SYBASE

Company

Embedded SQL™/C Programmers Guide

Open Client™
15.7

DOCUMENT ID: DC37695-01-1570-01
LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, e ectronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http:/iwww.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Java and al Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliatesin the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

CHAPTER 3

Embedded SQL/C Programmers Guide

.. iX
INEFOAUCTION i 1
Embedded SQL OVEIVIEWccoooeiiiiiiiiiiii 1
Embedded SQL features...........ccoooeeeiiiiiiiiiii 2
Transact-SQL support in Embedded SQL..........cccoccvveeiiiiiiiiinenennnn, 2
GettiNg SLAMEA.evviiiie it 3
Using the eXamplesS ... 4
Backward compatibilityccooeiiiiiiiiiiii 4
Creating and running an Embedded SQL program..........cccccceeevvnes 4
How the precompiler processes your applications.............cccuveeeeennn. 5
Multiple Embedded SQL source filescccvveevieeiiiiciiinennennn. 6
Precompiler compatibilitycccoooiiiiiiiiiiie e, 6
Precompiler-generated fileScccooeviiveiie i 6
General INfOrmMationc.ueeiiiiiii e 7
Five tasks of an Embedded SQL program..........ccccccveeeeiinciinnnneenn. 7
Simplified Embedded SQL program........ccccccooeecvvvveereeeesiiievennnn 8
General rules for Embedded SQLcceevviiiiiiieiieeesiciiieecee e 9
Statement PlaCeMENTcooiiiiiiiiiiiie e 9
COMMENTS ...t 10
IAENEITIEIS ..o 10
Quotation Marks ... 10
RESEIVed WOIASocoiiiiiiiiiiie e 10
Variable naming CONVENLioNSccceevviiiiiiieniee e 10
SCOPING TUIBSciiiiiiiiiiiie e 11
Statement batChes ..., 11
Embedded SQL CONSITUCEScuvvviieeeiiiiiiiiiee e e 11
Communicating with Adaptive Server Enterprise...............o...... 13
Scoping rules: SQLCA, SQLCODE, and SQLSTATE...........c........ 14
Declaring SQLCA e 14
MUItIPIE SQLCAS ..eeieie ettt 14

Contents

SQLCA variables......ccoo oo 15
Accessing SQLCA variablesccccccvviiiiiiiiiiiiiieeeee 15
SQLCODE within SQLCAoiiiiiiiiiieiee e 16
Declaring SQLCODE as a standalone area............cccccvveeeeeiiivnnnnn. 16
USING SQLSTATE ...ttt 17
Obtaining SQLSTATE codes and error messages.................. 18
SUMMAIY i 18
CHAPTER 4 USING VariablesS ... 19
Declaring variables............ccoiiiciiiiiiie e 19
USING dAtatyPES....uuveeieeeiiiiiiiiiee e e s ettt e e e e s e st e e e e e e s nneenee s 20
Using type definitionsovveiiieiiiiiiiiieee e 22
USING #AEFING .o 24
DeClaring @n @rrayuueeeieeeiiiniiiiieiee e 24
Declaring unions and StruCtUresS..........cccceeeviiiviiieeneeenn i, 26
UsSiNg hOSt Variables..........coooiiiiiiiiie e 27
Host input variables...........ccccco i 28
Host result variables..........ccccccoociiiiiiie 28
Host status variables.........cccccovvciiiiiiiie e 29
Host output variables.........cccccooivciiiiiiie e 29
Using indicator variablesc.uuuvvieeiiicciiiinee e 29
Indicator variables and server restrictions..............ccoccvvvveen... 30
Using host variables with indicator variables........................... 30
Host variable CONVENtIONSoeoviiiieiiiiee e 32
USING @ITAYS wevtteieeeeeeiiitiiitee e s sttt e e e s s st e e e e e s s sibbbeeeaaeeesaanbeeaees 33
MUIIPIE AITAYS ...vvvviieeiiiiiiiie e 33
SCOPING TUIES ..t 34
Datatypes and Adaptive Server ENterpriseccccvvveveeeeiiiinneenn. 34
Converting datatyPescoccveieiiieieiiieeee e 36
CHAPTER 5 Connecting to Adaptive Server Enterpriseccccccceevvevveevvvvvnnnnn, 39
CONNECHING 10 @ SEIVET ...uviiiie ettt e e e 39
LU= PSPPIt 40
PASSWOI ...eiiieeeeiiitiieee e s ettt e e e e s e e r e e e e s s e raeraeae e s anneraeees 40
CONNECHION_NAME ...uviiiiieeicciiiiee e et e e e e s e e e e nnearee s 40

1] Y] 40
CONNECE EXAMPIEvvvviiiei i 41
Changing the current CONNECHIONoooviiiiiiieee i 41
Establishing multiple connectionsccccccevivniiiiieeee e, 41
Naming a CONNECTHION........ceiieiiiiiiiiiiiiee et 42
Using Adaptive Server Enterprise connections..............c...e.... 43
Disconnecting from @ SEIVENceeviiiiiiiiiiiiie e 44

iv Open Client

Contents

CHAPTER 6 Using Transact-SQL Statementsccccccveeeeeeviivvccviiiiiineeeee e, 47
Transact-SQL statements in Embedded SQL............ccccvvvvveeeiins a7
EXEC SOl SYNTAX...cuvvieiieeeeiiiiiiiee e e e e st r e e e st e e e e e snrraees a7
INvalid StatemMEeNtSccooiiiiiiiiiei e 48
Transact-SQL statements that differ in Embedded SQL 48
SEIECHNG TOWS ...eiiiieiiiiieet ettt 48
SelECtiNG ONE FOWueiiiiiiiiiiiiiee et 49
Selecting multiple rows USINg arraysccccccovvcvvveeeeeessiniveneen. 49
Selecting multiple rows USING CUISOISccoovvvvieeieeessiniinnen. 53
Using Stored ProCeAUIESuvvireeiiiiiiiiiiee e eseirireee e e 66
Grouping StAtEMENTScvvieiiiiiiiiiie e 69
Grouping statements by batches...........ccccccoovii i, 69
Grouping statements by transactions.............ccccccevee v ivciinnen. 70
CHAPTER 7 UsSing DYNAMIC SQL ...uuuuiiiiiiieeie it e e s e e e e e 73
DYNamiC SQL OVEIVIEWccccuviiiieieeeeseeiiieee e e e e s setitaeeaaa e e s ansesanes 74
Dynamic SQL ProtoCO|cccuvvviiiieeeiiiiiiieee et 75
Method 1: Using execute immediate..........cccceeevevvviieeeeeeesiiiiieeenn. 76
Method 1 eXampPleSoocviiiiiiieiiie e 76
Method 2: Using prepare and €XECULEcceeeviivriieeeeeenniniirieeenns 77
1T 012 1L TP PO P PP PSP P PP PPPPPPPPPPPPPPPPRt 78
EXECULEeuviiiiie ittt 79
Method 2 eXampPle ..o 79
Method 3: Using prepare and fetch with a cursorcccvvveee. 80
LT 0= L= PSP PPPPPPPINt 81

(0 [<Tol o = TSR 81

0] 1= o 81
fetch and ClOSEcoeiiiiiii e 82
Method 3 eXamPIE......ccoicviiiiiie e 83
Method 4: Using prepare and fetch with dynamic descriptors 84
Method 4 dynamic descCriptorscccccevveeeiiiciiiieeee e 84
Dynamic descriptor statements..........cccceveeviiiiviiieniee e, 85
Method 4 example using SQL descriptorsccccceeevviivvvnnen. 86
ADOUE SQLDAS ..ottt 89
Method 4 example using SQLDAScccccoviiiiiiiiiieeei i, 90
SUMMAIY ittt 92
CHAPTER 8 [F= U Lo T o T = o] SRR, 93
TEeSHNG fOr @ITOIS ...vviiiiii it 94
USING SQLCODEcccciiiiiiiiitiee e ceitteer e seaae e e e e e s enneenees 94
Testing for warning conditionscccceeeeeeiiiiiiiee e 94
Trapping errors with WhenNever...........ccccceeeeeeiiiiiiee e 95
whenever testing conditionscccvvvveeeeeecciiiieee e 96

Embedded SQL/C Programmers Guide v

Contents

CHAPTER 9

CHAPTER 10

Vi

WRNENEVET ACHIONSeeveiiiiiiei et 97
UsSiNg get diagNOSHICS ...uuvviiiiiiiiiiieiee et 97
Writing routines to handle warnings and errors...........ccoecvvveeeeenn. 98
Precompiler-detected errors........ccccvveeevieiiiiiieieee e 99

Improving Performance with Persistent Binding 101
About persistent binding..........cccccoo v, 102

When binding OCCUIS......cooiiiiiiiiiiiecce e 103

Programs that can benefit from persistent binding................ 104

Scope of persistent biNdiNgSccooeciiiiieee e 105
Precompiler options for persistent bindingcccccceeeeiiiiiinnen. 105

TRHE =P OPLION ..t 105

THE =D OPLION ..o 105

Which option to use: -p, -b, orbothccccciiiii, 106

Scope of the -p and -b precompiler optionscccccceeviinins 106
Overview of rules for persistent bindingccccccoviviiiiiiiienninns 106

Statements that can use persistent bindingcccc.oooeuee 107

Persistent binding in statements without a cursor 107

Persistent binding in statements with a cursor...................... 108
Guidelines for using persistent bindingcccccceev i, 113
Notes on the binding of host variables..............cccccoviieiiiiiinne. 114

SUDSCHPLEd @ITAYS ..vvveeeceiiiiieie et 114

Scope of host variablesccccccovvciiiiiiiii e, 116

Embedded SQL Statements: Reference Pagesccccuvueeeee. 119
allocate dESCHPLONcoiiiiiiiiie et 121
begin declare SECHONcoociiiiiiiiiiii e 122
Degin tranSactioncevii i 123
ClOS et 124
COMMIT. ettt e e s e s e e e s anrneees 126
(o0] 0 =T of F OO PR PP PPN 127
dEAllOCALE CUISON ...ttt 129
deallocate deSCrIPLOruuviieei it ee et a e 131
deallocate PreParecccvveeeee i 131
declare cursor (AYNAMIC).........cicccuiriiiiee e e e siireee e e e 132
declare Cursor (StatiC).......uuvureeeiiiciiieiiie e e e 133
declare cursor (stored proCedure)cccccevvvecvveeeeeeeesiiciiieeeeeeen 135
declare scrollable CUISOrcvve i 136
delete (POSIIONE CUISOI)....uuiiiiiiiiiiiiiiee et 138
delete (Searched)ccuvvviiiiiiiiii e 139
describe input (SQL deSCrPLOr)vvvvieeeeiiiiiiiiieee e eeriiiieeee e 141
describe iNPUt (SQLDA)cvviiiiiiiiiieeie e 142
describe output (SQL deSCriptor)cuveeeiiiiiiiiiiieeee e 143

Open Client

Contents

CHAPTER 11

APPENDIX A

APPENDIX B

describe output (SQLDA)oveie i 144
(0 1Yot 0] o 1= ox (S SO PERRR 145
[(<o PP TPUPPPNY 147
EXEC SOl eeiiiiiiiiiitie ettt aaae 150
EXECULRceiiiiiiiiei ettt e e 152
eXeCute IMMEMIALEccivieririee e 154
L2 (| S PP P PP PP PP PP PPPPPPPPPPP 155
FRICH Lo 155
fetch scrollable CUISOrc.vvvi i 158
(o= 0 (TSIt g o] (o OO PERRR 159
0L dIAgNOSHICS ..vvviieei e 161
include "filename”..........oooiiiiiie e 162
INCIUAE SOICA ..vvveie et 164
INCIUAE SOIAA ...eeeee e 165
initialize_appliCationcccvviiiiee i 165
0PEN (AYNAMIC CUIMSON) ..vvvieiieeiiiiitiieieeee e s ssibiieee e e e s s s sibbeeeeeaeessaanes 167
OPEN (SLALIC CUISON) 1iiiiiiiiiiiee ettt et e e e e e e e aenes 168
PIEPAIE ... 170
FOIDACK ...t 172
SEIBCT ..t 172
SEL CONNECHION ...ttt 174
LTS Ao (=1 ox 1 o (o) SRR 175
L] (Y= U0 =) (| SRR 177
0] oo F= L (= P ERRR 177
WRBNEBVETeiiiie ettt e a et areeeaa e 179
Open Client and Open Server Configuration File 185
Purpose of the Open Client and Open Server configuration file .. 185
Accessing the configuration functionalitycccccceeiiiiiiinnnnenn, 185
Default SELHNGS ...cooviieiiiee e 186
Syntax for the Open Client and Open Server configuration file ... 187
SaAMPIE PrOGramMS....ccoiiiiiiiiee ettt a e e 189
Embedded SQL/C sample makefile on Windows.................. 189
Embedded SQL/C sample programscccvveeeeeeesiinvvnenen 190
Embedded SQL program version for use with the -x option.. 190
Same Embedded SQL program with the -e option................ 192
SUMMAIY i 195
Precompiler Warning and Error MeSSagescccccvveveereeeiininns 197
Sample Code for Handling Large Text and Image Data........... 211
Where to find other samplesccccooviviiiiie i, 211

Embedded SQL/C Programmers Guide Vii

Contents

TEXE IMAGE.SUI .o 211

EEXE IMAGE.CP eeviiiie ettt 212

(€] (o 117 1Y A OO U TP PPPTR PP 215
Lo ST SSS S 223

viii Open Client

About This Book

Audience

How to use this book

Thisbook explains how to use Embedded SQL ™ and the Embedded SQL
precompiler with C applications. Sybase® Embedded SQL isasuperset of
Transact-SQL® that lets you place Transact-SQL statementsin
application programs written in languages such as C and COBOL.

Theinformation in this guide is platform-independent. For platform-
specific instructions on using Embedded SQL, see the Open Client and
Open Server Programmers Supplement for your platform.

Thisguideisintended for application developers and othersinterested in
Embedded SQL concepts and uses. To use this guide, you should:

e Befamiliar with the information presented in the Adaptive Server
Enterprise Reference Manual

* Have C programming experience
This book contains these chapters:

e Chapter 1, “Introduction,” presents a brief overview of Embedded
SQL and describes its advantages and capabilities.

e Chapter 2, “General Information,” describes the parts of an
Embedded SQL program and providesgeneral rulesfor programming
with Embedded SQL.

e Chapter 3, “Communicating with Adaptive Server Enterprise,”
describes how to establish and use a communication area with
SQLCA, SQLCODE, and SQL STATE. This chapter aso describes
the system variables used in the communication area.

e Chapter 4, “Using Variables,” explains how to declare and use host
and indicator variablesin Embedded SQL . This chapter also
describes arrays and explains datatype conversions.

e Chapter 5, “Connecting to Adaptive Server Enterprise,” explains
how to use Embedded SQL to connect an application program to
Adaptive Server® Enterprise and data servers, in general.

Embedded SQL/C Programmers Guide iX

Related documents

Chapter 6, “Using Transact-SQL Statements,” describes how to use
Transact-SQL in an Embedded SQL application program. This chapter
describes how to select rows using arrays and batches, and how to group
Transact-SQL statements.

Chapter 7, “Using Dynamic SQL,” describes how to create Embedded
SQL statements that your application’s users can enter interactively at
runtime.

Chapter 8, “Handling Errors,” describes return codes and the Embedded
SQL precompiler’s facilities for detecting and handling errors.

Chapter 9, “Improving Performance with Persistent Binding,” describes
how performance might benefit from using persistent binding and how to
implement it.

Chapter 10, “Embedded SQL Statements: Reference Pages,” provides
reference pages for each Embedded SQL statement.

Chapter 11, “Open Client and Open Server Configuration File,” explains
how to use the external configuration file with Embedded SQL.

Appendix A, “Precompiler Warning and Error Messages,” lists
precompiler and runtime messages.

Appendix B, “Sample Code for Handling Large Text and Image Data,”
contains sample programs for Embedded SQL that demonstrates the use
of host variables in handling large text and image data.

You can see these books for more information:

The Open Server and SDK New Features for Windows, Linux, and UNI X,
which describes new features available for Open Server and the Software
Developer’sKit. This document isrevised to include new features as they
become available.

The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

The Software Devel oper’s Kit Release Bulletin for your platform contains
important last-minute information about Open Client™ and SDK.

The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

Open Client

About This Book

e The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

e The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

e The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

e The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

e The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

e The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

e The sample programs that are included with Open Client and Open
Server

« Routinesthat have platform-specific behaviors

e Thelnstallation and Release Bulletin Sybase SDK DB-Library Kerberos
Authentication Option contai ns information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authenticationin
the Kerberos security mechanism.

e The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

e TheOpen Client Embedded SQL ™/COBOL ProgrammersGuide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

e ThejConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

Embedded SQL/C Programmers Guide Xi

Other sources of
information

Sybase certifications

on the Web

Xii

The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access datain Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

The Adaptive Server Enterprise ODBC Driver by Sybase Users Guide for
Microsoft Windows and UNIX, providesinformation on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide providesinformation for Perl developersto connect to an Adaptive
Server database and query or change information using a Per| script.

The Adaptive Server Enterprise extension module for PHP Programmers
Guide providesinformation for PHP devel opersto execute queries against
an Adaptive Server database.

The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Use the Sybase® Product Documentation Web site to learn more about your
product:

The Sybase Product Documentation Web siteis accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at

http://www.sybase.com/support/techdocsl/.

2 Click Partner Certification Report.

Open Client

About This Book

3 Inthe Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click aPartner Certification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set upaMySybaseprofile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Embedded SQL/C Programmers Guide Xiii

Conventions

Accessibility
features

Xiv

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly bracesindicate that you choose at |east one of the

enclosed options. Do not include the bracesin the command.

[Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

/ The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Open Client

About This Book

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

Embedded SQL/C Programmers Guide XV

XVi Open Client

CHAPTER 1 Introduction

This chapter includes the following topics to introduce Embedded SQL
and the Embedded SQL precompiler.

Topic Page

Embedded SQL overview

Embedded SQL features

Transact-SQL support in Embedded SQL

Getting started

Creating and running an Embedded SQL program

G B|W|INIDN|-

How the precompiler processes your applications

Embedded SQL overview

Embedded SQL is a superset of Transact-SQL that lets you place
Transact-SQL statements in application programs written in languages
such as C and COBOL.

Open Client™ Embedded SQL enablesyou to create programsthat access
and update Adaptive Server Enterprise data. Embedded SQL
programmers write SQL statements directly into an application program
written in aconventional programming language such asC or COBOL. A
preprocessing program—the Embedded SQL precompiler—processesthe
completed application program, resulting in a program that the host
language compiler can compile. The program is linked with Open Client
Client-Library beforeit is executed.

Embedded SQL is one of the two programming methods Sybase provides
for accessing Adaptive Server Enterprise. The other programming method
isthe call-level interface. With the call-level interface, you place Client-
Library calls directly into an application program, then link with Client-
Library.

Embedded SQL/C Programmers Guide 1

Embedded SQL features

You can place Embedded SQL statements anywherein ahost program and mix
them with host language statements. All Embedded SQL statements must
begin with the keywords exec sgl and end with a semicolon (;).

You can use host variablesin Embedded SQL statementsto store dataretrieved
from Adaptive Server Enterprise and as parameters in Embedded SQL
statements, such asin the where clause of aselect statement. In dynamic SQL,
host variables can also contain text for Embedded SQL statements.

After you write an Embedded SQL program, run it through the precompiler,
which trandates the Embedded SQL statements into Client-Library function
cals.

Embedded SQL features

Transact-SQL

Embedded SQL provides several advantages over a call-level interface:

» Embedded SQL iseasy to use because it is simply Transact-SQL with
some added features that facilitate using it in an application.

* Itisan ANSI/ISO-standard programming language.
* Itrequireslesscoding to achieve the same results as a cal-level approach.

» Embedded SQL isessentially identical across different host languages.
Programming conventions and syntax change very little. Therefore, to
write applications in different languages, you need not learn new syntax.

» The precompiler can optimize execution time by generating stored
procedures for the Embedded SQL statements.

support in Embedded SQL

Transact-SQL isthe set of SQL commands described in the Adaptive Server
Enterprise Reference Manual. With the exception of print, readtext, and
writetext, all Transact-SQL statements, functions, and control -of-flow language
arevalid in Embedded SQL . You can devel op an interactive prototype of your
Embedded SQL application in Transact-SQL to facilitate debugging your
application, then easily incorporate it into your application.

Open Client

CHAPTER 1 Introduction

Most Adaptive Server Enterprise datatypes have an equivalent in Embedded
SQL. Also, you can use host language datatypes in Embedded SQL. Many
datatype conversions occur automatically when a host language datatype does
not exactly match an Adaptive Server Enterprise datatype.

You can place host language variablesin Embedded SQL statements wherever
literal quotes are valid in Transact-SQL. Enclose the literal with either single
() or double (*) quotation marks. For information on delimiting literals that
contain quotation marks, see the Adaptive Server Enterprise Reference
Manual.

Embedded SQL has several features that Transact-SQL does not have:

< Automatic datatype conversion occurs between host language types and
Adaptive Server Enterprise types.

e Dynamic SQL letsyou define SQL statements at runtime.

e SQLCA, SQLCODE, and SQLSTATE let you communicate between
Adaptive Server Enterprise and the application program. Thethree entities
contain error, warning, and informational message codes that Adaptive
Server Enterprise generates.

e Return code testing routines detect error conditions during execution.

Getting started

Before attempting to run the precompiler, make sure that Client-Library
version 12.5 or later isinstalled, since the precompiler usesit as the runtime
library. Also, make sure Adaptive Server Enterprise version 12.5 or later is
installed. If products are missing, contact your System Administrator.

Invoke the precompiler by issuing the appropriate command at the operating
system prompt. See the Open Client and Open Server Programmers
Supplement for your platform for details.

The precompiler command can include several flagsthat let you determine
options for the precompiler, including the input file, login user name and
password, invoking HA failover, and precompiler modes. The Open Client and
Open Server Programmers Supplement contains operating system-specific
information on precompiling, compiling, and linking your Embedded SQL
application.

Embedded SQL/C Programmers Guide 3

Creating and running an Embedded SQL program

Using the examples

The examplesin this guide use the pubs2 database. To run the examples,
specify the pubs2 database with the Transact-SQL use statement.

Embedded SQL is shipped with several online examples. For information on
running these exampl es, see the Open Client and Open Server Programmers
Supplement for your platform.

Backward compatibility

The System 11 and later precompiler is compatible with precompilersthat are
SQL-89-compliant. However, you may have applications created with earlier
Embedded SQL releases that are not ANSI-compliant. This precompiler uses
most of the same Embedded SQL statements used in previous precompiler
versions, but it processes them differently.

To migrate applications created for earlier precompiler releases:

1 Remove thefollowing SQL statements and keywords from the
application, as System 11 does not support them:

* release connection name
* recompile

* noparse

* noproc

* pcoptions

e cancel

Therelease statement causes a precompiler error; the precompiler ignores
the other keywords. The cancel statement causes a runtime error.

2 Usethe System 11 and later precompiler to precompile the application
again.

Creating and running an Embedded SQL program

Follow these steps to create and run an Embedded SQL application program:

4 Open Client

CHAPTER 1 Introduction

1 Writethe application program and include the Embedded SQL statements
and variable declarations.

2 Savetheapplication in afile with a.cp extension.

3 Precompilethe application. If there are no severe errors, the precompiler
generatesafilecontaining your application program. Thefile hasthe same
name as the original source file, with a different extension, depending on
the requirements of your C compiler. For details, see the Open Client and
Open Server Programmers Supplement for your platform.

4 Compilethe new source code as you would compile astandard C program.
Link the compiled code with Client-Library.

6 If you specified the precompiler option to generate stored procedures, |oad
them into Adaptive Server Enterprise by executing the generated script
withisqgl.

7 Run the application program as you would any standard C program.

How the precompiler processes your applications

The Embedded SQL precompiler trand ates Embedded SQL statementsinto C
datadeclarations and call statements. After precompiling, you can compilethe
resulting source program as you would any conventional C program.

The precompiler processes an application in two passes. In the first pass, the

precompiler parses the Embedded SQL statements and variable declarations,

checking the syntax and displaying messages for any errorsit detects. If the

precompiler detects no severeerrors, it proceeds with the second pass, wherein

it:

* Addsdeclarationsfor the precompiler variables, which beginwith“_sqgl”.
To prevent confusion, do not begin your variables nameswith “_sql”.

» Convertsthetext of the original Embedded SQL statementsto comments.

e Generates stored procedures and calls to stored procedures if you set this
option in the precompile command.

e Converts Embedded SQL statementsto Client-Library calls. Embedded
SQL uses Client-Library as aruntime library.

Embedded SQL/C Programmers Guide 5

How the precompiler processes your applications

e Generates up to threefiles: atarget file, an optional listing file, and an
optional isql script file.

Note For detailed descriptions of precompiler command line options, see the
Open Client and Open Server Programmers Supplement for your platform.

Multiple Embedded SQL source files

If the Embedded SQL application consists of more than one sourcefile, the
following statements apply:

» Connection names are unique and global to the entire application.
e Cursor names are unique for a given connection.
* Prepared statement names are global to the connection.

» Dynamic descriptors are global to the application.

Precompiler compatibility

Embedded SQL version 12.5 and later iscompletely ANSI SQL -89-compliant.
Therefore, it is compatible with other precompilers that conform to ANSI-89
standards.

Precompiler-generated files

The target fileis similar to the original input file, except that all SQL
statements are converted to Client-Library runtime calls.

Thelisting file contains the input file's source statements, plus any
informational, warning, or error messages.

Theisqgl script file contains the precompiler-generated stored procedures. The
stored procedures are written in Transact-SQL.

6 Open Client

CHAPTER 2 General Information

This chapter provides general information about Embedded SQL.

Topic Page
Five tasks of an Embedded SQL program 7
General rules for Embedded SQL 9
Embedded SQL constructs 11

Five tasks of an Embedded SQL program

In addition to containing the host language code, an Embedded SQL
program performsfivetasks. Each Embedded SQL program must perform
all these tasks to precompile, compile, and execute. Subsequent chapters
discuss these five tasks.

1

Embedded SQL/C Programmers Guide

Establish SQL communication using SQLCA, SQL CODE, or
SQLSTATE.

Set up the SQL communication area (SQLCA, SQLCODE, or

SQL STATE) to provide a communication path between the
application program and Adaptive Server Enterprise. These
structures contain error, warning, and i nformation message codesthat
Adaptive Server Enterprise and Client-Library generate. See Chapter
3, “Communicating with Adaptive Server Enterprise.”

Declare variables.

I dentify host variables used in Embedded SQL statements to the
precompiler. See Chapter 4, “Using Variables.”

Connect to Adaptive Server Enterprise.

Connect the application to Adaptive Server Enterprise. See Chapter
5, “Connecting to Adaptive Server Enterprise.”

Send Transact-SQL statements to Adaptive Server Enterprise.

Five tasks of an Embedded SQL program

e Send Transact-SQL statements to Adaptive Server Enterprise to define
and manipulate data. See Chapter 6, “Using Transact-SQL Statements.”

5 Handle errors and return codes.

» Handle and report errors returned by Client-Library and Adaptive Server
Enterprise using SQLCA, SQLCODE, or SQL STATE. See Chapter 8,
“Handling Errors.”

Simplified Embedded SQL program

Following is a simple Embedded SQL program. At this point, you need not
understand everything shown in the program. Its purpose isto demonstrate the
parts of an Embedded SQL program. The details are explained in subsequent
chapters.

/* Establishing a communication area - Chapter 3 */
exec sgl include sqglca;

main ()

{

/* Declaring variables - Chapter 4 */

exec sgl begin declare section;

CS CHAR user[31], passwd[31];

exec sgl end declare section;

/*Initializing error-handling routines - Chapter 8 */

exec sgl whenever sqglerror call err p();

/*Establishing Adaptive Server Enterprise connections
- Chapter 5 */

printf ("\nplease enter your userid ");

gets (user) ;

printf ("\npassword ") ;

gets (passwd) ;

exec sgl connect :user identified by :passwd;

/* Issuing Transact-SQL statements - Chapter 6 */

exec sgl update titles set price = price * 1.10;

8 Open Client

CHAPTER 2 General Information

exec sgl commit work;
/* Closing server connections - Chapter 5 */

exec sqgl disconnect all;

}

/* Error-handling routines - Chapter 8 */

err p()

{

/* Print the error code and error message */

printf ("\nError occurred: code %d.\n%s",
sglca.sglcode, sglca.sglerrm.sglerrmc) ;

General rules for Embedded SQL

The following rules apply to Embedded SQL statementsin C programs;
« Embedded SQL statements begin with these keywords:

exec sql
* Embedded SQL statements must end with a semicolon:

exec sql sqgl statement;

« Place exec sql at the beginning of the source line except when a C label
precedesit:

[Iabel:] exec sql sqgl statement;

« Embedded SQL keywords are not case sensitive. exec sql, EXEC SQL,
Exec Sql, or any other of case mix isequally valid. This manual shows
Embedded SQL keywordsin lowercase. For example:

exec sgl commit work;

Statement placement

An application program can have Embedded SQL statements wherever C
statements are valid.

Embedded SQL/C Programmers Guide 9

General rules for Embedded SQL

Comments

Identifiers

Quotation marks

Reserved words

Comments placed within Embedded SQL and C statements must follow one of
two conventions.

The Transact-SQL conventioniis:
/* comments */

The ANSI conventioniis:
-- comments

Comments placed outside SQL statements must conform to C-programming
conventions.

Identifiers are used as function or variable names within your application.

Enclose literal character stringsin Embedded SQL statements within single or
double quotation marks. If a character string begins with a double quotation
mark, end it with a double quotation mark. If a character string begins with a
single quotation mark, end it with a single quotation mark.

Do not use C, Transact-SQL, or Embedded SQL reserved words except as
intended by the languages.

You can write Embedded SQL keywordsin uppercase, lowercase, or mixed
case. This guide shows Embedded SQL keywordsin lowercase.

Variable naming conventions

10

Embedded SQL variables must conform to C naming conventions. Do not
place variable names within quotation marks. Applicable quotation marks are
inserted automatically when the variable names are replaced with actual
values.

Open Client

CHAPTER 2 General Information

While parsing the application, declarations are added for precompiler
variables. These variables begin with “_sql”. So, to avoid confusion, do not
begin variable nameswith“_sql”.

Scoping rules

Embedded SQL and precompiler-generated statements adhere to host
language scoping rules. The whenever statement and cursor names are
exceptions.

Statement batches

Asin Transact-SQL, you can batch several SQL statementsin asingle exec sql
statement. Batches are useful and more efficient when an application must
execute afixed set of Transact-SQL statements each timeit runs.

For example, some applications create temporary tablesand indexeswhen they
start up. You could send these statementsin a single batch. See the Adaptive
Server Enterprise Reference Manual for rules about statement batches.

The following restrictions apply to statement batches:

e Statementsin abatch cannot return resultsto the program. That is, abatch
can contain no select statements.

« All statementsin abatch must be valid Transact-SQL statements. You
cannot place Embedded SQL statements such as declare cursor and
prepare in a statement batch.

e Thesame rulesthat apply to Transact-SQL batches apply to Embedded
SQL batches. For example, you cannot put ause database statementin an
Embedded SQL batch.

Embedded SQL constructs

Table 2-1 displays valid constructs in Embedded SQL statements:
Table 2-1: Embedded SQL constructs

begin declare section dump database

begin tran dump tran

Embedded SQL/C Programmers Guide 11

Embedded SQL constructs

12

begin work

end declare section

checkpoint

exec procedure_name

close cursor_name

execute name

commit tran execute immediate
commit work fetch cursor_name
connect grant

create database

include sglca or include filename

create default

insert

create table

open CUrsor_name

create index

prepare Statement_name

create unique index

revoke

create clustered index

rollback tran

create nonclustered index

rollback work

create unique clustered index select
create unique nonclustered index set
create proc truncate
create rule update
create trigger use

create view

whenever condition action

declare cursor

delete

disconnect

drop table | default | index | proc | rule |

trigger | view

Open Client

CHAPTER 3

Communicating with Adaptive
Server Enterprise

This chapter explains how to enable an application program to receive
status information from Adaptive Server Enterprise.

Topic Page
Scoping rules: SQLCA, SQLCODE, and SQLSTATE 14
Declaring SQLCA 14
Declaring SQLCODE as a standalone area 16
Using SQLSTATE 17

To create a communication path and declare system variables to be used
in communications from Adaptive Server Enterprise to the application,
you must create one of three entities:

e A SQL Communication Area (SQLCA), which includes SQL CODE
¢ A standalone SQL CODE long integer
e A SQLSTATE character array

SQLCODE, SQLCA, and SQLSTATE are variablesto be used in
communication from Adaptive Server Enterprise to the application.

After Adaptive Server Enterprise executes each Embedded SQL
statement, it stores return codesin SQLCA, SQLCODE, or SQLSTATE.
An application program can access the variablesto determine whether the
executed SQL statement succeeded or failed.

Note The precompiler automatically sets SQLCA, SQLCODE, and
SQLSTATE variables, which are critical for runtime access to the
database. You need not initialize or modify them.

For details on detecting and handling errors, multiple error messages, and
other return codes, see Chapter 8, “Handling Errors.”

Embedded SQL/C Programmers Guide 13

Scoping rules: SQLCA, SQLCODE, and SQLSTATE

Scoping rules: SQLCA, SQLCODE, and SQLSTATE

You can declare SQLCA anywhere in the application program wherea C
variable can be declared. The scope of the structure follows C scoping rules.

If you declare SQLCA, SQLCODE, or SQLSTATE within your file, each
variable must be in scope for all executable Embedded SQL statementsin the
file. The precompiler generates code to set each of these status variables for
each Embedded SQL statement. So, if the variables are not in scope, the
generated code will not compile.

If you do not declare SQL CA, SQLCODE, or SQL STATE withinthefilebeing
passed to the precompiler, you must declare SQL CODE within a referenced
file. The precompiler assumes adeclaration of SQL CODE, and generates code
to this effect.

Declaring SQLCA

Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
this version only fully supports SQLCODE. A future version will support
SQLSTATE.

The syntax for declaring SQLCA is:
exec sql include sqlca;

You can use the Embedded SQL include statement to include other filesin your
application the same way you would use the C preprocessor #include
command. You can also set a precompiler command option to specify an
include file directory. At precompile time, the precompiler searches the path
specified in the C compile command. The precompiler uses the include file
path to search for thisfile. It opens and reads the included file as if were part
of the main file. If the included file cannot be found, the precompile fails.

Multiple SQLCAs

You may have multiple SQL CAs, but each must follow C scoping rulesfor host
variables. Each SQL CA need not be in a separate scope.

14 Open Client

CHAPTER 3 Communicating with Adaptive Server Enterprise

SQLCA variables

When the precompiler encounters the include sglca statement, it inserts the
SQL CA structure declaration into the application program. SQLCA isadata
structure containing precompiler-determined system variables, each of which
can be accessed independently. Your application program should never directly
alter these variables.

SQL CA variables pass information to your application program about the
status of the most recently executed Embedded SQL statement.

Table 3-1 describes the SQL CA variables that hold status information, return
codes, error codes, and error messages generated by Adaptive Server

Enterprise:
Table 3-1: Adaptive Server Enterprise SQLCA variables
Variable Datatype Description
sglcaid char Text string that contains “sglca’.
sglcabe long Length of SQLCA.
sglcode long Contains the return code of the most

recently executed SQL statement.

See SQLCODE values for return code

definitions.
sglwarn[0] to char Warning flags. Each flag indicates
sglwarn[7] whether awarning has been issued: a
‘W’ for warning, or ablank spacefor no
warning.

Chapter 8 describes the sglwarn flags.

sglerrm.sglerrme char Error message.

[]

sglerrm.sglerrml long Error message length.

sglerrp char Procedure that detected error/warning.
sglerrd[6] long Details of error/warning. [2] isthe

number of rows affected.

Accessing SQLCA variables

SQL CA variables are members of a C structure, sqlca, that is declared by the
include sglca statement. To access SQL CA variables, use the C structure
member operator (.), as shown in the following example:

Embedded SQL/C Programmers Guide 15

Declaring SQLCODE as a standalone area

if (sglca.sglwarn[l] == 'W’)

{

printf ("\nData truncated”) ;
return;

}

You can also pass the address of the sqlca structure to a function, then access
the SQL CA variables within that function with the -> operator. The following
exampl e shows a function that works this way:

warning (p)
struct sqglca *p;

{

if (p->sqlwarn([3] == 'W’)

{

printf ("\nIncorrect number of variables in
fetch.\n") ;

}

return;

}

SQL CA variables are useful for determining whether an Embedded SQL
statement executed successfully. The other SQLCA variableslisted in the
previous section provide additional information about errors and return codes
to help in debugging as well as the normal processing of your application.

SQLCODE within SQLCA

The application should test sglcode after each statement executes, because
Adaptive Server Enterprise updates it after each execution. Asarule, use the
whenever statement, described in Chapter 8, “Handling Errors.” to perform
this task.

Declaring SQLCODE as a standalone area

Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA,
thisversion only fully supports SQL CODE. A future version will fully support
SQLSTATE.

16 Open Client

CHAPTER 3 Communicating with Adaptive Server Enterprise

Asan dternative to creating a SQLCA, use SQL CODE independently. It
contains the return code of the most recently executed SQL statement. The
benefit of declaring SQLCODE as a standalone areais that it executes code
faster. If you have no need to review the other information that SQL CA holds
and are solely interested in return codes, consider using SQL CODE.

Despite SQL CODE's faster execution speed, SQLSTATE is preferred over
SQL CODE, which is supported for its compatibility with earlier versions of
Embedded SQL.

Note Inafuture version, you will be advised to use SQLSTATE instead of
SQL CODE for receiving status results.

Following is an example of declaring SQLCODE as a standalone area:

long SQLCODE;
exec sgl open cursor pub id;
while (SQLCODE == 0)

{

exec sqgl fetch pub id into :pub name;

For details on debugging any errors SQL CODE indicates, see Chapter 8,
“Handling Errors.”

Table 3-2 displays SQLCODE values:
Table 3-2: SQLCODE values

Value Description
0 Statement executed successfully.
-n Error occurred. See Server or Client-Library error

messages.”-n" representsthe number associated with
the error or exception.

+100 No dataexists, norowsleft after fetch, or no rowsmet
search condition for update, delete, or insert.

Using SQLSTATE

Warning! Although SQLSTATE is preferred over SQLCODE and SQLCA
features, this version only fully supports SQLCODE. A future version will
fully support both SQLCA and SQL STATE.

Embedded SQL/C Programmers Guide 17

Summary

SQL STATE is a status parameter. Its codes indicate the status of the most
recently attempted procedure—either the procedure completed successfully or
an error occurred during the execution of the procedure.

SQL STATE is a character-string parameter whose exceptions values are
described in Table 3-3:

Table 3-3: SQLSTATE values

Value Description

00X XX Successful execution

01XXX Warning

02X XX No data exists; no rows affected
Any other value Error

Obtaining SQLSTATE codes and error messages

Summary

18

SQL STATE messages can be informational, warnings, severe, or fatal.
Adaptive Server Enterprise and Open Client Client-Library generate the
majority of SQL STATE messages. See the appropriate documentation for a
complete list of SQLSTATE codes and error messages.

See Appendix A, “ Precompiler Warning and Error Messages,” for the table of
SQL STATE messages that the precompiler can generate.

This chapter explained SQLCA, SQLCODE, and SQLSTATE. After a
statement executes, Adaptive Server Enterprise stores return codes and
information in SQL CA variables, in a standalone SQLCODE area, or in
SQLSTATE. Thesereturn codesindicate the failure or success of the statement
that most recently executed.

Open Client

CHAPTER 4 Using Variables

This chapter details the following two types of variables that pass data

between your application and Adaptive Server Enterprise:

e Host variables, which are C variables you use in Embedded SQL
statementsto hold datathat is retrieved from and sent to Adaptive

Server Enterprise

e Indicator variables, which you associate with host variables to

indicate null data and data truncation

Topic Page
Declaring variables 19
Using host variables 27
Using indicator variables 29
Using arrays 33
Scoping rules 34
Datatypes and Adaptive Server Enterprise 34

Declaring variables

Asdiscussed in Chapter 3, the precompiler automatically sets the system
variables when you include SQLCA, SQLCODE, or SQLSTATE in the
application program. However, you must explicitly declare host and
indicator variablesin a declare section before using them in Embedded

SQL statements.

Warning! The precompiler generates some variables, all of which begin
with “_sgl”. Do not begin your variableswith “_sgl”, or you may receive

an error message or unreliable data.

Embedded SQL/C Programmers Guide

19

Declaring variables

Using datatypes

20

The precompiler ignores macros and #include statementsin a declare section.
It processes include statements asif the contents of the included file were
copied directly into thefile being precompiled. The syntax for adeclare section
with aninclude statement is:

exec sgl begin declare section;
exec sgl include “filename”;

exec sgl end declare section;

Host variable declarations must conform to the C rules for variable
declarations. You need not declare all variablesin one declare section, since
you can have an unlimited number of declare sectionsin a program.

When you declare variables, you must also specify the datatype. See
“Datatypes and Adaptive Server Enterprise” on page 34 for valid datatypes.
Alternatively, use the Client-Library typedefs, such as CS CHAR, which are
declared in the cspublic.h file, in declare sections.

The following example shows two character strings defined in a declare
section.

exec sqgl begin declare section;

CS_CHAR name [20] ;

CS_CHAR type [3];

exec sgl end declare section;

When declaring ahost variable, you can dsoinitializeit but only if it isascalar
variable, such as this one:

exec sgl begin declare section;
int total = 0;
exec sgl end declare section;

You cannot initialize an array in its declaration.

In Embedded SQL, you can usethe C datatypeschar, int, float, double, and void.
You can use the keywords const and volatile, though not with structures. You
can use the keywords unsigned, long, and short. You can use storage class
specifiers: auto, extern, register, and static.

Note Do not use long int when building 64-bit applications.

exec sgl begin declare section;

Open Client

CHAPTER 4 Using Variables

register int frequently used host variable;
extern char
shared_string host_variable [STRING_ SIZE];

/*
* %

* %

* %

*/

The const restriction is not enforced by
the precompiler; only the compiler makes use
of it.

const float
input_only host variable = 3.1415926;

/*
* %
* %
* %

* %

*/

Be careful. You can declare unsigned
integers, but if you select a negative
number into one, you will get an incorrect
result and no error message.

unsigned long int unsigned host variable;
exec sqgl end declare section;

You can declare pointersin the declare section, but you cannot use a pointer as
ahost variable in an Embedded SQL statement.

exec sgl begin declare section;
int number;

/*

** Tt's convenient to declare this here,
** but we won't be using it as a host wvariable.

*/

int *next number;
exec sgl end declare section;

You can use the following Sybase datatypes:

CS _BINARY, CS_BIT, CS_BIGINT, CS_ BOOL, CS_CHAR, CS _DATE,
CS DATETIME, CS_DATETIME4, CS DECIMAL, CS_FLOAT,

CS REAL, CS IMAGE, CS_INT,CS_MONEY, CS_ MONEY4,
CS_NUMERIC, CS_RETCODE, CS_ SMALLINT, CS_TEXT, CS_TIME
CS TINYINT, CS_UBIGINT, CS_UINT, CS_UNICHAR, CS_UNITEXT,
CS _USMALLINT, CS_VOID, CS_XML.

CS _CHAR istreated differently from char; CS_CHAR is null-terminated but
not blank-padded; char isnull-terminated and blank-padded to the length of the

array.
/*

** Your #define for the array size doesn't
** have to be in the declare section,
**x though it would be legal if it were.

Embedded SQL/C Programmers Guide

21

Declaring variables

*/
#define MAX NAME 40;

exec sgl begin declare section;
CS_MONEY salary;
CS_CHAR print this[MAX NAME] ;
char print this also[MAX NAME] ;
exec sgl end declare section;

exec sgl select salary into :salary from salaries
where employee ID = '01234';

/*

** The CS MONEY type is not directly printable.

** Here's an easy way to do a conversion.

*/

exec sqgl select :salary into :print this;

/*

** This will not be blank-padded.

*/

printf ("Salary for employee 01234 is %s.\n",
print this);

/*

** This will be blank-padded.

*/

exec sgl select :salary into :print this also;

printf ("Salary for employee 01234 is %s.\n",
print_this also);

Using type definitions

22

You can use atype definition (typedef) within a declare section to declare
variables. For example:

exec sgl begin declare section;

/*

** The typedef and the use of the typedef
** can be in separate declare sections

**x 1f the typedef comes first.

** The typedef can even be in an “exec

** ggql include file”.

*/

typedef int STORE ID;

Open Client

CHAPTER 4 Using Variables

STORE_ID current ID;
exec sgl end declare section;

exec sqgl select store ID into :current_ID
from sales_table where
store name = 'Furniture Kingdom';

Type Definitions and Limits

Table 4-1 displays valid type definitions in Embedded SQL :
Table 4-1: Valid typedefs

Typedef Description

CS BINARY Binary type

CS BIT Bit type

CS CHAR Character type

CS DATE Date type

CS TIME Timetype

CS DATETIME Datetime type

CS FLT8 8-bytefloat type
SQLINDICATOR Used for indicator variables (2-byte integer)
CS INT 4-byte integer

CS BIGINT 8-byte integer

CS MONEY Money type

CS SMALLINT 2-byteinteger

CS TINYINT 1-byte unsigned integer
CS SMALLINT 2-byte integer

CS USMALLINT 2-byte unsigned integer
CS UINT 4-byte unsigned integer
CS UBIGINT 8-byte unsigned integer
CS TEXT Text type

CS IMAGE Image type

CS _UNICHAR UTF16 Unicode character type
CS UNITEXT UTF16 Unicode text type
CS XML xml data

All basic ANSI type definitions are aso valid in Embedded SQL.

Implementation limits

The nesting depth for exec sql include filename limit is 32.

Embedded SQL/C Programmers Guide

23

Declaring variables

Using #define

You can use #define values in a declare section to dimension arrays and
initialize variables. When you use #define in ahost variable declaration, place
it before the host variable declaration that uses it. For example, the following
two examples are valid:

#define PLEN 26
CS_CHAR name [PLEN] ;

and:

exec sgl begin declare section;
#define PLEN 26
exec sgl end declare section;

exec sgl begin declare section;
CS_CHAR name [PLEN] ;
exec sgl end declare section;

You can use #define to declare symbolic names. Make the declaration before
using it in the application. For example, to define “10” symbolically, use this
nomenclature:

exec sgl begin declare section;
#define count 1 10
CS_CHAR varl[count 1];
exec sgl end declare section;

Declaring an array

24

The precompiler supports complex definitions, which are structuresand arrays.
You may nest structures, but you cannot have an array of structures.

The precompiler recognizes single-dimensional arrays of all datatypes.

The precompiler also recognizes double-dimensional arrays of characters, as
the following example demonstrates:

#define maxrows 25

int numsales [maxrows] ;
exec sqgl begin declare section;

#define DATELEN 30

#define DAYS PER WEEK 7

CS_CHAR days_of the week [DAYS PER WEEK] [DATELEN+1];
exec sgl end declare section;

Open Client

CHAPTER 4 Using Variables

You can declare arrays of any datatype. However, to select into an array
element, its datatype must be scalar—integer, character, floating point, or
pointer. You can select into elements of any scalar array, even an array of
structures, as shown:

exec sgl begin declare section;
int sales totals[100];
struct sales record{
int total_sales;
char store name[40] ;
} sales record[100];
exec sgl end declare section;

/*

** Tf there are fewer than 100 stores,

** this will get the sales totals for all

** of them. If there are more than

*% 100, it will cause an error at runtime.

*/

exec sqgl select total sales into :sales totals
from sales_table;

/*

** This gets the sales for just one store.

*/

exec sgl select total sales into :sales totals[0]

from sales table where store ID = 'xyz';

/*

** This gets two pieces of information on a single *=*
store.

*/

exec sqgl select total sales, store name
into :sales_records[i]
from sales_table where store ID = 'abc';

Declaring character arrays

A character array can be of type CS_CHAR or char[]; however, the rules
governing these two datatypes differ. When an array of type charf] is used as
input, the precompiler checksthat the array terminateswith anull character. If
thearray isnot null terminated, aprecompiler runtime function returnsan error.
In contrast, an array of type CS_CHAR is not checked for null termination.
Instead, the length of the input continues up to the null character, if present, or
to the declared length of the array—whichever comesfirst.

Embedded SQL/C Programmers Guide 25

Declaring variables

When used as output, arrays of type char(] are padded with space characters
(blank-padded) and null terminated. Arrays of type CS_CHAR are not blank
padded, only null terminated.

A character array is scalar, because it represents asingle string. Thus, you can
select into an array of characters and get back just a single string. Also, unlike
arrays of other datatypes, an array of characters can be a host input variable.

See “Using arrays’ on page 33.

Declaring unions and structures

You can declare unions and structures, either directly or by using atype
definition (typedef). You can use an element of a union as a host variable, but
not the union as awhole. In contrast, a host variable can be either an entire
structure or just one of the structure’'s elements. The following example
declares aunion and a structure:
exec sgl begin declare section;
typedef int PAYMENT METHOD;
PAYMENT METHOD method;
union salary or percentage {
CS _MONEY salary;
CS_NUMERIC percentage;
} amount;
struct employee record {
char first name[30];
char last name[30];
char employee ID[30];
} this employee;
char *employee of the month ID = "01234567";
exec sgl end declare section;

exec sql select first name, last name, employee ID
into :this employee
from employee table
where employee ID = :employee of the month ID;
exec sgl select payment type into :method
from remuneration table where employee ID =
:this employee.employee ID;
switch (method) ({
case SALARIED:
exec sgl select salary into
:amount.salary
from remuneration table

26 Open Client

CHAPTER 4 Using Variables

where employee ID =
this employee.employee ID;
break;

case VOLUNTEER:
exec sgl select 0 into
:amount.salary
break;

case COMMISSION:
exec sgl select commission percentage into
:amount . percentage
from remuneration table
where employee ID =
this employee.employee ID;
break;

Using host variables

Host variableslet you transfer val ues between Adaptive Server Enterprise and
the application program.

Declare the host variable within the application program’s Embedded SQL
declare section. Only then can you use the variable in SQL statements.

When you use the variable within an Embedded SQL statement, prefix the host
variablewith acolon. When you use the variable el sewhere in the program, do
not use a colon. When you use several host variables successively in an
Embedded SQL statement, separate them with commas or follow the grammar
rules of the SQL statement.

The following example demonstrates how to use avariable. user isdefined in
adeclare section as acharacter variable. Then, it isused asahost variablein a
select statement:

exec sgl begin declare section;
CS CHAR user([32];
exec sgl end declare section;

exec sqgl select user name() into :user;
printf ("You are logged in as %s.\n", user);

There are four ways to use host variables. Use them as:

e Input variables for SQL statements and procedures

Embedded SQL/C Programmers Guide 27

Using host variables

* Result variables
e Statusvariablesfrom callsto SQL procedures
e Output variables for SQL statements and procedures

Declare al host variables as described in “Declaring variables’ on page 19,
regardless of their function. Following areinstructionsfor using host variables.

Host input variables

These variables pass information to Adaptive Server Enterprise. The
application program assigns valuesto them. They hold dataused in executable
statements such as stored procedures, select statements with where clauses,
insert statements with values clauses, and update statements with set clauses.

The following example uses the variables id and publisher as input variables:

exec sgl begin declare section;
CS_CHAR id[7];
CS_CHAR publisher[5];

exec sgl end declare section;

exec sgl delete from titles where title id = :id;

exec sgl update titles set pub id = :publisher
where title id = :id;

Host result variables
These variables receive the results of select and fetch statements.
The following example uses the variable id asaresult variable:

exec sgl begin declare section;
CS_CHAR id[5];
exec sgl end declare section;

exec sql select title_id into :id from titles
where pub_id = "0736" and type = "business";

28 Open Client

CHAPTER 4 Using Variables

Host status variables

These variables receive the return status values of stored procedures. Status

variables indicate whether the stored procedure completed successfully or the
reasons it failed.

Declare status variables as 2-byte integers (CS_SMALLINT).

The following example uses the variable retcode as a status variable;

exec sgl begin declare section;
CS SMALLINT retcode;
exec sgl end declare section;

exec sqgl begin transaction;
exec sqgl exec :retcode = update proc;
if (retcode != 0)

{
}

exec sqgl rollback transaction;

Host output variables

These variables pass data from stored procedures to the application program.
Use host output variables when stored procedures return the value of
parameters declared as out.

The following example uses the variables par 1 and par2 as output variables:

exec sgl exec a_proc :parl out, :par2 out;

Using indicator variables

You can associate indicator variables with host variables to indicate when a
database value is null. Use a space and, optionally, the indicator keyword, to
separate each indicator variable from the host variable with which it is
associated. Eachindicator variable mustimmediately follow itshost variable.

Without indicator variables, Embedded SQL cannot indicate null values.

Embedded SQL/C Programmers Guide 29

Using indicator variables

Indicator variables and server restrictions

Embedded SQL is a generic interface that can run on avariety of servers,
including Adaptive Server Enterprise.

Becauseit isgeneric, Embedded SQL doesnot enforce or reflect any particular
server’srestrictions.

When writing an Embedded SQL application, keep the application’s ultimate
target server inmind. If you are unsure about what islegal on aserver and what
is not, consult your server documentation.

Using host variables with indicator variables

Declare host and indicator variablesin a declare section before using them
anywhere in an application program containing Embedded SQL statements.
Declareindicator variables as 2-byte integers (short or CS_SMALLINT) ina
declare section before using them.

Prefix indicator variables with a colon when using them in an Embedded SQL
Statement.

The syntax for associating an indicator variable with a host variable is:
:host variable [[indicator] :indicator variable]

The association between an indicator and host variable lasts only for the
duration of astatement— that is, for the duration of one exec sql statement, or
between open and close cursor statements. A valueis assigned to the indicator
variable at the same time avalue is assigned to the host variable.

Adaptive Server Enterprise sets the indicator variable only when you assign a
valuetothe host variable. Therefore, you can declarean indicator variable once
and reuse it with different host variables in different statements.

You can use indicator variables with output, result, and input variables. When
used with output and result variables, Embedded SQL sets the variable to
indicate the null status of the associated host variable. When used with input
variables, you set the value of the indicator variable to show the null status of
the input variable before submitting it to Adaptive Server Enterprise.

Using indicator variables with host output and result variables

When you associate an indicator variable with an output or result variable,
Client-Library automatically setsit to one of the following valuesin Table 4-2:

30 Open Client

CHAPTER 4 Using Variables

Table 4-2: Indicator variable values when used with output or result

variable
Value Meaning
-1 The corresponding database column in Adaptive Server
Enterprise contains anull value.
0 A non-null value was assigned to the host variable.
>0 An overflow occurred while data was being converted for the

host variable. The host variable contains truncated data. The
positive number represents the length, in bytes, of the value
before it was truncated.

The following example demonstrates associating the indicator variable indic
with the result variableid:

exec sgl begin declare section;

CS_CHAR id[e];
CS_SMALLINT indic;
CS_CHAR pub name [41] ;

exec sgl end declare section;

exec sqgl select pub id into :id indicator :indic
from titles where title
like "%Stress%";

if (indic == -1)

{
}

else

{

printf ("\npub_id is null");

exec sqgl select pub name into :pub name
from publishers where pub id = :id;
printf ("\nPublisher: %s", pub name) ;

Using indicator variables with host input variables

When you associate an indicator variable with an input variable, you must
explicitly set the indicator variable, using the valuesin Table 4-3 as aguide.

Embedded SQL/C Programmers Guide 31

Using indicator variables

Table 4-3: Indicator variable values used with input variable

Value Meaning
-1 Treat the corresponding input as a null value.
0 Assign the value of the host variable to the column.

You must supply host language code to test for anull input value and set the
indicator variableto -1. Thisinforms Client-Library of anull value. Whenyou
set the indicator variable to -1, null is used regardless of the host variable’'s
actual value.

Thefollowing example demonstrates associating an indicator variable with an
input variable. The database royalty column is set to anull value becauseindic
is set to -1. Changing the value of indic changes the value of royalty.

exec sqgl begin declare section;
CS_SMALLINT indic;
CS_INT royalty;
exec sgl end declare section;

indic = -1;
exec sgl update titles set royalty = :royalty
:indic where pub_id = "0736";

Host variable conventions

32

A host variable name must conform to C naming conventions.

You can use a host variable in an Embedded SQL statement wherever a
Transact-SQL literal can be used in a Transact-SQL statement at the same
location.

A host variable must conform to the valid precompiler datatypes. The datatype
of ahost variable must be compatible with the datatype of the database column
valuesreturned. See Table 4-5 on page 37 and Table 4-6 on page 38 for details.
You cannot use host language reserved words and Embedded SQL keywords

as variable names.

A host variable cannot represent Embedded SQL keywords or database
objects, except asspecified in dynamic SQL . See Chapter 7, “Using Dynamic
SQL.”

When a host variable represents a character string in a SQL statement, do not
place it within quotes.

Open Client

CHAPTER 4 Using Variables

The following example is invalid because the precompiler inserts quotes
around values when necessary. You should not type the quotes.

strcpy (p_1id, "12345");
exec sqgl select pub id into :p_id from publishers
where pub _id like “:p_ id”;

The following exampleis valid:
strcpy (p_id, “12345");
exec sqgl select pub id into :p_id from publishers
where pub_ id like :p id;

Using arrays

An array isagroup of related pieces of data associated with one variable. You
can use arrays as output variables for the into clause of select and fetch
statements. For example:

exec sgl begin declare section;
CS _CHAR au_array [100] [30];
exec sgl end declare section;
exec sql

select au_lname

into :au_array

from authors;

Note You can fetch a single item anywhere into an array. However, you can
fetch multiple rows only into the beginning of an array.

For details on using arrays with select and fetch into, see* Selecting multiple
rows using arrays’ on page 49.

Multiple arrays

When you use multiple arrays within asingle SQL statement, they should be
the same size. Otherwise, you will receive an error message.

Embedded SQL/C Programmers Guide 33

Scoping rules

Scoping rules

The precompiler supportsthe C programming rules for variable scoping. Host
variables defined within nested programs can use the external clause plus the
variable name. For example:

FILE 1:
CS CHAR username [31]
main ()

{

subl () ;
printf (“%$s\n”, username) ;

}

FILE 2:
void subl ()

{

exec sql begin declare section;
extern char username [31];

exec sgl end declare section;
exec sgl select USER() into :username;
return;

Datatypes and Adaptive Server Enterprise

Host variable datatypes must be compatible with the datatypes of the
corresponding database columns. So, before writing your application program,
check the datatypes of the database columns. To ensure that your host variables
are compatible with the Adaptive Server Enterprise datatypes, use the Sybase-
supplied type definitions.

Table 4-4 shows and briefly describes the equivalent datatypes. For detailed
descriptions of each Adaptive Server Enterprise datatype, see the Adaptive
Server Enterprise Reference Manual.

34 Open Client

CHAPTER 4 Using Variables

Table 4-4: Comparison of C and Adaptive Server Enterprise-compatible

datatypes
Adaptive
Server
Sybase-supplied Enterprise
typedef Description C datatype datatype
CS BIGINT 8-byte integer type long long bigint
CS BINARY Binary type unsigned char binary,
varbinary
CS BIT Bit type unsigned char boolean
CS CHAR Character type char[n] char, varchar
CS DATE 4-byte date type None date
CS TIME 4-bytetime type None time
CS DATETIME 8-byte datetimetype None datetime
CS DATETIME4 4-byte datetimetype None smalldatetime
CS BIGDATETIME 8-byte binary type None bigdatetime
CS BIGTIME 8-byte binary type None bigtime
CS TINYINT 1-byte unsigned unsigned char tinyint
integer type
CS SMALLINT 2-byteinteger type short smallint
CS INT 4-byte integer type long int
CS DECIMAL Decimal type None decimal
CS NUMERIC Numeric type None numeric
CS FLOAT 8-byte float type double float
CS REAL 4-byte float type float real
CS MONEY 8-byte money type None money
CS MONEY4 4-byte money type None smallmoney
CS TEXT Text type unsigned char text
-y option required
CS_ IMAGE Image type unsigned char image
-y option required
CS UBIGINT 8-byte unsigned unsigned long ubigint
integer type long
CS UINT 4-byte unsigned unsigned int uint
integer type
CS UNICHAR 2-byte UTF-16 unsigned short unichar

Unicode character
type

Embedded SQL/C Programmers Guide

35

Datatypes and Adaptive Server Enterprise

Adaptive
Server
Sybase-supplied Enterprise
typedef Description C datatype datatype
CS UNITEXT 2-byte UTF-16 unsigned short unitext
Unicode text
type
CS USMALLINT 2-byte unsigned unsigned short usmallint
integer type
CS XML XML type unsigned char xml

Converting datatypes

The precompiler automatically compares the datatypes of host variables with
the datatypes of table columnsin Adaptive Server Enterprise. If the Adaptive
Server Enterprise datatype and the host language datatype are compatible but
not identical, the precompiler converts one type to the other. Datatypes are
compatible if the precompiler can convert the data from one type to the other.
If the datatypes are incompatible, a conversion error occurs at runtime and
sglcode is set to <0.

Be careful when converting alonger datatype into a shorter one, such as a
4-byte into 2-byte, because there is always a possibility of truncating data. If a
truncation occurs, sglwarnl is set to “W.”

Converting datatypes for result variables

36

Table 4-5 shows which data conversions are valid for result variables. A bullet
indicates that conversion is possible, but be aware that certain types of errors
can result if you are not careful when choosing host variable datatypes.

Open Client

CHAPTER 4 Using Variables

Table 4-5: Datatype conversions for result variables
To: Sybase datatype definition

—
= % = x S
From: E S 2 oz, < > . :
Maptve 2 S Zcto02F5f265Ek5 8
Server EF$5>522Z3moaxo>53=0Fa0F%
Enterprise) ' ' o' 0 0 0 B D D D D B B B 0
datatype ©O O O O O O O O O O O O O O O ©O
char o | o [o |o [o o |0 e |6 |o |o@ o | o | o
unichar
varchar
bit o | o | o | o [o | o | o e |o |o |@ o | o
binary o | o o | o | o |o | o |o |o |e |e o | o
tinyint o | o | o [o | o |o |0 o |o |o | o | o
smallint
int
bigint o | o | o [o | o |o |0 o |o |o | o | o
ubigint o | o | o [o | o |o |0 o |o |o | o | o
uint o | o | o [o o o o e |e |o|e e | o
usmallint
float o | o [o |o [o o |0 e |6 |o |o@ o | o
money e o oo e o e]ee]e]e o |
date o | o o
time o | e o
datetime o | o .
decimal o | o | o |o | o o |6 e |6 o |e o | e
numeric o | o | o |0 | o o |6 o |0 |eo |@ o | o
text
xml o | o [o |o [o o |0 e |6 |o |o@ o | o

Converting datatypes for input variables

Table 4-6 shows valid data conversions for input variables. A bullet indicates
that conversionispossible; an"X" indicatesthat conversionisrequired. Errors,
including truncation, can result if you choose nonconvertible host variable
datatypes.

Embedded SQL/C Programmers Guide 37

Datatypes and Adaptive Server Enterprise

38

Table 4-6: Datatype conversions for input variables

From:
C datatype

: Adaptive Server Enterprise datatype

tinyint

bit

smallint

usmallint

int

uint

bigint

ubigint

float

money

date

time

datetime

decimal

numeric

text
xml

unsigned char

unichar

short int

long int

bigint

ubigint

uint

usmallint

double float

X| X| X X| X| X|X| X| X[char

X X| X | X| X| X[X]| X| X[unichar

char

money

date

time

datetime

x

x

text

x

x

xml

X —indicates that an explicit conversion is required.

Open Client

CHAPTER 5 Connecting to Adaptive Server
Enterprise

This chapter explains how to connect an Embedded SQL program to
Adaptive Server Enterprise and describes how to specify servers, user
names, and passwords.

Topic Page
Connecting to a server 39
Changing the current connection 41
Establishing multiple connections 41
Disconnecting from a server 44

Connecting to a server

A connection enables an Embedded SQL program to access a database
and perform SQL operations.

Use the connect statement to establish a connection between an
application program and Adaptive Server Enterprise. If an application
uses both C and COBOL languages, the first connect statement must be
issued fromaCOBOL program. See Open Client Embedded SQL/COBOL
Programmers Guide for information.

The syntax for the connect statement is:
exec sgl connect :user [identified by :password]
[at :connection name] [using :server]

Each of the following sections describes one of the connect statement’s
arguments. Only the user argument is required for the connect statement.
The other arguments are optional.

Embedded SQL/C Programmers Guide 39

Connecting to a server

user

password

user isahost variable or quoted string that represents an Adaptive Server
Enterprise user name. The user name must be valid for the server specified.

password is a host variable or quoted string that represents the password
associated with the specified user name. This argument is necessary only if a
password is required to access Adaptive Server Enterprise. If the password
argument is null, the user does not need to supply a password.

connection_name

server

40

connection_name uniquely identifies the Adaptive Server Enterprise
connection. It can be a quoted literal. You can create an unlimited number of
connectionsin an application program, one of which can be unnamed.
connection_name has a maximum size of 255 characters.

When you use connection_name in aconnect statement, all subsequent
Embedded SQL statementsthat specify the same connection automatically use
the server indicated in the connect statement. If the connect statement specifies
no server, the default server is used. See the Open Client and Open Server
Programmers Supplement for details on how the default server is determined.

Note To changethe current server connection, usethe set connection statement
described in “ Changing the current connection” on page 41.

An Embedded SQL statement should only reference a connection_name
specifiedinaconnect statement. At least oneconnect isrequired for each server
that the application program uses.

server isahost variable or quoted string that represents a server name. server
must be a character string that uniquely and completely identifies a server.

Open Client

CHAPTER 5 Connecting to Adaptive Server Enterprise

connect example

The following example connects to the server SY BASE using the password
“passes.”

exec sgl begin declare section;
CS_CHAR user|[16];

CS_CHAR passwd[1l6] ;

CS CHAR server [BUFSIZ];

exec sgl end declare section;

strcpy (server, "SYBASE") ;
strcpy (passwd, "passes") ;
strcpy (user, “my_ id”);

exec sqgl connect :user identified by :passwd using
:server;

Changing the current connection

Use the set connection statement to change the current connection. The
statement’s syntax is as follows:;

exec sqgl set connection {connection name | default}
where default is the unnamed connection, if any.
The following example changes the current connection:

exec sgl connect "ME" at connectl using "SERVER1";
exec sgl connect "ME" at connect2 using "SERVER2";
exec sqgl set connection connectl;

exec sqgl select user id() into :myid;

Establishing multiple connections

Some Embedded SQL applications require or benefit from having more than
one active Adaptive Server Enterprise connection. For example:

e An application that requires multiple Adaptive Server Enterprise login
names can have a connection for each login account.

Embedded SQL/C Programmers Guide 41

Establishing multiple connections

e By connecting to more than one server, an application can simultaneously
access data stored on different servers.

A single application can have multiple connections to asingle server or
multiple connections to different servers. Use the connect statement’s
atconnection_name clause to name additional connections for an application.

If you open a connection and then another new named or unnamed connection,
the new connection is the current connection.

Note If you are generating stored procedures with the precompiler for
appropriate SQL statements, then for each Embedded SQL file, the
precompiler generatesasinglefilefor al stored procedureson all servers. You
can load thisfile into the appropriate server(s). Although the server(s) will
report warnings and errors about being unabl e to read the procedures intended
for other servers, ignore them. The stored procedures appropriate for each
server will load properly on that server. Be sure to load the stored procedures
on al applicable servers or your queriesfail.

Naming a connection

Table 5-1 shows how a connection is named:

Table 5-1: How a connection is named

If this clause is But

used without Then, the connection name is
at connection_name connection_name

using server_name at server_name

None Actual name of the “DEFAULT”

connection

Invalid statements with the at clause

42

The following statements are invalid with the at clause:
* connect

* begin declare section

* end declare section

U include file

Open Client

CHAPTER 5 Connecting to Adaptive Server Enterprise

* include sgica
* set connection

e whenever

Using Adaptive Server Enterprise connections

Specify aconnection name for any Embedded SQL statement that you want to
execute on a connection other than the default unnamed connection. If your
application program uses only one connection, you can leave the connection
unnamed. Then, you do not need to use the at clause.

The syntax for using multiple connectionsis:
exec sgl [at connection name] sgl statement;

where sql_statement is a Transact-SQL statement.

The following example shows how two connections can be established to
different servers and used in consecutive statements:

exec sql begin declare section;
CS_CHAR user|[16];

CS_CHAR passwd[1l6] ;

CS_CHAR name;

CS _INT value, test;

CS CHAR server 1[BUFSIZ];

CS CHAR server 2 [BUFSIZ];

exec sgl end declare section;

strcpy (server 1, "sybasel");
strcpy (server 2, "sybase2");
strcpy (user, "my id");

strcpy (passwd, "mypass");

exec sqgl connect :user identified by :passwd
at connection 2 using :server 2;

exec sqgl connect :user identified by :passwd using
:server_1;

/* This statement uses the current "server 1"

connection */
exec sqgl select royalty into :value from authors

Embedded SQL/C Programmers Guide 43

Disconnecting from a server

where author = :name;

if (value == test)

/* This statement uses connection "connection 2" */
exec sgl at connection 2 update authors

set column = :value*2

where author = :name;

}

Disconnecting from a server

44

The connections your application program establishes remain open until you
explicitly closethem or your program terminates. Use the disconnect statement
to close a connection between the application program and Adaptive Server
Enterprise.

The statement’s syntax is as follows:

exec sql disconnect {connection name | current | DEFAULT
| all}

where:

» current specifies the current connection.

e DEFAULT specifies the unnamed default connection.

e all specifiesall connections currently in use.

The disconnect statement performs the following, in order:

Rolls back the current transactions ignoring any established savepoints.
Closes the connection.

Drops al temporary objects, such as tables.

Closes all open cursors.

Releases |ocks established for the current transactions.

o o1~ W N B

Terminates access to the server’s databases.

Open Client

CHAPTER 5 Connecting to Adaptive Server Enterprise

disconnect does not implicitly commit current transactions.

Warning! Before the program exits, make sure you perform an exec sql
disconnect or exec sql disconnect all statement for each open connection. In
some configurations, Adaptive Server Enterprise may not be notified when a
client exits without disconnecting. If this happens, resources held by the
application will not be released.

Embedded SQL/C Programmers Guide 45

Disconnecting from a server

46

Open Client

CHAPTER 6

Using Transact-SQL Statements

This chapter explains how to use Transact-SQL statements with
Embedded SQL and host variables. It also explains how to use stored
procedures, which are collections of SQL statements stored in Adaptive
Server Enterprise. Because stored procedures are compiled and saved in
the database, they execute quickly without being recompiled each time
you invoke them.

Topic Page
Transact-SQL statementsin Embedded SQL 47
Selecting rows 48
Grouping statements 69

Transact-SQL statements in Embedded SQL

exec sql syntax

The following sections identify the Transact-SQL statements and their
differences in Embedded SQL.

Embedded SQL statements must begin with the keywords exec sql.
The syntax for Embedded SQL statementsis:

exec sql [at connection name]l sqgl statement
where:

e connection_name specifies the connection for the statement. See
Chapter 5, “Connecting to Adaptive Server Enterprise,” for a
description of connections. The at keyword isvalid for Transact-SQL
statements and the disconnect statement.

e ggl_statement is one or more Transact-SQL statements.

Embedded SQL/C Programmers Guide 47

Selecting rows

Invalid statements

Except for the following Transact-SQL statements, all Transact-SQL
statements are valid in Embedded SQL.:

* print
* readtext
* writetext

Transact-SQL statements that differ in Embedded SQL

While most Transact-SQL statements retain their functionality and syntax
when used in Embedded SQL, the select, update, and delete statements (the
Data Manipulation Language, or DML, statements) can be dlightly differentin
Embedded SQL:

» Thefollowing items are specific to the into clause of the select statement:

» Theinto clause can assign one row of data to scalar host variables.
Thisclauseisvalid only for select statements that return just one row
of data. If you select multiple rows, anegative SQL CODE results, and
only thefirst row is returned.

» |If thevariablesin an into clause are arrays, you can select multiple
rows. If you select more rows than the array holds, an exception of
SQLCODE <0 israised, and the extrarows are lost.

» select cannot return multiple rows of datain host variables, except
through a cursor or by selecting into an array.

* Theupdate and delete statements can use the search condition where
current of CUrsor_name.

Selecting rows

48

There can be a maximum of 1024 columns in a select statement. For the
complete listing of the select statement’s syntax, see the Adaptive Server
Enterprise Reference Manual.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Selecting one row

When you use the select statement without a cursor or array, it can return only
one row of data. Embedded SQL requires a cursor or an array to return more
than one row of data.

In Embedded SQL, a select statement must have an into clause. The clause
specifiesalist of host variables to be assigned values.

Note The current Embedded SQL precompiler version does not support into
clauses that specify tables.

The syntax of the Embedded SQL select statement is:

exec sqgl [at connect name]
select [all | distinct] select list into
:host variable[[indicator] :indicator variable]
[, :host variable
[[indicator] :indicator variable]...];

For additional information on select statement clauses, see the Adaptive Server
Enterprise Reference Manual.

Thefollowing select statement exampl e accesses the authors tablein the pubs2
database and assigns the value of au_id to the host variable id:

exec sgl select au_id into :id from authors
where au_ lname = "Stringer";

Selecting multiple rows using arrays

select into arrays

Example

You can return multiple rows with arrays. The two array actionsinvolve
selecting and fetching into arrays.

Usethe select into array method when you know the maximum number of rows
that will bereturned. If aselectinto statement attemptsto return more rowsthan
the array can hold, the statement returns the maximum number of rowsthat the
smallest array can hold.

Following is an example of selecting into an array:

exec sgl begin declare section;
CS_CHAR titleid array [100] [6];

Embedded SQL/C Programmers Guide 49

Selecting rows

exec sgl end declare section;

exec sql select title_id into :titleid array
from titles;

Indicators with array fetches

To useindicatorswith array fetches, declare an array of indicators of the same
length as the host_variable array, and use the syntax for associating the
indicator with the host variable.

Example Following is an example of using indicators with array fetches:

exec sgl begin declare section;
int item numbers [100];
short i item numbers [100];
exec sgl end declare section;

exec sgl select it n from item.info
into :item numbers :1_item numbers;

Arrays and structures as indicator variables

For tableswith alarge number of columnsyou can use arrays and structures as
aset of host variables that isreferenced in a SQL statement. An indicator
variableis always a 2-byte integer (short).

Examples Example 1 Thisis an example of declaring indicator arrays:
EXEC SQL BEGIN DECLARE SECTION;

/* Destination variables for fetches, using an */

/* array.*/

struct _hostvar
int m _titleid;
char m_title[65];
char m_pubname[41] ;
char m_pubcity[21];
char m_pubstate[3];
char m notes[201];
float m_purchase;

} host varl;

/* An indicator array for all variables. */
short indic var([7];

50 Open Client

CHAPTER 6 Using Transact-SQL Statements

Usage

EXEC SQL END DECLARE SECTION;

Example 2 Thisis an example of declaring indicator structures:

EXEC SQL BEGIN DECLARE SECTION;
/* Destination variables for fetches, using a */
/* struct.*/
struct _hostvar {
int m _titleid;
char m_title[65];
char m pubname [41] ;
char m pubcity[21];
char m pubstate([3];
char m notes[201];
float m_purchase;

} host_varil;

/* An indicator structure for above variables. */
struct _indicvar {

short i_titleid;

short i_title;

short i pubname;

short i pubcity;

short i pubstate;

short i_notes;

short i_purchase;
} indic_vari;

EXEC SQL END DECLARE SECTION;

Example 3 Thisis an example of executing a query on indicator arrays or
indicator structures:

EXEC SQL
SELECT titleid, title, pubname, city, state, notes,
purchases
INTO :host_varl INDICATOR :indic_varl
FROM T1, T2
WHERE

When using structs and arrays as indicator variables:

The number of elementsin theindicator array or struct must be exactly the
same asthe number of elementsin the host variable structure. A mismatch
caluses cpre Of cpre64 to stop processing, and code is not generated.

The columnsin the SELECT list must match by sequence, and datatype,
the chosen structure namein the INTO list. A mismatch causes ct_bind()
runtime errors and stops processing.

Embedded SQL/C Programmers Guide 51

Selecting rows

Error messages

* INDICATOR isan optional keyword, and can be omitted. However, the*:”
before the hostvar struct and the indicator array or struct is required.

Table 6-1 describes the Embedded SQL internal error messages created to
handle host variable versusindicator variable mismatch errors for this feature.

Table 6-1: New internal error messages

Message ID Message text Severity | Fix

M_INVTYPE_V Incorrect type of indicator variable Fatal Make sure that the same indicator
found in the structure. variable is used in the hostvar and

indicator declarations.

M_INVTYPE_VI | Mismatch between number of structure | Fatal Declare the same number of elements
elements in theindicator structure and in theindicator structure and hostvar
hostvar structure. structure.

M_INVTYPE_VII | Mismatch between number of elements | Fatal Declare the same number of elements
in the indicator array and hostvar in the indicator array and hostvar
structure. structure.

Limitation You cannot mix singleton host variables or singleton indicator variables with

hostvar structures, and indicator arrays or structures.

fetch into batch arrays

Cursors and arrays

52

fetch returns the specified number of rows from the currently active set. Each
fetch returns the subsequent batch of rows. For example, if the currently active
set has 150 rows and you select and fetch 60 rows, the first fetch returns the
first 60 rows. The next fetch returns the following 60 rows. The third fetch
returns the last 30 rows.

Note To find the total number of rows fetched, see the SQLERRD variablein
the SQLCA, as described in “SQL CA variables’ on page 15.

Use the fetch into array method when you do not know the number of rowsto
be returned into the array. Declare and open a cursor, then use fetch to retrieve
groups of rows. If afetch into attempts to return more rows than the array can
hold, the statement returns the maximum number of rows that the smallest
array can hold and SQL CODE displays a negative value, indicating that an
error or exception occurred.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Selecting multiple rows using cursors

You can also use cursors to return multiple rows. A cursor is a data selector
that passes multiple rows of datato the host program, onerow at atime. The
cursor indicatesthefirst row, also called the current row, of dataand passesit
to the host program. With the next fetch statement, the cursor advances to the
next row, which has now become the current row. This continues until al
reguested rows are passed to the host program.

Use acursor when aselect statement returns more than one row of data. Client-
Library tracks the rows Adaptive Server Enterprise returns and buffers them
for the application. To retrieve data with a cursor, use the fetch statement.

The cursor mechanism is composed of these statements:

e declare
* open
e fetch

* update and delete where current of

* close

Cursor scoping rules

Therulesthat govern theinitia scope of acursor differ, depending on whether
the cursor is static or dynamic. However, after a static cursor is opened or a
dynamic cursor is declared, the scoping rules for both types of cursors are the
same. Therules are asfollows:

« Until astatic cursor isopen, its scopeislimited to the file where the cursor
was declared. Any statement that opens the static cursor must be in this
file. After a static cursor is open, its scopeis limited to the connection on
which the cursor was opened.

e A dynamic cursor does not exist until it isdeclared. After itisdeclared, its
scope is limited to the connection on which it was declared.

* A cursor name can be open on more than one connection at atime.

« Statementsthat fetch, update, delete, or close a cursor can appear in files
other than the onewhere the cursor is declared. Such statements, however,
must execute on the connection where the cursor was opened.

Embedded SQL/C Programmers Guide 53

Selecting rows

Identically named static cursors

If you declare a static cursor in an Embedded SQL/C, open the cursor, use
it to fetch data, closethe cursor, and then do not deall ocateit, subsequently
declaring acursor with the same name and DML will not result in an error.
At the second declaration, the Embedded SQL/C program simply notices
that a cursor of the same name and DML already exists, disregards the
second declaration, and reopens the existing cursor. However, if you
redeclare a cursor of the same name but with different DML, you may
receive an error. Also, if you attempt to open an existing static cursor that
has not been closed, you receive the following error:

SQLCODE=(-16843032)

Adaptive Server Error

ct_cursor (OPEN) : user api layer: external error: The
cursor on this command structure has already been
opened.

If you declare a static cursor using theisq! utility, open the cursor, useit to
fetch data, close the cursor, and then do not deallocate it, subsequently
declaring a cursor with the same name and DML resultsin anisgl error. In
isql, you must deallocate the existing cursor before you can redeclare it.

Identically named dynamic cursors

54

If you declare adynamic cursor in an Embedded SQL/C program or using
theisql utility, open the cursor, use it to fetch data, close the cursor, and
then do not deall ocate it, subsequently declaring a cursor with the same
name and DML will resultin an error. In an Embedded SQL/C program or
inisql, you must first deallocate the existing dynamic cursor before you
canredeclareit. If you attempt to declare adynamic cursor that hasalready
been declared and not yet deallocated, you receive the following error:

SQLCODE=(-16843030)

Adaptive Server Error

ct_dynamic (CURSOR DECLARE) : user api layer: external
error: A cursor has already been declared on this
command structure.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Declaring cursors

Example

Declare a cursor for each select statement that returns multiple rows of data.
You must declare the cursor before using it, and you cannot declareit within a
declare section.

Note The declare cursor statement is a declaration, not an executable
statement. Therefore, it may appear anywhere in afile; SQLCODE,
SQLSTATE, and SQLCA are not set after this statement.

The syntax for declaring a cursor is:

exec sqgl declare cursor name cursor
for select statement ;

where:

e cursor_name identifies the cursor. The name must be unique and have a
maximum of 255 characters. The name must begin with aletter of the
alphabet or with the symbols“#" or “_".

* select_statementisaselect statement that can return multiplerows of data.
The syntax for select is the same as described in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

The following example demonstrates declaring cursors:

exec sgl declare cl cursor for
select type, price from titles
where type like :wk-type;

Inthisexample, clisdeclared asacursor for the rowsthat will be returned for
the type and price columns. The precompiler generates no code for the declare
cursor statement. It smply stores the select statement associated with the
Ccursor.

When the cursor opens, the select statement or procedurein the declare cursor
statement executes. When the datais fetched, the results are copied to the host
variables.

Note Each cursor’sopen and declare statements must bein the ssmefile. Host
variables used within the declare statement must have the same scope as the
one in which the open statement is defined. However, once the cursor is open,
you can perform fetch and update or delete where current of on the cursor in any
file.

Embedded SQL/C Programmers Guide 55

Selecting rows

Declaring scrollable cursors

56

The syntax for declaring a scrollable cursor is:

exec sqgl declare cursor name [cursor sensitivityl]
[cursor scrollability] cursor
for select statement ;

where;

cursor_name identifies the cursor. The name must be unique and have a
maximum of 255 characters. The name must begin with aletter of the
alphabet or with the symbols“#’ or “_".

cursor sensitivity specifies the sensitivity of the cursor. The options are:

e semi_sensitive. If semi_sensitive is specified in the declare statement,
scrollability isimplied. The cursor is semi_sensitive, scrollable, and
read-only.

» insensitive. If insensitive is specified in the declare statement, the
cursor isinsensitive. Scrollability is determined by specifying
SCROLL in the declare part. If SCROLL isomitted or NOSCROLL
is specified, the cursor isinsensitive only and non-scrollable. Itisalso
read-only.

If cursor sensitivity is not specified, the cursor is non-scrollable and read-
only.

cursor scrollability specifies the scrollability of the cursor. The options
are:

» scroll. If scroll is specified in the declare statement and sensitivity is
not specified, the cursor isinsensitive and scrollable. It is also read-
only.

e no scroll. If the SCROLL option is omitted or NOSCROLL is
specified, the cursor is non-scrollable and read-only. See the previous
cursor sensitivity description for cursor behavior.

If cursor scrollability is not specified, the cursor is non-scrollable and
read-only.

select_statement isaselect statement that can return multiple rows of data.
The syntax for select is the same as described in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Declaring cursors that release locks at cursor close

Opening cursors

The syntax for declaring cursors that rel ease locks when the cursor closesis:

exec sqgl declare cursor name [cursor sensitivity]
[cursor scrollability] [release locks on close]
cursor for select statement

[for {read only | update [of column name list]}] ;

where;

e cursor_name identifies the cursor. The name must be unique and have a
maximum of 255 characters. The name must begin with aletter of the
alphabet or with the symbols“#”" or “_".

e cursor sensitivity — See “ Declaring scrollable cursors’ on page 56.
e cursor scrollability — See “ Declaring scrollable cursors’ on page 56.

« select_statementisaselect statement that can return multiplerows of data.
The syntax for select is the same as described in the Adaptive Server
Enterprise Reference Manual, except that you cannot use into or compute
clauses.

e column_name list identifiesthelist of columnsto be affected.

You cannot use release_locks_on_close with an update clause except in this
form:

exec sgl declare cursor cl release locks_on close
cursor for select * from T for update of col_a

Inthis case, release_locks_on_close isignored.

Note cpre cannot generate these ct_cursor() options:
e CS CUR RELLOCKS ONCLOSE |CS READ_ONLY
e CS CUR _RELLOCKS ONCLOSE |CS FOR_UPDATE

ESQL/C sample code is available in example8.cp.

To retrieve the contents of selected rows, you must first open the cursor. The
open statement executes the select statement associated with the cursor in the
declare statement.

The open statement’s syntax for opening a cursor is.

Embedded SQL/C Programmers Guide 57

Selecting rows

exec Sql open cursor_ name;
The open statement’s syntax for opening a scrollable cursor is:

exec sgl open cursor name [ROW_COUNT = size];

Note ROW_COUNT should only be specified with (scrollable) cursors when
arrays are used as host variables.

After you declare a cursor, you can open it wherever you can issue a select
statement. When the open statement executes, Embedded SQL substitutes the
values of any host variables referenced in the declare cursor statement’swhere
clause.

The number of cursors you may have open depends on the resource demands
of the current session. Adaptive Server Enterprise does not limit the number of
open cursors. However, you cannot open a currently open cursor. Doing so
resultsin an error message.

While an application executes, you can open a cursor as many times as
necessary, but you must close it before reopening it. You need not retrieve all
the rows from a cursor result set before retrieving rows from another cursor
result set.

Fetching data using cursors

58

Use afetch statement to retrieve data through a cursor and assign it to host
variables. The syntax for the fetch statement is:

exec sqgl [at connect name] fetch cursor name
into : host variable
[[indicator]: indicator variable]
[,: host variable
[[indicator]: indicator variable]...];

where there is one host_variable for each column in the result rows.

Prefix each host variable with a colon and separate it from the next host
variable with acomma. The host variables listed in the fetch statement must
correspond to Adaptive Server Enterprise values that the select statement
retrieves. Thus, the number of variables must match the number of returned
values, they must be in the same order, and they must have compatible
datatypes.

Open Client

CHAPTER 6 Using Transact-SQL Statements

Anindicator_variableisa2-byte signed integer declared in apreviousdeclare
section. If avalue retrieved from Adaptive Server Enterpriseis null, the

runti me system sets the corresponding indicator variable to -1. Otherwise, the
indicator is set to 0.

The data that the fetch statement retrieves depends on the cursor position. The
cursor pointsto the current row. The fetch statement always returnsthe current
row. The first fetch retrieves the first row and copies the values into the host
variables indicated. Each fetch advances the cursor to the next result row.

Normally, you should place the fetch statement within aloop so that all values
returned by the select statement can be assigned to host variables.

The following loop uses the whenever not found statement:

/* Initialize error-handling routines */
exec sgl whenever sglerror call err handle() ;
exec sgl whenever not found goto end label;

for (;;)
{
exec sql fetch cursor name
into :host variable [, host_ variablel;
}
end label:

Thisloop continuesuntil al rowsarereturned or an error occurs. In either case,
sglcode or sqglstate, which the whenever statement checks after each fetch,
indicates the reason for exiting the loop. The error-handling routines ensure
that an action is performed when either condition arises, as described in
Chapter 8, “Handling Errors.”

Fetching data using scrollable cursors

Use afetch statement to retrieve data through a cursor and assign it to host
variables. The syntax for the fetch statement is:

exec sqgl [at connect name] fetch [fetch
orientation] cursor name

into : host variable

[[indicator]: indicator variable]

[, : host variable

[[indicator]: indicator variable]...];

where one host_variable exists for each column in the result rows.

Embedded SQL/C Programmers Guide 59

Selecting rows

Example for declaring
a scrollable cursor
and fetching rows

60

Prefix each host variable with a colon, and separate it from the next host
variable with acomma. The host variables listed in the fetch statement must
correspond to Adaptive Server Enterprise values that the select statement
retrieves. Thus, the number of variables must match the number of returned
values, they must be in the same order, and they must have compatible
datatypes.

The fetch orientation specifies the fetch direction of the row to be fetched, if a
cursor isscrollable. The options are: NEXT, PRIOR, FIRST, LAST, ABSOLUTE
fetch_offset and RELATIVE fetch offset. If fetch orientation is not specified,
next is default. If fetch orientation is specified, the cursor must be scrollable.

The data that the fetch statement retrieves depends on the cursor position. The
fetch statement typically retrievessingle or multiple rowsfrom the cursor result
set, depending on the ROW_COUNT specification at cursor opentime. If a
cursor isnot scrollable, fetch retrieves the next row in the result set. If a cursor
is scrollable, commands in the fetch statement specify the row position to be
fetched.

To declare a scrollable cursor and fetch rows at random, specify the scroll
sensitivity and scrollability in the declare cursor, then specify the fetch
orientation at fetch time. The following example demonstrates declaring an
insensitive scrollable cursor and fetching rows at random:

exec sgl declare cl insensitive scroll cursor for
select title id, royalty, ytd sales from authors
where royalty < 25;

exec sgl open cl;

Inthisexample, scroll and insensitive are specified inthedeclare cursor. A fetch
orientation can be specified at fetch timeto indicate which row isrequired from
the result set.

Once acursor hasbeen declared as scrollable and opened, aFETCH orientation
can be specified at fetch time to indicate which row is wanted from the result
Set.

The following fetch example fetches the specified columns of the first row
from the result set:

exec sqgl fetch first from cl into :title, :roy, :sale;

Thefollowing fetch example fetches the specified columns of the previousrow
from the result set:

exec sqgl fetch prior from cl into :title, :roy, :sale;

Open Client

CHAPTER 6 Using Transact-SQL Statements

Thefollowing fetch exampl e fetches the specified columns of row twenty from
the result set:

exec sqgl fetch absolute 20 from cl into :title, :roy, :sale;

Use sglcode or sqlstate to determine if fetch statements return valid rows. For
scrollable cursors, it is possible to fetch O rows if the cursor is positioned
outside of result set boundaries, for example, before the first row or after the
last row. In these circumstances, fetching O rows is expected.

Using cursors to update and delete rows

To update or delete the current row of a cursor, specify the where current of
cursor_name as the search condition in an update or delete statement.

To update rows through a cursor, the result columns to be used in the updates
must be updatable. They cannot be the result of SQL expressions such as
max(colname). In other words, there must be a valid correspondence between
the result column and the database column to be updated.

The following example demonstrates how to use a cursor to update rows:

exec sgl declare cl cursor for
select title id, royalty, ytd sales
from titles
where royalty < 25;

exec sqgl open cl;

for (;;)
{
exec sqgl fetch cl into :title, :roy, :sales;
if (SQLCODE == 100) break;
if (sales > 10000)
exec sgl update titles
set royalty = :roy + 2
where current of cl;

}

exec sqgl close cl;

The Embedded SQL syntax of the update and delete statementsis the same as
in Transact-SQL, with the addition of the where current of cursor_name search
condition.

For details on determining table update protocol and locking, see the Adaptive
Server Enterprise Transact-QL Users Guide.

Embedded SQL/C Programmers Guide 61

Selecting rows

Closing cursors

Use the close statement to close an open cursor. The syntax for the close
statement is:

exec sgl [at connection] close cursor name;

To reuse a closed cursor, issue another open statement. When you re-open a
cursor, it pointsto the first row. Do not issue aclose statement for a cursor that
isnot open or an error will result.

Cursor example

The following example shows how to nest two cursors. Cursor c2 depends
upon the value fetched into title-id from cursor c1.

The program gets the value of title-id at open time, not at declare time.

exec sqgl include sqglca;
main ()
{
exec sqgl begin declare section;
CS_CHARtitle id[7];
CS_CHARtitle[81];
CS_INT totalsales;
CS_SMALLINTsalesind;
CS_CHAR au_lname[41];
CS_CHAR au_fname([21];
exec sgl end declare section;
exec sqgl whenever sqglerror call error handler() ;
exec sql whenever sqglwarning call error handler () ;
exec sgl whenever not found continue;
exec sqgl connect “sa” identified by ““;
exec sqgl declare cl cursor for
select title id, title, total sales from pubs2..titles;
exec sqgl declare c2 cursor for
select au_lname, au_fname from pubs2..authors
where au_id in (select au id from pubs2..titleauthor
where title id = :title_ id);
exec sqgl open cl;
for (;;)
{
exec sqgl fetch cl into :title id, :title,
:totalsales :salesind;
if (sglca.sglcode ==100)
break;
printf (*\nTitle ID: %s, Total Sales: %d”, title id, totalsales);

62 Open Client

CHAPTER 6 Using Transact-SQL Statements

}

printf (“\n%s”, title);
if (totalsales > 10)
{

exec sgl open c2;

for (;;)

{

exec sqgl fetch c2 into :au lname, :au_fname;

if (sglca.sglcode == 100)
break;
printf (“\n\tauthor: %s, %s”, au lname, au_fname) ;

}
exec sgl close c2;
}
}

exec sqgl close cl;
exec sgl disconnect all;

error handler ()

{

printf (*%d\n%s\n”,sqglca.sqglcode, sglca.sqglerrm.sglerrmc) ;
exec sgl disconnect all;

exit (0);
}
The following example is for insensitive scrollable cursors:
/*
*x example4.cp
* %
* % This example is a non-interactive query program that
* % shows the user some actions executed by a scrollable,
* ok insensitive cursor. This serves as a demo for usage
* * of scrollable cursors in ESQL/C.
*/

#include <stdio.h>
#include "sybsglex.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

#define TITLE STRING 65
EXEC SQL END DECLARE SECTION;

void error handler() ;
void warning handler () ;
void notfound handler () ;

Embedded SQL/C Programmers Guide 63

Selecting rows

64

int

main (int argc, char *argv[])

{

/*

EXEC SQL BEGIN DECLARE SECTION;

char username [30] ;
char password[30] ;
char a_type [TITLE STRING+1];

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR CALL error_ handler() ;
EXEC SQL WHENEVER SQLWARNING CALL warning handler() ;
EXEC SQL WHENEVER NOT FOUND CALL notfound handler();

strcpy (username, USER) ;
strcpy (password, PASSWORD) ;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

EXEC SQL USE pubs2;

** Declare an insensitive scrollable cursor against
** titles table.

*/

EXEC SQL DECLARE typelist INSENSITIVE SCROLL CURSOR
SELECT DISTINCT title FROM titles;

EXEC SQL OPEN typelist;
printf ("\n==> Selecting the FIRST book Title:\n");

/*

** Fetch the first row in cursor resultset

*/

EXEC SQL FETCH FIRST FROM typelist INTO :a type;

printf ("\n%s\n", a_type);

/*

** Fetch the last row in cursor resultset

*/

printf ("\n==> Selecting the LAST book Title:\n");

EXEC SQL FETCH LAST FROM typelist INTO :a type;

the

FOR

Open Client

CHAPTER 6 Using Transact-SQL Statements

printf ("\n%s\n", a_type);

/*

** Fetch the previous (PRIOR) row based on current

** cursor position

*/

printf ("\n==> Selecting the PREVIOUS book Title:\n");

EXEC SQL FETCH PRIOR FROM typelist INTO :a_type;

printf ("\n%s\n", a_type);

/*

** Jump 5 rows back from current cursor position
*/

printf ("\n==> Rewinding 5 STEPS through the Book
selection...:\n");

EXEC SQL FETCH RELATIVE -5 FROM typelist INTO :a_type;
printf ("\n%s\n", a_type);

/*

** Fetch the next row based on current cursor position

*/

printf ("\n==> Selecting the NEXT book Title:\n");

EXEC SQL FETCH NEXT FROM typelist INTO :a_type;

printf ("\n%s\n", a_type);

/*

** Jump out of the cursor result set. Note that this will
** lead to a "no rows found" condition. There are only 18
** yrows in 'titles'.

*/

a_typel0] = '"\0';

printf ("\n==> Jumping out of the resultset.\n");

EXEC SQL FETCH ABSOLUTE 100 FROM typelist INTO :a_type;

printf ("\n%s\n", a_type);

/* Close shop */

Embedded SQL/C Programmers Guide 65

Selecting rows

EXEC SQL CLOSE typelist;
printf ("\n==> That's it for now.\n");
EXEC SQL DISCONNECT DEFAULT;

return (STDEXIT) ;

/* Error handlers deleted */

See the online sampl e programs for more examples using cursors. For details
on accessing the online examples, see the Open Client and Open Server
Programmers Supplement for your platform.

Using stored procedures

There are two types of stored procedures: user-defined and precompiler-
generated. Both types run faster than standal one statements because Adaptive
Server Enterprise preoptimizes the queries. You create user-defined stored
procedures, and the precompiler generates stored procedures.

User-defined stored procedures

With Embedded SQL, you can execute stored procedures with select
statements that return data rows. Stored procedures can return results to your
program through output parameters and through a return status variable.

Stored procedure parameters can be either input, output, or both input and
output. For details on stored procedures, see the Adaptive Server Enterprise
Transact-SQL Users Guide.

Syntax
Valid stored procedure names consist of upper- and lowercase letters of the
aphabet, “$",“_", and “#".
Do not include the use statement in a stored procedure.
To execute a stored procedure, use the following syntax:

exec [[:status variable =]status value] procedure name
[([[@parameter name=]parameter value [out[put]ll],...)]
[into :hostvar 1 [:indicator 1]
[, hostvar n [indicator n, ...]1]]

66 Open Client

CHAPTER 6 Using Transact-SQL Statements

[with recompile];

where:

status variable can return either an Adaptive Server Enterprise return
status value or areturn code, which either indicates that the stored
procedure completed successfully or gives the reasons for the failure.
Negative status values are reserved for Adaptive Server Enterprise use.
Seethe Adaptive Server Enterprise Transact-SQL UsersGuidefor alist of
return status values for stored procedures.

status value isthe value of the stored procedure return status variable
status variable.

procedure_name is the name of the stored procedure to execute.

parameter_nameisthe name of avariableinthe stored procedure. You can
pass parameters either by position or by name. If one parameter is named,
all of them must be named. See the Adaptive Server Enterprise Transact-
SQL Users Guide.

parameter _valueisaliteral constant whose value is passed to the stored
procedure.

output indicates that the stored procedure returns a parameter value. The
matching parameter in the stored procedure must also have been created
using the output keyword.

into:hostvar_1 causes row data returned from the stored procedure to be
stored in the specified host variables (hostvar_1 through hostvar_n). Each
host variable can have an indicator variable.

indicator_nisaZ2-bytehost variable declared in aprevious declare section.
If thevaluefor the associated hostvar _nisnull, theindicator variableis set
to -1 when the row datais retrieved. If truncation occurs, the indicator
variableis set to the actual length of the result column. Otherwise, the
indicator variable is 0.

with recompile causes Adaptive Server Enterprise to create a new query
plan for this stored procedure each time the procedure executes.

Note In Embedded SQL, the exec keyword is required to execute a stored
procedure. You cannot substitute execute for exec.

Embedded SQL/C Programmers Guide 67

Selecting rows

Stored procedure example

Conventions

Thefollowing example shows acall to astored procedurewhereretcodeisa
status variable, a_proc isthe stored procedure, parlisan input parameter, and
par2 is an output parameter:

exec sgl begin declare section;
CS_INT parl;

CS_INT parz;

CS_SMALLINT retcode;

exec sgl end declare section;

exec sgl exec :retcode = a proc :parl, :par2 out;

The next example demonstrates the use of astored procedure that retrievesdata
rows. The name of the stored procedureis get_publishers:

exec sqgl begin declare section;
CS _CHAR pub id(4);

CS_CHAR name (45) ;

CS_CHAR city(25);

CS CHAR state(2);

CS_SMALLINT retcode;

exec sgl end declare section;

exec sgl exec :retcode = get publishers :pub id
into :name :city :state;

See Chapter 10, “Embedded SQL Statements: Reference Pages,” for amore
detailed example of the exec statement.

The datatypes of the stored procedure parameters must be compatible with the
C host variables. Client-Library only converts certain combinations. See
Chapter 4, “Using Variables,” for atable of compatible datatypes.

Precompiler-generated stored procedures

68

You can set an optional command line switch so that the precompiler
automatically generates stored procedures that can optimize the execution of
Transact-SQL statementsin your program.

For thelist of precompiler command line option switches, see the Open Client
and Open Server Programmers Supplement.

Follow these steps to activate precompiler-generated stored procedures:

Open Client

CHAPTER 6 Using Transact-SQL Statements

1 Set the appropriate command line switch so that the precompiler
automatically generates stored procedures for the Transact-SQL
statements to be optimized.

The precompiler generates an isql file containing statements that generate
the stored procedures.

2 Useinteractive SQL (theisgl program) to execute thefile.

This loads the stored procedures on Adaptive Server Enterprise. The
precompiler also creates the stored procedure callsin its output file.

By default, precompiler-generated stored procedures have the same name as
the source program, minus any file extensions. The stored procedures are
numbered sequentially and the file name and number are separated by a
semicolon (“;").

For example, the stored procedures for a source program named test1.pc,
would be named test1;1 through test1;n, where n is the number of the source
program’s last stored procedure.

Optionally, you can set acommand line flag that lets you alter the stored
procedures’ names. By using this flag, you can test amodified application
without deleting a stored procedure already in production. After successfully
testing the application, you can precompile it without the flag to install the
stored procedure.

Note When you issue the declare cursor statement, only the select clauseis
saved asastored procedure. If an application has syntax errors, the precompiler
generates neither the target file nor stored procedures.

Grouping statements

Statements can be grouped for execution by batch or by transactions.

Grouping statements by batches

A batchisagroup of statements you submit as one unit for execution. The
precompiler executes all Transact-SQL statements between the exec sqgl and ;
keywords in batch mode.

Embedded SQL/C Programmers Guide 69

Grouping statements

Although the precompiler saves stored procedures, it does not save batchesfor
re-execution. The batch is effective only for the current execution.

The precompiler supports only batch mode statementsthat return no result sets.

exec sgl insert into TABLEl values (:vall)
insert into TABLE2 values (:val2)
insert into TABLE3 values (:val3);

The three insert statements are processed as a group, which is more efficient
than being processed individually. Use the get diagnostics method of error
handling with batches. For details, see “Using get diagnostics’ on page 97.

These statements are legal within abatch because none of them returns results.
See the Adaptive Server Enterprise Transact-SQL Users Guide.

Grouping statements by transactions

A transaction isasingle unit of work, whether the unit consists of one or 100
statements. The statements in the transaction execute as a group, so either all
or none of them execute.

The precompiler supports two transaction modes: default ANSI/ISO and
optional Transact-SQL. In the Transact-SQL transaction mode, each statement
isimplicitly committed unlessit is preceded by abegin transaction statement.

The Transact-SQL mode uses relatively few system resources, while the
default ANSI/ISO transaction mode can dramatically affect system response
time. For details on choosing the appropriate mode for your application, seethe
Adaptive Server Enterprise Transact-SQL Users Guide.

You can use a precompiler option to determine the transaction mode of the
connections your application opens. See the Open Client and Open Server
Programmers Supplement for details.

Transact-SQL transaction mode

70

In this optional Transaction mode, the Embedded SQL syntax is the same as
that used in Transact-SQL . The begin transaction statement explicitly initiates
transactions.

The syntax of the Embedded SQL transaction statementsis:

exec sqgl [at connect name]
begin transaction [transaction name] ;

Open Client

CHAPTER 6 Using Transact-SQL Statements

exec sgl [at connect name]
save transaction [savepoint name];

exec sqgl [at connect name] commit transaction
[transaction name];

exec sgl [at connect name] rollback transaction
[savepoint name | transaction name];

Note Thedisconnect command rollsback all open transactions. For details on
this statement, see Chapter 5, “ Connecting to Adaptive Server Enterprise.”

When you issueabegin transaction on aconnection, you must also issueasave,
commit, Of roll back transaction on the same connection. Otherwise, an error is
generated.

Default ANSI/ISO transaction mode

ANSI/ISO SQL does not provide a save transaction or begin transaction
statement. Instead, transactions begin implicitly when the application program
executes one of the following statements:

e delete
* insert
* select
* update
* open
* exec

The transaction ends explicitly when you issue either acommit work or rollback
work statement. You must use the ANSI/ISO forms of the commit and rollback
statements. The syntax is:

exec sgl commit [work] end-exec
exec sgl rollback [work] end-exec

Embedded SQL/C Programmers Guide 71

Grouping statements

Extended transactions

72

An extended transaction is a unit of work that has multiple Embedded SQL
statements. In the Transact-SQL transaction mode, you surround an extended
transaction statement with the begin transaction and commit transaction
Statements.

In the default ANSI mode, you are constantly within an extended transaction.
When you issue acommit work statement, the current extended transaction ends
and another begins. For details, see the Adaptive Server Enterprise Transact-

L Users Guide.

Note Unlessthe database option allow ddl in tran is set, do not use thefollowing
Transact-SQL statements in an extended, ANSI-mode transaction: alter
database, create database, create index, create table, create view, disk init, grant,
load database, load transaction, revoke, truncate table, and update statistics.

Open Client

CHAPTER 7

Using Dynamic SQL

This chapter explains dynamic SQL, an advanced methodology that lets
users of Embedded SQL applications enter SQL statements while the
application is running. While static SQL will suffice for most of your
needs, dynamic SQL provides the flexibility to build diverse SQL
statements at runtime.

Topic Page
Dynamic SQL overview 74
Dynamic SQL protocol 75
Method 1: Using execute immediate 76
Method 2: Using prepare and execute 7
Method 3: Using prepare and fetch with a cursor 80
Method 4: Using prepare and fetch with dynamic descriptors 84
Summary 92

Dynamic SQL is aset of Embedded SQL statements that permit users of
online applications to access the database interactively at application
runtime.

Use dynamic SQL when one or more of the following conditionsis not
known until runtime;

* SQL statement the user will execute
¢ Column, index, and table references

* Number of host variables, or their datatypes

Embedded SQL/C Programmers Guide 73

Dynamic SQL overview

Dynamic SQL overview

74

Dynamic SQL ispart of ANSI and the I1SO SQL 2 standard. It is useful for
running an interactive application. If the application only acceptsasmall set of
SQL statements, you can embed them within the program. However, if the
application accepts many types of SQL statements, you can benefit from
constructing SQL statements, then binding and executing them dynamically.

The following situation would benefit from use of dynamic SQL: The
application program searches a bookseller’s database of books for sale. A
potential buyer can apply many criteria, including price, subject matter, type of
binding, number of pages, publication date, language, and so on.

A customer might say, “I want a nonfiction book about business that costs
between $10 and $20.” Thisrequest is readily expressed as a Transact-SQL
Statement:

select * from titles where
type = "business"
and price between $10 and $20

It is not possible to anticipate the combinations of criteriathat al buyers will
apply to their book searches. Therefore, without using dynamic SQL, an
Embedded SQL program could not easily generate alist of prospective books
with asingle query.

With dynamic SQL, the bookseller can enter aquery with a different where
clause search condition for each buyer. The seller can vary requests based on
the publication date, book category, and other data, and can vary the columns
to be displayed. For example:

select * from titles
where type = ?
and price between ? and ?

The question marks (“?") are dynamic parameter markersthat represent places
where the user can enter search values.

Open Client

CHAPTER 7 Using Dynamic SQL

Dynamic SQL protocol

Note The precompiler does not generate stored procedures for dynamic SQL
statements because the statements are not complete until runtime. At runtime,
Adaptive Server Enterprise stores them as temporary stored proceduresin the
tempdb database. The tempdb database must contain the user name "guest”,
whichin turn must have create procedure permission. Otherwise, attempting to
execute one of these temporary stored procedures generates the error message,
"Server user id user_idisnot avalid user in database database name," where
user_idisthe user'suser ID, and database name is the name of the user’'s
database.

The dynamic SQL prepare statement sends the actual SQL statement, which
can be any Data Definition Language(DDL) or Data Manipulation Language
(DML) statements, or any Transact-SQL statement except create procedure.

The dynamic SQL facility performs these actions:
1 Trandatestheinput datainto a SQL statement.
2 Verifiesthat the SQL statement can execute dynamically.

3 Preparesthe SQL statement for execution, sending it to Adaptive Server
Enterprise, which compiles and saves it as atemporary stored procedure
(for methods 2, 3, and 4).

4 Bindsall input parameters or descriptor (for methods 2, 3, and 4).
Executes the statement.

For avarying-list select, it usesadescriptor to referencethe dataitemsand
rows returned (for method 4).

6 Bindsthe output parameters or descriptor (for methods 2, 3, and 4).
7 Obtainsresults.

8 Drops the statement (for methods 2, 3, and 4) by deactivating the stored
procedure in Adaptive Server Enterprise.

9 Handlesall error and warning conditions from Adaptive Server Enterprise
and Client-Library.

Embedded SQL/C Programmers Guide 75

Method 1: Using execute immediate

Method 1: Using execute immediate

Use execute immediate to send acompl ete Transact-SQL statement, storedina
host variable or literal string, to Adaptive Server Enterprise. The statement
cannot return any results—you cannot use this method to execute a select
Statement.

Thedynamically entered statement executes as many times asthe user invokes
it during a session. With this method:

1 The Embedded SQL program passes the text to Adaptive Server
Enterprise.

2 Adaptive Server Enterprise verifies that the statement is not a select
Statement.

3 Adaptive Server Enterprise compiles and executes the statement.

With execute immediate, you can let the user enter all or part of a Transact-SQL
Statement.

The syntax for execute immediate is:

exec sqgl [at connection name] execute immediate
{:host_variable | string};

where:

» host_variableisa character-string variable defined in a declare section.
Before calling execute immediate, the host variable should contain a
complete and syntactically correct Transact-SQL statement.

» dringisaliteral Transact-SQL statement string that can be used in place
of host_variable.

Embedded SQL sends the statement in host_variable or string to Adaptive
Server Enterprisewithout any processing or checking. If the statement attempts
to return results or fails, an error occurs. You can test the value of SQLCODE
after executing the statement or use the whenever statement to set up an error
handler. See Chapter 8 for information about handling errors in Embedded

SQL programs.

Method 1 examples

The following two examples demonstrate using method 1, execute immediate.
The first example prompts the user to enter a statement and then executes it:

76 Open Client

CHAPTER 7 Using Dynamic SQL

exec sgl begin declare section;
CS CHAR statement buffer[linesize];
exec sgl end declare section;

printf ("\nEnter statement\n");
gets (statement buffer) ;

exec sqgl [at connection] execute immediate
:statement_buffer;

The next exampl e prompts the user to enter a search condition to specify rows
in the titles table to update. Then, it concatenates the search condition to an
update statement and sends the complete statement to Adaptive Server
Enterprise.

exec sgl begin declare section;
CS_CHAR sqglstring[200];
exec sqgl end declare section;

char cond[150] ;

exec sqgl whenever sqglerror call err p();
exec sql whenever sqglwarning call warn p();

strcpy (sglstring,
"ypdate titles set price=price*1.10 where ");

printf ("Enter search condition:");
scanf ("$s", cond) ;
strcat (sqlstring, cond) ;

exec sgl execute immediate :sglstring;

exec sqgl commit work;

Method 2: Using prepare and execute

Use method 2, prepare and execute, when one of the following casesis true:

e You arecertain that no datawill be retrieved, and you want the statement
to execute more than once.

e A select statement is to return a single row. With this method, you cannot
associate a cursor with the select statement.

Embedded SQL/C Programmers Guide 77

Method 2: Using prepare and execute

prepare

78

This processis also called asingle-row select. If auser needsto retrieve
multiple rows, use method 3 or 4.

This method uses prepare and execute to substitute datafrom C variablesinto
a Transact-SQL statement before sending the statement to Adaptive Server
Enterprise. The Transact-SQL statement is stored in a character buffer with
dynamic parameter markers to show where to substitute values from C
variables.

Because this statement is prepared, Adaptive Server Enterprise compiles and
savesit as atemporary stored procedure. Then, the statement executes
repeatedly, as needed, during the session.

Theprepare statement associ ates the buffer with astatement name and prepares
the statement for execution. The execute statement substitutes values from a
list of C variables or SQL descriptorsinto the buffer and sends the completed
statement to Adaptive Server Enterprise. You can execute any Transact-SQL
statement this way.

The syntax for the prepare statement is:

exec sgl [at connection] prepare statement name from
{:host variable | string};

where;

e statement_nameisaname up to 255 characters long that identifies the
statement. It is a symbolic name or a C character array host variable
containing the name of the statements that the precompiler usesto
associate an execute Statement with aprepare statement.

e host_variableisacharacter array host variable.

Precede the host variable with acolon, as in standard Embedded SQL
statements.

e dringisaliteral string that can be used in place of host_variable.

host_variable or string can contain dynamic parameter markers (“?’), which
indicate placesin the dynamic query where valueswill be substituted when the
statement executes.

Open Client

CHAPTER 7 Using Dynamic SQL

execute
The syntax for the execute statement is:

exec sqgl [at connection] execute statement name

[into host var list | sgl descriptor
descriptor name | descriptor sglda name]
[using host var list | sql descriptor

descriptor name | descriptor sglda name] ;
where:
e statement_nameisthe name assigned in the prepare statement.
e into isused for asingle-row select.

e using specifies the C variables or descriptors substituted for a dynamic
parameter marker in host_variable. The variables, which you must define
in adeclare section, are substituted in the order listed. You need only this
clause when the statement contains dynamic parameter markers.

e descriptor_namerepresentsthe area of memory that holds a description of
the dynamic SQL statement’s dynamic parameter markers.

e host_var_list alist of host variables to substitute into the parameter
markers (“?’) in the query.

e sglda_nameisthe name of the SQLDA.

Method 2 example

The following example demonstrates using prepare and execute in method 2.
This example prompts the user to enter awhere clause that determines which
rowsin thetitles tableto update and amultiplier to modify the price. According
to what the user elects, the appropriate string is concatenated to the update
statement stored in host variable “ sglstring”.

exec sgl begin declare section;

CS_CHAR sqglstring[200];
CS_FLOAT multiplier;

exec sgl end declare section;

Embedded SQL/C Programmers Guide 79

Method 3: Using prepare and fetch with a cursor

char cond[150] ;

exec sqgl whenever sglerror perform err p();
exec sgl whenever sqglwarning perform warn p();
printf (“Enter search condition:”);

scanf (“%$s”, cond) ;
printf (“*Enter price multiplier: “);
scanf (“%£”, &multiplier);

strcpy (sglstring,
“update titles set price = price * ? where “);
strcat (sqglstring, cond) ;
exec sgl prepare update statement from :sglstring;
exec sgl execute update statement using
:multiplier;
exec sgl commit;

Method 3: Using prepare and fetch with a cursor

80

Method 3 uses the prepare statement with cursor statements to return results
from a select statement. Use this method for fixed-list select statements that
may return multiple rows. That is, use it when the application has determined
in advance the number and type of select column list attributes to be returned.
You must anticipate and define host variables to accommodate the results.

When you use method 3, include the declare, open, fetch, and close cursor
statements to execute the statement. This method is required because the

statement returns more than one row. There is an association between the
prepared statement identifier and the specified cursor name. You can also
include update and delete where current of cursor statements.

Aswithmethod 2, prepare and execute, a Transact-SQL select statement isfirst
stored in a character host variable or string. It can contain dynamic parameter
markersto show whereto substitute valuesfrom input variables. The statement
isgiven anameto identify it in the prepare, declare, and open statements.

Method 3 requiresfive steps:

1 prepare

2 declare

3 open

4 fetch (and, optionally, update and delete)

Open Client

CHAPTER 7 Using Dynamic SQL

prepare

declare

open

5 close

These steps are described in the following sections.

The prepare statement isthe same as that used with method 2. For details, see
“prepare” on page 78.

The declare statement is similar to the standard declare statement for cursors.
In dynamic SQL, however, you declare the cursor for a prepared
statement_name instead of for aselect statement, and any input host variables
are referenced in the open statement instead of in the declare statement.

A dynamic declare statement is an executable statement rather than a
declaration. As such, it must be positioned in the code where executable
statements are legal, and the application should check status codes
(SQLCODE, SQLCA, or SQLSTATE) after executing the declaration.

The dynamic SQL syntax for the declare statement is:

exec sql [at connection name] declare cursor name
cursor for statement name;

where;

e at connection_name specifies the Adaptive Server Enterprise connection
the cursor will use.

e cursor_name identifies the cursor, used with the open, fetch, and close
statements.

e statement_nameis the name specified in the prepare statement, and
represents the select statement to be executed.

The open statement substitutes any input variables in the statement buffer, and
sendstheresult to Adaptive Server Enterprise for execution. The syntax for the
open statement is:

Embedded SQL/C Programmers Guide 81

Method 3: Using prepare and fetch with a cursor

fetch and close

82

exec sgl [at connection name] open cursor name [using
{host var list | sqgl descriptor descriptor name |
descriptor sglda name}] ;

where;
* cursor_nameisthe name given to the cursor in the declare statement.

* host_var_list consists of the names of the host variables that contain the
values for dynamic parameter markers.

» descriptor_name is the name of the descriptor that contains the value for
the dynamic parameter markers.

* gglda_name isthe name of the SQLDA.

After acursor opens, the result sets are returned to the application. Then, the
datais fetched and loaded into the application program host variables.
Optionally, you can update or delete the data. The fetch and close statements
are the same asin static Embedded SQL.

The syntax for the fetch statement is:

exec sql [at connection name] fetch cursor nameinto
:host variable [[indicator]:indicator variable]

[, :host variable

[[indicator] :indicator variable]...];

where;
* cursor_nameisthe name given to the cursor in the declare statement.

» Thereisone C host_variable for each columnin the result rows. The
variables must have been defined in adeclare section, and their datatypes
must be compatible with the results returned by the cursor.

The syntax for the close statement is:
exec sql [at connection name] close cursor name;

where cursor_name isthe name assigned to the cursor in the declare statement.

Open Client

CHAPTER 7 Using Dynamic SQL

Method 3 example

The following example uses prepare and fetch, and prompts the user for an
order by clausein aselect statement:

exec sgl begin declare section;

CS_CHAR sglstring[200] ;
CS_FLOAT bookprice, condprice;
CS_CHAR booktitle[200] ;

exec sqgl end declare section;
char orderby [150] ;

exec sqgl whenever sglerror call err p();
exec sql whenever sqglwarning call warn p();

strcpy (sglstring,
"select title,price from titles\
where price>? order by ");

printf ("Enter the order by clause:");
scanf ("$s", orderby) ;
strcat (sglstring, orderby) ;

exec sqgl prepare select state from :sqglstring;
exec sqgl declare select cur cursor for select state;

condprice = 10; /* the user can be prompted
*% for this value */

exec sqgl open select cur using :condprice;
exec sqgl whenever not found goto end;

for (;;)
{
exec sqgl fetch select_cur
into :booktitle, :bookprice;
printf ("$20s %bookprice=%6.2f\n",
booktitle, bookprice) ;

}

end:

exec sqgl close select cur;
exec sgl commit work;

Embedded SQL/C Programmers Guide 83

Method 4: Using prepare and fetch with dynamic descriptors

Method 4: Using prepare and fetch with dynamic

descriptors

Method 4 permits varying-list select statements. That is, when you write the
application, you need not know the formats and number of items the select
statement will return. Use method 4 when you cannot define the host variables
in advance because you do not know how many variables are needed or of what
type they should be.

Method 4 dynamic descriptors

84

A dynamic descriptor isadata structure that holds a description of the
variables used in adynamic SQL statement. There are two kinds of dynamic
descriptors—SQL descriptors and SQLDA structures. Both are described later
in this chapter.

When a cursor opens, it can have an input descriptor associated with it. The
input descriptor contains the values to be substituted for the dynamic SQL
statement’s parameter markers.

Before the cursor is opened, the user fillsin the input descriptor with the
appropriate information, including the number of parameters, and, for each
parameter, itstype, length, precision, scale, indicator, and data.

Associated with the fetch statement is an output descriptor, which holds the
resultant data. Adaptive Server Enterprisefillsin the dataitem’s attributes,
including its type and the actual data being returned. If you are using an SQL
descriptor, use the get descriptor statement to copy the datainto host variables.

Dynamic SQL method 4 performs the following steps:
1 Preparesthe statement for execution.
2 Associates acursor with the statement.
3 Definesand binds the input parameters or descriptor and:
e If using an input descriptor, allocatesit
e If using an input parameter, associates it with the statement or cursor
4 Opensthe cursor with the appropriate input parameter(s) or descriptor(s).

Allocates the output descriptor if different from the input descriptor and
binds the output descriptor to the statement.

6 Retrievesthe data by using fetch cursor and the output descriptor.

Open Client

CHAPTER 7 Using Dynamic SQL

7 Copies data from the dynamic descriptor into host program variables. If
you are using an SQL DA, this step does not apply; the datais copied in

step 6.

Closes the cursor.

9 Dedlocates the dynamic descriptor(s).

10 Drops the statement (ultimately, the stored procedure).

Dynamic descriptor statements

There are statements that associate the descriptor with a SQL statement and
with a cursor associated with the SQL statement. The following list describes
dynamic SQL statements for method 4:

Statement

Description

allocate descriptor

Notifies Client-Library to allocate a SQL descriptor.

describe input

Obtains information about the dynamic parameter
marker in the prepare statement.

set descriptor

Inserts or updates data in the system descriptor.

get descriptor

Moves row or parameter information stored in a
descriptor into host variables, thereby alowing the
application program to use the information.

execute

Executes a prepared statement.

open cursor

Associates a descriptor with a cursor and opens the
Cursor.

describe output

Obtainsinformation about the select list columnsin the
prepared dynamic SQL statement.

fetch cursor

Retrieves arow of datafor adynamically declared
Cursor.

deallocate descriptor

Dedllocates a dynamic descriptor.

For complete descriptions of these statements, see Chapter 10, “ Embedded
SQL Statements: Reference Pages.”

Embedded SQL/C Programmers Guide

85

Method 4: Using prepare and fetch with dynamic descriptors

About SQL descriptors

A SQL descriptor isan areaof memory that storesadescription of the variables
used in a prepared dynamic SQL statement. A SQL descriptor can contain the
following information about data attributes (for details, see the descriptions of
the set descriptor and get descriptor commandsin Chapter 10, “Embedded SQL
Statements: Reference Pages”):

precision — integer.
scale —integer.

nullable — 1 (cs_true) if the column can contain nulls; O (cs_false) if it
cannot. Valid only with get descriptor statement.

indicator — value for the indicator associated with the dynamic parameter
marker. Valid only with get descriptor statement.

name — name of the dynamic parameter marker. Valid only with get
descriptor statement.

data — value for the dynamic parameter marker specified by the item
number. If the value of indicator is -1, the value of data is undefined.

count —number of dynamic parameter markers described in the descriptor.
type — datatype of the dynamic parameter marker or host variable.

returned_length — actual length of the datain an output column.

Method 4 example using SQL descriptors

The following example uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

86

exec sgl begin declare section
int index colcnt, coltype;
int int buff;
char char buff[255], void buff[255];
char typel[255], titlel[255];
char colname[255] ;
int sales;
int descnt, occur, cnt;
int condent, diag cnt, num msgs;

char user id[30], pass_1id[30], server name[30];
char strl1[1024], str2[1024], str3[1024],
str4[1024];

exec sqgl end declare section;

Open Client

CHAPTER 7 Using Dynamic SQL

void dyn m4 ()
{
printf ("\n\nDynamic sgl Method 4\n");
printf ("Enter in a Select statement to retrieve
any kind of ");
printf ("information from the pubs database:");
scanf ("%$s", &str4);

printf ("\nEnter the largest number of columns to
be retrieved or the number ") ;

printf ("of ? in the sgl statement:\n");

scanf ("%d", &occur) ;

exec sqgl allocate descriptor dinout with max
:occur;

exec sqgl prepare s4 from :str4;

exec sgl declare c2 cursor for s4;

exec sgl describe input s4 using sgl descriptor
dinout;

fill descriptor() ;

exec sgl open c2 using sqgl descriptor dinout;

while (sglca.sglcode == 0)

{

exec sqgl fetch c2 into sqgl descriptor dinout;
if (sglca.sglcode == 0)

print_descriptor () ;
}

}

exec sqgl close c2;
exec sgl deallocate descriptor dinout;
exec sgl deallocate prepare s4;

printf ("Dynamic SQL Method 4 completed\n\n") ;

}

void
print descriptor()

{

exec sgl get descriptor dinout :descnt = count;

Embedded SQL/C Programmers Guide 87

Method 4: Using prepare and fetch with dynamic descriptors

printf ("Column name \t\tColumn data\n") ;
printf("----------- A et e

for (index colent = 1; index colcnt <= descnt;
index colcnt++)
{ /* get each column attribute */
exec sgl get descriptor dinout value
:index colcnt :coltype = TYPE;

switch (coltype)

{

case 4:/* integer type */
exec sqgl get descriptor dinout value
:index_colcnt
:colname = NAME, :int buff = DATA;
printf ("%$s \t\t %d\n", colname, int buff);
break;

}

void
fill descriptor()

{

exec sgl get descriptor dinout :descnt = count;
for (cnt = 1; cnt <= descnt; cnt++)
{
printf ("Enter in the data type of the %d ?2:",
cnt) ;
scanf ("%d", &coltype;);
switch (coltype)

{

case 4:/* integer type */
printf ("Enter in the value of the data:");
scanf ("$d\n", &int buff) ;
exec sqgl set descriptor dinout VALUE :cnt
TYPE = :coltype,
DATA = :int buff;
break;

default:

88 Open Client

CHAPTER 7 Using Dynamic SQL

About SQLDAS

printf ("non-supported column type.\n");
break;

SQLDA isahost-language structure that, like an SQL descriptor, describesthe
variables used in adynamic SQL prepared statement. Unlike SQL descriptors,
SQLDAs are public data structures whose fields you can access. Statements
using SQLDAs may execute faster than equivalent statements using SQL
descriptors.

The SQLDA structureis not part of the SQL standard. Different
implementations of Embedded SQL define the SQLDA structure differently.
Embedded SQL version 11.1 and later supportsthe SQL DA defined by Sybase;
it does not support SQLDA datatypes defined by other vendors.

To define the SQLDA datatype in your Embedded SQL program, you use the
Embedded SQL command include sglda. To allocate a SQLDA structurein
your program, you use the malloc function. To deallocate an SQLDA, you use
the free function. Your program is responsible for deallocating all SQLDA
structuresthat it creates. Embedded SQL does not limit the number of SQLDA
structures that can be created by a program.

Table 7-1 describes the fields of the SQLDA structure.
Table 7-1: Fields of the SQLDA structure

Field

Datatype Description

sd_sqln

CS_SMALLINT The size of the sd_column array.

sd_sqld

CS_SMALLINT The number of columnsin the query being described, or O if
the statement being described is not a query. For fetch, open,
and execute statements, thisfield indicatesthe number of host
variables described by occurrences of sd_column, or the
number of dynamic parameter markers for the describe input
Statement.

sd_column[].sd_datafmt ~CS_DATAFMT Identifiesthe Client-Library CS_DATAFMT structure

associated with this column. Refer to descriptions of ct_bind,
ct_param , and ct_describe in the Open Client Client-
Library/C Reference Manual.

sd_column[].sd_sgldata CS_VOID For fetch, open, and execute statements, stores the address of

the statement’s host variable. Thisfield is not used for
describe or prepare statements.

Embedded SQL/C Programmers Guide 89

Method 4: Using prepare and fetch with dynamic descriptors

Field Datatype Description

sd_column[].sd_sqlind CS_SMALLINT For fetch, open, and execute statements, thisfield acts asan
indicator variable for the column being described. If the
column’svalueisnull, thisfield is set to -1. Thisfield is not
used for describe or prepare statements.

sd_column[].sd_sqllen CS_INT Theactual size of the datapointed to by sd_sqldata associated
with this column.
sd_column[].sd_sglmore CS_VOID Reserved.

The Embedded SQL header file sglda.h contains a macro, SQLDADECL, that
lets you declare SQLDA structuresin your program. The SQLDADECL macro
isasfollows:

#ifndef SQLDADECL
#define SQLDADECL (name, size)

struct {
CS_INT sd_sgln;
CS_INT sd_sgln;
struct {
CS_DATAFMT sd_datafmt;
CS_VOID sd_sqgldata;
CS_SMALLINT sd_sqglind;
CS_INT sd_sgllen;
CS _VOID sd_sglmore;
} sd column[(SIZE)]
} name

#endif /* SQLDADECL */

Method 4 example using SQLDAs

Following is an example that uses prepare and fetch with dynamic parameter
markers and SQL descriptors.

exec sgl include sqglca;
exec sgl include sqglda;

SQLDA *input descriptor, *output descriptor;
CS_SMALLINT small;
CS_CHAR character[20] ;

input descriptor = (SQLDA *)malloc(SYB SQLDA SIZE(3)) ;
input descriptor->sglda _sgln = 3;

output descriptor = (SQLDA *)malloc(SYB SQLDA SIZE(3)) ;
output descriptor->sglda sgln = 3;

90 Open Client

CHAPTER 7 Using Dynamic SQL

*p retcode = CS_SUCCEED;

exec sgl connect “sa” identified by “%;

/* setup */

exec sgl drop table example;

exec sqgl create table example (fruit char(30), number int);

exec sgl insert example values (‘tangerine’, 1);
exec sgl insert example values (‘pomegranate’, 2);
exec sgl insert example values (‘banana’, 3);

/* Prepare and describe the select statement */
exec sqgl prepare statement from
“select fruit from example where number = ?”;
exec sgl describe input statement using descriptor input descriptor;
input descriptor-s>sglda_column[0] .sglda datafmt.datatype =
CS_SMALLINT TYPE;
input descriptor->sglda column[0] .sglda sgldata = &small;
input descriptor->sglda column[0] .sglda sgllen = sizeof (small) ;
small = 2;
exec sgl describe output statement using descriptor
output descriptor;
if (output_ descriptor-ssglda_sgld != 1 ||
output descriptor->sglda column[0] .sglda datafmt.datatype !=
CS CHAR TYPE)
FAIL;
else
printf (“First describe output \n”);
output descriptor->sglda column[0] .sglda sgldata = character;
output descriptor->sqglda_column[0] .sglda datafmt.maxlength = 20;
exec sgl execute statement into descriptor output descriptor
using descriptor input descriptor;
printf (“Expected pomegranate, got %s\n”, character);
exec sqgl deallocate prepare statement;
/* Prepare and describe second select statement */
exec sqgl prepare statement from
“select number from example where fruit = ?2”;
exec sqgl declare c¢ cursor for statement;
exec sgl describe input statement using descriptor
input descriptor;
input descriptor->sglda column->sglda sgldata = character;
input descriptor-s>sglda column->sglda datafmt.maxlength = CS NULLTERM;
strcpy (character, “banana”) ;
input descriptor->sglda column->sglda sgllen = CS_NULLTERM;
exec sgl open c¢ using descriptor input descriptor;
exec sgl describe output statement using descriptor
output descriptor;
output descriptor->sqglda column->sglda sgldata = character;
output descriptor->sqglda_column->sglda datafmt.datatype = CS_CHAR TYPE;

Embedded SQL/C Programmers Guide 91

Summary

output descriptor-s>sglda column->sglda datafmt.maxlength = 20;

output descriptor->sglda column->sglda sgllen = 20;

output descriptor-s>sglda column->sglda datafmt.format =
(CS_FMT NULLTERM | CS_FMT_ PADBLANK) ;

exec sqgl fetch c¢ into descriptor output descriptor;

printf (“Expected pomegranate, got %s\n”, character) ;

exec sgl commit work;

Summary

This chapter described dynamic SQL, aset of Embedded SQL statements that
permit online applicationsto access the database interactively. Thisinteraction
with the database lets a user define and execute SQL statements at runtime.

The four dynamic SQL Methods are:

* Method 1: execute immediate

* Method 2: prepare and execute

* Method 3: prepare and fetch

* Method 4: prepare and fetch with dynamic descriptors

The next chapter describes how to detect and correct Embedded SQL errors.

92 Open Client

CHAPTER 8

Handling Errors

This chapter discusses how to detect and correct errors that can occur
during the execution of Embedded SQL programs. It coversthe whenever
and get diagnostics statements, which you can useto process warningsand
errors, and the SQL CA variables that pertain to warnings and errors.

Topic Page
Testing for errors 94
Testing for warning conditions 94
Trapping errors with whenever 95
Using get diagnostics 97
Writing routines to handle warnings and errors 98
Precompiler-detected errors 99

While an Embedded SQL application is running, some events may occur
that interfere with the application’s operation. Following are examples:

e Adaptive Server Enterprise becomes inaccessible.
e The user enters an incorrect password.

e The user does not have access to a database object.
e A database object is deleted.

e A column’s datatype changes.

e A query returns an unexpected null value.

* A dynamic SQL statement contains a syntax error.

You can anticipate these events by writing warning and error-handling
code to recover gracefully when one of these situations occurs.

Embedded SQL/C Programmers Guide 93

Testing for errors

Testing for errors

Using SQLCODE

Embedded SQL places areturn code in the SQLCODE variableto indicate the
success or failure of each SQL statement sent to Adaptive Server Enterprise.
You can either test the value of SQLCODE after each Embedded SQL
statement or use the whenever statement to instruct the precompiler to writethe
test code for you. The whenever statement is described later in this chapter.

Table 8-1 lists the values SQLCODE can contain:
Table 8-1: SQLCODE return values

Value Meaning

0 No warnings or errors occurred.

<0 An error occurred. The SQLCA variables contain useful
information for diagnosing the error.

100 No rows returned from last statement, although the

statement executed successfully. This condition isuseful for
driving aloop that fetches rows from a cursor. When

SQL CODE hecomes 100, the loop and dl rows that have
been fetched end. Thistechniqueisillustrated in Chapter 6,
“Using Transact-SQL Statements.”

Testing for warning conditions

94

Even when SQLCODE indicates that a statement has executed successfully, a
warning condition may still have occurred. The 8-character array sqlca.sglwarn
indicates such warning conditions. Each sglwarn array element, or flag, stores
either the space character or the character “W.”

Table 8-2 describes what the space character or “W” means in each flag:

Open Client

CHAPTER 8 Handling Errors

Table 8-2: sqlwarn flags

Flag

Description

sqglwarn[0]

If blank, no warning condition of any kind occurred, and all
other sglwarn flags are blank. If sqlwarn[0] is set to “W,” one
or more warning conditions occurred, and at least one other
flagisset to “W.”

sglwarn[1]

If setto“W,” the character string variablethat you designated
in afetch statement was too short to store the statement’s
result data, so the result data was truncated. You designated
noindicator variableto receivethe original length of the data
that was truncated.

sglwarn[2]

If set to “W,” the input sent to Adaptive Server Enterprise
contained anull valuein anillegal context, such asin an
expression or as an input value to atable that prohibits null
values.

sqlwarn[3]

The number of columnsin aselect statement’s result set
exceeds the number of host variables in the statement’s into
clause.

sqglwarn[4]

Reserved.

sqlwarn[5]

Adaptive Server generated a conversion error while
attempting to execute this statement.

sqlwarn[6]

Reserved.

sglwarn([7]

Reserved.

Test for awarning after you determine that a SQL statement executed
successfully. Use the whenever statement, as described in the next section, to
instruct the precompiler to write the test code for you.

Trapping errors with whenever

Use the Embedded SQL whenever statement to trap errors and warning
conditions. It specifies actions to be taken depending on the outcome of each
Embedded SQL statement sent to Adaptive Server Enterprise.

Thewhenever statement is not executable. Instead, it directsthe precompiler to
generate C code that tests for specified conditions after each executable
Embedded SQL statement in the program.

The syntax of the whenever statement is:
exec sqgl whenever {sqglwarning | sglerror | not found}
{continue | goto label |

Embedded SQL/C Programmers Guide

95

Trapping errors with whenever

call function name ([param [, param]...]) | stop};

whenever testing conditions

96

Each whenever statement can test for one of the following three conditions:
* sqglwarning

* sqlerror

* not found

The precompiler generates warning messages if you do not write a whenever
statement for each of the three conditions. If you write your own code to check
for errors and warnings, suppress the precompiler warnings by writing a
whenever...continue clausefor each condition. Thisinstructsthe precompiler to
ignore errors and warnings.

If you precompile with the verbose option, the precompiler generates a
ct_debug() function call as part of each connect statement. This causes Client-
Library to display informational, warning, and error messages to your screen
as your application runs. The whenever statement does not disable these
messages. See the Open Client and Open Server Programmers Supplement.

After an Embedded SQL statement executes, the values of sglcode and
sglwarnO determineif one of the conditions exists. Table 8-3 showsthe criteria
whenever uses to detect the conditions:

Table 8-3: Criteria for the whenever statement

Condition Criteria

sglwarning sglcode = 0 and sglwarn[0] = W
sglerror sqlcode <0

not found sqlcode = 100

To change the action of awhenever statement, write anew whenever statement
for the same condition. whenever appliesto all Embedded SQL statementsthat
follow it, up to the next whenever statement for the same condition.

The whenever statement ignores the application program’slogic. For example,
if you place whenever at the end of aloop, it does not affect the preceding
statements in subsequent passes through the loop.

Open Client

CHAPTER 8 Handling Errors

whenever actions
The whenever statement specifies one of the following four actions:

Table 8-4: whenever actions

Action Description

continue Perform no special action when a SQL statement returnsthe
specified condition. Normal processing continues.

goto Perform a branch to an error handling procedure within your

application program. You can write goto as either goto or go
to, and you must follow it with avalid statement label name.
The precompiler does not detect an error if the label nameis
not defined in the program, but the C compiler does.

cal Call another C routine and, optionally, pass variables.

stop Terminate the program when a SQL statement triggers the
specified condition.

Using get diagnostics

The get diagnostics statement retrieves error, warning, and informational
messages from Client-Library. It is similar to, but more powerful than, the
whenever statement, because you can expand it to retrieve more details of the
detected errors.

If, within awhenever statement, you specify the application to go to or call
another routine, specify get diagnostics in the function code, as follows:

void
error handler ()
{
exec sqgl begin declare section;
int num msgs;
int condcnt;
exec sqgl include sqglca;
exec sqgl end declare section;
exec sgl get diagnostics :num msgs = number;
for (condcnt=1; condcnt <= num msgs; condcnt++)
{
exec sgl get diagnostics exception :condent
:sglca = sglca info;
printf (“sglcode is :%d\n\ message text:
$s\n”, sqglca.sglcode,
sglca.sqglerrm.sqglerrmc) ;

Embedded SQL/C Programmers Guide 97

Writing routines to handle warnings and errors

Writing routines to handle warnings and errors

98

A good strategy for handling errors and warnings in an Embedded SQL
application isto write custom procedures to handle them, then install the
procedures with the whenever...call statement.

Thefollowing exampl e shows samplewarning and error handling routines. For
simplicity, both routines omit certain conditions that should normally be
included. warning_hndl omits the code for sglwarn[1]. error_hndl omits the
code that handles Client-Library errors and operating system errors:

/* Declare the sglca. */

exec sgl include sqglca;
exec sgl whenever sqglerror call error handler();
exec sgl whenever sglwarning call

warning handler () ;

exec sgl whenever not found continue;
/*

** void error handler ()

* %

** Displays error codes and numbers from the sglca
*/
void error handler()
{
fprint (stderr,
“\n**sglcode=(%d) ", sqglca.sqglcode) ;
if (sglca.sglerrm.sglerrml)
{
fprintf (stderr, "\n** ASE Error ");
fprintf (stderr, "\n** %s", sqglca.sglerrm.sqglerrmc) ;
}
fprintf (stderr, "\n\n");
exit (ERREXIT) ;
}
/*
** void warning handler ()
* %
** Displays warning messages.
*/

void warning handler ()

Open Client

CHAPTER 8 Handling Errors

if (sglca. sglwarn[l] == ‘W')

{ fprintf (stderr, “\n** Data truncated.\n”);
}

if (sglca.sglwarn([3] == ‘W’)

{ fprintf (stderr, “\n** Insufficient

host variables to store results.\n”);

}

return;

Precompiler-detected errors

The Embedded SQL precompiler detects Embedded SQL errors at precompile
time. The precompiler detects syntax errors such as missing semicolons and
undeclared host variables in SQL statements. These are severe errors, so
appropriate error messages are generated.

You can also have the precompiler check Transact-SQL syntax errors.
Adaptive Server Enterprise parses Transact-SQL statements at precompile
time if the appropriate precompiler command options are set. See the
precompiler reference page in the Open Client and Open Server Programmers
Supplement for your platform.

The precompiler does not detect the error in the following example, in which a
tableiscreated and datais selected from it. The error isthat the host variables

datatypes do not match the columnsretrieved. The precompiler does not detect
the error because the table does not yet exist when the precompiler parses the
statements:

exec sgl begin declare section;
CS_INT varl;

CS CHAR wvar2([20];

exec sgl end declare section;

exec sqgl create table
Tl (coll int, col2 varchar(20)) ;

Embedded SQL/C Programmers Guide 99

Precompiler-detected errors

exec sgl select * from Tl into :var2, :varl;

Note that the error will be detected and reported at runtime.

100 Open Client

CHAPTER 9

Improving Performance with
Persistent Binding

This chapter describes persistent binding and how it can improve
performance. Persistent binding is afeature of Client-Library, the set of
routines that executes Embedded SQL statements. Persistent binding
improves a program’s performance by enabling the Embedded SQL
precompiler to create more efficient code.

Topic Page
About persistent binding 102
Precompiler options for persistent binding 105
Overview of rulesfor persistent binding 106
Guidelines for using persistent binding 113
Notes on the binding of host variables 114

Persistent binding is optional: It takes effect if you request it when you
precompileyour program. Persistent binding benefitsonly certain typesof
Embedded SQL programs.

To understand this chapter, you should be familiar with host variables,
cursors, dynamic SQL., and precompiler options. Refer to:

e Chapter 4, “Using Variables” for information about host variables.

e Chapter 6, “Using Transact-SQL Statements” for information about
CUrsors.

e Chapter 7, “Using Dynamic SQL" for information about
dynamic SQL.

e The Open Client and Open Server Programmers Supplement for
information about precompiler options and about starting the
precompiler.

You need not understand Client-Library to use persistent binding in
Embedded SQL . However, understanding Client-Library’s command
structures, ct_bind routine, and ct_fetch routine can help you understand
why persistent binding works as it does in Embedded SQL.

Embedded SQL/C Programmers Guide 101

About persistent binding

The general function of the command structures ct_bind and ct_fetch are
described briefly in this chapter. For complete descriptions, refer to the Open
Client Client-Library/C Programmers Guide and the Open Client Client-
Library/C Reference Manual.

About persistent binding

102

To pass values to Adaptive Server and to store values from it, an
Embedded SQL program uses host variables—C variables recognized by
Embedded SQL. The program associates these variables with values on
Adaptive Server. For example, the following select statement associates the
host output variable last with arow value retrieved from Adaptive Server:

id = “998-72-3567";
exec sgl select au lname into :last
from authors where au_id = :id;

The statement passes its host input variable, id, to Adaptive Server and
associates that variable with the server’s au_id column.

Theact of associating astatement’s host variableswith Adaptive Server values
is called binding. The association itself is aso called a binding. Host input
variables use only input bindings; host output variable use only output
bindings.

Binding governs which data a statement retrieves from the server. If a
statement binds a host variable to the wrong server data, the statement will
retrieve the wrong value for that host variable. However, unnecessary binding
can sow a program’s performance.

Embedded SQL lets you control how long bindings remain in effect—how
long they “persist.” A binding that persists for more than one execution of a
statement is called a per sistent binding. Persistent bindings enable some
Embedded SQL statements to execute faster, thereby improving a program’s
performance.

In Embedded SQL, each binding is made possible by a Client-Library
command structure—a data structure that, among other things, defines the
bindings of an Embedded SQL statement. For each Embedded SQL statement
that executes, there is a corresponding command structure. A single command
structure, however, can be used by more than one statement. In fact, when
bindings persist from one Embedded SQL statement to another, they do so
because the statements share a single command structure.

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

An Embedded SQL program’s source code does not explicitly declare or
allocate command structures. Instead, command structures are declared and
allocated by the program’s generated code.

When binding occurs

By default, binding occurs each time an Embedded SQL statement executes,
using a host variable. When an Embedded SQL statement executes more than
once, asin aloop, binding occurs at each execution. For example, in the
following loop, each execution of the insert statement associates its host
variableswith the same Adaptive Server values. Yet, by default, binding occurs
for each execution:

for (1 = 1; 1 <= 3; 1i++)
{
exec sgl insert into titles (title id, title)
values (:bk id, :bk_title);
/*
** Binding occurs here at each execution.
** When a statement undergoes binding, all
** its host variables get bound.

*/
}
For most statements, bindings do not persist from one statement to the next,
even if you request persistent binding. For example, the following insert
statements, though identical and consecutive, share no bindings:

exec sgl insert into titles (title id, title)
values (:bk _id, :bk title);
/* Binding occurs for the first statement. */

exec sqgl insert into titles (title id, title)
values (:bk id, :bk title);
/* Binding occurs for the second statement. */

exec sqgl insert into titles (title id, title)
values (:bk id, :bk title);
/* Binding occurs for the third statement. */

For Embedded SQL statementsthat execute morethan once—such astheinsert
statement in the preceding for loop—you can specify whether binding should
occur only at the first execution or at each subsequent execution as well.

Embedded SQL/C Programmers Guide 103

About persistent binding

To control persistent binding, you use precompiler options to specify the
binding behavior of all the statementsin afile. Precompiler options do not let
you control the binding behavior of individual statements. The precompiler
options that control binding are explained later in this chapter.

Programs that can benefit from persistent binding

104

Not all Embedded SQL programs benefit from persistent binding. To find out
whether persistent binding can benefit your program, answer the following
questions:

1 Doesyour program contain at least one Embedded SQL statement that
executes more than once?

2 If so, doesthat statement repeatedly use the same host variables to
exchange values with Adaptive Server?

If you answered “yes’ to both questions, your program can probably benefit
from persistent binding. If you answered “no” to either question, persistent
binding would not improve your program'’s performance—unless you modify
your program so that you can answer “yes’ to both questions.

To maximize the benefit from persistent binding, your program should execute
asingle Embedded SQL statement repeatedly instead of executing two or more
identical statements. For example, the following insert statement executes
repeatedly:

for (i = 1; 1 <= 3; 1++)

{

exec sgl insert into titles (title id, title)
values (:bk id, :bk _title);

}

Although theinsert statement in this exampl e executesthreetimes, itsvariables
are bound only once. Because binding is not repeated, this example should run
faster than a series of identical insert statements that execute only once.

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

Scope of persistent bindings

The scope of persistent bindings—how long they persist—differs depending
on the type of statement and on the precompiler optionsin effect, as described
later in this chapter. However, bindings never persist beyond the lifetime of a
connection. When a program closes a connection, all bindings for statements
issued and all command structures allocated over that connection are cancel ed.

Precompiler options for persistent binding

The -p option

The -b option

Two precompiler options control binding, the -p option and the -b option. These
options affect only Embedded SQL statementsthat can use persistent binding.
(Refer to Table 9-1 for alist of statements that cannot use persistent binding.)

The -p option controls whether each statement has a per sistent command
structure—one that persists for all executions of a particular statement. Only
statements with a persistent command structure can have persistent bindings
for host variables. Thus, the -p option controls binding of host input variables,
whose values are passed to Adaptive Server Enterprise. (In this chapter,
information about “host input variables’ also appliesto other variables whose
values are passed to Adaptive Server. Exceptions are noted in the text.)

The-b option controlsbinding of host variables used in statementsthat retrieve
result data from Adaptive Server Enterprise. When used in conjunction with
the-p option, it controlsbinding of host variablesin select and exec statements.
When the -b option is used by itself, it can only control statements that fetch
with a cursor.

Embedded SQL/C Programmers Guide 105

Overview of rules for persistent binding

Thus, generally, the -b option controls binding of host variables (output
variables, result variables, status variables, indicator variables, and so on)
whose values are passed from Adaptive Server Enterprise. (Information about
“host output variables” also appliesto any other variables whose values are
output from Adaptive Server.) More precisely, the -b option controls whether
binding occurs at each execution of Client-Library’s ct_fetch routine. (The
ct_fetch routine retrieves asingle row of datafrom Adaptive Server.)

Which option to use: -p, -b, or both

Most programsthat can benefit from persistent bindingsfor input variables can
also benefit from persistent bindings for output variables. In general, you
should use both -p and -b options or use neither option.

Scope of the -p and -b precompiler options

The -p and -b options affect only the file being precompiled, unless that file
declaresacursor. If thefile declaresacursor, -p and -b affect all statementsthat
use the cursor—even if those statements are in different source files of your
program. The effect of -p and -b on files that use cursorsis described in detail
later in this chapter.

Overview of rules for persistent binding

106

Therules of persistent binding differ for different types of Embedded SQL
statements. Specifically, the rules differ depending on whether a statement:

e Can use persistent binding
* Usesacursor
e Isadynamic SQL statement

* |safetch statement with the rebind/norebind clause

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

Statements that can use persistent binding

Most Embedded SQL statements can use persistent binding. However, Table
9-1 and Table 9-2 list Embedded SQL commands that cannot use persistent
binding. All other Embedded SQL commands—including Transact-SQL
commands—can use persistent binding for some or all host variables.

Whether a statement’s bindings persist and how long they persist depends on
the type of statement—particularly, on whether the statement uses a cursor.

Table 9-1: Embedded SQL commands that cannot use persistent

binding

allocate descriptor begin transaction
close commit

connect deallocate cursor
deallocate descriptor deallocate prepare
describe input describe output
disconnect end transaction
execute execute immediate
get descriptor get diagnostics
open using descriptor prepare

prepare transaction rollback

set descriptor set connection

set transaction diagnostics

Table 9-2: Types of Embedded SQL commands that cannot use
persistent binding

Commandsthat send text or imagedata Dynamic SQL commands that use a
to Adaptive Server with the -y option SQL descriptor or SQLDA for input
to Adaptive Server Enterprise

Persistent binding in statements without a cursor

If an Embedded SQL statement can use persistent binding but does not use a
cursor, you control the statement’s bindings with the -p and -b options when
precompiling the statement. Table 9-3 describes how these options affect a
statement that uses no cursor.

Embedded SQL/C Programmers Guide 107

Overview of rules for persistent binding

Table 9-3: How -p and -b options affect statements with no cursors

Options used to Effect on statement’s
precompile statement bindings

Neither -p nor -b No bindings persist.

-p only Only input bindings persist.
-b only No hindings persist.

Both -p and -b All bindings persist.

If the statement’s bindings persist, they do so until your program closes the
connection over which the statement executes. The bindings persist throughout
all executions of the statement, even if other statements execute in the
meantime. If the statement’s bindings do not persist, binding occurs each time
the statement executes.

Persistent binding in statements with a cursor

108

Before your program can use a cursor, you must declare it with the

declare cursor command. A cursor’s declaration governs the binding behavior
of all statements that use the cursor—in all source files of your program. The
reason for this control isthat the command structure for a cursor’s declaration
is shared by all statements that use the cursor.

When a statement uses a cursor, the cursor’s declaration—not the statement
using the cursor—controls how long the statement’s bindings persist. The
bindings persist only if you use the -b and -p options when precompiling the
filethat declaresthe cursor. If you use these options, all statementsthat usethe
cursor have persistent bindings as specified by the options.

Strictly speaking, a cursor’s declaration controls binding behavior only if the
cursor isadynamic cur sor—acursor for adynamic SQL statement. In cursors
for all other SQL statements (static cur sor s), the statement that most recently
opened the cursor (open cursor) controls the binding behavior, not the
statement that declares the cursor.

Note For astatic cursor, the generated code for open cursor both declares and
opensthe cursor. For adynamic cursor, the generated code for open cursor only
opens the cursor.

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

Except for this difference, the binding rules for static cursors and dynamic
cursors are the same. Unless you use a particular cursor in more than one
sourcefileof your program, the binding behavior of static cursorsand dynamic
cursorsis the same.

In statements that use a cursor, bindings never persist after the cursor is
deallocated, even if you use persistent binding. Also, deallocated cursors
cannot be reopened. Declaring anew cursor with the name of a deallocated
cursor does not reopen the deallocated cursor, nor doesit retain bindings
associated with that cursor. See the description of the deallocate cursor
command in Chapter 10, “Embedded SQL Statements: Reference Pages.”

Thefollowing exampl e shows how the-b and -p optionsaffect acursor—inthis
example, cursl. The fetch statement in the example contains host variables.
The paragraphs following the example describes how the -b and-p options
affect the bindings of these host variables.

#include <stdio.h>
int SQLCODE;

void
main ()
{
exec sgl begin declare section;
char title[100], pub_id([8];
exec sgl end declare section;

exec sgl connect “sa”;

exec sqgl use pubs2;
/*
** The options used to precompile a cursor’s declaration
** control whether host variables persist in statements,
** guch as FETCH, that use the cursor.
*/

exec sgl declare cursl cursor for select title, pub id from
titles;

exec sgl open cursl;

while (SQLCODE == 0)
{
/* If the declaration of cursl was precompiled without
** the -b option, rebind the FETCH statement’s variables
** each time the statement repeats. Otherwise, bind only
** the first time, and let the bindings persist for
** gubsequent repetitions.

Embedded SQL/C Programmers Guide 109

Overview of rules for persistent binding

*/

exec sqgl fetch cursl into :title, :pub id;

)
* %
* %
* %
* %

* %

*/

printf (“%s, %$s\n”, title, pub_ id);

If the declaration of cursl was precompiled without
the -p option, cancel the bindings of the FETCH
statement’s variables when cursl is closed.
Otherwise, let the bindings persist until the
program deallocates cursl or, as here, until the
program ends.

exec sqgl close cursl;
exec sqgl disconnect CURRENT;

exit (0) ;

Preventing persistent binding for all cursor host variables

If you omit both the -b and -p options when precompiling the above example,
no bindings persist. Instead, the generated code binds the host variables each

timethefetch statement executes, regardless of whether the variableisinput to
Adaptive Server Enterprise or output fromit.

Requesting persistent binding for all cursor host variables

110

If you use both the -b and -p options when precompiling the preceding
exampl e, the generated code bindsthe host variabl es of the fetch statement only
the first time that the statement executes. Unlike other Embedded SQL
statements (as described in “When binding occurs’ on page 103), it does not
meatter whether there are one or moreidentical fetch statementsin aseries, or a
simple fetch statement executed in aloop. Using both options together causes
the bindings to persist even when the program closes the cursor; the host
variables do not need to be rebound when the cursor is reopened. The bindings
persist until the program deall ocates the cursor—typically, with the deallocate
cursor or disconnect statement.

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

Requesting persistent binding for cursor output variables only

If you use -b but omit -p when precompiling the preceding example, the
generated code binds the host output variables of the fetch statement only
once—thefirst time that the statement executes. (More precisely, the host
variables get bound only if they are not bound already.) The bindings persist
for all subsequent executions of the statement, until the program closes cursl.
They persist because you used the -b option. Because you omitted the-p option,
bindings for host input variables do not persist.

If your program closes cursl and then reopensit, all bindingsfor host variables
related to cursl are canceled. Any host input variables and host output
variables are re-bound when the cursor is reopened. They persist until your
program closes the cursor again.

Requesting persistent binding for cursor input variables only

The preceding exampl e showed how the-b and -p options affect statementsthat
use host variables with a cursor. The example's only host variables were host
output variables. The following code is an example that shows how the -b and
-p options affect statements that use host input variables with acursor in this
case, a dynamic cursor named dyn_cursl.

The open statement in the following example contains a host input variable,
min_price. The following sections describe how the -b and-p options affect the
bindings of this host input variable.

#include <stdio.h>
long SQLCODE = O0;

void main()

{
int 1 = 0;
exec sgl begin declare section;
CS_CHAR sgl string[200];
CS_FLOAT min price;
CS_CHAR book_title[200];

exec sgl end declare section;

exec sgl connect "sa'";

exec sgl use pubs2;

strcpy(sgl string,
"select title from titles where price > ?");
exec sgl prepare sel stmt from :sql string;

/* The options used to precompile a cursor's declaration
** control whether host variables persist in statements,

Embedded SQL/C Programmers Guide 111

Overview of rules for persistent binding

** guch as OPEN, that use the cursor.

*/

exec sqgl declare dyn cursl cursor for sel_ stmt;

min price = 10.00;

/* If the declaration of dyn cursl was precompiled

** without -p, bind the OPEN statement's input variable

** (min price) each time the statement repeats. Otherwise,
** bind only the first time, letting the binding persist

** until dyn cursl is deallocated.

*/

for (i = 10; 1 <= 21; ++1)

{ min price = min price + 1.00;
exec sgl open dyn cursl using :min price;
while (SQLCODE != 100)

{

exec sqgl fetch dyn cursl into :book_title;
if (SQLCODE != 100) printf("%s\n", book title);
}
printf ("\n") ;
exec sqgl close dyn cursl;
}
exec sqgl deallocate cursor dyn cursl;
exec sqgl disconnect CURRENT;
exit (0) ;

If you use -p but omit -b when precompiling the preceding example, the
generated code binds min_price only once—the first time that the open
statement executes. The binding persists because you used the -p option, which

controls host input variables.

The binding for min_price persists throughout all subsequent iterations of the
statement, until the program deallocatesdyn_cursl. Thebinding persist even if

your program closes dyn_cursl and then reopensit.

Persistent binding, cursors, and multiple source files

In the preceding example, the declaration of the cursor dyn_cursl controls
whether associated host variables persist. For this reason, the host variablesin
the fetch statement would bind as described in the example, even if the fetch

112

statement were precompiled in a separate source file.

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

Persistent binding and cursor fetch statements

The Embedded SQL fetch command has an optional rebind/norebind clause that
controls whether bindings persist in a particular fetch statement. Thisclauseis
useful if you need to override the precompiler options that you specified for a
file. The rebind/norebind clause affects only the statement in which it appears.
Bindings for other statements—including other fetch statements—are not
affected.

If afetch statement omits the rebind/norebind clause, the statement obeys the
same binding rules as do other types of statements that use the cursor in
question.

If afetch statement contains the keyword rebind, bindings for host variablesin
the statement do not persist. Instead, they get rebound each time the statement
executes—regardless of whether the -b option was used to precompile the
declaration of the statement’s cursor.

If afetch statement contains the keyword norebind but is precompiled with the
-b option, the keyword has no effect.

Guidelines for using persistent binding

Here are guidelines, tips, and reminders to help you use persistent binding
correctly:

« A program benefits from persistent binding only if it meets both of these
criteria
e Itcontainsat least one Embedded SQL statement that executes more
than once, and

e That statement uses the same host variables repeatedly to exchange
values with Adaptive Server.

* The-pand-b optionsaffect only thefile being precompiled, unlessthat file
declaresacursor. If thefiledeclaresacursor, -p and -b affect all statements
that use the cursor. In general, you should use both the -p and -b optionsor
use neither. If your program consists of more than one Embedded SQL
source file, you should generally use the same combination of the -p and
-b options to precompile al thefiles.

Embedded SQL/C Programmers Guide 113

Notes on the binding of host variables

Generally, if you use the same cursor in more than one source file of a
program, use the same combination of the -p and -b options when
precompiling those files. Otherwise, you will need to understand exactly
how different combinations of the options can change which dataa
statement sends or retrieves.

A program that uses persistent binding should, where practical, execute a
single Embedded SQL statement repeatedly instead of executing two or
more identical statements once each.

The rules controlling a statement’s bindings differ depending on whether
the statement:

e Can use persistent binding

* Usesacursor

e Isadynamic SQL statement

* Isafetch statement with the rebind/norebind clause

Bindings never persist beyond the lifetime of a connection. In statements
that use a cursor, bindings never persist after the cursor is deallocated.

A dynamic cursor’s declaration controls the binding behavior of all
statements that use the cursor. For a static cursor, the statement that most
recently opened the cursor exerts this control. A program should open a
static cursor only in the source file that declaresit.

Notes on the binding of host variables

Subscripted arrays

If you use -p or -b and bind a subscripted array host variable (input or output),
the subscript isignored after the first execution of the statement, because the
actual address of the specified array element is bound. For example:

114

Thefollowing describesthe behavior of subscripted array host variables and of
host variables when used in repeated executions.

exec sql begin declare section;

int row;

int int table[3]

- {

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

10,
20,
30,
char *string table[3] = {
“hOW" ,
A\} are ” ,
\\you" ,
exec sqgl end declare section;
for (row=0; row < 3; row++)

{

EXEC SQL insert into ... values (:row, :int table[row],

/*
* %
* %
* %
* %

* %

*/

string table[row]) ;

If this statement is precompiled with -p, only

int table[0] and string table[0] will be bound and
inserted each time.

The same thing applies to output variables

At this time, NO warnings are issued to detect this.

To solve this, you can choose among the following solutions:

« Do not use persistent binds when subscripted arrays are used, since you do
want arebind (*table[0] is not the same as *table[1] at the next iteration).

e |If persistent binds must be used, use an intermediate variabl e that holdsthe
current value. This method allows persistent binding without errors.
However, copying the data creates overhead. Using the above example;

exec sqgl begin declare section;
char bind str[80];

int bind int variable;

exec sqgl end declare section;
for (row=0; row < 3; row++)

{

/*

** Must copy the contents- pointer assignment does
** not suffice host var ‘row’ is not a subscripted
** array, so it can remain the same.

*/
memcpy (bind str, string table[row],80) ;
bind int variable = int table[row];
EXEC SQL insert into ... values (:row,
:bind int variable,
:bind str);

Embedded SQL/C Programmers Guide 115

Notes on the binding of host variables

Note No register variables can be used with persistent binding.

Scope of host variables

/*

When host variables remain bound from one execution to the next, you must
ensurethat they remain in scope. Particular care must be taken when automatic
variables such as stack variables are used.

When a possibly problematic situation can be detected by the precompiler, a
warning isissued. Whether a host variable remains in scope or not will also
depend on the overall program logic.

For example:

**x g function called by main()

*/

CS_VOID insert (insert row)
exec sqgl begin declare section;
int insert row;/* row will go out of scope once exit

** functionx*/

exec sqgl end declare section;

{ .
* %
* %
* %
* %

* %

*/

id is a stack variable which will go out of scope
once we exit the function insert()

it is not likely to be at the same address at the
next call to this function, so if it is bound as
an input variable, there will be errors.

exec sgl begin declare section;

int id;

exec sgl end declare section;
exec sqgl insert values(:row, :id) ;

}

int fetched row;/* this variable can be safely bound with

main ()

{

** persistence */

exec sgl begin declare section;

/*

* %

116

This variable will go out of scope when the program

Open Client

CHAPTER 9 Improving Performance with Persistent Binding

** exits main, which is not a problem.
*/

int row;

/*
** This variable is a pointer, thus it does not
** necessarily pose problems, depending on the scope
** of the data it is pointing to.
*/

char *pointer;

exec sgl end declare section;

for (row = 0; row < 10; row++)

{
}

insert (row) ;

Embedded SQL/C Programmers Guide 117

Notes on the binding of host variables

118 Open Client

CHAPTER 10

Embedded SQL Statements:
Reference Pages

This chapter consists of areference page for each Embedded SQL

statement that either does not exist in Transact-SQL, or works differently

from how it doesin Transact-SQL. Refer to the Adaptive Server

Enterprise Transact-SQL Users Guide for descriptions of all other

Transact-SQL statements that are valid in Embedded SQL.

Command statements Page
allocate descriptor 121
begin declare section 122
begin transaction 123
close 124
commit 126
connect 127
deallocate cursor 129
deallocate descriptor 131
deallocate prepare 131
declare cursor (dynamic) 132
declare cursor (static) 133
declare cursor (stored procedure) 135
declare scrollable cursor 136
delete (positioned cursor) 138
delete (searched) 139
describe input (SQL descriptor) 141
describe input (SQLDA) 142
describe output (SQL descriptor) 143
describe output (SQLDA) 144
disconnect 145
exec 147
exec sl 150
execute 152
execute immediate 154
exit 155
119

Embedded SQL/C Programmers Guide

120

Command statements Page
fetch 155
fetch scrollable cursor 158
get descriptor 159
get diagnostics 161
include "filename" 162
include sglca 164
include sglda 165
initialize_application 165
open (dynamic cursor) 167
open (static cursor) 168
prepare 170
rollback 172
select 172
set connection 174
set descriptor 175
thread exit 177
update 177
whenever 179

Except for print, readtext and writetext, all Transact-SQL statements can be used
in Embedded SQL , though the syntax of some statements differs as described
in this chapter.

The reference pagesin this chapter are arranged al phabetically. Each

statement’s reference page:

Briefly states what the statement does
Describes the statement’s syntax

Explains the statement’s keywords and options
Comments on the statement’s proper use

Lists related statements, if any

Demonstrates the statement’s use in a brief example

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

allocate descriptor

Description

Syntax

Parameters

Examples

Usage

Allocates a SQL descriptor.

exec sql allocate descriptor descriptor_name

[with max [host_variable | integer_literal]];

descriptor_name
The name of the SQL descriptor that will contain information about the
dynamic parameter markersin a prepared statement.

with max
The maximum number of columnsin the SQL descriptor.

host_variable
An integer host variable defined in a declare section.

integer_literal
A numeric valuerepresenting the size, in number of occurrences, of the SQL
descriptor.

exec sgl begin declare section;
CS_INT type;

CS_INT numcols, colnum;
exec sgl end declare section;

exec sqgl allocate descriptor big desc
with max 1000;
exec sqgl prepare dynstmt from "select * from

huge table";

exec sqgl execute dynstmt into sgl descriptor
big desc;

exec sgl get descriptor :numcols = count;

for (colnum = 1; colnum <= numcols; colnum++)

{

exec sql get descriptor big desc :type = type;

}

exec sqgl deallocate descriptor big desc;

e Theallocate descriptor command specifies the number of item descriptor

areas that Adaptive Server Enterprise allocates.

* You can dlocate any number of SQL descriptors.
e When aSQL descriptor is allocated, its fields are undefined.
« If youtry to allocate a SQL descriptor that is already allocated, an error

OCCurs.

Embedded SQL/C Programmers Guide 121

begin declare section

See also

e If you do not specify avalue for the with max clause, one item descriptor
is assigned.

* When aSQL descriptor is allocated, the value of each of itsfieldsis
undefined.

deallocate descriptor, get descriptor, set descriptor

begin declare section

Description

Syntax

Parameters

Examples

Usage

122

Begins adeclare section, which declares host language variables used in an
Embedded SQL sourcefile.

exec sql begin declare section;
host_variable_declaration;

exec sqgl end declare section;

host_variable declaration
The declaration of one or more host language variables.

exec sql begin declare section;
CS_CHAR name (80) ;
CS_INT value;

exec sqgl end declare section;

* A declare section must end with the Embedded SQL statement
end declare section.

» A sourcefile can have any number of declare sections.

* A declare section can be placed anywhere that variables can be declared.
The declare section that declares a variable must precede any statement
that references the variable.

* Vaiabledeclarationsin adeclare section must conform to the rules of the
host language.

* Nested structuresarevalid in adeclare section; arrays of structuresare not.

* A declare section can contain any number of Embedded SQL include
Statements.

* In Embedded SQL/C routines, the Client-Library datatypes defined in
cspublic.h can be used in declare sections.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

See also

In C routines, you can declare two-dimensional arrays of characters but

only one-dimensional arrays of other datatypes.

When processing declare sections, the Embedded SQL precompiler

ignores C preprocessor macros and #include statements. When processing

Embedded SQL include statements within a declare section, the

Embedded SQL precompiler treats the contents of the included file as

exec sql include "filename"

begin transaction

Description

Syntax

Parameters

Examples

Marks the starting point of an unchained transaction.

exec sql [at connection_name]
begin {transaction | tran} [transaction_name];

transaction | tran
The keywords transaction and tran are interchangeabl e.

transaction_name
The namethat you are assigning to thistransaction. The name must conform
to therules for Transact-SQL identifiers.

/*
** Use explicit transactions to
** gyncronize tables on two servers
*/

exec sqgl begin declare section;

char title id[7];
int num_sold;

exec sgl end declare section;
long sglcode;

exec sqgl whenever sglerror goto abort tran;
try update:

exec sgl at connectl begin transaction;

exec sgl at connect2 begin transaction;
exec sgl at connectl select sum(gty)
into :num_sold
from salesdetail
where title id = :title id;

Embedded SQL/C Programmers Guide

though they had been entered directly into the file being precompiled.

123

close

Usage

See also

close

Description

124

exec sgl at connect2 update current sales
set num sold = :num sold
where title id = :title_id;
exec sgl at connect2 commit transaction;
exec sgl at connectl commit transaction;

if (sglcode != 0)
printf ("oops, should have used 2-phase
commit\n") ;

return;

abort_tran:

exec sgl whenever sqglerror continue:

exec sgl at connect2 rollback transaction;
exec sgl at connectl rollback transaction;
goto try update;

This reference page describes aspects of the Transact-SQL
begin transaction statement that differ when used with Embedded SQL.
See the Adaptive Server Enterprise Reference Manual.

The begin transaction statement is valid only in unchained transaction
mode. In chained transaction mode, you cannot explicitly mark the starting
point of atransaction.

When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.

Unless you set the database option ddl in tran, Adaptive Server Enterprise
does not allow the following statements inside an unchained transaction:;
create database, create table, create index, create view, drop, select into
table_name, grant, revoke, alter database, alter table, truncate table, update
statistics, load database, load transaction, and disk init.

A transaction includes only statements that execute on the connection that
is current when the transaction begins.

Remote procedures execute independently of any transaction in which
they are included.

commit transaction, commit work, rollback transaction, rollback work

Closes an open cursor.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Syntax exec sql [at connection_name] close cursor_name;

Parameters cursor_name
Thename of the cursor to be closed; that is, the name that you assigned when
declaring the cursor.

Examples long SQLCODE;
exec sgl begin declare section;
CS_CHAR mlname [40] ;
CS_CHAR mfname [20] ;
CS_CHAR phone [12] ;

exec sgl end declare section;

exec sgl declare author list cursor for
select au_ lname, au_ fname, phone
from authors;

exec sgl open author list;

while (SQLCODE == 0) {
exec sqgl fetch author list into
:mlname, :mfname, :mphone;

if (SQLCODE != 100)
printf (“%s, %s, %$s\n”, mlname, mfname,
mphone) ;

}

exec sql close author list;
Usage e Theclose statement closes an open cursor. Unfetched rows are cancel ed.

« Reopening aclosed cursor executes the associated query again,
positioning the cursor pointer before the first row of the result set.

e A cursor must be closed beforeit is reopened.
e Attempting to close a cursor that is not open causes a runtime error.

e Thecommittransaction, rollback transaction, commit work, and rollback work
statements close a cursor automatically unless you set a precompiler
option to disable the feature.

e Closing and then reopening a cursor lets your program see any changesin
the tables from which the cursor retrieves rows.

See also declare cursor, fetch, open, prepare

Embedded SQL/C Programmers Guide 125

commit

commit

Description

Syntax

Parameters

Examples

126

Ends a transaction, preserving changes made to the database during the
transaction.

exec sql [at connection_name]
commit [transaction | tran | work]
[transaction_name];

transaction | trans | work

The keywordstransaction, trans, and work areinterchangeablein therollback
statement, except that only work is ANSI-compliant.

transaction_name
A name assigned to the transaction.
/ *
** Using chained transaction mode,
** gynchronize tables on two servers

*/

exec sgl begin declare section;
char title id[7];
int num_sold;

exec sgl end declare section;
long SQLCODE ;

try update:

exec sgl whenever sqglerror goto abort tran;

exec sgl at connectl select sum(gty)
into :num_sold
from salesdetail

where title id = :title_id;

exec sgl at connect2 update current sales
set num_sold = :num_sold
where title id = :title id;

exec sgl at connect2 commit work;

exec sgl at connectl commit work;

return;
abort_tran:

printf ("oops, should have used 2-phase commit\n") ;
exec sgl whenever sqglerror continue;

exec sgl at connect2 rollback work;

exec sqgl at connectl rollback work;

goto try update;

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

connect
Description

Syntax

Parameters

Examples

e Thisreference page mainly describes aspects of the Transact-SQL commit
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual.

* Transaction names must conformto the Transact-SQL rulesfor identifiers.
Transaction names are a Transact-SQL extension: they cannot be used
with the ANSI-compliant keyword work.

* When nesting transactions, assign a transaction name only to the
outermost begin transaction statement and its corresponding commit
transaction or rollback transaction statement.

begin transaction, commit work, rollback transaction, rollback work

Creates a connection to Adaptive Server Enterprise.

exec sqgl connect user_name
[identified by password] [at connection_name]
[using server_name];
user_name
The user name to be used when logging in to Adaptive Server Enterprise.

password
The password to use to log in to Adaptive Server Enterprise.

connection_name
A namethat you choose to uniquely identify the Adaptive Server Enterprise
connection.

server_name
The server name of the Adaptive Server Enterprise to which you are
connecting.

exec sgl begin declare section;

CS_CHAR user [32];
CS_CHAR password [32] ;
CS_CHAR server [90] ;
CS_CHAR conname [20] ;

exec sgl end declare section;

strcpy (user, “mylogin”);
strcpy (password, “mypass”) ;
strcpy (server, “YOURSERVER”) ;

Embedded SQL/C Programmers Guide 127

connect

Usage

128

strcpy (conname, “con one”) ;
exec sql connect :user identified by :password
using :server at :conname;

Inevery Embedded SQL program, the connect statement must be executed
before any other executable SQL statement except allocate descriptor.

If a program uses both C and COBOL languages, the first connect
statement must be issued from a COBOL program.

If aprogram has multiple connections, only one can be unnamed, and will
be the default connection.

If an Embedded SQL statement does not have an at connection_name
clausetodirect it to aspecific named connection, the statement isexecuted
on the current connection.

To specify anull password, omit the identified by clause or use an empty
string.

If the connect statement does not specify a Adaptive Server Enterprise, the
server named by the DSQUERY environment variable or logical nameis
used. If DSQUERY is not defined, the default server is SYBASE.

Client-Library looks up the server namein theinterfacesfilelocated in the
directory specified by the SY BASE environment variable or logical name.

The Adaptive Server Enterprise connection ends when the
Embedded SQL program exits or issues a disconnect statement.

Opening a new connection, named or unnamed, results in the new
connection becoming the current connection.

A program that requires multiple Adaptive Server Enterprise login names
can have a connection for each login account.

By connecting to more than one server, a program can simultaneously
access data stored on different servers.

A single program can have multiple connections to a single server or
multiple connections to different servers.

Table 10-1 shows how a connection is named:

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Table 10-1: How a connection is named

Then, the Connection Name
If this clause is used But without is

at connection_name connection_name
using server_name at server_name
None DEFAULT

See also at connection_name, exec sql, disconnect, set connection

deallocate cursor

Description Deallocates a cursor for a static SQL statement or for a dynamic SQL
statement.

Syntax exec sql [at connection_name] deallocate cursor cursor_name;

Parameters cursor_name

The name of the cursor to be deallocated. The cursor_name must be a
character string enclosed in double quotation marks or in no quotation
marks—for example “my_cursor" or my_cursor. It cannot be a host
variable.

Examples

exec sgl include sqglca;
main ()
{
exec sgl begin declare section;
CS_CHAR title[80];
CS_SMALLINT i_title;
exec sgl end declare section;
exec sgl whenever sglerror call error handler();
exec sgl whenever sqglwarning call error handler () ;
exec sgl whenever not found continue;
exec sqgl connect “sa”;
exec sqgl use pubs2;
exec sgl declare title list cursor for select title from titles;

exec sgl open title list;

for (;;)

{
exec sqgl fetch title list into :title :i title;
if (sglca.sglcode == 100) break;

Embedded SQL/C Programmers Guide 129

deal

locate cursor

if (i_title == -1) printf(*Title is NULL.\n”);

printf (“*Title: %s\n”, title);
}
exec sqgl close title list;
exec sgl deallocate cursor title list;
exec sgl disconnect all;
exit (0) ;
}
error handler ()
{
printf (“$d\n%s\n”,sqglca.sqglcode, sqlca.sglerrm.sqglerrmc) ;
exec sgl deallocate cursor title list;
exec sgl disconnect all;

exit (-1);
}
Usage » Deadllocating a cursor releases all resources allocated to the cursor. In
particular, deallocate cursor dropsthe Client-Library command handle and
CS_COMMAND structure associated with the cursor.

» A static cursor can be deall ocated at any time after it isopened. A dynamic
cursor can be deallocated at any time after it is declared.

» If cursor_nameis open, deallocate cursor closes it and then deall ocatesiit.

* You cannot reference a deall ocated cursor, nor can you reopen it. If you
try, an error occurs.

* You can declare anew cursor having the same name asthat of a
deallocated cursor. Opening a cursor with the same name as a deallocated
cursor is not the same as reopening the deallocated cursor. Other than the
name, the new cursor shares nothing with the deall ocated cursor.

» Declaring anew cursor with the same name asthat of adeallocated cursor
can cause the precompiler to generate a warning message.

» Thedeallocate cursor statement is a Sybase extension; it is not defined in
the SQL standard.

Note If you are using persistent binding in your Embedded SQL program, use

the deallocate cursor statement carefully. Needlessly deallocating cursors can

negate the advantage of persistent binding.
See also close cursor, declare cursor, open (static cursor)
130 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

deallocate descriptor

Description

Syntax

Parameters

Examples

Usage

See also

Deallocates a SQL descriptor.

exec sql deallocate descriptor descriptor_name;

descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers or return valuesin a prepared statement.

exec sgl begin declare section;
CS_INT numcols, colnum;
exec sgl end declare section;

exec sql allocate descriptor big desc
with max 1000;
exec sqgl prepare dynstmt from "select * from

huge table";

exec sqgl execute dynstmt into sgl descriptor
big desc;

exec sqgl get descriptor :numcols = count;

for (colnum = 1; colnum <= numcols; colnum++)

{

exec sgl get descriptor big desc

}

exec sgl deallocate descriptor big desc;

If you attempt to deallocate a SQL descriptor that has not been allocated, an
€rror occurs.

allocate descriptor

deallocate prepare

Description

Syntax

Parameters

Deallocates a dynamic SQL statement that was prepared in a prepare
Statement.

exec sql [at connection_name]
deallocate prepare statement_name;

statement_name
Theidentifier assigned to the dynamic SQL statement when the statement
was prepared.

Embedded SQL/C Programmers Guide 131

declare cursor (dynamic)

Examples exec sgl begin declare section;
CS_CHAR sglstmt [100] ;
exec sgl end declare section;
strcpy (sglstmt, “select * from publishers”);
exec sgl prepare make work from :sglstmt;
exec sgl declare make work cursor cursor for
make work;
exec sgl deallocate prepare make work;

Usage * A statement must be prepared before it is deallocated. Attempting to
deallocate a statement that has not been prepared resultsin an error.

e dtatement_name must uniquely identify a statement buffer and must
conform to the SQL identifier rulesfor naming variables. statement_name
can be either aliteral or a character array host variable.

» Thedeallocate prepare statement closes and deall ocates any dynamic
cursors declared for statement_name.

Warning! If you are using persistent binds in your embedded SQL program,
use the deallocate prepare statement carefully. Needlessly deallocating
prepared statements can negate the advantage of persistent binds.

See also declare cursor (dynamic), execute, execute immediate, prepare

declare cursor (dynamic)

Description Declaresacursor for processing multiple rows returned by aprepared dynamic
select statement.

Syntax exec sql [at connection_name]
declare cursor_name
cursor for prepped_statement_name;

Parameters Cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s name must be unique on each connection and must
have no more than 255 characters.

prepped_statement_name
The name (specified in a previous prepare statement) that represents the
select statement to be executed.

Examples exec sgl begin declare section;

132 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

CS_CHAR sqglstmt [100] ;

exec sgl end declare section;

strcpy (sglstmt, “select * from publishers”);

exec sgl prepare make work from :sglstmt;

exec sgl declare make_ work cursor cursor for
make work;

exec sgl deallocate prepare make work;

e Theprepped statement_name must not have a compute clause.

e Thecursor_name must be declared on the connection where
prepped_statement_name was prepared.

e Thedynamic declare cursor statement is an executabl e statement, whereas
the static declare cursor statement is simply a declaration. The dynamic
declare statement must be located where the host language allows
executable statements and the program should check return codes
(SQLCODE, SQLCA, or SQLSTATE).

e Thefor update and read only clauses for a dynamic cursor are not part of
the declare cursor statement; however, they should be included in the
prepared statement's select query.

close, connect, fetch, open, prepare

declare cursor (static)

Description

Syntax

Parameters

Declares a cursor for processing multiple rows returned by a select statement.

exec sql declare cursor_name

cursor for select_statement

[for update [of col_name_1 [, col_name_n]...]|
for read only];

cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s hame must be unique on each connection and must
have no more than 255 characters.

select_statement
The Transact-SQL select statement to be executed when the cursor is
opened. See the description of the select statement in the Adaptive Server
Enterprise Reference Manual.

Embedded SQL/C Programmers Guide 133

declare cursor (static)

for update
Specifies that the cursor’s result list can be updated. (To update the result
list, you use the update statement.)

of col_name 1
The name of the first column to be updated.

of col_name n
The name of the nth column to be updated.

for read only
Specifies that the cursor’s result list cannot be updated.

Examples main ()

{

exec sqgl begin declare section;

CS_CHAR b_titleid[TIDSIZE+1];

CS_CHAR b_title[65];

CS_CHAR b type [TYPESIZE+1];
exec sgl end declare section;

long SQLCODE ;

exec sqgl connect “sa”;

exec sqgl use pubs2;

exec sqgl declare titlelist cursor for
select title id, substring(title,1,64)
from titles where type like :b type;

strcpy (b_type, "business");

exec sqgl open titlelist;

for (;;)

{

exec sqgl fetch titlelist into :b_titleid,

:b title;
if (SQLCODE == 100)
break;
printf (" %$-8s %s\n", b titleid, b _title);

}

exec sqgl close titlelist;
exec sqgl disconnect all;

}

Usage e The Embedded SQL precompiler generates no code for the declare cursor
statement.

» Thesdect_statement does not execute until your program opensthe cursor
by using the open cursor statement.

134 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

e Thesyntax of the select_statement isidentical to that shown in the
Adaptive Server Enterprise Reference Manual, except that you cannot use
the compute clause in Embedded SQL.

e Thesdect_statement can contain host variables. The values of the host
variables are substituted when your program opens the cursor.

e |f you omit either the for update or read only clause, Adaptive Server
Enterprise determines whether the cursor is updatable.

See also close, connect, deallocate cursor, declare cursor (stored procedure),
declare cursor (dynamic), fetch, open, update

declare cursor (stored procedure)
Description Declares a cursor for a stored procedure.

Syntax exec sql declare cursor_name
cursor for execute procedure_name
([[@param_name =]:host_var]
[[[@param_name =]:host_var]...)
Parameters cursor_name
The cursor’s name, used to reference the cursor in open, fetch, and close
statements. A cursor’s hame must be unique on each connection and must
have no more than 255 characters.

procedure_name
The name of the stored procedure to be executed.

param_name
The name of a parameter in the stored procedure.

host_var
The name of a host variable to be passed as a parameter value.

Examples main ()

{

exec sgl begin declare section;

CS_CHAR b_titleid[7];
CS_CHAR b titlel[65];
CS_CHAR b typel13];

exec sgl end declare section;
long SQLCODE ;

exec sqgl connect “sa”;
exec sqgl use pubs2;

Embedded SQL/C Programmers Guide 135

declare scrollable cursor

Usage

See also

exec sqgl
create procedure p titles
(@ep_type varchar(30)) as
select title id, substring(title,1,64)
from titles
where type like @p type;
exec sgl declare titlelist cursor for
execute p titles (:b_type);
strcpy (b _type, "business");
exec sqgl open titlelist;
for (;;)
{

exec sqgl fetch titlelist into :b_titleid,

:b title;
if (SQLCODE == 100)
break;
printf (" %$-8s %$s\n", b titleid, b _title);

}

exec sqgl close titlelist;
exec sqgl disconnect all;

}

» procedure_name must consist of only one select statement.

» Itisnot possibleto retrieve output parameter values from a stored
procedure executed using a cursor.

» Itisnot possibleto retrieve the return status value of a stored procedure
executed using a cursor.

close, deallocate cursor, declare cursor (static), declare cursor (dynamic), fetch,
open, update

declare scrollable cursor

Description

Syntax

Parameters

136

Declare a cursor for each select statement that returns rows of data. You must
declare the cursor before using it, and you cannot declare it within a declare
section.

exec sql declare cursor_name [cursor sensitivity]
[cursor scrollability] cursor for select_statement ;

Cursor_name
Identifies the cursor.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Examples

Usage

cursor sensitivity

Specifies the sensitivity of the cursor.

cursor scrollability

Specifies the scrollability of the cursor.

select_statement

A select statement that can return multiple rows of data. The syntax for
select isthe same as described in the Adaptive Server Enterprise Reference
Manual, except that you cannot use into or compute clauses.

EXEC SQL BEGIN DECLARE SECTION;

char username [30] ;
char password [30] ;
char a_type [TITLE STRING+1];

EXEC SQL END DECLARE SECTION;

/*

** Declare an insensitive scrollable cursor against the
** titles table. Open the cursor.

*/

EXEC SQL DECLARE typelist INSENSITIVE SCROLL CURSOR FOR
SELECT DISTINCT title FROM titles;

EXEC SQL OPEN typelist;
cursor_name must be unique and have a maximum of 255 characters.

cursor_name must begin with aletter of the alphabet or with the symbols
H#H Or “_H i

If cursor sensitivity is declared as semi_sensitive, scrollability isimplied.
The cursor is semi_sensitive, scrollable, and read-only.

If cursor sensitivity is declared as insensitive, the cursor isinsensitive.
Scrollability is determined by specifying SCROLL in the declare part. If
SCROLL isomitted or NOSCROLL is specified, the cursor isinsensitive
only and non-scrollable. It is also read-only.

If cursor sensitivity isnot specified, the cursor is non-scrollable and read-
only.

If cursor scrollability is specified as scroll in the declare statement and
sensitivity isnot specified, the cursor isinsensitive and scrollable. Itisalso
read-only.

Embedded SQL/C Programmers Guide 137

delete (positioned cursor)

e |If the SCROLL option isomitted or NOSCROLL is specified in cursor
scrollability, the cursor is non-scrollable and read-only.

e If cursor scrollability is not specified, the cursor is non-scrollable and
read-only.

See also fetch scrollable cursor

delete (positioned cursor)

Description Removes, from atable, the row indicated by the current cursor position for an
open cursor.
Syntax exec sqgl [at connection_name] delete

[from] table_name
where current of cursor_name;

Parameters table name
The name of the table from which the row will be deleted.

where current of cursor_name
Causes Adaptive Server Enterprise to delete the row of the table indicated
by the current cursor position for the cursor cursor_name.

Examples exec

sqgl include sqglca;

main ()

{

exec

exec
exec
exec
exec

exec
exec

while

138

char answer[1];

sgl begin declare section;

CS_CHAR disc_type [40] ;

CS_CHAR store_ id[5];

CS_SMALLINT ind store_id;

sgl end declare section;

sgl connect “sa”;

sgql use pubs2;

sgl declare purge cursor cursor for

select discounttype, stor id

from discounts;

sgl open purge cursor;

sgql whenever not found goto alldone;
(1)

{

exec sql fetch purge cursor into :disc_type,
:store_id

:ind_store_id;

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

if (ind store id != -1)

{

printf (“%s, %$s\n”, disc_type, store id);

printf (“*Delete Discount Record? (y/n) > ;
gets (answer) ;
if (strncmp (answer, “y”, 1) == 0)

{

exec sgl delete from discounts where
current of purge cursor;

}
/*
** No changes will be committed to the database because
** this program does not contain an “exec sgl commit
work; "
** gtatement. The changes will be rolled back when the
** yger disconnects.
*/
alldone:
exec sqgl close purge cursor;
exec sqgl disconnect all;

}

Usage * Thisreference page mainly describes aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual.

e Thisform of the delete statement must execute on the connection where
the cursor cursor_namewas opened. If the delete statement includesthe at
connection_name clause, the clause must match the at connection_name
clause of the open cursor statement that opened cursor_name.

e Thedelete statement failsif the cursor was declared for read only, or if the
select statement included an order by clause.

See also close, declare cursor, fetch, open, update

delete (searched)

Description Removes rows specified by search conditions.

Syntax exec sql [at connection_name] delete table_name_1
[from table_name_n

Embedded SQL/C Programmers Guide 139

delete (searched)

[, table_name_n]...]
[where search_conditions];
Parameters table name 1
The name of the table from which this delete statement deletes rows.

from table_name_n
The name of atable to be joined with table name_1 to determine which
rows of table_name_1 will be deleted. The delete statement does not delete
rows from table_name n.

where search_conditions
Specifieswhich rowswill bedeleted. If you omit thewhere clause, thedelete
statement deletes all rows of table_name 1.

Examples /*
** Function to FAKE a cascade delete of an author **
**py name -- this function assumes that pubs2 is

** the current database.
** Returns 1 for success, 0 for failure

**/
int drop_author (fname, lname)
char *fname;
char *1lname;

{

exec sgl begin declare section;

CS_CHAR f name[41], 1 name[41];

CS_CHAR titleid[10], auid[10];
exec sgl end declare section;

long SQLCODE;

strcpy (f name, fname);

strcpy (1 _name, lname) ;

exec sgl whenever sqglerror goto roll back;
exec sqgl select au_id from authors into :auid

where au_fname = :f name

and au_lname = :1 name;
exec sgl delete from au pix where au id = :auid;
exec sgl delete from blurbs where au id = :auid;

exec sgl declare curl cursor for
select title id from titleauthor
where au_id = :auid;

exec sgl open curl;

while (SQLCODE == 0)

{
exec sqgl fetch curl into :titleid;
if (SQLCODE == 100) break;
exec sqgl delete from salesdetail

where title id = :titleid;

140 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

exec sqgl delete from rowsched

where title id = :titleid;
exec sqgl delete from titles
where title id = :titleid;

exec sqgl delete from titleauthor
where current of curl;
exec sqgl close curl;
exec sqgl delete from authors

where au_id = :auid;
exec sqgl commit work;
return 1;
roll back:

exec sqgl rollback work;
return 0;

}

This reference page describes mainly aspects of the Transact-SQL delete
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual.

If you need to remove rows specified by the current position of a cursor
pointer, use the delete (positioned cursor) Statement.

close, declare cursor, fetch, open, update

describe input (SQL descriptor)

Description

Syntax

Parameters

Obtains information about dynamic parameter markersin a prepared dynamic
SQL statement and stores that information in a SQL descriptor.

For alist of possible SQL descriptor datatype codes, see Table 10-5 on
page 182.

exec sql describe input statement_name

using sql descriptor descriptor_name;

statement_name
The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

Embedded SQL/C Programmers Guide 141

describe input (SQLDA)

descriptor_name
The name of the SQL descriptor that can store information about the
dynamic parameter markers in the prepared statement.

Examples exec sgl begin declare section;
char query [maxstmt] ;
int nin, nout, 1i;

exec sgl end declare section;
int J;

exec sgl allocate descriptor din with max 256;
exec sgl allocate descriptor dout with max 256;
exec sgl whenever sqglerror stop;
exec sgl prepare dynstmt from :query;
exec sqgl describe input dynstmt
using sqgl descriptor din;
exec sgl get descriptor din :nin = count;
for (i = 0; i < nin; 1i++)

Usage » Information about the statement is written into the descriptor provided in
the using clause. Use the get descriptor statement after executing the
describe input statement to extract information from the descriptor into

host variables.
» Thedescriptor must be all ocated before the describe input statement can be
executed.
See also allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,

set descriptor

describe input (SQLDA)
Description Obtainsinformation about dynamic parameter markersin aprepared dynamic

SQL statement and stores that information in a SQLDA structure.

Syntax exec sqgl describe input statement_name
using descriptor descriptor_name;

Parameters statement_name
The name of the prepared statement about which you want information.
statement_name must identify a prepared statement.

descriptor
Identifies descriptor_name as an SQLDA structure.

142 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Examples

Usage

See also

descriptor_name
The name of the SQLDA structure that can store information about the
dynamic parameter markersin the prepared statement.

exec sql prepare s4 from :str4;

exec sgl declare c2 cursor for s4;

exec sqgl describe input s4 using descriptor dinout;

printf (“Number of input parameters is %$hd\n”,
dinout.sd.sqgld) ;

« Information about the statement is written into the descriptor specified in
the using clause. After the get descriptor statement is executed, you can
read the information out of the SQLDA structure.

allocate descriptor, deallocate descriptor, describe output, get descriptor, prepare,
set descriptor

describe output (SQL descriptor)

Description

Syntax

Parameters

Examples

Obtains row format information about the result set of a prepared dynamic
SQL statement.

For alist of possible SQL descriptor datatype codes, see Table 10-5 on
page 182.

exec sql describe [output] statement_name
using sql descriptor descriptor_name;

output

An optional keyword that has no effect on the describe output statement but
provides conformance to the SQL standard.

statement_name
The name (specified in a prepare statement) that represents the select
statement to be executed.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
Thename of aSQL descriptor that isto store theinformation returned by the
describe output statement.

exec sgl open curs2 using sgl descriptor descr out;

Embedded SQL/C Programmers Guide 143

describe output (SQLDA)

Usage

See also

exec sgl describe output prep stmt4
using sgl descriptor descr_ out;
while (sglca.sglcode != 100 && sglca.sglcode >= 0)
{
exec sqgl fetch curs2 into sqgl descriptor
descr_out;
print descriptor() ;
}
exec sgl close curs2;
exec sgl deallocate descriptor descr out;
exec sgl deallocate prepare prep stmté4;
printf ("dynamic sgl method 4 completed\n\n") ;

}

e Theinformation obtained isthetype, name, length (or precision and scale,

if anumber), nullable status, and number of itemsin the result set.
* Theinformation is about the result columns from the select column list.

» Execute this statement before the prepared statement executes. If you
perform a describe output statement after you execute and before you
perform a get descriptor, the results will be discarded.

allocate descriptor, describe input, execute, get descriptor, prepare

describe output (SQLDA)

Description

Syntax

Parameters

144

Obtains row format information about the result set of a prepared dynamic
SQL statement and stores that information in a SQLDA structure.

exec sqgl describe [output] statement_name

using descriptor sqlda_name;

output
An optional keyword that has no effect on the describe output statement but
provides conformance to the SQL standard.

statement_name
The name (specified in aprepare statement) that represents the select
statement to be executed.

descriptor
Identifies sglda_name as a SQL DA structure.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

sglda_name
The name of a SQLDA structure that will store the information returned by
the describe output statement.

Examples

exec sgl open curs2 using descriptor input descriptor;
exec sqgl describe output statement using descriptor
output descriptor;
output descriptor->sqglda column->sglda sgldata = character;
output descriptor->sqglda_column->sglda datafmt.datatype = CS _CHAR TYPE;
output descriptor->sglda column->sglda datafmt.maxlength = 20;
output descriptor->sglda column->sglda sqgllen = 20;
output descriptor->sqglda column->sglda datafmt.format =
(CS_FMT NULLTERM | CS_FMT PADBLANK) ;
exec sqgl fetch curs2 into descriptor output descriptor;

Usage * Theinformation obtained isthe dataheld in the SQLDA fields, such asthe
type, name, length (or precision and scale, if a number), nullable status,
and number of itemsin the result set.

* Theinformation is about the result columns from the select column list.

See also describe input, execute, prepare

disconnect

Description Closes one or more connections to a Adaptive Server Enterprise.
Syntax exec sql disconnect

{connection_name | current | DEFAULT | all};

Parameters connection_name
The name of a connection to be closed.

current
Specifies that the current connection will be closed.

DEFAULT
Specifies that the default connection isto be closed. This keyword must be
in uppercase lettersif you specify the default connection_name using a
character string variable, for example:

exec sgl disconnect :hv;

Embedded SQL/C Programmers Guide 145

disconnect

Examples

146

all
Specifiesthat all active connections be closed.

#include <stdio.h>

exec sgl include sqglca;

main ()

{

/*

* %

*/

/*

* %

*/

/*

* %
*/
/*
* %

*/

exec sgl begin declare section;

CS CHAR servname [31], username[31],
password[31], conname[129];

exec sqgl end declare section;

exec sqgl whenever sqglerror call error handler() ;
exec sqgl whenever sglwarning call error handler() ;
exec sgl whenever not found continue;

printf ("Username: ");

gets (username) ;

printf ("Password: ");

gets (password) ;

printf ("Adaptive Server Enterprise name: ");
gets (servname) ;

printf ("Connection name: ");

gets (conname) ;

Make a named connection.

exec sqgl connect :username identified by :password
at :conname using :servname;

Make an unnamed (default) connection.

exec sqgl connect :username identified by :password
using :servname;

The second (default) connection is the current connection.
exec sgl disconnect current;
We now have neither a default connection nor a current one.

exec sgl disconnect :conname;

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

/*

** Now there are no open connections.

*/
}

exec sgl exit;

error handler ()

{

Usage

See also

exec

Description

Syntax

printf ("$d\n%s\n", sqglca.sqglcode, sqlca.sglerrm.sglerrmc) ;

exit (0) ;

By itself, the disconnect keyword is not avalid statement. Instead, it must
be followed by connection_name, current, DEFAULT, or all.

Closing a connection releases all memory and resources associated with
that connection.

disconnect does not commit current transactions; it rolls them back. If an
unchained transaction is active on the connection, disconnect rollsit back,
ignoring any savepoints.

Closing a connection closes open cursors, drops temporary Adaptive
Server Enterprise objects, releases any locks the connection hasin the
Adaptive Server Enterprise, and closes the network connection to the
Adaptive Server Enterprise.

commit work, commit transaction, connect, rollback transaction, rollback work

Runs a system procedure or a user-defined stored procedure.

exec sql [at connection_name]

exec [[:status_var =]status_value] procedure_name
[([@parameter_name =]param_value [out[put]]],...)]
[into :hostvar_1 [:indicator_1]

[, hostvar_n [indicator_n,...]]]

[with recompile];

Note Do not confuse the exec statement with the Embedded SQL execute
statement; they are not related. The Embedded SQL exec statement is,
however, the equivalent of the Transact-SQL execute statement.

Embedded SQL/C Programmers Guide 147

exec

Parameters

Examples

148

status var
A host variable to receive the return status of the stored procedure.

status value
The value of the stored procedure return status variable status var.

procedure_name
The name of the stored procedure to be executed.

parameter_name
The name(s) of the stored procedure’s parameter(s).

param value
A host variable or literal value.

output
Indicates that the stored procedure returns a parameter value. The matching
parameter in the stored procedure must also have been created using the
output keyword.

into ;hostvar_1
Causes row data returned from the stored procedure to be stored in the
specified host variables (hostvar_1 through hostvar_n). Each host variable
can have an indicator variable.

with recompile
Causes Adaptive Server Enterpriseto create anew query planfor this stored
procedure each time the procedure executes.

Example 1

exec sqgl begin declare section;

char titleid([10];
int total discounts;
short retstat;

exec sgl end declare section exec;
exec sgl create procedure get sum discounts
(@titleid tid, @discount int output) as

begin
select @discount = sum(gty * discount)
from salesdetail
where title id = @titleid

end;

printf (“*title id: “);
gets(titleid) ;

exec sqgl exec
:retstat = get sum discount :titleid,

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

:total discounts out;

printf ("total discounts for title id %s were
$s\n", titleid, total discounts) ;
exec sgl begin declare section;

CS_INT status;

CS_CHAR city(30);

CS_INT result;
exec sgl end declare section;
LONG SQLCODE;

input "City", city ;
exec sgl exec countcity :city, :result out;
if (SQLCODE = 0)

print city + " occurs " + result + "
times." ;
Example 2 EXEC SQL BEGIN DECLARE SECTION;
/* storage for login name and password */
CS_CHAR username [30], password[30];
CS_CHAR pub_id[4] [5], pub_name[4] [40], stmt[100] ;
CS_CHAR cityl[4][15], statel4][3];
CS_INT ret_ status;

EXEC SQL END DECLARE SECTION ;

EXEC SQL set chained off;
strcpy (stmt, "create proc get publishers as select * from publishers
return ") ;

EXEC SQL EXECUTE IMMEDIATE :stmt;

EXEC SQL EXEC :ret_status = get publishers INTO

:pub_id,
:pub_name,
:city,
:state;
printf ("Pub Id Publisher Name City State \n");
printf ("\n----- —------ oo oo oo \n") ;
for (i =0 ; i < sqlca.sqglerrd[2] ; i++)

{

printf ("%-8s", pub id[i]) ;
printf ("%-25s", pub namel[i]) ;
printf ("%$-12s", cityl[i]) ;
printf ("%-6s\n", statel[i]) ;

}

printf ("\n(%d rows affected, return status = %d)\n", sqglca.sqglerrd[2],
ret status);

Embedded SQL/C Programmers Guide 149

exec sql

Usage

See also

exec sql

Description

Syntax

Parameters

Examples

150

e Only one select statement can return rows to the client application.

» |f the stored procedure contai ns select statementsthat can return row data,
you must use one of two methods to store the data. You can either use the
into clause of the exec statement or declare a cursor for the procedure. If
you usetheinto clause, the stored procedure must not return morethan one
row of data, unless the host variables that you specify are arrays.

e Thevalue param value can be ahost variable or literal value. If you use
the output keyword, param_value must be a host variable.

e You can specify the output keyword for parameter_name only if that
keyword was also used for the corresponding parameter of the create
procedure statement that created procedure_name.

e The Embedded SQL exec statement works much like the Transact-SQL
execute statement.

declare cursor (stored procedure), select

Marks the beginning of a SQL statement embedded in a host language
program.

exec sql [at connection_name] sql_statement;

at
Causes the SQL statement sgl_statement to execute at the Adaptive Server
connection connection_name.

connection_name
The connection name that identifies the Adaptive Server connection where
sgl_statement is to execute. The connection_name must be defined as a
previous connect statement.

sgl_statement
A Transact-SQL statement or other Embedded SQL statement.
exec sql
begin declare section;
char sitel (20) ;
int salesl;

exec sgl end declare section;

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

exec sgl connect “userl” identified by “passwordl”
using “serverl”;

exec sqgl connect “user2” identified by “password2”
using “server2”

/* Remember that a connection that has not been
explicitly named has the name of its server */

exec sqgl at serverl select count (*) from sales
into :salesl;

sitel = sitename (“serverl”) ;
exec sgl at server2 insert into numsales
values (:sitel, :salesl);

SQL statements embedded in a host language must begin with exec sql.
The keywords exec sql can appear anywhere that a host language
statement can begin.

The statement sgl_statement can occupy one or more program lines,
however, it must conform to host language rules for line breaks and
continuation lines.

Theat clause affects only the statement sgl_statement. The clause does not
affect subsequent SQL statements, and does not reset the current
connection.

Theat clauseisnot valid when sql_statement is one of the following SQL
statements:

Table 10-2: Statements that cannot use the at clause of exec sql

allocate descriptor begin declare section connect

deallocate descriptor declare cursor end declare section
(dynamic)

exit get diagnostics include file

include sqlca set connection set diagnostics

whenever

connection_name must be defined in a previous connect statement.

Each Embedded SQL statement must end with aterminator. In C, the
terminator is the semicolon (;).

begin declare section, connect, disconnect, set connection

Embedded SQL/C Programmers Guide 151

execute

execute

Description

Syntax

Parameters

152

Executes a dynamic SQL statement from a prepared statement.

For details on the execute immediate statement, see “execute immediate” on
page 154.

exec sql [at connection_name] execute statement_name
[into {host_var_list |

descriptor descriptor_name |

sql descriptor descriptor_name}]
[using {host_var_list |

descriptor descriptor_name |

sql descriptor descriptor_name}];

Note Do not confuse the Embedded SQL execute statement with the
Embedded SQL exec statement or the Transact-SQL execute statement.

statement_name
A unique identifier for the statement, defined in a previous prepare
Statement.

descriptor_name
Specifies the area of memory, or the SQLDA structure, that describes the
statement’s dynamic parameter markers or select column list.

into
A clause required when the statement executes a select statement, which
must be a single-row select. The target of the into clause can be a SQL
descriptor, aSQLDA structure, or alist of one or more Embedded SQL host
variables.

Each host variable in the host_var_list must first be defined in a declare
section. Anindicator variable can be associated with ahost variableto show
when anull datavalueisretrieved.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Examples

Usage

See also

using

The host variables that are substituted for dynamic parameter markersin
host_var_list. The host variables, which you must define in adeclare
section, are substituted in the order listed. Use this clause only when
statement_name contains dynamic parameter markers. The dynamic
descriptor can also contain the values for the dynamic parameter markers.

exec sgl begin declare section;

CS_CHAR dymo_buf (128) ;
CS_CHAR title id(6);
CS_INT aty;

CS_CHAR order no(20) ;

exec sgl end declare section;

dymo buf = "INSERT salesdetail
(ord num, title id, gty) VALUES (:?, :?, :?2)"

exec sql prepare ins com from :dymo buf;

print "Recording Book Sales";
input "Order number?", order no;
input "Title ID?", title id;
input "Quantity sold?", gty;
exec sql execute ins_com
using :order no, :title id, :qty;
exec sgl disconnect;

execute is the second step in method 2 of dynamic SQL. Thefirst stepis
the prepare statement.

prepare and execute are valid with any SQL statement except a multirow
select statement. For multirow select statements, use either dynamic
cursor.

The statement in statement_name can contain dynamic parameter markers
(“?"). They mark the positions where host variable values are to be
substituted before the statement executes.

The execute keyword distinguishes this statement from exec. See “exec”
on page 147.

declare section, get descriptor, prepare, set descriptor

Embedded SQL/C Programmers Guide 153

execute immediate

execute immediate

Description

Syntax

Parameters

Examples

Usage

See also

154

Executesadynamic SQL statement stored in acharacter-string host variable or
quoted string.

exec sql [at connection_name] execute immediate

{:host_variable | “string"};

host_variable
A character-string host variable defined in adeclare section. Before calling
execute immediate, the host variable should contain a complete and
syntactically correct Transact-SQL statement.

string
A quoted literal Transact-SQL statement string that can be used in place of
host_variable.

exec sqgl begin declare section;
CS_CHAR host var(128);
exec sgl end declare section;

printf (*Enter a non-select SQL statement: “);
gets (host_var) ;

exec sql execute immediate :host var;

» Using the execute immediate statement is dynamic SQL Method 1. See
Chapter 7, “Using Dynamic SQL” for information about the four
dynamic SQL methods.

» Except for messages, the statement in host_variable cannot return results
to the your program. Thus, the statement cannot be, for example, a select
Statement.

» The Embedded SQL precompiler does not check the syntax of the
statement stored in host_variable before sending it to Adaptive Server
Enterprise. If the statement’s syntax is incorrect, Adaptive Server
Enterprise returns an error code and message to your program.

» Useprepare and execute (dynamic SQL method 2) to substitute values
from host variables into a dynamic SQL statement.

» Useprepare, open, and fetch (dynamic SQL method 3) to execute select
statements with dynamic SQL statements that return results.

execute, prepare

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

exit

Description

Syntax

Examples

Usage

See also

fetch

Description

Syntax

Closes Client-Library and deallocates all Embedded SQL resources allocated
to your program.

exec sql exit;

exec sgl include sqglca;

main ()

{

/* The body of the main function goes here,
** including various Embedded SQL statements.

*/

/* The exit statement must be the last
** embedded SQL statement in the program.

*/
exec sqgl exit;
} /* end of main */

e Theexit statement closes all connections that your program opened. Also,
exit deallocatesall Embedded SQL resourcesand Client-Library resources
allocated to your program.

e Although the exit statement isvalid on all platforms, it isrequired only on
some. See the Open Client and Open Server Programmers Supplement.

* You cannot use Client-Library functions after using the exit statement,
unless you initialize Client-Library again. See the Open Client Client-
Library/C Programmers Guide for information about initializing Client-
Library.

* Theexit statement is a Sybase extension; it is not defined in the SQL
standard.

disconnect

Copiesdatavaluesfrom the current cursor row into host variables or adynamic
descriptor.

exec sgl [at connection_name] fetch [rebind | norebind] cursor_name
into {:host_variable [[indicator]:indicator_variable]

[,:host_variable

[[indicator]:indicator_variable]]... |

Embedded SQL/C Programmers Guide 155

fetch

descriptor descriptor_name |
sql descriptor descriptor_name};

Parameters rebind | norebind
Specifies whether host variables require rebinding for this fetch statement.
The rebind clause overrides precompiler options that control rebinding.

Ccursor_name
The name of the cursor. The name is defined in a preceding declare cursor
Statement.

host_variable
A host language variable defined in adeclare section.

indicator_variable
A 2-byte host variable declared in aprevious declare section. If the valuefor
the associated variable is null, fetch setsthe indicator variableto -1. If
truncation occurs, fetch setstheindicator variable to the actual length of the
result column. Otherwise, it sets the indicator variableto O.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
The name of the dynamic descriptor that will hold the result set.

Examples exec sqgl begin declare section;
CS_CHAR title id[6];
CS_CHAR title[80] ;
CS_CHAR typel12];
CS_SMALLINT i title;
CS_SMALLINT i_type;

exec sgl end declare section;

exec sql declare title_list cursor for
select type, title id, title from titles
order by type;

exec sgl open title list
while (sglca.sglcode != 100) {
exec sqgl fetch title_list into
:type :1i_type, :title id, :title :i title;

if (i _type != -1) {
printf ("Type: %s\n", type);
}

else {

156 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

printf ("Type: undecided\n") ;

!
printf ("Title id: %s\n", title id);

if (i title <> -1) {
print "Title: ", title;
}

else {
print "Title: undecided";
}

}

exec sql close title list;

The fetch statement can be used both with static cursors and with cursors
in dynamic SQL.
The open statement must execute before the fetch statement executes.

Thefirst fetch on an open cursor returnsthefirst row or group of rowsfrom
the cursor’s result table. Each subsequent fetch returns the next row or
group of rows.

You can fetch multiple rows into an array.

The*“current row” isthe row most recently fetched. To update or deleteit,
use the where current of cursor_name clause with the update or delete
statement. These statements are not valid until after arow has been
fetched.

After al rows have been fetched from the cursor, calling fetch sets
SQLCODE to 100. If the select furnishes no results on execution,
SQLCODE is set to 100 on the first fetch.

There must be one—and only one—host_variable for each column of the
result set.

When neither therebind nor the norebind is specified, the binding behavior
is determined by the precompiler option -b. See “ Guidelines for using
persistent binding” on page 113 for information on persistent binds and
the Open Client and Open Server Programmers Supplement for your
platform for details on precompiler options.

Anindicator_variable must be provided for ahost_variable that can
receive anull value. A runtime error occurs when anull value is fetched
for ahost variable that has no indicator variable.

Embedded SQL/C Programmers Guide 157

fetch scrollable cursor

See also

When possible, Client-Library converts the datatype of aresult column to
the datatype of the corresponding host variable. If Client-Library cannot
convert adatatype, it issuesan error message. |f conversionisnot possible,
an error occurs.

allocate descriptor, close, declare, delete (positioned cursor), open, prepare,
update

fetch scrollable cursor

Description

Syntax

Parameters

Examples

Usage

158

Uses afetch statement to retrieve data through a cursor and assign it to host
variables.

exec sql [at connect_name] fetch [fetch orientation]cursor_name into :
host_variable [[indicator]: indicator_variable] [,: host_variable [[indicator]:
indicator_variable]...];

host_variable
One host_variable exists for each column in the result rows.

fetch orientation
Specifiesthefetch direction of the row to befetched, if acursor isscrollable.

/*

** Fetch the first row in cursor resultset

*/

EXEC SQL FETCH FIRST FROM typelist INTO :a_type;
printf ("\n%s\n", a_type);

/*

** Fetch the last row in cursor resultset

*/

EXEC SQL FETCH LAST FROM typelist INTO :a_type;
printf ("\n%s\n", a_type);

When using host_variable, prefix each host variable with a colon, and
separate it from the next host variable with a comma. The host variables
listed inthefetch statement must correspond to Adaptive Server Enterprise
valuesthat the select statement retrieves. Thus, the number of variables
must match the number of returned values, they must bein the same order,
and they must have compatible datatypes.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

e Theoptions for fetch orientation are: NEXT, PRIOR, FIRST, LAST,
ABSOLUTE fetch_offset and RELATIVE fetch_offset. If fetch orientationis
not specified, next is default. If fetch orientation is specified, the cursor
must be scrollable. The data that the fetch statement retrieves depends on
the cursor position.

The fetch statement typically retrieves single or multiple rows from the
cursor result set, depending on the ROW_COUNT specification at cursor
open time. If acursor is not scrollable, fetch retrieves the next row in the
result set. If acursor isscrollable, commandsin thefetch statement specify
the row position to be fetched.

See also declare scrollable cursor

get descriptor

Description Retrieves attribute information about dynamic parameter markers and select
column list attributes and data from a SQL descriptor.

For alist of SQL descriptor datatype codes, see Table 10-5 on page 182.

Syntax exec sql get descriptor descriptor_name
{:host_variable = count |
value item_number :host_variable = item_name
[, :host_variable = item_name]...};
Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markers or return columnsin a prepared statement.

host_variable
A variable defined in adeclare section.

count
The number of dynamic parameters retrieved.

item_number
A number specifying the nth dynamic parameter marker or select column for
which get descriptor retrieves information.

item_name
The name of an attribute to be retrieved. See Table 10-3:

Embedded SQL/C Programmers Guide 159

get descriptor

Table 10-3: Valid item_name values
Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

indicator Value for the indicator parameter associated with
the dynamic parameter marker or target.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

name The name of the specified SQL descriptor

containing information about the dynamic
parameter markers.

nullable Equals 0 if the dynamic parameter marker can
accept anull value; otherwise, equals 1.

precision Aninteger specifying the total number of digits of
precision for the CS_NUMERIC variable.

returned_length The length of character types of the values from
the select column list.

scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

type The datatype of this column (item number) in the
row. For vaues, see SQL descriptor datatype
codes.

Examples exec sgl begin declare section;
int numcols, colnum, type, intbuf;
char charbuf [100] ;
exec sgl end declare section;

exec sgl allocate descriptor big desc
with max 1000;
exec sgl prepare dynstmt from "select * from \

huge table";
exec sgl execute dynstmt into sqgl descriptor
big desc;
exec sgl get descriptor big desc :numcols = count;

for (colnum = 1; colnum <= numcols; colnum++)

{

exec sqgl get descriptor big desc
value :colnum :type = type;
if (type == 4)

{

160 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

get diagnostics

Retrieves error, warning, and informational messages from
Client-Library.

Description

Syntax

Parameters

exec sql get descriptor big desc
value :colnum :intbuf = data;
/* Display intbuf. */

else 1if (type == 1)

{

big desc

value :colnum :charbuf = data;

/* Display charbuf. */

}

exec sqgl deallocate descriptor big desc;

The get descriptor statement returns information about the number or
attributes of dynamic parameters specified or the select list columnsin a
prepared statement.

This statement should be executed after a describe input, describe output,
execute, or fetch (dynamic) statement has been issued.

It is not possible to retrieve data, indicator, or returned_length until the
data associated with the descriptor is retrieved from the server by an
execute statement or afetch statement.

describe input, describe output, fetch, set descriptor

get diagnostics

{:hv = statement_info [, :hv = statement_info]...|
exception :condition_number

:hv = condition_info [, :hv = condition_info]...}

statement_info

The keyword number is currently the only supported statement_info type. It
returns the total number of exceptions in the diagnostics queue.

Embedded SQL/C Programmers Guide 161

include "filename"

condition_info
Any one of the keywords sglca _info, sglcode_number, and
returned_sglstate.

Examples exec sgl begin declare section;
CS_INT num msgs;
CS_INT condcnt=1;
exec sqgl include sqglca;
exec sgl end declare section;
exec sgl exec sp password "bass", "foo";
exec sgl get diagnostics :num msgs = number;

printf ("Number of messages is %d.\n", num_msgs) ;
/* Loop through and print the messages. */

while (condcnt <= num msgs)

{

exec sqgl get diagnostics exception :condcnt
:sglca = sqglca info;
printf ("SQLCODE = %d \n", sqglca.sqglcode) ;
printf ("$s \n", sglca.sglerrm.sglerrmc) ;
condcnt = condcent + 1;

}

Usage * Many Embedded SQL statements are capable of causing multiple
warnings or errors. Typically, only the first error is reported using
SQLCODE, SQLCA, or SQLSTATE. Useget diagnostics to processall the
errors.

* You can use get diagnostics, which isthetarget of thecall, perform, or go to
clause of awhenever statement, in the code.

* Youcanuseget diagnostics after astatement for which youwant to retrieve
informational messages.

See also whenever

include "filename"
Description Includes an external file in an Embedded SQL sourcefile.

Syntax exec sql include "filename";

162 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Parameters filename
The name of thefile to be included in the Embedded SQL source file
containing this statement.

Examples

common.h:
/* This file contains definitions and
** declarations used in the file getinfo.c.

*/

#include <stdio.h>
#include “./common.h”
void err handler () ;
void warning handler () ;
exec sqgl include sqglca;
{
exec sgl begin declare section;
CS_CHAR username [33], password[33], date[33];
exec sgl end declare section;

exec sgl whenever sglerror call err handler () ;
exec sgl whenever sglwarning call warning handler() ;
exec sgl whenever not found continue;

/*

** Copy the user name and password defined in common.h to
** the variables decalred for them in the declare section.
*/

strcpy (username, USER) ;

strcpy (password, PASSWORD) ;

printf (“Today’s date: %s\n”, date);

void err handler ()

void warning handler ()

/* common.h */
#define USER “sa”
#define PASSWORD ““

Embedded SQL/C Programmers Guide 163

include sqlca

exec sgl begin declare section;
char global username[100];
char global password[100];
exec sgl end declare section;

getinfo.c

#include <common.h>
printf (*uid?\n”) ;

gets (global username) ;
printf (“password?\n”) ;
gets (global password) ;

do_connect.c
exec sqgl include “common.h”;

exec sgl connect :global username
identified by :global password;

Usage e The Embedded SQL precompiler processes the included file as though it
were part of the Embedded SQL source file, recognizing all declare
sectionsand SQL statements. The Embedded SQL precompiler writesthe
resulting host language source code into the generated file.

e Usetheinclude path precompiler command line option to specify the
directoriesto be searched for any included files. Refer to the Open Client
and Open Server Programmers Supplement.

* Included files can be nested up to a maximum depth of 32 files.

* Theinclude "filename" statement can be used anywhere.

See also declare section

include sqlca

Description Defines the SQL Communications Area (SQLCA) in an Embedded SQL
program.

Syntax exec sql include sqlca;

Examples exec sgl include SQLCA;

exec sgl update tl set cl = 123 where c2 > 47;
if (sglca.sglcode == 0)

164 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

{
}

else if (sglca.sglcode == 100)

{
printf ("No rows matched the query\n") ;
} else {
printf ("An error occured\n%s\n",
sglca.sglerrm.sglerrmc) ;

printf (“%$d rows updated/n", sqglca.sqglerrd[2]);

}

Usage * Theinclude sglca statement can be used anywhere that host language
declarations are allowed.

See also begin declare section

include sqglda

Description Defines the SQLDA structure in an Embedded SQL program.
Syntax exec sql include sqlda;
Examples

exec sqgl include sqglda;

SQLDA *input descriptor, *output descriptor;

CS SMALLINT small;

CS_CHAR character [20] ;
input descriptor = (SQLDA *)malloc (SYB SQLDA SIZE(3)) ;
input descriptor->sglda_sgln = 3;

output descriptor = (SQLDA *)malloc (SYB SQLDA SIZE(3)) ;
output descriptor-s>sglda sgln = 3;

Usage e Theinclude sglda statement can be used anywhere that host language
declarations are allowed.

initialize_application

Description Generates a call to set the application name on the global CS_CONTEXT
handle. If precompiled withthe-x option, it will also set thecs_config(CS_SET,
CS _EXTERNAL_CONFIG, CS_TRUE) property.

Embedded SQL/C Programmers Guide 165

initialize_application

Syntax exec sql initialize_application
[application_name “=" application_name];
Examples exec sgl include sqglca;
main ()

{

exec sqgl initialize application
application name = :appname;

/*

** The body of the main function goes here,

** including various Embedded SQL statements.

*/

/* The init statement must be the first
** embedded SQL statement in the program.
*/

exec sqgl exit;

} /* end of main */

Usage e application_nameis either aliteral string or acharacter variable
containing the name of the application.

» Ifinitialize_application isthefirst Embedded SQL statement executed by an
application, -x causes ct_init to use external configuration optionsto
initialize the Client-Library part of the CS_CONTEXT structure.

» Ifinitialize_application is not the first Embedded SQL statement, ct_init
does not pick up external configuration options.

» Regardless of whether or not initialize_application is the first Embedded
SQL statement, -x causes exec sql connect Statements to use external
configuration data. If -e is also specified, Sybase uses the server name as
akey to the configuration data. If -e is not specified, then the application
name (or DEFAULT) is used as the key to the configuration data.

» If you specify -x and the application name, the following applies:

e ct_init uses the application name to determine which section of the
external configuration file to use for initialization.

e Theapplication nameis passed to Adaptive Server Enterprise as part
of the connect statement. The application name is entered in the
sysprocesses.program_name table.

» If -e isspecified without -x, then ct_init will use external configuration data
when initializing, but every connection will use the server name as a key
to the external configuration data. See the Open Client and Open Server
Programmers Supplement for information on command-line options.

166 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

See also exit

open (dynamic cursor)
Description Opens a previously declared dynamic cursor.

Syntax exec sgl [at connection_name] open cursor_name
[row_count = size] [using {host_var_list |
descriptor descriptor_name |
sql descriptor descriptor_name};

Parameters cursor_name
Names a cursor that has been declared using the declare cursor statement.
size
The number of rows moved in a network roundtrip, not the number fetched

into the host variable. The size argument can be either aliteral or adeclared
host variable.

host_var_list
Names the host variables that contain the values for dynamic parameter
markers.

descriptor
Identifies descriptor_name as a SQLDA structure.

sql descriptor
Identifies descriptor_name as a SQL descriptor.

descriptor_name
Names the dynamic descriptor that contains information about the dynamic
parameter markersin a prepared statement.

Examples exec sgl begin declare section;
CS_CHAR dyna_buf [128] ;
CS_CHAR title_idl[e];
CS_CHAR lastname [40] ;
CS CHAR firstname[20] ;
CS_CHAR phone [12] ;

exec sqgl end declare section;

dyna_buf = "SELECT a.au_ lname, a.au fname, a.phone"
+ "FROM authors a, titleauthor t "
+ "WHERE a.au _id = t.au id "
+ "AND t.title id = ?”;

Embedded SQL/C Programmers Guide 167

open (static cursor)

Usage

See also

exec sgl prepare dyna comm from :dyna buf;
exec sgl declare who _wrote cursor for dyna_comm;
printf ("List authors for what title? ");

gets(title id);
exec sqgl open who wrote using :title id;

while (TRUE){ exec sql fetch who wrote into
:lastname, :firstname, :phone;
if (sqglcode == 100) break;

printf (“Last name is %s\n”, lastname,
“First name is %s\n”, firstname,
“Phone number is %s\n”, phone);

exec sgl close who_wrote;

open executes the statement specified in the corresponding declare cursor
statement. You can then usethefetch statement to retrieve the results of the
prepared statement.

You can have any number of open cursors.

The using clause substitutes host-variable or dynamic-descriptor contents
for the dynamic parameter markers (“?") in the select statement.

close, declare, fetch, prepare

open (static cursor)

Description

Syntax

Parameters

168

Opens a previously declared static cursor. This statement can be used to open
any static cursor, including one for a stored procedure.

exec sql [at connection_name] open cursor_name
[row_count = size];

Cursor_name

The name of the cursor to be opened.

row_count

The number of rows moved in anetwork roundtrip, not the number fetched
into the host variable.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

size
The number of rows that are moved at the same time from Adaptive Server
Enterpriseto the client. The client buffersthe rows until they are fetched by
the application. This parameter allows you to tune network efficiency.

Examples exec sgl begin declare section;
char b titleid[tidsize+1];
char b title([65];
char b typeltypesize+l];
exec sqgl end declare section;
long sqglcode;
char response [10] ;

exec sqgl declare titlelist cursor for
select title id, substring(title,1,64)
from titles where type like :b type;
strcpy (b _type, "business");

exec sqgl open titlelist;

for (;;)
exec sqgl fetch titlelist into :b_titleid,
:b title;
if (sglcode == 100)
break;
printf (" %$-8s %s\n", b titleid, b_title);

printf ("update/delete? ");
gets (response) ;
if (!strncasecmp (response,"u",1))
{
printf ("enter the new titleid\n>");
gets(b_titleid);
exec sqgl update titles
set title id = :b titleid
where current of titlelist;

}

else if (!strncasecmp (response,"d",1))

{

exec sgl delete from titles
where current of titlelist;

}
}
exec sqgl close titlelist;

Usage e open executes the select statement given by the declare cursor statement
and prepares results for the fetch statement.

e You can have an unlimited number of open cursors.

Embedded SQL/C Programmers Guide 169

prepare

prepare
Description

Syntax

Parameters

Examples

170

A static cursor must be opened only inthefilewherethe cursor is declared.
The cursor can be closed in any file.

The values of host variables embedded in the declare cursor statement are
taken at open time.

When specifying cursor_name, you can use the name of a deallocated
static cursor. If you do, the precompiler declares and opens a new cursor
having the same name as that of the deallocated cursor. Thus, the
precompiler does not reopen the deallocated cursor but instead creates a
new one. The results sets for the two cursors can differ.

Declares a name for adynamic SQL statement buffer.

exec sql [at connection_name] prepare statement_name from {:host_variable

| "string"};

statement_name
Anidentifier used to reference the statement. statement_name must
uniquely identify the statement buffer and must conform to the SQL
identifier rules for naming variables. The statement_name can also bea
host_variable string containing avalid SQL identifier. statement_name can
be up to 255 characters.

host_variable
A character-string host variable that contains an executable SQL statement.
Place dynamic parameter markers (“?’') anywhere in the select statement
where a host variable value will be substituted.

string
A literal string that can be used in place of host_variable.

exec sqgl begin declare section;
CS_CHAR dyn buffer[128];
CS_CHAR state[2];

exec sgl end declare section;

-- The select into table name statement returns no
-- results to the program, so it does not

-- need a cursor.

dyn _buffer = "select * into #work from authors"

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

+ "where state = ?7;

printf ("State? ") ;

gets (state) ;

exec sqgl prepare make work from :dyn buffer;
exec sgl execute make work using :state;

In the current implementation, Sybase creates a temporary stored
procedure for adynamic SQL statement stored in a character string literal
or host variable.

prepare sends the contents of host_variable to the Adaptive Server
Enterprise to convert into atemporary stored procedure. This temporary
stored procedure remains in tempdb on Adaptive Server Enterprise until
the statement is deallocated or the connection is disconnected.

The scope of statement_nameis global to your program but local to the
connection connection_name. The statement persists until the program
either deallocates it or closes the connection.

prepare isvalid with Dynamic SQL methods 2, 3, and 4.

With method 2, (prepare and execute), an execute statement substitutes
values from host variables, if any, into the prepared statement and sends
the compl eted statement to Adaptive Server Enterprise. If there are no host
variables to substitute and no results, you can use execute immediate,
instead.

With method 3, prepare and fetch, adeclare cursor Sstatement associatesthe
saved select statement with acursor. An open statement substitutes values
from host variables, if any, into the select statement and sendsthe result to
Adaptive Server Enterprise for execution.

With methods 2, 3, and 4, prepare and fetch with parameter descriptors, the
dynamic parameter descriptors, represented by question marks (*7?’),
indicate where host variables will be substituted.

A prepared statement must be executed on the same connection on which
it was prepared. If the prepared statement is used to declare a cursor, all
operations on that cursor use the same connection as the prepared
statement.

The statement in host_variable can contain dynamic parameter markers
that indicate where to substitute values of host variablesinto the statement.

declare cursor, execute, execute immediate, deallocate prepare

Embedded SQL/C Programmers Guide 171

rollback

rollback

Description

Syntax

Parameters

Examples

Usage

See also

select

Description

Syntax

172

Rollsatransaction back to asavepoint insidethe transaction or to the beginning
of the transaction.

exec sql [at connection_name]
rollback [transaction | tran | work]
[transaction_name | savepoint_name];

transaction | trans | work

The keywordstransaction, trans, and work areinterchangeablein therollback
statement, but only work is ANSI-compliant.

transaction_name
The name of the transaction being rolled back.

savepoint_name
The name assigned to the savepoint in a save transaction statement. If you
omit savepoint_name, Adaptive Server rolls back the entire transaction.

abort tran:

exec sgl whenever sqglerror continue:

exec sqgl at connect2 rollback transaction;
exec sgl at connectl rollback transaction;
goto try update;

» Thisreference page mainly describes aspects of the Transact-SQL rollback
statement that differ when used with Embedded SQL. See the Adaptive
Server Enterprise Reference Manual.

» Transaction names and savepoint names must conform to the Transact-
SQL rulesfor identifiers.

» Transaction names and savepoints are Transact-SQL extensions; they are
not ANSI-compliant. Do not use a transaction name or savepoint name
with the ANSI-compliant keyword work.

begin transaction, commit

Retrieves rows from database objects.

exec sql [at connect_name]
select select_list

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

into destination
from table_name...;

Parameters select list
Same as select_list in the Transact-SQL select statement, except that the
select_list cannot perform variable assignmentsin Embedded SQL .

destination
A table or aseries of one or more Embedded SQL host variables. Each host
variable must first be defined in a previous declare section. Indicator
variables can be associated with the host variabl es.

Examples /* This example retrieves columns from a
** gingle row of the authors table and
** gtores them in host variables. Because the
** example’s select statement cannot return more
** than one row, no cursor 1is needed.

*/

exec sql begin declare section;
character last [40];
character first[20];
character phone [12] ;
character idf[11];

exec sgl end declare section;

printf ("Enter author id: ");

gets (id) ;

exec sgl select au lname, au fname, phone
into :last, :first, :phone
from authors

where au_id = :id;
if (sglcode != 100)

{
print "Information for Author ", id, ":";
print last, first, phone;

}

else

{
print "Could not locate author ", 1id;

}i

Usage « Thisreference page mainly describes aspects of the Transact-SQL select

statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual.

* The compute clause of the Transact-SQL select statement cannot be used
in Embedded SQL programs.

Embedded SQL/C Programmers Guide 173

set connection

See also

» Host variablesin aselect statement are input variables only, except in the
statement’sinto clause. Host variables in the into clause are output
variables.

» Previously declared input host variables can be used anywhere in aselect
statement that aliteral value or Transact-SQL variableis allowed.
Indicator variables can be associated with input host variables to specify
null values.

o If aselect statement returns more than one row, each host variablein the
statement’sinto clause must be an array with enough spacefor al therows.
Otherwise, you must use a cursor to bring the rows back one at atime.

declare cursor

set connection

Description

Syntax

Parameters

Examples

Usage

174

Causes the specified existing connection to become the current connection.

set connection {connection_name | DEFAULT};

connection_name
The name of an existing connection that you want to become the current
connection.

default
Specifies that the unnamed default connection isto become the current
connection.

exec sgl connect "ME" at connectl using "SERVER1";
exec sgl connect "ME" at connect2 using "SERVER2";
/* The next statement executes on connect2. */
exec sgl select userid() into :myid;

exec sgl set connection connectl;

/* The next statement executes on connectl. */
exec sgl select count (*)from tl;

» The set connection statement specifies the current connection for all
subsequent SQL statements, except those preceded by the exec sqgl clause
at.

e A set connection statement remainsin effect until you choose a different
current connection by using the set connection statement again.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

See also at connection_name, connect

set descriptor
Description Inserts or updates datain a SQL descriptor.
For alist of possible SQL descriptor datatypes, see Table 10-5 on page 182.

Syntax exec sql set descriptor descriptor_name
{count = host_variable} |
{value item_number {item_name =
:host_variable}|,...];

Parameters descriptor_name
The name of the SQL descriptor that contains information about the
dynamic parameter markersin a prepared statement.

count
The number of dynamic parameter specifications to be described.

host_variable
A host variable defined in adeclare section.

item_number
Represents the nth occurrence of either a dynamic parameter marker or a
select column.

item_name
Represents the attribute information of either a dynamic parameter marker
or aselect list column. Table 10-4 lists the values for item _name.

Embedded SQL/C Programmers Guide 175

set descriptor

Table 10-4: Values for item_name

Value Description

data Value for the dynamic parameter marker or target
associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

precision Aninteger specifying the total number of digits of
precision for the CS_NUMERIC variable.

scale An integer specifying the total number of digits
after the decimal point for the CS_NUMERIC
variable.

type The datatype of this column (item number) in the
row. For vaues, see Table 10-5 on page 182.

Examples exec sqgl prepare get royalty
from "select royalty from roysched
where title id = ? and lorange <= ? and
hirange > ?";

exec sgl allocate descriptor roy desc with max 3;
exec sqgl set descriptor roy desc
value 1 data = :tid;
exec sgl set descriptor roy desc
value 2 data = :sales;
exec sgl set descriptor roy desc
value 3 data = :sales;
exec sgl execute get royalty into :royalty
using sgl descriptor roy desc;

Usage An Embedded SQL program passes attribute and value information to Client-
Library, which holdsthe datain the specified SQL descriptor until the program
issues it arequest to execute a statement.

See also allocate descriptor, describe input, describe output, execute, fetch, get descriptor,
open(dynamic cursor)

176 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

thread exit
Description Allows Embedded SQL programs to release memory allocated to a particular
thread.
Syntax exec sql thread_exit;
Examples exec sgl include sqglca;
main ()
{
for (;;)
{
/* A thread connects to Adaptive Server Enterprise,
** executes various embedded SQL statements,
** and then disconnects from
** Adaptive Server Enterprise
*/
exec sqgl thread exit;
}
/* The exit statement must be the last
** embedded SQL statement in the program.
*/
exec sqgl exit;
} /* end of main */
Usage e Thethread exit statement deallocates all memory resources allocated to a
particular thread.
* Thethread exit statement isa Sybase extension; it isnot defined in the SQL
standard.
See also exit
update
Description Modifies datain rows of atable.
Syntax exec sql [at connection_name] update table_name

set [table_name]
column_namel = {expressionl
| NULL | (select_statement)}
[, column_name2 =
{expression2 | NULL

Embedded SQL/C Programmers Guide 177

update

| (select_statement)}]...
[from table_name
[, table_name]...

[where {search_conditions | current of cursor_name}];

Parameters table name

The name of atable or view, specified in any format that is valid for the
update statement in Transact-SQL.

Examples exec sgl begin declare section;
CS_CHAR store name [40] ;
CS_CHAR disc_type[40];
CS_INT lowgty;
CS_INT highqgty;
CS_FLOAT discount;

exec sgl end declare section;

CS_CHAR answer [1]) ;

exec sgl declare update cursor cursor for
select s.stor name, d.discounttype,
d.lowgty, d.highgty, d.discount

from stores

s, discounts d

where d.stor id = s.stor_ id;

exec sgl open update cursor;

exec sgl whenever

while (TRUE) ({

not found goto alldone;

exec sqgl fetch update cursor into
:store name, :disc_type, :lowgty,

:highgty,

discount;

print store name, disc_type, lowgty,

highgty,

discount;

printf ("New discount? ") ;
gets (discount) ;
exec sgl update discounts
set discount = :discount
where current of update cursor;

}

alldone:

exec sgl close update_cursor;
exec sgl disconnect all;

178

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

See also

whenever

Description

Syntax

Parameters

e Thisreference page mainly describes aspects of the Transact-SQL update
statement that differ when the statement is used in Embedded SQL. See
the Adaptive Server Enterprise Reference Manual.

* Host variables can appear anywherein an expression or in any where
clause.

e You can use the where clause to update selected rowsin atable. Omit the
where clause to update all rows in the table. Use where current of
cursor_name to update the current row of an open cursor.

* When where current of cursor_name is specified, the statement must be
executed on the connection specified in the open cursor statement. If theat
connection_name clause is used, it must match the open cursor statement.

close, delete cursor, fetch, open, prepare

Specifies an action to occur whenever an executable SQL statement causes a
specified condition.

exec sql whenever {sqglerror | not found | sqlwarning}
{continue | go to label | goto label |
stop | call routine_name [args]};

sqlerror

Specifies an action to take when an error is detected, such as a syntax error
returned to the Embedded SQL program from Adaptive Server.

not found
Specifies an action to take when afetch or select into Statement retrieves no
data or when a searched update or delete statement affects no rows.

sqglwarning
Specifies an action to take when awarning is received; for example, when a
character string is truncated.

continue
Take no action when the condition occurs.

go to | goto
Transfer control to the program statement at the specified label.

label
A host language statement label, such as a C label.

Embedded SQL/C Programmers Guide 179

whenever

stop
Terminate the Embedded SQL program when the condition occurs.

call

Transfer control to acallable routine in the program, such as a user-defined
function or subroutine.

routine_name
A host language routine that can be called. The routine must be able to be
called from the source file that contains the whenever statement. You may
need to declare the routine as external to compile the Embedded SQL
program.

args
One or more arguments to be passed to the callable routine, using the
parameter-passing conventions of the host language. The arguments can be
any list of host variables, literals, or expressions that the host language
allows. A space character should separate each argument from the next.

Examples exec sgl whenever sglerror call err handler();
exec sgl whenever sglwarning call warn handler() ;

long SQLCODE;
exec sgl begin declare section;

CS CHAR lastname [40] ;
CS CHAR firstname [20] ;
CS CHAR phone[12] ;

exec sgl end declare section;

exec sql declare au list cursor for
select au_lname, au_fname, phone
from authors
order by au_lname;

exec sgl open au list;
exec sgl whenever not found go to list done;

while (TRUE) {
exec sqgl fetch au list
into :lastname, :firstname, :phone;
printf (“*Lastname is: %$s\n”, lastname,
“Firstname is: %s\n”, firstname,
“Phone number is: %s\n”, phone;
1

list done:

180 Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Usage

exec sqgl close au list;
exec sgl disconnect current;

The whenever statement causes the Embedded SQL precompiler to
generate code following each executable SQL statement. The generated
codeincludesthetest for the condition and the host language statement or
statements that carry out the specified action.

The Embedded SQL precompiler generates code for the SQL statements
that follow the whenever statement in the sourcefile, including SQL
statements in subroutines that are defined in the same source file.

Use whenever ...continue to cancel a previous whenever statement. The
continue action causes the Embedded SQL precompiler to ignore the
condition. To prevent infinite loops, use whenever ...continue in an error
handler before executing any Embedded SQL statements.

When you use whenever ...go to label, label must represent avalid
location to resume execution. In C, for example, label must be declared in
any routine that has executable SQL statements within the scope of the
whenever statement. C does not allow agoto statement to jump to alabel
declared in another function.

If you have awhenever statement in your program but you have not
declared SQLCA or SQL STATE status variables, the Embedded SQL
precompiler assumes that you are using the SQL CODE variable. Be sure
that SQLCODE is declared. Otherwise, the generated code will not
compile.

SQL descriptor codes

Table 10-5 pertains to the SQL descriptor used for dynamic SQL statements.
Sybase's use of dynamic SQL values conforms to the ANSI/ISO 185-92 SQL -
92 standards. See the appropriate ANSI/I SO documentation.

Embedded SQL/C Programmers Guide 181

whenever

182

Table 10-5: SQL descriptor datatype codes

ANSI SQL datatype Code
bit 14
character 1
character varying 12
date, time 9
decimal 3
double precision 8
float 6
integer 4
numeric 2
real 7
smallint 5

Sybase-defined datatype

Client-Library code

smalldatetime -9
money -10
smallmoney -11
text -3
image -4
tinyint -8
binary -5
varbinary -6
long binary -7
longchar -2

Table 10-6: SQL descriptor identifier values

Value Description

type The datatype of this column (item number) in the
row. For vaues, see Table 10-5 on page 182.

length The length, in characters, of the dynamic
parameter marker of target for the specified SQL
descriptor.

returned_length The length of char types of the values from the
select column list.

precision Aninteger specifying the total number of digits of

precision for the CS_NUMERIC variable.

Open Client

CHAPTER 10 Embedded SQL Statements: Reference Pages

Value Description

scale An integer specifying the total number of digits
after the decimal point for the CS_ NUMERIC
variable.

nullable Equals 0 if the dynamic parameter marker can
accept anull value; otherwise, equals 1.

indicator Value for the indicator parameter associated with
the dynamic parameter marker or target.

data Value for the dynamic parameter marker or target

associated with the specified SQL descriptor. If
indicator is negative, thisfield is undefined.

name The name of the specified SQL descriptor
containing information about the dynamic
parameter markers.

Embedded SQL/C Programmers Guide 183

whenever

184 Open Client

CHAPTER 11

Open Client and Open Server
Configuration File

Open Client and Open Server applications can easily be configured using
the Open Client and Open Server configuration file. By default, thefileis
named ocs.cfg and is located in the $SYBASE/$SYBASE_OCS config
directory. This chapter describe how the configuration file can be used
with Embedded SQL.

Topic Page
Purpose of the Open Client and Open Server configuration file 185
Accessing the configuration functionality 185
Default settings 186
Syntax for the Open Client and Open Server configuration file 187
Sample programs 189
Summary 195

Purpose of the Open Client and Open Server
configuration file

The Open Client and Open Server configuration file provides asingle
location where all Open Client and Open Server application connections
can be configured. Using the configuration file simplifies the tasks of
establishing configuration standards and managing configuration
changes.

Accessing the configuration functionality

Thisfeature is available through two command-line options of the
initialize_application statement.

Embedded SQL/C Programmers Guide 185

Default settings

-x —thisoption allowsfor external configuration. The application needsto
initialize an application with a name. The Open Client and Open Server
configuration file will have a section with this application name. Under
thissection, placeall propertiesthat need to be set for thisapplication. The
-x option is useful only when used with initialize_application. If initializing
is not done, and the -x option is used, the default section of the
configuration file will be accessed.

-e —this option allows us to configure by SERVER NAME. No call to
initialize_application is required. The server name will be used as a key to
look up inthe configuration filefor propertiesto be set the section defined
by the server name. Thiswill allow users to associate connection names
with specific connection properties.

Note If INITIALIZE_APPLICATION isnot the first Embedded SQL statement to
be executed, external configuration properties will not be set. If it isthe first
Embedded SQL statement to be executed, then the external configuration
options will be used for initialization.

Default settings

The following is the Open Client and Open Server configuration file with
default settings. You can customize the file as needed.

[DEFAULT]

;This is the default section loaded by applications that use the
;external configuration feature, but which do not specify their

;own application name.

Initially this section is empty.Defaults

;from all properties will be the same as earlier releases of
;Open Client libraries.

[ANSI ESQL]

;This section defines configuration which an ANSI conforming
;Embedded SQL application should use to get ANSI-defined
;behavior from Adaptive Server Enterprises and Open Client libraries. This set

of

;configuration ;properties matches the set which earlier

;releases of Embedded SQL (version 10.0.x) automatically set for

;applications duringexecution of a CONNECT statement.
CS_CAP_RESPONSE=CS_RES NOSTRIPBLANKS

CS_EXTRA_INF=CS_TRUE
CS_ANSI BINDS=CS_TRUE

186

Open Client

CHAPTER 11 Open Client and Open Server Configuration File

CS_OPT ANSINULL=CS TRUE

CS_OPT ANSIPERM=CS TRUE
CS_OPT_STR RTRUNC=CS_TRUE
CS_OPT_ARITHABORT=CS FALSE
CS_OPT_TRUNCIGNORE=CS TRUE
CS_OPT ISOLATION=CS OPT LEVEL3
CS_OPT_CHAINXACTS=CS_ TRUE
CS_OPT_CURCLOSEONXACT=CS_TRUE
CS_OPT_QUOTED IDENT=CS_TRUE
;End of default sections

Syntax for the Open Client and Open Server
configuration file

The syntax for the Open Client and Open Server configuration file will match
the existing syntax for Sybaselocalization and configuration files supported by
CS-Library with minor variations.

The syntax isas follows:
e ;—Signifiesacomment line.

e [section_name] — Section names are wrapped in square brackets. The Open
Client and Open Server configuration file comes with sections named
DEFAULT and ANSI_ESQL. The application name will be used as the
section name for an application that has been compiled with the -x option.
For an application that has been compiled with the -e option, the server
namewill be used for the section name. Any name can be used asasection
name for the sections that contain settings that will be used in multiple
sections. The following example shows a section arbitrarily named
“GENERIC,” and how that section isincluded in other sections:

[GENERIC]

CS_OPT_ANSINULL=CS_TRUE
[APP_PAYROLL]

include=GENERIC

CS_CAP RESPONSE=CS RES NOSTRIPBLANKS
[APP HR]

include=GENERIC

CS_OPT QUOTED IDENT=CS_TRUE

e entry_name=entry_value

Embedded SQL/C Programmers Guide 187

Syntax for the Open Client and Open Server configuration file

188

Entry values can be anything: integers, strings and so on. If an entry
valueline endswith '\'<newline> the entry value continuesto the next
line.

White spaces are trimmed from the beginning and end if entry va ues.

If white spaces are required at the beginning or end of an entry value,
wrap them in double quotes.

An entry that begins with a double quote must end with a double
guote. Two double quote charactersin arow within a quoted string
represent a single double quote in the value string. If anewlineis
encountered within double quotes, it is considered to be literally part
of thevalue.

Entry names and section names can consist of al phabetic characters
(both uppercase and lowercase), the digits 0 - 9, and any of the
following punctuation characters: ! " #$% & '()* +,-./:;<>?@
VA

Square brackets ([]), space, and equal sign (=) are not supported. The
first letter MUST be alphabetic.

Entry and section names are case sensitive.
Include=earlier_section

If a section contains the entry include, then the entire contents of that
previously defined section are considered to be replicated within this
section. In other words, the properties defined in the previous section
are inherited by this section.

Notethat theincluded section must have been defined prior toit being
included in another section. Thisallowsthe configuration file parsing
to happen in asingle pass and eliminates the need to detect recursive
included directives.

If an included section in turn includes another section, the order of
entry valuesis defined by a“depthfirst” search of the included
sections.

Sections cannot include areference to themselves. In other words,
recursion is not possible because you must include a previously
defined section—you cannot include the section being defined.

Open Client

CHAPTER 11 Open Client and Open Server Configuration File

All direct entry valuesdefined in agiven section supersede any values
which may have been included from another section. Inthefollowing
example, CS_OPT_ANSINULL will be set to falsein the
APP.PAYROLL application. Note that the position of theinclude
statement does not affect thisrule.

[GENERIC]
CS_OPT_ANSINULL=CS_TRUE
[APP PAYROLL]
CS_OPT ANSINULL=CS_ FALSE
include=GENERIC

Sample programs

Consider the following scenario: An Embedded SQL program defines a cursor
to retrieve rows from thetitles table in the pubs2 database. The WHERE clause
uses non-ANSI standard NULL checking. To clarify, IS NULL and IS NOT
NULL are ANSI standards which is the default used by Embedded SQL
programs, whereas an Embedded SQL program wishing to use = NULL or !=
NULL will need to turn OFF ANSINULL behavior and use Transact-SQL
syntax instead.

In the following example, no change is made to the Embedded SQL code, but
the desired behavior is attained by setting appropriate properties in the Open
Client and Open Server configuration file.

Therearetwo versionsof the same program listed bel ow. Oneisto be used with
the -e option and the other with the -x option.

Embedded SQL/C sample makefile on Windows

The libsybcabct.lib and mfrts32.1ib libraries do not need to be included in the
Embedded SQL/C sample makefile.

You must change the CC_INCLUDE variable in the makefile to:

CC_INCLUDES= -I$(SYBASE)\include

Note On Microsoft Windows, the command to compile all the sample
programs is nmake, not make.

Embedded SQL/C Programmers Guide 189

Sample programs

Embedded SQL/C sample programs

Before you build Embedded SQL/C sample programson UNIX platforms, you
must:

e Set execute permission on the sybopts.sh file for the file's owner:
chmod u+x sybopts.sh

» If you have not already done so, include the current directory in the search
path:

setenv PATH . :S$SPATH

Embedded SQL program version for use with the -x option

/* Program name: ocs_test.cp

* %

** Degscription : This program declares a cursor which retireves rows
** from the 'titles' table based on condition checking for NULLS

** in the NON-ANSI style.

** The program will be compiled using the -x option which will

** yugse an external configuration file (ocs.cfg) based on the

** name of the application. The name of the application is

**x defined at the time of INITIALIZING the application. Note that

** this is a new 11.x feature too.

*/
#include <stdio.h>

/* Declare the SQLCA */
EXEC SQL INCLUDE sdglca;

EXEC SQL BEGIN DECLARE SECTION;
/* storage for login name and password */
CS CHARusername [30], password[30];
CS_CHARtitle id[7], pricel[30];

EXEC SQL END DECLARE SECTION;

/*
** Forward declarations of the error and message handlers and
** other subroutines called from main() .

*/
void error handler () ;
void warning handler () ;

190 Open Client

CHAPTER 11 Open Client and Open Server Configuration File

int main()

{

int i=0 ;

EXEC SQL WHENEVER SQLERROR CALL error_ handler () ;
EXEC SQL WHENEVER SQLWARNING CALL warning handler() ;
EXEC SQL WHENEVER NOT FOUND CONTINUE ;

/*
** Copy the user name and password defined in sybsglex.h to
** the variables declared for them in the declare section.

*/

strcpy (username, "sa");
strcpy (password, "");

EXEC SQL INITIALIZE APPLICATION APPLICATION NAME = "TEST1";

EXEC SQL CONNECT :username IDENTIFIED BY :password ;
EXEC SQL USE pubs2 ;

EXEC SQL DECLARE title list CURSOR FOR
SELECT title_id, price FROM titles
WHERE price != NULL;

EXEC SQL OPEN title_list ;
for (;;)
{
EXEC SQL FETCH title_list INTO
:title id, :price;
if (sglca.sglcode == 100)
{
printf ("End of fetch! \n");
break;

}

printf ("Title ID : %s\n", title_id);

printf ("Price : %$s\n", price) ;
printf ("Please press RETURN to continue .. ");
getchar() ;

printf ("\n\n") ;

}

EXEC SQL CLOSE title_list;
exit (0) ;

Embedded SQL/C Programmers Guide 191

Sample programs

void error handler ()
{
-}
void warning handler ()

{
-}

Note Precompiler option to set in the makefile: cpre -x.

The following is a sample configuration file for the preceding program:

[DEFAULT]

I

[TEST1]
iThis is name of the application set by INITIALIZE APPLICATION. ;Therefore this
is the section that will be referred to a runtime.

CS_OPT_ANSINULL=CS FALSE

;The above option will enable comparisons of nulls in the NON-ANSI
;jstyle.

Same Embedded SQL program with the -e option

/* Program name: ocs_test.cp

* %

** Description : This program declares a cursor which retireves rows
** from the 'titles' table based on condition checking for NULLS

** in the NON-ANSI style.

** The program will be compiled using the -e option which will

** use the server name that the application connects to, as the

** corresponding section to look up in the configuration file.

*/
#include <stdio.h>

/* Declare the SQLCA */
EXEC SQL INCLUDE sqglca;

EXEC SQL BEGIN DECLARE SECTION;
/* storage for login name and password */

192 Open Client

CHAPTER 11 Open Client and Open Server Configuration File

CS_CHARusername [30], password[30];
CS_CHARtitle_id[7], price[30];
EXEC SQL END DECLARE SECTION;

/*
** Forward declarations of the error and message handlers and
** other subroutines called from main().

*/

void error handler () ;
void warning handler () ;
int main()

{

int i=0 ;

EXEC SQL WHENEVER SQLERROR CALL error_ handler() ;
EXEC SQL WHENEVER SQLWARNING CALL warning handler() ;
EXEC SQL WHENEVER NOT FOUND CONTINUE ;

/*
** Copy the user name and password defined in sybsglex.h to
**x the variables declared for them in the declare section.

*/

strcpy (username, "sa");
strcpy (password, "");

EXEC SQL CONNECT :username IDENTIFIED BY :password ;
EXEC SQL USE pubs2 ;

EXEC SQL DECLARE title_list CURSOR FOR
SELECT title id, price FROM titles
WHERE price != NULL;

EXEC SQL OPEN title_list ;
for (;;)
{
EXEC SQL FETCH title_list INTO
:title id, :price;
if (sglca.sglcode == 100)
{
printf ("End of fetch! \n");
break;

}

printf ("Title ID : %$s\n", title id);

Embedded SQL/C Programmers Guide 193

Sample programs

printf ("Price : %s\n", price) ;
printf ("Please press RETURN to continue .. ");
getchar () ;

printf ("\n\n") ;

}

EXEC SQL CLOSE title_list;
exit (0) ;

}

void error handler ()

{
-}

Note Precompiler option to set in the makefile: cpre -e.

The following is a sample configuration file for the preceding program:

[DEFAULT]

7

[SYBASE]

;This is name of the server that the application connect to. Therefore
;this is the section that will be referred to a runtime.
CS_OPT_ANSINULL=CS FALSE

;The above option will enable comparisons of nulls in the NON-ANSI
;style.

The above configuration files have been vastly simplified. A typical Open
Client and Open Server configuration file would be in the following format:

[DEFAULT]

[ANSI ESQL]

CS_CAP RESPONSE=CS RES NOSTRIPBLANKS
CS_EXTRA INF=CS_TRUE

CS_ANSI BINDS=CS_ TRUE

CS_OPT ANSINULL=CS_ TRUE
CS_OPT ANSIPERM=CS_ TRUE

CS_OPT STR_RTRUNC=CS_TRUE
CS_OPT ARITHABORT=CS FALSE
CS_OPT TRUNCIGNORE=CS TRUE
CS_OPT ISOLATION=CS OPT LEVEL3
CS_OPT CHAINXACTS=CS_TRUE
CS_OPT CURCLOSEONXACT=CS_TRUE

194 Open Client

CHAPTER 11 Open Client and Open Server Configuration File

CS_OPT QUOTED IDENT=CS TRUE

;The following is a sample section showing how to alter standard
;configuration:

[RELEVANT SECION NAME]

;Use most of the ANSI properties defined above,

include=ANSI ESQL
;but override some default properties

CS_OPT ANSINULL=CS_ TRUE ; enable non-ansi style null comparisons
CS_OPT_CHAINXACTS=CS_FALSE ; run in autocommit mode

Summary

The Open Client and Open Server configuration file servesasasingle location
where environment settings can be managed for multiple Embedded SQL
applications. The default name of thisfileis ocs.cfg, and islocated in the
$SYBASE/$SYBASE_OCS/config directory. The use of the configurationfileis
regulated by the use of the -x and -e precompiler options. The syntax used for
modifying the Open Client and Open Server configuration file matches the
existing syntax for Sybase localization and configuration files supported by
CS-Library with minor variations.

Embedded SQL/C Programmers Guide 195

Summary

196 Open Client

appenDIx A Precompiler Warning and
Error Messages

The Embedded SQL precompiler generates the informational, warning,
and error messages in different tables.

Each table contains four fields.

e “Message ID” lists the identification code of the message you may
receive.

e “Message Text” liststhe onlinetext associated with the message you
may receive.

e “Severity” liststhe seriousness of the message you may receive.
A message can be:

e Information —no error or warning was detected, and the
precompiler succeeded. The message is purely informational.

e A warning —anoncritical error was detected, but the program
precompiled.

e Severe-—an error occurred, and no code was generated. The
precompilation failed.

e Fatal —asevere error occurred from which the precompiler
cannot recover. No further attempt will be made to process your
files. Precompiler exits.

e Thefourthfield, “Fix,” suggests ameans of correcting the situation
that caused the error or warning.

Table A-1: Command line option messages

Message ID Message text Severity Fix
M_COMPAT_INFO Compatibility mode Information No fix required.
specified.
M_DUPOPT Duplicate command line Severe Do not duplicate the options
option specified. specified on the command line.
Remove the offending duplicate
option.

Embedded SQL/C Programmers Guide 197

Message ID Message text Severity Fix
M_EXCFG_OVERRIDE The switch value will have ~ Warning When you use an external
no effect becausethe external configuration file, you may
switch value has been override configuration options
specified. set on the command line. Choose
one means of setting options.
M_INVALID_COMPAT Unrecognized compatibility Information No fix required.
mode specified.
M_INVALID_FILE_FMT Invalid characterinfilevalue Severe Check that charactersintheinput
a line value. filearevalid. Also, check that
you have correctly set the
character set you want to use.
M_INVALID_FIPLEVEL Invalid FIPS level specified. Severe Legal values are SQL92E and
SQL89.
M_INVALID_SYNLEVEL Invaidsyntax checkinglevel Severe Legal values are NONE,
specified. SYNTAX, SEMANTIC.
M_INVLD_HLANG Host Language specifiedis ~ Severe Valid options are ANSI_C,
invalid. KR_C.
M_INVLD_OCLIB_VER The Open Client Client- Severe The correct version string is
Library versionisinvalid. "CS_VERSION_xxx,” where
XXX IS your current version.
M_INVOPT Option isinvalid. Severe Invalid option specified.
Substitute the correct value.
M_LABEL_SYNTAX Security label isimproperly Severe Use the allowed syntax.
specified; the proper format
is‘labelname=labelvalue'.
M_MSGINIT_FAIL Error initializing localized Warning Verify that the Sybaseinstallation
error messages. iscomplete and that thereisa
valid entry for the LANG
variablein the locales.dat file.
M_MULTI_IN_USE DEF_ When precompiling multiple Severe Removeadl -G, -L, and -O flags

ouT

198

input files, you cannot

specify output (Listing, SQL,
or Language) file names.

from the command line or
precompilethefilesoneat atime.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID

Message text

Severity

Fix

M_NO_INPUT_FILE

Error: No input fileis
specified to be precompiled.

Severe

Specify an input file for
precompilation.

Note Thiserror may occur if you
precedetheinput filenamewitha
flag (such as -G, for generate
stored procedures) which takes
an optional argument. To fix, put
another flag in front of the input
file name. For example, replace
cpre -G file.pc with cpre -G -
Ccompilername.

M_OPEN_INCLUDE

Unable to open the specified
include filefile.

Severe

The specified fileis either not in
the path or ismissing therequired
read permission. Specify the path
with the -1 flag, and verify the
read permission.

M_OPEN_INPUT

Unable to open the specified
input filefile.

Severe

Check thevalidity of thepathand
file name specified. If thefile
name extension is not provided,
the precompiler searches for the
default extension.

M_OPEN_ISQL

Unable to open the specified
ISQL filefile.

Severe

Check the validity of theisql file
name (the fileinwhich the stored
procedures are written). Verify
that you have write permissionin
the directory where thefileis
being created.

M_OPEN_LIST

Unable to open the specified
listing filefile.

Severe

Check the validity of the listing
file name. Verify that you have
write permission in the directory
where the fileis being created.

M_OPEN_TARGT

Unable to open the specified
target filefile.

Severe

Check the validity of the output
file name. Verify that you have
write permission in the directory
where the fileis being created.

M_OPT_MUST BE_
PROVIDED

Option value must be
provided.

Severe

Provide avalue for option.

M_OPT_REINIT

Warning: value switch
initialized multiple times.

Embedded SQL/C Programmers Guide

Warning

The specified switch has been
initialized multiple times. The
second and subsequent valuesare
ignored.

199

Message ID Message text Severity Fix
M_PATH_OFL Error: Max allowed pathsfor ~ Severe The maximum allowed paths on
"INCLUDE" filesis 64 the command line have been
(OVERFLOWED). exceeded. Reduce the number of
directories from which the
"INCLUDE" files are fetched.
M_STATIC_HV_CNAME Static cursor names cannot Severe Replace the host variable with a
be host-variables: line. SQL identifier.
M_UNBALANCED_DQ Unbalanced quotesin Severe Balance the quote.
delimited identifier.
Table A-2: First pass parser messages

Message ID Message text Severity Fix

M_64BIT_INT Warning: 64 bit integer host ~ Warning Use some other host variable type
variables are not supported. (float, numeric, or 32-bit integer)
Line value. and, if necessary, copy the value

between the host variable and the
64-hit program variable.

M_BLOCK_ERROR Non-matching block Severe Correct your program syntax.
terminator in value at line:
value.

M_CONST_FETCH Error: Attempted fetch into Severe You cannot fetch into a constant
CONST storageclassvariable type. To fetch the value, remove
value. the constant qualifier in its

declaration.

M_DUP_HV Duplicate host variableinfile Severe Another host variable with the
alineline. same nameis aready declared in

the same block. Verify that each
variablewithinagivenblock hasa
unique name.

M_DUP_STRUNION Duplicate structure/unionin Severe Another structure with the same
fileat lineline. nameis already being declared in

the same block. Verify that each
variablewithinagivenblock hasa
unique name.

M_IDENT_OR_STRINGVA Error: item must be a SQL- Severe Verify that the connection, cursor,

R

200

identifier or a string-type
variable.

or statement nameisof typestring
or SQL identifier.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix

M_IDENT_TOO_LONG Error: Identifier valueistoo Severe Ensurethat theidentifier lengthis
long (value bytes). Maximum withinthe allowed limit. For SDK
size allowed is value bytes. 15.0 and later, the maximum

length of an identifier is 255
characters. For earlier versions,
the maximum length is 132
characters.

M_ILL_LITERAL_USAGE Error: Useof literd Severe Do not use aliteral asan
parametersto an RPC with an OUTPUT parameter to a stored
OUTPUT qualifier is not procedure.
legal.

M_ILL_PARAM_MODE Error: Mixing calling modes Severe Call the stored procedure with
inanrpccal infileat line arguments passed by name or by
line. position. Mixing these modesin

the same call isillegal.

M_INDICVAR Error: item must be an Severe Use ashort integer.
indicator-type variable.

M_INTVAR Error: item must be an Severe Use an integer.
integer-type variable.

M_MISMATCHED_ Error: mismatched quoteson ~ Severe Make quotes match.

QUOTES hex literal value.

M_MULTIDIM_ARRAY Error: at lineline. Multiple- Severe Multiple-dimensioned arrays are
dimensioned array variables not supported. Break upamxn
are not supported. array into marrays of n elements

each.

M_MULTI_RESULTS Error: Embedded Query at Severe Break the query into multiple
line line returns multiple gueries, each returning one result
result sets. set. Alternatively, rewrite the

queriesto fill atemporary table
with all the values, then select
from the temporary table, thus
giving asingle result set.

M_NODCL_NONANSI Warning: Neither SQLCODE Warning In non-ANSI mode, declare either
nor SQLCA declared in non- SQLCA, SQLCODE, or both.
ANSI mode. Verify that the scopeis applicable

for all Embedded SQL statements
within the program.

M_NOLITERAL Error: item may not be an Severe Use a quoted name or host
unguoted name. variable.

M_NOSQUOTE Error: item may not bea Severe Use double quotes.

single quoted string. Use
double quotes.

Embedded SQL/C Programmers Guide

201

Message ID Message text Severity Fix
M_NOT_AT_ABLE An“at” clauseisused witha Severe Remove the at clause from the
statement typewhich doesnot specified statement.
alow it. Thisoccurred at line
value.
M_NUMBER_OR _ Error: itemmust beaninteger Severe Use aliteral integer or a short
INDICVAR or an indicator-type variable. integer or CS_SMALLINT.
M_NUMBER_OR_INTVAR Error:itemmust beaninteger Severe Unused. May be used to raise an
constant or an integer type error if somefield inthe dynamic
variable. SQL statements (such as, MAX,
Valuen,) arenot aninteger typeor
an integer constant.
M_PARAM_RESULTS Error: Embedded Query at Severe Arisesonly during optional server
line line returns unexpected syntax checking. Determine why
parameter result sets. the query isreturning parameters
and rewrite it.
M_PASS1_ERR Filefile Syntax errorsinPass Information Errorsin Pass 1 resulted in an
1: Pass 2 not done. aborted precompilation. Correct
Pass 1 errors, then proceed.
M_PTR_IN_DEC SEC Warning: Pointersarenot yet Warning
supported in Declare section.
M_QSTRING_OR _ Error: item must beaquoted Severe Verify that server name, user
STRINGVAR string or atype string name, and password are either
variable. double-quoted strings or of type
string.
M_SCALAR_CHAR Error: non-array character Severe Use acharacter array.
variable value is being used
illegally as a host variable at
lineline.
M_SQLCA_IGNR Warning: Both SQLCODE Warning Remove one of the two
and SQL CA declared: declarations.
SQLCA ignored.
M_SQLCA_WARN Warning: An INCLUDE Warning
SQLCA seen whilein ANSI
mode: SQLCA ignored.
M_SQLCODE_UNDCL Warning: SQLCODE not Warning Declare SQLCODE.
declared whilein ANSI
mode.
M_STATE_CODE Warning: both SQLSTATE Warning Remove one of the two

202

and SQL CODE declared:
SQLCODE ignored.

declarations.

Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix

M_STATE_SQLCA Warning: both SQLSTATE Warning Remove one of the two
and SQL CA declared: declarations.

SQLCA ignored.

M_STATUS RESULTS Error: Embedded Query at Severe Arisesonly during optional server
line line returns unexpected syntax checking. Determine why
status result sets. the query is returning status

results and rewrite it.

M_STICKY_AUTOVAR Warning: Automatic variable Warning Becertainthat your programlogic
value used with sticky binds will not allow errorsin this case.
at lineline. Thismay cause Alternatively, use astatic or
incorrect results or errors at global variable.
runtime.

M_STICKY_REGVAR Error: Register variablevalue Severe Remove the register qualifier.
cannot be used with sticky
binds at lineline.

M_STRUCT_NOTFOUND Structure/uniondefinitionnot Severe Verify that the definition of the
found in scopeinfileat line. structure or union is within the

scope of the specified line.

M_SYNTAX_PARSE Syntax error infilefileat line. Severe Check the indicated line number

for asyntax error inthe Embedded
SQL grammar.

M_UNBALANCED_DQ Unbalanced quotesin Severe Balance the quotes.
delimited identifier.

M_UNDEF_ELM Error value: Illegal structure/ Severe The specified element of the
union element. structureis not included in the

structure definition. Correct the
definition.

M_UNDEF_HV Host variable value Severe Define the host variable in the
undefined. proper place.

M_UNDEF_IV Indicator variable value Severe Define the indicator variablein
undefined. the proper place.

M_UNDEF_STR Error structure value Severe Undefined structure on the
undefined. specifiedline. Definethestructure

in the proper scope.

M_UNSUP The value feature is not Fatal This feature is not supported.
supported in this version.

Table A-3: Second pass parser messages
Message ID Message text Severity Fix
M_CURSOR_RD The cursor valueisredefined Warning A cursor with same name has

alinelineinfile.

Embedded SQL/C Programmers Guide

already been declared. Use a
different name.

203

Message ID Message text Severity Fix

M_HOSTVAR_ Warning: Host variablewas ~ Warning Do not use a host variable

MULTIBIND used as abind variable value multiple timesin asingle fetch
more than once per statement. statement. You cannot fetch

multiple resultsinto one location.
Client-Library causes the last
value fetched to be put in the
variable.

M_INVTYPE_IV Indicator variableis an Severe Theindicator variable should be
incorrect type. of type CS_SMALLINT or of

type INDICATOR.

M_INVTYPE_V Incorrect type of indicator Fatal All indicator variablesin a
variable found in structure structure must be of type
value. CS SMALLINT or

INDICATOR.

M_INVTYPE_VI Mismatch between number of Fatal The number of elementsin an
structure elementsin the indicator structure must be the
indicator structure value and same asthe number of elementsin
hostvar structure value. the hostvar structure.

M_INVTYPE_VII Mismatch between number of ~ Fatal The number of elementsin an
elementsin the indicator indicator array must be the same
array value and hostvar as the number of elementsin the
structure value. hostvar structure.

M_PARSE_INTERNAL Internal parser error at line Fatal Immediately report thisinternal
line. Please contact a Sybase consistency parser error to Sybase
representative. Technical Support.

M_SQLCANF ‘INCLUDE SQLCA’ Warning Add statement.
statement not found.

M_WHEN_ERROR Unableto find the SQL Warning Add WHENEVER SQLERROR
statement ‘WHENEVER statement or use command line
SQLERROR'. option to suppress warning and

‘INTO’ messages (see the Open
Client and Open Server
Programmers Supplement).

M_WHEN_NF Unable to find the SQL Warning Enter aWHENEVER NOT FOUND
statement ‘WHENEVER statement or use command line
NOT FOUND'. option to suppress warning and

‘INTO’ messages (see the Open
Client and Open Server
Programmers Supplement).

204 Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID

Message text

Severity

Fix

M_WHEN_WARN

Unableto find the SQL
statement ‘WHENEVER
WARNING'.

Warning

Enter aWHENEVER WARNING
statement or use command line
option to suppress warning and
‘INTO’ messages (see the Open
Client and Open Server
Programmers Supplement).

Table A-4: Code generation messages

Message ID

Message text

Severity

Fix

M_INCLUDE_PATHLEN

Anincluded or copiedfilepath Warning

wastoo long. Leaving the path
off the generated file name:
value.

Uselinks or movethefiletoa
shorter path.

M_WRITE_ISQL Unabletowriteto theisql file. Fatal Verify your permission to create
Return code: value. and write to theisgl fileand in the
directory. Also, verify that the file
system is not full.
M_WRITE_TARGT Unable to write to the target Fatal Verify your permission to create

file. Return code: value.

and write to afilein the directory
wherethe precompiler isgenerating
the target file. Also, verify that the
file systemis not full.

Table A-5: FIPS flag messages

Message ID Message text Severity ANSI extension

M_FIPS ARRAY FIPS-flagger Warning: ANSI Information Arrays. Asfor all FIPS messages,
extension ARRAY type at line. do not use this feature if you need

to be ANSI-compliant.

M_FIPS DATAINIT FIPS-flagger Warning: ANSI Information Datainitialization.
extension Data Initialization at
line.

M_FIPS L ABEL FIPS-flagger Warning: ANSI Information Allowing ":" with alabel ina
extension ' with label ina WHENEVER clause.
"WHENEVER" clause.

M_FIPS POINTER FIPS-flagger Warning: ANSI Information The type POINTER.
extension POINTER type at
line.

M_FIPS SQLDA FIPS-flagger Warning: ANSI Information The SQLDA structure.
extension sglda. (lineline).

M_FIPS STMT FIPS-flagger Warning: ANSI Information The statement at thislineisan

extension statement (lineline)

Embedded SQL/C Programmers Guide

extension.

205

Message ID Message text Severity ANSI extension
M_FIPS TYPE FIPS-flagger Warning: ANSI Information The specified syntax is not ANSI-
extension datatype at line. compliant.
M_FIPS TYPEDEF FIPS-flagger Warning: ANSI Information TYPEDEF.
extension TY PEDEF line.
M_FIPS VOID FIPS-flagger Warning: ANSI Information Thetype VOID.
extension VOID typeline.
Table A-6: Internal error messages
Message ID Message text Severity Fix
M_ALC_MEMORY Unableto allocate ablock of Fatal Check system resources.
memory.
M_FILE_STACK_OVFL File stack overflow: Max Fatal Thefile stack overflowed while
allowed nesting is value. trying to process the nested
INCLUDE statement. Do not
exceed the nested depth
maximum of 32.
M_INTERNAL_ERROR Fatal Internal Error at filefile Fatal Thisisan internal error. Contact

line line: Argument
inconsistency error. Please

contact Sybase representative.

your Sybase representative.

Table A-7: Sybase and Client-Library messages

Message ID Message text Severity Fix

M_COLMCNT The bind count of the bind Warning The number of returned columns
variable count and the is different from the number of
column count of result set are results columns returned with the
incompatible. bind variable types and number.

M_COLVARLM The host variable name Warning The host variable may not be able
length value isless than the to hold the fetched column. Check
column length of value. the column length and adjust the

length of the host variable
accordingly.

M_COLVARPS The host variable name Warning The precision and scale of the host
precisionand scae: valueare variable is different from that of
different from the column'’s the column being fetched or
precision value and scale: inserted into. Make the scale and
value precision compatible.

M_COLVARTM Open Client unable to Warning Illegal type. Use cs_convert, as
convert type value to type Open Client will not convert by
value for host variable name. default.

M_CTMSG Client Library message: Information None. If needed, contact Sybase
value. Technical Support for assistance.

206 Open Client

APPENDIX A Precompiler Warning and Error Messages

Message ID Message text Severity Fix

M_OCAPI Error during execution of the Warning Depending on the context in
Open Client API value. which this warning occurs, you
Error: value. may be required to take corrective

action before proceeding.

M_OPERSYS Operating system error: Warning An operating system error
value occurred during occurred. Speak with your system
execution of the Open Client administrator.
API.

M_PRECLINE Warning(s) during check of Information ~ Examine the query for problems.
query on line value.

M_SYBSERV Sybase server error. Server: Warning Check the syntax of the statement

value. Message: name.

sent to the server that caused this
error. Verify that al resources are
available in the Server to process
the SQL statement.

Table A-8: Runtime messages

SQLCODE value,
SQLSTATE code Message text Severity Fix
-25001 Unrecoverable error occurred. Fatal Immediately report this error to
ZZ000 Sybase Technical Support.
-25002 Internal error occurred. Fatal Immediately report this error to
ZA000 Sybase Technical Support.
-25003 Unexpected Severe Embedded SQL cannot retrieve
ZDO000 CS COMPUTE_RESULT compute results. Rewrite the
received. query so it does not return them.
-25004 Unexpected Severe Verify that the value returned by
ZE000 CS CURSOR_RESULT the CS_LIBRARY routineis
received. valid. Consult your CS-Library
documentations for details.
-25005 Unexpected Severe Verify that the value returned by
ZF000 CS_PARAM_RESULT the CS_LIBRARY routineis
received. valid. Consult your CS-Library
documentation for details.
-25006 Unexpected Severe Verify that the value returned by
ZG000 CS_ROW_RESULT received. the CS_LIBRARY routineis
valid. Consult your CS-Library
documentation for details.
-25007 No message(s) returned for Information Informational message. No action
ZB000 SQLCA, SQLCODE, or isrequired.
SQLSTATE.

Embedded SQL/C Programmers Guide

207

SQLCODE value,

SQLSTATE code Message text Severity Fix
-25008 Connection has not been Severe Enter avalid connect statement.
ZC000 defined yet.
-25009 Unexpected Severe Verify that the value returned by
ZHO000 CS_STATUS RESULT the CS_LIBRARY routineis
received. valid. Consult your CS-Library
documentation for details.
-25010 Unexpected Severe Verify that the value returned by
Z1000 CS _DESCRIBE_RESULT the CS_LIBRARY routineis
received. valid. Consult your CS-Library
documentation for details.
-25011 Data exception—error in Severe Enter avalid descriptor type.
22005 assignment of item descriptor
type.
-25012 Memory dlocation failure. Severe Thereis an insufficient amount of
ZJ000 memory to allocate to this
operation.
-25013 Adaptive Server Enterprise Severe Verify that your installation hasan
ZK000 must be version 10 or greater. installed, functioning copy of
Adaptive Server Enterprise 10.0
or higher. If you do not have
Adaptive Server Enterprise 10.0
or higher, have your ingtallation’s
designated person contact Sybase
Technical Support.
-25014 Data exception — Severe Be sure to null-terminate all C
22024 unterminated C string. strings.
-25015 Error retrieving thread Severe Aninterna error probably
ZL000 identification. occurred. Call Technical Support.
-25016 Error initializing Client Severe Check your $SYBASE directory
ZM000 Library. setup.
-25017 Error taking a mutex. Severe Unused.
ZNO00O0
-25018 Connection name in use. Severe Check your program logic: Are
08002 you re-opening an open
connection? Or, use anew name
for the second connection.
Note You cannot have two
“DEFAULT” connections.
208 Open Client

APPENDIX A Precompiler Warning and Error Messages

SQLCODE value,

SQLSTATE code Message text Severity Fix
-25029 HA FAILOVER hasoccurred. Information No action required.
Z0000

Embedded SQL/C Programmers Guide 209

210 Open Client

appennix 8 Sample Code for Handling
Large Text and Image Data

Where to find other samples

This appendix contains sample programs for Embedded SQL that
demonstrates the use of host variablesin handling large text and image
data. You can find additional sample programsin the Technical
Documents collection of Technical Library on the Web. To access the
Technical Library Web site, go to support.sybase.com, then go to the
Support Servicestab and sel ect thelink to " Technical Documents." Search
the collection for these TechNote titles:

e Client-Library Sample Programs
e Embedded SQL/C Sample Programs
e Embedded SQL/COBOL Sample Programs

text_image.sql

Use this script to create the table called "text_tab," which you will use to
run the sample program in the following section:

use tempdb

go

if exists (select 1 from sysobjects

where name = 'text tab' and type = 'U')
drop table text tab
go

create table text tab (
text col text null,
image col image null)
go

Embedded SQL/C Programmers Guide 211

text_image.sql

text_image.cp

212

/* Program name: text image.cp

* %

** Description: Inserting text and image data using host
** variables of types CS_TEXT and CS_IMAGE.

** Notes: This is a new feature in 11.x which allows you
to use

** host variables of type CS TEXT and CS_IMAGE in insert
** or update statements to handle text or image data.
You don't

** need to use to mixed-mode client-library programming
or

** dynamic sqgl, which had a limit of 64 k bytes.

** The size of the text or image data that can now be
sent is

** limited only by memory or the maximum size allowed
for

** text and image data by the Adaptive Server
Enterprise. However,

** the larger the data being sent this way, the slower
the

** performance.

* %

** Script file: text image.sql

* %

** Notes: Make sure you compile the program using the
1 _-y-i

** precompiler flag.

* %

*/

#include <stdio.h>
#include "sybsglex.h"

/* Declare the SQLCA */
EXEC SQL INCLUDE sqglca;

/*

** Forward declarations of the error and message
handlers and

** other subroutines called from main() .

*/
void error handler() ;
void warning handler () ;

Open Client

APPENDIX B Sample Code for Handling Large Text and Image Data

int main()

{

int 1i=0;

EXEC SQL BEGIN DECLARE SECTION;
/* storage for login name and password */

CS_CHAR username [30], password[30];
CS_TEXT teXt_Var[lOOOO];
CS IMAGE image var[10000] ;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR CALL error handler();
EXEC SQL WHENEVER SQLWARNING CALL warning handler() ;
EXEC SQL WHENEVER NOT FOUND CONTINUE;

/*

** Copy the user name and password defined in sybsqglex.h
to

** the variables declared for them in the declare
section.

*/

strcpy (username, USER) ;

strcpy (password, PASSWORD) ;

/* Connect to the server and specify the database to use
*/
EXEC SQL CONNECT :username IDENTIFIED BY :password;

EXEC SQL USE tempdb;

/* Put something interesting in the variables. */
for (i=0; i< 10000; i++)
text var([i]
image var([i] = '@';

}

EXEC SQL INSERT text tab VALUES (:text var, :image var);
if (sglca.sglcode == 0)

printf ("Row successfully inserted! \n");

EXEC SQL COMMIT WORK ;

}

EXEC SQL DISCONNECT ALL;
exit (0) ;

lal;

Embedded SQL/C Programmers Guide 213

text_image.sql

214

}
/*

** void error handler()
* %

** Displays error codes and numbers from the SQLCA and
exits with

** an ERREXIT status.

*/

void error handler()

{

fprintf (stderr, "\n** SQLCODE=(%d)", sqglca.sglcode) ;

if (sglca.sglerrm.sglerrml)

{

fprintf (stderr, "\n** Error Message: ");
fprintf (stderr, "\n** %$s", sglca.sglerrm.sqglerrmc) ;

}
fprintf (stderr, "\n\n");

exit (ERREXIT) ;

}
/*

** void warning handler()
* %

** Displays warning messages.
*/
void warning handler ()

{

if (sglca.sglwarn[l] == 'W')
{
fprintf (stderr,
"\n** Data truncated.\n");

}

if (sglca.sglwarn([3] == 'W')

{

fprintf (stderr,

"\n** Insufficient host variables to store
results.\n") ;

}

return;

}

Open Client

Glossary

Adaptive Server
Enterprise

array
array binding

batch

browse mode

bulk copy

callback event
callback routine

capabilities

A server in Sybase'sclient/server architecture. Adaptive Server Enterprise
manages multiple databases and multiple users, keeps track of the actual
location of dataon disks, maintains mapping of logical data description to
physical data storage, and maintains data and procedure cachesin
memory.

A structure composed of multiple identical variables that can be
individually addressed.

The process of binding aresult columnto an array variable. At fetch time,
multiple rows worth of the column are copied into the variable.

A group of commands or statements.

A Client-Library command batch is one or more Client-Library
commandsterminated by an application’scall toct_send. For example, an
application can batch together commands to declare, set rows for, and
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to Adaptive Server Enterprise by means of asingle Client-
Library command or Embedded SQL statement.

A method that DB-Library™ and Client-Library applications can use to
browse through database rows, updating their values one row at atime.
Cursors provide similar functionality and are generally more portable and
flexible.

A utility for copying datain and out of databases. Also called bcp.

In Open Client and Open Server, an occurrence that triggers a callback
routine.

A routinethat Open Client or Open Server callsin responseto atriggering
event, known as a callback event.

In terms of client/server connections, determine the types of client
reguests and server responses permitted for that connection.

Embedded SQL/C Programmers Guide 215

Glossary

character set

character set
conversion

client

Client-Library

code set

collating sequence

command

command structure

connection structure

context structure

conversion

CS-Library

current row

cursor

216

A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII and 1SO 8859-1 (Latin 1) are two
common character sets.

Changing the encoding scheme of a set of characters on the way into or out of
aserver. Conversion is used when a server and a client communicating with it
use different character sets. For example, if Adaptive Server Enterprise uses
SO 8859-1 and aclient uses Code Page 850, character set conversion must be
turned on so that both server and client interpret the data passing back and forth
in the same way.

In client/server systems, the part of the system that sends requeststo servers
and processes the results of those requests.

Part of Open Client, a collection of routines used to write client applications.
Client-Library accommodates cursors and other advanced features in the
Sybase product line.

See character set.
See sort order.

In Client-Library, acommand is a server request initiated by an application’s
call to ct_command, ct_dynamic, or ct_cursor and terminated by the
application’s cal to ct_send.

A hidden Client-Library structure (CS_COMMAND) that Client-Library
applications use to send commands and process results.

A hidden Client-Library structure (CS_CONNECTION) that defines a
client/server connection within a context.

A CS-Library hidden structure (CS_CONTEXT) that defines an application
“context,” or operating environment, within a Client-Library or Open Server
application. The CS-Library routinescs_ctx_alloc and cs_ctx_drop allocate and
drop a context structure, respectively.

See character set conversion.

Included with both the Open Client and Open Server products, a collection of
utility routines that are useful to both Client-Library and Server-Library
applications.

With respect to cursors, is the row to which a cursor points. A fetch against a
cursor retrieves the current row.

A symbolic name that is associated with a SQL statement.

Open Client

Glossary

database

datatype

DB-Library

deadlock

default

default database

default language

Dynamic SQL

error message

event

event handler

In Embedded SQL, acursor is adata selector that passes multiple rows of data
to the host program, onerow at atime.

A set of related data tables and other database objects that are organized to
serve a specific purpose.

A defining attribute that describes the values and operationsthat arelegal for a
variable.

Part of Open Client, a collection of routines for use in writing client
applications.

A situation that arises when two users, each having alock on one piece of data,
attempt to acquire alock on the other’s piece of data. Adaptive Server
Enterprise detects deadl ocks and resolves them by killing one user’s process.

Describes the value, option, or behavior that Open Client and Open Server
products use when none is explicitly specified.

The database that a user gets by default when he or she logsin to a database
server.

1. The language that Open Client and Open Server products use when an
application doesno explicit localization. Thedefault languageis determined by
the “default” entry in the localesfile.

2. The language that Adaptive Server Enterprise uses for messages and
prompts when a user has not explicitly chosen alanguage.

A type of SQL that allows an Embedded SQL or Client-Library application to
execute SQL statements contai ning variables whose values are determined at
runtime.

A messagethat an Open Client and Open Server product issueswhen it detects
an error condition.

An occurrence that prompts an Open Server application to take certain actions.
Client commands and certain commands within Open Server application code
can trigger events. When an event occurs, Open Server calls either the
appropriate event-handling routine in the application code or the appropriate
default event handler.

In Open Server, aroutine that processes an event. An Open Server application
can use the default handlers Open Server provides or can install custom event
handlers.

Embedded SQL/C Programmers Guide 217

Glossary

exposed structure

extended
transaction

FIPS

gateway

hidden structure

host language

host program

host variable

indicator variable

input variable

interfaces file

218

A structure whose internals are exposed to Open Client and Open Server
programmers. Open Client and Open Server programmers can declare,
manipulate, and de-all ocate exposed structures directly. The CS_ DATAFMT
structure is an example of an exposed structure.

In Embedded SQL, atransaction composed of multiple Embedded SQL
statements.

Federal Information Processing Standards. If FIPS flagging is enabled,
Adaptive Server Enterprise or the Embedded SQL precompiler issue warnings
when a non-standard extension to a SQL statement is encountered.

An application that acts as an intermediary for clients and servers that cannot
communicate directly. Acting as both client and server, a gateway application
passes requests from a client to a server and returns results from the server to
the client.

A structure whose internals are hidden from Open Client and Open Server
programmers. Open Client and Open Server programmers must use Open
Client and Open Server routinesto all ocate, manipul ate, and deall ocate hidden
structures. The CS_CONTEXT structure is an example of a hidden structure.

The programming language in which an application is written.

In Embedded SQL, isthe application program that contains the Embedded
SQL code.

In Embedded SQL, a variable that enables data transfer between Adaptive
Server Enterprise and the application program. See also indicator variable,
input variable, output variable, result variable, and status variable.

A variable whose value indicates special conditions about another variable's
value or about fetched data.

When used with an Embedded SQL host variable, an indicator variable
indicates when a database value is null.

A variable that is used to pass information to a routine, a stored procedure, or
Adaptive Server Enterprise.

A filethat maps server namesto transport addresses. When aclient application
callsct_connect or dbopen to connect to aserver, Client-Library or DB-Library
searches the interfacesfile for the server’s address. Note that not all platforms
use the interfaces file. On these platforms, an aternate mechanism directs
clientsto server addresses.

Open Client

Glossary

isql script file

key

keyword

listing file

locale name

locale structure

locales file

localization

login name

message number

message queue

multi-byte character
set

In Embedded SQL, one of the three files the precompiler can generate. Anisgl
script file contains precompil er-generated stored procedures, which are written
in Transact-SQL.

A subset of row datathat uniquely identifiesarow. Key datauniquely describes
the current row in an open cursor.

A word or phrase that is reserved for exclusive use in Transact-SQL or
Embedded SQL. Also called areserved word.

In Embedded SQL, one of the three files the precompiler can generate. A
listing file contains the input file's source statements and informational,
warning, and error messages.

A character string that represents a language/character set pair. Locale names
arelisted inthelocalesfile. Sybase predefines some local e names, but asystem
administrator can define additional local e names and add them to the locales
file.

A CS-Library hidden structure (CS_LOCALE) that defines custom
localization values for a Client-Library or Open Server application. An
application can use aCS_L OCALE to define the language, character set,
datepart ordering, and sort order it will use. The CS-Library routines
cs_loc_alloc and cs_loc_drop alocate and drop alocale structure.

A filethat maps locale names to language/character set pairs. Open Client and
Open Server products search the locales file when loading localization
information.

The process of setting up an application to runin aparticular national language
environment. An application that islocalized typically generates messagesina
local language and character set and uses local datetime formats.

The nameauser usestologinto aserver. An Adaptive Server Enterpriselogin
nameisvalid if Adaptive Server Enterprise has an entry for that user in the
system table syslogins.

A number that uniquely identifies an error message.

In Open Server, alinked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the
queue.

A character set that includes characters encoded using more than 1 byte.
EUC J S and Shift-JIS are examples of multibyte character sets.

Embedded SQL/C Programmers Guide 219

Glossary

mutex

null

Open Server

Open Server
application

output variable

parameter

passthrough mode

property

query

registered procedure

remote procedure
call (RPC)

220

A mutual exclusion semaphore. Thisisalogical object that an Open Server
application uses to ensure exclusive access to a shared object.

Having no explicitly assigned value. NULL is not equivalent to zero, or to
blank. A value of NULL is not considered to be greater than, less than, or
equivalent to any other value, including another value of NULL.

A Sybase product that provides tools and interfaces for creating custom
servers.

A custom server constructed with Open Server.

In Embedded SQL, a variable that passes data from a stored procedure to an
application program.

1. A variable that is used to pass data to and retrieve data from aroutine.

2. An argument to a stored procedure.

Tabular Data Stream™ (TDS) packets between a client and aremote data
source without unpacking the packets' contents.

A named value stored in a structure. Context, connection, thread, and
command structures have properties. A structure’'s properties determine how it
behaves.

1. A dataretrieval request; usually a select statement.
2. Any SQL statement that manipulates data.

In Open Server, acollection of C statements stored under aname. Open Server-
supplied registered procedures are called system registered procedures.

1. One of two ways in which a client application can execute an Adaptive
Server Enterprise stored procedure. (The other iswith a Transact-SQL execute
statement.) A Client-Library application initiates a remote procedure call
command by calling ct_command. A DB-Library application initiatesaremote
procedure call command by calling dbrpcinit.

2. A type of request aclient can make of an Open Server application. In
response, Open Server either executes the corresponding registered procedure
or callsthe Open Server application’s RPC event handler.

3. A stored procedure executed on a server that is different from the server to
which the user is connected.

Open Client

Glossary

result variable

server

Server-Library

sort order

SQLCA

SQLCODE

statement

status variable

stored procedure

System
Administrator

system descriptor

In Embedded SQL, a variable which receives the results of aselect or fetch
statement.

Inclient/server systems, the server isthe part of the system that processesclient
reguests and returns results to clients.

A collection of routines for use in writing Open Server applications.

Used to determine the order in which character datais sorted. Also called
collating sequence.

1. Inan Embedded SQL application, astructure that providesacommunication
path between Adaptive Server Enterprise and the application program. After
executing each SQL statement, Adaptive Server Enterprise stores return codes
in SQLCA.

2. In aClient-Library application, a structure that the application can use to
retrieve Client-Library and server error and informational messages.

1. Inan Embedded SQL application, astructure that provides acommunication
path between Adaptive Server Enterprise and the application program. After
executing each SQL statement, Adaptive Server Enterprise stores return codes
in SQLCODE. A SQLCODE can exist independently or as avariable within a
SQLCA structure.

2. In aClient-Library application, a structure that the application can use to
retrieve Client-Library and server error and informational message codes.

In Transact-SQL or Embedded SQL, aninstruction that beginswith akeyword.
The keyword names the basic operation or command to be performed.

In Embedded SQL, a variable that receives the return status value of a stored
procedure, thereby indicating the procedure’s success of failure.

In Adaptive Server Enterprise, a collection of SQL statements and optional
control-of-flow statements stored under a name. Adaptive Server Enterprise-
supplied stored procedures are called system procedures.

The user in charge of Adaptive Server Enterprise system administration,
including creating user accounts, assigning permissions, and creating new
databases. On Adaptive Server Enterprise, the System Administrator’slogin
nameis"sa."

In Embedded SQL, an area of memory that holds a description of variables
used in Dynamic SQL statements.

Embedded SQL/C Programmers Guide 221

Glossary

system procedures

system registered
procedures

target file

TDS

thread

Transact-SQL

transaction

transaction mode

user name

222

Stored procedures that Adaptive Server Enterprise supplies for use in system
administration. These procedures are provided as shortcuts for retrieving
information from system tables, or as mechanismsfor accomplishing database
administration and other tasks that involve updating system tables.

Internal registered procedures that Open Server supplies for registered
procedure notification and status monitoring.

In Embedded SQL , one of threefilesthe precompiler can generate. A target file
issimilar totheoriginal input file, except that all SQL statementsare converted
to Client-Library function calls.

(Tabular Data Stream) An application-level protocol that Sybase clients and
servers use to communicate. It describes commands and results.

A path of execution through Open Server application and library code and the
path’'s associated stack space, state information, and event handlers.

An enhanced version of the database language SQL . Applications can use
Transact-SQL to communicate with Adaptive Server Enterprise.

One or more server commandsthat are treated asa single unit for the purposes
of backup and recovery. Commands within a transaction are committed as a
group; that is, either al of them are committed or all of them are rolled back.

Refers to the manner in which Adaptive Server Enterprise manages
transactions. Adaptive Server Enterprise supports two transaction modes:
Transact-SQL mode (also called “ unchained transactions”) and ANSI mode
(also called “chained transactions”).

See login name.

Open Client

Index

Symbols

#define 24

A

Adaptive Server
connectingto 39
multiple connectionsto 41, 42
alocate descriptor 121
alowDDL intran 124
ANSI
dynamicSQL 74
arrays 49
batch 52
double-dimensiona 24, 123
indicator 49
multiple 33
persistent binding 114
selectinto 49
using 33
at connect_name
named connection 128
at connection_name 43
at connection_name clause
in exec sgl statement 150
automatic variables 116

B
-b precompiler option 105
batch arrays
fetchinto 50
batches

get diagnostics 70
restrictions 11
statements 11

begin transaction 70, 72

Embedded SQL/C Programmers Guide

binding 67, 74
loops 103
persistent 101, 117
variables 102

C

cal 97
case sensitivity
Embedded SQL 9
character array
declaring 24
close 124
closeand cursors 62
closecursor 62
colons
indicator variables
30
variables 27
command line options
precompiler 6
command structure
persistent 105
comments
Embedded SQL 9
commit 45
commit transaction 72, 126
commitwork 71
compatibility 6, 48
backward 4
complex definition 24
compute clause

disalowed 173
configuration file 185
connect 39

multiple connections 41
connection
naming 42

223

Index

connection_name 40

connections
closng 128, 145
default 128
multiple 41
named 128
constructs
valid 11
continue 97
conventions
variable 32
conversion
datatype 3, 36

COPY files 164, 165
ct_bind routine 101
ct_fetchroutine 101
currentrow 53, 59
Cursor names
scopingrules 11
cursors 53, 62, 132, 133, 135, 167, 168
closing 62,124
declaring 55

deleting currentrow 61
deletingrows 139
dynamic 131, 170
example 62

opening 57

persistent binding 108
position 59, 60
retrieving data 58, 59
scoping 53

updating current row 61
updating rows 177

D

Data Definition Language(DDL) 75
Data Manipulation Language (DML) 48, 75
databases
accessing 39
pubs2 4
selecting rows 172
datatype conversions 3
input variables 37
result variables 36

224

datatypes 34

CandSQL 34

converting 36

declaring variables 34

lissof 34

list of equivalent 34
DDL

Data Definition Language 75

intran 124
deallocate descriptor 130
deallocate prepare 131
deallocated cursors

persistent binding 109
declarecursor 55, 132, 133, 135

dynamic 132

persistent binding 108

static 133

stored procedure 135

stored procedures 69
declare scrollable cursor 136
declare section 19, 20
default server

connectingto 40
default transaction mode 70
delete 61

positioned cursor 138

searched 139

where current of 80

with cursors 61
describeinput 141
describe output 143
directories

searches 14
disconnect 44, 145
DML

Data Manipulation Language 75
documentation

online 66
double-dimensional array 24
DSQUERY environment variable 128
dynamic

parameter markers 78
dynamic cursors

persistent binding 108
dynamic parameter markers 74, 153, 168, 171
dynamic SQL 2, 73, 131, 154, 155, 170

Open Client

method1 76, 77

method2 77

method 3 80, 83

method 4 83, 87

overview 73

prepare and execute 153, 171
prepareand fetch 171
protocol 75

statement 75

stored procedures 75

E

efficiency 101
Embedded SQL ix, 1,2
advantages 2
creating aprogram 4
definition 1

rules 9

sample program 8
syntax-checking statements 99
environment variables 128
SYBASE 128

error handler

writing 98

error_hndl 98
error-handling

and warning-handling routines 98
routines 98

errors

failureto detect 99
precompiler-detected 99
SQLSTATE 18
testing 3

testing for 94
trapping 95, 97
error-testing 94

exec 147

execsgl 150

exec statements

binding 105

execute 152

execute immediate 76, 154
dynamic SQL 92
extended transaction 72

Embedded SQL/C Programmers Guide

Index

externd 34
external configuration file 185

F

features and enhancements 2
compatibility 6
fetch 58, 59, 155
withinaloop 59
fetchinto 33
fetch scrollable cursor data 158
files
directory 14
isgg 69
listing 96
multiple 6
precompiler-generated 6

G

get descriptor 158
get diagnostics 70, 161
batches 70

using 97

goto 97

H

handlers

error and warning 98
host input variables 28
host output variables 29
host status variables 29
host variables 2, 30
assigning datato 58
character string 32
datatypes 36
declaring 19
infetch 58, 60
naming 32
persistent binding 102
scope 116

using 26

225

Index

using indicator varisbles 29 L
labels 181
variable 39
| library
. - Client-Library 6
identifiers listing file 6, 96

Embedded SQL 10
implementation limit 23
include 14, 164, 165

filename 162
includefiledirectory 14 M
include SQLCA 164, 165
indicator arrays 49
indicator variable

host variables example 30
indicator variables

logical names 128

markers
dynamic parameter 153, 168, 171
multiple arrays 33
multiple connections 41
multiple sourcefiles 6

colons i multiple SQLCAs 14
declaring 19

input variables 31

output and result variables 30 N

using 29,33 named connections 128

input variables 28 naming conventions

converting datatypes 37 variables 10

host 28 nesting

insert statements stored procedure 68

binding 103 null

interactive SQL 69 input value 31

interfacesfile 128 null password

invalid statements specifying 128

print 48

readtext 48

writetext 48

1SO O

~ dynamicSQL 74 ocscfg file 185

IS0I|f_I 5 online sample programs ~ 66

ile 6,69 open 57, 167
dynamic cursor 167
static cursor 168

K open cursor statement
persistent binding 108

keywords_ output 67

and variable names 32 output file 69

Embedded SQL 10 output variables 29

226 Open Client

P

-p precompiler option 105
pase 5,99
password 40
null 128
performance
persistent binding 101
persistent binding 117
commandsthat cannot use 107
cursors 108
guidelines 113
non-cursor statements 107
programs that benefit 104
scope 105
subscripted arrays 114
persistent command structure 105
placement
Embedded SQL statements 9
precompiler
binding options 105
command line options 6
diagnostics 99
dynamic SQL statements 92
functionality 5,6
precompiler options
binding 104
precompiler-detected errors 98
prepare 170
prepare and execute 77, 78, 153
dynamic SQL 92
prepare and fetch
dynamic SQL 92
prepare and fetch with System Descriptor
dynamic SQL 92
procedure_name 67
program
creating 4
pubs2 database 4

Q

question mark

dynamic parameter marker 74
quotation marks

Embedded SQL 10

Embedded SQL/C Programmers Guide

R

rebind/norebind clause 114
reserved words
Embedded SQL 10
variablenames 32
result variables 28
converting datatypes 36

host 28

returncode 13,16
SQLCODE 17

testing 3

rollback

Adaptive Server triggers 72
inatrigger 70
transaction 172

work 71

routines

error- and warning-handling 98
rows

current 59
deleting 138
rules

Embedded SQL 9

S

sample programs

online 66
scope

host variables 116

-p and -b precompiler options 106
scoping 11,14

cursor, rules 53

cursors 53

rues 11,33

SQLCA, SQLCODE, and SQLSTATE
scrollable cursors

declaring 56

retrieving data 59
select 11,172

returning multiplerows 52, 59

returning singlerows 49

syntax 49

with cursors 132, 133, 135, 155
select clause 69

13

Index

227

Index

select statements
binding 105
server 40
connectingto 39
set connection 41,174
set descriptor 175
source files
multiple 6
SQL descriptors
persistent binding 107
SQL 2 standard
dynamicSQL 74
SQLCA 16
accessing variables 15
Adaptive Server-related variables 15
declaring 14
list of variables 15
multiple 14
setting variables 13
table 15
variables 14, 15
SQLCODE
fetch 157
multiplerow selects 48
setting variables 13
stand-alone 16
tablevalues 17
values 17
within SQLCA 16
sglcode 94, 95
inerror-testing 94
returnvalues 94
SQLDAs
persistent binding 107
SQLSTATE
codes and error messages 18
setting variables 13
using 17
sglwarn 94
flags 94
stack variables 116
statement batches 11
statement labels
with whenever 181
statements
dynamic SQL 85,92

228

Embedded SQL 9
static cursors
persistent binding 108
status variables 28, 29
host 28
status variable 67
stop 97
stored procedures 2, 6, 47, 66
declarecursor 69
definition 47
dynamicSQL 75
executing 66
parameters 66
return status variables 66
typesof 66
subscripted arrays
persistent binding 114
SYBASE
environment variable 128
syntax checking
of Embedded SQL statements
system variables 15, 16, 19

T

tables

deleting rows 138
target file 6
testing conditions
whenever 96
thread exit 177
transaction

extended 72
transaction mode

ANSI 71
default 70
Transact-SQL 70
transactions 70, 126
ANSI 70

ISO 70
restricted statements 72
rollingback 172
Transact-SQL

99

invalid keywordsin Embedded SQL 3, 48

keywords in Embedded SQL

10

Open Client

using Embedded SQL 47
Transact-SQL statements 138, 147, 172, 177
triggers 70
typedefs 22

U

update 61, 177
protocol 61
with cursors 61

user 39

Vv

value

stored procedures 67
variables 19

assigning datato 59
datatypes 34, 37

declare section example 20
declaring 19, 20, 34
host 3,30

hostinput 28

host result 28

host status 29

indicator 19

input 19, 27, 28

naming conventions 10, 32
precompiler 11

status 29

system 15,19

using 27

W

warning- and error-handling routines 93, 98
warning handler

writing 98

warning_hndl 98

warning-handling routines 98

warnings

testing for 94, 95

whenever 94, 95, 96, 179

Embedded SQL/C Programmers Guide

cancding 181
scopeof 181
scopingrules 11
testing conditions 95
whenever...continue 96
wherecurrent of 139, 157

Index

229

Index

230 Open Client

	Embedded SQL™/C Programmers Guide
	About This Book
	CHAPTER 1 Introduction
	Embedded SQL overview
	Embedded SQL features
	Transact-SQL support in Embedded SQL
	Getting started
	Using the examples
	Backward compatibility

	Creating and running an Embedded SQL program
	How the precompiler processes your applications
	Multiple Embedded SQL source files
	Precompiler compatibility
	Precompiler-generated files

	CHAPTER 2 General Information
	Five tasks of an Embedded SQL program
	Simplified Embedded SQL program

	General rules for Embedded SQL
	Statement placement
	Comments
	Identifiers
	Quotation marks
	Reserved words
	Variable naming conventions
	Scoping rules
	Statement batches

	Embedded SQL constructs

	CHAPTER 3 Communicating with Adaptive Server Enterprise
	Scoping rules: SQLCA, SQLCODE, and SQLSTATE
	Declaring SQLCA
	Multiple SQLCAs
	SQLCA variables
	Accessing SQLCA variables
	SQLCODE within SQLCA

	Declaring SQLCODE as a standalone area
	Using SQLSTATE
	Obtaining SQLSTATE codes and error messages

	Summary

	CHAPTER 4 Using Variables
	Declaring variables
	Using datatypes
	Using type definitions
	Type Definitions and Limits

	Using #define
	Declaring an array
	Declaring character arrays

	Declaring unions and structures

	Using host variables
	Host input variables
	Host result variables
	Host status variables
	Host output variables

	Using indicator variables
	Indicator variables and server restrictions
	Using host variables with indicator variables
	Using indicator variables with host output and result variables
	Using indicator variables with host input variables

	Host variable conventions

	Using arrays
	Multiple arrays

	Scoping rules
	Datatypes and Adaptive Server Enterprise
	Converting datatypes
	Converting datatypes for result variables
	Converting datatypes for input variables

	CHAPTER 5 Connecting to Adaptive Server Enterprise
	Connecting to a server
	user
	password
	connection_name
	server
	connect example

	Changing the current connection
	Establishing multiple connections
	Naming a connection
	Invalid statements with the at clause

	Using Adaptive Server Enterprise connections

	Disconnecting from a server

	CHAPTER 6 Using Transact-SQL Statements
	Transact-SQL statements in Embedded SQL
	exec sql syntax
	Invalid statements
	Transact-SQL statements that differ in Embedded SQL

	Selecting rows
	Selecting one row
	Selecting multiple rows using arrays
	select into arrays
	Indicators with array fetches
	Arrays and structures as indicator variables
	fetch into batch arrays

	Selecting multiple rows using cursors
	Cursor scoping rules
	Declaring cursors
	Declaring scrollable cursors
	Declaring cursors that release locks at cursor close
	Opening cursors
	Fetching data using cursors
	Fetching data using scrollable cursors
	Using cursors to update and delete rows
	Closing cursors
	Cursor example

	Using stored procedures
	User-defined stored procedures
	Precompiler-generated stored procedures

	Grouping statements
	Grouping statements by batches
	Grouping statements by transactions
	Transact-SQL transaction mode
	Default ANSI/ISO transaction mode
	Extended transactions

	CHAPTER 7 Using Dynamic SQL
	Dynamic SQL overview
	Dynamic SQL protocol
	Method 1: Using execute immediate
	Method 1 examples

	Method 2: Using prepare and execute
	prepare
	execute
	Method 2 example

	Method 3: Using prepare and fetch with a cursor
	prepare
	declare
	open
	fetch and close
	Method 3 example

	Method 4: Using prepare and fetch with dynamic descriptors
	Method 4 dynamic descriptors
	Dynamic descriptor statements
	About SQL descriptors

	Method 4 example using SQL descriptors
	About SQLDAs
	Method 4 example using SQLDAs

	Summary

	CHAPTER 8 Handling Errors
	Testing for errors
	Using SQLCODE

	Testing for warning conditions
	Trapping errors with whenever
	whenever testing conditions
	whenever actions

	Using get diagnostics
	Writing routines to handle warnings and errors
	Precompiler-detected errors

	CHAPTER 9 Improving Performance with Persistent Binding
	About persistent binding
	When binding occurs
	Programs that can benefit from persistent binding
	Scope of persistent bindings

	Precompiler options for persistent binding
	The -p option
	The -b option
	Which option to use: -p, -b, or both
	Scope of the -p and -b precompiler options

	Overview of rules for persistent binding
	Statements that can use persistent binding
	Persistent binding in statements without a cursor
	Persistent binding in statements with a cursor
	Preventing persistent binding for all cursor host variables
	Requesting persistent binding for all cursor host variables
	Requesting persistent binding for cursor output variables only
	Requesting persistent binding for cursor input variables only
	Persistent binding, cursors, and multiple source files
	Persistent binding and cursor fetch statements

	Guidelines for using persistent binding
	Notes on the binding of host variables
	Subscripted arrays
	Scope of host variables

	CHAPTER 10 Embedded SQL Statements: Reference Pages
	allocate descriptor
	begin declare section
	begin transaction
	close
	commit
	connect
	deallocate cursor
	deallocate descriptor
	deallocate prepare
	declare cursor (dynamic)
	declare cursor (static)
	declare cursor (stored procedure)
	declare scrollable cursor
	delete (positioned cursor)
	delete (searched)
	describe input (SQL descriptor)
	describe input (SQLDA)
	describe output (SQL descriptor)
	describe output (SQLDA)
	disconnect
	exec
	exec sql
	execute
	execute immediate
	exit
	fetch
	fetch scrollable cursor
	get descriptor
	get diagnostics
	include "filename"
	include sqlca
	include sqlda
	initialize_application
	open (dynamic cursor)
	open (static cursor)
	prepare
	rollback
	select
	set connection
	set descriptor
	thread exit
	update
	whenever

	CHAPTER 11 Open Client and Open Server Configuration File
	Purpose of the Open Client and Open Server configuration file
	Accessing the configuration functionality
	Default settings
	Syntax for the Open Client and Open Server configuration file
	Sample programs
	Embedded SQL/C sample makefile on Windows
	Embedded SQL/C sample programs
	Embedded SQL program version for use with the -x option
	Same Embedded SQL program with the -e option

	Summary

	APPENDIX A Precompiler Warning and Error Messages
	APPENDIX B Sample Code for Handling Large Text and Image Data
	Where to find other samples
	text_image.sql
	text_image.cp

	Glossary
	Index

