SYBASE

Company

Client-Library Migration Guide

Open Client™
15.7

DOCUMENT ID: DC36065-01-1570-01
LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http:/www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N o o 10 L A I gV =T o Yo RO vii
CHAPTER 1 Understanding Client-Librarycccccccooiiieiiiiiiiieeieeeee s, 1
What is Cent-LiDrary?cccoeiiiee i e e 1
Comparing the client interfaces..........ccccceeeeeecciiiiiie e 2
What is unique about Client-Library?cccccceeciiieenieeeiiiciiieeeeeeene 3
Tight integration with Open Server.........cccovvvveeeeeiicciiieiee e 4
Client interface to server-side CUrSOrS..........ococeeinieeeeiiieeennnnn. 4
Client interface to dynamic SQL..........ooccviiieiieiiiiiiiiiieniee s 4
ASYNCAIrONOUS MOUE........uuviiiiieiiiiiiiiicie e 5
Multithreaded application SUPPOItccovviiiiiieeieeiniiiiieeeeeeenn 6
Support for network-based security and directory services....... 6
User-defined datatypes and conversion routines....................... 7
Localization MechaniSMSccoveiriiieeiiieie e 8
Streamlined INterface ..o 9
CHAPTER 2 Evaluating an Application for Migrationccceeeeevvvvvvvnnnnnn. 11
QUESLIONS t0 CONSIAETuvviiiiiie e 11
Will the application benefit from migration?.............cccccveeeeenn. 11
How much effort will the migration require?cccccceeveevvvnnenn. 12
SUIMIMABIY .. tttttttettetetaeeteeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeesesasssessssssssnssssssnnnnnnns 14
CHAPTER 3 Planning for Migration ... 15
Gt SOfWAIE ...t 15
Learn about Client-Library..........ccocveeeeeeiiiiiiiiiee e 16
Familiarize yourself with sample programsccccveeveeeiiiniiineenn. 17
Isolate DB-Library COUe.........cccuuviiiiieiiiiiiiiiei et 17
Consider application redesign.........ccuevviieeiiiiiiiiiiiee e 17
Unified results handling ... 17
CUISOIS ... 18
Array BIiNAINGoevveeiiiiii 18
ASYNChronoUS MOAE.........cueiiieeiiiiiiiiiiie e e 19
Multithreadingcceeeiiiiiiii e 19
Client-Library Migration Guide iii

Contents

CHAPTER 4

CHAPTER 5

Review your estimate of the migration effort.............cccccccviiinnnen. 19
Plan fOr tESINGoooiiiiiieiiieeee e 20
Develop a SChedule..........iiii e 20
Check your enVIrONMENToocviviiiiee e 20
Comparing DB-Library and Client-Library Infrastructures......... 23
ULIIEY FOULINES....oii it 23
Header fileS ..o 24
CONLIOl STIUCTUIES ...ttt 24
Control Structure PropertieS........eeeeeeiicirireeeeeeeiiieeee e e e 25
The CS_CONTEXT StTUCLUIEvvviiieeeeeeiiiirieee e e eeeiiiieee e e e 26
The CS_CONNECTION StruCtUrecccvvvveereeesiiciiiieeeeee e 27
The CS_COMMAND StUCLUIE ...vvevveeeiieiiiiiieee e e ceiiieeeeae e 28
Connection and command rules............cccooceieiniiieeiniieee e 28
Other STUCIUIEScoiiiieiiiie et 28
CS_DATAFMT Lottt 28
CS_IODESC.... .ttt 29

CS _LOCALE ..ottt 29
CS_BLKDESC ...ttt 29
Converting DB-Library Application Code.......cccccccvveereiiiiiciicnnnnns 31
CONVEISION STEPS ioieiiiiiiiiiiee sttt abraeee s 31
Initialization and cleanup COEccoviviiiiiiieee e 32
Comparing call SEQUENCEScccceeiiiciiiiiiieeeeiiiiierree e e 32
Example: Client-Library initialization and cleanup.................. 34
Code that Opens a CoONNECLIONcvieeeiiiiiiiiiiee e 42
Comparing call SEQUENCESccceeeiiiiiiiiiiieee e eiiirreee e e 42
Client-Library enhancementsccccovvvveeeiicciiieiee e, 43
Migrating LOGINREC COdEccuvvvieieiiiiiiiiiiieeeeeeiieeee 44
Example: Opening a Client-Library connection....................... 44
Error and message handlers..........ccccovvviiiiiiiiieiiiniiiiiccee e 47
SequeNCEd MESSAGES.......uuvriieeeeeeiiiiiieiee e e e s sirrreere e e e s nirbeeees 48
Replacing server message handlers.........cccccceeeeiiiiiiiienneennn, 48
Replacing DB-Library error handlers...........ccccccceiviiiiiiiennnnnnn. 49
Code that sends COMMANScoociiieiiiiiie i 51
Sending language commands..........cccuvevveeeeiiciiieeeeee e 52
Sending RPC comMmMandscoueeeiiiiiiiiieieeescsiiiieeee e e 54
TDS passthroughcveeeiiiiiiiiee e 59
Code that processes reSuUltS.........uuuiieeeiiiciiiiiiiee e 59
Program structure for results processingccccccoevcvvveveeennn. 59
Retrieving data Values...........coovvuiiiiiiiiiniiiiieeece e 65
Obtaining Results StatiStiCS..........ooovviiiiiiiieniiiieiee e 70
CancCeling rESUILSovviiiiiiiiiee e 72

Open Client

Contents

CHAPTER 6 AdVANCEA TOPICS wruriiiiiiiieeeeeeie s s e e e e e e e e e e e 75
Client-Library’s array bindingccccevvieiiiiiiiiiiec e 75
Using Array BindiNg........ccccvviiiiieeiiiiiiecee e 75
Array Binding EXample.........cccooviiiiiiiieeee e 76
Client-Library CUrSOIScuiiiiiiiiiiiiiie et 76
Comparing DB-Library and Client-Library cursors 76
Rules for Processing Cursor ResUltSccccvvveeveeeeiiccivinenn, 77
Comparing Cursor ROULINESccoviiiiiiiiiiee e 78
Comparing Client-Library cursors to Browse Mode Updates .. 81
Using Array Binding with Cursors.........ccccccvviviiienee i, 82
Client-Library cursor examplecccccceeeiniiiiiieeneeennniiiieennn 82
ASYNChronous Programmingeouueerreeeeeessnniirieeeeeesssniinneeeeeens 83
DB-Library’s Limited Asynchronous Support........ccccccovvuvvveeen. 83
Client-Library asynchronous SUPPOrt.......cccccoeecvvvieeeeeesiicivvnnnnn. 83
USING Ct_POIL. .. 84
BUlK COPY INTEIMACEuviiiie i 87
Bulk-Library initialization and cleanupcccoceeveeeeeiiivinenn. 87
Transfer FOULINESoooiiiiiieiiie e 87
Other differences from DB-Library bulk copycccccccevvuvvnneen. 88
Text/Image INtErfacecceeeviiiiiiii e 88
Retrieving text or image datacccvvvveeeeiiniiiiiiieee e, 88
DB-Library’s text timestampoocvveeiieeeniiiiiieiiee e 89
Client-Library’s CS_IODESC StruCture...........cccvvveeeeeeriiivvneenn. 89
Sending text or image dataocccvvveeieeeniiiiiiiiiiee e 91
Text and image eXxamplescccvvvviieeiiiiiiiiiiee e 93
LOCANZALION ...t 94
CS_LOCALE StUCIUM ... 95
Localization preCedenCe.........uuveeeiieiiiiiiiieee e 95
APPENDIX A Mapping DB-Library Routines to Client-Library Routines......... 97
Mapping DB-Library routines to Client-Library routines 97
10 To L= PP P PP TPPR PP 123

Client-Library Migration Guide

Contents

Vi Open Client

About This Book

Audience

How to use this book

Related documents

Client-Library Migration Guide

This book contains information on how to migrate Open Client™ DB-
Library™ applications to Open Client Client-Library.

This book has adual audience:

Managers or other decision makers who will decide whether to
migrate a particular DB-Library application to Client-Library.

Experienced DB-Library programmers who will perform the
migration.

This book contains these chapters:

Chapter 1, “Understanding Client-Library” introduces Client-
Library and explains what is unique about Client-Library.

Chapter 2, “Evaluating an Application for Migration” provides
guidelines to help you decide whether to migrate a DB-Library
application to Client-Library.

Chapter 3, “Planning for Migration” contains practical information
on planning for migration.

Chapter 4, “ Comparing DB-Library and Client-Library
Infrastructures’ compares the DB-Library and Client-Library
infrastructures.

Chapter 5, “ Converting DB-Library Application Code” explains
how to accomplish basic DB-Library tasks using Client-Library.

Chapter 6, “ Advanced Topics’ contains information on more
advanced Client-Library features.

Appendix A, “Mapping DB-Library Routines to Client-Library
Routines” maps DB-Library routines to Client-Library.

You can see these books for more information:

The Open Server and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.

Vii

Viii

The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

The Software Devel oper’s Kit Release Bulletin for your platform contains
important |ast-minute information about Open Client™ and SDK.

The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

¢ The sample programs that are included with Open Client and Open
Server

¢ Routinesthat have platform-specific behaviors

Thelnstallation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option containsinformation about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authenticationin
the Kerberos security mechanism.

Open Client

About This Book

Other sources of
information

Client-Library Migration Guide

The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

The Open Client Embedded SQL ™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

TheOpen Client Embedded SQL ™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

The jConnect for JIDBC Programmer s Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access datain Adaptive Server using any
language supported by .NET, such as C#, Visua Basic .NET, C++ with
managed extension, and J4.

The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNI X, providesinformation on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access datafrom
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide providesinformation for Perl developersto connect to an Adaptive
Server database and query or change information using a Perl script.

The Adaptive Server Enterprise extension module for PHP Programmers
Guide providesinformation for PHP devel opersto execute queries against
an Adaptive Server database.

The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Use the Sybase Getting Started CD and the Sybase Product Documentation
Web site to learn more about your product:

¢ The Getting Started CD contains release bulletins and installation guides
in PDF format. It isincluded with your software. To read or print
documents on the Getting Started CD, you need Adobe Acrobat Reader,
which you can download at no charge from the Adobe Web site using a
link provided on the CD.

e The Sybase Product Documentation Web siteis accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Return code error Thisbook contains anumber of code fragments taken from the set of migration
?rg‘;%('er:gs' n code sample programs that Sybase provides on the World Wide Web.

/*
* %
* %
* %
* %
* %

* %

*/

The example fragments in this book use the EXIT_ON_FAIL() example macro,
which isas follows. Macros similar to this can simplify return code error
checking. However, this macro is not appropriate for every situation.

Define a macro that exits if a function return code indicates
failure. Accepts a CS_CONTEXT pointer, a Client-Library

or CS-Library return code, and an error string. If the

return code is not CS_SUCCEED, the context will be

cleaned up (if it is non-NULL), the error message is

printed, and we exit to the operating system.

#define EXIT ON_FAIL(context, ret, str) {

if (ret != CS_SUCCEED)
fprintf (stderr, "Fatal error: %s\n", str);
if (context != (CS_CONTEXT *) NULL) {
(CS_VOID) ct_exit (context, CS_FORCE_EXIT) ;
(CS_VOID) cs_ctx drop (context) ;

A
exit (ERROR EXIT) ;
}
}
World Wide Web The migration sample programs are on the Sybase World Wide Web page at
access http://www.sybase.com/detail?id=1013159. You can also find these sample
programsin the following Open Server™ installation directory:
On UNIX: $SYBASE/$SYBASE_OCS sample/db2ct
On Windows: %SYBASE%\%SYBASE OCSe\sample\db2ct
X Open Client

About This Book

The README file provided with the migration samples contains a descriptive
list of the samplefiles.

Sybﬁse ce{)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[JFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 Inthe Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click aPartner Certification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set upaMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.
2 Click MySybase and create a MySybase profile.
Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFY/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

Client-Library Migration Guide Xi

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis

displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance rel eases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Key

Definition

command

Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable

Variables, or words that stand for values that you fill in, are
initalics.

Curly braces indicate that you choose at least one of the
enclosed options. Do not include the bracesin the command.

Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include the braces in the command.

Parentheses are to be typed as part of the command.

The vertical bar meansyou can select only one of the options
shown.

The comma means you can choose as many of the options
shown asyou like, separating your choices with commas to
be typed as part of the command.

Accessibility This document is available in an HTML version that is specialized for

features

accessihility. You can navigate the HTML with an adaptive technology such as

ascreen reader, or view it with a screen enlarger.

Xii

Open Client

About This Book

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

Client-Library Migration Guide xiii

Xiv Open Client

CHAPTER 1 Understanding Client-Library

This chapter introduces Client-Library and explai ns the unique features of

Client-Library.

This chapter covers the following topics:
Topic Page
What is Client-Library? 1
Comparing the client interfaces 2
What is unique about Client-Library? 3

What is Client-Library?

Client-Library is an applications programming interface (API) for usein
writing client applications. Client-Library provides generic building
blocks for constructing distributed client applications, including non-
database applications.

Although Sybase supports several other client interfaces, including DB-
Library, ODBC, and Embedded SQL ™, Client-Library offers powerful
advantages to the application programmer:

e Itisboth query-language-independent and database-independent,
enabling application programmersto create awide range of powerful,
flexible applications.

e |t sharestypedefinitions, defines, and data el ement descriptions with
Sybase's Open Server Server-Library interface, enabling application
programmers to integrate client functionality into Server-Library
applications.

e |t provides an asynchronous interface, enabling application
programmers to devel op applications that simultaneously perform
multiple work requests.

e |t alows programmers to set configuration propertiesin aruntime
configuration file, without making changes to the application itself.

Client-Library Migration Guide 1

Comparing the client interfaces

Client-Library isthe API of choice for new Sybase customers and customers
writing new applications. For customers with existing DB-Library
applications, choosing to migrate to Client-Library depends on whether the
applications need access to new Sybase functionality and how much effort the

migration requires.

Comparing the client interfaces

Table 1-1 compares Sybase's client interfaces:

Table 1-1: Comparing Sybase’s client interfaces

Client-Library DB-Library Embedded SQL ODBC
Available All DB-Library does not support ~ All except data Similar to
Client/Server new features added to Client- stream messaging DB-Library;
features Library version 11.0 and later, and registered different
except for these: procedure implementations
« dbsetconnect routinethat ~ Notifications may provide
specifies server connection different feature
information SEt&l or may o
. SYBOCS DBVERSION Implement the
- —~ . same feature
environment variable that X
. differently
externadly configures
DB-Library versionleve at
runtime
« LDAPdirectory service
support on Windows
platform
e MIT Kerberosnetwork and
mutual authentication
serviceson Linux, Solaris,
and Microsoft Windows
platforms
For information about these
features, see the Open Client
DB-Library/C Reference
Manual.
Query-language Yes No No No
independent?

Open Client

CHAPTER 1 Understanding Client-Library

Client-Library DB-Library Embedded SQL ODBC
Supports non- Yes No Yes No
database
development?
Interface style Synchronousor Synchronous Synchronous Synchronous
asynchronous
Chief advantages Powerful, Simple, portable Simple, portable, Simple, widely
generic, portable andaninternational available
standard
Chief Learning curve Sybase-specific, does not Lessflexible than Lack of asingle
disadvantages associated witha support al generic cal-level interfaces conformancetest
new interface client/server services suite for al
implementations
resultsina
mixed level of

function support

What is unique about Client-Library?

Of Sybase's client interfaces, Client-Library isthe only one that supports the
following features:

» Tight integration with Open Server

» Client interface to server-side cursors

e Client interface to dynamic SQL

» Asynchronous mode of operation

e Multithreaded application support

e Support for network-based directory and security services
e User-defined datatypes and conversion routines

* Localization mechanisms

* A streamlined interface

Client-Library Migration Guide 3

What is unique about Client-Library?

Tight integration with Open Server

Client-Library and Server-Library share public type definitions, macros, and
data element descriptions. In addition, both Client-Library and Server-Library
applications use CS-Library routinesto allocate common data structures,
handle localization, and convert data values.

Thistight integration allows Server-Library and gateway applications to
include Client-Library-based functionality.

Client interface to server-side cursors

Cursors are a powerful data management tool. They allow client applications
to update individual result rows while processing aresult set. A server-side
cursor, sometimes called a“native cursor,” is acursor that exists on Adaptive
Server Enterprise.

Client-Library fully supports server-side cursors, providing a cal-level
interface that allows client applications to declare, open, and manipulate
server-side cursors.

DB-Library does not support server-side cursors. Instead, it supports atype of
cursor emulation known as “client-side cursors.” Client-side cursors do not
correspond to actual Adaptive Server Enterprise cursors. Instead, DB-Library
buffers rows internally and performs all necessary keyset management, row
positioning, and concurrency control to manage the cursor.

Client-Library’s cursor functionality replaces DB-Library’s row buffering
functionality, which carries a memory and performance penalty because each
row in the buffer is allocated and freed individually.

Client interface to dynamic SQL

Dynamic SQL allows applications to create compiled SQL statements (called
“prepared statements”) on the server and execute them at will. The statements
can include placeholder variables whose values can be supplied at runtime by
application end users. The client application can query the server for the
formats of the statement’s input values, if any.

Client-Library fully supports dynamic SQL, providing a call-level interface
that implements the ANSI-standard embedded SQL prepare, execute, and
execute immediate statements. Client-Library also allows applications to get
descriptions of prepared-statement input and output.

4 Open Client

CHAPTER 1 Understanding Client-Library

Client applicationstypically use dynamic SQL to allow end usersto customize
SQL statements at runtime. For example, an application might prepare a SQL
query retrieving all known information about aparticular customer. This query
is prepared as a dynamic SQL statement with a placeholder variable: the
customer’s name. At runtime, the application’s end user supplies the
customer’s name and executes the prepared statement.

Asynchronous mode

Client-Library’s asynchronous mode all ows applications to constructively use
time that might otherwise be spent waiting for certain types of operationsto
complete. Typically, reading from or writing to anetwork or external deviceis
much slower than strai ghtforward program execution.

When asynchronous behavior isenabled, all Client-Library routinesthat could
potentially block program execution behave asynchronously. That is, they
either:

e Initiate the requested operation and return immediately, or

e Return immediately with information that an asynchronous operation is
already pending.

Applications can learn of operation completions using one of two models:
e Non-palling (interrupt-driven)

e Pdlling

Non-polling (interrupt-driven)

Polling

Client-Library Migration Guide

The non-polling model is available on platforms that support interrupt-driven
1/0 or multithreading. These platformsinclude all UNIX and Microsoft
Windows platforms.

When an asynchronous operation completes, Client-Library automatically
triggers the programmer-installed completion callback routine. The
completion callback routine typically notifies the application’s main code of
the asynchronous routine’s completion.

The polling model is available on al platforms. If portability is aconcern,
polling is recommended.

What is unique about Client-Library?

In the polling model, an application calsct_poll to determineif an
asynchronous operation has completed. If it has, then ct_poll automatically
triggers the programmer-installed compl etion callback routine.

Multithreaded application support

Client-Library and later provide reentrant libraries that support thread-safe
applications on most platforms. In some situations, Client-Library developers
can use a multithreaded design to improve response time or throughput. For
example:

¢ Aninteractive Client-Library application can use one thread to query a
server and another thread to manage the user interface. Such an application
seems moreresponsiveto the user becausethe user-interfacethread isable
to respond to user actions while the query thread is waiting for results.

« Anapplication that uses several connections to one or more servers can
run each connection within adedicated thread. While onethread iswaiting
for command results, the other threads can be processing received results
or sending new commands. Such an approach may increase throughput
because the application spends less idle time while waiting for results.

See the Client-Library chapter in the Open Client and Open Server
Programmers Supplement for information on which system thread libraries, if
any, can be linked with Client-Library on your platform.

See “Multithreaded Programming” in the Open Client Client-Library/C
Reference Manual for information on coding Client-Library callsin a
multithreaded application.

Support for network-based security and directory services

Security services

Client-Library and Server-Library alow applications to take advantage of
distributed network security and directory services.

Using Sybase-supplied security drivers, client/server applications can be
integrated with distributed network security software, such as CyberSafe
Kerberos, MIT Kerberos, Secure Sockets Layer (SSL), or Microsoft Windows
LAN Manager. The application can then use network-based security features
such as:

Open Client

CHAPTER 1 Understanding Client-Library

Directory services

e Centralized user authentication: Application user names and passwords

are maintained by the network security system, rather than on each Sybase
server. Userslog in to the network security system, and need not provide
their password when logging in to servers.

e Secure connections over insecure networks: Client-Library and Server-

Library caninteract with the network security system to perform per-
packet security services, such as encryption or integrity checking. These
services allow applications to safely transmit confidential dataand
commands over a communication medium that may not be physically
secure, such asawireless service or aleased line.

Network-based directory software, such as Lightweight Directory Access
Protocol (LDAP), provides an alternative to maintaining several interfaces
files. Using a Sybase-supplied directory driver, applicationscommunicate with
the directory-provider software to look up the network addresses for a named
Sybase server.

Where to go for more information

See the Open Client and Open Server Configuration Guide for information on
what directory and security drivers are available on your system and how they
are configured.

See the following sections in the Open Client Client-Library/C Reference
Manual for descriptions of how applications are coded to use network-based
directory and security services:

e “Directory Services’ topics section

e “Security Features’ topics section

User-defined datatypes and conversion routines

Client-Library Migration Guide

Applicationsoften need to use user-defined types. Client-Library makesit easy
for applications to both create and convert user-defined datatypes:

What is unique about Client-Library?

In Client-Library applications, user-defined types are C-language types.
To create them, an application simply declares them. (Don’t confuse
Client-Library user-defined types with Adaptive Server Enterprise user-
defined types, which are database column datatypes created with the
system stored procedure sp_addtype.)

To convert user-defined types to and from other user-defined types and
standard Client-Library types, you can write custom conversion routines
and add code to install them in Client-Library. Once the conversion
routines are installed, Client-Library calls your custom routines to
transparently handle all conversions.

CS-Library routines related to user-defined types include:

cs_set_convert — installs a custom conversion routine to convert between
standard Open Client and user-defined datatypes.

cs_will_convert — indicates whether conversion of a datatype is supported.

cs_setnull — defines a null substitution value for a user-defined datatype.

Localization mechanisms

An internationalized application can run in multiple language environments
with no change. In each environment, the application localizes—that is,
determines what language, character set, and datetime and money formats to
use—through the use of external information, such asan external configuration
file or environment variable.

Client-Library includes powerful localization mechanismsthat make it easy to
develop internationalized applications:

The locales file maps |ocale names to language/character-set/sort-order
combinations.

Applications can check the value of environment variables at runtime to
determine what locale to use.

Applications can use different localesfor different parts of an application.
For example, an internationalized sales application that runsin French in
France and Italian in Italy might generate reports for the London office
using aU.S. English locale.

Open Client

CHAPTER 1 Understanding Client-Library

Streamlined interface

Client-Library is astreamlined interface. Both Client-Library and CS-Library
together have fewer than 64 routines, while DB-Library has more than 200.
(Bulk copy routines are excluded from both counts.)

In addition, Client-Library provides a unified results-processing model in
which applications use the same routines to process al types of results.

Client-Library’s size and consistent design make it easier to use.

Client-Library Migration Guide 9

What is unique about Client-Library?

10 Open Client

CHAPTER 2

Evaluating an Application for
Migration

This chapter provides guidelines to help you decide whether to migrate a
DB-Library application to Client-Library.

Questions to consider

There are two primary questions to keep in mind when deciding whether
to migrate a DB-Library application to Client-Library:

e Will the application benefit from migration?
e How much effort will the migration require?

After answering these questions, decide whether or not to migrate by
balancing the benefits against the required effort.

Will the application benefit from migration?

Client-Library Migration Guide

Applications that need enhancement or access to new Sybase features
generally benefit from migration:

« Client-Library supports all current Sybase server features and
includes a number of valuable features of its own. (See“What is
unique about Client-Library?’ on page 3.)

» Client-Library supports threadsafe applications with reentrant
libraries, while DB-Library does not.

e Client-Library supports network-based directory and security
services while DB-Library does not. (See “ Support for network-
based security and directory services’ on page 6.)

Applications that do not need enhancement or access to new Sybase
features will not benefit from migration.

11

Questions to consider

How much effort will the migration require?

In order to understand how much effort a given DB-Library-to-Client-Library
migration will take, you need to examine the DB-Library application in terms
of what tasks it performs and what routines it uses.

Some DB-Library tasks, such as sending a SQL command to a server, are
straightforward in both libraries. Other tasks, such as using Open Server
registered procedures, are more complex in Client-Library.

Table 2-1 classifies typical DB-Library application tasks according to the
degree of effort required to duplicate the same application functionality with
Client-Library:

Table 2-1: DB-Library tasks ranked by migration effort required

Degree of effort
Partial list of related required for

DB-Library task routines migration Notes

Sending a Transact-SQL dbcmd, dbfcmd, Less than average Sending language commandsis

language commandtoa dbsglexec straightforward in Client-

server Library.

Sending an RPC dbrpcinit, dbrpcparam, Lessthan average Sending RPC commandsis

command to a server dbrpcsend straightforward in Client-
Library.

Inserting and retrieving dbreadtext, dowritetext, ~Less than average Client-Library handlestext and

text and image datafroma dbtxtptr, dbtxtimestamp image datamore gracefully than

server DB-Library.

Manipulating datetime dbdatename, Average Client-Library does not provide

values dbdatepart, dbdatezero direct equivalents for these

routines. Instead, use
cs_dt_crack and cs_dt_info.

Automatic result row
formatting

12

dbprhead, dbprrow, Average Client-Library does not provide

dbsprirow, dbsprhead equivalent routines, which can
easily bereplaced by application
code such asthat found in the
exutils.c Client-Library sample
program.
Applications that use these
routinesfor debugging purposes
can usect_debug instead.

Open Client

CHAPTER 2 Evaluating an Application for Migration

Degree of effort
Partial list of related required for
DB-Library task routines migration Notes

Bulk copy operations Bulk copy routines Average DB-Library’sbcp_ routines
includebuilt-infilel/O routines,
which read and write host data
files and format files, and write
error files.

Client-Library applications use
Bulk-Library, which does not
includefile 1/O routines.

Usepointerstoresult data dbdata, dbadata Average Currently, Client-Library

instead of binding the data applicationsarerequired to bind
resultsto memory in the
application’s data space.

Row buffering DBCURROW, Morethan average Client-Library provides cursor
DBFIRSTROW, and array-binding functionality
DBLASTROW, as an dternative to row
dbsetrow buffering. Using cursorsto

replace row buffering may
require some application design

work.
Registered procedures dbnpcreate, Morethan average Client-Library does not provide
dbnpdefine, dbregdrop equivalent routines.

Client-Library applications
must send RPC commands to
invoke the Open Server system
registered procedures
sp_regcreate and sp_regdrop to
create and drop registered
procedures.

Read and write Adaptive dbreadpage, Do not convert Client-Library does not support
Server Enterprise pages dbwritepage this functionality.

Client-Library Migration Guide 13

Summary

Degree of effort
Partial list of related required for

DB-Library task routines migration Notes
Two-phase commit Two-phase commit Do not convert Client-Library does not provide
routines equivalent routines. Instead,

Client-Library supports
transaction monitors to control
transactions.

View the two-phase commit
sample programs availablein
these directories:

* $SYBASE/$SYBASE_OCY
sample/ctlibrary on UNIX
platforms

¢ %SYBASEY\

%SYBASE_OCSYo\sample\
ctlib on Windows

Summary

When trying to determine whether a given migration is worth the effort,
remember that because Client-Library is a generic interface, applications that
useit arein an excellent position to take advantage of new Sybase and industry
technologies.

If your applicationisstill evolving—that is, if it will probably changein order
to meet future needs—it is a good candidate for migration.

14 Open Client

CHAPTER 3

Get software

Client-Library Migration Guide

Planning for Migration

This chapter contains practical information on planning for migration.

Topic Page
Get software 15
Learn about Client-Library 16
Familiarize yourself with sample programs 17
Isolate DB-Library code 17
Consider application redesign 17
Review your estimate of the migration effort 19
Plan for testing 20
Develop a schedule 20
Check your environment 20

Both Client-Library and DB-Library are packaged as part of the Software
Developer’s Kit.

The kit contains the following software components:

Production libraries

These are runtime libraries for production DB-Library and Client-
Library applications. On Microsoft systems, the libraries are import
libraries and DLLs. On UNIX systems, they are static and
shared-object libraries.

Development libraries

These libraries contain debug symbols and trace code for the Client-
Library routine ct_debug.

Bulk-Library, Embedded SQL/C (ESQL/C) and ESQL/COBOL

Includefiles

15

Learn about Client-Library

Sample programs

Client-Library includes a number of sophisticated sample programs that
illustrate Client-Library features. See the Open Client and Open Server
Programmers Supplement for your platform.

Net-Library drivers

Learn about Client-Library

The more you understand about Client-Library before starting to code, the
smoother the migration process will be.

Resources for learning about Client-Library include:

16

Sybase Education’s Client-Library class, “ Open Client Using
Client-Library.” For more information, call Sybase Education at 1-800-8-
SYBASE.

The Client-Library sample programs included with the software.

The Open Client Client-Library/C Programmers Guide. This book
contains basic information on how to structure Client-Library programs.

The following chapters contain information on how to perform specific
DB-Library application tasks using Client-Library:

e Chapter 4, “Comparing DB-Library and Client-Library
Infrastructures”

e Chapter 5, “Converting DB-Library Application Code’
e Chapter 6, “Advanced Topics’

In particular, Chapter 5, “Converting DB-Library Application Code,”
contains side-by-side comparisons of DB-Library and Client-Library call
sequences for common application tasks.

Open Client

CHAPTER 3 Planning for Migration

Familiarize yourself with sample programs

Sybase provides a set of migration sample programs that are available on the
Sybase Web site at http://www.sybase.com/detail?id=1013159 to help you
understand how to convert DB-Library code to Client-Library.

Isolate DB-Library code

If possible, isolate DB-Library code from the rest of your application code
before you begin the migration. DB-Library code located in separate routines
or modulesis easier to evaluate, easier to replace, and the converted code will
be easier to debug after migration.

If you make code changes to isolate the DB-Library code, test the application
to make sure the changed code works correctly before you introduce Client-
Library functionality.

Consider application redesign

Migration offers an excellent opportunity to redesign an application to take

advantage of Client-Library featuresthat DB-Library does not support. You
may want to consider redesigning your application to take advantage of new
Adaptive Server Enterprise features aswell.

The following sections discuss specific opportunities for redesign.

Unified results handling

DB-Library does not use a unified-results handling model. Instead,
applications retrieve different types of results by calling different routines:

* Regular row result columnsare bound with dbbind, but compute row result
columns are bound with dbaltbind.

* Regular and compute row datais fetched with dbnextrow, but stored
procedure return parameters are retrieved with dbretdata.

In contrast, Client-Library offers the following:

Client-Library Migration Guide 17

Consider application redesign

Cursors

Array binding

18

¢ All typesof fetchable dataare bound with ct_bind and fetched with ct_fetch

¢ Theunified results handling model allows applications to consolidate
results handling code

See “Code that processes results’ on page 59.

Client-Library (server-side) cursors replace several types of DB-Library
functionality:

e DB-Library cursors

Client-Library (server-side) cursors are faster than DB-Library cursors.
The Client-Library supports scrollable cursors wherein you can set the
position of a cursor anywhere in the cursor result set. You can navigate
forward or backward in the result set from a given current position, using
either absolute or relative row number offsets into the result set. In
addition, you can also usethefetch orientationslike NEX T, FIRST, LAST,
and PREVIOUS within the result set to select single rows for further
processing.

e DB-Library browse mode

Although Client-Library supports browse mode, cursors provide the same
functionality in amore portable and flexible manner.

DB-Library applications that use cursors or browse mode can benefit from
redesign to use Client-Library (server-side) cursors.

See “Client-Library cursors’ on page 76.

Client-Library’s array binding allows an application to bind aresult column to
an array of program variables. Multiple rows worth of column values are then
fetched with asingle call to ct_fetch.

Array binding can increase application performance, especially when result
sets are large (more than 20 rows) and contain only afew small columns (total
row size of less than 512 bytes).

Array sizes of 4to 16 are most effective; larger array sizes do not increase
throughput significantly.

Open Client

CHAPTER 3 Planning for Migration

DB-Library applications that use row buffering can often use Client-Library
array binding instead.

See “Client-Library’s array binding” on page 75.

Asynchronous mode

Client-Library’s asynchronous mode allows applications to perform
potentially blocking operations asynchronously. This can be an enormous
benefit to end-user applications using a GUI interface, because it allows
application users to proceed with other work while waiting for blocked
operations to complete.

Synchronous DB-Library applications are often improved by redesign as
asynchronous Client-Library applications.

See “ Asynchronous programming” on page 83.

Multithreading

Multithreading can improve response time in interactive applications and may
improve throughput in batch-processing applications. See “ Multithreaded
application support” on page 6.

Review your estimate of the migration effort

Now that you understand Client-Library, know how much and what sort of DB-
Library code your application contains, and have decided what parts, if any, of
your application to redesign, reevaluate your previous estimate of the
migration effort.

Redesign does add to migration time, but it is generally worth the effort.

Client-Library Migration Guide 19

Plan for testing

Plan for testing

Develop atest plan and create atest environment before beginning the
migration. Make sure you can compare test results from the Client-Library
application with those from the DB-Library application.

Develop a schedule

When scheduling migration tasks, it would be useful tofirst categorize them by
degree of difficulty and then schedule them accordingly.

Sybase recommends scheduling the easiest migration tasks first, the most
difficult tasks second, and the medium-level tasks third.

Do not leave the most difficult tasks for last if you are on atight schedule.

Check your environment

Verify that your migration environment is complete and correctly configured:
e IsClient-Library installed?
e Areyour servers at the correct version?

* Areyour servers set up to support your application? For example, if you
intend to useimplicit cursors, you must be using version 12.5 or later. Are
they configured for the right number of connections? Do they have the
right databases installed?

¢ Do the Client-Library sample programs run correctly? If they do not, fix
any problems with your environment before continuing.

e Isyour test environment set up?

After completing the planning steps outlined in this chapter, you are ready to
code. Chapters 4, 5, and 6 of this book contain information essential to this
coding stage:

e Chapter 4, “Comparing DB-Library and Client-Library Infrastructures,”
compares header files, utility routines, and data structures.

20 Open Client

CHAPTER 3 Planning for Migration

e Chapter 5, “Converting DB-Library Application Code,” explains how
basic DB-Library programming tasks can be accomplished with Client-
Library.

e Chapter 6, “Advanced Topics,” discusses more advanced programming
tasks.

Client-Library Migration Guide 21

Check your environment

22 Open Client

CHAPTER 4

Utility routines

Client-Library Migration Guide

Comparing DB-Library and
Client-Library Infrastructures

This chapter comparesthe DB-Library and Client-Library infrastructures.

Topic Page
Utility routines 23
Header files 24
Control structures 24
Other structures 28

DB-Library utility routines are included as part of DB-Library, while
utility routines for Client-Library applications are provided by
CS-Library.

Note dblib-based bep callsare not supported against DOL or XNL tables.
This factor needs to be considered by developers.

CS-Library isashared Open Client and Open Server library that includes
routines for use in both Client-Library and Open Server Server-Library
applications.

CS-Library includes routines to support the following:
« Datatype conversion —cs_convert can replace calls to dbconvert.

e Arithmetic operations —cs_calc can replace many different domny
cals.

e Character-set conversion— cs_locale and cs_convert canreplacecalls
to dbload_xlate and dbxlate.

» Datetime operations—cs_dt_crack can replace dbdtcrack calls.

e Sort-order operations— cs_strcmp can replace dbstrsort calls.

23

Header files

Header files

e Localized error messages — cs_strbuild can replace dbstrbuild calls.

CS-Library is documented in the Open Client and Open Server Common
Libraries Reference Manual.

DB-Library uses the sybfront.h, sybdb.h, and syberror.h header files.
Client-Library uses the ctpublic.h header file:
e ctpublic.h includes cspublic.h, which is CS-Library’s header file.
e cspublic.hincludes:
e cstypes.h, which containstype definitionsfor Client-library datatypes

e csconfig.h, which contains platform-dependent datatypes and
definitions

¢ sglca.h, which contains a typedef for the SQLCA structure

When migrating your application, replace DB-Library header file names with
the Client-Library header file name (ctpublic.h).

Note Because ctpublic.h includes cspublic.h, which in turnincludes all other
required header files, the application itself needs only to include ctpublic.h.

Control structures

24

DB-Library usestwo main control structures: LOGINREC and DBPROCESS.

Client-Library uses three control structures: CS_CONTEXT,
CS_CONNECTION, and CS_COMMAND.

e TheCS _CONTEXT structure defines an application context, or operating
environment.

¢ TheCS CONNECTION structure defines a client/server connection
within an application context. Multiple connections are allowed per
context.

Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures

e TheCS_COMMAND structure defines a command space within a
connection. Multiple command structures are allowed per connection.

The CS_CONTEXT structure has no real DB-Library equivalent but stores
information similar to that stored in DB-Library hidden global variables.

Together, the CS_ CONNECTION and CS_ COMMAND structures roughly
correspond to the DBPROCESS structure.

Unlike DB-Library structures, Client-Library control structures are truly
hidden: The structure namesare defined in Client Library’s public header files,
but the fields are not.

Note Inthisdocument, CS CONTEXT structures are also called “ context
structures,” CS_CONNECTION structures are also called “connection
structures,” and CS_COMMAND structures are also called “command
structures.”

Control structure properties

Client-Library control structures have properties. Some property values
determine how Client-Library behaves, while others are just information
associated with the control structure.

For example:

e CS TIMEOUT isaCS _CONTEXT structure property. Its value
determines how long Client-Library waits for a server response before
raising atimeout error. DB-Library applications specify atimeout value
with dbsettime, and the timeout value is a hidden DB-Library global
variable,

e CS NETIOisaCS CONNECTION structure property. Its value
determines whether network 1/0 is synchronous, fully asynchronous, or
deferred asynchronous. DB-Library hasno similar concept. A DB-Library
application calls different routines to get synchronous or asynchronous
behavior.

Client-Library Migration Guide 25

Control structures

¢ CS USERNAME isaCS CONNECTION structure property. Its value
specifies the user nameto log in to the server. The Client-Library
application sets the username before opening a connection with
ct_connect. With the connection open, the property is read-only. A DB-
Library application specifies a packet size by calling the DBSETLUSER
macro to change the contents of the LOGINREC structure; when dbopen
is called, the LOGINREC password becomes the DBPROCESS
username.

¢ CS USERDATA isaCS CONNECTION structure property and a
CS_COMMAND structure property. Its value is the address of user data
that is associated with a particular connection or command structure. The
use of the CS_USERDATA property issimilar to the use of dbgetuserdata
and dbsetuserdata in a DB-Library application.

Inherited property values

Every CS_ COMMAND structure has a parent CS_CONNECTION structure,
and every CS_CONNECTION structure has a parent CS_ CONTEXT
structure.

When a structure is allocated, it inherits all applicable property values from its
parent.

For example, anew CS_CONNECTION structure will inherit its parent

CS _CONTEXT'sCS_NETIO value. If the parent CS_ CONTEXT isset up to
use synchronous network 1/0, the new CS_CONNECTION will also be
synchronous.

Inherited property values can be changed after a structureis allocated.

Setting property values

Client-Library, CS-Library, and Server-Library al include routines to set and
retrieve property values.

The CS_CONTEXT structure

The CS_CONTEXT structure defines an application context, or operating
environment. Although an application can have multiple CS_ CONTEXT
structures, typical applications have only one.

26 Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures

Applications use the CS_CONTEXT structure to define Client-Library
behavior at the highest level:

CS _CONTEXT structure properties replace DB-Library hidden global
variables. For example, acall to dbsettime in a DB-Library application
changed aglobal timeout value. InaClient-Library application, setting the
CS TIMEOUT property affects only the child connections of that
particular CS_CONTEXT structure.

Message and error handlersthat are installed for aCS CONTEXT
structure are inherited by all CS_ CONNECTIONSs allocated within that
CS_CONTEXT.

CS CONTEXT can include local e information such as locale name,
language, and date order.

The CS_CONNECTION structure

The CS_CONNECTION structure defines a connection from a client
application to aremote server. Applications use the CS_CONNECTION
structure to define Client-Library behavior at the connection level, and to store
and retrieve information about a connection:

CS_CONNECTION properties customi ze connection behavior. For
example, an application can set the CS_TDS VERSION connection
property to request that a connection use a certain Tabular Data Stream™
(TDS) protocol version.

A CS_CONNECTION inherits message and error handlersfrom its parent
context, but an application can override these default handlers by
installing new ones.

The Client-Library CS_CONNECTION structure has several advantages over
the DB-Library DBPROCESS:

Client-Library Migration Guide

Message and error handlers can be installed on a per-connection basis.

Login information is bound to the connection: Login parameters become
read-only properties after the connection is established.

A Client-Library connection can simultaneously support an active cursor
and another command.

27

Other structures

The CS_COMMAND structure

The CS_COMMAND structure defines a command space within a
client/server connection.

Applicationsuse CS_COMMAND structuresto send commandsto serversand
process the results of those commands.

Connection and command rules

Applications can have multiple command structures active on the same
connection only when using Client-Library cursors. Client-Library cursors
allow the application to send new commands while processing rows returned
by the cursor.

When processing the results of acommand other than a Client-Library cursor
open command, the application cannot send additional commands over the
same connection until the results of the original command have been
completely processed or canceled.

See Chapter 7, “Using Client-Library Cursors,” in the Open Client Client-
Library/C Programmers Guide.

Other structures

CS_DATAFMT

28

In addition to its three basic control structures, Client-Library uses other
structures:

CS DATAFMT
CS |ODESC
CS LOCALE
CS BLKDESC

Applications use the CS_DATAFMT structure to describe data values and
program variables to Client-Library routines.

Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures

CS_IODESC

CS_LOCALE

CS_BLKDESC

For example:

e ct_bind requiresaCS DATAFMT structure describing a destination
variable.

e ct_describe fillsaCS DATAFMT structure describing aresult data item.

e ct_param requiresaCS DATAFMT structure describing an input
parameter.

e cs_convert requires CS_DATAFMT structures describing source and
destination data.

For information on how to use aCS_DATAFMT with ct_bind or ct_describe,
see the Open Client Client-Library/C Reference Manual. For information on
how to use aCS DATAFMT with cs_convert, see the Open Client and Open
Server Common Libraries Reference Manual.

Applications typically use the CS IODESC structure when manipulating text
or image data. The CS_IODESC structure defines an 1/0O descriptor for a
column in the current row of aresult set. This structure contains the column’s
text timestamp and other information about the column data.

See “Client-Library’s CS_IODESC structure” on page 89.

Applications use the CS_L OCALE structure to supply custom localization
information at the context, connection, or data element level.

See“CS_LOCALE Structure” on page 95.

Applications use the CS_BLKDESC when performing bulk copy operations.
See “Bulk-Library initialization and cleanup” on page 87.

Client-Library Migration Guide 29

Other structures

30 Open Client

CHAPTER 5

Converting DB-Library
Application Code

This chapter providesinformation necessary for successfully converting a
DB-Library program to Client-Library program.

This chapter covers the following topics:

Topic Page
Conversion steps 31
Initialization and cleanup code 32
Code that opens a connection 42
Error and message handlers 47
Code that sends commands 51
Code that processes results 59

Conversion steps

Client-Library Migration Guide

Converting a DB-Library program to its Client-Library equivalent
generaly involves the following steps:

1 ReplaceDB-Library header file nameswiththe Client-Library header
file name (see “Header files” on page 24).

2 Planthecode conversion. Client application code can be split roughly
into the categories covered in this chapter:

e Initialization and cleanup code
e Code that opens a connection

e Error and message handlers

* Code that sends commands

e Codethat processes results

31

Initialization and cleanup code

Each section shows equivalent DB-Library and Client-Library program
logic. Before beginning the conversion, read these sections to ensure that
you understand Client-Library fundamentals. Other, more advanced
features are discussed in Chapter 6, “ Advanced Topics.”

3 Perform the conversion:
4 Replace or remove DB-Library declarations, as appropriate.

5 Replace DB-Library function calls with their Client-Library or CS-
Library equivalents, changing program logic as necessary. Table A-1 on
page 97 lists DB-Library routines and their Client-Library equivalents.

Note The code fragmentsin this chapter use an EXIT_ON_FAIL example
macro, as specified in the migration sample dbtoctex.h. For information on this
macro, see “Return code error checking in code fragments” on page ix.

Initialization and cleanup code

Initialization sets up the programming environment for aDB-Library or Client-
Library program. Cleanup closes connections and deall ocates library data
structures.

Comparing call sequences

Table 5-1 compares the DB-Library calls used for initialization and cleanup
with their Client-Library equivalents. For Client-Library, the default version
level supports al the features starting with 10.x.

For detailed descriptions of each routine, see the reference page for the routine.

32 Open Client

CHAPTER 5 Converting DB-Library Application Code

Table 5-1: DB-Library vs. Client-Library—initialization and cleanup

DB-Library routines

DB-Library
functionality

Client-Library routines

Client-Library
functionality

(none)

cs_ctx_alloc(version,
context)

AllocateaCS_CONTEXT
structure and specify the
version level for desired CS-
Library behavior. version
can be CS_VERSION_120,
CS_VERSION_125,
CS_VERSION_150,
CS_VERSION_155, or
CS VERSION_157.

(none) cs_config(context, Install CS-Library error-
CS_SET, ;
CSMESSAGE CB, handler callback function.
handler, CS_UNUSED,
NULL)
dbinit() Initialize DB- ct_init(context, version) Initialize Client-Library and
Library. specify the version level for

desired behavior.

dbsetversion(dbproc,
version)

(For DB-Library 10.x
or later applications
only.) Specify the
version level for
desired behavior.
version can be
DBVERSION_46 or
DBVERSION_100.
Sybase recommends
DBVERSION_100
to be able to use the
features and code
changes introduced
in the updated
versions.

(none)

dberrhandle(handler)

Install DB-Library
error callback
function.

ct_callback(context,
NULL,CS_SET,
CS_CLIENTMSG_CB,
handler)

Install Client-Library error
callback function.

See “Error and message
handlers’ on page 47.

dbmsghandle(handler)

Install DB-Library
server message
callback function.

Client-Library Migration Guide

ct_callback(context,
NULL, CS_SET,
CS_SERVERMSG_CB,
handler)

Install Client-Library server
message callback function.

See “Error and message
handlers’ on page 47.

33

Initialization and cleanup code

DB-Library
DB-Library routines functionality

Client-Library routines

Client-Library
functionality

(See Table 5-2: DB-Library Open connection(s).
vs. Client-Library—opening
a connection)

See Table 5-2.

Open connection(s). Before
you open the connection, set
the required properties for
the context/connection.

dbexit() Close and deallocate

all DBPROCESS
structures and clean
up any structures
initialized by dbinit.

ct_exit(context, option)

Exit Client-Library. Before
exiting Client-Library,
deallocate all open
command and context
structures.

option is normally
CS_UNUSED.
CS_FORCE_EXIT isuseful
when exiting because of an
error.

(none)

cs_ctx_drop(context) Deallocate a

CS_CONTEXT structure.

The Client-Library application must allocate and deallocate CS_ CONTEXT
structure. CS_CONTEXT serves as “handle” for basic application properties,
such asthelanguage and character set for error messages and the application’s
default error and message callbacks. See “The CS_CONTEXT structure” on

page 26.

Example: Client-Library initialization and cleanup

The following code fragment, taken from the ctfirst.c migration sample
program, illustrates Client-Library initialization and cleanup.

Thefragment installs error handlersfor CS-Library and Client-Library, aswell
asaClient-Library server message callback. For examples of aClient-Library
error handler and a server message handler, see the “ Callbacks’ topics pagein
the Open Client Client-Library/C Reference Manual. For an example CS-
Library error handler, seethe Open Client and Open Server Common Libraries
Reference Manual.

CS_CONTEXT *context = (CS_CONTEXT *) NULL;
CS_CONNECTION *conn;

CS_RETCODE ret;

/*

** Setup screen output.

*/

34

Open Client

CHAPTER 5 Converting DB-Library Application Code

EX_SCREEN_INIT() ;

/*

** Step 1.

** Allocate a CS_CONTEXT structure and initialize Client-Libary. The

**% EXIT ON FAIL() macro used for return code error checking is defined in
** dbtoctex.h. If the return code passed to EXIT_ON_FAIL() is not CS_SUCCEED,
*k it

- Cleans up the context structure if the pointer is not NULL.

- Exits to the operating system.

* %

-- if (dbinit () == FAIL

-- exit (ERREXIT) ;

*/

ret = cs_ctx alloc(CS_CURRENT VERSION, &context);
EXIT ON FAIL(context, ret, "Could not allocate context.");

ret = ct_init (context, CS_CURRENT VERSION) ;
EXIT ON FAIL(context, ret, "Client-Library initialization failed.");

/*

** Step 2.

** Tnstall callback handlers for CS-Library errors, Client-Library errors, and
** Server-Library errors. The handlers are defined at the bottom of

** this source file.

* %

-- dberrhandle (err handler) ;

-- dbmsghandle (msg handler) ;

*/

/*

** cs config() installs a handler for CS-Library errors.

*/

ret = cs_config(context, CS_SET, CS_MESSAGE CB, (CS_VOID *) cserror cb,
CS_UNUSED, NULL) ;

EXIT ON FAIL(context, ret, "Could not install CS-Library error handler.");

/*
** ct callback() installs handlers for Client-Library errors and server

messages.
* %

** ct callback() lets you install handlers in the context or the connection.

** Here, we install them in the context so that they are inherited by the

** connections that are allocated using this context.

*/

ret = ct_callback (context, NULL, CS_SET, CS_CLIENTMSG CB, (CS_VOID
clientmsg cb) ;

Client-Library Migration Guide 35

Initialization and cleanup code

EXIT ON FAIL (context,ret,"Could not install Client-Library error handler.");
ret = Ct_callback(context, NULL, CS_SET, CS_SERVERMSG CB, (CS_VOID *)
servermsg_cb) ;
EXIT ON FAIL(context,ret,"Could not install server message handler.");
deleted code that connects and interacts with the server

/*

** Clean up Client-Library.
** ct exit (context, CS UNUSED) requests an "orderly" exit -- this

** call fails if we have open connections. If it fails, EXIT ON FAIL() calls
** ct exit (context, CS FORCE EXIT) to force cleanup of Client-Library.

*/

ret = ct_exit (context, CS_UNUSED) ;

EXIT ON FAIL(context, ret, "ct exit (CS_UNUSED) failed.");

/*
** Clean up CS-Library. cs_ctx drop() always fails if ct_init()

** succeeded on the context but ct exit() did not (or if ct exit()
** was not called at all).

*/

(CS_VOID) cs_ctx drop (context) ;

context = (CS_CONTEXT *) NULL;

exit (NORMAL_ EXIT) ;

/*

** clientmsg cb() -- Callback handler for Client-Library messages.

** Client-Library messages inform the application of errors or

**x gignificant conditions.

** Parameters:

** context -- Pointer to the context structure where the error occurred.
** The handler can retrieve context properties and set the CS USERDATA
** property.

** connection -- Pointer to the connection on which the error occurred.
** This parameter can be NULL if no connection was involved in the

*% error. If connection is non-NULL, the handler can retrieve connection
** properties, set the CS USERDATA property, and call

** ct cancel (CS_CANCEL_ ATTN) on the connection.

** errmsg -- Pointer to a CS_CLIENTMSG structure that describes the

** error. See the "CS CLIENTMSG" topics page in the Client-Library

** reference manual for a description of the fields.

** Returns: CS_SUCCEED

** Side Effects: None.

*/

CS_RETCODE CS_PUBLIC

clientmsg_cb(context, connection, errmsg)

CS_CONTEXT *context;

CS_CONNECTION *connection;

CS_CLIENTMSG *errmsg;

36 Open Client

CHAPTER 5 Converting DB-Library Application Code

CS_RETCODE ret;

CS_INT timeout val;

/-k

** Composition of error messages.
* %

** Client-Library message numbers encode values for severity,

** layer, origin, and number. The layer, origin, and number

** correspond to national language strings from the ctlib.loc

** Jocales file. Client-Library composes the text of the message
** (received in errmsg->msgstring) as follows:

** <routine name>: <layer strings: <origin string>: <descriptions>
** where:

** <routine name> is the name of the Client-Library routine

** that was active when the exception occurred.

** <layer string> describes the layer where the exception occurred
** or was found.

** <origin string> indicates whether the error is internal or external
** to Client-Library.

** <description> is the error description.

*/

fprintf (ERR_CH, "Client-Library Message: ");

fprintf (ERR_CH, "LAYER = (%1d) ORIGIN = (%1d) ",

(long) CS_LAYER (errmsg->msgnumber), (long)CS ORIGIN (errmsg->msgnumber)) ;
fprintf (ERR_CH, "SEVERITY = (%$1d) NUMBER = (%1d)\n",

long)CS_SEVERITY (errmsg->msgnumber), (long)CS NUMBER (errmsg->msgnumber)) ;

fprintf (ERR_CH, "Message String: %$s\n", errmsg->msgstring) ;

/*

** Operating system errors.

KK v v v s s s s

** Some exceptions reported by Client-Library are caused by exceptions
** in the underlying system software. When this occurs, Client-Library
** forwards the system error information to the application.

*/

if (errmsg->osstringlen > 0)

éprintf(ERR_CH, "Operating System Error: %$s\n",

errmsg->osstring) ;

).

** Handler return values and their meaning.

KR mmmmm A A b s s

** Client-Library error handlers must return CS SUCCEED or CS FAIL.

Client-Library Migration Guide 37

Initialization and cleanup code

** Returning any other value "kills" the connection -- Client-

** Library responds by marking the connection "dead", which makes

** it unuseable. You can test for dead connections by retrieving

** the value of the CS CON_STATUS connection property, which is

** a bit-masked value. The CS CONSTAT DEAD bit is set if the connection
** igs dead. This functionality replaces DB-Library's DBDEAD() macro.
** Unlike the DB-Library error handler, there is no return code that

** causes Client-Library to exit to the operating system. The application
** must check return codes in the main-line code and abort from the

** main-line code.

*/

/*

** (Optional) Test for specific error conditions.

KK v v v v v~ s o s o~ nt st b b Pt bt bt b ot bttt ot s ot

** The ERROR_SNOL () macro is defined at the top of this file.

** The component byte values of a message number (origin, layer, and

** pnumber) are defined in the Client-Library locales file.

*/

/*

**x Test for timeout errors. Timeout errors will be received when you:

** -- are using a synchronous mode connection,

** -- have set the CS TIMEOUT context property to a non-zero positive value
** (representing a number of seconds) .

** -- the server takes longer than the given time to respond to a command.

** For timeout errors, the command can be canceled with

** ct cancel (CS_CANCEL ATTN) . Other ct cancel() options are not
** to be used in an error handler. If we return CS_SUCCEED

** without canceling, then Client-Library will wait for another
** timeout period, then call this error handler again. If the
** we return CS_FAIL, then Client-Library kills the

** connection, making it unuseable.

*/

if (ERROR_SNOL (errmsg->msgnumber, CS SV RETRY FAIL, 63, 2, 1))

/*

38 Open Client

CHAPTER 5 Converting DB-Library Application Code

** Get the timeout period. This is not really neccessary, but

** demonstrated to show the correlation between timeout errors

** and the CS _TIMEOUT context property.

*/

ret = ct_config(context, CS_GET, CS_TIMEOUT, CS_VOID *)&timeout_val, CS_UNUSED,
(CS_INT *)NULL) ;

if (ret != CS_SUCCEED)

{

timeout val = 0;

}

fprintf (ERR_CH, "\nServer has not responded in at least %1d seconds.
Canceling.\n", (long)timeout val) ;

(CS_VOID)ct cancel (connection, (CS_COMMAND *)NULL, CS_CANCEL ATTN) ;
}

return CS_SUCCEED;

} /* clientmsg cb() */

/*

** cserror cb() -- Callback handler for CS-Library errors.

** Parameters:

** context -- Pointer to the context structure passed to the CS-Library

** call where the error occurred. The handler can retrieve any

** context property, and set the CS USERDATA property.

** errmsg -- Pointer to a CS_CLIENTMSG structure that describes the
** error. See the "CS CLIENTMSG" topics page in the Client-Library
** reference manual for a description of the fields.

** Returns: CS_SUCCEED

** Side Effects: None

*/

CS_RETCODE CS_PUBLIC

cserror cb(context, errmsg)

CS_CONTEXT *context;

CS_CLIENTMSG *errmsg;

)

** Composition of error messages.

KK v v v~ v s o~ s o sttt st s i i s

**x CS-Library message numbers are decoded the same way as Client-
** Library messages. See the comments in clientmsg cb() for a

** description.

*/

fprintf (ERR _CH, "CS-Library error: ");

fprintf(ERR_CH, "LAYER = (%1d) ORIGIN = (%1d) ",

(long) CS_LAYER (errmsg->msgnumber), (long)CS ORIGIN (errmsg->msgnumber)) ;
fprintf (ERR _CH, "SEVERITY = (%1d) NUMBER = ($1d)\n",

(long) CS_SEVERITY (errmsg->msgnumber), (long)CS NUMBER (errmsg->msgnumber)) ;

fprintf (ERR_CH, "Message String: %s\n", errmsg-smsgstring);

Client-Library Migration Guide 39

Initialization and cleanup code

/*
** QOperating System Errors.
K E v~~~ o o s s i
** Tf an operating system error occurred and CS-Library was notified,
** then CS-Library forwards the error information to the application.
*/
if (errmsg->osstringlen > 0)
{
fprintf (ERR_CH, "Operating System Error: %$s\n", errmsg-s>osstring);
b
** Handler Return Values.
KR
** CS-Library error handlers should return CS_SUCCEED.
*/
return CS_SUCCEED;
} /* cserror cb */
/*
** servermsg cb() -- Callback handler for server messages. The
** gerver sends messages to describe errors or significant
** events. Client-Library calls this function to forward
** gerver messages to the client program.
** Parameters:
** context -- Pointer to the context structure that is the parent of
** the connection. The handler can retrieve context properties
** and set the CS USERDATA property.
** connection -- Pointer to the connection on which the message was
** received. The handler can retrieve any connection property, set
** the CS_USERDATA property, and call ct_cancel (CS_CANCEL_ATTN)
** on the connection. In addition, when the server sends
** extended error data with a message, the handler can retrieve
** the data. This handler ignores extended error data.
** srvmsg -- Pointer to a CS SERVERMSG structure that contains the
** message info. See the "CS SERVERMSG" topics page in the Client-
** Library reference manual for a description of the fields. All the
** information that the DB-Library message handler received as
** parameters is available in the CS_SERVERMSG structure.
** Returns: CS_SUCCEED
** Side Effects: None
*/
CS_RETCODE CS_PUBLIC
servermsg_cb (context, connection, srvmsg);
CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_SERVERMSG *srvmsg;

{

40 Open Client

CHAPTER 5 Converting DB-Library Application Code

/*

** CS SERVERMSG Fields.

KK v v v

** When connected to an Adaptive Server Enterprise, most of the CS SERVERMSG
fields

** have corresponding columns in the sysmessages system table. When

** connected to an Open Server, it's up to the Open Server programmer

** to set the fields for the messages sent by the Open Server.

*/

fprintf (ERR_CH, "Server message: ");

/*

** For Adaptive Server Enterprise connections, srvmsg->number and srvmsg-
>severity come

** from the sysmessages system table, columns 'error' and 'severity',

** respectively.

*/

fprintf (ERR_CH, "Number %1d, Severity %1d, ",
long) srvmsg->msgnumber, (long)srvmsg->severity) ;
/*

** For Adaptive Server Enterprise connections, srvmsg->line is the line number
** in a language batch, or, if srvmsg->proclen field is > 0, the

**]line number within the stored procedure named in srvmsg-s>proc.

** srvmsg->state is the Adaptive Server Enterprise error state, which provides
** information to Sybase Technical Support about serious Adaptive

** Server errors.

*/

fprintf (ERR_CH, "State %1d, Line %ld\n",
(long) srvmsg->state, (long)srvmsg->line);
/*

** For Adaptive Server Enterprise connections, srvmsg->srvname is the value of
** the @@servername global variable. See the Adaptive Server Enterprise
documentation

** for information on how to set or change @@servername.

*/

if (srvmsg->svrnlen > 0)

{

fprintf (ERR_CH, "Server '%$s'\n", srvmsg-s>svrname) ;

).

** For Adaptive Server Enterprise connections, srvmsg->proclen is > 0 if the
message

** was raised while executing a stored procedure. srvmsg->proc is the

** procedure name in this case, and srvmsg->line is the line in the

** procedure's code where the error or condition was raised.

*/

if (srvmsg->proclen > 0)

Client-Library Migration Guide 41

Code that opens a connection

{

fprintf (ERR_CH, " Procedure '%s'\n", srvmsg->proc);

/*

** Finally, for Adaptive Server Enterprise connections, srvmsg->text is the text
of the

** message from the 'description' column in sysmessages.

*/
fprintf (ERR_CH, "Message String: %s\n", srvmsg-s>text);
/*
** The Client-Library message handler must return CS_SUCCEED.
** Returning any other value "kills" the connection -- Client-

** Library responds by marking the connection "dead", which makes
** it unuseable.

*/

return CS_SUCCEED;

} /* servermsg cb() */

Code that opens a connection

DB-Library applications use the LOGINREC and DBPROCESS structure to
open a connection to the server. Client-Library usesthe CS_ CONNECTION
hidden structure. See“The CS_CONNECTION structure” on page 27.

Comparing call sequences

Table 5-2 compares DB-Library routines used for opening a connection with
their Client-Library equivalents:

Table 5-2: DB-Library vs. Client-Library—opening a connection

DB-Library Client-Library
DB-Library routines functionality Client-Library routines functionality
dblogin() Allocate aLOGINREC ct_con_alloc(context, Allocate a
for usein dbopen. connection) CS_CONNECTION
structure.
DBSETLUSER(Set the username in the ct_con_props(Set the user name property
{?sgé?r:gﬁ%e) LOGINREC structure, %‘Jsr‘_r‘ggtl'zoé‘Ng’\SATES’ET' in the connection structure.

username, buflen, NULL)

42 Open Client

CHAPTER 5 Converting DB-Library Application Code

DB-Library routines

DB-Library
functionality

Client-Library routines

Client-Library
functionality

DBSETLPWD(
loginrec, password)

Set the user server
password in the
LOGINREC structure.

ct_con_props(
connection, CS_SET,
CS_PASSWORD,
password, buflen, NULL)

Set the user server password
property in the connection
structure.

DBSETLAPP(
loginrec,
application)

Set the application name
in the LOGINREC
structure.

ct_con_props(
connection, CS_SET,
CS_APPNAME,
appname, buflen, NULL)

Set the application name
property in the connection
structure.

dbopen(loginrec,

Connect to aserver (and

ct_connect(connection,

Connectto aserver (withthe

server) alocate the server_name, snamelen) pre-allocated connection
DBPROCESS). structure).
dbloginfree(Free the LOGINREC None
loginrec) structure.
language commands, Send requests and CS_ COMMAND Send requests and process
RPC commands, and process resultsusing a (See“ Code that sends results using a command
TDS passthrough calls DBPROCESS structure. structure.

commands’ on page 51)

dbclose(dbproc)

Close and deadllocate a
DBPROCESS structure.

ct_close(connection,
option)

Close a server connection.

option is normally
CS_UNUSED.

CS FORCE_CLOSE is
useful when closing the
connection because of an
error.

(none)

ct_con_drop(connection)

Deallocate a connection
structure.

Client-Library enhancements

Client-Library applications can also establish connections using network-
based user authentication that is provided by a network-based security
mechanism such as Windows NT Lan Manager (SSPI) and Kerberos. In this
case, the Client-Library application performs the following tasks instead of
calling ct_con_props to set the user name and password:

e (Optional) Specifies a security mechanism for the connection by setting
the CS_ SEC_MECHANISM connection property. Most applications will
use the default, which is defined by the Sybase security driver

configuration.

e Setsthe connection's CS_USERNAME property to match the user’s

network name.

Client-Library Migration Guide

43

Code that opens a connection

Setsthe CS_ SEC_NETWORKAUTH connection property to allow
network-based authentication.

Network-based authentication requires a Sybase security driver for the
network security mechanism. Not all servers support network-based
authentication. For more detailed information, see the “ Security Features”
topics page in the Open Client Client-Library/C Reference Manual.

Migrating LOGINREC code

In DB-Library, applications use the LOGINREC structure to customize a
connection before opening it. In Client-Library applications, use
CS_CONNECTION properties to customize a connection before opening it.

To replace DB-Library code that uses the same LOGINREC structure to open
several connections, you can use ct_getloginfo and ct_setloginfo, as follows:

1
2
3
4

Allocate a connection structure with ct_con_alloc.

Customize the connection with callsto ct_con_props.

Open the connection with ct_connect.

For each connection to be opened with the same login properties:

Call ct_getloginfo to allocate a CS_LOGINFO structure and copy the
original connection'slogin propertiesinto it.

Allocate a new connection structure with ct_con_alloc.

Call ct_setloginfo to copy login properties from the CS_LOGINFO
structure to the new connection structure. After copying the
properties, ct_setloginfo deallocates the CS_L OGINFO structure.

Customize any non-login propertiesin the new connection with calls
to ct_con_props.

Open the new connection with ct_connect.

Example: Opening a Client-Library connection

The following code fragment, taken from the ctfirst.c migration sample
program, illustrates opening a Client-Library connection:

/*

44

. deleted initialization code ...

Open Client

CHAPTER 5 Converting DB-Library Application Code

** Step 1.

** Allocate a CS_CONTEXT structure and initialize Client-Libary. The

** EXIT ON FAIL() macro used for return code error checking is defined in
** dbtoctex.h. If the return code passed to EXIT ON FAIL() is not CS_SUCCEED,
*k it

- Cleans up the context structure if the pointer is not NULL.

- Exits to the operating system.

* %

-- if (dbinit () == FAIL

-- exit (ERREXIT) ;

*/

ret = cs_ctx alloc(CS_CURRENT VERSION, &context);

EXIT ON_FAIL(context, ret, "Could not allocate context.");

ret = ct_init (context, CS_ CURRENT VERSION) ;

EXIT ON FAIL(context, ret, "Client-Library initialization failed.");
/*

deleted code that defines callback handlers

/*

** Step 3.

** Connect to the server named by the DSQUERY environment

** yvariable using the credentials defined in dbtoctex.h

* %

** 3a. Allocate a CS_CONNECTION structure.

** 3b. Insert the username, password, and other login parameters
** into the connection structure.

** 3c. Call ct connect(), passing the CS_CONNECTION as an argument.
*/

/*

** Step 3a.

** Allocate a CS_CONNECTION structure. The CS_CONNECTION replaces
** DB-Library's LOGINREC and DBPROCESS structures. The LOGINREC
** fields are connection properties in Client-Library.

* %

-- login = dblogin() ;

-- if (login == (LOGINREC *) NULL)

-- fprintf (ERR_CH, "dblogin() failed. Exiting.\n");

-- dbexit () ;

-- exit (ERREXIT) ;

-}

*/

ret = ct_con alloc(context, &conn) ;

EXIT ON FAIL(context, ret, "Allocate connection structure failed.");
/*

** Step 3b.

Client-Library Migration Guide 45

Code that opens a connection

** Put the username, password, and other login information into the

** connection structure. We do this with ct con props() calls.

** After the connection is open, Client-Library makes these properties
** read-only.

* %

** USER and PASSWORD are defined in dbtoctex.h
* %

-- DBSETLUSER (login, USER) ;

-- DBSETLPWD (login, PASSWORD) ;

-- DBSETLAPP(login, "dbfirst");

*/
ret = ct con props(conn, CS SET, CS USERNAME, USER, STRLEN(USER), NULL) ;
EXIT ON FAIL (context, ret, "Set connection username failed.");

ret = ct_con props (conn, CS SET, CS PASSWORD, PASSWORD, STRLEN (PASSWORD) ,h NULL) ;

EXIT ON FAIL(context, ret, "Set connection password failed.");

ret = ct con props(conn, CS SET, CS APPNAME, "ctfirst", STRLEN("ctfirst"),
NULL) ;

EXIT ON FAIL(context, ret, "Set connection application name failed.");

/*

** Step 3c.

** Call ct_connect() to open the connection. Unlike dbopen(), ct connect ()

** yses a connection structure which is already allocated.

* %

-- dbproc = dbopen(login, NULL) ;

-- if (dbproc == (DBPROCESS *) NULL)

- {

-- fprintf (ERR_CH, "Connect attempt failed. Exiting.\n");

-- dbexit () ;

-- exit (ERREXIT) ;

*/ }

ret = ct connect (conn, NULL, STRLEN(NULL)) ;

EXIT ON FAIL(context, ret, "Connection attempt failed.");

... deleted command code

/*

** Step 5.

** Close our connection. CS_UNUSED as the second ct close() parameter

** requests an "orderly" close. This means that we expect the connection to

** be idle. If we had issued a command to the server, but had not

** read all the results sent by the server, then the connection would

** not be idle and this call would fail.

* *

** If ct close() were to fail here, then the code in EXIT ON FAIL() would

** ct exit (CS_FORCE EXIT) to force all connections closed before exiting.

* %

-- dbclose (dbproc) ;

46 Open Client

CHAPTER 5 Converting DB-Library Application Code

*/
ret = ct _close(conn, CS_UNUSED) ;
EXIT ON FAIL(context, ret, "Orderly connection-close failed.");

ret = ct_con drop (conn) ;

EXIT ON_FAIL(context, ret, "ct con drop() failed.");

/*

** Clean up Client-Library.

** ct exit (context, CS_UNUSED) requests an "orderly" exit -- this

** call fails if we have open connections. If it fails, EXIT ON FAIL()

** calls ct exit(context, CS FORCE EXIT) to force cleanup of Client-Library.
*/

ret = ct_exit (context, CS_UNUSED) ;

EXIT ON FAIL(context, ret, "ct exit (CS_UNUSED) failed.");

/*

** Clean up CS-Library. cs_ctx drop() always fails if ct init ()

** succeeded on the context but ct exit() did not (or if ct_exit()

** was not called at all).

*/
(CS_VOID) cs_ctx drop (context) ;
context = (CS_CONTEXT *) NULL;

exit (NORMAL EXIT) ;

}

deleted error callback routine code

Error and message handlers

Most applications use callback routines to handle errors messages.

Client-Library providesin-line message handling as an alternative to callback
message handling. In-line message handling gives an application control over
when it handles messages. The ct_diag routine initializes in-line message
handling at the connection level.

Client-Library and CS-Library use structures to return error and message
information to message callback routines:

e TheCS _CLIENTMSG structure describes Client-Library and CS-Library
errors. The structure is passed to an application’s Client-Library or CS-
Library error handler. Most of the fields in this structure map directly to
DB-Library error handler parameters.

Client-Library Migration Guide 47

Error and message handlers

¢ TheCS_SERVERMSG structure describes server messages and is passed
to an application’s server message handler. Most of these fields map
directly to DB-Library message-handler parameters.

Sequenced messages

Replacing server

Client-Library handles large messages using a series of calls to the callback
message handler routine. A statusbitmask in the messageinformation structure
indicates whether the message text is an entire message or thefirst, middle, or
last chunk of asequenced message. Most server messages are small enough to
be handled with one invocation of the message callback. The exception is user-
defined messages rai sed with the Transact-SQL raiserror or print commands.
These can be longer than the 1024-byte text field in CS_SERVERMSG.

Unlike Client-Library, which puts amessage in afixed-length buffer
DB-Library provides a pointer to the message.

message handlers

Each DB-Library server message handler parameter mapsto afield in the
CS_SERVERMSG structure. In addition, CS_SERVERM SG includes four
fields that do not map to DB-Library message handler parameters. These
parameters represent the lengths, in bytes, of the message text, server name,
and procedure name, and a bitmask indicator used for sequenced message and
extended error message information.

Table 5-3: DB-Library message handler parameters vs.
CS_SERVERMSG fields

DB-Library message
handler parameters

Client-Library
CS_SERVERMSG

Description of parameter or field structure fields

severity The severity of the error message severity
msgno The identifying number of the error message msgnumber
msgstate The server error state associated with the server state
message
msgtxt The text of the server message text
(none) The length, in bytes, of text textlen
srvname The name of the server that generated the message svrname
(none) The length, in bytes, of sysrname svrnlen
48 Open Client

CHAPTER 5 Converting DB-Library Application Code

DB-Library message
handler parameters

Client-Library
CS_SERVERMSG

Description of parameter or field structure fields

prochame The name of the stored procedure that caused the proc
message, if any

(none) Thelength, in bytes, of proc proclen

line The number of the command batch or stored procedure line
ling, if any, that generated the message

(none) A bitmask indicator of whether msgstring containsan status
entire message or what part of a sequenced message it
contains

(none) A byte string containing the SQL statevalue associated sqlstate

with the error, if any

Server message handlers for DB-Library applications must return 0. Server
message handlersfor Client-Library applications must return CS_SUCCEED.
If aClient-Library server message handler returns any value other than

CS _SUCCEED, Client-Library marks the connection as “dead,” and it
becomes unusable. A return of any code but CS_SUCCEED marks the
connection dead from both the server and client message callbacks.

Seethe* Callbacks’ topics pagein the Open Client Client-Library/C Reference
Manual for an example server-message callback.

Replacing DB-Library error handlers

The DB-Library error handler (installed with dberrhandle) should be replaced
with aCS-Library error handler and a Client-Library client message handler
(installed with cs_config and ct_callback, respectively). The CS-Library
handler is called for errors occurring in CS-Library calls, and the Client-
Library handler is called for errors occurring in Client-Library calls.

Both the CS-Library and Client-Library handlerstake aCS _CLIENTMSG
structure. Each DB-Library error-handler parameter maps to afield in the
CS_CLIENTMSG structure.

In addition, CS_CLIENTMSG includes three fields that do not map to DB-
Library error handler parameters. For example, CS_CLIENTMSG provides
integer fields that specify the lengths, in bytes, of the message text and
operating system message text. Thesefields allow the use of character setsthat
do not support null terminators.

Client-Library Migration Guide 49

Error and message handlers

Table 5-4 shows the correspondence between DB-Library error handler

parameters and CS_CLIENTMSG fields:

Table 5-4: DB-Library error handler parameters vs. CS_CLIENTMSG

fields

DB-Library error
handler parameters

Description of parameter or field

Client-Library CS_CLIENTMSG
structure fields

severity The severity of the error severity
dberr The identifying number of the error msgnumber
dberrstr The printable message description string msgstring
(none) The length, in bytes, of msgstring msgstringlen
oserr The operating system-specific error number osnumber
oserrstr The printable operating system message osstring
description string
(none) The length, in bytes, of osstring osstringlen
(none) A bitmask indicator of whether msgstring status
contains an entire message or what part of a
sequenced message it contains
(none) A byte string containing the SQL statevalue sqlstate

associated with the error, if any

Error handler return values
Client-Library and DB-Library require different error handler return values:

50

e A DB-Library error handler can return:

e INT_EXIT — causes DB-Library to print an error message, abort the
program, and return an error indication to the operating system.

e INT_CANCEL — causes DB-Library to return FAIL from the DB-
Library routine that caused the error.

e INT_TIMEOUT —ontimeout errors, causes DB-Library to cancel the
server command batch that timed out; on all other errors
INT_TIMEOUT istreated as INT_EXIT.

¢ INT_CONTINUE-ontimeout errors, causes DB-Library towait one
timeout period and call the error handler again; on all other errors,
INT_CONTINUE istreated as INT_EXIT.

e A Client-Library message handler can return:

Open Client

CHAPTER 5 Converting DB-Library Application Code

e CS _SUCCEED - causes Client-Library to continue any current
processing on this connection; on timeout errors, wait one timeout
period and call the error handler again. CS_SUCCEED allowsthe
application to continue after errors. DB-Library has no equivalent to
this return code.

e CS FAIL —causesClient-Library to terminate any current processing
on this connection and mark the connection as dead. The application
must close and reopen the connection before using it again.

Note that error handler return values cannot directly cause Client-Library to
abort the program.

The behavior of INT_CONTINUE is built into CS_ SUCCEED.

In order to duplicate the behavior of INT_TIMEOUT, a Client-Library
application must call ct_cancel(CS_CANCEL_ATTN) from the callback
routine.

The error and severity codes for DB-Library errors do not map directly to
Client-Library and CS-Library error and severity codes.

For more information:

« Seethe Open Client and Open Server Common Libraries Reference
Manual for information on coding a CS-Library error handler.

« Seethe“Callbacks’ topics page in the Open Client Client-Library/C
Reference Manual for information on coding a Client-Library message
handler.

e Seethe“CS_CLIENTMSG Structure” topics page in the Open Client
Client-Library/C Reference Manual for information on Client-Library
error numbers.

Code that sends commands

In Client-Library, CS_ COMMAND isthe control structure for sending
commands to a server and processing results. Multiple command structures
may be allocated from a single connection structure.

DB-Library applications can send the following types of commands:

Client-Library Migration Guide 51

Code that sends commands

¢ Language commands— define a batch of one or more SQL statements and
send it to the server to be compiled and executed. See “ Sending language
commands’ on page 52.

¢ Remote procedure call (RPC) commands —invoke an Adaptive Server
Enterprise stored procedure or Open Server registered procedure, passing
parametersin their declared datatypes. See* Sending RPC commands’ on

page 54.

e TDS passthrough calls — used by Open Server gateways, read and write
raw TDS packets. See “ TDS passthrough” on page 59.

There are other Client-Library command types that have no DB-Library
equivalents. Chapter 5, “ Choosing Command Types,” in the Open Client
Client-Library/C Programmers Guide summarizes the Client-Library

command types.

Sending language commands

A language command definesabatch of one or more SQL statements and sends
it to the server to be compiled and executed.

Table 5-5 compares the DB-Library routines used for sending language
commands with their Client-Library equivalents:

Table 5-5: DB-Library vs. Client-Library—sending language commands

DB-Library Client-Library
DB-Library routines functionality routines Client-Library functionality
(none) (none) ct_cmd_alloc(AllocateaCS_COMMAND
connection, structure.
cmd_pointer) '
dbfcmd(dbproc, Format text and add to sprintf(cmd_string, Format text and initialize the
string, args...) the DBPROCESS control_string, language command string using

command buffer. Thereis
a 1k buffer limit for DB-

args...)

sprintf, strcpy, or other system
cals.

Library.
dbcmd(dbproc, Add text to the ct_command(cmd, Initiate alanguage command
string) DBPROCESS command CS_LANG_CMD, using cmd_string, with more
buff cmd_string, d text to foll
er. string_len. command text to follow.
CS_MORE)
(none) ct_command(cmd, Add cmd_string as the final

52

CS_LANG_CMD,
cmd_string,
string_len, CS_END)

piece of command text for this
command.

Open Client

CHAPTER 5 Converting DB-Library Application Code

DB-Library Client-Library
DB-Library routines functionality routines Client-Library functionality
dbsqlexec(dbproc) Send acommand batchto ct_send(cmd) Send a command batch to the
the server for execution. server for execution.

Client-Library enhancements
Client-Library offers the following enhancements for language commands:

« Language commands can contain host language parameters (identified by
undeclared variables such as “ @param” in the command text). Between
thelast ct_command call and the ct_send call, the application specifiesa
value for each host language parameter by calling ct_param or
ct_setparam.

e InClient-Library, language commands are resendable. Immediately after
processing the results of the previous execution, the application can call
ct_send to resend the same command. The definition of the language
command and its parameters remains associated with the command
structure until the application calls ct_command, ct_cursor, ct_dynamic, or
ct_sendpassthru to initiate a new command on the same command
structure.

Example: Sending a Client-Library language command

The following code fragment illustrates sending a Client-Library language
command. This fragment is from the ex01ct.c migration sample program:

CS_CONNECTION *conn;
CS_COMMAND *cmd;

connection has been opened ...

/*

** Allocate a command structure.

*/

ret = ct_cmd alloc(conn, &cmd) ;

EXIT ON_FAIL(context, ret, "Could not allocate command structure."); /*
-- dbcmd (dbproc, "select name, type, id, crdate from sysobjects");

-- dbcmd (dbproc, " where type = 'S’ ");

-- dbcmd (dbproc, "select name, type, id, crdate from sysobjects") ;
-- dbcmd (dbproc, " where type = ‘P’ ");

*/

/*

** Build up a language command. ct command() constructs language,

Client-Library Migration Guide 53

Code that sends commands

** RPC, and some other server commands.

* %

** Note that the application manages the language buffer: You
** must format the language string with stdlib calls before
** passing it to ct_command() .

*/

strcpy(sgl string, "select name, type, id, crdate from sysobjects");
strcat (sgl string, " where type = 'S’ ");

strcat (sgl string, "select name, type, 1id, crdate from sysobjects");
strcat (sgl string, " where type = ’'P’ ");

ret = ct_command(cmd, CS_LANG CMD, (CS_VOID *) sqgl_string,
CS_NULLTERM, CS_UNUSED) ;

EXIT ON FAIL(context, ret, "Init language command failed."); /*

-- * Send the commands to Adaptive Server Enterprise and start execution.

-- dbsglexec (dbproc) ;

*/

/ *

** Send the command. Unlike dbsglexec(), ct_send() returns as

** goon as the command has been sent. It does not wait for

** the results from the first statement to arrive.

*/

ret = ct_send(cmd) ;

EXIT ON_FAIL(context, ret, "Send language command failed.");
deleted results processing code

Sending RPC commands

An RPC command invokes an Adaptive Server Enterprise stored procedure or

an Open Server registered procedure, passing parameters in their declared
datatypes.

Table 5-6 compares the Client-Library and DB-Library call sequencesto
define and send an RPC command:

Table 5-6: DB-Library vs. Client-Library—sending RPC commands

DB-Library Client-Library Client-Library
routines DB-Library functionality routines functionality
(none) (none) ct_cmd_alloc(Allocate a
connection, CS_COMMAND structure.
cmd_pointer)
54 Open Client

CHAPTER 5 Converting DB-Library Application Code

DB-Library Client-Library Client-Library
routines DB-Library functionality routines functionality
dbrpcinit(dbproc, Initialize an RPC. ct_command(cmd, Initiate an RPC command.
rpc_name, . CS_RPC_CMD, .
option) option can be rpc_name, buflen, option can be
DBRPCRECOMPILE or 0. option) CS_RECOMPILE,
CS NO_RECOMPILE, or
CS _UNUSED. A valueof 0
in the DB-Library program
maps to CS_UNUSED or
CS NO_RECOMPILE.
dbrpcparam(Add a parameter to an RPC. ct_param Define an RPC parameter.
dbproc, or
paramname,

status, type,
maxlen, datalen,
data)

ct_setparam(cmd,
datafmt, data,
datalen, indicator)

dbrpcsend(
dbproc)

Send an RPC call to the server
for execution.

ct_send(cmd)

Send a command to the
server for execution.

The use of ct_param for RPC commandsis very similar to the use of
dbrpcparam. Most of dbrpcparam’s parameters map to fieldsin the
CS DATAFMT structure that is passed as ct_param’s datafmt parameter.

» dbrpcparam’s paramname, status, type, and maxlen parameters map to
fieldsin the CS_ DATAFMT structure taken asct_param’s datafmt

parameter.

e A dbrpcparam call specifies anull value by passing datalen as 0.
A ct_param call specifies a null value by passing indicator as-1.

Client-Library enhancements

Unlike DB-Library, Client-Library allows applications to resend RPC
commands. The application can resend the RPC command simply by calling
ct_send after processing the results of the previous execution. The definition of
the RPC command and its parameters remains associated with the command
structure until the application calls ct_command, ct_cursor, ct_dynamic, or
ct_sendpassthru to initiate a new command on the same command structure.

Example: sending an RPC command

Thefollowing code fragment illustrates sending an RPC command with Client-
Library. Thefragment invokes an Adaptive Server Enterprise stored procedure

rpctest:

Client-Library Migration Guide

55

Code that sends commands

create procedure rpctest

(@paraml
@paramz2
@param3

@param4 int)

as

begin
select
select
select
select
select
return

end

CS_CONNECTION

int out,
int out,
int out,

"rpctest is running."

@paraml
@param?2
@param3
@paraml
123

= 11
= 22
= 33

Thefollowing codeinvokesrpctest from aClient-Library client. Thisfragment
is from the ex08ct.c migration sample program.

*conn;

CS_COMMAND *cmd;

connection has been opened

/*

** Allocate a command structure.

*/

ret = ct_cmd alloc(conn, &cmd) ;

EXIT ON FAIL(context, ret, "Could not allocate command structure."); /*
-- * Make the rpc. *

-- if (dbrpcinit (dbproc, "rpctest", (DBSMALLINT)O0) == FAIL)

-

-- printf ("dbrpcinit failed.\n");

-- dbexit () ;

-- exit (ERREXIT) ;

-~}
/ /

** Initiate an RPC command. In Client-Library ct command is used for
** language commands

** RPC commands

** (dbwritetext) .

*/

(dbsglexec or dbsglsend commands in DB-Library),

(dbrpcinit), and text/image "send-data" commands

ret = ct_command(cmd, CS_RPC_CMD, "rpctest", CS_NULLTERM, CS_UNUSED);
EXIT ON FAIL(context,
** Pass a value for each RPC parameter with ct_param. In this case,

** the required RPC parameters are the parameters in the definition of
** the rpctest stored procedure.

56

ret, "Could not initiate RPC command."); /*

Open Client

CHAPTER 5 Converting DB-Library Application Code

** The parameter’s name, datatype, and status (input-only or output)
** are passed within a CS DATAFMT structure.

/ /

-- if (dbrpcparam

-- (dbproc, "@paraml", (BYTE)DBRPCRETURN,
-- SYBINT4, -1, -1, ¶ml)

-- == FAIL)

-- printf ("dbrpcparam failed.\n") ;
-- dbexit () ;
-- exit (ERREXIT) ;
/ }/
** @paraml is integer (CS INT) and is a return parameter.
** The datafmt.status field must be set to indicate whether
** each parameter is ’'for output’ (CS_RETURN) or not
** (CS_INPUTVALUE)
*/ datafmt.datatype = CS_INT_TYPE;
datafmt.maxlength = CS_UNUSED;
datafmt.status = CS_RETURN;
strcpy (datafmt .name, "@paraml") ;
datafmt.namelen = strlen(datafmt.name); ret = ct param(cmd, &datafmt,
(CS_VOID *) (paramvals+1),
CS_UNUSED, 0);
EXIT ON_FAIL(context, ret, "ct param() for @paraml failed."); /*
-- if (dbrpcparam(dbproc, "@param2", (BYTE)O, SYBINT4,
-- -1, -1, ¶m2)
-- == FAIL)

-- printf ("dbrpcparam failed.\n");
-- dbexit () ;
-- exit (ERREXIT) ;
-}
/ /
** @param2 is integer (CS_INT) and is not a return parameter.
*/
datafmt.datatype = CS INT TYPE;
datafmt.maxlength = CS_UNUSED;
datafmt.status = CS INPUTVALUE;
strcpy (datafmt.name, "@param2") ;
datafmt.namelen = strlen(datafmt.name); ret = ct param(cmd, &datafmt,
(CS_VOID *) (paramvals+2),
CS_UNUSED, 0) ;
EXIT ON_FAIL(context, ret, "ct param() for @param2 failed."); /*
-- if (dbrpcparam

Client-Library Migration Guide 57

Code that sends commands

-- (dbproc, "@param3", (BYTE)DBRPCRETURN, SYBINT4,
-- -1, -1, ¶m3)
-- == FAIL)

-

-- printf ("dbrpcparam failed.\n") ;

__ dbexit () ;

__ exit (ERREXIT) ;
)

/ /

** @param3 is integer (CS_INT)

*/

and is a return parameter.

datafmt.datatype = CS_INT TYPE;

datafmt.maxlength =

CS_UNUSED;

datafmt.status = CS_RETURN;

strcpy (datafmt .name,

(CS_VOID ¥*)

"@param3") ;
datafmt.namelen = strlen(datafmt.name) ;
(paramvals+3),

ret = ct param(cmd, &datafmt,

CS_UNUSED, 0);

EXIT ON FAIL(context,
(dbrpcparam (dbproc,
- _1,

-- if

== FAIL)

ret,

"ct_param() for @param3 failed."); /*
"@param4", (BYTE)O, SYBINT4,

-1, ¶m4)

-- printf ("dbrpcparam failed.\n") ;

__ dbexit () ;

- exit (ERREXIT) ;
)

/ /

** @param4 is integer

*/

(CS_INT) and is not a return parameter.

datafmt.datatype = CS INT TYPE;

datafmt.maxlength =

CS_UNUSED;

datafmt.status = CS_ INPUTVALUE;

strcpy (datafmt .name,

(CS_VOID ¥*)

"@param4") ;
datafmt.namelen = strlen(datafmt.name) ;
(paramvals+4) ,

ret = ct_param(cmd, &datafmt,

CS_UNUSED, 0);

EXIT ON FAIL(context,
(dbrpcsend (dbproc)

-- if

-

ret,

"ct_param() for @param4 failed."); /*

== FAIL)

-- printf ("dbrpcsend failed.\n");

- dbexit () ;

- exit (ERREXIT) ;
)

/ /

58

Open Client

CHAPTER 5 Converting DB-Library Application Code

** Send the command to the server. The ct_send routine sends
** any kind of command, not just RPC commands.

*/

ret = ct_send(cmd) ;

EXIT ON_FAIL(context, ret, "ct send() failed.");

. deleted results processing code ...

TDS passthrough

Tabular Data Stream (TDS) transfer routines are useful in gateway
applications. The DB-Library routines, dorecvpassthru and dbsendpassthru,
map directly to the Client-Library routines ct_recvpassthru and
ct_sendpassthru. The Client-Library routinesuseaCS_COMMAND structure
while the DB-Library routines use a DBPROCESS structure.

Code that processes results

This section describes how DB-Library results processing logic mapsto
Client-Library results processing logic.

Program structure for results processing

Table 5-7 showstheloop structure for processing the types of resultsthat might
be seen in aDB-Library program. Table 5-8 on page 60 shows the equivalent
Client-Library program logic.

Table 5-7: DB-Library results loop structure

Loop control while ((results_ret = dbresults(dbproc)) !=
NO_MORE_RESULTS)

{

if (results_ret == SUCCEED)

{

Client-Library Migration Guide 59

Code that processes results

Retrieve regular and compute
rows

Bind regular rows.
Bind compute rows.

while

{

(dbnextrow (dbproc)
!= NO_MORE_ROWS)

Retrieve regular and compute rows.
} /* while */

Retrieve return parameter
values

(dbnumrets (dbproc) > 0)

Retrieve output parameter values.

Retrieve return status values

(dbhasretstatus (dbproc))

Retrieve stored procedure return status.

(optional) Get statistics

(DBROWS (dbproc) != -1)

Find out number of rows affected.

Command error checking
(server-side or client-side)

} /* if results ret == SUCCEED */
else if (results_ret == FAIL)
{

printf ("Command failed");

}

} /* while */

Table 5-8 showstheresults-loop structurefor atypical Client-Library program:

Table 5-8: Client-Library results loop structure

Loop control

while

((results_ret = ct_results(cmd,

== CS_SUCCEED)

switch(result_ type)

{

&result_type))

Retrieve regular and compute
rows

60

case CS_ROW RESULT:

Bind regular rows.
Fetch regular rows.

break;

case CS_COMPUTE_RESULT:

Bind compute rows.
Fetch compute rows.

break;

Open Client

CHAPTER 5 Converting DB-Library Application Code

Retrieve return parameter
values

case CS_PARAM RESULT:
Bind output parameter values.
Fetch output parameter values.
break;

Retrieve return status values

case CS_STATUS RESULT:
Bind stored procedure return status.
Fetch stored procedure return status.
break;

(optional) Get statistics

case CS_CMD_DONE:
Find out number of rows affected.
break;

Command error checking
(server-side)

case CS_CMD_FAIL:
printf ("Command failed on server.")
break;

case CS_CMD_SUCCEED:
break;

Command error checking
(client-side)

default: /* case */
printf ("Unexpected result type");
break;

} /* end switch */
} /* end while */
(results_ret != CS_END RESULTS
&& results_ret != CS_CANCELED)
printf ("ERROR: ct_results failed!");

Comparing dbresults and ct_results return codes

DB-Library’s dbresults can return SUCCEED, FAIL, or
NO_MORE_RESULTS:

Client-Library Migration Guide

SUCCEED indicatesthat acommand executed successfully and that there
may be data for the application to retrieve.

FAIL usually indicates that the command failed on the server, but it can
also indicate a network or internal DB-Library error. Further, when a
command fails on the server, dbresults returns FAIL, but datafrom
subsequent commands may still be available.

NO_MORE_RESULTS indicates that no more results are available for
processing. A typical application calls dbresults in aloop until it returns
NO_MORE_RESULTS. Within the loop, the application checks for
dbresults return codes of SUCCEED or FAIL.

61

Code that processes results

In Client-Library, a synchronous-mode ct_results call can return
CS _SUCCEED, CS FAIL,CS CANCELED, or CS END_RESULTS. (For
an asynchronous call, the completion status will be one of these values.)

¢ CS _SUCCEED indicatesthat thect_results routine succeeded. It indicates
nothing about the results of the command.

e CS FAIL indicatesthat the ct_results routine failed. It always indicates
either a serious network or client-side error. No result datais available
after ct_results returns CS_FAIL.

e CS END_RESULTSisidentical in meaning to dbresults’
NO_MORE_RESULTS.

¢ CS _CANCELED means that results were canceled with
ct_cancel(CS_CANCEL_ATTN) or ct_cancel(CS_CANCEL_ALL).

ct_results indicates server-side error or success by means of itsresult_type
output parameter:

e Aresult typeof CS CMD_FAIL indicates that acommand failed on the
server. DB-Library indicates this by returning FAIL from dbsglexec,
dbsglok, or dbresults (whichever is active when the server reports the
error).

¢ Aresult typeof CS CMD_SUCCEED indicates that a data-modification
(create, update, insert, and so forth) or an exec command executed
successfully. For example, after a successful delete language command,
the application receives aresult_type value of CS CMD_SUCCEED.

Handling command-processing errors

The following examples demonstrate how command-processing errors are
handled differently by DB-Library and Client-Library:

e The application sends a language command that contains a syntax error:

In DB-Library, dbsglexec or dbsglok (whichever was called) invokes the
application’s server message handler to forward the error reported by the
server. dbsglexec or dbsglok returns FAIL. No datais returned, and acall
to dbresults returns NO_MORE_RESULTS.

In Client-Library, ct_results forwards the error reported by the server by
calling the application’s server message handler. ct_results returns
CS_SUCCEED, but with result_type set to CS CMD_FAIL. The
application must process the rest of the results with ct_results or cancel
them with ct_cancel.

62 Open Client

CHAPTER 5 Converting DB-Library Application Code

The second statement in alanguage batch of four statements selects an
object, but the user lacks select permission for the object:

In DB-Library, dbresults forwards the permissions violation reported by
the server by calling the application’s server message handler. dbresults
returns FAIL. Results from the rest of the commands in the batch are
available, and the application must retrieve them with dbresults or cancel
them with dbcancel.

In Client-Library, ct_results forwards the permissions violation reported
by the server by calling the application’s server message handler. ct_results
returns CS_SUCCEED, but with result_type set to CS CMD_FAIL. The
application must process the rest of the results with ct_results or cancel
them with ct_cancel.

Comparing ct_results’ result_type to DB-Library program logic

In Client-Library, ct_results takes apointer argument to aresult_type indicator.
In addition to indicating command status (CS_CMD_SUCCEED and

CS CMD_FAIL), result_typeindicates whether results are available and what
type of results they represent.

Table 5-9 lists the possible values of result_type and compares them to the
equivalent DB-Library program logic. Seethe ct_results reference page in the
Open Client Client-Library/C Reference Manual:

Table 5-9: ct_results’ result_type parameter vs. DB-Library program
logic

Client-Library result_type

Indicates DB-Library program logic

CS CMD_DONE

Theresultsof alogical command None. Thereceipt of CS_ CMD_DONE

have been completely processed. by the Client-Library program is
equivalent to the end of one iteration of
the DB-Library dbresults loop.

CS CMD_FAIL The server encountered an error Active routine (dbsglexec, dbsglok, or
while executing a command. dbresults) returns FAIL.

CS CMD_SUCCEED The successof acommandthat dbresults returns SUCCEED.
returns no data, such asa DBCMDROW returns FAIL to indicate

Client-Library Migration Guide

language command containinga that the command could not return rows.
Transact-SQL insert statement.

63

Code that processes results

Client-Library result_type

Indicates

DB-Library program logic

CS COMPUTE_RESULT

Compute row resullts.

Calls DBROWS to determine if rows are
returned. Thereis no equivalent call or
macro for DBROWS in Client-Library.

Calls dbnumcompute to determine if
compute rows will be returned.

In the dbnextrow loop, dbnextrow returns
> 0 when a compute row is retrieved.

CS PARAM_RESULT

Return parameter results.

After dbnextrow returns
NO_MORE_ROWS, checks whether
dbnumrets returns > 0.

CS ROW_RESULT

Regular row results.

DBCMDROW returns TRUE if the current
command can return rows.

dbnextrow returns REG_ROW after each
regular row isretrieved.

CS_STATUS RESULT

Stored procedure return status
results.

After dbnextrow returns
NO_MORE_ROWS, checksiif
dbhasretstat returns TRUE.

CS_CURSOR_RESULT

Cursor row results.

None. DB-Library does not support
server-based cursors.

CS COMPUTEFMT_RESULT

» Compute row format
information.

» Format results are seen only
when the
CS_EXPOSE_FORMATS
property is enabled.

None.

CS ROWFMT_RESULT

¢ Regular row format
information.

» Format results are seen only
when the
CS_EXPOSE_FORMATS
property is enabled.

None.

CS MSG_RESULT

Arrival of aClient-Library
message result set.

None. DB-Library does not support
message commands and results.

CS DESCRIBE_RESULT

Dynamic SQL descriptive
information.

None. DB-Library does not support
dynamic SQL.

64

Open Client

CHAPTER 5 Converting DB-Library Application Code

Retrieving data values

Client-Library applications retrieve data using a bind/fetch model that is very
similar to DB-Library’sdbbind/dbnextrow model. The main difference between
thetwo isthat in Client-Library, more types of result data are fetchable. Data
values for al the result following types can be retrieved using ct_bind and
ct_fetch:

Regular rows (also fetchable in DB-Library)
e Compute rows (also fetchable in DB-Library)
e Output parameter values

e Stored procedure return status values

Note InDB-Library, retrieval of output parameter val ues and return status
valuesisoptional. A Client-Library application must retrieve or cancel all
fetchable results sent by the server, including output parameter values and
return status values.

ct_bind versus dbbind
DB-Library provides four similar bind routines:
* dbbind —binds regular row columns

* dbbind_ps (version 10.0 and later) — same as dbbind but provides precision
and scale support for decimal and numeric datatypes

e dbaltbind — binds compute row columns

* dbaltbind_ps (version 10.0 and | ater) — same as dbaltbind_ps but provides
precision and scale support for decimal and numeric datatypes

If you understand how dbbind_ps usage mapsto ct_bind usage, you will be able
to convert any other DB-Library bind routine call to an equivalent ct_bind call.
dbbind_ps is an enhancement of dbbind. It takes as an additional parameter a
DBTY PEINFO structure to convey precision and scale information about
numeric and decimal datatypes. For datatypes other than numeric and decimal,
the additional parameter isignored, and dbbind_ps is equivalent to dbbind.

Table 5-10 compares dbbind_ps parameters to ct_bind parameters:

Client-Library Migration Guide 65

Code that processes results

Table 5-10: dbbind_ps parameters vs. ct_bind parameters

dbbind_ps
parameter Parameter description ct_bind parameter Parameter description
dbproc A pointer to the cmd A pointer to the
DBPROCESS structure for CS_COMMAND structure.
this connection.
column An integer representing the item An integer representing the
number of the column to number of the column to
bind. bind.
datafmt A pointer to the
CS _DATAFMT structure
that describes the
destination variable.
vartype A symbolic value datafmt—datatype datatype isasymbol
corresponding to the (CS xxx_TYPE)
datatype of the program representing the datatype of
variablethat will receivethe the destination variable.
copy of thedatafromthe gatafmt—format format is a symbol
DBPROCESS. describing the destination
format of character or binary
data.
varlen The length of the program datafmt—maxlength The length of the buffer

variable in bytes.

destination variablein bytes.

typeinfo—precision

typeinfo isapointer to a
DBTY PEINFO structure,
which contains information

datafmt—precision

Theprecisionand scaletobe
used for the destination
variable. If thesourcedatais

typeinfo—scale about theprecisionand scale datafmt—scale the same type as the
of decimal or numeric data. destination, then scale and
typeinfo of NULL is precision can besetto.
equivalent to calling dbbind. CS_SRC_VALUE to pick
up thevaluefrom the source
data
(none) datafmt—count The number of rowsto copy
to program variables per
ct_fetch call. (Setto 1if not
binding to arrays.)
varaddr The address of the program buffer The address of an array of
variable to which thedatais datafmt—count variables,
to be copied. each of whichis of size
datafmt—maxiength.
66

Open Client

CHAPTER 5 Converting DB-Library Application Code

dbbind_ps
parameter Parameter description ct_bind parameter Parameter description
(none) copied The address of an array of
datafmt—count integer
variables, to befilled at fetch
time with the lengths of the
copied data (optional).
(none—the routines indicator The address of an array of
dbnullbind and datafmt—count
dbanullbind bind CS_SMALLINT variables,
indicator variables) to befilled at fetch timeto
indicate certain conditions
about the fetched data.
The mapping of DB-Library vartype valuesto Client-Library CS DATAFMT
datatype and format valuesis straightforward for all of the fixed-length
datatypes.
For character and binary types, the mapping is shownin Table 5-11:
Table 5-11: DB-Library vartype vs. CS_DATAFMT datatype and format
fields
Program
variable type DB-Library vartype CS_DATAFMT—datatype = CS_DATAFMT—format
DBCHAR CHARBIND CS CHAR_TYPE CS FMT_PADBLANK
DBCHAR STRINGBIND CS CHAR_TYPE CS_FMT_NULLTERM
DBCHAR NTBSTRINGBIND CS CHAR_TYPE CS_FMT_NULLTERM
Note Client-Library doesnot
trim trailing blanks.
DBVARYCHAR VARY CHARBIND CS VARCHAR_TYPE CS FMT_UNUSED
DBBINARY BINARYBIND CS BINARY_TYPE CS FMT_PADNULL
DBVARYBIN VARYBINBIND CS_VARBINARY_TYPE CS_ FMT_UNUSED

With dbbind, passing NTBSTRINGBIND for vartype causes DB-Library to
trim trailing blanks from the destination string. Client-Library lacks a format
option to strip trailing blanks.

For Adaptive Server Enterprise column data, only values that originate as a
fixed-length char column will have trailing blanks to begin with, because
Adaptive Server Enterprise trims trailing blanks from varchar columns on
entry.

Client-Library Migration Guide 67

Code that processes results

If aDB-Library application relieson NTBSTRINGBIND behavior, the Client-
Library version of the application must trim any trailing blanks itself.

ct_get data versus dbdata

Client-Library offers no direct equivalents for DB-Library’s dbdata or for the
similar routines dbadata, dbretdata, and dbretstatus. All of these routinesreturn
apointer to a buffer that contains adata value.

Client-Library does allow applicationsto retrieve datavalues with ct_get_data
as an alternative to binding. Applications typically use ct_get_data to retrieve
large text or image columns, but it can be used on data of any type.

ct_get_data copiesall or part of adatavalueinto acaller-supplied buffer. A call
to ct_get_data can replace acall to dbdata, dbadata, dbretdata, or dbretstatus.
However, ct_get_data has the following restrictions:

e ct_get_data requires that the application pre-allocate a buffer for the data.

e Anapplication can only use ct_get_data on result items past the last item
that was bound with ct_bind. For example, if result item numbers 1, 3, and
4 are bound, then it isan error to call ct_get_data for item numbers 1
through 4.

e With dbretdata and dbretstatus, the application did not have to fetch
parameter values or return status values. With Client-Library, ct_fetch
must be called before return parameter values or return status values can
be retrieved with ct_get_data.

e For each cal to ct_fetch that returns CS_SUCCEED, the application can
only retrieve adataitem with ct_get_data once.

The following code fragment illustrates act_get_data call that retrieves a
CS_INT dataitem:

CS_INT status;
. after ct fetch() has returned CS_SUCCEED ...
ret = ct get data(cmd, 1, (CS_VOID *)status,
CS_SIZEOF(CS_INT), (CS_INT *) NULL) ;
if (ret != CS_END ITEM && ret != CS_END DATA)

{
}
else

{
}

printf ("Error: ct_get data failed.\n");

printf (“*Status is %1d.\n”, (long) status);

68 Open Client

CHAPTER 5 Converting DB-Library Application Code

Aswith dbdata, data retrieved with ct_get_data must be converted if the value
is not already expressed in the desired datatype. A Client-Library application
can call the CS-Library routine cs_convert to convert data.

Getting descriptions of result data

Applications need to determine the number of itemsin aresult set and the
format of each item before they can bind items and fetch rows.

Applications that process the results of known queries have thisinformation
already, but applications that process the results of ad hoc queries do not.

To handle the results of an ad hoc query, the application must:
e Determine the number of result columns.

« Determine the name, datatype, length, and so forth of each column.

Obtaining the number of items in a result set

In DB-Library, an application calls different routines to obtain the number of
itemsin aresult set, depending on the type of results being retrieved.

In Client-Library, whenever the ct_results result_type parameter indicates
fetchable data, the application can retrieve the number of dataitems by calling
ct_res_info(CS_NUMDATA).

Table 5-12 lists DB-Library routines that ct_res_info(CS_NUMDATA)
replaces:

Table 5-12: DB-Library routines that convert to
ct_res_info(CS_NUMDATA)

Routine Description

dbnumalts Returns the number of columnsin acompute row

dbnumcols Determinesthe number of regular columnsfor the current
set of results

dbnumrets Determines the number of return parameter values
generated by a stored procedure

Obtaining Format Descriptions for Individual Iltems
A DB-Library application calls several routines to get a description of a data
item.

A Client-Library application calls ct_describe oncetoinitiaize a
CS DATAFMT structure that completely describes any data value.

Client-Library Migration Guide 69

Code that processes results

Table 5-13 lists DB-Library routines that ct_describe replaces:

Table 5-13: DB-Library data description routines vs. CS_DATAFMT
fields

DB-Library routine

CS_DATAFMT field
Value returned (set by ct_describe)

dbaltlen

The maximum length of datafor aparticular compute maxlength
column

dbcollen The maximum length of datafor aparticular regular ~ maxlength
result column
dbretlen The length of a stored procedure return parameter maxlength
vaue
dbalttype The datatype of acompute column datatype
dbcoltype The datatype of aregular result column datatype
dbrettype The datatype of a stored procedure return parameter datatype
vaue
dbaltutype The user-defined datatype for a compute column usertype
dbcolutype The user-defined datatype for aregular result column usertype
dbcolname The name of aregular result column name
dbretname The name of a stored procedure parameter for a name
particular return parameter value
dbdatlen The actual length of aregular result column value None. Thisinformationis
dbadlen The actual length of a compute column value returned using ct_bind’s
dbretlen The actual length of areturn parameter value copied para!’neter or
ct_get_data’soutlen
parameter.

Obtaining Results Statistics

DB-Library providesroutines, such as DBCURCMD and DBCOUNT, that allow
applications to get results statistics.

Most of these DB-Library routines map directly to the Client-Library routine
ct_res_info.

Obtaining the Command Number (DBCURCMD)

70

DB-Library’s DBCURCMD returns the number of the current logical command.

In Client-Library, ct_res_info(CS_CMD_NUMBER) returns the number of the
current logical command.

Open Client

CHAPTER 5 Converting DB-Library Application Code

The following Client-Library code fragment demonstrates the use of
ct_res_info to get the current command number:

CS_INT cur_ cmdnum;

ret = ct _res info(cmd, CS_CMD NUMBER, &cur_cmdnum,
CS_UNUSED, NULL) ;
EXIT ON_FAIL(context, ret,
"ct_res info(CMD NUMBER) failed.");

Obtaining the Number of Rows Affected

DB-Library’s DBCOUNT returns the number of rows affected by the current
server command. DBCOUNT is called in the dbresults loop, after all rows are
retrieved (if any).

InClient-Library, ct_res_info(CS_ROW_COUNT) returns the number of rows
affected by the current server command. Aswith DBCOUNT, the ct_res_info
gives arow count of -1 when the command is one that never affects rows.

Thefollowing fragment demonstrates the use of ct_res_info to get arow count.
Thisfragment executesin the ct_results loop, under the case where result_type
isCS_CMD_DONE:

CS_INT rowcount;

ret = ct_res_info(cmd, CS_ROW_COUNT, (CS_VOID *)&rowcount,
CS_UNUSED, NULL) ;
EXIT ON FAIL(context, ret, "ct res info(CS _ROW COUNT) failed.");
if (rowcount != -1)
printf (“(%1d rows affected)\n”, rowcount) ;

DBCOUNT and ct_res_info(CS_ROW_COUNT) are nearly equivalent, both
returning the number of rows affected by the current command. Thereis one
important difference in behavior when the current command is one that
executes a stored procedure:

e DBCOUNT returnsthe number of rows affected by thelast select statement
executed by the stored procedure.

For example, if the last two statements executed by the procedure are
select and update statements, DBCOUNT returns the number of rows
affected by the select, not by the update.

e ct_res_info(CS_ROW_COUNT) returns the number of rows affected by
the last statement that could affect rows executed by the stored procedure.

Client-Library Migration Guide 71

Code that processes results

For example, if the last two statements executed by the procedure are a
select statement and an update statement, ct_res_info(CS_ROW_COUNT)
returns the number of rows affected by the update.

If your DB-Library application depends logically on DBCOUNT’s behavior
after executing a stored procedure, then you must change the program logic
when converting the application to Client-Library.

Obtaining the number of the current row

DB-Library’s DBCURROW macro returns the current row of aregular row
result set. An application can call DBCURROW to get an intermediate row
count while processing rows.

Client-Library has no routine to replace calls to DBCURROW. However, you
can add application code that increments a counter for each fetched row. See
the entry for DBCURROW in Table A-1 on page 97.

Canceling results

DB-Library programs cancel queries and discard results with docanquery and
dbcancel.

In Client-Library, ct_cancel takes atype parameter that allows three different
types of cancel operations.

Table 5-14 compares DB-Library and Client-Library cancel operations.
Table 5-14: DB-Library vs. Client-Library—canceling results

DB-Library DB-Library Client-Library
routines functionality Client-Library routines functionality
dbcancel(dbproc) Cancel the current ct_cancel(connection, cmd, Cancel the current
command batch and CS_CANCEL_ALL) command and discard any
discard any results or results generated by the
generated by the command.
command batch. ct_cancel(connection, cmd, Cancel the current
CS_CANCEL_ATTN) command and discard any
results when the
application next readsfrom
the server (used inside
callback functions).

72 Open Client

CHAPTER 5 Converting DB-Library Application Code

DB-Library DB-Library Client-Library

routines functionality Client-Library routines functionality
dbcanquery(Discard any rows ct_cancel(connection, cmd, Discard the current result
dbproc) pending from the most CS_CANCEL_CURRENT) et

recently executed
query. While dbcancel
cancels al commands
on agiven dbproc,
dbcanquery cancel only
the one being
processed.

CS_CANCEL_ATTN

CS_CANCEL_ALL

Thereisoneimportant difference between the scope of dbcancel and ct_cancel:
» dbcancel affects the current command batch on a single DBPROCESS.

e ct_cancel (CS_ CANCEL_ALL or CS CANCEL_ATTN) can beinvoked
at the command or connection level. If it is used at the connection level,
the cancel operation appliesto all command structures within that
connection.

Client-Library must read from the result stream in order to discard results, and
it is not always safe to read from the result stream. CS_CANCEL_ATTN
causes Client-Library to wait until the application attempts to read from the
server before discarding the results.

Use CS_CANCEL_ATTN from within callbacks or interrupt handlers. In an
asynchronous-mode application, use CS_CANCEL_ATTN when completion
of an asynchronous call is pending.

Use CS CANCEL_ALL inall main-line code. In an asynchronous-mode
application, do not use CS_ CANCEL_ALL when completion of an
asynchronous call is pending.

CS_CANCEL_CURRENT

CS CANCEL_CURRENT maps directly to dbcanquery.
CS CANCEL_CURRENT isequivalent to calling ct_fetch until it returns
CS_END_DATA.

Client-Library Migration Guide 73

Code that processes results

CS_CANCEL_CURRENT wiill:
e Discard the current result set
¢ Clear all bindings between the result items and program variables

« Leavethenext result set (if any) available, and leave the current command
unaffected

Note Using CS CANCEL_ALL or CS CANCEL_ATTN will causea
connection’s open cursors to enter an undefined state. It is preferable to
close a cursor rather than cancel a cursor open command.

CS CANCEL_CURRENT is safe to use on a connection with open
CUrsors.

74 Open Client

CHAPTER 6

Advanced Topics

This chapter contains information on more advanced Client-Library
features.

This chapter covers the following topics:

Topic Page
Client-Library’s array binding 75
Client-Library cursors 76
Asynchronous programming 83
Bulk copy interface 87
Text/Image interface 88
Localization 7

Client-Library’s array binding

Using Array Binding

Client-Library Migration Guide

Array binding is the process of binding a result column to an array of
program variables. At fetch time, multiple rows” worth of the column
values are copied to the array of variables with asingle ct_fetch call.

An application indicates array binding when it callsct_bind, by setting the
count field of the CS_DATAFMT structure parameter to avalue greater
than 1.

The count must be the same for all columnsin aresult set. (Exception:
count values of 0 and 1 are considered to be equivalent. Both of these
values cause ct_fetch to fetch asingle row.)

Array binding isonly practical for regular row and cursor row result sets,
because only these types of result sets can have multiple rows.

75

Client-Library cursors

Array Binding Example

The ex04ct.c migration sample program illustrates array binding. exO4ct.c is
DB-Library’s exampled.c converted to Client-Library. ex04ct.c illustrates
conversion of DB-Library row buffering code to Client-Library array binding
code. ex04ct.c actually calls routines in the ctrowbuf.c migration sample to
perform array binding. ctrowbuf.c isasimple array binding utility library. The
examples are located in the following directory:

* $SYBASE/$SYBASE_OCS'sample/dblibrary on UNIX
¢ %SYBASE%\%SYBASE OCS¥\sample\dblib on Microsoft Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

Client-Library cursors

An application can use Client-Library cursorsto replace the following types of
DB-Library functionality:

e DB-Library cursors

e DB-Library browse mode

Comparing DB-Library and Client-Library cursors

76

DB-Library supports client-side cursors, while Client-Library supports server-
side cursors:

e A client-side cursor does not correspond to an Adaptive Server Enterprise
cursor. Instead, DB-Library buffers rows internally and performs all
necessary keyset management, row positioning, and concurrency control
to manage the cursor.

e A server-side cursor, sometimes called a“ native” cursor, is an actual
Adaptive Server Enterprise cursor. Client-Library provides an interface
that allows applicationsto declare, open, and manipulate a server-side
cursor, but Adaptive Server Enterprise actually manages the cursor.

Table 6-1 outlines some key differences between DB-Library and Client-
Library cursors:

Open Client

CHAPTER 6 Advanced Topics

Table 6-1: Differences between DB-Library cursors and Client-Library

cursors

DB-Library cursors

Client-Library cursors

Cursor row position is defined by the
client.

Cursor row position is defined by the
server.

Can define optimistic concurrency
control.

Cannot define optimistic concurrency
control.

Can fetch backwards (if scrollopt is
CUR_KEY SET or CUR_DYNAMIC
in the call to dbcursoropen).

With scrollable cursors, it is possible
to fetch datain any of these fetch
orientations:

« ABSOLUTE
« RELATIVE

* FIRST

e LAST

* PREVIOUS

Memory requirements depend on the
size of the fetch buffer specified
during dbcursoropen.

Memory requirements depend on the
cursor-rows setting and whether the
application sends new commands on
the connection while the cursor is
open.

You cannot access an Open Server
application unless the application
installs the required DB-Library
stored procedures.

You can access an Open Server
application that is coded to support
CUrsors.

Slower performance.

Faster performance.

Multiple cursors per DBPROCESS
possible.

Multiple cursors per
CS_CONNECTION possible.

Only one cursor per CS_COMMAND
structure.

Rules for Processing Cursor Results

In general, when a Client-Library application sends a command to the server,
it cannot send another command on the same connection until ct_results returns
CS END_RESULTS, CS CANCELED, or CS FAIL.

An exception to this rule occurs when ct_results returns cursor results. In this

case, the application can:

e Sendacursor command on the same command structurethat is processing
the cursor results. Applications commonly use this technique to perform

cursor updates and deletes.

Client-Library Migration Guide

77

Client-Library cursors

¢ Send an unrelated command on any other command structure.

Comparing Cursor Routines

Table 6-2 compares DB-Library cursor routines to Client-Library cursor
routines. See:

e Chapter 7, “Using Client-Library Cursors,” in the Open Client Client-
Library/C Programmers Guide.

e Appendix A, “Cursors,” in the Open Client DB-Library/C Reference

Manual.
Table 6-2: DB-Library vs. Client-Library cursor commands
DB-Library DB-Library
equivalent functionality Client-Library routines Client-Library functionality
dbcursoropen(Open a cursor, ct_cursor(cmd, Initiate a command to declare the
dbproc, stmt, i CS_CURSOR_DECLARE, ity
scrollopt, specify thehSQL name, namelen, text, .currs;orl,:xs)gmffylgg the SQL text that
concuropt, Statement that textlen, option) IS the body of the cursor.
nrows, pstatus) — defines the cursor, optionisCS_UNUSED or abitwise
thescroll option, the OR of these values:
concurrency option, .
the number of rows CS_MORE
in the fetch buffer, + CSEND
and apointer to the * CS_FOR_UPDATE
array of row status « CS READ ONLY
indicators. - -
¢ CS UNUSED
¢ CS IMPLICIT_CURSORS
e CS SCROLL_INSENSITIVE
¢ CS SCROLL_SEMISENSITIVE
¢ CS SCROLL_CURSOR
¢ CS NOSCROLL_INSENSITIVE
ct_cursor(cmd, Specify the number of rowsto be
CS_CURSOR_ROWS, ient-| i
NULL, CS, UNUSED. _returned to Client-Library per
NULL, CS_UNUSED, internal fetch. The default is 1.
Nrows)

78 Open Client

CHAPTER 6 Advanced Topics

DB-Library DB-Library
equivalent functionality Client-Library routines Client-Library functionality
ct_cursor(cmd, Initiate a cursor set options
CS_CURSOR_OPTION,
NULL, CS_UNUSED, Comm?nd'
NULL, CS_UNUSED, option is one these values:
option) . CS FOR_UPDATE
¢ CS READ_ONLY
¢ CS UNUSED
¢ CS SCROLL_INSENSITIVE
¢ CS SCROLL_SEMISENSITIVE
¢ CS SCROLL_CURSOR
¢ CS _NOSCROLL_INSENSITIVE
ct_cursor(cmd, Initiate a cursor update command.
CS_CURSOR_UPDATE, L
name, namelen. text, option is one these values:
textlen, option) « CS UNUSED
¢ CS MORE
¢ CS END
ct_cursor(cmd, Initiate acommand to delete the
CS_CURSOR_DELETE, qyrsor.
name, namelen, NULL,
CS_UNUSED,
CS_UNUSED)
ct_cursor(cmd, Initiate acommand to deallocate
CS_CURSOR_DEALLOC, qyrsor
NULL, CS_UNUSED, '
NULL, CS_UNUSED,
CS_UNUSED)
ct_cursor(cmd, Initiate a command to open the
CS_CURSOR_OPEN, cursor
NULL, CS_UNUSED, o
NULL, CS_UNUSED, option is one these values:
option) « CS RESTORE_OPEN
¢ CS UNUSED
(none) ct_send, ct_results Send and process the results of

ct_cursor commands.

Cursor-declare, cursor-option, and
cursor-rows commands can be
batched and sent as one command.
Other ct_cursor commands can not
be batched.

Client-Library Migration Guide

79

Client-Library cursors

DB-Library DB-Library
equivalent functionality Client-Library routines Client-Library functionality
dbcursorbind(Register thebinding ct_bind(cmd, item, Bind cursor results to program
hc, col, information on the datafmt, buffer, copied, variables.
vartype, varlen, | indicator)
poutlen, cursor columns.
pvaraddr)
dbcursorfetch(Fetch ablock of ct_fetch(cmd, Fetch cursor result data.
hc, fetchtype, i CS_UNUSED,
rownum) rows into the ” CS_UNUSED.
program variables CS_UNUSED, rows_read)
specified in the call
to dbcursorbind.
DB-Library does ct_scroll_fetch(cmd, type, Fetch cursor from aresult set.
ot support o ready > 5=TRYE provide browsing ability to
scrollable cursors. - navigate within the result set and
select single rows for further
processing.
none ct_keydata(cmd, action, Set (action=CS_SET) or retrieve

colnum, buffer, buflen,
outlen)

(action=CS_GET) the contents of a
key column.

dbcursorclose(
hc)

Close the cursor
with the given
handle (hc).

The cursor handle

should not be
reused.

ct_cursor(cmd,

CS_CURSOR_CLOSE,

NULL, CS_UNUSED,
NULL, CS_UNUSED,
option)

Close a cursor.

optionis CS_DEALLOC or
CS_UNUSED

If the cursor is not deallocated, the
same cursor can be reopened later

by calling ct_cursor with the same
command structure.

DB-Library fetch types and Client-Library cursors

80

dbcursorfetch supports avariety of fetch types. Table 6-3 lists dbcursorfetch
fetch types and their Client-Library equivalents, if any:

Open Client

CHAPTER 6 Advanced Topics

Table 6-3: dbcursorfetch fetch types and their Client-Library

equivalents

dbcursor fetch type Client-Library equivalent

FETCH_FORWARD ct_fetch or ct_scroll_fetch with fetch orientation
(or type) set asCS_NEXT

FETCH_FIRST ct_scroll_fetch with fetch orientation (or type) set
asCS_FIRST

FETCH_PREVIOUS ct_scroll_fetch with fetch orientation (or type) set
as CS PREV

FETCH_RANDOM ct_scroll_fetch with fetch orientation (or type) set
as CS_ ABSOLUTE

FETCH_RELATIVE ct_scroll_fetch with fetch orientation (or type) set
as CS _RELATIVE

FETCH_LAST ct_scroll_fetch with fetch orientation (or type) set
asCS LAST

Using ct_keydata

Applications that use array binding to retrieve cursor rows often find
ct_keydata useful; callsto thisroutinereposition aClient-Library cursor update
or delete to affect arow other than the most recently fetched row.

When using array binding, an update to any row in the bound column arrays,
except for the last row, must be repositioned by calling ct_keydata.

DB-Library has no direct ct_keydata equivalent.

Comparing Client-Library cursors to Browse Mode Updates

The following differences exist between Client-Library cursors and browse
mode updates:

e A Client-Library cursor requires only one connection. Browse mode
reguires a second connection for updates, which consumes additional
client and server resources.

* Browse mode requires timestamps, but Client-Library cursors do not.

* A sensitive cursor pointsdirectly at the underlying data tables, preventing
other users from updating the page containing the current cursor row. An
insensitive cursor points at a copy of the data (in awork table on the
server).

Client-Library Migration Guide 81

Client-Library cursors

A browse mode update is alwaysinsensitive because no lock is applied to
the underlying table. A Client-Library cursor can be sensitive or
insensitive.

Aninsensitive Client-Library cursor may still be updatable. In this case,
concurrent updates to the underlying data are managed by “version keys.”
When updating through the cursor, the server compares valuesto
determine if the row has changed since the client received its copy.

Generally, Client-Library cursors declared with an “order by” clause are
insensitive.

Using Array Binding with Cursors

The DB-Library routine dbcursorbind binds a cursor result column to an array
of program variables. The array has a number of rows equal to the size of the
fetch buffer specified in the application’s call to dbcursoropen.

The Client-Library routine ct_bind can bind a cursor result column either to a
single program variable or to an array of program variables. The value of
datafmt—count determines the size of the array.

For both DB-Library and Client-Library, the size of the array must be the same
for @l columnsin the result set.

The following considerations apply when using array binding with updatable
Client-Library cursors:

Before the Client-Library cursor is opened, the application must call
ct_cmd_props to allow the CS HIDDEN_KEY S property.

Updatesto intermediate rowsin the result array must be preceded by calls
to ct_keydata to position the update with the key values for the
intermediate row. If the update is not positioned in this way, it will affect
the last row fetched instead of the intermediate row.

Client-Library cursor example

The migration sample program ex06ct.c illustrates conversion of DB-Library
browse-mode code to Client-Library cursor code. ex06ct.c is a conversion of

the example6.c DB-Library sample program. ex06ct.c creates a simple table,

then uses a cursor to traverse the table rows and update each column.

82

Open Client

CHAPTER 6 Advanced Topics

ex06ct.c also contains additional code that shows how Client-Library cursors
allow multiple commands to be active on one connection.

Asynchronous programming

Asynchronous programming allows a client application to perform other work
while waiting for the server to process commands and return results.

DB-Library’s Limited Asynchronous Support

On al platforms DB-Library provides limited support for “non-blocking
reads,” using the calls dbrpcsend, dbsglsend, dbpoll, and dbsglok. Following is
the typical calling sequence:

* dbrpcsend or dbsglsend —sends the RPC or language command and return
immediately.

* dbpoll —iscalledin aloop until the return_reason parameter is set to
DBRESULT. (Windows DB-Library 4.2 applications use the routine
dbdataready instead of dbpoll.)

e dbsglok — retrieves theinitial results from the command.

With DB-Library, only theinitial read of the command’s resultsis
asynchronous. The application must poll for the arrival of theinitial results—
if theinitial results are not available when dbsglok is called, dbsglok blocks.
After dbsglok, subsegquent calls to dbresults and dbnextrow are synchronous.

Client-Library asynchronous support

In Client-Library, every routine that reads or writes from the network can
behave asynchronoudly. These routines are:

* ct_connect, ct_close, ct_options
e ct_send, ct_cancel, ct_results, ct_fetch
* ct_get data, ct_send_data

* ct_recvpassthru, ct_sendpassthru

Client-Library Migration Guide 83

Asynchronous programming

Fully asynchronous
model

Polling model

Using ct_poll

84

e blk_init, blk_done
¢ blk_sendrow, blk_sendtxt
* blk_rowxfer, blk_textxfer

Client-Library provides two models of asynchronous programming: fully
asynchronous and polling.

By default, connections behave synchronously. You must request the
asynchronous programming model by setting the CS_NETIO property to
CS_ASYNC IO (for fully asynchronous behavior) or CS_DEFER_10 (for the
polling model). When set at the context level, the setting affects all
subsequently allocated connections. You can also set the property for each
connection individually.

In the fully asynchronous model, the application installs compl etion callbacks,
and Client-Library invokes the callback each time an asynchronous routine
completes. The fully asynchronous model is supported only on platforms that
have interrupt-driven network 1/0 capabilities or on platforms where Client-
Library uses operating-system threads to perform network 1/0.

In the polling model, the application callsct_poll in aloop after each call to an
asynchronous routine that returns CS_PENDING. The polling model is
supported on all platforms. If you are concerned about portability, use the
polling model when writing asynchronous applications.

For a more detailed description of these programming models, see the
“ Asynchronous Programming” topics page in the Open Client Client-
Library/C Reference Manual.

Similar to dbpoll, ct_poll polls connections for asynchronous operation
completions and registered procedure notifications.

The main differences between ct_poll and dbpoll are:

e ct_poll can take either aCS _CONTEXT or aCS CONNECTION
parameter, while dbpoll takes a DBPROCESS parameter.

e ct_poll supports awider range of completion types (compid).

e ct_poll makes the final return code of the completed operation available,
while dbpoll does not.

Open Client

CHAPTER 6 Advanced Topics

For more detailed information on these differences, see Table 6-4: Comparing

dbpoll and ct_poll.

If aplatform allowsthe use of callback functions, ct_poll automatically callsthe
proper callback routine, (if oneisinstalled), when it finds a completed
operation or a notification.

Specific restrictions on ct_poll include the following:

e ct_poll does not check for asynchronous operation completionsiif the
CS DISABLE_POLL property issetto CS TRUE.

e« |fCS ASYNC NOTIFSisCS FALSE, ct_poll will not read from the
network to look for registered procedure notifications. Natifications that
have already been found while reading command results are still reported.
In other words, the application must be actively sending commands and
reading resultsin order for ct_poll to report a registered procedure
notification when CS_ ASYNC _NOTIFSisCS FALSE.

Table 6-4: Comparing dbpoll and ct_poll

dbpoll ct_poll

parameter Parameter description parameter Parameter description

dbproc A pointer to adbprocess context Pointersto CS_CONTEXT and
structure. If doprocisNULL, | connection CS_CONNECTION structures. If
dbpoll checks all open Eith tot context isNULL, ct_poll checks only
DBPROCESS connections for (E :rct(_:on s(t)r asingle connection. If connection is
the arrival of aresponse. Egnl\rllu LII? nmu NULL, ct_poll checks all open

) connections within the context.
milliseconds The number of milliseconds milliseconds The number of milliseconds that

that dbpoll should wait for
pending operationsto compl ete
before returning. If
milliseconds is 0, dbpoll will
return immediately. If
millisecondsis-1, dbpoll will
not return until either a server
response arrives or a system
interrupt occurs.

ct_poll should wait for pending
operations to complete before
returning. If millisecondsis O, ct_poll
will return immediately. If
millisecondsisCS_NO_LIMIT,
ct_poll will not return until either a
Server response arrives or a system
interrupt occurs.

Client-Library Migration Guide

85

Asynchronous programming

dbpoll ct_poll
parameter Parameter description parameter Parameter description
ready_dbproc A pointer to apointer to a compconn compconn is the address of a pointer
DBPROCESS structure. dbpoll variable. If connectionisNULL, all
sets thisto point to the connections are polled, and ct_poll
DBPROCESS for which the sets compconn to point to the
server response has arrived, or CS_CONNECTION structure
to NULL if no response has owning the first completed operation
arrived. it finds. ct_poll sets compconn to
NULL if no operation has completed,
or if connection is not NULL.
compemd compemd is the address of a pointer
variable. ct_poll sets compemd to
point to the CS_COMMAND
structure owning the first completed
operation it finds. ct_poll sets
compcmd to NULL if no operation
has completed.
return_reason A pointer to asymbolic value | compid A pointer to asymbolic value
indicating why dbpoll returned. (CS_SEND, CT_FETCH) indicating
what routine has completed.
(none) compstatus A pointer to avariable of type

CS_RETCODE, which ct_poll setsto
indicate the final return code of the
completed operation, called the
completion status. The completion
status can be any of the return codes
listed for the routine, except
CS_PENDING.

Using ct_wakeup

When called by the application, ct_wakeup calls a connection’s completion
callback. The ct_wakeup routine is useful in applicationsthat provide a higher
level asynchronous layer implemented on top of Client-Library. See the

“ Asynchronous Programming” topics page in the Open Client Client-
Library/C Reference Manual.

86

Open Client

CHAPTER 6 Advanced Topics

Bulk copy interface

Bulk-Library isan API that consistsof Client-Library and Server-Library bulk
copy routines. Some Bulk-Library routinesare specific to either Client-Library
or Server-Library, while others are common to both.

Bulk-Library routine names have the prefix “blk,” while CT-Library bulk copy
routine names have the prefix “bcp”.

One significant difference between CT-Library bulk copy and Bulk-Library is
that only CT-Library has built-in support for file 1/O.

Both CT-Library bulk copy and Bulk-Library support encrypted columns if
Adaptive Server Enterprise supports encrypted columns.

See the Open Client and Open Server Common Libraries Reference Manual.

Bulk-Library initialization and cleanup

Bulk-Library operations require a CS_BLKDESC structure. An application
can alocateaCS BLKDESC by calling blk_alloc. When a bulk operation is
complete, the application can drop its CS_BLKDESC by calling blk_drop.

blk_init initiates a bulk copy operation.

The Bulk-Library routine blk_init has parameters for structure, tablename and
direction values that are equivalent to parametersin CT-Library’s bcp_init.
However, blk_init does not handle host file or error file name parameters.

Transfer routines
Bulk-Library applicationstransfer datausing routinesthat are similar to Client-
Library’s ct_bind, ct_recvpassthru, and ct_sendpassthru routines.

Both Bulk Library and Client-Library applicationsuse CS_DATAFMT
structures to describe program variables for binding, and both support array
binding.

blk_describe setsfieldsinaCS_DATAFMT structure. An application can use
thisCS_DATAFMT structure in the blk_bind call that binds the columnto a
program variable.

Client-Library Migration Guide 87

Text/Image interface

Someof CT-Library’sbcp_bind parametersmaptofieldsintheCS DATAFMT
structure, but there are no equivalents for other parameters. In particular, Bulk
Library has no equivalents for bcp_bind's length prefix, terminator, and
terminator length parameters. Applications use blk_bind’s datal en parameter to
specify the number of bytes to copy from program variables, or to determine
the number of byteswritten to a program variable.

Other differences from DB-Library bulk copy

Only Client-Library provides blk_default to retrieve a column’s default value.

Bulk-Library provides no equivaents for the following CT-Library routines,
because their function is to support host or format files:

* bcp_colfmt, bcp_colfmt_ps, bcp_columns
* bcp_exec

* bcp_readfmt, bcp_writefmt

Text/Image interface

This section compares the text/image interfaces of Client-Library and DB-
Library.

Retrieving text or image data

88

A typical Client-Library application retrieves large text or image values by
calling ct_get_data inside the fetch loop that’s processing the result set’s rows.

ct_get_data is similar to dbreadtext but is more powerful and flexible. It
exhibits the following characteristics:

e ltretrievesdata exactly asit is sent from the server, without performing
any conversion.

e It can be used to retrieve data from regular and compute columns as well
as a stored procedure’s return parameters and return status value. (See
“ct_get_data versus dbdata’ on page 68.)

Open Client

CHAPTER 6 Advanced Topics

e |t can be used to retrieve multiple columns of any datatype. (dbreadtext is
restricted to Transact-SQL queries that return exactly one text or image
column.)

e |ltismost often used to retrieve large text or image values.
The following restrictions apply to the use of ct_get_data:

e When using both ct_bind and ct_get_data to retrieve datain asingle result
set, the first column retrieved using ct_get_data must follow the last
column bound with ct_bind.

For example, if an application selects four columns and bindsthefirst and
third columns to program variables, then the application cannot use
ct_get_data to retrieve the datacontained in the second column. It can till,
however, use ct_get_data to retrieve the data in the fourth column.

To work within thisrestriction, make sure any text or image columnsto be
retrieved with ct_get_data reside at the end of the select list.

e If array binding wasindicated in an earlier call to ct_bind, the application
cannot use ct_get_data on any column in the result set.

DB-Library’s text timestamp

In DB-Library, a select of atext column copies the text timestamp value from
the current row to the DBPROCESS structure. A DB-Library application can
retrieve this text timestamp value with dbtxtimestamp.

Client-Library usesa CS_IODESC structure to store a column’s text
timestamp.

Client-Library’s CS_IODESC structure
The CS_IODESC structure describes text or image data.

When retrieving text or image data from a column that will be updated, a
Client-Library application calls ct_data_info to get the CS_IODESC structure
that describes the text or image column.

Generally an application must call ct_get_data for the column before calling
ct_data_info. However, when ct_get_data is used with Server-Library API
srv_send_data, to transfer text, image, and XML columnsin chunksin Gateway
Open Server applications, call ct_data_info before calling ct_get_data.

Client-Library Migration Guide 89

Text/Image interface

If you do not need to retrieve the column’s data, assign 0 to buflenin
ct_get_data. Thistechniqueis useful for determining the length of atext or
image value before retrieving it.

See the Open Server Server-Library/C Reference Manual.

When updating the column, the application callsct_data_info againto apply the
CS _|ODESC fields for the update operation.

DB-Library has specialized routines for manipulating the text timestamp for a
column or value. In Client-Library, applications handl e these tasks by calling
ct_data_info and then modifying the resulting CS_IODESC structure directly.

A typical application only modifiesthree fields of aCS |ODESC structure
before using it in an update operation:

e total_txtlen

Thisfield specifiesthe total length, in bytes, of the new value. Thisis
equivalent to the size parameter to dbwritetext.

¢ log_on _update

Thisfield indicates whether or not the server should log the update. This
is equivalent to the log parameter to dbwritetext.

*« Jocale

Thisfield pointsto aCS_LOCALE structure containing localization
information for the value, if any. It has no equivalent in DB-Library.

Thetimestampfieldin CS_|ODESC marksthetime of atext or image column’s
last modification.

Table 6-5 compares text timestamp functionality in DB-Library and Client-
Library:

Table 6-5: DB-Library vs. Client-Library—text timestamps

Client-Library

DB-Library routines DB-Library functionality equivalent
dbtxtimestamp(dbproc, Return the value of the text timestamp for a Retrieve the 1/O descriptor
column) column in the current row for acolumn in the current

row and put it into
CS_IODESC:

90

ct_data_info(cmd,
CS_GET, colnum,
iodesc).

The text timestamp isin
CS_IODESC — timestamp.

Open Client

CHAPTER 6 Advanced Topics

Client-Library

DB-Library routines DB-Library functionality equivalent
dbtxptr(dbproc,column) Return the value of the text pointer for a The text pointer isin
column in the current row CS_|ODESC — textptr.
dbtxtsnewval(dbproc) Return the new value of atext timestamp after Processthereturn parameter
acall to dbwritetext result set (ct_results returns

with result_type of
CS_PARAM_RESULT),
which contains the new text
timestamp value after acall
to ct_send_data.

Sending text or image data
For single-chunk updates, ct_send_data is equivalent to dowritetext.

For multiple-chunk updates, ct_send_data is equivalent to dowritetext plus
dbmoretext:

e A DB-Library application first calls dowritetext with text as null and then
calls dbmoretext in aloop to send the data.

e A Client-Library application simply calls ct_send_data in aloop to send
the data.

A Client-Library application typically uses the following sequence of calls
when performing an update operation:

1 Call ct_fetch to fetch the row of interest.

2 Call ct_get_data to retrieve the column’s value and refresh the I/0O
descriptor for the column.

3 Cadl ct_data_info to retrieve the I/O descriptor into aCS _|ODESC
structure.

Using the current I/O descriptor, perform the update:

1 Cadl ct_command with atype of CS SEND _DATA_CMD to initiate the
command.

2 ModifytheCS IODESC, changinglocale, total _txtlen, or log_on_update,
if necessary, and call ct_data_info to set the 1/O descriptor for the column
value.

3 Cdl ct_send_data in aloop to write the entire value.

Client-Library Migration Guide 91

Text/Image interface

4 Call ct_send to send the command. Because ct_send_data buffers data,
ct_send insuresthat all dataisflushed to the server.

5 Cadll ct_results to process the results of the command. An update of atext
or image value generates a parameter result set containing asingle
parameter, which is the new text timestamp for the value. If the column
will be updated again, the application must save the new timestamp and
copy it into the CS_|ODESC before calling ct_data_info to set the I/O
descriptor for the next update.

Update operations In an update operation, the text timestamp value retrieved by an Open Client
application is compared to the database’s text timestamp value. This prevents
competing applications from destroying one another’s changes.

The DB-Library routine, dbwritetext, can be called with anull timestamp
pointer, which causes an update to occur regardless of the database text
timestamp value.

The Client-Library routine, ct_send_data, will alwaysfail if timestampin
CS_|ODESC does not match the current database text timestamp.

Table 6-6 compares text update functionality in DB-Library and Client-
Library:

92 Open Client

CHAPTER 6 Advanced Topics

Table 6-6: Comparing text update operations

DB-Library
routine DB-Library
(parameter) functionality Client-Library equivalent
dbwritetext(The table and CD_IODESC— name
objname) F:olumn name of Set by ct_data_info
interest, separated
by aperiod (for
example
table.column)
dbwritetext A pointertothetext CS_IODESC—textptr
(textptr) pointer of thetext et by ct_data_info
or image value to
be modified
dbwritetext(For dbwritetext, CS_IODESC—textptrlen
textptrien) must be Set by ct_data_info
DBTXPLEN
dbwritetext(A pointer to the CS_IODESC—timestamp
timestamp) ti mﬂarnp of the Set by ct_data_info or retrieved as
text orimage value g parameter result after updating
to be modified the column

dbwritetext(log) A boolean value, CS_IODESC—log_on_update
indicating whether get py the application
the server should
log thistext or
image modification

dbwritetext(size) Thetotal size, in CS_IODESC—totdl_txtlen

bytes, of thevalue et by the application
to be sent

dbmoretext(size) Thesize, in bytes, ct_send_data(buflen)
of this part of the
value being sent

dbmoretext(text) A pointer to the ct_send_data(buffer)
portion of datato be
written

Text and image examples

The following migration sample programs demonstrate conversion of
DB-Library text and image code:

Client-Library Migration Guide

93

Localization

Localization

94

e ex09ct.c — DB-Library’s example9.c converted to Client-Library. It
illustrates conversion of code that updates a text/image column with a
single dowritetext call.

e ex10ct.c — DB-Library’s examplel0.c converted to Client-Library. It
illustrates conversion of code that updates a large text/image columnin
chunks using dbwritetext and dbmoretext.

e exlict.c—DB-Library’s examplell.c converted to Client-Library. It
illustrates conversion of code that retrieves alarge text/image column and
savesit to an operating system file.

The sample programs are located in the following directory:
e $SYBASE/$SYBASE_OCS/'sample/dblibrary on UNIX
e %SYBASE%\%SYBASE OCS¥\sample\dblib on Microsoft Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

An application’s localization determines:
e Thelanguagefor Client-Library and Adaptive Server Enterprise messages
e Theformat of datetime values

e The character set and sort order that are used when converting and
comparing strings

Onmost platforms, Client-Library uses environment variabl esto determinethe
default localization values that an application will use.

Thelocalesfile, locales.dat, associates |ocale names with languages, character
sets, and sort orders. Open Client and Open Server products usethe localesfile
when loading localization information. Entriesin alocalesfile can be added or
modified, as an application’s requirements dictate.

If the default localization values for an environment meet an application’s
requirements, no further localization is necessary. If the default values do not
meet the application’s requirements, custom localization values can be set
using aCS _LOCALE structure. An application can set localization values at
the context, connection, or data-element levels.

Open Client

CHAPTER 6 Advanced Topics

CS_LOCALE Structure

A Client-Library application canuseaCS_L OCALE structureto set up custom
localization values. To do this, the application performs the following:

1
2

Allocatesa CS LOCALE structure with cs_loc_alloc.

Loads localization valuesinto the CS_L OCALE structure by calling
cs_locale.

Setsthe locale at the desired level. The application can:
« Copy thelocalization valuesto a context structure with cs_config

» Copy thelocalization valuesto a connection structure—before the
connection is open—with ct_con_props

e Supply the CS_LOCALE structure as a parameter to aroutine that
accepts custom localization values (cs_convert, cs_time)

* Include apointer to the CS_L OCALE structureinaCS_DATAFMT
structure describing a destination program variable (cs_convert,
ct_bind)

Localization precedence

When determining which localization values to use, Client-Library usesthe
following order of preference:

1

2
3

Data element localization values:

e« TheCS _LOCALE associated with the CS_ DATAFMT structure that
describes a data element, or

e« TheCS _LOCALE passed to aroutine as a parameter.
Connection structure localization val ues.

Context structure localization values.

Context structure localization values are always defined, because a newly
allocated context structure is assigned whatever default localization values are
in effect.

Client-Library Migration Guide

95

Localization

96 Open Client

APPENDIX A

Mapping DB-Library Routines
to Client-Library Routines

Thisappendix lists DB-Library routines and the equivalent Client-Library
and CS-Library calls with which to replace them.

Mapping DB-Library routines to Client-Library routines

Table A-1 lists DB-Library routines and their corresponding Client-
Library and CS-Library equivalents:

Table A-1: Mapping of DB-Library routines to Client-Library

routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

db12hour

Determineswhether the specified
language uses 12-hour or 24-hour
time.

cs_dt_info(CS_12HOUR)

dbadata

Returnsapointer to thedatafor a
compute column.

No direct equivaent. Applications must retrieve
data values by binding or with ct_get_data. See
“Retrieving data values’ on page 65.

dbadlen

Returns the actual length of the
data for a compute column.

No direct equivalent:

e Usect_describe to determine the maximum
possible length of the data (in the maxlength
field of the CS_DATAFMT).

» Usethect_bind copied parameter to determine
the length of data values placed into bound
variables.

» Usethect_get_data outlen parameter to
determine the length of data values retrieved
with ct_get_data.

dbaltbind

Binds a compute column to a
program variable.

Client-Library Migration Guide

ct_bind

97

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbaltbind_ps Binds a compute columnto a ct_bind
program variable, with precision
and scal e support for numeric and
decimal data.
dbaltcolid Returns the column ID for a ct_compute_info(CS_COMP_COLID)
compute column.
dbaltlen Returns the maximum length of ct_describe
the datafor a particular compute (The maxlength field of the CS_DATAFMT)
column.
dbaltop Returns the type of aggregate ct_compute_info(CS_COMP_OP)
operator for aparticular compute
column.
dbalttype Returns the datatype for a ct_describe
compute column. (The datatype field of the CS_DATAFMT)
dbaltutype Returnstheuser-defined datatype ct_describe
for a compute column. (The usertypefield of the CS_DATAFMT)
dbanullbind Associates an indicator variable ct_bind
with a compute-row column.
dbbind Bindsaregular result columntoa ct_bind
program variable.
dbbind_ps Bindsaregular result columntoa ct_bind
program variable, with precision
and scal e support for numeric and
decimal data.
dbbufsize Returns the size of a None. Client-Library does not provide built-in
DBPROCESS row buffer. support for row buffering.
dbbylist Returns the bylist for acompute Replace with the following call sequence:
row. * ct_compute_info(CS BYLIST_LEN) to
determine the length of the bylist.

» AllocateaCS _SMALLINT array to hold the
bylist (or confirm that an existing array is
large enough).

* ct_compute_info(CS_COMP_BYLIST) to
copy the bylist into the array.

dbcancel Cancels the current command One of the following:
batch. « ct_cancel(CS_ CANCEL_ALL) from main-
line code, or

» ct_cancel(CS_CANCEL_ATTN) from the
client-message handler.

dbcanquery Cancelsany rows pending from ct_cancel(CS_CANCEL_CURRENT)
the most recently executed query.
98 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbchange

Determines whether acommand
batch has changed the current
database.

None.

Applicationsthat requirethisfunctionality can be
coded to trap server message number 5701 in the
server message handler. The text of the 5701
message contains the database name.

dbcharsetconv Indicates whether the server is ct_con_props(CS_CHARSETCNV)
performing character set
trandation.
dbclose Closes and deallocatesasingle One of the following:
DBPROCESS structure. * ct_close to close the connection
e ct_con_drop to deallocate the structure
dbclrbuf Drops rows from the row buffer. None. Client-Library does not provide built-in
support for row buffering.
dbclropt Clears an option set by dbsetopt. ct_options(CS_CLEAR).
dbcmd Adds text to the DBPROCESS ct_command(CS_LANG_CMD) puts text into
language command buffer. the language buffer.
Pass option as CS_MORE if more text will be
appended to the language buffer, otherwise,
CS_END.
DBCMDROW Determines whether the current No direct equivalent. ct_results sets result_type

command can return rows.

to CS_CMD_SUCCEED to indicate the success
of acommand that returns no data.

For acomparison of ct_results result_type values
to DB-Library program logic, see “ Code that
processes results’ on page 59.

dbcolbrowse

Determineswhether the source of
aregular result column can be
updated using browse-mode
updates.

ct_br_column
(The isbrowse field of the CS_BROWSEDESC)

dbcollen Returns the maximum length of ~ ct_describe
the datain aregular result (The maxiength field of the CS_DATAFMT)
column.

dbcolname Returns the name of aregular ct_describe

result column.

(The namefield of the CS_DATAFMT)

dbcolsource

Returns a pointer to the name of
the database column from which
the specified regular result
column was derived.

ct_br_column
(The orignamefield of the CS_BROWSEDESC)

dbcoltype

Returnsthe datatype for aregular
result column.

Client-Library Migration Guide

ct_describe
(The datatype field of the CS_DATAFMT)

99

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbcoltypeinfo Returns a structure containing ct_describe
precision and scalevauesfora (The precision and scale fields of the
numeric column value. CS DATAFMT)
dbcolutype Returnstheuser-defined datatype ct_describe
for aregular result column. (The usertypefield of the CS_DATAFMT)
dbconvert Converts datafrom one datatype cs_convert

to ancther.

dbconvert_ps

Converts data from one datatype
to another, with precision and
scale support for numeric and
decimal data.

cs_convert

DBCOUNT

Returns the number of rows
affected by a Transact-SQL
command.

ct_res_info(CS_ROW_COUNT)

Call when ct_results returns aresult_type value
of CS_ CMD_DONE.

Note After astored procedure execution, therow
counts returned by DBCOUNT and ct_res_info
can differ. For details, see “ Obtaining the
Number of Rows Affected” on page 71.

DBCURCMD

Returnsthe number of the current
command.

ct_res_info(CS_CMD_NUMBER)

DBCURROW

100

Returns the number of the row
currently being read.

No direct equivalent.

The application can use acounter variablethat is
incremented when fetching regular and compute
result rows. To maintain a count equivalent to
DBCURROW'’s, follow these steps:

* Whenct_results setstheresult_typeparameter
to CS_ROW_RESULT or
CS COMPUTE_RESULT, increment the
counter for every ct_fetch call that returns
CS _SUCCEED or CS_ ROW_FAIL. If array
binding is used, increment by the value
returned in the ct_fetch rows_read parameter,
otherwise increment by 1.

» Set the counter to zero before the ct_results
loop, and reset the counter to zero every time
ct_results returnsaCS_CMD_DONE
result_type value.

Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbcursor

Inserts, updates, del etes, locks, or
refreshes a particular row in the
fetch buffer.

ct_cursor

ct_cursor commands must be sent with ct_send
and their results handled with ct_results.

Note The feature setsfor DB-Library cursors
and ct_cursor cursors are not identical. See
“Client-Library cursors’ on page 76.

dbcursorbind

Registers the binding
information on the cursor
columns.,

ct_bind when ct_results returnswith aresult_type
of CS_ CURSOR_RESULT.

dbcursorclose

Closesthe cursor associated with
thegiven handle, releasing all the
databelonging to it.

e ct_cursor(CS_CURSOR_CLOSE) initiates a
cursor-close command.

» ct_cursor(CS_CURSOR_DEALLOC)
initiatesacommand that deall ocatesthe server
resources associated with the cursor.

The cursor can be closed and deall ocated with
one command (by passing option as

CS DEALLOC inthect_cursor call that
initiates the cursor-close command).

All ct_cursor commands must be sent with
ct_send and their results handled with
ct_results.

dbcursorcolinfo

Returns column information for
the specified column number in
the open cursor.

ct_describe when ct_results returns with a
result_type of CS_ CURSOR_RESULT.

dbcursorfetch

Fetches a block of rowsinto the
program variables declared by
the user in dbcursorbind.

ct_fetch when ct_results returns with a
result_type of CS_ CURSOR_RESULT.

dbcursorinfo

Returns the number of columns
and the number of rowsin the
keyset if the keyset hit the end of
the result set.

No direct equivalent. Client-Library cursors are
managed by the server, and thereisno equivalent
concept of akeyset.

To find out whether a cursor result set column is

akey, cal ct_describe, then check the statusfield
inthe CS_DATAFMT structure.

dbcursoropen

Opens a cursor, specifying the
scroll option, the concurrency
option, and the size of the fetch
buffer (the number of rows
retrieved with asingle fetch).

Client-Library Migration Guide

ct_cursor

Note
The feature sets for DB-Library cursors and

ct_cursor cursors are not identical. See “Client-
Library cursors’ on page 76.

101

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbdata

Returns a pointer to the datain a
regular result column.

No direct equivalent.

Applications must retrieve data values by
binding or with ct_get_data. See“ct_get_data
versus dbdata’ on page 68.

dbdate4cmp Compares two DBDATETIME4 cs_cmp
values.
dbdate4zero Initializesa DBDATETIME4 No direct equivalent.
variableto Jan 1, 1900 12:00AM. - The gpplication can call cs_convert to convert a
string representation to the equivalent
CS DATETIME value.
The application can also use memset (or a
platform equivalent) to zero the bytes of the
CS DATETIMEA structure. Thiseffectively sets
the date value to Jan 1, 1900 12:00AM.
The memset technique provides better
performance.
dbdatechar Converts an integer component ~ No direct equivalent.
of aDBDATETIME valueinto 1o replace dbdatechar calls that obtain native
character format. language month and day names, use cs_dt_info.
Other dbdatechar callsjust convert an integer to
astring of decimal digits. These can be replaced
with acall to sprintf (or an equivalent conversion
routine).
dbdatecmp Compares two DBDATETIME cs_cmp
values.
dbdatecrack Converts a machine-readable cs_dt_crack
DBDATETIME valueinto user- The DBDATEREC and CS_DATEREC
accessible format. structures are identical.
dbdatename Converts the specified No direct equivalent.
component of aDBDATETIME - 1o replace dbdatename calls that obtain native
structure into its corresponding | anguage month and day names, use cs_dt_crack
character string. and cs_dt_info. Other calls can be replaced with
the following call sequence:
e Cal cs_dt_crack to expand the date into a
CS _DATEREC structure.
» Perform simple calculations on the
CS _DATEREC fields.
« Call sprintf (or an equivalent conversion
routine) to convert the result to a string.
102 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbdateorder Returns the date component cs_dt_info(CS_DATEORDER)
order for agiven language.

dbdatepart Returns the specified part of a No direct equivaent.
DBDATETIME value asan dbdatepart calls can be replaced by acall to
integer value. cs_dt_crack and areference to the appropriate

CS DATEREC field. To replace calls that

compute DBDATE_QQ and DBDATE_WK, the

application must perform simple arithmetic with
the appropriate CS_DATEREC fields.
dbdatezero InitializesaDBDATETIME No direct equivalent. The application can call
valueto Jan 1, 1900 cs_convert to convert a string representation to
12:00:00:000AM. the equivalent CS_DATETIME value.

The application can also use memset (or a

platform-specific equiva ent) to zero the bytes of

the CS_DATETIME structure. This effectively

sets the date value to Jan 1, 1900

12:00:00:000AM.

The memset technique provides better

performance.

dbdatlen Returnsthelength of thedataina No direct equivalent.
regular result column. « Usect_describe to get the maximum possible
length of the data (in the maxlength field of
the CS_DATAFMT).

e Usethect_bind copied parameter to obtain the
length of data values placed into bound
variables.

» Usethect_get_data outlen parameter to
obtain thelength of datavaluesretrieved with
ct_get_data.

dbdayname Determines the name of a cs_dt_info(CS_DAYNAME)
specified weekday in a specified
language.
DBDEAD Determines whether aparticular ct_con_props(CS_GET, CS_CON_STATUYS)
DBPROCESS is dead. Check the CS_CONSTAT_DEAD bit in the
returned value.
dberrhandle Installsauser functionto handle + ct_callback(CS_SET,CS CLIENTMSG_CB)

DB-Library errors.

Client-Library Migration Guide

» cs_config(CS_SET, CS_ MESSAGE_CB)

See “Error and message handlers’ on page
47,

103

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbexit

Closes and deallocates all
DBPROCESS structures and
cleansup structuresinitialized by
dbinit.

e ct_exit

* cs_ctx_drop

dbfcmd

Adds text to the DBPROCESS
command buffer using C runtime
library sprintf-type formatting.

No direct equivalent.

Use sprintf (or your system’s equivalent) to
format the language command string before
caling ct_command.

Pass option as CS_MORE if more text will be
appended to the language buffer, or CS_END
otherwise.

For connections using TDS 5.0 or later, Client-
Library alows parameters for language
commands. |dentify parameters with “ @”
variablesin the text, and pass values with
ct_param Or ct_setparam.

DBFIRSTROW

Returns the number of the first
row in the row buffer.

None. Client-Library does not provide built-in
support for row buffering.

dbfree_xlate

Frees apair of character set
tranglation tables.

No direct equivalent.

Character sets are stored as part of the hidden
CS _LOCALE structure. Usecs_loc_alloc to
alocate aCS_LOCALE structure and
cs_loc_drop to free the structure’s memory.

dbfreebuf

Clears the command buffer.

No direct equivalent.

System 10 and later Client-Library clearsthe
command buffer with every cal to ct_send.

If acommand has been initiated but not sent, use
ct_cancel to clear the command buffer.

dbfreequal

Frees the memory allocated by
dbqual.

No direct equivalent. Client-Library does not
provide built-in functions to build where clauses.

See the entry for dbqual in thistable.

dbfreesort

Frees a sort order structure
dlocated by dbloadsort.

No direct equivalent.

Sort orders are stored as part of the hidden
CS _LOCALE structure. Usecs_loc_alloc to
alocate aCS_LOCALE structure and
cs_loc_drop to free the structure’s memory.

dbgetchar

104

Returnsapointer to acharacterin
the command buffer.

No direct equivalent.

Format language commands before passing them
to ct_command. Theinternal language buffer is
not accessible to the application.

Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbgetcharset

Gets the name of the client
character set from the
DBPROCESS structure.

Replace with the following call sequence:

* cs_loc_alloc to allocateaCS LOCALE
structure.

* ct_con_props(CS_LOC_PROP) to copy the
connection’s locale into the application’s
CS_LOCALE structure.

* cs_locale(CS_GET,CS_SYB_CHARSET)to
get the character set name.

* cs_loc_drop to drop the CS L OCALE.

dbgetloginfo

Transfers TDS login response
information from a
DBPROCESS structureto a
newly allocated DBLOGINFO
structure.

ct_getloginfo

dbgetlusername

Returns the user name from a
LOGINREC structure.

ct_con_props(CS_GET, CS_USERNAME)

dbgetmaxprocs Determines the current ct_config(CS_GET, CS_ MAX_CONNECT)
maximum number of
simultaneously open
DBPROCESSes.
dbgetnatlang Getsthenativelanguagefromthe Replace with the following call sequence:
DBPROCESS structure. * cs_loc_alloc to alocateaCS LOCALE
structure.
e ct_con_props(CS_LOC_PROP) to copy the
connection’s locale into the application’s
CS _LOCALE structure.
» cs_locale(CS_GET, CS SYB_LANG) to get
the language name.
» cs_loc_drop to drop the CS LOCALE.
dbgetoff Checks for the existence of None.
Transact-SQL constructsin the
command buffer.
dbgetpacket Returnsthe TDS packet size ct_con_props(CS_GET, CS_PACKETSIZE)
currently in use.
dbgetrow Reads the specified row in the None. Client-Library does not provide built-in
row buffer. support for row buffering.
DBGETTIME Returns the number of seconds ct_config(CS_GET, CS_TIMEOUT)

that DB-Library will wait for a
server response to a SQL
command.

Client-Library Migration Guide

105

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbgetuserdata Returns a pointer to user- User data can be installed at the context,
allocated data from a connection, or command level:
DBPROCESS structure. « cs_config(CS_USERDATA) sets or retrieves
context-level user data
e ct_con_props(CS_USERDATA), setsor
retrieves connection-level user data
* ct_cmd_props(CS_USERDATA), setsor
retrieves command-level user data
Child structures do not inherit
CS_USERDATA values.
dbhasretstat Determines whether the current ct_results returns aresult_type value of
command or an RPC generateda CS_STATUS RESULT when astored procedure
return status number. return status arrives.
See“Code that processes results” on page 59.
dbinit Initializes DB-Library. * c¢s_ctx_alloc

e ct_init

DBIORDESC (UNIX and
AOS/VS only)

Provides program access to the
UNIX or AOS/V Sfile descriptor
used by DB-Library to read data
coming from the server.

ct_con_props(CS_ENDPOINT)

The retrieved property valueis-1 on platforms
that do not support this functionality.

DBIOWDESC (UNIX and

Provides program access to the

ct_con_props(CS_ENDPOINT)

AOSVSonly) UNIX or AOS/VSfiledescriptor The retrieved property valueis-1 on platforms
used by DB-Library towritedala that do not support this functionality.
to the server.

DBISAVAIL Determines whether a No direct equivaent. If the program logic relies
DBPROCESS is available for on DBISAVAIL and DBSETAVAIL, use the Client-
general use. Library’s connection-level or command-level

CS_USER_DATA properties to replace these
cals.

dbisopt Checksthe status of aserver or ct_options(CS_GET)

DB-Library option.

DBLASTROW Returns the number of the last None. Client-Library does not provide built-in
row in the row buffer. support for row buffering.

dbload_xlate Loads a pair of character set No direct equivalent.
translation tables. Character sets are stored as part of the hidden

CS _LOCALE structure. Usecs_loc_alloc to
alocate aCS_LOCALE structure and
cs_loc_drop to free the structure’s memory. Use
cs_locale to change the character setina
CS _LOCALE structure.

106 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbloadsort Loads a server sort order. No direct equivalent.
Sort orders are stored as part of the hidden
CS _LOCALE structure. Use cs_loc_alloc to
alocate aCS_LOCALE structure and
cs_loc_drop to free the structure’s memory.
Usecs_locale to changeaCS_LOCALE’s sort
order.
dblogin Allocatesaloginrecordforusein ct_con_alloc
dbopen. See “Code that opens a connection” on page 42
for usage information.
dbloginfree Frees alogin record. ct_con_drop
dbmny4add Addstwo DBMONEY 4 values. cs_calc
dbmny4cmp Compares two DBMONEY 4 cs_cmp
values.
dbmny4copy Copiesa DBMONEY 4 value. No built in equivalent.
Usethe C standard library routine memcpy (or an
equivalent):
CS_MONEY4 dest mny4;
CS_MONEY4 src_mny4;
memcpy (&dest _mny4, &src_mny4,
sizeof (CS_MONEY4)) ;
dbmny4divide Dividesone DBMONEY 4 value cs_calc

by ancther.

dbmny4minus

Negate aDBMONEY 4 value.

No direct equivalent.

Use cs_calc to subtract the value from a zero-
value CS_MONEY4 variable.

dbmny4mul Multipliestwo DBMONEY 4 cs_calc
values.
dbmny4sub Subtracts one DBMONEY 4 cs_calc
value from another.
dbmny4zero Initializesa DBMONEY 4 Use memset (or an equivalent) to zero the fields
variable to $0.0000. of the CS_MONEY 4 structure.
dbmnyadd Addstwo DBMONEY values. cs_calc
dbmnycmp Compares two DBMONEY cs_cmp
values.

Client-Library Migration Guide

107

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbmnycopy CopiesaDBMONEY value. No built in equivalent.
Usethe C standard library routine memcpy (or an
equivaent):
CS_MONEY dest_mny;
CS_MONEY src_mny;
memcpy (&dest_mny,
&src_mny,
sizeof (CS_MONEY)) ;
dbmnydec DecrementsaDBMONEY value No direct equivalent.
by oneten-thousandth of adollar. yse cs_convert to convert a one ten-thousandth
CS_FLOAT vauetoaCS_MONEY, then use
cs_calc.
dbmnydivide Dividesone DBMONEY value cs_calc
by another.
dbmnydown DividesaDBMONEY vaduebya No direct equivalent.
positive integer. Use cs_convert to convert the integer valueto a
CS _ MONEY, then call cs_calc to divide by the
converted value.
dbmnyinc IncrementsaDBMONEY value No direct equivalent.
by oneten-thousandth of adollar. - yse cs_convert to convert a one ten-thousandth
CS_FLOAT valuetoaCS_MONEY, then use
cs_calc.
dbmnyinit PreparesaDBMONEY vauefor No direct equivalent for domnyinit and
calls to dbmnyndigit. dbmnyndigit.
See the entry for dbmnydigit in this table.
dbmnymaxneg Returns the maximum negative ~ None.
DBMONEY value supported.
dbmnymaxpos Returns the maximum positive None.
DBMONEY value supported.
dbmnyminus NegatesaDBMONEY value. No direct equivalent.
Use cs_calc to subtract the value from a zero-
vaue CS_MONEY4 variable.
dbmnymul Multipliestwo DBMONEY cs_calc
values.
dbmnyndigit Returns the rightmost digit of a ~ No direct equivalent.
DBMONEY valueasa Usecs_convert to convert the CS_ MONEY
DBCHAR. value to a character string, then reformat the
string as necessary. To avoid losing precisionin
the conversionto CS_CHAR, usethe conversion
sequence CS_MONEY to CS_NUMERIC to
CS_CHAR.
108 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbmnyscale MultipliesaDBMONEY value No direct equivaent.
by apositive integer (multiplier) yse cs_convert to convert the multiplier and
and add a specified amount addend values to equivalent CS_MONEY
(addend, in ten-thousandths). values, then use cs_calc to perform the
multiplication and addition.
dbmnysub Subtractsone DBMONEY value c¢s_calc
from another.
dbmnyzero InitializesaDBMONEY valueto Use memset (or an equivalent) to zero the fields
$0.0000. of the CS_MONEY structure.
dbmonthname Determines the name of a e cs_dt_info(CS_MONTH), or
specified monthinaspecified . s gt_info(CS_SHORTMONTH).
language.
DBMORECMDS Indicates whether therearemore No direct equivalent.
results to be processed. ct_results returns CS_END_RESULTS when all
results have been processed. Code your results
loop to processall results sent by the server, or to
cancel unexpected results.
For information on converting results-handling
code, see “Code that processes results’ on page
59.
For information on canceling commands, see
“Canceling results’ on page 72.
dbmoretext Sends part of atext or image ct_send_data
valueto the server. For usage information, see Table 6-6 on page 93.
dbmsghandle Installs auser function to handle ct_callback(CS_SERVERMSG_CB)
Server messages. See “Error and message handlers’ on page 47.
dbname Returns the name of the current No direct equivalent.
database. Send thefollowing language command to get the
information from Adaptive Server Enterprise:
select db name ()
dbnextrow Reads the next result row. ct_fetch (and ct_results if the query returns

Client-Library Migration Guide

compute rows).

See“Codethat processesresults’ on page 59 for
anillustration of how regular and compute rows
are handled.

To get the compute ID that is returned by
dbnextrow, use
ct_compute_info(CS_COMP_ID).

109

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbnpcreate Creates anotification procedure. No direct equivalent.

Invoke the Open Server system stored procedure
sp_regcreate with a Client-Library RPC
command. sp_regcreate isdocumented in the
Open Server Server-Library/C Reference
Manual.

dbnpdefine Defines anotification procedure. No direct equivalent.

Invoke the Open Server system stored procedure
sp_regcreate with a Client-Library RPC
command. sp_regcreate is documented in the
Open Server Server-Library/C Reference
Manual.

dbnullbind Associates an indicator variable ct_bind
with aregular result row column.

dbnumalts Returns the number of columns ct_res_info(CS_NUMDATA) when ct_results
in a compute row. returns with aresult_type of

CS_ COMPUTE_RESULT.

dbnumcols Determines the number of ct_res_info(CS_NUMDATA) when ct_results
regular columns for the current returns with aresult_type of
set of results. CS_ROW_RESULT.

dbnumcompute Returns the number of ct_res_info(CS_NUM_COMPUTES) when
COMPUTE clausesinthecurrent ct_results returns with aresult_type of
set of results. CS_ COMPUTE_RESULT.

DBNUMORDERS Returns the number of columns ct_res_info(CS_NUMORDERCOLS) returns
specified in a Transact-SQL with aresult_type of CS_ ROW_RESULT.
select statement’s order by
clause.

dbnumrets Determines the number of return ct_res_info(CS_NUMDATA)
parameter values generated by & ¢t resuits returns aresult_type of
stored procedure. CS PARAM_RESULT when the return

parameter values arrive.

dbopen Createsand initidizesa ct_connect
DBPROCESS structure. See “Code that opens a connection” on page 42

for usage information.
110 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbordercol

Returnsthe ID of acolumn
appearing in the most recently
executed query’s order by clause.

Replace with the following call sequence:

o ct_res_info(CS_NUMORDERCOLS) to get
the length of the order-by list.

» AllocateaCS _INT array to hold the order-by
list (or confirm that an existing array is large
enough).

» ct_res_info(CS_ORDERBY_COLS) to copy
the order-by list into the CS_INT array of
select-list identifiers.

dbpoll Checksif aserver responsehas ct_poll
arrived for a DBPROCESS.
Note Usage differs. Seethe “Asynchronous
Programming” topics page in the Open Client
Client-Library/C Reference Manual.
dbprhead Prints the column headings for No direct equivaent. Replace with application
rows returned from the server. code.
dbprrow Prints al the rows returned from No direct equivalent. Replace with application
the server. code.
The example function ex_fetch_data in the
exutils.c Client-Library sample program
provides similar functionality. For more details
of this sample program, see Open Client and
Open Server Programmers Supplement for your
platform.
dbprtype Converts atoken valueto a No direct equivalent. Replace with application

readable string.

Client-Library Migration Guide

code.

111

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbqual

Returns a pointer to awhere
clause suitable for usein
updating the current row in a
browsable table.

No direct equivalent. Replace with application
code that callsct_br_column and ct_br_table to
get the column and table names for building the
where clause.

Before sending the browse-mode query, the
application must allow theCS_HIDDEN_KEY S
command property. The application must also
bind to the tabl €’ stimestamp column and use the
timestamp in the where clause.

The format of the where clauseis:

where keyl = value 1
and key2 = value 2 ...
and tsequal (timestamp, ts value)

where:
* keyl, value 1, key2, value 2, and so forth are
the key columns and their values.

 ts valueisthe binary timestamp value
converted to a character string.

DBRBUF (UNIX and

Determines whether the DB-

No direct equivalent. Use an asynchronous

AOS/VS only) Library network buffer contains connection.
any unread bytes. See the “ Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual .
dbreadpage Reads apage of binary datafrom None.
the server.
dbreadtext Reads part of atext or image ct_get_data
value from the server. For usage information, see “ Retrieving text or
image data’ on page 88.
dbrecftos Records all SQL sent from the None.
application to the server. Use ct_debug to diagnose application problems.
dbrecvpassthru Receives a TDS packet from a ct_recvpassthru
server.
dbregdrop Drops aregistered procedure. No direct equivalent.
Invoke the Open Server system stored procedure
sp_regdrop with a Client-Library RPC
command. sp_regdrop is documented in the
Open Server Server-Library/C Reference
Manual.
dbregexec Executes aregistered procedure. ct_send
112 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbreghandle Installs a handler routine for a ct_callback
registered procedure notification. (CS_NOTIF_CB)
dbreginit Initiates execution of aregistered ct_command
procedure. (CS_RPC_CMD)
dbreglist Returns alist of registered No direct equivaent.
procedures currently definedin |y oke the Open Server system stored procedure
Open Server. sp_reglist with a Client-Library RPC command.
sp_reglist is documented in the Open Server
Server-Library/C Reference Manual.
dbregnowatch Cancelsarequest to be notified No direct equivalent.
when aregistered procedure Invoke the Open Server system stored procedure
executes. sp_regnowatch with a Client-Library RPC
command. sp_regnowatch is documented in the
Open Server Server-Library/C Reference
Manual.
dbregparam Defines or describesaregistered ct_param or ct_setparam
procedure parameter.
dbregwatch Requests notification when a No direct equivalent.

registered procedure executes.

Invoke the Open Server system stored procedure
sp_regwatch with a Client-Library RPC
command. sp_regwatch is documented in the
Open Server Server-Library/C Reference
Manual.

dbregwatchlist

Returns alist of registered
procedures that a DBPROCESS
iswatching for.

No direct equivalent.

Invoke the Open Server system stored procedure
sp_regwatchlist with a Client-Library RPC
command. sp_regwatchlist is documented in the
Open Server Server-Library/C Reference
Manual.

dbresults Sets up the results of the next ct_results
query. See “Code that processes results’ on page 59.
dbretdata Returns a pointer to areturn No direct equivaent. Bind and fetch the return

(output) parameter value
generated by a stored procedure.

Client-Library Migration Guide

parameter values, or use ct_get_data.
See “Retrieving data values’ on page 65.

113

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbretlen Determinesthelength of areturn No direct equivalent.
parameter value generated by & . se ct_describe to get the maximum possible
stored procedure. length of the data (in the maxiength field of
the CS_DATAFMT).

» Usethect_bind copied parameter to get the
length of data values placed into bound
variables.

» Usethect_get data outlen parameter to get
the length of data values retrieved with
ct_get_data.

dbretname Determines the name of the ct_describe
stored procedure parameter (The name field inthe CS_DATAFMT.)
associated with a particular
return parameter value.

dbretstatus Determines the stored procedure No direct equivalent.
status number returned by the Bind and fetch the return status value, or use
current command or RPC. ct_get_data.
See “Retrieving datavalues” on page 65.
dbrettype Determines the datatype of a ct_describe
reurn parameter value generated (The datatype field in the CS_DATAFMT.)
by a stored procedure.

DBROWS Indicates whether the current No direct equivalent.
command actually returned rows. ¢t resyits returns aresult_type value of

CS_ROW_RESULT when acommand has

returned rows.

See“ Code that processes results” on page 59.
DBROWTYPE Returns the type of the current ct_results indicates the type of the current result

row. set.

See“ Code that processes results’ on page 59.
dbrpcinit Initializes an RPC. ct_command(CS_RPC_COMMAND)
dbrpcparam Adds a parameter to an RPC. ct_param Of ct_setparam
dbrpcsend Signalsthe end of an RPC. ct_send
dbrpweclr Clearsall remote passwordsfrom ct_remote_pwd(CS_CLEAR)

the LOGINREC structure.
dbrpwset Adds aremote password to the ct_remote_pwd(CS_SET)
LOGINREC structure.
dbsafestr Doublesthe quotesin acharacter None. Replace with application code.
string.
114 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbsechandle

Installs user functions to handle
secure logins.

 ct_callback(CS_ENCRYPT_CB) to replace
dbsechandle(DBENCRY PT).

* ct_callback(CS_CHALLENGE_CB) to
replace dbsechandle(DBLABELS).

dbsendpassthru SendsaTDS packet to aserver. ct_sendpassthru
dbservcharset Obtains the name of the server No direct equivalent.
character set. For connectionsto Adaptive Server Enterpriseor
Open Server, send an RPC command to invoke
the sp_serverinfo Adaptive Server Enterprise
catalog stored procedure (or the Open Server
system registered procedure with the same
name). Pass the string “server_csname” asan
unnamed CS_CHAR parameter.
dbsetavail Marks aDBPROCESS asheing No direct equivaent.
available for general use. If the program logic relies on DBISAVAIL and
DBSETAVAIL, use
ct_con_props(CS_USER_DATA) or
ct_cmd_props(CS_USER_DATA) to replace
these cdlls.
dbsetbusy Calls a user-supplied function No direct equival ent—use asynchronous
when DB-Library isreadingfrom connectionsinstead.
the server. See the “ Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual.
dbsetconnect Sets the server connection ct_con_props(CS_SERVERADDR)
information.
dbsetdefcharset Sets the default character set The“default” entry inthelocalesfile determines
name for an application. the default character set for aCS_CONTEXT
structure. The application can change a context’s
character set with cs_loc_alloc, cs_locale, and
cs_config(CS_LOC_PROP).
dbsetdeflang Setsthe default languagename The“ default” entry inthelocalesfile determines

for an application.

Client-Library Migration Guide

the default language for aCS_CONTEXT
structure. The application can change a context’s
language with cs_loc_alloc, cs_locale, and
cs_config(CS_LOC_PROP).

115

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbsetidle

Calls a user-supplied function
when DB-Library has finished
reading from the server.

No direct equivalent.

Use an asynchronous connection. Client-Library
callsthe connection’s completion callback every
time an asynchronous routine completesitswork.

See the “ Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual.

dbsetifile

Specifies the name and location
of the Sybase interfacesfile.

ct_config(CS_IFILE)

cs_config(CS_DEFAULT _IFILE) specifiesthe
name and location of the alternate Sybase
interfacesfile.

dbsetinterrupt

Calls user-supplied functions to
handle interrupts while waiting
on aread from the server.

No direct equivalent.

On platforms where Client-Library uses signal-
driven1/O, usect_callback(CS_SIGNAL_CB) to
install system interrupt handlers.

If the application requires the ability to cancel
pending queries before Client-Library cals
compl ete, then use an asynchronous connection.
Use ct_cancel(CS_CANCEL_ATTN) to cancel
commands when the completion of a Client-
Library cal is pending.

DBSETLAPP

Sets the application name in the
LOGINREC structure.

ct_con_props(CS_APPNAME)

DBSETLCHARSET

116

Sets the character set in the
LOGINREC structure.

Replace with the following call sequence:

» cs_loc_alloc to alocateaCS LOCALE
structure.

e ct_con_props(CS_GET, CS LOC_PROP) to
copy the connection’sinternal CS_ LOCALE
structure.

* cs_locale(CS_SET, CS SYB_CHARSET) to
change the character set name.

e ct_con_props(CS_SET, CS_LOC_PROP) to
copy the modified CS_L OCALE structure
back into the connection.

* cs_loc_drop to drop the CS LOCALE.

If nearby DBSETLCHARSET and
DBSETLNATLANG calls are being replaced,
change both the language and the character set
in the third step.

Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

DBSETLENCRYPT Specifies whether or not ct_con_props(CS_SET,
password encryptionistobeused CS_SEC _ENCRYPTION)
when logging into Adaptive
Server Enterprise.
DBSETLHOST Sets the host namein the ct_con_props(CS_SET, CS HOSTNAME)
LOGINREC structure.
DBSETLNATLANG Setsthe national language name Replace with the following call sequence:

in the LOGINREC structure.

* cs_loc_alloc to alocateaCS LOCALE
structure.

* ct_con_props(CS_GET, CS LOC_PROP) to
copy the connection’sinternal CS_ LOCALE
structure.

* cs_locale(CS_SET,CS SYB_LANG) to set
the language name.

» ct_con_props(CS_SET, CS LOC_PROP) to
copy the modified CS_LOCALE structure
back into the connection.

* cs_loc_drop to drop the CS L OCALE.

If nearby DBSETLCHARSET and
DBSETLNATLANG calls are being replaced,
change both thelanguage and the character set
in the third step.

dbsetloginfo

Transfer TDS login information
fromaDBLOGINFO structureto
aLOGINREC structure.

ct_setloginfo

dbsetlogintime

Sets the number of seconds that
DB-Library waits for a server
response to arequest for a
DBPROCESS connection.

ct_config(CS_SET, CS LOGIN_TIMEOUT)

DBSETLPACKET Setsthe TDS packet sizein an ct_con_props(CS_SET, CS_PACKETSIZE)
application’s LOGINREC
structure.

DBSETLPWD Sets the user server passwordin ct_con_props(CS_SET, CS_PASSWORD)
the LOGINREC structure.

DBSETLUSER Sets the user namein the ct_con_props(CS_SET, CS_USERNAME)
LOGINREC structure.

dbsetmaxprocs Sets the maximum number of ct_config(CS_SET, CS_MAX_CONNECT)
simultaneously open
DBPROCESSes.

dbsetnull Defines substitution valuestobe cs_setnull

used when binding null values.

Client-Library Migration Guide

117

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbsetopt

Sets a server or DB-Library
option.

ct_options Sets server options. ct_config,
ct_con_props, and ct_cmd_props set Client-
Library properties.

dbsetrow Sets abuffered row to “current.” None. Client-Library does not provide built-in
support for row buffering.
dbsettime Sets the number of secondsthat ct_config(CS_SET, CS_TIMEOUT)
DB-Library will wait for aserver 14 cancel when atimeout occurs, call
response to a SQL. command. ct_cancel(CS_CANCEL_ATTN) in the client
message handler. The timeout error information
is:
+ Severity = CS SV_RETRY_FAIL
e Number =63
e Origin=2
e Layer=1
dbsetuserdata UsesaDBPROCESSstructureto User data can be installed at the context,

save a pointer to user-allocated
data

connection, or command level:
» cs_config(CS_USERDATA) setsor retrieves
context-level user data

e ct_con_props(CS_USERDATA) setsor
retrieves connection-level user data

e ct_cmd_props(CS_USERDATA) setsor
retrieves command-level user data

Child structures do not inherit
CS_USERDATA values.

dbsetversion

Specifiesa DB-Library version
level.

cs_ctx_alloc and ct_init both take aversion
number as a parameter.

dbspid Getstheserver process|D forthe No direct equivalent. For Adaptive Server

specified DBPROCESS. Enterprise, use the language command:
select @espid

dbsprirow Places one row of server query No direct equivalent. Replace with application
resultsinto a buffer. code.

dbsprilrowlen Determines how large abufferto No direct equivalent. Replace with application
dlocate to hold the results code.
returned by dbsprhead, dbsprline,
and dbsprirow.

dbsprhead Places the server query results No direct equivalent. Replace with application
header into a buffer. code.

dbsprline Choosesthecharacter withwhich No direct equivalent. Replace with application
to underline the column names code.
produced by dbsprhead.

118 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbsglexec

Sends a command batch to the
server.

ct_send sends the batch. ct_results gets the
server'sinitia response.

For information on converting dbsglexec return
code logic, see “ Code that processes results’ on
page 59.

dbsglok Waits for results from the server ct_results
andverifiesthe correctnessof the For jnformation on converting dbsglok return
instructions the server is code logic, see “ Code that processes results’ on
responding to. page 50.
dbsqglsend Sends a command batch to the ct_send
server and does not wait for a If the DB-Library application uses dbpoll after
response. dbsglsend, then use an asynchronous connection
in the converted application. Seethe
“Asynchronous Programming” topicspageinthe
Open Client Client-Library/C Reference Manual.
dbstrbuild Buildsaprintablestringfromtext cs_strbuild
containing place holders for
variables.
dbstrcmp Compares two character strings cs_stremp(CS_COMPARE)
using a specified sort order.
dbstrcpy Copiesaportion of thecommand No direct equivalent.
buffer. Format language commands before passing them
to ct_command. Theinternal language buffer is
not accessible to the application.
dbstrlen Returnsthelength, in characters, No direct equivalent.
of the command buffer. Format language commands before passing them
to ct_command. Theinternal language buffer is
not accessible to the application.
dbstrsort Determines which of two cs_stremp(CS_SORT)
character strings should appear
first in asorted list.
dbtabbrowse Determineswhether thespecified ct_br_table(CS_|ISBROWSE)
table can be updated with browse
mode updates.
dbtabcount Returns the number of tables ct_br_table(CS_TABNUM)
involved in the current select
query.
dbtabname Returnsthenameof atablebased ct_br_table(CS_TABNAME)
on its number.

Client-Library Migration Guide

119

Mapping DB-Library routines to Client-Library routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbtabsource Returns the name and number of ct_br_column
the table from which aparticular ~ (The tablename and tablenum fields of
result column was derived. CS BROWSEDESC.)
DBTDS Determines which version of ct_con_props(CS_TDS VERSION)
TDS (the Tabular Data Stream
protocol) is being used.
dbtextsize Returnsthe number of text/image ct_data_info(CS_GET) initializesaCS_|ODESC
bytesthat remainto beread for structure. The structure gives the total length of
the current row. text/image column in the total_txtlen field.
See“Client-Library’s CS_|ODESC structure”
on page 89.
dbtsnewlen Returns the length of the new No direct equivalent.
valueof thetimestamp column gee the entry for dbtsnewval in thistable.
after abrowse-mode update.
dbtsnewval Returns the new value of the No direct equivalent.
timestamp column after a After abrowse-mode update, the server sendsthe
browse-mode update. new timestamp as a parameter
(CS_PARAM_RESULT) result set. The
application binds and fetchesthe new timestamp.
The new timestamp can be used to build awhere
clause that updates the same row again.
dbtsput Puts the new value of the None. In DB-Library, dbtsput is used with
timestamp column into the given dbtsnewval. Neither routine has a Client-Library
table’s current row in the equivalent.
DBPROCESS. For a description of how consecutive browse
mode updates are implemented with Client-
Library, seethe entry for dotsnewval in thistable.
dbtxptr Returns the value of the text ct_data_info(CS_GET) (the textptr field of the

pointer for a column in the
current row.

CS_IODESC).

For usage information, see “Client-Library’s
CS_IODESC structure” on page 89.

dbtxtimestamp

120

Returns the value of the text
timestamp for acolumn in the
current row.

ct_data_info(CS_GET) (the timestamp field of
the CS_IODESC).

See“Client-Library’s CS_|ODESC structure”
on page 89.

Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines

DB-Library routine

DB-Library functionality

Client-Library or CS-Library equivalent

dbtxtsnewval Returnsthe new value of atext After the application sends a successful
timestamp after acall to text/image update with ct_send_data, the server
dbwritetext. sends the new timestamp as a parameter
(CS_PARAM_RESULT) result set.
The application should bind the returned
timestamp to the timestamp field of the
CS_|ODESC structure that is being used to
control the text/image update operation.
See “ Sending text or image data’ on page 91.
dbtxtsput Puts the new value of atext ct_data_info(CS_SET)
timestamp into the specified The timestamp is represented by the timestamp
column of the current row inthe fjgd of the CS IODESC structure.
DBPROCESS. oo .
For adescription of how the new text timestamp
isretrieved, seethe entry for dbtxtsnewval in this
table.
dbuse Uses a particular database. No direct equivalent.
Send alanguage command containing a
Transact-SQL use database command and
process the results.
dbvarylen Determineswhether thespecified None.
regular result column’s data can
vary inlength.
dbversion Determines which version of ct_config(CS_GET,CS VER_STRING) getsthe

DB-Library isin use.

Client-Library version string. (dbversion returns
the DB-Library version string.)
ct_config(CS_GET, CS_VERSION) getsa
CS_INT that matches the version with which
ct_init was called to initialize Client-Library for
this context.

dbwillconvert

Determines whether a specific
datatype conversion is available
within DB-Library.

cs_willconvert

dbwritepage Writes apage of binary datato None.
the server.
dbwritetext Sendsatext orimage valuetothe ct_send_data

server.

Client-Library Migration Guide

For usage information, see Table 6-6 on page 93.

121

Mapping DB-Library routines to Client-Library routines

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent

dbxlate Trandatesacharacter stringfrom No direct equivalent.
one character set to another.

Use the following call sequence to trand ate
strings from one character set to another:

e Cadl cs_loc_alloc to alocate two locales, locl
and loc2. Declare or allocate two
CS DATAFMT structures, srcfmt and
destfmt.

» Call cs_locale to configure the character sets
for locl and loc2.

» Assignlocl and loc2, respectively, asthe
locale fields of the srcfmt and destfmt
CS DATAFMT structures. Initialize the rest
of thefieldsin srcfmt and destfmt to describe
character data.

» Call cs_convert to convert strings from the
locl character set to the loc2 character set.
Before each call, set srcfmt.maxiength to the
length, in bytes, of the source string.

* Freethe CS_LOCALE structures with
cs_loc_drop.

122 Open Client

Index

A

ad hoc queries
resultshandling 69
application
whentoredesign 17
array binding
Client-Library 82
using 75
using with cursors 82
array binding with Client-Library
introduction 18
asynchronous mode 19
asynchronous programming 84
benefits 19
in Client-Library 83
interrupt-driven /O 84
layered applications 86
polling 84
threads 84

B

blanks
trailing 67
browse mode
replacing with Client-Library cursors 76, 81
bulk copy 87
interfaces 87
Bulk-Library
definition 87
differences from DB-Library’sbcp routines 88
setup 87
transferring data 87

C

cancelling

Client-Library Migration Guide

with ct_cancel 72
chunked retrieval of text/image values 88
Client-Library
array binding 18, 75
asynchronous programming 19
compared to DB-Library 2
compared to Embedded SQL 2
cursors 76, 78
introduction 1
mapping of DB-Library routines 97
properties 25
text/image interface 88
unique features 3
command buffer 52
command errors 62
command structure 28
commands
textandimage 88
compute row results
handling in DB-Library resultsloop 60
control structures 24
CS _CLIENTMSG structure
mapped to DB-Library error handler parameters
49
CS_COMMAND structure
definition 28
rules 28
cs_config
examplefragment 34
CS_CONNECTION structure
definition 27
rules 28
CS_CONTEXT structure
definition 26
cs_ctx_alloc
examplefragment 34
cs_ctx_drop
examplefragment 34
CS DATAFMT structure
compared to dbbind vartype format options 67

123

Index

using with ct_describe 69
CS_HIDDEN_KEY S property
using with ct_keydata 82
CS_|IODESC structure
compared to DB-Library text/imageroutines 89
defining text pointer and timestamp values for
text/image updates 90
retrieving with ct_data_info 89
CS_LOCALE structure
using 95
CS_SERVERMSG structure
mapped to DB-Library message handler parameters

48

csconfig.h

header file 24
CS-Library

definition 23

mapping of DB-Library routines 97
cspublic.h

header file 24
cstypes.h

header file 24
ct_callback

examplefragment 34
ct_close

examplefragment 44
ct_cmd_alloc

examplefragment 53
ct_command

compared to dbcmd and dbfcmd 52

compared to dbrpcinit 55

example for language commands 53

example for RPC commands 55

sending text/image valueswith 91
ct_con_alloc

examplefragment 44
ct_con_drop

examplefragment 44
ct_con_props

examplefragment 44

ct_connect

examplefragment 44
ct_describe

DB-Library routinesreplaced 70
ct_exit

examplefragment 34

124

chunked retrieval of text/imagevalues 88
ct_get data 88
compared to dbreadtext 88
replacing DB-Library calls 68
restrictions 68, 89
using instead of binding 68

ct_init

examplefragment 34
ct_keydata

redirecting cursor updates 81
ct_param

examplefragment 55
ct_poll

checking for asynchronous operation completions

84

compared to dbpoll 85

ct_res_info

example of getting count of affected rows 71
example of getting the current command number
71
ct_results 62
ct_send
examplefragment 53, 55
ct_send_data
compared to dbwritetext and dbmoretext 91
ct_wakeup
usein layered applications 86

ctpublic.h

header file 24
cursor results

rulesfor processing 77
cursors

array binding with Client-Library 82

Client-Library 76, 78, 81

client-side 76

comparing DB-Library and Client-Library features
76

comparing DB-Library callsto Client-Library calls
78

introduction to Client-Library cursors 18

server-side 76

D

dataretrieval

Open Client

dbbind compared to ct_bind 65
dbdata compared to ct_get_data 68

text/image 88

dbadata

compared toct_get_data 68
dbbind

compared to ct_bind 65
dbbind_ps

comparedtoct_bind 65
converting calls 65

dbcancel

converting calls 72
dbcanquery

converting calls 73
dbclose

converting code that closes aconnection 43
dbcmd

converting calls 52
DBCOUNT

convertingcalls 71

used with stored procedures 71
DBCURCMD

converting calls 70
DBCURROW

replacing callswith user code 72
dbdata

compared toct_get_data 68
dberrhandle

converting calls 33

dbexit
convertingcalls 34
dbfcmd
converting calls 52
dbinit
converting initialization code 33
DB-Library

cancelling results 72
compared to Client-Library 2
cursors 76
error and severity codes 51
mapping of routinesto Client-Library and CS-
Library 97
text/image interface 88
dblogin
converting calls 42
dbloginfree

Client-Library Migration Guide

Index

converting calls 43
dbmoretext

comparedtoct_send_data 91
dbmsghandle

converting calls 33
dbopen

converting code that opensa connection 43
DBPROCESS

converting docmd and dbfcmd calls 52
DBPROCESS structure 24

command buffer 52

compared to Client-Library’s CS_CONNECTION

27
converting dbclose calls 42
converting dbopen calls 42

dbreadtext

compared toct_get_data 88
dbrecvpassthru

Client-Library equivalent 59
dbresults

return codes and ct_results result_typevalues 61
dbretdata
compared toct_get_data 68

dbretstatus

compared toct_get_data 68
dbrpcinit

converting calls 55
dbrpcparam

converting calls 55
dbrpcsend

converting calls 55
dbsendpassthru

Client-Library equivalent 59
DBSETLAPP

converting calls 43
DBSETLPWD

converting calls 43
DBSETLUSER

converting calls 42
dbsqglexec

comparedtoct_send 53

return codes and ct_results result_typevalues 62
dbsqlok

return codes and ct_results result_typevalues 62
DBTY PEINFO structure

compared to CS DATAFMT 65

125

Index

dbwritetext
compared to ct_send_data 91
deciding whether to migrate 11

E

education
Client-Library class 16
error numbers
difference between DB-Library and Client-Library
errors
DB-Library error number and severity codes 51
indicated by CS_FAIL return code ix
example macro
EXIT_ON_FAIL X
EXIT_ON_FAIL examplemacro X

H
header file
csconfig.h 24
cspublich 24
cstypes.h 24
ctpublich 24
sglcah 24
header files
comparison of DB-Library and Client-Library 24
replacing DB-Library includes 24
I
imagevaues 88

initialization and cleanup
Client-Library example 34
interrupt-driven 1/0
asynchronous programming 84

L

language commands
converting typical DB-Library call sequence 52
example 53

126

51

libraries
development 15
production 15
LOGINREC structure 24
compared to Client-Library connection properties
44
converting DBSETLAPP and similar calls 42

M

mapping routines from DB-Library to Client-Library
97
migration
deciding whether to migrate 11
evaluating migration effort 12

N

native cursor
definition 76

O

opening connections
Client-Library example 44
comparing Client-Library callsto DB-Library cals
42

P

polling model
asynchronous programming 84
properties
compared to DB-Library routines 25
definition 25
inheritance of settings 26

R

regular row results
handling in DB-Library resultsloop 60

Open Client

required software for migration 15
resultshandling 62

ad hoc queries 69

getting column formats 69
return codes

checking for errors ix
return parameter results

handling in DB-Library resultsloop 60
return status results

handling in DB-Library resultsloop 60
routines

mapping DB-Library to Client-Library 97
row counts

after stored procedure execution 71
RPC commands

converting typical DB-Library call sequence 54

example 55

examplefor Client-Library 55

S

server-side cursor
definition 76
severity codes
difference between DB-Library and Client-Library
51
software
required for migration 15
sglca.h
header file 24
stored procedures
rows affected 71
structures 24, 25
comparing DB-Library and Client-Library 24
connection and command structurerules 28
CS_ COMMAND 28
CS_CONNECTION 27
CS_CONTEXT 26
CS IODESC 89
CS LOCALE 95
DBPROCESS 25
hidden 25
LOGINREC 44
Sybase training
Client-Library class 16

Client-Library Migration Guide

Index

T

text/image data
retrieving 88
sending 91
text/image interface
retrieving text and image data 88
sending text and image data 91
timestamps for text and image columns 90
using 88
threads 84
timestamps
text/image 90
trailing blanks
trimming 67
training classes
Sybase Education’s Client-Library class 16

U

unified results handling
benefits 17

127

Index

128 Open Client

	Client-Library Migration Guide
	About This Book
	CHAPTER 1 Understanding Client-Library
	What is Client-Library?
	Comparing the client interfaces
	What is unique about Client-Library?
	Tight integration with Open Server
	Client interface to server-side cursors
	Client interface to dynamic SQL
	Asynchronous mode
	Non-polling (interrupt-driven)
	Polling

	Multithreaded application support
	Support for network-based security and directory services
	Security services
	Directory services
	Where to go for more information

	User-defined datatypes and conversion routines
	Localization mechanisms
	Streamlined interface

	CHAPTER 2 Evaluating an Application for Migration
	Questions to consider
	Will the application benefit from migration?
	How much effort will the migration require?

	Summary

	CHAPTER 3 Planning for Migration
	Get software
	Learn about Client-Library
	Familiarize yourself with sample programs
	Isolate DB-Library code
	Consider application redesign
	Unified results handling
	Cursors
	Array binding
	Asynchronous mode
	Multithreading

	Review your estimate of the migration effort
	Plan for testing
	Develop a schedule
	Check your environment

	CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures
	Utility routines
	Header files
	Control structures
	Control structure properties
	Inherited property values
	Setting property values

	The CS_CONTEXT structure
	The CS_CONNECTION structure
	The CS_COMMAND structure
	Connection and command rules

	Other structures
	CS_DATAFMT
	CS_IODESC
	CS_LOCALE
	CS_BLKDESC

	CHAPTER 5 Converting DB-Library Application Code
	Conversion steps
	Initialization and cleanup code
	Comparing call sequences
	Example: Client-Library initialization and cleanup

	Code that opens a connection
	Comparing call sequences
	Client-Library enhancements
	Migrating LOGINREC code
	Example: Opening a Client-Library connection

	Error and message handlers
	Sequenced messages
	Replacing server message handlers
	Replacing DB-Library error handlers
	Error handler return values

	Code that sends commands
	Sending language commands
	Client-Library enhancements
	Example: Sending a Client-Library language command

	Sending RPC commands
	Client-Library enhancements
	Example: sending an RPC command

	TDS passthrough

	Code that processes results
	Program structure for results processing
	Comparing dbresults and ct_results return codes
	Handling command-processing errors
	Comparing ct_results’ result_type to DB-Library program logic

	Retrieving data values
	ct_bind versus dbbind
	ct_get_data versus dbdata
	Getting descriptions of result data

	Obtaining Results Statistics
	Obtaining the Command Number (DBCURCMD)
	Obtaining the Number of Rows Affected
	Obtaining the number of the current row

	Canceling results
	CS_CANCEL_ATTN
	CS_CANCEL_ALL
	CS_CANCEL_CURRENT

	CHAPTER 6 Advanced Topics
	Client-Library’s array binding
	Using Array Binding
	Array Binding Example

	Client-Library cursors
	Comparing DB-Library and Client-Library cursors
	Rules for Processing Cursor Results
	Comparing Cursor Routines
	DB-Library fetch types and Client-Library cursors
	Using ct_keydata

	Comparing Client-Library cursors to Browse Mode Updates
	Using Array Binding with Cursors
	Client-Library cursor example

	Asynchronous programming
	DB-Library’s Limited Asynchronous Support
	Client-Library asynchronous support
	Using ct_poll
	Using ct_wakeup

	Bulk copy interface
	Bulk-Library initialization and cleanup
	Transfer routines
	Other differences from DB-Library bulk copy

	Text/Image interface
	Retrieving text or image data
	DB-Library’s text timestamp
	Client-Library’s CS_IODESC structure
	Sending text or image data
	Text and image examples

	Localization
	CS_LOCALE Structure
	Localization precedence

	APPENDIX A Mapping DB-Library Routines to Client-Library Routines
	Mapping DB-Library routines to Client-Library routines

	Index

