SYBASE

Enhanced Full-Text Search Specialty Data Store
Users Guide

Adaptive Server® Enterprise
15.0.2

DOCUMENT ID: DC36521-01-1502-01
LAST REVISED: February 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

CHAPTER 3

Users Guide

... iX

INEFOAUCTION i 1

Capabilities of the Enhanced Full-Text Search Engine.................... 1

High availabilityccccviiiie e 3

Understanding the Enhanced Full-Text Search Engine............... 5

Components of the Enhanced Full-Text Search engine................... 5

The SoUrce table..........oii i 5

The Verity COlIECHONSuvvviiiiiiiiiiiiee e 6

FIEEIS e 6

The text_db database...........cevvvvvviviviiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeee, 6

The indeX table ... 7

The text_events tableccvvvveei i, 8

Relationships between the components..........ccccccccevvviiiinennenn. 9

How a full-text search WOrkSccccoeiiiieiiiiiieeee e 10

Configuring Adaptive Server for Full-Text Searches................. 13
Configuring Adaptive Server for an Enhanced Full-Text Search engine

13

Enabling configuration parameters.........c..cccoeccvvvvereeeeeiecvvnnnnn. 14

Running the installtextserver scriptccccceecvvvevieees i, 14

Running the installmessages SCript......ccccccovviviiieiieeininiiiieen, 16

Running the installevent SCriptcccccceeiiiiiiii i, 17

Naming the local Adaptive Servercccccoovviiieerieeeniniiiieenn, 18

Creating and maintaining text INdeXeScccvveeveeeiiiiiiiiieieee s 19

Setting up source tables for indexingccccccvvvviiiienieiiins 19

Creating the text index and index tablecccciiinniis 20

Granting permissions on text index proxy tables.................... 22

Bringing the database online for full-text searches 22

Propagating changes to the text index..........ccccoccvveeei i, 23

Replicating text iNdEXESuvvvveeeieiiiiiiiiee e 24

Example: enabling a new database for text searches............. 24

Contents

Indexing the euro SYmMbOlcocoviiiiiiiiiece e 26
CHAPTER 4 Setting Up Verity FUNCLIONScoocoveiiiiiiciieeee e 27
Enabling query-by-example, summarization, and clustering.......... 27
Editing the master style.prm fileccccccoviiiiiii, 28
Editing individual style.prm filesccccccoviiiiiiiieei e, 29
Setting up a column to use as a sort specification 30
Using filters on text that contains tagsccccccevvvcvvveeeiee s, 32
Creating a CuStom theSAUIUSceeveeeiiiiiiiiiiee e e e e 34
Examining the default thesaurus (optional)ccccvvveeeeennn. 35
Creating the control fileccccceeei i, 35
Creating the theSaurus ..., 37
Replacing the default thesaurus with the custom thesaurus... 37
Creating tOPICS ..vvviieei ittt b e 38
Creating an outline file........c..eevvieiiiiiii e, 39
Creating a topiC Set dir€CLONY.......cccovviiiiiiiiieeeiiiiiiieiee e 40
Creating a knowledge base map........ccccccceeviiiiiiiiiiee i, 40
Defining the location of the knowledge base map.................. 41
Executing queries against defined topiCs........ccccccovevcvviveeeeennn. 41
Troubleshooting tOPICSccovvvviieeiiee e e e 42
CHAPTER 5 Writing Full-Text Search QUENIESooccvvvviiiiieiee e 43
Components of a full-text search queryccccccoeciveevieeniicciinnen, 43
Default behavIoUr ... 44
Pseudo columns in the index tablecocooiiiiiiis 44
Using the score column to relevance-rank search results....... 45
Using the sort_by column to specify a sort order 46
Using the summary column to summarize documents............ a7
Using pseudo columns to request clustered result sets.......... 48
Full-text search OPEeratorsccueveeeeiiiiiiiiiiiie e 50
Considerations when using Verity operators.........ccccccooecuvvnen. 51
Using the Verity OPerators...........ccccuvvveeeeeeiiiciieiiee e eessiineeeens 52
Operator MOIfIErScc.vviiiie e 60
CHAPTER 6 System AdMINIStration......ccccvveeiieiee e 63
Starting the Enhanced Full-Text Search engine on UNIX.............. 63
Creating the runserver fileccccceeeeiiiiii e, 63

Starting the Enhanced Full-Text Search engine on Windows NT .. 65
Starting the Enhanced Full-Text Search engine as a service . 65

Shutting down the Enhanced Full-Text Search engine................... 66
Modifying the configuration parameters..........ccccoovcvvieeiieeniiiiinnnn. 67
Modifying configuration values............ccccccoviiiiiieeniee i, 69

iv Enhanced Full-Text Search Specialty Data Store

Contents

Available configuration parameters...........ccccveeveeeeiiiciiinneeenn. 69
Setting the default language...........cccoccvvviiiee i, 70
Setting the default character set..........cccccceevivciiiiee e, 71
Indexing on the euro symbol ..., 72
Setting the default sort ordercoovvviiiiiiinii e 72
Setting trace flags......cccev i 73
Setting Open Server trace flags ..., 74
Setting case SENSItIVILYoovvvveiieeiiiiiiii e 75
Backup and recovery for the Enhanced Full-Text Search engine.. 75
Customizable backup and restore........ccccccceevvvciiiiieeee e, 76
Backing up Verity collections...........ccccovvveeeieiiiciiiiiee e 76
Restoring collections and text indexes from backup 77
CHAPTER 7 Performance and TUNINGcoooviiiiiiiiiirier e eer e e e e 79
Updating existing iNdEXESuuviviieeeeiiiiiiiieee e e 79
Increasing query PerformManCecocccvvvieeeeeesiiiiiiiee e e e e ssevneeeens 80
Limiting the number of rOWSccccviveeie i, 80
Ensuring the correct join order for queriesccccceeevvvivineenn. 80
Reconfiguring Adaptive SErvercccocvuivieiiee i 81
CIS CUISOF TOWS ..iiiitieeiiteieesieeee et eesnte e s ssne e e s nnre e e snre e e s nanes 81

CIS PACKEL SIZE ..ot 82
Reconfiguring the Enhanced Full-Text Search engine................... 82
(o7 (o] 1] 74 SR PPPPPPRt 82
MiN_sessions and MaX_SESSIONS.........eeieeeeiircrrreereeeessinininnnns 83
USiNg SP_teXt_NOLIYuvveiieeiiiiieiece e 83
Configuring multiple Enhanced Full-Text Search engines 84
Creating multiple Enhanced Full-Text Search engines at start-up

84

Adding Enhanced Full-Text Search engines............ccccvveeeeen... 84
Configuring additional Enhanced Full-Text Search engines ... 85
MUILIPIE USEIS ...ttt 85
File Descriptors and Enhanced Full-Text Search...............oocvvveee.. 86
CHAPTER 8 VEIITY TOPICS ittt a e 89
WHhat are tOPICS? .uvvviiiiiiii ittt 89
TOPIC OrgaNIZALIONvvviiiieei it 90
Weight aSSIgNMENTSvviiiiiiiiiiiiiie e 90
Using a topic outline filecccvveeiiieii e, 90
Making topics availableccccceeiiiiiiiii 91
SEUUP PrOCESS .. 91
Knowledge bases of tOPICScvvvviieeiiiiiiiiiiiiee e 91
Combining topics into a knowledge base..........ccccccccee i, 92
StruCture of tOPICS ..oooviiieiiie e 93

Users Guide \%

Contents

Vi

TOP-lEVEl tOPICS ..ooeeiiiiiiiiie et 94
SUDLOPICS. .evviiieee ittt 94
EVIAENCE tOPICS ..vvveeeeiiiiiiieiie ettt 95
Topic and subtopic relationships...........cccovveeei i 95
Maximum number of tOPICSuuveiieeiiiiiiie e 96
TOPIC NAMING ISSUES.....eeiieeeiiiiiiiieeeeeeseiitireeeeeeesssnrareeeaaessananes 96
Verity QUEry [aNQUAGEccvvvieiie et 97
Query language SUMMANYceeeeeeeiiiiuirrieeeeeesiiirrnereeeeesnnnnns 97
Operator precedence rUIES...........veveeeeiiiiiiiiieee e 101
Sample topPIC OULHNESuuvviiiiiiiiiiiie e 102
Operator refErENCEeoieeiieee e 103
ACCRUE OPErator.....cccooeiieeeiieeeeeeeeeeeeeeeeeeeeee 104
ALL OPEIAtOr.. ..o i 104
AND OPEIALOr ... 104
ANY OPEIALOT....ccciiiiiieeiieeeeeee e 104
(OO \ R IWANT\IS o] 1] £= 1 (o] (RN 104
ENDS OPEIatOrccevviiiiiiiieeeeeeee e 105
= (EQUALS) OPEIatOr.......cccvviiieeieeesiiiiiieeeeae e e sssiieeeeeaeeesannes 105
FILTER OPEIratOr.....cccccviiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 106
> (GREATER THAN) OPEratorcccccvvivvriiieeeeeesiiireeeeeeennns 106
>= (GREATER THAN OR EQUAL TO) operator................... 106
< (LESS THAN) OPErator.......cccuvveiieeeeiiiiiiiieeeeeesssiiiieeeeee e 106
<= (LESS THAN OR EQUAL TO) operator..........c.cccescvvveernes 107
IN OPEIALON ..coevviiiiiiiiiiiee e 107
MATCHES OPEratorcccovvviiiiiiiiiiiiiieeee e 107
NEAR OPEIAtOrcovvviiiiiiiiiiiiii 108
NEAR/N OPEIALOr ...ccoeiiiiiiiie ettt 108
(@] 0] 0 =] 7> 1 0] SR 109
PARAGRAPH 0Operatorccooovviiiiiiii 109
PHRASE OPEeratorccoviiieiiieeeeeeeeeeeeeeeeeeeeeeeeee 109
SENTENCE OPEIAtOreeveeeeeieeeieieeieeeeeeeeeeeeeeeneneeeeeeeneennnenes 109
SOUNDEX OPEIAtOFvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseenesensesnsennnenes 110
STARTS OPEIALONuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeenenerereennnsssesnensnsnnnnes 110
STEM OPEIALOr ... 110
SUBSTRING OPErator 110
THESAURUS 0perator........coooviiiiiiiiiieieeee 111
TYPO/N OPEIALOr....cciiiiiiiiiie ettt a e 111
WILDCARD OPErator......ccceeeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeee e 111
Using wildcard special characters........cccccoovvvvveeeieeininivneenn. 111
Searching for nonalphanumeric characters................ccc........ 112
WORD OPEIALOr.....ccciiiieeeeeeee e 113
Modifier referenCe ..o 113
CASE MOIfIEF ..ttt 114
MANY MOGIfIEF ..eeiiiiiiiiiiii e 114

Enhanced Full-Text Search Specialty Data Store

APPENDIX A

Users Guide

NOT MOAIfIEE ..o 114

ORDER MOGIfi€Fveiiiiiiiiie ettt 115
Weights and document importancCeccccccovecvvveeeeeeeeiiiiiineneeeennn 115
TOPIC WEIGNTSvviiiiiiiiiiiii e 115
Which operators accept WeightS.........cccoocvvveeiiiiiiiiniiiiiniinen, 116
How weights affect importance...........cccccoecviiviiieiiiniiiiienenen, 117
ASSIgNING WEIGNTS ... 118
Automatic weight assignmentscccoovvviieeeieniiiiieeeeeeen 120
Tips for assigning Weights ..., 120
Changing WeIghLScovieiiiiiiec e 120
Topic scoring and document importance...........cccccvveeeeeecvvneeeeenn. 121
DESIGNING tOPICS .uvvviriiiiee i ittt e e s et e e e e e e e earrareaae s 124
Preparing your topic deSigNceveeeiiiiiiieieeeeeesiiiieee e e 124
Understanding your information needs...........cccccccveeeviivvnnenn. 124
Understanding your dOCUMENLS.........ccccvveeeiiiciviiieeeeesseiiivnnn 125
Using scanned data..........ccuvvevieeeiiiiiiiiiiiee e 126
Categorizing document SAMPIEScccvvvveviieeiiiiiiiiieiee e 126
TOPIC desigN StrategieS.......uuuuiiiieeiiiiiiiiiiee et 126
TOP-0OWN TESIGN .eoiiiiiiiiiiiiiee ettt 127
BOttOM-UP dESIGN...cciiiiiiiiiiiie e 127
Designing the initial toPiC.........uuvvviiiiiiiiiiiiiee e 128
OUtliniNg @ tOPICcvviieiiee e 128
Top-down topic outline example.......c.cccoeccvvveeieei e, 129
Bottom-up topic outline exampleccoccvvvieeiieeiiiiciiieeneeenn, 133
SYStEM ProCEAUIES ...t 139
SP_CheCK_text_INAEXc.uuiiiieiiiiciiiiiice e 140
SP_Clean_teXt_ EVENIS........ccveii i e e 141
Sp_clean_text_iNUEXESccccceiiiiiiiiiiiee e a e 142
Sp_create_teXt_INUEXueeviieeiiiiiiiiiee e 143
SP_ArOP_teXt INEX ..oeeieiviiiiee ettt 145
SP_help_teXt INAEX......ccuveiiiieiiiiiiiei e 146
SP_OPLMIZE_teXt INUEX ..vvveiiieiiiiiiiiiiiie et 147
SP_redo_teXt BVENIScuveiiiie ittt 148
Sp_refresh_teXt INAEXcveiiiiiiiiiiiie e 149
SP_ShOW_text_ONliNEcoviieiiiiiiiie e 151
SP_LEXE CIUSTET .uvvviiiee et a e 152
SP_teXt_CONTIQUIE ..oeee et 154
sp_text_ dump_databaseccccvviiiiee i 156
SP_teXt_Kill ... 159
Sp_text_10ad_iNeX.......ccueeiiieiiiiiiiiiiiie e 159
SP_tEXE NOLITY ..eviiiiieee e 161
SP_tEXE ONINE ..ueviiiieieicie e 162
Vii

APPENDIX B SAMPIE FIES e 163

Default textsvr.cfg configuration file...........ccccccvvviiiiiei i, 163

The sample_text_main.sql SCript........ccccvveeeeeeiiiiieeeee e 167

Sample files illustrating Enhanced Full-Text Search engine features .

168

CUSTOM thESAUIUS.ccoiiiiiieiiiee et 168

TOPICS weveeeeieiiitte ettt a e 168

Clustering, summarization, and query-by-example 168

getsend Sample Program........ooveiieeeiiee e sirrreee e 169

APPENDIX C UNICOAE SUPPOIT .euiiiiiiiiiiee e e e e ieceiiiiie e e et e e e e s sss e e e e e e e e e e e e e 171
APPENDIX D Working with XML dataccccvveeviiieeeeeiiiceeeeee e 173
Correctly formatting XML data for fields and zones...................... 173

Sample XML iNAEXING....ccieeiiiiiiiiieeeeeiiiiiiiee e e e e 174

Sample iN SECONS........cccciiiiiiee e 174

10 To L= OO PPPRPPRRR 183

viii Enhanced Full-Text Search Specialty Data Store

About This Book

Audience

How to Use This Book

Users Guide

This Users Guide explains how to use the Enhanced Full-Text Search
Specialty Data Store product with Sybase® Adaptive Server® Enterprise.
The features and functionality of the enhanced version of this product are
described in this book.

Thisbook is for System Administrators who are configuring Adaptive
Server for an Enhanced Full-Text Search Specialty Data Store and for
users who are performing full-text searches on Adaptive Server data.

This book includes these chapters:

e Chapter 1, “Introduction,” provides an overview of the Enhanced
Full-Text Search Specialty Data Store.

e Chapter 2, “Understanding the Enhanced Full-Text Search Engine,”
describesthe components of the Enhanced Full-Text Search Specialty
Data Store and how it works.

e Chapter 3, “Configuring Adaptive Server for Full-Text Searches,”
describes how to configure Adaptive Server so that Enhanced Full-
Text Search Specialty Data Store can perform full-text searches on
the databases.

» Chapter 4, “Setting Up Verity Functions,” describes the setup you
need to do before you can issue full-text search queries.

e Chapter 5, “Writing Full-Text Search Queries,” describesthe
components you use to write full-text search queries.

e Chapter 6, “ System Administration,” provides information about
system administration issues.

e Chapter 7, “Performance and Tuning,” provides information about
performance and tuning issues.

e Chapter 8, “Verity Topics,” providesinformation about configuring
the Verity engine.

e Appendix A, “ System Procedures,” describes Enhanced Full-Text
Search Specialty Data Store system procedures.

Related documents

Appendix B, “Sample Files,” contains the text of the textsvr.cfg file,
describes the sampl e files included with Enhanced Full-Text Search
Specialty Data Store, and discusses issues regarding the
sample_text_main.sql script.

Appendix C, “Unicode Support,” describes how to configure Enhanced
Full Text Search Specialty Data Store to use Unicode.

Appendix D, “Working with XML data,” provides the correct format for
XML dataindexed into text indexes using fields and zones, and samples
of using such data.

The Sybase® Adaptive Server® Enterprise documentation set consists of the
following:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

ASE Replicator Users Guide — describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
aprimary server to one or more remote Adaptive Servers.

Component I ntegration Services Users Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

Full-Text Search Specialty Data Sore Users Guide— describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Enhanced Full-Text Search Specialty Data Store

About This Book

Users Guide

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server Users Guide —describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

Javain Adaptive Server Enterprise—describes how toinstall and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

Job Scheduler User's Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Monitor Server Users Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Performance and Tuning Guide —is a series of four books that explains
how to tune Adaptive Server for maximum performance:;

« Basics—the basics for understanding and investigating performance
guestions in Adaptive Server.

e Locking —describes how the various |ocking schemas can be used for
improving performance in Adaptive Server.

e Optimizer and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

e Monitoring and Analyzing — explains how statistics are obtained and
used for monitoring and optimizing performance.

Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

Reference Manual —is a series of four books that contains the following
detailed Transact-SQL® information:

e Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

* Commands— Transact-SQL commands.

Xi

Xii

» Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Transact-SQL Users Guide — documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System — provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

Unified Agent and Agent Management Console — Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

Utility Guide — documents the Adaptive Server utility programs, such as
isql and bep, which are executed at the operating system level.

Web Services Users Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enterprise — describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Enhanced Full-Text Search Specialty Data Store

About This Book

Other sources of
information

Sybasecertifications
on the Web

Users Guide

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manual s Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

[JFinding the latest information on product certifications

1

a A W N

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

Xiii

Sybase EBFs and
software
maintenance

Conventions

Xiv

[IFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybase isafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

[IFinding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frameand click Go. A list of EBFs/Maintenancereleasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBFs/Maintenance rel eases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

Directory paths For readability, directory pathsin this manual arein UNIX
format. On Windows NT, substitute $SYBASE with %SYBASE% and replace
slashes (/) with backdash (\). For example, replace this user input:

Enhanced Full-Text Search Specialty Data Store

About This Book

Users Guide

with

$SYBASE/$SYBASE FTS/scripts

$SYBASE%\%$SYBASE FTS%\scripts

Formatting SQL statements SQL isafree-formlanguage: therearenorules
about the number of words you can put on aline or where you must break a

line.
man

However, for readability, all examples and syntax statementsin this
ual are formatted so that each clause of a statement begins on anew line.

Clauses that have more than one part extend to additional lines, which are
indented.

SQL
man

syntax conventions The conventionsfor syntax statementsin this
ual are asfollows:

Table 1: Syntax statement conventions

Key Definition

command Command names, command option names, utility names, utility

flags, and other keywords arein
bold Courier

in syntax statements and in bold Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill in, arein

italics.

Curly bracesindicate that you choose at |east one of the
enclosed options. Do nhot include braces in your option.

Brackets mean choosing one or more of the enclosed optionsis
optional. Do not include brackets in your option.

Parentheses are to be typed as part of the command.

The vertical bar means you may select only one of the options
shown.

The comma means you may choose as many of the options
shown asyou like, separating your choices with commas to be
typed as part of the command.

Syntax statements (displaying the syntax and al options for acommand)
are printed like this:

sp_dropdevice [device_name]
or, for acommand with more options:

select column_name
from table_name
where search_conditions

XV

XVi

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase: normal font for keywords, italics for user-
supplied words.

e Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

» Examples of output from the computer are printed like this:

pub name city state
New Age Books Boston MA
Binnet & Hardley Washington DC
Algodata Infosystems Berkeley CA

(3 rows affected)

Case Inthismanual, most of the examples arein lowercase. However, you
can disregard case when typing Transact-SQL keywords. For example,
SELECT, Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order.

Obligatory options {you must choose at least one} <Curly Braces and
\ertical Bars: Choose one and only one option.

{die on_your feet | live on your knees | live on your feet}

e Curly Braces and Commas: Choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}

Optional options [you do not have to choose any] +One ltemin Square
Brackets: You don't have to chooseiit.

[anchovies]
» Sguare Brackets and Vertical Bars: Choose none or only one.
[beans | rice | sweet potatoes]

» Sguare Brackets and Commas: Choose none, one, or more than one
option. If you choose more than one, separate your choices with commas.

[extra cheese, avocados, sour_ cream]

Enhanced Full-Text Search Specialty Data Store

About This Book

Accessibility
features

Users Guide

Ellipsis: Do it again (and again)... Aneéellipsis(...) means that you can
repeat thelast unit asmany timesasyou like. In this syntax statement, buy isa
required keyword:

buy thing = price [cash | check | credit]
[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a method
of payment: one of theitems enclosed in square brackets. You may also choose
to buy additional things: as many of them as you like. For each thing you buy,
giveits name, its price, and (optionally) a method of payment.

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

This version of the Enhanced Specialty Data Store and the HTML
documentation have been tested for compliance with U.S. government Section
508 Accessibility requirements. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such asthe World Wide
Web Consortium (W3C) guidelines for Web sites.

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

XVii

Xviii Enhanced Full-Text Search Specialty Data Store

CHAPTER 1

Introduction

Enhanced Full-Text Search Specialty Data Store (referred to in this book
asthe Enhanced Full-Text Search engine) isan Open Server™ application
built on the Verity technology that is available in the Verity Developer’s
Kit. Adaptive Server connects to the Enhanced Full-Text Search engine
through Component Integration Services (ClS), allowing queries written
in the Verity query language to perform full-text searches on Adaptive
Server data.

This book describes the features and functionality of the Enhanced Full-
Text Search Specialty Data Store.

Topic Page
Capabilities of the Enhanced Full-Text Search Engine 1
High availability 3

Capabilities of the Enhanced Full-Text Search Engine

Users Guide

The Enhanced Full-Text Search Specialty Data Store product performs
powerful, full-text searches on Adaptive Server data. In Adaptive Server,
without the Enhanced Full-Text Search engine, you can search text
columns only for datathat matcheswhat you specify in aselect statement.
For example, if atable contains documents about dog breeds, and you
perform a search on the words “ Saint Bernard,” the query produces only
the rows that include “ Saint Bernard” in the text column.

With the Enhanced Full-Text Search engine, you can expand queries on
text columns to:

* Rank theresultsby order of how often a searched item appearsin the
selected document. For example, you can obtain alist of document
titles that reference the words “ Saint Bernard” five or more times.

Capabilities of the Enhanced Full-Text Search Engine

e Select documentsin which the words you search for appear withinn
number of words of each other. For example, you can search only for the
documents that include the words “ Saint Bernard” and “ Swiss Alps” and
that appear within 10 words of each other.

e Select documentsthat include all the search elements you specify withina
single paragraph or sentence. For example, you can query the documents
that include the words “ Saint Bernard” in the same paragraph or sentence
asthe words “ Swiss Alps.”

e Select documents that contain one or more synonyms of the word you
specify. For example, you can select documentsthat discuss“dogs,” and it
returns documents that contain the words “dogs,” “canine,” “pooch,”
“pup,” and so on.

e Createyour own custom thesaurus. For example, you can create a custom
thesaurus that includes “working dogs,” “St. Bernard,” “large dogs,” and
“European Breeds’ as synonyms for “ Saint Bernard.”

» Createtopicsthat specify the search criteriafor aquery. For example, you
can create atopic that returns documents that include the phrase “ Saint
Bernard” or “St. Bernard,” followed by documents that include the phrase
“working dogs,” “large dogs,” or “ European Breeds.”

» Return documents grouped in clusters to give you a sense of the major
topics covered in the documents.

» Select asection of relevant text in adocument and search for other, similar
documents.

* Index many different document types, such as Microsoft Word, and
FrameMaker.

e Sort documents using up to 16 sort orders.
e Integrate backup and restore capabilities.
e Change the value of a configuration parameter using a system procedure.

e Optimizeindexes for text searches when your server isinactive, to
enhance performance.

e Create additional system management reports for viewing setup
information.

» Ability to bring databases online automatically for text searches.

2 Enhanced Full-Text Search Specialty Data Store

CHAPTER 1 Introduction

High availability

Users Guide

The Enhanced Full-Text Search product supports Sybase Failover. If an
Adaptive Server fails, the Enhanced Full-Text Search accepts connections
from the companion server. Additionaly, if the Adaptive Server has proxy
database support enabled, then both the primary and companion servers can
use the Enhanced Full-Text Search at the same time.

Capabilities of the Enhanced Full-Text Search Engine

4 Enhanced Full-Text Search Specialty Data Store

CHAPTER 2 Understanding the Enhanced
Full-Text Search Engine

This chapter describes how an Enhanced Full-Text Search engine works.

Topic Page
Components of the Enhanced Full-Text Search engine 5
How a full-text search works 10

Components of the Enhanced Full-Text Search engine

The Enhanced Full-Text Search engine uses the following components to
provide full-text search capabilities:

* Sourcetable

e Verity collections (text index)

e Filtersfor avariety of document types
* text_db database

* Index table

* text_events table

The source table

The sour cetableisauser table maintained by Adaptive Server. It contains
one or more columns using the date, time, text, image, char, varchar,
datetime, small datetime, bigint, int, smallint, tinyint, unsigned bigint,
unsigned int, unsigned smallint, or unitext datatype, which holdsthe datato
be searched. The source table must have an IDENTITY column or
primary key, which is used to join the source table with the id column of
an index table during text searches.

Users Guide 5

Components of the Enhanced Full-Text Search engine

The source table can be alocal table, which holds the actual data, or it can be
aproxy table that is mapped to remote data using CIS.

The Verity collections

Filters

The Enhanced Full-Text Search engine uses the Verity collections, which are
located in $SYBASE/$SYBASE_FTS/collections. When you create the text
indexes, as described in “ Creating the text index and index table” on page 20,
Verity creates a collection, which is a directory that implements a text index.
This collection is queried by the Enhanced Full-Text Search engine. For more
information about Verity collections, see the Verity Web site at
http://www.verity.com.

Thetext index uses afilter to strip out the tagsin adocument that are not ASCI|
text. The Enhanced Full-Text Search engine providesfilters for avariety of
document types (Microsoft Word, PDF, WordPerfect, SGML, and HTML).

The text_db database

The vesaux table

During the installation of the Enhanced Full-Text Search engine, a database
named text_db is added to Adaptive Server using the installation script
installtextserver, as described in “ Running the instal ltextserver script” on page
14. The database does not contain any user data, but contains two support
tables: vesaux and vesauxcol. These tables contain the metadata used by the
Enhanced Full-Text Search engine to maintain integrity between the Adaptive
Server source tables and the Verity collections.

When updating the collections after an insert, update, or delete is made to an
indexed column, the Enhanced Full-Text Search engine queriesthe vesaux and
vesauxcol tables. These tables determine which collections contain the
modified columns so that all affected collections are updated. The Enhanced
Full-Text Search engine also uses these tables when it is brought online, to
make sure that all necessary collections exist.

The columns in the vesaux table are described in Table 2-1.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

Table 2-1: Columns in the vesaux table

Column name Description
id IDENTITY column
object_name Name of the source table on which the external index is being created

option_string

Text index creation options

collection_id Name of the Verity collection
key_column Name of the IDENTITY column or primary key in the source table
svrid Server |1D of the Enhanced Full-Text Search engine maintaining the collection

The vesauxcol table

The columns in the vesauxcol table are described in Table 2-2.

Table 2-2: Columns in the vesauxcol table

Column name

Description

id ID of the referenced row in the vesaux table
col_name Name of the column for which you are searching
col_type Column type (date, time, text, image, char, varchar, datetime, smalldatetime; with

the Enhanced Full-Text Search engine, also int, smallint, and tinyint)

The index table

Users Guide

Theindex table provides ameans of locating and searching documents stored
in the source table. The index table is maintained by the Enhanced Full-Text
Search engine and has an id column that mapsto the IDENTITY column or
primary key of the corresponding sourcetable. The IDENTITY or primary key
value from the row in the source table is stored with the datain the Verity
collections, which allows the source and index tables to be joined. Although
the index tableis stored and maintained by the Enhanced Full-Text Search
engine, it functions as a proxy table to Adaptive Server through Component
Integration Services.

Theindex table contains special columns, called pseudo columns, that are used
by the Enhanced Full-Text Search engine to determine the parameters of the
search and the location of the text data in the source table. Pseudo columns
have no associated physical storage—the values of a pseudo column are valid
only for the duration of the query and are removed immediately after the query
finishes running.

Components of the Enhanced Full-Text Search engine

For example, when you use the score pseudo column in aquery, to rank each
document according to how well the document matches the query, you may
haveto useascore of 15to find referencesto the phrase“ small Saint Bernards’
in the text database. This phrase does not occur very often, and alow score
value broadens the search to include documents that have a small number of
occurrences of the search criteria. However, if you are searching for a phrase
that iscommon, like“large Saint Bernards,” you could use a score of 90, which
would limit the search to those documents that have many occurrences of the
search criteria

You usethe score column and the other pseudo columns, id, index_any, sort_by,
summary, and max_docs, to specify the parameters to include in your search.
For a description of the pseudo columns, see “Pseudo columnsin the index
table” on page 44.

The text_events table

Each database containing tables for which thereis atext index must contain an
eventstable, which logsinserts, updates, and del etesto indexed columns. The
name of thistableistext_events. It is used to propagate updated data to the
Verity collections.

The columnsin the text_events table are described in Table 2-3.

Table 2-3: Columns in the text_events table

Column name

Description

event_id IDENTITY column

id ID of the row that was updated, inserted, or deleted

tableid Name of the table that contains the row that was updated, inserted, or deleted
columnid Name of the column on which the text index was created

event_date Date and time of the update, insert, or delete

event_type Type of update (update, insert, or delete)

event_status

Indicates whether the update, insert, or delete has been propagated to the collections.
e 0—Event Unread

e 1-Event Read

e 2—Event Succeeded

e 3—Event Faled

srvid

Server ID of the Enhanced Full-Text Search engine maintaining the collection

Enhanced Full-Text Search Specialty Data Store

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

Relationships between the components

The relationships between the Enhanced Full-Text Search engine components
are shown in Figure 2-1.

Figure 2-1: Components of the Enhanced Full-Text Search engine

text_db database for Enhanced Full-Text Search
engine metadata Enhanced Full-Text Search en

The Enhanced Full-Text Search engine
vesauxcolly [vesauX \ connects to Adaptive
\ Server through an Open
\ Client connection.

\
\
\
== _ _ \
Source table T~ Adaptive Server
contains the actual L =) | connects to Full-Text
text column -~ Search engine
through CIS V
~ouTee —— Vs collections
-
d id
/
/
text_events table ext even
logs changes to
indexed -] _
columns I — Verity col!ectlons. (;IS
maps Verity collections
Adaptive Server user database(s) containing to the Adaptive Server
the text tables (for example, pubs?2) index table

Users Guide

How a full-text search works

How a full-text search works

To perform afull-text search, you enter a select statement that joins the
IDENTITY column or primary key from the source table with theid column of
the index table, using pseudo columns as needed to define the search. For
exampl e, the following query searches for documentsin the blurbs table of the
pubs2 database in which the word “ Greek” appears near the word “ Gustibus’
(thei_blurbs table is the index table):

select tl.score, t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 20

and tl.max docs = 10

and tl.index any = "<near> (Greek, Gustibus)"

Adaptive Server and the Enhanced Full-Text Search engine split the query
processing, as follows:

1

The Enhanced Full-Text Search engine processes the query:

select tl.score, tl.id

from i blurbs tl

where tl.score > 20

and tl.max docs = 10

and tl.index any = "<nears> (Greek, Gustibus)"

The select statement includes the Verity operator near and the pseudo
columns score, max_docs, and index_any. The operator and pseudo
columns provide the parameters for the search on the Verity collections—
they narrow the result set from the entire copy column to the 10 documents
in which the words “ Greek” and “ Gustibus’ appear closest to each other.

Adaptive Server processes the following select statement on the result set
that is returned by the Enhanced Full-Text Search enginein step 1.

select tl.score, t2.copy
from i blurbs tl, blurbs t2
where tl.id=t2.id

Thisjoins the blurbs and i_blurbs tables (the source table and the index
table, respectively) onthe IDENTITY column or primary key of theblurbs
table and the id column of thei_blurbs table.

Figure 2-2 describes how Adaptive Server and the Enhanced Full-Text Search
engine process the query.

10

Enhanced Full-Text Search Specialty Data Store

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

Figure 2-2: Processing a full-text search query

Adaptive Server Enhanced Full-Text Search engine

1. Index query ——

>

-<«— 3. Results >
/ N / \
/ 4. Adaptive Server query / 2. Verity query
/ N / \
/ \ / \

blurbs i_blurbs
id id

1. Adaptive Server sends the index query to the Enhanced Full-Text Search engine.

2. The EnhancedFull-Text Search engine processes the Verity operators in the query and
produces a result set from the collections.

3. The Enhanced Full-Text Search engine returns the result set to Adaptive Server.
4. Adaptive Server processes the select statement on the local table.
5. Adaptive Server displays the results of the query.

Users Guide 11

How a full-text search works

12 Enhanced Full-Text Search Specialty Data Store

CHAPTER 3

Configuring Adaptive Server for
Full-Text Searches

This chapter describes how to configure Adaptive Server to perform full-

text searches.
Topic Page
Configuring Adaptive Server for an Enhanced Full-Text Search 13
engine
Creating and maintaining text indexes 19

Configuring Adaptive Server for an Enhanced Full-Text

Search engine

Users Guide

The Enhanced Full-Text Search engine is aremote server that Adaptive
Server connectsto through Component I ntegration Services (CIS). Before
you can use the Enhanced Full-Text Search engine, you must configure
Adaptive Server for the Enhanced Full-Text Search engine as follows:

Enable the enable cis, cis rpc handling and full-text search

configuration parametersif you have not done so. You need alicense

to enable full-text search.

Run the installtextserver script to define one or more Enhanced Full-

Text Search engines.

Run the installmessages script to install messages for the Enhanced

Full-Text Search engine's system procedures.

Run the installevent script to create the text_events table in each user

database that will contain text indexes.

Name the local server and restart.

13

Configuring Adaptive Server for an Enhanced Full-Text Search engine

Enabling configuration parameters

To connect to the Enhanced Full-Text Search engine, Adaptive Server must be
running with the enable cis and cis rpc handling configuration parameters
enabled. If those parameters are not enabled, log in to Adaptive Server using
isql and use sp_configure to enable them. For example:

exec sp configure "enable cis", 1
exec sp configure "cis rpc handling", 1
exec sp configure "enable full-text search", 1

If you have made changesto enable cis, messages display stating that you must
restart Adaptive Server for the new configuration parameter to take effect.

Running the installtextserver script

14

The installtextserver script:

» Definesthe Enhanced Full-Text Search engine asaremote server of server
class sds to Adaptive Server.

e Creates adatabase for storing text index metadata. For more information
about this database, see “ The text_db database” on page 6.

» Installsthe system procedures required by the Enhanced Full-Text Search
engine.

Run the installtextserver script only once (see “ Starting the instal ltextserver
script” on page 16). To add Enhanced Full-Text Search engines at alater time,
use sp_addserver. See “ Configuring multiple Enhanced Full-Text Search
engines’ on page 84 for more information about sp_addserver.

Note If you are putting the installtextserver script onto the model database,
you must increase the size of the model database to at |east 3MB prior to
running the script.

All Enhanced Full-Text Search engines use the same database for storing text
index metadata. This databaseisreferred to asthetext_db database, the default
name.

For alist and description of the system procedures added with the
installtextserver script, see Appendix A, “ System Procedures.”

Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

Editing the installtextserver script

Users Guide

Theinstalltextserver script islocated in the $SYBASE/$SYBASE_FTS/scripts
directory. Use atext editor (such asvi or emacs) to open the script, and make
your edits. The edits you can make are as follows:

* Changing the name of thetext_db database. If you use a different name,
replace all occurrences of text_db with the appropriate name.

Note If you change the name of the text_db database, you must also
change the name in the defaultDb configuration parameter (see
“Modifying the configuration parameters’ on page 67).

« Changing the name of the Enhanced Full-Text Search engine. By defaullt,
the installtextserver script defines a Enhanced Full-Text Search engine
named “textsvr.” If your Enhanced Full-Text Search engine is named
differently, edit this script so that it defines the correct server name.

e Adding multiple Enhanced Full-Text Search engines (for information on
how this can enhance performance, see “ Configuring multiple Enhanced
Full-Text Search engines’ on page 84). If you areinitially defining more
than one Enhanced Full-Text Search engine, edit the installtextserver script
so that it includes al the Enhanced Full-Text Search engine definitions.
installtextserver includes the following section for naming the Enhanced
Full-Text Search engine you are configuring (“textsvr” by default):

/*

** Add the text server

*/

exec sp addserver textsvr,sds,textsvr
go

Add an entry for each Enhanced Full-Text Search engine you are
configuring. For example, if you are configuring three Enhanced Full-Text
Search engines named KRAZY KAT, OFFICAPUP, and MOUSE, replace
the default “textsvr” line with the following lines:

exec sp addserver KRAZYKAT, sds, KRAZYKAT
exec sp addserver OFFICAPUP, sds, OFFICAPUP
exec sp addserver MOUSE, sds, MOUSE

go

15

Configuring Adaptive Server for an Enhanced Full-Text Search engine

e If you use OmniConnect to communicate with the Enhanced Full-Text
Search engine, change the server name specification in the
sp_addobjectdef callsfor thevesaux and vesauxcol tablesto avalid remote
server. For example, if your remote server isnamed REMOTE, changethe
lines:

exec sp addobjectdef
"vesaux", "SYBASE.master.dbo.vesaux", "table"
exec sp addobjectdef

"vesauxcol", "SYBASE.master.dbo.vesauxcol",
"table"

to:

exec sp addobjectdef

"vesaux", "REMOTE .master .dbo.vesaux", "table"
exec sp addobjectdef

"vesauxcol", "REMOTE.master.dbo.vesauxcol",
"table"

Starting the installtextserver script

Useisql to run the installtextserver script. For example, to run the
installtextserver script in an Adaptive Server named MY SVR, enter:

isqgl -Usa -P -SMYSVR -1i
$SYBASE/S$SSYBASE FTS/scripts/installtextserver

Running the installmessages script

The Enhanced Full-Text Search engine hasits own set of system procedure
messages that you must install in Adaptive Server. Use the installmessages

script to install the messages. You run the installmessages script only once,

even if you have multiple Enhanced Full-Text Search engines.

For example, to run the installmessages script in a server named MY SVR,
enter:

isgl -Usa -P -SMYSVR -i
SSYBASE/S$SSYBASE FTS/scripts/installmessages

16 Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

Running the installevent script

Each database containing tables referenced by atext index must contain a
text_events table, which logsinserts, updates, and deletes to indexed columns.
It is used to propagate updated data to the Verity collections.

Run the installevent script, as described below, to create the text_events table
and associated system procedures in a database. Use the installevent script as
follows:

If al databases require text indexes, run the installevent script to create a
text_events table in the model database. Each newly created database will
then have atext_events table. To add atext_events table to existing
databases, edit the script as described below to create thetext_events table
in the existing user database.

If not al databases have text indexes, use the installevent script asa
sample. For each existing database and each new database that includes
tables that require text indexing, run the installevent script. You must edit
the script as described below, to create the text_events table in the correct
user database.

Note If atext_events table doesnot exist in adatabase that includes source
tables that require text indexing, changes to the source table are not
propagated to the Verity collections.

Editing the installevent script

Theinstallevent script is located in the $SYBASE/$SYBASE_FTS'scripts
directory. Use atext editor (such asvi or emacs) to open the script, and make
the edits. The edits you can make are:

Users Guide

Changing the user database name. Theinstallevent script creates an events
table (named text_events) and associated system proceduresin the model
database. The model database is the default database. To install the
text_events tablein an existing user database, edit the script and replace all
references to model with the user database name.

17

Configuring Adaptive Server for an Enhanced Full-Text Search engine

e Changing the text_db database name. If your database for storing text
index metadata is named something other than text_db, replace all
references to text_db with the appropriate name.

Note The name of the text_db database must be the same as the namein
the defaultDb configuration parameter (see “Modifying the configuration
parameters’ on page 67).

Running the installevent script

Using isql, run the installevent script to install the text_events table and related
system procedures in Adaptive Server. For example, to run the installevent
script in aserver named MY SVR, enter:

isgl -Usa -P -SMYSVR -i
SSYBASE/SSYBASE FTS/scripts/installevent

Note Thetext_db database must exist before you run the installevent script. If
it does not exist, run the installtextserver script first.

Note Beforeinstalling the EFTS-12_5 scripts on 64-bit
platforms(instal ltextserver, installevents, installmessages) increase the size of
the tempdb and the model databases from the default size to 3MB each.

Naming the local Adaptive Server

When using the Enhanced Full-Text Search engine with Adaptive Server 12.5
and later, you must name the local Adaptive Server using sp_addserver
<servername>, local. After issuing sp_addserver, you must restart the local
Adaptive Server. Do not install any system stored procedures in the model
database. They should be installed in sybsystemprocs.

18 Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

Creating and maintaining text indexes

Before the Enhanced Full-Text Search engine can process full-text searches,
you must create text indexesfor the sourcetablesin the user database. After the
text indexes are created, you must update them when the source data changes
to keep the text indexes current. To create and maintain the text indexes:

1 Set up the sourcetable for indexing (see “ Setting up source tables for
indexing” on page 19).

2 Createthetext indexes and index tables (see “ Creating the text index and
index table” on page 20).

3 Bring the databases online for full-text searches (see “Bringing the
database online for full-text searches’” on page 22).

4 Propagate changesin the user data to the text indexes (see “ Propagating
changes to the text index” on page 23).

5 If you arereplicating text indexes, set up text indexing in the destination
database (see “ Replicating text indexes’ on page 24).

For an example of setting up atext index, see the sample script
sample_text_main.sql in the $SYBASE/$SYBASE_FTS'sample/scripts
directory.

Setting up source tables for indexing

Users Guide

The source table contains the data on which you perform searches (for
example, the blurbs table in the pubs2 database). For more information, see
“The source table” on page 5.

Before you can create text indexes on a source table, you must:

* Verify that the source table hasan IDENTITY column or primary key. If
not, alter the table and add an IDENTITY column.

* Createaunique index on the primary key or IDENTITY column
(optional).

19

Creating and maintaining text indexes

Every source table must contain an IDENTITY column or primary key to
uniquely identify each row and provide a means of joining the index table and
the source table. When you create atext index, the IDENTITY column or
primary key is passed with the indexed columns to the Enhanced Full-Text
Search engine. The IDENTITY column or primary key valueis stored in the
text index and is mapped to theid columnin theindex table. If atable does not
have aprimary key an IDENTITY column can be added to the table.

Adding an IDENTITY column to a source table

To createan IDENTITY column in atable named composers, define the table
asfollows:

create table composers (

id numeric (m,n) identity,
comp fname char(30) not null,
comp_lname char(30) not null,
text col text

)
where m =< 38 and n always = 0.
Toadd an IDENTITY column to an existing table, enter:

alter table table name add id numeric(10,0) identity

Adding a unique index to an IDENTITY column

For optimum performance, Sybase recommendsthat you create auniqueindex
on the IDENTITY column. For example, to create a unique index named
comp_id onthe IDENTITY column created above, enter:

create unique index comp id
on composers (id)

For more information about creating a unique index, see Chapter 11, “ Creating
Indexes on Tables,” in the Transact-SQL Users Guide.

Creating the text index and index table
Use sp_create_text_index to create text indexes. sp_create_text_index:
e Updates the vesaux and vesauxcol tablesin the text_db database

e Createsthetext index (Verity collections)

20 Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

e Populates the Verity collections

* Createstheindex table in the user database where the source tableis
located

Note The Enhance Full-Text Search engine must be running to successfully
execute sp_create_text_index. For information on starting and stopping the
Enhanced Full-Text Search engine, see Chapter 6, “ System Administration.”

The text index can contain up to 16 columns. Columns of the following
datatypes can beindexed: char, varchar, nchar, nvarchar, date, time, text, image,
datetime, smalldatetime, int, smallint, tinyint, unichar, and univarchar.

For example, to create atext index and an index table named i_blurbs for the
copy column in the blurbs table in pubs2 on KRAZYKAT, enter:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", " ", "copy"

Users Guide

where;

« KRAZYKAT isthe name of the Enhanced Full-Text Search engine.

* i blurbs isthe name of the index table and text index you are creating.
* blurbs isthe source table on which you are creating the text indexes.

* ""isaplaceholder for text index creation options.

e copy isthe columnin the blurbs table that you are indexing.

See gp_create_text_index on page 143 for more information.

Note Makesurethetext_db database nameinthe configurationfile (listed after
the defaultDb parameter) matches the database namein Adaptive Server. If they
do not match, the text index cannot be created. Also, verify that thetext_events
table exists in the user database. If it does not exist, run the installevent script
for that database (see to “ Running the installevent script” on page 17).

Populating the Verity collections can take a few minutes or several hours,
depending on the amount of data you are indexing. You may want to perform
this step when the server is not being heavily used. Increasing the batch_size
configuration parameter also expedites the process. See “batch_size” on page
82 for more information.

Note Do not rename an index; the Verity collection will not be renamed.

21

Creating and maintaining text indexes

Specifying multiple columns when creating a text index

When you create atext index on two or more columns, each column in the text
index is placed into its own document zone. The name of the zone is the name
of the column. For example, to create atext index and an index table named
i_blurbs for both the copy column and the au_id column in the blurbs table in
pubs2 on KRAZY KAT, enter:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", " ", "copy", "au_ id"

sp_create_text_index creates two zones in the text index named “copy” and
“au_id.” When you issue a query against the i_blurbs text index, the search
includes the copy and au_id columns. However, you can limit your searchto a

particular column by using thein operator to specify adocument zone (for more
information, see “in” on page 53).

Granting permissions on text index proxy tables

After atext index iscreated viasp_create_text_index, the administrator must
explicitly grant select permissions on the text index proxy table to users or
groups who will query the text index.

The user must have select permission on all columnsin the text index source
in order to be granted select permission on the text index. If the user does not
have select permission on even one of the columnsin the text index source, the
administrator cannot grant select permission on the text index.

If any of the columnsin the text index source table are encrypted columns, the
administrator should grant select permissions on the text index only to users
who have decrypt permission on the encrypted columns. If the user has select
permissions on the encrypted columns, but nodecrypt permissions, the
administrator should not grant select permission to the text index.

Bringing the database online for full-text searches

22

With the Enhanced Full-Text Search engine, the database is automatically
brought online when the auto_online configuration parameter is set to 1.

When you bring a database online, the Enhanced Full-Text Search engine
initializestheinternal Verity structures and confirmsthat the Verity collections
exist.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

Use sp_text_online to bring a database online for full-text searchesif it is not
automatically brought online. For example, to bring the pubs2 database online
before issuing full-text searches on the blurbs table in a Enhanced Full-Text
Search engine named KRAZY KAT, enter:

sp_text online KRAZYKAT, pubs2
This message appears:
Database 'pubs2' is now online
The pubs2 database is how available for performing full-text searches.

See gp_text_online on page 162 for more information.

Propagating changes to the text index

Users Guide

When you insert, update, or delete datain your source table, the text indexes
are not updated automatically. After you update data, runsp_refresh_text_index
tolog the changesto thetext_events table. Then, runsp_text_notify to notify the
Enhanced Full-Text Search engine that changes need to be processed. The
Enhanced Full-Text Search engine then connectsto Adaptive Server, readsthe
entriesinthetext_events table, determines which indexes, tables, and rows are
affected, and updates the appropriate collections.

See sp_refresh_text_index on page 149 and sp_text_notify on page 161 for
more information on these system procedures.

To have sp_refresh_text_index run automatically after each insert, update, or
delete, you can create triggers on your source tables, as follows:

e Createatrigger that runssp_refresh_text_index after adelete operation.
e Createatrigger that runssp_refresh_text_index after an insert operation.

e Createatrigger that runssp_refresh_text_index after an update operation
to an indexed column.

Triggers are not fired when you use writetext to update a text column. To have
sp_refresh_text_index automatically run after awritetext:

e Set up anon-text column and update that column after each writetext.

e Createatrigger onthe non-text columnto run sp_refresh_text_index. Since
the Enhanced Full-Text Search engine reinserts the entire row when you
issue sp_text_notify, the update to the text column gets propagated to the
text index.

23

Creating and maintaining text indexes

For examples of each of these triggers, see the sample script
sample_text_main.sqgl in the $SYBASE/$SYBASE FTS'sample/scripts
directory.

Replicating text indexes
To replicate tables that have text indexes, follow these guidelines:

Create the table definition in the destination database.

Run the installevent script to create thetext_events table in the destination
database, if thetext_events table does not already exist (see“ Running the
installevent script” on page 17).

Runsp_create_text_index to create the text index on the empty tablein the
destination database (see “ Creating the text index and index table” on

page 20).

Create triggers for running sp_create_text_index to insert entries into the
text_events table whenever you insert, update, or delete datainto thetable
(see “ Propagating changes to the text index” on page 23).

Create the replication definition in the Replication Server. This replicates
all the datain the source table to the destination table. See the Replication
Server Administration Guide for more details.

Run sp_text_notify to update the text index; run sp_text_notify periodically
to process changes to the destination table (see “ Propagating changes to
the text index” on page 23).

Note You must issue an update against a non-text column whenever a
writetext command is performed. This ensures that the trigger that inserts
datainto the text_events tableisfired.

Example: enabling a new database for text searches

This example describesthe steps for creating atext index on the plot column of
the reviews table in the movies database. This process assumes that:

24

You have created areviews table in a new database named movies on the
MY SVR server

The reviews table has a column named plot that you are going to index

Enhanced Full-Text Search Specialty Data Store

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

e Adaptive Server and the Enhanced Full-Text Search engine named
MY TXTSVR have been configured to connect to each other

Step 1. Verifying that the text_events table exists

Each database containing tables referenced by atext index must contain a
text_events table, which logsinserts, updates, and deletes to indexed columns.

If atext_events tableisin your model database, it will bein all new databases.
If atext_events tableisnot in your model database, run theinstallevent script to
install the text_events table in the new database. For example, to install the
text_events table in the movies database:

e Savetheinstallevent script asinstalleventmovies.

« Edit the script to replace all references to the word model with the word
movies.

* Runthe script asfollows:

isgl -Usa -P -SMYSVR -1i
SSYBASE/SSYBASE FTS/scripts/installeventmovies

See “Running the installevent script” on page 17 for information on installing
the text_events table.

Step 2. Checking for an IDENTITY column or primary key

Every source table must contain an IDENTITY column or primary key, which
uniquely identifies each row and provides a means of joining the index table
and the source table.

For example, to add an IDENTITY column to the reviews table, enter:
alter table reviews add id numeric(10,0) identity

See“Adding an IDENTITY column to a source table” on page 20 for more
information.

Step 3. Creating a unique index on the IDENTITY column

This step is optional. To enhance performance, Sybase recommends that you

create auniqueindex that contains only the IDENTITY column. For example,
to create a unique index named reviews_id on the IDENTITY column created
in the previous procedure, issue:

create unique index reviews id on reviews (id)

Users Guide 25

Creating and maintaining text indexes

For more informati on about creating a unique index, see Chapter 11, “ Creating
Indexes on Tables,” of the Transact-SQL Users Guide.

Step 4. Creating the text index and index table

The sourcetablesin the user database must beindexed so that you can perform
full-text searches. For example, to create atext index and an index table named
reviews_idx for the plot column in the reviews table, enter:

sp_create text index "MYTXTSVR", "reviews_idx",
" reviews n , " " , Ilplotll

The reviews table is now available for running full-text searches.

See sp_create_text_index on page 143 for more information.

Step 5. Bringing the database online for a full-text search

To bring the movies database online for the Enhanced Full-Text Search engine
named MYTXTSVR, enter:

sp_text online MYTXTSVR, movies

Note Omit this step if you have auto_online set to “1”.

See sp_text_online on page 162 for more information.

Indexing the euro symbol

The euro symbol can be indexed and returned properly if the following
configuration guidelines are followed. Adaptive Server must have the utf8
charset installed. Enhanced Full-Text Search must have the vdkL anguage set
to <language>x and the vdkCharset left blank. For example:

ASE 12.5.x charset = utfs8
EFTS 12.5.x vdkLanguage = englishx
EFTS 12.5.x vdkCharset =

26 Enhanced Full-Text Search Specialty Data Store

CHAPTER 4

Setting Up Verity Functions

This chapter describes the setup required before you can write queries
with certain Verity functionality.

Topic Page
Enabling query-by-example, summarization, and clustering 27
Setting up a column to use as a sort specification 30
Using filters on text that contains tags 32
Creating a custom thesaurus 34
Creating topics 38

Enabling query-by-example, summarization, and

clustering

Users Guide

The style.prm file specifies additional datato includein the text indexes
to support the following functionality:

Query-by-example — retrieves documents that are similar to aphrase
(see“like” on page 54 for more information).

Note Thetext indexes need additional datato support phrasesin the
query-by-example specification of the like operator. If you use a
document in the query-by-exampl e specification, additional datais
not required.

Summarization — returns summaries of documents rather than entire
documents (see “Using the summary column to summarize
documents” on page 47 for more information).

Clustering — groups documentsin result sets by subtopic. See“Using
pseudo columnsto request clustered result sets’ on page 48 for more
information.

27

Enabling query-by-example, summarization, and clustering

You can enable these features for all text indexes by editing the master
style.prmfile, or you can enablethem for anindividual text index by editingits
style.prmfile. Both methods are described below.

Query-by-example To use phrasesin a query-by-example specification and to use clustering, you
and clustering must enabl e the generation of document feature vectors at indexing time. To do

this, uncomment the following line in the style.prmfile:

$define DOC-FEATURES "TF"

Summarization To configure the Enhanced Full-Text Search engine for summarization,

uncomment one of the following lines that starts with “#$define” in the
style.prmfile:

The example below stores the best three sentences of
the document, but not more than 255 bytes.

#Sdefine DOC-SUMMARIES "XS MaxSents 3 MaxBytes 255"
The example below stores the first four sentences of
the document, but not more than 255 bytes.

#Sdefine DOC-SUMMARIES "LS MaxSents 4 MaxBytes 255"
The example below stores the first 150 bytes of

the document, with whitespace compressed.

#Sdefine DOC-SUMMARIES "LB MaxBytes 150"

Each of those lines reflects adifferent level of summarization. You can specify
how many bytes of data you want the Enhanced Full-Text Search engineto
display, by altering the numbers at the ends of these lines. For example, if you
want only the first 233 bytes of data summarized, edit the script to read:

$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 233"

The maximum number of bytesdisplayed is 255. Any number greater than that
istruncated to 255.

Editing the master style.prm file

28

Note The location of the master style.prm file was moved starting with the
EFTS 12.5.2 release. Edits made to the style.prmfile located in
$SYBASE/$SYBASE _FTS/verity/common/style will be ignored. The new
location is specified below.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

The master styleprmfileislocated in
$SYBASE/$SYBASE_FTSverity/common/styles/txtsvr . It contains the default
Enhanced Full-Text Search engine style parameters. Edit thisfile to configure
the Enhanced Full-Text Search engine so that all tables on which you create
text indexes allow clustering and literal text in your query-by-example
specifications, or summarization. Uncomment the applicablelines asdescribed
above.

Note If you have existing text indexes, you must re-create the text index with
these features enabled as described in “Editing individual style.prm files’ on

page 29.

Editing individual style.prm files

Perform thefollowing stepsto configure the Enhanced Full-Text Search engine
so that theindividual text index alows clustering and literal text in your query-
by-exampl e specifications, or summarization:

1 Createthetextindex using sp_create_text_index. Usetheword“empty” in
the option_string parameter so that the style.prmfileis created for the text
index, but the Verity collections are not popul ated with data. For example,
if you are enabling clustering for the copy column of the blurbs table, use
the following syntax:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", "empty", "copy"

Note [f thetext index aready exists, omit this step. You do not need to
create the text index again.

2 Usesp_drop_text_index to drop the text index associated with the
style.pormfile you are editing.

For example, to drop the text index created in step 1, enter:
sp_drop_text index "blurbs.i_blurbs"

3 Edit the styleprmfile that exists for the text index. The style.prmfile for
an existing collection islocated in
$SYBASE/$SYBASE_FTScollections/db.owner.index/style.

Users Guide 29

Setting up a column to use as a sort specification

For example, if you create atext index called i_blurbs on the pubs2
database, thefull path to thesefilesisthefollowing, where db.owner.index
is the database, the database owner, and the index created with

sp_create_text_index:
$SYBASE/$SYBASE_FTS collections/pubs2.dbo.i_blurbs/style

4 Uncomment the applicable lines as described above. For example, to
enable clustering, uncomment the following line;
$define DOC-FEATURES "TF"
5 Re-create the text index you dropped in step 2. For example, to re-create
thei_blurbs text index, enter:
sp_create text index "KRAZYKAT", "i blurbs", "blurbs", "", "copy"

Setting up a column to use as a sort specification

Before you can sort by specific columns, you must modify the style.vgw and
style.ufl files. (For information on including a column in a sort specification,

30

see

“Using the sort_by column to specify asort order” on page 46.) Both files

areinthefollowing, where db.owner.index is the database, the database owner,
and the index created using sp_create_text_index:
$SYBASE/$SYBASE_FTS/collections/db.owner.index/style.

For example, if you created atext index called i_blurbs on the pubs2 database,
the full path to those files would be
$SYBASE/$SYBASE FTS/collections/pubs2.dbo.i_blurbs/style

To edit the style.vgw and style.ufl files, follow these steps:

1

Drop the text index that contains the columns for which you are adding
definitions. Dropping the text index does not drop the collection directory.

For example, to add definitions for the copy column in the blurbs table, use
the following command to drop the text index:

sp_drop_text index i_blurbs
Edit the style.vgw file. Following this line:
dda "SybaseTextServer"

Add an entry for the column you are defining. The syntax is as follows,
where column_number is the number of the column you are defining:

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

Users Guide

table: DOCUMENTS
{

copy: fcolumn_number copy_column_number

Column numbers start with O; if you want the first column to be sorted,
specify “f0”; to sort the second column, specify “f1”; to sort the third
column, specify “f2", and so on.

For example, to define the first column in atable, the syntax is:

table: DOCUMENTS

{
}

Then, your style.vgw file will be similar to this:

copy: f0 copy fO

#
Sybase Text Server Gateway
#
Scontrol: 1
gateway:
{
dda: "SybaseTextServer"
{
copy: £0 copy fO
}
}

Edit the style.ufl file by adding the column definition for a datatable
named fts. The syntax is:

data-table: fts
{

fixwidth: copy_fcolumn_number precision datatype
}

Column numbers start with O; if you want the first column to be sorted,
specify “f0”; to sort the second column, specify “f1”; to sort the third
column, specify “f2", and so on. For example, to add a definition for the
first column of atable, with aprecision of 4, and a datatype of date, enter:

data-table: fts

{
}

Similarly, to add a definition for the second column of atable with a
precision of 10, and a datatype of character, enter:

fixwidth: copy_ f0 4 date

31

Using filters on text that contains tags

data-table: fts

{
}

4 Re-createtheindex, using sp_create_text_index.

fixwidth: copy_ f1l 10 text

Using filters on text that contains tags

32

To perform accurate searches on documents that contain tags (such asHTML
or Post Script), the text index must use afilter to strip out the tags. The
Enhanced Full-Text Search engine provides filters for avariety of document
types (Microsoft Word, FrameMaker, WordPerfect, SGML, HTML, and
others).

When you create the text index to use afilter, the data for each type of tag in
the document is placed into its own document zone. For example, if you have
atag called “chapter,” al chapter names are placed into one document zone.
You can issue a query that searches the entire document, or that searches only
for datain the “chapter” zone (for more information, see “in” on page 53).

To create atext index that uses afilter, modify the style.dft file for that text
index:

1 Createthetextindex using sp_create_text_index. Usetheword “empty” in
the option_string parameter so that the style.dft file is created for the text
index, but the Verity collections are not populated with data. For example,
to create atext index for the copy column of the blurbs table, use the
following syntax:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", "empty", "copy"

2 Dropthetextindex that you createin step 1. Thisdropsthetext index, but
not the style.dft file. For example, use the following command to drop the
i_blurbs text index:

sp_drop_ text index i blurbs

3 Edit the style.dft file. The style.dft fileisin the
directory$SYBASE/$SYBASE_FTS/collections/db.owner.index/style,
where db.owner.index is the database, the database owner, and the index
created using sp_create_text_index. For example, if you created a text
index calledi_blurbs onthe pubs2 database, thefull path to the style.dft file
would be $SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

Users Guide

Following thisline:
field: foO
add syntax to use afilter:
e For SGML documents, use:
/filter="zone -nocharmap"
e For HTML documents, use:
/filter="zone -html -nocharmap"
Use the following syntax for all document types:
/filter="universal™"
For example, your style.dft filefor an SGML document will look like this:

Scontrol: 1

dft:
{
field: foO
/filter="zone -nocharmap"
field: f1
field: f2
field: £15

{
Your style.dft file for an SGML document will ook like this:

Scontrol: 1

dft:
{
field: fO
/filter="universal"
field: f1
field: f2
field: £15

33

Creating a custom thesaurus

{

Note Usegetsend to load the database with document data. getsend takes
the following arguments: database, table, column and row id. Insert a null
value for the rowid for each row of text you want to insert. getsend must
insert into animage column for filtering to work. For more information on
getsend, refer to the README.TXT file and getsend.c filein
$SYBASE/$SYBASE_FTS/'sample/source directory.

4 Re-createtheindex, using sp_create_text_index. For example:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", "", "copy"

Creating a custom thesaurus

34

The Verity thesaurus operator expands a search to include the specified word
and its synonyms (for information on using the thesaurus operator, see
“thesaurus’ on page 57). You can create a custom thesaurus that contains
application-specific synonyms to use in place of the default thesaurus.

For example, the default English language thesaurus contains these words as
synonyms for “money:” “cash,” “currency,” “lucre,” “wampum,” and
“greenbacks.” You can create a custom thesaurus that contains a different set
of synonyms for “money,” such as: "bid,” “tokens,” “credit,” “asset,” and
“verba offer.”

To create a custom thesaurus:

1 Makealist of the synonymsthat you will use with your application. It may
help to examine the default thesaurus (see “ Examining the default
thesaurus (optional)” on page 35).

2 Createacontral filethat contains the synonyms you are defining for your
custom thesaurus (see “ Creating the control file” on page 35).

3 Create the custom thesaurus using the mksyd utility (see “ Creating the
thesaurus” on page 37). The mksyd utility islocated in
$SYBASE/$SYBASE FTSverity/<verity_platform_directory>/bin.

This uses the contral file asinput.

4 Replacethe default thesauruswith your custom thesaurus (see “ Replacing
the default thesaurus with the custom thesaurus’ on page 37).

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

For more information on “ Custom Thesaurus Support” and the mksyd utility,
see the Verity Web site at http://www.verity.com.

Two sample filesillustrate how to set up and use a custom thesaurus:
« sample text_thesaurus.ctl isasample control file.

« sample_text_thesaurus.sql issues queries against the custom thesaurus
defined in the sample contral file.

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts directory.

Examining the default thesaurus (optional)

A control file containsall the synonym definitionsfor athesaurus. To examine
the default thesaurus, create its control file using the mksyd utility. The mksyd
utility islocated in

$SYBASE/SYBASE _FTSverity/<verity platform_directory>/bin.

Use the syntax:

mksyd -dump -syd
$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage/vdk20.syd
-f work_location/control_file.ctl

Where:

* vdkLanguage — isthe value of the vdkLanguage configuration parameter
(for example, “english”).

e work_location —isthe directory where you want to place the contral file.

e control_file — isthe name of the control file you are creating from the
default thesaurus.

To view the default synonym lists, examine the control file (control_file.ctl)
that is created.

Creating the control file

Createacontrol filethat containsthe new synonymsfor your custom thesaurus.
The contral fileisan ASCII text filein astructured format. Using atext editor
(such asvi or emacs), either:

Users Guide 35

Creating a custom thesaurus

Control file syntax

Edit the control file from the default thesaurus and add new synonyms to
the existing thesaurus (see “ Examining the default thesaurus (optional)”
on page 35), or

Create anew control file that includes only your synonyms.

Thecontrol file contains synonym list definitionsin asynonyms: statement. For
example, the following is a control file named colors.ctl:

Scontrol: 1

synonyms :

{

list: "red, ruby, scarlet, fuchsia,\
magenta"

list: "electric blue <or> azure"
/keys = "lapis"

}

$$

The synonyms: statement includes:

list: keywordsthat specify the start of asynonym list. The synonymsinthe
list are either in query form or in alist of words or phrases separated by
commeas.

Each list: can optionally have a/keys modifier that specifies one or more
keys separated by commas. In the example above, no keysare specifiedin
thefirst “list.” This meansthelist is found when the thesaurusiis queried
for theword“red,” “ruby,” “scarlet,” “fuchsia,” or “magenta.” The second
“list” uses the /keys modifier to specify one key. This means the words or
phrasesin thelist satisfy a query only when you specify <thesaurus>lapis.

Note If you use emacs to build asynonym list and any of your lists are
longer than one ling, turn off auto-fill mode. If you separate your list into
multiple lines, include a backslash (\) at the end of each line so that the
lines are treated as one list.

For more complex examples of control files, see the Verity Web site.

36

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

Creating the thesaurus

The mksyd utility creates the custom thesaurus using a control file asinput. It
islocated in:

$SYBASE/$SYBASE_FTSverity/<verity platform_directory>/bin

Run, or define an alias to run, mksyd from this bin directory. Create your
custom thesaurus in any work directory.

The mksyd syntax for creating a custom thesaurusis:
mksyd -f control_file.ctl -syd custom_thesaurus.syd
Where:

« control_file —isthe name of the control file you created in the previous
section.

* custom_thesaurus —is the name of the custom thesaurus you are creating.

For example, to execute the mksyd utility reading the sample control file
defined above, and directing output to awork directory, use:

mksyd -f /usr/u/sybase/dba/thesaurus/colors.ctl
-syd /usr/u/sybase/dba/thesaurus/custom.syd

Replacing the default thesaurus with the custom thesaurus

The default thesaurus named vdk20.syd is located in
$SYBASE/$SYBASE_FTSverity/common/vdkLanguage, where vdkLanguage
isthe value of the vdkLanguage configuration parameter (for example, the
English directory is $SYBASE/$SYBASE_FTS/verity/common/english). Each
application and user reading from this location at runtime uses this thesaurus.
To replace it with your custom thesaurus;

1 Back up the default thesaurus before replacing it with the custom
thesaurus. For example:

mv /$SYBASE/SSYBASE FTS/verity/common/english/vdk20.syd default.syd

2 Replace the vdk20.syd file with your custom thesaurus. For example:

cp custom.syd /$SYBASE/SSYBASE FTS/verity/common/english/vdk20.syd

Users Guide

3 Restart your Examine the control file (control_file.ctl); no configuration
filechangesarerequired. Thethesaurusisread from thislocation when the
Examine the control file (control_file.ctl) is started, not when a query is
executed.

37

Creating topics

Queries using the thesaurus operator will now use the custom thesaurus.

Creating topics

This section provides a condensed overview of Verity topics. Topics are
discussed in detail in Chapter 8, “Verity Topics.”

A topicisagrouping of information related to a concept or subject area. With
topic definitionsin place, a user can perform searches on the topic instead of
having to write queries with complex syntax.

The user creates topics, which can be combinations of words and phrases,
Verity operators and modifiers, and weight values. Then, any user can query
the topic.

Before you create topics, determine your application requirements, and
establish standards for naming conventions and for the location of the
following:

» Outlinefiles—containsthetopic definitions. Each topic hasitsown outline
file.

» Topic set directories — contains the compiled topic. Each topic hasitsown
topic set directory.

» Knowledge base map file — contains pointers to the topic set directories.
To implement topics, perform the following steps:

1 Createoneor more outline input files to define your topics (see “ Creating
an outlinefile” on page 39). Each outlinefileisused to popul ate onetopic
Set.

2 Create and populate atopic set directory, using the mktopics utility (see
“Creating atopic set directory” on page 40). The mktopics utility islocated
in $SYBASE/$SYBASE_FTSverity/<verity platform directory>/bin.

Each topic set directory is populated based on one topic outline input file.

3 Create a knowledge base map, specifying the locations of one or more
topic set directories (see “ Creating a knowledge base map” on page 40).

4 Settheknowledge_base configuration parameter to point to thelocation of
the knowledge base map (see “ Defining the location of the knowledge
base map” on page 41).

38 Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

5 Execute queries against defined topics.

The following sample filesillustrate the topics feature:

e sample_text_topics.otl isasample outlinefile.

e sample_text_topics.kbmisasample knowledge base map.

e sample text topics.sql issues queries using defined topics.
Thesefiles arein the $SYBASE/$SYBASE_FTS'sample/scripts directory.

Creating an outline file

Users Guide

A topic outline file specifies all the combinations of words and phrases, Verity
operators and modifiers, and weight values that the search engine uses when
you issue a query using the topic. The outlinefileis an ASCII text filein a
structured format.

For example, the following outline file defines the topic “ saint-bernard” :

Scontrol: 1
saint-bernard <accrue>
*0.80 "Saint Bernard"
*0.80 "St. Bernard"

* "working dogs"

* "large dogs"

* "European breeds"

$3

When you issue a query specifying the topic “ saint-bernard”, the Enhanced
Full-Text Search engine:

e Returns documents that contain one or more of the following phrases:
“Saint Bernard,” “St. Bernard,” “working dogs,” “large dogs,” and
“European breeds”

e Scoresdocumentsthat contain the phrase“ Saint Bernard” or “ St. Bernard”
higher than documents that contain the phrase “working dogs, “large
dogs,” or “European breeds’

This exampleis avery basic topic definition. An outline can introduce more
complex relationships by using:

e Multiplelevels of subtopics

e Combinations of Verity operators (this example uses accrue)

39

Creating topics

e Verity modifiers

Note InWindows NT, you can use the graphical user interface of the
Verity Intelligent Classifier product, which is available from Verity, to
create topic outlines. If you use Intelligent Classifier, it automatically
createsatopic set directory, and you can go to “ Creating aknowledge base
map” on page 40 to continue setting up your topics.

Creating a topic set directory

Use the mktopics utility to create and popul ate atopic set directory. It islocated
in $SYBASE/$SYBASE_FTSverity/<verity platform directory>/bin.

Run, or define an alias to run, mktopics from this bin directory. You can create
atopic set directory or directoriesin any work directory.

The mktopics syntax is:
mktopics -outline outline_file.otl -topicset topic_set_directory

Where:

e outline_file —isthe name of the outline file you created in “ Creating an
outlinefile” on page 39

* topic_set_directory —isthe name of thetopic set directory you are creating.

For example, to execute the mktopics utility reading the saint-bernard.otl file
defined above, and directing output to awork directory, use the syntax:

mktopics -outline
/usr/u/sybase/topic_outlines/saint-bernard.otl
-topicset /usr/u/sybase/topic_sets/
saint-bernard topic

Creating a knowledge base map

40

A knowl edge base map specifies the locations of one or more topic set
directories. Create an ASCII knowledge base map file that defines the fully-
qualified directory paths to your topic sets.

For example, the following knowledge base map file illustrates how you can
list multiple knowledge basesin the map. Thefirst entry identifiesthe topic set
directory created with mktopics above.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions

Scontrol:1
kbases:
{

kb:
/kb-path
kb:
/kb-path = /usr/u/sybase/topic_sets/another topic

}

/usr/u/sybase/topic_sets/saint-bernard topic

Defining the location of the knowledge base map

Set the knowledge_base configuration parameter to point to the location of the
knowledge base map. For example:

sp_text configure KRAZYKAT, 'knowledge base',
'/usr/u/sybase/topic_sets/sample text topics.kbm'

The knowledge_base configuration parameter is static; you must restart the
Enhanced Full-Text Search engine for the definition to take effect.

Executing queries against defined topics

You can now execute queries using the defined topic instead of a complex
query. For example, before you create the “ saint-bernard” topic, you would
have to use the following syntax:

...where i.index any = "<accrue> ([80]Saint Bernard, [80]St. Bernard, working
dogs, large dogs, European breeds)"

to find documents that:

e Contain one or more of the following phrases. “ Saint Bernard,” “ $t.
Bernard,” “working dogs,” “large dogs,” and “ European breeds’

e Score documents containing the phrase “ Saint Bernard” or “St. Bernard”
higher than documents containing the phrase “working dogs,” “large
dogs,” or “European breeds’

After you create the topic “ saint-bernard”, you can use this syntax:
..where i.index any = "<topics>saint-bernard"

or:

Users Guide 41

Creating topics

...where i.index any = "saint bernard"

Note If you enter aword in aquery expression, the Enhanced Full-Text Search
engine tries to match it with atopic name. If you enter a phrasein a query
expression, the Enhanced Full-Text Search engine replaces spaces with
hyphens (-), and then tries to match it with atopic name. For example, the
Enhanced Full-Text Search engine matches “ saint bernard” with the topic
“saint-bernard”.

See the sample_text_topics.sqgl file for examples of using topicsin queries.

Troubleshooting topics

42

If the knowledge_base configuration parameter specifies a knowledge base
map file that does not exist, the Enhanced Full-Text Search engine cannot start
a session with Verity, and the server will not start. If the map file exists but
contains invalid entries, Verity issues warning messages at start-up time. You
can correct errors by editing the <textserver>.cfg file in the $SYBASE
directory. You can correct path information and change the line beginning:
“knowledge _base=".

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5

Writing Full-Text Search Queries

This chapter describes the pseudo columns, search operators, and
modifiers that you can include in afull-text search.

Topic Page

Components of afull-text search query

Pseudo columnsin the index table

Full-text search operators

B S RI&

Operator modifiers

Components of a full-text search query

Users Guide

To write afull-text search query, enter the search parameters as part of an
Adaptive Server select statement. Then the Enhanced Full-Text Search
engine processes the search. The select statement requires:

* A where clausethat assigns a Verity language query to theindex_any
pseudo column

e Pseudo columnsto further define the parameters of the search
(optional)

e A join between the IDENTITY column or primary key from the
source table and the id column from the index table

For example, to return the 10 documents from the copy column of the
blurbs table that have the most occurrences of the word “ software,” enter:

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = "<many> <word> software"
and tl.max docs = 10

Adaptive Server passesthe Verity query to the Enhanced Full-Text Search
engineto process the search. See“How afull-text search works” on page
10.

43

Pseudo columns in the index table

Default behaviour

The default or simple syntax of a query to the Enhanced Full-Text Search
engineistreated broadly:

1 Searchesare case sensitive.

2 The STEM operator applies to search words.

3 The MANY modifier is applied.

4 The ACCRUE operator is activated at the parent level.

Pseudo columns in the index table

Pseudo columns are columns in the index table that define the parameters of
the search and provide accessto theresultsdata. See“ Theindex table” on page
7. These columns are valid only in the context of a query; that is, the
information in the columnsis valid only for the duration of the query. If the
query that follows contains a different set of parameters, the pseudo columns
contain a different set of values.

Each pseudo column in anindex table describes adifferent search attribute. For
example, if you indicate the score column, the query displays only the result
set that falls within the parameters you define. For example, the following
query displays only the results that have a score value greater than 90:

index table name.score > 90

Other pseudo columns (like highlight) are used to retrieve data generated by
Verity for aparticular document. Table 5-1 describes the pseudo columns that
are maintained by the Enhanced Full-Text Search engine.

Table 5-1: Enhanced Full-Text Search engine pseudo columns

Pseudo Length
column name Description Datatype (in bytes)
cluster_number Contains the cluster that the row is part of. Clusters are numbered int 4

starting with 1. You can use the cluster_number column only in the
select clause of a query.

cluster_keywords

Contains the keywords that Verity usesto build the cluster. Youcan varchar 255
use cluster_keywords only in the select clause of a query.

highlight

44

Offsets within the document all words from the query. You canuse text 16
highlight only in the select clause of a query.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Pseudo
column name

Description

Datatype

Length
(in bytes)

id

Uniquely identifiesadocument within acollection. Usedtojoinwith
the IDENTITY column of the source table. You can useid in the
select clause or where clause of a query.

numeric

6

index_any

Provides a Verity language query to the Enhanced Full-Text
Search engine. You can useindex_any only in awhere clause.
Although the pseudo-column is defined as char(255),the maximum
length of the index_any clause is 16000.

varchar

255

max_docs

Limits results to the first n documents, based on the default sort
order. In aclustered result set, limits results to the first n documents
in each cluster. You can use max_docs only in awhere clause.

int

score

The normalized measure of correlation between search strings and
indexed columns. Thescore associated with aspecific document has
meaning only in reference to the query used to retrieve the
document. You can use score in aselect clause or awhere clause.

int

sort_by

Specifies the sort order in which to return the result set.

The Enhanced Full-Text Search engine alows up to 16 sort
specifications in the sort_by column.

You can use sort_by only in awhere clause.

varchar

35

summary

Selects summarization data. You can use the summary column only
in the select clause of a query.

varchar

255

total_docs

Contains the total number of documents that matched the search
criteria.

int

The following sections describe the functionality of the pseudo columns.

Using the score column to relevance-rank search results

Relevance ranking isthe ability of the Enhanced Full-Text Search engine to
assign the score parameter aval ue that indicates how well adocument satisfies
the query. The score calculation depends on the search operator used in the
query. See “Using the Verity operators’ on page 52. The closer the document

Users Guide

satisfies the query, the higher the score value is for that document.

For example, if you search for documents that contain the word “rain,” a
document with 12 occurrences of “rain” receives a higher score value than a

document with 6 occurrences of “rain.”

45

Pseudo columns in the index table

If you set score to a high value (such as 90) in your query, you limit the result
set to documents that have a score value greater than that number.

Note Verity uses decimals for score values; Sybase uses whole numbers. For
example, if Verity reports a score value of .85, Sybase reportsthe samevaue as
85.

For example, thefollowing query searchesfor documentsthat contain theword
“raconteur” or “Paris,” or both, and that have a score of 90 or greater:

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 90

and tl.index any = "<accrues>(raconteur, Paris)"
score copy

(0 rows affected)

The query does not find any documents that contain the word “raconteur” or
“Paris’ and that have a score greater than 90. However, if the scorevaluein the
query islowered to 39, you find that one document in the blurbstable mentions
the word “raconteur” or “Paris:”

select tl.score, t2.copy
from i_blurbs tl, blurbs t2
where tl.id=t2.id and tl.score > 39

and tl.index any = "<accrues>(raconteur, Paris)"
score copy
40 A chef's chef and a raconteur's raconteur, Reginald

Blotchet-Halls calls London his second home. "Th' palace

Using the sort_by column to specify a sort order

The sort order specifies the collating sequence used to order the datain the
result set. The default sort order is set by the sort_order configuration
parameter. See “ Setting the default sort order” on page 72. Caseinsensitive
sort order is supported.

Usethesort_by pseudo columnto return aresult set with asort order other than
the default. You can specify up to 16 sort specifications in the sort_by pseudo
column.

46 Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Table 5-2 lists the values for the sort_by pseudo column.

Table 5-2: Values for the sort_by pseudo column

Value

Returns

fts_score desc

A result set sorted by scorein descending order.

fts_score asc

A result set sorted by scorein ascending order.

fts_timestamp desc

A result set sorted by atimestamp in descending order.

fts_timestamp asc

A result set sorted by atimestamp in ascending order.

column_name desc

A result set sorted according to the descending order of a column. column_name isthe name
of the source table's column.

column_name asc

A result set sorted according to the ascending order of acolumn. column_name isthe name of
the source table’s column.

fts_cluster asc

A clustered result set. See “Using pseudo columns to request clustered result sets’ on page
48.

Note Before you can sort by specific columns, you must modify the style.vgw
and style.ufl files. See “ Setting up a column to use as a sort specification” on

page 30.

For example, the following query sorts the documents by timestamp in
ascending order:

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 90

and tl.index any = "<accrues>(raconteur, Paris)"
and tl.sort by = "fts_ timestamp asc"

Using the summary column to summarize documents

select tl.score,

Use the summary pseudo column to have queries return only summaries of the
documentsthat meet the search criteria, rather than returning entire documents.
The summary column is not available by default; you must edit the style.prm
file prior to creating the text index to enable summarization. See “Enabling
query-by-example, summarization, and clustering” on page 27.

For example, the following query returns only summaries of documents that
include the words “Iranian” and “book” (in this example, the style.prmfileis
configured to display 255 characters):

tl.summary

from i blurbs tl, blurbs t2

Users Guide

47

Pseudo columns in the index table

where tl.id=t2.id and tl.score > 70

and tl.index any = " (Iranian <and> book)"
score summary
78 They asked me to write about myself and my book, so here goes:

I started a restaurant called "de Gustibus" with two of my fri

(1 row affected)

The Enhanced Full-Text Search engine supports summaries of up to 255 bytes.

For additional examples of queries using summarization, see the sample script
sample_text_queries.sgl in the $SYBASE/$SYBASE FTS'sample/scripts
directory.

Using pseudo columns to request clustered result sets

The clustering function analyzes a result set and groups rows into clusters so
that the rows in each cluster are semantically more similar to each other, on
average, than they are to other rows in other clusters. Ordering rows by
subtopics can help you get a sense of the major subject areas covered in the
result set.

Returning a clustered result set can be significantly slower than returning a
nonclustered result set. If the response time of aquery iscritical, use a
nonclustered result set.

Preparing to use clustering

48

Before you request a clustered result set, you must build the text index with the
clustering function enabled. See “ Enabling query-by-example,
summarization, and clustering” on page 27.

The Verity clustering algorithm attempts to group similar rows together, based
on the values of the following configuration parameters:

* cluster_style
* cluster_max
e cluster_effort

* cluster_order

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Use sp_text_cluster to have aquery use values that are different from the
default values of these configuration parameters. See sp_text_cluster on page

152.

Writing queries requesting a clustered result set

To obtain aclustered result set, specify “fts_cluster” asthe sort specificationin
the sort_by pseudo column of the query. For example:

select tl.score, t2.copy
from i_blurbs tl, blurbs t2
where tl.id=t2.id

and tl.index any = "<many> <word> software"
and tl.max docs = 10
and tl.sort by = "fts cluster asc"

Include any of thefollowing pseudo columnsinyour query to return additional
clustering information:

cluster_number — contains the number of the cluster the row belongs to.
Clusters are numbered starting with 1.

cluster_keywords — contains the most common words found in the cluster.
The cluster_keywords column contains anull value for each row that does
not fit into any cluster.

max_docs — limits the number of rows returned for each cluster. In a
nonclustered query, the max_docs column limits the total number of rows
that are returned in aresult set.

score — contains avalue of 0to 10000. The higher the score, the closer the
row isto the cluster center. A score of 0 indicates the row does not fit into
any cluster. In anonclustered query, the score column can contain avalue
of 0to 100. The search engine does not return results with ascore of 0. A
score of O represents “no match” but the user never sees a score of 0.

See the sample script named sample_text_queries.sgl in the
$SYBASE/$SYBASE_FTSsample/scripts directory for examples of SQL
statements using clustering.

Users Guide

49

Full-text search operators

Full-text search operators

The special search operatorsthat you use to perform full-text searches are part
of the Verity search engine. Table 5-3 describes the Verity search operators
provided by the Enhanced Full-Text Search engine.

Note Sybase does not support indexing XML elementsinto fields.

Table 5-3: Verity search operators

Operator

name Description

accrue Selects documents that contain at least one of the search elements specified in a query. The more
search elements there are, the higher the score.

and Selects documents that contain all the search elements specified in a query.

complement Returns the complement of the score value (the score value subtracted from 100).

in Selects documents that contain the search criteriain the document zone specified.

like Selects documents that are similar to the sample documents or passages specified in a query.

near Selects documents containing the specified search elements, where the closer the search terms are
to each other in adocument, the higher the document’s score.

near/n Selects documents containing two or more search terms within n number of words of each other,
wherenisaninteger up to 1000. The closer the search terms are to each other in a document, the
higher the document’s score.

or Selects documents that contain at least one of the search elements specified in a query.

paragraph Selects documents that include all the search elements you specify within the same paragraph.

phrase Selects documents that include a particular phrase. A phraseis a grouping of two or more words
that occur in a specific order.

product Multiplies the score values for each of the items of the search criteria

sentence Selects documents that include all the specified words in the same sentence.

stem Expands the search to include the specified word and its variations.

sum Adds the score values for all itemsin the search criteria.

thesaurus Expands the search to include the specified word and its synonyms.

topic Specifies that the search term you enter is atopic.

typo/n Expandsthe search to include the specified word pluswordsthat are similar. The optional nvariable
specifies the maximum number of errors between the query term and the matched term.

wildcard Matches wildcard characters included in search strings. Certain characters indicate a wildcard
specification automatically.

word Performs a basic word search, selecting documents that include one or more instances of the
specified word.

yesno Converts al nonzero score values to 100.

50 Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Considerations when using Verity operators
When you write full-text search queries:

e Verity treats dash, underscore and ampersand as alphabetical characters
rather than word separators. This behavior can be modified by changing
the locale specific definition file. For example: -tokenized_as_alphabet-&
can be changed to -tokenized_as_alphabet_&.

e You must enclosethe operatorsin angle brackets (<>) in the query. If they
are not enclosed in angle brackets, the Enhanced Full-Text Search engine
issues error messages similar to the following:

Msg 20200, Level 15, State 0:

Server 'KRAZYKAT', Line 1:

Error E1-0111 (Query Builder): Syntax error in query string near
character 5

Msg 20200, Level 15, State 0:

Server 'KRAZYKAT', Line 1:

Error E1-0114 (Query Builder): Error parsing query: word(tasmanian)
Msg 20101, Level 15, State 0:

Server 'KRAZYKAT', Line 1:

VdkSearchNew failed with vdk error (-40).

Msg 20101, Level 15, State 0:

Server 'KRAZYKAT', Line 1:

VdkSearchGetInfo failed with vdk error (-11).

score copy

(0 rows affected) score

e You must enclose the Verity language query in single quotes (") or double
quotes (). The Enhanced Full-Text Search engine strips off the outermost
quotesbeforeit sendsthe query to Verity. For example, when you enter the
query:

..where index any = "'?own'"

The Enhanced Full-Text Search engine sends the following query to
Verity:
'?own'
e A query may comprise several “index_any” clausesand ed together in
SQL. Theright and value strings can be prefixed with “<snnn>". All such

strings are concatenated in Enhanced Full-Text Search in the order
determined by the “nnn” values. The “<snnn>" is removed. For instance:

where index_any="<s00l>hello"
and index any="<s002> world"

Users Guide 51

Full-text search operators

isthe same as.
where index any = "hello world"

Thisisaworkaround for search strings that are greater than 255
characters.

» Search terms entered in mixed case automatically become case sensitive.
Search terms entered in all uppercase or al lowercase are not
automatically case sensitive. For example, aquery on “Server” finds only
the string “ Server”. A query on “server” or “SERVER” finds the strings
“Server”, “server”, and “SERVER”.

* You can use aternative syntax for the query expressions shown in Table

5-4.
Table 5-4: Alternative Verity syntax
Standard query expression Alternative syntax
<MANY><WORD>string "string"
<MANY><STEM>string 'string’

When using the alternative syntax, remember that the Enhanced Full-Text
Search engine strips off the outermost quotes before it sends the query to
Verity. For example, when you enter the query:

..where index any = "'play'"
the Enhanced Full-Text Search engine sendsthefollowing query to Verity:
'play"
Thisisthe same as:

<MANY><STEM>play

Using the Verity operators

The following sections describe how to use the Verity operators shown in
Table 5-3 on page 50.

accrue

The accrue operator selects documents that contain at least one of the search
items specified in the query. There must be two or more search elements. Each
result is relevance-ranked. For example, the following query searches for the
word “restaurant” or “deli” or both in the copy column of the blurbs table:

52 Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

and, or

complement

Users Guide

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 35

and tl.index any = "<accrues>(restaurant, deli)"

The and and or operators select documents that contain the specified search
elements. Each result isrelevance-ranked. The and operator selects documents
that contain all the elements specified in the query. For example, the following
query selects documents that contain both “Iranian” and “business’:

select t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = " (Iranian <and> business)"

The or operator selects the documents that contain any of the search elements.
For example, if the preceding query isrewritten to usethe or operator, the query
selects documents that contain the word “Iranian” or “business’:

select t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = " (Iranian <or> business)"

The complement operator returns the complement of the score value for a
document; that is, it subtracts the value of score from 100 and returnsthe result
as the score value for the document.

Thein operator selects documents that contain the specified search element in
one or more document zones. Document zones are created for atext index in
the following two scenarios:

e When you create an index on two or more columns using
sp_create_text_index, a document zone is created for each column in the
text index. See* Specifying multiple columnswhen creating atext index”
on page 22. A document zoneis not created when you create a text index
on asingle column. For example, if you specify the au_id and copy
columns of the blurbs table when you create the text index, you can issue
the following query:

53

Full-text search operators

like

54

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 35
and tl.index any = "gorilla <in> copy"

This returns rows that contain the word “gorilla’ in the copy column.
However, if you specify only the copy column of the blurbs table whenyou
create the text index, this query does not return any rows.

* Whenyou create an index that uses afilter, adocument zoneis created for
each tag in the document. See“Using filters on text that containstags’ on
page 32. You can limit your search to aparticular tag by specifying thetag
name after the in operator. For example, to search for the word
“automotive” in a“title” tag in an HTML document, specify:

select tl.score, t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 35

and tl.index any = "automotive <in> title"

Text indexes utilizing filters can contain only one column.

The like operator selects documents that are similar to the documents or
passages you provide. The search engine analyzes the text to find the most
important terms to use. If you specify multiple samples, the search engine
selects important terms that are common across the samples. Each result is
relevance-ranked.

Thelike operator acceptsasingle operand, called the query-by-example (QBE)
specification. The QBE specification can beeither literal text or document I1Ds.
The document IDs are from the IDENTITY column in the source table. For
example, to select documents that are similar to the document in the copy
columnin the row with an IDENTITY of “2”, enter:

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 35
and tl.index any = ‘<like> ("{2}")’

Before using literal text in the QBE specification, you must uncomment the
following linein the style.prmfile:

Sdefine DOC-FEATURES "TF"

See " Enabling query-by-example, summarization, and clustering” on page 27.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

near, near/n

or

phrase

paragraph

Users Guide

See the sample script named sample_text_queries.sgl in the
$SYBASE/$SYBASE_FTS'sample/scripts directory for examples of SQL
statements using QBE.

The near operator selects documents that contain the items specified in the
guery and are near each other (“near” being arelative term). The documentsin
which the search words appear closest to each other receive the highest
relevance-ranking.

The near/n operator specifies how far apart the items can be (n has amaximum
value of 1000). The following example selects documents in which the words
“raconteur” and “home” appear within 10 words of each other:

select t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = "<near/1l0>(raconteur, home)"

See “and, or” on page 53.

Thephrase operator sel ects documentsthat contain a particular phrase (agroup
of two or more items that occur in a specific order). Each result is relevance-
ranked. The following example selects the documents that contain the phrase
“gorilla’'s head”:

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 50

and tl.index any = "<phrases(gorilla’s head)"

The paragraph operator selects documents in which the specified search
elements appear in the same paragraph. The closer the words are to each other
in a paragraph, the higher the score the document receives in relevance-
ranking. The following example searches for documents in which the words
“text” and “search” occur within the same paragraph:

55

Full-text search operators

product

sentence

stem

56

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 50

and tl.index any = "<manys><paragraphs>(text, search)"

The product operator multiplies the score value for the documents for each of
the search elements. To arrive at a document’s score, the Enhanced Full-Text
Search engine calculates a score for each search element and multiplies the
scores. For example:

select tl.score, t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 50

and tl.index any = "<products>(cat, created)"

The score value for each search element is 78; however, because the score
values for the items are multiplied, the document has ascore value of 61 (.78
X.78 =.61(100) = 61).

The sentence operator selects documentsin which the specified search
elements appear in the same sentence. The closer the words are to each other
in asentence, the higher the score the document receivesin relevance-ranking.
The following example searches for documentsin which the words “tax” and
“service” occur within the same sentence:

select tl.score, t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 50

and tl.index any = "<many><sentences> (tax, service)"

The stem operator searches for documents containing the specified word and
itsvariations. For example, if you specify the word “ cook,” the Enhanced Full-
Text Search engine produces documents that contain “ cooked,” “cooking,”
“cooks,” and so on. To relevance-rank the result set, include the many modifier
in the query. See “ Operator modifiers’ on page 60.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

The following query uses the stem operator to find documents that contain
variations of theword “create,” that is, words that contain theword “ create” as
a stem. Notice that even though the first document contains aword in which
“create” is not a perfect stem (“creative”), the document is still selected:

select tl.score, t2.copy
from i blurbs tl, blurbs t2
where tl.id=t2.id and tl.score > 10

and tl.index any = "<manys><stem>create"
score copy
78 Anne Ringer ran away from the circus as a child. A

university creative writing professor and her family

78 If Chastity Locksley didn't exist, this troubled world
would have created her! Not only did she master the mystic

sum
The sum operator totals the score values for each search element, up to a
maximum of 100. To arrive at a document’s score, the Enhanced Full-Text
Search engine calculates a score for each search element and total s those
scores.

thesaurus

The thesaurus operator searches for documents containing a synonym for a
search element. For example, you might perform a search using the word
“dog,” looking for documentsthat use any of its synonyms (“canine,” “ pooch,”
“pup,” “watchdog,” and so on). Each result is relevance-ranked.

The Enhanced Full-Text Search engine supplies adefault thesaurus. You can
also create a custom thesaurus. See* Creating a custom thesaurus” on page 34.

The following example uses the thesaurus operator to find aresult set that
contains synonyms for the word “crave.” The first document is selected
because it contains the word “want;” the second, because it contains the word
“hunger:”

select t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = "<thesauruss (crave)"

score copy

Users Guide 57

Full-text search operators

78 They asked me to write about myself and my book, so here
goes: I started a restaurant called "de Gustibus" with two

of restaurant over another, when what they really want is a

78 A chef's chef and a raconteur's raconteur, Reginald
Blotchet-Halls calls London his second home. "Th' palace

his equal skill in satisfying our perpetual hunger for

topic

typo/n

wildcard

The topic operator selects documents that meet the search criteria defined by
the specified topic. See “ Creating topics’ on page 38. For example, use the
following syntax to find documents that meet the criteria defined by the topic
“engineering:”

select t2.copy

from i_blurbs tl, blurbs t2

where tl.id=t2.id

and tl.index any = "<topic>(engineering)"

The typo/n operator expands the search to include the specified word plus

words that are similar. The optional n variable specifies the maximum number
of errors between the query and the matched terms. For example, typo mouse
returns documents that include words such as*“ house,” “louse,” and “moose.”

The wildcard operator allows you to substitute wildcard characters for part of
the item for which you are searching. Table 5-5 describes the wildcard
characters and their attributes.

Table 5-5: Enhanced Full-Text Search engine wildcard characters

Character

Function Syntax Locates

?

58

” o " ow

Specifiesone a phanumeric character. Youdonotneed '?an’ “ran,” “pan,
to include the wildcard operator when you include the “ban”
question mark in your query. The question mark is

ignoredin aset ([]) or in an alternative pattern ({}).

can,” and

Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Character Function Syntax Locates

* Specifies zero or more of any alphanumeric character. ’corp* “corporate,”
You do not need to include the wildcard operator when “corporation,”
you include the asterisk in your query; you should not “corporal,” and
use the asterisk to specify the first character of a “corpulent”

wildcard-character string. The asterisk isignored in a
set ([]) or in an aternative pattern ({}).

0 Specifies any single character in a set. If aword <wildcard> “cat,” “cut,” and “cot”
includes a set, you must enclose the word in ‘clauo]t*
backquotes (**). Also, there can be no spacesin a set.

4 Specifies one of each pattern separated by acomma. If <wildcard> “banks,” “banker,” and

aword includes a pattern, you must enclosetheword ‘bank{s,er,ing} “banking”
in backquotes (**). Also, therecan beno spacesinaset. *

A Specifies one of any character not included in a set. <wildcard> Excludes “stock” and
The caret (") must be the first character after theleft ‘st[*oa]ck’ “stack,” but locates
bracket ([) that introduces a set. “stick” and “stuck”

- Specifies arange of charactersin a set. <wildcard> Includes every three-

‘cla-]t* letter word from “cat” to
“ort”

To relevance-rank the result set, include the many modifier in the query. See
“Qperator modifiers’ on page 60.

For example, the following query searches for documents that include
variations of the word “slingshot:”

select t2.copy
from i_blurbs tl, blurbs t2
where tl.id=t2.id

and tl.index any = ’"slingshot*"’
score copy
100 Albert Ringer was born in a trunk to circus parents, but

another kind of circus trunk played a more important role

gorilla. "Slingshotting" himself from the ring ropes,

word

The word operator searches for documents containing the specified word. To
relevance-rank the result set, include the many operator in the query. The
following exampl e searchesthe blurbs tablefor documents containing theword
“palates’:

Users Guide 59

Operator modifiers

select tl.score, t2.copy

from i blurbs tl, blurbs t2

where tl.id=t2.id and tl.score > 50

and tl.index any = "<many><words>(palates)"

yesno

The yesno operator converts al nonzero score valuesto 100. For example, if
the score values for five documents are 86, 45, 89, 89, and 100, each of those
documentsis returned with a score value of 100. score values of 0 are not
changed. The yesno operator is helpful for ensuring that all documents
containing the search criteriaare returnedin theresult set, regardless of the sort
order.

Operator modifiers

The Verity query language includes modifiers that you can use with the
operators to refine a search. The modifiers are described in Table 5-6.

Table 5-6: Verity operator modifiers

Modifier Works with
name Description these operators Example
case Performs case-sensitive wildcard <case><word> (Net)
searches. If you enter search 5
termsin mixed case, thesearch
is automatically case sensitive.
many Counts the number of times paragraph <many><stems (write)
that aword, stemmed word, or - pnrase
phrase occurs in a document. .
Relevance-ranksthedocument S€M€N¢¢
according to its density. stem
word
wildcard
not Excludes documents that and cat<and><not>elephant
containtheitemsfor whichthe
query is searching.
60 Enhanced Full-Text Search Specialty Data Store

CHAPTER 5 Writing Full-Text Search Queries

Modifier Works with

name Description these operators Example

order Specifiesthat theitemsinthe near/n Simple syntax:
documents occur in the same paragraph tidbits<orders<paragraphs>king
order in which they appear in sentence Explicit syntax:

the query.

Always place the order
modifier just before the
operator

<order><paragraph> (tidbits, king)

Users Guide

61

Operator modifiers

62 Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

This chapter describes system administration issues for the Enhanced
Full-Text Search engine.

Topic Page
Starting the Enhanced Full-Text Search engine on UNIX 63
Starting the Enhanced Full-Text Search engine on Windows NT 65
Shutting down the Enhanced Full-Text Search engine 66
Modifying the configuration parameters 67
Backup and recovery for the Enhanced Full-Text Search engine 75

Starting the Enhanced Full-Text Search engine on
UNIX

Usethestartserver utility to start the Enhanced Full-Text Search engineon
UNIX. The startserver utility isincluded in theinstall directory of
Adaptive Server. For example, to start a Enhanced Full-Text Search
engine named KRAZY KAT, enter:

startserver -f
SSYBASE/ $SYBASE_FTS/ install /RU'N_KRAZYKAT

where the -f flag specifies the rel ative path to the runserver file. After you
issue the command, the Enhanced Full-Text Search engineissues a series
of messages describing the settings of the configuration parameters.

Creating the runserver file

Therunserver file contains start-up commandsfor the Enhanced Full-Text
Search engine. The runserver file can include these flags:

e -Sserver_name —specifiesthe name of the Enhanced Full-Text Search
engine and is used to locate the configuration file and the network
connection information in the interfacesfile.

Users Guide 63

Starting the Enhanced Full-Text Search engine on UNIX

e -t—causesthe Enhanced Full-Text Search engine to write start-up
messages to standard error.

e -lerrorlog_path — specifies the path to the error log file.
» -interfaces_file_path — specifies the path to the interfacesfile.

A samplerunserver file is copied to the $SYBASE/$SYBASE_FTYinstall
directory during installation. Make a copy of thisfile, renaming it
RUN_server_name, where server_nameisthe name of the Enhanced Full-Text
Search engine. You must include the correct path environment variable for
your platform in the runserver file. Table 6-1 shows the path environment
variable to use for each platform.

Table 6-1: Path environment variable for the runserver file

Platform Environment variable
RS/6000 AlX LIBPATH

Sun Solaris LD_LIBRARY_PATH
HP 9000(800) SHLIB_PATH

Compaq Tru64 LD_LIBRARY_PATH
Linux LD_LIBRARY_PATH
NT PATH

For example, the runserver file on Sun Solarisfor aEnhanced Full-Text Search
engine named KRAZY KAT would be RUN_KRAZYKAT and would be similar
to:

#!/bin/sh
#

LD LIBRARY PATH="$SYBASE/SSYBASE FTS/lib:SLD_
LIBRARY PATH"
export LD LIBRARY PATH

SSYBASE/bin/txtsvr -SKRAZYKAT

The start-up command in the runserver file must consist of asingle line and
cannot include areturn. If you must carry the contents of thefile over to a
second or third line, include a backdash (\) for aline break.

64 Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

Starting the Enhanced Full-Text Search engine on

Windows NT

You can start the Enhanced Full-Text Search enginefrom Sybase Central ™, as
aservice, or from the command line:

e From Sybase Central — see your Sybase Central documentation for
information about starting servers.

e Asaservice —see " Starting the Enhanced Full-Text Search engine as a
service” on page 65

e From the command line — use the following syntax:

%SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe -Sserver_name
[-t] [-i%SYBASE%path_to_sql.ini_file] [-
1%SYBASE%path_to_errorlog]

Where:

e -Sisthe name of the Enhanced Full-Text Search engine you are
starting.

e -tdirects start-up messagesto standard error.

e -iisthe pathto the sgl.ini file. This path must include the sgl.ini file
name.

e -listhe pathto the error log. This path must include the name of the
error log file.

For example, to start a Enhanced Full-Text Search engine named KRAZY KAT
on NT using the default sgl.ini and error log files, and using -t to trace start-up
messages, enter:

$SYBASE%\%SYBASE FTS%\bin\txtsvr.exe -SKRAZYKAT -t

The Enhanced Full-Text Search engine is running when you see the start-up
complete message.

Starting the Enhanced Full-Text Search engine as a service

Usetheinstsvr utility in Sybase Central to add the Enhanced Full-Text Search
enginetothelist of itemsyou can start and stop with the Services utility. instsvr
is located in the %SYBASEY0\%SYBASE FTSY\bin directory.

Theinstsvr utility uses the following syntax:

instsvr.exe service name %SYBASE%\%SYBASE FTS%\bin\txtsvr.exe

Users Guide

65

Shutting down the Enhanced Full-Text Search engine

"startup parameters”

where:

* service_name —isthe name of the Enhanced Full-Text Search engine you
are adding asa service. With Sybase Central, Sybase recommendsyou use
a server name with the extension“_TS” (for example, KRAZYKAT_TYS).

* startup_parameters —are any parameters you want used at start-up.

For example, to install an Enhanced Full-Text Search engine named
KRAZYKAT TSasaservice, enter:

instsvr.exe KRAZYKAT TS %$SYBASE%\sds\text\bin\txtsvr.exe

"-SKRAZYKAT TS -t"

Note To include more than one parameter (for example, -i), enclose all the
parameters in one set of double quotes.

To configure Sybase Central to start and stop your Enhanced Full-Text Search
engine, you must provide a service name that begins with
“SYBTXT_server_name”, where server_name is the name of the Enhanced
Full-Text Search engine listed in the interfaces file. For example, if the name
intheinterfacesfileisKRAZYKAT_TS, runthefollowing instsvr command to
create a service that can be managed by Sybase Central:

instsvr SYBTXT KRAZYKAT TS $SYBASE$\%SYBASE FTS%\bin\txtsvr.exe

"-SKRAZYKAT TS -t"

Shutting down the Enhanced Full-Text Search engine

66

Use the following command to shut down the Enhanced Full-Text Search
engine from Adaptive Server:

server name...sp_ shutdown

where server_name is the name of the Enhanced Full-Text Search engine you
are shutting down.

Only users with sa_role can shut down the Enhanced Full-Text Search engine.

For example, to shutdown a Enhanced Full-Text Search engine named
KRAZYKAT, enter:

KRAZYKAT. . .sp_shutdown

Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

Modifying the configuration parameters
Each Enhanced Full-Text Search engine has configuration parameters with

default values, as shown in Table 6-2.

Table 6-2: Configuration parameters

Parameter Description Default value
batch_size Determines the size of the batches sent to the 500
Enhanced Full-Text Search engine.
batch_blocksize ~ When enabled, the text server reads datain 0
smaller chunks. This parameter instructs the text
server to retrieve n number of rows at atime.
Range is 0 (disabled) to 65535.
max_indexes The maximum number of text indexes that are 126
created in the Enhanced Full-Text Search
engine.
max_stacksize Size (in kilobytes) of the stack allocated for 34,816
client threads.
max_threads Maximum number of threads available for the 50
Enhanced Full-Text Search engine.
max_packetsize Packet size sent between the Enhanced Full- 2048
Text Search engine and the Adaptive Server.
max_sessions Maximum number of sessionsfor theEnhanced 100
Full-Text Search engine.
min_sessions Minimum number of sessionsfor the Enhanced 10
Full-Text Search engine.
language Language used by the Enhanced Full-Text us_english
Search engine.
charset Character set used by the Enhanced Full-Text iso 1
Search engine.
vdkCharset Character set used by Verity search engine. 850
vdkLanguage Language used by Verity search engine. english
vdkHome Verity directory. UNIX:
$SYBASE/$SYBASE_FTS/verity
Windows NT:
%SYBASEY\%SYBASE_FT%0\verity
collDir Storage location of the Enhanced Full-Text UNIX:

Users Guide

Search engine's collection.

$SYBASE/$SYBASE_FTScollections
Windows NT:
%SYBASEY0\%SYBASE_FTS%\collections

67

Modifying the configuration parameters

Parameter Description Default value
defaultDb Name of the Enhanced Full-Text Search text_db
engine database that stores text index metadata.
interfaces Full path to the directory in which theinterfaces UNIX:
file used by the Enhanced Full-Text Search gsypaSE/interfaces
engineislocated. Windows NT-
%SYBASEY6\ini\sql.ini
sort_order Default sort order. 0
errorLog Full path name to the error log file. Thedirectory inwhich you start Enhanced
Full-Text Search engine
traceflags String containing numeric identifiers used to 0
generate diagnostic information.
srv_traceflags String containing numeric flagidentifiersusedto 0
generate Open Server diagnostic information.
max_session_fd ~ The maximum number of file descriptors used 0
by an Enhanced Full-Text Search session. See
“File Descriptors and Enhanced Full-Text
Search” on page 86.
cluster_style Clustering styleto use. Fixed
cluster_max Maximum number of clustersto generatewhen 0
cluster_style is set to Fixed.
cluster_effort Amount of effort the Enhanced Full-Text Default
Search engine should expend on finding agood
cluster.
cluster_order The order to return clusters and rows within a 0
cluster.
auto_online Specifies whether to bring indexes online 0
automatically when the Enhanced Full-Text
Search engineis started. O indicates onlineis
not automatic; 1 indicates automatic.
backDir The default location for the placement of text UNIX:

index backup files.

$SYBASE/$SYBASE_FTSbackup
Windows NT:
%SYBASEY0\%SYBASE _FTSY\backup

knowledge_base

The location of a knowledge base map for
implementing the Verity topics feature.

null

nocase Sets the case-sensitivity of the Enhanced 0
Full-Text Search engine. If you are using a
case-senditive sort order in Adaptive Server, set
to 0. If you are using a case-insensitive sort
order, set to 1.
68 Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

A sample configuration file that includes all of these parametersis copied to
your installation directory during installation. The sample configuration file,
which is named textsvr.cfg islisted in Appendix B, “Sample Files.”

Modifying configuration values

Use sp_text_configure to change the value of a configuration parameter. The
syntax is:

sp_text_configure server_name, config_name, config_value
Where:

e server_name —isthe name of the Enhanced Full-Text Search engine.
e config_name —isthe name of the configuration parameter.
« config_value —isthe value you assign to the configuration parameter.

See sp_text_configure on page 154.

Available configuration parameters

Table 6-3 provides alist of available configuration parameters with valid
limits:

Table 6-3: Limits to Configuration parameters

Parameter Values Static/dynamic
batch_size 0—MAX_INT Dynamic
batch_blocksize 0-65535 Dynamic
max_indexes 0—MAX_INT Static
max_stacksize 0—MAX_INT Static
max_threads 0—MAX_INT Static
max_packetsize 0—MAX_INT Static
max_sessions 0—MAX_INT Static
min_sessions 0—max_sessions Static

language french, spanish german, us_english Static

charset ascii_8, cp037, cpl047, cpd37, cp500, cp850, deckanji, eucjis, Static

iso_1, mac, romans, gis, utf8
vdkCharset 50, 437, 1252, macl (Just the ones listed in the manual) Static
Users Guide 69

Modifying the configuration parameters

Parameter Values Static/dynamic
vdkLanguage frenchx, spanishx, germanx, english, englishx, bokmalx, Static
dutchx, finnishx, nynorskx, swedishx, portugx, italianx,
danishx
vdkHome A string < 255 chars Static
collDir A string < 255 chars Static
default_Db A string < 32 chars Static
interfaces A string < 255 chars Static
sort_order 0,123 Dynamic
errorLog A string < 255 chars Static
traceflags A string with comma delimited numbers ranging anywhere Static
from 1to 15
srv_traceflags A string with comma delimited numbers ranging anywhere Static
from1to8
cluster_style Coarse, Medium, Fine, Fixed Dynamic
cluster_max 0—MAX_INT Dynamic
cluster_effort Low, Medium, High, Default Dynamic
cluster_order Oor1l Dynamic
auto_online Oorl Static
backCmd A string < 255 chars Dynamic
restoreCmd A string < 255 chars Dynamic
backDir A string < 255 chars Static
knowledge_base A string < 255 chars Static
nocase Oor1l Dynamic
max_session_fd 0,5—-MAX_INT Static

Setting the default language

The default language for Verity is set with the vdkLanguage configuration
parameter. By default, vdkLanguage is set to “english.” You can configure
Verity to use a different default language. Table 6-4 lists the local es supported

70

by Sybase.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

Table 6-4: vdkLanguage configuration parameters

Language Default locale name
English english

German german

French french

Additional language adapters are available in the
$SYBASE/$SYBASE_FTSverity/common directory; however, the Enhanced
Full-Text Search engine displays messages only in the languages shown in
Table 6-4.

Thelanguage parameter isthe language the Enhanced Full-Text Search engine
usesto display its error messages and Open Server and Open Client error
messages. Set the language parameter to the Adaptive Server language.

With the Enhanced Full-Text Search engine, run:
sp_text configure KRAZYKAT, 'vdkLanguage', 'spanish'

For more information about the Verity languages, see the Verity Web site at
http://www.verity.com.

Setting the default character set

Users Guide

Set the default character set for Verity using the vdkCharset parameter in the
configuration file. The files used for the Verity character setsarein
$SYBASE/$SYBASE_FTSverity/common. Table 6-5 describes the character
sets you can use with Verity.

Table 6-5: Verity character sets

Character set Description

850 Default

437 IBM PC character set

1252 Windows code page for Western European languages
macl Macintosh roman

The default character set for the Enhanced Full-Text Search engineis set with
the charset parameter. Set the charset parameter to the Adaptive Server
character set.

For example, with the Enhanced Full-Text Search engine, run:

sp_text configure KRAZYKAT, ‘vdkCharset’, ’437’

71

Modifying the configuration parameters

Indexing on the euro symbol

To index the euro symbol, install the utfg charset in Adaptive Server. Set
vdkLanguage to <language>x and leave vdkCharset blank. For example:

ASE 12.5.x charset = utfs
EFTS 12.5.x vdkLanguage englishx
EFTS 12.5.x vdkCharset

Setting the default sort order

72

By default, the Enhanced Full-Text Search engine sorts the result set by the
score pseudo column in descending order (the higher scores appear first). To
change the default sort order, set the sort_order configuration parameter to one
of thevaluesin Table 6-6.

Table 6-6: Sort order values for the configuration file

Value Description

0 Returns result sets sorted by the score pseudo column in descending order.
The default value.

1 Returns result sets sorted by the score pseudo column in ascending order.

2 Returns result sets sorted by atimestamp in descending order.

3 Returns result sets sorted by atimestamp in ascending order.

For example, enter:
sp_text configure KRAZYKAT, 'sort order',kK '2'

When you sort aresult set by descending timestamp (value 2in Table 6-6), the
Enhanced Full-Text Search engine returns the newest documents first. The
newest documents are those that were inserted or updated most recently. When
results are sorted by ascending timestamp (value 3 in Table 6-6), the Enhanced
Full-Text Search engine returns the oldest documents first.

Setting the default sort order is especially important if your query uses the
max_docs pseudo column. The max_docs pseudo column limits the number of
rows of the result set to the first n rows, ordered by the sort order. If you set
max_docs to anumber smaller than the size of the result set, the sort order you
select could exclude the rows that contain the information for which you are
searching.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

For example, if you sort by ascending timestamp, the latest document added to
the table appears last in the result set. If the entire result set consists of 11
documents, and you set max_docs to 10, the latest document does not appear
in the result set. However, if you sort by descending timestamp, the latest
document appears first in the result set.

Setting trace flags

Thetraceflags parameter enablesthelogging of certain eventswhen they occur
within the Enhanced Full-Text Search engine. Each trace flag is uniquely
identified by a number. Trace flags are described in Table 6-7.

Users Guide

Table 6-7: Enhanced Full-Text Search engine trace flags

Trace

flag Description

1 Traces connects, disconnects, and attention events from Adaptive Server.

2 Traceslanguage events. Tracesthe SQL statement that Adaptive Server sent
to the Enhanced Full-Text Search engine.

3 Traces RPC events.

4 Traces cursor events. Traces the SQL statement sent to the Enhanced Full-
Text Search engine by Adaptive Server.

5 Writes the errors that display to the log.

6 Tracesinformation about text indexes. Writes the search string being passed
to Verity to the log, and writes the number of records that the search returns
tothelog.

7 Traces done packets.

8 Traces callsto theinterface between the Enhanced Full-Text Search engine
and the Verity API.

9 Traces SQL parsing.

10 Traces Verity processing.

11 Disables Verity collection optimization.

12 Disables sp_statistics from returning information.

13 Traces backup operations.

14 Logs Verity status and timing information.

15 Generates ngram index information for collections. ngrams increase the

speed of wildcard searches. Thistraceflag isrequired for wildcard searches
against datain Unicode format.

73

Modifying the configuration parameters

Trace
flag Description

30

Thistraceflag enables the Verity MaxClean feature that removes out of date
collection files. It should only be used during maintenance sinceit could
take extratime and interfere with normal usage. It isenabled in conjunction
with sp_optimize_text_index.

You can enable and disable trace flags interactively, using the remote
procedure calls (RPCs) sp_traceon and sp_traceoff in the Enhanced Full-Text
Search engine.

To execute sp_traceon, use the following, where textserver is the name of the
Enhanced Full-Text Search engine:

textserver...sp_traceon 1,2,3,4

Thetraceflags stay active until the session isterminated or until the sp_traceoff
RPC is executed using the specific traceflag. To set a traceflag permanently,
either set it in the configuration file or use the sp_text_configure command.

Setting Open Server trace flags

Use the srv_traceflags parameter to turn on trace flags to log Open Server
diagnostic information. Open Server trace flags are described in Table 6-8.

74

Table 6-8: Open Server trace flags

Trace
flag Description
1 Traces TDS headers
2 Traces TDS data
3 Traces attention events
4 Traces message queues
5 Traces TDS tokens
6 Traces Open Server events
7 Traces deferred event queues
8 Traces network requests
For example:
sp_text configure KRAZYKAT, 'srv_ traceflags', '3'

Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

Setting case sensitivity

By default, the Enhanced Full-Text Search engineis case sensitive. Thismeans
you must enter identifiers in the same case or they are not recognized. For
example, if you have atable named blurbs (lowercase), you cannot issue an
sp_create_text_index command that specifies the table name BLURBS. You
must issue a command that uses the same case for the table name argument:

sp_create text index "KRAZYKAT", "i blurbs", "blurbs", "", "copy"

With Enhanced Full-Text Search engine, use the nocase parameter to set the
case sensitivity of the Enhanced Full-Text Search engine. 0 indicates case
sensitive; 1 indicates case insensitive. Set the nocase parameter to the sort
order case sensitivity in Adaptive Server.

This example changes the KRAZY KAT server to case insensitive.

sp_text_configure KRAZYKAT, 'nocase', '1'

Note The nocase parameter does not affect the case sensitivity of the Verity
query. See “ Considerations when using Verity operators’ on page 51.

Backup and recovery for the Enhanced Full-Text
Search engine

Users Guide

Backup and recovery for the Enhanced Full-Text Search Specialty Data Store
is automated with sp_text_dump_database and sp_text_load_index. These
system procedures provide a seamless interface for maintaining data and text
index integrity.

The Adaptive Server user database and the Verity collections are physically
separate. Backing up your user database does not back up the Verity
collections, and restoring your database from a backup does not restore your
Verity collections. The backup and recovery procedures described in Chapter
27,"“Backing Up and Restoring User Databases,” of the System Administration
Guide apply only to the user database and the text_db database in Adaptive
Server.

75

Backup and recovery for the Enhanced Full-Text Search engine

Follow the recommended schedul e for backing up your databases, as described
in Chapter 26, “Developing a Backup and Recovery Plan,” of the System
Administration Guide. Sybase recommends that when you back up a user
database with text indexes, you also back up:

e Thetext_db database

e Thetext indexes

Note You do not haveto back up the user database and text indexes at the
sametimeto recover the text indexes. However, you must restore the user
database before you restore the text index. Thisrestores the text_events
table, which sp_text_load_index usesto bring the text indexesin sync with
the user database.

A regular backup schedule ensures the integrity of the text indexes, the
Adaptive Server data, and the text_events table, all of which are integral to
recovering your text indexes without having to drop and re-create them.

Customizable backup and restore

backCmd and restoreCmd allow customizable backup and restore commandsto
be used instead of tar or zip commands when backing up collection files. If
backCmd and restoreCmd are blank, the default commands are used; otherwise,
the specified command is executed. String substitution is performed before
execution to allow specification of input and output directories and collection
identification. The string substitution is defined as follows:

» ${backDir} isreplaced by the backup directory specified asthe“backDir”
configuration parameter.

* ${collDir} isreplaced by the full path name for the collection.

* ${collD} isreplaced by the collection ID which is the full name of the
backup file.

Backing up Verity collections

The sp_text_dump_database system procedure backs up collections and
(optionally) the user and text_db databases. sp_text_dump_database also
maintainsthetext_events table by deleting entriesthat are no longer needed for
recovery.

76 Enhanced Full-Text Search Specialty Data Store

CHAPTER 6 System Administration

During abackup, the Enhanced Full-Text Search engine processes queries, but
defers any update requests until the backup is complete. This eliminates the
need to shut down and restart the Enhanced Full-Text Search engine.

Run sp_text_dump_database from the database containing the text indexesyou
are backing up. Make sure al the required servers are running when issuing
sp_text_dump_database. sp_text_dump_database unconditionally backs up all
indexes of all enhanced text servers. The backup of the text indexes is placed
inthe directory specified in the backDir configuration parameter. The output of
dump database is written to the Enhanced Full-Text Search error log. Sybase
recommends dumping the current database and the text_db database at thetime
the text indexes are backed up. However, thisis optional.

For example, to back up thetext indexes, the sample_colors_db database to the
Iwork2/sybase/col or shackup directory, and the text_db database to the
Iwork2/sybase/textdbbackup directory, enter:

sp_text dump database @backupdbs =
INDEXES_ AND DATABASES, @current to = "to

' /work2/sybase/colorsbackup'", @textdb to="to
' /work2/sybase/textdbbackkup!'"

Note Itisimportant that you back up thetext_db database whenever you back
up text indexes, since that database contains the metadata for all text indexes.

sp_text_dump_database may fail on Solarisif the required file size is greater
than 2GB.

See sp_text_dump_database on page 156.

Restoring collections and text indexes from backup

Users Guide

sp_text_load_index System procedure restores text indexes that have been
backed up with the sp_text_dump_database System procedure.

As Database Administrator, perform the following procedures to restore your
Verity collections:

1 Restoreyour Adaptive Server user database and text_db database. This
returns the source tables, metadata, and text_events table to a consistent
and predictable state. Follow the procedures described in Chapter 27,
“Backing Up and Restoring User Databases,” in the System
Administration Guide, to restore user and text_db databases.

77

Backup and recovery for the Enhanced Full-Text Search engine

2 Runsp_text_load_index to restore the Verity collection from the most
recent index dump. The procedure resets the status of all text_events table
entries made since the last index dump to “unprocessed” and notifies the
Enhanced Full-Text Search engine to process those events.

Example: To restore the sample_colors_db database and all of its text indexes:
1 Restorethetext db database:

1> use master

2> go

1> load database text db from '/work2/sybase/textdbbackkup'
2> go

2 Restore the sample_colors_db database:

1> load database sample colors db from '/work2/sybase/colorsbackup'
2> go

3 Bring the text_db and sample_colors_db databases online;

1> online database text db
2> online database sample colors db
3> go

4 Restore the text index:

1> use sample_colors_db
2> go

1> sp_text load index
2> go

See sp_text_load_index on page 159.

78 Enhanced Full-Text Search Specialty Data Store

CHAPTER 7

Performance and Tuning

The Enhanced Full-Text Search engine is shipped with a default

configuration. You can optimize the performance of the Enhanced Full-
Text Search engine by altering the default configuration so that it better
reflects the needs of your site. This chapter describes ways in which you

can enhance performance.

Topic Page
Updating existing indexes 79
Increasing query performance 80
Reconfiguring Adaptive Server 81
Reconfiguring the Enhanced Full-Text Search engine 82
Using sp_text_notify 83
Configuring multiple Enhanced Full-Text Search engines 84
Multiple users 85
File Descriptors and Enhanced Full-Text Search 86

Updating existing indexes

The amount of time it takes to update records in atext index can be
reduced by enabling (turning on) trace flag 11 or trace flag 12, or both:

Users Guide

e Enabling trace flag 11 disables Verity collection optimization. This
means that Verity does not optimize the text index after you issue
sp_text_notify, which is a performance gain. If trace flag 11 isturned
off (the default), the Enhanced Full-Text Search engine calls Verity to
optimize the text index at the end of sp_text_notify processing, which

can delay the completion of sp_text_notify.

With Enhanced Full-Text Search Specialty Data Store, you can use
sp_optimize_text_index to optimize atext index at alater timeif trace

flag 11 is enabled. See sp_optimize text_index on page 147.

79

Increasing query performance

» Enabling trace flag 12 disables the Enhanced Full-Text Search engine
from returning sp_statistics information. If trace flag 12 is turned off (the
default), an update statistics command isissued to the Enhanced Full-Text
Search engine, which can delay the completion of sp_text_notify.

If updates to the text index occur as often as every few seconds, you may
improve performance by disabling the update statistics processing and the
Verity optimization, or both, for most of the updates.

Trace flags 11 and 12 can be enabled and disabled interactively using
sp_traceon and sp_traceoff in the Enhanced Full-Text Search engine.

Increasing query performance

Two issues can significantly improve query performance:

* Limiting the number of rows returned by the Enhanced Full-Text Search
engine

» Ensuring the correct join order for queries

Limiting the number of rows

Use the max_docs pseudo column to limit the number of rows returned by the
Enhanced Full-Text Search engine. The fewer the number of rows returned by
the Enhanced Full-Text Search engine, the faster Adaptive Server can process
the join between the source table and the index table.

Ensuring the correct join order for queries

The moretables and text indexesthat arelisted in ajoin, the greater the chance
that the query will run slowly because of incorrect join order. Queries run
fastest when thetext index is queried first during ajoin between the text index
and one or more tables.

To ensure correct join order:

» Make sure that aunique clustered or nonclustered index is created on the
IDENTITY column of the table being indexed

80 Enhanced Full-Text Search Specialty Data Store

CHAPTER 7 Performance and Tuning

e Limitjoinsto one base table and one text index

If aquery isrunning slowly, use showplan or enable trace flag 11205, and
examinethejoin order. Traceflag 11205 dumps remote queriesto the Adaptive
Server error log file. The fastest queries contain an index_any search condition
in the where clause and query the text index first.

The dlowest queries contain the id column in the text index where clause and
query theindexed table first. In this case, rewrite the query or use forceplan to
force the join order that islisted in your query. For more information about
forceplan, see Chapter 3, “Advanced Optimizing Techniques,” in the
Performance and Tuning Guide: Optimizer and Abstract Plans.

Reconfiguring Adaptive Server

CiS cursor rows

Users Guide

You can improve the performance of the Enhanced Full-Text Search engine by
resetting the Adaptive Server configuration parameters discussed in this
section. (For information about setting configuration parameters with
sp_configure, see Chapter 4, “ Setting Configuration Parameters,” in the System
Administration Guide.)

cis cursor rows parameter specifies the number of rows received by Adaptive
Server during a single fetch operation. The default number for cis cursor rows
is 50. Increasing this number increases the number of rows received by
Adaptive Server from the Enhanced Full-Text Search engine during a fetch
operation. However, the number you set for cis cursor rows, the more memory
Adaptive Server dynamically allocates to return the result set.

81

Reconfiguring the Enhanced Full-Text Search engine

cis packet size

cis packet size determines the number of bytes contained in a single network
packet. The default for cis packet size is512. You must specify values for this
parameter in multiples of 512. Increasing this parameter improves the
performance of the Enhanced Full-Text Search engine because, with alarger
packet size, it returns fewer packets for each query. However, the larger the
number you set for cis packet size, the more memory Adaptive Server allocates
for that parameter.

The cis packet size parameter is dynamic; you do not need to restart Adaptive
Server for this parameter to take effect.

Note If you change the cis packet size, you must also change max_packetsize
in the Enhanced Full-Text Search engine configuration file to the same value.
If Component Integration Servicesis used to access other remote servers, the
max network packet size on those servers must be increased as well.

You must restart the Enhanced Full-Text Search engine for the max_packetsize
parameter to take effect.

Reconfiguring the Enhanced Full-Text Search engine

batch_size

82

You can improve the performance of the Enhanced Full-Text Search engine by
reconfiguring the Enhanced Full-Text Search engine configuration parameters
discussed in this section. See “Modifying the configuration parameters’ on

page 67.

batch_size determines the number of rows per batch the Enhanced Full-Text
Search engineindexes. batch_size hasadefault of 500 (that is, 500 rows of data
indexed per batch). Performance improves if you increase the size of the
batches that areindexed. However, the larger the batch size, the more memory
the Enhanced Full-Text Search engine allocates for this parameter.

When considering how large to set batch_size, consider the size of the data on
which you are creating a text index. When creating the text index, the
Enhanced Full-Text Search engine allocates memory equal to (in bytes):

Enhanced Full-Text Search Specialty Data Store

CHAPTER 7 Performance and Tuning

(amount of space needed for data) x (batch_size) = memory used

For example, if the datayou are indexing is 10,000 bytes per row, and
batch_size is set to 500, then the Enhanced Full-Text Search engine must
allocate almost 5SMB of memory when creating the text index.

Base the batch size you choose on the typical size of your data and the amount
of memory available on your machine.

min_sessions and max_sessions

min_sessions and max_sessions determine the minimum and maximum
number of user connectionsallowed for the Enhanced Full-Text Search engine.
Each user connection requires approximately 5SMB of memory. Do not set
max_sessions to an amount that exceeds your available memory. Also, because
the memory for min_sessions isallocated at start-up, if you set the number for
min_sessions extremely high (to allow for alarge number of user connections),
alarge percentage of your memory is dedicated to user connections for the
Enhanced Full-Text Search engine.

You may improvethe performance of the Enhanced Full-Text Search engine by
setting min_sessions equal to the average number of user sessions that will be
used. Doing so prevents the Enhanced Full-Text Search engine from having to
allocate memory at the start of the user session.

Using sp_text_notify

Review the needs of your site before you decide how often to issue
sp_text_notify.

Users Guide 83

Configuring multiple Enhanced Full-Text Search engines

Using sp_text_notify produces aload on the Enhanced Full-Text Search engine
as the system procedure reads the data and updates the text collections.
Depending on the size of thisload, the performance hit for issuing
sp_text_notify can be substantial . Because of the performanceimplications, you
must determine how up-to-date the indexes need to be. If they must be closeto
real-time, then issue sp_text_notify frequently (as often as every 5 seconds).
However, if your indexes do not need to be that current, you may want to wait
until the system is not active before you issue sp_text_notify.

Note You cannot issue sp_text_notify from within atransaction.

Configuring multiple Enhanced Full-Text Search

engines

For tables that are used frequently, you can improve performance by placing
the text indexes for these tables on separate Enhanced Full-Text Search
engines. Performance improves because users can spread their queries over a
number of Enhanced Full-Text Search engines, instead of sending all queries
to asingle engine. Each Adaptive Server can connect to multiple Enhanced
Full-Text Search engines, but each Enhanced Full-Text Search engine can
connect to only one Adaptive Server.

Creating multiple Enhanced Full-Text Search engines at start-up

If you areinitially creating multiple Enhanced Full-Text Search engines, you
can edit theinstalltextserver script so that it includes all of those Enhanced Full-
Text Search engines. See “Editing the installtextserver script” on page 15.

Adding Enhanced Full-Text Search engines

84

You can add Enhanced Full-Text Search engines after your initial start-up by
issuing sp_addserver fromisql:

sp_addserver server name [, server class [,
physical name]]

Enhanced Full-Text Search Specialty Data Store

CHAPTER 7 Performance and Tuning

where;

e server_nameisthe name used to address the server on your system (inthis
case, the Enhanced Full-Text Search engine).

e server_classidentifies the category of server being added. For the
Enhanced Full-Text Search engine, the valueis“sds’.

e physical_nameisthe namein the interfaces file used by the server
server_name.

For more information, see sp_addserver in the Reference Manual.
For example, to add a Enhanced Full-Text Search engine named BLUE, enter:
sp_addserver BLUE, sds, BLUE

After you configure and start the Enhanced Full-Text Search engine, you can
use the following syntax to see if you can connect to the Enhanced Full-Text
Search engine from the Adaptive Server:

server name...sp_show text online
For example, to connect to a server named BLUE, enter:

BLUE...sp show text online

Configuring additional Enhanced Full-Text Search engines
Each Enhanced Full-Text Search engine requires its own:

e Interfacesfile entry
e Configuration file

All Enhanced Full-Text Search engines use the same database (named text_db
by default) for storing text index metadata and the same vesaux and vesauxcol
tables.

Multiple users
The following tips may help avoid deadlocks with multiple users:

1 MakesureAdaptive Server isusing the same number of connectionsasthe
Enhanced Full-Text Search. 100 is the default.

Users Guide 85

File Descriptors and Enhanced Full-Text Search

sp_configure "user connections", 100

2 Make sure the vesaux, vesauxcol and text_events tables (in the model, or
in each of your new databases) are using row-level locking.

For existing tables: alter table table_name lock datarows
For new tables: create table ... lock datarows

3 For large batches of commands, try to break them into smaller
transactions.

4 If deadlocksstill occur, increase the number of locks availableto Adaptive
Server, and adjust the row lock promotion settings. See the System
Administration Guide.

File Descriptors and Enhanced Full-Text Search

86

Enhanced Full-Text Search makes extensive use of file descriptors when
executing searches. With concurrent searches and large text indexes, this may
cause a connection to receive this error message:

ERRORMSG, Error (): Available files (-1) less than min 5

Thismessageindicatesthat the Enhanced Full-Text Search process has run out
of file descriptors, based on the limit for the process. If you see this error
message, raise the process limit for file descriptors for the Enhanced Full-Text
Search process.

max_session_fd limits the number of file descriptors an Enhanced Full-Text
Search session can allocate. You can use this in situations where the file
descriptors limit cannot be raised.

The max_session_fd defaults to 0, which means that each session is limited
only by the Enhanced Full-Text Search process file descriptors limit. The
minimum setting for max_session_fd is 5.

If you are seeing the error message above and you cannot raise the file
descriptor limit for the Enhanced Full-Text Search, the best way to gauge how
to set this parameter isto take the ((max file descriptors) - 20)/(max concurrent
connections).

For example, if the file descriptors limit is set to 1024 and the maximum
number of concurrent connections to the Enhanced Full-Text Search is 50:

((1024) - 20)/50 =~ 20

Enhanced Full-Text Search Specialty Data Store

CHAPTER 7 Performance and Tuning

The more available file descriptors to an Enhanced Full-Text Search session,
the better.

Because the maximum number of file descriptorsthat each Enhanced Full-Text
Search session usesis being limited, performance may be decreased. Sybase
recommends that you use max_session_fd carefully.

You must restart the Enhanced Full-Text Search process for max_session_fd
changes to take effect.

Users Guide 87

File Descriptors and Enhanced Full-Text Search

88 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8

Verity Topics

This chapter is reproduced with permission from Verity. It is provided to

give Enhanced Full-Text Search usersinsight into Verity Topics.

Topic Page
What are topics? 89
Using atopic outline file 90
Making topics available 91
Knowledge bases of topics 91
Structure of topics 93
Maximum number of topics 96
Verity query language 97
Sample topic outlines 102
Operator reference 103
Modifier reference 113
Weights and document importance 115
Topic scoring and document importance 121
Designing topics 124
Preparing your topic design 124
Topic design strategies 126
Designing theinitial topic 128

What are topics?

A topicisagrouping of information rel ated to aconcept, or asubject area.

Users Guide

Topics provide a convenient means by which you can encapsulate

knowledge, and make it available to end users as a shared resource. By
adding topicsto your Verity application, users can more easily perform

searches over the subject matter which the topics represent.

89

Using a topic outline file

Topics are combined to form knowledge bases that represent a catal og of
knowledgethat users can tap into when performing searches. Knowledge bases
offer users the ability to find the information they want without having to
compose sophisticated queries using complex syntax.

Topic organization

Topics organize groups of related search criteriain aformat similar to that of
an outline. Operators and modifiers act as the glue that joins related groups of
search criteria. You can create topics as independent units, or as units with
relationships to other topics in a hierarchical structure.

Weight assignments

You can even give some groups of search criteria more weight than other
groups of search criteriain atopic’s structure. Assigning weight to search
criteria affects the importance of documents selected in a search; the closer a
document is to the top of the resultslist, the more important, or relevant, the
document isto the search criteria. A search criteriaweight isanumber between
0.01 and 1.00. The position of a selected document in the resultslist can help
you determine at aglance how relevant the document is compared to the search
criteria

Using a topic outline file

90

You can compose topics by creating atopic outlinefile.

A topic outline fileisan ASCII text file in a structured format that contains
topic definitions. A topic outline file might appear as follows:

$Control:1

art <Accrue>
*performing-arts <Accrue>
**0.80 "ballet"

**0.50 "drama"

**0.50 ’‘dance’

**0.80 "opera"

**0.80 "symphony"

**0.90 "chamber music"

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

**"Tsaac Stern"

*film <Accrue>

**directors <Filter>
/definition="title CONTAINS Truffaut"
*visual-arts <Accrue>

literature <Accrue>

philosophy <Accrues

language <Accrue>

history <Accrues

$s
You can create atopic outline file with any text editor.

Making topics available

The topics you make available to users must exist within atopic set that is
generated using the mktopics utility. Verity topic sets generated by mktopics can
be used by any Verity application. A single topic set supports a maximum of
20,000 topic definitions, and the exact number of topics allowed for one topic
set depends on the Verity query language used to define them.

Setup process
Making topics available to users is a three-step process, as outlined bel ow.
1 Createtopic definitions using atopic outline file.

2 Generate atopic set. You can create atopic set using the mktopics utility.
The mktopics utility createsthetopic set and can also index the topics over
a specific collection.

3 Import the topic set to the Enhanced Full-Text Search engine.

Knowledge bases of topics

This section discusses the principle features of knowledge bases, and the
organization format used to define topics for them.

The following aspects of topic knowledge bases are covered:

Users Guide 91

Knowledge bases of topics

e Combining topicsinto a knowledge base

e The structure of topics

e Therelationship between topics and subtopics
e Topictypes

» Naming topics

Combining topics into a knowledge base

A topic issimply a grouping of information related to a concept, or a subject
area. A knowledge base is a grouping of these concepts called topics.
Combining topicsinto aknowledge base provides userswith the ability to look
up concepts saved as topics in a convenient fashion.

The subject area of atopic istypically identified by the topic’'s name. In the
exampl e below, the subject of the topic is performing-arts. Thistopicis
composed of two structural elements, its name, performing-arts, and its
evidence topics, ballet, musical, dance, opera, symphony, and drama.

Operators and modifiers act as the glue that joins related evidence topics.
Operators represent logic to be applied to evidence topics. Thislogic defines
the qualifications of the kinds of documents you want to find. Modifiers apply
further logic to evidence topics. For example, amodifier can specify that
documents containing an evidence topic not be included in the list of results.

WORD ballet
WORD drama
STEM dance
WORD opera
WORD symphony
NOT -WORD mime

& performing-arts ACCRUE

92 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

A topic’s structure becomes more sophisticated as topics are added toiit. In the
next example, the topic film has been added to the structure to formwhat is
now the top-level topic, art. In this structure, performing-arts and film are
subtopics of the topic art.

—pWORD ballet
—pWORD drama
—»STEM dance
—»WORD opera
—»WORD symphony
_»NOT-WORD mime

—p performing-arts ACCRUE—

& art ACCRUE —

—»WORD film

—»OR motion-pictures
—»WORD movie
_part-filmsor

—» film ACCRUE

Sophi sticated topics are composed of top-level topics, subtopics, and evidence
topics. These elements determinetherelated subject areas of atopic. Typically,
aknowledge base consists of several top-level topics. Subtopics and evidence
topics can be used by multiple top-level topics.

Structure of topics

The structure of topics affects how the topic isinterpreted during search
processing. Designing topics so that they accurately express aconcept involves
defining atopic structure with the components described bel ow.

Users Guide 93

Structure of topics

Top-level topics

Top-level topics are the highest topics defined in atopic structure. Top-level
topics represent the subject areas you want a Verity search agent to find. Inthe
example below you could think of literature, philosophy, languages, history,
and art as top-level subtopics that comprise the top-level topic, liberal-arts.

— " litemture A2SRITE
— philoscphy accRUE

— P oD balkt
' libeml-ants accRUE — » langu RecTUE — b’ WCRD dmma,
— h- STEM CRNCa

— P WGRD O pem
— h- WORD symphony
— P MOT-WeFD Mims

— [pefomingarts accRIE —
— } histon accRUE

— P worRD film
— '. @R motion-pictunss
— SR NG i

— b. an-films oR

— } film acoRITE

— P art socRrE ——

— P weRD painting

— P visualarts aocrE 1 p vono sculptue
— P art-fims oE
L o oviceoor ——— [P wiomo vidao
'. AOED ST

Subtopics

Subtopics form the level s between top-level topics and evidence topics. The
name of a subtopic should identify the subject area that its subtopics or
evidence topics combine to describe. For example, the subtopic visual-arts
includes several related words, or evidence topics, as shown below:

B woED painting
b. visuakans ACCRUE } WRD sCulptuns
P atfims of

94 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Evidence topics

Evidence topics are the lowest units of atopic structure. Evidence topics are
strings, made up of combinations of alphanumeric characters. An evidence
topic can contain up to 128 al phanumeric characters.

Topic and subtopic relationships

Each topic and its associated subtopics form a hierarchical parent and child
relationship. In the example bel ow, the subtopics performing-arts, film, visual-
arts, and video are children of the art topic. The art topic itself isachild of the
liberal-artstopic. Theliberal-arts topic could in turn be achild of successively
higher parent topics within the structure.

— P ltamture acorTE

— b philsophy acerRITE

— = woRD balket

— " WORD ClRma
— b' STEM chnce

— I woRD cpem

— P woRD sympheny
— '- HOT-WOFRD Mime

— " languaces ASCRUE
P libzrmlans ACCRUE —f
— P perfomingats accRUE —
— histony mecRIE

— b. LaCET film

— ok motion-piciunes
— WET M e

— P art pocRUE —— — pp atfilms oR

— " film acormE

— P woRD painting
— P visualats aocRUE 1 e wone sculpture
L— P art-films ox

: b' WORD Witk
L— P vidks oR —E* P T

When you use atopic to perform asearch, the subject area defined by the topic
includes its subtopics, their subtopics, and so on, down to the evidence topics
of the structure. Topicsthat are not direct descendants of the topic you use are
not included in the search.

Users Guide 95

Maximum number of topics

In the example above, for instance, a search using the film topic would cause
the Verity search engine to find documents containing information on film,
motion pictures, movies, and art films. In this example, the search would not
find documentsrelated to the performing-arts, visual -arts, or video topicssince
these topics are not children, of the film topic. However, if the art topic was
used, the search would find documents related to all the art topic’'s children,
which includes performing-arts, film, visual-arts, and video.

Maximum number of topics

A singletopic set representing a knowledge base can consist of as many as
20,000 topics. Thisincludes top-level topics, subtopics, and evidence topics.
Topics containing as many as 1,000 subtopics may exceed memory limitations
when used in a search.

Topic naming issues

* A topic name can contain up to 128 alphanumeric characters, including
hyphens and underscores.

» Topic names and evidence topics are normally case-insensitive. You can
name a evidence topic using all caps, asin APPLE, initial caps, asin
Apple, or all lower-case, asin apple. Caseisnot considered when asearch
isperformed. Thus, if your evidencetopic isentered as APPLE, the Verity
search engine selects documents containing “APPLE”, “Apple”, or

“ appl en .

You can, however, use the CASE modifier to specify that case match the
entry of a evidence topic.

96 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Verity query language

This section describes the Verity Query Language, consisting of operators and
modifiers that you can use to create topics. Operators represent logic to be
applied to search elements which can be combined to create atopic. Thislogic
defines the qualifications of the kinds of documents you want to find.
Modifiers apply further logic to search elements. For example, a modifier can
specify that a search element be case-sensitive.

The information in this section includes the following:
* Query language summary

e Operator precedence rules

e Sampletopic outlines

e Operator reference

« Modifier reference

Query language summary

The Verity Query Language consists of operators and modifiers. Both
operators and modifiers represent logic to be applied to a search element. This
logic defines the qualifications a document must meet to be retrieved.
Operators are classified by their type, as follows:

» Evidence operators
* Proximity operators
* Relational operators
e Concept operators

* Boolean operators

Modifiers extend the logic applied by operators and are used in combination
with operators.

Users Guide 97

Verity query language

Evidence operators

Proximity operators

98

Evidence operators expand a search word into alist of related words that are
then searched for as well. When you perform a search using an evidence
operator, documents containing one or more occurrences of the words in the
expanded word list are documents containing the word specified, aswell asits
synonyms. Documents retrieved using evidence operators are not relevance-
ranked unless you use the MANY modifier. See “MANY modifier” on page
114. Table 8-1 describes each evidence operator.

Table 8-1: Evidence operators
Operator name Description

WORD Selects documents that include one or more instances of a
word you specify.

STEM Selects documents that include one or more variations of the
search word you specify.

THESAURUS Selects documents that contain one or more synonyms of the
word you specify.

WILDCARD Selects documents that contain matches to a character string
containing variables.

SOUNDEX Selects documents that include one or more wordsthat “ sound
like,” or whose letter pattern is similar to, the word specified.

NEAR/N Expands the search to include the word you enter plus words

that are similar to the query term. This operator performs
“ approximate pattern matching” to identify similar words.

Proximity operators specify the relative location of specific wordsin the
document; that is, specified words must be in the same phrase, paragraph, or
sentence for adocument to beretrieved. In the case of the NEAR and NEAR/N
operators, retrieved documents are rel evance-ranked based on the proximity of
the specified words. When proximity operators are nested, the ones with the
broadest scope should be used first; that is, phrases or individual words can
appear within SENTENCE or PARAGRAPH operators, and SENTENCE
operators can appear within PARAGRAPH operators. Table 8-2 describeseach
proximity operator.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Table 8-2: Proximity operators

Operator name Description

IN Selects documents that contain specified valuesin one or more
document zones. A document zone represents aregion of a
document, such as the document’s summary, date, or body text.

PHRASE Selects documentsthat include aphraseyou specify. A phraseis
agrouping of two or more words that occur in a specific order.
SENTENCE Selects documents that include all of the words you specify

within a sentence.

PARAGRAPH Selects documents that include all of the search elements you

specify within a paragraph.

NEAR Selects documents containing specified search terms within
close proximity to each other.

NEAR/N Selects documents containing two or more words within N

number of words of each other, where N is an integer.

Relational operators

Relational operators search document fields (such as AUTHOR) that have
been defined in the collection. These operators perform afiltering function by
selecting documentsthat contain specified field values. Thefieldsthat are used
with relational operators can contain a phanumeric characters. Documents
retrieved using relational operators are not relevance-ranked, and you cannot
use the MANY modifier with relational operators.

When creating topics, relational operators are always used in conjunction with
the special FILTER operator. See the example under the topic “visual-arts’ in
“Sample Topic Outlines’ later in this section for the proper syntax.

A number of relational operators are available for numeric and date
comparisons, including the following: = (equals), > (greater than), >= (greater
than or equal to), < (lessthan), <= (lessthan or equa to).

A number of relational operators are available for text comparisons, including
the following.

Users Guide 99

Verity query language

Table 8-3: Relational operators
Operator name Description

CONTAINS Selects documents by matching the word or phrase you specify
with values stored in a specific document field.

MATCHES Sel ects documents by matching the character string you specify
with values stored in a specific document field.

STARTS Selects documents by matching the character string you specify

with the starting characters of the values stored in a specific
document field.

ENDS Sel ects documents by matching the character string you specify
with the ending characters of the values stored in a specific
document field.

SUBSTRING Sel ects documents by matching the character string you specify
with a portion of the strings of the values stored in a specific
document field.

Concept operators

Concept operators combine the meaning of search elementsto identify a
concept in adocument. Documents retrieved using concept operators are
relevance-ranked. Table 8-4 describes each concept operator.

Table 8-4: Concept operators

Operator name Description

AND Selects documents that contain all of the search elements you
specify.

OR Selects documents that show evidence of at least one of your
search elements.

ACCRUE Selects documents that include at least one of the search

elements you specify.

Boolean operators

Bool ean operators can be assigned to topics to retrieve documents containing
any or all of the children of that topic. Unlike topics created using the concept
operators, Boolean operators do not accept weights. Table 8-5 describes each
Boolean operator.

100 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Modifiers

Table 8-5: Boolean operators

Operator name Description

ALL Selects documents that contain all children of atopic.
ANY Selects documents that contain at |east one of the children of a
topic.

Modifiers affect the behavior of operators. Table 8-6 describes each modifier.
Table 8-6: Modifiers

Operator name Description

CASE Performs a case-sensitive search.

MANY Counts the density of words or phrasesin a document and
produces arelevance-ranked score for the retrieved documents.

NOT Excludes documents that show evidence of the specified word
or phrase.

ORDER Specifies the order in which search elements must occur.

Operator precedence rules

Users Guide

The Verity search engine uses precedence rulesto determine how operators can
be assigned. Theserul es state that some operatorsrank higher than otherswhen
assigned to topics, and affect how document selections are performed.

Table 8-7 describes how precedence rules apply to operators.

101

Sample topic outlines

Table 8-7: Precedence rules

Operator Precedence How precedence is determined
AND Highest The concept operators take the highest
OR precedence precedence over the other operators. Thus,
subtopics of topics using these operators
ACCRUE can be assigned any of the operators listed
below under “incremental precedence” or
“lowest precedence.”
ALL Incremental The proximity operatorsrefer to
PARAGRAPH precedence incremental ranges that exist within a
SENTENCE (in descending document. Subtopic_s of topi cs using these
order) operators can be assigned their next lowest
NEAR operator in the precedence order. Thus, a
NEAR/N phrase takes precedence over aword; a
PHRASE sentence takes precedence over a phrase or
aword; and a paragraph takes precedence
ANY over a sentence, aphrase, or aword.
WORD Lowest The evidence operators reside at the lowest
STEM precedence level in atopic structure. Because evidence
operators are used with words contained in
SOUNDEX documents, these operators all have the
WILDCARD same precedence.
THESAURUS

To avoid a precedence violation, do not use ANY or ALL in aparent topic
whose child topic includes a concept operator (AND, OR, ACCRUE). Topics
that use ANY or ALL cannot have variable weights assigned to them, so you
cannot use these operatorsin a parent topic with any child topic that allows
variable weights (such as AND, OR, ACCRUE). Topicsusing ANY and ALL
limit evaluation to present or not present (ascore of 0.00 or 1.00). If the criteria
are met, the children of these topics get an automatic score of 1.00; if the
criteriaare not met, the children of these topics get an automatic score of 0.00;
so it isnot meaningful to assign these children variable weights such as 0.80.

Sample topic outlines

The following are the same topics as you would create them in atopic outline
file:

SControl:1
art <Accrue>

102 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

*performing-arts <Or>
**0.80 "drama"

*%0.50 "theater"

**0.80 ’dance’

*film <And>

**0.90 "cinema"

**0.90 "documentary"
**newsreel <Filter>
/definition="DATE >= 05/01/96"
*film-makers <Accrues>
**"Woody Allen"
*film-making <Paragraphs>
**"direct"

**"produce"

*visual-arts <Accrues
**gsculpture <In>
/zonespec="title"
**painters <Filters

/definition="Title MATCHES Famous Painters"

**<Thesaurus>
/wordtext="paint"
literature <Accrue>
*novels <Near>

**0.80 "Proust"

**0.80 "Remembrance" <Case>
*american-novel <Sentence>
**"American"

* % lanvel n

history <Accrues>
*<Wildcards>
/wordtext="histor*"

music <Accrue>

*jazz

**"bebop"

**<Not> "fusion"
*classical

**"Ttalian opera"

$S

Operator reference

Users Guide

Each operator islisted below a phabetically. Examples for many of these
operators can be found in the topic outline in the previous section.

103

Operator reference

ACCRUE operator

ALL operator

AND operator

ANY operator

Selects documents that include at |east one of the search elements you specify.
Valid search elements are two or more words or phrases. Selected documents
are relevance-ranked.

The ACCRUE operator scores sel ected documents according to the presence
of each search element in the document using a “the more, the better”
approach: the more search elements found in the document, the better the
document’s score. Several examples of the ACCRUE operator appear in the
sample outlinefilein “ Sample topic outlines’ on page 102.

Selects documents that include all of the search elements you specify. Unlike
the ACCRUE operator, you cannot assign weights when you use the ALL
operator.

Selects documents that contain all of the search elements you specify.
Documents selected using the AND operator are relevance-ranked. The
example in “ Sample Topic Outlines” shows how the AND operator might be
used with the topic “film.” In the example, only those documents that contain
both search words and adate greater than or equal to 05/01/96 are selected and
ranked according to their score.

Selects documentsinclude at least one of the search elements you specify.
Unlike the ACCRUE operator, you cannot assign weights when you use the
ANY operator.

CONTAINS operator

104

Selects documents by matching the word or phrase you specify with values
stored in a specific document field. When you use the CONTAINS operator,
you specify the field name to search, and the word or phrase to search for.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

ENDS operator

With the CONTAINS operator, the words stored in a document field are
interpreted as individual, sequential units. You may specify one or more of
these units as search criteria. To specify multiple words, each word must be
sequential and contiguous, and must be separated by a blank space. Use
CONTAINS with the FILTER operator.

Thesyntax for CONTAINSisthe sameasthat for MATCHES. Seetheexample
for MATCHES under thetopic“visual arts” in* Sampletopic outlines’” on page
102. The example assumes that the field TITLE has been created for the
collection.

The CONTAINS operator does hot recognize non-al phanumeric characters.
The CONTAINS operator interprets non-al phanumeric characters as a space
and treats the separated values asindividual units. For example, if you have
defined adlash (/) asavalid character, and you enter search criteriathat include
this character, asin 0S/2, “OS” and “2" aretreated as individua units.

The CONTAINS operator does not refer to the style.lex file for the definition
of which characters are included in aword.

Selects documents by matching the character string you specify. Use ENDS
with the FILTER operator. The syntax for ENDS is the same as that for
MATCHES. See the example for MATCHES under the topic “visual arts’ in
“Sampl e topic outlines’ on page 102. The example assumes that the field
TITLE has been created for the collection.

= (EQUALS) operator

Users Guide

Sel ects documents whose document field values are exactly the same asthe
search string you specify. Use EQUAL Swith the FILTER operator. The syntax
for EQUALS isthe same as that for GREATER THAN OR EQUAL TO. See
the example for GREATER THAN OR EQUAL TO under the topic “film” in
“Sampl e topic outlines” on page 102. The example assumes that the field
DATE has been created for the collection.

105

Operator reference

FILTER operator

The specia FILTER operator is used in conjunction with the relational
operatorsto do field searches. See the example under the topic “visual-arts” in
“Sampl e topic outlines’ on page 102 for the proper syntax.

> (GREATER THAN) operator

Selects documents whose document field values are greater than the search
string you specify. Use GREATER THAN with the FILTER operator. The
syntax for GREATER THAN isthe same as that for GREATER THAN OR
EQUAL TO. See the example for GREATER THAN OR EQUAL TO under
thetopic“film” in*“ Sampletopic outlines’ on page 102. The example assumes
that the field DATE has been created for the collection.

>= (GREATER THAN OR EQUAL TO) operator

Sel ects documents whose document fiel d values are greater than or equal to the
search string you specify. Use GREATER THAN OR EQUAL TO with the
FILTER operator. See the example under the topic “film” in “ Sample topic
outlines’ on page 102. The example assumes that the field DATE has been
created for the collection.

< (LESS THAN) operator

Selects documents whose document field values are less than the search string
you specify. Use LESS THAN with the FILTER operator. The syntax for LESS
THAN isthe same as that for GREATER THAN OR EQUAL TO. Seethe
example for GREATER THAN OR EQUAL TO under the topic “film” in
“Sampl e topic outlines’ on page 102. The example assumes that the field
DATE has been created for the collection.

106 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

<= (LESS THAN OR EQUAL TO) operator

IN operator

Sel ects documents whose document field values are less than or equal to the
search string you specify. Use LESSTHAN OR EQUAL TO withthe FILTER
operator. The syntax for LESS THAN OR EQUAL TO isthe same as that for
GREATER THAN OR EQUAL TO. See the example for GREATER THAN
OR EQUAL TO under the topic “film” in “Sample topic outlines” on page
102. The example assumes that the field DATE has been created for the
collection.

Selects documents that contain specified values in one or more document
zones. A document zone represents a region of a document, such as the
document’s summary, date, or body text. The IN operator only works if
document zones have been defined in your collections. If you use the IN
operator to search collections for which zones are not defined, no documents
will be selected. In addition, the zone name you specify must match the zone
names defined in your collections. Consult your collection administrator to
determine which zoneshave been defined for specific collections. Theexample
in“ Sample topic outlines’ on page 102 shows how IN might be used with the
word “sculpture” and the TITLE zone.

MATCHES operator

Users Guide

Selects documents by matching the character string you specify with values
stored in a specific document field. When you use the MATCHES operator,
you specify thefield nameto search, and the word, phrase, or number to search
for.

Unlike the CONTAINS operator, the search criteria you specify with a
MATCHES operator must match the field value exactly for a document to be
selected. With the MATCHES operator, any occurrence of a search string that
appears as a portion of avalueis not selected; only values matching the entire
search string are selected.

You can use question marks (?) to represent individual variable characters
within astring, and asterisks (*) to match multiple variable characterswithin a
string.

107

Operator reference

NEAR operator

NEAR/N operator

108

Use MATCHES with the FILTER operator. The example in “Sample topic
outlines’ on page 102 shows how MATCHES might be used with the phrase
“famous painters’ and the TITLE field. The example assumes that the field
TITLE has been created for the collection.

Sel ects documents contai ning specified search termswithin close proximity to
each other. Document scores are cal culated based on the relative number of
words between search terms. For example, if the search expression includes
two words, and those words occur next to each other in adocument (so that the
region sizeistwo wordslong), then the score assigned to that document is 1.00.
Thus, the document with the smallest region containing all searchtermsalways
receives the highest score. Documents whose search terms are not within 1000
words of each other are not selected, sincethe search termsare probably too far
apart to be meaningful within the context of the document.

The NEAR operator issimilar to the other proximity operatorsin the sense that
the search words you enter must be found within close proximity of one
another. However, unlike other proximity operators, the NEAR operator
calculates relative proximity and assigns scores based on its cal culations.

The examplein “ Sample topic outlines’ on page 102 shows how NEAR might
be used with the topic “novels.”

Sel ects documents containing two or morewordswithin N number of words of
each other, where N isan integer. Document scores are calcul ated based on the
relative distance of the specified words when they are separated by N words or
less. Documents containing the specified words separated by more than N
words are not selected. For example, if the search expression NEAR/5 is used
to find two words within five words of each other, a document that has the
specified words within three words of each other is scored higher than a
document that has the specified words within five words of each other.

TheN variable can beaninteger between 1 and 1,024, where NEAR/1 searches
for two words that are next to each other. If N is 1,000 or above, you must
specify its value without commas, asin NEAR/1000.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

OR operator

The NEAR/N operator is similar to the other proximity operatorsin the sense
that the search words you enter must be found within a close proximity of one
another. However, unlike other proximity operators, the NEAR/N operator
assigns scores based on relative proximity.

Selects documents that show evidence of at least one of your search elements.
Documents selected using the OR operator are relevance-ranked. The example
in“Sample topic outlines’ on page 102 shows how you might use OR with the
topic “ performing-arts.”

PARAGRAPH operator

Selects documents that include all of the search elements you specify within a
paragraph. Valid search elements are two or more words or phrases. You can
specify search elementsin asequentia or arandom order. Documents are
retrieved as long as search elements appear in the same paragraph. The
examplein“ Sampletopic outlines’ on page 102 showsyou how you might use
PARAGRAPH with the topic “film-making.”

PHRASE operator

Sel ects documents that include a phrase you specify. A phraseisagrouping of
two or more words that occur in a specific order. You must use the PHRASE
operator when you enter more than one word in the evidence field. Words with
the PHRA SE operator are displayed in double quotes. Theexamplein“ Sample
topic outlines” on page 102 shows “Woody Allen” and “Italian opera” as uses
of the PHRASE operator.

SENTENCE operator

Users Guide

Selects documents that include all of the words you specify within a sentence.
You can specify search elementsin asequential or arandom order. Documents
areretrieved as long as search elements appear in the same sentence. The
example in “Sample topic outlines’ on page 102 shows how you how you
might use SENTENCE with the topic “american-novel.”

109

Operator reference

SOUNDEX operator

STARTS operator

STEM operator

Sel ects documents that include one or more words that “sound like,” or whose
letter patternissimilar to, theword specified. Words haveto start with the same
letter as the word you specify to be selected. For example, when you use
SOUNDEX with “sale,” the documents selected will include words such as
“sale” “sall,” “seal,” “shell,” “soul,” and “scale.” Documents are not
relevance-ranked unlessthe MANY modifier is used.

Selects documents by matching the character string you specify with the
starting characters of the values stored in a specific document field. Use
STARTSwiththe FILTER operator. The syntax for STARTSisthe sameasthat
for MATCHES. See the example for MATCHES under the topic “visual arts’
in “ Sample topic outlines’ on page 102. The example assumes that the field
TITLE has been created for the collection.

Selects documents that include one or more variations of the search word you
specify. Words with the STEM operator are displayed in single quotes. In the
examplein“ Sample Topic Outlines,” theword “dance” isused with the STEM
operator. Documents selected will therefore include words such as “ dances,”
“danced,” and “dancing,” as well as*“dance.”

SUBSTRING operator

110

Selects documents by matching the character string you specify with aportion
of the strings of the values stored in a specific document field. The characters
that comprise the string can occur at the beginning of afield value, within a
field value, or at the end of afield value. The syntax for SUBSTRING isthe
same as that for MATCHES. See the example for MATCHES under the topic
“visua arts’ in “ Sample Topic Outlines.” The example assumes that the field
TITLE has been created for the collection.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

THESAURUS operator

Sel ects documentsthat contain one or more synonyms of the word you specify.
For example, when you use the word “altitude” with the THESAURUS
operator, the documents selected will include words such as “height” and

“elevation.” Documents are not relevance-ranked unless the MANY modifier
is used.

TYPOI/N operator

The TYPO/N operator expands the search to include the specified word plus

wordsthat are similar. The optional N variable specifiesthe maximum number
of errors between the query and the matched term. For example, TY PO mouse
returns documents that include words such as “house,” “louse,” and “moose.”

WILDCARD operator

Selects documents that contain matches to a character string containing
variables. The WILDCARD operator lets you define a search string with
variables, which can be used to locate rel ated word matchesin documents. The
examplein “Sampletopic outlines’” on page 102 shows how you might use the
string “histor*” to search for words such as “history,” “historical,” and

“historian.” Documents are not relevance-ranked unless the MANY modifier
isused.

Using wildcard special characters

You can use thefollowing wildcard charactersto represent variable portions of
search strings with the WILDCARD operator.

Table 8-8: Wildcard Special Characters
Character Function

? Specifies one of any alphanumeric character, asin ?an, which locates“ran,” “pan,” “can,” and
“ban.” It is not necessary to specify the WILDCARD operator when you use the question
mark. The question mark isignoredin aset ([]) or in an aternative pattern ({ }).

Users Guide 111

Operator reference

Character Function
* Specifies zero or more of any alphanumeric character, asin corp*, which locates“ corporate,”
“corporation,” “corporal,” and “corpulent.” It is hot necessary to specify the WILDCARD

operator when you use the asterisk, and you should not use the asterisk to specify the first
character of awildcard string. The asterisk isignored in aset ([]) or in an aternative pattern

1.

[Specifies one of any character in a set, asin <WILDCARD> ‘c[auo]t’, which locates “ cat,”
“cut,” and “cot.” Note that you must enclose the word which includes a set in backquotes (°),
and there can be no spacesin a set.

{} Specifies one of each pattern separated by acomma, asin <WILDCARD> ‘bank{s,er,ing},
which locates “banks,” “banker,” and “banking.” Note that you must enclose the word which
includes a pattern in backquotes (*), and there can be no spacesin a set.

n Specifiesone of any character not inthe set, asin <WILDCARD> ‘ st[oa]ck', which excludes
“stock” and “stack” but locates “stick” and “stuck.” Note that the caret (") must be the first
character after the left bracket ([) that introduces a set.

- Specifies arange of charactersin aset, asin <WILDCARD> ‘c[a-r]t', which locates every
three-letter word from “cat” to “crt.”

Searching for nonalphanumeric characters

Remember that you can search for nonal phanumeric characters only if the
style.lex file used to create the collections you are searching is set up to
recognize the characters you want to search for. Consult your collection
administrator for information.

Searching for wildcard characters as literals

Thewildcard characterslisted above areinterpreted aswildcard characters, not
literal characters, unless they are delimited by a backslash (\). If you want a
wildcard character to be interpreted asaliteral in awildcard string, you must
precede the character with a backdlash. For example, to match the literal
asterisk (*) in awildcard string, you delimit the character as follows:

<WILDCARD> a*

Searching for special characters as literals

Thefollowing nonal phanumeric characters perform special, internal functions,
and by default are not treated as literals in awildcard string:

. comma,

e left and right parentheses ()

112 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

WORD operator

e double quotation mark “

e backslash\

e asign@

e left curly brace {
e left bracket [

e lessthansign<
e backquote”

To interpret special characters as literals, you must surround the whole
wildcard string in backquotes (7). For example, to search for thewildcard string
“a{b”, you surround the string with backquotes, as follows:

<WILDCARD> “a{b’

To search for awildcard string that includes the literal backquote character (°),
you must use two backquotes together and surround the whole wildcard string
in backquotes (°), asfollows:

<WILDCARD> ™*n™t’

You can only search on backquotes if the style.lex file used to create the
collections you are searching is set up to recognize the backquote character.
Consult your collection administrator for information.

Selects documents that include one or more instances of aword you specify.
Words with the WORD operator are displayed in double quotes. The example
in*“Sampletopic outlines’ on page 102 displays many instances of the WORD
operator.

Modifier reference

Users Guide

Modifiers further specify the behavior of operators. For example, you can use
the CASE modifier with an operator to specify that the case of the search word
you enter be considered a search element as well. Modifiersinclude CASE,
MANY, NOT, and ORDER, which are described bel ow.

113

Modifier reference

CASE modifier

MANY modifier

NOT modifier

114

Use the CASE modifier with the WORD or WILDCARD operator to perform
a case-sensitive search, based on the case of the word or phrase specified.

By default, documents containing any occurrences of a search word or phrase
areretrieved regardless of case. To use the CASE modifier, you simply enter
the search word or phrase as you wish it to appear in retrieved documents—in
all uppercase letters, in mixed uppercase and lowercase letters, or in all
lowercase |etters. The examplein “ Sample topic outlines’ on page 102 shows
how you might use the word “Remembrance” with the CASE modifier to refer
to the first word of Proust’s novel, Remembrance of Things Past.

Counts the density of words, stemmed variations, or phrases in a document,
and produces a relevance-ranked score for retrieved documents. The more
occurrences of aword, stem, or phrase proportional to the amount of document
text, the higher the score of that document when retrieved. Becausethe MANY
modifier considers density in proportion to document text, alonger document
that contains more occurrences of aword may score lower than a shorter
document that contains fewer occurrences.

The MANY modifier can be used with the following operators: WORD,
WILDCARD, STEM, SOUNDEX, PHRASE, SENTENCE, PARAGRAPH
and THESAURUS.

The MANY modifier cannot be used with AND, OR, ACCRUE, or relationa
operators.

Use the NOT modifier with aword or phrase to exclude documents that show
evidence of that word or phrase. The examplein “ Sample topic outlines’ on
page 102shows how you might use the NOT maodifier to retrieve documents
that mention “bebop” but not “fusion.”

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

ORDER modifier

Use the ORDER modifier to express the order in which search elements must
occur. If search values do not occur in the specified order in a document, the
document is not selected. Always place the ORDER modifier just before the
operator.

You can only use the ORDER modifier with the operators ALL,
PARAGRAPH, SENTENCE, and NEAR/N.

Weights and document importance

Topic weights

Users Guide

This section describes assigning weights to search criteriain topics, and the
affect of weights on selected documents. The specific information covered
includes:

e Which operators accept weights
« How weights affect importance
e Assigning weights

e Topic scoring and document importance

When processing a search agent, the Verity search engine cal culates ascore for
each selected document behind the scenes. A document score can bein the
range from 1.0 to 0.01. The higher a document’s score, the morerelevant it is.
Using the score assignments for documents selected by a search agent, Verity
applications can present relevance-ranked resultsin descending order to
application users.

Theranking of documentsis determined by the elements which comprise your
search criteria. Document ranking can be affected depending on whether the
search criteriaincludes topics, and whether topics include weights.

115

Weights and document importance

When creating topics, you can assign weights to the topi ¢ structure to indicate
therelativeimportance of specific aspects of the topic definition. For example,
you may beinterested intwo related subjects, but one subject ismoreimportant
than another. You do not have to assign weights when you compose topics
because default weights are assigned as appropriate when atopic set isindexed.
However, by assigning weights you can fine-tune the importance of thingsyou
are looking for.

Which operators accept weights

116

Weights are used in conjunction with operators to compute scores for parent
and child topics during a search. The weight you assign to atopic child can be
anumber between 0.01 and 1.00. A child’s weight indicates its importance
relative to the other children that have been defined for its parent. The higher a
child’sweight, the moreimportant that child is considered to be with respect to
its siblings.

Weights can only be assigned to the children of topics that use the concept
operators, as follows:

* AND
« OR
* ACCRUE

Topics that use the proximity operators SENTENCE and PARAGRAPH,
cannot be assigned aweight. These operators assume asimple “yes’ or “no”
presence for their children.

If atopic assigned a proximity operator is, in turn, the child of atopic which
has been assigned a concept operator, such asthe AND operator, that child can
be assigned aweight.

It is not mandatory that you assign weights to the children of atopic just
because the operator can accept weighted children. When weights are not
assigned, the child has an automatic weight assignment based on its operator.
Children of topics using AND and OR operators assume aweight of 1.00, and
children of topics using the ACCRUE operator assume aweight of 0.50. If
these operators are changed — for example, if an OR operator is changed to an
ACCRUE operator — the weights of children that have not been specifically
assigned aweight change accordingly. Thus, if an unweighted child of an AND
topic has an assumed weight of 1.00, this assumed weight changesto 0.50 if
the operator is changed to ACCRUE.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

If you assign a variable weight to a topic child, then change the operator used
with the parent to one that does not accept weighted children, such asthe
SENTENCE operator. The Verity search engine automatically assumes a
weight of 1.00 while this operator isin effect. If the operator is subsequently
changed to one which accepts variable-weighted children, the previously-
assigned variable weights become effective once again.

How weights affect importance

When you assign aweight to the child of atopic that uses a concept operator,
you specify the relative contribution of that child to the overall score produced
by atopic. The higher the weight you assign to the child, the higher selected
documents that contain that child appear in the list of results. Thus, weights
directly affect the importance, or ranking, of selected documents.

For example, assume you have the following topic:

1.00 WORD 80236

1.00 WORD 80336
0.80 WORD 486

[2
>

P po-jargon R t 0.80 WORD 386
>

0.30 WORD 286
040 STEM clone

The evidence topics 80286 and 80386 (which describe the microprocessors
used in PC products) have an automatic weight assignment of 1.00. The
evidence topics 486, 386, and 286 have arelatively high probability of
referring to their parent topic, so these evidence topics are assigned weights of
0.80. The evidence topic clone may or may not refer to PC clones at all;
therefore, this evidence topic is assigned a weight of 0.40.

Users Guide 117

Weights and document importance

Soores

00 01-0et-30
00 14-Feb-30
20 13-Feb-31
20 01-o0et-30
a0 01-oek-90
.80 15-Feb-30

(= I

Sooras

1.00 01-0ct-30
1. 14-Feb-30
0.60 13-Feb-91
0.60 01-0ct-30
0.60 15-Feb-30
0.45 01-0ct-30

Assigning

118

A search agent using this topic and its assigned weights might produce the
following scores for the matched documents:

Rew Toshiba Portable Desktop Computers o0ffer a Serious Alternatiwve for Desktop Users
Technology: ‘chip set’ Unveiled for Vze in taking Fasber Computers

CM3 Erhancements Ine. Unweils Hew Products

Top Selling Microsoft Windows Applications How Awvailable in One Convenient Package
Fenpcorp smecessfnl Bidder to Acquire Hew York state Diwvisions of Empirve of America Federal
Health: v.3. EBirth conkrol Lags

If you change the weights of each evidence topic, the importance of your
selection results are affecte, aswell. Inthisexample, if you changetheweights
of the evidence topic 486 to 0.60, the evidence topic 386 to 0.45, the evidence
topic 286 to 0.35, and the evidence topic cloneto 0.20, your selected document
scores change as follows:

Rew Toshiba Portable Desktop Computers 0ffer a Sericws Altemative for Desktop Users
Technologp: ‘chip fet’ nweiled for Use in Making Faster compubters

CH5 Enhancements Inc. Unveils Rew Products

keptorp Successful Eidder to Acquire Few Tock State Divisions of Empice of America Federal
Health: U.5. Eirth conteol Lags

Top #elling Microsoft Windows Applications How Availsble in one Convenient Package

weights

When you assign aweight to a child, keep in mind that the weight you use
reflects the importance of a child to its parent topic. The matched documents
are ranked by importance to the search; thus, your selection results are directly
affected by the weights you assign. If you change a weight, your selection
results change as well.

Example:

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Thetopic boeing-peopl e includes three weighted children, binder, shrontz, and
woodard, as shown below.

p VORD paul
080 paul binder PHRASE 4[_

p WORD binder
’ WORD frark
P WORD shrontz

’» WORD ron
P 0.60 ron woodard PHRASE —[

P WORD woodard

’D.SD hoeing-people ACCRUE ’D.SD frank shrontz PHRASE —[

These subtopics are assigned various weights, as follows: the child binder is
assigned aweight of 0.80, since this child is considered to be the most
important of the three. The subtopic hitsman isassigned a“ median” weight of
0.50, since this child is reasonably important with respect to the other two
children. The subtopic johnson is assigned alow weight of 0.30, since this
child is considered to be the least important with respect to the other children.

When the topic boeing-peopleis used for a search, the Verity search engine
assumesthat if the phrase “ Paul Binder” islocated within adocument, thereis
a high probability that the document is relevant to a search that uses the topic
boeing-people. Documents that contain the phrase “Frank Shrontz” are
reasonably relevant to this search; documents that contain the phrase “Ron
Woodard” are the least relevant.

Because the topic boeing-peopl e has been assigned the ACCRUE operator, the
documents displayed at the top of the results list are those that contain the
greatest number of children; therefore all documents with referencesto all
three people are given the most importance. Documents that contain only one
name will be selected in an order that reflects the weights of each child. Thus,
because the binder child has the highest weight, documents that include only
oneindividua areranked by those that refer to Paul Binder first, followed by
Frank Shrontz, and finally Ron Woodard.

Users Guide 119

Weights and document importance

Automatic weight assignments

When you create a child, the Verity search engine automatically assigns a
default weight of 0.50 for children of topicswhich use the ACCRUE operator.
A weight of 1.00 is assigned automatically to children of topics that use the
AND or OR operators. These default weights can be manually adjusted up or
down, as described in “ Changing weights’ on page 120. When you create a
evidence topic off of atopic that uses a proximity operator, default weight of
1.00 is assigned, and it cannot be changed.

Tips for assigning weights

When initially assigning weights, start with aweight of 0.50 for children of
ACCRUE topics, and 1.00 for children of all other topics.

When assigning weights to children of topics that use the ACCRUE operator,
you may select more relevant resultsif the children do not have overly high
weights. For example, assigning all of the children of an ACCRUE topic
weights of 1.00 causes all documents to have equal importance, regardless of
how many of the children are present within the documents. The Verity search
engine assigns equal importance to all documents containing only one child as
well asfor documents that contain all children, so you cannot distinguish
between these documents when you view the selection results.

Assign weights between 0.80 and 0.20 for the best selection results.

Changing weights

120

Once you have assigned weights to children, you can test these weights by
running a search using the parent topics to seeif the documents you want are
selected. If you find that you need to change the weights, you can edit the
existing weight assigned to that subtopic or evidence topic. When you edit
topic definitions in the topic outline file, you must rebuild the topic set using
mktopics. For complete information about using mktopics, see your Verity
application’s administration guide.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Topic scoring and document importance

Users Guide

When you use atopic to perform a search, the search agent startsits analysis
by considering the evidence topics for that topic. If the evidencetopic is
present, it is given 1.00 score and is considered relevant to the search. If the
evidencetopicisabsent, it is given a0.00 score and is considered irrelevant to
the search. If the evidence topics areweighted, the scores of the evidencetopics
are multiplied by the weights, then combinesthe resulting productsin amanner
specified by the operator of the parent topic. If this parent topic is, in turn, the
child of another topic which is being searched, its score is multiplied by its
assigned weight, and the resulting product is combined with the products of its
siblingsin amanner specified by the operator assigned to the parent topic. This
process continues until the parent topic is reached.

The operators you use determine how parent and child scores contribute to the
importance of a selected document. As each child in the topic is given an
importance score, the following cal culations are performed:

« |If atopic uses an ACCRUE operator, the highest ranking result is taken
from the products of each child’sweight and score, then adds alittleto the
score for each child that is present in the document.

« If atopic uses an AND operator, the products of each child’'s own weight
and score are compared, and the lowest product (the minimum) istaken as
the score.

« If achild uses an OR operator, the products of each child’s weight and
score are compared, and highest product (the maximum) istaken as the
score.

e If achild uses aproximity operator (PHRASE, SENTENCE, or
PARAGRAPH), or arelational operator, the child receivesa score of 1.00
if thetopic is present, and a score of 0.00 if the topic is not present.

* Anevidencetopic receives ascore of 1.00 if it is present, and no score of
0.00if it is not present.

Oncethefinal calculationsfor the parent topic have been performed, amatched
document becomes available to the Verity application so that users can view it
with its highlights.

The following example provides a breakdown of how evidence topics and
subtopics are calculated to illustrate the process by which importanceis
assigned to selected documents.

121

Topic scoring and document importance

r BOEINGCOD or —

122

In the following illustration, the parent topic BOEINGCO isbeing used in a
search.

- wFn beeing

— ’. 0.50 boeingroomprsenicss PHRASE ~E } WORD Comnputer

P worD senices

} WCORD boaing

— P 0.50 beeingrcomps o —— P 0.50 bosingasmspace SENTENCE P LR aemspace

} WORD electronics

P viorn bosing

L— | 0.50 bosingrosfense PARRGRAFH _['-WORD defanse

P woRD Bosing
— P 0. 50 beeingrlbel s {

} WORD Company

WOFD paul
P 0.20 paul bincler FHRSE —E')

P weorn bincler

' WoFD frank
—b.g_g,g beeing-pecple AECRITE p 0.50 fenkshontz PHRASE _EP WoRD shiontz

WOED N
}D_SD n woodhmr! PHRASE —Eh

P WOERD Woodard

The evidence topics of each subtopic are first checked against the documents
to determine if they are present. Evidence topics that are present are assigned
scores of 1.00; evidence topics that are absent are assigned a score of 0.00.

The operators at the next level of atopic structure are used to combine the
scores of the evidence topics. Because the operators at this level are all
proximity operators (thus, no weights assigned), they all produce scores that
are either 0.00 or 1.00.

For example, assume that the following evidence topics appear within agiven
document:

» Theevidencetopic “Boeing Computer Services’ appearswithin aphrase.

» Theevidencetopic “Boeing Defense’ appears within a paragraph. The
evidence topic “Boeing Company” appears within the document.

» Theevidencetopic “Ron Woodard” appears within a phrase.

The other evidence topics are only partially present, or are absent. Table 8-9
shows how the presence or absence of these evidencetopics affect topic scores.
The score for each topic reflects the presence of al related evidence topics,
based on the operators that have been assigned to the parent topics.

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Table 8-9: Evidence topics and scores
Evidencetopic Evidencetopic Topic

Topic Evidence topic present absent score
boeing-comp-services boeing computer services 1 1
1
1
boeing-aerospace boeing aerospace electronics 1 0
boeing-defense boeing defense 1 1
1
boeing-label boeing company 1 1
1
paul-binder paul binder 1 0
1
frank-shrontz frank shrontz 1 0
1
ron-woodard ron woodard 1 1
1

Given the above topic scores, the operators at the next level of topicsin the
structure are calculated as follows:

e The subtopic boeing-comps, which usesthe AND operator, has a score of
0.50.

e The subtopic boeing-people, which uses the ACCRUE operator, has a
score of 0.50.

Finally, the topic BOEINGCO, which uses the OR operator, compares the
products of each child's weight and score, and takes the highest product (the
maximum) as its score. The selected document is thus scored as 0.50.

This processis repeated for each document. The documents are sorted by the
scores of the BOEINGCO topic, and displayed in ranked order.

Users Guide 123

Designing topics

Designing topics

This section discusses methodol ogies you can use to design effective topics.
You can apply the methodol ogies and strategies described here whether you
plan to composetopicsusing atopic outlinefile or one of the Verity clients. The
information in this section includes the following:

* Preparing your topic design
» Topic design strategies
» Designing theinitial topic

Preparing your topic design

Asyou prepare your topic design, consider the naming conventions you will
use. Your topic names should help identify the subject matter of the kinds
documents you want to find.

To ensure the best search performance, use al phanumeric characters (A
through Z, and 0 through 9) for topic names. You can also use foreign
characterswhose ASCII valueis greater than or equal to 128, aswell as these
symbols: $ (dollar sign), % (percentage sign), ~ (circumflex), + (plus sign), -
(dash), and _ (underscore). Using other nonal phanumeric characters, may
cause misinterpretation of the topic name and affect results.

Understanding your information needs

124

You should have an understanding of the subject areasto be addressed by your
topic design and be familiar with the search requirements of users at your site.
The next step is to understand your informational needs, as well as the
document types to be searched.

In planning your initial topic design, keep in mind that you are developing a
strategy, and the topicsyou define are the tactics you will useto implement that
strategy.

Asyou develop your strategy, try to answer the following questions:
* What do you want to gain by using a Verity search agents?
e What issues are to be solved by Verity search agents?

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

e Who will use search agents?

* What kinds of source material will be used?

e What kinds of searches will be performed?

e How are searches currently being performed?

Consider the topics you define as questions to be asked. Just as you might ask
areference librarian at your local library for information relating to a subject
area, the topics you create should pose questions when creating Verity search
agents.

When considering your strategy, and how Verity search applications will be
implemented to provide a solution, keep in mind that a topic you design
performs several roles, as follows:

e Alibrarian
e A research assistant
e Aninformation repository

e A knowledge base

Understanding your documents

Users Guide

To build effective topics, you must have a good understanding of the types of
documents being used as information sources. For example, your documents
may consist of one or more of the following types of information:

e Letters

e Memos
¢ Reports
e Articles

Collect representative samples of the types of documentsto be searched. Note
common characteristics you will need to apply to the topics you design. For
example, if your documents contain important terms, acronyms, or jargon,
highlight them so you can create topics that search for this text.

Asyou collect your document samples, identify their sources — whether they

areinternal sources, such asinternal auditing reports; or external sources, such
as e-mail messages from outside organizations. This information enables you
to define the subtopics for top-level topics.

125

Topic design strategies

Using scanned data

If your documents are scanned into electronic files using an OCR facility,
determine whether the document files will be reviewed for accuracy prior to
indexing. If scanned files are reviewed, consult with reviewers to ensure that
standards are applied to terms, acronyms, and jargon. |f scanned files are not
reviewed, note possible variations that may occur. You can devel op atopic that
uses an OR operator to include variations.

Categorizing document samples

Once you have collected your representative document samples and have
performed an initial analysis of their contents, you may want to categorize
them further. The categorization process can help you to define the top-level
topics and children contained in your topic design, and help determine the
operators and weights to assign.

Following are categorization examples:
» Geographic location

e Sit

* Project

* Subject area

 Date

The categorization process can help you understand the common, meaningful
elements which exist in your information sources. For example, if you
categorize your information by date (such asamonth), it makes senseto create
topics that use relational operators, such as EQUALS.

Topic design strategies

126

Once you have an understanding of your documents, you are ready to choose
atopic design strategy. There are two topic design strategies

» The“top-down” strategy considers the major subject classificationsfirst,
followed by classifications of increasing detail .

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

e The"bottom-up” strategy considers the detailed areas first, followed by
classifications which group each detailed area by a more generalized
subject.

Top-down design

A top-down strategy assumes you are designing a topic from the top-level
topicsdown through theindividual evidence topics of each subtopic. To design
from the top down, you must adopt a taxonomy, or scientific classification
approach, to creating atopic, asfollows:

* Top-level topics— use general headingsto identify the subject area

* Subtopics — use more specific headings to identify the primary groupings
within the subject area, as well astopics which are increasingly more
specific.

« Evidence topics— use important terms, acronyms, or jargon, to define the
subject.

A top-down design works best when you have clearly-defined requirements.
This approach is also ideal if your set of searchable documents is constantly
growing or changing. With this strategy, for example, you are likely to define
subjects which may not yet be evident in your information sources. Keep in
mind that you can always add new topics, if you find that a number of new
documents contain information which are not identified in your topic design.

If your information sources (that is, your set of indexed documents) changes
constantly, specific subjectswithin documents may be missed, especially at the
lowest levels. Periodically analyze the information being selected by your
topics to ensure that topics critical to your application are current, and the
appropriate information is being found.

Bottom-up design

A bottom-up strategy assumes you are designing a topic from the individual
evidence topics up through the top-level topics that will be defined. With this
strategy, your topic design objective is to select documents containing
information similar to your lower-level topics.

Users Guide 127

Designing the initial topic

Designing the

Outlining a topic

128

When you use a bottom-up design, you can start with a document which
contains a good representative sample of the words or phrases you want to
search for. Then you can group these words by successively higher
classifications.

A bottom-up design works best when you have documents that are
representative of many other documentsthat contain similar information. This
approach is also useful when your information sources are not subject to many
changes or additions.

Topic designs based on the contents of specific documents may miss related
subject areasin other documents. For example, if anameisused in the sample
document and that name changes in other documents, the new name may be
missed in searches.

In addition, the bottom-up strategy implies that your topic design is tuned to
the specific document set being used to develop your topics. These documents
may not be representative of all documents contained in your information
sources. Periodically review the effectiveness of your searches.

initial topic
When you have decided whether to use the top-down approach or the bottom-

up approach for your initial topic design, create atopic outline to identify the
topic levels to be defined.

Making atopic outline can help you determine how information will be
categorized at the various|evel swithin atopic. You can use atopic outlinewith
the top-down or the bottom-up design approach, but it is particularly useful for
the top-down approach. We recommend that every topic you build be
developed as an outline first, so that you can understand the relationships
between topics and subtopics, and organize them to be the most useful.

A topic outline helps you understand how information might be searched for
by the people who use Verity search agents at your site. You can use atopic
outline to fine-tune the information specified by topics and subtopics to
pinpoint document selection. Try to do the following as you develop atopic
outline:

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

e ldentify the specific areas of information peoplewill use when performing
searches.

e ldentify any related subtopics which may be grouped as children under a
parent topic.

e Consider theinitia level of detail to be covered by your topic design.

K eep the scope of your topic outline relatively small to begin with. A smaller,
simpler topic outline is easier to define, and you can always add additional
information later. As you develop your topic outline, determine how many
levels your topic design will include.

Top-down topic outline example

Developing atop-down topic outline involves three steps.
e Establishing an information hierarchy

« Establishing individual search categories

« Establishing the topics to be built

Asyou work through these steps, meet with the people who use Verity search
agents at your site to devel op atopic outline that best meetstheir search needs,
as described below.

Establishing an information hierarchy

Users Guide

Talk to the people at your site to learn what types of documents contain the
information they need.

For example, assume you are developing a topic design for peoplein the
medical industry to find information relating to current drug testing. Based on
discussions with the people who will use Verity search agents at your site, you
learn that the following types of documents are prime sources of current drug
testing information:

e Research reports
e Product literature

These documents form the informati on sources to be searched by Verity search
agents.

129

Designing the initial topic

Establishing individual search categories

Review the documentsthat will form theinformation sourcesat your site. L ook
for ways to categorize documents.

In our example, areview of the medical research reports and product literature
shows information contained in these documents is divided into several
categories. You determine that the following categories will be used to define
the top-level topicsin your topic design:

e Labreports
e Clinicd trids, data, or research

e Product literature

Establishing the topics to be built

130

Discuss categories you define with the people who create Verity search agents
at your site to determine the most important concepts that selected documents
should contain, and to determine the top-level topics you need to develop for
each category.

For example, you determine that the category “clinical trials” includes the
following top-level topics:

product-testing

research-m ethodology

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Users Guide

Within these top-level topics, for example, the following subtopics are

identified by subject-area experts:

p product-testing — p» drug-names

} research-methodology ——

— P article-type

— P Experim ental-lab

— P Experim ental-subjects

— - organ-systems

— > ane-category

— - key-aspects

—} procedurakaspects

— - study-type

— > drug-related-aspects

— > drug-adm inistration-routes

L gecgraphical-areas

131

Designing the initial topic

Once these topics are classified, you consult the people who use Verity search

agents at your site to determine subtopics. Following is an example of

subtopics classified as ¢l

hildren for the topic procedural -aspects:

p product-testing — e drug-nam es

p research-methodology —

— P article-type

— P experimentaklab

—} experimentalsubjects

_> organ-system s

— p» ape-category))
P diagnosis

— P key-aspects B therapy

L procedural-aspects

— P study-type

— P drug-related-aspects

— P drug-administration-routes

p prevention
P autopsy

132

—} geographicalareas

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

Asthe topic outline is defined, you consult the people who use Verity search
agentsat your siteto ensure the topics sel ect meaningful documents. Inthe next
example, atopic called drug-names enables the users at your site to search
clinical trials data for drugs, based on their names.

— P gentamin

— P gentamycin
— P vancomycin

P producttesting — P drug-names —— e trimethoprin

p research-methodology —

Bottom-up topic outline example

Users Guide

Developing a bottom-up

— P cephalosporin
— P erythom yein
L— P cilastratin

— P article-type

— - experimental-lab
—} experimental-subjects
_> organ-system s

- p» ape-category

| B ey-aspects : diagnosis
therapy

:: Etrjgejurzl—aspems B prevention
Jp P autopsy

— P drug-related-aspects
— P drug-administration-routes
—} feographical-areas

topic outline involves three steps.

e ldentifying the subtopics that will form the lowest levels of the topic

design

e Categorizing related

subtopics into higher-level topics

« Establishing the top-level topic classifications

As you work through these steps, meet with the people who create Verity
search agents at your site to develop atopic outline that best meets your search
needs, as described below.

133

Designing the initial topic

Identifying low-level topics

134

Find a document you can use as a model whose information is representative
of other documents you want to find.

For example, assume you are devel oping atopic design to find information on
the computer industry. Asastart, you build atopic that searchesfor documents
related to Apple Computer and related products.

You use the following sample as a model document for which the information
is representative of other documents you want to find:

& system developed specifically for networked Apple Computer, Inc.
Macintosh computers has been announced by Human Designs, Inc.

Dubhbed Chorus, the floor-standing unit reportedly can contain up to
16 flpating-point processors and connects to networked Macintoshes to
create a multiuser desktop environment.

The product offare performance of eight million to 32 million
flnating-point operations per cecond and was desigred to accommodato
software development, according to the vendor. Options include an
Ethernet I/0 upgrade and a software simulator.

A Lhorus 1 single floating-point processor entry-lewvel systom coste
$9,700. A Chorus 4 configuration with four floating point procescors
is available at $25,000, which includes a dedicated 1/0 processor
with an Apple Appletalk port and system software. Both systens are
upgradahle.

Human Designs, 322 W. 7ist St., MHew York, N.Y. 10023. Z212-5&0-0257.

This document makes you decide you want to locate other documents which
refer to “ Appletalk” and “Macintosh,” so you define two parent topic names,
apple-software and apple-hardware.

You decide you want to add additional evidence topics to select documents
containing related information, such as “Macintosh,”

Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

“Mac Classic,” “Quadra,” and “Power Mac.” In addition, you decide you want
to include the evidence topics “ AppleTalk” “MacPaint,” “MacWrite,” and
“MacDraw,” asrelated software products. You assign these evidence topicsto
your apple-hardware and apple-software topics, as follows:

— P macintosh
— P mac classic

— P quadra
L— P power mac

— P appletalk
— - macpaint
— P macwrite
L— P macdrawy

P apple-hardware —

P apple-software —

Finally, you want to combine these topics into the topic apple-products, as
follows:

— P macintosh
— P mac classic
— P guadra

— P power mac

— P appletalk
— P macpaint
— P macwrite

P apple-hardware —

P apple-products

P apple-software —

— } macdraw

Categorizing related subtopics

Discuss subtopics with the people who use Verity search agents at your site to
determine if other subtopics exist that can be logically grouped in a category.

Users Guide 135

Designing the initial topic

In our example, some of the people who use Verity search agentsareinterested
in finding information on personnel at Apple Computer, and others are
interested in finding any documents that refer to Apple Computer. In the
example below, alogical group of topics addresses several aspects of Apple
Computer:

— P macintosh
— P mac classic

— P guadra
L— P power mac

— P appletalk
— P acpaint
— e macwrite
L— P macdraw

P apple-hardware —

P apple-products

B apple-software —

P apple-people ———— P gil-am elio

m acword
P apple-misc 4[’
} claris

apple
}apple—cnm pany-nam es —E’ i

} apple computer

Establishing top-level topics

Determine whether other top-level topics are necessary to find related
information.

136 Enhanced Full-Text Search Specialty Data Store

CHAPTER 8 Verity Topics

In the following example, a new topic, dec, is developed for another computer
company, Digital Equipment Corporation. Thistopic was assigned atop-level
topic and contains subtopics similar to those defined for the apple topic, as

shown below.
— P macintosh
— mac classic
P =pple-hardware —_: quadra
— ower mac
— P+ apple-products 4
— P appletalk
— P m acpaint
P apple-software — B acuite
L— P macdraw
} apple ——} apple-people —} gil-atm elio
— fn acvworld
— > apple-misc _ >
L claris
— P apple

> apple-company -names —
—p apple-computer

— P alpha workstation
— P alphaserver

— v

— } decsystam

— P dec-hardware —

— P dec-products

- } dec-software —

p-cec —1—p decpeople ———— - robert-paimer
dexpo
— > dec-misc >
P Openyiis

P dec
—» dec-campany -names —|:

> digital-computer

Verity® and TOPIC® are registered trademarks of Verity, Inc.

Users Guide 137

Designing the initial topic

138 Enhanced Full-Text Search Specialty Data Store

APPENDIX A

System Procedures

Thisappendix describesthe Sybase -supplied system procedures used for
updating and getting reports from system tables. Table A-1 liststhe
system procedures included with the Enhanced Full-Text Search engine.

Table A-1: System procedures

Procedure

Description

sp_check_text_index

Reportsor fixesconsistency problemsin Enhanced Full-Text Search index and source
tables.

sp_clean_text_events

Removes processed entries from the text_events table.

sp_clean_text_indexes

Removes text indexes that are not associated with atable.

sp_create_text_index

Creates an external text index.

sp_drop_text_index

Drops text indexes.

sp_help_text_index

Displays text indexes.

sp_optimize_text_index

Runs the Verity optimization routines.

sp_redo_text_events

Changes the status of entries in the text_events table and forces re-indexing of the
modified table.

sp_refresh_text_index

Adds an entry to the text_events table reflecting updates to the corresponding source
table.

sp_show_text_online

Displays information about databases or indexes that are currently online.

sp_text_cluster

Displays or modifies clustering options.

sp_text_configure

Displays or modifies Enhanced Full-Text Search engine configuration
parameters.

sp_text_dump_database

Makes a backup copy of the text indexes in a database and optionally dumps the
text_db and current databases.

sp_text_Kill

Terminates all connections to a specific text index.

sp_text_load_index

Restores text indexes from a backup.

sp_text_notify

Notifiesthe Enhanced Full-Text Search enginethat thetext_events table hasbeen
modified.

sp_text_online

Makes a database available to Adaptive Server.

Users Guide

139

sp_check_text_index

sp_check_text_index

Description Reports or fixes consistency problemsin the Enhanced Full-Text Search index
and source tables.

Syntax sp_check_text_index server, "index_name", "id_column", "fixit"

Parameters server
isthe name of the text server.

index_name
isthe name of the text server.

id_column
isthe source identity or primary key column name.

fixit
if FALSE, just reports problems. If TRUE, does not report but repairs
problems.
Examples Lists problems on the server named textsvr with the column name text.i_text:
sp_check text index "textsvr", "text.i text", "id",
"false"
Usage e Beforeusing sp_check_text_index, you must issue sp_dboption “select
into”, true

e Thisprocedure:

» Generates an sp_refresh_text_index insert for entriesin the source
table that do not have a matching entry in the index.

» Generates an sp_refresh_text_index delete for entries in the index
table that have no source table entry.

e Generates an sp_refresh_text_index delete for each extra entry where
duplicate index entries exist.

e Todetermine the index duplicates, select all of the ID values from the
index table into atemporary table. If the collection has more than 64K ID
values, you must changethe batch_blocksize configuration parameter from
its default of 0 to 65536 to enable blocked reading of the returned Verity
information. If you do not do this, Enhanced Full-Text Search attemptsto
real all 1D valuesin oneread and fail with a Verity error of “-27.”

Messages None.

Permissions Any user can execute sp_check_text_index.

140 Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_clean_text_events

Description Removes processed entries from the text_events table.

Syntax sp_clean_text_events [up_to_date]

Parameters up_to_date

the date and time through which all processed entries will be deleted.

Examples Removes data entered on or before January 15, 1998 at 5:00 p.m.:
sp_clean_ text events "01/15/98:17:00"

Usage e If you do not specify the up_to_date parameter, al entries having a date
less than or equal to up_to_date and whose status are set to processed is
deleted.

e If you ommit up_to_date, all entries whose statusis set to processed is
deleted.

« Remove entries from the text_events table only after you have backed up
the collection associated with the text index.

e sp_text_dump_database automatically runs.

Messages None.
Permissions Any user can execute sp_clean_text_events.
See also sp_text_dump_database

Users Guide 141

sp_clean_text_indexes

sp_clean_text _indexes

Description Removes indexes from the vesaux table that are not associated with atable.
Syntax sp_clean_text_indexes

Parameters None.

Examples sp_clean text indexes

Usage e This procedure reads entries from the vesaux and vesauxcol tables,

verifying that both the source table and the corresponding index table
exist. If either ismissing, the index is dropped.

Messages * Fetchresultedin an error.
e Unableto drop object definition for index_name!

Permissions Any user can execute sp_clean_text_indexes.

142 Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

Sp_create text index

Description

Syntax

Parameters

Examples

Usage

Users Guide

Creates atext index.

sp_create_text_index server_name, index_table_name,
table_name, “batch”, column_name
[, column_name ...]

server_name
is the name of the Enhanced Full-Text Search engine.

index_table name
isthe name of the index table. index_table name has the form
[dbname.[owner.]]table, where:

« dbname isthe name of the database containing the index table.
* owner isthe name of the owner of the index table.
* table isthe name of the index table.

table_name
is the name of the source table containing the text being indexed.
table_name has the form [dbname.[owner.]]table.

batch
the“batch” operator (must be in quotes) tellsthe Enhanced Full-Text Search
to reallocate every session after each batch sent to the VDK.

column_name
is the name of the column indexed by the text index.

Creates atext index and an index table named i_blurbs on the copy column of
the blurbs table:

sp_create_ text_ index "blue", "i blurbs", "blurbs", " ",
Ilcopyll

* Upto 16 columns can be indexed in asingle text index.
e Columns of the following datatypes can be indexed: char, varchar, nchar,

nvarchar, text, image, date, time, datetime, smalldatetime, int, smallint, and
tinyint.
* The content of option_string is not case sensitive.

e option_string usesanull string (" ") to specify “No Options.”

143

sp_create_text_index

Messages .

Assign the value “empty” to option_string to create a text index that you
will immediately drop. This createsthe Verity collection directory and the
style files, but does not populate the collections. For example, when you

configure an individual table for clustering, you create the text index and
immediately drop it. After you edit the style.prmfile, you re-create the text
index. See “Editing individual style.prm files” on page 29.

sp_create_text_index writes entries to the vesaux table and tells the
Enhanced Full-Text Search engine to create the text index.

Execution of sp_create_text_index is synchronous. The Adaptive Server
process executing this system procedure remains blocked until the index
is created. The time required to index large amounts of data may take as
long as severa hoursto complete.

When you create atext index on two or more columns, each columnin the
text index is placed into its own document zone. The name of the zoneis
the name of the column. The zones can be used to limit your search to a
particular column. For more information, see “in” on page 53.

Do not rename an index after creating.

Cannot run sp_create_text_index from within a transaction.
“‘column_name’ cannot be NULL.

Column ‘column_name' does not exist in table ‘table_name.’
Index table mapping failed — text index creation aborted.
Invalid text index name — ‘index_name’ already exists.
‘parameter’ is not in the current database.

Server name ‘server_name’ does not exist in sysservers.
‘table_name’ does not exist.

‘table_name’ isnot avalid object name.

Table ‘table_name’ does not have anidentity column—text index creation
aborted.

Text index creation failed.

User ‘user_name’ isnot avalid user in the database.

Permissions Any user can execute sp_create_text_index.

144

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_drop_text_index

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

Users Guide

Drops the index table and text indexes.

sp_drop_text_index "table_name.index_table_name"
[,"table_name.index_table_name"...]

table_name
is the name of the table associated with the text indexes you are dropping.
table_name has the form [dbname.[owner.]]table, where:

* dbname isthe name of the database containing the table.
e owner isthe name of the owner of the table.
¢ table isthe name of the table.

index_table name
is the name of the index table and text index you are dropping.
index_table_name has the form [dbname.[owner.]]index.

Drops the index table and text index associated with the blurbs table:
sp_drop_ text index "blurbs.i blurbs"

e First, sp_drop_text_index issues a remote procedure call (RPC) to the
Enhanced Full-Text Search engineto del ete the Verity collection. Then, it
removesthe associated entriesfrom thevesaux and vesauxcol tables, drops
the index table, and removes the index table object definition.

e Upto 255 indexes can be specified in asingle sp_drop_text_index request.

e |f database and owner are not specified, the current owner and database
are used.

e Cannot run sp_drop_text_index from within atransaction.
e Index ‘index_name' is not atext index.

e ‘parameter_name’ isnot avalid name.

e Server name ‘server_name’ does not exist in sysservers.

e Unableto drop index table ‘table name’. This table must be dropped
manually.

e User‘user_name isnot avalid user in the ‘database name' database.
e vs_drop_index failed with code ‘code_name'.

Any user can execute sp_drop_text_index.

145

sp_help_text_index

sp_help_text_index
Displaysalist of text indexes for the current database.

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

146

sp_help_text_index [index_table_name]

index_table name

is the name of the text index you want to display.

Example 1 Displaysall indexes:

sp_help text index

Example 2 Displaysinformation about the text index i_blurbs:

sp_help text index "i blurbs"

sp_help_text_index is available only with Enhanced Full-Text Search
Speciaty Data Store.

If you the index_table_name parameter, information about that text index
is displayed. Thisinformation includes the name of the text index, the
name of the Verity collection for the index, the name of the source table,
the name of the IDENTITY or primary key column, and the name of the
Enhanced Full-Text Search engine that created the index.

If index_table nameisomitted, alist of all text indexesin the current
database is displayed

No text indexes found in database ‘ database name.’
Text index ‘index_name’ does not exist in database ‘ database name.’

Object must be in the current database

Any user can execute sp_help_text_index.

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

Sp_optimize_text_index

Performs optimization on a text index.

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

See also

Users Guide

sp_optimize_text_index index_table_name

index_table name
is the name of the text index you want to optimize. index_table name has
the form [dbname.[owner.]]table, where;

dbname is the name of the database containing the index table. If
present, the owner or a placeholder is required.

owner is the name of the owner of the index table.

table is the name of the index table.

Optimizes the text index i_blurbs to improve query performance:

sp_optimize text index "i blurbs"

sp_optimize_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

This system procedure causes the Enhanced Full-Text Search engineto
run the specified text index through the Verity optimization routines.

sp_optimize_text_index is useful for optimizing atext index that has been
updated with Verity optimization disabled (trace flag 11 turned on).

To enable MaxClean optimization, turn on trace flag 30. This trace flag
should only be used during maintenance since it could take extratime and
interfere with normal usage. MaxClean is a Verity optimization feature
that removes out-of-date collection files.

‘index_table name' is not in the current database.
‘index_table name’ does not exist.
Index ‘index_table name' isnot atext index.

This procedure is not supported against remote server ‘ server_name.’

Any user can execute sp_optimize_text_index.

“Updating existing indexes’ on page 79

147

sp_redo_text_events

sp_redo_text events

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

148

Changesthe status of entriesin the text_events table and forces the reindexing
of the modified columns.

sp_redo_text_events [from_date [,to_date]]

from _date
isthe starting date and time in a date range of entries to be modified.

to_date
isthe ending date and time in the specified date range of the entries to be
modified.

Re-ndexes columns that were modified between January 5, 1998 at 5:00 p.m.
and February 12, 1998 at 8:30 am.:

sp_redo_text events "01/05/98:17:00", "02/12/98:08:30"

* Resetsthe status to “unprocessed” for al entriesin the text_events table
that currently have a status of “processed.” The Enhanced Full-Text
Search engineis notified that areindex operation is required.

e Useful for synchronizing atext index after arecovery of the Verity
collection from a backup. This procedure is run automatically during
sp_text_load_index.

» If youomit to_date, all entries between from_date and the current date
with a status of “processed” are reset to “unprocessed.”

e If youomit both from_dateand to_date, al entriesin thetext_events table
with a status of “processed” are reset to “un-processed.”

» to_date cannot be specified without from_date.
* You have not specified the full range.

Any user can execute sp_redo_text_events.

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_refresh_text _index

Description

Syntax

Parameters

Examples

Usage

Messages

Users Guide

Records modifications in the text_events table when you change the text
index’s source table data.

sp_refresh_text_index table_name, column_name, rowid, mod_type

table_name
is the name of the source table being updated. table_name has the form
[dbname.[owner.]]table, where:

e dbname isthe name of the database containing the table.
* owner isthe name of the owner of the table.
* table isthe name of thetable.

column_name
is the name of the column being updated.

rowid
isthe IDENTITY or primary key column value of the changed row.

mod_type
specifies the type of the change. Must beinsert, update, or delete.

Recordsin the text_events table that you have updated the copy column of the
blurbs table. The row you have updated has an id of 2.000000:

sp_refresh text index "blurbs", "copy", 2.000000,
"update"

* The user maintains the consistency of the text index. You must run
sp_refresh_text_index anytime you update source data that has been
indexed so that the text_events table reflects the change. This keeps the
collectionsin sync with your source data. The collections are not updated
until you run sp_text_notify.

* You can create triggers that issue sp_refresh_text_index for non-text and
non-image columns. See“ Propagating changesto the text index” on page
23.

e Column ‘column_name’ does not exist in table ‘table_name.’

e Invalid mod_type specified (‘mod_type’). Correct values: INSERT,
UPDATE, DELETE.

e Owner ‘owner_name’ does not exist.
e Table‘table name’ does not exist.

e ‘table name' isnot avalid name.

149

sp_refresh_text_index

e Text event table not found.
Permissions Any user can execute sp_refresh_text_index.

See also sp_text_notify

150 Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_show_text online

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

See also

Users Guide

Displaysinformation about databases or text indexes that are currently online.
sp_show_text_online server_name [,{INDEXES | DATABASES}]

server_name
isthe name of the Enhanced Full-Text Search engineto which therequest is
sent.

INDEXES | DATABASES
specifies whether the request should contain data about online indexes or
online databases. The default isINDEXES.

Example 1 Displays all indexes that are currently onlinein the KRAZYKAT
Enhanced Full-Text Search engine:

exec sp_show text online KRAZYKAT

Example 2 Displaysall databasesthat are currently onlineinthe KRAZY KAT
Enhanced Full-Text Search engine:

exec sp show text online KRAZYKAT, DATABASES

e sp_show_text_online issues aremote procedure call to the Enhanced Full-
Text Search engine to retrieve information about the indexes or the
databases that are currently online.

e If theresults of this procedure do not list a database, use sp_text_online to
bring the desired database online.

e sp_show_text_online failed for server server_name.

e The parameter value ‘value' isinvalid.

* The RPC sent to the server returned afailure return code.

e The second parameter must be INDEXES or DATABASE.
Any user can execute sp_show_text_online.

sp_text_online

151

sp_text_cluster

sp_text cluster

Description Displays or changes clustering parameters for the active thread.
Syntax sp_text_cluster server_name, cluster_parameter [, cluster_value]
Parameters server_name

is the name of the Enhanced Full-Text Search engine.

cluster_parameter
is the name of the clustering parameter. Values are shown in Table A-2.

cluster_value
isthe value you assign to the clustering parameter for the active thread.
Values are shown in Table A-2.

Table A-2: Clustering configuration parameters

Values for
cluster_parameter Values for cluster_value

cluster_style Specifies the type of clustering to use. Valid values are:

« fixed — generates a fixed number of clusters. The number is set by the cluster_max
parameter.

« coarse —automatically determinesthe number of clustersto generate, based on fewer,
coarse grained clusters.

¢ medium —automatically determines the number of clusters to generate, based on
medium-sized clusters.

 fine —automatically determines the number of clusters to generate, based on smaller,
finer-grained clusters.
cluster_max Specifies the maximum number of clustersto generate when cluster_style is set to fixed.
A value of 0 means that the search engine determines the number of clustersto generate.
cluster_effort Specifies the amount of effort (time) that the search engine should expend on finding a
good clustering. Valid values are:

 effort_default — the search engine spends the default amount of time. You can also use
the Verity term “default” if you encloseit in double quotes (*).

« high —the search engine spends the longest time.
« medium —the search engine spends less time.
¢ low —the search engine spends the least amount of time.
cluster_order Specifies the order in which to return the rows within the clusters. Valid values are:

« "0"—indicatesrowsarereturned in order of similarity to the cluster center. Thismeans
thefirst row returned for acluster isthe one that is most prototypical of therowsinthe
cluster.

e "1"—indicates that rows are returned in the same relative order in which they were
submitted for clustering. For example, if cluster 1 contains thefirst, third and seventh
rows found for the query, they will be returned in that relative order within the cluster.

152 Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

Examples

Usage

Messages

Permissions

See also

Users Guide

Example 1 Changesthe cluster_order parameter to 1 for the active thread:

sp_text cluster KRAZYKAT, cluster_order, "1"

Example 2 Displaysthe current value of the cluster _style parameter:

sp_text cluster KRAZYKAT, cluster style

The Verity clustering algorithm attempts to group similar rows together,
based on the values of the clustering parameters.

If you specify thecluster_parameter parameter, but omit the cluster_value
parameter, sp_text_cluster displays the value of the clustering parameter
that is specified.

sp_text_cluster does not modify the value of the clustering configuration
parameter. The cluster_valueisvalid only for the thread that is currently
executing. To modify the default values, use sp_text_configure.

For information on how to request a clustered result set, see “Using
pseudo columns to request clustered result sets’ on page 48.

This procedure is not supported against remote server ‘server_name.’
The parameter value ‘value' isinvalid.

sp_text_cluster failed (status = status).

Any user can execute sp_text_cluster.

sp_text_configure

153

sp_text_configure

sp_text _configure

Description

Syntax

Parameters

Examples

Usage

Messages

154

Displays or changes Enhanced Full-Text Search engine configuration
parameters.

sp_text_configure server_name [, config_name [, config_value]]

server_name
is the name of the Enhanced Full-Text Search engine.

config_name
is the name of the configuration parameter to be displayed or modified.

config_value
isthe value you assign to the configuration parameter.

Example 1 Changes the backup destination directory to /data/backup:
sp_text configure KRAZYCAT, backdir, "/data/backup"
Example 2 Displays the backup destination directory:
sp_text configure KRAZYCAT, backdir
* When you execute sp_text_configure to modify a dynamic parameter:
e The configuration and run values are updated.
e Theconfiguration file is updated.
e The change takes effect immediately.
» When you execute sp_text_configure to modify a static parameter:
e The configuration value is updated.
e Theconfiguration file is updated.

» Thechangetakeseffect only when you restart the Enhanced Full-Text
Search engine.

* Whenissued with no parameters, sp_text_configure displaysareport of all
Enhanced Full-Text Search engine configuration parameters and their
current values.

» If you specify the config_name parameter, but omit the config_value
parameter, sp_text_configure displays the report for the configuration
parameter specified.

e Forinformation on the individual configuration parameters, see
“Modifying the configuration parameters’ on page 67.

e Configuration value cannot be specified without a configuration option.

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

e Thisprocedure is not supported against remote server ‘server_name.’

e sp_text_configure failed — possible invalid configuration option
‘config_name.’

Permissions Any user can execute sp_text_configure.

Users Guide 155

sp_text_dump_database

sp_text dump_database

Description Makes a backup copy of atext index.

Syntax sp_text_dump_database backupdbs [, current_to] [,
current_with] [, current_stripe0O1 [, ... [,
current_stripe31]]] [, textdb_to] [, textdb_with] [,
textdb_stripeO1 [, ... [, textdb_stripe31]]]

Parameters backupdbs
specifies whether the current database and the text_db database are backed
up before the text index is backed up. Valid values are:

e CURRENT_DB_AND_INDEXES —indicates that the current database is
backed up before the text indexes are backed up.

* CURRENT_DB_AND_CURRENT_INDEXES —indicates that the current
database is backed up before the text indexes are backed up, and only
the indexes associated with the current database are dumped.

e TEXT_DB_AND_INDEXES —indicates that the text_db databaseis
backed up before the text indexes are backed up.

* INDEXES_AND_DATABASES —indicates that the current and text_db
databases are backed up before the text indexes are backed up.

e ONLY_INDEXES —indicates that only the text indexes are backed up.

current_to
isthe to clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

current_with
is the with clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

current_stripe
isthe stripe clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

textdb_to
isthe to clause of the dump database command for dumping the text_db
database. Use this only if you specify INDEXES_AND_DATABASES for the
backupdbs parameter. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

156 Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

textdb_with
isthe with clause of the dump database command for dumping the text_db
database. Use this only if you specify TEXT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

textdb_stripe
isthe stripe clause of the dump database command for dumping the text_db
database. Use this only if you specify TEXT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

Examples Example 1 Only text indexes are backed up:
sp_text dump database ONLY INDEXES

Example 2 The current database isdumped to /data/dblbackup beforethetext
indexes are backed up:

sp_text dump database CURRENT DB AND INDEXES, "to '/data/dblbackup'"

Example 3 Thetext_db database is dumped to /data/textdbbackup before the
text indexes are backed up:

sp_text dump database @backkupdbs = "TEXT DB AND INDEXES",
@textdb to = "to '/data/textdbbackup'"

Example 4 The current database is dumped to /data/dblbackup and the
text_db database is dumped to /data/textdbbackup before the text indexes are

backed up:
sp_text dump database @backupdbs = "INDEXES AND DATABASES",
@current to = "to '/data/dblbackup'",
@textdb to = "to '/data/textdbbackup'"
Usage e The Enhanced Full-Text Search engine concatenates the val ues of

current_to, current_with, and current_stripeO1 to current_stripe31 to
dump database currentdbname and then executes the dump database
command. The output from the execution of the dump database command
is sent to the Enhanced Full-Text Search error log.

e The Enhanced Full-Text Search engine concatenates the val ues of
textdb_to, textdb_with, andtextdb_stripeOltotextdb_stripe3ltothestring
“dump database currentdbname” and then executes the dump database
command. The output from the execution of the dump database command
is sent to the Enhanced Full-Text Search error log.

e All entriesin the text_events table that have a“processed” statusin the
current database are deleted when all indexes have been backed up.

e The backup files for the Verity collections are stored in the directory
specified in the backDir configuration parameter.

Users Guide 157

sp_text_dump_database

Messages

Permissions

See also

158

» Seereferences to the configuration parameter backCmd for customizing
backups.

e The parameter value ‘value' isinvalid.
e Server name ‘server’ doesnot exist in sysservers.

e Attempt to dump database ‘ database_name' failed — use the dump
database command.

» Attempt to backup text indexes on server 'server_name’ failed.

e Attempt to clean text_eventsin database ‘ database name' failed (date =
'date’).

e Parameter 'parameter_name' is required when dumping database
‘database _name'.

e Dumping database 'database name’ — check Full Text Search SDS error
log for status.

Any user can execute sp_text_dump_database.

dump_database in the Reference Manual.

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_text Kkill
Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

See also

Terminates all connections to a specific text index.
sp_text_kill index_table_name

index_table name
is the name of the text index from which all connections are terminated.
index_table_name has the form [dbname.[owner.]]table, where;

< dbname isthe name of the database containing the index table. If
present, the owner or a placeholder is required.

* owner isthe name of the owner of the index table.
* table isthe name of the index table.
Terminates al existing connections to the text index i_blurbs:
sp_text kill "i blurbs"

e This system procedure causes the Enhanced Full-Text Search engine to
terminate all connectionsto the specified index, except for the connection
that initiated the request.

e Attemptsto drop atext index that is currently in use will fail. sp_text_kill
can be used to terminate all existing connections so that the index can be
successfully dropped.

¢ Index ‘index_table name’ isnot atext index.

* Thisprocedure is not supported against remote server ‘ server_name.’
e ‘index_table name' does not exist.

e Only the System Administrator (SA) may execute this procedure.
Only user “sa’ can execute sp_text_Kkill.

sp_drop_text_index

sp_text load _index

Description

Syntax

Parameters

Users Guide

Restores atext index backup.

sp_text_load_index
None.

159

sp_text_load_index

Examples

Usage

Messages

Permissions

See also

160

sp_text load index

Restores all text indexes in the current database.

Runsp_text_load_index after thetext_db database and the current database
have been fully recovered.

sp_text_load_index restores the Verity collections from the most recent
backup. The Enhanced Full-Text Search engine then runs
sp_redo_text_events and sp_text_notify to reapply al entriesin the
text_events table since the date and time the index was backed up.

Server name ‘server_name’ does not exist in sysservers.
Unable to restore text indexes for server ‘server_name.’
This procedure is not supported against remote server ‘server_name’

Update to text_events table in database database name failed for server
‘server_name’ —text_events not rolled forward.

Any user can execute sp_text_load_index.

sp_redo_text_events; sp_text_notify

Enhanced Full-Text Search Specialty Data Store

APPENDIX A System Procedures

sp_text notify

Description Notifies the Enhanced Full-Text Search engine that the text_events table has
been modified.

Syntax sp_text_notify [{true | false}] [, server_name]

Parameters true

causes the procedure to run synchronoudly.

false
causes the procedure to run asynchronoudly.

server_name
is the name of the Enhanced Full-Text Search engine you are notifying.

Examples sp_text notify true

Usage e Youmust runsp_text_notify after youissuesp_refresh_text_index toinform
the Enhanced Full-Text Search engine that the source tables have been
modified.

e If you do not specify true or false, sp_text_notify runs synchronously.

e If no server nameis specified, all Enhanced Full-Text Search engines are
notified.

Messages e Can'trun sp_text notify from within atransaction.
* Notification failed, server = ‘server_name.’
e Server name ‘server_name does not exist in sysservers.
e The parameter value ‘value' isinvalid.

Permissions Any user can execute sp_text_notify.

See also sp_refresh_text_index

Users Guide 161

sp_text_online

sp_text _online

Description

Syntax

Parameters

Examples

Usage

Messages

Permissions

162

Makes a database available for full-text searches to Adaptive Server.
sp_text_online [server_name], [database_name]

server_name
is the name of the Enhanced Full-Text Search engine.

database_name
is the name of the database that you are bringing online.

Makes the pubs2 database available for full-text searches using the Enhanced
Full-Text Search engine:

sp_text online @database name = pubs2

» If adatabaseisnot specified, all databases are brought online for full-text
searches.

e If aserver nameis not specified, all Enhanced Full-Text Search engines
listed in the vesaux table are notified.

» With the Enhanced Full-Text Search engine, databases are brought online
automatically if the auto_online configuration parameter is set to 1.

» All Databases using text indexes are now online

» Databases containing text indexes on server ‘database _names are now
online.

e Server name server_name is now online.

* Server name ‘server_name’ does not exist in sysservers.
» The parameter value ‘value' isinvalid.

» The specified database does not exist.

» vs onlinefailed for server ‘server_name.’

Any user can execute sp_text_online.

Enhanced Full-Text Search Specialty Data Store

APPENDIX B Sample Files

This appendix contains the following:
* Thetext of the default configuration file (textsvr.cfg)
e Anoverview of the sample_text_main.sql sample script

« Alist of all thesample files provided by the Enhanced Full-Text
Search engine

e Anoverview of the getsend program

Default textsvr.cfg configuration file

RN

; @(#) File: textsvr.cfg 1.17 07/26/99

; Full Text Search Specialty Data Store
; Sample Configuration File

; The installation procedure places this file in the
; "SYBASE" directory.

; Lines with a semi-colon in column 1 are comment lines.

; Modification History:

; 11-21-97 Create file for Full Text Search SDS

; 03-02-98 Add trace flags and config values for

H Enhanced Full Text Search SDS

H 05-26-99 remove references to sds/text

; 07-09-99 added batch block size

; 08-24-99 remove version string and correct copyright

RN

i copyright (c) 1997, 1999

Users Guide 163

Default textsvr.cfg configuration file

; Sybase, Inc. Emeryville, CA
; All rights reserved.

RN
; DIRECTIONS

; Modifying the textsvr.cfg file:

; An installation can run the Text Search SDS product

; as supplied, with no modifications to configuration

; parameters. Default values from the executable program
; are 1in effect.

; The "textsvr.cfg" file is supplied with all configuration
; parameters commented out.

; The hierarchy for setting configuration values is:

; default value internal to the executable program (lowest)
; configuration file value (overrides default value)
; command line argument (overrides default value and *.cfg file)

; Command line arguments are available to override
; settings for these options:

; -i<file specification for interfaces file>

; -1l<file specification for log file>

; -t (no arg) directs text server to write start-up

; information to stderr (default is DO NOT write start-up information)

; To set configuration file parameters, follow these steps:

; (1) If changing the server name to other than "textsvr":

; (1A) Copy "textsvr.cfg" to "your server name.cfg"

; Example: text server.cfg

i (1B) Modify the [textsvr] line to [your_ server name]

; Example: [text server]

i The maximum length of “your server name” is 30 characters.

; (2) Set any configuration values in the CONFIG VALUES SECTION below.
; Remove the semi-colon from column 1.

A RN NN

164 Enhanced Full-Text Search Specialty Data Store

APPENDIX B Sample Files

; Available
; 1 trace
; 2 trace
; 3 trace
; 4 trace
; 5

; 6 trace
; 7 trace
;8 write
; 9 trace
; 10 trace
;11

;12

; 13 trace

DEFINITIONS OF TRACE FLAG AND SORT ORDER VALUES

"traceflags" parameter, for text server

"traceflags" values: 1,2,3,4,5,6,7,8,9,10,11,12,13

connect/disconnect/attention events
language events

rpc events

cursor events

log error messages returned to the client

information about indexes

senddone packets

text server/Verity api interface records to the log
sql parser

Verity processing

disable Verity collection optimization
disable returning of sp statistics information

backup operations (Enhanced Full Text Search only)

"srv_traceflags" parameter, for Open Server component of text server

; Available "srv_traceflags" values: 1,2,3,4,5,6,7,8

; 1

W J 0 Ul b WN

trace
trace
trace
trace
trace
trace
trace
trace

TDS headers

TDS data

attention events
message queues

TDS tokens

open server events
deferred event queue
network requests

"sort order" parameter

; Available "sort order" values: 0,1,2,3
order by score, descending (default)
order by score, ascending

order by timestamp, descending
order by timestamp, ascending

; 0

A RN

; The

CONFIG VALUES SECTION

"textsvr.cfg" file is supplied with the values commented out.
; To override value(s) in the executable program:

- Set required value(s) below

- Remove the semicolon from column 1

Users Guide

165

Default textsvr.cfg configuration file

[textsvr]

;min sessions = 10
;max_sessions = 100
jbatch_size = 500
;jsort_order = 0
jdefaultDb = text db
;errorLog = textsvr.log
;language = english
jcharset = iso_1
;vdkLanguage =
;vdkCharset 850
;traceflags = 0
ijsrv_traceflags = 0
;jmax_indexes = 126
;jmax_packetsize = 2048
;max_stacksize = 34816
;max_threads = 50

;collDir = <txtsvr directory tree location on UNIX>/collections
;collDir = <txtsvr directory tree location on Win-NT>\collections
;vdkHome = <txtsvr directory tree location on UNIX>/verity
;vdkHome = <txtsvr location on Win-NTs>\verity

;interfaces = <$SYBASE location on UNIX>/interfaces

;interfaces

<%SYBASE% location on Win-NT>\ini\sgl.ini

RN

1

; The parameters in this section apply only to the Enhanced Full Text Search SDS.
; If defined to a Full Text Search engine they will be ignored.

’

jauto_online = 0

;backDir = <txtsvr directory tree location on UNIX>/backup
;backDir = <txtsvr directory tree location on Win-NT>\backup

;backCmd =
;restoreCmd =

jknowledge base =

;nocase = 0

;jcluster max = 0

jcluster order 0
jcluster style Fixed
jcluster effort = Default
;jbatch blocksize = 0
;max_session fd = 0

166

Enhanced Full-Text Search Specialty Data Store

APPENDIX B Sample Files

The sample_text_main.sql script

Users Guide

The Enhanced Full-Text Search engine installation copies the
sample_text_main.sql script to the $SYBASE/$SYBASE_FTS/sample/scripts
directory. This script illustrates the following operations:

e Setting up atext index.

* Modifying data and propagating changes to the collections. Thisincludes
inserts, updates, and deletes.

* Dropping atext index.

Execution of thisscript isnot required for installation or configuration; Sybase
supplies the script as a sample.

Before you run the sample_text_main.sql script:

e Your Adaptive Server and Enhanced Full-Text Search engine must be
configured and running.

« Useatext editor to edit the sample_text_main.sql script. Change
“YOUR_TEXT_SERVER” to the name of your Enhanced Full-Text
Search enginein Step 4 in the sample_text_main.sqgl script.

* Verify that your model database containsatext_events table. If your model
database is not configured this way, you must:

¢ Modify the sample_text_main.sqgl script to exit after creating the
database

e Apply the installevent script to the new database. See “ Running the
installevent script” on page 17.

« Execute the remainder of the sample script

Direct the script asinput to your Adaptive Server. For example, to run the
sample_text_main.sql script on an Adaptive Server named MY SVR:

isqgl -Ulogin -Ppassword -SMYSVR

-1

SSYBASE/SSYBASE FTS/sample/scripts/sample text main.sqg
1 -omain.out

When you finish with this sample environment, log in to your Adaptive Server
and drop the sampl e database. For example;

1> use master

2> go

1> drop database sample colors db
2> go

167

Sample files illustrating Enhanced Full-Text Search engine features

You can re-run the sample_text_main.sql necessary.

Sample files illustrating Enhanced Full-Text Search
engine features

The Enhanced Full-Text Search engine supplies a set of sample filesfor
illustrating text server operations. Thefiles are located in the
$SYBASE/$SYBASE FTS/sample/scripts directory. Execution of the sample
filesisnot required for installation, configuration, or operation of a Enhanced
Full-Text Search engine.

Custom thesaurus
The following filesillustrate how to set up and use a custom thesaurus:
« sample text_thesaurus.ctl —isasample contral file.

» sample text_thesaurus.sgl — provides sample queries using the custom
thesaurus created by the sample control file.

Topics
The following filesillustrate how to set up and use topics:
» sample text_topics.otl —isasample outlinefile.
e sample text_topics.kbm—isasample knowledge base map.

» sample _text_topics.sgl — provides sample queries using the defined topics.

Clustering, summarization, and query-by-example

The following filesillustrate how to set up and use clustering, summarization
and query-by example:

» sample text_setup.sgl — creates a sample environment.

» sample text_queries.sql —issues queries against the environment and
drops the environment.

168 Enhanced Full-Text Search Specialty Data Store

APPENDIX B Sample Files

getsend sample program

Users Guide

The Enhanced Full-Text Search engine includes a program named getsend to
load text or image datafrom afile into a column defined in Adaptive Server.

The required source and header files, a makefile, and directions for building
and running the program are included in the directory
SSYBASE/$SSYBASE_FTS'sample/source.

Seethe README.TXT file and getsend.c filefor information on how to usethe
program.

169

getsend sample program

170 Enhanced Full-Text Search Specialty Data Store

APPENDIX C

Users Guide

Unicode Support

The Unicode standard, a subset of the International Standards
Organization’s |SO 10646 standard, is an international character set.
Unicodeisidentical tothe Basic Multilingual Plane (BMP) of SO 10646,
which supports al the major scripts and languages in the world.
Therefore, it isa superset of all existing character sets.

Unicode:

* Provides single-source development. This means you develop an
application once and it can then be localized for multiple locales and
in multiple languages. By using asingle unified character set, you do
not have to modify your applicationsto take into account differences
between character sets, thus reducing devel opment, testing, and
support costs.

* Allowsyou to mix different languages in the same database. An all-
Unicode system does not require that you design your database to
keep track of the character set of your data.

The Enhanced Full-Text Search engine supports Unicode. To use this
feature, set the charset configuration value to utf8. This contains
everything you need to set up a Unicode-enabled client/server database
system.

To configure the Enhanced Full-Text Search engine to store datain
Unicode format, set the charset configuration value to utf8. See
“Modifying the configuration parameters’ on page 67.

Note If you issue wildcard searches against datain Unicode format, turn
on trace flag 15. See “ Setting trace flags’ on page 73.

171

172 Enhanced Full-Text Search Specialty Data Store

APPENDIX D Working with XML data

This appendix contains the following:
e Thecorrect format for using XML datain fields and zones

A sampleof XML dataindexed into text indexes with fields and
Zones

Correctly formatting XML data for fields and zones

You can put XML datainto atext columnin an Adaptive Server database,
and then create atext index on that data. This requires using select state-
ments with special syntax, which includes the Verity operators.

In the following select statement, for example, <in> isa Verity operator.

select tl.id
from
ti address tbl t1,
address_tbl t2
where
tl.id=t2.id and
tl.index any ='USA <in> address'

Sybase supportsindexing XML datainto text indexes with fields or zones
when the XML document is well-formed and has the following format:

<address>

<street>123 Main St.</street>
<city>Anywhere</city>
<state>CA</state>
<country>USA</country>
</address>

Thisformat inserts the text "123 Main &. Anywhere CA USA" into the
address zone, "123 Main $t." into the street zone, and so forth.

Users Guide 173

Sample XML indexing

Sample XML indexing

This section provides an example of using the format in“ Correctly formatting
XML datafor fields and zones.” This sample accomplishes the following

steps:
1 Createsan empty text index on an empty table.

2 Dropsthetext index. This step drops the proxy tables associated with the
text index in Adaptive Server, but leavesall default directoriesand filesin
the collections directory structure for EFTS text indexes.

Modifies the style.dft file to set the universal filter.
Inserts datainto the table.

Recreates the text index.

o o~ W

I ssues select requests that isolate rows based on the XML data, using the
text index.

Sample in sections

Section 1
This section demonstrates creating an empty text index on an empty table.
isgl -Sasel50lsunbox -Usa -P -w2048 Dxml dbl
create table address_tbl

(
id numeric(5,0)
identity, xmlcol text

)

go

create unique index uidx on address tbl (id)

go

sp_create text index 'textsvr', 'ti_address_tbl',
'address tbl', "empty ", 'xmlcol!'

go

(return status = 0)

quit

174 Enhanced Full-Text Search Specialty Data Store

APPENDIX D Working with XML data

Section 2

Section 3

Users Guide

This section demonstrates dropping an empty text index. The example drops
the proxy tables associated with the Adaptive Server text index, but leaves all
the default directories and files in the collections directory structure of EFTS
text indexes.

isgl -Sasel50lsunbox -Usa -P -w2048 Dxml_dbl

sp_drop_text index 'address_tbl.ti address_tbl'

go

(return status = 0)

quit

This section demonstrates modifying the style.dft file to set the universdl filter.

/sy/asel501lsunbox/EFTS-15 0/collections
xml db.dbo.ti address_tbl/style

(uid=syuid) sunbox> pwd

/sy/asel501sunbox/EFTS-15 0/collections
xml db.dbo.ti address tbl/style

(uid=syuid) sunbox>ls -al

Total 74

drwxr-xr-x 2 sybase sybase

512 Jan 8 16:14

drwxr-xr-x 11 sybase sybase

512 Jan 8 16:14

-rw-r--r-- 1 sybase sybase
288 Jan 8 16:14 style.dft

(uid=syuid) sunbox> mv ./style.dft
./style.dft.orig

(uid=syuid) sunbox> cp
./style.dft.orig ./style.dft
(uid=syuid) sunbox> vi ./style.dft
(uid=syuid) sunbox> diff
./style.dft.orig ./style.dft

1llal2

> /filter="universal"

(uid=syuid) sunbox>

175

Sample XML indexing

Section 4
This section demonstrates inserting XML datainto the table.

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
insert address_tbl values

('<?xml version="1.0"
encoding="UTF-8"?>

<fulldoc>

<address>

<street>mailstop

101</street>

<city>CONCORD</city>

<state>MA</state>
<country>USA</country>

</address>

<filepath>

/sy/asel501lsunbox/EFTS-15 0/collections
/made_using mkvdk

/xml_data

/rowl well formed.xml

</filepaths>

</fulldoc>

")

go

(1 row affected)

insert address_tbl values
('<?xml version="1.0"
encoding="UTF-8"?>
<fulldocs>

<address>
<street>building 6</street>
<city>BALTIMORE</city>
<state>MD</state>
<country>USA</country>
</address>

<filepath>
/sy/asel501sunbox/EFTS-
15 0/collections
/made_using mkvdk/xml data/row2 well formed.xml
</filepath>

</fulldoc>

")

go

(1 row affected)

quit

176 Enhanced Full-Text Search Specialty Data Store

APPENDIX D Working with XML data

Section 5

Section 6

Users Guide

This section recreates the text index.

isgl -Sasel50lsunbox -Usa -P -w2048 Dxml dbl
sp_create text_ index ’textsvr’
'ti_address_tbl’, ’‘address_tbl’, " ", ’‘xmlcol’
go

(return status = 0)

quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml_db
select

tl.id
from

ti_address_tbl t1,

address_tbl 2

where

tl.id = t2.id and

tl.index any = 'USA <in> address'
go

quickpass disabled, reason: local table
SELECT

id
FROM

xml db.dbo.ti address tbl
WHERE
(

index any = 'USA <in> address'

(2 rows affected)
quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
select

This section issues select requests that isolate rows based on the XML data,
using the text index.

177

Sample XML indexing

tl.id
from
ti_address_tbl t1,
address_tbl t2
where
tl.id=t2.id and
tl.index any ='USA <in> country'
go
quickpass disabled, reason: local
table
SELECT
id
FROM
xml db.dbo.ti address tbl
WHERE
(

tl.index any = 'USA <in> country'

(2 rows affected)
quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
select
tl.id
from
ti address tbl t1,
address_tbl t2
where
tl.id=t2.id and
tl.index any='USA'

go
quickpass disabled, reason: local table
SELECT

id
FROM

xml_db.dbo ti address_tbl
WHERE

(

tl.index any ='USA'

)

id

178 Enhanced Full-Text Search Specialty Data Store

APPENDIX D Working with XML data

(2 rows affected))
quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
select
tl.id
from
ti_address_tbl t1,
address_tbl t2
where
(
tl.id=t2.id and
tl.index any='mailstop <in> address <and>
MA <in>state'

go
quickpass disabled, reason: local table
SELECT
id
FROM
xml db.dbo ti address tbl
WHERE
(
index any ='mailstop <in> address <and> MA
<in> state'
)
id
1
(1 row affected))
quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
select

tl.id
from

to address tbl tl

address_tbl t2

Users Guide 179

Sample XML indexing

where
tl.id=t2.id and
tl.index any =
'sy <in> filepath <and>
asesunbox <in> filepath <and>
EFTS-15 0 <in> filepath
<and> collections <in> filepath <ands>
made using mkvdk <in> filepath <and>
xml data <in> filepath <and> ro* <in> filepath'
go
quickpass disabled, reason: local table
SELECT
id
FROM
xml_db.dbo.ti address_tbl
WHERE
(
index any = 'sy <in> filepath <and>
asel50lsunbox <in> filepath <ands>
EFTS-15 0 <in> filepath
<and> collections <in> filepath <and>
made_using mkvdk <in> filepath <and>
xml data <in> filepath <and> ro* <in> filepath'

(2 rows affected)
quit

isgl -Sasel50lsunbox -Usa -P -w2048 -Dxml db
select

tl.id
from

ti address tbl t1,

address_tbl 2
where

tl.id = t2.id and

tl.index any =

'sy <in> filepath <and>

180 Enhanced Full-Text Search Specialty Data Store

APPENDIX D Working with XML data

asel50lsunbox <in> filepath <ands>

EFTS-15 0 <in> filepath

<and> collections <in> filepath <ands>
made_using mkvdk <in> filepath <and>

xml data <in> filepath <and> row2* <in> filepath'

go
quickpass disabled, reason: local table
SELECT
id
FROM
xml_db.dbo.ti_address_tbl
WHERE
(
index any = 'sy <in> filepath <and>
asel501lsunbox <in> filepath <ands>
EFTS-15_0 <in> filepath <and>
collections <in> filepath <ands>
made_using mkvdk <in>
filepath <ands>
row2* <in> filepath')
id
2
(1 row affected)
quit

Users Guide 181

Sample XML indexing

182 Enhanced Full-Text Search Specialty Data Store

Index

Symbols

, (comma)
in SQL statements xv
{} (curly braces)
in SQL statements xv
... (ellipsis) in SQL statements ~ xvii
() (parentheses)
in SQL statements xv
[1 (square brackets)
in SQL statements xv
<> (anglebrackets), enclosing Verity operatorsin 51

A
accrue operator 50, 52
Adaptive Server
connecting to an Enhanced Full-Text Search engine
1
processing afull-text query 10
and operator 50, 53

with the not modifier 60
angle brackets (< >), enclosing Verity operatorsin 51
atention events, tracing 73

Open Server 74
auto_online configuration parameter 22, 68, 70, 162

B

backDir configuration parameter 68, 70, 77, 157
backup and recovery 75
backup files
default location of 68, 70
backup operations, tracing 73
batch_blocksize configuration parameter 67
batch_size configuration parameter 67, 69
and performance 82-83
brackets.

Users Guide

See square brackets [] and angle brackets < >

C

case operator modifier 60
case sensitivity
inqueries 52
setting for the Enhanced Full-Text Search engine
75
inSQL xvi
character sets
setting the default 71
charset configuration parameter 67, 69
setting the default 71
cis cursor rows configuration parameter 81
cis packet size configuration parameter 82
cluster_effort configuration parameter 48, 68, 70
vauesfor 152
cluster_keywords pseudo column 44, 49
cluster_max configuration parameter 48, 68, 70
valuesfor 152
cluster_number pseudo column 44, 49
cluster_order configuration parameter 48, 68, 70
vauesfor 152
cluster_style configuration parameter 48, 68, 70
valuesfor 152
clustering 48
configuring for al tables 29
configuring for individual tables 29
enabling 27
modifying values of parametersfor 152
settingup 48
in asort specification 47
values of configuration parameters 152
writing queriesfor 49
collDir configuration parameter 67, 70
collections 6, 76
See also text indexes
backingup 156

183

Index

creating 143 cis cursor rows 81

default character st 71 cis packet size 82

default language 70 connecting to an Enhanced Full-Text Searchengine 85

disabling optimization 73, 79 connections, number of user 83

displaying the namesof 146 conventions

dropping 145 See also syntax

location of 6 directory paths xiv

setting the location of 67 used in manuals xv

modifying datain 23 curly braces ({})

optimizing 147 in SQL statements xv

performance issues when updating 83 cursor events, logging 73

populating with data 20 custom thesaurus 34

andreindexing 148 and creating the control file 35

restoring from backup 75, 77 and examining the default thesaurus 35
columns and the mksyd utility 37

valid datatypestoindex 5 and replacing the default thesaurus 37
comma(,)

in SQL statements xv
commandsin Verity.

See operators (commands) D

complement operator 50, 53 databases

Component Integration Services bringing online for full-text searches 22
connecting to an Enhanced Full-Text Search engine 1 databases, bringing online

configuration file automatically 68, 70
sample 163 datatypes

configuration parameters 67—68, 69—70 andindexing 21
See also individual configuration parameters of indexed columns 5, 143
auto_online 162 default_Db configuration parameter 68, 70
backDir 77,157 defining multiple Enhanced Full-Text Search engines
batch_size parameter and performance 82-83 15
charset 71 delete operations
cluster_effort 48, 152 creating triggersfor 23
cluster_max 48, 152 deletes
cluster_order 48,152 and updating the text indexes 8
cluster_style 48, 152 fromthetext_eventstable 141
displaying values 154 fromthe vesaux table 142
language 70 document filters 6
max_sessions parameter and performance 83 document zones
min_sessions parameter and performance 83 and multiple columnsin atextindex 22
modifying values 154 using with thein operator 53
nocase 75 dump database command
sort_order 46, 72 and the sp_text_dump_database system procedure
srv_traceflags 74 77,157

vdkCharset 71
vdkLanguage 70
configuration parameters, Adaptive Server

184 Enhanced Full-Text Search Specialty Data Store

E
elipsis(...) in SQL statements xvii
Enhanced Full-Text Search engine
changing the nameof 15
configuring multiple engines 15, 84-85
connectingto 85
document filters 6
how queriesare processed 10
notifying of updatesto thetext_eventstable 161
operators 5060
relationship of components 9
shutting down 66
starting asaservice 65
starting for UNIX platforms 63
starting for WindowsNT ~ 65-66
starting with Sybase Central 65
Enhanced Full-Text Search Specialty Data Store
componentsof 59
error log file
setting the path name of 68
specifying in therunserver file 64
error logging 73
errorLog configuration parameter 68, 70
events, logging 73-74

F

fields

formatting XML data, sampleof 174
fields, formatting XML datafor 173
file descriptors

setting limits 68
filters, document 6

creating 32
and document zones 54
forceplan

and forcing join orders 81
full-text search queries
bringing databases onlinefor 22
and case sengitivity 52
componentsof 43
processinga 10
and requesting clustered result sets 49
sort order specifications 4647
and using topics 41

Users Guide

Index

using dternative syntax 52

G

getsend program 169

H

highlight pseudo column 44

id pseudo column 7, 45
mapping to the IDENTITY column in the source
table 20
and query optimization 81
IDENTITY columns
adding auniqueindex 20
adding to asourcetable 20
adding to existing sourcetable 20
displaying with thetext index 146
exampleof adding 25
joining with theindex table 7, 10
inthe sourcetable 5
in operator 50, 53
index table
contentsof 7
creating 20, 143
dropping 145
and theid column 19
inaquery 10
joining with the sourcetable 7
index_any pseudo column 45
and query optimization 81
insert operations
creating triggersfor 23
inserts
and updating thetext indexes 8
installevent installation script
editing 17
exampleof using 25
using 17
installtextserver installation script

185

Index

and creating multiple Enhanced Full-Text Search

engines 84
editing 15
locationof 15

instsvr.exe Uutility 66
integrity, maintaining 6
Intelligent Classifier 40

interfaces
tracing calls between Enhanced Full-Text Search engine
and Verity 73
interfaces configuration parameter 68, 70
interfacesfile

setting the location of 68, 70
specifying in the runserver file 64

J

join order
ensuring correct 80

joining the source table with the text index
and increasing performance of 80

5,7,10, 19,43

K
/keys modifier 36
knowledge base map

creating 40
defining the location of 41
knowledge_base configuration parameter 41, 68, 70

L
language
setting the default 70-71
language configuration parameter 67, 69
setting the default 70
language events, logging 73
like operator 50, 54
enabling literal text in the QBE specification 27
limits
file descriptors 68
list
keyword 36

186

logging eventsusing traceflags 7374

M
maintaining integrity 6
many operator modifier 60
max_docs pseudo column 45
with clustered result sets 49
and increasing query performance 80
and sort orders 72
max_indexes configuration parameter 67, 69
max_packetsize configuration parameter 67, 69
max_session_fd 68, 70
max_sessions configuration parameter 67, 69
and performance 83
max_stacksize configuration parameter 67, 69
max_threads configuration parameter 67, 69
metadata 6
min_sessions configuration parameter 67, 69
and performance 83
mksyd utility
and creating a custom thesaurus 37
and examining the default thesaurus 35
mktopics utility 40
multiple users 85

N

naming the Enhanced Full-Text Search engine 68, 70
near operator 50, 54, 55
near/n operator 50, 55
with the order modifier 61
network requests, tracing 74
nocase configuration parameter 68, 70, 75
not operator modifier 60

O

online databases.

See databases, bringing online
Open Server events, tracing 74
Open Server traceflags 74
operator modifiers

Enhanced Full-Text Search Specialty Data Store

case 60

many 60

not 60

order 61

operators (commands) 50-60
accrue 50, 52

and 50,53

complement 50, 53
enclosing in angle brackets 51
in 50,53

like 50,54

near 50, 54, 55

near/n 50, 55

or 50,53

paragraph 50, 55

phrase 50, 55

product 50, 56

and relevance-ranking 4546
sentence 50, 56

stem 50, 56

sum 50, 57
thesaurus 50, 57
topic 50, 58
wildcard 50, 58
word 50, 59
yesno 50, 60

optimization, disabling 73, 79
or operator 50, 53

with the not modifier 60
order operator modifier 61
outlinefilefor topics 39

P

paragraph operator 50, 55
with the many modifier 60
with the order modifier 61

parameters
of asearch 7

parentheses ()
in SQL statements xv

performance and tuning
adding auniqueindex 20
and using multiple Enhanced Full-Text Search

engines 84

Users Guide

Index

disabling text index optimization 79
increasing query performance 80-81
reconfiguring Adaptive Server 81-82
reconfiguring the Enhanced Full-Text Search engine
82-83
and sp_text_notify 83
phrase operator 50, 55
with the many modifier 60
procedures.
See system procedures
processed events
removing from thetext_eventstable 141
processing full-text searches 10
product operator 50, 56
propagating changesto the collections 8
proxy tablesasasourcetable 6
pseudo columns 7
cluster_keywords 44, 49
cluster_number 44, 49

highlight 44

id 45

inaquery 10
index_any 45
max_docs 45, 49
score 4546

sort_by 45, 4647, 49
summary 45, 47

Q

QBE specification.
See query-by-example

queries
and pseudo columns 7

queries, full-text search
bringing databases onlinefor 22
and case sensitivity 52
componentsof 43
ensuring the correct join order 80
increasing performance of 80-81
processing of 10
reguesting clustered result sets 49
sort order specifications 4647
and using topics 41
using dternative syntax 52

187

Index

query-by-example
configuring for all tables 29
configuring for individual tables 29
enabling 27
and the like operator 54

R

ranking documents.
See relevance-ranking
recoverty 75
and synchronizing atext index with the source table
148
relevance-ranking 4546
See also score pseudo column
remote procedure calls
sp_traceoff 74,80
sp_traceon 74,80
remote tablesasasourcetable 6
replicating text indexes 24
RPC events, logging 73
RPCs.
See remote procedure calls
runserver file 63
flagsfor 63

S

samplefiles
configuration file 163
illustrating clustering 168
illustrating custom thesaurus 35, 168
illustrating query-by-example 168
illustrating summarization 168
illustrating topics feature 39, 168

sample of formatting XML datafor fieldsand zones 174

sample program getsend 169
sample scripts

sample_text main.sgl 19, 24, 167
score pseudo column 8, 45-46

with clustered result sets 49

and default sort order 72

and the many modifier 60

sorting by 47

188

score values

how Sybasereports 46
scripts, sample

sample_text main.sgl 19, 24, 167
search parameters 7
sentence operator 50, 56

with the many modifier 60

with the order modifier 61
sessions, number of user 83
showplan

and examining join orders 81
shutting down the Enhanced Full-Text Search engine

66

sort orders

and clustered result sets 47, 49

by column 30, 47

inaquery 4647

max_docs and sort order 72

by score 47

setting the default 72

by timestamp 47, 72
sort specifications

setting up adefined columntosort by 30
sort_by pseudo column 45

and requesting aclustered result set 49

and specifying asort order 4647

and setting up a defined column as a sort

specification 30

sort_order configuration parameter 46, 68, 70, 72
source tables

adding an IDENTITY columnto 19

changestodata 149, 161

contentsof 5

and displaying text indexes 146

inaquery 10
sp_addserver system procedure 84
sp_check_text_index system procedure 140
sp_clean_text_events system procedure 141
sp_clean_text_indexes system procedure 142
sp_create_text_index system procedure 20, 143-144

creating indexes that use afilter 32

exampleof using 26

specifying multiple columns 22
sp_drop_text_index System procedure 145
sp_help_text_index system procedure 146
sp_optimize_text_index System procedure 79, 147

Enhanced Full-Text Search Specialty Data Store

sp_redo_text_events system procedure 148
sp_refresh_text_index system procedure 149-150

modifying datain the collections 23

running automatically 23
sp_show_text_online system procedure 151
sp_statistics system procedure

disabling 73,80
sp_text_cluster system procedure 152-153
sp_text_configure system procedure 69, 154-155
sp_text_dump_database system procedure 76,

156-158

sp_text_kill system procedure 159
sp_text_load_index system procedure 77, 159-160
sp_text_notify system procedure 161

and modifying datain the collections 23

and performanceissues 83

and turning off optimization 79
sp_text_online system procedure 23, 162

example 26
sp_traceoff remote procedure call
sp_traceon remote procedure call
SQL parsing, tracing 73
square brackets| |

in SQL statements xv
srv_traceflags configuration parameter 68, 70, 74
starting the Enhanced Full-Text Search engine

from Sybase Central 65

on UNIX platforms 63

on WindowsNT 65-66

asaservice 65
startserver utility 63
Start-up

and setting the number of user connections 83
start-up commands

and the runserver file 63

on WindowsNT 65
stem operator 50, 56

with the many modifier 60
style.dft file 32
style.prmfile

editing an existing collection's 144

editing for an existing collection 29

editing the master 28

and enabling Verity functiondity 27

location of an existing collection 29

location of master 29

74, 80
74, 80

Users Guide

style.ufl file 30, 32

stylevgw file 30, 32

sum operator 50, 57

summarization
configuring for all tables 29
configuring for individual tables 29
enabling 27

writing queries requesting 47
summary pseudo column 45
enabling beforeusing 27

using 47

Sybase Central, starting from 65
symbolsin SQL statements xv
synonym list for acustom thesaurus 35
synonyms

statement 36

syntax conventions, Transact-SQL xiv
syntax, aternative Verity 52
sysserverstable

adding Enhanced Full-Text Search engines
system procedures

See also individual system procedures
sp_check_text_index 140
sp_clean_text_events 141
sp_clean_text_indexes 142
sp_create_text_index 143-144
sp_drop_text_index 145
sp_help_text_index 146
sp_optimize_text_index 147
sp_redo_text_events 148
sp_refresh_text_index 149-150
sp_show_text_online 151
sp_text_cluster 152-153
sp_text_configure 154-155

sp_text_dump_database 156-158
sp_text_kill 159
sp_text_load index 159-160

sp_text_notify 161
sp_text_online 162
system tables

updating 139

T

TDSdata, tracing 74

Index

189

Index

TDS headers, tracing 74
TDStokens, tracing 74
text documents, typesof 6
text indexes 76, 77
backingup 156
bringing online 162
creating 20, 143
creating and batch sizes 82
displaying alist of 146
displaying online 151
dropping 145
example of creating 24-26
andtheindex table 7
metadata 6
that include multiple columns 22
optimizing 147
performance issues when updating 83
placing on multiple Enhanced Full-Text Search engines

84
andreindexing 148
replicating 24

restoring from backup in Enhanced version 75

setting location of backup files 68, 70

and tracing information 73

update using text_eventstable 8

updating 79

using a document filter with 32
text_db database 6, 75, 76

backingup 156

changing thenameof 15, 18

restoring from backup 77

and the vesaux table 6

and the vesauxcol table 7
text_eventstable 8,76

changing the status of entries 148

columnsin 8

creating 17

example of creating 25

recording inserts, updates, and deletes 149

removing entriesfrom 141

restoring from backup 76, 77

and sp_text_dump_database 76, 157

and sp_text_load_index 78
textsvr.cfg file

sample 163
thesaurus operator 50, 57

190

using acustom thesaurus 34
thesaurus, custom 34
and creating the control file 35
and examining the default thesaurus 35
and the mksyd utility 37
and replacing the default thesaurus 37
timestamp
sortingby 72
topic operator 41, 50, 58
topic set directories 40
mappingto 40
topics
creating aknowledge basemap 40
creating atopic set directory 40
creating an outlinefile 39
creating complex relationships 39
description of 38
executing queriesusing 41
samplefiles 39
troubleshooting 42
traceflags 73
enabling traceflags1land 12 79
Open Server 74
setting to examinejoin orders 81
traceflags configuration parameter 68, 70
triggers for running sp_refresh_text_index 23

U

Unicode 171

and wildcard searches 73
Unicode support 171
unique index

adding to an IDENTITY column 20

example of creating 25
update operations

creating triggersfor 23
update statistics

disabling 80
updates

and updating the text indexes 8
updating indexes 79

user
connections 83
sessions 83

Enhanced Full-Text Search Specialty Data Store

Index

user databases 75, 76 with the case modifier 60
backingup 156 with the many modifier 60
bringing online automatically 68, 70 writetext command, using triggerswith 23

bringing online for full-text searches 22, 162
displaying alist of text indexesfor 146
displaying online 151

restoring from backup 77 X
user table. XML data, formatting for fields and zones 173
See source table XML data, formatting for fields and zones, sample of
174
\%
vdkCharset configuration parameter 67, 69 Y
setting the default 71 yesno operator 50, 60
vdkHome configuration parameter 67, 70
vdkLanguage configuration parameter 67, 70
setting the default 70
Verity Z
setting the Verity directory 67 ZONES.
tracing Verity processing 73 See document zones
Verity collections.
See collections
Verity query.
See full-text search queries
vesaux table

columnsin 6
creating entries 144
removing entriesfrom 142
removing entries when dropping text indexes 145
updating 20
vesauxcol table
columnsin 7
removing entries when dropping text indexes 145
updating 20

W

wildcard operator 50, 58
using with datain Unicodeformat 73
with the case modifier 60
with the many modifier 60
Windows NT
directory paths xiv
word operator 50, 59

Users Guide 191

Index

192 Enhanced Full-Text Search Specialty Data Store

	Enhanced Full-Text Search Specialty Data Store Users Guide
	About This Book
	CHAPTER 1 Introduction
	Capabilities of the Enhanced Full-Text Search Engine
	High availability

	CHAPTER 2 Understanding the Enhanced Full-Text Search Engine
	Components of the Enhanced Full-Text Search engine
	The source table
	The Verity collections
	Filters
	The text_db database
	The vesaux table
	The vesauxcol table

	The index table
	The text_events table
	Relationships between the components

	How a full-text search works

	CHAPTER 3 Configuring Adaptive Server for Full-Text Searches
	Configuring Adaptive Server for an Enhanced Full-Text Search engine
	Enabling configuration parameters
	Running the installtextserver script
	Editing the installtextserver script
	Starting the installtextserver script

	Running the installmessages script
	Running the installevent script
	Editing the installevent script
	Running the installevent script

	Naming the local Adaptive Server

	Creating and maintaining text indexes
	Setting up source tables for indexing
	Adding an IDENTITY column to a source table
	Adding a unique index to an IDENTITY column

	Creating the text index and index table
	Specifying multiple columns when creating a text index

	Granting permissions on text index proxy tables
	Bringing the database online for full-text searches
	Propagating changes to the text index
	Replicating text indexes
	Example: enabling a new database for text searches
	Step 1. Verifying that the text_events table exists
	Step 2. Checking for an IDENTITY column or primary key
	Step 3. Creating a unique index on the IDENTITY column
	Step 4. Creating the text index and index table
	Step 5. Bringing the database online for a full-text search

	Indexing the euro symbol

	CHAPTER 4 Setting Up Verity Functions
	Enabling query-by-example, summarization, and clustering
	Editing the master style.prm file
	Editing individual style.prm files

	Setting up a column to use as a sort specification
	Using filters on text that contains tags
	Creating a custom thesaurus
	Examining the default thesaurus (optional)
	Creating the control file
	Control file syntax

	Creating the thesaurus
	Replacing the default thesaurus with the custom thesaurus

	Creating topics
	Creating an outline file
	Creating a topic set directory
	Creating a knowledge base map
	Defining the location of the knowledge base map
	Executing queries against defined topics
	Troubleshooting topics

	CHAPTER 5 Writing Full-Text Search Queries
	Components of a full-text search query
	Default behaviour

	Pseudo columns in the index table
	Using the score column to relevance-rank search results
	Using the sort_by column to specify a sort order
	Using the summary column to summarize documents
	Using pseudo columns to request clustered result sets
	Preparing to use clustering
	Writing queries requesting a clustered result set

	Full-text search operators
	Considerations when using Verity operators
	Using the Verity operators
	accrue
	and, or
	complement
	in
	like
	near, near/n
	or
	phrase
	paragraph
	product
	sentence
	stem
	sum
	thesaurus
	topic
	typo/n
	wildcard
	word
	yesno

	Operator modifiers

	CHAPTER 6 System Administration
	Starting the Enhanced Full-Text Search engine on UNIX
	Creating the runserver file

	Starting the Enhanced Full-Text Search engine on Windows NT
	Starting the Enhanced Full-Text Search engine as a service

	Shutting down the Enhanced Full-Text Search engine
	Modifying the configuration parameters
	Modifying configuration values
	Available configuration parameters
	Setting the default language
	Setting the default character set
	Indexing on the euro symbol
	Setting the default sort order
	Setting trace flags
	Setting Open Server trace flags
	Setting case sensitivity

	Backup and recovery for the Enhanced Full-Text Search engine
	Customizable backup and restore
	Backing up Verity collections
	Restoring collections and text indexes from backup

	CHAPTER 7 Performance and Tuning
	Updating existing indexes
	Increasing query performance
	Limiting the number of rows
	Ensuring the correct join order for queries

	Reconfiguring Adaptive Server
	cis cursor rows
	cis packet size

	Reconfiguring the Enhanced Full-Text Search engine
	batch_size
	min_sessions and max_sessions

	Using sp_text_notify
	Configuring multiple Enhanced Full-Text Search engines
	Creating multiple Enhanced Full-Text Search engines at start-up
	Adding Enhanced Full-Text Search engines
	Configuring additional Enhanced Full-Text Search engines

	Multiple users
	File Descriptors and Enhanced Full-Text Search

	CHAPTER 8 Verity Topics
	What are topics?
	Topic organization
	Weight assignments

	Using a topic outline file
	Making topics available
	Setup process

	Knowledge bases of topics
	Combining topics into a knowledge base

	Structure of topics
	Top-level topics
	Subtopics
	Evidence topics
	Topic and subtopic relationships

	Maximum number of topics
	Topic naming issues

	Verity query language
	Query language summary
	Evidence operators
	Proximity operators
	Relational operators
	Concept operators
	Boolean operators
	Modifiers

	Operator precedence rules

	Sample topic outlines
	Operator reference
	ACCRUE operator
	ALL operator
	AND operator
	ANY operator
	CONTAINS operator
	ENDS operator
	= (EQUALS) operator
	FILTER operator
	> (GREATER THAN) operator
	>= (GREATER THAN OR EQUAL TO) operator
	< (LESS THAN) operator
	<= (LESS THAN OR EQUAL TO) operator
	IN operator
	MATCHES operator
	NEAR operator
	NEAR/N operator
	OR operator
	PARAGRAPH operator
	PHRASE operator
	SENTENCE operator
	SOUNDEX operator
	STARTS operator
	STEM operator
	SUBSTRING operator
	THESAURUS operator
	TYPO/N operator
	WILDCARD operator
	Using wildcard special characters
	Searching for nonalphanumeric characters
	Searching for wildcard characters as literals
	Searching for special characters as literals

	WORD operator

	Modifier reference
	CASE modifier
	MANY modifier
	NOT modifier
	ORDER modifier

	Weights and document importance
	Topic weights
	Which operators accept weights
	How weights affect importance
	Assigning weights
	Automatic weight assignments
	Tips for assigning weights
	Changing weights

	Topic scoring and document importance
	Designing topics
	Preparing your topic design
	Understanding your information needs
	Understanding your documents
	Using scanned data
	Categorizing document samples

	Topic design strategies
	Top-down design
	Bottom-up design

	Designing the initial topic
	Outlining a topic
	Top-down topic outline example
	Establishing an information hierarchy
	Establishing individual search categories
	Establishing the topics to be built

	Bottom-up topic outline example
	Identifying low-level topics
	Categorizing related subtopics
	Establishing top-level topics

	APPENDIX A System Procedures
	sp_check_text_index
	sp_clean_text_events
	sp_clean_text_indexes
	sp_create_text_index
	sp_drop_text_index
	sp_help_text_index
	sp_optimize_text_index
	sp_redo_text_events
	sp_refresh_text_index
	sp_show_text_online
	sp_text_cluster
	sp_text_configure
	sp_text_dump_database
	sp_text_kill
	sp_text_load_index
	sp_text_notify
	sp_text_online

	APPENDIX B Sample Files
	Default textsvr.cfg configuration file
	The sample_text_main.sql script
	Sample files illustrating Enhanced Full-Text Search engine features
	Custom thesaurus
	Topics
	Clustering, summarization, and query-by-example

	getsend sample program

	APPENDIX C Unicode Support
	APPENDIX D Working with XML data
	Correctly formatting XML data for fields and zones
	Sample XML indexing
	Sample in sections
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6

	Index

