
Configuration Guide

Open Client™ and Open Server™
15.7

[Microsoft Windows]

DOCUMENT ID: DC35830-01-1570-02

LAST REVISED: June 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Configuration Guide for Microsoft Windows iii

About This Book .. vii

CHAPTER 1 Configuration Overview.. 1
About Open Client and Open Server ... 1
Overview of configuration... 2

The initialization process ... 2
The connection process .. 3

Configuration tasks .. 3

CHAPTER 2 Basic Configuration for Open Client ... 5
Overview of basic configuration ... 5
Configuration tasks .. 7

Set environment variables... 7
Configure the drivers ... 8
Configure sql.ini... 8

CHAPTER 3 Basic Configuration for Open Server.. 9
About Open Server applications .. 9
Overview of basic configuration ... 9
Configuration tasks .. 11

Configure sql.ini or Registry .. 11
Set environment variables... 12
Configure the drivers ... 13

CHAPTER 4 Configuring Open Client for Sybase Failover 15
Adding a hafailover line to the sql.ini file .. 15
Client-Library application changes ... 16
Using isql with Sybase Failover.. 18

CHAPTER 5 Using a Directory Service... 19
Overview of directory services ... 19

LDAP ... 20

Contents

iv Open Client and Open Server

LDAP directory services versus the Sybase sql.ini file............ 20
Server objects and attributes... 23
Directory drivers .. 23

How applications use a directory service 24
How applications use LDAP directory services 25

Enabling LDAP directory services.. 26
Multiple directory services with LDAP 28
Importing Microsoft Active Directory schema.......................... 28

Connecting to LDAP using SSL/TLS.. 29

CHAPTER 6 Using Security Services.. 31
Overview of network-based security .. 31

Security mechanisms .. 31
Security drivers.. 32
Security services ... 32

How applications use security services.. 37
Client-Library and security services .. 38
Server-Library and security services 38

Configuration tasks .. 39

CHAPTER 7 Using ocscfg .. 41
About ocscfg .. 41
Starting ocscfg ... 41
Setting environment variables.. 42

Setting the SYBASE environment variables............................ 42
Setting other environment variables.. 43
Clearing environment variables... 43

Configuring a directory driver ... 43
Adding a directory driver entry .. 44
Modifying an existing directory driver entry 45
Deleting a directory driver entry .. 45
Activating a directory driver ... 46

Configuring a security driver .. 46
Adding a security driver entry.. 46
Modifying an existing security driver entry 47
Deleting a security driver entry.. 47
Setting the default security driver .. 47

CHAPTER 8 Using dsedit ... 49
Using dsedit ... 49

Opening a session... 50
Adding a server to the directory services 51

Contents

Configuration Guide for Microsoft Windows v

Making and modifying server entries ... 52
Adding a server entry .. 54
Modifying a server entry .. 54
Renaming a server entry ... 55
Deleting entries ... 55

Using the ping command ... 55
Copying server entries ... 56

Copying entries within a session ... 56
Copying entries between sessions.. 56

Exiting dsedit .. 57

CHAPTER 9 Troubleshooting with dsedit .. 59
How dsedit works ... 59
Troubleshooting connection failures .. 59

If dsedit fails .. 60
If dsedit succeeds but other applications fail 61

Information you need for Sybase Technical Support 61
Commonly asked questions ... 62

APPENDIX A Environment Variables ... 63
Environment variables used for connection 63
Environment variables used for localization................................... 64
Environment variables used for configuration 64

APPENDIX B Configuration Files ... 67
About configuration files... 67
The libtcl.cfg and libtcl64.cfg files... 68

Layout of libtcl.cfg.. 69
libtcl.cfg example... 74

The sql.ini file ... 74
sql.ini entries ... 74
sql.ini examples... 76
Multiple connection service entries ... 76

The ocs.cfg file ... 77

APPENDIX C Localization ... 79
Overview of the localization process.. 79

Environment variables used during localization 80
Localization files... 81
The locales directory .. 81

The locales.dat file .. 82
Localized message files .. 84

Contents

vi Open Client and Open Server

The charsets directory.. 85
Collating sequence files .. 86
Unicode conversion files ... 86

The ini directory.. 86
The objectid.dat file ... 87

APPENDIX D Secure Sockets Layer in Open Client and Open Server 89
SSL handshake.. 89
SSL security levels and security mechanisms 90
Validating a server by its certificate.. 91

Common name validation in an SDC environment 92
The trusted roots file.. 93

Obtaining a certificate .. 94
Using third-party tools to obtain a certificate 94
Using Sybase tools to request and authorize certificates........ 95
certauth ... 96
certreq ... 99
certpk12... 102

FIPS 140-2 compliance for password encryption......................... 105

Index ... 107

Configuration Guide for Microsoft Windows vii

About This Book

The Open Client and Open Server Configuration Guide for Microsoft
Windows contains information about configuring your system to run Open
Client™ and Open Server™ products.

Audience This book is written for system administrators. It discusses configuration
tasks and topics in terms of system administration rather than application
programming.

How to use this book This book contains these chapters:

• Chapter 1, “Configuration Overview,” provides an overview of the
configuration process and configuration requirements.

• Chapter 2, “Basic Configuration for Open Client,” explains how a
client application connects to a server and lists the configuration tasks
required for connection.

• Chapter 3, “Basic Configuration for Open Server,” explains how an
Open Server application listens for client connection requests and
lists the configuration tasks required for connection.

• Chapter 4, “Configuring Open Client for Sybase Failover,” describes
steps necessary to configure your Open Client applications to connect
to the secondary companion during failover.

• Chapter 5, “Using a Directory Service,” explains how applications
get connection information from a directory service and lists
configuration tasks required for an application to use a directory
service.

• Chapter 6, “Using Security Services,” explains how applications use
network-based security services and lists configuration tasks required
for an application to use security services. This chapter also includes
information about both LAN Manager and Kerberos security
services.

• Chapter 7, “Using ocscfg,” explains how to use the ocscfg utility to
set environment variables and configure drivers.

• Chapter 8, “Using dsedit,” explains how to use the dsedit utility to
configure a directory service or the sql.ini file.

viii Open Client and Open Server

• Chapter 9, “Troubleshooting with dsedit,” explains how to use the ocscfg
utility to test your network connections.

• Appendix A, “Environment Variables,” lists the environment variables
that Open Client and Open Server products use and explains how to set
environment variables.

• Appendix B, “Configuration Files,” presents an overview of
configuration files and describes:

• libtcl.cfg, the driver configuration file

• sql.ini file

• ocs.cfg, the runtime configuration file

• Appendix C, “Localization,” presents an overview of localization files
and describes:

• locales.dat file

• objectid.dat file

• Localized message files

• Collating sequence files

• Appendix D, “Secure Sockets Layer in Open Client and Open Server,”
describes the Secure Sockets Layer (SSL) support for Open Client and
Open Server, and summarizes some system configuration tasks that are
required to use the SSL protocol.

Related documents You can see these books for more information:

• The Open Server and SDK New Features for Windows, Linux, and UNIX,
which describes new features available for Open Server and the Software
Developer’s Kit. This document is revised to include new features as they
become available.

• The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

• The Software Developer’s Kit Release Bulletin for your platform contains
important last-minute information about Open Client™ and SDK.

• The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

• The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

 About This Book

Configuration Guide for Microsoft Windows ix

• The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

• The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The Installation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option contains information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authentication in
the Kerberos security mechanism.

• The Open Client Client-Library Migration Guide contains information on
how to migrate Open Client™ DB-Library™ applications to Open Client
Client-Library

• The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

• The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

• The Open Client Embedded SQL™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

x Open Client and Open Server

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

• The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNIX, provides information on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

• The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide provides information for Perl developers to connect to an Adaptive
Server database and query or change information using a Perl script.

• The Adaptive Server Enterprise extension module for PHP Programmers
Guide provides information for PHP developers to execute queries against
an Adaptive Server database.

• The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Other sources of
information

Use the Sybase Getting Started CD and the Sybase Product Documentation
Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format. It is included with your software. To read or print
documents on the Getting Started CD, you need Adobe Acrobat Reader,
which you can download at no charge from the Adobe Web site using a
link provided on the CD.

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

 About This Book

Configuration Guide for Microsoft Windows xi

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/
http://certification.sybase.com/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

xii Open Client and Open Server

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

 About This Book

Configuration Guide for Microsoft Windows xiii

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

http://www.sybase.com/accessibility

xiv Open Client and Open Server

Configuration Guide for Microsoft Windows 1

C H A P T E R 1 Configuration Overview

Welcome to the Open Client and Open Server Configuration Guide for
Microsoft Windows. Before you read this document, install Open Client or
Open Server following the instructions in the Software Developer’s Kit
and Open Server Installation Guide for Microsoft Windows. Open Client
is a part of the Software Developer’s Kit (SDK).

This chapter gives an overview of the configuration process for Open
Client and Open Server.

About Open Client and Open Server
Open Client provides an application programming interface (API) and
Net-Library, which allows communications between Adaptive Server
Enterprise and Open Server applications, customer applications, third-
party products, and other Sybase products.

Open Server provides the tools and interfaces needed to create custom
servers. Like Open Client, a programming API and Net-Library enable
communications with clients and other servers. In addition, Open Server
provides routines that:

• Handle multiple client connections

• Schedule interactions with clients

• Handle error conditions

• Perform other functions required from a server

See the following documents for detailed information about Open Client
and Open Server:

Topic Page
About Open Client and Open Server 1

Overview of configuration 2

Configuration tasks 3

Overview of configuration

2 Open Client and Open Server

• Open Client Client-Library/C Reference Manual

• Open Server Server-Library Reference Manual

• Open Client DB-Library/C Reference Manual

Overview of configuration
Open Client and Open Server software require specific information to function
correctly. Configuration is the process of setting up your system to make this
information available.

Open Client and Open Server use configuration information to:

• Initialize the Open Client or Open Server application

• Establish a connection with Adaptive Server Enterprise, or an Open Server
application

Note To ensure that your application has access to the most recent features, set
the version to CS_CURRENT_VERSION.

The initialization process

❖ Initializing an Open Client and Open Server application

1 Use the SYBASE environment variable to determine the location of the
Sybase installation directory.

2 Use the locale-specific POSIX environment variables LC_*, LANG,
LC_ALL, and LC_COLLATE and the locales.dat file to determine what
language, character set, and collating sequence the application uses.

3 Use the libtcl.cfg file to load the directory driver and security driver, as
required.

CHAPTER 1 Configuration Overview

Configuration Guide for Microsoft Windows 3

The connection process
Clients and servers communicate through a connection. For a client application
to connect to a server application, the server application must be listening for
the client connection request.

❖ Making a connection from Open Client

1 Use the DSQUERY environment variable to determine the name of the
target server.

2 Uses the sql.ini file or a directory service to obtain the address of the target
server.

Note Open Client uses DSQUERY only if the Open Client application
does not specify the name of the server.

❖ Listening for a request in Open Server

1 Use the DSLISTEN environment variable to determine the name of the
Open Server application.

2 Use the sql.ini file or a directory service to obtain the Open Server
application’s address.

Note Use DSLISTEN only if the Open Server application does not specify a
server during initialization.

Configuration tasks
You must complete some basic configuration tasks for an Open Client and
Open Server product to initialize the application and make a connection.

These tasks include:

• Setting environment variables to specify a target’s default server and
initial localization values. The values of DSQUERY and DSLISTEN are
used if Open Client and Open Server applications do not specify a name
of a server.

• Verifying that the address of the target server is available.

• Configuring your network driver, if needed.

Configuration tasks

4 Open Client and Open Server

There are additional tasks if you are:

• Using a directory service

• Using security services

• Using custom localization values in addition to or in place of initial
localization values

Configuration Guide for Microsoft Windows 5

C H A P T E R 2 Basic Configuration for
Open Client

This chapter discusses the basic configuration requirements for
Open Client.

Note Except where noted, information in this chapter applies to both
DB-Library and Client-Library. Specifically, DB-Library does not use
environment variables to determine initial localization values and does not
examine the libtcl.cfg file. However, DB-Library does examine the
SYBASE and DSQUERY environment variables.

For more information on DB-Library, see the Open Client DB-Library/C
Reference Manual.

Overview of basic configuration
All Open Client applications require the following basic configuration
information obtained during initialization and connection:

• Location of the Sybase installation directory

• Locale name

• Localized message and character set files

• Target server name

• Network address of the target server

• Security mechanism to be used

Topic Page
Overview of basic configuration 5

Configuration tasks 7

Overview of basic configuration

6 Open Client and Open Server

Location of the
Sybase installation
directory as defined
by the SYBASE
environment variable.

In a heterogeneous environment that uses applications built for versions 10.x
and later, you must explicitly set the SYBASE, SYBASE_OCS, and PATH
environment variables at the command prompt, to point to the current version
of the Open Client and Open Server installation.

For example, for applications using version 15.5 products installed in
C:\SYBASE, open a command prompt and set the following environment
variables:

set SYBASE=C:\SYBASE
set SYBASE_OCS=OCS-15_0
set PATH=%PATH%;%SYBASE%\%SYBASE_OCS%\bin;
%SYBASE%\%SYBASE_OCS%\dll

Locale name Open Client uses the values of the following POSIX environment variables as
locale names (does not apply to DB-Library):

• LC_ALL

• LANG, if LC_ALL is not defined

Open Client later uses this value to obtain localization information from the
locales.dat file. If LC_ALL, LANG, and sLanguage are not defined, Open
Client uses “default” as the locale name.

Localized message
and character set files

Open Client looks in the locales.dat file for an entry whose name matches the
locale name determined in the previous step. Then, it loads the localized
messages and character set files specified in the locales.dat file.

Name of the target
server

Open Client obtains the name of the target server from one of the following
sources, in the order listed:

1 The client application, which can provide the server name in the call to
ct_connect (or dbopen)

2 The DSQUERY environment variable, if the application does not specify
the target server

3 The default name SYBASE, if DSQUERY is not set

The network address
of the target server

Open Client gets the address(es) of the target server from the directory service
or from the sql.ini file:

• Directory service – Open Client looks for an entry in the
[NT_DIRECTORY] section of libtcl.cfg file to determine where to look
for the server address information. The setting of the CS_DS_PROVIDER
property determines which [NT_DIRECTORY] entry the application
searches for or defaults to the first entry of the [NT_DIRECTORY]
section.

CHAPTER 2 Basic Configuration for Open Client

Configuration Guide for Microsoft Windows 7

• sql.ini file – if a directory service is not used or if it is used and fails, Open
Client searches for the SERVERNAME entry in sql.ini that matches the
name, and uses the corresponding target address.

See “The sql.ini file” on page 74 for information about the sql.ini file.

In a heterogeneous environment that uses applications built for versions
10.x and later, you can still maintain a single sql.ini file by passing the
address file name to each application, for example:

isql -Usa -P -Sconnect50 -Ic:\sybase\ini\sql.ini

Security mechanism
to be used

(Does not apply to DB-Library) If the client application requests network-
based security services, Open Client looks in the [SECURITY] section of
libtcl.cfg to determine which security driver to use.

Configuration tasks
To allow your client application to perform the processes listed previously,
complete the tasks in the following subsections.

Set environment variables

❖ Setting environment variables

1 Set the LC_ALL or LANG environment variable to the desired locale
name. The locale name you specify must correspond to an entry in
locales.dat. If you do not set LC_ALL or LANG, make sure that the
“default” entry in locales.dat reflects the localization values your
applications will use.

Verify that you have localization files that match the language, character
set, and collating sequence specified in the locales file.

2 If your application uses custom localization values, set the LC_ALL,
LC_COLLATE, LC_TYPE, LC_MESSAGE, or LC_TIME environment
variable to the locale name.

If you do not know which environment variable your application uses, set
all the environment variables to the desired locale name.

Configuration tasks

8 Open Client and Open Server

3 Set the DSQUERY environment variable to the name of the target server.
If the client application names the target server, you do not need to set
DSQUERY. If DSQUERY is not set and the application does not name the
server, Open Client uses the server name “SYBASE.”

See “Setting environment variables” on page 42 for instructions about
how to set environment variables using ocscfg.

Configure the drivers
To configure the directory and security drivers, use the ocscfg utility.

See Chapter 7, “Using ocscfg,” for information about configuring drivers.

See “The libtcl.cfg and libtcl64.cfg files” on page 68 for reference information
about drivers and libtcl.cfg.

Configure sql.ini

❖ Configuring sql.ini

1 Make an entry for the target server in sql.ini using dsedit.

2 Verify that there is an entry in sql.ini whose SERVERNAME element
corresponds with the value of the DSQUERY environment variable.

See Chapter 8, “Using dsedit,” for information about adding information to
sql.ini. See “The sql.ini file” on page 74 for information about sql.ini.

Configuration Guide for Microsoft Windows 9

C H A P T E R 3 Basic Configuration for
Open Server

This chapter describes the basic configuration requirements for
Open Server.

About Open Server applications
Open Server applications fall into three functional categories:

• Standalone

• Auxiliary

• Gateway

The configuration of an Open Server application depends on which
category it falls into. See the Open Server Server-Library/C Reference
Manual for more information about the types of Open Server applications.

Overview of basic configuration
All Open Server applications require the following basic configuration
information obtained during initialization and connection

• Location of the Sybase installation directory

• Locale name

• Localized message and character set files

Topic Page
About Open Server applications 9

Overview of basic configuration 9

Configuration tasks 11

Overview of basic configuration

10 Open Client and Open Server

• Name of the target server

• Target server’s network address

Location of the
Sybase installation
directory as defined
by the SYBASE
environment variable

In a heterogeneous environment that uses applications built for versions 10.x
and later, you must explicitly set the SYBASE, SYBASE_OCS, and PATH
environment variables at the command prompt, to point to the current version
of the Open Client and Open Server installation.

For example, for applications using 15.5 products installed in C:\SYBASE,
open a command prompt and set the following environment variables:

set SYBASE=C:\SYBASE
set SYBASE_OCS=OCS-15_0
set PATH=%PATH%;%SYBASE%\%SYBASE_OCS%\bin;
%SYBASE%\%SYBASE_OCS%\dll

Locale name Open Server uses the values of the following POSIX environment variables as
locale names:

• LC_ALL

• LANG, if LC_ALL is not defined

Open Server later uses this value to obtain localization information from the
locales.dat file. If neither environment variable is defined, Open Server uses
“default” as the locale name.

Localized message
and character set files

Open Server looks in the locales.dat file for an entry whose name matches the
locale name determined in step 2. Open Server then loads the localized
messages and character set files specified in the locales.dat file.

Name of the target
server

Name of the target server. Open Server obtains the name of the Open Server
application from one of the following sources, in the order listed:

1 The Open Server application, which can provide the server name in the
call to srv_init

2 The DSLISTEN environment variable, if the application does not specify
its name

3 The default name SYBASE, if DSLISTEN is not set

Target server’s
network address

Target server’s network address. Open Server gets the target server’s addresses
from the directory service or from sql.ini:

CHAPTER 3 Basic Configuration for Open Server

Configuration Guide for Microsoft Windows 11

• Directory service – Open Server looks for an entry in the
[NT_DIRECTORY] section of the libtcl.cfg file to determine where to
look up server address information. The setting of the
CS_DS_PROVIDER property determines which [NT_DIRECTORY]
entry the application searches for, or defaults to the first entry of the
[NT_DIRECTORY] section.

• sql.ini file – if a directory service is not used, or if it is used and fails, Open
Server searches for the SERVERNAME entry in sql.ini that matches the
name as determined in step 4 and uses the corresponding target address.

In a heterogeneous environment that uses applications built for releases
10.0.x and later, you can maintain a single sql.ini file by passing the
address file name explicitly to each application, for example:

isql -Usa -P -Sconnect50 -Ic:\sybase\ini\sql.ini

When a client requests a connection that uses a network-based security
mechanism, Open Server looks up the corresponding security driver in the
[SECURITY] section of libtcl.cfg.

Configuration tasks
To allow your Open Server application to perform the process described above,
complete these tasks:

• Configure sql.ini or Registry

• Set environment variables

• Configure the drivers

Each task is described in the following sections.

Configure sql.ini or Registry

❖ Configuring sql.ini

1 Make an entry for the server’s name and directory in sql.ini using dsedit.

2 Verify that there is an entry in sql.ini whose SERVERNAME element
corresponds with the value of the DSLISTEN environment variable.

Configuration tasks

12 Open Client and Open Server

❖ Configuring Registry

1 Open System in Control Panel.

2 Click Environment Variables on the Advanced tab.

3 Edit the following system variables:

a DSLISTEN to set the value to the name of the Open Server
application, as listed in sql.ini or directory service.

b DSQUERY to set the value to the name of the target server, as listed
in sql.ini or directory service.

4 Click OK in the Environment Variables window to set the new values.

See Chapter 8, “Using dsedit,” for instructions about using dsedit.

See “The sql.ini file” on page 74 for reference information about sql.ini.

Set environment variables
Set the following environment variables:

• Set the LC_ALL or LANG environment variable to the desired locale
name.

The locale name you specify must correspond to an entry in locales.dat. If
you do not set LC_ALL or LANG, make sure that the “default” entry in
locales.dat reflects the localization values your applications will use.

Make sure you have localization files that match the language, character
set, and collating sequence specified in the locales file.

• If your application uses custom localization values, set the LC_ALL,
LC_COLLATE, LC_TYPE, LC_MESSAGE, or LC_TIME environment
variable to the locale name.

If you do not know which environment variable your application uses, set
all the environment variables to the desired locale name.

• Set the DSLISTEN environment variable to the name of the Open Server
application.

If the name of the Open Server application is coded into the application,
you do not need to set DSLISTEN. If DSLISTEN is not set and the
application does not name the server, Open Server uses the server name
SYBASE.

CHAPTER 3 Basic Configuration for Open Server

Configuration Guide for Microsoft Windows 13

• If the Open Server application acts as a gateway application, set the
DSQUERY environment variable to the name of the target server.

See “Setting environment variables” on page 42 for instructions about how to
set environment variables using ocscfg.

Configure the drivers
Use the ocscfg utility to configure the network, directory, and security drivers.

See Chapter 7, “Using ocscfg,” for information about configuring drivers.

See “The libtcl.cfg and libtcl64.cfg files” on page 68 for reference information
about drivers and libtcl.cfg.

Configuration tasks

14 Open Client and Open Server

Configuration Guide for Microsoft Windows 15

C H A P T E R 4 Configuring Open Client for
Sybase Failover

The Sybase Failover feature is documented in the Adaptive Server
Enterprise Using Sybase Failover in a High Availability System guide.
This chapter describes steps necessary to configure your Open Client
applications to connect to the secondary companion during failover,
information that is not included in that document.

Note DB-Library does not support HA Failover. Embedded SQL™
(ESQL) for C and COBOL supports HA Failover starting with version
12.5.

Adding a hafailover line to the sql.ini file
Clients with the failover property automatically reconnect to the
secondary companion when the primary companion crashes or when you
issue shutdown or shutdown with nowait, triggering failover. To give a
client the failover property, you must add a line labeled “hafailover” to the
sql.ini file to provide the information necessary for the client to connect to
the secondary companion. You can add this line using either a file editor
or the dsedit utility.

The following is a sql.ini entry for a symmetric configuration between the
“MONEY1” and “PERSONNEL1” companions:

[MONEY1]
master=TCP,FN1,9835
query=TCP,FN1,9835

Topic Page
Adding a hafailover line to the sql.ini file 15

Client-Library application changes 16

Using isql with Sybase Failover 18

Client-Library application changes

16 Open Client and Open Server

hafailover=PERSONNEL1

[PERSONNEL1]
master=TCP,HUM1,7586
query=TCP,HUM1,7586
hafailover=MONEY1

For more information about adding this information to the sql.ini file, see
“Configure sql.ini” on page 8.

Note Client applications must resend any queries that were interrupted by
failover. Other information specific to the connection, such as cursor
declarations, also need to be restored.

Client-Library application changes

Note An application installed in a cluster must be able to run on both the
primary and secondary companions. If you install an application that requires
a parallel configuration, the secondary companion must also be configured for
parallel processing so it can run the application during failover.

You must modify any application written with Client-Library calls before it can
work with Sybase’s Failover software. The following steps describe the
modifications:

1 Set the CS_HAFAILOVER property using the ct_config and ct_con_props
Client-Library API calls. Legal values for the property are CS_TRUE and
CS_FALSE. The default value is CS_FALSE. You can set this property at
either the context or the connection level. The following is an example of
setting the property at the context level:

CS_BOOL bhafailover = CS_TRUE;
retcode = ct_config(context, CS_SET, CS_HAFAILOVER,
&bhafailover, CS_UNUSED, NULL);

The following shows the property set at the connection level:

CS_BOOL bhafailover = CS_FALSE;
retcode = ct_con_props(connection, CS_SET,

CHAPTER 4 Configuring Open Client for Sybase Failover

Configuration Guide for Microsoft Windows 17

CS_HAFAILOVER, &bhafailover, CS_UNUSED, NULL);

2 Handle failover messages. As soon as the companion begins to go down,
clients receive an informational message that failover is about to occur.
Treat this as an informational message in the client error handlers.

3 Confirm failover configuration. Once you have set the failover property
and the sql.ini file has a valid entry for the secondary companion server,
the connection becomes a failover connection, and the client reconnects
appropriately.

However, if the failover property is set but the sql.ini file does not have an
entry for the hafailover server (or vice-versa), it does not become a
failover connection. Instead, it is a normal non-high availability
connection with the failover property turned off. You must check the
failover property to know whether or not the connection is a failover
connection. You can do this by calling ct_con_props with an action of
CS_GET.

4 Check return codes. When a successful failover occurs, calls to ct_results
and ct_send return CS_RET_HAFAILOVER depending on the type of
connection:

• On a synchronous connection, the API call returns
CS_RET_HAFAILOVER directly.

• On an asynchronous connection, the API returns CS_PENDING and
the callback function returns CS_RET_HAFAILOVER.

Depending on the return code, the application can do the required
processing, such as sending the next command to be executed.

5 Restore option values. Any set options that you have configured for this
client connection (for example, set role) were lost when the client
disconnected from the primary companion. Reset these options in the
failed-over connection.

Using isql with Sybase Failover

18 Open Client and Open Server

6 Rebuild your applications, linking them with the libraries included with
the failover software.

Note You cannot connect clients with the failover property (for example,
isql -Q) until you issue sp_companion resume. If you do try to reconnect
them after issuing sp_companion prepare_failback, the client hangs until
you issue sp_companion resume.

Using isql with Sybase Failover
To use isql to connect to a primary server with failover capability, you must:

• Choose a primary server that has a secondary companion server specified
in its sql.ini file entry.

• Use the -Q command-line option.

If your sql.ini file contained the example entry given in “Adding a hafailover
line to the sql.ini file,” you could use isql with failover by entering:

isql -S PERSONNEL1 -Q

Configuration Guide for Microsoft Windows 19

C H A P T E R 5 Using a Directory Service

Client-Library and Server-Library applications can use directory services
to keep track of information about servers. This chapter describes how a
directory service works and how to configure one.

Note DB-Library supports only LDAP directory service.

Overview of directory services
A directory service manages the creation, modification, and retrieval of
information about network entities. As an alternative to sql.ini,
Client-Library and Server-Library applications use a directory service to
obtain information about servers.

The advantage of using a directory service is that you do not need to
update multiple sql.ini files when a new server is added to your network
or when a server moves to a new address.

Different platforms use different directory service providers; in Microsoft
Windows, you can use Windows Registry and LDAP.

Topic Page
Overview of directory services 19

How applications use a directory service 24

Enabling LDAP directory services 26

Connecting to LDAP using SSL/TLS 29

Overview of directory services

20 Open Client and Open Server

LDAP
Lightweight Directory Access Protocol (LDAP) is used to access directory
listings. A directory listing, or service, provides a directory of names, profile
information, and machine addresses for every user and resource on the
network. It can be used to manage user accounts and network permissions.

LDAP servers are typically hierarchical in design and provide fast lookups of
resources. LDAP can be used as a replacement to the traditional Sybase sql.ini
file to store and retrieve information about Sybase servers.

Any type of LDAP service, whether it is an actual server or a gateway to other
LDAP services, is called an LDAP server. An LDAP driver calls LDAP client
libraries to establish connections to an LDAP server. The LDAP driver and
client libraries define the communication protocol, such as whether encryption
is enabled, and the contents of messages exchanged between clients and
servers. Messages are operators, such as client requests for read, write, and
queries, and server responses, including data-format information.

LDAP directory services versus the Sybase sql.ini file
LDAP directory services are a convenient alternative to the typical Sybase
sql.ini file, which stores server information in a “flat” file. As a result, any
changes to server information in the sql.ini file need to be updated on each
machine (client and server) in the enterprise.

With LDAP directory services, the integration of user, resource, and security
information in a centralized repository makes administration of resource
information much easier. In addition, LDAP services provide:

• A single, hierarchical view of information, such as users, software,
resources, networks, files

• A single sign-on for servers and distributed enterprise applications

• User login and role information for access control to sensitive data

User roles can be assigned to a single individual, such as the system
administrator, or to large groups of users, such as accounting department
personnel. Roles determine what information and servers users can access, and
what, if any, read and write permission they possess. Multiple users with the
same user role can be multiplexed to a few server connections, saving
resources and increasing scalability.

Table 5-1 highlights the differences between the Sybase sql.ini file and LDAP
server:

CHAPTER 5 Using a Directory Service

Configuration Guide for Microsoft Windows 21

Table 5-1: sql.ini file versus LDAP directory services

The traditional sql.ini file specifying a TCP connection and a failover machine
looks like this:

[MONEY]
master=TCP, huey, 5000
query=TCP, huey, 5000
hafailover=PERSONEL
[PERSONEL]
master=TCP, huey, 5000
query=TCP, huey, 5000
hafailover=MONEY

An example of an LDAP entry with TCP and a failover machine looks like this:

dn: sybaseServername=foobar, dc=sybase,dc=com
objectClass: sybaseServer
sybaseVersion: 15501
sybaseServername: foobar
sybaseService: ASE
sybaseStatus: 4
sybaseAddress: TCP#1#foobar 5000
sybaseRetryCount: 12
sybaseRetryDelay: 30
sybaseHAServernam: secondary

All entries in the LDAP directory service are called entities. Each entity has a
distinguished name (DN) and is stored in a hierarchical tree structure based on
its DN. This tree is called the directory information tree (DIT). Client
connections specify where to begin the search of an LDAP server by specifying
a DIT base during connection. Table 5-2 lists valid DIT-base values.

Table 5-2: Sybase LDAP entry definitions

The sql.ini file Directory services

Platform-specific Platform-independent

Specific to each Sybase installation Centralized and hierarchical

Contains separate master and query
entries

Contains one entry for each server that
is accessed by both clients and servers

Cannot store metadata about the server Stores metadata about the server

Attribute name Value type Description

sybaseVersion Integer Server version number.

sybaseServername Character
string

Server name.

sybaseService Character
string

Service type: Sybase Adaptive Server.

Overview of directory services

22 Open Client and Open Server

Sybase provides LDAP directory schema in
%SYBASE%\%SYBASE_OCS%\ini for the following LDAP services:

• sybase.schema - it contains the directory schema to be used with
OpenLDAP servers.

• sybase-schema.conf - it contains the directory schema but in a Netscape-
specific syntax.

• sybase.ldf - it contains directory schema in Unicode format for a
Microsoft Active Directory.

In the previous example, the entity describes an Adaptive Server named
“foobar” listening on a TCP connection with a port number of 5000. This entity
also specifies a retry count of 12 (times) and a retry delay of 30 (seconds).
sybaseRetryCount and sybaseRetryDelay map to CS_RETRY_COUNT and
CS_LOOP_DELAY, respectively. When Client-Library finds an address
where a server responds, the login dialog begins between Client-Library and
the server. Client-Library does not retry any other addresses if the login attempt
fails.

sybaseStatus Integer Status: 1 = Active, 2 = Stopped, 3 = Failed, 4 = Unknown.

sybaseAddress String Each entry in the address string is separated by the #
character. Each server address includes:

• Protocol: TCP, NAMEDPIPE.

• The value of the sybaseStatus.

• Address: any valid address for the protocol type.

sybaseSecurity
(optional)

String Security OID (object ID).

sybaseRetryCount Integer This attribute is mapped to CS_RETRY_COUNT, which
specifies the number of times that ct_connect retries the
sequence of network addresses associated with a server
name.

sybaseRetryDelay Integer This attribute is mapped to CS_LOOP_DELAY, which
specifies the delay, in seconds, that ct_connect waits
before retrying the entire sequence of addresses.

sybaseHAservername
(optional)

String A secondary server for failover protection.

Attribute name Value type Description

CHAPTER 5 Using a Directory Service

Configuration Guide for Microsoft Windows 23

The most important entity is the address attribute, which contains the
information for how to set up a connection to the server and how the server
listens for incoming connections. For entries to be usable by different Sybase
products on different platforms, the Protocol field and the Address field in an
address attribute (for example, “TCP” and “foobar 5000”) should be in a
platform and product independent form.

Since LDAP supports multiple entries for each attribute, each address attribute
must contain the address of a single server, including protocol, access type, and
address. See sybaseAddress in Table 5-2 on page 21.

The following example is an LDAP entry for a Microsoft Windows server
listening on two addresses, with different connection protocols:

sybaseAddress = TCP#1#TOEJAM 4444
sybaseAddress = NAMEPIPE#1#\pipe\sybase\query

Each entry in the address field is separated by the # character. Table 5-2 on
page 21 defines the values for each field in the address attribute.

Server objects and attributes
The directory service must contain information about servers accessed by your
Open Client.

A directory service identifies a server entry as a directory object. Each
directory object has a unique set of attributes. You can create, view, and modify
server object entries with dsedit. Refer to Chapter 8, “Using dsedit,” for more
information.

Directory drivers
Open Client and Open Server software uses a directory driver to retrieve
information from a directory service.

A directory driver is a dynamically-linked Sybase library that provides Open
Client and Open Server software with a generic interface to a specific directory
service. Sybase provides a directory driver for each supported directory
service.

Directory drivers are listed in the libtcl.cfg file. See “The libtcl.cfg and
libtcl64.cfg files” on page 68 for reference information about directory drivers
and libtcl.cfg.

How applications use a directory service

24 Open Client and Open Server

How applications use a directory service
Client-Library, Server-Library, and DB-Library determine whether to use a
directory service or sql.ini as follows:

1 If the Client-Library or the Server-Library application specifies a directory
driver, Client-Library by calling ct_con_props (CS_SET,
CS_DS_PROVIDER) and Server-Library by calling srv_props (CS_SET,
SRV_DS_PROVIDER), the application checks in the [DIRECTORY]
section of libtcl.cfg for a matching driver and loads that driver.

See “The libtcl.cfg and libtcl64.cfg files” on page 68 for reference
information about directory drivers and libtcl*.cfg.

Note Step 1 does not apply to DB-Library application. Use steps 2 and 3
for specifying directory service for DB-Library.

2 If the client application does not specify a directory driver, Client-Library,
Server-Library, and DB-Library loads the directory driver listed by the
first entry in the [DIRECTORY] section of libtcl.cfg.

3 Client-Library, Server-Library, and DB-Library fall back and use sql.ini to
obtain the server’s address if any of the following are true:

• libtcl.cfg does not exist.

• There are no entries in the [DIRECTORY] section of libtcl.cfg.

• The specified directory driver fails to load.

• libtcl*.cfg is overridden at the context level when the CS_IFILE
property is set with ct_config.

You use the libtcl*.cfg file to specify the LDAP server name, port number, DIT
base, user name, and password to authenticate the connection to an LDAP
server.

What you should know about the libtcl*.cfg file:

• Values specified in the libtcl*.cfg file serve as the defaults for the CS_*
property, which is set with the ct_con_props routine. You can override
these values by explicitly setting the ct_con_props routine for that specific
connection.

• If you do not specify either the password or the user name in the libtcl*.cfg
file, the connection is anonymous.

CHAPTER 5 Using a Directory Service

Configuration Guide for Microsoft Windows 25

• If the password begins with an “0x,” the connection properties assume that
the password is encrypted. See “Encrypting the password” on page 71.

• On 64-bit platforms, Open Client and Open Server contain both 32-bit and
64-bit binaries. You should edit both the libtcl.cfg and the libtcl64.cfg files
to ensure compatibility between 32-bit and 64-bit applications.

The libtcl*.cfg file is located in %SYBASE%\%SYBASE_OCS%\ini.

How applications use LDAP directory services
To use Sybase LDAP features, you must install and configure an LDAP server
according to the vendor-supplied instructions. Sybase does not provide the
LDAP server. Sybase provides Netscape LDAP SDK client libraries and
Sybase Open Client and Open Server includes an LDAP driver, located in
%SYBASE%\%SYBASE_OCS%\dll.

The Netscape LDAP SDK library is located in
%SYBASE%\%SYBASE_OCS%\lib3p and the environment variable is PATH.

When the LDAP driver connects to the LDAP server, the server establishes the
connection based on two authentication methods—anonymous access, and
user name and password authentication.

• Anonymous access – does not require any authentication information;
therefore, you do not have to set any properties. Anonymous access is
typically used for read-only privileges.

• User name and password – can be specified in the libtcl.cfg file
(libtcl64.cfg file for 64-bit platforms) as an extension to the LDAP URL
(see “The libtcl.cfg and libtcl64.cfg files” on page 68) or set with property
calls to Client-Library. The user name and password that are passed to the
LDAP server, using ctlib, are separate and distinct from the user name and
password used to log in to Adaptive Server. Sybase strongly recommends
that you use user name and password authentication.

Authentication

A client application creates a connection to an LDAP server using the host
name and port number or IP address. This connection is called a “bind” and can
be unsecured or have user name and password authentication. The type of
access allowed is determined by the server.

Enabling LDAP directory services

26 Open Client and Open Server

Anonymous
connections

A connection in which authentication is not required is called an anonymous
connection. LDAP and Netscape Directory Services default to allow
anonymous connections.

Anonymous access:

• Does not require any authentication information, such as a password, to
establish a connection.

• Does not require that any additional properties be set to make a
connection.

• Is generally read access only.

User name and
password
authentication

For access permissions that allow write capabilities, Sybase recommends the
use of basic security. User names and passwords can provide a basic level of
security for a connection to the LDAP server. You can store user names and
passwords in the libtcl.cfg file on 32-bit platforms and libtcl64.cfg file on 64-
bit platforms, or set them with Client-Library properties.

 See Appendix B, “Configuration Files,” for information about the libtcl*.cfg
files and encrypting passwords in the configuration file.

Enabling LDAP directory services

Note LDAP is only supported with reentrant libraries. You must use isql_r,
instead of isql, when connecting to a server using LDAP directory services.

❖ Setting up to use a directory service

1 Configure the LDAP server according to the vendor-supplied
documentation.

2 Add the LDAP library directory to your path for your platform. For
example:

PATH=%PATH%:%SYBASE%\%SYBASE_OCS%\lib3p

3 Configure the libtcl*.cfg file to use directory services. Use any standard
ASCII text editor to:

• Remove the semicolon (;) comment markers from the beginning of
the LDAP URL lines in the libtcl*.cfg file under the [DIRECTORY]
entry.

CHAPTER 5 Using a Directory Service

Configuration Guide for Microsoft Windows 27

• Add the LDAP URL under the [DIRECTORY] entry. See Table 5-2
for supported LDAP URL values.

Note The LDAP URL must be on a single line.

ldap=libsybdldap.dll ldap://host:port/ditbase??scope????
 bindname=username password

For example:

[DIRECTORY]
ldap=libsybdldap.dll ldap://huey:11389/dc=sybase,dc=com??
 one????bindname=cn=Manager,dc=sybase,dc=com secret

“one” indicates the scope of a search that retrieves entries one level
below the DIT base. Table 5-3 defines the keywords for the ldapurl
variables.

Table 5-3: ldapurl variables

4 Verify that the environment variable points
toPATH%SYBASE%\%SYBASE_OCS%\lib3p.

5 Add your server entry to the LDAP server using dsedit. See “Making and
modifying server entries” on page 52 and “Adding a server to the
directory services” on page 51.

Keyword Description Default CS_* property

host
(required)

The host name or IP address of the
machine running the LDAP server

None

port The port number on which the
LDAP server is listening

389

ditbase
(required)

The default DIT base None CS_DS_DITBASE

username Distinguished name (DN) of the
user to authenticate

NULL
(anonymous
authentication)

CS_DS_PRINCIPAL

password Password of the user to be
authenticated

NULL
(anonymous
authentication)

CS_DS_PASSWORD

ldap://host:port/ditbase??scope????
ldap://huey:11389/dc=sybase

Enabling LDAP directory services

28 Open Client and Open Server

Multiple directory services with LDAP
You can specify multiple directory services for high-availability failover
protection. Not every directory service in the list needs to be an LDAP server,
for example:

[NT_DIRECTORY]
 ldap=libsybdldap.dll ldap://test:389/dc=sybase,dc=com
 dce=libddce.dll ditbase=/.:/subsys/sybase/dataservers
 ldap=libsybdldap.dll ldap://huey:11389/dc=sybase,dc=com

In this example, if the connection to test:389 fails, the connection fails over
to the DCE driver with the specified DIT base. If this also fails, a connection
to the LDAP server on huey:11389 is attempted. Different vendors employ
different DIT-base formats. See the Open Client Client-Library/C Reference
Manual.

Importing Microsoft Active Directory schema
You can import sybase.ldf into the Active Directory (AD) or into an Active
Directory Application Mode (ADAM) instance using the ldifde.exe command
provided in the ADAM installation. To import the directory schema, run
ldifde.exe from the ADAM installation using this syntax:

ldifde -i -u -f sybase.ldf -s server:port -b username
domain password -j . -c "cn=Configuration,dc=X"
#configurationNamingContext

Creating a container for Sybase server entries

After you have successfully imported the schema into the Active Directory,
create a container for the Sybase server entries and set appropriate read and
write permissions for the container and its child objects.

For example, A container with a relative distinguished name (RDN)
“CN=SybaseServers” is created in the root of the Active Directory for domain
“mycompany.com” to store and retrieve Sybase server entries. The root
distinguished name (rootDN) for this container is reflected in the libtcl.cfg file
as:

ldap=libsybdldap.dll ldap://localhost:389/
cn=SybaseServers,dc=mycompany,dc=com??...

ldap://test:389/dc=sybase
ldap://huey:11389/dc=sybase
ldap://localhost:389/

CHAPTER 5 Using a Directory Service

Configuration Guide for Microsoft Windows 29

If you create a dedicated user account name “Manager” with password “secret”
in the Active Directory to add and modify Sybase server entries, the complete
entry in the libtcl.cfg file is:

ldap=libsybdldap.dll
ldap://localhost:389/cn=SybaseServers,dc=mycompany,
dc=com????bindname=cn=Manager,cn=Users,dc=mycompay,
dc=com?secret

After setting the appropriate read and write permissions, you can use Sybase
utility programs such as dscp or dsedit to store, view, and modify Sybase server
entries in the Active Directory.

Note For more information about extending an Active Directory schema,
search for “Extending the Schema” on the Microsoft Web site.

Connecting to LDAP using SSL/TLS
You can set up a secure connection to an LDAP directory server using SSL or
TLS on all supported platforms. To establish a secure connection between a
client and an LDAP Directory Server, use either of the following methods:

• Establish a secure connection to the secure port of the LDAP server
(typically port number 636) by entering the following syntax in the
libtcl.cfg file:

[NT_DIRECTORY]
ldap=libsybdldap.dll
ldaps:// huey:636/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret

If no port number is specified with ldaps://, port number 636 is used by
default.

• Upgrade a normal connection (typically port number 389 of the LDAP
Server) to a secure one, using StartTLS. To upgrade the connection, enter
this syntax in the libtcl.cfg file:

[NT_DIRECTORY]
ldap=libsybdldap.dll starttls
ldap:// huey:389/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret

ldap://localhost:389/cn=SybaseServers
ldaps://huey:636/dc=sybase
ldap://huey:389/dc=sybase

Connecting to LDAP using SSL/TLS

30 Open Client and Open Server

If no port number is specified with ldap://, port number 389 is used by
default.

For more information, see the Open Client Client-Library/C Reference
Manual.

Configuration Guide for Microsoft Windows 31

C H A P T E R 6 Using Security Services

Client-Library and Server-Library applications can use the security
services provided by third-party security software to authenticate users
and protect data transmitted between machines on a network.

This chapter discusses how network-based security works and what you
need to configure to use it.

Overview of network-based security
In a distributed client/server computing environment, intruders can view
or tamper with confidential data. To counteract this possibility, network-
based security takes advantage of third-party distributed security software
to authenticate users and protect data transmitted between machines on a
network.

Security mechanisms
Sybase defines a security mechanism as external software that provides
security services for a connection. Different platforms can use different
security mechanisms.

Both Microsoft Windows NT LAN Manager (SSPI) and Kerberos provide
security services for servers and clients on Microsoft Windows.

You can specify the security mechanisms that a server supports in sql.ini
or a directory service:

• The optional secmech line in sql.ini entry specifies the security
mechanisms that a server supports.

Topic Page
Overview of network-based security 31

How applications use security services 37

Configuration tasks 39

Overview of network-based security

32 Open Client and Open Server

• The optional secmech attribute in a directory service entry describes the
security mechanisms that a server supports.

When a client gets the server’s address, it can verify that the server supports the
security mechanism that the client is using:

• If there is a secmech line or attribute and security mechanisms are listed,
then only those security mechanisms are allowed.

• If there is no secmech line or attribute, then all security mechanisms are
allowed.

• If there is a secmech line or attribute, but no security mechanisms are
listed, then the server does not support any security mechanisms.

Security drivers
Sybase provides security drivers that allow Client-Library and Server-Library
to communicate with the security mechanism. Each Sybase security driver
maps a generic interface to the security provider’s interface.

To use a security mechanism on a connection, both items below must be true:

• The client and server must use compatible security drivers. For example,
a client using a Microsoft Windows LAN Manager driver requires a server
using a Microsoft Windows LAN Manager driver.

• The client application must request services by setting connection
properties before connecting to the server.

Security services
Each security mechanism provides a set of security services that establish a
secure connection between a client and a server. Each security service
addresses a particular security concern. Security services can be divided into
two broad categories:

• Authentication services

• Per-packet security services

See the Open Client Client-Library/C Reference Manual for a complete
discussion of security services.

CHAPTER 6 Using Security Services

Configuration Guide for Microsoft Windows 33

Client-Library applications set connection properties to request a mechanism’s
services. Open Server applications read the properties of a client thread to
determine which services are being performed.

LAN Manager security services

Windows LAN Manager services provide the following:

• Network authentication based on LAN Manager user namespace

• Data integrity

• Replay detection

• Out-of-sequence detection

See the following section for information about Kerberos security features.

Kerberos security services

The Kerberos security mechanism provides the following services:

• Network authentication

• Mutual authentication

• Data integrity

• Data confidentiality

• Replay detection

• Out-of-sequence detection

• Credential delegation

For a description of these security services, see the Open Client Client-
Library/C Reference Manual. See “Client-Library and security services” on
page 38 for an overview of how client applications use security services.

Configuring CyberSafe Kerberos

The following considerations apply specifically to client applications that use
CyberSafe Kerberos security services:

• Install the CyberSafe Kerberos software on your system for Open Client
and Open Server 12.5 or later.

Overview of network-based security

34 Open Client and Open Server

• The gssapi32.dll file must be in the library path while running your Client-
Library application. Sybase does not provide this DLL, but it is included
with some CyberSafe Kerberos products. If this DLL is not included with
your CyberSafe Kerberos product, contact CyberSafe Kerberos to obtain
their GSS-API library.

• Configure the security section of the libtcl.cfg configuration file.

• Set the desired security features using ct_con_props. If you want to use the
default credentials, do not set any credential properties.

• Verify that the application has a preexisting user credential to connect to
the server. In other words, the user of the application must log in to
CyberSafe Kerberos before running the client application. To do so, use
the single sign-on feature or the CyberSafe kinit utility.

• If a user name is supplied, it must match the user’s preexisting credential.
If a user name is not supplied, Client-Library connects to the server using
the user name associated with the user’s CyberSafe Kerberos credential.

• The following environment variables set the paths to the credentials cache
file, configuration file, and realms file. If the corresponding file is located
in a non-default directory, set the environment variable to the file’s full
path:

• CSFC5CCNAME – credentials cache file

• CSFC5CONFIG – configuration file

• CSFC5REALMS – realms file

For more information, refer to your CyberSafe Kerberos documentation.

• No extra flags are required when compiling your Client-Library
applications to use CyberSafe Kerberos security services.

• Once you have configured Open Client and Open Server and CyberSafe
Kerberos, use the following command (without -U and -P arguments) to
test your configuration:

isql -V

Note Some tasks described here require you to use the CyberSafe Kerberos
administration tools. See your CyberSafe Kerberos documentation for
information.

CHAPTER 6 Using Security Services

Configuration Guide for Microsoft Windows 35

Configuring MIT Kerberos

• Install and configure the MIT software on your system, version 2.6.5 or
later.

• Configure the security section of the libtcl.cfg configuration file.

• Set the desired security features using ct_con_props, or use the default
credentials by not setting credential properties.

• Verify that the application has a preexisting user credential to connect to
the server. In other words, the user of the application must log in to the
Kerberos environment using the kinit utility, before running the client
application.

• If a user name is supplied, it must match the user’s preexisting credential.
If a user name is not supplied, Client-Library connects to the server using
the user name associated with the user’s credential.

• The environment variable KRB5CCNAME sets the path to the credentials
cache file. If the corresponding file is located in a non-default directory,
set the environment variable to the file’s full path.

For more information, refer to your documentation.

• The MIT GSS library, gssapi32.dll, must be specified in the libtcl.cfg file
using the libgss keyword. Sybase recommends providing the full path to
the Kerberos driver.

• No extra flags are required when compiling your Client-Library
applications to use Kerberos security services.

• Once you have configured Open Client and Open Server and Kerberos,
you can use isql to test your configuration.

Credential delegation for MIT Kerberos

The Kerberos security driver supports credential delegation when using the
MIT Kerberos Generic Security Services (GSS) library. This allows you to set
up an Open Server gateway application that uses the delegated client
credentials when establishing a connection with a remote server.

❖ Establishing a connection with a remote server using credential
delegation

This is an example of a call sequence you can employ when using credential
delegation. The ctos example in $SYBASE/OCS-15_0/sample/srvlibrary/
connect.c contains an example of the properties mentioned here:

Overview of network-based security

36 Open Client and Open Server

1 The client application requests for credential delegation and forwards the
credential to the gateway connection using:

ct_con_props(..., CS_SET, SRV_SEC_DELEGATION, ...)

2 The connection handler of the gateway application checks whether the
client requested credential delegation:

if (srv_thread_props(..., CS_GET,
SRV_T_SEC_DELEGATION, ...))
{...}

3 The connection handler retrieves the delegated client credentials:

srv_thread_props(..., CS_GET,
SRV_T_SEC_DELEGCRED, ...)

4 The client application sets the delegated credentials in the Client-Library
connection structure for use in connecting to the remote server:

ct_con_props(..., CS_SET, CS_SEC_CREDENTIALS, ...)

5 The client application attempts to connect to the remote server using
ct_connect.

You can also request for credential delegation using the isql and bcp option -Vd.
For more information, see the Open Client and Open Server Programmers
Supplement for Microsoft Windows.

For detailed information on using credential delegation, see the Open Server
Server-Library/C Reference Manual and the Open Client Client-Library/C
Reference Manual.

Using Windows Security SSPI

If Kerberos support is provided by the Microsoft Windows Security Support
Provider Interface (SSPI), edit the csfkrb5 entry in the libtcl.cfg file to specify
the libsspiwrapper.dll as the GSS library.

For example:

 csfkrb5=LIBSKRB secbase=@REALM libgss=C:\sybase\OCS-
15_0\lib3p\libsspiwrapper.dll

CHAPTER 6 Using Security Services

Configuration Guide for Microsoft Windows 37

How applications use security services
Client-Library and Server-Library applications can use a security mechanism
to perform authentication and per-packet security services. The security
mechanism behaves like a clearinghouse through which Client-Library and
Server-Library validate information. Figure 6-1 applies to both authentication
and per-packet security services.

Figure 6-1: Open Client and Open Server applications using a security
mechanism

If an Open Client application requests authentication services, the following
process occurs:

1 Client-Library validates the login with the security mechanism. The
security mechanism returns a login record, or token. The security
mechanism creates the login token based on which security services are
requested.

2 Client-Library establishes a transport connection with the Open Server
application and sends its login token.

3 Server-Library authenticates the client’s login token with the security
mechanism. If the login is valid, the Open Server application establishes a
secure connection.

If an Open Client application requests per-packet security services, the
following process occurs:

security mechanism

Client-Library application Open Server application

connection

How applications use security services

38 Open Client and Open Server

1 Client-Library uses the security mechanism to prepare the data packet to
send to the Open Server application. Depending on which security
services are requested, the security mechanism might encrypt the data or
create a cryptographic signature associated with the data.

2 Client-Library sends the data packet to the Open Server application.

3 When Open Server receives the data packet, it uses the security
mechanism to perform any required decryption and validation.

See “Security Features” in the Open Client Client-Library/C Reference
Manual for a detailed explanation of the Client-Library’s security features.

Client-Library and security services
You can set connection properties in Open Client applications to request a
security mechanism’s services. Client-Library determines which security
mechanism and services to use on the connection as follows:

1 If the client application names a security driver, Client-Library checks in
libtcl.cfg for a matching driver and loads that driver.

2 If the client application does not name a security driver, Client-Library
loads the first security driver listed in libtcl.cfg.

3 If libtcl.cfg does not list a security driver, the server authenticates the user
if the user supplies the correct password.

Server-Library and security services
Open Server applications can read the properties of a client connection request
to determine which security mechanism to use and which services to perform.

By default, an Open Server application supports the security mechanisms listed
in libtcl.cfg. Administrators can further restrict the list of supported
mechanisms by adding a secmech attribute to the server’s directory entry or a
secmech line to the Open Server application’s sql.ini file entry.

When an Open Client application requests a security session from an Open
Server application:

1 Server-Library reads the security token that was sent with the client
connection request. The security token contains the object identifier for
the security mechanism that the client uses.

CHAPTER 6 Using Security Services

Configuration Guide for Microsoft Windows 39

2 If the Open Server application’s sql.ini entry or directory service entry lists
the secmech line/attribute, Server-Library searches the secmech
line/attribute for a value corresponding to the object identifier specified in
the security token. If a matching value is not found, the connection request
is rejected.

3 Server-Library searches objectid.dat to match the object identifier with the
local name of the security mechanism.

See “The objectid.dat file” on page 87 for reference information about
objectid.dat.

4 Server-Library loads the security driver associated with the local name of
the security mechanism. The security driver is listed in libtcl.cfg.

Configuration tasks
To allow your Open Client and Open Server application to use a security
service, you must configure a security driver using the ocscfg utility. See
Chapter 7, “Using ocscfg,” for information about configuring a security driver,
and “The libtcl.cfg and libtcl64.cfg files” on page 68 for reference information
about security drivers and the libtcl.cfg file.

Optionally, to restrict the security mechanisms that a server supports, do one of
the following:

• If your application uses the sql.ini file, use the dsedit utility to add a
secmech line in the server’s sql.ini file entry.

• If your application uses a directory service, use the dsedit utility to add the
secmech attribute to the server’s directory service entry.

See Chapter 8, “Using dsedit,” for information about adding information to a
directory service or the sql.ini file.

Configuration tasks

40 Open Client and Open Server

Configuration Guide for Microsoft Windows 41

C H A P T E R 7 Using ocscfg

This chapter explains how to use the ocscfg utility that allows you to
configure your local machine.

Note You can also access dsedit while configuring directory services. See
Chapter 8, “Using dsedit,” for instructions for using dsedit.

About ocscfg
You can set three types of configuration information with ocscfg:

• Environment variables

• Directory drivers

• Security drivers

Starting ocscfg
You can start ocscfg from Program Manager, the DOS prompt, or the File
Manager. You can also start ocscfg from the Start menu or Windows
Explorer.

Topic Page
About ocscfg 41

Starting ocscfg 41

Setting environment variables 42

Configuring a directory driver 43

Configuring a security driver 46

Setting environment variables

42 Open Client and Open Server

• To start ocscfg from Program Manager, double-click its icon in the Sybase
program group.

• To start ocscfg from the prompt, enter:

ocscfg

• To start ocscfg from the File Manager:

a Go to %SYBASE%\%SYBASE_OCS%\bin, where %SYBASE% is the
installation directory.

b Double-click the ocscfg.exe file.

• To start ocscfg from the Start menu, choose Start | Programs | Sybase |
ocscfg.

Use the top row of tabs to select the configuration function you want to
perform. The following table describes the function associated with each tab:

Setting environment variables
Click the Environment tab to activate the dialog box for setting environment
variables.

Setting the SYBASE environment variables
To set the SYBASE environment variable, do one of the following:

• Enter the location of the Sybase installation directory in the SYBASE
field.

Tab Function

Environment Set Sybase-related environment variables. ocscfg defaults
to this dialog box at start-up.

Directory Service Configure directory drivers listed in libtcl.cfg. Connect to
dsedit.

Security Service Configure security drivers listed in libtcl.cfg.

CHAPTER 7 Using ocscfg

Configuration Guide for Microsoft Windows 43

• Click Browse to view your local directory structure or a remote directory
structure. Double-click the appropriate directory to select it.

Note ocscfg uses the SYBASE environment variable to locate the libtcl.cfg
file. If the SYBASE environment variable is not set correctly, ocscfg cannot
locate libtcl.cfg.

You can also use the CS_LIBTCL_CFG property to set the path to libtcl.cfg.

Starting with 15.7 ESD #4, you can also use the SYBOCS_TCL_CFG
environment variable to specify the full path to libtcl.cfg.

Setting other environment variables

❖ Setting environment variables other than SYBASE

1 Select the appropriate environment variable in the Environment Variables
box. The name you select appears in the Variable Name box.

2 Enter the value for the selected environment variable in the Value box.

3 Click Set.

See Appendix A, “Environment Variables,” for more information.

Clearing environment variables

❖ Clearing environment variables other than SYBASE

1 Select the appropriate environment variable name in the Environment
Variables box. The name you select appears in the Variable Name box.

2 Click Clear.

Configuring a directory driver
Click the Directory Services tab to display the dialog box for configuring
directory drivers. The ocscfg utility displays the location of libtcl.cfg, the driver
configuration file, at the top of the dialog box.

Configuring a directory driver

44 Open Client and Open Server

Adding a directory driver entry

❖ Adding a directory driver entry

1 Select your platform from the Platform box.

2 Click Add at the bottom of the dialog box. The Add Directory Service
Entry dialog box appears.

3 Enter the directory service name in the Directory Service Name box. You
can name this element anything as long as it:

• Contains only letters, numbers, and underscore characters

• Has a maximum of 64 characters

4 Select a driver from the Directory Service Driver box.

5 Enter a DIT base value in the Directory Service DIT base box. The DIT
base is the location where the directory service begins its search for the
server entry. For required syntax, see “DIT base syntax” on page 44.

6 Click OK.

DIT base syntax

When adding or modifying a directory driver entry, you can specify a DIT base.
DIT base syntax depends on the directory driver that you choose.

CHAPTER 7 Using ocscfg

Configuration Guide for Microsoft Windows 45

Table 7-1: Directory service DIT base syntax

If you do not specify a DIT base, the directory driver uses the default value,
SOFTWARE\SYBASE\SERVER.

Modifying an existing directory driver entry

❖ Modifying an existing directory driver entry

1 Select your platform from the Platform box.

2 Select the appropriate directory service name in the Directory Service
Name field.

3 Click Edit at the bottom of the dialog box. The Edit Directory Service
Entry dialog box appears.

4 Update the directory service name, driver, and DIT base as required.

5 Click OK.

Deleting a directory driver entry

❖ Deleting a directory driver entry

1 Select your platform from the Platform box.

Directory service DIT base syntax

Windows Registry These are two examples of Registry DIT base settings:

SOFTWARE\SYBASE\SERVER

machine_name:SOFTWARE\SYBASE\SERVER

In the second example, machine_name represents a
workstation’s network name.

All DIT base entries must be relative to
\HKEY_LOCAL_MACHINE\. Key entries must exist for the
DIT base key and all keys between
\HKEY_LOCAL_MACHINE\ and the DIT base key. The
Sybase installation program creates the
\HKEY_LOCAL_MACHINE\SOFTWARE\SYBASE key. For
the examples above, you need to add the SERVER key.

Use the Microsoft regedt32 tool to create any necessary keys.
Registry path names are not case sensitive.

Configuring a security driver

46 Open Client and Open Server

2 Select the appropriate directory service name in the Directory Service
Name field.

3 Click Delete.

Activating a directory driver
ocscfg displays the active directory driver in the Active Directory Service box.
The first driver listed is the active driver.

❖ Activating a directory driver

1 Select the appropriate directory service name in the Directory Service
Name field.

2 Click Set Active.

Configuring a security driver
Click the Security Service tab to display the dialog box for configuring security
drivers. The ocscfg utility displays the location of libtcl.cfg, the driver
configuration file, at the top of the dialog box.

Adding a security driver entry

❖ Adding a security driver entry

1 Select your platform from the Platform box.

2 Click Add. The Add Security Service Entry dialog box appears.

3 Type the security service name in the Local Name box.

The local name of the security service must correspond to an entry in
objectid.dat. See “The objectid.dat file” on page 87 for more information.

4 Select a driver from the Security Service Driver box.

5 Click OK.

CHAPTER 7 Using ocscfg

Configuration Guide for Microsoft Windows 47

Modifying an existing security driver entry

❖ Modifying an existing security driver entry

1 Select your platform from the Platform box.

2 Select the appropriate security service name in the Local Name field.

3 Click the Edit button at the bottom of the dialog box. The Edit Security
Service Entry dialog box appears.

4 Update the security service name and driver as required.

5 Click OK.

Deleting a security driver entry

❖ Deleting a security driver entry

1 Select your platform from the Platform box.

2 Select the appropriate security service name in the Local Name field.

3 Click Delete.

Setting the default security driver
The ocscfg utility displays the default security driver in the Default Local
Name field. The first driver listed is the default driver.

❖ Setting the default security driver

1 Select the appropriate security service name in the Local Name field.

2 Click Set Default.

Configuring a security driver

48 Open Client and Open Server

Configuration Guide for Microsoft Windows 49

C H A P T E R 8 Using dsedit

This chapter explains how to use dsedit to configure a directory service or
sql.ini.

Using dsedit
The dsedit utility lets you configure a directory service or sql.ini.

You can start dsedit from its program icon, the DOS prompt, or the File
Manager. You can also start dsedit from the Start menu or Explorer.

• To start dsedit from its program icon, double-click the dsedit icon in
the Sybase program group.

• To start dsedit from the DOS prompt, enter:

dsedit

You can specify the following command line arguments:

Topic Page
Using dsedit 49

Adding a server to the directory services 51

Making and modifying server entries 52

Using the ping command 55

Copying server entries 56

Exiting dsedit 57

Argument Description

-d dsname Specifies which directory service to connect to. dsname is
the local name of the directory service, as listed in the
libtcl.cfg file.

If you do not specify the -d dsname argument, dsedit
presents a list of directory service options in the first
dialog box.

Using dsedit

50 Open Client and Open Server

• To start dsedit through the File Manager or Explorer:

a Go to the %SYBASE%\%SYBASE_OCS%\bin directory.

b Double-click dsedit.exe.

• To start dsedit from the Start menu, choose Start | Programs | Sybase |
dsedit.

Opening a session
The Select Directory Service dialog box allows you to open a session with a
directory service. You can open a session using one of the following:

• Any directory service that has a driver listed in libtcl.cfg

• sql.ini

To open a session, do one of the following:

• In the DS Name box, double-click the local name of the directory service
to which you want to connect.

• Click the local name of the directory service to which you want to connect
and click OK.

Note dsedit uses the SYBASE environment variable to locate libtcl.cfg. If you
do not set the SYBASE environment variable correctly, dsedit will not locate
libtcl.cfg.

The session number and local name of the directory service appear in the
header bar.

Opening additional sessions

The dsedit utility allows you to have multiple sessions open.

-l path Specifies the path to the libtcl.cfg file, if other than
%SYBASE%\%SYBASE_OCS%\ini.

Use this argument only if you want to use a libtcl.cfg file
other than the one located in
%SYBASE%\%SYBASE_OCS%\ini.

Argument Description

CHAPTER 8 Using dsedit

Configuration Guide for Microsoft Windows 51

❖ Opening additional sessions

1 Choose Open Directory Service from the File menu.

The Select Directory Service box appears.

2 Double-click the local name of the directory service to which you want to
be connected, or click the directory service name and click OK.

Opening multiple sessions allows you to copy entries between directory
services. See “Copying server entries” on page 56 for more information.

Activating sessions

You must activate a session before you can work in it. To activate a session, do
one of the following:

• Click in the session window.

• Choose the session from the Window menu.

The top dsedit header bar shows which session is active.

Adding a server to the directory services

 Warning! Most LDAP servers have an ldapadd utility for adding directory
entries. Sybase recommends that you use dsedit instead, as it has built-in
semantic checks that generic tools do not provide.

dsedit is a graphical utility that allows you to add, delete and modify servers in
the libtcl*.cfg and sql.ini files. Before you can add, delete, or modify an LDAP
server entry, you must add the LDAP URL to the libtcl*.cfg file. See “The
libtcl.cfg and libtcl64.cfg files” on page 68.

❖ Adding a server to the directory service using dsedit

Use dsedit to add server to the directory service:

1 From the Microsoft Windows task bar, select Start | Programs | Sybase |
dsedit.

2 Select LDAP from the list of servers, and click OK.

3 Click Add New Server Entry.

Making and modifying server entries

52 Open Client and Open Server

4 Enter:

• The server name – required.

• Security mechanism – optional. A list of security mechanism OIDs
are located in %SYBASE%\ini\objectid.dat.

• HA server name – optional. This is the name of the high-availability
failover server, if you have one.

5 Click Add New Network Transport.

• Select the transport type from the drop-down list.

• Enter the host name.

• Enter the port number.

6 Click OK twice to exit the dsedit utility.

To view the server entries, enter the following URL in a Web browser:

ldap://host:port/ditbase??one

For example:

ldap://huey:11389/dc=sybase,dc=com??one

Note Microsoft Internet Explorer does not recognize LDAP URLs.

Making and modifying server entries
Once you open a session with a directory service or sql.ini, you can add,
modify, rename, and delete server entries associated with that session.

The server entries associated with the session appear in the Server box. Click
a server entry to select it.

Each server entry is made up of a set of attributes. The attributes and attribute
values of a server entry, shown in Table 8-1, appear on the right side of the
dialog box.

ldap://host:port/ditbase??one
ldap://huey:11389/dc=sybase

CHAPTER 8 Using dsedit

Configuration Guide for Microsoft Windows 53

Table 8-1: Server attributes

Attribute
name

Type of
value Description Default value

Server
Entry
Version

Integer The version level of the server object definition.

Sybase provides this attribute to identify future changes
to the object definition.

15501

Server
Name

Character
string

The server’s name. N/A

Server
Service

Character
string

A description of the service provided by the server.

This value can be any meaningful description.

ASE

Server
Status

Integer The operating status of the server.
Valid values are:

1 – Active
2 – Stopped
3 – Failed
4 – Unknown

4

Server
Address

Character
string

One or more addresses for the server.

The format of the address varies by protocol, and some
protocols allow more than one format. The options are:

• TCP/IP (two formats)

1. computer_name,port_number

2. ip-address,port_number

• Named Pipe

pipe_name: “\pipe” is a required prefix to all pipe
names. Server pipes can only be local.

(Local) \pipe\sql\query
(Remote) \\computer_name\pipe\sql\query

• IPX/SPX (three formats)

1. server_name
2. net_number,node_number,socket_number
3. server_name, socket_number

N/A

Server
HAfailover
(optional)

Character
string

The name of the High Availability Failover server, if
configured.

N/A

Making and modifying server entries

54 Open Client and Open Server

Adding a server entry

❖ Adding a server entry

1 Choose Add from the Server Object menu. The Input Server Name box
appears.

2 Type a server name in the Server Name box.

3 Click OK.

The server entry appears in the Server box. To specify an address for the server,
you must modify the entry.

Modifying a server entry

❖ Modifying a server entry

1 Click a server entry in the Server box.

2 Click the attribute you want to modify in the Attributes box.

3 Choose Modify Attribute from the Server Object menu. A dialog box
appears, showing the current value of the attribute.

4 Enter a new value for the attribute or select a value from the drop-down
list. See Table 8-1 on page 53 for a description of each attribute.

5 Click OK.

Server
Security
(optional)

Character
string

Object identifier strings (OID) that specify the security
mechanisms supported by the server. This attribute is
optional. If it is omitted, the Open Server allows clients
to connect with any security mechanism for which the
Open Server has a corresponding security driver. (See
Server Library and security services for process details.)

See objectid.dat for more information about object
identifier strings.

N/A

Attribute
name

Type of
value Description Default value

CHAPTER 8 Using dsedit

Configuration Guide for Microsoft Windows 55

Renaming a server entry

❖ Renaming a server entry

1 Click a server entry in the Server box.

2 Choose Rename from the Server Object menu. The Input Server Name
box appears.

3 Enter a new name for the server entry in the Server Name box.

4 Click OK.

Deleting entries

❖ Deleting a server entry

1 Click a server entry in the Server box.

2 Choose Delete from the Server Object menu.

Using the ping command
❖ Verifying your network connection with ping

1 Click a server entry in the Server box.

2 Select the Ping command from the Server Object menu. The Ping dialog
box appears.

3 Click the address you want to ping.

4 Click Ping.

A message box notifies you whether the connection is successful or if the
connection fails. If the connection fails, see “Troubleshooting connection
failures” on page 59.

Copying server entries

56 Open Client and Open Server

Copying server entries
The dsedit utility allows you to copy server entries within a session and
between sessions. This includes copying entries from an sql.ini file to a
directory service.

Copying entries within a session

❖ Copying server entries within the current session

1 Click one or more server entries in the Server box. Use the Shift key to
select multiple entries.

2 Click the Copy button (below the menu bar), or choose Copy from the Edit
menu.

3 Click the Paste button (below the menu bar) or choose Paste from the Edit
menu.

dsedit appends the copied server entries with a version number of _n. You can
rename the copied server entries using the Rename command in the Server
Object menu. See “Renaming a server entry” on page 55 for more information.

Copying entries between sessions

❖ Copying server entries between sessions

1 Using the directory service or sql.ini, open a session to which you want the
entries copied.

To open a session, choose Open Directory Service from the File menu. See
“Opening additional sessions” on page 50 for more information.

2 Click one or more server entries in the Server box of the session from
which you want the entries copied. Use the Shift key to select multiple
entries.

3 To copy the server entries, click Copy, or choose Copy from the Edit
menu. To cut the server entries, click Cut, or choose Cut from the Edit
menu.

4 Activate the session to which you want to paste the server entries. See
“Activating sessions” on page 51 for instructions for activating a session.

5 Click Paste, or choose Paste from the Edit menu.

CHAPTER 8 Using dsedit

Configuration Guide for Microsoft Windows 57

You can rename the copied server entries using the Rename command in the
Server Object menu. See “Renaming a server entry” on page 55 for more
information.

Exiting dsedit
To exit dsedit, choose Exit from the File menu.

Exiting dsedit

58 Open Client and Open Server

Configuration Guide for Microsoft Windows 59

C H A P T E R 9 Troubleshooting with dsedit

This chapter explains how to use dsedit, Sybase’s directory services
utilities, to test the network connection between a Client-Library
application and an Adaptive Server, or Open Server application.

How dsedit works
dsedit allows you to verify that your Net-Library software has been
installed correctly and that you can connect to an Adaptive Server, or an
Open Server application. dsedit mimics the interaction of the Client-
Library ct_connect routine and Net-Library but does not require a valid
user name on an Adaptive Server or an Open Server application.

You can run dsedit anytime after the Net-Library installation is complete.

To test a server connection, ping the server using dsedit. For instructions,
see Chapter 8, “Using dsedit.”

Troubleshooting connection failures
If your application fails to connect to a server, run dsedit. Reviewing the
messages that dsedit displays may provide you with enough information
to solve the problem.

Topic Page
How dsedit works 59

Troubleshooting connection failures 59

Information you need for Sybase Technical Support 61

Commonly asked questions 62

Troubleshooting connection failures

60 Open Client and Open Server

Some types of problems are not diagnosed by dsedit; these are usually
problems in your Adaptive Server or Open Server setup, rather than in a Net-
Library-to-network-software connection. Troubleshooting suggestions are
included in “If dsedit succeeds but other applications fail” on page 61.

If dsedit fails
If dsedit does not make a successful connection, make sure that all the basic
Net-Library requirements have been met:

• Adaptive Server or Open Server is running on a server machine.

• A network hardware connection exists between your PC and the server
machine.

• Your PC meets minimum hardware and software requirements.

• The network vendor’s software is installed and running on your PC.

• The connection information in sql.ini is correct.

If these requirements have been met, determine the point at which dsedit failed
by reviewing the messages it displays.

If dsedit cannot connect to a server, it displays a message box.

If dsedit finds the connection information but notifies you that the server is not
responding:

• Verify that the server is running. If you have access to the machine running
the server, try using isql to log in to the server. Otherwise, ask your System
Administrator to verify that the server you need is running.

• Verify that the networking software and hardware are properly configured.
For example, check connectors, plugs, and so on, and confirm that your
network software is running.

• Check for any network error messages displayed in the message boxes, or
check the system event log for errors.

• Ask your System Administrator to verify that your connection information
provides the correct values to connect to the machine running the server,
or use the utilities provided with your network software to verify this.

If you cannot resolve the problem yourself, have your designated Sybase
support contact call Sybase Technical Support to report the problem. See
“Information you need for Sybase Technical Support” on page 61.

CHAPTER 9 Troubleshooting with dsedit

Configuration Guide for Microsoft Windows 61

If dsedit succeeds but other applications fail
If dsedit does not report any errors but your other applications fail to run:

• Verify whether your application uses the default server. If it passes a server
name in the ct_connect routine, make sure you selected the corresponding
server from the dsedit list before you tested the connection.

• Verify that you have a valid user login name for Adaptive Server or the
Open Server application, and that your permissions on databases and
tables are consistent with the permissions required to run your
applications.

• Use the isql utility to verify that you can access your Adaptive Server or
Open Server application. isql is described in Open Client and Open Server
Programmers Supplement.

• On the machine that is running Adaptive Server or the Open Server
application, use isql to verify that the databases and tables used by your
application exist. If you do not have access to the machine running
Adaptive Server or the Open Server application, or if you are unfamiliar
with isql, ask your database administrator to check for you.

Information you need for Sybase Technical Support
If you experience problems with a Net-Library product and must call Sybase
Technical Support, be ready to provide the following information:

• The name and version number of your networking software.

• The name and version number of the operating system on which your
networking software is running.

• The name and version number of the operating system on which the server
to which you are connected is running.

• The version number of the server to which you are connected.

• The date and size of your Net-Library DLL. This information may be
obtained by executing the DIR command and displaying a file list that
includes the DLL.

Commonly asked questions

62 Open Client and Open Server

Commonly asked questions
• Question: I just got a new version of one of the Sybase DLLs. Why does

my software still exhibit the old behavior?

Answer: Verify that only one copy of the DLL exists on your machine. If
you find a second DLL with the same name, check your path to see which
directory is listed first; you may be inadvertently loading the older version
of the DLL.

• Question: Why does cs_ctx_alloc fail?

Answer: Open sybinit.err to find a detailed description about why
cs_ctx_alloc failed. sybinit.err is in the directory in which the application
resides.

• Question: Why does ct_init fail?

Answer: Open the sybinit.err file to find a detailed description about why
cs_init failed. You can find this file in the directory in which the application
resides.

Verify that all of the drivers listed in libtcl.cfg are installed, and that the
path to the files is listed in wsybset.bat.

• Question: When running isql or dsedit, why do I get a “File Error” stating
that it cannot find a DLL that is not one supplied by Sybase?

Answer: The DLL is probably a network vendor DLL, and the message
may mean that your network is not installed properly.

Configuration Guide for Microsoft Windows 63

A P P E N D I X A Environment Variables

This appendix describes environment variables that contain configuration
information.

Environment variables used for connection
Open Client and Open Server use the environment variables shown in
Table A-1 during the connection process.

Table A-1: Environment variables used for connection

Topic Page
Environment variables used for connection 63

Environment variables used for localization 64

Environment variables used for configuration 64

Variable Value Default Used by

DSLISTEN The name of the Open Server
application, as listed in sql.ini or
directory service.

If DSLISTEN is not set, Open
Server uses the default value
“SYBASE.”

SYBASE Open Server.

Uses DSLISTEN only if the Open
Server application does not
specify a server during
initialization.

DSQUERY The name of the target server, as
listed in sql.ini or directory
service.

If DSQUERY is not set, Open
Client uses the default value
“SYBASE.”

SYBASE Open Client.

Uses DSQUERY only if the Open
Client application does not specify
the name of the server.

SYBASE The location of the Sybase
installation directory.

Home directory of the
“sybase” user

Open Client and Open Server.

SYBASE_
OCS

Home directory for the Open
Client and Open Server
products.

OCS-15_0 Open Client and Open Server.

Environment variables used for localization

64 Open Client and Open Server

Environment variables used for localization
Open Client and Open Server use the environment variables shown in Table A-
2 during localization.

Table A-2: Environment variables used for localization

The LC_* environment variables are POSIX standard environment variables
and can be used by non-Sybase applications. Verify that the locales.dat file lists
the same locale names as are used by the environment variables of the non-
Sybase application.

Environment variables used for configuration
Open Client and Open Server products use the environment variables shown in
Table A-3 during the configuration process.

PATH The directory paths that Open
Client and Open Server products
search to find executables and
DLLs.

Executables Open Client and Open Server.

Variable Value Default Used by

Environment
variable Set it to a locale name that indicates Used during

LC_ALL Language, character set, and collating sequence to use for messages,
datatype conversions, and sorting.

Initial localization,
custom localization

LANG Language, character set, and collating sequence to use for messages,
datatype conversions, and sorting.

Open Client and Open Server products search for LANG if they
cannot find LC_ALL.

Initial localization

LC_COLLATE Collating sequence (sort order) to use when sorting and comparing
character data.

Custom localization

LC_CTYPE Character set to use for datatype conversions. Custom localization

LC_MESSAGE Language to use for messages. Custom localization

LC_TIME Date and time data representation to use for a datetime string, such
as date and time formats, names in the native language, and month
and day abbreviations.

Custom localization

APPENDIX A Environment Variables

Configuration Guide for Microsoft Windows 65

Table A-3: Environment variables used for configuration

Environment variable Description Used during

SYBOCS_CFG Overrides the %SYBASE%\%SYBASE_OCS%\ini\ocs.cfg
default external configuration file path.

Runtime

SYBOCS_DBVERSION Externally configures the DB-Library version level at
runtime. DB-Library uses this variable to retrieve the
environment variable at the DB-Library initialization stage
and store the environment variable value as the version
level.

For more information, see the Open Client DB-Library/C
Reference Manual.

Runtime

SYBOCS_DEBUG_FLAGS Enables specific diagnostic subsystems. You can enable
multiple debug options by specifying a comma-delimited
list of flags in the variable.

For information about debugging, see the Open Client
Client-Library/C Reference Manual.

Runtime

SYBOCS_DEBUG_
LOGFILE

Specifies the log file where the diagnostics are recorded. If
you do not set this, messages are written to stdout.

See the Open Client Client-Library/C Reference Manual.

Runtime

SYBOCS_TCL_CFG Sets the full path name of the libtcl.cfg and libtcl64.cfg
files. For example:

setenv SYBOCS_TCL_CFG c:\joe\libtcl.cfg

Runtime

Environment variables used for configuration

66 Open Client and Open Server

Configuration Guide for Microsoft Windows 67

A P P E N D I X B Configuration Files

This appendix describes the files that Open Client and Open Server
products use to obtain configuration information.

About configuration files
Configuration files are created during installation at a default location in
the Sybase installation directory structure.

Table B-1 shows the configuration files that Open Client and Open Server
products use:

Table B-1: Names and locations for configuration files

Topic Page
About configuration files 67

The libtcl.cfg and libtcl64.cfg files 68

The sql.ini file 74

The ocs.cfg file 77

Filename Description Location
For more
information

libtcl.cfg The driver configuration file contains
information regarding directory, security, and
network drivers and any required initialization
information.

%SYBASE%\
%SYBASE_OCS%\ini

Note Use the
CS_LIBTCL_CFG
property or
SYBOCS_TCL_CFG
environment variable
to specify an alternate
path to libtcl.cfg file.

See “The libtcl.cfg
and libtcl64.cfg
files” on page 68.

Also see the Open
Client and Open
Server Common
Libraries Reference
Manual.

sql.ini This file contains network and security
information for each server listed in the file. It is
also used as a backup to the libtcl.cfg file.

%SYBASE%\ini See “The sql.ini file”
on page 74.

The libtcl.cfg and libtcl64.cfg files

68 Open Client and Open Server

The libtcl.cfg and libtcl64.cfg files
The libtcl.cfg and the libtcl64.cfg files (collectively libtcl*.cfg files) are the
driver configuration files that contain information about the following types of
drivers used by Open Client and Open Server products:

• Directory drivers

• Security drivers

A driver is a Sybase library that provides Open Client and Open Server
software with a generic interface to an external service provider. This allows
Open Client and Open Server to easily support multiple service providers.

Open Client and Open Server reads libtcl*.cfg when loading a network,
directory, or security driver. An entry in libtcl.cfg provides Open Client and
Open Server products with the name of the driver and its initialization
information.

The purpose of the libtcl*.cfg files is to provide configuration information such
as driver, directory, and security services for Open Client and Open Server, and
for Open Client and Open Server-based applications. Both libtcl.cfg and
libtcl64.cfg are provided on 64-bit platforms. 32-bit applications (on 64-bit
platforms) such as dsedit and srvbuild look up the libtcl.cfg file while 64-bit
applications look up the libtcl64.cfg file for configuration information.

The libtcl*.cfg file determines whether the sql.ini file or LDAP directory
services should be used. If LDAP is specified in the libtcl*.cfg file, the sql.ini
file is ignored unless the application specifically overrides the libtcl*.cfg file
by passing the -I parameter while connecting to a server.

objectid.dat This file maps global object identifiers to local
names for character set, collating sequence, and
security mechanisms.

%SYBASE%\ini See Appendix C,
“Localization.”

ocs.cfg The runtime configuration file allows you to
change certain Open Client application values at
runtime.

%SYBASE%\%SYBA
SE_OCS%\ini

See “The ocs.cfg
file” on page 77.

Filename Description Location
For more
information

APPENDIX B Configuration Files

Configuration Guide for Microsoft Windows 69

Layout of libtcl.cfg
libtcl.cfg is divided into sections, one for each type of driver. ocscfg creates the
section headings as follows:

Note The sections do not have to be in a specific order.

Directory drivers

The syntax for a directory driver entry is:

provider=driver ditbase

where:

• provider is a local name of the directory service. You can name this
element anything as long as it contains only letters, numbers, and
underscores and has a maximum of 64 characters.

• driver is the name of the Microsoft Windows Registry driver called
LIBSYBDREG. The default location for drivers is in
%SYBASE%\%SYBASE_OCS%\dll.

• ditbase is where the directory service begins its search for the server entry.
The syntax for ditbase depends on the directory service provider:

Section heading Description

NT_DIRECTORY Lists the Microsoft Windows directory driver

SECURITY Lists the Microsoft Windows security driver

The libtcl.cfg and libtcl64.cfg files

70 Open Client and Open Server

DCE directory service ditbase syntax

If you use DCE directory services, DIT base information in the libtcl.cfg file
uses this syntax:

ditbase=/.:/dce_cell_name

For example:

ditbase=/.:/subsys/sybase/dataservers

For LDAP entries in the DIRECTORY section

In its simplest form, LDAP directory services are specified in this format:

[DIRECTORY]
ldap=libsybdldap.dll ldapurl

where the ldapurl is defined as:

ldap://host:port/ditbase

The following LDAP entry, using these same attributes, is an anonymous
connection and only works only if the LDAP server allows read-only access.

ldap=libsybdldap.dll
ldap://test:389/dc=sybase,dc=com

You can specify a user name and password in the libtcl*.cfg file as extensions
to the LDAP URL to enable password authentication at connection time.

To set the user name, enter:

Directory
service DIT base syntax

Microsoft
Windows Registry

Following are two examples of Registry DIT base
settings:

ditbase=SOFTWARE\SYBASE\SERVER

ditbase=machine_name:SOFTWARE\SYBASE\
SERVER

In the second example, machine_name represents a
workstation’s network name.

All DIT base entries must be relative to
\HKEY_LOCAL_MACHINE\. Key entries must exist for
the DIT base key and all keys between
\HKEY_LOCAL_MACHINE\ and the DIT base key.

Use the Microsoft regedt32 tool to create any other
necessary keys. Registry entries are not case sensitive.

ldap://host:port/ditbase
ldap://test:389/dc=sybase

APPENDIX B Configuration Files

Configuration Guide for Microsoft Windows 71

if (ct_con_props(conn, CS_SET, CS_DS_PRINCIPAL,
ldapprincipal,
 strlen(ldapprincipal), (CS_INT *)NULL) !=
CS_SUCCEED)
{
 ...
}

To set the password, enter:

if (ct_con_props(conn, CS_SET, CS_DS_PASSWORD,
ldappassword,
 strlen(ldappassword), (CS_INT *)NULL) !=
CS_SUCCEED)
{
 ...
}

Encrypting the password

Entries in the libtcl.cfg and libtcl64.cfg files are in human-readable format.
Sybase provides a pwdcrypt utility for basic password encryption. pwdcrypt is a
simple algorithm that, when applied to keyboard input, generates an encrypted
value that can be substituted for the password. pwdcrypt is located in
%SYBASE%\%SYBASE_OCS%\bin.

❖ Encrypting the password

1 From the Open Client and Open Server (OCS) directory, enter at your
command prompt:

bin/pwdcrypt

2 Enter your password twice when prompted. pwdcrypt generates an
encrypted password, for example:

0x01312a775ab9d5c71f99f05f7712d2cded2i8d0ae1ce78868d0e8669313d1bc4c706

3 Copy and paste the encrypted password into the libtcl*.cfg file using any
standard ASCII-text editor. Before encryption, the file entry appears as
follows:

Note The LDAP URL must be on a single line.

ldap=libsybdldap.dll
ldap://dolly/dc=sybase,dc=com????bindname=cn=Manager,dc=sybase,
dc=com?secret

ldap://dolly/dc=sybase

The libtcl.cfg and libtcl64.cfg files

72 Open Client and Open Server

4 Replace the password with the encrypted string:

ldap=libsybdldap.dll
ldap://dolly/dc=sybase,dc=com????bindname=cn=Manager,dc=sybase,dc=com?
0x01312a775ab9d5c71f99f05f7712d2cded2i8d0ae1ce78868d0e8669313d1bc4c706

 Warning! Even if your password is encrypted, you should still protect it using
file-system security.

Security drivers

Following is the syntax for a security driver entry:

provider=driver init_string

where:

• provider is the local name for the security mechanism. The local name of
the security mechanism listed in the object identifiers file,
%SYBASE%\ini\objectid.dat.

See “The objectid.dat file” on page 87 for information about the
objectid.dat file.

• driver is the name of the driver. The default location for drivers is in
%SYBASE%\%SYBASE_OCS%\dll. The possible driver values are:

• init_string is an initialization string for the security driver. This element is
optional. The value for init_string varies by driver.

For the Kerberos driver, init_string specifies the optional qualifier for the
security principal names. The syntax for init_string is as follows, where
realm is the value to append to a principal name if the realm information
is not available. If the realm name does not start with an “at” sign (@), a
forward slash (/) is inserted between the principal name and the realm
information.

secbase=realm

Driver name Description

libsybsmssp.dll Microsoft Windows LAN Manager driver

libsybskrb.dll Kerberos security driver

ldap://dolly/dc=sybase

APPENDIX B Configuration Files

Configuration Guide for Microsoft Windows 73

Security service initialization syntax

Open Client and Open Server support the Kerberos security driver. To use the
Kerberos security driver, perform one of the following:

• Use the ocscfg utility to make an addition to the Security Services.

• Edit the libtcl.cfg directly in the %SYBASE%\%SYBASE_OCS%\ini
directory.

Using the ocscfg utility To use ocscfg, navigate to the Security Services tab and click Add. Complete
the dialog box:

• Local Name: Enter csfkrb5, or the name you assigned to the Kerberos
driver in the objectid.dat file.

• Security Service Driver: Choose LIBSYBSKRB from the Security Service
Init String menu.

When you have entered these two items, click OK. The entry should now
appear in the dialog box on the Security Services tab.

Editing libtcl.cfg If you prefer to edit the libtcl.cfg file directly, set the provider value for the
Kerberos security driver to csfkrb5, or to the value you assigned to the
Kerberos security driver in the objectid.dat file. Set the driver value to
LIBSYBSKRB. You need to provide an initialization string in the libtcl.cfg of
the form:

secbase=@your_realm_name

where your_realm_name is the realm where your Kerberos principal is located.
This entry is required on Microsoft Windows. For example:

[SECURITY]
csfkrb5=LIBSYBSKRB secbase=@SYBASE_CYBER_REALM

See Appendix C, “Localization,” for information on the objectid.dat
localization file.

DCE security service initialization syntax

If you use DCE security service, initialization string information in the
libtcl.cfg file uses this syntax:

secbase=/.../dce_cell_name

For example:

secbase=/.../dsatestcell

The sql.ini file

74 Open Client and Open Server

libtcl.cfg example

[NT_DIRECTORY]
 ntreg_dsa=LIBDREG ditbase=software\sybase\serverdsa

[SECURITY]
 NTLM=LIBSMSSP

Editing libtcl.cfg Use ocscfg to configure drivers in the libtcl.cfg file. See Chapter 7, “Using
ocscfg,” for instructions for using ocscfg.

The sql.ini file
The sql.ini file contains information about the network locations of servers.
Open Client and Open Server use sql.ini as a limited-function directory service.
sql.ini also serves as a default if an external directory service fails. By default,
Open Client and Open Server products look for sql.ini in the %SYBASE%\ini
directory.

• Open Client uses the network information provided by the query line of a
sql.ini file entry to connect to the server.

• Open Server uses the network information provided by the master line of
a sql.ini file entry to listen for client connection requests.

An application can specify a different location for Open Client and Open
Server products to look for sql.ini. See ct_config in the Open Client Client-
Library/C Reference Manual and srv_props in the Open Server Server-
Library/C Reference Manual for more information.

Use dsedit to edit sql.ini. See Chapter 8, “Using dsedit,” for instructions about
using dsedit.

sql.ini entries
A sql.ini file entry has the form:

[SERVERNAME]
service_type=driver,address
secmech=mechanism1,...,mechanismn

APPENDIX B Configuration Files

Configuration Guide for Microsoft Windows 75

where:

• SERVERNAME is an alias by which Open Client or Open Server
recognizes which sql.ini entry to read. SERVERNAME must begin with a
letter (ASCII a-z, A-Z); can contain letters, numbers, and underscores
only; and have a maximum of 11 characters.

• service_type specifies the type of connection.

For Microsoft Windows, the options for service_type are:

• “master” for a master line, which is used by server applications to
listen for client queries.

• “query” for a query line, which is used by client applications to find
servers.

The master line and the query line of a sql.ini entry contain identical
information. dsedit creates both types of lines for each entry. The resulting
entry can be used by both clients and servers.

• driver is the name of the network driver to use for the connection. A list of
network drivers are:

• address is the network address for the specified server. The format of the
address information depends on the network protocol used for the
connection. The options for address are:

Driver Description

NLWNSCK Winsock TCP/IP driver

NLMSNMP Named Pipes driver

NLNWLINK SPX/IPX driver

Protocol Format(s) Examples

TCP/IP Two formats:

1. computer_name,port_number

2. ip-address port_number

TEST,8877
 130.214.30.25,8877

Named Pipe pipe_name: “\pipe” is a required prefix to all pipe names.
Server pipes can only be local.

(Local) \pipe\sql\query
(Remote) \\computer_name\pipe\sql\query

IPX/SPX Three formats:

1. server_name
2. net_number,node_number,socket_number
3. server_name, socket_number

TEST
 16,1,83BD
 TEST,83BD

The sql.ini file

76 Open Client and Open Server

• “secmech” is the identifier used to list the security mechanisms that a
server supports. The “secmech” line is optional.

See “Security mechanisms” on page 31 for more information about the
secmech line.

• mechanism1,..., mechanism are the security mechanisms that a server
supports. You can specify multiple security mechanisms by using a
comma (“,”) as a separator.

A security mechanism is listed as its object identifier. An object identifier
is a globally unique series of numbers that maps to the local name for a
security mechanism in the global object identifiers file.

See “The objectid.dat file” on page 87 for more information about object
identifiers.

sql.ini examples
The following table lists sql.ini examples for each protocol:

Multiple connection service entries
A server can listen for clients over multiple networks. Clients can connect to
servers over multiple networks at runtime.

Servers listening over multiple networks

Edit the server’s sql.ini file to listen over multiple networks by creating
multiple “master” entries, one for each network the server will listen on. For
example, the server “MYSERVER” has the following sql.ini entry:

MYSERVER
master = NLWNSCK,mercury,1234
master = NLNWLINK,my_mercury_spx

Protocol Example

TCP/IP [SYBASE]
 master=NLWNSCK,TEST,8877
 query=NLWNSCK,TEST,8877

Named Pipe [SYBASE]
 master=NLMSNMP,\PIPE\SQL\`QUERY
 query=NLMSNMP,\\TEST\PIPE\SQL\`UERY

APPENDIX B Configuration Files

Configuration Guide for Microsoft Windows 77

When a server parses sql.ini and sees the server name MYSERVER, it listens
at the TCP/IP address “mercury,1234” for incoming TCP/IP connections and
at the SPX bindery address “my_mercury_spx” for incoming IPX/SPX
connections.

Clients connecting over multiple networks

Edit the client’s sql.ini file to connect over multiple networks by creating
multiple “query” entries, one for each network to which the client will connect.
For example, the server “SERVER99” has the following “query” services in its
sql.ini entry:

SERVER99
query = NLWNSCK,mercury,1234
query = NLWNSCK,plato,9876
query = NLMSNMP,\\plato\pipe\sql\query
query = NLNWLINK,my_mercury_spx

An Open Client application tries to connect first to the server at
“mercury,1234.” If that attempt fails, it tries the server at “plato,9876.” If that
attempt fails, it tries the server at “\\plato\pipe\sql\query” using the Named
Pipes protocol. As a final attempt, it tries the server at “my_mercury_spx”
using the IPX/SPX protocol. If the final attempt fails, Open Client returns an
error.

The ocs.cfg file
The ocs.cfg runtime configuration file is used by Client-Library applications to
set:

• Property values

• Server option values

• Server capabilities

• Debugging options

By using ocs.cfg, applications eliminate the need to call routines to set values.
A benefit of using ocs.cfg is that the application’s settings can be changed
without recompiling the code.

Client-Library does not read ocs.cfg by default. The application must set
properties to enable Client-Library to use this file.

The ocs.cfg file

78 Open Client and Open Server

See “Using the Open Client and Open Server Runtime Configuration File” in
the Open Client Client-Library/C Reference Manual for information about the
file syntax and the properties you can set in the file.

For more information on syntax, see the Open Client Client-Library/C
Reference Manual.

Configuration Guide for Microsoft Windows 79

A P P E N D I X C Localization

Localization is the process of initializing an application to execute using
a specific language and related cultural conventions.

This appendix discusses localization and localization files from a system
configuration perspective. For a discussion of programming issues related
to localization, see the Open Client and Open Server International
Developers Guide.

Overview of the localization process
Open Client and Open Server applications can localize in two different
ways:

• Using initial localization values

• Using initial localization values and custom localization values

All Open Client and Open Server applications use initial localization
values, which are determined at runtime.

In addition, an Open Client and Open Server application can use custom
localization values if there is a need to localize at a specific point during
the application’s execution. Custom localization values override the initial
localization values that are set up at runtime.

Topic Page
Overview of the localization process 79

Localization files 81

The locales directory 81

The charsets directory 85

The ini directory 86

Overview of the localization process

80 Open Client and Open Server

Environment variables used during localization
Open Client and Open Server use environment variables to determine which
locale name to look for in locales.dat. When setting up initial localization
values, Open Client and Open Server search for the following environment
variables:

• LC_ALL

• LANG, if LC_ALL is not set

When setting up custom localization values, Open Client and Open Server may
also search for one or more of the following environment variables:

• LC_ALL

• LC_COLLATE

• LC_TYPE

• LC_MESSAGE

• LC_TIME

See the Open Client and Open Server International Developers Guide for more
information about what environment variables an application uses during
custom localization.

See Appendix A, “Environment Variables,” for reference information about
the environment variables listed above.

Before running a localized application:

• Make sure the locales.dat file contains an entry which reflects the
localization values the application will use. If it does not, add an
appropriate entry.

• Make sure that the localization files that your application will use are
installed:

• Localized message files are located in the
%SYBASE%\locales\message directory.

• Collating sequence files are located in the %SYBASE%\charsets
directory.

Open Client and Open Server products come with the localization files to
support one language, and one or more character sets and sort orders.

APPENDIX C Localization

Configuration Guide for Microsoft Windows 81

Localization files
At runtime, Open Client and Open Server applications pick up localization
information from external files. Three directories in the Sybase release
directory contain these files:

• The locales directory contains:

• The locales.dat file, which maps locale names to languages, character
sets, and collating sequences.

• The message subdirectory, which contains localized error messages
for Open Client and Open Server, organized by language name.

• language_name subdirectories, which are included to provide
compatibility with previous releases of Open Client and Open Server
software. These directories contain localized message files organized
by character set.

• The unicode directory, which contains error message files for system
management utilities.

• The charsets directory contains a subdirectory for each supported
character set. Each subdirectory contains sort and conversion files for the
character set.

• The ini directory contains:

• The objectid.dat file, which maps a global identifier for an object to
local platform-specific names.

All Open Client and Open Server products include files to support at least one
language and one or more character sets and collating sequences. During
installation, these files are loaded into the Sybase home directory structure in
the correct locations.

When configuring an Open Client or Open Server application, you must verify
that the above directories contain the correct files for your site and application.

The locales directory
The locales directory contains files that your application uses to load
localization information. It also contains language-specific message files.

The locales directory

82 Open Client and Open Server

The locales.dat file
Located in the %SYBASE%\locales directory, locales.dat provides platform-
specific locale information in a Sybase proprietary format. This file associates
locale names with languages, character sets, and collating sequences.

 Warning! If you plan to use isql, which uses iso_1 as its client character set
default when talking to a server, modify the character sets to prevent data
corruption by performing one of the following:

• Add a new entry to the section of the locales.dat file, such as
isql.german.cp850, and call isql with option -J isql.

• Set LANG=isql, to change the client character set to cp850.

• Issue a command like mode con cp SELECT=1250 before calling isql, so
that the display character set is changed to iso_1.

How locales.dat is used

Open Client and Open Server applications use locales.dat to determine what
localization information to load. locales.dat directs Open Client and Open
Server applications to localization information, but it does not contain actual
localized messages or character set information.

locales.dat sections and entries

locales.dat contains platform-specific sections, each of which contains
predefined locale definition entries. These entries vary by platform, but all
sections include an entry defining a “default” locale.

Locale definition entries have the form:

locale = locale_name, language_name, charset_name
[,sortorder_name]

where:

• locale_name is the name of the locale definition. The default values for
locale_name are vendor-specified and based on POSIX terminology.
Comments at the end of the locales.dat file list POSIX values for locale
names.

• language_name is the subdirectory name by which Sybase products
recognize the language.

APPENDIX C Localization

Configuration Guide for Microsoft Windows 83

• charset_name is the subdirectory name by which Sybase products
recognize the character set.

• sortorder_name is the file name by which Sybase products recognize the
collating sequence (optional).

The following locales.dat file entry specifies a French locale. Because no sort
order is specified, the default sort order “binary” is used with this locale:

locale = fr.FR.88591, french, iso_1

locales.dat example

The following portion of a locales.dat file illustrates a platform-specific
section in a locales.dat file:

[NT]
locale = enu, us_english, cp1252
locale = fra, french, cp1252
locale = deu, german, cp1252
locale = default, us_english, cp1252

Editing locales.dat

If the predefined entries in locales.dat do not meet your needs, use a text editor
to edit the file.

 Warning! Before you edit, make a copy of the original locales.dat. The copy
will help you solve any problems with the edited version. Also, review the
entries for your platform to see if an entry already exists.

You can:

• Change the “default” locale definition.

• Add a locale definition.

• Match a locale name used by non-Sybase software. For example, the
Sybase predefined locale name is “fr”:

locale = fr, french, iso_1

If a non-Sybase application requires a value of “french” for the LC_ALL
environment variable, change the locale name to:

locale = french, french, iso_1

To add a new entry to locales.dat or to change an existing entry:

The locales directory

84 Open Client and Open Server

1 Choose a value for locale_name.

2 Determine the value for language_name.

When a Sybase language module is installed, a subdirectory for the
language is created in the locales\message directory of the Sybase
directory tree. language_name must correspond to this subdirectory’s
name.

3 Determine the value for charset_name.

When a Sybase language module is installed, subdirectories for each
supported character set are created in the charsets directory of the Sybase
directory tree. charset_name must correspond to one of these subdirectory
names.

4 Determine the value for sortorder_name if you want a sort order other than
binary.

The charsets\charset_name subdirectory contains the sort order (*.srt)
files for the character set. sortorder_name must correspond to one of these
file names (without the .srt).

5 In the appropriate platform-specific section of the locales.dat file, enter or
change the appropriate entry.

After you make the change:

• Update localization environment variables (LC_ALL, LC_CTYPE,
LC_MESSAGE, LC_TIME, LANG) as appropriate.

• If you have added a new locale name and you want existing applications
to use this new name in cs_locale calls, edit and recompile the applications
as appropriate.

You need not delete entries from locales.dat, even if applications no longer use
them. If you decide to delete an entry, make sure no application uses it.

Localized message files

 Warning! Do not edit localized message files.

APPENDIX C Localization

Configuration Guide for Microsoft Windows 85

Localized message files contain product messages in a particular language.
These message files (the *.loc files in the %SYBASE%\locales\message\
language_name directories) enable Open Client and Open Server applications
to generate messages in a variety of languages.

All Open Client and Open Server products include English (us_english)
message files. Your products may also include files to support additional
languages.

If you purchase and install a new language module, the installation process
adds a language_name subdirectory containing message files in the new
language.

Message file names sometimes vary by platform, but most resemble the
following names:

• cslib.loc – CS-Library messages

• ctlib.loc – Client-Library messages

• oslib.loc – Server-Library messages

• blklib.loc – Bulk Library messages

• bcp.loc – Bulk Copy messages

• esql.loc – Embedded SQL messages

All Open Client and Open Server message files use the Unicode ISO 10646
UTF-8 character set.

Open Client and Open Server products convert messages from UTF-8 to other
character sets as needed.

The charsets directory
The charsets directory contains collating sequence files for each supported
character set and a unicode directory, which contains conversion files used by
Unilib®.

The ini directory

86 Open Client and Open Server

Collating sequence files

 Warning! Do not edit collating files.

The order in which a system sorts characters is called its collating sequence or
sort order.

Open Client and Open Server products include files to support a variety of
collating sequences. These files, located in the %SYBASE%\charsets directory,
can vary by platform but generally include the following:

• binary.srt

• dictionary.srt

• noaccents.srt

• nocase.srt

• nocasepref.srt

Collating sequences are specified in locales.dat file entries. If a locales.dat file
entry does not specify a collating sequence, then a binary sort order is used.

For more information about collating sequences, see the Open Client and Open
Server International Developers Guide.

Unicode conversion files
Unicode conversion files contain conversion configuration information in
Unicode character set (ISO 10646) in UTF-8 form. These conversion files are
available for each Sybase-supported character set.

The ini directory
The ini directory contains the global object identifiers file (objectid.dat).

APPENDIX C Localization

Configuration Guide for Microsoft Windows 87

The objectid.dat file
The global object identifiers file, called objectid.dat, associates a unique global
object identifier with the local name of an object.

An object identifier is a series of non-negative integer values separated by a
dot. An object identifier is based on a naming tree defined by the international
standards bodies CCITT and ISO.

Location of objectid.dat

objectid.dat is located in the Sybase_home\locales directory.

objectid.dat sections and entries

objectid.dat contains a section for each class of object.

Object class entries have the form:

[Object Class]
 object_identifier local_name1, ..., local_namen

where:

• Object Class is the section identifier.

• object_identifier is the globally unique object identifier.

• local_name1,..., local_namen are the local names associated with the
object identifier, separated by a comma.

objectid.dat example

The following portion of an objectid.dat file illustrates sections in objectid.dat:

[charset]
 1.3.6.1.4.1.897.4.9.1.1 = iso_1
 1.3.6.1.4.1.897.4.9.1.2 = cp850
 1.3.6.1.4.1.897.4.9.1.3 = cp437
 1.3.6.1.4.1.897.4.9.1.4 = roman8
 1.3.6.1.4.1.897.4.9.1.5 = mac

[collate]
 1.3.6.1.4.1.897.4.9.3.50 = binary
 1.3.6.1.4.1.897.4.9.3.51 = dictionary
 1.3.6.1.4.1.897.4.9.3.52 = nocase
 1.3.6.1.4.1.897.4.9.3.53 = nocasepref
 1.3.6.1.4.1.897.4.9.3.54 = noaccents

The ini directory

88 Open Client and Open Server

[secmech]
 1.3.6.1.4.1.897.4.6.1 = dce, dcesecmech
 1.3.6.1.4.1.897.4.6.3 = NTLM, N, ntsecmech
 1.3.6.1.4.1.897.4.6.6 = csfkrb5, kerberos

Note If you change the local name of an object, use a text editor to edit
objectid.dat accordingly.

Configuration Guide for Microsoft Windows 89

A P P E N D I X D Secure Sockets Layer in
Open Client and Open Server

This appendix describes the SSL support for Open Client and Open Server
and summarizes some system configuration tasks that are required to use
the SSL protocol.

For an overview of the Open Client and Open Server security services
architecture, see Chapter 6, “Using Security Services.”

SSL handshake
SSL is an industry standard for sending wire- or socket-level encrypted
data over client-to-server and server-to-server connections. Before the
SSL connection is established, the server and the client exchange a series
of I/O round trips to negotiate and agree upon a secure, encrypted session.
This is called the “SSL handshake.”

When a client application requests a connection, the SSL-enabled server
presents its certificate to prove its identity before data is transmitted.
Essentially, the SSL handshake consists of the following steps:

• The client sends a connection request to the server. The request
includes the SSL (or Transport Layer Security, TLS) options that the
client supports.

• The server returns its certificate and a list of supported CipherSuites,
which includes SSL/TLS support options, the algorithms used for key
exchange and digital signatures.

Topic Page
SSL handshake 89

SSL security levels and security mechanisms 90

Validating a server by its certificate 91

Obtaining a certificate 94

FIPS 140-2 compliance for password encryption 105

SSL security levels and security mechanisms

90 Open Client and Open Server

• A secure, encrypted session is established when both client and server
have agreed upon a CipherSuite.

For specific information about the SSL handshake and the SSL/TLS protocol,
see the Internet Engineering Task Force Web site at http://www.ietf.org.

For a list of CipherSuites that Open Client and Open Server supports, see the
Open Client Client-Library/C Reference Manual.

SSL security levels and security mechanisms
Security levels SSL provides several levels of security in Open Client and Open Server:

• When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• Once the SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

• A comparison of the server certificate’s digital signature can determine if
any information received from the server was modified in transit.

SSL filter as a security
mechanism

When establishing a connection to an SSL-enabled Adaptive Server, the SSL
security mechanism is specified as a filter on the master and query lines in the
sql.ini file. SSL is used as an Open Client and Open Server protocol layer that
sits on top of the TCP/IP connection.

The SSL filter is different from other security mechanisms, such as DCE and
Kerberos, which are defined with SECMECH (security mechanism) lines in
the sql.ini file. The master and query lines determine the security protocols that
are enforced for the connection.

A typical sql.ini file on Microsoft Windows using SSL looks like this:

[SERVER]
master=TCP,hostname,address1, ssl
query=TCP,hostname,address1, ssl

where hostname is the name of the server to which the client is connecting, and
address1 is the port number of the host machine. All connection attempts to a
master or query entry in the sql.ini file with an SSL filter must support the SSL
protocol. A server can be configured to accept SSL connections and have other
connections that accept plain text (unencrypted data) or use other security
mechanisms.

http://www.ietf.org

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 91

For example, an Adaptive Server sql.ini file that supports both SSL-based
connections and plain-text connections looks like this:

[SYBSRV1]
master=NLWNSCK,hostname,2748,ssl
query=NLWNSCK,hostname,2748,ssl
master=NLWNSCK,hostname,2749
query=NLWNSCK,hostname,2749

In this example, the SSL security service is specified on port number 2748. On
SYBSRV1, Adaptive Server listens for clear text on port number 2749, which
is without any security mechanism or security filter.

Validating a server by its certificate
Any Open Client and Open Server connection to an SSL-enabled server
requires that the server have a certificate file, which consists of the server’s
certificate and an encrypted private key. The certificate must also be digitally
signed by a CA.

Open Client applications establish a socket connection to Adaptive Server
similarly to the way that existing client connections are established. Before any
user data is transmitted, an SSL handshake occurs on the socket when the
network transport-level connect call completes on the client side and the accept
call completes on the server side.

To make a successful connection to an SSL-enabled server:

• The SSL-enabled server must present its certificate when the client
application makes a connection request.

• The client application must recognize the CA that signed the certificate. A
list of all “trusted” CAs is in the trusted roots file. See “The trusted roots
file” on page 93.

• For connections to SSL-enabled servers, the common name in the server’s
certificate must match the server name in the sql.ini file as well.

When establishing a connection to an SSL-enabled Adaptive Server, Adaptive
Server loads its own encoded certificates file at start-up from
%SYBASE%\%SYBASE_ASE%\certificates\servername.crt. The servername
is the name of the Adaptive Server as specified on the command line when
starting the server with the -S flag or from the server’s environment variable
DSLISTEN.

Validating a server by its certificate

92 Open Client and Open Server

Other types of servers may store their certificate in a different location. See the
vendor-supplied documentation for the location of your server’s certificate.

Common name validation in an SDC environment
The default behavior for SSL validation in Open Client and Open Server is to
compare the common name in the server’s certificate with the server name
specified by ct_connect(). In a shared disk cluster (SDC) environment, a client
may specify the SSL certificate common name independent of the server name
or the SDC instance name. A client may connect to an SDC by its cluster
name—which represents multiple server instances—or to a specific server
instance.

Open Client and Open Server supports common name validation in an SDC
environment. This allows the Adaptive Server SSL certificate common name
to be different from the server or cluster name by allowing the client to use the
transport address to specify the common name used in the certificate
validation. The transport address can be specified in one of the directory
services like the interfaces file, LDAP or NT registry, or through the
connection property CS_SERVERADDR.

This is the syntax of the server entries for the SSL-enabled Adaptive Server and
cluster for Microsoft Windows:

[CLUSTERSSL]
query=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname3,5000, ssl="CN=name3"
query=tcp,hostname4,5000, ssl="CN=name4"

[ASESSL1]
master=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname1,5000, ssl="CN=name1"

[ASESSL2]
master=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname2,5000, ssl="CN=name2"

[ASESSL3]
master=tcp,hostname3,5000, ssl="CN=name3"
query=tcp,hostname3,5000, ssl"CN=name3"

[ASESSL4]
master=tcp,hostname4,5000, ssl="CN=name4"

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 93

query=tcp,hostname4,5000, ssl="CN=name4"

The trusted roots file
The list of known and trusted CAs is maintained in the trusted roots file. The
trusted roots file is similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (client applications, servers, network
resources, and so on). The System Security Officer adds and deletes CAs using
a standard ASCII-text editor.

The trusted roots file for Open Client and Open Server is located in
%SYBASE%\ini\trusted.txt.

Currently, the recognized CAs are Thawte, Entrust, Baltimore, VeriSign, and
RSA.

By default, Adaptive Server stores its own trusted roots file in
%SYBASE%\%SYBASE_ASE%\certificates\servername.txt.

Both Open Client and Open Server allow you to specify an alternate location
for the trusted roots file:

• Open Client:

ct_con_props (connection, CS_SET, CS_PROP_SSL_CA,
“SYBASEhome\ini\trusted.txt”, CS_NULLTERM, NULL);

where SYBASEhome is the installation directory. CS_PROP_SSL_CA can
be set at the context level using ct_config, or at the connection level using
ct_con_props.

• Open Server:

srv_props (context, CS_SET, SRV_S_CERT_AUTH,
“SYBASEhome\ini\trusted.txt”, CS_NULLTERM, NULL);

where SYBASEhome is the installation directory.

bcp and isql utilities also allow you to specify an alternative location for the
trusted roots file.The parameter -x is included in the syntax, allowing you to
specify an alternative location for the trusted.txt file.

Obtaining a certificate

94 Open Client and Open Server

Obtaining a certificate
The System Security Officer installs signed server certificates and private keys
in the server. You can get a server certificate by:

• Using third-party tools provided with existing public-key infrastructure
already deployed in the customer environment

• Using the Sybase certificate request tool in conjunction with a trusted
third-party CA

To obtain a certificate, you must request a certificate from a CA. If you request
a certificate from a third-party and that certificate is in PKCS #12 format, use
the certpk12 utility to convert the certificate into a format that is understood by
Open Client and Open Server. See “certpk12” on page 102.

To test the certificate request tool and to verify that the authentication methods
are working on your server, Open Client and Open Server provide the certreq
and certauth tools that allow you to function as a CA and issue a CA-signed
certificate to yourself.

The main steps to creating a certificate for use with a server are:

1 Generate the certificate request.

2 Generate the public and private key pair.

3 Securely store the private key.

4 Send the certificate request to the CA.

5 After the CA signs and returns the certificate, append the private key to the
certificate.

6 Store the certificate in the server’s installation directory.

Using third-party tools to obtain a certificate
Most third-party PKI vendors and some browsers have utilities to generate
certificates and private keys. These utilities are typically graphical wizards that
prompt you through a series of questions to define a distinguished name and a
common name for the certificate.

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 95

Follow the instructions provided by the wizard to create certificate requests.
Once you receive the signed PKCS #12-format certificate, use certpk12 to
generate a certificate file and a private key file. Concatenate the two files into
a servername.crt file, where servername is the name of the server, and place it
in the server’s installation directory. By default, the certificates for Adaptive
Server’s are stored in %SYBASE%\%SYBASE_ASE%\certificates. See
“certpk12” on page 102.

Using Sybase tools to request and authorize certificates
Sybase provides tools for requesting and authorizing certificates that are
available in the %SYBASE%\%SYBASE_OCS%\bin directory. certreq
generates public and private key pairs and certificate requests. certauth
converts a server certificate request to a CA-signed certificate.

 Warning! Use certauth only for testing purposes. Sybase recommends that you
use the services of a commercial CA because it provides protection for the
integrity of the root certificate, and because a certificate that is signed by a
widely accepted CA facilitates the migration to the use of client certificates for
authentication.

Preparing a server’s trusted root certificate is a 5-step process. Perform all 5
steps to create a test trusted root certificate so you can verify that you are able
to create server certificates. When you have a test CA certificate (trusted roots
certificate), repeat steps 3 through 5 to sign server certificates.

❖ Preparing a server’s trusted root certificate

1 Use certreq to request a certificate.

2 Use certauth to convert the certificate request to a CA self-signed
certificate (trusted root certificate).

3 Use certreq to request a server certificate and private key.

4 Use certauth to convert the certificate request to a CA-signed server
certificate.

Obtaining a certificate

96 Open Client and Open Server

5 Append the private key text to the server certificate and store the
certificate in the server’s installation directory.

Note certauth and certreq are dependent on RSA and DSA algorithms. These
tools only work with vendor-supplied crypto modules that use RSA and DSA
algorithms to construct the certificate request.

The following reference sections describe the tools used in the previous steps.

For information on adding, deleting, or viewing server certificates on Adaptive
Server, see the Adaptive Server Enterprise System Administration Guide.

certauth
Converts a server certificate request to a CA- (certificate authority) signed
certificate.

Syntax certauth
[-r]
[-C caCert_file]
[-Q request_filename]
[-K caKey_filename]
[-N serial_number]
[-O SignedCert_filename]
[-P caPassword]
[-s start_time]
[-T valid_time]
[-v]

Parameters -r

when specified, creates a self-signed root certificate for the test environment.

-C caCert_file

specifies the name of the CA’s certificate request file when -r is specified, or
specifies the name of the CA’s root certificate.

-Q request_filename

specifies the name of certificate request file.

-K caKey_filename

specifies the name of the CA’s private key.

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 97

-N serial_number

specifies the serial number in the signed certificate. If -N is not specified,
certauth generates a pseudo-random serial number.

-O SignedCert_filename

specifies the name to use for the output when creating a signed certificate file.
If -r is specified, SignedCert_filename is the self-signed root certificate. If -r
option is not used, SignedCert_filename is the certificate signed by the
caCert_file.

-P caPassword

specifies the CA’s password that is used to decrypt its private key.

-s start_time

specifies the start of the validity period for the certificate, from the current
time, in units of days. The default start time is the current time, unless specified
with -s.

-T valid_time

specifies the length of the validity period for the certificate, in units of days.

-v

prints the version number and copyright message of the certauth tool, then
exits.

Example 1 This example converts the CA’s certificate request (ca_req.txt) to a certificate,
using the private key (ca_pkey.txt). The private key is protected using
password. This example sets the valid time range to 365 days, self-signs the
certificate, and outputs it as a root certificate (trusted.txt).

certauth -r -C ca_req.txt -Q ca_req.txt
-K ca_pkey.txt -P password -T 365 -O trusted.txt

The utility returns this message:

 -- Sybase Test Certificate Authority --
Certificate Validity:
 startDate = Tue Sep 5 10:34:43 2000

 endDate = Wed Sep 5 10:34:43 2001

Obtaining a certificate

98 Open Client and Open Server

CA sign certificate SUCCEED (0)

Note You need to create a trusted root certificate for the test CA only once.
After you have created the trusted root certificate, you will use it to sign many
server certificates in your test environment.

Example 2 This example converts a server certificate request (srv5_req.txt) to a certificate,
and sets the valid time range to 180 days. This example signs the certificate
with a CA’s certificate and private key (trusted.txt and ca_pkey.txt), uses
password protection, and outputs the signed certificate as sybase_srv5.crt.

certauth -C trusted.txt -Q srv5_req.txt
-K ca_pkey.txt -P password -T 180 -O sybase_srv5.crt

Note If you do not set a valid time, the default is 365 days.

The utility returns this message:

 -- Sybase Test Certificate Authority --
Certificate Validity:
 startDate = Tue Sep 5 10:38:32 2000

 endDate = Sun Mar 4 09:38:32 2001

CA sign certificate SUCCEED (0)

Below is a sample certificate. See the Usage section below for additional steps
to take to create a server certificate that the server can use.

-----BEGIN CERTIFICATE-----

MIICSTCCAgUCAVAwCwYHKoZIzjgEAwUAMG8xCzAJBgNVBAYTAlVTMRMwEQYDVQQI
EwpDYWxpZm9ybmlhMRMwEQYDVQQHEwpFbWVyeXZpbGxlMQ8wDQYDVQQKFAZTeWh
c2UxDDAKBgNVBAsUA0RTVDEXMBUGA1UEAxQOc3liYXNlX3Rlc3RfY2EwHhcNMDAw
ODE4MTkxMzM0WhcNMDEwODE4MTkxMzM0WjBvMQswCQYDVQQGEwJVUzETMBEGAUE
CBMKQ2FsaWZvcm5pYTETMBEGA1UEBxMKRW1lcnl2aWxsZTEPMA0GA1UEChQGU3li
YXNlMQwwCgYDVQQLFANEU1QxFzAVBgNVBAMUDnN5YmFzZV90ZXN0X2NhMIHwMIo
BgcqhkjOOAQBMIGcAkEA+6xG7XCxiklxbP96nHBnQrTLTCjHlcy8QhIekwv9OlqG
EMG9AjJLxj6VCkPOD75vqVMEkaPPjoIbXEJEe/aYXQIVAPyvY1+B9phC2e2YFcf7
cReCcSNxAkBHt7rnOJZ1Dnd8iLQGt0wd1w4lo/Xx2OeZS4CJW0KVKkGId1hNGz8r
GrQTspWcwTh2rNGbXxlNXhAV5g4OCgrYA0MAAkA70uNEl90Kmhdt3RISiceCMgOf
1J8dgtWF15mcHeS8OmF9s/vqPAR5NkaVk7LJK6kk7QvXUBY+8LMOugpJf/TYMAsG
AhUAhM2Icn1pSavQtXFzXJUCoOmNLpkCFQDtE8RUGuo8ZdxnQtPu9uJDmoBiUQ==

-----END CERTIFICATE-----

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 99

Usage • The maximum length of the serial number in the -N option is 20
hexadecimal characters. If the specified serial number is longer, certauth
truncates the serial number to the maximum length.

• To create a server certificate file that Adaptive Server understands, append
the certificate requestor’s private key to the end of the signed certificate
file. Using the example above, you would cut and paste srv5_pkey.txt to
the end of the signed certificate file, sybase_srv5.crt.

• To create a trusted roots file that the server can load at start-up, rename
trusted.txt to sybase_srv5.txt, where sybase_srv5.txt is the common name
of the server.

• Then copy the sybase_srv5.txt file into the Adaptive Server installation
directory, for example, %SYBASE%\%SYBASE_ASE%\certificates.

The file, which is required for an SSL-based session, is used to start the
SSL-enabled Adaptive Server.

After the CA’s root certificate is created, it can be used to sign multiple server
certificates.

See also certreq

certreq
Creates a server certificate request and corresponding private key. This utility
can be used in interactive mode, or you can provide all optional parameters on
the command line.

Syntax certreq
[-F input_file]
[-R request_filename]
[-K PK_filename]
[-P password]
[-v]

Parameters -F input_file

specifies the input-file name that contains attribute information to build a
certificate request. If you do not specify an input_file name, the required
information must be interactively entered by a user.

The input_file needs an entry for each of the following:

req_certtype={Server,Client}
req_keytype={RSA,DSA}

Obtaining a certificate

100 Open Client and Open Server

req_keylength={for RSA: 512-2048;
 for DSA: 512,768,1024}
req_country={string}
req_state={string}
req_locality={string}
req_organization={string}
req_orgunit={string}
req_commonname={string}

Note The common name must be the same as the server name, except in a
cluster environment where multiple servers may use the same common name.

See “Common name validation in an SDC environment” on page 92 for more
details.

See Example 2 for a sample file, called input_file.

-R request_filename

specifies the name for the certificate-request file.

-K PK_filename

specifies the name for the private-key file.

-P password

specifies the password used to protect the private key.

-v

displays the version number and copyright message, then exits.

Example 1 This example does not use the -F input_file parameter, therefore, it is in
interactive mode. To create a server certificate request (server_req.txt) and its
private key (server_pkey.txt), enter:

certreq

Choose certificate request type:
 S – Server certificate request
 C – Client certificate request (not supported)
 Q – Quit
Enter your request [Q] : s

Choose key type:

 R – RSA key pair
 D – DSA/DHE key pair
 Q – Quit

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 101

Enter your request [Q] : r

Enter key length (512, 768, 1024 for DSA; 512-2048 for
RSA) : 512

Country: US

State: california

Locality: emeryville

Organization: sybase

Organizational Unit: dst

Common Name: server

The utility returns the message:

Generating key pair (please wait) . . .

After the key pair is generated, the certreq utility prompts you for more
information.

Enter password for private key : password

Enter file path to save request: server_req.txt

Enter file path to save private key : server_pkey.txt

Example 2 Alternatively, you can use the -F option for noninteractive mode. When you use
the -F option, use valid values and follow the format described above. Failure
to do so prevents the certificate from being built correctly.

Below is a sample text file that can be used for noninteractive entry for a
certificate request.

certreq -F input_file

req_certtype=server
req_keytype=RSA
req_keylength=512
req_country=us
req_state=california
req_locality=emeryville
req_organization=sybase
req_orgunit=dst
req_commonname=server

After you create and save this file, enter on the command line:

certreq -F path_and_file -R server_req.txt
-K server_pkey.txt -P password

Obtaining a certificate

102 Open Client and Open Server

where path_and_file is the location of the text file.

This file creates a server certificate request, server_req.txt, and its private key,
server_pkey.txt, which is protected by password.

You can edit the server certificate file with any standard ASCII text editor.

Usage • The input file uses the format of <tag>=value. <tag> is case sensitive and
should be the same as described above.

• The “=” is required. Valid value should start with a letter or digit, must be
a single word, and there should not be any spaces within value.

• value is required for <tag>s “req_certtype,” “req_keytype,”
“req_keylength,” and “req_commonname.”

• The space or tab around <tag>, “=” and value is allowed. Blank lines are
also allowed.

• Each comment line should start with “#”.

• The certificate request file is in PKCS #10 format and used as acceptable
input for the certauth tool to convert the request to a CA-signed certificate.

See also certauth

certpk12
Exports or imports a PKCS #12 file into a certificates file and a private key.

Syntax certpk12
{-O Pkcs12_file | -I Pkcs12_file}
[-C Cert_file]
[-K Key_file]
[-P key_password]
[-E Pkcs12_password]
[-v]

Parameters -C Cert_file

specifies the name of certificate file to be exported to a PKCS #12 file if -O is
on; or the name of certificate file to be imported from a PKCS #12 file if -I is
on.

-K Key_file

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 103

specifies the name of private key file to be exported to a PKCS #12 file if -O is
on; or the name of private key file to be imported from a PKCS #12 file if -I is
on.

-P Key_password

specifies the password which is used to protect the private key specified by -K.
If -O is on, the password is required to export the private key to a PKCS #12
file; if -I is on, the password is required to output the private key to a text file
after it is imported from a PKCS #12 file.

-O Pkcs12_file

specifies the name of a PKCS #12 file to be exported. The file can contain a
certificate plus a private key, a single certificate, or a single private key. Either
-O or -I needs to be on.

-I Pkcs12_file

specifies the name of a PKCS #12 file to be imported. The file can contain a
certificate plus a private key, a single certificate, or a single private key. Either
-I or -O needs to be on.

-E Pkcs12_password

specifies the password used to protect the PKCS #12 file. If -O is on, the
password is used to encrypt the PKCS #12 file to be exported; if -I is on, the
password is used to decrypt the PKCS #12 file to be imported. The password
is also called “transport password.”

-v

prints the version number and copyright message of the certpk12 tool and exits.

Example 1 This example exports certificate file, caRSA.crt and private key file,
caRSApkey.txt to a PKCS #12 file, caRSA.p12. password is the password used
to decrypt caRSApkey.txt. pk12password is the password used to encrypt the
final caRSA.p12:

certpk12 -O caRSA.p12 -C caRSA.crt -K caRSApkey.txt
 -P password -E pk12password

-- Sybase PKCS #12 Conversion Utility certpk12 Thu Nov
9 16:55:51 2009--

Example 2 This example imports a PKCS #12 file, caRSA.p12 which contains a certificate
and a private key. Output the embedded certificate to a text file,
“caRSA_new.crt” and the embedded private key to a text file,
“caRSApkey_new.txt”. new_password is used to protect caRSApkey_new.txt,
and pk12password is required to decrypt caRSA.p12 file:

Obtaining a certificate

104 Open Client and Open Server

certpk12 -I caRSA.p12 -C caRSA_new.crt
 -K caRSApkey_new.txt -P new_password
-E pk12password

-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9
16:55:51 2009--

Note After running examples 1 and 2, caRSA.crt and caRSA_new.crt are
identical. caRSApkey.txt and caRSApkey_new.txt are different because they are
encrypted randomly.

Example 3 This example exports the certificate file, caRSA.crt to a PKCS#12 file,
caRSAcert.p12. pkcs12password is used to encrypt caRSAcert.p12:

certpk12 -O caRSAcert.p12 -C caRSA.crt
-E pk12password

-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9
16:55:51 2009--

Example 4 This example imports a PKCS #12 file, caRSAcert.p12 which contains a
certificate. Output the embedded certificate to a text file, caRSAcert.txt.
pk12password is required to decrypt caRSAcert.p12 file.

certpk12 -I caRSAcert.p12 -C caRSAcert.txt
 -E pk12password

-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9
16:55:51 2009--

Note After running examples 3 and 4, caRSA.crt and caRSAcert.txt are
identical.

Usage • certpk12 only supports triple-DES encrypted PKCS #12 file.

• Append certificate requestor's private key to the end of its signed
certificate file.

• Name the file servername.crt, where servername is the name of the server,
and place it in the certificates directory under
%SYBASE%\%SYBASE_ASE%.

This file is needed to start the SSL-enabled Adaptive Server.

See also certreq and certauth

APPENDIX D Secure Sockets Layer in Open Client and Open Server

Configuration Guide for Microsoft Windows 105

FIPS 140-2 compliance for password encryption
Encryption of login and remote passwords in Open Client and Open Server is
accomplished with the Sybase Common Security Infrastructure (CSI).
Certicom SSL Plus 5.2.2 CSI-Crypto 2.6 complies with the Federal
Information Processing Standard (FIPS) 140-2. To support FIPS encryption, a
Certicom Security Builder shared library named sbgse2.dll is installed in
%SYBASE%/%SYBASE_OCS%/lib3p or in
%SYBASE%/%SYBASE_OCS%/lib3p64 when you install SDK or Open
Server.

FIPS 140-2 compliance for password encryption

106 Open Client and Open Server

Configuration Guide for Microsoft Windows 107

A
auxiliary Open Server 9

B
bcp.loc file 85
binary.srt file 86
blklib.loc file 85

C
certauth

certificates 95, 96
certificate

server 91
SSL 93
trusted roots file 93

certificates
certauth 95, 96
certpk12 102
certreq 99
converting 102
obtaining 95, 96, 99
SSL 92
tools 95, 96, 99, 102

certpk12
certificates 102

certreq
certificates 99

charsets directory
contents 81, 85

collating sequence files 86
common name validation

SDC environment 92
connection

Open Client 5
Open Server 9

overview 3
connection types

LDAP 25
cslib.loc file 85
ctlib.loc file 85
CyberSafe Kerberos security

configuration requirements 33
how to use in applications 33

D
dictionary.srt file 86
directories

related to localization 81
directory drivers 23, 24

activating 46
adding 44
deleting 45
ditbase 69
example of entry in libtcl.cfg file 74
modifying 45
syntax in libtcl.cfg file 69

directory schema file
location 22

directory services
See also dsedit utility 49
adding entries 54
attributes 23
configuring drivers 41, 43
connection process 24
copying entries 56, 57
deleting entries 55
directory objects 23
drivers 23, 24
modifying entries 54
opening a dsedit session 50
overview 19
renaming entries 55
security attribute 32

Index

Index

108 Open Client and Open Server

verifying network connections 55
versus sql.ini file 20

driver
See also Directory drivers, Network drivers, Security

drivers
driver configuration file. See libtcl.cfg file 68
drivers 24, 43

configuring for directory services 41
definition 68
security services 32
types 68

dsedit utility
about 49
adding a server to directory services 51
adding server entries 54
command line arguments 49
copying server entries 56, 57
deleting server entries 55
exiting 57
libtcl.cfg file 50
modifying server entries 54
opening a session 50, 51
Ping command 55
renaming server entries 55
server attributes 53
verifying network connections 55

E
encrypting the password 71
environment variables

for configuration 64
for connection 63
for localization 64
LDAP 27
setting with sybcfg32 42

esql.loc file 85

F
files

illustration 81

G
gateway Open Server 9

H
help

commonly asked questions/problems 62
troubleshooting 59, 61

I
initialization

Open Client 5
Open Server 9
overview 2

L
LDAP

anonymous connections 26
connection types 25
defined 20
directory schema 22
enabling 26
environment variables 27
ldapurl defined 27
libraries 27
libtcl*.cfg file 24
location of libraries 27
multiple directory services 28
sample entry 21
user name/password connections 26
versus sql.ini file 20

LDAP drivers
location 25

ldapurl
example 27
keywords 27

libtcl*.cfg file 24
location 25
order of precedence 68
overriding 68
purpose 68

Index

Configuration Guide for Microsoft Windows 109

libtcl.cfg file
directory drivers in 69
example of 74
location 68
sections 69
security drivers in 72

locales directory
contents 81, 86

locales.dat file
editing 83, 84
file fragment 83
how it is used 82
location 82

localization
overview 79, 80

localization files
about 80
collating sequence files 86
locales.dat file 82, 84
localized message files 84, 85
objectid.dat file 87

localized message files 84

N
network connection

verifying 55
network drivers

example of entry in libtcl.cfg file 74
noaccents.srt file 86
nocase.srt file 86
nocasepref.srt file 86

O
objectid.dat file

editing 87
entries 87
file fragment 87
location 87

Open Client
about 1
basic configuration 5, 8
configuration tasks 7

connection process 5
directory services 24
initialization process 5
security services 38

Open Server
about 1
basic configuration 9, 12
configuration tasks 11
initialization process 9
security services 38, 39
types of applications 9

oslib.loc file 85

P
password

encryption 71
pwdcrypt

using to encrypt passwords 71

S
secmech attribute 31
security drivers 32

adding 46
example of entry in libtcl.cfg file 74
modifying 46
setting default driver 47
syntax in libtcl.cfg file 72

security services
Client-Library 38
configuration tasks 39
drivers 32
example 37, 38
Open Server 38
overview 31
secmech line or attribute 31
security mechanisms 31, 32

server
authentication 91
certificate 91

shared disk cluster environment
certificate 92

sort order files. See Collating sequence files 86

Index

110 Open Client and Open Server

sql.ini file
See also dsedit utility 49
adding entries 54
copying entries 56, 57
deleting entries 55
entries in 74, 76
examples of entries 76
how it is used 74
location of 74
modifying entries 54
multiple connection entries 74
opening a dsedit session 50
order of precedence 68
renaming entries 55
secmech line 31
verifying network connections 55

SSL 89
certificates 92, 93
filter 90
handshake 90
in Open Client and Open Server 90
overview viii, 89
SDC 92
trusted roots file 93

sybcfg32 utility
about 41
configuring directory drivers 41, 43
configuring security drivers 46
setting environment variables 42, 43
starting 41

T
troubleshooting

common problems and questions 62
connection failures 59

trusted roots file
certificate 93

U
Unicode directory

contents 86

V
viewing directory services 52

	Configuration Guide
	About This Book
	CHAPTER 1 Configuration Overview
	About Open Client and Open Server
	Overview of configuration
	The initialization process
	The connection process

	Configuration tasks

	CHAPTER 2 Basic Configuration for Open Client
	Overview of basic configuration
	Configuration tasks
	Set environment variables
	Configure the drivers
	Configure sql.ini

	CHAPTER 3 Basic Configuration for Open Server
	About Open Server applications
	Overview of basic configuration
	Configuration tasks
	Configure sql.ini or Registry
	Set environment variables
	Configure the drivers

	CHAPTER 4 Configuring Open Client for Sybase Failover
	Adding a hafailover line to the sql.ini file
	Client-Library application changes
	Using isql with Sybase Failover

	CHAPTER 5 Using a Directory Service
	Overview of directory services
	LDAP
	LDAP directory services versus the Sybase sql.ini file
	Server objects and attributes
	Directory drivers

	How applications use a directory service
	How applications use LDAP directory services
	Authentication

	Enabling LDAP directory services
	Multiple directory services with LDAP
	Importing Microsoft Active Directory schema
	Creating a container for Sybase server entries

	Connecting to LDAP using SSL/TLS

	CHAPTER 6 Using Security Services
	Overview of network-based security
	Security mechanisms
	Security drivers
	Security services
	LAN Manager security services
	Kerberos security services

	How applications use security services
	Client-Library and security services
	Server-Library and security services

	Configuration tasks

	CHAPTER 7 Using ocscfg
	About ocscfg
	Starting ocscfg
	Setting environment variables
	Setting the SYBASE environment variables
	Setting other environment variables
	Clearing environment variables

	Configuring a directory driver
	Adding a directory driver entry
	DIT base syntax

	Modifying an existing directory driver entry
	Deleting a directory driver entry
	Activating a directory driver

	Configuring a security driver
	Adding a security driver entry
	Modifying an existing security driver entry
	Deleting a security driver entry
	Setting the default security driver

	CHAPTER 8 Using dsedit
	Using dsedit
	Opening a session
	Opening additional sessions
	Activating sessions

	Adding a server to the directory services
	Making and modifying server entries
	Adding a server entry
	Modifying a server entry
	Renaming a server entry
	Deleting entries

	Using the ping command
	Copying server entries
	Copying entries within a session
	Copying entries between sessions

	Exiting dsedit

	CHAPTER 9 Troubleshooting with dsedit
	How dsedit works
	Troubleshooting connection failures
	If dsedit fails
	If dsedit succeeds but other applications fail

	Information you need for Sybase Technical Support
	Commonly asked questions

	APPENDIX A Environment Variables
	Environment variables used for connection
	Environment variables used for localization
	Environment variables used for configuration

	APPENDIX B Configuration Files
	About configuration files
	The libtcl.cfg and libtcl64.cfg files
	Layout of libtcl.cfg
	Directory drivers
	For LDAP entries in the DIRECTORY section
	Security drivers

	libtcl.cfg example

	The sql.ini file
	sql.ini entries
	sql.ini examples
	Multiple connection service entries
	Servers listening over multiple networks
	Clients connecting over multiple networks

	The ocs.cfg file

	APPENDIX C Localization
	Overview of the localization process
	Environment variables used during localization

	Localization files
	The locales directory
	The locales.dat file
	How locales.dat is used
	locales.dat sections and entries
	locales.dat example
	Editing locales.dat

	Localized message files

	The charsets directory
	Collating sequence files
	Unicode conversion files

	The ini directory
	The objectid.dat file
	Location of objectid.dat
	objectid.dat sections and entries
	objectid.dat example

	APPENDIX D Secure Sockets Layer in Open Client and Open Server
	SSL handshake
	SSL security levels and security mechanisms
	Validating a server by its certificate
	Common name validation in an SDC environment
	The trusted roots file

	Obtaining a certificate
	Using third-party tools to obtain a certificate
	Using Sybase tools to request and authorize certificates
	certauth
	certreq
	certpk12

	FIPS 140-2 compliance for password encryption

	Index

