a prepared statement.

host_variable
A variable defined in a declare section.

count
The number of dynamic parameters retrieved.

item_number
A number specifying the nth dynamic parameter marker or select column,
for which get descriptor isto retrieve information.

item_name
The name of an attribute to be retrieved. See Table 9-3 for details.

152 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Examples

Table 9-3: Valid item_name values

Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

indicator Value for the indicator parameter associated with
the dynamic parameter marker or target.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

name The name of the specified SQL descriptor

containing information about the dynamic
parameter markers.

nullable Equals 0 if the dynamic parameter marker can
accept anull value; otherwise, equals 1.

precision Aninteger specifying the total number of digits of
precision for the CS_NUMERIC variable.

returned_length The length of character types of the values from
the select column list.

scale An integer specifying the total number of digits
after the decimal point for the CS_ NUMERIC
variable.

type The datatype of this column (item number) in the

row. For values, see Table 9-5 on page 176.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 QUERY PIC X(100).
01 CHARBUF PIC X(100).
01 NUMCOLS PIC S9(9) COMP.
01 COLNUM PIC S9(9) COMP.
01 COLTYPE PIC S9(9) COMP.
01 INTBUF PIC S9(9).

EXEC SQL END DECLARE SECTION END-EXEC.

DISPLAY "ENTER A SELECT STATEMENT :"

ACCEPT QUERY.

EXEC SQL ALLOCATE DESCRIPTOR big desc WITH MAX 256 END-EXEC.
EXEC SQL PREPARE dynstmt FROM :QUERY END-EXEC.

EXEC SQL EXECUTE dynstmt INTO SQL DESCRIPTOR big desc END-EXEC.
EXEC SQL GET DESCRIPTOR big desc :NUMCOLS = COUNT END-EXEC.

Embedded SQL/COBOL Programmers Guide 153

get descriptor

MOVE 1 TO COLNUM.

PERFORM GET-DESC-LOOP UNTIL COLNUM > NUMCOLS.
EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.
EXEC SQL DEALLOCATE DESCRIPTOR big desc END-EXEC.

GET-DESC-LOOP.
EXEC SQL GET DESCRIPTOR big desc
VALUE :COLNUM
:COLTYPE = TYPE END-EXEC
* Check the type data returned and store in appropriate host variables.
IF COLTYPE = 4
DISPLAY "INTEGER DATA! "
EXEC SQL GET DESCRIPTOR big desc
VALUE :COLNUM :INTBUF = DATA END-EXEC
ELSE
IF COLTYPE = 1
DISPLAY "CHARACTER DATA! "
EXEC SQL GET DESCRIPTOR big desc
VALUE :COLNUM :CHARBUF = DATA END-EXEC

* Handle other data types accordingly or store them all as characters.

ADD 1 TO COLUMN.
END-GET-DESC-LOOP.

Usage » Theget descriptor statement returns information about the number or
attributes of dynamic parameters specified or the select list columnsin a
prepared statement.

» Thisstatement should be executed after a describe input, describe output,
execute, or fetch (dynamic) statement has been issued.

» Itisnot possibleto retrieve data, indicator, or returned_length until the
data associated with the descriptor is retrieved from the server by an
execute Statement or fetch statement.

See also describe input, describe output, fetch, set descriptor

154 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

get diagnostics

Description

Syntax

Parameters

Examples

EXEC

Usage

Retrieves error, warning, and informational messages from
Client-Library.

get diagnostics

{:hv = statement_info [, :hv = statement_info]...|

exception :condition_number

:hv = condition_info [, :hv = condition_info]...}

end-exec

statement_info
The keyword number is currently the only supported statement_info type. It
returns the total number of exceptions in the diagnostics queue.

condition_info
Any one of the keywords sqlca_info, sglcode_number, and returned_sglstate.

SQL BEGIN DECLARE SECTION END-EXEC.
01 NUM-MSGS PIC S9(9) COMP.
01 CONDCNT PIC S9(9) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL GET DIAGNOSTICS :NUM-MSGS = NUMBER END-EXEC.
MOVE 1 TO CONDCNT.
PERFORM GET-DIAG-PARA UNTIL CONDCNT > NUM-MSGS.

GET-DIAG-PARA.
EXEC SQL GET DIAGNOSTICS EXCEPTION
:CONDCNT :SQLCA = SQLCA INFO END-EXEC
DISPLAY "DIAG. SQLCODE = ",SQLCODE
DISPLAY "DIAG. MESSAGE = ", SQLERRMC

ADD 1 TO CONDCNT.
END-GET-DIAG-PARA.

¢ Many Embedded SQL statements are capable of causing multiple
warnings or errors. Typically, only the first error is reported using
SQLCODE, SQLCA, or SQLSTATE. Useget diagnostics to processall the
errors.

¢ You can use get diagnostics, which isthe target of the call, perform, or go to
clause of awhenever statement, in the code.

Embedded SQL/COBOL Programmers Guide 155

include “filename”

* Youcanuseget diagnostics after astatement for which youwant to retrieve
informational messages.

See also whenever

include “filename”

Description Includes an external file in an Embedded SQL sourcefile.
Syntax exec sql include "filename" end-exec
Parameters “filename”

The name of the file to be included in the Embedded SQL sourcefile
containing this statement.

Note Themaximum supported length for the COPY statement is 70 characters,
including the file and pathname.

Examples

Example 1: using COPY
COPY "generic".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SRV-NAME PIC X (80).
01 UID PIC X(32).
01 PASS PIC X(32).

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE USER-NAME TO UID.
MOVE PASSWORD TO PASS.

EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
EXEC SQL SELECT @@servername INTO :SRV-NAME END-EXEC.

DISPLAY "CONNECTED TO SERVER ", SRV-NAME.

156 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Copy-file code:

01 USER-NAME PIC X(33) VALUE IS "sa".
01 PASSWORD PIC X(33) VALUE IS "sybl23".

Example 2: using INCLUDE
EXEC SQL INCLUDE "./generic" END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SRV-NAME PIC X(80).
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL CONNECT :USER-NAME IDENTIFIED BY :PASSWORD END-EXEC.

EXEC SQL SELECT @@servername INTO :SRV-NAME END-EXEC.

DISPLAY "CONNECTED TO SERVER ", SRV-NAME.

Copy-file code:

01 USER-NAME PIC X(33) VALUE IS "sa".
01 PASSWORD PIC X(33) VALUE IS "sybl23".
Usage e The Embedded SQL precompiler processes the included file as though it

were part of the Embedded SQL sourcefile, recognizing all declare
sectionsand SQL statements. The Embedded SQL precompiler writesthe
resulting host language source code into the generated file.

e Usetheinclude path precompiler command line option to specify the
directoriesto be searched for any included files. Refer to the Open Client
and Open Server Programmer’s Supplement for more information on
precompiler command line options.

e Included files can be nested up to a maximum depth of 32 files.
e Theinclude "filename" statement can be used anywhere.

See also declare section

Embedded SQL/COBOL Programmers Guide 157

include sqlca

include sqlca

Description Defines the SQL Communications Area (SQLCA) in an Embedded SQL
program.

Syntax exec sql include sglca end-exec

Examples

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL UPDATE test SET coll = coll + 100 END-EXEC.
IF SQLCODE = 0
DISPLAY "UPDATED ",SQLERRD(3), " ROWS."
ELSE
IF SQLCODE = 100
DISPLAY "NO ROWS WERE AFFECTED."
ELSE
DISPLAY "AN ERROR OCCURED - ",SQLERRMC.
END-IF
END-IF.
EXEC SQL COMMIT WORK END-EXEC.

Usage Theinclude sglca statement can be used anywhere that host language
declarations are allowed.

See also begin declare section

include sqglda

Description Defines the SQLDA structure in an Embedded SQL program.
Syntax exec sql include sqglda;
Usage Theinclude sqlda statement can be used anywhere that host language

declarations are allowed.

158 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

initialize_application

Description Generates a call to set the application name on the global CS_CONTEXT
handle. If precompiled with the-x option, it will also set thecs_config(CS_SET,
CS _EXTERNAL_CONFIG, CS_TRUE) property.

Syntax exec sql initialize_application
[application_name “=" application_name] end-exec

Examples

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SPID PIC S9(9) COMP.
01 PROG-NAME PIC X(33).

01 UID PIC X(33).

01 PASS PIC X (33).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
PO.

* The INITIALIZE APPLICATION MUST be the FIRST embedded SQL statement
* in the program.

EXEC SQL INITIALIZE APPLICATION APPLICATION NAME
= "TEST" END-EXEC.
* The body of the main procedure division goes here including all ESQL
* statements.
.. .EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
EXEC SQL SELECT @@spid INTO :SPID END-EXEC.
EXEC SQL SELECT program name INTO :PROG-NAME
FROM master..sysprocesses
WHERE spid = :SPID END-EXEC.
DISPLAY "THIS APPLICATION'S NAME IN SYSPROCESSES IS ", PROG-NAME.

...EXEC SQL EXIT END-EXEC.

Usage e application_nameis either astring literal or a character variable
containing the name of the application.

« Ifinitialize_application isthefirst Embedded SQL statement executed by an
application, -x causes ct_init to use external configuration options to
initialize the Client-Library part of the CS_CONTEXT structure.

Embedded SQL/COBOL Programmers Guide 159

open (dynamic cursor)

See also

» If initialize_application is not the first Embedded SQL statement, ct_init
does not pick up external configuration options.

» Regardless of whether or not initialize_application is the first Embedded
SQL statement, -x causes exec sgl connect Statements to use external
configuration data. If -e is also specified, Sybase uses the server name as
akey to the configuration data. If -e is not specified, then the application
name (or DEFAULT) is used as the key to the configuration data.

» If you specify -x and the application name, the following applies:

e ct_init uses the application name to determine which section of the
external configuration file to use for initialization.

e Theapplication name is passed to Adaptive Server as part of the
connect statement. The application name is entered in the
sysprocesses.program_name table.

» If -e is specified without -x, then ct_init uses external configuration data
when initializing, but every connection will use the server name as a key
to the external configuration data. See the Open Client and Open Server
Programmer’s Supplement for information on command-line options.

exit

open (dynamic cursor)

Description

Syntax

Parameters

160

Opens a previously declared dynamic cursor.

exec sql [at connection_name] open cursor_name
[row_count = size] [using {host_var_list |
descriptor descriptor_name |

sql descriptor descriptor_name}] end-exec

Cursor_name
Names a cursor that has been declared using the declare cursor statement.
size
The number of rows moved in anetwork roundtrip, not the number fetched

into the host variable. The size argument can be either aliteral or adeclared
host variable.

host_var_list
Names the host variables that contain the values for dynamic parameter
markers.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
Names the dynamic descriptor that contains information about the dynamic
parameter markersin a prepared statement.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DYNABUF PIC X (200).
01 TITLE-ID PIC X(6).
01 LNAME PIC X(15).
01 FNAME PIC X(15).
01 PHONE PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "SELECT a.au_lname, a.au_fname, a.phone
FROM authors a, titleauthor t
WHERE a.au_id = t.au id
AND t.title id = ? " TO DYNABUF.

EXEC SQL PREPARE dynastmt FROM :DYNABUF END-EXEC.
EXEC SQL DECLARE who wrote CURSOR FOR dynastmt END-EXEC.

DISPLAY "LIST AUTHORS FOR WHAT TITLE ? "
ACCEPT TITLE-ID.

EXEC SQL OPEN who wrote USING :TITLE-ID END-EXEC.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE who_wrote END-EXEC.

EXEC SQL DEALLOCATE CURSOR who wrote END-EXEC.
EXEC SQL DEALLOCATE dynastmt END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH who_wrote INTO
:LNAME, :FNAME, :PHONE END-EXEC

DISPLAY "LAST NAME : ", LNAME
DISPLAY "FIRST NAME : ", FNAME
DISPLAY "PHONE : ", PHONE.

Embedded SQL/COBOL Programmers Guide 161

open (static cursor)

END-FETCH-LOOP.

Usage » open executes the statement specified in the corresponding declare cursor
statement. You can then usethefetch statement to retrieve the results of the
prepared statement.

e You can have any number of open cursors.

» Theusing clause substitutes host-variable or dynamic-descriptor contents
for the dynamic parameter markers (“?") in the select statement.

See also close, declare, fetch, prepare

open (static cursor)

Description Opens a previously declared static cursor. This statement can be used to open
any static cursor, including one for a stored procedure.

Syntax exec sql [at connection_name] open cursor_name
[row_count = size] end-exec

Parameters Ccursor_name
The name of the cursor to be opened.

row_count
The number of rows moved in anetwork roundtrip, not the number fetched
into the host variable.

size
The number of rows that are moved at the same time from Adaptive Server
to the client. The client buffers the rows until they are fetched by the
application. This parameter allows you to tune network efficiency.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6).
01 BOOK-NAME PIC X(25).
01 BOOK-TYPE PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

01 ANSWER PIC X(1).

DISPLAY "TYPE OF BOOKS TO RETRIEVE ? ".

162 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

ACCEPT BOOK-TYPE.
EXEC SQL DECLARE titlelist CURSOR FOR
SELECT title id, substring(title,1,25) FROM
titles WHERE type = :BOOK-TYPE END-EXEC.

EXEC SQL OPEN titlelist END-EXEC.

PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE titlelist END-EXEC.

EXEC SQL DEALLOCATE CURSOR titlelist END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH titlelist INTO :TITLE-ID, :BOOK-NAME END-EXEC.
DISPLAY "TITLE ID : ", TITLE-ID
DISPLAY "TITLE : ", BOOK-NAME

DISPLAY "UPDATE/DELETE THIS RECORD ? "
ACCEPT ANSWER

IF ANSWER = "U"
DISPLAY "ENTER NEW TITLE :"
ACCEPT BOOK-NAME
EXEC SQL UPDATE titles SET title = :TITLE
WHERE CURRENT OF titlelist END-EXEC

ELSE
IF ANSWER = "D"
EXEC SQL DELETE titles WHERE CURRENT OF
titlelist END-EXEC
END-IF
END-IF.

END-FETCH-LOOP.

Usage e open executes the select statement given by the declare cursor statement

and prepares results for the fetch statement.

e You can have an unlimited number of open cursors.

e A static cursor must be opened only inthefilewherethe cursor isdeclared.
The cursor can be closed in any file.

* Thevauesof host variables embedded in the declare cursor statement are
taken at open time.

« When specifying cursor_name, you can use the name of a deallocated
static cursor. If you do, the precompiler declares and opens a new cursor
having the same name as that of the deallocated cursor. Thus, the
precompiler does not reopen the deallocated cursor but instead creates a
new one. The results sets for the two cursors can differ.

Embedded SQL/COBOL Programmers Guide 163

open scrollable cursor

open scrollable cursor

Description

Syntax

Parameters

Usage

See also

prepare
Description

Syntax

Parameters

Examples

Opens a previously declared static cursor.

EXEC SQL OPEN <cursor_name> [ROW_COUNT = size] END-EXEC
size
Specified asthe pre-fetch count. The valueisthe same asthe host array size.

ROW_COUNT
Specified only when host arrays are used as host variables.

The size value is the same as the host array size.

scroll fetch, declare

Declares a name for adynamic SQL statement buffer.

exec sql [at connection_name] prepare statement_name from
{:host_variable | "string"} end-exec

statement_name
An identifier used to reference the statement.

The statement_name must uniquely identify the statement buffer and must
conform to the SQL identifier rules for naming variables. It can aso be a
host_variable string containing avalid SQL identifier. statement_name
must not be longer than 255 characters.

host_variable
A character-string host variable that contains an executable SQL statement.
Place dynamic parameter markers (“7?) anywhere in the select statement
where a host variable value will be substituted.

string
A literal string that can be used in place of host_variable.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01
01

DEMO-BUFFER PIC X(120).
STATE PIC X(3).

EXEC SQL END DECLARE SECTION END-EXEC.

164

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

* The 'select into table' statement returns no results

* to the program,

so it does not need a cursor.

MOVE "select * into #work from authors where state = ?" TO

DEMO-BUFFER.

DISPLAY "STATE ? ".

ACCEPT STATE.

EXEC SQL PREPARE dynstmt FROM :DEMO-BUFFER END-EXEC.
EXEC SQL EXECUTE dynstmt USING :STATE END-EXEC.

EXEC SQL DEALLOCATE PREPARE dynstmt END-EXEC.

Usage .

In the current implementation, Sybase creates a temporary stored
procedure for adynamic SQL statement stored in a character string literal
or host variable.

prepare sends the contents of host_variable to the Adaptive Server to
convert into atemporary stored procedure. This temporary stored
procedure remains in tempdb on Adaptive Server until the statement is
deallocated or the connection is disconnected.

The scope of statement_nameis global to your program but local to the
connection connection_name. The statement persists until the program
either deallocates it or closes the connection.

prepare isvalid with Dynamic SQL methods 2, 3, and 4.

With method 2, (prepare and execute), an execute statement substitutes
values from host variables, if any, into the prepared statement and sends
the compl eted statement to Adaptive Server. If there are no host variables
to substitute and no results, you can use execute immediate, instead.

With method 3, prepare and fetch, adeclare cursor statement associatesthe
saved select statement with acursor. An open statement substitutes values
from host variables, if any, into the select statement and sendsthe result to
Adaptive Server for execution.

With methods 2, 3, and 4, prepare and fetch with parameter descriptors, the
dynamic parameter descriptors, represented by question marks (*7?’),
indicate where host variables will be substituted.

A prepared statement must be executed on the same connection on which
it was prepared. If the prepared statement is used to declare a cursor, all
operations on that cursor use the same connection as the prepared
statement.

Embedded SQL/COBOL Programmers Guide 165

rollback

e The statement in host_variable can contain dynamic parameter markers
that indicate where to substitute val ues of host variablesinto the statement.

See also declare cursor, execute, execute immediate, deallocate prepare
rollback
Description Rollsatransaction back to asavepoint insidethe transaction or to the beginning

of the transaction.

Syntax exec sql [at connection_name]
rollback [transaction | tran | work]
[transaction_name | savepoint_name] end-exec

Parameters transaction | trans | work
Thekeywordstransaction, trans, and work areinterchangeablein the rollback
statement, but only work is ANSI-compliant.

transaction_name
The name of the transaction being rolled back.

savepoint_name
The name assigned to the savepoint in a save transaction statement. If you
omit savepoint_name, Adaptive Server rolls back the entire transaction.

Examples

EXEC SQL CONNECT "user" IDENTIFIED BY "password"
AT connectl USING "srvname" END-EXEC.

EXEC SQL AT connectl UPDATE test SET coll = 'x' END-EXEC.
IF SQLCODE = 0
DISPLAY "ROWS UPDATED = ",SQLERRD(3)
ELSE
DISPLAY "AN ERROR OCCURED -", SQLERRMC
ESQL SQL AT connectl ROLLBACK TRANSACTION END-EXEC
END-IF.

166 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage e Thisreference page mainly describes aspects of the Transact-SQL rollback
statement that differ when used with Embedded SQL . See the Adaptive
Server Enterprise Reference Manual for more information about the
rollback statement, savepoints, and Transact-SQL transaction
management.

e Transaction names and savepoint names must conform to the Transact-
SQL rulesfor identifiers.

< Transaction names and savepoints are Transact-SQL extensions; they are
not ANSI-compliant. Do not use a transaction name or savepoint name
with the ANSI-compliant keyword work.

See also begin transaction, commit

select

Description Retrieves rows from database objects.
Syntax exec sl [at connect_name]

select select_list
into destination
from table_name... end-exec

Parameters select list

Same as select_list in the Transact-SQL select statement, except that
select_list cannot perform variable assignmentsin Embedded SQL .

destination
A table or aseries of one or more Embedded SQL host variables. Each host
variable must first be defined in a previous declare section. Indicator
variables can be associated with the host variabl es.

Examples
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 LNAME PIC X(25).
01 FNAME PIC X(25).
01 PHONE PIC X(15).
01 AU-ID PIC X(12).

EXEC SQL END DECLARE SECTION END-EXEC.

Embedded SQL/COBOL Programmers Guide 167

set connection

DISPLAY "AUTHOR ID ? ".

ACCEPT AU-ID.

EXEC SQL SELECT au_lname, au_fname, phone
INTO :LNAME, :FNAME, :PHONE
FROM authors
WHERE au_id = :AU-ID END-EXEC.

IF SQLCODE =

100

DISPLAY "COULD NOT LOCATE AUTHOR ",AU-ID

ELSE
DISPLAY

"DETAIL RECORD FOR AUTHOR: ", AU-ID

DISPLAY "NAME :",LNAME, " ", FNAME
DISPLAY "PHONE :", PHONE

END-IF.

Usage .

This reference page mainly describes aspects of the Transact-SQL select
statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual for more information
about the select statement.

The compute clause of the Transact-SQL select statement cannot be used
in Embedded SQL programs.

Host variablesin a select statement are input variables only, except in the
statement’sinto clause. Host variables in the into clause are output
variables.

Previoudly declared input host variables can be used anywherein a select
statement that aliteral value or Transact-SQL variable is allowed.
Indicator variables can be associated with input host variables to specify
null values.

If aselect statement returns more than one row, each host variable in the
statement’sinto clause must be an array with enough spacefor al therows.
Otherwise, you must use a cursor to bring the rows back one at atime.

See also declare cursor

set connection

Description Causes the specified existing connection to become the current connection.
Syntax set connection {connection_name | DEFAULT} end-exec
168 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Parameters connection_name
The name of an existing connection that you want to become the current
connection.

default
Specifies that the unnamed default connection is to become the current
connection.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 MYID PIC X (33).
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL CONNECT "userl" AT connectl USING "SERVER1" END-EXEC.
EXEC SQL CONNECT "user2" AT connect2 USING "SERVER2" END-EXEC.

* The next statement executes on connect2, because that was the
* last connection made.

EXEC SQL SELECT user name () INTO :MYID END-EXEC.
DISPLAY "The user connected to SERVER2 is: ",MYID.
* Explicitly set the connection to now use to connectl.
EXEC SQL SET CONNECTION connectl END-EXEC.
* The following statement will execute on connectl.

EXEC SQL SELECT user_ name () INTO :MYID END-EXEC.

DISPLAY "The user connected to SERVER1 is: ",MYID.
Usage e The set connection statement specifies the current connection for all
subsequent SQL statements, except those preceded by the exec sqgl clause
at.

e A set connection statement remainsin effect until you choose a different
current connection by using the set connection statement again.

See also at connection_name, connect

Embedded SQL/COBOL Programmers Guide 169

set descriptor

set descriptor

Description

Syntax

Parameters

Examples

Inserts or updates datain a SQL descriptor.
For alist of possible SQL descriptor datatypes, see Table 9-5 on page 176.

exec sql set descriptor descriptor_name
{count = host_variable} |

{value item_number {item_name =
:host_variable}],...] end-exec

descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markersin a prepared statement.

count
The number of dynamic parameter specifications to be described.

host_variable
A host variable defined in a declare section.

item_number
Represents the nth occurrence of either adynamic parameter marker or a
select column.

item_name
Represents the attribute information of either a dynamic parameter marker
or aselect list column. Table 9-4 lists the values for item_name.

Table 9-4: Values for item_name

Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

precision Aninteger specifying thetotal number of digits of
precision for the CS_NUMERIC variable.

scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

type The datatype of this column (item number) in the
row. For values, see Table 9-5 on page 176.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

170

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

01 TITLE-ID PIC X(6).
01 SALES1 PIC S9(9).
01 SALES2 PIC S9(9).
01 ROYALTY PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL ALLOCATE DESCRIPTOR roy desc WITH MAX 3 END-EXEC.
EXEC SQL PREPARE getroylty FROM "SELECT royalty FROM roysched

WHERE title id = ? and lorange <= ?AND hirange > ?"
END-EXEC.

MOVE "BU1032" TO TITLE-ID.
MOVE 1000 TO SALES1.
MOVE 10 TO SALES2.

:TITLE-ID END-EXEC.
:SALES1 END-EXEC.
:SALES2 END-EXEC.

EXEC SQL SET DESCRIPTOR roy desc VALUE 1 DATA
EXEC SQL SET DESCRIPTOR roy desc VALUE 2 DATA
EXEC SQL SET DESCRIPTOR roy desc VALUE 3 DATA

EXEC SQL EXECUTE getroylty INTO :ROYALTY USING SQL
DESCRIPTOR roy desc END-EXEC.

DISPLAY "ROYALTY = ", ROYALTY.

Usage An Embedded SQL program passes attribute and value information to Client-
Library, which holds the datain the specified SQL descriptor until the program
issuesit arequest to execute a statement.

See also allocate descriptor, describe input, describe output, execute, fetch, get descriptor,
open(dynamic cursor)

update
Description Modifies datain rows of atable.
Syntax exec sgl [at connection_name] update table_name

set [table_name]
column_namel = {expressionl
| NULL | (select_statement)}
[, column_name2 =
{expression2 | NULL
| (select_statement)}]...
[from table_name

Embedded SQL/COBOL Programmers Guide 171

update

[, table_name]...
[where {search_conditions | current of cursor_name}]
end-exec

Parameters table_name
The name of atable or view, specified in any format that is valid for the
update statement in Transact-SQL.

Examples

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STORE-NAME PIC X (40)
01 DISC-TYPE PIC (0) .
01 LOWQTY PIC S9(9) COMP.
01 HIGHQTY PIC S9(9) COMP.
01 DISCOUNT PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE upd cursor CURSOR FOR
SELECT s.stor name, d.discounttype, d.lowqgty,
d.highgty , d.discount
FROM stores s, discounts d
WHERE s.stor id = d.stor id END-EXEC.

EXEC SQL OPEN upd cursor END-EXEC.

PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE upd_cursor END-EXEC.

EXEC SQL DEALLOCATE CURSOR upd cursor END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.

FETCH-LOOP.
EXEC SQL FETCH upd cursor INTO :STORE-NAME, :DISC-TYPE, :LOWQTY ,
:HIGHQTY, :DISCOUNT END-EXEC.
IF SQLCODE = 100
DISPLAY "NO MORE RECORDS TO FETCH. END OF PROGRAM RUN."
ELSE
DISPLAY "NEW DISCOUNT : "
ACCEPT DISCOUNT
EXEC SQL UPDATE discounts
SET discount = :DISCOUNT
WHERE CURRENT OF upd_cursor END-EXEC
END-IF.
END-FETCH-LOOP.

172 Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage

See also

whenever

Description

Syntax

Parameters

e Thisreference page mainly describes aspects of the Transact-SQL update
statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual for more information
about the update statement.

* Host variables can appear anywhere in an expression or in any where
clause.

e You can use the where clause to update selected rowsin atable. Omit the
where clause to update all rows in the table. Use where current of
cursor_name to update the current row of an open cursor.

* When where current of cursor_name is specified, the statement must be
executed on the connection specified in the open cursor statement. If theat
connection_name clause is used, it must match the open cursor statement.

close, delete cursor, fetch, open, prepare

Specifies an action to occur whenever an executable SQL statement causes a
specified condition.

exec sql whenever {sglerror | not found | sqlwarning}
{continue | go to label | goto label |
stop | call routine_name [args]} end-exec

sqlerror
Specifies an action to take when an error is detected, such as a syntax error
returned to the Embedded SQL program from Adaptive Server.

not found
Specifies an action to take when afetch or select into Statement retrieves no
data or when a searched update or delete statement affects no rows.

sqglwarning
Specifies an action to take when awarning is received; for example, when a
character string is truncated.

continue
Take no action when the condition occurs.

go to | goto
Transfer control to the program statement at the specified label.

Embedded SQL/COBOL Programmers Guide 173

whenever

Examples

174

*

*

label
A host language statement label, such asa C label.

stop
Terminate the Embedded SQL program when the condition occurs.

call
Transfer control to acallable routine in the program, such as a user-defined
function or subroutine.

routine_name
A host language routine that can be called. The routine must be able to be
called from the source file that contains the whenever statement. You may
need to declare the routine as external to compile the Embedded SQL
program.

args
One or more arguments to be passed to the callable routine, using the
parameter-passing conventions of the host language. The arguments can be
any list of host variables, literals, or expressions that the host language
allows. A space character should separate each argument from the next.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01

01

01
EXEC SQL

EXEC SQL
EXEC SQL
If there
program.
EXEC SQL

EXEC SQL

EXEC SQL

LNAME PIC X (15).
FNAME PIC X(15).
PHONE PIC X(15).

END DECLARE SECTION END-EXEC.

WHENEVER SQLERROR PERFORM ERR-PARA END-EXEC.
WHENEVER SQLWARNING PERFORM WARN-PARA END-EXEC.
are no more records to process from the fetch, stop the

WHENEVER NOT FOUND STOP END-EXEC.

DECLARE au_list CURSOR FOR
SELECT au_lname, au_fname, phone
FROM authors
ORDER BY au_lname END-EXEC.

OPEN au_ list END-EXEC.

PERFORM FETCH-LOOP UNTIL SQLCODE = 100 END-EXEC.

EXEC SQL

CLOSE au_list END-EXEC.

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Usage

FETCH-LOOP.

EXEC SQL FETCH au_ list INTO
:LNAME, :FNAME, :PHONE END-EXEC

DISPLAY "LAST NAME : ",LNAME
DISPLAY "FIRST NAME : ", FNAME
DISPLAY "PHONE : ", PHONE

END-FETCH-LOOP.

L T

print the error code,
the command that caused the error.

WARN-PARA.

DISPLAY "Warning code is " SQLCODE.

DISPLAY "Warning message is " SQLERRMC.

WARN-PARA-END.

EXIT.

ERR-PARA.

DISPLAY "Error code is " SQLCODE.
DISPLAY "Error message is " SQLERRMC.

EXIT.

e Thewhenever statement causes the Embedded SQL precompiler to

the error message and the line number of

generate code following each executable SQL statement. The generated
codeincludesthe test for the condition and the host language statement or

statements that carry out the specified action.

e The Embedded SQL precompiler generates code for the SQL statements

that follow the whenever statement in the sourcefile, including SQL
statements in subroutines that are defined in the same source file.

Embedded SQL/COBOL Programmers Guide

175

whenever

176

» Usewhenever...continue to cancel apreviouswhenever statement. The
continue action causes the Embedded SQL precompiler to ignore the
condition. To prevent infinite loops, use whenever...continue in an error
handler before executing any Embedded SQL statements.

* Whenyou usewhenever...go to label, label must represent avalid location
to resume execution. In C, for example, label must be declared in any
routine that has executable SQL statements within the scope of the
whenever statement. C does not allow a goto statement to jJump to alabel

declared in another function.

* If you have awhenever statement in your program but you have not
declared SQLCA or SQL STATE status variables, the Embedded SQL
precompiler assumes that you are using the SQLCODE variable. Be sure
that SQLCODE is declared. Otherwise, the generated code will not

compile.

SQL descriptor codes

Table 9-5 pertains to the SQL descriptor used for dynamic SQL statements.
Sybase's use of dynamic SQL values conformsto the ANSI/ISO 185-92 SQL-
92 standards. For more information, see the appropriate ANSI/ISO

documentation.

Table 9-5: SQL descriptor datatype codes

ANSI SQL datatype Code
bit 14
character 1
character varying 12
date, time 9
decimal 3
double precision 8
float 6
integer 4
numeric 2
real 7
smallint 5

Sybase-defined datatype

Client-Library code

smalldatetime

-9

money

-10

Open Client

CHAPTER 9 Embedded SQL Statements: Reference Pages

Sybase-defined datatype

Client-Library code

smallmoney -11
text -3
image -4
tinyint -8
binary -5
varbinary -6
long binary -7
longchar -2

Table 9-6: SQL descriptor identifier values

Value

Description

type

The datatype of this column (item number) in the
row. For values, see Table 9-5 on page 176.

length

The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

returned_length

The length of char types of the values from the
select column list.

precision

Aninteger specifying the total number of digits of
precision for the CS_NUMERIC variable.

scale

An integer specifying the total number of digits
after the decimal point for the CS_ NUMERIC
variable.

nullable

Equals 0 if the dynamic parameter marker can
accept anull value; otherwise, equals 1.

indicator

Value for the indicator parameter associated with
the dynamic parameter marker or target.

data

Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

name

The name of the specified SQL descriptor
containing information about the dynamic
parameter markers.

Embedded SQL/COBOL Programmers Guide

177

whenever

178 Open Client

ciarTer 10 Open Client/Server Configuration
File

Open Client/Server applications can easily be configured using the Open
Client/Server configuration file. By default, the file is named ocs.cfg and
islocated in the $SYBASE/$SYBASE_OCS config directory for UNIX and
%SYBASEY%\%SYBASE_OCS%\ini directory for Microsoft Windows.

Topic Page
Purpose of the Open Client/Server configuration file 179
Accessing the configuration functionality 179
Default settings 180
Syntax for the Open Client/Server configuration file 181
Sample programs 183

Purpose of the Open Client/Server configuration file

The Open Client/Server configuration file provides asingle location
where all Open Client/Server application connections can be configured.
Using the configuration file simplifies the tasks of establishing
configuration standards and managing configuration changes.

Accessing the configuration functionality

Thisfeature is available through two new command-line options and the
initialize_application statement:

Embedded SQL/COBOL Programmers Guide 179

Default settings

» -x—thisoption allowsfor external configuration. The application needsto
initialize an application with a name. The Open Client/Server
configuration file will have a section with this application name. Under
thissection, placeall propertiesthat need to be set for thisapplication. The
-x option is useful only when used with initialize_application. If initializing
is not done, and the -x option is used, the default section of the
configuration file will be accessed.

e -e—thisoption allows usto configure by SERVER NAME. No call to
initialize_application is required. The server name will be used as a key to
look up inthe configuration filefor propertiesto be set the section defined
by the server name. This allows users to associate connection names with
specific connection properties.

Note If INITIALIZE_APPLICATION isnot the first Embedded SQL statement to
be executed, external configuration properties will not be set. If it isthe first
Embedded SQL statement to be executed, then the external configuration
options will be used for initialization.

Default settings

The following is the Open Client/Server configuration file with default
settings. You can customize the file as needed.

[DEFAULT]

;This is the default section loaded by applications that use the
;external configuration feature, but which do not specify their
;own application name. Initially this section is empty.Defaults
;from all properties will be the same as earlier versions of
;Open Client libraries.

[ANSI ESQL]

;This section defines configuration which an ANSI conforming
;Embedded SQL application should use to get ANSI-defined
;behavior from Adaptive Servers and Open Client libraries. This set of

180 Open Client

CHAPTER 10 Open Client/Server Configuration File

;configuration ;properties matches the set which earlier
;versions of Embedded SQL (version 10.0.x) automatically set for
;applications duringexecution of a CONNECT statement.

CS_CAP_RESPONSE=CS_RES NOSTRIPBLANKS
CS_EXTRA_INF=CS_TRUE

CS_ANSI BINDS=CS TRUE

CS_OPT ANSINULL=CS TRUE
CS_OPT ANSIPERM=CS TRUE
CS_OPT_STR RTRUNC=CS_TRUE
CS_OPT_ARITHABORT=CS FALSE
CS_OPT_TRUNCIGNORE=CS TRUE
CS_OPT_ISOLATION=CS OPT LEVEL3
CS_OPT_CHAINXACTS=CS_ TRUE
CS_OPT_CURCLOSEONXACT=CS_TRUE
CS_OPT QUOTED IDENT=CS TRUE
;End of default sections

Syntax for the Open Client/Server configuration file

The syntax for the Open Client/Server configuration file matches the existing
syntax for Sybaselocalization and configuration files supported by CS-Library
with minor variations.

Syntax
e, —Signifiesacomment line.

e [section_name] — Section names are wrapped in square brackets. The Open
Client/Server configuration file comes with sections named DEFAULT
and ANSI_ESQL . The application name will be used as the section name
for an application that has been compiled with the -x option. For an
application that has been compiled with the -e option, the server name will
be used for the section name. Any name can be used as a section name for
those sections that contain settings that will be used in multiple sections.
Thefollowing example shows a section arbitrarily named GENERIC, and
how that section isincluded in other sections:

Embedded SQL/COBOL Programmers Guide 181

Syntax for the Open Client/Server configuration file

182

[GENERIC]

CS_OPT_ANSINULL=CS TRUE

[APP_PAYROLL]
include=GENERIC
CS_CAP_RESPONSE=CS_RES NOSTRIPBLANKS

[APP_HR]
include=GENERIC
CS_OPT_QUOTED_IDENT=CS_TRUE

entry_name=entry_value

Entry values can be anything: integers, strings, and so on. If an entry
valuelineendswith '\'<newline>, the entry value continuesto the next
line.

White spaces are trimmed from the beginning and end of entry va ues.

If white spaces are required at the beginning or end of an entry value,
wrap them in double quotes.

An entry that begins with a double quote must end with a double
guote. Two double quote charactersin arow within a quoted string
represent a single double quote in the value string. If anewlineis
encountered within double quotes, it is considered to be literally part
of thevalue.

Entry names and section names can consist of al phabetic characters
(both uppercase and lowercase), the digits 0 - 9, and any of the
following punctuation characters: ! "#$% & '()* +,-./:;,<>?@
VI

Square brackets ([1), space, and equal sign (=) are not supported. The
first letter MUST be alphabetic.

Entry and section names are case sensitive.
Include=earlier_section

If a section contains the entry include, then the entire contents of that
previously defined section are considered to be replicated within this
section. In other words, the properties defined in the previous section
are inherited by this section.

Open Client

CHAPTER 10 Open Client/Server Configuration File

Note that the included section must have been defined before being
included in another section. Thisallowsthe configuration file parsing
to happen in asingle pass and eliminates the need to detect recursive
included directives.

If an included section in turn includes another section, the order of
entry valuesis defined by a“ depthfirst” search of the included
sections.

Sections cannot include a reference to themselves. In other words,
recursion is not possible because you must include a previously
defined section—you cannot include the section being defined.

All direct entry valuesdefined in agiven section supersede any values
that may have been included from another section. In the following
example, CS_OPT_ANSINULL will be set to false in the
APPPAYROLL application. Note that the position of the include
statement does not affect thisrule.

[GENERIC]
CS_OPT_ANSINULL=CS_TRUE

[APP_PAYROLL]
CS_OPT ANSINULL=CS FALSE
include=GENERIC

Sample programs

Consider the following scenario: An Embedded SQL program defines a cursor
to retrieve rows from thetitles table in the pubs2 database. The WHERE clause
uses non-ANSI standard NULL checking. To clarify, IS NULL and IS NOT
NULL are ANSI standards which is the default used by Embedded SQL
programs. However, an Embedded SQL program wishing to use = NULL or !=
NULL will need to turn OFF ANSINULL behavior and use Transact-SQL
syntax instead. If you wanted to make comparisons with NULLs in Transact-
SQL syntax in Embedded SQL prior to version 11.1, you would need to make
the following call:

EXEC SQL set ansinull off END-EXEC.

Embedded SQL/COBOL Programmers Guide 183

Sample programs

In the following example, no change is made to the Embedded SQL code, but
the desired behavior is attained by setting appropriate propertiesin the Open
Client/Server configuration file.

Therearetwo versionsof the same program listed below. Oneisto beused with
the -e option and the other with the -x option.

Embedded SQL/COBOL sample programs

Perform the following before you use the sample programs:

e OnIBM, set the SYBPLATFORM environment variable to “rs6000” for
the Embedded SQL/COBOL makefile, provided to build sample
programs.

* OnSun Solaris, set the SYBPLATFORM environment variable to
“sun_svr4” for the Embedded SQL/COBOL makefile, provided to build
sample programs.

* OnHP, set the SYBPLATFORM environment variable to “hpux” for the
Embedded SQL/COBOL makefile, provided to build sample programs.

* OnHP Itanium, set the SYBPLATFORM environment variableto “hpia’
for the Embedded SQL/COBOL makefile, provided to build sample
programs.

* OnLinux, set the SYBPLATFORM environment variable to “linux” for
the Embedded SQL/COBOL makefile, provided to build sample
programs.

Embedded SQL program version for use with the -x option

L R I N

* OCs_ex.pco

Description

This program declares a cursor which retrieves rows from
the 'titles' table based on condition checking for NULLS

in the NON-ANSI style (CS_OPT ANSINULL = CS FALSE).

The program will be compiled using the -x option which will
use an external configuration file (ocs.cfg) based on the
name of the application. The name of the application is
defined at the time of INITIALIZING the application.

184 Open Client

CHAPTER 10 Open Client/Server Configuration File

See

EXEC SQL

EXEC SQL

Notes : Copy the file ocs.cfg in this directory to the $SYBASE direc-
tory or add the entries from the section TEST1 in this file
to your existing ocs.cfg file in the $SYBASE directory.
Compile the program using the pre-processor flag -x.

the attached ocs.cfg file for details on the properties

being set.

INCLUDE SQLCA END-EXEC.

BEGIN DECLARE SECTION END-EXEC.

01 TITLE-ID PIC X(6) .

01 PRICE

EXEC SQL

EXEC SQL

EXEC SQL
EXEC SQL

* Declare and
EXEC SQL

EXEC SQL

PIC X(30).
END DECLARE SECTION END-EXEC.

INITIALIZE APPLICATION APPLICATION NAME
= "TEST1" END-EXEC.

CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
USE pubs2 END-EXEC.

open the cursor for select

DECLARE title list CURSOR FOR
SELECT title id, price FROM titles
WHERE price != NULL END-EXEC.

OPEN title list END-EXEC.

* Fetch the data into host variables.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL
EXEC SQL

STOP RUN.

FETCH-LOOP.

CLOSE title list END-EXEC.
DEALLOCATE CURSOR title list END-EXEC.

EXEC SQL FETCH title list INTO

:TITLE-ID,
:PRICE END-EXEC.

Embedded SQL/COBOL Programmers Guide

185

Sample programs

END-IF.
Note Set the precompiler option in the makefile: cobpre -x.
The following is a sample configuration file for the preceding program:
[DEFAULT]
[TEST1]

iThis is name of the application set by INITIALIZE APPLICATION. ;Therefore this
is the section that will be referred to a runtime.

CS_OPT_ANSINULL=CS FALSE

;The above option will enable comparisons of nulls in the NON-ANSI
;jstyle.

Same Embedded SQL program with the -e option

* Program name: OCs_test.cp

Description : This program declares a cursor that retrieves rows
from the 'titles' table based on condition checking for NULLS

in the NON-ANSI style.

The program will be compiled using the -e option, which will

use the server name that the application connects to, as the
corresponding section to look up in the configuration file.

L I

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TITLE-ID PIC X(6).

01 PRICE PIC X(30).
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL CONNECT :UID IDENTIFIED BY :PASS END-EXEC.
EXEC SQL USE pubs2 END-EXEC.

186 Open Client

CHAPTER 10 Open Client/Server Configuration File

* Declare and open the cursor for select
EXEC SQL DECLARE title list CURSOR FOR
SELECT title id, price FROM titles
WHERE price != NULL END-EXEC.
EXEC SQL OPEN title list END-EXEC.

* Fetch the data into host variables.
PERFORM FETCH-LOOP UNTIL SQLCODE = 100.

EXEC SQL CLOSE title list END-EXEC.
EXEC SQL DEALLOCATE CURSOR title list END-EXEC.

STOP RUN.

FETCH-LOOP.

EXEC SQL FETCH title list INTO
:TITLE-ID,
:PRICE END-EXEC.

END-IF.

Note Precompiler option to set in the makefile: cobpre -e.

The following is a sample configuration file for the preceding program:

[DEFAULT]

[SYBASE]

;This is name of the server that the application connect to. Therefore
;this is the section that will be referred to a runtime.
CS_OPT_ANSINULL=CS_ FALSE

;The above option will enable comparisons of nulls in the NON-ANSI
;style.

The above configuration files have been vastly simplified. A typical Open
Client/Server configuration file would be in the following format:

Embedded SQL/COBOL Programmers Guide 187

Sample programs

[DEFAULT]
[ANSI ESQL]
CS_CAP_RESPONSE=CS_RES NOSTRIPBLANKS
CS_EXTRA INF=CS_TRUE
CS_ANSI BINDS=CS_TRUE
CS_OPT ANSINULL=CS_TRUE
CS_OPT ANSIPERM=CS_TRUE
CS_OPT STR_RTRUNC=CS_TRUE
CS_OPT_ARITHABORT=CS_ FALSE
CS_OPT_TRUNCIGNORE=CS TRUE
CS_OPT ISOLATION=CS OPT LEVEL3
CS_OPT_CHAINXACTS=CS_ TRUE
CS_OPT_CURCLOSEONXACT=CS_TRUE
CS_OPT QUOTED IDENT=CS_ TRUE
;The following is a sample section showing how to alter standard
;configuration:
[RELEVANT SECION NAME]
;Use most of the ANSI properties defined above,

include=ANSI ESQL
;but override some default properties

CS_OPT_ANSINULL=CS TRUE ; enable non-ansi style null comparisons
CS_OPT_CHAINXACTS=CS FALSE ; run in autocommit mode

188 Open Client

appenDIx A Precompiler Warning and
Error Messages

The Embedded SQL precompiler generates the informational, warning,
and error messages shown in this appendix’s tables.

Understanding the codes in the tables

Use this key for decoding the “ Severity” column in Tables A-1 through

A-9:

e Information —no error or warning was detected, and the precompiler
succeeded. The message is purely informational.

e Warning —anoncritical error was detected, but the program
precompiled.

e Severe-—an error occurred, and no code was generated. The
precompilation failed.

e Fatal —asevere error occurred from which the precompiler cannot
recover. No further attempt will be made to process your files.
Precompiler exits.

Table A-1: Command line option messages

Message ID Message text Severity Fix

M_COMPAT_INFO Compatibility mode Information No fix required.
specified.

M_DUPOPT Duplicate command line Severe Do not duplicate the options
option specified. specified on the command line

remove the offending
duplicate option.

Embedded SQL/COBOL Programmers Guide 189

Understanding the codes in the tables

Message ID Message text Severity Fix
M_EXCFG_OVERRIDE The switch valuewill have ~ Warning When you use an external
no effect because the configuration file, you may
external switch value has override configuration options
been specified. set on the command line.
Choose one means of setting
options.
M_INVALID_COMPAT Unrecognized compatibility Information No fix required.
mode specified.
M_INVALID_FILE_FMT Invalidcharacterinfilevalue Severe Check to be sure that
at line value. charactersin theinput file are
valid and that you have
correctly set the character set
you want to use.
M_INVALID_FIPLEVEL Invalid FIPS level specified. Severe Valid values are SQL-92E and
SQL-89.
M_INVALID_SYNLEVEL Invalid syntax checking Severe Valid values are NONE,
level specified. SYNTAX, SEMANTIC.
M_INVLD_HLANG Host Language specifiedis Severe Valid options are COB_MF1,
invalid. COB_MF2, COB_RM1,
COB_RM2, COB_LPFI,
COB_VAXVMS.
M_INVLD_OCLIB_VER The Open Client Client- Severe The correct version string is
Library version isinvalid. "CS_VERSION_110" or later.
M_INVOPT Optionisinvalid. Severe Invalid option specified.
Substitute the correct value.
M_LABEL_SYNTAX Security label isimproperly Severe Use the allowed syntax.
specified; the proper format
is‘labelname=
labelvalue'.
M_MSGINIT_FAIL Error initializing localized Warning Verify that the Sybase
error messages. installation is complete and
that thereisavalid entry for
the LANG variablein the
locales.dat file.
M_MULTI_IN_USE DEF OUT Whenprecompilingmultiple Severe Removeall -G, -L, and

190

input files, you cannot
specify output (Listing,
SQL, or Language) file
names.

-0 flags from the command
lineor precompilethefilesone
atatime.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID

Message text

Severity

Fix

M_NO_INPUT_FILE

Error: Noinput fileis
specified to be precompiled.

Severe

Specify an input file for
precompilation.

Note Thiserror may occur if
you precede the input file
name with aflag (such as -G,
for generate stored
procedures), which takes an
optional argument. To fix, put
another flag in front of the
input file name. For example,
replace cpre -G file.pc with
cpre -G -Ccompilername.

M_NO_PERSISTENT_COBOL

The option -p for persistent
input host variablesis not
available.

Information

No fix required.

M_OPEN_INCLUDE

Unabl e to open the specified
includefilefile.

Severe

The specified file is either not
in the path or is missing the
required read permission.
Specify the path with the-I flag
and verify the read permission.

M_OPEN_INPUT

Unableto open the specified
input filefile.

Severe

Check the validity of the path
and file name specified. If the
file name extension is not
provided, the precompiler
searches for the default
extension.

M_OPEN_ISQL

Unableto open the specified
ISQL filefile.

Severe

Check the validity of theisql
file name (thefilein which the
stored procedures are written).
Verify that you have the write
permission in the directory
wherethefileis being created.

M_OPEN_LIST

Unabl e to open the specified
listing filefile.

Embedded SQL/COBOL Programmers Guide

Severe

Check the validity of the
listing file name. Verify that
you have write permission in
the directory where thefileis
being created.

191

Understanding the codes in the tables

Message ID Message text Severity Fix

M_OPEN_TARGET Unable to open the specified Severe Check the validity of the
target filefile. output file name. Verify that

you have write permission in
the directory where thefileis
being created.

M_OPT_MUST_BE PROVIDED Option value must be Severe Provide avaue for option.
provided.

M_OPT_REINIT Warning: value switch Warning The specified switch has been
initialized multiple times. initialized multiple times. The

second and subsequent values
areignored.

M_PATH_OFL Error: Max allowed pathsfor ~ Severe The maximum allowed paths
"INCLUDE" on the command line have
filesis64 been exceeded. Reduce the
(OVERFLOWED). number of directories from

which the INCLUDE files are
fetched.

M_STATIC_HV_CNAME Static cursor names cannot ~ Severe Replace the host variable with
be host-variables: line. aSQL identifier.

M_UNBALANCED_DQ Unbalanced quotesin Severe Balance the quote.
delimited identifier.

M_VMS NO_PERSISTENT _ The persistent optionisnot Information

COBOL available.

Table A-2: First pass parser messages
Message ID Message text Severity Fix
M_64BIT_INT Warning: 64 bit integer host Warning Use some other host variable

variables are not supported.
Linevalue.

type (float, numeric, or 32-bit
integer). If necessary, copy
the value between the host
variable and the 64-bit
program variable.

M_BLOCK_ERROR Non-matching block Severe Correct your program syntax.
terminator in value at line:
value.

M_COB_INC_SQLDA Error: theINCLUDE Severe Use SYBSETSQLDA. See
SQLDA statement is not “Using SYBSETSQLDA” on
validin ESQL/COBOL. page 86.

M_CONST_FETCH Error: Attempted fetchinto Severe You cannot fetch into a
CONST storage class constant type. To fetch the
variable value. value, remove the constant

192

qualifier inits declaration.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix
M_DUP_HV Duplicate host variablein Severe Another host variablewiththe
fileat lineline. samenameisalready declared
in the same block. Verify that
each variable within agiven
block has a unique name.
M_DUP_STRUNION Duplicate structure/unionin Severe Another structure with the
fileat line. samenameisalready declared
in the same block. Verify that
each variable within agiven
block has a unique name.
M_IDENT_OR_STRINGVAR Error: itemmust beaSQL- Severe Verify that the connection,
identifier or a string-type cursor, or statement nameisof
variable. type string or SQL identifier.
M_ILL_LITERAL_USAGE Error: Use of literal Severe Do not use aliteral asan
parameters to an RPC with OUTPUT parameter to a
an OUTPUT qualifier is not stored procedure.
legal.
M_ILL_PARAM_MODE Error: Mixing callingmodes Severe Call the stored procedurewith
inanrpccal infile at line. arguments passed by name or
by position. Mixing these
modesin the samecall is
illegal.
M_INDICVAR Error: item must be an Severe Use a short integer.
indicator-type variable.
M_INTVAR Error: item must be an Severe Use an integer.
integer-type variable.
M_INVLD_HV_BT Cobol host variable: valueof Severe Check the datatypes of the
type: valueis not supported. host variables. An
unsupported type was
detected.
M_MISMATCHED_QUOTES Error: mismatched quoteson ~ Severe Make quotes match.
hex literal value.
M_MULTIDIM_ARRAY Error: at line. Multiple- Severe Multiple-dimensiona arrays

dimensioned array variables
are not supported.

Embedded SQL/COBOL Programmers Guide

arenot supported. Break upan
mx n array into marrays of n
elements each.

193

Understanding the codes in the tables

Message ID Message text Severity Fix

M_MULTI_RESULTS Error: Embedded Query at Severe Break the query into multiple
line line returns multiple queries, each returning one
result sets. result set. Alternatively,

rewrite the queriestofill a
temporary table with all the
values, then select from the
temporary table, thusgiving a
single result set.

M_NODCL_NONANSI Warning: Neither Warning In non-ANSI mode, declare
SQLCODE nor SQLCA either SQLCA, SQLCODE,
declared in non-ANSI mode. or both. Verify that the scope

isapplicablefor all Embedded
SQL statements within the
program.

M_NOLITERAL Error: Item may not be an Severe Use aquoted name or host
unguoted name. variable.

M_NOSQUOTE Error: Item may not be a Severe Use double quotes.
single quoted string. Use
double quotes.

M_NOT_AT_ABLE An“at” clauseisusedwitha Severe Removetheat clausefromthe
statement type which does specified statement.
not allow it. Thisoccurred at
line value.

M_NUMBER_OR_INDICVAR Error: Item must be an Severe Use alitera integer or ashort
integer or an indicator-type integer or CS_SMALLINT.
variable.

M_NUMBER_OR_INTVAR Error: Item must be an Severe Unused. May be used to raise
integer constant or aninteger an error if somefield in the
type variable. dynamic SQL statements

(suchas MAX, Vduen,) is
not an integer type or an
integer constant.

M_PARAM_RESULTS Error: Embedded Query at Severe Arises only during optional
line line returns unexpected server syntax checking.
parameter result sets. Determine why the query is

returning parameters, and
rewriteit.

M_PASS1 ERR Filefile: Syntax errorsin Information Errorsin Pass 1 resultedin an
Pass 1: Pass 2 not done. aborted precompilation.

Correct Pass 1 errors, then
proceed.

M_PTR_IN_DEC_SEC Warning: Pointersarenotyet Warning None.

194

supported in Declare section.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix

M_QSTRING_OR_STRINGVAR Error: Itemmust beaquoted Severe Verify that server name, user
string or atype string name, and password are either
variable. double-quoted strings or of

type string.

M_SCALAR_CHAR Error: Non-array character Severe Use acharacter array.
variable value is being used
illegally asahost variable at
lineline.

M_SQLCA_IGNR Warning: Both SQLCODE ~ Warning Remove one of the two
and SQLCA declared: declarations.

SQLCA ignored.

M_SQLCA_WARN Warning: An INCLUDE Warning None.
SQLCA seenwhilein ANSI
mode: SQLCA ignored.

M_SQLCODE_UNDCL Warning: SQL CODE not Warning Declare SQLCODE.
declared whilein ANS|
mode.

M_STATE_CODE Warning: Both SQLSTATE ~ Warning Remove one of the two
and SQLCODE declared: declarations.

SQLCODE ignored.

M_STATE_SQLCA Warning: Both SQLSTATE ~ Warning Remove one of the two
and SQLCA declared: declarations.
SQLCA ignored.

M_STATUS RESULTS Error: Embedded Query at Severe Arises only during optional
line line returns unexpected server syntax checking.
status result sets. Determine why the query is

returning status results and
rewrite it.

M_STICKY_AUTOVAR Warning: Automaticvariable Warning Be certain that your program
value used with sticky binds logic will not alow errorsin
at lineline. Thismay cause this case. Alternatively, use a
incorrect results or errors at static or global variable.
runtime.

M_STICKY_REGVAR Error: Register variable Severe Remove the register qualifier.
value cannot be used with
sticky binds at line line.

M_STRUCT_NOTFOUND Structure/union definition Severe Verify that the definition of
not found in scopein file at thestructureor unioniswithin
line. the scope of the specified line.

M_SYNTAX_PARSE Syntax error infilefile at Severe Check the indicated line

line.

Embedded SQL/COBOL Programmers Guide

number for a syntax error in
the Embedded SQL grammar.

195

Understanding the codes in the tables

Message ID Message text Severity Fix
M_UNBALANCED_DQ Unbalanced quotesin Severe Balance the quotes.
delimited identifier.
M_UNDEF_ELM Errorvalue: illegal structure/ Severe The specified element of the
union element. structureisnot included inthe
structure definition. Correct
the definition.
M_UNDEF_HV Host variable value Severe Definethe host variablein the
undefined. proper place.
M_UNDEF_IV Indicator variable value Severe Define the indicator variable
undefined. in the proper place.
M_UNDEF_STR Error structure value Severe Undefined structure on the
undefined. specified line. Define the
structure in the proper scope.
M_UNSUP Thevalue, feature is not Fatal This feature is not supported.
supported in this version.
Table A-3: Second pass parser messages
Message ID Message text Severity Fix
M_CURSOR_RD The cursor valueisredefined at - Warning A cursor with same name
linelineinfile. hasalready been declared.
Use adifferent name.
M_HOSTVAR_MULTIBIND Warning: host variableusedasa Warning Do not use ahost variable
bind variable value more than multipletimesin asingle
once per statement. fetch statement. You
cannot fetch multiple
results into one location.
Client-Library causes the
last value fetched to be
put in the variable.
M_INVTYPE_IV Indicator variableisanincorrect Severe Theindicator variable
type. should be of type
CS_SMALLINT or of
type INDICATOR.
M_PARSE_INTERNAL Internal parser error at lineline. Fatal Immediately report this
Please contact a Sybase internal consistency
representative. parser error to Sybase
Technical Support.
M_SQLCANF ‘INCLUDE SQLCA’ statement Warning Add the statement.
not found.
196 Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix
M_TAB_IN_LIT Warning: TAB character in Warning If thisis aproblem,
quoted string converted to manually expand quoted
space. (Thiswarning will only <tabs> to spacesin your
appear once.) queries.
M_WHEN_ERROR Unable to find the SQL Warning Add WHENEVER
statement ‘WHENEVER SQLERROR statement ,or
SQLERROR'. use the command line
option to suppress
warning and INTO
messages (see the Open
Client and Open Server
Programmer’s
Supplement).
M_WHEN_NF Unable to find the SQL Warning Enter aWHENEVER NOT
statement "WHENEVER NOT FOUND statement, or use
FOUND". the command line option
to suppress warning and
INTO messages (see the
Open Client and Open
Server Programmer’s
Supplement).
M_WHEN_WARN Unableto find the SQL Warning Enter aWHENEVER

statement "WHENEVER NOT
FOUND".

WARNING statement, or
use the command line
option to suppress
warning and INTO
messages (see the Open
Client and Open Server
Programmer’s
Supplement).

Table A-4: Code generation messages

Message ID

Message text

Severity

Fix

M_INCLUDE_PATHLEN

Anincluded or copied filepath Warning

was too long. Leaving the path
off the generated file name:
value.

Uselinks or movethefile
to a shorter path.

M_WRITE_ISQL

Unableto writeto theisgl file.
Return code; value.

Embedded SQL/COBOL Programmers Guide

Fatal

Verify your permission to
create and writeto theisql
file and in the directory.
Also, verify that thefile
system is not full.

197

Understanding the codes in the tables

Message ID Message text Severity Fix
M_WRITE_TARGET Unabletowritetothetargetfile. Fatal Unable to write to the
Return code: value. target file. Verify your
permission to create and
writeto afilein the
directory wherethe
precompiler is generating
thetargetfile. Also, verify
that the file system is not
full.
Table A-5: FIPS flag messages
Message ID Message text Severity ANSI extension
M_FIPS ARRAY FIPS-flagger Warning: ANSI Information Arrays. Asfor al FIPS
extension ARRAY typeat line. messages, do not use this
feature if you need to be
ANSI-compliant.
M_FIPS DATAINIT FIPS-flagger Warning: ANSI Information Datainitialization.
extension Data Initialization at
line.
M_FIPS GPITEM FIPS-Flagger Warning: ANSI Information
extension group item syntax.
(lineline).
M_FIPS HASHDEF FIPS-flagger Warning: ANSI Information Using #DEFIN in a
extension "#DEFINE" line. DECLARE section.
M_FIPS L ABEL FIPS-flagger Warning: ANSI Information Allowing ":" with alabel
extension "' with label ina inaWHENEVER clause.
"WHENEVER" clause.
M_FIPS POINTER FIPS-flagger Warning: ANSI Information Thetype POINTER.
extension POINTER type at
line,
M_FIPS SQLDA FIPS-flagger Warning: ANSI Information The SQLDA structure.
extension sglda. (line line).
M_FIPS STMT FIPS-flagger Warning: ANSI Information The statement at thisline
extension statement (line line) isan extension.
M_FIPS SYBTYPE FIPS-flagger Warning: ANSI Information Sybase-specific
extension Sybase SQL-Type datatypes.
line,
M_FIPS TYPE FIPS-flagger Warning: ANSI Information The specified syntax is
extension datatype at line. not ANSI-compliant.
M_FIPS_TYPEDEF FIPS-flagger Warning: ANS Information TYPEDEF.

198

extension TY PEDEF line.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity ANSI extension
M_FIPS VOID FIPS-flagger Warning: ANSI Information Thetype VOID.
extension VOID typeline.
Table A-6: Internal error messages
Message ID Message text Severity Fix
M_ALC_MEMORY Unable to alocate a block of Fatal Check system resources.
memory.
M_FILE_STACK_OVFL File stack overflow: Max Fatal Thefile stack overflowed
allowed nesting is value. whiletryingto processthe
nested INCLUDE
statement. Do not exceed
the nested depth
maximum of 32.
M_INTERNAL_ERROR Fatal Internal Error atfilefileline Fatal Thisisan internal error.
line: Argument inconsistency Contact your Sybase
error. Please contact Sybase representative.
representative.
Table A-7: Platform and language messages
Message ID Message text Severity Fix
M_LONGLINE A linebeing printedistoolong Warning Shorten the lineto be
and cannot be broken. printed.
Table A-8: Sybase and Client-Library messages
Message ID Message text Severity Fix
M_COLMCNT The bind count of the bind Warning The number of returned
variable count and the column columnsis different
count of result set are from the number of
incompatible. results columns
returned with the bind
variable types and
number.
M_COLVARLM The host variable name length Warning The host variable may
valueisless than the column not be able to hold the

length of value.

Embedded SQL/COBOL Programmers Guide

fetched column. Check
the column length and
adjust the length of the
host variable
accordingly.

199

Understanding the codes in the tables

Message ID Message text Severity Fix

M_COLVARPS Thehost variablename precision Warning The precision and scale
and scale: value are different of the host variableis
from the column'’s precision different from that of
value and scale: value. the column being

fetched or inserted into.
Make the scale and
precision compatible.

M_COLVARTM Open Client unable to convert Warning Illegal type. Use
type value to type value for host cs_convert, as Open
variable name. Client cannot convert

by default.

M_CTMSG Client Library message: value. Information None. If needed,

contact Sybase
Technical Support for
assistance.

M_OCAPI Error during execution of the Warning Depending on the
Open Client API value. Error: context in which this
value. warning occurs, you

may be required to take
corrective action before
proceeding.

M_OPERSYS Operating system error: value Warning An operating system
occurred during execution of the error occurred. Seethe
Open Client API. systems administrator.

M_PRECLINE Warning(s) during check of Information Examine the query for
query on line value. problems.

M_SYBSERV Sybase Server error. Server: Warning Check the syntax of the
value. Message: name. statement sent to the

Server which caused
thiserror. Verify that all
resources are available
in Adaptive Server to
process the SQL
Statement.
Table A-9: Runtime messages

SQLSTATE Code Message text Severity Fix

ZZ000 Unrecoverable error occurred. Fatal Immediately report this
error to Sybase
Technical Support.

ZA000 Internal error occurred. Fatal Immediately report this
error to Sybase
Technical Support.

200 Open Client

APPENDIX A Precompiler Warning and Error Messages

SQLSTATE Code Message text Severity Fix

ZDO000 Unexpected Severe Embedded SQL cannot
CS COMPUTE_RESULT retrieve compute
received. results. Rewrite the

query so it does not
return them.

ZEQ000 Unexpected Severe Verify that the value
CS CURSOR_RESULT returned by the
received. CS_LIBRARY routine

isvalid. Consult your
CS-Library
documentations for
details.

ZF000 Unexpected Severe Verify that the value
CS PARAM_RESULT returned by the
received. CS_LIBRARY routine

isvalid. Consult your
CS-Library
documentation for
details.

ZG000 Unexpected Severe Verify that the value
CS_ROW_RESULT received. returned by the

CS_LIBRARY routine
isvalid. Consult your
CS-Library
documentation for
details.

ZB000 No message(s) returned for Information Informational message.
SQLCA, SQLCODE, or No action is required.
SQLSTATE.

ZC000 Connection hasnot beendefined Severe Enter avalid connect
yet. statement.

ZHO000 Unexpected Severe Verify that the value
CS _STATUS RESULT returned by the

received.

Embedded SQL/COBOL Programmers Guide

CS_LIBRARY routine
isvalid. Consult your
CS-Library
documentation for
details.

201

Understanding the codes in the tables

SQLSTATE Code

Message text

Severity

Fix

Z1000

Unexpected
CS DESCRIBE_RESULT
received.

Severe

Verify that the value
returned by the
CS_LIBRARY routine
isvalid. Consult your
CS-Library
documentation for
details.

22005

Data exception—error in
assignment of item descriptor

type.

Severe

Enter avalid descriptor
type.

ZJ000

Memory allocation failure.

Severe

Thereisaninsufficient
amount of memory to
alocate to this
operation.

ZK000

SQL-Server must be version 10
or greater.

Severe

Verify that your
installation has an
installed, functioning
copy of SQL Server
10.0 or later. If you do
not have SQL Server
10.0 or later, have your
installation’s
designated person
contact Sybase
Technical Support.

ZMO000

Error initializing Client Library.

Severe

Check your $SYBASE
set-up.

ZNO00O

Error taking a mutex.

Severe

Unused.

08002

Connection namein use.

Severe

Check your program
logic: Areyou re-
opening an open
connection? Or use a
new name for the
second connection.

Note You cannot have
two DEFAULT
connections.

202

Open Client

Glossary

Adaptive Server
Enterprise (ASE)

array
array binding

batch

browse mode

bulk copy

callback event
callback routine

capabilities

A server in Sybase's client/server architecture. Adaptive Server manages
multiple databases and multiple users, keepstrack of the actual location of
data on disks, maintains mapping of logical data description to physical
data storage, and maintai ns dataand procedure cachesin memory. Prior to
version 11.5, Adaptive Server was known as SQL Server.

A structure composed of multiple identical variables that can be
individually addressed.

The process of binding aresult columnto an array variable. At fetch time,
multiple rows worth of the column are copied into the variable.

A group of commands or statements:

A Client-Library command batch is one or more Client-Library
commandsterminated by an application’scall toct_send. For example, an
application can batch together commands to declare, set rows for, and
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to Adaptive Server by means of asingle Client-Library
command or Embedded SQL statement.

A method that DB-Library and Client-Library applications can use to
browse through database rows, updating their values one row at atime.
Cursors provide similar functionality and are generally more portable and
flexible.

A utility for copying datain and out of databases. Also called bcp.

In Open Client and Open Server, an occurrence that triggers a callback
routine.

A routinethat Open Client or Open Server callsin responseto atriggering
event, known as a callback event.

Determine the types of client requests and server responses permitted for
aclient/server connection.

Embedded SQL/COBOL Programmers Guide 203

Glossary

character set

character set
conversion

client

Client-Library

code set

collating sequence

command

command structure

connection structure

context structure

conversion

CS-Library

current row

cursor

204

A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII and 1SO 8859-1 (Latin 1) are two
common character sets.

Changing the encoding scheme of a set of characters on the way into or out of
aserver. Conversion is used when a server and a client communicating with it
use different character sets. For example, if Adaptive Server uses SO 8859-1
and aclient uses Code Page 850, character set conversion must be turned on so
that both server and client interpret the data passing back and forth in the same

way.

In client/server systems, the part of the system that sends requeststo servers
and processes the results of those requests.

Part of Open Client, a collection of routines for use in writing client
applications. Client-Library isalibrary designed to accommodate cursors and
other advanced featuresin the Sybase product line.

See character set.
See sort order.

In Client-Library, a server request initiated by an application’s call to
ct_command, ct_dynamic, Or ct_cursor and terminated by the application’s call
to ct_send.

A hidden Client-Library structure (CS_COMMAND) that Client-Library
applications use to send commands and process results.

A hidden Client-Library structure (CS_CONNECTION) that defines a
client/server connection within a context.

A CS-Library hidden structure (CS_CONTEXT) that defines an application
“context,” or operating environment, within a Client-Library or Open Server
application. The CS-Library routinescs_ctx_alloc and cs_ctx_drop allocate and
drop a context structure, respectively.

See character set conversion.

Included with both the Open Client and Open Server products, a collection of
utility routines that are useful to both Client-Library and Server-Library
applications.

With respect to cursors, the row to which a cursor points. A fetch against a
cursor retrieves the current row.

A symbolic name that is associated with a SQL statement.

Open Client

Glossary

database

datatype

DB-Library

deadlock

default

default database

default language

Dynamic SQL

error message

event

event handler

In Embedded SQL, acursor is adata selector that passes multiple rows of data
to the host program, onerow at atime.

A set of related data tables and other database objects that are organized to
serve a specific purpose.

A defining attribute that describes the values and operationsthat arelegal for a
variable.

Part of Open Client, a collection of routines for use in writing client
applications.

A situation that arises when two users, each having alock on one piece of data,
attempt to acquire alock on the other’s piece of data. Adaptive Server detects
deadl ocks and resolves them by killing one user’s process.

Describes the value, option, or behavior that Open Client/Server products use
when none is explicitly specified.

The database that a user gets by default when he or she logsin to a database
server.

1. Thelanguagethat Open Client/Server products use when an application does
no explicit localization. The default language is determined by the “ default”
entry in the localesfile.

2. The language that Adaptive Server uses for messages and prompts when a
user has not explicitly chosen alanguage.

Allows an Embedded SQL or Client-Library application to execute SQL
statements containing variables whose values are determined at runtime.

A message that an Open Client/Server product issues when it detects an error
condition.

An occurrence that prompts an Open Server application to take certain actions.
Client commands and certain commands within Open Server application code
can trigger events. When an event occurs, Open Server calls either the
appropriate event-handling routine in the application code or the appropriate
default event handler.

In Open Server, aroutine that processes an event. An Open Server application
can use the default handlers Open Server provides or can install custom event
handlers.

Embedded SQL/COBOL Programmers Guide 205

Glossary

exposed structure

extended
transaction

FIPS

gateway

hidden structure

host language

host program

host variable

indicator variable

input variable

interfaces file

206

A structure whose internals are exposed to Open Client/Server programmers.
Open Client/Server programmers can declare, manipulate, and de-allocate
exposed structures directly. The CS DATAFMT structure is an example of an
exposed structure.

In Embedded SQL, atransaction composed of multiple Embedded SQL
statements.

Federal Information Processing Standards. If FIPS flagging is enabled,
Adaptive Server or the Embedded SQL precompiler issue warnings when a
non-standard extension to a SQL statement is encountered.

A gateway isan application that acts as an intermediary for clients and servers
that cannot communicate directly. Acting as both client and server, a gateway
application passesrequestsfrom aclient to aserver and returnsresultsfrom the
server to the client.

A hidden structure is a structure whose internal's are hidden from Open
Client/Server programmers. Open Client/Server programmers must use Open
Client/Server routines to allocate, manipulate, and de-all ocate hidden
structures. The CS_CONTEXT structure is an example of a hidden structure.

The programming language in which an application is written.

In Embedded SQL, the host program is the application program that contains
the Embedded SQL code.

In Embedded SQL, a variable that enables data transfer between Adaptive
Server and the application program. Seealsoindicator variable, input variable,
output variable, result variable, and status variable.

A variable whose value indicates special conditions about another variable's
value or about fetched data.

When used with an Embedded SQL host variable, an indicator variable
indicates when a database value is null.

A variable that is used to pass information to a routine, a stored procedure, or
Adaptive Server.

A filethat maps server namesto transport addresses. When aclient application
callsct_connect or dbopen to connect to aserver, Client-Library or DB-Library
searches the interfacesfile for the server’s address. Note that not all platforms
use the interfaces file. On these platforms, an aternate mechanism directs
clientsto server addresses.

Open Client

Glossary

isql script file

key

keyword

listing file

locales file

locale name

locale structure

localization

login name

message number

message queue

multi-byte character
set

In Embedded SQL, one of the three files the precompiler can generate. Anisql
script file contains precompil er-generated stored procedures, which are written
in Transact-SQL.

A subset of row datathat uniquely identifiesarow. Key datauniquely describes
the current row in an open cursor.

A word or phrase that is reserved for exclusive use in Transact-SQL or
Embedded SQL. Also called areserved word.

In Embedded SQL, one of the three files the precompiler can generate. A
listing file contains the input file's source statements and informational,
warning, and error messages.

A file that maps locale names to language/character set pairs. Open
Client/Server products search the locales file when loading localization
information.

A character string that represents a language/character set pair. Locale names
arelisted inthelocalesfile. Sybase predefines some local e names, but asystem
administrator can define additional locale names and add them to the locales
file.

A CS-Library hidden structure (CS_LOCALE) that defines custom
localization values for a Client-Library or Open Server application. An
application can use aCS_LOCALE to define the language, character set,
datepart ordering, and sort order it will use. The CS-Library routines
cs_loc_alloc and cs_loc_drop alocate and drop alocale structure.

The process of setting up an application to runin aparticular national language
environment. An application that islocalized typically generates messagesina
local language and character set and uses local date, time, and datetime
formats.

The name a user usesto log in to a server. An Adaptive Server login nameis
valid if Adaptive Server hasan entry for that user in the system table syslogins.

A number that uniquely identifies an error message.

In Open Server, alinked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the
queue.

A character set that includes characters encoded using more than 1 byte.
EUC J S and Shift-JIS are examples of multibyte character sets.

Embedded SQL/COBOL Programmers Guide 207

Glossary

mutex

null

Open Server

Open Server
application

output variable

parameter

passthrough mode

property

query

registered procedure

remote procedure
call

208

A mutual exclusion semaphore. Thisisalogical object that an Open Server
application uses to ensure exclusive access to a shared object.

Having no explicitly assigned value. NULL is not equivalent to zero or to
blank. A value of NULL is not considered to be greater than, less than, or
equivalent to any other value, including another value of NULL.

A Sybase product that provides tools and interfaces for creating custom
servers.

A custom server constructed with Open Server.

In Embedded SQL, a variable that passes data from a stored procedure to an
application program.

1. A variable that is used to pass data to and retrieve data from aroutine.

2. An argument to a stored procedure.

When in passthrough mode, a gateway relays Tabular Data Stream™ (TDS)
packets between aclient and a remote data source without unpacking the
packets contents.

A named value stored in a structure. Context, connection, thread, and
command structures have properties. A structure’'s properties determine how it
behaves.

1. A dataretrieval request; usually a select statement.
2. Any SQL statement that manipulates data.

In Open Server, acollection of C statements stored under aname. Open Server-
supplied registered procedures are called system registered procedures.

1. One of two ways in which a client application can execute an Adaptive
Server stored procedure. (The other iswith a Transact-SQL execute statement.)
A Client-Library application initiates a remote procedure call command by
calling ct_command. A DB-Library application initiates a remote procedure
call command by calling dbrpcinit.

2. A type of request a client can make of an Open Server application. In
response, Open Server either executes the corresponding registered procedure
or callsthe Open Server application’s RPC event handler.

3. A stored procedure executed on a different server from the server to which
the user is connected.

Open Client

Glossary

result variable

server

Server-Library

sort order

SQLCA

SQLCODE

SQL Server

statement

status variable

stored procedure

System
Administrator

system descriptor

In Embedded SQL, a variable which receives the results of aselect or fetch
statement.

In client/server systems, the part of the system that processes client requests
and returns results to clients.

A collection of routines for use in writing Open Server applications.

Used to determine the order in which character datais sorted. Also called
collating sequence.

1. In an Embedded SQL application, SQLCA isastructure that provides a
communication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server stores return codesin
SQLCA.

2. InaClient-Library application, SQLCA is astructure that the application
can useto retrieve Client-Library and server error and informational messages.

1. In an Embedded SQL application, SQLCODE is a structure that provides a
communication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server stores return codes in
SQLCODE. A SQLCODE can exist independently or as avariable within a
SQLCA structure.

2. InaClient-Library application, SQL CODE isastructurethat the application
can useto retrieve Client-Library and server error and informational message
codes.

See Adaptive Server.

In Transact-SQL or Embedded SQL, aninstruction that beginswith akeyword.
The keyword names the basic operation or command to be performed.

In Embedded SQL, a variable that receives the return status value of a stored
procedure, thereby indicating the procedure’s success of failure.

In Adaptive Server, acollection of SQL statements and optional control-of-
flow statements stored under a name. Adaptive Server-supplied stored
procedures are called system procedures.

The user in charge of Adaptive Server system administration, including
creating user accounts, assigning permissions, and creating new databases. On
Adaptive Server, the System Administrator’s login nameis“sa’.

In Embedded SQL, a system descriptor is an area of memory that holds a
description of variables used in Dynamic SQL statements.

Embedded SQL/COBOL Programmers Guide 209

Glossary

system procedures

system registered
procedures

target file

TDS

thread

Transact-SQL

transaction

transaction mode

user name

210

Stored procedures that Adaptive Server supplies for usein system
administration. These procedures are provided as shortcuts for retrieving
information from system tables, or as mechanismsfor accomplishing database
administration and other tasks that involve updating system tables.

Internal registered procedures that Open Server supplies for registered
procedure notification and status monitoring.

In Embedded SQL , one of threefilesthe precompiler can generate. A target file
issimilar totheoriginal input file, except that all SQL statementsare converted
to Client-Library function calls.

(Tabular Data Stream) An application-level protocol that Sybase clients and
servers use to communicate. It describes commands and results.

A path of execution through Open Server application and library code and the
path’'s associated stack space, state information, and event handlers.

An enhanced version of the database language SQL . Applications can use
Transact-SQL to communicate with Sybase Adaptive Server.

One or more server commandsthat are treated asa single unit for the purposes
of backup and recovery. Commands within a transaction are committed as a
group; that is, either al of them are committed or all of them are rolled back.

The manner in which Adaptive Server manages transactions. Adaptive Server
supports two transaction modes. Transact-SQL mode (also called “ unchained
transactions’) and ANSI mode (also called “ chained transactions’).

See login name.

Open Client

Index

Symbols

60

$ 60

?
and dynamic parameter markers 68
60

A

Adaptive Server
connectingto 39
multiple connections 41

allocate descriptor 104

alowddl intran 109

arrays 47
batch 50
double-dimensiona 24
Indicator 47
multiple 31
sedlectinto 47
using 31

at connect_name
named connection 113

at connection_name 41, 43
exec il statement 142

B

batch arrays

fetchinto 48
batches

get diagnostics 64
restrictions 14
statements 14
begin transaction 64, 65
binding 61, 67

Embedded SQL/COBOL Programmers Guide

C

character array

declaring 24
close 109
closeand cursors 58
closecursor 58
COBOL veneer layer 33
and conversions 36
colons

and host variables 25
and indicator variables 28
command line options, precompiler 7
comments

in Embedded SQL 12
commit 44
commit transaction 65, 110
commitwork 65
compatibility 46
backward 5
complex definition 24
compute clause

disalowed 168
connect 39

multiple connections 41
using both COBOL andC 39
connections

closng 114,138
default 113

multiple 41

named 113

naming 42

conversion, datatype 4
converting datatypes 36
COPY files 158
currentrow 51,55
cursors 51, 56, 58, 119, 121, 123, 160, 162
and scoping 51

closing 58, 109
declaring 52

211

Index

deleting currentrow 58
deletingrows 128
dynamic 118, 164
example 59

opening 54

position 55, 57
retrieving data 55
updating current row 58
updating rows 171

D

datadeclarations 24
Data Definition Language (DDL) 69
data definitions 66
dataitems
elementary and group 34
Data Manipulation Language (DML) 46, 69
databases
accessing 39
connectingto aServer 39
pubs2 5
selecting rows 167
datatype conversions 4
input variables 37
result variables 36
datatypes 33
COBOL and Adaptive Server 33, 35
converting 36
DDL (DataDefinition Language) 69
ddlintran 109
dedllocate descriptor 116
dedllocate prepare 118
declarations
data 24
declarecursor 52, 53, 63, 119, 121, 123
dynamic 119
static 121
stored procedure 123
declare scrollable cursor 125
declare sections 23
multiple 24
default server
connectingto 40
default transaction mode 64

212

delete 58
positioned cursor 126
searched 128
with cursors 58
describeinput 130
describe output 133
descriptor area 69
directories
and searches 66
disconnect 44, 138
DML (Data Manipulation Language) 46, 69
documentation
online 59
double-dimensional array 24
DSQUERY environment variable 114
dynamic binding 67
dynamic parameter markers 68, 71, 146
dynamic SQL 67, 118, 146, 148, 164
method1 69, 70
method2 70, 73
method 3 73, 77
method4 77, 83
prepare and execute 146, 165
prepare and fetch 165

E

elementary dataitems 34
Embedded SQL ix, 1,2
constructs 14
definition 1
new features 2

datatypes 2

scrollable cursors 3

Embedded SQL statements
syntax-checking 101
environment variables 114
SYBASE 114
error

failure to detect example 102
testing 4
error handler

writing 100
error-handling

warning-handling routines 100

Open Client

errors

SQLSTATE 22

testing for 96

trapping 97
ESQL/COBOL veneer layers 33
host variables

using 25

examples 5

exec 140

execsgl 142

executable

building 6

execute 144
executeimmediate 69, 70, 146
example 70

extended transaction 65
external configuration file 179

F

features and enhancements 2
fetch 55, 56, 148

and host variables 26
withinaloop 55
fetchinto 31
files

directory 66

isgg 62

lising 98

multiple 7
precompiler-generated 7

G

get descriptor 151

get diagnostics 64, 100, 154
batches 64

group dataitems 34

group element referencing 7

H

handlers

Embedded SQL/COBOL Programmers Guide

error and warning 100

help

sp_syntax xiii

host input variables 25

host output variables 27

host result variables 26

host status variables 26

host variables 2, 28, 30

and datatypes 37

assigning datato 55

character string 30

declaring 23,24

infetch 55, 56

naming 30

using 25

with indicator variables, using 27
host variables with indicator variables
using 28

I
identifiers

in Embedded SQL 13
include 66, 158

filename 156
includefiledirectory 66
includesglca 158
indicator arrays 47
indicator variables

andcolons 28

declaring 23,24

using 27

with host input variables 29, 30
with host output and result variables
input variables

converting datatypesfor 37
host 25
interactive SQL 62
interfacesfile 114
into 46, 61
invalid statements

print 46

raiserror - 46

readtext 46

writetext 46

28

Index

213

Index

isglobal 31
isgl file 7,62
K

keywords

in Embedded SQL 13

L

label

varigble 39
labels 176
listing file 7
localization 2
logical names 114

M

markers
dynamic parameter 146, 162, 165
multiplearrays 31
multiple connections 41
multiple sourcefiles 7
multiple SQLCAs 18

N

named connections 113
nesting

stored procedure 62
null

input value 29
null password

specifying 114

O

online sample programs 59
open 54,160
dynamic cursor 160

214

scrollable cursor
static cursor 162
Open Client and Open
new datatypes 2
output 61
output file 62

P

parse 6,13, 102
password 39

164

Server

null specifying 114

placement

Embedded SQL statements 12

precompiler

command lineoptions 7
detected errors 101

diagnostics 101
functiondity 6
prepare 71, 164
prepare and execute
example 73
prepare and fetch
example 76
procedure_name 60
product family x
program

creating 5
pubs2 database 5

Q

question mark

71,73, 146

and dynamic parameter markers

quotation marks
in Embedded SQL

R

related documents X
reserved words

in Embedded SQL
result variables

4,13

13

68

Open Client

converting datatypesfor 36
host 26
return code 17, 20

SQLCODE 20

testing 4
return values

SQLCODE 96
rollback

and Adaptive Server triggers 66
inatrigger 64

work 65

rollback transaction 166
routines

error- and warning-handling 100
rows

current 55

deleting 126

rules 102

S
sample programs
online 59
scoping 13,18, 31
and cursors 51
cursor 52
rules 13
SQLCA, SQLCODE, and SQLSTATE 17
scroll fetch 151
scrollablecursors 3
declaring 53
retrieving data 56
select 14, 31, 63, 167
and host variables 26
cursors 119, 121, 123, 148
returning multiplerows 51, 56
returning singlerows 47
syntax 47
set connection 41, 168
set descriptor 169
sourcefiles 66
multiple 7
sp_syntax xiii
SQLCA
andinclude 66

Embedded SQL/COBOL Programmers Guide

declaring 18
declaring multiple 18
SQLCA variables 18
accessing 19
Adaptive Server-related 19
setting 17
SQLCODE 96, 97
and multiple row selects 46
and whenever 56
asastandalone 20
fetch 150
returnvalues 96
setting variables 17
values 21
within SQLCA 20
SQLSTATE
codes and error messages 22
setting variables 17
using 21
SQLWARN 96
statement batches 14
statement labels
whenever 176
statements
dynamic SQL 79
Embedded SQL 11, 12
statusinformation 17
status variables
host 26
status variable 60
stored procedures 2, 45, 60, 63
and parameters 60
and return status variables 60
executing 60
typesof 60
SYBASE environment variable 114
syntax checking
Embedded SQL statements 101
system variables 17, 23

T

tables
deletingrows 126
target file 7

Index

215

Index

transaction mode

ANSI 65

default 64

Transact-SQL 64
transactions 64, 110

ANSI 64

extended 65

ISO 64

restricted statements 66

rollingback 166
Transact-SQL

invaid keywordsin Embedded SQL 3, 46
keywordsin Embedded SQL 13
support 3

using with Embedded SQL 45
Transact-SQL statements 126, 140, 167, 171
triggers 64, 102
truncation 36

U

update 58, 171
protocol 58
with cursors 58

user 39

Vv

variables
declaring 23
examplesin declare section 23,24
host 4, 23,30
host result 26
host status 26
indicator 23
input 23
inputhost 25
picture, usage clauses 24
precompiler 13
system 17,23
veneer layer 33
and conversions 36
veneer layers
static and shared dynamic 33

216

W

warning handler
writing 100

warnings

error-handling routines 100

testing for 96, 97
whenever

canceling 175

scope 175

statement 97, 98

testing 97
whenever action

cal 99

continue 99

goto 99

perform 99, 100
whenever statement

20
WORKING-STORAGE SECTION

18

Open Client

	Embedded SQL™/COBOL Programmers Guide
	About This Book
	CHAPTER 1 Introduction
	Embedded SQL overview
	Embedded SQL features
	New features and enhancements
	New datatypes supported
	Scrollable cursors supported

	Transact-SQL support in Embedded SQL
	Getting started
	Using the examples
	Backward compatibility

	Creating and running an Embedded SQL program
	How the precompiler processes your applications
	Multiple Embedded SQL source files
	Precompiler-generated files
	Group element referencing

	CHAPTER 2 General Information
	Five tasks of an Embedded SQL program
	Simplified Embedded SQL program

	General rules for Embedded SQL
	Statement placement
	Comments
	Identifiers
	Quotation marks
	Reserved words
	Variable naming conventions
	Scoping rules
	Statement batches

	Embedded SQL constructs

	CHAPTER 3 Communicating with Adaptive Server
	Scoping rules: SQLCA, SQLCODE, and SQLSTATE
	Declaring SQLCA
	Multiple SQLCAs
	SQLCA variables
	Accessing SQLCA variables
	SQLCODE within SQLCA

	Declaring SQLCODE as a standalone area
	Using SQLSTATE
	Obtaining SQLSTATE codes and error messages

	CHAPTER 4 Using Variables
	Declaring variables
	Declaring a character array

	Using host variables
	Host input variables
	Host result variables
	Host status variables
	Host output variables

	Using indicator variables
	Indicator variables and server restrictions
	Using host variables with indicator variables
	Using indicator variables with host output and result variables
	Using indicator variables with host input variables

	Host variable conventions

	Using arrays
	Multiple arrays

	Scoping rules
	Datatypes
	Elementary data items
	Group data items
	Special data items
	Comparing COBOL and Adaptive Server datatypes
	Converting datatypes
	Converting datatypes for result variables
	Converting datatypes for input variables

	CHAPTER 5 Connecting to Adaptive Server
	Connecting to a server
	user
	password
	connection_name
	server
	connect example

	Changing the current connection
	Establishing multiple connections
	Naming a connection
	Invalid statements with the at clause

	Using Adaptive Server connections

	Disconnecting from a server

	CHAPTER 6 Using Transact-SQL Statements
	Transact-SQL statements in Embedded SQL
	exec sql syntax
	Invalid statements
	Transact-SQL statements that differ in Embedded SQL

	Selecting rows
	Selecting one row
	Selecting multiple rows through arrays
	select into arrays
	Indicator arrays
	Arrays and structures as indicator variables
	fetch into: batch arrays
	Cursors and arrays
	Using cursors
	Cursor scoping rules
	Declaring cursors
	Example: Declaring a cursor
	Declaring scrollable cursors
	Opening cursors
	Fetching data using cursors
	Fetching data using scrollable cursors
	Using cursors to update and delete rows
	Closing cursors
	Cursor example

	Using stored procedures
	User-defined stored procedures
	Precompiler-generated stored procedures

	Grouping statements
	Grouping statements by batches
	Grouping statements by transactions
	Transact-SQL transaction mode
	Default ANSI/ISO transaction mode
	Extended transactions

	Including files and directories

	CHAPTER 7 Using Dynamic SQL
	When to use dynamic SQL
	Dynamic SQL protocol
	Method 1: Using execute immediate
	Method 1 examples

	Method 2: Using prepare and execute
	prepare
	execute
	Method 2 example

	Method 3: Using prepare and fetch with a cursor
	prepare
	declare
	open
	fetch and close
	Method 3 example

	Method 4: Using prepare and fetch with system descriptors
	Method 4 dynamic descriptors
	Dynamic descriptor statements
	About SQL descriptors

	Method 4 example
	About SQLDAs
	Using SYBSETSQLDA
	Syntax
	Returns

	Method 4 example using SQLDAs

	CHAPTER 8 Handling Errors
	Testing for errors
	Using SQLCODE

	Testing for warning conditions
	Trapping errors with the whenever statement
	whenever testing conditions
	whenever actions

	Using get diagnostics
	Writing routines to handle warnings and errors
	Precompiler-detected errors

	CHAPTER 9 Embedded SQL Statements: Reference Pages
	allocate descriptor
	begin declare section
	begin transaction
	close
	commit
	connect
	deallocate cursor
	deallocate descriptor
	deallocate prepare
	declare cursor (dynamic)
	declare cursor (static)
	declare cursor (stored procedure)
	declare scrollable cursor
	delete (positioned cursor)
	delete (searched)
	describe input (SQL descriptor)
	describe input (SQLDA)
	describe output (SQL descriptor)
	describe output (SQLDA)
	disconnect
	exec
	exec sql
	execute
	execute immediate
	exit
	fetch
	scroll fetch
	get descriptor
	get diagnostics
	include “filename”
	include sqlca
	include sqlda
	initialize_application
	open (dynamic cursor)
	open (static cursor)
	open scrollable cursor
	prepare
	rollback
	select
	set connection
	set descriptor
	update
	whenever

	CHAPTER 10 Open Client/Server Configuration File
	Purpose of the Open Client/Server configuration file
	Accessing the configuration functionality
	Default settings
	Syntax for the Open Client/Server configuration file
	Syntax

	Sample programs
	Embedded SQL/COBOL sample programs
	Embedded SQL program version for use with the -x option
	Same Embedded SQL program with the -e option

	APPENDIX A Precompiler Warning and Error Messages
	Understanding the codes in the tables

	Glossary
	Index

