
Client-Library Migration Guide
Open Client™
15.7

DOCUMENT ID: DC36065-01-1570-01

LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book .. vii

CHAPTER 1 Understanding Client-Library .. 1
What is Client-Library?... 1
Comparing the client interfaces.. 2
What is unique about Client-Library? ... 3

Tight integration with Open Server.. 4
Client interface to server-side cursors....................................... 4
Client interface to dynamic SQL.. 4
Asynchronous mode.. 5
Multithreaded application support ... 6
Support for network-based security and directory services....... 6
User-defined datatypes and conversion routines 7
Localization mechanisms .. 8
Streamlined interface .. 9

CHAPTER 2 Evaluating an Application for Migration 11
Questions to consider .. 11

Will the application benefit from migration?............................. 11
How much effort will the migration require? 12

Summary.. 14

CHAPTER 3 Planning for Migration .. 15
Get software... 15
Learn about Client-Library.. 16
Familiarize yourself with sample programs 17
Isolate DB-Library code.. 17
Consider application redesign.. 17

Unified results handling ... 17
Cursors.. 18
Array binding ... 18
Asynchronous mode.. 19
Multithreading.. 19
Client-Library Migration Guide iii

Contents
Review your estimate of the migration effort.................................. 19
Plan for testing ... 20
Develop a schedule.. 20
Check your environment .. 20

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures 23
Utility routines... 23
Header files .. 24
Control structures... 24

Control structure properties... 25
The CS_CONTEXT structure .. 26
The CS_CONNECTION structure ... 27
The CS_COMMAND structure .. 28
Connection and command rules.. 28

Other structures ... 28
CS_DATAFMT .. 28
CS_IODESC.. 29
CS_LOCALE ... 29
CS_BLKDESC... 29

CHAPTER 5 Converting DB-Library Application Code.................................... 31
Conversion steps ... 31
Initialization and cleanup code ... 32

Comparing call sequences .. 32
Example: Client-Library initialization and cleanup................... 34

Code that opens a connection ... 42
Comparing call sequences .. 42
Client-Library enhancements .. 43
Migrating LOGINREC code ... 44
Example: Opening a Client-Library connection 44

Error and message handlers.. 47
Sequenced messages... 48
Replacing server message handlers 48
Replacing DB-Library error handlers....................................... 49

Code that sends commands .. 51
Sending language commands... 52
Sending RPC commands .. 54
TDS passthrough .. 59

Code that processes results... 59
Program structure for results processing 59
Retrieving data values... 65
Obtaining Results Statistics... 70
Canceling results... 72
iv Open Client

Contents
CHAPTER 6 Advanced Topics .. 75
Client-Library’s array binding ... 75

Using Array Binding... 75
Array Binding Example.. 76

Client-Library cursors ... 76
Comparing DB-Library and Client-Library cursors 76
Rules for Processing Cursor Results 77
Comparing Cursor Routines.. 78
Comparing Client-Library cursors to Browse Mode Updates .. 81
Using Array Binding with Cursors.. 82
Client-Library cursor example ... 82

Asynchronous programming .. 83
DB-Library’s Limited Asynchronous Support........................... 83
Client-Library asynchronous support....................................... 83
Using ct_poll .. 84

Bulk copy interface... 87
Bulk-Library initialization and cleanup 87
Transfer routines ... 87
Other differences from DB-Library bulk copy 88

Text/Image interface .. 88
Retrieving text or image data .. 88
DB-Library’s text timestamp .. 89
Client-Library’s CS_IODESC structure.................................... 89
Sending text or image data ... 91
Text and image examples ... 93

Localization .. 94
CS_LOCALE Structure.. 95
Localization precedence.. 95

APPENDIX A Mapping DB-Library Routines to Client-Library Routines 97
Mapping DB-Library routines to Client-Library routines 97

Index ... 123
Client-Library Migration Guide v

Contents
vi Open Client

About This Book

This book contains information on how to migrate Open Client™ DB-
Library™ applications to Open Client Client-Library.

Audience This book has a dual audience:

• Managers or other decision makers who will decide whether to
migrate a particular DB-Library application to Client-Library.

• Experienced DB-Library programmers who will perform the
migration.

How to use this book This book contains these chapters:

• Chapter 1, “Understanding Client-Library” introduces Client-
Library and explains what is unique about Client-Library.

• Chapter 2, “Evaluating an Application for Migration” provides
guidelines to help you decide whether to migrate a DB-Library
application to Client-Library.

• Chapter 3, “Planning for Migration” contains practical information
on planning for migration.

• Chapter 4, “Comparing DB-Library and Client-Library
Infrastructures” compares the DB-Library and Client-Library
infrastructures.

• Chapter 5, “Converting DB-Library Application Code” explains
how to accomplish basic DB-Library tasks using Client-Library.

• Chapter 6, “Advanced Topics” contains information on more
advanced Client-Library features.

• Appendix A, “Mapping DB-Library Routines to Client-Library
Routines” maps DB-Library routines to Client-Library.

Related documents You can see these books for more information:

• The Open Server and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.
Client-Library Migration Guide vii

• The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

• The Software Developer’s Kit Release Bulletin for your platform contains
important last-minute information about Open Client™ and SDK.

• The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

• The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

• The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

• The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

• The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The Installation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option contains information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authentication in
the Kerberos security mechanism.
viii Open Client

 About This Book
• The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

• The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

• The Open Client Embedded SQL™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

• The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNIX, provides information on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

• The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide provides information for Perl developers to connect to an Adaptive
Server database and query or change information using a Perl script.

• The Adaptive Server Enterprise extension module for PHP Programmers
Guide provides information for PHP developers to execute queries against
an Adaptive Server database.

• The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Other sources of
information

Use the Sybase Getting Started CD and the Sybase Product Documentation
Web site to learn more about your product:
Client-Library Migration Guide ix

• The Getting Started CD contains release bulletins and installation guides
in PDF format. It is included with your software. To read or print
documents on the Getting Started CD, you need Adobe Acrobat Reader,
which you can download at no charge from the Adobe Web site using a
link provided on the CD.

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Return code error
checking in code
fragments

This book contains a number of code fragments taken from the set of migration
sample programs that Sybase provides on the World Wide Web.

The example fragments in this book use the EXIT_ON_FAIL() example macro,
which is as follows. Macros similar to this can simplify return code error
checking. However, this macro is not appropriate for every situation.

/*
** Define a macro that exits if a function return code indicates
** failure. Accepts a CS_CONTEXT pointer, a Client-Library
** or CS-Library return code, and an error string. If the
** return code is not CS_SUCCEED, the context will be
** cleaned up (if it is non-NULL), the error message is
** printed, and we exit to the operating system.
*/
#define EXIT_ON_FAIL(context, ret, str) {

if (ret != CS_SUCCEED)
{

fprintf(stderr, "Fatal error: %s\n", str);
if (context != (CS_CONTEXT *) NULL) {

(CS_VOID) ct_exit(context, CS_FORCE_EXIT);
(CS_VOID) cs_ctx_drop(context);

} \
exit(ERROR_EXIT);

}
}

World Wide Web
access

The migration sample programs are on the Sybase World Wide Web page at
http://www.sybase.com/detail?id=1013159. You can also find these sample
programs in the following Open Server™ installation directory:

On UNIX: $SYBASE/$SYBASE_OCS/sample/db2ct

On Windows: %SYBASE%\%SYBASE_OCS%\sample\db2ct
x Open Client

 About This Book
The README file provided with the migration samples contains a descriptive
list of the sample files.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.
Client-Library Migration Guide xi

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include the braces in the command.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.
xii Open Client

 About This Book
Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.
Client-Library Migration Guide xiii

xiv Open Client

C H A P T E R 1 Understanding Client-Library

This chapter introduces Client-Library and explains the unique features of
Client-Library.

This chapter covers the following topics:

What is Client-Library?
Client-Library is an applications programming interface (API) for use in
writing client applications. Client-Library provides generic building
blocks for constructing distributed client applications, including non-
database applications.

Although Sybase supports several other client interfaces, including DB-
Library, ODBC, and Embedded SQL™, Client-Library offers powerful
advantages to the application programmer:

• It is both query-language-independent and database-independent,
enabling application programmers to create a wide range of powerful,
flexible applications.

• It shares type definitions, defines, and data element descriptions with
Sybase’s Open Server Server-Library interface, enabling application
programmers to integrate client functionality into Server-Library
applications.

• It provides an asynchronous interface, enabling application
programmers to develop applications that simultaneously perform
multiple work requests.

• It allows programmers to set configuration properties in a runtime
configuration file, without making changes to the application itself.

Topic Page
What is Client-Library? 1

Comparing the client interfaces 2

What is unique about Client-Library? 3
Client-Library Migration Guide 1

Comparing the client interfaces
Client-Library is the API of choice for new Sybase customers and customers
writing new applications. For customers with existing DB-Library
applications, choosing to migrate to Client-Library depends on whether the
applications need access to new Sybase functionality and how much effort the
migration requires.

Comparing the client interfaces
Table 1-1 compares Sybase’s client interfaces:

Table 1-1: Comparing Sybase’s client interfaces

Client-Library DB-Library Embedded SQL ODBC

Available
Client/Server
features

All DB-Library does not support
new features added to Client-
Library version 11.0 and later,
except for these:

• dbsetconnect routine that
specifies server connection
information

• SYBOCS_DBVERSION
environment variable that
externally configures
DB-Library version level at
runtime

• LDAP directory service
support on Windows
platform

• MIT Kerberos network and
mutual authentication
services on Linux, Solaris,
and Microsoft Windows
platforms

For information about these
features, see the Open Client
DB-Library/C Reference
Manual.

All except data
stream messaging
and registered
procedure
notifications

Similar to
DB-Library;
different
implementations
may provide
different feature
sets, or may
implement the
same feature
differently

Query-language
independent?

Yes No No No
2 Open Client

CHAPTER 1 Understanding Client-Library
What is unique about Client-Library?
Of Sybase’s client interfaces, Client-Library is the only one that supports the
following features:

• Tight integration with Open Server

• Client interface to server-side cursors

• Client interface to dynamic SQL

• Asynchronous mode of operation

• Multithreaded application support

• Support for network-based directory and security services

• User-defined datatypes and conversion routines

• Localization mechanisms

• A streamlined interface

Supports non-
database
development?

Yes No Yes No

Interface style Synchronous or
asynchronous

Synchronous Synchronous Synchronous

Chief advantages Powerful,
generic, portable

Simple, portable Simple, portable,
and an international
standard

Simple, widely
available

Chief
disadvantages

Learning curve
associated with a
new interface

Sybase-specific, does not
support all generic
client/server services

Less flexible than
call-level interfaces

Lack of a single
conformance test
suite for all
implementations
results in a
mixed level of
function support

Client-Library DB-Library Embedded SQL ODBC
Client-Library Migration Guide 3

What is unique about Client-Library?
Tight integration with Open Server
Client-Library and Server-Library share public type definitions, macros, and
data element descriptions. In addition, both Client-Library and Server-Library
applications use CS-Library routines to allocate common data structures,
handle localization, and convert data values.

This tight integration allows Server-Library and gateway applications to
include Client-Library-based functionality.

Client interface to server-side cursors
Cursors are a powerful data management tool. They allow client applications
to update individual result rows while processing a result set. A server-side
cursor, sometimes called a “native cursor,” is a cursor that exists on Adaptive
Server Enterprise.

Client-Library fully supports server-side cursors, providing a call-level
interface that allows client applications to declare, open, and manipulate
server-side cursors.

DB-Library does not support server-side cursors. Instead, it supports a type of
cursor emulation known as “client-side cursors.” Client-side cursors do not
correspond to actual Adaptive Server Enterprise cursors. Instead, DB-Library
buffers rows internally and performs all necessary keyset management, row
positioning, and concurrency control to manage the cursor.

Client-Library’s cursor functionality replaces DB-Library’s row buffering
functionality, which carries a memory and performance penalty because each
row in the buffer is allocated and freed individually.

Client interface to dynamic SQL
Dynamic SQL allows applications to create compiled SQL statements (called
“prepared statements”) on the server and execute them at will. The statements
can include placeholder variables whose values can be supplied at runtime by
application end users. The client application can query the server for the
formats of the statement’s input values, if any.

Client-Library fully supports dynamic SQL, providing a call-level interface
that implements the ANSI-standard embedded SQL prepare, execute, and
execute immediate statements. Client-Library also allows applications to get
descriptions of prepared-statement input and output.
4 Open Client

CHAPTER 1 Understanding Client-Library
Client applications typically use dynamic SQL to allow end users to customize
SQL statements at runtime. For example, an application might prepare a SQL
query retrieving all known information about a particular customer. This query
is prepared as a dynamic SQL statement with a placeholder variable: the
customer’s name. At runtime, the application’s end user supplies the
customer’s name and executes the prepared statement.

Asynchronous mode
Client-Library’s asynchronous mode allows applications to constructively use
time that might otherwise be spent waiting for certain types of operations to
complete. Typically, reading from or writing to a network or external device is
much slower than straightforward program execution.

When asynchronous behavior is enabled, all Client-Library routines that could
potentially block program execution behave asynchronously. That is, they
either:

• Initiate the requested operation and return immediately, or

• Return immediately with information that an asynchronous operation is
already pending.

Applications can learn of operation completions using one of two models:

• Non-polling (interrupt-driven)

• Polling

Non-polling (interrupt-driven)

The non-polling model is available on platforms that support interrupt-driven
I/O or multithreading. These platforms include all UNIX and Microsoft
Windows platforms.

When an asynchronous operation completes, Client-Library automatically
triggers the programmer-installed completion callback routine. The
completion callback routine typically notifies the application’s main code of
the asynchronous routine’s completion.

Polling

The polling model is available on all platforms. If portability is a concern,
polling is recommended.
Client-Library Migration Guide 5

What is unique about Client-Library?
In the polling model, an application calls ct_poll to determine if an
asynchronous operation has completed. If it has, then ct_poll automatically
triggers the programmer-installed completion callback routine.

Multithreaded application support
Client-Library and later provide reentrant libraries that support thread-safe
applications on most platforms. In some situations, Client-Library developers
can use a multithreaded design to improve response time or throughput. For
example:

• An interactive Client-Library application can use one thread to query a
server and another thread to manage the user interface. Such an application
seems more responsive to the user because the user-interface thread is able
to respond to user actions while the query thread is waiting for results.

• An application that uses several connections to one or more servers can
run each connection within a dedicated thread. While one thread is waiting
for command results, the other threads can be processing received results
or sending new commands. Such an approach may increase throughput
because the application spends less idle time while waiting for results.

See the Client-Library chapter in the Open Client and Open Server
Programmers Supplement for information on which system thread libraries, if
any, can be linked with Client-Library on your platform.

See “Multithreaded Programming” in the Open Client Client-Library/C
Reference Manual for information on coding Client-Library calls in a
multithreaded application.

Support for network-based security and directory services
Client-Library and Server-Library allow applications to take advantage of
distributed network security and directory services.

Security services

Using Sybase-supplied security drivers, client/server applications can be
integrated with distributed network security software, such as CyberSafe
Kerberos, MIT Kerberos, Secure Sockets Layer (SSL), or Microsoft Windows
LAN Manager. The application can then use network-based security features
such as:
6 Open Client

CHAPTER 1 Understanding Client-Library
• Centralized user authentication: Application user names and passwords
are maintained by the network security system, rather than on each Sybase
server. Users log in to the network security system, and need not provide
their password when logging in to servers.

• Secure connections over insecure networks: Client-Library and Server-
Library can interact with the network security system to perform per-
packet security services, such as encryption or integrity checking. These
services allow applications to safely transmit confidential data and
commands over a communication medium that may not be physically
secure, such as a wireless service or a leased line.

Directory services

Network-based directory software, such as Lightweight Directory Access
Protocol (LDAP), provides an alternative to maintaining several interfaces
files. Using a Sybase-supplied directory driver, applications communicate with
the directory-provider software to look up the network addresses for a named
Sybase server.

Where to go for more information

See the Open Client and Open Server Configuration Guide for information on
what directory and security drivers are available on your system and how they
are configured.

See the following sections in the Open Client Client-Library/C Reference
Manual for descriptions of how applications are coded to use network-based
directory and security services:

• “Directory Services” topics section

• “Security Features” topics section

User-defined datatypes and conversion routines
Applications often need to use user-defined types. Client-Library makes it easy
for applications to both create and convert user-defined datatypes:
Client-Library Migration Guide 7

What is unique about Client-Library?
• In Client-Library applications, user-defined types are C-language types.
To create them, an application simply declares them. (Don’t confuse
Client-Library user-defined types with Adaptive Server Enterprise user-
defined types, which are database column datatypes created with the
system stored procedure sp_addtype.)

• To convert user-defined types to and from other user-defined types and
standard Client-Library types, you can write custom conversion routines
and add code to install them in Client-Library. Once the conversion
routines are installed, Client-Library calls your custom routines to
transparently handle all conversions.

CS-Library routines related to user-defined types include:

• cs_set_convert – installs a custom conversion routine to convert between
standard Open Client and user-defined datatypes.

• cs_will_convert – indicates whether conversion of a datatype is supported.

• cs_setnull – defines a null substitution value for a user-defined datatype.

Localization mechanisms
An internationalized application can run in multiple language environments
with no change. In each environment, the application localizes—that is,
determines what language, character set, and datetime and money formats to
use—through the use of external information, such as an external configuration
file or environment variable.

Client-Library includes powerful localization mechanisms that make it easy to
develop internationalized applications:

• The locales file maps locale names to language/character-set/sort-order
combinations.

• Applications can check the value of environment variables at runtime to
determine what locale to use.

• Applications can use different locales for different parts of an application.
For example, an internationalized sales application that runs in French in
France and Italian in Italy might generate reports for the London office
using a U.S. English locale.
8 Open Client

CHAPTER 1 Understanding Client-Library
Streamlined interface
Client-Library is a streamlined interface. Both Client-Library and CS-Library
together have fewer than 64 routines, while DB-Library has more than 200.
(Bulk copy routines are excluded from both counts.)

In addition, Client-Library provides a unified results-processing model in
which applications use the same routines to process all types of results.

Client-Library’s size and consistent design make it easier to use.
Client-Library Migration Guide 9

What is unique about Client-Library?
10 Open Client

C H A P T E R 2 Evaluating an Application for
Migration

This chapter provides guidelines to help you decide whether to migrate a
DB-Library application to Client-Library.

Questions to consider
There are two primary questions to keep in mind when deciding whether
to migrate a DB-Library application to Client-Library:

• Will the application benefit from migration?

• How much effort will the migration require?

After answering these questions, decide whether or not to migrate by
balancing the benefits against the required effort.

Will the application benefit from migration?
Applications that need enhancement or access to new Sybase features
generally benefit from migration:

• Client-Library supports all current Sybase server features and
includes a number of valuable features of its own. (See “What is
unique about Client-Library?” on page 3.)

• Client-Library supports threadsafe applications with reentrant
libraries, while DB-Library does not.

• Client-Library supports network-based directory and security
services while DB-Library does not. (See “Support for network-
based security and directory services” on page 6.)

Applications that do not need enhancement or access to new Sybase
features will not benefit from migration.
Client-Library Migration Guide 11

Questions to consider
How much effort will the migration require?
In order to understand how much effort a given DB-Library-to-Client-Library
migration will take, you need to examine the DB-Library application in terms
of what tasks it performs and what routines it uses.

Some DB-Library tasks, such as sending a SQL command to a server, are
straightforward in both libraries. Other tasks, such as using Open Server
registered procedures, are more complex in Client-Library.

Table 2-1 classifies typical DB-Library application tasks according to the
degree of effort required to duplicate the same application functionality with
Client-Library:

Table 2-1: DB-Library tasks ranked by migration effort required

DB-Library task
Partial list of related
routines

Degree of effort
required for
migration Notes

Sending a Transact-SQL
language command to a
server

dbcmd, dbfcmd,
dbsqlexec

Less than average Sending language commands is
straightforward in Client-
Library.

Sending an RPC
command to a server

dbrpcinit, dbrpcparam,
dbrpcsend

Less than average Sending RPC commands is
straightforward in Client-
Library.

Inserting and retrieving
text and image data from a
server

dbreadtext, dbwritetext,
dbtxtptr, dbtxtimestamp

Less than average Client-Library handles text and
image data more gracefully than
DB-Library.

Manipulating datetime
values

dbdatename,
dbdatepart, dbdatezero

Average Client-Library does not provide
direct equivalents for these
routines. Instead, use
cs_dt_crack and cs_dt_info.

Automatic result row
formatting

dbprhead, dbprrow,
dbspr1row, dbsprhead

Average Client-Library does not provide
equivalent routines, which can
easily be replaced by application
code such as that found in the
exutils.c Client-Library sample
program.

Applications that use these
routines for debugging purposes
can use ct_debug instead.
12 Open Client

CHAPTER 2 Evaluating an Application for Migration
Bulk copy operations Bulk copy routines Average DB-Library’s bcp_ routines
include built-in file I/O routines,
which read and write host data
files and format files, and write
error files.

Client-Library applications use
Bulk-Library, which does not
include file I/O routines.

Use pointers to result data
instead of binding the data

dbdata, dbadata Average Currently, Client-Library
applications are required to bind
results to memory in the
application’s data space.

Row buffering DBCURROW,
DBFIRSTROW,
DBLASTROW,
dbsetrow

More than average Client-Library provides cursor
and array-binding functionality
as an alternative to row
buffering. Using cursors to
replace row buffering may
require some application design
work.

Registered procedures dbnpcreate,
dbnpdefine, dbregdrop

More than average Client-Library does not provide
equivalent routines.

Client-Library applications
must send RPC commands to
invoke the Open Server system
registered procedures
sp_regcreate and sp_regdrop to
create and drop registered
procedures.

Read and write Adaptive
Server Enterprise pages

dbreadpage,
dbwritepage

Do not convert Client-Library does not support
this functionality.

DB-Library task
Partial list of related
routines

Degree of effort
required for
migration Notes
Client-Library Migration Guide 13

Summary
Summary
When trying to determine whether a given migration is worth the effort,
remember that because Client-Library is a generic interface, applications that
use it are in an excellent position to take advantage of new Sybase and industry
technologies.

If your application is still evolving—that is, if it will probably change in order
to meet future needs—it is a good candidate for migration.

Two-phase commit Two-phase commit
routines

Do not convert Client-Library does not provide
equivalent routines. Instead,
Client-Library supports
transaction monitors to control
transactions.

View the two-phase commit
sample programs available in
these directories:

• $SYBASE/$SYBASE_OCS/
sample/ctlibrary on UNIX
platforms

• %SYBASE%\
%SYBASE_OCS%\sample\
ctlib on Windows

DB-Library task
Partial list of related
routines

Degree of effort
required for
migration Notes
14 Open Client

C H A P T E R 3 Planning for Migration

This chapter contains practical information on planning for migration.

Get software
Both Client-Library and DB-Library are packaged as part of the Software
Developer’s Kit.

The kit contains the following software components:

• Production libraries

These are runtime libraries for production DB-Library and Client-
Library applications. On Microsoft systems, the libraries are import
libraries and DLLs. On UNIX systems, they are static and
shared-object libraries.

• Development libraries

These libraries contain debug symbols and trace code for the Client-
Library routine ct_debug.

• Bulk-Library, Embedded SQL/C (ESQL/C) and ESQL/COBOL

• Include files

Topic Page
Get software 15

Learn about Client-Library 16

Familiarize yourself with sample programs 17

Isolate DB-Library code 17

Consider application redesign 17

Review your estimate of the migration effort 19

Plan for testing 20

Develop a schedule 20

Check your environment 20
Client-Library Migration Guide 15

Learn about Client-Library
• Sample programs

Client-Library includes a number of sophisticated sample programs that
illustrate Client-Library features. See the Open Client and Open Server
Programmers Supplement for your platform.

• Net-Library drivers

Learn about Client-Library
The more you understand about Client-Library before starting to code, the
smoother the migration process will be.

Resources for learning about Client-Library include:

• Sybase Education’s Client-Library class, “Open Client Using
Client-Library.” For more information, call Sybase Education at 1-800-8-
SYBASE.

• The Client-Library sample programs included with the software.

• The Open Client Client-Library/C Programmers Guide. This book
contains basic information on how to structure Client-Library programs.

• The following chapters contain information on how to perform specific
DB-Library application tasks using Client-Library:

• Chapter 4, “Comparing DB-Library and Client-Library
Infrastructures”

• Chapter 5, “Converting DB-Library Application Code”

• Chapter 6, “Advanced Topics”

In particular, Chapter 5, “Converting DB-Library Application Code,”
contains side-by-side comparisons of DB-Library and Client-Library call
sequences for common application tasks.
16 Open Client

CHAPTER 3 Planning for Migration
Familiarize yourself with sample programs
Sybase provides a set of migration sample programs that are available on the
Sybase Web site at http://www.sybase.com/detail?id=1013159 to help you
understand how to convert DB-Library code to Client-Library.

Isolate DB-Library code
If possible, isolate DB-Library code from the rest of your application code
before you begin the migration. DB-Library code located in separate routines
or modules is easier to evaluate, easier to replace, and the converted code will
be easier to debug after migration.

If you make code changes to isolate the DB-Library code, test the application
to make sure the changed code works correctly before you introduce Client-
Library functionality.

Consider application redesign
Migration offers an excellent opportunity to redesign an application to take
advantage of Client-Library features that DB-Library does not support. You
may want to consider redesigning your application to take advantage of new
Adaptive Server Enterprise features as well.

The following sections discuss specific opportunities for redesign.

Unified results handling
DB-Library does not use a unified-results handling model. Instead,
applications retrieve different types of results by calling different routines:

• Regular row result columns are bound with dbbind, but compute row result
columns are bound with dbaltbind.

• Regular and compute row data is fetched with dbnextrow, but stored
procedure return parameters are retrieved with dbretdata.

In contrast, Client-Library offers the following:
Client-Library Migration Guide 17

Consider application redesign
• All types of fetchable data are bound with ct_bind and fetched with ct_fetch

• The unified results handling model allows applications to consolidate
results handling code

See “Code that processes results” on page 59.

Cursors
Client-Library (server-side) cursors replace several types of DB-Library
functionality:

• DB-Library cursors

Client-Library (server-side) cursors are faster than DB-Library cursors.
The Client-Library supports scrollable cursors wherein you can set the
position of a cursor anywhere in the cursor result set. You can navigate
forward or backward in the result set from a given current position, using
either absolute or relative row number offsets into the result set. In
addition, you can also use the fetch orientations like NEXT, FIRST, LAST,
and PREVIOUS within the result set to select single rows for further
processing.

• DB-Library browse mode

Although Client-Library supports browse mode, cursors provide the same
functionality in a more portable and flexible manner.

DB-Library applications that use cursors or browse mode can benefit from
redesign to use Client-Library (server-side) cursors.

See “Client-Library cursors” on page 76.

Array binding
Client-Library’s array binding allows an application to bind a result column to
an array of program variables. Multiple rows’ worth of column values are then
fetched with a single call to ct_fetch.

Array binding can increase application performance, especially when result
sets are large (more than 20 rows) and contain only a few small columns (total
row size of less than 512 bytes).

Array sizes of 4 to 16 are most effective; larger array sizes do not increase
throughput significantly.
18 Open Client

CHAPTER 3 Planning for Migration
DB-Library applications that use row buffering can often use Client-Library
array binding instead.

See “Client-Library’s array binding” on page 75.

Asynchronous mode
Client-Library’s asynchronous mode allows applications to perform
potentially blocking operations asynchronously. This can be an enormous
benefit to end-user applications using a GUI interface, because it allows
application users to proceed with other work while waiting for blocked
operations to complete.

Synchronous DB-Library applications are often improved by redesign as
asynchronous Client-Library applications.

See “Asynchronous programming” on page 83.

Multithreading
Multithreading can improve response time in interactive applications and may
improve throughput in batch-processing applications. See “Multithreaded
application support” on page 6.

Review your estimate of the migration effort
Now that you understand Client-Library, know how much and what sort of DB-
Library code your application contains, and have decided what parts, if any, of
your application to redesign, reevaluate your previous estimate of the
migration effort.

Redesign does add to migration time, but it is generally worth the effort.
Client-Library Migration Guide 19

Plan for testing
Plan for testing
Develop a test plan and create a test environment before beginning the
migration. Make sure you can compare test results from the Client-Library
application with those from the DB-Library application.

Develop a schedule
When scheduling migration tasks, it would be useful to first categorize them by
degree of difficulty and then schedule them accordingly.

Sybase recommends scheduling the easiest migration tasks first, the most
difficult tasks second, and the medium-level tasks third.

Do not leave the most difficult tasks for last if you are on a tight schedule.

Check your environment
Verify that your migration environment is complete and correctly configured:

• Is Client-Library installed?

• Are your servers at the correct version?

• Are your servers set up to support your application? For example, if you
intend to use implicit cursors, you must be using version 12.5 or later. Are
they configured for the right number of connections? Do they have the
right databases installed?

• Do the Client-Library sample programs run correctly? If they do not, fix
any problems with your environment before continuing.

• Is your test environment set up?

After completing the planning steps outlined in this chapter, you are ready to
code. Chapters 4, 5, and 6 of this book contain information essential to this
coding stage:

• Chapter 4, “Comparing DB-Library and Client-Library Infrastructures,”
compares header files, utility routines, and data structures.
20 Open Client

CHAPTER 3 Planning for Migration
• Chapter 5, “Converting DB-Library Application Code,” explains how
basic DB-Library programming tasks can be accomplished with Client-
Library.

• Chapter 6, “Advanced Topics,” discusses more advanced programming
tasks.
Client-Library Migration Guide 21

Check your environment
22 Open Client

C H A P T E R 4 Comparing DB-Library and
Client-Library Infrastructures

This chapter compares the DB-Library and Client-Library infrastructures.

Utility routines
DB-Library utility routines are included as part of DB-Library, while
utility routines for Client-Library applications are provided by
CS-Library.

Note dblib-based bcp calls are not supported against DOL or XNL tables.
This factor needs to be considered by developers.

CS-Library is a shared Open Client and Open Server library that includes
routines for use in both Client-Library and Open Server Server-Library
applications.

CS-Library includes routines to support the following:

• Datatype conversion – cs_convert can replace calls to dbconvert.

• Arithmetic operations – cs_calc can replace many different dbmny
calls.

• Character-set conversion – cs_locale and cs_convert can replace calls
to dbload_xlate and dbxlate.

• Datetime operations – cs_dt_crack can replace dbdtcrack calls.

• Sort-order operations – cs_strcmp can replace dbstrsort calls.

Topic Page
Utility routines 23

Header files 24

Control structures 24

Other structures 28
Client-Library Migration Guide 23

Header files
• Localized error messages – cs_strbuild can replace dbstrbuild calls.

CS-Library is documented in the Open Client and Open Server Common
Libraries Reference Manual.

Header files
DB-Library uses the sybfront.h, sybdb.h, and syberror.h header files.

Client-Library uses the ctpublic.h header file:

• ctpublic.h includes cspublic.h, which is CS-Library’s header file.

• cspublic.h includes:

• cstypes.h, which contains type definitions for Client-library datatypes

• csconfig.h, which contains platform-dependent datatypes and
definitions

• sqlca.h, which contains a typedef for the SQLCA structure

When migrating your application, replace DB-Library header file names with
the Client-Library header file name (ctpublic.h).

Note Because ctpublic.h includes cspublic.h, which in turn includes all other
required header files, the application itself needs only to include ctpublic.h.

Control structures
DB-Library uses two main control structures: LOGINREC and DBPROCESS.

Client-Library uses three control structures: CS_CONTEXT,
CS_CONNECTION, and CS_COMMAND.

• The CS_CONTEXT structure defines an application context, or operating
environment.

• The CS_CONNECTION structure defines a client/server connection
within an application context. Multiple connections are allowed per
context.
24 Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures
• The CS_COMMAND structure defines a command space within a
connection. Multiple command structures are allowed per connection.

The CS_CONTEXT structure has no real DB-Library equivalent but stores
information similar to that stored in DB-Library hidden global variables.

Together, the CS_CONNECTION and CS_COMMAND structures roughly
correspond to the DBPROCESS structure.

Unlike DB-Library structures, Client-Library control structures are truly
hidden: The structure names are defined in Client Library’s public header files,
but the fields are not.

Note In this document, CS_CONTEXT structures are also called “context
structures,” CS_CONNECTION structures are also called “connection
structures,” and CS_COMMAND structures are also called “command
structures.”

Control structure properties
Client-Library control structures have properties. Some property values
determine how Client-Library behaves, while others are just information
associated with the control structure.

For example:

• CS_TIMEOUT is a CS_CONTEXT structure property. Its value
determines how long Client-Library waits for a server response before
raising a timeout error. DB-Library applications specify a timeout value
with dbsettime, and the timeout value is a hidden DB-Library global
variable.

• CS_NETIO is a CS_CONNECTION structure property. Its value
determines whether network I/O is synchronous, fully asynchronous, or
deferred asynchronous. DB-Library has no similar concept. A DB-Library
application calls different routines to get synchronous or asynchronous
behavior.
Client-Library Migration Guide 25

Control structures
• CS_USERNAME is a CS_CONNECTION structure property. Its value
specifies the user name to log in to the server. The Client-Library
application sets the username before opening a connection with
ct_connect. With the connection open, the property is read-only. A DB-
Library application specifies a packet size by calling the DBSETLUSER
macro to change the contents of the LOGINREC structure; when dbopen
is called, the LOGINREC password becomes the DBPROCESS
username.

• CS_USERDATA is a CS_CONNECTION structure property and a
CS_COMMAND structure property. Its value is the address of user data
that is associated with a particular connection or command structure. The
use of the CS_USERDATA property is similar to the use of dbgetuserdata
and dbsetuserdata in a DB-Library application.

Inherited property values

Every CS_COMMAND structure has a parent CS_CONNECTION structure,
and every CS_CONNECTION structure has a parent CS_CONTEXT
structure.

When a structure is allocated, it inherits all applicable property values from its
parent.

For example, a new CS_CONNECTION structure will inherit its parent
CS_CONTEXT’s CS_NETIO value. If the parent CS_CONTEXT is set up to
use synchronous network I/O, the new CS_CONNECTION will also be
synchronous.

Inherited property values can be changed after a structure is allocated.

Setting property values

Client-Library, CS-Library, and Server-Library all include routines to set and
retrieve property values.

The CS_CONTEXT structure
The CS_CONTEXT structure defines an application context, or operating
environment. Although an application can have multiple CS_CONTEXT
structures, typical applications have only one.
26 Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures
Applications use the CS_CONTEXT structure to define Client-Library
behavior at the highest level:

• CS_CONTEXT structure properties replace DB-Library hidden global
variables. For example, a call to dbsettime in a DB-Library application
changed a global timeout value. In a Client-Library application, setting the
CS_TIMEOUT property affects only the child connections of that
particular CS_CONTEXT structure.

• Message and error handlers that are installed for a CS_CONTEXT
structure are inherited by all CS_CONNECTIONs allocated within that
CS_CONTEXT.

• CS_CONTEXT can include locale information such as locale name,
language, and date order.

The CS_CONNECTION structure
The CS_CONNECTION structure defines a connection from a client
application to a remote server. Applications use the CS_CONNECTION
structure to define Client-Library behavior at the connection level, and to store
and retrieve information about a connection:

• CS_CONNECTION properties customize connection behavior. For
example, an application can set the CS_TDS_VERSION connection
property to request that a connection use a certain Tabular Data Stream™
(TDS) protocol version.

• A CS_CONNECTION inherits message and error handlers from its parent
context, but an application can override these default handlers by
installing new ones.

The Client-Library CS_CONNECTION structure has several advantages over
the DB-Library DBPROCESS:

• Message and error handlers can be installed on a per-connection basis.

• Login information is bound to the connection: Login parameters become
read-only properties after the connection is established.

• A Client-Library connection can simultaneously support an active cursor
and another command.
Client-Library Migration Guide 27

Other structures
The CS_COMMAND structure
The CS_COMMAND structure defines a command space within a
client/server connection.

Applications use CS_COMMAND structures to send commands to servers and
process the results of those commands.

Connection and command rules
Applications can have multiple command structures active on the same
connection only when using Client-Library cursors. Client-Library cursors
allow the application to send new commands while processing rows returned
by the cursor.

When processing the results of a command other than a Client-Library cursor
open command, the application cannot send additional commands over the
same connection until the results of the original command have been
completely processed or canceled.

See Chapter 7, “Using Client-Library Cursors,” in the Open Client Client-
Library/C Programmers Guide.

Other structures
In addition to its three basic control structures, Client-Library uses other
structures:

• CS_DATAFMT

• CS_IODESC

• CS_LOCALE

• CS_BLKDESC

CS_DATAFMT
Applications use the CS_DATAFMT structure to describe data values and
program variables to Client-Library routines.
28 Open Client

CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures
For example:

• ct_bind requires a CS_DATAFMT structure describing a destination
variable.

• ct_describe fills a CS_DATAFMT structure describing a result data item.

• ct_param requires a CS_DATAFMT structure describing an input
parameter.

• cs_convert requires CS_DATAFMT structures describing source and
destination data.

For information on how to use a CS_DATAFMT with ct_bind or ct_describe,
see the Open Client Client-Library/C Reference Manual. For information on
how to use a CS_DATAFMT with cs_convert, see the Open Client and Open
Server Common Libraries Reference Manual.

CS_IODESC
Applications typically use the CS_IODESC structure when manipulating text
or image data. The CS_IODESC structure defines an I/O descriptor for a
column in the current row of a result set. This structure contains the column’s
text timestamp and other information about the column data.

See “Client-Library’s CS_IODESC structure” on page 89.

CS_LOCALE
Applications use the CS_LOCALE structure to supply custom localization
information at the context, connection, or data element level.

See “CS_LOCALE Structure” on page 95.

CS_BLKDESC
Applications use the CS_BLKDESC when performing bulk copy operations.

See “Bulk-Library initialization and cleanup” on page 87.
Client-Library Migration Guide 29

Other structures
30 Open Client

C H A P T E R 5 Converting DB-Library
Application Code

This chapter provides information necessary for successfully converting a
DB-Library program to Client-Library program.

This chapter covers the following topics:

Conversion steps
Converting a DB-Library program to its Client-Library equivalent
generally involves the following steps:

1 Replace DB-Library header file names with the Client-Library header
file name (see “Header files” on page 24).

2 Plan the code conversion. Client application code can be split roughly
into the categories covered in this chapter:

• Initialization and cleanup code

• Code that opens a connection

• Error and message handlers

• Code that sends commands

• Code that processes results

Topic Page
Conversion steps 31

Initialization and cleanup code 32

Code that opens a connection 42

Error and message handlers 47

Code that sends commands 51

Code that processes results 59
Client-Library Migration Guide 31

Initialization and cleanup code
Each section shows equivalent DB-Library and Client-Library program
logic. Before beginning the conversion, read these sections to ensure that
you understand Client-Library fundamentals. Other, more advanced
features are discussed in Chapter 6, “Advanced Topics.”

3 Perform the conversion:

4 Replace or remove DB-Library declarations, as appropriate.

5 Replace DB-Library function calls with their Client-Library or CS-
Library equivalents, changing program logic as necessary. Table A-1 on
page 97 lists DB-Library routines and their Client-Library equivalents.

Note The code fragments in this chapter use an EXIT_ON_FAIL example
macro, as specified in the migration sample dbtoctex.h. For information on this
macro, see “Return code error checking in code fragments” on page ix.

Initialization and cleanup code
Initialization sets up the programming environment for a DB-Library or Client-
Library program. Cleanup closes connections and deallocates library data
structures.

Comparing call sequences
Table 5-1 compares the DB-Library calls used for initialization and cleanup
with their Client-Library equivalents. For Client-Library, the default version
level supports all the features starting with 10.x.

For detailed descriptions of each routine, see the reference page for the routine.
32 Open Client

CHAPTER 5 Converting DB-Library Application Code
Table 5-1: DB-Library vs. Client-Library—initialization and cleanup

DB-Library routines
DB-Library
functionality Client-Library routines

Client-Library
functionality

(none) cs_ctx_alloc(version,
context)

Allocate a CS_CONTEXT
structure and specify the
version level for desired CS-
Library behavior. version
can be CS_VERSION_120,
CS_VERSION_125,
CS_VERSION_150,
CS_VERSION_155, or
CS_VERSION_157.

(none) cs_config(context,
CS_SET,
CS_MESSAGE_CB,
handler, CS_UNUSED,
NULL)

Install CS-Library error-
handler callback function.

dbinit() Initialize DB-
Library.

ct_init(context, version) Initialize Client-Library and
specify the version level for
desired behavior.

dbsetversion(dbproc,
version)

(For DB-Library 10.x
or later applications
only.) Specify the
version level for
desired behavior.
version can be
DBVERSION_46 or
DBVERSION_100.
Sybase recommends
DBVERSION_100
to be able to use the
features and code
changes introduced
in the updated
versions.

(none)

dberrhandle(handler) Install DB-Library
error callback
function.

ct_callback(context,
NULL,CS_SET,
CS_CLIENTMSG_CB,
handler)

Install Client-Library error
callback function.

See “Error and message
handlers” on page 47.

dbmsghandle(handler) Install DB-Library
server message
callback function.

ct_callback(context,
NULL, CS_SET,
CS_SERVERMSG_CB,
handler)

Install Client-Library server
message callback function.

See “Error and message
handlers” on page 47.
Client-Library Migration Guide 33

Initialization and cleanup code
The Client-Library application must allocate and deallocate CS_CONTEXT
structure. CS_CONTEXT serves as “handle” for basic application properties,
such as the language and character set for error messages and the application’s
default error and message callbacks. See “The CS_CONTEXT structure” on
page 26.

Example: Client-Library initialization and cleanup
The following code fragment, taken from the ctfirst.c migration sample
program, illustrates Client-Library initialization and cleanup.

The fragment installs error handlers for CS-Library and Client-Library, as well
as a Client-Library server message callback. For examples of a Client-Library
error handler and a server message handler, see the “Callbacks” topics page in
the Open Client Client-Library/C Reference Manual. For an example CS-
Library error handler, see the Open Client and Open Server Common Libraries
Reference Manual.

CS_CONTEXT *context = (CS_CONTEXT *) NULL;
CS_CONNECTION *conn;
CS_RETCODE ret;

/*
** Setup screen output.
*/

(See Table 5-2: DB-Library
vs. Client-Library—opening
a connection)

Open connection(s). See Table 5-2. Open connection(s). Before
you open the connection, set
the required properties for
the context/connection.

dbexit() Close and deallocate
all DBPROCESS
structures and clean
up any structures
initialized by dbinit.

ct_exit(context, option) Exit Client-Library. Before
exiting Client-Library,
deallocate all open
command and context
structures.

option is normally
CS_UNUSED.
CS_FORCE_EXIT is useful
when exiting because of an
error.

(none) cs_ctx_drop(context) Deallocate a
CS_CONTEXT structure.

DB-Library routines
DB-Library
functionality Client-Library routines

Client-Library
functionality
34 Open Client

CHAPTER 5 Converting DB-Library Application Code
EX_SCREEN_INIT();

/*
** Step 1.
** Allocate a CS_CONTEXT structure and initialize Client-Libary. The
** EXIT_ON_FAIL() macro used for return code error checking is defined in
** dbtoctex.h. If the return code passed to EXIT_ON_FAIL() is not CS_SUCCEED,
** it:
- Cleans up the context structure if the pointer is not NULL.
- Exits to the operating system.
**
-- if (dbinit() == FAIL
-- exit(ERREXIT);
*/

ret = cs_ctx_alloc(CS_CURRENT_VERSION, &context);
EXIT_ON_FAIL(context, ret, "Could not allocate context.");

ret = ct_init(context, CS_CURRENT_VERSION);
EXIT_ON_FAIL(context, ret, "Client-Library initialization failed.");

/*
** Step 2.
** Install callback handlers for CS-Library errors, Client-Library errors, and
** Server-Library errors. The handlers are defined at the bottom of
** this source file.
**
-- dberrhandle(err_handler);
-- dbmsghandle(msg_handler);
*/

/*
** cs_config() installs a handler for CS-Library errors.
*/

ret = cs_config(context, CS_SET, CS_MESSAGE_CB, (CS_VOID *) cserror_cb,
CS_UNUSED, NULL);

EXIT_ON_FAIL(context, ret, "Could not install CS-Library error handler.");

/*
** ct_callback() installs handlers for Client-Library errors and server
messages.
**
** ct_callback() lets you install handlers in the context or the connection.
** Here, we install them in the context so that they are inherited by the
** connections that are allocated using this context.
*/

ret = ct_callback(context, NULL, CS_SET, CS_CLIENTMSG_CB, (CS_VOID
clientmsg_cb);
Client-Library Migration Guide 35

Initialization and cleanup code
EXIT_ON_FAIL(context,ret,"Could not install Client-Library error handler.");
ret = ct_callback(context, NULL, CS_SET, CS_SERVERMSG_CB, (CS_VOID *)

servermsg_cb);
EXIT_ON_FAIL(context,ret,"Could not install server message handler.");
... deleted code that connects and interacts with the server ...
/*
** Clean up Client-Library.
** ct_exit(context, CS_UNUSED) requests an "orderly" exit -- this
** call fails if we have open connections. If it fails, EXIT_ON_FAIL() calls
** ct_exit(context, CS_FORCE_EXIT) to force cleanup of Client-Library.
*/
ret = ct_exit(context, CS_UNUSED);
EXIT_ON_FAIL(context, ret, "ct_exit(CS_UNUSED) failed.");

/*
** Clean up CS-Library. cs_ctx_drop() always fails if ct_init()
** succeeded on the context but ct_exit() did not (or if ct_exit()
** was not called at all).
*/
(CS_VOID) cs_ctx_drop(context);
context = (CS_CONTEXT *) NULL;
exit(NORMAL_EXIT);
/*
** clientmsg_cb() -- Callback handler for Client-Library messages.
** Client-Library messages inform the application of errors or
** significant conditions.
** Parameters:
** context -- Pointer to the context structure where the error occurred.
** The handler can retrieve context properties and set the CS_USERDATA
** property.
** connection -- Pointer to the connection on which the error occurred.
** This parameter can be NULL if no connection was involved in the
** error. If connection is non-NULL, the handler can retrieve connection
** properties, set the CS_USERDATA property, and call
** ct_cancel(CS_CANCEL_ATTN) on the connection.
** errmsg -- Pointer to a CS_CLIENTMSG structure that describes the
** error. See the "CS_CLIENTMSG" topics page in the Client-Library
** reference manual for a description of the fields.
** Returns: CS_SUCCEED
** Side Effects: None.
*/
CS_RETCODE CS_PUBLIC
clientmsg_cb(context, connection, errmsg)
CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_CLIENTMSG *errmsg;
36 Open Client

CHAPTER 5 Converting DB-Library Application Code
CS_RETCODE ret;
CS_INT timeout_val;
/*
** Composition of error messages.
** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** Client-Library message numbers encode values for severity,
** layer, origin, and number. The layer, origin, and number
** correspond to national language strings from the ctlib.loc
** locales file. Client-Library composes the text of the message
** (received in errmsg->msgstring) as follows:
** <routine name>: <layer string>: <origin string>: <description>
** where:
** <routine name> is the name of the Client-Library routine
** that was active when the exception occurred.
** <layer string> describes the layer where the exception occurred
** or was found.
** <origin string> indicates whether the error is internal or external
** to Client-Library.
** <description> is the error description.
*/
fprintf(ERR_CH, "Client-Library Message: ");
fprintf(ERR_CH, "LAYER = (%ld) ORIGIN = (%ld) ",
(long)CS_LAYER(errmsg->msgnumber), (long)CS_ORIGIN(errmsg->msgnumber));

fprintf(ERR_CH, "SEVERITY = (%ld) NUMBER = (%ld)\n",
long)CS_SEVERITY(errmsg->msgnumber), (long)CS_NUMBER(errmsg->msgnumber));

fprintf(ERR_CH, "Message String: %s\n", errmsg->msgstring);
/*
** Operating system errors.
** ~~~~~~~~~~~~~~~~~~~~~~~
** Some exceptions reported by Client-Library are caused by exceptions
** in the underlying system software. When this occurs, Client-Library
** forwards the system error information to the application.
*/
if (errmsg->osstringlen > 0)
{
fprintf(ERR_CH, "Operating System Error: %s\n",
errmsg->osstring);
}
/*
** Handler return values and their meaning.
** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** Client-Library error handlers must return CS_SUCCEED or CS_FAIL.
Client-Library Migration Guide 37

Initialization and cleanup code
** Returning any other value "kills" the connection -- Client-

** Library responds by marking the connection "dead", which makes

** it unuseable. You can test for dead connections by retrieving

** the value of the CS_CON_STATUS connection property, which is

** a bit-masked value. The CS_CONSTAT_DEAD bit is set if the connection
** is dead. This functionality replaces DB-Library's DBDEAD() macro.
** Unlike the DB-Library error handler, there is no return code that

** causes Client-Library to exit to the operating system. The application
** must check return codes in the main-line code and abort from the
** main-line code.
*/
/*
** (Optional) Test for specific error conditions.
** ~~~
** The ERROR_SNOL() macro is defined at the top of this file.
** The component byte values of a message number (origin, layer, and
** number) are defined in the Client-Library locales file.
*/
/*
** Test for timeout errors. Timeout errors will be received when you:
** -- are using a synchronous mode connection,
** -- have set the CS_TIMEOUT context property to a non-zero positive value
** (representing a number of seconds).
** -- the server takes longer than the given time to respond to a command.
** For timeout errors, the command can be canceled with
** ct_cancel(CS_CANCEL_ATTN). Other ct_cancel() options are not
** to be used in an error handler. If we return CS_SUCCEED
** without canceling, then Client-Library will wait for another
** timeout period, then call this error handler again. If the
** we return CS_FAIL, then Client-Library kills the
** connection, making it unuseable.
*/
if (ERROR_SNOL(errmsg->msgnumber, CS_SV_RETRY_FAIL, 63, 2, 1))
{
/*
38 Open Client

CHAPTER 5 Converting DB-Library Application Code
** Get the timeout period. This is not really neccessary, but
** demonstrated to show the correlation between timeout errors
** and the CS_TIMEOUT context property.
*/
ret = ct_config(context, CS_GET, CS_TIMEOUT, CS_VOID *)&timeout_val, CS_UNUSED,
(CS_INT *)NULL);
if (ret != CS_SUCCEED)
{
timeout_val = 0;
}
fprintf(ERR_CH, "\nServer has not responded in at least %ld seconds.
Canceling.\n",(long)timeout_val);
(CS_VOID)ct_cancel(connection, (CS_COMMAND *)NULL, CS_CANCEL_ATTN);
}
return CS_SUCCEED;
} /* clientmsg_cb() */
/*
** cserror_cb() -- Callback handler for CS-Library errors.
** Parameters:
** context -- Pointer to the context structure passed to the CS-Library
** call where the error occurred. The handler can retrieve any
** context property, and set the CS_USERDATA property.
** errmsg -- Pointer to a CS_CLIENTMSG structure that describes the
** error. See the "CS_CLIENTMSG" topics page in the Client-Library
** reference manual for a description of the fields.
** Returns: CS_SUCCEED
** Side Effects: None
*/
CS_RETCODE CS_PUBLIC
cserror_cb(context, errmsg)
CS_CONTEXT *context;
CS_CLIENTMSG *errmsg;
{
/*
** Composition of error messages.
** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** CS-Library message numbers are decoded the same way as Client-
** Library messages. See the comments in clientmsg_cb() for a
** description.
*/
fprintf(ERR_CH, "CS-Library error: ");
fprintf(ERR_CH, "LAYER = (%ld) ORIGIN = (%ld) ",
(long)CS_LAYER(errmsg->msgnumber), (long)CS_ORIGIN(errmsg->msgnumber));
fprintf(ERR_CH, "SEVERITY = (%ld) NUMBER = (%ld)\n",
(long)CS_SEVERITY(errmsg->msgnumber), (long)CS_NUMBER(errmsg->msgnumber));
fprintf(ERR_CH, "Message String: %s\n", errmsg->msgstring);
Client-Library Migration Guide 39

Initialization and cleanup code
/*
** Operating System Errors.
** ~~~~~~~~~~~~~~~~~~~~~~~
** If an operating system error occurred and CS-Library was notified,
** then CS-Library forwards the error information to the application.
*/
if (errmsg->osstringlen > 0)
{
 fprintf(ERR_CH, "Operating System Error: %s\n", errmsg->osstring);
}
/*
** Handler Return Values.
** ~~~~~~~~~~~~~~~~~~~~~
** CS-Library error handlers should return CS_SUCCEED.
*/
return CS_SUCCEED;
} /* cserror_cb */
/*
** servermsg_cb() -- Callback handler for server messages. The
** server sends messages to describe errors or significant
** events. Client-Library calls this function to forward
** server messages to the client program.
** Parameters:
** context -- Pointer to the context structure that is the parent of
** the connection. The handler can retrieve context properties
** and set the CS_USERDATA property.
** connection -- Pointer to the connection on which the message was
** received. The handler can retrieve any connection property, set
** the CS_USERDATA property, and call ct_cancel(CS_CANCEL_ATTN)
** on the connection. In addition, when the server sends
** extended error data with a message, the handler can retrieve
** the data. This handler ignores extended error data.
** srvmsg -- Pointer to a CS_SERVERMSG structure that contains the
** message info. See the "CS_SERVERMSG" topics page in the Client-
** Library reference manual for a description of the fields. All the
** information that the DB-Library message handler received as
** parameters is available in the CS_SERVERMSG structure.
** Returns: CS_SUCCEED
** Side Effects: None
*/
CS_RETCODE CS_PUBLIC
servermsg_cb(context, connection, srvmsg);
CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_SERVERMSG *srvmsg;
{

40 Open Client

CHAPTER 5 Converting DB-Library Application Code
/*
** CS_SERVERMSG Fields.
** ~~~~~~~~~~~~~~~~~~~
** When connected to an Adaptive Server Enterprise, most of the CS_SERVERMSG
fields
** have corresponding columns in the sysmessages system table. When
** connected to an Open Server, it's up to the Open Server programmer
** to set the fields for the messages sent by the Open Server.
*/
fprintf(ERR_CH, "Server message: ");
/*
** For Adaptive Server Enterprise connections, srvmsg->number and srvmsg-
>severity come
** from the sysmessages system table, columns 'error' and 'severity',
** respectively.
*/
fprintf(ERR_CH, "Number %ld, Severity %ld, ",
long)srvmsg->msgnumber, (long)srvmsg->severity);
/*
** For Adaptive Server Enterprise connections, srvmsg->line is the line number
** in a language batch, or, if srvmsg->proclen field is > 0, the
** line number within the stored procedure named in srvmsg->proc.
** srvmsg->state is the Adaptive Server Enterprise error state, which provides
** information to Sybase Technical Support about serious Adaptive
** Server errors.
*/
fprintf(ERR_CH, "State %ld, Line %ld\n",
(long)srvmsg->state, (long)srvmsg->line);
/*
** For Adaptive Server Enterprise connections, srvmsg->srvname is the value of
** the @@servername global variable. See the Adaptive Server Enterprise
documentation
** for information on how to set or change @@servername.
*/
if (srvmsg->svrnlen > 0)
{
fprintf(ERR_CH, "Server '%s'\n", srvmsg->svrname);
}
/*
** For Adaptive Server Enterprise connections, srvmsg->proclen is > 0 if the
message
** was raised while executing a stored procedure. srvmsg->proc is the
** procedure name in this case, and srvmsg->line is the line in the
** procedure's code where the error or condition was raised.
*/
if (srvmsg->proclen > 0)
Client-Library Migration Guide 41

Code that opens a connection
{
fprintf(ERR_CH, " Procedure '%s'\n", srvmsg->proc);

}
/*
** Finally, for Adaptive Server Enterprise connections, srvmsg->text is the text
of the
** message from the 'description' column in sysmessages.
*/
fprintf(ERR_CH, "Message String: %s\n", srvmsg->text);

/*
** The Client-Library message handler must return CS_SUCCEED.
** Returning any other value "kills" the connection -- Client-
** Library responds by marking the connection "dead", which makes
** it unuseable.
*/
return CS_SUCCEED;
} /* servermsg_cb() */

Code that opens a connection
DB-Library applications use the LOGINREC and DBPROCESS structure to
open a connection to the server. Client-Library uses the CS_CONNECTION
hidden structure. See “The CS_CONNECTION structure” on page 27.

Comparing call sequences
Table 5-2 compares DB-Library routines used for opening a connection with
their Client-Library equivalents:

Table 5-2: DB-Library vs. Client-Library—opening a connection

DB-Library routines
DB-Library
functionality Client-Library routines

Client-Library
functionality

dblogin() Allocate a LOGINREC
for use in dbopen.

ct_con_alloc(context,
connection)

Allocate a
CS_CONNECTION
structure.

DBSETLUSER(
loginrec,
username)

Set the username in the
LOGINREC structure.

ct_con_props(
connection, CS_SET,
CS_USERNAME,
username, buflen, NULL)

Set the user name property
in the connection structure.
42 Open Client

CHAPTER 5 Converting DB-Library Application Code
Client-Library enhancements
Client-Library applications can also establish connections using network-
based user authentication that is provided by a network-based security
mechanism such as Windows NT Lan Manager (SSPI) and Kerberos. In this
case, the Client-Library application performs the following tasks instead of
calling ct_con_props to set the user name and password:

• (Optional) Specifies a security mechanism for the connection by setting
the CS_SEC_MECHANISM connection property. Most applications will
use the default, which is defined by the Sybase security driver
configuration.

• Sets the connection’s CS_USERNAME property to match the user’s
network name.

DBSETLPWD(
loginrec, password)

Set the user server
password in the
LOGINREC structure.

ct_con_props(
connection, CS_SET,
CS_PASSWORD,
password, buflen, NULL)

Set the user server password
property in the connection
structure.

DBSETLAPP(
loginrec,
application)

Set the application name
in the LOGINREC
structure.

ct_con_props(
connection, CS_SET,
CS_APPNAME,
appname, buflen, NULL)

Set the application name
property in the connection
structure.

dbopen(loginrec,
server)

Connect to a server (and
allocate the
DBPROCESS).

ct_connect(connection,
server_name, snamelen)

Connect to a server (with the
pre-allocated connection
structure).

dbloginfree(
loginrec)

Free the LOGINREC
structure.

None

language commands,
RPC commands, and
TDS passthrough calls

Send requests and
process results using a
DBPROCESS structure.

CS_COMMAND

(See “Code that sends
commands” on page 51)

Send requests and process
results using a command
structure.

dbclose(dbproc) Close and deallocate a
DBPROCESS structure.

ct_close(connection,
option)

Close a server connection.

option is normally
CS_UNUSED.
CS_FORCE_CLOSE is
useful when closing the
connection because of an
error.

(none) ct_con_drop(connection) Deallocate a connection
structure.

DB-Library routines
DB-Library
functionality Client-Library routines

Client-Library
functionality
Client-Library Migration Guide 43

Code that opens a connection
• Sets the CS_SEC_NETWORKAUTH connection property to allow
network-based authentication.

Network-based authentication requires a Sybase security driver for the
network security mechanism. Not all servers support network-based
authentication. For more detailed information, see the “Security Features”
topics page in the Open Client Client-Library/C Reference Manual.

Migrating LOGINREC code
In DB-Library, applications use the LOGINREC structure to customize a
connection before opening it. In Client-Library applications, use
CS_CONNECTION properties to customize a connection before opening it.

To replace DB-Library code that uses the same LOGINREC structure to open
several connections, you can use ct_getloginfo and ct_setloginfo, as follows:

1 Allocate a connection structure with ct_con_alloc.

2 Customize the connection with calls to ct_con_props.

3 Open the connection with ct_connect.

4 For each connection to be opened with the same login properties:

• Call ct_getloginfo to allocate a CS_LOGINFO structure and copy the
original connection‘s login properties into it.

• Allocate a new connection structure with ct_con_alloc.

• Call ct_setloginfo to copy login properties from the CS_LOGINFO
structure to the new connection structure. After copying the
properties, ct_setloginfo deallocates the CS_LOGINFO structure.

• Customize any non-login properties in the new connection with calls
to ct_con_props.

• Open the new connection with ct_connect.

Example: Opening a Client-Library connection
The following code fragment, taken from the ctfirst.c migration sample
program, illustrates opening a Client-Library connection:

... deleted initialization code ...
/*
44 Open Client

CHAPTER 5 Converting DB-Library Application Code
** Step 1.
** Allocate a CS_CONTEXT structure and initialize Client-Libary. The
** EXIT_ON_FAIL() macro used for return code error checking is defined in
** dbtoctex.h. If the return code passed to EXIT_ON_FAIL() is not CS_SUCCEED,
** it:
- Cleans up the context structure if the pointer is not NULL.
- Exits to the operating system.
**
-- if (dbinit() == FAIL
-- exit(ERREXIT);
*/

ret = cs_ctx_alloc(CS_CURRENT_VERSION, &context);
EXIT_ON_FAIL(context, ret, "Could not allocate context.");
ret = ct_init(context, CS_CURRENT_VERSION);
EXIT_ON_FAIL(context, ret, "Client-Library initialization failed.");
/*
... deleted code that defines callback handlers ...

/*
** Step 3.
** Connect to the server named by the DSQUERY environment
** variable using the credentials defined in dbtoctex.h
**
** 3a. Allocate a CS_CONNECTION structure.
** 3b. Insert the username, password, and other login parameters
** into the connection structure.
** 3c. Call ct_connect(), passing the CS_CONNECTION as an argument.
*/
/*
** Step 3a.
** Allocate a CS_CONNECTION structure. The CS_CONNECTION replaces
** DB-Library's LOGINREC and DBPROCESS structures. The LOGINREC
** fields are connection properties in Client-Library.
**
-- login = dblogin();
-- if (login == (LOGINREC *) NULL)
-- {
-- fprintf(ERR_CH, "dblogin() failed. Exiting.\n");
-- dbexit();
-- exit(ERREXIT);
-- }
*/
ret = ct_con_alloc(context, &conn);
EXIT_ON_FAIL(context, ret, "Allocate connection structure failed.");
/*
** Step 3b.
Client-Library Migration Guide 45

Code that opens a connection
** Put the username, password, and other login information into the
** connection structure. We do this with ct_con_props() calls.
** After the connection is open, Client-Library makes these properties
** read-only.
**
** USER and PASSWORD are defined in dbtoctex.h
**
-- DBSETLUSER(login, USER);
-- DBSETLPWD(login, PASSWORD);
-- DBSETLAPP(login, "dbfirst");
*/
ret = ct_con_props(conn, CS_SET, CS_USERNAME, USER, STRLEN(USER), NULL);
EXIT_ON_FAIL(context, ret, "Set connection username failed.");
ret = ct_con_props(conn, CS_SET, CS_PASSWORD, PASSWORD, STRLEN(PASSWORD),NULL);
EXIT_ON_FAIL(context, ret, "Set connection password failed.");
ret = ct_con_props(conn, CS_SET, CS_APPNAME, "ctfirst", STRLEN("ctfirst"),

NULL);
EXIT_ON_FAIL(context, ret, "Set connection application name failed.");
/*
** Step 3c.
** Call ct_connect() to open the connection. Unlike dbopen(), ct_connect()
** uses a connection structure which is already allocated.
**
-- dbproc = dbopen(login, NULL);
-- if (dbproc == (DBPROCESS *) NULL)
-- {
-- fprintf(ERR_CH, "Connect attempt failed. Exiting.\n");
-- dbexit();
-- exit(ERREXIT);
-- }
*/
ret = ct_connect(conn, NULL, STRLEN(NULL));
EXIT_ON_FAIL(context, ret, "Connection attempt failed.");
... deleted command code ...
/*
** Step 5.
** Close our connection. CS_UNUSED as the second ct_close() parameter
** requests an "orderly" close. This means that we expect the connection to
** be idle. If we had issued a command to the server, but had not
** read all the results sent by the server, then the connection would
** not be idle and this call would fail.
**
** If ct_close() were to fail here, then the code in EXIT_ON_FAIL() would
** ct_exit(CS_FORCE_EXIT) to force all connections closed before exiting.
**
-- dbclose(dbproc);
46 Open Client

CHAPTER 5 Converting DB-Library Application Code
*/
ret = ct_close(conn, CS_UNUSED);
EXIT_ON_FAIL(context, ret, "Orderly connection-close failed.");
ret = ct_con_drop(conn);
EXIT_ON_FAIL(context, ret, "ct_con_drop() failed.");
/*
** Clean up Client-Library.
** ct_exit(context, CS_UNUSED) requests an "orderly" exit -- this
** call fails if we have open connections. If it fails, EXIT_ON_FAIL()
** calls ct_exit(context, CS_FORCE_EXIT) to force cleanup of Client-Library.
*/
ret = ct_exit(context, CS_UNUSED);
EXIT_ON_FAIL(context, ret, "ct_exit(CS_UNUSED) failed.");
/*
** Clean up CS-Library. cs_ctx_drop() always fails if ct_init()
** succeeded on the context but ct_exit() did not (or if ct_exit()
** was not called at all).
*/
(CS_VOID) cs_ctx_drop(context);
context = (CS_CONTEXT *) NULL;
exit(NORMAL_EXIT);
}
... deleted error callback routine code ...

Error and message handlers
Most applications use callback routines to handle errors messages.

Client-Library provides in-line message handling as an alternative to callback
message handling. In-line message handling gives an application control over
when it handles messages. The ct_diag routine initializes in-line message
handling at the connection level.

Client-Library and CS-Library use structures to return error and message
information to message callback routines:

• The CS_CLIENTMSG structure describes Client-Library and CS-Library
errors. The structure is passed to an application’s Client-Library or CS-
Library error handler. Most of the fields in this structure map directly to
DB-Library error handler parameters.
Client-Library Migration Guide 47

Error and message handlers
• The CS_SERVERMSG structure describes server messages and is passed
to an application’s server message handler. Most of these fields map
directly to DB-Library message-handler parameters.

Sequenced messages
Client-Library handles large messages using a series of calls to the callback
message handler routine. A status bitmask in the message information structure
indicates whether the message text is an entire message or the first, middle, or
last chunk of a sequenced message. Most server messages are small enough to
be handled with one invocation of the message callback. The exception is user-
defined messages raised with the Transact-SQL raiserror or print commands.
These can be longer than the 1024-byte text field in CS_SERVERMSG.

Unlike Client-Library, which puts a message in a fixed-length buffer
DB-Library provides a pointer to the message.

Replacing server message handlers
Each DB-Library server message handler parameter maps to a field in the
CS_SERVERMSG structure. In addition, CS_SERVERMSG includes four
fields that do not map to DB-Library message handler parameters. These
parameters represent the lengths, in bytes, of the message text, server name,
and procedure name, and a bitmask indicator used for sequenced message and
extended error message information.

Table 5-3: DB-Library message handler parameters vs.
CS_SERVERMSG fields

DB-Library message
handler parameters Description of parameter or field

Client-Library
CS_SERVERMSG
structure fields

severity The severity of the error message severity

msgno The identifying number of the error message msgnumber

msgstate The server error state associated with the server
message

state

msgtxt The text of the server message text

(none) The length, in bytes, of text textlen

srvname The name of the server that generated the message svrname

(none) The length, in bytes, of svrname svrnlen
48 Open Client

CHAPTER 5 Converting DB-Library Application Code
Server message handlers for DB-Library applications must return 0. Server
message handlers for Client-Library applications must return CS_SUCCEED.
If a Client-Library server message handler returns any value other than
CS_SUCCEED, Client-Library marks the connection as “dead,” and it
becomes unusable. A return of any code but CS_SUCCEED marks the
connection dead from both the server and client message callbacks.

See the “Callbacks” topics page in the Open Client Client-Library/C Reference
Manual for an example server-message callback.

Replacing DB-Library error handlers
The DB-Library error handler (installed with dberrhandle) should be replaced
with a CS-Library error handler and a Client-Library client message handler
(installed with cs_config and ct_callback, respectively). The CS-Library
handler is called for errors occurring in CS-Library calls, and the Client-
Library handler is called for errors occurring in Client-Library calls.

Both the CS-Library and Client-Library handlers take a CS_CLIENTMSG
structure. Each DB-Library error-handler parameter maps to a field in the
CS_CLIENTMSG structure.

In addition, CS_CLIENTMSG includes three fields that do not map to DB-
Library error handler parameters. For example, CS_CLIENTMSG provides
integer fields that specify the lengths, in bytes, of the message text and
operating system message text. These fields allow the use of character sets that
do not support null terminators.

procname The name of the stored procedure that caused the
message, if any

proc

(none) The length, in bytes, of proc proclen

line The number of the command batch or stored procedure
line, if any, that generated the message

line

(none) A bitmask indicator of whether msgstring contains an
entire message or what part of a sequenced message it
contains

status

(none) A byte string containing the SQL state value associated
with the error, if any

sqlstate

DB-Library message
handler parameters Description of parameter or field

Client-Library
CS_SERVERMSG
structure fields
Client-Library Migration Guide 49

Error and message handlers
Table 5-4 shows the correspondence between DB-Library error handler
parameters and CS_CLIENTMSG fields:

Table 5-4: DB-Library error handler parameters vs. CS_CLIENTMSG
fields

Error handler return values

Client-Library and DB-Library require different error handler return values:

• A DB-Library error handler can return:

• INT_EXIT – causes DB-Library to print an error message, abort the
program, and return an error indication to the operating system.

• INT_CANCEL – causes DB-Library to return FAIL from the DB-
Library routine that caused the error.

• INT_TIMEOUT – on timeout errors, causes DB-Library to cancel the
server command batch that timed out; on all other errors
INT_TIMEOUT is treated as INT_EXIT.

• INT_CONTINUE – on timeout errors, causes DB-Library to wait one
timeout period and call the error handler again; on all other errors,
INT_CONTINUE is treated as INT_EXIT.

• A Client-Library message handler can return:

DB-Library error
handler parameters Description of parameter or field

Client-Library CS_CLIENTMSG
structure fields

severity The severity of the error severity

dberr The identifying number of the error msgnumber

dberrstr The printable message description string msgstring

(none) The length, in bytes, of msgstring msgstringlen

oserr The operating system-specific error number osnumber

oserrstr The printable operating system message
description string

osstring

(none) The length, in bytes, of osstring osstringlen

(none) A bitmask indicator of whether msgstring
contains an entire message or what part of a
sequenced message it contains

status

(none) A byte string containing the SQL state value
associated with the error, if any

sqlstate
50 Open Client

CHAPTER 5 Converting DB-Library Application Code
• CS_SUCCEED – causes Client-Library to continue any current
processing on this connection; on timeout errors, wait one timeout
period and call the error handler again. CS_SUCCEED allows the
application to continue after errors. DB-Library has no equivalent to
this return code.

• CS_FAIL – causes Client-Library to terminate any current processing
on this connection and mark the connection as dead. The application
must close and reopen the connection before using it again.

Note that error handler return values cannot directly cause Client-Library to
abort the program.

The behavior of INT_CONTINUE is built into CS_SUCCEED.

In order to duplicate the behavior of INT_TIMEOUT, a Client-Library
application must call ct_cancel(CS_CANCEL_ATTN) from the callback
routine.

The error and severity codes for DB-Library errors do not map directly to
Client-Library and CS-Library error and severity codes.

For more information:

• See the Open Client and Open Server Common Libraries Reference
Manual for information on coding a CS-Library error handler.

• See the “Callbacks” topics page in the Open Client Client-Library/C
Reference Manual for information on coding a Client-Library message
handler.

• See the “CS_CLIENTMSG Structure” topics page in the Open Client
Client-Library/C Reference Manual for information on Client-Library
error numbers.

Code that sends commands
In Client-Library, CS_COMMAND is the control structure for sending
commands to a server and processing results. Multiple command structures
may be allocated from a single connection structure.

DB-Library applications can send the following types of commands:
Client-Library Migration Guide 51

Code that sends commands
• Language commands – define a batch of one or more SQL statements and
send it to the server to be compiled and executed. See “Sending language
commands” on page 52.

• Remote procedure call (RPC) commands – invoke an Adaptive Server
Enterprise stored procedure or Open Server registered procedure, passing
parameters in their declared datatypes. See “Sending RPC commands” on
page 54.

• TDS passthrough calls – used by Open Server gateways, read and write
raw TDS packets. See “TDS passthrough” on page 59.

There are other Client-Library command types that have no DB-Library
equivalents. Chapter 5, “Choosing Command Types,” in the Open Client
Client-Library/C Programmers Guide summarizes the Client-Library
command types.

Sending language commands
A language command defines a batch of one or more SQL statements and sends
it to the server to be compiled and executed.

Table 5-5 compares the DB-Library routines used for sending language
commands with their Client-Library equivalents:

Table 5-5: DB-Library vs. Client-Library—sending language commands

DB-Library routines
DB-Library
functionality

Client-Library
routines Client-Library functionality

(none) (none) ct_cmd_alloc(
connection,
cmd_pointer)

Allocate a CS_COMMAND
structure.

dbfcmd(dbproc,
string, args...)

Format text and add to
the DBPROCESS
command buffer. There is
a 1k buffer limit for DB-
Library.

sprintf(cmd_string,
control_string,
args...)

Format text and initialize the
language command string using
sprintf, strcpy, or other system
calls.

dbcmd(dbproc,
string)

Add text to the
DBPROCESS command
buffer.

ct_command(cmd,
CS_LANG_CMD,
cmd_string,
string_len,
CS_MORE)

Initiate a language command
using cmd_string, with more
command text to follow.

(none) ct_command(cmd,
CS_LANG_CMD,
cmd_string,
string_len, CS_END)

Add cmd_string as the final
piece of command text for this
command.
52 Open Client

CHAPTER 5 Converting DB-Library Application Code
Client-Library enhancements

Client-Library offers the following enhancements for language commands:

• Language commands can contain host language parameters (identified by
undeclared variables such as “@param” in the command text). Between
the last ct_command call and the ct_send call, the application specifies a
value for each host language parameter by calling ct_param or
ct_setparam.

• In Client-Library, language commands are resendable. Immediately after
processing the results of the previous execution, the application can call
ct_send to resend the same command. The definition of the language
command and its parameters remains associated with the command
structure until the application calls ct_command, ct_cursor, ct_dynamic, or
ct_sendpassthru to initiate a new command on the same command
structure.

Example: Sending a Client-Library language command

The following code fragment illustrates sending a Client-Library language
command. This fragment is from the ex01ct.c migration sample program:

CS_CONNECTION *conn;
 CS_COMMAND *cmd;

 ... connection has been opened ...
 /*
 ** Allocate a command structure.
 */
 ret = ct_cmd_alloc(conn, &cmd);
 EXIT_ON_FAIL(context, ret, "Could not allocate command structure."); /*
 -- dbcmd(dbproc, "select name, type, id, crdate from sysobjects");
 -- dbcmd(dbproc, " where type = ’S’ ");
 -- dbcmd(dbproc, "select name, type, id, crdate from sysobjects");
 -- dbcmd(dbproc, " where type = ’P’ ");
 */

 /*
 ** Build up a language command. ct_command() constructs language,

dbsqlexec(dbproc) Send a command batch to
the server for execution.

ct_send(cmd) Send a command batch to the
server for execution.

DB-Library routines
DB-Library
functionality

Client-Library
routines Client-Library functionality
Client-Library Migration Guide 53

Code that sends commands
 ** RPC, and some other server commands.
 **
 ** Note that the application manages the language buffer: You
 ** must format the language string with stdlib calls before
 ** passing it to ct_command().
 */
 strcpy(sql_string, "select name, type, id, crdate from sysobjects");
 strcat(sql_string, " where type = ’S’ ");
 strcat(sql_string, "select name, type, id, crdate from sysobjects");
 strcat(sql_string, " where type = ’P’ ");
 ret = ct_command(cmd, CS_LANG_CMD, (CS_VOID *) sql_string,
 CS_NULLTERM,CS_UNUSED);
 EXIT_ON_FAIL(context, ret, "Init language command failed."); /*
 -- * Send the commands to Adaptive Server Enterprise and start execution. *
 -- dbsqlexec(dbproc);
 */
 /*
 ** Send the command. Unlike dbsqlexec(), ct_send() returns as
 ** soon as the command has been sent. It does not wait for
 ** the results from the first statement to arrive.
 */
 ret = ct_send(cmd);
 EXIT_ON_FAIL(context, ret, "Send language command failed.");
 ... deleted results processing code ...

Sending RPC commands
An RPC command invokes an Adaptive Server Enterprise stored procedure or
an Open Server registered procedure, passing parameters in their declared
datatypes.

Table 5-6 compares the Client-Library and DB-Library call sequences to
define and send an RPC command:

Table 5-6: DB-Library vs. Client-Library—sending RPC commands

DB-Library
routines DB-Library functionality

Client-Library
routines

Client-Library
functionality

(none) (none) ct_cmd_alloc(
connection,
cmd_pointer)

Allocate a
CS_COMMAND structure.
54 Open Client

CHAPTER 5 Converting DB-Library Application Code
The use of ct_param for RPC commands is very similar to the use of
dbrpcparam. Most of dbrpcparam’s parameters map to fields in the
CS_DATAFMT structure that is passed as ct_param’s datafmt parameter.

• dbrpcparam’s paramname, status, type, and maxlen parameters map to
fields in the CS_DATAFMT structure taken as ct_param’s datafmt
parameter.

• A dbrpcparam call specifies a null value by passing datalen as 0.
A ct_param call specifies a null value by passing indicator as -1.

Client-Library enhancements

Unlike DB-Library, Client-Library allows applications to resend RPC
commands. The application can resend the RPC command simply by calling
ct_send after processing the results of the previous execution. The definition of
the RPC command and its parameters remains associated with the command
structure until the application calls ct_command, ct_cursor, ct_dynamic, or
ct_sendpassthru to initiate a new command on the same command structure.

Example: sending an RPC command

The following code fragment illustrates sending an RPC command with Client-
Library. The fragment invokes an Adaptive Server Enterprise stored procedure
rpctest:

dbrpcinit(dbproc,
rpc_name,
option)

Initialize an RPC.

option can be
DBRPCRECOMPILE or 0.

ct_command(cmd,
CS_RPC_CMD,
rpc_name, buflen,
option)

Initiate an RPC command.

option can be
CS_RECOMPILE,
CS_NO_RECOMPILE, or
CS_UNUSED. A value of 0
in the DB-Library program
maps to CS_UNUSED or
CS_NO_RECOMPILE.

dbrpcparam(
dbproc,
paramname,
status, type,
maxlen, datalen,
data)

Add a parameter to an RPC. ct_param
 or

ct_setparam(cmd,
datafmt, data,
datalen, indicator)

Define an RPC parameter.

dbrpcsend(
dbproc)

Send an RPC call to the server
for execution.

ct_send(cmd) Send a command to the
server for execution.

DB-Library
routines DB-Library functionality

Client-Library
routines

Client-Library
functionality
Client-Library Migration Guide 55

Code that sends commands
create procedure rpctest
 (@param1 int out,
 @param2 int out,
 @param3 int out,
 @param4 int)
as
 begin
 select "rpctest is running."
 select @param1 = 11
 select @param2 = 22
 select @param3 = 33
 select @param1
 return 123
 end

The following code invokes rpctest from a Client-Library client. This fragment
is from the ex08ct.c migration sample program.

 CS_CONNECTION *conn;
 CS_COMMAND *cmd;

 ... connection has been opened ...

 /*
 ** Allocate a command structure.
 */
 ret = ct_cmd_alloc(conn, &cmd);
 EXIT_ON_FAIL(context, ret, "Could not allocate command structure."); /*
 -- * Make the rpc. *
 -- if (dbrpcinit(dbproc, "rpctest", (DBSMALLINT)0) == FAIL)
 -- {
 -- printf("dbrpcinit failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
 ** Initiate an RPC command. In Client-Library ct_command is used for
 ** language commands (dbsqlexec or dbsqlsend commands in DB-Library),
 ** RPC commands (dbrpcinit), and text/image "send-data" commands
 ** (dbwritetext).
 */

ret = ct_command(cmd, CS_RPC_CMD, "rpctest", CS_NULLTERM, CS_UNUSED);
 EXIT_ON_FAIL(context, ret, "Could not initiate RPC command."); /*
 ** Pass a value for each RPC parameter with ct_param. In this case,
 ** the required RPC parameters are the parameters in the definition of
 ** the rpctest stored procedure.
56 Open Client

CHAPTER 5 Converting DB-Library Application Code
 **
 ** The parameter’s name, datatype, and status (input-only or output)
 ** are passed within a CS_DATAFMT structure.
 / /
 -- if (dbrpcparam
 -- (dbproc, "@param1", (BYTE)DBRPCRETURN,
 -- SYBINT4, -1, -1, ¶m1)
 -- == FAIL)
 -- {
 -- printf("dbrpcparam failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
 ** @param1 is integer (CS_INT) and is a return parameter.
 ** The datafmt.status field must be set to indicate whether
 ** each parameter is ’for output’ (CS_RETURN) or not
 ** (CS_INPUTVALUE)
 */ datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = CS_UNUSED;
 datafmt.status = CS_RETURN;
 strcpy(datafmt.name, "@param1");
 datafmt.namelen = strlen(datafmt.name); ret = ct_param(cmd, &datafmt,

(CS_VOID *) (paramvals+1),
 CS_UNUSED, 0);
 EXIT_ON_FAIL(context, ret, "ct_param() for @param1 failed."); /*
 -- if (dbrpcparam(dbproc, "@param2", (BYTE)0, SYBINT4,
 -- -1, -1, ¶m2)
 -- == FAIL)
 -- {
 -- printf("dbrpcparam failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
 ** @param2 is integer (CS_INT) and is not a return parameter.
 */
 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = CS_UNUSED;
 datafmt.status = CS_INPUTVALUE;
 strcpy(datafmt.name, "@param2");
 datafmt.namelen = strlen(datafmt.name); ret = ct_param(cmd, &datafmt,

(CS_VOID *) (paramvals+2),
 CS_UNUSED, 0);
 EXIT_ON_FAIL(context, ret, "ct_param() for @param2 failed."); /*
 -- if (dbrpcparam
Client-Library Migration Guide 57

Code that sends commands
 -- (dbproc, "@param3", (BYTE)DBRPCRETURN, SYBINT4,
 -- -1, -1, ¶m3)
 -- == FAIL)
 -- {
 -- printf("dbrpcparam failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
 ** @param3 is integer (CS_INT) and is a return parameter.
 */

 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = CS_UNUSED;
 datafmt.status = CS_RETURN;
 strcpy(datafmt.name, "@param3");
 datafmt.namelen = strlen(datafmt.name); ret = ct_param(cmd, &datafmt,

(CS_VOID *) (paramvals+3),
 CS_UNUSED, 0);
 EXIT_ON_FAIL(context, ret, "ct_param() for @param3 failed."); /*
 -- if (dbrpcparam(dbproc, "@param4", (BYTE)0, SYBINT4,
 -- -1, -1, ¶m4)
 -- == FAIL)
 -- {
 -- printf("dbrpcparam failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
 ** @param4 is integer (CS_INT) and is not a return parameter.
 */
 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = CS_UNUSED;
 datafmt.status = CS_INPUTVALUE;
 strcpy(datafmt.name, "@param4");
 datafmt.namelen = strlen(datafmt.name); ret = ct_param(cmd, &datafmt,

(CS_VOID *) (paramvals+4),
 CS_UNUSED, 0);
 EXIT_ON_FAIL(context, ret, "ct_param() for @param4 failed."); /*
 -- if (dbrpcsend(dbproc) == FAIL)
 -- {
 -- printf("dbrpcsend failed.\n");
 -- dbexit();
 -- exit(ERREXIT);
 -- }
 / /
58 Open Client

CHAPTER 5 Converting DB-Library Application Code
 ** Send the command to the server. The ct_send routine sends
 ** any kind of command, not just RPC commands.
 */
 ret = ct_send(cmd);
 EXIT_ON_FAIL(context, ret, "ct_send() failed.");

... deleted results processing code ...

TDS passthrough
Tabular Data Stream (TDS) transfer routines are useful in gateway
applications. The DB-Library routines, dbrecvpassthru and dbsendpassthru,
map directly to the Client-Library routines ct_recvpassthru and
ct_sendpassthru. The Client-Library routines use a CS_COMMAND structure
while the DB-Library routines use a DBPROCESS structure.

Code that processes results
This section describes how DB-Library results processing logic maps to
Client-Library results processing logic.

Program structure for results processing
Table 5-7 shows the loop structure for processing the types of results that might
be seen in a DB-Library program. Table 5-8 on page 60 shows the equivalent
Client-Library program logic.

Table 5-7: DB-Library results loop structure

Loop control while ((results_ret = dbresults(dbproc)) !=
NO_MORE_RESULTS)
{
 if (results_ret == SUCCEED)
 {
Client-Library Migration Guide 59

Code that processes results
Table 5-8 shows the results-loop structure for a typical Client-Library program:

Table 5-8: Client-Library results loop structure

Retrieve regular and compute
rows

Bind regular rows.
Bind compute rows.
while (dbnextrow(dbproc)

!= NO_MORE_ROWS)
{

Retrieve regular and compute rows.
} /* while */

Retrieve return parameter
values

if (dbnumrets(dbproc) > 0)
{

Retrieve output parameter values.
}

Retrieve return status values if (dbhasretstatus(dbproc))
{

Retrieve stored procedure return status.
}

(optional) Get statistics if (DBROWS(dbproc) != -1)
{

Find out number of rows affected.
}

Command error checking
(server-side or client-side)

 } /* if results_ret == SUCCEED */

 else if (results_ret == FAIL)
 {
 printf("Command failed");
 }
} /* while */

Loop control while ((results_ret = ct_results(cmd, &result_type))
 == CS_SUCCEED)
{
 switch(result_type)
 {

Retrieve regular and compute
rows

 case CS_ROW_RESULT:
 Bind regular rows.
 Fetch regular rows.
 break;

 case CS_COMPUTE_RESULT:
 Bind compute rows.
 Fetch compute rows.
 break;
60 Open Client

CHAPTER 5 Converting DB-Library Application Code
Comparing dbresults and ct_results return codes

DB-Library’s dbresults can return SUCCEED, FAIL, or
NO_MORE_RESULTS:

• SUCCEED indicates that a command executed successfully and that there
may be data for the application to retrieve.

• FAIL usually indicates that the command failed on the server, but it can
also indicate a network or internal DB-Library error. Further, when a
command fails on the server, dbresults returns FAIL, but data from
subsequent commands may still be available.

• NO_MORE_RESULTS indicates that no more results are available for
processing. A typical application calls dbresults in a loop until it returns
NO_MORE_RESULTS. Within the loop, the application checks for
dbresults return codes of SUCCEED or FAIL.

Retrieve return parameter
values

 case CS_PARAM_RESULT:
 Bind output parameter values.
 Fetch output parameter values.
 break;

Retrieve return status values case CS_STATUS_RESULT:
 Bind stored procedure return status.
 Fetch stored procedure return status.
 break;

(optional) Get statistics case CS_CMD_DONE:
 Find out number of rows affected.
 break;

Command error checking
(server-side)

 case CS_CMD_FAIL:
 printf("Command failed on server.")
 break;

 case CS_CMD_SUCCEED:
 break;

Command error checking
(client-side)

 default: /* case */
 printf("Unexpected result type");
 break;

 } /* end switch */
} /* end while */

if (results_ret != CS_END_RESULTS
 && results_ret != CS_CANCELED)
 printf("ERROR: ct_results failed!");
Client-Library Migration Guide 61

Code that processes results
In Client-Library, a synchronous-mode ct_results call can return
CS_SUCCEED, CS_FAIL, CS_CANCELED, or CS_END_RESULTS. (For
an asynchronous call, the completion status will be one of these values.)

• CS_SUCCEED indicates that the ct_results routine succeeded. It indicates
nothing about the results of the command.

• CS_FAIL indicates that the ct_results routine failed. It always indicates
either a serious network or client-side error. No result data is available
after ct_results returns CS_FAIL.

• CS_END_RESULTS is identical in meaning to dbresults’
NO_MORE_RESULTS.

• CS_CANCELED means that results were canceled with
ct_cancel(CS_CANCEL_ATTN) or ct_cancel(CS_CANCEL_ALL).

ct_results indicates server-side error or success by means of its result_type
output parameter:

• A result type of CS_CMD_FAIL indicates that a command failed on the
server. DB-Library indicates this by returning FAIL from dbsqlexec,
dbsqlok, or dbresults (whichever is active when the server reports the
error).

• A result type of CS_CMD_SUCCEED indicates that a data-modification
(create, update, insert, and so forth) or an exec command executed
successfully. For example, after a successful delete language command,
the application receives a result_type value of CS_CMD_SUCCEED.

Handling command-processing errors

The following examples demonstrate how command-processing errors are
handled differently by DB-Library and Client-Library:

• The application sends a language command that contains a syntax error:

In DB-Library, dbsqlexec or dbsqlok (whichever was called) invokes the
application’s server message handler to forward the error reported by the
server. dbsqlexec or dbsqlok returns FAIL. No data is returned, and a call
to dbresults returns NO_MORE_RESULTS.

In Client-Library, ct_results forwards the error reported by the server by
calling the application’s server message handler. ct_results returns
CS_SUCCEED, but with result_type set to CS_CMD_FAIL. The
application must process the rest of the results with ct_results or cancel
them with ct_cancel.
62 Open Client

CHAPTER 5 Converting DB-Library Application Code
• The second statement in a language batch of four statements selects an
object, but the user lacks select permission for the object:

In DB-Library, dbresults forwards the permissions violation reported by
the server by calling the application’s server message handler. dbresults
returns FAIL. Results from the rest of the commands in the batch are
available, and the application must retrieve them with dbresults or cancel
them with dbcancel.

In Client-Library, ct_results forwards the permissions violation reported
by the server by calling the application’s server message handler. ct_results
returns CS_SUCCEED, but with result_type set to CS_CMD_FAIL. The
application must process the rest of the results with ct_results or cancel
them with ct_cancel.

Comparing ct_results’ result_type to DB-Library program logic

In Client-Library, ct_results takes a pointer argument to a result_type indicator.
In addition to indicating command status (CS_CMD_SUCCEED and
CS_CMD_FAIL), result_type indicates whether results are available and what
type of results they represent.

Table 5-9 lists the possible values of result_type and compares them to the
equivalent DB-Library program logic. See the ct_results reference page in the
Open Client Client-Library/C Reference Manual:

Table 5-9: ct_results’ result_type parameter vs. DB-Library program
logic

Client-Library result_type Indicates DB-Library program logic

CS_CMD_DONE The results of a logical command
have been completely processed.

None. The receipt of CS_CMD_DONE
by the Client-Library program is
equivalent to the end of one iteration of
the DB-Library dbresults loop.

CS_CMD_FAIL The server encountered an error
while executing a command.

Active routine (dbsqlexec, dbsqlok, or
dbresults) returns FAIL.

CS_CMD_SUCCEED The success of a command that
returns no data, such as a
language command containing a
Transact-SQL insert statement.

dbresults returns SUCCEED.
DBCMDROW returns FAIL to indicate
that the command could not return rows.
Client-Library Migration Guide 63

Code that processes results
CS_COMPUTE_RESULT Compute row results. Calls DBROWS to determine if rows are
returned. There is no equivalent call or
macro for DBROWS in Client-Library.

Calls dbnumcompute to determine if
compute rows will be returned.

In the dbnextrow loop, dbnextrow returns
> 0 when a compute row is retrieved.

CS_PARAM_RESULT Return parameter results. After dbnextrow returns
NO_MORE_ROWS, checks whether
dbnumrets returns > 0.

CS_ROW_RESULT Regular row results. DBCMDROW returns TRUE if the current
command can return rows.

dbnextrow returns REG_ROW after each
regular row is retrieved.

CS_STATUS_RESULT Stored procedure return status
results.

After dbnextrow returns
NO_MORE_ROWS, checks if
dbhasretstat returns TRUE.

CS_CURSOR_RESULT Cursor row results. None. DB-Library does not support
server-based cursors.

CS_COMPUTEFMT_RESULT • Compute row format
information.

• Format results are seen only
when the
CS_EXPOSE_FORMATS
property is enabled.

None.

CS_ROWFMT_RESULT • Regular row format
information.

• Format results are seen only
when the
CS_EXPOSE_FORMATS
property is enabled.

None.

CS_MSG_RESULT Arrival of a Client-Library
message result set.

None. DB-Library does not support
message commands and results.

CS_DESCRIBE_RESULT Dynamic SQL descriptive
information.

None. DB-Library does not support
dynamic SQL.

Client-Library result_type Indicates DB-Library program logic
64 Open Client

CHAPTER 5 Converting DB-Library Application Code
Retrieving data values
Client-Library applications retrieve data using a bind/fetch model that is very
similar to DB-Library’s dbbind/dbnextrow model. The main difference between
the two is that in Client-Library, more types of result data are fetchable. Data
values for all the result following types can be retrieved using ct_bind and
ct_fetch:

• Regular rows (also fetchable in DB-Library)

• Compute rows (also fetchable in DB-Library)

• Output parameter values

• Stored procedure return status values

Note In DB-Library, retrieval of output parameter values and return status
values is optional. A Client-Library application must retrieve or cancel all
fetchable results sent by the server, including output parameter values and
return status values.

ct_bind versus dbbind

DB-Library provides four similar bind routines:

• dbbind – binds regular row columns

• dbbind_ps (version 10.0 and later) – same as dbbind but provides precision
and scale support for decimal and numeric datatypes

• dbaltbind – binds compute row columns

• dbaltbind_ps (version 10.0 and later) – same as dbaltbind_ps but provides
precision and scale support for decimal and numeric datatypes

If you understand how dbbind_ps usage maps to ct_bind usage, you will be able
to convert any other DB-Library bind routine call to an equivalent ct_bind call.
dbbind_ps is an enhancement of dbbind. It takes as an additional parameter a
DBTYPEINFO structure to convey precision and scale information about
numeric and decimal datatypes. For datatypes other than numeric and decimal,
the additional parameter is ignored, and dbbind_ps is equivalent to dbbind.

Table 5-10 compares dbbind_ps parameters to ct_bind parameters:
Client-Library Migration Guide 65

Code that processes results
Table 5-10: dbbind_ps parameters vs. ct_bind parameters

dbbind_ps
parameter Parameter description ct_bind parameter Parameter description

dbproc A pointer to the
DBPROCESS structure for
this connection.

cmd A pointer to the
CS_COMMAND structure.

column An integer representing the
number of the column to
bind.

item An integer representing the
number of the column to
bind.

datafmt A pointer to the
CS_DATAFMT structure
that describes the
destination variable.

vartype A symbolic value
corresponding to the
datatype of the program
variable that will receive the
copy of the data from the
DBPROCESS.

datafmt→datatype datatype is a symbol
(CS_xxx_TYPE)
representing the datatype of
the destination variable.

datafmt→format format is a symbol
describing the destination
format of character or binary
data.

varlen The length of the program
variable in bytes.

datafmt→maxlength The length of the buffer
destination variable in bytes.

typeinfo→precision

typeinfo→scale

typeinfo is a pointer to a
DBTYPEINFO structure,
which contains information
about the precision and scale
of decimal or numeric data.

typeinfo of NULL is
equivalent to calling dbbind.

datafmt→precision

datafmt→scale

The precision and scale to be
used for the destination
variable. If the source data is
the same type as the
destination, then scale and
precision can be set to
CS_SRC_VALUE to pick
up the value from the source
data.

(none) datafmt→count The number of rows to copy
to program variables per
ct_fetch call. (Set to 1 if not
binding to arrays.)

varaddr The address of the program
variable to which the data is
to be copied.

buffer The address of an array of
datafmt→count variables,
each of which is of size
datafmt→maxlength.
66 Open Client

CHAPTER 5 Converting DB-Library Application Code
The mapping of DB-Library vartype values to Client-Library CS_DATAFMT
datatype and format values is straightforward for all of the fixed-length
datatypes.

For character and binary types, the mapping is shown in Table 5-11:

Table 5-11: DB-Library vartype vs. CS_DATAFMT datatype and format
fields

With dbbind, passing NTBSTRINGBIND for vartype causes DB-Library to
trim trailing blanks from the destination string. Client-Library lacks a format
option to strip trailing blanks.

For Adaptive Server Enterprise column data, only values that originate as a
fixed-length char column will have trailing blanks to begin with, because
Adaptive Server Enterprise trims trailing blanks from varchar columns on
entry.

(none) copied The address of an array of
datafmt→count integer
variables, to be filled at fetch
time with the lengths of the
copied data (optional).

(none—the routines
dbnullbind and
dbanullbind bind
indicator variables)

indicator The address of an array of
datafmt→count
CS_SMALLINT variables,
to be filled at fetch time to
indicate certain conditions
about the fetched data.

dbbind_ps
parameter Parameter description ct_bind parameter Parameter description

Program
variable type DB-Library vartype CS_DATAFMT→datatype CS_DATAFMT→format

DBCHAR CHARBIND CS_CHAR_TYPE CS_FMT_PADBLANK

DBCHAR STRINGBIND CS_CHAR_TYPE CS_FMT_NULLTERM

DBCHAR NTBSTRINGBIND CS_CHAR_TYPE CS_FMT_NULLTERM

Note Client-Library does not
trim trailing blanks.

DBVARYCHAR VARYCHARBIND CS_VARCHAR_TYPE CS_FMT_UNUSED

DBBINARY BINARYBIND CS_BINARY_TYPE CS_FMT_PADNULL

DBVARYBIN VARYBINBIND CS_VARBINARY_TYPE CS_FMT_UNUSED
Client-Library Migration Guide 67

Code that processes results
If a DB-Library application relies on NTBSTRINGBIND behavior, the Client-
Library version of the application must trim any trailing blanks itself.

ct_get_data versus dbdata

Client-Library offers no direct equivalents for DB-Library’s dbdata or for the
similar routines dbadata, dbretdata, and dbretstatus. All of these routines return
a pointer to a buffer that contains a data value.

Client-Library does allow applications to retrieve data values with ct_get_data
as an alternative to binding. Applications typically use ct_get_data to retrieve
large text or image columns, but it can be used on data of any type.

ct_get_data copies all or part of a data value into a caller-supplied buffer. A call
to ct_get_data can replace a call to dbdata, dbadata, dbretdata, or dbretstatus.
However, ct_get_data has the following restrictions:

• ct_get_data requires that the application pre-allocate a buffer for the data.

• An application can only use ct_get_data on result items past the last item
that was bound with ct_bind. For example, if result item numbers 1, 3, and
4 are bound, then it is an error to call ct_get_data for item numbers 1
through 4.

• With dbretdata and dbretstatus, the application did not have to fetch
parameter values or return status values. With Client-Library, ct_fetch
must be called before return parameter values or return status values can
be retrieved with ct_get_data.

• For each call to ct_fetch that returns CS_SUCCEED, the application can
only retrieve a data item with ct_get_data once.

The following code fragment illustrates a ct_get_data call that retrieves a
CS_INT data item:

CS_INT status;
... after ct_fetch() has returned CS_SUCCEED ...
ret = ct_get_data(cmd, 1, (CS_VOID *)status,
 CS_SIZEOF(CS_INT), (CS_INT *) NULL);
if (ret != CS_END_ITEM && ret != CS_END_DATA)
{
 printf("Error: ct_get_data failed.\n");
}
else
{
 printf(“Status is %ld.\n”, (long) status);
}

68 Open Client

CHAPTER 5 Converting DB-Library Application Code
As with dbdata, data retrieved with ct_get_data must be converted if the value
is not already expressed in the desired datatype. A Client-Library application
can call the CS-Library routine cs_convert to convert data.

Getting descriptions of result data

Applications need to determine the number of items in a result set and the
format of each item before they can bind items and fetch rows.

Applications that process the results of known queries have this information
already, but applications that process the results of ad hoc queries do not.

To handle the results of an ad hoc query, the application must:

• Determine the number of result columns.

• Determine the name, datatype, length, and so forth of each column.

Obtaining the number of items in a result set

In DB-Library, an application calls different routines to obtain the number of
items in a result set, depending on the type of results being retrieved.

In Client-Library, whenever the ct_results result_type parameter indicates
fetchable data, the application can retrieve the number of data items by calling
ct_res_info(CS_NUMDATA).

Table 5-12 lists DB-Library routines that ct_res_info(CS_NUMDATA)
replaces:

Table 5-12: DB-Library routines that convert to
ct_res_info(CS_NUMDATA)

Obtaining Format Descriptions for Individual Items

A DB-Library application calls several routines to get a description of a data
item.

A Client-Library application calls ct_describe once to initialize a
CS_DATAFMT structure that completely describes any data value.

Routine Description

dbnumalts Returns the number of columns in a compute row

dbnumcols Determines the number of regular columns for the current
set of results

dbnumrets Determines the number of return parameter values
generated by a stored procedure
Client-Library Migration Guide 69

Code that processes results
Table 5-13 lists DB-Library routines that ct_describe replaces:

Table 5-13: DB-Library data description routines vs. CS_DATAFMT
fields

Obtaining Results Statistics
DB-Library provides routines, such as DBCURCMD and DBCOUNT, that allow
applications to get results statistics.

Most of these DB-Library routines map directly to the Client-Library routine
ct_res_info.

Obtaining the Command Number (DBCURCMD)

DB-Library’s DBCURCMD returns the number of the current logical command.

In Client-Library, ct_res_info(CS_CMD_NUMBER) returns the number of the
current logical command.

DB-Library routine Value returned
CS_DATAFMT field
(set by ct_describe)

dbaltlen The maximum length of data for a particular compute
column

maxlength

dbcollen The maximum length of data for a particular regular
result column

maxlength

dbretlen The length of a stored procedure return parameter
value

maxlength

dbalttype The datatype of a compute column datatype

dbcoltype The datatype of a regular result column datatype

dbrettype The datatype of a stored procedure return parameter
value

datatype

dbaltutype The user-defined datatype for a compute column usertype

dbcolutype The user-defined datatype for a regular result column usertype

dbcolname The name of a regular result column name

dbretname The name of a stored procedure parameter for a
particular return parameter value

name

dbdatlen The actual length of a regular result column value None. This information is
returned using ct_bind’s
copied parameter or
ct_get_data’s outlen
parameter.

dbadlen The actual length of a compute column value

dbretlen The actual length of a return parameter value
70 Open Client

CHAPTER 5 Converting DB-Library Application Code
The following Client-Library code fragment demonstrates the use of
ct_res_info to get the current command number:

CS_INT cur_cmdnum;
...
ret = ct_res_info(cmd, CS_CMD_NUMBER, &cur_cmdnum,
 CS_UNUSED, NULL);
EXIT_ON_FAIL(context, ret,
 "ct_res_info(CMD_NUMBER) failed.");

Obtaining the Number of Rows Affected

DB-Library’s DBCOUNT returns the number of rows affected by the current
server command. DBCOUNT is called in the dbresults loop, after all rows are
retrieved (if any).

In Client-Library, ct_res_info(CS_ROW_COUNT) returns the number of rows
affected by the current server command. As with DBCOUNT, the ct_res_info
gives a row count of -1 when the command is one that never affects rows.

The following fragment demonstrates the use of ct_res_info to get a row count.
This fragment executes in the ct_results loop, under the case where result_type
is CS_CMD_DONE:

CS_INT rowcount;
...
ret = ct_res_info(cmd, CS_ROW_COUNT, (CS_VOID *)&rowcount,
 CS_UNUSED, NULL);
EXIT_ON_FAIL(context, ret, "ct_res_info(CS_ROW_COUNT) failed.");
if (rowcount != -1)
 printf(“(%ld rows affected)\n”, rowcount);

DBCOUNT and ct_res_info(CS_ROW_COUNT) are nearly equivalent, both
returning the number of rows affected by the current command. There is one
important difference in behavior when the current command is one that
executes a stored procedure:

• DBCOUNT returns the number of rows affected by the last select statement
executed by the stored procedure.

For example, if the last two statements executed by the procedure are
select and update statements, DBCOUNT returns the number of rows
affected by the select, not by the update.

• ct_res_info(CS_ROW_COUNT) returns the number of rows affected by
the last statement that could affect rows executed by the stored procedure.
Client-Library Migration Guide 71

Code that processes results
For example, if the last two statements executed by the procedure are a
select statement and an update statement, ct_res_info(CS_ROW_COUNT)
returns the number of rows affected by the update.

If your DB-Library application depends logically on DBCOUNT’s behavior
after executing a stored procedure, then you must change the program logic
when converting the application to Client-Library.

Obtaining the number of the current row

DB-Library’s DBCURROW macro returns the current row of a regular row
result set. An application can call DBCURROW to get an intermediate row
count while processing rows.

Client-Library has no routine to replace calls to DBCURROW. However, you
can add application code that increments a counter for each fetched row. See
the entry for DBCURROW in Table A-1 on page 97.

Canceling results
DB-Library programs cancel queries and discard results with dbcanquery and
dbcancel.

In Client-Library, ct_cancel takes a type parameter that allows three different
types of cancel operations.

Table 5-14 compares DB-Library and Client-Library cancel operations.

Table 5-14: DB-Library vs. Client-Library—canceling results

DB-Library
routines

DB-Library
functionality Client-Library routines

Client-Library
functionality

dbcancel(dbproc) Cancel the current
command batch and
discard any results
generated by the
command batch.

ct_cancel(connection, cmd,
CS_CANCEL_ALL)

or

Cancel the current
command and discard any
results generated by the
command.

ct_cancel(connection, cmd,
CS_CANCEL_ATTN)

Cancel the current
command and discard any
results when the
application next reads from
the server (used inside
callback functions).
72 Open Client

CHAPTER 5 Converting DB-Library Application Code
There is one important difference between the scope of dbcancel and ct_cancel:

• dbcancel affects the current command batch on a single DBPROCESS.

• ct_cancel (CS_CANCEL_ALL or CS_CANCEL_ATTN) can be invoked
at the command or connection level. If it is used at the connection level,
the cancel operation applies to all command structures within that
connection.

CS_CANCEL_ATTN

Client-Library must read from the result stream in order to discard results, and
it is not always safe to read from the result stream. CS_CANCEL_ATTN
causes Client-Library to wait until the application attempts to read from the
server before discarding the results.

Use CS_CANCEL_ATTN from within callbacks or interrupt handlers. In an
asynchronous-mode application, use CS_CANCEL_ATTN when completion
of an asynchronous call is pending.

CS_CANCEL_ALL

Use CS_CANCEL_ALL in all main-line code. In an asynchronous-mode
application, do not use CS_CANCEL_ALL when completion of an
asynchronous call is pending.

CS_CANCEL_CURRENT

CS_CANCEL_CURRENT maps directly to dbcanquery.
CS_CANCEL_CURRENT is equivalent to calling ct_fetch until it returns
CS_END_DATA.

dbcanquery(
dbproc)

Discard any rows
pending from the most
recently executed
query. While dbcancel
cancels all commands
on a given dbproc,
dbcanquery cancel only
the one being
processed.

ct_cancel(connection, cmd,
CS_CANCEL_CURRENT)

Discard the current result
set.

DB-Library
routines

DB-Library
functionality Client-Library routines

Client-Library
functionality
Client-Library Migration Guide 73

Code that processes results
CS_CANCEL_CURRENT will:

• Discard the current result set

• Clear all bindings between the result items and program variables

• Leave the next result set (if any) available, and leave the current command
unaffected

Note Using CS_CANCEL_ALL or CS_CANCEL_ATTN will cause a
connection’s open cursors to enter an undefined state. It is preferable to
close a cursor rather than cancel a cursor open command.
CS_CANCEL_CURRENT is safe to use on a connection with open
cursors.
74 Open Client

C H A P T E R 6 Advanced Topics

This chapter contains information on more advanced Client-Library
features.

This chapter covers the following topics:

Client-Library’s array binding
Array binding is the process of binding a result column to an array of
program variables. At fetch time, multiple rows’ worth of the column
values are copied to the array of variables with a single ct_fetch call.

Using Array Binding
An application indicates array binding when it calls ct_bind, by setting the
count field of the CS_DATAFMT structure parameter to a value greater
than 1.

The count must be the same for all columns in a result set. (Exception:
count values of 0 and 1 are considered to be equivalent. Both of these
values cause ct_fetch to fetch a single row.)

Array binding is only practical for regular row and cursor row result sets,
because only these types of result sets can have multiple rows.

Topic Page
Client-Library’s array binding 75

Client-Library cursors 76

Asynchronous programming 83

Bulk copy interface 87

Text/Image interface 88

Localization 94
Client-Library Migration Guide 75

Client-Library cursors
Array Binding Example
The ex04ct.c migration sample program illustrates array binding. ex04ct.c is
DB-Library’s example4.c converted to Client-Library. ex04ct.c illustrates
conversion of DB-Library row buffering code to Client-Library array binding
code. ex04ct.c actually calls routines in the ctrowbuf.c migration sample to
perform array binding. ctrowbuf.c is a simple array binding utility library. The
examples are located in the following directory:

• $SYBASE/$SYBASE_OCS/sample/dblibrary on UNIX

• %SYBASE%\%SYBASE_OCS%\sample\dblib on Microsoft Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

Client-Library cursors
An application can use Client-Library cursors to replace the following types of
DB-Library functionality:

• DB-Library cursors

• DB-Library browse mode

Comparing DB-Library and Client-Library cursors
DB-Library supports client-side cursors, while Client-Library supports server-
side cursors:

• A client-side cursor does not correspond to an Adaptive Server Enterprise
cursor. Instead, DB-Library buffers rows internally and performs all
necessary keyset management, row positioning, and concurrency control
to manage the cursor.

• A server-side cursor, sometimes called a “native” cursor, is an actual
Adaptive Server Enterprise cursor. Client-Library provides an interface
that allows applications to declare, open, and manipulate a server-side
cursor, but Adaptive Server Enterprise actually manages the cursor.

Table 6-1 outlines some key differences between DB-Library and Client-
Library cursors:
76 Open Client

CHAPTER 6 Advanced Topics
Table 6-1: Differences between DB-Library cursors and Client-Library
cursors

Rules for Processing Cursor Results
In general, when a Client-Library application sends a command to the server,
it cannot send another command on the same connection until ct_results returns
CS_END_RESULTS, CS_CANCELED, or CS_FAIL.

An exception to this rule occurs when ct_results returns cursor results. In this
case, the application can:

• Send a cursor command on the same command structure that is processing
the cursor results. Applications commonly use this technique to perform
cursor updates and deletes.

DB-Library cursors Client-Library cursors

Cursor row position is defined by the
client.

Cursor row position is defined by the
server.

Can define optimistic concurrency
control.

Cannot define optimistic concurrency
control.

Can fetch backwards (if scrollopt is
CUR_KEYSET or CUR_DYNAMIC
in the call to dbcursoropen).

With scrollable cursors, it is possible
to fetch data in any of these fetch
orientations:

• ABSOLUTE

• RELATIVE

• FIRST

• LAST

• PREVIOUS

Memory requirements depend on the
size of the fetch buffer specified
during dbcursoropen.

Memory requirements depend on the
cursor-rows setting and whether the
application sends new commands on
the connection while the cursor is
open.

You cannot access an Open Server
application unless the application
installs the required DB-Library
stored procedures.

You can access an Open Server
application that is coded to support
cursors.

Slower performance. Faster performance.

Multiple cursors per DBPROCESS
possible.

Multiple cursors per
CS_CONNECTION possible.

Only one cursor per CS_COMMAND
structure.
Client-Library Migration Guide 77

Client-Library cursors
• Send an unrelated command on any other command structure.

Comparing Cursor Routines
Table 6-2 compares DB-Library cursor routines to Client-Library cursor
routines. See:

• Chapter 7, “Using Client-Library Cursors,” in the Open Client Client-
Library/C Programmers Guide.

• Appendix A, “Cursors,” in the Open Client DB-Library/C Reference
Manual.

Table 6-2: DB-Library vs. Client-Library cursor commands

DB-Library
equivalent

DB-Library
functionality Client-Library routines Client-Library functionality

dbcursoropen(
dbproc, stmt,
scrollopt,
concuropt,
nrows, pstatus)

Open a cursor,
specify the SQL
statement that
defines the cursor,
the scroll option, the
concurrency option,
the number of rows
in the fetch buffer,
and a pointer to the
array of row status
indicators.

ct_cursor(cmd,
CS_CURSOR_DECLARE,
name, namelen, text,
textlen, option)

Initiate a command to declare the
cursor, specifying the SQL text that
is the body of the cursor.

option is CS_UNUSED or a bitwise
OR of these values:

• CS_MORE

• CS_END

• CS_FOR_UPDATE

• CS_READ_ONLY

• CS_UNUSED

• CS_IMPLICIT_CURSORS

• CS_SCROLL_INSENSITIVE

• CS_SCROLL_SEMISENSITIVE

• CS_SCROLL_CURSOR

• CS_NOSCROLL_INSENSITIVE

ct_cursor(cmd,
CS_CURSOR_ROWS,
NULL, CS_UNUSED,
NULL, CS_UNUSED,
nrows)

Specify the number of rows to be
returned to Client-Library per
internal fetch. The default is 1.
78 Open Client

CHAPTER 6 Advanced Topics
ct_cursor(cmd,
CS_CURSOR_OPTION,
NULL, CS_UNUSED,
NULL, CS_UNUSED,
option)

Initiate a cursor set options
command.

option is one these values:

• CS_FOR_UPDATE

• CS_READ_ONLY

• CS_UNUSED

• CS_SCROLL_INSENSITIVE

• CS_SCROLL_SEMISENSITIVE

• CS_SCROLL_CURSOR

• CS_NOSCROLL_INSENSITIVE

ct_cursor(cmd,
CS_CURSOR_UPDATE,
name, namelen, text,
textlen, option)

Initiate a cursor update command.

option is one these values:

• CS_UNUSED

• CS_MORE

• CS_END

ct_cursor(cmd,
CS_CURSOR_DELETE,
name, namelen, NULL,
CS_UNUSED,
CS_UNUSED)

Initiate a command to delete the
cursor.

ct_cursor(cmd,
CS_CURSOR_DEALLOC,
NULL, CS_UNUSED,
NULL, CS_UNUSED,
CS_UNUSED)

Initiate a command to deallocate
cursor.

ct_cursor(cmd,
CS_CURSOR_OPEN,
NULL, CS_UNUSED,
NULL, CS_UNUSED,
option)

Initiate a command to open the
cursor.

option is one these values:

• CS_RESTORE_OPEN

• CS_UNUSED

(none) ct_send, ct_results Send and process the results of
ct_cursor commands.

Cursor-declare, cursor-option, and
cursor-rows commands can be
batched and sent as one command.
Other ct_cursor commands can not
be batched.

DB-Library
equivalent

DB-Library
functionality Client-Library routines Client-Library functionality
Client-Library Migration Guide 79

Client-Library cursors
DB-Library fetch types and Client-Library cursors

dbcursorfetch supports a variety of fetch types. Table 6-3 lists dbcursorfetch
fetch types and their Client-Library equivalents, if any:

dbcursorbind(
hc, col,
vartype, varlen,
poutlen,
pvaraddr)

Register the binding
information on the
cursor columns.

ct_bind(cmd, item,
datafmt, buffer, copied,
indicator)

Bind cursor results to program
variables.

dbcursorfetch(
hc, fetchtype,
rownum)

Fetch a block of
rows into the
program variables
specified in the call
to dbcursorbind.

ct_fetch(cmd,
CS_UNUSED,
CS_UNUSED,
CS_UNUSED, rows_read)

Fetch cursor result data.

DB-Library does
not support
scrollable cursors.

ct_scroll_fetch(cmd, type,
CS_UNUSED, CS_TRUE,
rows_read)

Fetch cursor from a result set.

Provide browsing ability to
navigate within the result set and
select single rows for further
processing.

none ct_keydata(cmd, action,
colnum, buffer, buflen,
outlen)

Set (action=CS_SET) or retrieve
(action=CS_GET) the contents of a
key column.

dbcursorclose(
hc)

Close the cursor
with the given
handle (hc).

The cursor handle
should not be
reused.

ct_cursor(cmd,
CS_CURSOR_CLOSE,
NULL, CS_UNUSED,
NULL, CS_UNUSED,
option)

Close a cursor.

option is CS_DEALLOC or
CS_UNUSED

If the cursor is not deallocated, the
same cursor can be reopened later
by calling ct_cursor with the same
command structure.

DB-Library
equivalent

DB-Library
functionality Client-Library routines Client-Library functionality
80 Open Client

CHAPTER 6 Advanced Topics
Table 6-3: dbcursorfetch fetch types and their Client-Library
equivalents

Using ct_keydata

Applications that use array binding to retrieve cursor rows often find
ct_keydata useful; calls to this routine reposition a Client-Library cursor update
or delete to affect a row other than the most recently fetched row.

When using array binding, an update to any row in the bound column arrays,
except for the last row, must be repositioned by calling ct_keydata.

DB-Library has no direct ct_keydata equivalent.

Comparing Client-Library cursors to Browse Mode Updates
The following differences exist between Client-Library cursors and browse
mode updates:

• A Client-Library cursor requires only one connection. Browse mode
requires a second connection for updates, which consumes additional
client and server resources.

• Browse mode requires timestamps, but Client-Library cursors do not.

• A sensitive cursor points directly at the underlying data tables, preventing
other users from updating the page containing the current cursor row. An
insensitive cursor points at a copy of the data (in a work table on the
server).

dbcursor fetch type Client-Library equivalent

FETCH_FORWARD ct_fetch or ct_scroll_fetch with fetch orientation
(or type) set as CS_NEXT

FETCH_FIRST ct_scroll_fetch with fetch orientation (or type) set
as CS_FIRST

FETCH_PREVIOUS ct_scroll_fetch with fetch orientation (or type) set
as CS_PREV

FETCH_RANDOM ct_scroll_fetch with fetch orientation (or type) set
as CS_ABSOLUTE

FETCH_RELATIVE ct_scroll_fetch with fetch orientation (or type) set
as CS_RELATIVE

FETCH_LAST ct_scroll_fetch with fetch orientation (or type) set
as CS_LAST
Client-Library Migration Guide 81

Client-Library cursors
A browse mode update is always insensitive because no lock is applied to
the underlying table. A Client-Library cursor can be sensitive or
insensitive.

An insensitive Client-Library cursor may still be updatable. In this case,
concurrent updates to the underlying data are managed by “version keys.”
When updating through the cursor, the server compares values to
determine if the row has changed since the client received its copy.

Generally, Client-Library cursors declared with an “order by” clause are
insensitive.

Using Array Binding with Cursors
The DB-Library routine dbcursorbind binds a cursor result column to an array
of program variables. The array has a number of rows equal to the size of the
fetch buffer specified in the application’s call to dbcursoropen.

The Client-Library routine ct_bind can bind a cursor result column either to a
single program variable or to an array of program variables. The value of
datafmt→count determines the size of the array.

For both DB-Library and Client-Library, the size of the array must be the same
for all columns in the result set.

The following considerations apply when using array binding with updatable
Client-Library cursors:

• Before the Client-Library cursor is opened, the application must call
ct_cmd_props to allow the CS_HIDDEN_KEYS property.

• Updates to intermediate rows in the result array must be preceded by calls
to ct_keydata to position the update with the key values for the
intermediate row. If the update is not positioned in this way, it will affect
the last row fetched instead of the intermediate row.

Client-Library cursor example
The migration sample program ex06ct.c illustrates conversion of DB-Library
browse-mode code to Client-Library cursor code. ex06ct.c is a conversion of
the example6.c DB-Library sample program. ex06ct.c creates a simple table,
then uses a cursor to traverse the table rows and update each column.
82 Open Client

CHAPTER 6 Advanced Topics
ex06ct.c also contains additional code that shows how Client-Library cursors
allow multiple commands to be active on one connection.

Asynchronous programming
Asynchronous programming allows a client application to perform other work
while waiting for the server to process commands and return results.

DB-Library’s Limited Asynchronous Support
On all platforms DB-Library provides limited support for “non-blocking
reads,” using the calls dbrpcsend, dbsqlsend, dbpoll, and dbsqlok. Following is
the typical calling sequence:

• dbrpcsend or dbsqlsend – sends the RPC or language command and return
immediately.

• dbpoll – is called in a loop until the return_reason parameter is set to
DBRESULT. (Windows DB-Library 4.2 applications use the routine
dbdataready instead of dbpoll.)

• dbsqlok – retrieves the initial results from the command.

With DB-Library, only the initial read of the command’s results is
asynchronous. The application must poll for the arrival of the initial results—
if the initial results are not available when dbsqlok is called, dbsqlok blocks.
After dbsqlok, subsequent calls to dbresults and dbnextrow are synchronous.

Client-Library asynchronous support
In Client-Library, every routine that reads or writes from the network can
behave asynchronously. These routines are:

• ct_connect, ct_close, ct_options

• ct_send, ct_cancel, ct_results, ct_fetch

• ct_get_data, ct_send_data

• ct_recvpassthru, ct_sendpassthru
Client-Library Migration Guide 83

Asynchronous programming
• blk_init, blk_done

• blk_sendrow, blk_sendtxt

• blk_rowxfer, blk_textxfer

Client-Library provides two models of asynchronous programming: fully
asynchronous and polling.

By default, connections behave synchronously. You must request the
asynchronous programming model by setting the CS_NETIO property to
CS_ASYNC_IO (for fully asynchronous behavior) or CS_DEFER_IO (for the
polling model). When set at the context level, the setting affects all
subsequently allocated connections. You can also set the property for each
connection individually.

Fully asynchronous
model

In the fully asynchronous model, the application installs completion callbacks,
and Client-Library invokes the callback each time an asynchronous routine
completes. The fully asynchronous model is supported only on platforms that
have interrupt-driven network I/O capabilities or on platforms where Client-
Library uses operating-system threads to perform network I/O.

Polling model In the polling model, the application calls ct_poll in a loop after each call to an
asynchronous routine that returns CS_PENDING. The polling model is
supported on all platforms. If you are concerned about portability, use the
polling model when writing asynchronous applications.

For a more detailed description of these programming models, see the
“Asynchronous Programming” topics page in the Open Client Client-
Library/C Reference Manual.

Using ct_poll
Similar to dbpoll, ct_poll polls connections for asynchronous operation
completions and registered procedure notifications.

The main differences between ct_poll and dbpoll are:

• ct_poll can take either a CS_CONTEXT or a CS_CONNECTION
parameter, while dbpoll takes a DBPROCESS parameter.

• ct_poll supports a wider range of completion types (compid).

• ct_poll makes the final return code of the completed operation available,
while dbpoll does not.
84 Open Client

CHAPTER 6 Advanced Topics
For more detailed information on these differences, see Table 6-4: Comparing
dbpoll and ct_poll.

If a platform allows the use of callback functions, ct_poll automatically calls the
proper callback routine, (if one is installed), when it finds a completed
operation or a notification.

Specific restrictions on ct_poll include the following:

• ct_poll does not check for asynchronous operation completions if the
CS_DISABLE_POLL property is set to CS_TRUE.

• If CS_ASYNC_NOTIFS is CS_FALSE, ct_poll will not read from the
network to look for registered procedure notifications. Notifications that
have already been found while reading command results are still reported.
In other words, the application must be actively sending commands and
reading results in order for ct_poll to report a registered procedure
notification when CS_ASYNC_NOTIFS is CS_FALSE.

Table 6-4: Comparing dbpoll and ct_poll

dbpoll
parameter Parameter description

ct_poll
parameter Parameter description

dbproc A pointer to a dbprocess
structure. If dbproc is NULL,
dbpoll checks all open
DBPROCESS connections for
the arrival of a response.

context

connection

(Either context or
connection must
be NULL)

Pointers to CS_CONTEXT and
CS_CONNECTION structures. If
context is NULL, ct_poll checks only
a single connection. If connection is
NULL, ct_poll checks all open
connections within the context.

milliseconds The number of milliseconds
that dbpoll should wait for
pending operations to complete
before returning. If
milliseconds is 0, dbpoll will
return immediately. If
milliseconds is -1, dbpoll will
not return until either a server
response arrives or a system
interrupt occurs.

milliseconds The number of milliseconds that
ct_poll should wait for pending
operations to complete before
returning. If milliseconds is 0, ct_poll
will return immediately. If
milliseconds is CS_NO_LIMIT,
ct_poll will not return until either a
server response arrives or a system
interrupt occurs.
Client-Library Migration Guide 85

Asynchronous programming
Using ct_wakeup

When called by the application, ct_wakeup calls a connection’s completion
callback. The ct_wakeup routine is useful in applications that provide a higher
level asynchronous layer implemented on top of Client-Library. See the
“Asynchronous Programming” topics page in the Open Client Client-
Library/C Reference Manual.

ready_dbproc A pointer to a pointer to a
DBPROCESS structure. dbpoll
sets this to point to the
DBPROCESS for which the
server response has arrived, or
to NULL if no response has
arrived.

compconn compconn is the address of a pointer
variable. If connection is NULL, all
connections are polled, and ct_poll
sets compconn to point to the
CS_CONNECTION structure
owning the first completed operation
it finds. ct_poll sets compconn to
NULL if no operation has completed,
or if connection is not NULL.

compcmd compcmd is the address of a pointer
variable. ct_poll sets compcmd to
point to the CS_COMMAND
structure owning the first completed
operation it finds. ct_poll sets
compcmd to NULL if no operation
has completed.

return_reason A pointer to a symbolic value
indicating why dbpoll returned.

compid A pointer to a symbolic value
(CS_SEND, CT_FETCH) indicating
what routine has completed.

(none) compstatus A pointer to a variable of type
CS_RETCODE, which ct_poll sets to
indicate the final return code of the
completed operation, called the
completion status. The completion
status can be any of the return codes
listed for the routine, except
CS_PENDING.

dbpoll
parameter Parameter description

ct_poll
parameter Parameter description
86 Open Client

CHAPTER 6 Advanced Topics
Bulk copy interface
Bulk-Library is an API that consists of Client-Library and Server-Library bulk
copy routines. Some Bulk-Library routines are specific to either Client-Library
or Server-Library, while others are common to both.

Bulk-Library routine names have the prefix “blk,” while CT-Library bulk copy
routine names have the prefix “bcp”.

One significant difference between CT-Library bulk copy and Bulk-Library is
that only CT-Library has built-in support for file I/O.

Both CT-Library bulk copy and Bulk-Library support encrypted columns if
Adaptive Server Enterprise supports encrypted columns.

See the Open Client and Open Server Common Libraries Reference Manual.

Bulk-Library initialization and cleanup
Bulk-Library operations require a CS_BLKDESC structure. An application
can allocate a CS_BLKDESC by calling blk_alloc. When a bulk operation is
complete, the application can drop its CS_BLKDESC by calling blk_drop.

blk_init initiates a bulk copy operation.

The Bulk-Library routine blk_init has parameters for structure, tablename and
direction values that are equivalent to parameters in CT-Library’s bcp_init.
However, blk_init does not handle host file or error file name parameters.

Transfer routines
Bulk-Library applications transfer data using routines that are similar to Client-
Library’s ct_bind, ct_recvpassthru, and ct_sendpassthru routines.

Both Bulk Library and Client-Library applications use CS_DATAFMT
structures to describe program variables for binding, and both support array
binding.

blk_describe sets fields in a CS_DATAFMT structure. An application can use
this CS_DATAFMT structure in the blk_bind call that binds the column to a
program variable.
Client-Library Migration Guide 87

Text/Image interface
Some of CT-Library’s bcp_bind parameters map to fields in the CS_DATAFMT
structure, but there are no equivalents for other parameters. In particular, Bulk
Library has no equivalents for bcp_bind’s length prefix, terminator, and
terminator length parameters. Applications use blk_bind’s datalen parameter to
specify the number of bytes to copy from program variables, or to determine
the number of bytes written to a program variable.

Other differences from DB-Library bulk copy
Only Client-Library provides blk_default to retrieve a column’s default value.

Bulk-Library provides no equivalents for the following CT-Library routines,
because their function is to support host or format files:

• bcp_colfmt, bcp_colfmt_ps, bcp_columns

• bcp_exec

• bcp_readfmt, bcp_writefmt

Text/Image interface
This section compares the text/image interfaces of Client-Library and DB-
Library.

Retrieving text or image data
A typical Client-Library application retrieves large text or image values by
calling ct_get_data inside the fetch loop that’s processing the result set’s rows.

ct_get_data is similar to dbreadtext but is more powerful and flexible. It
exhibits the following characteristics:

• It retrieves data exactly as it is sent from the server, without performing
any conversion.

• It can be used to retrieve data from regular and compute columns as well
as a stored procedure’s return parameters and return status value. (See
“ct_get_data versus dbdata” on page 68.)
88 Open Client

CHAPTER 6 Advanced Topics
• It can be used to retrieve multiple columns of any datatype. (dbreadtext is
restricted to Transact-SQL queries that return exactly one text or image
column.)

• It is most often used to retrieve large text or image values.

The following restrictions apply to the use of ct_get_data:

• When using both ct_bind and ct_get_data to retrieve data in a single result
set, the first column retrieved using ct_get_data must follow the last
column bound with ct_bind.

For example, if an application selects four columns and binds the first and
third columns to program variables, then the application cannot use
ct_get_data to retrieve the data contained in the second column. It can still,
however, use ct_get_data to retrieve the data in the fourth column.

To work within this restriction, make sure any text or image columns to be
retrieved with ct_get_data reside at the end of the select list.

• If array binding was indicated in an earlier call to ct_bind, the application
cannot use ct_get_data on any column in the result set.

DB-Library’s text timestamp
In DB-Library, a select of a text column copies the text timestamp value from
the current row to the DBPROCESS structure. A DB-Library application can
retrieve this text timestamp value with dbtxtimestamp.

Client-Library uses a CS_IODESC structure to store a column’s text
timestamp.

Client-Library’s CS_IODESC structure
The CS_IODESC structure describes text or image data.

When retrieving text or image data from a column that will be updated, a
Client-Library application calls ct_data_info to get the CS_IODESC structure
that describes the text or image column.

Generally an application must call ct_get_data for the column before calling
ct_data_info. However, when ct_get_data is used with Server-Library API
srv_send_data, to transfer text, image, and XML columns in chunks in Gateway
Open Server applications, call ct_data_info before calling ct_get_data.
Client-Library Migration Guide 89

Text/Image interface
If you do not need to retrieve the column’s data, assign 0 to buflen in
ct_get_data. This technique is useful for determining the length of a text or
image value before retrieving it.

See the Open Server Server-Library/C Reference Manual.

When updating the column, the application calls ct_data_info again to apply the
CS_IODESC fields for the update operation.

DB-Library has specialized routines for manipulating the text timestamp for a
column or value. In Client-Library, applications handle these tasks by calling
ct_data_info and then modifying the resulting CS_IODESC structure directly.

A typical application only modifies three fields of a CS_IODESC structure
before using it in an update operation:

• total_txtlen

This field specifies the total length, in bytes, of the new value. This is
equivalent to the size parameter to dbwritetext.

• log_on_update

This field indicates whether or not the server should log the update. This
is equivalent to the log parameter to dbwritetext.

• locale

This field points to a CS_LOCALE structure containing localization
information for the value, if any. It has no equivalent in DB-Library.

The timestamp field in CS_IODESC marks the time of a text or image column’s
last modification.

Table 6-5 compares text timestamp functionality in DB-Library and Client-
Library:

Table 6-5: DB-Library vs. Client-Library—text timestamps

DB-Library routines DB-Library functionality
Client-Library
equivalent

dbtxtimestamp(dbproc,
column)

Return the value of the text timestamp for a
column in the current row

Retrieve the I/O descriptor
for a column in the current
row and put it into
CS_IODESC:

ct_data_info(cmd,
CS_GET, colnum,
iodesc).

The text timestamp is in
CS_IODESC → timestamp.
90 Open Client

CHAPTER 6 Advanced Topics
Sending text or image data
For single-chunk updates, ct_send_data is equivalent to dbwritetext.

For multiple-chunk updates, ct_send_data is equivalent to dbwritetext plus
dbmoretext:

• A DB-Library application first calls dbwritetext with text as null and then
calls dbmoretext in a loop to send the data.

• A Client-Library application simply calls ct_send_data in a loop to send
the data.

A Client-Library application typically uses the following sequence of calls
when performing an update operation:

1 Call ct_fetch to fetch the row of interest.

2 Call ct_get_data to retrieve the column’s value and refresh the I/O
descriptor for the column.

3 Call ct_data_info to retrieve the I/O descriptor into a CS_IODESC
structure.

Using the current I/O descriptor, perform the update:

1 Call ct_command with a type of CS_SEND_DATA_CMD to initiate the
command.

2 Modify the CS_IODESC, changing locale, total_txtlen, or log_on_update,
if necessary, and call ct_data_info to set the I/O descriptor for the column
value.

3 Call ct_send_data in a loop to write the entire value.

dbtxptr(dbproc,column) Return the value of the text pointer for a
column in the current row

The text pointer is in
CS_IODESC → textptr.

dbtxtsnewval(dbproc) Return the new value of a text timestamp after
a call to dbwritetext

Process the return parameter
result set (ct_results returns
with result_type of
CS_PARAM_RESULT),
which contains the new text
timestamp value after a call
to ct_send_data.

DB-Library routines DB-Library functionality
Client-Library
equivalent
Client-Library Migration Guide 91

Text/Image interface
4 Call ct_send to send the command. Because ct_send_data buffers data,
ct_send insures that all data is flushed to the server.

5 Call ct_results to process the results of the command. An update of a text
or image value generates a parameter result set containing a single
parameter, which is the new text timestamp for the value. If the column
will be updated again, the application must save the new timestamp and
copy it into the CS_IODESC before calling ct_data_info to set the I/O
descriptor for the next update.

Update operations In an update operation, the text timestamp value retrieved by an Open Client
application is compared to the database’s text timestamp value. This prevents
competing applications from destroying one another’s changes.

The DB-Library routine, dbwritetext, can be called with a null timestamp
pointer, which causes an update to occur regardless of the database text
timestamp value.

The Client-Library routine, ct_send_data, will always fail if timestamp in
CS_IODESC does not match the current database text timestamp.

Table 6-6 compares text update functionality in DB-Library and Client-
Library:
92 Open Client

CHAPTER 6 Advanced Topics
Table 6-6: Comparing text update operations

Text and image examples
The following migration sample programs demonstrate conversion of
DB-Library text and image code:

DB-Library
routine
(parameter)

DB-Library
functionality Client-Library equivalent

dbwritetext(
objname)

The table and
column name of
interest, separated
by a period (for
example
table.column)

CD_IODESC→ name

Set by ct_data_info

dbwritetext
(textptr)

A pointer to the text
pointer of the text
or image value to
be modified

CS_IODESC→textptr

Set by ct_data_info

dbwritetext(
textptrlen)

For dbwritetext,
must be
DBTXPLEN

CS_IODESC→textptrlen

Set by ct_data_info

dbwritetext(
timestamp)

A pointer to the
timestamp of the
text or image value
to be modified

CS_IODESC→timestamp

Set by ct_data_info or retrieved as
a parameter result after updating
the column

dbwritetext(log) A boolean value,
indicating whether
the server should
log this text or
image modification

CS_IODESC→log_on_update

Set by the application

dbwritetext(size) The total size, in
bytes, of the value
to be sent

CS_IODESC→total_txtlen

Set by the application

dbmoretext(size) The size, in bytes,
of this part of the
value being sent

ct_send_data(buflen)

dbmoretext(text) A pointer to the
portion of data to be
written

ct_send_data(buffer)
Client-Library Migration Guide 93

Localization
• ex09ct.c – DB-Library’s example9.c converted to Client-Library. It
illustrates conversion of code that updates a text/image column with a
single dbwritetext call.

• ex10ct.c – DB-Library’s example10.c converted to Client-Library. It
illustrates conversion of code that updates a large text/image column in
chunks using dbwritetext and dbmoretext.

• ex11ct.c – DB-Library’s example11.c converted to Client-Library. It
illustrates conversion of code that retrieves a large text/image column and
saves it to an operating system file.

The sample programs are located in the following directory:

• $SYBASE/$SYBASE_OCS/sample/dblibrary on UNIX

• %SYBASE%\%SYBASE_OCS%\sample\dblib on Microsoft Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

Localization
An application’s localization determines:

• The language for Client-Library and Adaptive Server Enterprise messages

• The format of datetime values

• The character set and sort order that are used when converting and
comparing strings

On most platforms, Client-Library uses environment variables to determine the
default localization values that an application will use.

The locales file, locales.dat, associates locale names with languages, character
sets, and sort orders. Open Client and Open Server products use the locales file
when loading localization information. Entries in a locales file can be added or
modified, as an application’s requirements dictate.

If the default localization values for an environment meet an application’s
requirements, no further localization is necessary. If the default values do not
meet the application’s requirements, custom localization values can be set
using a CS_LOCALE structure. An application can set localization values at
the context, connection, or data-element levels.
94 Open Client

CHAPTER 6 Advanced Topics
CS_LOCALE Structure
A Client-Library application can use a CS_LOCALE structure to set up custom
localization values. To do this, the application performs the following:

1 Allocates a CS_LOCALE structure with cs_loc_alloc.

2 Loads localization values into the CS_LOCALE structure by calling
cs_locale.

3 Sets the locale at the desired level. The application can:

• Copy the localization values to a context structure with cs_config

• Copy the localization values to a connection structure—before the
connection is open—with ct_con_props

• Supply the CS_LOCALE structure as a parameter to a routine that
accepts custom localization values (cs_convert, cs_time)

• Include a pointer to the CS_LOCALE structure in a CS_DATAFMT
structure describing a destination program variable (cs_convert,
ct_bind)

Localization precedence
When determining which localization values to use, Client-Library uses the
following order of preference:

1 Data element localization values:

• The CS_LOCALE associated with the CS_DATAFMT structure that
describes a data element, or

• The CS_LOCALE passed to a routine as a parameter.

2 Connection structure localization values.

3 Context structure localization values.

Context structure localization values are always defined, because a newly
allocated context structure is assigned whatever default localization values are
in effect.
Client-Library Migration Guide 95

Localization
96 Open Client

A P P E N D I X A Mapping DB-Library Routines
to Client-Library Routines

This appendix lists DB-Library routines and the equivalent Client-Library
and CS-Library calls with which to replace them.

Mapping DB-Library routines to Client-Library routines
Table A-1 lists DB-Library routines and their corresponding Client-
Library and CS-Library equivalents:

Table A-1: Mapping of DB-Library routines to Client-Library
routines

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent

db12hour Determines whether the specified
language uses 12-hour or 24-hour
time.

cs_dt_info(CS_12HOUR)

dbadata Returns a pointer to the data for a
compute column.

No direct equivalent. Applications must retrieve
data values by binding or with ct_get_data. See
“Retrieving data values” on page 65.

dbadlen Returns the actual length of the
data for a compute column.

No direct equivalent:

• Use ct_describe to determine the maximum
possible length of the data (in the maxlength
field of the CS_DATAFMT).

• Use the ct_bind copied parameter to determine
the length of data values placed into bound
variables.

• Use the ct_get_data outlen parameter to
determine the length of data values retrieved
with ct_get_data.

dbaltbind Binds a compute column to a
program variable.

ct_bind
Client-Library Migration Guide 97

Mapping DB-Library routines to Client-Library routines
dbaltbind_ps Binds a compute column to a
program variable, with precision
and scale support for numeric and
decimal data.

ct_bind

dbaltcolid Returns the column ID for a
compute column.

ct_compute_info(CS_COMP_COLID)

dbaltlen Returns the maximum length of
the data for a particular compute
column.

ct_describe
(The maxlength field of the CS_DATAFMT)

dbaltop Returns the type of aggregate
operator for a particular compute
column.

ct_compute_info(CS_COMP_OP)

dbalttype Returns the datatype for a
compute column.

ct_describe
(The datatype field of the CS_DATAFMT)

dbaltutype Returns the user-defined datatype
for a compute column.

ct_describe
(The usertype field of the CS_DATAFMT)

dbanullbind Associates an indicator variable
with a compute-row column.

ct_bind

dbbind Binds a regular result column to a
program variable.

ct_bind

dbbind_ps Binds a regular result column to a
program variable, with precision
and scale support for numeric and
decimal data.

ct_bind

dbbufsize Returns the size of a
DBPROCESS row buffer.

None. Client-Library does not provide built-in
support for row buffering.

dbbylist Returns the bylist for a compute
row.

Replace with the following call sequence:

• ct_compute_info(CS_BYLIST_LEN) to
determine the length of the bylist.

• Allocate a CS_SMALLINT array to hold the
bylist (or confirm that an existing array is
large enough).

• ct_compute_info(CS_COMP_BYLIST) to
copy the bylist into the array.

dbcancel Cancels the current command
batch.

One of the following:

• ct_cancel(CS_CANCEL_ALL) from main-
line code, or

• ct_cancel(CS_CANCEL_ATTN) from the
client-message handler.

dbcanquery Cancels any rows pending from
the most recently executed query.

ct_cancel(CS_CANCEL_CURRENT)

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
98 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbchange Determines whether a command
batch has changed the current
database.

None.

Applications that require this functionality can be
coded to trap server message number 5701 in the
server message handler. The text of the 5701
message contains the database name.

dbcharsetconv Indicates whether the server is
performing character set
translation.

ct_con_props(CS_CHARSETCNV)

dbclose Closes and deallocates a single
DBPROCESS structure.

One of the following:

• ct_close to close the connection

• ct_con_drop to deallocate the structure

dbclrbuf Drops rows from the row buffer. None. Client-Library does not provide built-in
support for row buffering.

dbclropt Clears an option set by dbsetopt. ct_options(CS_CLEAR).

dbcmd Adds text to the DBPROCESS
language command buffer.

ct_command(CS_LANG_CMD) puts text into
the language buffer.

Pass option as CS_MORE if more text will be
appended to the language buffer, otherwise,
CS_END.

DBCMDROW Determines whether the current
command can return rows.

No direct equivalent. ct_results sets result_type
to CS_CMD_SUCCEED to indicate the success
of a command that returns no data.

For a comparison of ct_results result_type values
to DB-Library program logic, see “Code that
processes results” on page 59.

dbcolbrowse Determines whether the source of
a regular result column can be
updated using browse-mode
updates.

ct_br_column
(The isbrowse field of the CS_BROWSEDESC)

dbcollen Returns the maximum length of
the data in a regular result
column.

ct_describe
(The maxlength field of the CS_DATAFMT)

dbcolname Returns the name of a regular
result column.

ct_describe
(The name field of the CS_DATAFMT)

dbcolsource Returns a pointer to the name of
the database column from which
the specified regular result
column was derived.

ct_br_column
(The origname field of the CS_BROWSEDESC)

dbcoltype Returns the datatype for a regular
result column.

ct_describe
(The datatype field of the CS_DATAFMT)

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 99

Mapping DB-Library routines to Client-Library routines
dbcoltypeinfo Returns a structure containing
precision and scale values for a
numeric column value.

ct_describe
(The precision and scale fields of the
CS_DATAFMT)

dbcolutype Returns the user-defined datatype
for a regular result column.

ct_describe
(The usertype field of the CS_DATAFMT)

dbconvert Converts data from one datatype
to another.

cs_convert

dbconvert_ps Converts data from one datatype
to another, with precision and
scale support for numeric and
decimal data.

cs_convert

DBCOUNT Returns the number of rows
affected by a Transact-SQL
command.

ct_res_info(CS_ROW_COUNT)

Call when ct_results returns a result_type value
of CS_CMD_DONE.

Note After a stored procedure execution, the row
counts returned by DBCOUNT and ct_res_info
can differ. For details, see “Obtaining the
Number of Rows Affected” on page 71.

DBCURCMD Returns the number of the current
command.

ct_res_info(CS_CMD_NUMBER)

DBCURROW Returns the number of the row
currently being read.

No direct equivalent.

The application can use a counter variable that is
incremented when fetching regular and compute
result rows. To maintain a count equivalent to
DBCURROW’s, follow these steps:

• When ct_results sets the result_type parameter
to CS_ROW_RESULT or
CS_COMPUTE_RESULT, increment the
counter for every ct_fetch call that returns
CS_SUCCEED or CS_ROW_FAIL. If array
binding is used, increment by the value
returned in the ct_fetch rows_read parameter,
otherwise increment by 1.

• Set the counter to zero before the ct_results
loop, and reset the counter to zero every time
ct_results returns a CS_CMD_DONE
result_type value.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
100 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbcursor Inserts, updates, deletes, locks, or
refreshes a particular row in the
fetch buffer.

ct_cursor

ct_cursor commands must be sent with ct_send
and their results handled with ct_results.

Note The feature sets for DB-Library cursors
and ct_cursor cursors are not identical. See
“Client-Library cursors” on page 76.

dbcursorbind Registers the binding
information on the cursor
columns.

ct_bind when ct_results returns with a result_type
of CS_CURSOR_RESULT.

dbcursorclose Closes the cursor associated with
the given handle, releasing all the
data belonging to it.

• ct_cursor(CS_CURSOR_CLOSE) initiates a
cursor-close command.

• ct_cursor(CS_CURSOR_DEALLOC)
initiates a command that deallocates the server
resources associated with the cursor.

The cursor can be closed and deallocated with
one command (by passing option as
CS_DEALLOC in the ct_cursor call that
initiates the cursor-close command).

All ct_cursor commands must be sent with
ct_send and their results handled with
ct_results.

dbcursorcolinfo Returns column information for
the specified column number in
the open cursor.

ct_describe when ct_results returns with a
result_type of CS_CURSOR_RESULT.

dbcursorfetch Fetches a block of rows into the
program variables declared by
the user in dbcursorbind.

ct_fetch when ct_results returns with a
result_type of CS_CURSOR_RESULT.

dbcursorinfo Returns the number of columns
and the number of rows in the
keyset if the keyset hit the end of
the result set.

No direct equivalent. Client-Library cursors are
managed by the server, and there is no equivalent
concept of a keyset.

To find out whether a cursor result set column is
a key, call ct_describe, then check the status field
in the CS_DATAFMT structure.

dbcursoropen Opens a cursor, specifying the
scroll option, the concurrency
option, and the size of the fetch
buffer (the number of rows
retrieved with a single fetch).

ct_cursor

Note
The feature sets for DB-Library cursors and
ct_cursor cursors are not identical. See “Client-
Library cursors” on page 76.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 101

Mapping DB-Library routines to Client-Library routines
dbdata Returns a pointer to the data in a
regular result column.

No direct equivalent.

Applications must retrieve data values by
binding or with ct_get_data. See “ct_get_data
versus dbdata” on page 68.

dbdate4cmp Compares two DBDATETIME4
values.

cs_cmp

dbdate4zero Initializes a DBDATETIME4
variable to Jan 1, 1900 12:00AM.

No direct equivalent.

The application can call cs_convert to convert a
string representation to the equivalent
CS_DATETIME value.

The application can also use memset (or a
platform equivalent) to zero the bytes of the
CS_DATETIME4 structure. This effectively sets
the date value to Jan 1, 1900 12:00AM.

The memset technique provides better
performance.

dbdatechar Converts an integer component
of a DBDATETIME value into
character format.

No direct equivalent.

To replace dbdatechar calls that obtain native
language month and day names, use cs_dt_info.

Other dbdatechar calls just convert an integer to
a string of decimal digits. These can be replaced
with a call to sprintf (or an equivalent conversion
routine).

dbdatecmp Compares two DBDATETIME
values.

cs_cmp

dbdatecrack Converts a machine-readable
DBDATETIME value into user-
accessible format.

cs_dt_crack

The DBDATEREC and CS_DATEREC
structures are identical.

dbdatename Converts the specified
component of a DBDATETIME
structure into its corresponding
character string.

No direct equivalent.

To replace dbdatename calls that obtain native
language month and day names, use cs_dt_crack
and cs_dt_info. Other calls can be replaced with
the following call sequence:

• Call cs_dt_crack to expand the date into a
CS_DATEREC structure.

• Perform simple calculations on the
CS_DATEREC fields.

• Call sprintf (or an equivalent conversion
routine) to convert the result to a string.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
102 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbdateorder Returns the date component
order for a given language.

cs_dt_info(CS_DATEORDER)

dbdatepart Returns the specified part of a
DBDATETIME value as an
integer value.

No direct equivalent.

dbdatepart calls can be replaced by a call to
cs_dt_crack and a reference to the appropriate
CS_DATEREC field. To replace calls that
compute DBDATE_QQ and DBDATE_WK, the
application must perform simple arithmetic with
the appropriate CS_DATEREC fields.

dbdatezero Initializes a DBDATETIME
value to Jan 1, 1900
12:00:00:000AM.

No direct equivalent. The application can call
cs_convert to convert a string representation to
the equivalent CS_DATETIME value.

The application can also use memset (or a
platform-specific equivalent) to zero the bytes of
the CS_DATETIME structure. This effectively
sets the date value to Jan 1, 1900
12:00:00:000AM.

The memset technique provides better
performance.

dbdatlen Returns the length of the data in a
regular result column.

No direct equivalent.

• Use ct_describe to get the maximum possible
length of the data (in the maxlength field of
the CS_DATAFMT).

• Use the ct_bind copied parameter to obtain the
length of data values placed into bound
variables.

• Use the ct_get_data outlen parameter to
obtain the length of data values retrieved with
ct_get_data.

dbdayname Determines the name of a
specified weekday in a specified
language.

cs_dt_info(CS_DAYNAME)

DBDEAD Determines whether a particular
DBPROCESS is dead.

ct_con_props(CS_GET, CS_CON_STATUS)

Check the CS_CONSTAT_DEAD bit in the
returned value.

dberrhandle Installs a user function to handle
DB-Library errors.

• ct_callback(CS_SET, CS_CLIENTMSG_CB)

• cs_config(CS_SET, CS_MESSAGE_CB)

See “Error and message handlers” on page
47.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 103

Mapping DB-Library routines to Client-Library routines
dbexit Closes and deallocates all
DBPROCESS structures and
cleans up structures initialized by
dbinit.

• ct_exit

• cs_ctx_drop

dbfcmd Adds text to the DBPROCESS
command buffer using C runtime
library sprintf-type formatting.

No direct equivalent.

Use sprintf (or your system’s equivalent) to
format the language command string before
calling ct_command.

Pass option as CS_MORE if more text will be
appended to the language buffer, or CS_END
otherwise.

For connections using TDS 5.0 or later, Client-
Library allows parameters for language
commands. Identify parameters with “@”
variables in the text, and pass values with
ct_param or ct_setparam.

DBFIRSTROW Returns the number of the first
row in the row buffer.

None. Client-Library does not provide built-in
support for row buffering.

dbfree_xlate Frees a pair of character set
translation tables.

No direct equivalent.

Character sets are stored as part of the hidden
CS_LOCALE structure. Use cs_loc_alloc to
allocate a CS_LOCALE structure and
cs_loc_drop to free the structure’s memory.

dbfreebuf Clears the command buffer. No direct equivalent.

System 10 and later Client-Library clears the
command buffer with every call to ct_send.

If a command has been initiated but not sent, use
ct_cancel to clear the command buffer.

dbfreequal Frees the memory allocated by
dbqual.

No direct equivalent. Client-Library does not
provide built-in functions to build where clauses.

See the entry for dbqual in this table.

dbfreesort Frees a sort order structure
allocated by dbloadsort.

No direct equivalent.

Sort orders are stored as part of the hidden
CS_LOCALE structure. Use cs_loc_alloc to
allocate a CS_LOCALE structure and
cs_loc_drop to free the structure’s memory.

dbgetchar Returns a pointer to a character in
the command buffer.

No direct equivalent.

Format language commands before passing them
to ct_command. The internal language buffer is
not accessible to the application.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
104 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbgetcharset Gets the name of the client
character set from the
DBPROCESS structure.

Replace with the following call sequence:

• cs_loc_alloc to allocate a CS_LOCALE
structure.

• ct_con_props(CS_LOC_PROP) to copy the
connection’s locale into the application’s
CS_LOCALE structure.

• cs_locale(CS_GET, CS_SYB_CHARSET) to
get the character set name.

• cs_loc_drop to drop the CS_LOCALE.

dbgetloginfo Transfers TDS login response
information from a
DBPROCESS structure to a
newly allocated DBLOGINFO
structure.

ct_getloginfo

dbgetlusername Returns the user name from a
LOGINREC structure.

ct_con_props(CS_GET, CS_USERNAME)

dbgetmaxprocs Determines the current
maximum number of
simultaneously open
DBPROCESSes.

ct_config(CS_GET, CS_MAX_CONNECT)

dbgetnatlang Gets the native language from the
DBPROCESS structure.

Replace with the following call sequence:

• cs_loc_alloc to allocate a CS_LOCALE
structure.

• ct_con_props(CS_LOC_PROP) to copy the
connection’s locale into the application’s
CS_LOCALE structure.

• cs_locale(CS_GET, CS_SYB_LANG) to get
the language name.

• cs_loc_drop to drop the CS_LOCALE.

dbgetoff Checks for the existence of
Transact-SQL constructs in the
command buffer.

None.

dbgetpacket Returns the TDS packet size
currently in use.

ct_con_props(CS_GET, CS_PACKETSIZE)

dbgetrow Reads the specified row in the
row buffer.

None. Client-Library does not provide built-in
support for row buffering.

DBGETTIME Returns the number of seconds
that DB-Library will wait for a
server response to a SQL
command.

ct_config(CS_GET, CS_TIMEOUT)

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 105

Mapping DB-Library routines to Client-Library routines
dbgetuserdata Returns a pointer to user-
allocated data from a
DBPROCESS structure.

User data can be installed at the context,
connection, or command level:

• cs_config(CS_USERDATA) sets or retrieves
context-level user data

• ct_con_props(CS_USERDATA), sets or
retrieves connection-level user data

• ct_cmd_props(CS_USERDATA), sets or
retrieves command-level user data

Child structures do not inherit
CS_USERDATA values.

dbhasretstat Determines whether the current
command or an RPC generated a
return status number.

ct_results returns a result_type value of
CS_STATUS_RESULT when a stored procedure
return status arrives.

See “Code that processes results” on page 59.

dbinit Initializes DB-Library. • cs_ctx_alloc

• ct_init

DBIORDESC (UNIX and
AOS/VS only)

Provides program access to the
UNIX or AOS/VS file descriptor
used by DB-Library to read data
coming from the server.

ct_con_props(CS_ENDPOINT)

The retrieved property value is -1 on platforms
that do not support this functionality.

DBIOWDESC (UNIX and
AOS/VS only)

Provides program access to the
UNIX or AOS/VS file descriptor
used by DB-Library to write data
to the server.

ct_con_props(CS_ENDPOINT)

The retrieved property value is -1 on platforms
that do not support this functionality.

DBISAVAIL Determines whether a
DBPROCESS is available for
general use.

No direct equivalent. If the program logic relies
on DBISAVAIL and DBSETAVAIL, use the Client-
Library’s connection-level or command-level
CS_USER_DATA properties to replace these
calls.

dbisopt Checks the status of a server or
DB-Library option.

ct_options(CS_GET)

DBLASTROW Returns the number of the last
row in the row buffer.

None. Client-Library does not provide built-in
support for row buffering.

dbload_xlate Loads a pair of character set
translation tables.

No direct equivalent.

Character sets are stored as part of the hidden
CS_LOCALE structure. Use cs_loc_alloc to
allocate a CS_LOCALE structure and
cs_loc_drop to free the structure’s memory. Use
cs_locale to change the character set in a
CS_LOCALE structure.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
106 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbloadsort Loads a server sort order. No direct equivalent.

Sort orders are stored as part of the hidden
CS_LOCALE structure. Use cs_loc_alloc to
allocate a CS_LOCALE structure and
cs_loc_drop to free the structure’s memory.

Use cs_locale to change a CS_LOCALE’s sort
order.

dblogin Allocates a login record for use in
dbopen.

ct_con_alloc

See “Code that opens a connection” on page 42
for usage information.

dbloginfree Frees a login record. ct_con_drop

dbmny4add Adds two DBMONEY4 values. cs_calc

dbmny4cmp Compares two DBMONEY4
values.

cs_cmp

dbmny4copy Copies a DBMONEY4 value. No built in equivalent.

Use the C standard library routine memcpy (or an
equivalent):

CS_MONEY4 dest_mny4;
CS_MONEY4 src_mny4;
memcpy(&dest_mny4, &src_mny4,
 sizeof(CS_MONEY4));

dbmny4divide Divides one DBMONEY4 value
by another.

cs_calc

dbmny4minus Negate a DBMONEY4 value. No direct equivalent.

Use cs_calc to subtract the value from a zero-
value CS_MONEY4 variable.

dbmny4mul Multiplies two DBMONEY4
values.

cs_calc

dbmny4sub Subtracts one DBMONEY4
value from another.

cs_calc

dbmny4zero Initializes a DBMONEY4
variable to $0.0000.

Use memset (or an equivalent) to zero the fields
of the CS_MONEY4 structure.

dbmnyadd Adds two DBMONEY values. cs_calc

dbmnycmp Compares two DBMONEY
values.

cs_cmp

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 107

Mapping DB-Library routines to Client-Library routines
dbmnycopy Copies a DBMONEY value. No built in equivalent.

Use the C standard library routine memcpy (or an
equivalent):

CS_MONEY dest_mny;
CS_MONEY src_mny;
memcpy(&dest_mny,
 &src_mny,
 sizeof(CS_MONEY));

dbmnydec Decrements a DBMONEY value
by one ten-thousandth of a dollar.

No direct equivalent.

Use cs_convert to convert a one ten-thousandth
CS_FLOAT value to a CS_MONEY, then use
cs_calc.

dbmnydivide Divides one DBMONEY value
by another.

cs_calc

dbmnydown Divides a DBMONEY value by a
positive integer.

No direct equivalent.

Use cs_convert to convert the integer value to a
CS_MONEY, then call cs_calc to divide by the
converted value.

dbmnyinc Increments a DBMONEY value
by one ten-thousandth of a dollar.

No direct equivalent.

Use cs_convert to convert a one ten-thousandth
CS_FLOAT value to a CS_MONEY, then use
cs_calc.

dbmnyinit Prepares a DBMONEY value for
calls to dbmnyndigit.

No direct equivalent for dbmnyinit and
dbmnyndigit.

See the entry for dbmnydigit in this table.

dbmnymaxneg Returns the maximum negative
DBMONEY value supported.

None.

dbmnymaxpos Returns the maximum positive
DBMONEY value supported.

None.

dbmnyminus Negates a DBMONEY value. No direct equivalent.

Use cs_calc to subtract the value from a zero-
value CS_MONEY4 variable.

dbmnymul Multiplies two DBMONEY
values.

cs_calc

dbmnyndigit Returns the rightmost digit of a
DBMONEY value as a
DBCHAR.

No direct equivalent.

Use cs_convert to convert the CS_MONEY
value to a character string, then reformat the
string as necessary. To avoid losing precision in
the conversion to CS_CHAR, use the conversion
sequence CS_MONEY to CS_NUMERIC to
CS_CHAR.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
108 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbmnyscale Multiplies a DBMONEY value
by a positive integer (multiplier)
and add a specified amount
(addend, in ten-thousandths).

No direct equivalent.

Use cs_convert to convert the multiplier and
addend values to equivalent CS_MONEY
values, then use cs_calc to perform the
multiplication and addition.

dbmnysub Subtracts one DBMONEY value
from another.

cs_calc

dbmnyzero Initializes a DBMONEY value to
$0.0000.

Use memset (or an equivalent) to zero the fields
of the CS_MONEY structure.

dbmonthname Determines the name of a
specified month in a specified
language.

• cs_dt_info(CS_MONTH), or

• cs_dt_info(CS_SHORTMONTH).

DBMORECMDS Indicates whether there are more
results to be processed.

No direct equivalent.

ct_results returns CS_END_RESULTS when all
results have been processed. Code your results
loop to process all results sent by the server, or to
cancel unexpected results.

For information on converting results-handling
code, see “Code that processes results” on page
59.

For information on canceling commands, see
“Canceling results” on page 72.

dbmoretext Sends part of a text or image
value to the server.

ct_send_data

For usage information, see Table 6-6 on page 93.

dbmsghandle Installs a user function to handle
server messages.

ct_callback(CS_SERVERMSG_CB)

See “Error and message handlers” on page 47.

dbname Returns the name of the current
database.

No direct equivalent.

Send the following language command to get the
information from Adaptive Server Enterprise:

select db_name()

dbnextrow Reads the next result row. ct_fetch (and ct_results if the query returns
compute rows).

See “Code that processes results” on page 59 for
an illustration of how regular and compute rows
are handled.

To get the compute ID that is returned by
dbnextrow, use
ct_compute_info(CS_COMP_ID).

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 109

Mapping DB-Library routines to Client-Library routines
dbnpcreate Creates a notification procedure. No direct equivalent.

Invoke the Open Server system stored procedure
sp_regcreate with a Client-Library RPC
command. sp_regcreate is documented in the
Open Server Server-Library/C Reference
Manual.

dbnpdefine Defines a notification procedure. No direct equivalent.

Invoke the Open Server system stored procedure
sp_regcreate with a Client-Library RPC
command. sp_regcreate is documented in the
Open Server Server-Library/C Reference
Manual.

dbnullbind Associates an indicator variable
with a regular result row column.

ct_bind

dbnumalts Returns the number of columns
in a compute row.

ct_res_info(CS_NUMDATA) when ct_results
returns with a result_type of
CS_COMPUTE_RESULT.

dbnumcols Determines the number of
regular columns for the current
set of results.

ct_res_info(CS_NUMDATA) when ct_results
returns with a result_type of
CS_ROW_RESULT.

dbnumcompute Returns the number of
COMPUTE clauses in the current
set of results.

ct_res_info(CS_NUM_COMPUTES) when
ct_results returns with a result_type of
CS_COMPUTE_RESULT.

DBNUMORDERS Returns the number of columns
specified in a Transact-SQL
select statement’s order by
clause.

ct_res_info(CS_NUMORDERCOLS) returns
with a result_type of CS_ROW_RESULT.

dbnumrets Determines the number of return
parameter values generated by a
stored procedure.

ct_res_info(CS_NUMDATA)

ct_results returns a result_type of
CS_PARAM_RESULT when the return
parameter values arrive.

dbopen Creates and initializes a
DBPROCESS structure.

ct_connect

See “Code that opens a connection” on page 42
for usage information.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
110 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbordercol Returns the ID of a column
appearing in the most recently
executed query’s order by clause.

Replace with the following call sequence:

• ct_res_info(CS_NUMORDERCOLS) to get
the length of the order-by list.

• Allocate a CS_INT array to hold the order-by
list (or confirm that an existing array is large
enough).

• ct_res_info(CS_ORDERBY_COLS) to copy
the order-by list into the CS_INT array of
select-list identifiers.

dbpoll Checks if a server response has
arrived for a DBPROCESS.

ct_poll

Note Usage differs. See the “Asynchronous
Programming” topics page in the Open Client
Client-Library/C Reference Manual.

dbprhead Prints the column headings for
rows returned from the server.

No direct equivalent. Replace with application
code.

dbprrow Prints all the rows returned from
the server.

No direct equivalent. Replace with application
code.

The example function ex_fetch_data in the
exutils.c Client-Library sample program
provides similar functionality. For more details
of this sample program, see Open Client and
Open Server Programmers Supplement for your
platform.

dbprtype Converts a token value to a
readable string.

No direct equivalent. Replace with application
code.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 111

Mapping DB-Library routines to Client-Library routines
dbqual Returns a pointer to a where
clause suitable for use in
updating the current row in a
browsable table.

No direct equivalent. Replace with application
code that calls ct_br_column and ct_br_table to
get the column and table names for building the
where clause.

Before sending the browse-mode query, the
application must allow the CS_HIDDEN_KEYS
command property. The application must also
bind to the table’s timestamp column and use the
timestamp in the where clause.

The format of the where clause is:
where key1 = value_1
and key2 = value_2 ...
and tsequal(timestamp, ts_value)

where:

• key1, value_1, key2, value_2, and so forth are
the key columns and their values.

• ts_value is the binary timestamp value
converted to a character string.

DBRBUF (UNIX and
AOS/VS only)

Determines whether the DB-
Library network buffer contains
any unread bytes.

No direct equivalent. Use an asynchronous
connection.

See the “Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual.

dbreadpage Reads a page of binary data from
the server.

None.

dbreadtext Reads part of a text or image
value from the server.

ct_get_data

For usage information, see “Retrieving text or
image data” on page 88.

dbrecftos Records all SQL sent from the
application to the server.

None.

Use ct_debug to diagnose application problems.

dbrecvpassthru Receives a TDS packet from a
server.

ct_recvpassthru

dbregdrop Drops a registered procedure. No direct equivalent.

Invoke the Open Server system stored procedure
sp_regdrop with a Client-Library RPC
command. sp_regdrop is documented in the
Open Server Server-Library/C Reference
Manual.

dbregexec Executes a registered procedure. ct_send

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
112 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbreghandle Installs a handler routine for a
registered procedure notification.

ct_callback
(CS_NOTIF_CB)

dbreginit Initiates execution of a registered
procedure.

ct_command
(CS_RPC_CMD)

dbreglist Returns a list of registered
procedures currently defined in
Open Server.

No direct equivalent.

Invoke the Open Server system stored procedure
sp_reglist with a Client-Library RPC command.
sp_reglist is documented in the Open Server
Server-Library/C Reference Manual.

dbregnowatch Cancels a request to be notified
when a registered procedure
executes.

No direct equivalent.

Invoke the Open Server system stored procedure
sp_regnowatch with a Client-Library RPC
command. sp_regnowatch is documented in the
Open Server Server-Library/C Reference
Manual.

dbregparam Defines or describes a registered
procedure parameter.

ct_param or ct_setparam

dbregwatch Requests notification when a
registered procedure executes.

No direct equivalent.

Invoke the Open Server system stored procedure
sp_regwatch with a Client-Library RPC
command. sp_regwatch is documented in the
Open Server Server-Library/C Reference
Manual.

dbregwatchlist Returns a list of registered
procedures that a DBPROCESS
is watching for.

No direct equivalent.

Invoke the Open Server system stored procedure
sp_regwatchlist with a Client-Library RPC
command. sp_regwatchlist is documented in the
Open Server Server-Library/C Reference
Manual.

dbresults Sets up the results of the next
query.

ct_results

See “Code that processes results” on page 59.

dbretdata Returns a pointer to a return
(output) parameter value
generated by a stored procedure.

No direct equivalent. Bind and fetch the return
parameter values, or use ct_get_data.

See “Retrieving data values” on page 65.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 113

Mapping DB-Library routines to Client-Library routines
dbretlen Determines the length of a return
parameter value generated by a
stored procedure.

No direct equivalent.

• Use ct_describe to get the maximum possible
length of the data (in the maxlength field of
the CS_DATAFMT).

• Use the ct_bind copied parameter to get the
length of data values placed into bound
variables.

• Use the ct_get_data outlen parameter to get
the length of data values retrieved with
ct_get_data.

dbretname Determines the name of the
stored procedure parameter
associated with a particular
return parameter value.

ct_describe

(The name field in the CS_DATAFMT.)

dbretstatus Determines the stored procedure
status number returned by the
current command or RPC.

No direct equivalent.

Bind and fetch the return status value, or use
ct_get_data.

See “Retrieving data values” on page 65.

dbrettype Determines the datatype of a
return parameter value generated
by a stored procedure.

ct_describe

(The datatype field in the CS_DATAFMT.)

DBROWS Indicates whether the current
command actually returned rows.

No direct equivalent.

ct_results returns a result_type value of
CS_ROW_RESULT when a command has
returned rows.

See “Code that processes results” on page 59.

DBROWTYPE Returns the type of the current
row.

ct_results indicates the type of the current result
set.

See “Code that processes results” on page 59.

dbrpcinit Initializes an RPC. ct_command(CS_RPC_COMMAND)

dbrpcparam Adds a parameter to an RPC. ct_param or ct_setparam

dbrpcsend Signals the end of an RPC. ct_send

dbrpwclr Clears all remote passwords from
the LOGINREC structure.

ct_remote_pwd(CS_CLEAR)

dbrpwset Adds a remote password to the
LOGINREC structure.

ct_remote_pwd(CS_SET)

dbsafestr Doubles the quotes in a character
string.

None. Replace with application code.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
114 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbsechandle Installs user functions to handle
secure logins.

• ct_callback(CS_ENCRYPT_CB) to replace
dbsechandle(DBENCRYPT).

• ct_callback(CS_CHALLENGE_CB) to
replace dbsechandle(DBLABELS).

dbsendpassthru Sends a TDS packet to a server. ct_sendpassthru

dbservcharset Obtains the name of the server
character set.

No direct equivalent.

For connections to Adaptive Server Enterprise or
Open Server, send an RPC command to invoke
the sp_serverinfo Adaptive Server Enterprise
catalog stored procedure (or the Open Server
system registered procedure with the same
name). Pass the string “server_csname” as an
unnamed CS_CHAR parameter.

dbsetavail Marks a DBPROCESS as being
available for general use.

No direct equivalent.

If the program logic relies on DBISAVAIL and
DBSETAVAIL, use
ct_con_props(CS_USER_DATA) or
ct_cmd_props(CS_USER_DATA) to replace
these calls.

dbsetbusy Calls a user-supplied function
when DB-Library is reading from
the server.

No direct equivalent—use asynchronous
connections instead.

See the “Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual.

dbsetconnect Sets the server connection
information.

ct_con_props(CS_SERVERADDR)

dbsetdefcharset Sets the default character set
name for an application.

The “default” entry in the locales file determines
the default character set for a CS_CONTEXT
structure. The application can change a context’s
character set with cs_loc_alloc, cs_locale, and
cs_config(CS_LOC_PROP).

dbsetdeflang Sets the default language name
for an application.

The “default” entry in the locales file determines
the default language for a CS_CONTEXT
structure. The application can change a context’s
language with cs_loc_alloc, cs_locale, and
cs_config(CS_LOC_PROP).

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 115

Mapping DB-Library routines to Client-Library routines
dbsetidle Calls a user-supplied function
when DB-Library has finished
reading from the server.

No direct equivalent.

Use an asynchronous connection. Client-Library
calls the connection’s completion callback every
time an asynchronous routine completes its work.

See the “Asynchronous Programming” topics
page in the Open Client Client-Library/C
Reference Manual.

dbsetifile Specifies the name and location
of the Sybase interfaces file.

ct_config(CS_IFILE)

cs_config(CS_DEFAULT_IFILE) specifies the
name and location of the alternate Sybase
interfaces file.

dbsetinterrupt Calls user-supplied functions to
handle interrupts while waiting
on a read from the server.

No direct equivalent.

On platforms where Client-Library uses signal-
driven I/O, use ct_callback(CS_SIGNAL_CB) to
install system interrupt handlers.

If the application requires the ability to cancel
pending queries before Client-Library calls
complete, then use an asynchronous connection.
Use ct_cancel(CS_CANCEL_ATTN) to cancel
commands when the completion of a Client-
Library call is pending.

DBSETLAPP Sets the application name in the
LOGINREC structure.

ct_con_props(CS_APPNAME)

DBSETLCHARSET Sets the character set in the
LOGINREC structure.

Replace with the following call sequence:

• cs_loc_alloc to allocate a CS_LOCALE
structure.

• ct_con_props(CS_GET, CS_LOC_PROP) to
copy the connection’s internal CS_LOCALE
structure.

• cs_locale(CS_SET, CS_SYB_CHARSET) to
change the character set name.

• ct_con_props(CS_SET, CS_LOC_PROP) to
copy the modified CS_LOCALE structure
back into the connection.

• cs_loc_drop to drop the CS_LOCALE.

If nearby DBSETLCHARSET and
DBSETLNATLANG calls are being replaced,
change both the language and the character set
in the third step.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
116 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
DBSETLENCRYPT Specifies whether or not
password encryption is to be used
when logging into Adaptive
Server Enterprise.

ct_con_props(CS_SET,
CS_SEC_ENCRYPTION)

DBSETLHOST Sets the host name in the
LOGINREC structure.

ct_con_props(CS_SET, CS_HOSTNAME)

DBSETLNATLANG Sets the national language name
in the LOGINREC structure.

Replace with the following call sequence:

• cs_loc_alloc to allocate a CS_LOCALE
structure.

• ct_con_props(CS_GET, CS_LOC_PROP) to
copy the connection’s internal CS_LOCALE
structure.

• cs_locale(CS_SET, CS_SYB_LANG) to set
the language name.

• ct_con_props(CS_SET, CS_LOC_PROP) to
copy the modified CS_LOCALE structure
back into the connection.

• cs_loc_drop to drop the CS_LOCALE.

If nearby DBSETLCHARSET and
DBSETLNATLANG calls are being replaced,
change both the language and the character set
in the third step.

dbsetloginfo Transfer TDS login information
from a DBLOGINFO structure to
a LOGINREC structure.

ct_setloginfo

dbsetlogintime Sets the number of seconds that
DB-Library waits for a server
response to a request for a
DBPROCESS connection.

ct_config(CS_SET, CS_LOGIN_TIMEOUT)

DBSETLPACKET Sets the TDS packet size in an
application’s LOGINREC
structure.

ct_con_props(CS_SET, CS_PACKETSIZE)

DBSETLPWD Sets the user server password in
the LOGINREC structure.

ct_con_props(CS_SET, CS_PASSWORD)

DBSETLUSER Sets the user name in the
LOGINREC structure.

ct_con_props(CS_SET, CS_USERNAME)

dbsetmaxprocs Sets the maximum number of
simultaneously open
DBPROCESSes.

ct_config(CS_SET, CS_MAX_CONNECT)

dbsetnull Defines substitution values to be
used when binding null values.

cs_setnull

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 117

Mapping DB-Library routines to Client-Library routines
dbsetopt Sets a server or DB-Library
option.

ct_options sets server options. ct_config,
ct_con_props, and ct_cmd_props set Client-
Library properties.

dbsetrow Sets a buffered row to “current.” None. Client-Library does not provide built-in
support for row buffering.

dbsettime Sets the number of seconds that
DB-Library will wait for a server
response to a SQL command.

ct_config(CS_SET, CS_TIMEOUT)

To cancel when a timeout occurs, call
ct_cancel(CS_CANCEL_ATTN) in the client
message handler. The timeout error information
is:

• Severity = CS_SV_RETRY_FAIL

• Number = 63

• Origin = 2

• Layer = 1

dbsetuserdata Uses a DBPROCESS structure to
save a pointer to user-allocated
data.

User data can be installed at the context,
connection, or command level:

• cs_config(CS_USERDATA) sets or retrieves
context-level user data

• ct_con_props(CS_USERDATA) sets or
retrieves connection-level user data

• ct_cmd_props(CS_USERDATA) sets or
retrieves command-level user data

Child structures do not inherit
CS_USERDATA values.

dbsetversion Specifies a DB-Library version
level.

cs_ctx_alloc and ct_init both take a version
number as a parameter.

dbspid Gets the server process ID for the
specified DBPROCESS.

No direct equivalent. For Adaptive Server
Enterprise, use the language command:

select @@spid

dbspr1row Places one row of server query
results into a buffer.

No direct equivalent. Replace with application
code.

dbspr1rowlen Determines how large a buffer to
allocate to hold the results
returned by dbsprhead, dbsprline,
and dbspr1row.

No direct equivalent. Replace with application
code.

dbsprhead Places the server query results
header into a buffer.

No direct equivalent. Replace with application
code.

dbsprline Chooses the character with which
to underline the column names
produced by dbsprhead.

No direct equivalent. Replace with application
code.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
118 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbsqlexec Sends a command batch to the
server.

ct_send sends the batch. ct_results gets the
server’s initial response.

For information on converting dbsqlexec return
code logic, see “Code that processes results” on
page 59.

dbsqlok Waits for results from the server
and verifies the correctness of the
instructions the server is
responding to.

ct_results

For information on converting dbsqlok return
code logic, see “Code that processes results” on
page 59.

dbsqlsend Sends a command batch to the
server and does not wait for a
response.

ct_send

If the DB-Library application uses dbpoll after
dbsqlsend, then use an asynchronous connection
in the converted application. See the
“Asynchronous Programming” topics page in the
Open Client Client-Library/C Reference Manual.

dbstrbuild Builds a printable string from text
containing place holders for
variables.

cs_strbuild

dbstrcmp Compares two character strings
using a specified sort order.

cs_strcmp(CS_COMPARE)

dbstrcpy Copies a portion of the command
buffer.

No direct equivalent.

Format language commands before passing them
to ct_command. The internal language buffer is
not accessible to the application.

dbstrlen Returns the length, in characters,
of the command buffer.

No direct equivalent.

Format language commands before passing them
to ct_command. The internal language buffer is
not accessible to the application.

dbstrsort Determines which of two
character strings should appear
first in a sorted list.

cs_strcmp(CS_SORT)

dbtabbrowse Determines whether the specified
table can be updated with browse
mode updates.

ct_br_table(CS_ISBROWSE)

dbtabcount Returns the number of tables
involved in the current select
query.

ct_br_table(CS_TABNUM)

dbtabname Returns the name of a table based
on its number.

ct_br_table(CS_TABNAME)

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 119

Mapping DB-Library routines to Client-Library routines
dbtabsource Returns the name and number of
the table from which a particular
result column was derived.

ct_br_column
(The tablename and tablenum fields of
CS_BROWSEDESC.)

DBTDS Determines which version of
TDS (the Tabular Data Stream
protocol) is being used.

ct_con_props(CS_TDS_VERSION)

dbtextsize Returns the number of text/image
bytes that remain to be read for
the current row.

ct_data_info(CS_GET) initializes a CS_IODESC
structure. The structure gives the total length of
text/image column in the total_txtlen field.

See “Client-Library’s CS_IODESC structure”
on page 89.

dbtsnewlen Returns the length of the new
value of the timestamp column
after a browse-mode update.

No direct equivalent.

See the entry for dbtsnewval in this table.

dbtsnewval Returns the new value of the
timestamp column after a
browse-mode update.

No direct equivalent.

After a browse-mode update, the server sends the
new timestamp as a parameter
(CS_PARAM_RESULT) result set. The
application binds and fetches the new timestamp.
The new timestamp can be used to build a where
clause that updates the same row again.

dbtsput Puts the new value of the
timestamp column into the given
table’s current row in the
DBPROCESS.

None. In DB-Library, dbtsput is used with
dbtsnewval. Neither routine has a Client-Library
equivalent.

For a description of how consecutive browse
mode updates are implemented with Client-
Library, see the entry for dbtsnewval in this table.

dbtxptr Returns the value of the text
pointer for a column in the
current row.

ct_data_info(CS_GET) (the textptr field of the
CS_IODESC).

For usage information, see “Client-Library’s
CS_IODESC structure” on page 89.

dbtxtimestamp Returns the value of the text
timestamp for a column in the
current row.

ct_data_info(CS_GET) (the timestamp field of
the CS_IODESC).

See “Client-Library’s CS_IODESC structure”
on page 89.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
120 Open Client

APPENDIX A Mapping DB-Library Routines to Client-Library Routines
dbtxtsnewval Returns the new value of a text
timestamp after a call to
dbwritetext.

After the application sends a successful
text/image update with ct_send_data, the server
sends the new timestamp as a parameter
(CS_PARAM_RESULT) result set.

The application should bind the returned
timestamp to the timestamp field of the
CS_IODESC structure that is being used to
control the text/image update operation.

See “Sending text or image data” on page 91.

dbtxtsput Puts the new value of a text
timestamp into the specified
column of the current row in the
DBPROCESS.

ct_data_info(CS_SET)

The timestamp is represented by the timestamp
field of the CS_IODESC structure.

For a description of how the new text timestamp
is retrieved, see the entry for dbtxtsnewval in this
table.

dbuse Uses a particular database. No direct equivalent.

Send a language command containing a
Transact-SQL use database command and
process the results.

dbvarylen Determines whether the specified
regular result column’s data can
vary in length.

None.

dbversion Determines which version of
DB-Library is in use.

ct_config(CS_GET, CS_VER_STRING) gets the
Client-Library version string. (dbversion returns
the DB-Library version string.)

ct_config(CS_GET, CS_VERSION) gets a
CS_INT that matches the version with which
ct_init was called to initialize Client-Library for
this context.

dbwillconvert Determines whether a specific
datatype conversion is available
within DB-Library.

cs_willconvert

dbwritepage Writes a page of binary data to
the server.

None.

dbwritetext Sends a text or image value to the
server.

ct_send_data

For usage information, see Table 6-6 on page 93.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
Client-Library Migration Guide 121

Mapping DB-Library routines to Client-Library routines
dbxlate Translates a character string from
one character set to another.

No direct equivalent.

Use the following call sequence to translate
strings from one character set to another:

• Call cs_loc_alloc to allocate two locales, loc1
and loc2. Declare or allocate two
CS_DATAFMT structures, srcfmt and
destfmt.

• Call cs_locale to configure the character sets
for loc1 and loc2.

• Assign loc1 and loc2, respectively, as the
locale fields of the srcfmt and destfmt
CS_DATAFMT structures. Initialize the rest
of the fields in srcfmt and destfmt to describe
character data.

• Call cs_convert to convert strings from the
loc1 character set to the loc2 character set.
Before each call, set srcfmt.maxlength to the
length, in bytes, of the source string.

• Free the CS_LOCALE structures with
cs_loc_drop.

DB-Library routine DB-Library functionality Client-Library or CS-Library equivalent
122 Open Client

Index
A
ad hoc queries

results handling 69
application

when to redesign 17
array binding

Client-Library 82
using 75
using with cursors 82

array binding with Client-Library
introduction 18

asynchronous mode 19
asynchronous programming 84

benefits 19
in Client-Library 83
interrupt-driven I/O 84
layered applications 86
polling 84
threads 84

B
blanks

trailing 67
browse mode

replacing with Client-Library cursors 76, 81
bulk copy 87

interfaces 87
Bulk-Library

definition 87
differences from DB-Library’s bcp routines 88
setup 87
transferring data 87

C
cancelling
Client-Library Migration Guide
with ct_cancel 72
chunked retrieval of text/image values 88
Client-Library

array binding 18, 75
asynchronous programming 19
compared to DB-Library 2
compared to Embedded SQL 2
cursors 76, 78
introduction 1
mapping of DB-Library routines 97
properties 25
text/image interface 88
unique features 3

command buffer 52
command errors 62
command structure 28
commands

text and image 88
compute row results

handling in DB-Library results loop 60
control structures 24
CS_CLIENTMSG structure

mapped to DB-Library error handler parameters
49

CS_COMMAND structure
definition 28
rules 28

cs_config
example fragment 34

CS_CONNECTION structure
definition 27
rules 28

CS_CONTEXT structure
definition 26

cs_ctx_alloc
example fragment 34

cs_ctx_drop
example fragment 34

CS_DATAFMT structure
compared to dbbind vartype format options 67
123

Index
using with ct_describe 69
CS_HIDDEN_KEYS property

using with ct_keydata 82
CS_IODESC structure

compared to DB-Library text/image routines 89
defining text pointer and timestamp values for

text/image updates 90
retrieving with ct_data_info 89

CS_LOCALE structure
using 95

CS_SERVERMSG structure
mapped to DB-Library message handler parameters

48
csconfig.h

header file 24
CS-Library

definition 23
mapping of DB-Library routines 97

cspublic.h
header file 24

cstypes.h
header file 24

ct_callback
example fragment 34

ct_close
example fragment 44

ct_cmd_alloc
example fragment 53

ct_command
compared to dbcmd and dbfcmd 52
compared to dbrpcinit 55
example for language commands 53
example for RPC commands 55
sending text/image values with 91

ct_con_alloc
example fragment 44

ct_con_drop
example fragment 44

ct_con_props
example fragment 44

ct_connect
example fragment 44

ct_describe
DB-Library routines replaced 70

ct_exit
example fragment 34
124
chunked retrieval of text/image values 88
ct_get_data 88

compared to dbreadtext 88
replacing DB-Library calls 68
restrictions 68, 89
using instead of binding 68

ct_init
example fragment 34

ct_keydata
redirecting cursor updates 81

ct_param
example fragment 55

ct_poll
checking for asynchronous operation completions

84
compared to dbpoll 85

ct_res_info
example of getting count of affected rows 71
example of getting the current command number

71
ct_results 62
ct_send

example fragment 53, 55
ct_send_data

compared to dbwritetext and dbmoretext 91
ct_wakeup

use in layered applications 86
ctpublic.h

header file 24
cursor results

rules for processing 77
cursors

array binding with Client-Library 82
Client-Library 76, 78, 81
client-side 76
comparing DB-Library and Client-Library features

76
comparing DB-Library calls to Client-Library calls

78
introduction to Client-Library cursors 18
server-side 76

D
data retrieval
Open Client

Index
dbbind compared to ct_bind 65
dbdata compared to ct_get_data 68
text/image 88

dbadata
compared to ct_get_data 68

dbbind
compared to ct_bind 65

dbbind_ps
compared to ct_bind 65
converting calls 65

dbcancel
converting calls 72

dbcanquery
converting calls 73

dbclose
converting code that closes a connection 43

dbcmd
converting calls 52

DBCOUNT
converting calls 71
used with stored procedures 71

DBCURCMD
converting calls 70

DBCURROW
replacing calls with user code 72

dbdata
compared to ct_get_data 68

dberrhandle
converting calls 33

dbexit
converting calls 34

dbfcmd
converting calls 52

dbinit
converting initialization code 33

DB-Library
cancelling results 72
compared to Client-Library 2
cursors 76
error and severity codes 51
mapping of routines to Client-Library and CS-

Library 97
text/image interface 88

dblogin
converting calls 42

dbloginfree
Client-Library Migration Guide
converting calls 43
dbmoretext

compared to ct_send_data 91
dbmsghandle

converting calls 33
dbopen

converting code that opens a connection 43
DBPROCESS

converting dbcmd and dbfcmd calls 52
DBPROCESS structure 24

command buffer 52
compared to Client-Library’s CS_CONNECTION

27
converting dbclose calls 42
converting dbopen calls 42

dbreadtext
compared to ct_get_data 88

dbrecvpassthru
Client-Library equivalent 59

dbresults
return codes and ct_results result_type values 61

dbretdata
compared to ct_get_data 68

dbretstatus
compared to ct_get_data 68

dbrpcinit
converting calls 55

dbrpcparam
converting calls 55

dbrpcsend
converting calls 55

dbsendpassthru
Client-Library equivalent 59

DBSETLAPP
converting calls 43

DBSETLPWD
converting calls 43

DBSETLUSER
converting calls 42

dbsqlexec
compared to ct_send 53
return codes and ct_results result_type values 62

dbsqlok
return codes and ct_results result_type values 62

DBTYPEINFO structure
compared to CS_DATAFMT 65
125

Index
dbwritetext
compared to ct_send_data 91

deciding whether to migrate 11

E
education

Client-Library class 16
error numbers

difference between DB-Library and Client-Library 51
errors

DB-Library error number and severity codes 51
indicated by CS_FAIL return code ix

example macro
EXIT_ON_FAIL x

EXIT_ON_FAIL example macro x

H
header file

csconfig.h 24
cspublic.h 24
cstypes.h 24
ctpublic.h 24
sqlca.h 24

header files
comparison of DB-Library and Client-Library 24
replacing DB-Library includes 24

I
image values 88
initialization and cleanup

Client-Library example 34
interrupt-driven I/O

asynchronous programming 84

L
language commands

converting typical DB-Library call sequence 52
example 53
126
libraries
development 15
production 15

LOGINREC structure 24
compared to Client-Library connection properties

44
converting DBSETLAPP and similar calls 42

M
mapping routines from DB-Library to Client-Library

97
migration

deciding whether to migrate 11
evaluating migration effort 12

N
native cursor

definition 76

O
opening connections

Client-Library example 44
comparing Client-Library calls to DB-Library calls

42

P
polling model

asynchronous programming 84
properties

compared to DB-Library routines 25
definition 25
inheritance of settings 26

R
regular row results

handling in DB-Library results loop 60
Open Client

Index
required software for migration 15
results handling 62

ad hoc queries 69
getting column formats 69

return codes
checking for errors ix

return parameter results
handling in DB-Library results loop 60

return status results
handling in DB-Library results loop 60

routines
mapping DB-Library to Client-Library 97

row counts
after stored procedure execution 71

RPC commands
converting typical DB-Library call sequence 54
example 55
example for Client-Library 55

S
server-side cursor

definition 76
severity codes

difference between DB-Library and Client-Library
51

software
required for migration 15

sqlca.h
header file 24

stored procedures
rows affected 71

structures 24, 25
comparing DB-Library and Client-Library 24
connection and command structure rules 28
CS_COMMAND 28
CS_CONNECTION 27
CS_CONTEXT 26
CS_IODESC 89
CS_LOCALE 95
DBPROCESS 25
hidden 25
LOGINREC 44

Sybase training
Client-Library class 16
Client-Library Migration Guide
T
text/image data

retrieving 88
sending 91

text/image interface
retrieving text and image data 88
sending text and image data 91
timestamps for text and image columns 90
using 88

threads 84
timestamps

text/image 90
trailing blanks

trimming 67
training classes

Sybase Education’s Client-Library class 16

U
unified results handling

benefits 17
127

Index
128
 Open Client

	Client-Library Migration Guide
	About This Book
	CHAPTER 1 Understanding Client-Library
	What is Client-Library?
	Comparing the client interfaces
	What is unique about Client-Library?
	Tight integration with Open Server
	Client interface to server-side cursors
	Client interface to dynamic SQL
	Asynchronous mode
	Non-polling (interrupt-driven)
	Polling

	Multithreaded application support
	Support for network-based security and directory services
	Security services
	Directory services
	Where to go for more information

	User-defined datatypes and conversion routines
	Localization mechanisms
	Streamlined interface

	CHAPTER 2 Evaluating an Application for Migration
	Questions to consider
	Will the application benefit from migration?
	How much effort will the migration require?

	Summary

	CHAPTER 3 Planning for Migration
	Get software
	Learn about Client-Library
	Familiarize yourself with sample programs
	Isolate DB-Library code
	Consider application redesign
	Unified results handling
	Cursors
	Array binding
	Asynchronous mode
	Multithreading

	Review your estimate of the migration effort
	Plan for testing
	Develop a schedule
	Check your environment

	CHAPTER 4 Comparing DB-Library and Client-Library Infrastructures
	Utility routines
	Header files
	Control structures
	Control structure properties
	Inherited property values
	Setting property values

	The CS_CONTEXT structure
	The CS_CONNECTION structure
	The CS_COMMAND structure
	Connection and command rules

	Other structures
	CS_DATAFMT
	CS_IODESC
	CS_LOCALE
	CS_BLKDESC

	CHAPTER 5 Converting DB-Library Application Code
	Conversion steps
	Initialization and cleanup code
	Comparing call sequences
	Example: Client-Library initialization and cleanup

	Code that opens a connection
	Comparing call sequences
	Client-Library enhancements
	Migrating LOGINREC code
	Example: Opening a Client-Library connection

	Error and message handlers
	Sequenced messages
	Replacing server message handlers
	Replacing DB-Library error handlers
	Error handler return values

	Code that sends commands
	Sending language commands
	Client-Library enhancements
	Example: Sending a Client-Library language command

	Sending RPC commands
	Client-Library enhancements
	Example: sending an RPC command

	TDS passthrough

	Code that processes results
	Program structure for results processing
	Comparing dbresults and ct_results return codes
	Handling command-processing errors
	Comparing ct_results’ result_type to DB-Library program logic

	Retrieving data values
	ct_bind versus dbbind
	ct_get_data versus dbdata
	Getting descriptions of result data

	Obtaining Results Statistics
	Obtaining the Command Number (DBCURCMD)
	Obtaining the Number of Rows Affected
	Obtaining the number of the current row

	Canceling results
	CS_CANCEL_ATTN
	CS_CANCEL_ALL
	CS_CANCEL_CURRENT

	CHAPTER 6 Advanced Topics
	Client-Library’s array binding
	Using Array Binding
	Array Binding Example

	Client-Library cursors
	Comparing DB-Library and Client-Library cursors
	Rules for Processing Cursor Results
	Comparing Cursor Routines
	DB-Library fetch types and Client-Library cursors
	Using ct_keydata

	Comparing Client-Library cursors to Browse Mode Updates
	Using Array Binding with Cursors
	Client-Library cursor example

	Asynchronous programming
	DB-Library’s Limited Asynchronous Support
	Client-Library asynchronous support
	Using ct_poll
	Using ct_wakeup

	Bulk copy interface
	Bulk-Library initialization and cleanup
	Transfer routines
	Other differences from DB-Library bulk copy

	Text/Image interface
	Retrieving text or image data
	DB-Library’s text timestamp
	Client-Library’s CS_IODESC structure
	Sending text or image data
	Text and image examples

	Localization
	CS_LOCALE Structure
	Localization precedence

	APPENDIX A Mapping DB-Library Routines to Client-Library Routines
	Mapping DB-Library routines to Client-Library routines

	Index

