
XA Interface Integration Guide for CICS, Encina,
and TUXEDO

Adaptive Server® Enterprise
15.5

DOCUMENT ID: DC36123-01-1550-01

LAST REVISED: October 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

XA Interface Integration Guide for CICS, Encina, and TUXEDO iii

About This Book .. v

CHAPTER 1 Introduction ... 1
Overview .. 1
Requirements... 2

CHAPTER 2 The Sybase XA Environment ... 5
Definitions .. 5
Overview of the X/Open DTP model .. 6

Components of the model ... 7
How the components communicate .. 8
How the components interact .. 8
Recovery ... 10

The Sybase XA environment ... 11
Components of the Sybase XA environment 12

Connections in the Sybase XA environment 13
Identifying connections via LRMs.. 13
Establishing connections... 15
Distributing work across LRMs.. 16

CHAPTER 3 Configuring the XA Environment .. 19
Configuring Adaptive Server .. 19
Open string parameters for the DTM XA Interface......................... 20

Open string parameters... 20
dtm_tm_role required for username .. 21
Log file and trace flag parameters... 21
xa_open() function behavior .. 22

XA configuration file for DTM XA Interface..................................... 22
Environment variable for specifying the configuration file 22
[all] section for defining common LRM parameters 23
Editing the XA configuration file .. 24
Additional capabilities, properties, and options 26

Using the DTM XA Interface with CICS.. 28

Contents

iv Adaptive Server Enterprise

Building the switch-load file ... 28
Adding a Sybase stanza to the CICS region XAD definition ... 31

Using the DTM XA Interface with Encina 33
Assigning an open string with monadmin create rm................ 33
Initializing LRMs with mon_RegisterRmi 33
Linking applications with DTM XA Interface libraries 34
Establishing connections... 34

Using the DTM XA Interface with TUXEDO 35
Linking ... 36
Setting up the UBBCONFIG file .. 37
Creating the TUXEDO configuration file.................................. 39
Building the TMS ... 39

Building the COBOL runtime environment 40

CHAPTER 4 Application Programming Guidelines ... 41
X/Open DTP versus traditional Sybase transaction processing..... 41
Managing transactions and connections.. 42

Managing transactions .. 42
Managing connections .. 43
The current connection.. 44
Nontransactional connections ... 45

Deallocating cursor function with Client-Library 45
Dynamic SQL ... 46
Obtaining a Client-Library connection handle 46
Multiple-thread environment issues ... 49

Caveats of thread use ... 50
Embedded SQL thread-safe code... 51
Tightly coupled transactions.. 51

Linking with CT Library... 53
Sample embedded SQL COBOL fragment 53
Sample embedded SQL C fragment .. 55

Index ... 59

XA Interface Integration Guide for CICS, Encina, and TUXEDO v

About This Book

Audience This guide serves as a reference manual for:

• System administrators setting up a distributed transaction processing
(DTP) environment that includes one or more Adaptive Servers with
distributed transaction management features, accessed by
transactions from within a CICS, Encina, or TUXEDO transaction
manager (TM) system.

• Application programmers using Embedded SQL™ or
Client-Library™ to access data on one or more Adaptive Servers.

This manual assumes the reader is familiar with:

• The TM operating environment

• Embedded SQL™

• Open Client™ Client-Library

• Adaptive Server® administration

How to use this book Use this guide to help configure your environment and code your
application to access data stored on one or more Adaptive Servers from
within a CICS, Encina, or TUXEDO TM.

Chapter 1, “Introduction” summarizes the steps necessary to fully
integrate the DTM XA Interface into your environment.

Chapter 2, “The Sybase XA Environment” provides background
information designed to help you place the Sybase XA environment into
the larger context of distributed transaction processing and transaction
management. It reviews the X/Open DTP model of distributed transaction
processing and fits the Sybase DTM XA Interface into this model. In
addition, it describes how the individual components of the Sybase® XA
environment work together to allow your application to access Adaptive
Server data from a TM.

Chapter 3, “Configuring the XA Environment” gives instructions for
configuring your environment to fully integrate your application, Sybase
DTM XA Interface, one or more Adaptive Servers, and your TM software.

vi Adaptive Server Enterprise

Chapter 4, “Application Programming Guidelines” explains how to make your
Embedded SQL or Client-Library application conform to certain coding
constraints that the Sybase XA environment imposes.

Related documents The Adaptive Server® Enterprise documentation set consists of:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available. To check
for critical product or document information that was added after the
release of the product CD, use the Sybase Product Manuals Web site.

• The installation guide for your platform – describes installation,
upgrading, and some configuration procedures for all Adaptive Server and
related Sybase products.

• New Feature Summary – describes the new features in Adaptive Server,
the system changes added to support those features, and changes that may
affect your existing applications.

• Active Messaging Users Guide – describes how to use the Active
Messaging feature to capture transactions (data changes) in an Adaptive
Server Enterprise database, and deliver them as events to external
applications in real time.

• Component Integration Services Users Guide – explains how to use
Component Integration Services to connect remote Sybase and non-
Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server Users Guide – describes how to use Historical Server to
obtain performance information from Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler Users Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Migration Technology Guide – describes strategies and tools for migrating
to a different version of Adaptive Server.

 About This Book

XA Interface Integration Guide for CICS, Encina, and TUXEDO vii

• Monitor Client Library Programmers Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server Users Guide – describes how to use Monitor Server to
obtain performance statistics from Adaptive Server.

• Monitoring Tables Diagram – illustrates monitor tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

• Performance and Tuning Series – is a series of books that explain how to
tune Adaptive Server for maximum performance:

• Basics – contains the basics for understanding and investigating
performance questions in Adaptive Server.

• Improving Performance with Statistical Analysis – describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

• Locking and Concurrency Control – describes how to use locking
schemes to improve performance, and how to select indexes to
minimize concurrency.

• Monitoring Adaptive Server with sp_sysmon – discusses how to use
sp_sysmon to monitor performance.

• Monitoring Tables – describes how to query Adaptive Server
monitoring tables for statistical and diagnostic information.

• Physical Database Tuning – describes how to manage physical data
placement, space allocated for data, and the temporary databases.

• Query Processing and Abstract Plans – explains how the optimizer
processes queries, and how to use abstract plans to change some of the
optimizer plans.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

• Reference Manual – is a series of books that contains detailed
Transact-SQL information:

• Building Blocks – discusses datatypes, functions, global variables,
expressions, identifiers and wildcards, and reserved words.

viii Adaptive Server Enterprise

• Commands – documents commands.

• Procedures – describes system procedures, catalog stored procedures,
system extended stored procedures, and dbcc stored procedures.

• Tables – discusses system tables, monitor tables, and dbcc tables.

• System Administration Guide –

• Volume 1 – provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and instructions for
diagnosing system problems. The second part of Volume 1 is an in-
depth discussion about security administration.

• Volume 2 – includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of Volume 2 describes how to back up and restore system
and user databases.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

• Transact-SQL Users Guide – documents Transact-SQL, the Sybase-
enhanced version of the relational database language. This guide serves as
a textbook for beginning users of the database management system, and
also contains detailed descriptions of the pubs2 and pubs3 sample
databases.

• Troubleshooting Series –

• Troubleshooting: Error Messages Advanced Resolutions – contains
troubleshooting procedures for problems you may encounter. The
problems discussed here are the ones the Sybase Technical Support
staff hear about most often.

• Troubleshooting and Error Messages Guide – contains detailed
instructions on how to resolve the most frequently occurring Adaptive
Server error messages.

• Encrypted Columns Users Guide – describes how to configure and use
encrypted columns with Adaptive Server.

 About This Book

XA Interface Integration Guide for CICS, Encina, and TUXEDO ix

• In-Memory Database Users Guide – describes how to configure and use
in-memory databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Backup Server with IBM® Tivoli® Storage Manager – describes
how to set up and use the IBM Tivoli Storage Manager to create Adaptive
Server backups.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase Failover to configure an Adaptive Server as
a companion server in a high availability system.

• Unified Agent and Agent Management Console – describes the Unified
Agent, which provides runtime services to manage, monitor, and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services Users Guide – explains how to configure, use, and
troubleshoot Web services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that are available in XML services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

x Adaptive Server Enterprise

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

 About This Book

XA Interface Integration Guide for CICS, Encina, and TUXEDO xi

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, procedure names, utility names,
and other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

xii Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Element Example

 About This Book

XA Interface Integration Guide for CICS, Encina, and TUXEDO xiii

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

xiv Adaptive Server Enterprise

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

XA Interface Integration Guide for CICS, Encina, and TUXEDO 1

C H A P T E R 1 Introduction

Overview
The DTM XA Interface is Sybase’s implementation of the XA Interface
standard, which is one element of the X/Open Distributed Transaction
Processing (DTP) model. The X/Open DTP model provides an industry
standard for developing distributed transaction processing applications.

Use the XA Interface to access data stored on Adaptive Servers from
within a CICS, Encina, or TUXEDO TM. To use native Adaptive Server
distributed transaction management (DTM) features with or without a
TM, see Using Adaptive Server Distributed Transaction Management
Features.

The Microsoft Transaction Server (MTS) also uses the XA Interface for
transactional components. MTS XA configuration is handled through the
Sybase ODBC driver setup. See the ODBC driver documentation for
details.

Other TMs, such as IBM MQ Services, also use the XA Interface. See the
transaction manager documentation for details on how to configure the
TM.

Topic Page
Overview 1

Requirements 2

Requirements

2 Adaptive Server Enterprise

❖ Enabling a TM transaction to access data stored on Adaptive Server

1 Install Adaptive Server, and the distributed transaction management
feature. Software installation and feature licenses are described in the
Adaptive Server Installation Guide for your platform.

Note Distributed transaction management is a separately-licensed
Adaptive Server feature. You must purchase and install a valid license for
DTM before it can be used.

2 Install Sybase Open Client on all client machines. The DTM XA Interface
is included with Open Client.

3 Start Adaptive Server with support for the distributed transaction
management feature. See Using Adaptive Server Distributed Transaction
Management Features for information.

4 Configure the TM software to run with an Embedded SQL or Client-
Library application and Adaptive Server, as described in Chapter 3,
“Configuring the XA Environment.”

5 Make the Embedded SQL or Client-Library application conform to certain
coding constraints, as described in Chapter 4, “Application Programming
Guidelines.”

6 Start the CICS, Encina, or TUXEDO TM.

Note To administer global recovery manually in the Sybase XA environment,
you must invoke XA-specific dbcc commands, as described in Using Adaptive
Server Distributed Transaction Management Features.

Requirements
XA Interface for Adaptive Server version 12.5 is compatible with:

• Open Client 12.5

• Embedded SQL 12.0 or later

• Adaptive Server 12.0 or later

• CICS/6000 2.1.1.6

CHAPTER 1 Introduction

XA Interface Integration Guide for CICS, Encina, and TUXEDO 3

• Encina 2.5/TX Series 4.2

• TUXEDO 6.4 (6.3/6.4 on IBM platforms)

Requirements

4 Adaptive Server Enterprise

XA Interface Integration Guide for CICS, Encina, and TUXEDO 5

C H A P T E R 2 The Sybase XA Environment

This chapter describes the X/Open DTP model, and shows how the
components of the Sybase XA environment—including the DTM XA
Interface, your application program, and Adaptive Server, among
others—fit into that model. It also discusses how connections are
established and managed in the Sybase XA environment.

Definitions
The X/Open DTP model assumes an understanding of certain terms.

• transaction – a whole unit of work consisting of one or more
computational tasks. Most often, a transaction’s tasks manipulate
shared resources.

• committed transaction – a completed transaction whose changes to
any shared resources are permanent.

• rolled-back transaction – a complete transaction whose changes to
any shared resources are nullified.

• ACID test – the test of a true transaction; to pass, the transaction must
exhibit the following properties:

• Atomicity – all or none of the results of the transaction take
effect.

• Consistency – if a transaction is rolled back, all resources that
the transaction affected return to the state they were in prior to
the transaction’s execution.

Topic Page
Definitions 5

Overview of the X/Open DTP model 6

The Sybase XA environment 11

Connections in the Sybase XA environment 13

Overview of the X/Open DTP model

6 Adaptive Server Enterprise

• Isolation – a transaction’s results are visible only to that transaction
until the transaction commits.

• Durability – permanent resource changes resulting from
commitment survive subsequent system failures.

• transaction processing – a system of coordinating the transactions that
multiple users perform on shared, centralized resources.

• distributed transaction processing – a transaction processing model in
which the shared resources are located at distinct physical sites on a
computer network.

• local transaction – a transaction that affects data in a single database and
whose tasks a single resource manager performs. See “Overview of the
X/Open DTP model” on page 6 for a definition of resource managers.

• global transaction – a transaction that spans more than one database and
multiple resource managers.

• transaction branch – a portion of the work that makes up a global
transaction.

• transaction identifier – an identifier that a TM assigns to a transaction.
The transaction monitor uses the transaction identifier to coordinate all
activity related to a global transaction. The resource manager uses the
global identifier to match the recoverable tasks it performed for the
transaction.

• recovery – the process of bringing a transaction processing system into a
consistent state after a failure. Specifically, this means resolving
transactions left in a noncommitted state.

Overview of the X/Open DTP model
The X/Open DTP model is a model for software architecture that allows
multiple application programs to share resources provided by multiple
resource managers, and allows their work to be coordinated into global
transactions.

The X/Open DTP model identifies the key entities in a distributed transaction
processing environment and standardizes their roles and interactions. The
entities are:

• The transaction processing monitor (TM)

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 7

• The resource manager (RM)

• The application program (AP)

This section discusses the X/Open DTP functional model, including its major
components and their interfaces. Figure 2-1 shows the X/Open DTP model.

Figure 2-1: A conceptual view of the X/Open DTP model

These components communicate through the native, XA, and TX Interfaces as
described in “How the components communicate” on page 8.

Components of the model
The X/Open DTP functional model consists of the following components:

• The application program (AP)

• The resource manager (RM)

• The transaction processing monitor (TM)

The AP contains the code written to accomplish a particular transaction or
portion thereof. As such, it designates the beginning and end of global
transactions.

The RM provides access to shared resources. Database servers, file servers,
and print servers are examples of RMs. In a typical X/Open DTP environment,
a single AP communicates with more than one RM. In the Sybase XA
environment, the RM is an Adaptive Server database.

RM

Application Program (AP)

TM

Native
Interface

TX
Interface

XA
Interface

Overview of the X/Open DTP model

8 Adaptive Server Enterprise

The TM coordinates the communication between all parties participating in the
transaction. The TM assures that the work done by the AP is contained in a
global transaction, which commits or aborts atomically.

Specifically, the TM’s tasks include:

• Assigning global identifiers to transactions.

• Monitoring the progress of global transactions.

• Coordinating the flow of transaction information between the APs and the
RMs.

• Managing the transaction commitment protocol and failure recovery. For
details, see “How the components interact” on page 8.

How the components communicate
The AP, the RM, and the TM communicate via three distinct interfaces: native,
TX, and XA.

The native interface is the medium by which the AP makes requests directly to
the RM. This interface is RM specific. In the Sybase XA environment, the
native interface is either Embedded SQL or Client-Library.

The TX Interface is the medium between the AP and the TM. The AP uses TX
calls to delineate transaction boundaries. In other words, the AP requests that
the TM start and commit or roll back global transactions, via the TX Interface.
This interface is TM specific.

The XA Interface is the medium between the RM and the TM. The DTM XA
Interface is Sybase’s version of the interface for Adaptive Server. Using XA
calls, the TM tells the RM when transactions start, commit, and roll back. The
TM also handles recovery.

How the components interact
The components work together to process transactions from initiation through
completion.

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 9

The AP delimits transaction boundaries. An AP informs the TM, via TX calls,
that a global transaction is beginning. The TM then communicates with all
available RMs, via XA calls, to associate a single transaction identifier with
any work the RMs will do on behalf of the AP within the bounds of the global
transaction.

When the AP requests that the TM commit the global transaction, the TM and
the RMs use the two-phase commit protocol to guarantee transaction atomicity.

Transaction completion takes place in two phases—the prepare phase and the
commit phase. For a detailed description of the two-phase commit protocol, see
the Open Client DB-Library/C Reference Manual.

In the prepare phase, the TM requests each RM to prepare to commit its portion
of the global transaction. This portion is known as a transaction branch.

In the commit phase, the TM instructs the RMs to commit or abort their
branches of the transaction. If all RMs report back that they have prepared their
respective transaction branches, the TM commits the entire transaction. If any
RM reports that it was unprepared or fails to respond, the TM rolls back the
entire transaction.

Figure 2-2 shows a typical transaction branch structure.

Overview of the X/Open DTP model

10 Adaptive Server Enterprise

Figure 2-2: Transaction branches

Recovery
The TM is responsible for managing global recovery. In certain situations, an
administrator may decide to complete its transaction branch independently of
the TM. When this occurs, the administrator’s decision is called a heuristic
decision.

TMRM

Application
Program (AP)

TMRM

Application
Program (AP)

TMRM

Application
Program (AP)

TMRM

Application
Program (AP)

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 11

The heuristic decision may be in conflict with the TM’s decision. For example,
the administrator may commit a transaction branch and the TM may request to
abort it.

Such a conflict requires manual intervention from the System Administrator.
For a discussion of heuristic decisions in the Sybase XA environment, see
Using Adaptive Server Distributed Transaction Management Features.

The Sybase XA environment
The DTM XA Interface relies on Sybase’s transaction processing model to
implement X/Open’s DTP model. Adaptive Server is used as an RM, as shown
in Figure 2-3.

The Sybase XA environment

12 Adaptive Server Enterprise

Figure 2-3: The Sybase XA DTP model

Components of the Sybase XA environment
The Sybase XA environment consists of:

• The Sybase DTM XA Interface. This is Sybase’s implementation of the
XA Interface for Adaptive Server, described in “How the components
communicate” on page 8.

 TM
TX calls

Client
application

(AP)

Embedded SQL,
and/or Client-Library XA Calls

Sybase Resource Manager

Embedded
SQL and/or
Open Client

XA
Interface

Connections

Adaptive Server LRMs

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 13

• The Open Client libraries. Client-Library calls can be part of the native
interface between your application and the resource manager.

Note XA Client libraries run in 32-bit mode on Solaris 64, AIX 64, HP-
UX 64 and Windows platforms and in 64-bit mode on Solaris 64, AIX 64,
HP-UX 64 platforms.

• Embedded SQL/C and Embedded SQL/COBOL. Embedded SQL calls
can be part of the native interface between your application and the
resource manager.

• One or more Adaptive Servers. These play the role of RMs.

• The XA configuration file. This file contains entries that define
client/server connections for use with XA.

• A set of XA-specific dbcc commands. System Administrators use these to
manage heuristic transactions.

• TM-specific configuration files and commands.

Chapter 3, “Configuring the XA Environment” explains how to configure
these components so that transactions can use the DTM XA Interface to access
data stored on Adaptive Server.

Connections in the Sybase XA environment
The X/Open DTP model has no notion of connections, yet connections are
central to the Sybase client/server architecture. The Sybase XA environment
must resolve this discrepancy.

To this end, the Sybase XA environment introduces the notion of a logical
resource manager (LRM).

Identifying connections via LRMs
Each instance of the Sybase RM appears to the TM as one or more LRMs.

Connections in the Sybase XA environment

14 Adaptive Server Enterprise

An LRM associates a symbolic name with a client/server connection. An AP
uses the names to identify the specific physical connection to one or more
Adaptive Servers. The TM uses the names to open connections on behalf of the
AP.

Where is the connection information stored?

The following components of the Sybase XA environment contain information
about LRMs. The System Administrator configures these files before starting
up the TM. For information on the full configuration process, see Chapter 3,
“Configuring the XA Environment.”

The Sybase XA
configuration file

The Sybase XA configuration file contains one entry per LRM. The entry
associates the LRM with a physical Adaptive Server name, and assigns
pre-connection Client-Library capabilities and properties to the LRM. For
details on the XA configuration file, see “XA configuration file for DTM XA
Interface” on page 22.

The CICS XA product
definition (XAD)

The CICS XAD contains one stanza per LRM. The stanza assigns each LRM
a user name and password in the form of an open string. The user name and
password enable the Sybase XA environment to control a particular
connection’s access to Adaptive Server resources. For details on the CICS
XAD file, see “Adding a Sybase stanza to the CICS region XAD definition”
on page 31.

The Encina monadmin
create rm command

The monadmin create rm command assigns each LRM a user name and
password in the form of an open string. The user name and password allow the
Sybase XA environment to control a particular connection’s access to Adaptive
Server resources. For details on the Encina monadmin command, see
“Assigning an open string with monadmin create rm” on page 33. Your current
version of Encina may have additional commands for specifying RMs.

Note You can use the Encina enconsole interactive command instead of the
shell monadmin command.

For detailed information, see the Encina Monitor System Administrator’s
Guide and Reference.

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 15

TUXEDO’s
UBBCONFIG file

In addition to modifying the Sybase configuration files, integrating TUXEDO
requires customizing the TUXEDO configuration file, UBBCONFIG. The
open string is the only portion of the UBBCONFIG file that requires
modification. It includes the user name and password, which allow XA-Server
to control a connection’s access to Adaptive Server resources. See “Setting up
the UBBCONFIG file” on page 37 for details.

Establishing connections
The TM, together with the XA Interface, establishes connections between
applications and RMs in several steps.

❖ Establishing connections in a CICS environment

1 When the CICS region starts up, it issues an XA open call to each LRM
configured in an XAD, using the information contained in each open
string.

2 The CICS region passes to the XA Interface library the open string
associated with each stanza. The open string contains the LRM name, the
user name, and the password.

3 The XA Interface looks up the LRM name in the Sybase XA configuration
file and matches it to an actual RM name, that is, an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

4 The XA Interface establishes one connection to an Adaptive Server for
each LRM entry. The XA Interface confers on any connection the pre-
connection properties and capabilities configured for the LRM.

❖ Establishing connections in an Encina environment

1 An application issues a mon_RegisterRmi function, thereby requesting use
of an LRM.

2 Using information contained in an open string, the TM issues an XA open
call to the LRM (configured in the monadmin create rm command) whose
name matches that issued in step 1, above.

3 The TM passes the open string associated with each monadmin create rm
command to the XA Interface. The open string contains the LRM name.

Connections in the Sybase XA environment

16 Adaptive Server Enterprise

4 The XA Interface looks up the LRM name in the Sybase XA configuration
file and matches it to an actual RM name—that is, to an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

5 The XA Interface establishes one logical connection to an Adaptive Server
for each LRM entry. The XA Interface confers on any connection the pre-
connection properties and capabilities configured for the LRM.

❖ Establishing connections in a TUXEDO environment

1 The application uses the LRM specified in the UBBCONFIG file to
reference the logical connection for a branch of a global transaction. In
using the LRM name, the application implicitly requests and establishes
an LRM.

2 The transaction manager passes the appropriate open string to the XA
Interface through the LRM whose name matches the one issued in step 1.
The XA Interface uses the LRM name, the user name, and the password.

3 The XA Interface looks in the xa_config file to find an association between
the LRM name and Adaptive Server. The Adaptive Server name matches
an entry in the interfaces file where its network information is kept.

4 The XA Interface establishes one logical connection to an Adaptive Server
for each LRM entry. The XA Interface confers on any connection the pre-
connection properties and capabilities configured for the LRM.

Distributing work across LRMs
The System Administrator and the application programmer together must
agree on the number and names of LRMs that their Sybase XA environment
includes.

The System Administrator configures the TM and Sybase XA configuration
files accordingly. The application programmer invokes a particular LRM name
within the application code to send a portion of a global transaction across that
connection. The TM coordinates this distribution.

You can configure the Sybase XA environment for more connections than are
actually used. That is, the XA configuration file may contain inactive entries.

For example, in a CICS environment with an Adaptive Server SYBXA_1, and
an LRM connection connection_1,

• The Adaptive Server interfaces file includes server information:

CHAPTER 2 The Sybase XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 17

sybXA_1 query tcp ether groucho 6161

• The XA Configuration file includes connection and server information:

; lrm – Names the logical connection as seen by the
application and the TP monitor.
; server – Names the physical server as found in the
Sybase interfaces file.
lrm=connection_1
server=SYBXA_1

• The XAD File stanza for the LRM contains connection information:

XAOpen="-Uuser1 -Ppassword1 -Nconnection_1"

• The application program contains transactions using connection_1.

Connections in the Sybase XA environment

18 Adaptive Server Enterprise

XA Interface Integration Guide for CICS, Encina, and TUXEDO 19

C H A P T E R 3 Configuring the XA Environment

This chapter describes how to configure the XA environment for use with
CICS, Encina, and TUXEDO TMs.

You must link the DTM XA Interface library with your X/Open XA-
compliant transaction manager to use Adaptive Server as a resource
manager.

Note See the README file under the subdirectories of
$SYBASE/$SYBASE_OCS/sample for detailed information about
configuring the DTM XA Interface for your system.

Configuring Adaptive Server
To function in a Sybase XA environment, your Adaptive Server must be
licensed and configured to use the distributed transaction management
feature. See the Adaptive Server Installation Guide and Using Adaptive
Server Distributed Transaction Management Features for more
information.

If your Adaptive Server is licensed to use distributed transaction
management, you can enable the feature using the enable dtm
configuration parameter:

Topic Page
Configuring Adaptive Server 19

Open string parameters for the DTM XA Interface 20

XA configuration file for DTM XA Interface 22

Using the DTM XA Interface with CICS 28

Using the DTM XA Interface with Encina 33

Using the DTM XA Interface with TUXEDO 35

Building the COBOL runtime environment 40

Open string parameters for the DTM XA Interface

20 Adaptive Server Enterprise

sp_configure 'enable dtm', 1

You must restart Adaptive Server for this parameter to take effect.

Open string parameters for the DTM XA Interface
The X/Open XA specification allows each resource manager vendor to define
an open string and a close string. The DTM XA Interface does not require or
use the close string.

The DTM XA Interface uses the required and optional open string parameters
described below.

Open string parameters
The format for parameters in the open string for the DTM XA Interface is:

-Nlrm_name -Uusername -Ppassword [-Llogfile_name]
 [-Ttraceflags] [-V11] [-O1] [-O-1]

Table 3-1 describes each component of the open string.

Table 3-1: Sybase X/Open XA open string parameters

Parameter Meaning

lrm_name The name of the LRM as defined in the XA configuration file.

username The user name used to log in to Adaptive Server. See “dtm_tm_role required for username” on
page 21 for more information.

password The password accompanying the user name.

logfile_name The fully qualified file name to which the XA Interface writes tracing information (optional).

The XA Interface initializes the log file and trace flag settings with the initial xa_open() call. If
no logfile_name is specified, then the DTM XA Interface logs information to a file named
syb_xa_log in the current directory.

traceflags Trace flags control the output that is written to the log file (optional). See “Parameter definitions
for [all] section” on page 23 for a list of valid trace flags.

 -V11 Specifies Open Client version 11 behavior for backward compatibility (optional).

-O1 or -O-1 Specifies an option for transaction operation. At this time only -O1 (tightly coupled transaction
branches) is supported. -O1 sets the option. -O-1 clears the option. -O-1 is the default.

 Warning! See “Tightly coupled transactions” on page 51 before setting -O1.

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 21

dtm_tm_role required for username
In the open string for resource managers, the specified username must have the
dtm_tm_role in the corresponding Adaptive Server. The System Security
Officer can assign this role using sp_role or the grant command. For example:

sp_role "grant", dtm_tm_role, user_name

Log file and trace flag parameters
With the DTM XA Interface to Adaptive Server, log file and trace flag
parameters can be defined in the [all] section of the XA configuration file,
rather than in the X/Open XA open string. See “[all] section for defining
common LRM parameters” on page 23 for more information about the log file
and trace flag components.

Labels for logfile entries

The DTM XA Interface marks each entry in the log file with a label indicating
the severity or cause of the message. Table 3-2 describes each label.

Table 3-2: Logfile message labels

Label Type of entry

Error An error returned to the transaction manager

Fatal Error A severe failure in the DTM XA Interface, with a possible application or transaction manager
error

Message Additional information about a previous error, or a description of the operational environment

Warning A condition that may indicate problems with the transactional system

Note Information that does not indicate a problem, but may be useful if an error occurs

XA trace Information logged as a result of the xa trace flag setting

RM trace Information logged as a result of the xl trace flag setting

Connection trace Information logged as a result of the xc trace flag setting

ASE I/F trace Information logged as a result of the xs trace flag setting

Misc trace Information logged as a result of the misc trace flag setting

Event trace Information logged as a result of the event trace flag setting

Verbose trace Information logged as a result of the v trace flag setting

Function trace Information logged as a result of the cmn trace flag setting

Open Client trace Information logged as a result of the ct trace flag setting

XA configuration file for DTM XA Interface

22 Adaptive Server Enterprise

xa_open() function behavior
The X/Open XA function, xa_open(), initiates a single connection to Adaptive
Server. The username and password defined in the open string must possess the
dtm_tm_role in the server, as described under “dtm_tm_role required for
username” on page 21.

XA configuration file for DTM XA Interface
The DTM XA Interface to Adaptive Server provides mechanisms for
configuring the Open Client connections using the XA configuration file. Set
all connection capabilities, properties, and options using the XA configuration
file.

Environment variable for specifying the configuration file
The DTM XA Interface uses the environment variable XACONFIGFILE to
find the full path and file name of the XA configuration file. You can set this
environment variable to specify different locations and names to use for
configuration information as necessary.

For example, on UNIX platforms:

setenv XACONFIGFILE /usr/u/sybase/xaconfig1.txt

If XACONFIGFILE is not defined, or if it does not specify a valid
configuration file, the DTM XA Interface looks for a file named xa_config in
the following directories:

• $SYBASE/$SYBASE_OCS/config

• $SYBASE/$SYBASE_OCS

• $SYBASE/config

• $SYBASE

The DTM XA Interface uses the first xa_config file it finds.

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 23

[all] section for defining common LRM parameters
The DTM XA Interface uses the [all] section to define parameters that apply to
all LRMs.

Certain parameters defined in the [all] section—log file and trace flag
definitions—may also be defined in the open string for X/Open XA transaction
managers.

Parameter definitions for [all] section

Entries for the [all] section in the XA configuration file are as follows:

[all]
logfile="logfile_name"
traceflags="[xa | xl | xc | cm| event | misc | os | ct
| all]"
[properties=name=value] [...]

Note The “0x” values in the xa_config file can be lost or converted to
non-ASCII characters because of the way some characters are processed. To
avoid this problem, you must use quotes around all string values. Failure to do
so can result in the introduction of unexpected characters into the string.

Table 3-3 describes each component.

Table 3-3: Parameters for [all] section of XA configuration file

Parameter Meaning

logfile_name The fully qualified file name to which the DTM XA Interface writes tracing information.

The DTM XA Interface initializes the log file and trace flag settings with the initial xa_open() call.

XA configuration file for DTM XA Interface

24 Adaptive Server Enterprise

Editing the XA configuration file
You must customize the XA configuration file for the application environment.
Use the text editor of your choice to open the XA configuration for editing. The
sample contents of an XA configuration file are as follows:

; Comment line as first line of file REQUIRED!
;
; xa_config - sample xa_config file.
;

traceflags The trace flags control the output that is written to the log file. Specify one or more of the following
flags:

• all – all tracing.

• ct – the ct_debug option with the CS_DBG_ERROR flag (ct_debug functionality is available
only from within the debug version of Client-Library).

• cmn – entry and exit point tracing of internal XA Interface functions.

• event – tracing of significant internal events.

• misc – tracing of activities and information for problem resolution.

• xa – entry and exit point tracing at the xa_* level.

• xc – entry and exit point tracing at the xc_* level.

• xl – entry and exit point tracing at the xl_* level.

Note Tracing at the xc_*, xl_*, event, misc, and cmn levels is intended to be meaningful only to
Sybase development. Specify these tracing levels only when instructed to do so by Sybase Technical
Support.

properties
Note The following property must be set in the [all] stanza. You cannot set it in the [xa] stanza:
CS_LOGIN_TIMEOUT=timeout

You can define these optional properties in the [all] section of the XA configuration file:

• PROPERTIES=CS_DISABLE_POLL=[CS_TRUE | CS_FALSE]

• PROPERTIES=CS_EXTRA_INF=[CS_TRUE | CS_FALSE]

• PROPERTIES=CS_HIDDEN_KEYS=[CS_TRUE | CS_FALSE]

• PROPERTIES=CS_MAX_CONNECT=number_of_connections

• PROPERTIES=CS_NOINTERRUPT=[CS_TRUE | CS_FALSE]

• PROPERTIES=CS_TEXTLIMIT=textlimit

• PROPERTIES=CS_TIMEOUT=timeout

Parameter Meaning

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 25

; Note that the Adaptive Server names may need
; to be customized for your environment.

; simprpc.ct sample application entry.

[all]
logfile="logfile_name"
traceflags="traceflags"
properties="name"="value" [, "name"="value"]

[...]

 [xa]
lrm="connection1"
server="sqlserver"

 ; Rentapp sample xa_config entries.

 [xa]

lrm="FLEET_CON"
server="fleetsrv"

 [xa]

lrm="RESERVE_CON"
server="rsrvsrv"

Note The first line of the xa_config file must be a comment that is denoted by
a semicolon (;) in the first character position.

For each additional LRM, create an entry with the following format. Keep the
connection1 entry for installation verification.

[xa]
<tab> lrm="connection_name"
<tab> server="adaptive_server_name"
<tab> capabilities="name"="value" [, "name"="value"]
[...]
<tab> properties="name"="value" [, "name"="value"]
[...]
<tab> options="name"="value" [, "name"=value"] [...]

The connection_name is the symbolic name for the connection between the
application and SQL. The adaptive_server_name is the name of the Adaptive
Server associated with the connection. adaptive_server_name must correspond
to a server name defined in the interfaces file.

XA configuration file for DTM XA Interface

26 Adaptive Server Enterprise

See “Additional capabilities, properties, and options” on page 26 for
information a list of capabilities, properties, and options that can be used with
the DTM XA Interface.

Additional capabilities, properties, and options
XA configuration file entries for capabilities, properties, and options have the
following general format:

<tab> capabilities="name"="value" [, "name"="value"]
[...]
<tab> properties="name"="value" [, "name"="value"]
[...]
<tab> options="name"="value" [, "name"="value"] [...]

The following is the list of the names for capabilities that can be defined in the
XA configuration file for the DTM XA Interface. Unless otherwise specified
in these tables, the valid values for each capability is CS_TRUE or CS_FALSE.

Note All names and values for these capabilities, properties, and options
correspond to CS-Library keywords. See the Open Client Client-Library/C
Reference Manual for specific descriptions.

The following lists the names for properties that can be defined in the XA
configuration file for the DTM XA Interface. Unless otherwise specified in
these tables, the valid values for each property is CS_TRUE or CS_FALSE.

CS_CON_NOINBAND CS_DATA_NODATETIMEN CS_DATA_NOMONEYN

CS_CON_NOOOB CS_DATA_NODEC CS_DATA_NONUM

CS_DATA_NOBIN CS_DATA_NOFLT4 CS_DATA_NOSENSITIVITY

CS_DATA_NOVBIN CS_DATA_NOFLT8 CS_DATA_NOTEXT

CS_DATA_NOLBIN CS_DATA_NOIMAGE CS_PROTO_NOBULK

CS_DATA_NOBIT CS_DATA_NOINT1 CS_PROTO_NOTEXT

CS_DATA_NOBOUNDARY CS_DATA_NOINT2 CS_RES_NOEED

CS_DATA_NOCHAR CS_DATA_NOINT4 CS_RES_NOMSG

CS_DATA_NOVCHAR CS_DATA_NOINT8 CS_RES_NOPARAM

CS_DATA_NOLCHAR CS_DATA_NOINTN CS_RES_NOTDSDEBUG

CS_DATA_NODATE4 CS_DATA_NOMNY4 CS_RES_NOSTRIPBLANKS

CS_DATA_NODATE8 CS_DATA_NOMNY8

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 27

The following lists the names for options that can be defined in the XA
configuration file for the DTM XA Interface. Unless otherwise specified in
these tables, the valid values for each option is CS_TRUE or CS_FALSE.

CS_ASYNC_NOTIFS CS_SEC_NEGOTIATE

CS_DIAG_TIMEOUT CS_TDS_VERSION= [CS_TDS_40 |
CS_TDS_42 |CS_TDS_46 |CS_TDS_50]

CS_DISABLE_POLL CS_TEXTLIMIT=textlimit

CS_HIDDEN_KEYS CS_EXTRA_INF

CS_PACKETSIZE=packetsize CS_MAX_CONNECT=connections

CS_SEC_APPDEFINED CS_NOINTERRUPT

CS_SEC_CHALLENGE CS_TIMEOUT=timeout

CS_SEC_ENCRYPTION

CS_OPT_ANSINULL

CS_OPT_ANSIPERM

CS_OPT_ARITHABORT

CS_OPT_ARITHIGNORE

CS_OPT_DATEFIRST=[CS_OPT_SUNDAY |CS_OPT_MONDAY
|CS_OPT_TUESDAY |CS_OPT_WEDNESDAY |CS_OPT_THURSDAY
|CS_OPT_FRIDAY |CS_OPT_SATURDAY]

CS_OPT_DATEFORMAT=[CS_OPT_FMTMDY |CS_OPT_FMTDMY
|CS_OPT_FMTYMD |CS_OPT_FMTYDM |CS_OPT_FMTMYD |CS_OPT_FMTDYM]

CS_OPT_FIPSFLAG

CS_OPT_FORCEPLAN

CS_OPT_FORMATONLY

CS_OPT_GETDATA

CS_OPT_ISOLATION=[CS_OPT_LEVEL1 |CS_OPT_LEVEL3]

CS_OPT_NOCOUNT

CS_OPT_NOEXEC

CS_OPT_PARSEONLY

CS_OPT_QUOTED_IDENT

CS_OPT_RESTREES

CS_OPT_ROWCOUNT=rowcount

CS_OPT_SHOWPLAN

CS_OPT_STATS_IO

CS_OPT_STATS_TIME

CS_OPT_STR_RTRUNC

CS_OPT_TEXTSIZE=textsize

Using the DTM XA Interface with CICS

28 Adaptive Server Enterprise

Using the DTM XA Interface with CICS
This section explains how to setup your CICS environment to use the DTM XA
Interface. See also “XA configuration file for DTM XA Interface” on page 22
for information on creating an XA configuration file.

Building the switch-load file
Each RM defined in the CICS environment must provide an XA switch-load
file. The switch-load file is a component of your CICS configuration; it is
referenced in the XAD. It contains the RM’s name, a flag, a version number
and a set of non-null pointers to the RM’s entry points, provided by the DTM
XA Interface.

All of the Sybase XADs share a single switch-load file. You can build your
Sybase switch-load file using the file sybasexa.c, which is located in:

$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch

The following is a listing of sybasexa.c:

/*
 **
 ** sybasexa.c
 **
 ** The sybasexa routine references the Sybase xa
 ** switch structure named "sybase_TXS_xa_switch".
 ** The switch structure is part of the
 ** XA product library "libdtmxa.a".
 **
 ** See your CICS documentation for details on the
 ** switch-load file.
 */

 #include <stdio.h>
 #include <tmxa/xa.h>

 extern struct xa_switch_t sybase_TXS_xa_switch;
 extern struct xa_switch_t RegXA_xa_switch;
 extern struct xa_switch_t *cics_xa_switch;

 struct xa_switch_t *sybasexa(void)
 {

cics_xa_switch = &sybase_TXS_xa_switch;

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 29

cics_xa_init();

return(&RegXA_xa_switch);
 }

This source code references the Sybase XA switch structure, which is global to
the DTM XA Interface and defined as follows:

struct xa_switch_t sybase_TXS_xa_switch =
 {
 "SYBASE_SQL_SERVER",
 TMNOFLAGS,
 0,
 xa_open,
 xa_close,
 xa_start,
 xa_end,
 xa_rollback,
 xa_prepare,
 xa_commit,
 xa_recover,
 xa_forget,
 xa_complete
 };

The use of TMNOFLAGS specifies that the DTM XA Interface supports thread
migration but does not support dynamic registration or asynchronous
operations. For a description of these features, see the X/Open CAE
Specification (December 1991) Distributed Transaction Processing: The XA
Specification.

Compiling the switch-load file on IBM RISC System/6000 AIX

Compile sybasexa.c using the makefile sybasexa.mk, which is located in
$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch.

This is a listing of sybasexa.mk. Edit it to reflect your configuration:

SYB_LIBDIR = $(SYBASE)/$(SYBASE_OCS)/lib
SYBLIBS = -lxadtm -lct_r.so -lcs_r.so -ltcl_r.so -lcomn_r.so -lintl_r

-lxdsxom

all : sybasexa.c xlc_r4 -bnoquiet -v -D_THREAD_SAFE \
-I/usr/lpp/encina/include sybasexa.c \
-o sybasexa \
-esybasexa \
-L/usr/lpp/cics/lib \

Using the DTM XA Interface with CICS

30 Adaptive Server Enterprise

-L$(SYB_LIBDIR) \
$(SYBLIBS) \
-lcicsrt -ldce -lm \
/usr/lpp/cics/lib/regxa_swxa.o

Note You must use the shareable versions of CS-Library (libcs_r.so.) and
Common Library (libcom_r.so.).

Compiling the switch-load file on HP9000 Series 800 HP-UX

Compile sybasexa.c using the makefile sybasexa.mk.hp800, which is located
in$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch

This is a listing of sybasexa.mk.hp800. Edit it to reflect your configuration.

#
Makefile to compile the LoadSwitchTable
This makefile should be run with the command
"make -f sybasexa.mk.hp800"
#

CC=/opt/ansic/bin/cc
CCOPTS= -Aa +z -Dsybasexa=CICS_XA_Init
ENCINA=/opt/encina
CICS=/opt/cics
LD=/usr/ccs/bin/ld

SYB_LIBDIR = $(SYBASE)/$(SYBASE_OCS)/lib
CICS_LIBDIR = $(CICS)/lib

all: sybasexa

sybasexa: sybasexa.o
$(LD) -b \

+e CICS_XA_Init \
-o sybasexa \
sybasexa.o \
$(CICS_LIBDIR)/regxa_swxa.o \
-Bimmediate -Bnonfatal +s +b/opt/cics/lib \
$(SYB_LIBDIR)/libxadtm.a \
$(SYB_LIBDIR)/libct_r.a \
$(SYB_LIBDIR)/libcs_r.sl \
$(SYB_LIBDIR)/libtcl_v.a \
$(SYB_LIBDIR)/libcomn_v.sl \
$(SYB_LIBDIR)/libintl_r.sl \

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 31

-lm \
$(CICS_LIBDIR)/libcicsrt.sl \
-lc

sybasexa.o: sybasexa.c
$(CC) -c $(CCOPTS)\
-I$(ENCINA)/include sybasexa.c

Note You must use the shareable versions of CS-Library (libcs_r.sl) and
Common Library (libcomn_dce.sl).

You must have the ANSI C compiler to build the Load Switch Table.

Compiling the switch-load file on Sun Solaris 2.x (SPARC)

Compile sybasexa.c using the makefile sybasexa_sol.mk which is located in
$SYBASE/$SYBASE_OCS/sample_dtm/cics/switch.

This is a listing of sybasexa_sol.mk. Edit it to reflect your configuration.

#Makefile to compile the LoadSwitchTable
#This makefile should be run with the command "make -f
sybasexa_sol.mk"

SYB_LIBDIR = $(SYBASE)/lib
SYBLIBS = lxadtm -lct_r -lcs_r.so -ltcl_r -lcomn_r.so
-lintl_r -lxdsxom -lm

all: sybasexa.c
/bin/xlc_r -v -D_THREAD_SAFE \
-I /usr/lpp/encina/include sybasexa.c \
-o sybasexa \
-esybasexa \
-L/usr/lpp/cics/lib \
-L$(SYBLIBS) \
-lcicsrt \
/usr/lpp/cics/lib/regxa_swxa.o -ldce

Adding a Sybase stanza to the CICS region XAD definition
The CICS TM uses CICS XAD information to communicate with other RMs.
The XAD definition contains one Sybase stanza for each LRM. For a
description of an XAD stanza’s attributes, see your CICS documentation.

Using the DTM XA Interface with CICS

32 Adaptive Server Enterprise

Below are two sample Sybase XAD stanzas. Use the SMIT utility to add stanzas
to your CICS region:

betaOne:
GroupName=""
ActivateOnStartup=yes
ResourceDescription="XA Product Definition"
AmendCounter=2
Permanent=no
SwitchLoadFile="/usr/lpp/sybase/sample/xa_library/

cics/switch/sybasexa"
XAOpen="-Uuser_1 -Ppassword_1 -Nconnection_1"
XAClose="ignored"
XASerialize=all_operations

betaTwo:
GroupName=""
ActivateOnStartup=yes
ResourceDescription="XA Product Definition"
AmendCounter=2
Permanent=no
SwitchLoadFile="/usr/lpp/sybase/sample/xa_library/

cics/switch/sybasexa"
XAOpen="-Uuser_2 -Ppassword_2 -Nconnection_2"
XAClose="ignored"
XASerialize=all_operations

The following fields are configuration-dependent and must be modified:

• SwitchLoadFile

• XAOpen

• XAClose

• XASerialize

Note All Sybase stanzas can use the same switch-load file.

See “Open string parameters for the DTM XA Interface” on page 20 for
information about the contents specified in the XAOpen string of the XAD
Definition.

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 33

Using the DTM XA Interface with Encina
This section describes how to assign an open string and initialize an RM for use
with the Encina. See also “XA configuration file for DTM XA Interface” on
page 22 for information on creating an XA configuration file.

Assigning an open string with monadmin create rm
The monadmin create rm command assigns each LRM a user name and
password in the form of an open string. The user name and password allow the
DTM XA Interface to control a particular connection’s access to Adaptive
Server resources. See “Open string parameters for the DTM XA Interface” on
page 20 for more information about the contents of the open string.

The following shows sample screen contents of a monadmin create rm session:

echo "Creating connection_1 resource manager record"
monadmin delete rm connection_1 >>& demo_conf.log
monadmin create rm connection_1\
-open "-Usa -Psecret -Nconnection_1" \
-close "not used" >>& \
demo_conf.log
if ($status) then
echo "Failed to create lrm_1 resource mgr.";
exit 1;
endif

Your current version of Encina may have additional commands for specifying
RMs. For detailed information, see the Encina Monitor System Administrator’s
Guide and Reference.

Note You can use Encina enconsole interactive command instead of the shell
monadmin command.

Initializing LRMs with mon_RegisterRmi
From within your Encina Monitor application server, you must register each
LRM with a call to mon_RegisterRmi. For example:

status =
mon_RegisterRmi(&sybase_TXS_xa_switch,"connection_1",
&rmiID);

Using the DTM XA Interface with Encina

34 Adaptive Server Enterprise

if (status != MON_SUCCESS)
{
fprintf(stderr, "mon_RegisterRmi failed (%s).\n",
mon_StatusToString(status));
bde_Exit(1);
}
fprintf(stderr, "mon_RegisterRmi complete\n");

For each LRM registered with a monadmin create rm command, there must be
a mon_RegisterRmi command that initializes the LRM. The rmname specified
in the monadmin create rm command must match the rmname in the
mon_RegisterRmi command.

See the Encina Monitor Programmer’s Guide for:

• Information about the tasks performed by the registration function and the
order in which they must be performed

• Full syntax of the mon_RegisterRmi command

Linking applications with DTM XA Interface libraries
Link applications with the DTM XA Interface library, libxadtm.a.

Establishing connections
The TM, together with the DTM XA Interface library, establishes connections
between applications and RMs in several steps:

1 An application issues a mon_RegisterRmi function, thereby requesting use
of an LRM.

2 Using information contained in an open string, the TM issues an XA open
call to the LRM (configured in the monadmin create rm command) whose
name matches that issued in step 1, above.

3 The TM passes the open string associated with each monadmin create rm
command to the DTM XA Interface. The open string contains the LRM
name.

4 The DTM XA Interface looks up the LRM name in the XA configuration
file and matches it to an actual RM name—that is, to an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 35

5 The DTM XA Interface establishes one logical connection to an Adaptive
Server for each LRM entry. It then confers on any connection the
preconnection properties and capabilities configured for the LRM.

Using the DTM XA Interface with TUXEDO
The following sections explain the application-specific steps you need to take
to integrate the XA Interface with TUXEDO.

The application-specific part of the integration involves:

• Linking the application with the application servers

• Setting up the UBBCONFIG file

• Building a transaction monitor server (TMS)

• Integrating the application servers with the resource managers

It is assumed that TUXEDO is installed in the $TUXDIR directory and that any
resource managers are also installed on the system.

Note In the following procedures, replace the environment variables with the
actual TUXEDO paths as follows: replace $TUXDIR with your actual root
directory path, and replace $SYBASE with the path to the DTM XA Interface
installation directory.

Table 3-4 provides the Sybase-specific information you need to perform the
TUXEDO integration. The TUXEDO Installation Guide discusses this
information in “Integrating a Resource Manager With System/T”.

Table 3-4: Information needed to integrate the TUXEDO System

Type of
Information Sybase Specific Description

RM name SYBASE_XA_SERVER The name of the resource manager in the name
element of the xa_switch_t structure.

XA structure
name

sybase_TUX_xa_switch The name of the xa_switch_t structure that
contains the resource manager identifier, the
flags for the resource manager’s capabilities,
and the function pointers of the XA functions.

Using the DTM XA Interface with TUXEDO

36 Adaptive Server Enterprise

Note Whether you should use the DTM XA with the reentrant libraries (such
as ct_r, cs_r, comn_r, tcl_r, and intl_r) depends on whether or not you are
developing threaded applications. For threaded applications, you must use
reentrant libraries. For non-threaded applications, you can use non-reentrant
libraries such as ct, cs, comn, tcl, and intl.

See also “XA configuration file for DTM XA Interface” on page 22 for
information on creating an XA configuration file.

Linking
The TUXEDO RM file provides information used by TUXEDO utilities to link
TUXEDO servers. Make sure that the RM file contains an appropriate set of
specifications for linking Sybase applications.

1 Use the text editor of your choice to open the $TUXDIR/udataobj/RM file
for editing.

2 Update the file with XA information by adding/verifying entries for
Sybase resource managers. For most Sybase applications, including the
simprpc.ct sample application, one entry for SYBASE_XA_SERVER is all
that you need. If you are going to build and run the rentapp sample, you
may want to go ahead and add the second entry for
SCRAP_XA_SERVER, as required for rentapp.

Replace $SYBASE/$SYBASE_OCS with the fully qualified path to the Sybase
installation directory containing the XA Interface:

SYBASE_XA_SERVER:sybase_TUX_xa_switch:-t -Bstatic -L$SYBASE/$SYBASE_OCS/lib
-lcobct -lxadtm -lct_r -lcs_r -lcomn_r -ltcl_r -lintl_r -Bdynamic -ldl
SCRAP_XA_SERVER:sybase_TUX_xa_switch:-t -Bstatic -L$SYBASE/$SYBASE_OCS/lib
-lcobct -lxadtm -lct_r -lcs_r -lcomn_r -ltcl_r -lintl_r -Bdynamic -ldl

Library name The library files ct_r, cs_r, comn_r,
tcl_r, and intl_r which are located in
$SYBASE/$SYBASE_OCS/lib

The list of files needed to support the DTM XA
Interface, and a full path name.

Open string
contents

See “ Open string parameters for
DTM XA Interface” in this document
for more information..

The format of the information string passed to
the functions.

Type of
Information Sybase Specific Description

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 37

Note Each entry must be a single continuous line.

The cobct libraries are only needed if you are building ESQL/COBOL
application servers. If you are not using ESQL/COBOL, you can remove the
-lcobct specification.

If you want your TUXEDO servers to load and execute all Sybase libraries
dynamically, you can use entries like the following. Dynamic libraries may
increase CPU overhead for TUXEDO server execution.

 SYBASE_XA_SERVER:sybase_TUX_xa_switch:-L$SYBASE/$SYBASE_OCS/lib -lxadtm
-lct_r -lcobct -lcs_r -lcomn_r -ltcl_r -lintl_r
 SCRAP_XA_SERVER:sybase_TUX_xa_switch:-L$SYBASE/$SYBASE_OCS/lib -lxadtm
-lct_r -lcobct -lcs_r -lcomn_r -ltcl_r -lintl_r

Note Each entry must be a single continuous line.

You can add a comment line by identifying it with a leading pound sign (#)
character.

Setting up the UBBCONFIG file
This section provides specific examples for setting up the TUXEDO
UBBCONFIG file with the XA Interface.

For the simprpc.ct sample application, the pubs2 database must be installed on
Adaptive Server. Use the installation script in the Adaptive Server directory
under scripts/installpubs2.

“Open string parameters for the DTM XA Interface” on page 20 explains the
open string in the UBBCONFIG file.

1 Use the ASCII text editor of your choice to open
$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/simprpc.ct/ubbsimpct
for editing. The file is shown here with line numbers to facilitate the
discussion:

 1 *RESOURCES
 2 IPCKEY 123456
 3
 4 MASTER sybsite
 5 MAXACCESSERS 5
 6 MAXSERVERS 5

Using the DTM XA Interface with TUXEDO

38 Adaptive Server Enterprise

 7 MAXSERVICES 10
 8 MODEL SHM
 9
 10 MAXGTT 5
 11
 12 *MACHINES
 13 yourmachine LMID=sybsite
 14 TUXDIR="$TUXDIR"
 15 APPDIR="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/simprpc.ct"
 16 TLOGDEVICE="$SYBASE/$SYBASE_OCS/sample/xadtm/tuxedo/
 simprpc.ct/tuxlog"
 17 TLOGNAME=TLOG
 18 TUXCONFIG="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo
 /simprpc.ct/tuxconfig"
 19 ULOGPFX="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/simprpc.ct/ULOG"
 20
 21 *GROUPS
 22 DEFAULT: TMSNAME=simprpccttms TMSCOUNT=2
 23
 24 GROUP1 LMID=sybsite GRPNO=1
 25 OPENINFO="SYBASE_XA_SERVER: -Uuserid1 -Ppassword1 -Nconnection1"
 26
 27 *SERVERS
 28 simpsrv SRVGRP=GROUP1 SRVID=1
 29
 30 *SERVICES

2 Replace entries in the file with entries appropriate for your environment as
shown in Table 3-5:

Table 3-5: Environment specific file entries

Line
number Entry Replace with

13 yourmachine Replace with the name of the machine that contains the XA Interface
installation. Remember that the machine name is case-sensitive.

14 $TUXDIR Replace with the actual TUXEDO root directory path.

15, 16,
18, 19

$SYBASE/$SYBASE_OCS Replace with the XA Interface installation directory.

22 simprpccttms This parameter is specific to the simprpc.ct example. In general, this
parameter should relate to the value specified in the -o parameter of
the buildtms command described on “Building the TMS” on page 39.

25 Open string parameters See “Open string parameters for the DTM XA Interface” on page 20
for more information.

CHAPTER 3 Configuring the XA Environment

XA Interface Integration Guide for CICS, Encina, and TUXEDO 39

Note See the TUXEDO Installation Guide for a detailed discussion of the
UBBCONFIG file.

Creating the TUXEDO configuration file
Set the $TUXCONFIG environment variable to a value that matches the entry
in ubbsimpct by issuing this command:

setenv TUXCONFIG $SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/simprpc.ct/tuxconfig

Create a TUXEDO configuration file from the UBBCONFIG file by executing
this command:

$TUXDIR/bin/tmloadcf -y ubbconfig_file_name

For this verification, using the simprpc.ct sample, replace ubbconfig_file_name
with ubbsimpct.

Building the TMS
Build the transaction monitor server (TMS) by executing this command, where
output_file is a name you choose for the transaction monitor server program:

$TUXDIR/bin/buildtms -r SYBASE_XA_SERVER -o
$TUXDIR/bin/output_filetms

It is helpful to append tms to the name as shown here, so it is easily identified.
Choose a unique name for the program so that it does not conflict with TMS
programs for other resource managers (TMS, TMS_D, and TMS_SQL are
reserved).

For the simprpc.ct example verification, the UBBCONFIG file uses
simprpccttms, which is described in Table 3-5 on page 38.

The program is stored in $TUXDIR/bin so that the TUXEDO System/T start
program can find it.

Building the COBOL runtime environment

40 Adaptive Server Enterprise

Building the COBOL runtime environment
In CICS transactions, COBOL transactions use the COBOL runtime, which
you must modify to communicate with the Sybase XA environment.

❖ Configuring CICS to support Sybase XA COBOL transactions

1 Log in as root.

2 Set the COBDIR environment variable to the directory path for the
MicroFocus COBOL installation.

3 Set the PATH environment variable to include the MicroFocus COBOL
binary directory.

4 Change directory to the $SYBASE/$SYBASE_OCS/sample/xa-dtm/cics
directories.

5 Run xa_make_cobol_runtime.

 Warning! This script assumes that the CICS COBOL runtime file is installed
in /usr/lpp/cics/v1.1/bin. If you have installed CICS somewhere else, you must
edit this script to reflect your installation.

This script builds a MicroFocus COBOL runtime environment with CICS and
Sybase XA support. It allows CICS transactions written in COBOL to
reference XA Interface and Open Client functions at run time. The script takes
several minutes to run. For more information, see your CICS documentation.

Note You must use MicroFocus COBOL 3.1 or higher.

XA Interface Integration Guide for CICS, Encina, and TUXEDO 41

C H A P T E R 4 Application Programming
Guidelines

Embedded SQL and Client-Library applications must conform to certain
coding constraints in order to function within the Sybase XA
environment. This chapter summarizes these constraints and provides a
Client-Library code fragment and two Embedded SQL code fragments.

X/Open DTP versus traditional Sybase transaction
processing

The X/Open DTP model of transaction processing differs substantially
from the traditional Sybase model. The traditional Sybase TP
environment is connection oriented. Programs set up connections directly
between the application program and Adaptive Server using connection
management SQL statements. In the XA Interface environment, the XA
Interface, using LRMs, sets up connections for the application.

Table 4-1 summarizes the differences.

Topic Page
X/Open DTP versus traditional Sybase transaction processing 41

Managing transactions and connections 42

Deallocating cursor function with Client-Library 45

Dynamic SQL 46

Obtaining a Client-Library connection handle 46

Multiple-thread environment issues 49

Linking with CT Library 53

Sample embedded SQL COBOL fragment 53

Sample embedded SQL C fragment 55

Managing transactions and connections

42 Adaptive Server Enterprise

Table 4-1: Traditional TP and X/Open DTP model differences

Managing transactions and connections
Applications must pay special attention to commands related to:

• Managing transactions

• Managing connections

• The current connection

Note The XA Interface uses an ANSI default isolation level of 3. To minimize
read-only locking, programs can set the transaction isolation level in the XA
configuration file, or they can use select xxx from table noholdlock in individual
SQL operations. See the Transact-SQL User’s Guide for additional information
on transaction isolation levels.

Managing transactions
The CICS, Encina, or TUXEDO TM is responsible for transaction
management. This includes creating a global transaction in which all of an
application’s work is either committed or rolled back. Consequently,
applications cannot issue SQL statements that manage transactions.

Specifically, applications cannot invoke the following Embedded SQL
commands:

• begin transaction

Traditional TP model X/Open DTP model

There is one or more transaction
per client/server connection.

There is no notion of connections. Components
communicate through interfaces.

Transactions are usually local,
with each transaction confined
to a single Adaptive Server.

Transactions are global. They span resource
managers. The work done within a transaction is
accomplished using more than one resource
manager.

Each Adaptive Server is
responsible for the recovery of
the data it contains.

The transaction manager is responsible for
recovering the data stored in all of the resource
managers.

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 43

• commit

• rollback

Client-Library applications cannot execute (via ct_command, ct_dynamic, or
ct_cursor) any of these Transact-SQL commands:

• begin transaction

• commit transaction

• rollback transaction

• set (chained, noexec, isolation, parseonly, statistics io, statistics time)

• save transaction

Note The application must recognize Adaptive Server–detected errors, and
abort or roll back the transaction through the TM. This is especially important
for Adaptive Server detected-deadlocks.

Managing connections
Applications rely on the Sybase XA environment for management of
client/server connections. Connection management occurs transparently to the
application. Consequently, Embedded SQL applications cannot invoke the
following commands for XA-managed connections:

• connect

• disconnect

Client-Library applications cannot call these Client-Library commands using
XA-managed connections:

• ct_close

• ct_con_alloc

• ct_con_drop

• ct_con_props

• ct_config with the parameters:

• CS_ENDPOINT

• CS_EXPOSE_FMTS

Managing transactions and connections

44 Adaptive Server Enterprise

• CS_HIDDENKEYS

• CS_MAX_CONNECT

• CS_NETIO

• CS_TRANSACTION_NAME

• ct_connect

• ct_exit

• ct_getloginfo

• ct_init

• ct_options with the parameters:

• CS_OPT_CHAINXACTS

• CS_OPT_FORCEPLAN

• CS_OPT_FORMATONLY

• CS_OPT_NOEXEC

• CS_OPT_PARSEONLY

• CS_OPT_STATS_IO

• ct_remote_pwd

• ct_setloginfo

• CS_OPT_STATS_TIME

In addition, Client-Library applications cannot call these CS-Library
commands:

• cs_ctx_drop (with global context handle)

• cs_objects (CS_CLEAR, CS_SET)

The current connection
The notion of a default connection, as described in the Open Client Embedded
SQL documentation, does not exist in the Sybase XA environment.
Consequently, applications must always explicitly specify a current
connection.

There are two ways to specify the current connection in Embedded SQL. They
are:

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 45

• The set connection command

• The at connection name clause

A current connection does not span transactions. For example, an application
must reset the current connection after each CICS SYNCPOINTcommand or
Encina onCommit command. To avoid confusion about the scope of the current
connection, Sybase recommends that you use the at connection_name clause
with all Embedded SQL statements.

Nontransactional connections
Applications can open and use nontransactional connections with the normal
Open Client or Embedded SQL Interfaces. Operations on such connections do
not participate in the transaction and are not committed or rolled back. They
may be useful for queries of unchanging databases and updates of data which
can be inaccurate.

Deallocating cursor function with Client-Library
Application programs use and reuse connections that have been allocated for
them via the XA Interface. Sybase’s implementation of cursors starting with
SQL Server version 10.1 requires cursor structures on both the client (TM/RM
program) side and the Adaptive Server side.

When a client explicitly deallocates a cursor, or when the client connection is
closed, Adaptive Server deallocates the server cursor structures.

When the first iteration of a program opens or closes a cursor but the
connection stays allocated (as it does with XA-Library), the second iteration of
the same program fails, as it attempts to open the same cursor name. Adaptive
Server informs us that it already has a cursor by this name at the same nesting
level.

The application program must explicitly close and deallocate the cursor before
it commits or aborts its transaction. This must be done in the transaction
program that allocates the cursor. Embedded SQL records information about
cursors which allows the XA Interface to perform the deallocation.

Dynamic SQL

46 Adaptive Server Enterprise

With Client-Library, you must handle error paths so that cursors are
deallocated before a TM abort code is called. That is, if the open cursor works,
deallocate it.

Use ct_cursor() with type CS_CURSOR_CLOSE and option CS_DEALLOC.

Dynamic SQL
The use of dynamic SQL statements has many characteristics in common with
cursors, with the additional complexity that temporary stored procedures are
sometimes placed into Adaptive Server. The use of dynamic SQL is not
recommended in transactional applications, but if they are used, the following
guidelines must be adhered to:

• In Embedded SQL use “Method 3: Prepare and Fetch with a Cursor” (see
the ESQL document or a description of this method) if possible. When this
method is used, Embedded SQL places information in the system which
allows the XA Interface to locate and deallocate all dynamic SQL and
cursors.

• In all other cases, the dynamic SQL statements and all associated cursors
must be closed and deallocated to avoid adverse effects on other
transactions. Any associated Client-Library command structures should
be dropped to avoid memory leaks. See the Open Client and ESQL
documentation for information on how to drop these command structures.

Obtaining a Client-Library connection handle
Obtaining a connection handle is an issue specific to Client-Library
applications.

When the TM opens a connection to Adaptive Server, the XA Interface
allocates a CS_CONNECTION structure for its own use. Once control passes
to the application, that application must use the connection handle contained in
this structure.

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 47

To get the connection handle, specify CS_GET for the cs_object routine’s action
parameter with an object type of CS_CONNECTION. cs_object’s objdata
parameter returns a structure containing a connection field. This field contains
the handle to the CS_CONNECTION structure.

 Warning! The XA Interface also allocates a CS_COMMAND structure whose
handle is returned in the command field of the structure to which the objdata
parameter points. An application cannot use this command handle, as the XA
Interface continues to use this handle, itself.

The following code fragment demonstrates how to retrieve the handle to the
CS_CONNECTION structure:

/*
 ** Arguments:
 **connection null-terminated name of the connection
 **(ESQL) or LRM connHloaded with the CS_CONNECTION
 ** handle if the lookup is successful
 **
 ** Returns:
 ** CS_SUCCEED connection handle found successfully
 ** CS_FAIL unable to find connection handle for given
 ** connection /#include <stdio.h> #include <strings.h>
 ** #include <cspublic.h>CS_RETCODE getConn(connection,
 ** connH)CS_CHAR connection[128];CS_CONNECTION connH;
 {
 CS_INT retcode;
 CS_CONTEXT *ctx;
 CS_OBJNAME name;
 CS_OBJDATA data;
 CS_THREAD thread_functions;
 CS_INT outlen;
 #define THREADID_SIZE 8
 CS_BYTE thread_id[THREADID_SIZE];
 /* Check arguments */
 if (strlen(connection) >= 128)
 {
 /* Connection name is too long */
 return(CS_FAIL);
 }
 /* Get the global context handle */
 retcode = cs_ctx_global(CS_VERSION_100, &ctx);
 if (retcode != CS_SUCCEED)
 {
 /* Major environment problems! */

Obtaining a Client-Library connection handle

48 Adaptive Server Enterprise

 return(CS_FAIL)
 }
 /*
 ** Initialize the CS_OBJNAME structure to look
 ** for the specified connection name.
 */
 name.thinkexists = CS_FALSE;
 name.object_type = CS_CONNECTNAME;
 strcpy(name.last_name, connection);
 name.fnlen = CS_UNUSED;
 name.lnlen = CS_NULLTERM;
 name.scopelen = CS_UNUSED;
 /*
 ** Set the current thread-id so we get the instance of
 ** this connection that this thread should be using.
 */
 retcode = cs_config(ctx, CS_GET,
 CS_THREAD_RESOURCE, &thread_functions,
 CS_UNUSED, &outlen);
 if (retcode != CS_SUCCEED)
 {
 /*
 ** Even in an non-threaded environment,this should be
 ** successful.
 */
 return(CS_FAIL);
 }
 name.thread = (CS_VOID *) thread_id;
 retcode = (*thread_functions.thread_id_fn)(
 name.thread, THREADID_SIZE,
 &name.threadlen);
 if (retcode != CS_SUCCEED)
 {
 return(CS_FAIL);
 }
 /*
 ** Initialize the CS_OBJDATA structure to receive the
 ** connection handle for this connection name
 */
 data.actuallyexists = CS_FALSE;
 data.connection = (CS_CONNECTION *) NULL;
 data.command = (CS_COMMAND *) NULL;
 data.buffer = (CS_VOID *) NULL;
 data.buflen = CS_UNUSED;
 /* Retrieve the connection information */
 retcode = cs_objects(ctx, CS_GET, &name,

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 49

 &data);
 if (retcode == CS_SUCCEED)
 {
 if (data.actuallyexists == CS_TRUE)
 {
*connH = data.connection;
return(CS_SUCCEED);
}
else
{
/* No connection by that name exists */
return(CS_FAIL);
}
}
else
{
/*
** The global CS_CONTEXT handle is probably not
** initialized with connection information yet
*/
return(CS_FAIL);
}
}

Multiple-thread environment issues
Threads are multiple, simultaneous paths of execution in a single operating
system process, and share access to the resources allocated to that process.

Some application programming interfaces (APIs) allow an application
developer to effectively use threads in the transaction environment. In turn,
Sybase’s XA Interface supports a maximum level of concurrency, enabling it
to take advantage of those environments.

However, this raises several issues for an application developer. For
background information and a complete discussion of the issues, see the OSF’s
DCE Application Developer’s Guide.

Multiple-thread environment issues

50 Adaptive Server Enterprise

The Open Client Reference Manual contains a section on thread-safe
programming. XA Interface assigns connections to threads at the request of the
TM. These assignments ensure that only one thread at a time is working on the
connection and is the reason the thread ID is included in the cs_object request
described in “Obtaining a Client-Library connection handle” on page 46. As
long as connections assigned by XA Interface are used in the thread to which
they are assigned and the restrictions on their use are followed, there should be
no Open Client or ESQL threading-related problems.

Caveats of thread use
Client-Library uses a connection state machine to verify that applications call
Client-Library routines in a logical sequence. See Chapter 2, “Program
Structure” in the Open Client Client-Library/C Programmer’s Guide for an
explanation of the steps involved in structuring a Client-Library application.

The assumption underlying the use of threads is that when a thread
disassociates from a transaction branch, it leaves the state machine in an
inactive state. By default, all Embedded SQL statements leave the connection
quiescent. With Client-Library, this is true only in the following circumstances:

• When ct_results returns CS_END_RESULTS, or CS_SUCCEED with a
result type of CS_CURSOR_RESULT.

• After an application calls ct_cancel with type as CS_CANCEL_ALL.

• When an application returns CS_CANCELED. The APIs that return
CS_CANCELED include ct_send(), ct_results(), and ct_get_data().

 Warning! If connections are not left in an inactive state, the consequences
may include transaction rollbacks, extra overhead as the XA Interface
cleans up the connection (which may require full connection close and
reopen), and the possible failure of subsequent transactions. In such a
situation, XA Interface attempts to maintain application operation while it
minimizes failure.

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 51

Embedded SQL thread-safe code
Thread-safe code protects the use of shared resources with a mutex (MUTual
EXclusion semaphore). A mutex protects shared resources, such as files and
global variables, by preventing them from being accessed by more than one
thread at a time.

Use the -h (UNIX) or /threadsafe (VMS) precompiler option to generate
thread-safe code.

Tightly coupled transactions
The XA environment treats each thread or process that works on a transaction
as a transaction branch. Each transaction branch is assigned a different xid and
works independently of the other branches. However, all branches are
committed or rolled back as a unit. This applies to MTS/COM+ environments
only, and only if you are using ctlib-based drivers that are older than version
3.6.

Some TMs allow branches to be tightly coupled. Tightly coupled branches are
assigned the same xid and work together on the transaction. In such cases the
open string can contain the -O1 option. This option causes Adaptive Server to
move the work among connections on demand and eliminates any lock that
might otherwise occur between the connections. See your TM documentation
to determine how the TM can be configured for tightly coupled operation.

 Warning! Set the -O1 option only when the application design is guaranteed to
avoid conflicting updates. Normally this is true only when the application
branches are fully serialized, (branch B operates only after branch A
completes). Data inconsistency may occur if the interaction of the tightly
coupled branches is not well designed.

Without the -O1 option, attempts by the branches to update the same database
row can result in a deadlock internal to the transaction. The -O1 option has no
practical effect when the branches are not tightly coupled through the TM and
are assigned different xids.

 Warning! Cursors and dynamic SQL cannot be retained when the transaction
is assigned to a different connection. Therefore, they should not be used unless
the application structure guarantees that they are opened and closed during a
period when no other branch will work on the transaction.

Multiple-thread environment issues

52 Adaptive Server Enterprise

Note The transaction is reassigned to another connection only between
batches. A tightly coupled application can ensure that a set of operations is
completed without conflict by performing all the operations in a single batch.
This implies that operations within a single stored procedure are also
completed without conflict.

For example, if row z in table B must contain the sum of rows x and y in table
A. The following can result in an invalid value in row z:

Branch 1: Branch 2
Updates Row x -> 5
Reads Row y (= 4)

Updates Row y -> 5
Reads Row x (= 5)
Updates Row z -> 10

 Updates Row z -> 9 (wrong value)

No problem occurs if the branches are performed serially:

Branch 1: Branch 2
Updates Row x -> 5
Reads Row y (= 4)
Updates Row z -> 9

Updates Row y -> 5
Reads Row x (=5)
Updates Row z -> 10

A control branch can also be used to resolve the problem:

Branch 0: Branch 1: Branch 2
(controller)
Starts Branches 1 and 2
Waits for both to complete

Updates Row x Updates Row y -> 5
Terminates Terminates

Reads Row y
Reads Row x
Updates Row z

TM specific branch control mechanisms must be used to implement these
serialization mechanisms.

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 53

Linking with CT Library
The XA Interface requires that the application be linked with the threaded
versions of the Open Client Libraries. See the Open Client/Server Supplement
for your platform to identify the libraries you must specify. If you do not link
the proper thread-safe libraries, you may experience a variety of Open Client
failures.

Sample embedded SQL COBOL fragment
This code fragment sets the current connection, and inserts data into an
Adaptive Server database:

*REMARKS. TRANSACTION-ID IS 'POPS'.
*THIS TRANSACTION POPULATES A DATABASE'S DATA TABLE
*WITH STOCK DATA ENTRIES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY DFHBMSCA.
COPY DFHAID.
COPY AIXCSET.
EXEC SQL INCLUDE SQLCA END-EXEC.
77 RESPONSE PIC 9(8) COMP.
01 MSG-LIST.
02 MSG-1 PIC X(70) VALUE
'Transaction Failed: Unable To Prime Stock'
-'Table.'.
02 MSG-2 PIC X(70) VALUE
'Stock Records Added Successfully.'.
01 TRANSFAIL PIC X(70).

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STOCK-RECORD.
02 STOCK-NUM PIC X(5).
02 ITEM-DESC PIC X(30).
02 STOCK-QTY PIC X(7).
02 UNIT-PRICE PIC S9(4)V99 VALUE ZEROES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

Sample embedded SQL COBOL fragment

54 Adaptive Server Enterprise

* CHECK BASIC REQUEST TYPE
*
IF EIBAID = DFHCLEAR
EXEC CICS SEND CONTROL FREEKB
END-EXEC
EXEC CICS RETURN
END-EXEC
END-IF.

* MAIN PROCESSING
*SET UP STOCK RECORD DETAILS AND THEN WRITE OUT
*STOCK RECORD.
*
MOVE '31421'TO STOCK-NUM.
MOVE 'Widget (No.7)'TO ITEM-DESC.
MOVE '0050035'TO STOCK-QTY.
MOVE 25.55 TO UNIT-PRICE.
PERFORM WRITE-STOCKREC.

MOVE '43567'TO STOCK-NUM.
MOVE 'Splunkett ZR-1'TO ITEM-DESC.
MOVE '0005782'TO STOCK-QTY.
MOVE 143.79 TO UNIT-PRICE.
PERFORM WRITE-STOCKREC.

EXEC CICS SYNCPOINT
RESP(RESPONSE)
END-EXEC.

IF RESPONSE NOT = DFHRESP(NORMAL)
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS
END-IF.

MOVE MSG-2 TO MSGOUTO.
EXEC CICS SEND MAP('MSGLINE')
MAPSET('AIXCSET')
FREEKB
END-EXEC.
EXEC CICS RETURN
END-EXEC.
GOBACK.

* ATTEMPT TO WRITE OUT NEW STOCK RECORD.

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 55

*
WRITE-STOCKREC.
EXEC SQL SET CONNECTION connection_2
END-EXEC

IF SQLCODE NOT = 0
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS
END-IF.

EXEC SQL INSERT INTO STOCK VALUES (:STOCK-RECORD)
END-EXEC

IF SQLCODE NOT = 0
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS
END-IF.

* IF UNABLE TO APPLY CREATE, END TRANSACTION
* AND DISPLAY REASON FOR FAILURE.
*
FAIL-TRANS.
MOVE TRANSFAIL TO MSGOUTO
EXEC CICS SEND MAP('MSGLINE')
MAPSET('AIXCSET')
FREEKB
END-EXEC
EXEC CICS RETURN
END-EXEC.

Sample embedded SQL C fragment
This code fragment sets the current connection, and accesses data stored on
Adaptive Server:

EXEC SQL INCLUDE sqlca;
int rcode;

EXEC SQL BEGIN DECLARE SECTION;
char name[15];
char supplier[30];

Sample embedded SQL C fragment

56 Adaptive Server Enterprise

char supplier_address[30];
int order_quantity;

EXEC SQL END DECLARE SECTION;
main()
{
char errmsg[400];
char qmsg[400];
short mlen;

EXEC SQL WHENEVER SQLERROR GOTO :errexit;
EXEC SQL WHENEVER SQLWARNING GOTO :errexit
EXEC SQL WHENEVER NOT FOUND GOTO :errexit

/* Get addressability for EIB... */

/*
** Write record to CICS temporary storage queue...
*/

/* Send the first map */

EXEC CICS SEND MAP("PANEL1") MAPSET("UXA1")
FREEKB ERASE RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X001");

/* Receive the response */

EXEC CICS RECEIVE MAP("PANEL1") MAPSET("UXA1")
RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X002");

/* Select a record from the table based on user input. */

sprintf(name, "%s", panel1.panel1i.newnamei);
EXEC SQL SET CONNECTION connection_1;
EXEC SQL SELECT name, supplier, supplier_address,order_quantity
INTO
:name, :supplier, :supplier_address, :order_quantity
FROM cheese
WHERE name = :name;

/* Handle "no rows returned" from SELECT */

CHAPTER 4 Application Programming Guidelines

XA Interface Integration Guide for CICS, Encina, and TUXEDO 57

if (sqlca.sqlcode == 100)
{
sprintf(panel4.panel4o.messageo, "%s",
NOCHEESE);
EXEC CICS SEND MAP("PANEL4") MAPSET("UXA1") FREEKB ERASE RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X009");

EXEC CICS SEND CONTROL FREEKB;
EXEC CICS RETURN;

}
/* Fill in and send the second map */

memset (&panel2.panel2o, ’0’,
sizeof(panel2.panel2o));
sprintf(panel2.panel2o.nameo, "%s", name);
sprintf(panel2.panel2o.supplo, "%s",supplier);
sprintf(panel2.panel2o.addresso, "%s",
supplier_address);
sprintf(panel2.panel2o.ordero, "%d", order_quantity);

EXEC CICS SEND MAP("PANEL2") MAPSET("UXA1")
FREEKB ERASE RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X003");

/* Receive the response */

if (panel2.panel2i.questi == ’y’)

{

/* Send the third map... */
/* Receive the response... */
/* Update the database */

order_quantity = atoi(panel3.panel3i.newordi);

EXEC SQL UPDATE cheese
set order_quantity = :order_quantity
where name = :name;

/* Write a record to the temporary queue */

sprintf(qmsg, "%s", "The cheese table was updated");

Sample embedded SQL C fragment

58 Adaptive Server Enterprise

mlen = strlen(qmsg);

EXEC CICS WRITEQ TS QUEUE("TEMPXAQ1")
FROM(qmsg) LENGTH(mlen) RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X010");
}
else
{

/*
** The user does not wish to update so free the keyboard and return...
*/
}
/* Commit the update */

EXEC CICS SYNCPOINT RESP(rcode);
if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X011");

/*
** Send the fourth map confirming successful update...
*/

EXEC CICS RETURN;
errexit:
fprintf(stderr,"error in cheeseland %d\n",sqlca.sqlcode);

/* Handle general errors */

sprintf(errmsg, "%.60s\n",sqlca.sqlerrm.sqlerrmc);
strncpy(panel4.panel4o.messageo, errmsg, 60);
sprintf(panel4.panel4o.codeo, "%d", sqlca.sqlcode);

/*
** Send the fourth map with appropriate message...
*/

/* Rollback the transaction */

EXEC CICS SYNCPOINT ROLLBACK;
EXEC CICS SEND CONTROL FREEKB;
EXEC CICS RETURN;
 }

XA Interface Integration Guide for CICS, Encina, and TUXEDO 59

Symbols
::= (BNF notation)

in SQL statements xii
, (comma)

in SQL statements xii
{} (curly braces)

in SQL statements xii
() (parentheses)

in SQL statements xii
[] (square brackets)

in SQL statements xii
$SYBASE/$SYBASE_OCS/sample 19
$SYBASE/sample/xa_library/CICS/switch directory

28, 29, 30
/usr/lpp/cics/v1.1/bin

and CICS COBOL runtime file 40

A
aborted transaction 9
access

monadmin create rm 14
accessing

Adaptive Server data 2
ACID test 5

atomicity 5
consistency 5
durability 6
isolation 6

Adaptive Server
accessing data in 2
DTM XA environment 13
DTM XA interface 8
RM 11
XA interface 12

XA configuration file
 21, 23

AP 7

and symbolic names 14
DTP 7
purpose 7
transaction boundaries 9
TX interface and 8

API 49
application program

See AP
Application servers

linking 36
at connection name clause 45
atomicity 5, 9

B
Backus Naur Form (BNF) notation xi, xii
backward compatibility 20
begin transaction 42
BNF notation in SQL statements xi, xii
brackets. See square brackets []
branch

transaction 6
building

TM server 39

C
calls 15, 34

to LRMs 15
TX 9
XA 9

case sensitivity
in SQL xiii

CICS
TM v

CICS XAD
LRMs 14
stanzas 14

Index

Index

60 Adaptive Server Enterprise

Client-Library 2
accessing data with v
coding constraints for vi, 2
native interface 8
pre-connection capabilities 14

client-server connection
LRM 14

coding constraints
Client-Library 2
Embedded SQL 2

comma (,)
in SQL statements xii

command handles 47
commands

dbcc 2, 13
enconsole 14, 33
grant 21
initial xa_open () 20
mon_RegisterRmi 33, 34
monadmin create rm 14, 33
monadmin create rm strings 15
sp_role 21
TM-specific 13

commit 43
two-phase 9

commit phase 9
commit transaction 43
commit transactions

TX Interface and 8
commitment protocol

TM and 8
committed transaction 5
communication

initiation 8
TM and 8

conceptual view
X/Open DTP model 7

configuration
files 11, 16, 34
of LRMs 25
XA configuration file 24

configuration file
Sybase XA 14
XA 13
XACONFIG FILE and 22

configuration files

contents of 14
LRM name 15
TM-specific 13
UBBCONFIG 15
XAD 16

connection handle 46
sample program 47

connections 22
and stored information 13
and X/Open DTP model 42
current 44
default 44
establishing 34
establishing and managing 5
in traditional SYBASE TP 41
stored information 14
X/Open DTP model 13

consistency 5
conventions

See also syntax
Transact-SQL syntax xi
used in the Reference Manual xi

CS_COMMAND structure 47
CS_CONNECTION structure 46
cs_object 47
CS-Library commands

invalid 44
ct_command 43
ct_cursor 43
ct_dynamic 43
curly braces ({}) in SQL statements xii
current connection 44

D
dbcc

XA-specific 2, 13
decisions

heuristic 10
default connection 44
Distributed Transaction Processing

See DTP
DTM

licensing 2
DTM XA environment 11

Index

XA Interface Integration Guide for CICS, Encina, and TUXEDO 61

DTM XA interface 8, 12
dtm_tm_role 21
DTP

definition of 6
environment v
key components 6
management v
RM 7
TM 6
X/Open Distributed Transaction Processing 1
XA model, graphic of 12

durability 6
dynamic registration 29

E
editing

UBBCONFIG file 37
XA configuration file 24

Embedded SQL 2
accessing data with v
and coding constraints vi, 2
invalid commands 42, 43
native interface 8

embedded SQL/C 13
embedded SQL/COBOL 13
enable dtm 19
enabling

TM transactions 2
Encina

monadmin create rm 14
enconsole 14, 33
environment

building runtime 40
DTM XA 11
multiple thread issues 49
XA 5

environment variables
XACONFIGFILE 22

establishing connections 34
CICS 15
Encina 15
TUXEDO 16

F
failure recovery 8

TM and 8
files

and threads 51
configuration 11, 14, 15, 16, 34
interfaces 16
libcom_r.so 30
libcomn_dce.sl 31
libcs_r.sl 31
libcs_r.so 30
libxadtm.a 34
switch-load 28
syb_xa_log 20
sybasexa.c 28
sybasexa.mk 29
UBBCONFIG 16, 37
XA configuration 16, 24
xa_config 16, 25

flags
trace 24

function
mon_RegisterRmi 15
xa_open() 22

G
global

identifiers 8
recovery 2
transaction 9, 16

global identifiers
TM and 8

global recovery 10
global transaction 6

commit 9
global transactions

AP and 7
logical connections 16
TM and 8
TX Interface and 8
X/Open DTP model 6

global variables
and threads 51

grant 21

Index

62 Adaptive Server Enterprise

H
handles

command 47
heuristic decision

conflicts 11
heuristic decisions 10
heuristic transactions

managing 13

I
identifier

global 8
initial xa_open () 20
initialization 34
initiation

communication 8
integrating TUXEDO 35
interface

DTM XA 12
native 7, 8, 13
TX 7, 8
XA 7, 8

interfaces file 16
invalid commands

CS-Library 44
Transact-SQL 43

isolation 6

L
libcom_r.so 30
libcomn_dce.sl 31
libcs_r.sl 31
libcs_r.so 30
library_names 36
libxadtm.a 34
licensing

DTM 2
linking application servers 36
local transaction 6
log file

syb_xa_log 20
log file entries 21

log file parameters 21
logfile_name 20
logical connections 16
logical resource manager

See LRM
LRM

and symbolic names 14
client-server connections 14
configuration of 25
connections 13
initializing 33
mon_RegisterRmi 15

lrm_name 20

M
makefile

sybasexa.mk 29
sybasexa.mk.hp800 30

management of transactions 42
migration

thread 29
mon_RegisterRmi 15, 33, 34
monadmin create rm 14, 15, 33
monadmin create rm command 34
mutex and threads 51

N
native interface 8

Client-Library and 8
Client-Library calls 13
Embedded SQL and 8
illustration of 7

O
-O-1 20
-O1 20
onCommit command 45
Open Client libraries 13
open string 14, 20, 33, 34

strings 14

Index

XA Interface Integration Guide for CICS, Encina, and TUXEDO 63

open strings 15

P
parameters

enable dtm 19
logfile_name 20
lrm_name 20
-O-1 20
-O1 20
open string 20
password 20
TMNOFLAGS 29
traceflags 20
username 20
-v11 20

parentheses ()
in SQL statements xii

password 14, 15, 16, 20, 33
permissions

monadmin create rm 14
prepare phase 9

transaction branch 9
protocol

transaction commitment 8
two-phase commit 9

R
README file 19
recovery 6, 10, 42

failure 8
global 2, 10
XA interface and 8

registration
dynamic 29

resource manager
See RM

RM 7
Adaptive Server and 7
X/Open DTP model 6
XA interface and 8

rm_name parameter 35
rm_structure_name parameter 35

rmname 34
roles

dtm_tm_role 21
rollback 43
rollback transaction 5, 9, 43

TX Interface and 8

S
sample programs

retrieving connection handles 47
section 21, 23
set connection command 45
shared resources

RM and 7
X/Open DTP model 6

SMIT utility 32
sp_role 21
square brackets []

in SQL statements xii
standard

XA interface 1
stored information

connections 14
strings

open 14, 15, 33, 34
structures 46
switch structure 29
switch-load files 28
syb_xa_log 20
Sybase stanza

adding 31
SYBASE traditional TP

versus X/Open DTP model 42
Sybase XA configuration file 14
Sybase XA environment 11
sybasexa.c file 28
sybasexa.mk makefile 29
sybasexa.mk.hp800 makefile 30
symbolic names

and APs 14
and LRM 14

symbols
in SQL statements xi, xii

SYNCPOINT command 45

Index

64 Adaptive Server Enterprise

syntax conventions, Transact-SQL xi

T
test

ACID 5
thread migration 29
threads 49
TM 6

accessing Adaptive Server data 2
CICS v
purpose 8
TX interface and 8
XA interface and 8

TM server
building 39

TMNOFLAGS 29
TM-specific commands 13
TM-specific configuration files 13
trace flag parameters 21
trace flags 24
traceflags 20
transaction 5

atomicity 5
branch 6, 9
committed 5, 9
consistency 5
durability 6
global 6, 9, 16, 42
isolation 6
limitation on 42
local 6, 42
management v, 42
processing 6, 8, 9
recovery 6
rollback 5, 9

transaction boundaries
AP and 9
TX Interface and 8

transaction identifier 6
transaction operation 20
transaction processing model 11
Transaction Processing Monitor

See TM
transactions

XA interface and 8
Transact-SQL commands

invalid 43
TUXEDO

integrating 35
two-phase commit 9

commit phase 9
prepare phase 9
transaction completion 9

TX
calls 9
interface 7, 8

U
UBBCONFIG file 15, 16

editing 37
user name 14, 15, 16, 33
username 20
utilities

SMIT 32

V
-V11 20

X
X/Open

DTP 1
X/Open DTP

functional model 7
X/Open DTP Model 6
X/Open DTP model

component communication 8
component interaction 8
connections 13
global transactions 6
multiple application programs 6
multiple resource managers 6
shared resources 6
vs SYBASE TP 42

XA

Index

XA Interface Integration Guide for CICS, Encina, and TUXEDO 65

calls 9
DTP model 12
interface 7, 8
interface standards 1

XA configuration file 13, 16
editing 24

XA environment
components of 11

XA product definition
See CICS XAD

xa_config 25
xa_config file 16
xa_open 22
XACONFIGFILE 22

Index

66 Adaptive Server Enterprise

	XA Interface Integration Guide for CICS, Encina, and TUXEDO
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Finding the latest information on component certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	Finding the latest information on EBFs and software maintenance
	Conventions
	Table 1: Font and syntax conventions for this manual
	Accessibility features
	If you need help

	CHAPTER 1 Introduction
	Overview
	Enabling a TM transaction to access data stored on Adaptive Server

	Requirements

	CHAPTER 2 The Sybase XA Environment
	Definitions
	Overview of the X/Open DTP model
	Figure 2-1: A conceptual view of the X/Open DTP model
	Components of the model
	How the components communicate
	How the components interact
	Figure 2-2: Transaction branches

	Recovery

	The Sybase XA environment
	Figure 2-3: The Sybase XA DTP model
	Components of the Sybase XA environment

	Connections in the Sybase XA environment
	Identifying connections via LRMs
	Where is the connection information stored?
	The Sybase XA configuration file
	The CICS XA product definition (XAD)
	The Encina monadmin create rm command
	TUXEDO’s UBBCONFIG file

	Establishing connections
	Establishing connections in a CICS environment
	Establishing connections in an Encina environment
	Establishing connections in a TUXEDO environment

	Distributing work across LRMs

	CHAPTER 3 Configuring the XA Environment
	Configuring Adaptive Server
	Open string parameters for the DTM XA Interface
	Open string parameters
	Table 3-1: Sybase X/Open XA open string parameters

	dtm_tm_role required for username
	Log file and trace flag parameters
	Labels for logfile entries
	Table 3-2: Logfile message labels

	xa_open() function behavior

	XA configuration file for DTM XA Interface
	Environment variable for specifying the configuration file
	[all] section for defining common LRM parameters
	Parameter definitions for [all] section
	Table 3-3: Parameters for [all] section of XA configuration file

	Editing the XA configuration file
	Additional capabilities, properties, and options

	Using the DTM XA Interface with CICS
	Building the switch-load file
	Compiling the switch-load file on IBM RISC System/6000 AIX
	Compiling the switch-load file on HP9000 Series 800 HP-UX
	Compiling the switch-load file on Sun Solaris 2.x (SPARC)

	Adding a Sybase stanza to the CICS region XAD definition

	Using the DTM XA Interface with Encina
	Assigning an open string with monadmin create rm
	Initializing LRMs with mon_RegisterRmi
	Linking applications with DTM XA Interface libraries
	Establishing connections

	Using the DTM XA Interface with TUXEDO
	Table 3-4: Information needed to integrate the TUXEDO System
	Linking
	Setting up the UBBCONFIG file
	Table 3-5: Environment specific file entries

	Creating the TUXEDO configuration file
	Building the TMS

	Building the COBOL runtime environment
	Configuring CICS to support Sybase XA COBOL transactions

	CHAPTER 4 Application Programming Guidelines
	X/Open DTP versus traditional Sybase transaction processing
	Table 4-1: Traditional TP and X/Open DTP model differences

	Managing transactions and connections
	Managing transactions
	Managing connections
	The current connection
	Nontransactional connections

	Deallocating cursor function with Client-Library
	Dynamic SQL
	Obtaining a Client-Library connection handle
	Multiple-thread environment issues
	Caveats of thread use
	Embedded SQL thread-safe code
	Tightly coupled transactions

	Linking with CT Library
	Sample embedded SQL COBOL fragment
	Sample embedded SQL C fragment

	Index

