
Client-Library/C Programmers Guide
Open Client™
15.7

DOCUMENT ID: DC35570-01-1570-01

LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Getting Started with
Client-Library .. 1
Client-Library overview... 1
Types of Client-Library applications ... 1

Adaptive Server Enterprise client applications 2
Open Server client or gateway applications 3

A simple sample program... 4
Building programs ... 4
Steps in the example... 5
Source listing... 6

Step 1: Set up the Client-Library programming environment 18
Header files ... 18
Allocating a context structure .. 18
Setting CS-Library context properties 18
Initializing Client-Library .. 19
Setting Client-Library context properties 19
External configuration.. 20

Step 2: Define error handling ... 20
Step 3: Connect to a server ... 22

Allocating a connection structure .. 22
Setting connection structure properties................................... 22
Logging in to a server .. 23

Step 4: Send commands to the server ... 24
Allocating a command structure .. 24
Setting command structure properties 24
Executing a command... 25

Step 5: Process the results of the command.................................. 25
Step 6: Finish ... 27

Deallocating command structures ... 27
Closing and deallocating connections 27
Exiting Client-Library ... 27
Deallocating a context structure .. 27
Client-Library/C Programmers Guide iii

Contents
CHAPTER 2 Understanding Structures, Constants, and Conventions.......... 29
Hidden structures ... 29

CS_CONTEXT .. 30
CS_CONNECTION ... 31
CS_COMMAND .. 31
Control structure hierarchy .. 31

Connection and command rules .. 31
CS_LOGINFO .. 32
CS_DS_OBJECT ... 32
CS_BLKDESC ... 33
CS_LOCALE .. 33
Exposed structures .. 33

CS_BROWSEDESC ... 34
CS_CLIENTMSG .. 34
CS_DATAFMT .. 35
CS_DATEREC .. 35
CS_IODESC.. 36
CS_PROP_SSL_LOCALID ... 36
CS_SERVERMSG .. 36
SQLCA, SQLCODE, and SQLSTATE..................................... 36
SQLDA .. 37

Constants ... 37
Type constants .. 37
Format constants... 38
Other symbolic constants .. 38

Conventions ... 39
NULL and unused parameters .. 39
Input parameter strings ... 40
Output parameter strings... 40
Pointers to basic structures ... 40
Item numbers .. 41
action, buffer, buflen, and outlen ... 41

CHAPTER 3 Using Open Client and Server Datatypes.................................... 45
Types and type constants .. 45

Where are datatypes declared? .. 45
Why use Open Client and Open Server datatypes? 46
unichar datatype.. 46
unitext datatype ... 49
xml datatype .. 50
What are type constants?.. 52

Datatype summary ... 52
Binary types... 54
Bit types... 54
iv Open Client

Contents
Character types ... 54
Datetime types .. 56
Numeric types ... 57
Large object locator types ... 58
Money types .. 58
Text and image types .. 59

Null substitution values .. 60
Open Client user-defined datatypes... 62

CHAPTER 4 Handling Errors and Messages ... 63
About messages .. 63

How to identify messages ... 63
Two methods for handling messages...................................... 64

Handling messages with callback routines 65
Defining a client-message callback ... 66
Defining a server-message callback 67
Installing callbacks .. 68

Handling messages inline .. 68
The CS_EXTRA_INF property .. 69
The CS_DIAG_TIMEOUT_FAIL property 70

Sequencing long messages ... 70
Extended error data ... 71

Uses of extended error data.. 71
Server transaction states ... 72

CHAPTER 5 Choosing Command Types.. 73
Command overview ... 73
Types of commands... 73
Executing commands... 74

Initiating a command ... 74
Defining parameters for a command 75
Processing results ... 75
Resending a command ... 75

Language commands... 76
Building language commands ... 76
Results-handling for language commands 77
When to use language commands.. 77
When not to use language commands.................................... 78

RPC commands ... 78
Building RPC commands .. 78
RPC command results handling.. 80
When to use RPC commands ... 82
RPCs versus execute language commands 83
Client-Library/C Programmers Guide v

Contents
Client-Library cursor commands .. 84
Building Client-Library cursor commands................................ 84
When to use Client-Library cursors ... 84
When not to use Client-Library cursors 85

Dynamic SQL commands .. 85
Building Dynamic SQL commands.. 85
When to use dynamic SQL commands 85
When not to use dynamic SQL.. 86

Message commands .. 86
When to use message commands.. 87
When not to use message commands 87

Package commands... 87
Send-data commands .. 87

When to use send-data commands... 88
When not to use send-data commands................................... 88

CHAPTER 6 Writing Results-Handling Code.. 89
Types of results.. 89
Structure of the basic loop ... 90
Processing regular row results ... 91
Processing cursor results ... 93

Processing scrollable cursor results.. 95
Processing parameter results .. 96
Processing return status results ... 97
Processing compute results ... 98
Processing message results .. 100
Processing describe results ... 101
Processing format results... 101

Row format caching... 103
Values of result_type that indicate command status.................... 103

Logical commands .. 104
ct_results final return code ... 104

CHAPTER 7 Using Client-Library Cursors.. 107
Cursor overview ... 107
Language cursors versus Client-Library cursors.......................... 108

Language cursors.. 109
Client-Library cursors .. 110

When to use Client-Library cursors.. 111
Benefits of Client-Library cursors .. 111
Performance issues when using Client-Library cursors 113

Using Client-Library cursors... 113
Step 1: Declare the cursor... 115
vi Open Client

Contents
Step 2: Set cursor rows ... 121
Step 3: Open the cursor .. 122
Step 4: Process cursor rows ... 124
Step 5: Close the cursor.. 127
Step 6: Deallocate the cursor .. 127

Client-Library cursor properties.. 127

CHAPTER 8 Using Dynamic SQL Commands ... 129
Dynamic SQL overview.. 129
Benefits of dynamic SQL.. 130
Limitations of dynamic SQL ... 130

Performance of dynamic SQL commands............................. 130
Adaptive Server Enterprise restrictions and database requirements

131
Alternatives to dynamic SQL.. 132
Using the execute-immediate method.. 132

When to use the execute-immediate method........................ 132
Coding an execute-immediate command.............................. 133

Using the prepare-and-execute method....................................... 133
When to use prepare-and-execute method........................... 133
Program structure for the prepare-and-execute method 134
Step 1: Prepare the statement .. 136
Step 2: Get a description of command inputs 136
Step 3: Get a description of command outputs 138
Step 4: Execute the prepared statement............................... 139
Step 5: Deallocate the prepared statement........................... 140

Dynamic SQL versus stored procedures 140

CHAPTER 9 Using Directory Services ... 143
Directory service overview ... 143
How do applications use a directory service? 144
Searching the directory .. 144

Example code.. 144
Program structure.. 144

Step 1: Starting the search... 145
Initialize data structures... 145
Setting directory service properties 146
Installing the directory callback ... 147
Calling ct_ds_lookup ... 147
Example code to start a directory search 147

Step 2: Collecting search results in the directory callback 150
Defining the directory callback .. 150
Directory callback example ... 152
Client-Library/C Programmers Guide vii

Contents
Step 3: Inspecting directory objects ... 154
Attribute data structures .. 155
Example code to inspect a directory object........................... 156

Step 4: Cleaning up.. 168

APPENDIX A Logical Sequence of Calls .. 169
Client-Library state machines... 169

Command-level sequence of calls .. 170
Commands state table .. 170
Initiated-commands state table ... 170
Result-types state table... 171
Summary ... 171

Command states .. 172
Command-level routines ... 173
Callable routines in each command state 174

Initiated commands .. 185
Initiated command routines ... 186
Callable routines for initiated commands 187

Result types ... 190
Result type processing routines .. 192
Callable routines for each result type 192
Pending results.. 195

Index ... 197
viii Open Client

About This Book

This book contains information on how to write C applications using
Open Client™ Client-Library.

Audience This book is written for application programmers familiar with the C
programming language.

How to use this book This book contains these chapters:

• Chapter 1, “Getting Started with Client-Library” explains how to
structure a basic Client-Library program and includes a simple,
complete Client-Library application.

• Chapter 2, “Understanding Structures, Constants, and Conventions”
contains information about Client-Library structures, constants, and
parameter conventions.

• Chapter 3, “Using Open Client and Server Datatypes” contains a
summary of datatypes that can be used in a Client-Library
application.

• Chapter 4, “Handling Errors and Messages” explains how to handle
Client-Library and server errors in your application.

• Chapter 5, “Choosing Command Types” explains when and how to
use the different command types in your application.

• Chapter 6, “Writing Results-Handling Code” explains Client-
Library’s results processing model.

• Chapter 7, “Using Client-Library Cursors” explains how to declare
and manipulate Client-Library cursors.

• Chapter 8, “Using Dynamic SQL Commands” explains how to use
dynamic SQL queries in your applications.

• Chapter 9, “Using Directory Services” contains information on how
to use Client-Library directory services.

• Appendix A, “Logical Sequence of Calls” contains diagrams of the
legal call sequences in Client-Library applications.

Related documents You can see these books for more information:
Client-Library/C Programmers Guide ix

• The Open Server™ and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and the
Software Developer’s Kit. This document is revised to include new
features as they become available.

• The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

• The Software Developer’s Kit Release Bulletin for your platform contains
important last-minute information about Open Client™ and SDK.

• The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

• The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

• The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

• The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The Installation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option contains information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authentication in
the Kerberos security mechanism.
x Open Client

 About This Book
• The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

• The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

• The Open Client Embedded SQL™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

• The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNIX, provides information on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

• The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide provides information for Perl developers to connect to an Adaptive
Server database and query or change information using a Perl script.

• The Adaptive Server Enterprise extension module for PHP Programmers
Guide provides information for PHP developers to execute queries against
an Adaptive Server database.

• The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Other sources of
information

Use the Sybase Product Documentation Web site to learn more about your
product:
Client-Library/C Programmers Guide xi

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.
xii Open Client

 About This Book
Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include the braces in the command.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.
Client-Library/C Programmers Guide xiii

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.
xiv Open Client

C H A P T E R 1 Getting Started with
Client-Library

This chapter includes the fundamental concepts required to develop
Client-Library/C applications.

Client-Library overview
Client-Library is a collection of routines for sending commands to and
retrieving results from Sybase servers.

For an overview of Sybase’s client/server architecture and products, see
Chapter 1, “Introducing Client-Library,” in the Open Client Client-
Library/C Reference Manual.

Types of Client-Library applications
Client-Library applications vary mainly in the types of commands that
they send. Once connected to a server, all client applications use the “send
commands, process results” paradigm illustrated in Figure 1-1:

Topic Page
Client-Library overview 1

Types of Client-Library applications 1

A simple sample program 4

Step 1: Set up the Client-Library programming environment 18

Step 2: Define error handling 20

Step 3: Connect to a server 22

Step 4: Send commands to the server 24

Step 5: Process the results of the command 25

Step 6: Finish 27
Client-Library/C Programmers Guide 1

Types of Client-Library applications
Figure 1-1: The commands/results paradigm

Adaptive Server Enterprise client applications
The following examples illustrate what kinds of tasks an Adaptive Server
Enterprise client application might carry out:

• SQL interpreter – the client application prompts the user for queries, sends
these queries to the server as language commands, retrieves the results
from the Adaptive Server Enterprise, and displays the results. The Sybase
isql utility is such an application; it calls the following Client-Library
routines:

• ct_command(CS_LANG_CMD) to define a language command and
its text

• ct_send to send it to the server

• ct_results to read the results

• ct_res_info and ct_describe to find out column formats

• ct_bind and ct_fetch to retrieve rows

See “Language commands” on page 76. See also the example application
shown in “A simple sample program” on page 4.

ServerClient Application

2. Receive command
3. Process command
4. Send results

select ‘hello world’

‘hello world’

Language command:
 select ‘hello world’

1.

Read and process
results

5.
2 Open Client

CHAPTER 1 Getting Started with Client-Library
• Data-entry – an application that always runs the same queries. The
application uses Adaptive Server Enterprise stored procedures to
implement application logic for performing inserts, updates, and menu
population. The client program invokes the stored procedures by sending
RPC commands. Such an application calls:

• ct_command(CS_RPC_CMD) to define an RPC command

• ct_param or ct_setparam to define parameter values with which to call
the procedure

• ct_send to send the command to the server

• ct_results, ct_bind, ct_fetch, and so forth, to read the results

See “RPC commands” on page 78.

• Interactive query-by-example – an application that prompts for queries
that can contain markers, indicated by a question mark (?), for values to be
supplied at runtime. The application uses dynamic SQL commands to:

• Prepare the statement, by sending a ct_dynamic(CS_PREPARE)
command and handling the results

• Query for parameter formats, by sending a
ct_dynamic(CS_DESCRIBE_INPUT) command and handling the
results

• After prompting for input values, execute the statement by sending a
ct_dynamic(CS_EXECUTE) command and handling the results

See Chapter 8, “Using Dynamic SQL Commands.”

Open Server client or gateway applications
Open Server Server-Library is a collection of routines that allows you to create
custom server applications. Server-Library routines are documented in the
Open Server Server-Library/C Reference Manual.

The following examples illustrate the tasks that an Open Server client
application might carry out:
Client-Library/C Programmers Guide 3

A simple sample program
• Client for custom Open Server application – a client application sends
RPC commands to invoke custom server routines that have been
“registered” as callable server procedures in the Open Server application
program. See the Open Server Server-Library/C Reference Manual for
information on registered procedures. See “RPC commands” on page 78
for a description of how client applications send RPC commands.

• Notification client – Open Server provides a feature called “registered
procedure notification” that allows client applications to watch for
invocations of selected registered procedures. For example, a client
application that caches copies of important data might watch for a
notification on a registered procedure that updates the data. The
notification indicates when the cached copy must be refreshed. See the
“Registered Procedures” topics page in the Open Client Client-Library/C
Reference Manual.

• Gateway application – a server application acts as an intermediary
between its own clients and other servers. The gateway accepts client
commands, forwards them to a remote server, reads the results, and
forwards the results to its own client. If the remote server is a Sybase
server, the gateway makes Client-Library calls to communicate with the
remote server.

A simple sample program
This section walks you through an sample program that connects to a server,
sends a query, processes the results, then exits. Most Client-Library
applications exhibit a program structure similar to this.

Building programs
The Open Client and Open Server Programmers Supplement for Microsoft
Windows and Open Client and Open Server Programmers Supplement for
UNIX describe how to build a Client-Library application on your platform and
includes information about required compile/link options, library file names,
and runtime requirements.
4 Open Client

CHAPTER 1 Getting Started with Client-Library
Steps in the example
The following steps show a simple Client-Library application:

1 Set up the Client-Library programming environment:

a Use cs_ctx_alloc to allocate a context structure.

b Use cs_config to set any CS-Library properties for the context.

c Use ct_init to initialize Client-Library.

d Use ct_config to set Client-Library properties for the context.

2 Define error handling. Most applications use callback routines to handle
errors:

a Use cs_config(CS_MESSAGE_CB) to install a CS-Library error
callback.

b Use ct_callback to install a client message callback.

c Use ct_callback to install a server message callback.

 Warning! Applications that do not define error handling do not receive
notification of errors that occur in the program, on the network, or on the
server. Code your applications to handle errors and server messages.
Applications that do not perform error handling are difficult to debug and
maintain.

3 Connect to a server:

a Use ct_con_alloc to allocate a connection structure.

b Use ct_con_props to set any properties in the connection structure

c Use ct_connect to open a connection to a server.

d Use ct_options to set any server options for this connection.

4 Send a language command to the server:

a Use ct_cmd_alloc to allocate a command structure.

b Use ct_command to initiate a language command.

c Use ct_send to send the command.

5 Process the results of the command:

a Use ct_results to set up results for processing (called in a loop).

b Use ct_res_info to get information about a result set.
Client-Library/C Programmers Guide 5

A simple sample program
c Use ct_describe to get information about a result item.

d Use ct_bind to bind a result item to program data space.

e Use ct_fetch to fetch result rows (called in a loop).

6 Finish:

a Use ct_cmd_drop to deallocate the command structure.

b Use ct_close to close the connection with the server.

c Use ct_exit to exit Client-Library.

d Use cs_ctx_drop to deallocate the context structure.

Source listing
The following sample program, called firstapp.c, demonstrates the steps
outlined in the previous section. Commentary for each step follows the
example (beginning with “Step 1: Set up the Client-Library programming
environment” on page 18).

The source code for this application is included with the Client-Library sample
programs. See the Client-Library chapter in the Open Client and Open Server
Programmers Supplement for Microsoft Windows or Open Client and Open
Server Programmers Supplement for UNIX for information on making and
running the sample programs.

/*
 ** Language Query Example Program.
 */

#include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <ctpublic.h>
 #include "example.h"

#define MAXCOLUMNS 2
 #define MAXSTRING 40
#define ERR_CH stderr

 #define OUT_CH stdout

/*
 ** Define a macro that exits if a function return code indicates
6 Open Client

CHAPTER 1 Getting Started with Client-Library
 ** failure.
 */
 #define EXIT_ON_FAIL(context, ret, str) \
 if (ret != CS_SUCCEED) \
 { \
 fprintf(ERR_CH, "Fatal error: %s\n", str); \
 if (context != (CS_CONTEXT *) NULL) \
 { \
 (CS_VOID) ct_exit(context, CS_FORCE_EXIT); \
 (CS_VOID) cs_ctx_drop(context); \
 } \
 exit(-1); \
 }

 /*
 ** Callback routines for library errors and server messages.
 */
 CS_RETCODE CS_PUBLIC csmsg_callback PROTOTYPE((

CS_CONTEXT *context,
CS_CLIENTMSG *clientmsg));

 CS_RETCODE CS_PUBLIC clientmsg_callback PROTOTYPE((
CS_CONTEXT *context,
CS_CONNECTION *connection,
CS_CLIENTMSG *clientmsg));

 CS_RETCODE CS_PUBLIC servermsg_callback PROTOTYPE((
CS_CONTEXT *context,
CS_CONNECTION *connection,
CS_CLIENTMSG *servermsg));

 /*
 ** Main entry point for the program.
 */
 int
 main(int argc, char *argv[])
 {
 CS_CONTEXT *context; /* Context structure */
 CS_CONNECTION *connection; /* Connection structure. */
 CS_COMMAND *cmd; /* Command structure. */

 /* Data format structures for column descriptions: */
 CS_DATAFMT columns[MAXCOLUMNS];

 CS_INT datalength[MAXCOLUMNS];
 CS_SMALLINT indicator[MAXCOLUMNS];
Client-Library/C Programmers Guide 7

A simple sample program
 CS_INT count;
 CS_RETCODE ret;
 CS_RETCODE results_ret;
 CS_INT result_type;
 CS_CHAR name[MAXSTRING];
 CS_CHAR city[MAXSTRING];

 EX_SCREEN_INIT();

 /*
 ** Step 1: Initialize the application.
 */

For more commentary, see “Step 1: Set up the Client-Library programming
environment” on page 18.

 /*
 ** First allocate a context structure.
 */
 context = (CS_CONTEXT *) NULL;
 ret = cs_ctx_alloc(EX_CTLIB_VERSION, &context);
 EXIT_ON_FAIL(context, ret, "cs_ctx_alloc failed");

 /*
 ** Initialize Client-Library.
 */
 ret = ct_init(context, EX_CTLIB_VERSION);
 EXIT_ON_FAIL(context, ret, "ct_init failed");

 /*
 ** Step 2: Set up the error handling. Install callback handlers
 ** for: - CS-Library errors - Client-Library errors - Server
 ** messages
 */

For more commentary, see “Step 2: Define error handling” on page 20.

 /*
 ** Install a callback function to handle CS-Library errors
 */
 ret = cs_config(context, CS_SET, CS_MESSAGE_CB,
 (CS_VOID *)csmsg_callback,
 CS_UNUSED, NULL);
 EXIT_ON_FAIL(context, ret,
 "cs_config(CS_MESSAGE_CB) failed");

 /*
8 Open Client

CHAPTER 1 Getting Started with Client-Library
 ** Install a callback function to handle Client-Library errors
 **
 ** The client message callback receives error or informational
 ** messages discovered by Client-Library.
 */
 ret = ct_callback(context, NULL, CS_SET, CS_CLIENTMSG_CB,
 (CS_VOID *) clientmsg_callback);
 EXIT_ON_FAIL(context,ret,
 "ct_callback for client messages failed");

 /*
 ** The server message callback receives server messages sent by
 ** the server. These are error or informational messages.
 */
 ret = ct_callback(context, NULL, CS_SET, CS_SERVERMSG_CB,
 (CS_VOID *) servermsg_callback);
 EXIT_ON_FAIL(context, ret,
 "ct_callback for server messages failed");

 /*
 ** Step 3: Connect to the server. We must: - Allocate a connection
 ** structure. - Set user name and password. - Create the
 ** connection.
 */

For more commentary, see “Step 3: Connect to a server” on page 22.

 /*
 ** First, allocate a connection structure.
 */
 ret = ct_con_alloc(context, &connection);
 EXIT_ON_FAIL(context, ret, "ct_con_alloc() failed");

 /*
 ** These two calls set the user credentials (username and
 ** password) for opening the connection.
 */
 ret = ct_con_props(connection, CS_SET, CS_USERNAME,
 Ex_username, CS_NULLTERM, NULL);
 EXIT_ON_FAIL(context, ret, "Could not set user name");
 ret = ct_con_props(connection, CS_SET, CS_PASSWORD,
 Ex_password, CS_NULLTERM, NULL);
 EXIT_ON_FAIL(context, ret, "Could not set password");

 /*
 ** Create the connection.
 */
Client-Library/C Programmers Guide 9

A simple sample program
 if(EX_SERVER==NULL)
 ret = ct_connect(connection, (CS_CHAR *) NULL, 0);
 else
 ret = ct_connect(connection, (CS_CHAR *)EX_SERVER, strlen(EX_SERVER));
 EXIT_ON_FAIL(context, ret, "Could not connect!");

 /*
 ** Step 4: Send a command to the server, as follows: - Allocate a
 ** CS_COMMAND structure - Build a command to be sent with
 ** ct_command. - Send the command with ct_send.
 */

For more commentary, see “Step 4: Send commands to the server” on page 24.

 /*
 ** Allocate a command structure.
 */
 ret = ct_cmd_alloc(connection, &cmd);
 EXIT_ON_FAIL(context, ret, "ct_cmd_alloc() failed");

 /*
 ** Initiate a language command. This call associates a query with
 ** the command structure.
 */
 ret = ct_command(cmd, CS_LANG_CMD,
 "select au_lname, city from pubs2..authors \
 where state = 'CA'",
 CS_NULLTERM, CS_UNUSED);
 EXIT_ON_FAIL(context, ret, "ct_command() failed");

 /*
 ** Send the command.
 */
 ret = ct_send(cmd);
 EXIT_ON_FAIL(context, ret, "ct_send() failed");

 /*
 ** Step 5: Process the results of the command.
 */

For more commentary, see “Step 5: Process the results of the command” on
page 25.

 while ((results_ret = ct_results(cmd, &result_type))
 == CS_SUCCEED)
 {

 /*
10 Open Client

CHAPTER 1 Getting Started with Client-Library
 ** ct_results sets result_type to indicate when data is
 ** available and to indicate command status codes.
 */
 switch ((int)result_type)
 {
 case CS_ROW_RESULT:

 /*
 ** This result_type value indicates that the rows
 ** returned by the query have arrived. We bind and
 ** fetch the rows.
 **
 ** We're expecting exactly two character columns:
 ** Column 1 is au_lname, 2 is au_city.
 **
 ** For each column, fill in the relevant fields in
 ** the column's data format structure, and bind
 ** the column.
 */
 columns[0].datatype = CS_CHAR_TYPE;
 columns[0].format = CS_FMT_NULLTERM;
 columns[0].maxlength = MAXSTRING;
 columns[0].count = 1;
 columns[0].locale = NULL;
 ret = ct_bind(cmd, 1, &columns[0],
 name, &datalength[0],
 &indicator[0]);
 EXIT_ON_FAIL(context, ret,
 "ct_bind() for au_lname failed");

 /*
 ** Same thing for the 'city' column.
 */
 columns[1].datatype = CS_CHAR_TYPE;
 columns[1].format = CS_FMT_NULLTERM;
 columns[1].maxlength = MAXSTRING;
 columns[1].count = 1;
 columns[1].locale = NULL;

 ret = ct_bind(cmd, 2, &columns[1], city,
 &datalength[1],
 &indicator[1]);
 EXIT_ON_FAIL(context, ret,
 "ct_bind() for city failed");

 /*
 ** Now fetch and print the rows.
Client-Library/C Programmers Guide 11

A simple sample program
 */
 while(((ret = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,
 CS_UNUSED, &count))
 == CS_SUCCEED)
 || (ret == CS_ROW_FAIL))
 {
 /*
 ** Check if we hit a recoverable error.
 */
 if(ret == CS_ROW_FAIL)
 {
 fprintf(ERR_CH,
 "Error on row %ld.\n",
 (long)(count+1));
 }
 /*
 ** We have a row, let's print it.
 */
 fprintf(OUT_CH, "%s: %s\n", name, city);
 }

 /*
 ** We're finished processing rows, so check
 ** ct_fetch's final return value to see if an
 ** error occurred. The final return code should be
 ** CS_END_DATA.
 */
 if (ret == CS_END_DATA)
 {
 fprintf(OUT_CH,
 "\nAll done processing rows.\n");
 }
 else /* Failure occurred. */
 {
 EXIT_ON_FAIL(context, CS_FAIL,
 "ct_fetch failed");
 }

 /*
 ** All done with this result set.
 */
 break;

 case CS_CMD_SUCCEED:

 /*
 ** We executed a command that never returns rows.
12 Open Client

CHAPTER 1 Getting Started with Client-Library
 */
 fprintf(OUT_CH, "No rows returned.\n");
 break;

 case CS_CMD_FAIL:

 /*
 ** The server encountered an error while
 ** processing our command. These errors will be
 ** displayed by the server-message callback that
 ** we installed earlier.
 */
 break;

 case CS_CMD_DONE:

 /*
 ** The logical command has been completely
 ** processed.
 */
 break;

 default:

 /*
 ** We got something unexpected.
 */
 EXIT_ON_FAIL(context, CS_FAIL,
 "ct_results returned unexpected result type");
 break;
 }
 }

 /*
 ** We've finished processing results. Check the return value
 ** of ct_results() to see if everything went okay.
 */
 switch((int) results_ret)
 {

case CS_END_RESULTS:

 /*
 ** Everything went fine.
 */
 break;

 case CS_FAIL:
Client-Library/C Programmers Guide 13

A simple sample program

 /*
 ** Something terrible happened.
 */
 EXIT_ON_FAIL(context, CS_FAIL,
 "ct_results() returned CS_FAIL.");
 break;

 default:

 /*
 ** We got an unexpected return value.
 */
 EXIT_ON_FAIL(context, CS_FAIL,
 "ct_results returned unexpected return code");
 break;
 }

 /*
 ** Step 6: Clean up and exit.
 */

For more commentary, see “Step 6: Finish” on page 27.

 /*
 ** Drop the command structure.
 */
 ret = ct_cmd_drop(cmd);
 EXIT_ON_FAIL(context, ret, "ct_cmd_drop failed");

 /*
 ** Close the connection and drop its control structure.
 */
 ret = ct_close(connection, CS_UNUSED);
 EXIT_ON_FAIL(context, ret, "ct_close failed");
 ret = ct_con_drop(connection);
 EXIT_ON_FAIL(context, ret, "ct_con_drop failed");

 /*
 ** ct_exit tells Client-Library that we are done.
 */
 ret = ct_exit(context, CS_UNUSED);
 EXIT_ON_FAIL(context, ret, "ct_exit failed");

 /*
 ** Drop the context structure.
 */
 ret = cs_ctx_drop(context);
 EXIT_ON_FAIL(context, ret, "cs_ctx_drop failed");
14 Open Client

CHAPTER 1 Getting Started with Client-Library
 /*
 ** Normal exit to the operating system.
 */
 exit(0);
 }

 /*
 ** Handler for server messages. Client-Library will call this
 ** routine when it receives a message from the server.
 */
 CS_RETCODE CS_PUBLIC
 servermsg_callback(CS_CONTEXT *cp, CS_CONNECTION *chp, CS_SERVERMSG *msgp)
 {

 /*
 ** Print the message info.
 */
 fprintf(ERR_CH,
 "Server message:\n\t");
 fprintf(ERR_CH,
 "number(%ld) severity(%ld) state(%ld) line(%ld)\n",
 (long) msgp->msgnumber, (long) msgp->severity,
 (long) msgp->state, (long) msgp->line);

 /*
 ** Print the server name if one was supplied.
 */
 if (msgp->svrnlen > 0)
 fprintf(ERR_CH, "\tServer name: %s\n", msgp->svrname);

 /*
 ** Print the procedure name if one was supplied.
 */
 if (msgp->proclen > 0)
 fprintf(ERR_CH, "\tProcedure name: %s\n", msgp->proc);

 /*
 ** Print the null terminated message.
 */
 fprintf(ERR_CH, "\t%s\n", msgp->text);

 /*
 ** Server message callbacks must return CS_SUCCEED.
 */
 return(CS_SUCCEED);
 }

 /*
Client-Library/C Programmers Guide 15

A simple sample program
 ** Client-Library error handler. This function will be invoked
 ** when a Client-Library has detected an error. Before Client-
 ** Library routines return CS_FAIL, this handler will be called
 ** with additional error information.
 */
 CS_RETCODE CS_PUBLIC
 clientmsg_callback(CS_CONTEXT *context, CS_CONNECTION *conn, CS_CLIENTMSG
 *emsgp)
 {

 /*
 ** Error number:
 ** Print the error's severity, number, origin, and
 ** layer. These four numbers uniquely identify the error.
 */
 fprintf(ERR_CH,
 "Client Library error:\n\t");
 fprintf(ERR_CH,
 "severity(%ld) number(%ld) origin(%ld) layer(%ld)\n",
 (long) CS_SEVERITY(emsgp->severity),
 (long) CS_NUMBER(emsgp->msgnumber),
 (long) CS_ORIGIN(emsgp->msgnumber),
 (long) CS_LAYER(emsgp->msgnumber));

 /*
 ** Error text:
 ** Print the error text.
 */
 fprintf(ERR_CH, "\t%s\n", emsgp->msgstring);

 /*
 ** Operating system error information: Some errors, such as
 ** network errors, may have an operating system error associated
 ** with them. If there was an operating system error, this code
 ** prints the error message text.
 */
 if (emsgp->osstringlen > 0)
 {
 fprintf(ERR_CH,
 "Operating system error number(%ld):\n",
 (long) emsgp->osnumber);
 fprintf(ERR_CH, "\t%s\n", emsgp->osstring);
 }

 /*
 ** If we return CS_FAIL, Client-Library marks the connection as
16 Open Client

CHAPTER 1 Getting Started with Client-Library
 ** dead. This means that it cannot be used anymore. If we return
 ** CS_SUCCEED, the connection remains alive if it was not already
 ** dead.
 */
 return (CS_SUCCEED);
 }

 /*
 ** CS-Library error handler. This function will be invoked
 ** when CS-Library has detected an error.
 */
 CS_RETCODE CS_PUBLIC
 csmsg_callback(CS_CONTEXT *context, CS_CLIENTMSG *emsgp)
 {

 /*
 ** Print the error number and message.
 */
 fprintf(ERR_CH,
 "CS-Library error:\n");
 fprintf(ERR_CH,
 "\tseverity(%ld) layer(%ld) origin(%ld) number(%ld)",
 (long) CS_SEVERITY(emsgp->msgnumber),
 (long) CS_LAYER(emsgp->msgnumber),
 (long) CS_ORIGIN(emsgp->msgnumber),
 (long) CS_NUMBER(emsgp->msgnumber));

 fprintf(ERR_CH, "\t%s\n", emsgp->msgstring);

 /*
 ** Print any operating system error information.
 */
 if(emsgp->osstringlen > 0)
 {
 fprintf(ERR_CH, "Operating System Error: %s\n",
 emsgp->osstring);
 }

 return (CS_SUCCEED);
 }
Client-Library/C Programmers Guide 17

Step 1: Set up the Client-Library programming environment
Step 1: Set up the Client-Library programming
environment

A Client-Library programming environment is defined by:

• A CS_CONTEXT structure, which defines a programming context

• A Client-Library version level, which is indicated by an application’s call
to ct_init

Header files
All Client-Library/C applications require the header file ctpublic.h, which
contains typedefs and declarations required by Client-Library routines.

Allocating a context structure
A Client-Library application calls the CS-Library routine cs_ctx_alloc to
allocate a context structure. A Client-Library application must allocate a
context structure before initializing Client-Library.

Note CS-Library routines start with the prefix “cs.” Client-Library routines
start with the prefix “ct”. All Client-Library programs include at least two calls
to CS-Library, because they must allocate and drop a context structure.

Setting CS-Library context properties
After allocating a context structure, a Client-Library application can call
cs_config to set CS-Library properties for the context structure.

Context properties define aspects of an application’s behavior at the context
level. firstapp.c calls cs_config to set the CS_MESSAGE_CB property. This
property defines a CS-Library message callback routine. An application needs
to set this property if it will be handling CS-Library errors using the callback
method. See Chapter 4, “Handling Errors and Messages.”

You may need to code your application to set other CS-Library context
properties as well. Besides CS_MESSAGE_CB, applications most commonly
set the following properties with cs_config:
18 Open Client

CHAPTER 1 Getting Started with Client-Library
• CS_LOC_PROP – describes localization information for the context. An
application must set this property if a context requires localization
information that differs from the localization information that is available
in the operating system environment. For example, if an application that is
running in a German environment requires a French context, it can call
cs_config to set the CS_LOC_PROP property.

• CS_EXTERNAL_CONFIG – specifies whether ct_init will read default
application property settings from the OCS runtime configuration file. See
“External configuration” on page 20.

• CS_APP_NAME – specifies a name for the application. If external
configuration is enabled (CS_EXTERNAL_CONFIG is CS_TRUE), then
the application name specifies a section of the configuration file from
which to read settings. CS_APP_NAME is also inherited by allocated
CS_CONNECTION structures.

See cs_config in the Open Client and Open Server Common Libraries
Reference Manual.

Initializing Client-Library
To initialize Client-Library, an application calls ct_init, which sets up internal
control structures and defines the version of Client-Library behavior that the
application requires. ct_init must be the first Client-Library call in an
application.

Most applications call ct_init only once; however, it is not an error for an
application to call ct_init multiple times. Client-Library permits multiple ct_init
calls because some applications cannot guarantee which of several modules
will execute first. These types of applications need to call ct_init in each
module.

ct_init takes as its parameter a symbol describing the version of Client-Library
behavior that the application expects.

If Client-Library cannot provide this behavior, ct_init returns CS_FAIL.

Setting Client-Library context properties
firstapp.c calls ct_config to set the CS_MAX_CONNECT context property.
This property specifies the maximum number of connections for a context.
Client-Library/C Programmers Guide 19

Step 2: Define error handling
Client-Library context properties serve one of two purposes:

• They define aspects of a context’s behavior.

CS_MAX_CONNECT is an example of this category.

• They define default properties for connections created from the context.

The CS_NETIO property is an example of this category. If a context
CS_NETIO property is set to CS_SYNC_IO, to indicate synchronous
connections, then any connection structure allocated within the context
will be synchronous. ct_con_props can be called to change the value of
CS_NETIO for a specific connection after it has been allocated.

For a complete list of Client-Library context properties, see the “Properties”
topics page in the Open Client Client-Library/C Reference Manual.

Applications that are not multithreaded can call ct_config to change a context’s
properties at any time during the program’s execution. Multithreaded
applications must set context properties in single-threaded, start-up code or
limit all access to a context and its child connections to a single thread. See the
“Multithreaded Programming” topics page in the Open Client Client-
Library/C Reference Manual.

When an application calls ct_config to change a context property, property
values for existing connections do not change, but connections allocated after
the ct_config call will pick up the new property values.

External configuration
As an alternative to setting properties with hard-coded ct_config calls, Client-
Library allows external configuration of property values for applications that
have been configured to use this feature. See the topics page “Using the
Runtime Configuration File” in the Open Client Client-Library/C Reference
Manual.

Step 2: Define error handling
Errors can be handled inline or with callback functions. The sample program
uses callback functions. See “Two methods for handling messages” on page
64 for information on the inline method.
20 Open Client

CHAPTER 1 Getting Started with Client-Library
ct_callback installs Client-Library callback routines. which are application
routines that Client-Library calls automatically when a triggering event of the
appropriate type occurs.

There are several types of callbacks, but the sample program installs only two:
a client message callback, to handle Client-Library error and informational
messages, and a server message callback, to handle server error and
informational messages.

The client message callback is called automatically whenever Client-Library
generates an error or informational message. For example, if the application
passes an invalid parameter value, or calls routines out of sequence, then
Client-Library generates an error and calls the client message callback with a
description of the error.

The server message callback is called whenever the server sends an
informational or error message during results processing. For example, if the
application sends a language command that contains a syntax error or refers to
a nonexistent table, then the server sends a message that describes the error.

The sample program also calls cs_config to install a CS-Library error handler.
CS-Library calls the application’s CS-Library error handler when an error
occurs in a CS-Library call.

Other types of callbacks include:

• Completion callbacks, used by asynchronous connections to handle
asynchronous operation completions

• Notification callbacks, used to handle registered procedure notifications
received from an Open Server

• Signal callbacks, used by UNIX applications to handle non-Client-Library
signals

See the ct_callback reference page and the “Callbacks” topics page in the Open
Client Client-Library/C Reference Manual.

Note A CS-Library message callback is not installed in the same way as
Client-Library message callbacks: An application installs a CS-Library
message callback by calling cs_config rather than ct_callback. Once installed,
both types of callbacks function similarly.
Client-Library/C Programmers Guide 21

Step 3: Connect to a server
Step 3: Connect to a server
Connecting to a server is a three-step process. An application:

• Allocates a connection structure

• Sets properties for the connection, if necessary

• Logs in to a server

Allocating a connection structure
An application calls ct_con_alloc to allocate a connection structure.

Setting connection structure properties
An application calls ct_con_props to set, retrieve, or clear connection structure
properties.

Connection properties define various aspects of a connection’s behavior. For
example:

• The CS_USERNAME property defines the user name that a connection
will use when logging in to a server.

• The CS_APPNAME property specifies the application name that appears
in the Adaptive Server Enterprise sysprocess table after the connection is
opened.

• The CS_PACKETSIZE property defines the Tabular Data Stream™
(TDS) packet size, which determines the size of network packets that the
application will send and receive over this connection. By default, Open
Client Server (OCS) allows the server to choose a packetsize between 512
and 65535 bytes. Servers supporting Server Specified Packetsize like
Adaptive Server Enterprise may choose a packetsize freely. The
packetsize may also be smaller or larger than the packetsize specified with
CS_PACKETSIZE.

When a connection structure is allocated, it picks up some default property
values from its parent context. For example, if the CS_APPNAME property is
set at the context level, all connection structures allocated from that context
inherit the application name. Other properties that do not exist at the context
level, such as CS_PACKETSIZE, default to standard Client-Library values.
22 Open Client

CHAPTER 1 Getting Started with Client-Library
For a complete list of connection properties, see the ct_con_props reference
page in the Open Client Client-Library/C Reference Manual.

Required connection properties

At a minimum, an application must set the connection properties that specify
the connection’s user name (CS_USERNAME) and allow the server to
authenticate the user’s identity. Servers can confirm a user’s identity in two
ways:

• By requiring a valid password

• By using network-based user authentication

If the server requires a password, then the application must set the
CS_PASSWORD property to the value of the user’s server password.

See the “Security Features” topics page in the Open Client Client-Library/C
Reference Manual.

Logging in to a server
An application calls ct_connect to connect to a server. In the process of
establishing a connection, ct_connect sets up communication with the network,
logs in to the server, and communicates any connection-specific property
information to the server.

For example, if the server supports network-based user authentication and the
client application requests it, then Client-Library and the server query the
network’s security system to see if the user (whose name is specified by
CS_USERNAME) is logged in to the network. Applications must request
network-based user authentication by setting the CS_SEC_NETWORKAUTH
connection property.
Client-Library/C Programmers Guide 23

Step 4: Send commands to the server
Step 4: Send commands to the server
In Client-Library, a command is a request for action sent from the client
application to the server. Each command belongs to a command type and may
have input data associated with it. Client-Library bundles this information into
a symbolic format and sends it over the network to the server, where it is
executed.

firstapp.c sends a language command to the server. This command instructs the
server to parse and execute the query that was defined as ct_command’s text
(third) parameter. For information on other command types, see Chapter 5,
“Choosing Command Types.”

An application defines and sends commands to a server by using a
CS_COMMAND structure. To define and send a command, the application:

• Allocates a CS_COMMAND structure

• If necessary, sets properties for the command structure

• Initiates the command

• Defines any parameters required for the command

• Sends the command

Allocating a command structure
An application calls ct_cmd_alloc to allocate a command structure. Several
command structures can be allocated from the same connection.

Setting command structure properties
An application calls ct_cmd_props to set, retrieve, or clear command structure
properties.

Command-structure properties determine aspects of Client-Library behavior at
the command-structure level. For example, the CS_HIDDEN_KEYS property
determines whether or not Client-Library exposes any hidden keys that are
returned as part of a result set.

firstapp.c sets no command-structure properties; instead, it uses the default
command-level behavior. Command structures inherit default property values
from their parent connection.
24 Open Client

CHAPTER 1 Getting Started with Client-Library
For a complete list of command-structure properties, see the ct_cmd_props
reference page in the Open Client Client-Library/C Reference Manual.

Executing a command
An application calls ct_command, ct_cursor, or ct_dynamic to initiate a
command. ct_send sends any type of command to the server.

firstapp.c calls ct_command to initiate a language command. ct_send sends the
command text to the server, which parses, compiles, and executes it.

See Chapter 5, “Choosing Command Types.”

Step 5: Process the results of the command
Applications call ct_results repeatedly to handle the results returned by the
server. Almost all Client-Library programs process results by executing a loop
controlled by ct_results return status. Inside the loop, a switch takes place on
the current type of result. Different types of results require different types of
processing.

The results-processing model used in the example is based on this pseudocode:

while ct_results returns CS_SUCCEED
 switch on result_type
 case row results
 for each column:
 ct_bind
 end for
 while ct_fetch is returning rows
 process each row
 end while
 check ct_fetch’s final return code
 end case row results
 case command done
 case command failed
 case other result type....
 ... raise an error ...
 end switch
 end while
Client-Library/C Programmers Guide 25

Step 5: Process the results of the command
 check ct_results’ final return code

Note Sybase strongly recommends that you use this type of program structure,
even in the case of a simple language command. In more complex programs,
you cannot predict the number and type of result sets that an application will
receive in response to a command. Code that calls ct_results in a loop is also
easier to maintain, enhance, or reuse, since the results-handling logic is
centralized.

ct_results sets up results for processing and sets the return parameter
result_type to indicate the type of result data that is available for processing.

If the select statement sent by firstapp.c executes successfully on the server, the
sample program receives result types of CS_ROW_RESULT and
CS_CMD_DONE, in that order. If the statement does not execute successfully
on the server, the program receives a result type of CS_CMD_FAIL.

Because this program is so simple, most result types are not included as cases
in the result_type switch. However, the code does raise an error for unexpected
values of result_type. Code this check into your program’s results loop—the
error raised may help you trap coding bugs early in the development cycle.

For row results, typically the number of columns in the result set is determined
and then used to control a loop in which result items are bound to program
variables. An application can call ct_res_info to get the number of result
columns and ct_describe to get a description of each column. However, in
firstapp.c, these calls are not necessary because the example was coded with
knowledge of how many columns were selected and their format.

ct_bind binds a result item to a program variable. Binding creates an association
between a result item and a program data space.

ct_fetch fetches result data. In the example, since binding has been specified
and the count field in the CS_DATAFMT structure for each column is set to 1,
each ct_fetch call copies one row of data into program data space. As each row
is fetched, the sample program prints it.

ct_fetch is called until there are no more rows, then the sample program checks
ct_fetch’s final return code to find out whether the loop terminated normally or
because of failure.

For information on the other result types that an application can receive, see
Chapter 6, “Writing Results-Handling Code.”
26 Open Client

CHAPTER 1 Getting Started with Client-Library
Step 6: Finish
Before exiting, a Client-Library application must:

1 Deallocate all command structures for each connection.

2 Close and deallocate all open connections.

3 Exit Client-Library.

4 Deallocate all context structures.

As noted in “Exiting Client-Library” on page 27, step 2 can be included with
step 3.

Deallocating command structures
An application calls ct_cmd_drop to deallocate a command structure. It is an
error to deallocate a command structure that has pending results or an open
cursor.

Closing and deallocating connections
An application calls ct_close to close a connection and ct_con_drop to
deallocate a closed connection. It is an error to deallocate a connection that has
not been closed.

Exiting Client-Library
An application calls ct_exit to exit Client-Library for a specific context. ct_exit
closes and deallocates any open connections and cleans up internal Client-
Library data space. ct_exit must be the last Client-Library call for a context.

Because ct_exit closes and deallocates all open connections, it is not strictly
necessary for an application to close and deallocate connections by calling
ct_close and ct_con_drop; instead, the application can just call ct_exit.

Deallocating a context structure
The CS-Library routine cs_ctx_drop deallocates a context structure.
Client-Library/C Programmers Guide 27

Step 6: Finish
28 Open Client

C H A P T E R 2 Understanding Structures,
Constants, and Conventions

This chapter contains information about Client-Library structures,
constants, and conventions.

Hidden structures
Hidden structures are structures whose internals are not documented. For
example, a Client-Library application needs to call CS-Library or Client-
Library routines to allocate, inspect, modify, and deallocate hidden
structures. The application cannot access the structure contents directly.
Hidden structures include:

• CS_CONTEXT, which defines a Client-Library programming
context.

• CS_CONNECTION, which defines an individual client/server
connection.

• CS_COMMAND, which is used to send commands and process
results.

Topic Page
Hidden structures 29

Connection and command rules 31

CS_LOGINFO 32

CS_DS_OBJECT 32

CS_BLKDESC 33

CS_LOCALE 33

Exposed structures 33

Constants 37

Conventions 39
Client-Library/C Programmers Guide 29

Hidden structures
• CS_LOGINFO, the server login information structure. This structure,
which is associated with a CS_CONNECTION, contains server login
information such as user name and password.

• CS_DS_OBJECT, which contains information about a directory entry.

• CS_BLKDESC, a control structure used by applications that call Bulk-
Library routines. For information on Bulk-Library, see the Open Client
and Open Server Common Libraries Reference Manual.

• CS_LOCALE, which is used to store localization information.

CS_CONTEXT
Before an application can initialize Client-Library, it must allocate a
CS_CONTEXT, or context, structure.

A CS_CONTEXT structure stores configuration information that describes a
particular context, or operating environment, for a set of server connections.
CS_CONTEXT is shared by CS-Library, Client-Library, and Server-Library. A
CS_CONTEXT structure is allocated and dropped using the CS-Library
routines cs_ctx_alloc and cs_ctx_drop.

Although an application can use more than one context, a simple application
typically requires only one.

Note An Open Client application that is running under CICS on an IBM host
is restricted to one context per application.

Some context information is stored in the form of properties. Properties have
values that an application can change to customize a context. Properties
include CS_MAX_CONNECT, which defines the maximum number of
connections allowed within the context, and CS_NETIO, which determines
whether or a context’s connections default to synchronous or asynchronous
behavior.

Connection and command structures also have properties. When a connection
is allocated, it picks up default property values from its parent context. When
a command structure is allocated, it picks up default property values from its
parent connection.

See the “Properties” topics page in the Open Client Client-Library/C Reference
Manual.
30 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
CS_CONNECTION
A CS_CONNECTION structure stores information about a particular
client/server connection, including the user name and password for the
connection, the packet size the connection will use, and whether the connection
is synchronous or asynchronous.

As with a context, some connection information is stored in the form of
properties. When a connection is created, it picks up some default property
values from its parent context. Other properties (those that do not exist at the
context level, such as CS_PACKETSIZE), default to standard Client-Library
values.

Multiple connections to one or more servers can exist simultaneously within a
single context.

CS_COMMAND
A CS_COMMAND, or command, structure is used to send commands to a
server and to process the results of those commands.

A command structure is associated with a specific parent connection. Multiple
command structures can exist simultaneously for a single connection.

Control structure hierarchy
CS_CONTEXT, CS_CONNECTION, and CS_COMMAND are the basic
control structures to set up the Client-Library environment, connect to a server,
send commands, and process results. All three of these structures are hidden.

Connection and command rules
The following rules apply to connection and command structures:

• Within a connection, the results of a command must be completely
processed before another command can be sent.

The exception to this rule is a ct_cursor (CS_CURSOR_OPEN) command,
which generates a cursor result set. After ct_results returns
CS_CURSOR_RESULT to indicate that cursor results are available:
Client-Library/C Programmers Guide 31

CS_LOGINFO
• The command structure that sent the cursor open command can be
used to send a cursor update or cursor delete command related to the
newly opened cursor.

• Any other command structure within the connection can be used to
send a command not related to the newly opened cursor.

• A separate command structure must be used for each Client-Library
cursor. A Client-Library cursor is one that is declared through ct_cursor.
See Chapter 7, “Using Client-Library Cursors.”

CS_LOGINFO
A CS_LOGINFO, or login information, structure, is used internally to contain
connection structure information, such as user name and password, that is used
when logging in to a server.

Connection properties that reside in this structure are known as login
properties.

The Client-Library routines ct_getloginfo and ct_setloginfo use a
CS_LOGINFO structure. An application can use these routines to copy login
properties from an open connection to a new connection structure.

CS_DS_OBJECT
A CS_DS_OBJECT, or directory object, structure, contains information about
a directory entry. Client-Library and Server-Library use a directory to store the
network address information required to create connections. Storage for the
directory can be provided by the Sybase interfaces file or a network-based
directory, such as the Windows Registry.

An application receives pointers to one or more CS_DS_OBJECT structures as
the result of a directory search by the Client-Library routine ct_ds_lookup.

See Chapter 9, “Using Directory Services.”
32 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
CS_BLKDESC
Bulk-library routines use a CS_BLKDESC, or bulk descriptor structure. The
bulk descriptor is the control structure for bulk copy operations.

An application calls blk_alloc to allocate a CS_BLKDESC structure.

After completing a bulk copy operation, an application frees a CS_BLKDESC
by calling blk_drop.

Bulk-Library routines are documented in the Open Client and Open Server
Common Libraries Reference Manual.

CS_LOCALE
A CS_LOCALE, or locale structure, can be used to specify localization
information at the context, connection, command structure, or data element
levels.

A CS_LOCALE structure specifies:

• A language, character set, and collating sequence

• How to represent dates, times, numeric, and monetary values in character
format

An application can call the CS-Library routines cs_loc_alloc, cs_locale, and
cs_loc_drop to allocate, set values for, and drop a CS_LOCALE structure.

See the “International Support” topics page in the Open Client Client-
Library/C Reference Manual.

Exposed structures
Exposed structures are structures whose internals are documented. A Client-
Library application must allocate any exposed structures it intends to use. Type
definitions for the exposed structures are included in the header file ctpublic.h.
In addition, Chapter 2, “Topics,” in the Open Client Client-Library/C
Reference Manual contains a topics page for each exposed structure.

Exposed structures include:
Client-Library/C Programmers Guide 33

Exposed structures
• CS_BROWSEDESC – the browse descriptor structure

• CS_CLIENTMSG – the Client-Library message structure

• CS_DATAFMT – the data format structure

• CS_DATEREC – the datetime descriptor structure

• CS_IODESC – the I/O descriptor structure

• CS_PROP_SSL_LOCALID – the decryption structure

• CS_SERVERMSG – the server message structure

• SQLCA – the SQL communications area structure

• SQLCODE – the SQL code structure

• SQLSTATE – the SQL state structure

CS_BROWSEDESC
ct_br_column uses a CS_BROWSEDESC structure to return information about
a browse mode column. Browse mode columns are returned by a Transact-SQL
select ... for browse statement.

See the “Browse Mode” topics page in the Open Client Client-Library/C
Reference Manual.

For a description of the fields in a CS_BROWSEDESC structure, see the
“CS_BROWSEDESC Structure” topics page in the Open Client Client-
Library/C Reference Manual.

CS_CLIENTMSG
Client-Library uses a CS_CLIENTMSG structure to describe a Client-Library
error or informational message.

For a discussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”

For a description of the fields in a CS_CLIENTMSG structure, see the
“CS_CLIENTMSG Structure” topics page in the Open Client Client-Library/C
Reference Manual.
34 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
CS_DATAFMT
Client-Library routines use the CS_DATAFMT structure to describe data
values and program variables.

Some routines require a CS_DATAFMT structure as an input parameter. For
example, ct_bind requires a data format structure describing the destination
variable for a bind, and ct_param requires a data format structure describing the
parameter being passed.

Other routines fill in CS_DATAFMT fields with a description of output data,
which an application can then access directly. For example, ct_describe
initializes a CS_DATAFMT structure with a description of a result data item.

Client-Library routines that use the CS_DATAFMT structure include ct_bind,
ct_describe, and ct_param. CS-Library routines that use CS_DATAFMT
include cs_convert and cs_set_convert.

For a description of the fields in a CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics page in the Open Client Client-Library/C
Reference Manual.

When a CS_DATAFMT structure is an input parameter to a routine, the routine
ignores the contents of any fields in the structure that it does not use. For
example, ct_bind ignores the contents of the name, namelen, status, and
usertype fields.

The reference page for each routine that uses CS_DATAFMT contains a table
listing the fields that are used and the values they can have.

CS_DATEREC
The CS_DATEREC structure is used with the CS-Library routine cs_dt_crack
to interpret date and time data returned from the server. Date and time data is
represented on the server by the date, time, datetime, datetime4, bigdatetime,
and bigtime datatypes. These datatypes are packed structures. cs_dt_crack
unpacks the date and time components into the CS_DATEREC fields.

For a description of the server datetime datatype and the equivalent Client-
Library types, see “Datetime types” on page 56. For a description of the
CS_DATEREC structure, see the cs_dt_crack reference page in the Open
Client and Open Server Common Libraries Reference Manual.
Client-Library/C Programmers Guide 35

Exposed structures
CS_IODESC
Client-Library uses a CS_IODESC structure to describe text or image data.

For a discussion of how the CS_IODESC is used to process text and image
values, see the “text and image Data Handling” topics page in the Open Client
Client-Library/C Reference Manual.

For a description of the fields in a CS_IODESC structure, see the
“CS_IODESC Structure” topics page in the Open Client Client-Library/C
Reference Manual.

CS_PROP_SSL_LOCALID
Client-Library uses a CS_PROP_SSL_LOCALID structure to specify the path
to the Local ID (certificates) file. The CS_PROP_SSL_LOCALID structure
contains a file name and a password used to decrypt the information in the file.

For information about CS_PROP_SSL_LOCALID, see the Open Client
Client-Library/C Reference Manual.

CS_SERVERMSG
Client-Library uses a CS_SERVERMSG structure to describe a server error or
informational message.

For a discussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”

For a description of the fields in a CS_SERVERMSG structure, see the
“CS_SERVERMSG Structure” topics page in the Open Client Client-
Library/C Reference Manual.

SQLCA, SQLCODE, and SQLSTATE
When an application is handling error and informational messages inline, the
Client-Library routine ct_diag can return message information in a SQLCA,
SQLCODE, or SQLSTATE structure.

For a discussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”
36 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
For a description of the SQLCA, SQLCODE, and SQLSTATE structures, see
the “SQLCA Structure,” “SQLCODE Structure,” and “SQLSTATE Structure”
topics pages in the Open Client Client-Library/C Reference Manual.

SQLDA
Applications can use a SQLDA structure with the Client-Library routine
ct_dynsqlda to pass parameters for server commands and handle the results
from server commands.

For a description of the SQLDA structure and its use in applications, see the
ct_dynsqlda reference page in the Open Client Client-Library/C Reference
Manual.

Constants
Client-Library makes use of a wide variety of constants, including type
constants, format constants, and other symbolic constants.

Constants related to a routine (for example, symbolic constants used as return
values) are listed on the reference page for the routine in the Open Client
Client-Library/C Reference Manual.

Type constants
Open Client and Open Server use type constants to describe the datatypes of
program variables. For example, when calling ct_bind to describe a bind
variable of type CS_DATETIME, an application sets the datatype field of the
CS_DATAFMT structure to CS_DATETIME_TYPE.

Client-Library routines that use type constants include ct_bind, ct_describe, and
ct_param. In addition, the CS-Library routine cs_convert uses type constants.

The type constant for a datatype is the name of the datatype with “_TYPE”
appended. For example, the type constant for the datatype CS_CHAR is
CS_CHAR_TYPE.

With the exception of CS_CHAR, all datatypes correspond to a single type
constant.
Client-Library/C Programmers Guide 37

Constants
CS_CHAR corresponds to three: CS_CHAR_TYPE,
CS_BOUNDARY_TYPE, and CS_SENSITIVITY_TYPE. This means that
variables described as CS_BOUNDARY_TYPE or
CS_SENSITIVITY_TYPE must be declared as CS_CHAR.

Table 3-3 on page 52 lists Open Client type constants.

Format constants
Open Client and Open Server use format constants to describe how to format
character and binary data. In particular, the format field of the CS_DATAFMT
structure is a bitmask of format constants indicating how to format character,
text, and binary data.

Table 2-1 lists Open Client format constants:

Table 2-1: Format constants

Other symbolic constants
Open Client makes use of a wide variety of other symbolic constants. Many
Client-Library routines use symbolic constants as input and output parameter
values.

Table 2-2 lists some of the symbolic constants used in Open Client:

Format constant Valid types Resulting format

CS_FMT_NULLTERM Character and text The data is null-terminated.

CS_FMT_PADBLANK Character and text The data is padded with
blanks to the full length of
the variable.

CS_FMT_PADNULL Character, text, binary,
and image

The data is padded with
nulls to the full length of
the variable.

CS_FMT_UNUSED All No formatting takes place.
38 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
Table 2-2: Other symbolic constants

Note The underlying values of symbolic constants may change from version
to version. For this reason, Client-Library application programmers should
always code using the symbolic constants themselves and not their underlying
values.

Conventions
This section contains information about Client-Library’s parameter
conventions.

Topics include NULL and unused parameters, string parameters, and the
standard Client-Library parameters action, buffer, buflen, and outlen.

NULL and unused parameters
This section contains information about NULL and unused parameters.

Pointer parameters

A pointer parameter can:

• Have a non-NULL value

• Have a value of NULL

Symbolic constant Meaning

CS_FAIL A return code indicating failure

CS_FALSE A Boolean false value.

CS_MAX_NAME The maximum column name length
allowed by Adaptive Server Enterprise.

CS_NULLTERM CS_NULLTERM passed as a buffer’s
length indicates that the value contained
in the buffer is null-terminated.

CS_SUCCEED A return code indicating successful
execution of a library call.

CS_TRUE A Boolean true value.
Client-Library/C Programmers Guide 39

Conventions
• Be unused

Pass NULL and unused pointer parameters as NULL.

If the parameter has a NULL value, the length variable associated with the
parameter, if any, must be 0 or CS_UNUSED.

If the parameter is unused, the length variable associated with the parameter, if
any, must be CS_UNUSED.

Client-Library uses current programming context information to determine
whether to interpret the parameter as NULL or unused.

Non-pointer parameters

Pass non-pointer, unused parameters as CS_UNUSED.

Input parameter strings
Most string parameters are associated with a parameter that indicates the length
of the string.

When passing a null-terminated string, an application can pass the length
parameter as CS_NULLTERM.

When passing a string that is not null-terminated, an application must set the
associated length parameter to the length, in bytes, of the string.

If a string parameter is NULL, the associated length parameter must be 0 or
CS_UNUSED.

Output parameter strings
An application indicates the length of a string buffer by setting an associated
length parameter. If the length parameter indicates that the buffer is not large
enough to hold a null-terminated output string, Client-Library routines return
CS_FAIL.

Pointers to basic structures
All Client-Library routines take a pointer to a CS_CONTEXT structure, a
CS_CONNECTION structure, or a CS_COMMAND structure as a parameter.
40 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
An application must allocate these structures (using cs_ctx_alloc, ct_con_alloc,
or ct_cmd_alloc) before using them as parameters.

If an application passes an invalid control structure address to a Client-Library
routine, the routine returns CS_FAIL, and Client-Library does not call the
application’s client message callback routine. Client-Library requires the
address of a valid control structure to retrieve the address of the application’s
callback routine.

Item numbers
Many Client-Library routines that process results or return information about
results take an item number as a parameter. An item number identifies a result
item in a result set, and can be a column number, a compute column number, a
parameter number, or a return status number.

Item numbers start at 1 and never exceed the number of items in the current
result set. An application can call ct_res_info with type as CS_NUMDATA to
obtain the number of items in the current result set.

When the result set contains columns, item is a column number. Columns are
returned to an application in select-list order.

When the result set contains compute columns, item is the column number of
a compute column. Compute columns are returned in the order in which they
are listed in the compute clause.

When the result set contains parameters, item is a parameter number. Stored
procedure return parameters are returned in the same order in which the
parameters were originally listed in the stored procedure’s create procedure
statement. This is not necessarily the same order as specified in the Remote
Procedure Call (RPC) command that invoked the stored procedure. In
determining what number to pass as item, do not count nonreturn parameters.
For example, if the second parameter in a stored procedure is the only return
parameter, pass item as 1.

When the result set contains a return status, item is always 1, as there can be
only a single status in a return status result set.

action, buffer, buflen, and outlen
Many Client-Library routines use some combination of the parameters action,
buffer, buflen, and outlen.
Client-Library/C Programmers Guide 41

Conventions
• action – describes whether to set or retrieve information. For most
routines, action can take the symbolic values CS_GET, CS_SET, and
CS_CLEAR.

If action is CS_CLEAR, buffer must be NULL, and buflen must be
CS_UNUSED.

• buffer – typically a pointer to program data space.

If information is being set, buffer points to the value to use in setting the
information.

If information is being retrieved, buffer points to the space in which the
Client-Library routine places the requested information.

If information is being cleared, buffer must be NULL.

If the Client-Library routine returns CS_FAIL, *buffer remains
unchanged.

• buflen – the length, in bytes, of the buffer data space.

If information is being set and the value in *buffer is null-terminated, pass
buflen as CS_NULLTERM.

If *buffer is a fixed-length value, a symbolic value, or a function, buflen
must be CS_UNUSED.

If buffer is NULL, buflen must be 0 or CS_UNUSED.

• outlen – a pointer to an integer variable.

outlen must be NULL if information is being set.

When information is being retrieved, outlen is an optional parameter. If
supplied, Client-Library sets the variable to the length, in bytes, of the
requested information.

If the information is longer than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Table 2-3 summarizes the interaction between action, buffer, buflen, and
outlen:

Table 2-3: Interaction between action, buffer, buflen, and outlen
parameters

action buffer buflen outlen What happens

CS_CLEAR NULL CS_UNUSED NULL The Client-Library information is
cleared by resetting it to its default
value.
42 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions
CS_SET A pointer to a null-
terminated character
string

CS_NULLTERM
or the length of the
string, not
including the null
terminator

NULL The Client-Library information is
set to the value of the *buffer
character string.

CS_SET A pointer to a
character string that is
not null-terminated

The length of the
string

NULL The Client-Library information is
set to the value of the *buffer
character string.

CS_SET A pointer to a
variable-length,
noncharacter value
(for example, binary
data)

The length of the
data

NULL The Client-Library information is
set to the value of the *buffer data.

CS_SET A pointer to a fixed-
length or symbolic
value

CS_UNUSED NULL The Client-Library information is
set to the value of the integer or
symbolic value.

CS_SET NULL 0 or CS_UNUSED NULL The Client-Library information is
set to NULL.

CS_GET A pointer to space
large enough for the
return character string
plus a null terminator

The length of
*buffer

Supplied or
NULL

The return value is copied to
*buffer.

A null terminator is appended.

If supplied, *outlen is set to the
length of the return value, including
the null terminator.

CS_GET A pointer to space that
is not large enough for
the return character
string plus a null
terminator

The length of
*buffer

Supplied or
NULL

No data is copied to *buffer.

If supplied, *outlen is set to the
length of the return value, including
the null terminator.

The routine returns CS_FAIL.

CS_GET A pointer to space that
is large enough for the
return variable-length,
noncharacter data

The length of
*buffer

Supplied or
NULL

The return value is copied to
*buffer.

If supplied, *outlen is set to the
length of the return value.

CS_GET A pointer to space that
is not large enough for
the return variable-
length, noncharacter
data

The length of
*buffer

Supplied or
NULL

No data is copied to *buffer.

If supplied, *outlen is set to the
length of the return value.

The routine returns CS_FAIL.

action buffer buflen outlen What happens
Client-Library/C Programmers Guide 43

Conventions
CS_GET A pointer to space that
is assumed to be large
enough for a fixed-
length or symbolic
value

CS_UNUSED Supplied or
NULL

The return value is copied to
*buffer.

If supplied, *outlen is set to the
length of the return value.

action buffer buflen outlen What happens
44 Open Client

C H A P T E R 3 Using Open Client and Server
Datatypes

This chapter summarizes the datatypes that are shared by Open Client and
Open Server.

Types and type constants
Client-Library supports a wide range of datatypes, which are shared with
CS-Library and Server-Library. In most cases, they correspond directly to
Adaptive Server Enterprise datatypes.

Where are datatypes declared?
The header file cstypes.h contains type definitions (typedefs) for all of the
Open Client and Open Server datatypes. The cstypes.h file is included in
Client-Library applications using ctpublic.h—there is no need to include
it explicitly.

An application declaring program variables uses these type definitions in
its declaration section. For example:

CS_CHAR buffer[40];
CS_INT result_type, count;
CS_MONEY profit;

Topic Page
Types and type constants 45

Datatype summary 52

Null substitution values 60

Open Client user-defined datatypes 62
Client-Library/C Programmers Guide 45

Types and type constants
Why use Open Client and Open Server datatypes?
There are two reasons why you should use Open Client and Open Server
datatypes in your application rather than the native C datatypes: heterogeneous
architecture, and portability of application code.

In a client/server application, data may be shared among machines with
different architectures.

Open Client and Open Server datatypes provide a platform-independent
representation for data that is transported between machines with different
architectures. For example, if a client program is compiled and run on a
machine that stores the bytes of integer values in a different order from the
machine where the server is running, the bytes are swapped when CS_INT
values are transported over a connection. For this reason, always use the
correct CS_TYPEDEF to declare any variable that holds data to be sent to the
server or read from the results of a server command.

Open Client and Open Server datatypes also permit application source code to
be ported between platforms. For example, a CS_INT is always mapped to a
system datatype that matches a 4-byte integer. Always use the correct
CS_TYPEDEF to declare variables that are used in calls to Client-Library or
CS-Library routines.

unichar datatype
unichar supports 2-byte characters, supporting multilingual client applications,
and reducing the overhead associated with character-set conversions.

Designed the same as the Open Client and Open Server CS_CHAR datatype,
CS_UNICHAR is a shared, C-programming datatype that can be used
anywhere the CS_CHAR datatype is used. The CS_UNICHAR datatype stores
character data in Unicode UCS Transformational Format 16-bit (UTF-16),
which is 2-byte characters.

The Open Client and Open Server CS_UNICHAR datatype corresponds to the
Adaptive Server Enterprise UNICHAR fixed-width and UNIVARCHAR
variable-width datatypes, which store 2-byte characters in the Adaptive Server
Enterprise database.

As a standalone, Open Client applications can use this functionality to convert
other datatypes to and from CS_UNICHAR at the client side, even if the server
does not have the capability to process 2-byte characters.
46 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
Datatypes and capabilities

To send and receive 2-byte characters, the client specifies its preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server site.

Following are the Open Client ct_capability() parameters:

• CS_DATA_UCHAR is a request sent to the server to determine whether
the server supports 2-byte characters.

• CS_DATA_NOUCHAR is a parameter sent from the client to tell the
server not to support unichar for this specific connection.

To access 2-byte character data, Open Client and Open Server implements:

• CS_UNICHAR – a datatype.

• CS_UNICHAR_TYPE – a datatype constant to identify the data’s
datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_UNICHAR_TYPE
allows you to use existing API calls, such as ct_bind, ct_describe, ct_param, and
so on.

CS_UNICHAR uses the format bitmask field of CS_DATAFMT to describe
the destination format.

For example, in the Client-Library sample program, rpc.c, the
BuildRpcCommand() function contains the section of code that describes the
datatype:

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_CHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;
...

In this example, from the uni_rpc.c sample program, the character type is
defined as datafmt.datatype = CS_CHAR_TYPE. Use an ASCII text editor to
edit the datafmt.datatype field to:

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_UNICHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
Client-Library/C Programmers Guide 47

Types and type constants
datafmt.status = CS_RETURN;
datafmt.locale = NULL;
...

Samples are found in %SYBASE%\%SYBASE_OCS%\sample for Windows,
and in $SYBASE/$SYBASE_OCS/sample for UNIX.

Since CS_UNICHAR is a UTF-16 encoded Unicode character datatype that is
stored in 2 bytes, the maximum length of CS_UNICHAR string parameter sent
to the server is restricted to one-half the length of CS_CHAR, which is stored
in 1-byte format.

Table 3-1 lists the CS_DATAFMT bitmask fields.

Table 3-1: CS_DATAFMT structure

isql and bcp utilities

Both the isql and the bcp utilities automatically support unichar data if the
server supports 2-byte character data. bcp supports 4K, 8K and 16K page sizes.

If the client’s default character set is UTF-8, isql displays 2-byte character data,
and bcp saves 2-byte character data in the UTF-8 format. Otherwise, the data
is displayed or saved, respectively, in 2-byte Unicode data in binary format.

Use isql -Jutf8 to set the client character set for isql. Use bcp -Jutf8 to set
the client character set for the bcp utility.

Limitations

The server to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes, and use UTF-8 as the default character set.

If the server does not support 2-byte Unicode datatypes, the server returns an
error message: “Type not found. Unichar/univarchar is not
supported.”

Bitmask field Description

CS_FMT_NULLTERM The data is 2-byte Unicode null-terminated (0x0000).

CS_FMT_PADBLANK The data is padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS_FMT_PADNULL The data is padded with 2-byte Unicode nulls to the full
length of the destination variable (0x0000).

CS_FMT_UNUSED No format information is provided.
48 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
CS_UNICHAR does not support the conversion from UTF-8 to UTF-16 byte
format for CS_BOUNDARY and CS_SENSITIVITY. All other datatype
formats are convertible.

CS_UNICHAR does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

unitext datatype
CS_UNITEXT is an Open Client and Open Server C Programming datatype
that corresponds directly to the server UNITEXT datatype. CS_UNITEXT also
exhibits identical syntax and semantics to CS_TEXT. The difference is that
CS_UNITEXT encodes character data in the Unicode UTF-16 format.

Datatypes and capabilities

To send and receive 2-byte characters, the client specifies its preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server side.

The Open Client ct_capability() parameters:

• CS_DATA_UNITEXT – is a request sent to the server to determine
whether the server supports 2-byte Unicode datatypes.

• CS_DATA_NOUNITEXT – is a parameter sent from the client to tell the
server not to send unitext for this specific connection.

To access 2-byte character data, Open Client and Open Server implements:

• CS_UNITEXT – a datatype.

• CS_UNITEXT_TYPE – a datatype constant to identify the data’s
datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_UNITEXT_TYPE
allows you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

Since CS_UNITEXT is encoded as a UTF-16 Unicode datatype and stored in
the 2-byte format, it can be used anywhere CS_TEXT is used. The maximum
length of the CS_UNITEXT string parameter is half of the maximum length of
CS_TEXT.
Client-Library/C Programmers Guide 49

Types and type constants
Like CS_TEXT, CS_UNITEXT uses CS_DATAFMT to describe the
destination format. The symbols and meanings of the format field values are as
follows:

Table 3-2: CS_DATAFMT structure

isql and bcp utilities

In an Open Client application, UNITEXT is always activated, with no
configuration parameter required. UNITEXT is part of the Open Client and
Open Server libraries and the utilities (isql & bcp) that are shipped with them.
isql displays and bcp saves the server’s UNITEXT in binary format.

Limitations

The server to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes.

If the server does not support 2-byte Unicode datatypes, the server returns an
error message. However, the client can convert other datatypes to or from
CS_UNITEXT.

CS_UNITEXT does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

xml datatype
CS_XML is a variable-width Open Client and Open Server C Programming
datatype. CS_XML corresponds directly to CS_TEXT and CS_IMAGE
datatypes. CS_XML can be used anywhere CS_TEXT and CS_IMAGE are
used to represent XML documents and contents.

Bitmask field Description

CS_FMT_NULLTERM The data is 2-byte Unicode null-terminated (0x0000).

CS_FMT_PADBLANK The data is padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS_FMT_PADNULL The data is padded with 2-byte Unicode nulls to the full
length of the destination variable (0x0000).

CS_FMT_UNUSED No format information is provided.
50 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
Datatypes and capabilities

Following are the Open Client ct_capability() parameters:

• CS_DATA_XML is a request sent to the server to determine whether the
server supports XML.

• CS_DATA_NOXML is a parameter sent from the client to tell the server
not to support xml for this specific connection.

To access XML datatypes, Open Client and Open Server implements:

• CS_XML – a datatype.

• CS_XML_TYPE – a datatype constant to identify the data’s datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_XML_TYPE allows
you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

isql and bcp utilities

In an Open Client application, XML is always activated, with no configuration
parameter required. XML is part of the Open Client and Open Server libraries
and the utilities (isql & bcp) that are shipped with them. isql displays and bcp
saves the server’s XML in binary format.

Limitations

XML data can only be transmitted between client and server if the server
supports XML. If there is no support, the server returns an error message.
cs_capability is used to test if the server supports XML. A client can convert
other possible datatypes to or from the CS_XML datatype.

Note the following syntax rules of XML:

• Closing XML tags cannot be omitted.

• XML tags are case sensitive.

• XML elements must be properly nested.

• XML documents must have a root element.

• XML attribute values must always be quoted.

With XML, white space is preserved and CR/LF is converted to LF.

The Open Client and Open Server does not check or validate CS_XML
documents or contents.
Client-Library/C Programmers Guide 51

Datatype summary
What are type constants?
Type constants are symbolic values that identify the datatype of a program
variable. Many CS-Library, Client-Library, and Server-Library routines take
the address of a program variable as a CS_VOID * parameter. Type constants
are required to identify the datatype when passing CS_VOID * parameters.
Typically, a type constant is passed to a routine as the datatype field of a
CS_DATAFMT structure. (See “CS_DATAFMT” on page 35.)

Datatype summary
Table 3-3 lists Open Client and Open Server type constants, their
corresponding type definitions, and their corresponding Adaptive Server
Enterprise datatypes.

Adaptive Server Enterprise datatypes are identified by Transact-SQL
keywords. See the Adaptive Server Enterprise documentation for descriptions
of the Adaptive Server Enterprise datatypes.

Table 3-3: Datatype summary

Type
category

Open Client and Open
Server type constant Description

Corresponding C
datatype

Corresponding
server
datatype

Binary types CS_BINARY_TYPE Binary type CS_BINARY binary,
varbinary

CS_LONGBINARY_TYPE Long binary type CS_LONGBINARY None

CS_VARBINARY_TYPE Variable-length
binary type

CS_VARBINARY None

Bit types CS_BIT_TYPE Bit type CS_BIT bit

Character types CS_CHAR_TYPE Character type CS_CHAR char,
varchar

CS_LONGCHAR_TYPE Long character
type

CS_LONGCHAR None

CS_VARCHAR_TYPE Variable-length
 character type

CS_VARCHAR None

CS_UNICHAR_TYPE Fixed-length or
variable-length
character type

CS_UNICHAR unichar

univarchar

XML type CS_XML_TYPE Variable-length
character type

CS_XML xml
52 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
Datetime type CS_DATE_TYPE 4-byte date type CS_DATE date

CS_TIME_TYPE 4-byte time type CS_TIME time

CS_DATETIME_TYPE 8-byte datetime
type

CS_DATETIME datetime

CS_DATETIME4_TYPE 4-byte datetime
type

CS_DATETIME4 smalldatetime

CS_BIGDATETIME_TYPE 8-byte binary type CS_BIGDATETIME bigdatetime

CS_BIGTIME_TYPE 8-byte binary type CS_BIGTIME bigtime

Numeric types CS_TINYINT_TYPE 1-byte unsigned
integer type

CS_TINYINT tinyint

CS_SMALLINT_TYPE 2-byte integer type CS_SMALLINT smallint

CS_INT_TYPE 4-byte integer type CS_INT int

CS_BIGINT_TYPE 8-byte integer type CS_BIGINT bigint

CS_USMALLINT_TYPE 2-byte unsigned
integer type

CS_USMALLINT usmallint

CS_UINT_TYPE 4-byte unsigned
integer type

CS_UINT uint

CS_UBIGINT_TYPE 8-byte unsigned
integer type

CS_UBIGINT ubigint

CS_DECIMAL_TYPE Decimal type CS_DECIMAL decimal

CS_NUMERIC_TYPE Numeric type CS_NUMERIC numeric

CS_FLOAT_TYPE 8-byte float type CS_FLOAT float

CS_REAL_TYPE 4-byte float type CS_REAL real

Large object
(LOB) locator
types

CS_TEXTLOCATOR_
TYPE

Locator type CS_LOCATOR text_locator

CS_IMAGELOCATOR_
TYPE

Locator type CS_LOCATOR image_locator

CS_UNITEXTLOCATOR_
TYPE

Locator type CS_LOCATOR unitext_locator

Money types CS_MONEY_TYPE 8-byte money type CS_MONEY money

CS_MONEY4_TYPE 4-byte money type CS_MONEY4 smallmoney

Text and image
types

CS_TEXT_TYPE Text type CS_TEXT text

CS_IMAGE_TYPE Image type CS_IMAGE image

CS_UNITEXT_TYPE Variable-length
character type

CS_UNITEXT unitext

Type
category

Open Client and Open
Server type constant Description

Corresponding C
datatype

Corresponding
server
datatype
Client-Library/C Programmers Guide 53

Datatype summary
Binary types
Open Client includes three binary types, CS_BINARY, CS_LONGBINARY,
and CS_VARBINARY:

• CS_BINARY corresponds to the Adaptive Server Enterprise types binary
and varbinary. That is, Client-Library interprets both the server binary and
varbinary types as CS_BINARY. For example, ct_describe returns
CS_BINARY_TYPE when describing a result column that has the server
datatype varbinary.

• CS_LONGBINARY does not correspond to any Adaptive Server
Enterprise type, but some Open Server applications may support
CS_LONGBINARY. An application can call ct_capability and check the
CS_DATA_LBIN capability to determine whether an Open Server
connection supports CS_LONGBINARY. If it does, then ct_describe can
return CS_LONGBINARY when describing a result data item. A
CS_LONGBINARY value has a maximum length of 2,147,483,647 bytes.

• CS_VARBINARY does not correspond to any Adaptive Server Enterprise
type, and Open Client routines do not return CS_VARBINARY_TYPE.
CS_VARBINARY is a structure that holds a byte array and its length:

typedef struct _cs_varybin
 {
 CS_SMALLINT len;
 CS_BYTE array[CS_MAX_CHAR];
 } CS_VARBINARY;

CS_VARBINARY is provided so that programmers can write non-C
programming language veneers to be written for Open Client. Typical
client applications do not use CS_VARBINARY.

Bit types
Open Client supports a single bit type, CS_BIT. This type is intended to hold
server bit (or Boolean) values of 0 or 1. When converting other types to bit, all
nonzero values are converted to 1.

Character types
Open Client has four character types, CS_CHAR, CS_LONGCHAR,
CS_VARCHAR, and CS_XML:
54 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
• CS_CHAR corresponds to the Adaptive Server Enterprise types char and
varchar. In other words, Client-Library interprets both the server char and
varchar types as CS_CHAR. For example, ct_describe returns
CS_CHAR_TYPE when describing a result column that has the server
datatype varchar.

• CS_LONGCHAR does not correspond to any Adaptive Server Enterprise
datatype, but some Open Server applications may support
CS_LONGCHAR. An application can call ct_capability and check the
CS_DATA_LCHAR capability to determine whether an Open Server
connection supports CS_LONGCHAR. If it does, then ct_describe can
return CS_LONGCHAR when describing a result data item. A
CS_LONGCHAR value has a maximum length of 2,147,483,647 bytes.

• CS_VARCHAR does not correspond to any Adaptive Server Enterprise
type. For this reason, Open Client routines do not return
CS_VARCHAR_TYPE. CS_VARCHAR is a structure provided to enable
non-C programming language veneers to be written for Open Client. It
holds a string and its length:

typedef struct_cs_varchar
 {
 CS_SMALLINT len;
 CS_CHAR str[CS_MAX_CHAR];
 } CS_VARCHAR;

Typical client applications do not use CS_VARCHAR.

• Corresponding directly to the xml datatype, CS_XML is an addition to
CS_TEXT and CS_IMAGE datatypes for representing XML data.
CS_XML represents XML data in an unparsed format and can be used
anywhere CS_TEXT and CS_IMAGE is used, for example, in cs_convert,
ct_bind, or ct_param.

CS_XML only fetches data if the server supports XML datatypes.
CS_DATA_XML (request) and CS_DATA_NOXML (response), are
added to ct_capability to determine the server’s capability to support XML
datatypes.

CS_XML is always activated, and its datatype constant is
CS_XML_TYPE. The xml datatype is mapped to TDS_XML.
Client-Library/C Programmers Guide 55

Datatype summary
Datetime types
Open Client supports six datetime types: CS_DATE, CS_TIME,
CS_DATETIME, CS_DATETIME4, CS_BIGDATETIME, and
CS_BIGTIME. These datatypes are intended to hold 8-byte and 4-byte
datetime values.

The CS_BIGDATETIME and CS_BIGTIME datatypes provide microsecond-
level precision for time data. These datatypes are intended to hold 8-byte
binary values.These datatypes function similarly to the respective
CS_DATETIME and CS_TIME datatypes: The CS_BIGDATETIME datatype
can be used anywhere that the CS_DATETIME datatype can be used, and the
CS_BIGTIME datatype can be used anywhere that the CS_TIME datatype can
be used. All Open Client and Open Server routines that can be applied to the
CS_DATETIME and CS_TIME datatypes can also be applied to the
CS_BIGDATETIME and CS_BIGTIME datatypes.

• CS_DATE corresponds to the Adaptive Server Enterprise date datatype
with a range of legal values from January 1, 0001 to December 31, 9999.

• CS_TIME corresponds to the Adaptive Server Enterprise time datatype,
with a range of legal values from 12:00:00.000 to 11:59:59:999 with a
precision of 1/300th of a second (3.33 ms).

• CS_DATETIME corresponds to the Adaptive Server Enterprise datetime
datatype, with a range of legal values from January 1, 1753 to December
31, 9999, with a precision of 1/300th of a second (3.33 ms).

• CS_DATETIME4 corresponds to the Adaptive Server Enterprise
smalldatetime datatype, with a range of legal values from January 1, 1900
to June 6, 2079, with a precision of 1 minute.

• CS_BIGDATETIME corresponds to the Adaptive Server Enterprise
bigdatetime datatype and contains the number of microseconds that have
passed since January 1, 0000 00:00:00.000000. The range of legal
CS_BIGDATETIME values is from January 1, 0001 00:00:00.000000 to
December 31, 9999 23:59:59.999999.

Note January 1, 0000 00:00:00.000000 is the base starting value from
which microseconds are counted. Any value earlier than January 1, 0001
00:00:00.000000 is invalid.

• CS_BIGTIME corresponds to the Adaptive Server Enterprise bigtime
datatype and indicates the number of microseconds that have passed since
the beginning of the day. The range of legal CS_BIGTIME values is from
00:00:00.000000 to 23:59:59.999999.
56 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
• CS_BIGDATETIME and CS_BIGTIME data is presented to the client in
the native-byte order (endianness) of the underlying client platform. Any
necessary byte-swapping is performed at the server before the data is sent
to the client, or after the data is received from the client.

An application can call the CS-Library routine cs_convert to initialize a
datetime type from a character string. cs_convert recognizes all of the date and
time formats valid for Transact-SQL datetime character strings. See the
“Datatypes” topic in the Adaptive Server Enterprise Reference Manual.

cs_convert can also convert a CS_DATETIME or CS_DATETIME4 value into
a character string.

Other routines that are useful when working with datetime values include:

• cs_cmp, which compares two data values.

• cs_dt_crack, which maps a datetime value to a CS_DATEREC structure. A
CS_DATEREC contains distinct fields for the different parts of a datetime
value.

• cs_dt_info, which retrieves language-specific datetime information such as
day names. This routine also configures the format for converting datetime
data values to character strings.

cs_convert, cs_cmp, cs_dt_crack, and cs_dt_info use locale information that is
specified indirectly, using the CS_CONTEXT, or directly, using a
CS_LOCALE structure. (See “CS_LOCALE” on page 33.) An application can
change the locale information for a CS_CONTEXT by calling cs_config to set
the CS_LOC_PROP property for the context.

Numeric types
Open Client supports a wide range of numeric types:

• Integer types include CS_TINYINT, a 1-byte integer, CS_SMALLINT, a
2-byte integer, CS_INT, a 4-byte integer, CS_BIGINT, an 8-byte integer,
CS_USMALLINT, an unsigned 2-byte integer, CS_UINT, an unsigned 4-
byte integer and CS_UBIGINT, an unsigned 8-byte integer.

• CS_REAL corresponds to the Adaptive Server Enterprise datatype real
and is implemented as a C-language float type.

• CS_FLOAT corresponds to the Adaptive Server Enterprise datatype float
and is implemented as a C-language double type.
Client-Library/C Programmers Guide 57

Datatype summary
• CS_NUMERIC and CS_DECIMAL correspond to the Adaptive Server
Enterprise datatypes numeric and decimal. These datatypes provide
platform-independent support for numbers with precision and scale.

The Adaptive Server Enterprise datatypes numeric and decimal are
equivalent, and CS_DECIMAL is defined as CS_NUMERIC.

Large object locator types
Open Client supports large object (LOB) locators. A LOB locator contains a
logical pointer to LOB data in Adaptive Server rather than the data itself,
thereby reducing the amount of data that passes through the network between
Adaptive Server and its clients.

The CS_LOCATOR datatype supports LOB locators. The CS_LOCATOR
datatype is an opaque datatype that stores locator values and optional
prefetched data. Use cs_locator_alloc() to allocate memory for a
CS_LOCATOR variable before binding the incoming locator to the variable,
otherwise, an error occurs. When the variable is no longer needed, free its
memory using cs_locator_drop().

You can resure CS_LOCATOR variables. However, the current locator value
in Adaptive Server is valid only until the transaction ends. The CS_LOCATOR
datatype has three type constants—CS_TEXTLOCATOR_TYPE,
CS_IMAGELOCATOR_TYPE, and CS_UNITEXTLOCATOR_TYPE.

Money types
Open Client supports two money datatypes, CS_MONEY and CS_MONEY4.
These datatypes are intended to hold 8-byte and 4-byte money values,
respectively:

• CS_MONEY corresponds to the Adaptive Server Enterprise money
datatype, with legal values between -$922,337,203,685,477.5807 and
+$922,337,203,685,477.5807.

• CS_MONEY4 corresponds to the Adaptive Server Enterprise smallmoney
datatype, with legal values between -$214,748.3648 and +$214,748.3647.

An application can call the CS-Library routine cs_convert to initialize a money
type from a character string. The cs_convert routine recognizes all of the
money formats valid for Transact-SQL money character strings. See
“Datatypes” in the Adaptive Server Enterprise Reference Manual.
58 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
The cs_convert routine can also convert a CS_MONEY or CS_MONEY4
value into a character string.

Money values cannot be manipulated with standard C operators because they
are stored in structures. To perform arithmetic operations on money values, an
application can either:

• Call the CS-Library routine cs_calc to perform the arithmetic operation, or

• Call cs_convert to convert the money type to a datatype with a standard C
equivalent (such as CS_FLOAT).

The cs_cmp routine can be called to compare money values.

Text and image types
Open Client supports a text datatype, CS_TEXT, a unitext datatype,
CS_UNITEXT, an image datatype, CS_IMAGE:

• CS_TEXT corresponds to the server datatype text, which describes a
variable-length column containing up to 2,147,483,647 bytes of printable
character data.

• CS_UNITEXT corresponds to the server datatype unitext. As with text,
unitext describes a variable length column containing up to 2,147,483,647
bytes of printable data. The difference is that unitext character data is
stored with Unicode UTF-16 encoding rather than the default character set
on the server.

• CS_IMAGE corresponds to the server datatype image, which describes a
variable-length column containing up to 2,147,483,647 bytes of binary
data.

Small text, unitext and image data values require no special handling. Result
values can be bound to program variables and subsequently fetched, and input
data values can be entered into a database using the Transact-SQL insert and
update commands. However, when text, unitext and image values are large, it
is usually more practical for an application to use routines that allow the text,
unitext or image data to be handled one chunk at a time.

These routines are:

• ct_data_info, which sets or retrieves a CS_IODESC structure. A
CS_IODESC structure describes the text, unitext or image data that is to be
read from or written to the server.

• ct_get_data, which reads a chunk of data from the result stream.
Client-Library/C Programmers Guide 59

Null substitution values
• ct_send_data, which writes a chunk of data to the command stream.

See the “text and image Data Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Null substitution values
When a row containing NULL values is fetched from a server, Client-Library
substitutes specified “null substitution values” for the null columns when
copying the row data to program variables.

Table 3-4 lists Client-Library’s default null substitution values:
60 Open Client

CHAPTER 3 Using Open Client and Server Datatypes
Table 3-4: Default null substitution values

To change null substitution values, an application can call the CS-Library
routine cs_setnull.

Destination type Null substitution value

 CS_BINARY_TYPE Empty array

 CS_VARBINARY_TYPE Empty array

 CS_BIT_TYPE 0

 CS_CHAR_TYPE Empty string

 CS_VARCHAR_TYPE Empty string

 CS_DATE_TYPE 4 bytes of zeros

 CS_DATETIME_TYPE 8 bytes of zeros

 CS_DATETIME4_TYPE 4 bytes of zeros

CS_BIGDATETIME 8 bytes of zeros

CS_BIGTIME 8 bytes of zeros

 CS_TINYINT_TYPE 0

 CS_SMALLINT_TYPE 0

 CS_BIGINT_TYPE 0

 CS_INT_TYPE 0

 CS_UINT_TYPE 0

 CS_UBIGINT_TYPE 0

 CS_USMALLINT_TYPE 0

 CS_DECIMAL_TYPE 0.0 (with default scale and precision)

 CS_NUMERIC_TYPE 0.0 (with default scale and precision)

 CS_FLOAT_TYPE 0.0

 CS_REAL_TYPE 0.0

 CS_MONEY_TYPE $0.0

 CS_MONEY4_TYPE $0.0

 CS_BOUNDARY_TYPE Empty string

 CS_SENSITIVITY_TYPE Empty string

 CS_TEXT_TYPE Empty string

 CS_UNITEXT_TYPE Empty string

 CS_TIME_TYPE 4 bytes of zeros

 CS_XML_TYPE Empty string

 CS_IMAGE_TYPE Empty array
Client-Library/C Programmers Guide 61

Open Client user-defined datatypes
Open Client user-defined datatypes
If an application that needs to use a datatype that is not included in the standard
Open Client datatypes, you can create a user-defined datatype. For example,
you might create a user-defined datatype that represents encrypted character
data. To create a user-defined datatype:

1 Create the new datatype name. For example:

typedef char ENCRYPTED_CHAR;

2 Define a type constant that represents the datatype. For example:

#define ENCRYPTED_TYPE CS_USERTYPE + 2;

Because the Open Client routines ct_bind and cs_set_convert use symbolic
type constants to identify datatypes, you must define a type constant for
each user-defined type. User-defined type constants must be greater than
or equal to CS_USERTYPE.

3 Call cs_set_convert to install custom conversion routines to convert
between standard Open Client datatypes and the user-defined datatype.
For the ENCRYPTED_CHAR user-defined datatype in the example
above, you might define and install custom conversion routines that
encrypt and decrypt character data. You might, for example, install an
encryption routine for conversions from CS_CHAR_TYPE to
ENCRYPTED_TYPE, and install a decryption routine for conversions
from ENCRYPTED_TYPE to CS_CHAR_TYPE.

4 Call cs_setnull to define a null substitution value for the user-defined
datatype.

After conversion routines are installed, an application can bind server results
to a user-defined datatype:

mydatafmt.datatype = ENCRYPTED_CHAR;
 ct_bind(cmd, 1, &mydatafmt, mycodename, NULL,
 NULL);

Custom conversion routines are called transparently, whenever required, by
ct_bind and cs_convert.

Note Do not confuse Open Client user-defined datatypes with Adaptive Server
Enterprise user-defined datatypes. Open Client user-defined datatypes are C-
language types, declared within an application. Adaptive Server Enterprise
user-defined datatypes are database column datatypes, created with the system
stored procedure sp_addtype.
62 Open Client

C H A P T E R 4 Handling Errors and Messages

This chapter describes how to program your applications to handle Client-
Library and server error and informational messages.

About messages
Client-Library generates messages in response to a wide range of error
and informational conditions. These messages are called “Client-Library
messages” or “client messages.”

Servers also generate messages in response to error and informational
conditions. These messages are called “server messages.”

How to identify messages
Do not confuse Client-Library messages with Client-Library return codes,
or server messages with message results.

Client-Library messages and Client-Library return codes

Client-Library messages are generated in response to Client-Library
errors and other conditions of interest. Each Client-Library message
includes a number, text, and severity level.

Topic Page
About messages 63

Handling messages with callback routines 65

Handling messages inline 68

Sequencing long messages 70

Extended error data 71

Server transaction states 72
Client-Library/C Programmers Guide 63

About messages
Return codes are symbolic values that indicate success, failure, or other
conditions of interest. All Client-Library routines use return codes.

Generally speaking, when a Client-Library routine returns CS_FAIL, Client-
Library generates a message, but Client-Library can also generate messages at
other times.

Applications need to handle messages in addition to checking return codes.

Server messages and message results

Do not confuse server messages and message results.

Server messages are generated by a server in response to server errors or other
exceptional conditions. Each server message includes a number, text, and
severity level.

Message results are a type of result that can be sent in response to normal
command execution—see “Processing Message Results” on page 6-12.

Server messages and message results are not related.

Two methods for handling messages
An application can handle Client-Library and server messages using one of two
methods:

• Callbacks – the application installs its own routines to handle Client-
Library and server messages. When a message is generated, Client-
Library calls the appropriate callback and passes details about the message
using the callback’s input parameters.

• Inline message handling – in mainline code, the application periodically
calls ct_diag to retrieve messages.

Callbacks have these advantages:

• They are relatively automatic. Once installed, callbacks are triggered
whenever a message occurs.

• They centralize message-handling code.

• They provide a way for an application to gracefully handle unexpected
errors. An application that handles errors using the inline method may not
successfully trap unanticipated errors.
64 Open Client

CHAPTER 4 Handling Errors and Messages
Inline error handling, on the other hand, has the advantage of operating under
an application’s direct control, which allows an application to check for
messages at particular times. For example, an application might call
ct_con_props a dozen times to customize a connection but check for errors only
after the last call.

Most applications use callbacks to handle messages, but an application that is
running on a platform-and-language combination that does not support
callbacks must use the inline method.

An application indicates which method it will use by calling ct_callback to
install message callbacks or by calling ct_diag to initialize inline message
handling.

Combining the methods

An application can use different methods on different connections and can
switch back and forth between the two methods, but these techniques are not
useful in typical applications.

When moving from the inline to the callback method, installing either type of
message callback for a connection turns off inline error handling. Client-
Library discards any saved messages.

When moving from the callback to the inline method, calling ct_diag to
initialize inline message handling deinstalls a connection’s message callbacks.
If this occurs, the connection’s first call to ct_diag retrieves a warning message.

Handling messages with callback routines
Most applications use callbacks to handle Client-Library and server messages.
The application defines and installs callback routines to handle Client-Library
and server messages. When a message is generated, Client-Library calls the
appropriate callback and passes details about the message using the callback’s
input parameters.

To use the callback method, an application must define and install:

• A client-message callback to handle Client-Library messages

• A server-message callback to handle server messages
Client-Library/C Programmers Guide 65

Handling messages with callback routines
An application calls ct_callback to install a message callback. Once installed,
the callbacks are automatically triggered when a Client-Library or server
message occurs.

Client-Library stores callback locations in the CS_CONNECTION and
CS_CONTEXT structures. Because of this, when a Client-Library error occurs
that makes a CS_CONNECTION or CS_CONTEXT structure unusable,
Client-Library cannot call the client-message callback. Instead, the routine that
caused the error returns CS_FAIL.

Defining a client-message callback
A client-message callback is a C function that is defined as follows:

CS_RETCODE clientmsg_cb(context, connection, message)

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_CLIENTMSG *message;

where:

• context is a pointer to the CS_CONTEXT structure for which the message
occurred.

• connection is a pointer to the CS_CONNECTION structure for which the
message occurred. connection can be NULL.

• message is a pointer to a CS_CLIENTMSG structure containing Client-
Library message information. For information about the
CS_CLIENTMSG structure, see the “CS_CLIENTMSG Structure” topics
page in the Open Client Client-Library/C Reference Manual.

 message can have a new value each time the client-message callback is
called.

Like other callbacks, a client-message callback is limited as to which Client-
Library routines it can call. A client-message callback can call only the
following routines:

• ct_config, to retrieve information only

• ct_con_props, to retrieve information or to set the CS_USERDATA
property only

• ct_cmd_props, to retrieve information or to set the CS_USERDATA
property only
66 Open Client

CHAPTER 4 Handling Errors and Messages
• ct_cancel(CS_CANCEL_ATTN)

A client-message callback must return one of the following return codes:

• CS_SUCCEED, to instruct Client-Library to continue any processing that
is occurring on this connection. In the case of timeout errors,
CS_SUCCEED causes Client-Library to wait for one additional timeout
period. At the end of this period, Client-Library calls the client-message
callback again.

• CS_FAIL, to instruct Client-Library to terminate any processing that is
currently occurring on this connection. A return of CS_FAIL results in the
connection being marked as dead. To continue using the connection, the
application must close the connection and then reopen it.

Defining a server-message callback
A server-message callback is a C function that is defined as follows:

CS_RETCODE servermsg_cb(context, connection, message)

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_SERVERMSG *message;

where:

• context is a pointer to the CS_CONTEXT structure for which the message
occurred.

• connection is a pointer to the CS_CONNECTION structure for which the
message occurred. connection can be NULL.

• message is a pointer to a CS_SERVERMSG structure containing server
message information. See the “CS_SERVERMSG Structure” topics page
in the Open Client Client-Library/C Reference Manual for
CS_SERVERMSG field descriptions.

message can have a new value each time the server-message callback is
called.

Like other callbacks, a server-message callback is limited as to which Client-
Library routines it can call. A server-message callback can call only the
following routines:

• ct_config, to retrieve information only
Client-Library/C Programmers Guide 67

Handling messages inline
• ct_con_props, to retrieve information or to set the CS_USERDATA
property only

• ct_cmd_props, to retrieve information or to set the CS_USERDATA
property only

• ct_cancel(CS_CANCEL_ATTN)

• ct_res_info, ct_bind, ct_describe, ct_fetch, and ct_get_data, to process
extended error data only

A server-message callback must return CS_SUCCEED.

Installing callbacks
An application calls ct_callback to install a client or server-message callback.

If an application installs callbacks at the context level, all connection structures
allocated within the context inherit the callbacks.

To “deinstall an existing callback routine, call ct_callback with action as
CS_SET and func as NULL.

To replace an existing callback routine with a new one, call ct_callback with
action as CS_SET install the new routine. ct_callback replaces the existing
callback with the new callback.

To obtain a pointer to an existing callback, call ct_callback with action as
CS_SET and func as the address of a CS_VOID * variable. ct_callback places
the address of the callback in the variable.

Handling messages inline
A Client-Library application calls ct_diag to handle Client-Library and server
messages inline.

An application can use inline error handling at the connection level only. That
is, inline error handling cannot be enabled for a context. If an application has
more than one connection, it must make separate ct_diag calls for each
connection.

An application calls ct_diag to:

• Initialize inline error handling.
68 Open Client

CHAPTER 4 Handling Errors and Messages
• Clear messages.

• Get messages.

• Limit the number of saved messages.

• Find out how many messages are currently saved.

• Retrieve the CS_COMMAND structure on which extended error data (if
any) is available. See “Extended error data” on page 71.

Client-Library does not start saving messages for a connection until inline error
handling has been initialized for the connection.

An application can retrieve client-message information into a
CS_CLIENTMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. An application can retrieve server-message information with a
CS_SERVERMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. For information about these structures, see the Open Client Client-
Library/C Reference Manual.

If a Client-Library error occurs that makes a CS_CONNECTION structure
unusable, ct_diag returns CS_FAIL when called to retrieve information about
the original error.

The CS_EXTRA_INF property
An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE should set the Client-Library property CS_EXTRA_INF to
CS_TRUE.

The CS_EXTRA_INF property determines whether or not Client-Library
returns certain kinds of informational messages, such as the number of rows
affected by a command. Normally, an application can call ct_res_info to obtain
this information. With CS_EXTRA_INF set to CS_TRUE, the information is
returned as a Client-Library message.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is returned
as standard Client-Library messages.
Client-Library/C Programmers Guide 69

Sequencing long messages
The CS_DIAG_TIMEOUT_FAIL property
When inline error handling is in effect, the CS_DIAG_TIMEOUT_FAIL
property determines whether Client-Library fails or retries on Client-Library
timeout errors.

Sequencing long messages
Message callback routines and ct_diag return Client-Library and server
messages in CS_CLIENTMSG and CS_SERVERMSG structures. In the
CS_CLIENTMSG structure, the message text is stored in the msgstring field.
In the CS_SERVERMSG structure, the message text is stored in the text field.
Both msgstring and text are CS_MAX_MSG bytes long.

If a message longer than CS_MAX_MSG - 1 bytes is generated, Client-
Library’s default behavior is to truncate the message. However, an application
can use the CS_NO_TRUNCATE property to instruct Client-Library to
“sequence” long messages instead of truncating them.

When Client-Library is sequencing long messages, it uses as many
CS_CLIENTMSG or CS_SERVERMSG structures as necessary to return the
full text of a message. The message’s first CS_MAX_MSG bytes are returned
in one structure, its second CS_MAX_MSG bytes in a second structure, and so
forth.

Client-Library null terminates only the last chunk of a message. If a message
is exactly CS_MAX_MSG bytes long, the message is returned in two chunks:
the first contains CS_MAX_MSG bytes of the message and the second
contains a null terminator.

If an application is using callback routines to handle messages, Client-Library
calls the callback routine once for each message chunk.
70 Open Client

CHAPTER 4 Handling Errors and Messages
If an application use ct_diag to handle messages, it must call ct_diag once for
each message chunk.

Note The SQLCA, SQLCODE, and SQLSTATE structures do not support
sequenced messages. An application cannot use these structures to retrieve
sequenced messages. Messages that are too long for these structures are
truncated.

Operating system messages are reported in the osstring field of the
CS_CLIENTMSG structure. Client-Library does not sequence operating
system messages.

See the “Error and Message Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Extended error data
Some server messages have extended error data associated with them, which is
additional information about the error. For Adaptive Server Enterprise
messages, the additional information usually describes which column or
columns provoked the error.

Client-Library makes extended error data available to an application in the
form of a parameter result set, where each result item is a piece of extended
error data. A piece of extended error data can be named and can be any
datatype.

An application can retrieve extended error data but is not required to do so.

Uses of extended error data
Applications that allow end users to enter or edit data often need to report errors
to their users at the column level. However, the standard server message
mechanism makes column-level information available only within the text of
the server message. Extended error data provides a means for applications to
conveniently access column-level information.
Client-Library/C Programmers Guide 71

Server transaction states
For example, imagine an application that allows end users to enter and edit data
in the titleauthor table in the pubs2 database. titleauthor uses a key composed of
two columns, au_id and title_id. Any attempt to enter a row with au_id and
title_id values that match those in an existing row causes a “duplicate key”
message to be sent to the application.

On receiving this message, the application must identify the problem column
or columns to the end user so that the user can readily correct them. This
information is also available in the text of the duplicate key message, but an
application must parse the text to extract the column names.

For information about how to identify and process extended error data, see the
“Error and Message Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Server transaction states
Server transaction state information is useful when an application needs to
determine the outcome of a transaction. Table 4-1 lists the symbolic values that
represent transaction states.

Table 4-1: Transaction states

For information about how to retrieve server transaction states in mainline code
and from within a server callback routine, see the “Error and Message
Handling” topics page in the Open Client Client-Library/C Reference Manual.

Symbolic value Meaning

 CS_TRAN_IN_PROGRESS A transaction is in progress.

 CS_TRAN_COMPLETED The most recent transaction completed
successfully.

 CS_TRAN_STMT_FAIL The most recently executed statement in the current
transaction failed.

 CS_TRAN_FAIL The most recent transaction failed.

 CS_TRAN_UNDEFINED A transaction state is not defined.
72 Open Client

C H A P T E R 5 Choosing Command Types

Client-Library provides several command types. This chapter introduces
each command type, explains how they are used, and discusses their
advantages and disadvantages.

Command overview
In a Client-Library application, a command is a stream of TDS protocol
symbols and data sent from a client to the server. The command describes
some operation that the server is to perform and provides parameter data
for the operation. In response to an application’s API calls, Client-Library
encodes commands in the TDS protocol.

Types of commands
Table 5-1 summarizes the Client-Library command types.

Topic Page
Command overview 73

Types of commands 73

Executing commands 74

Language commands 76

RPC commands 78

Client-Library cursor commands 84

Dynamic SQL commands 85

Message commands 86

Package commands 87

Send-data commands 87
Client-Library/C Programmers Guide 73

Executing commands
Table 5-1: Summary of command types

Executing commands
All commands are executed with these steps:

1 Initiate the command – This step identifies the command type and what it
executes.

2 Define parameter values – Some commands require parameter data as
input.

3 Send the command – ct_send writes the command symbols and data to the
network. The server then reads, interprets, and executes the command.

4 Process the results of the command – ct_results, called in a loop, reads the
results of the command. See “Structure of the basic loop” on page 90.

Initiating a command
An application can send several types of commands to a server:

• An application calls ct_command to initiate a language, message, package,
remote procedure call (RPC), or send-data command.

Command type Initiated by Summary

Language ct_command Defines the text of a query that the server will parse, interpret, and
execute.

RPC,
Package

ct_command Specifies the name of a server procedure (Adaptive Server Enterprise
stored procedure or Open Server registered procedure) to be executed by
the server. The procedure must already exist on the server.

Package commands are available only to client applications that connect
to Open Server for CICS server applications. They are otherwise
identical to RPC commands.

Cursor ct_cursor Initiates one of several commands to manage a Client-Library cursor.

Dynamic SQL ct_dynamic Initiates a command to execute a literal SQL statement (with restrictions
on statement content) or to manage a prepared dynamic SQL statement.

Message ct_command Initiates a message command and specifies the message-command ID
number.

Send-Data ct_command Initiates a command to upload a large text/image column value to the
server.
74 Open Client

CHAPTER 5 Choosing Command Types
• An application calls ct_cursor to initiate a cursor command.

• An application calls ct_dynamic to initiate a dynamic SQL command.

Defining parameters for a command
The following types of commands can take parameters:

• A language command, when the command text contains variables

• An RPC command, when the stored procedure takes parameters

• A cursor-declare command, when the body of the cursor contains host
language parameters

• A cursor-open command, when the body of the cursor contains host
language parameters

• A message command

• A dynamic SQL execute command

An application calls ct_param or ct_setparam once for each parameter that a
command requires. These routines perform the same function, except that
ct_param copies a parameter value, while ct_setparam copies the address of a
variable that contains the value. If ct_setparam is used, Client-Library reads the
parameter value when the command is sent. The ct_setparam method allows
the application to change parameter values before resending the command.

Processing results
Each time a command is sent, the application must process or cancel the
results. A typical application calls ct_results until it returns a value other than
CS_SUCCEED. See “Structure of the basic loop” on page 90.

Resending a command
For most command types, Client-Library allows an application to resend the
command immediately after the results of previous execution have been
processed. The application resends commands as follows:

• If necessary, the application changes values in parameter source variables.
Client-Library/C Programmers Guide 75

Language commands
The application must have specified the addresses of the parameter source
variables with ct_setparam when defining the command.

• The application calls ct_send to resend the command.

An application can resend all types of commands except:

• Send-data commands initiated by ct_command(CS_SEND_DATA_CMD)

• Send-bulk commands initiated by
ct_command(CS_SEND_BULK_CMD)

Language commands
A language command sends the text of a query to the server. The server
responds by parsing and executing the command.

Language commands for Adaptive Server Enterprise must be written in
Transact-SQL. Other servers, such as Replication Server®, use a different
language.

Building language commands
Your application initiates a language command by calling ct_command with
type as CS_LANG_CMD and *buffer as the language text. For example, the
call below initiates a language command to select rows from the authors table
in the pubs2 database:

ret = ct_command(cmd, CS_LANG_CMD,
 "select au_lname, city from pubs2..authors \
 where state = 'CA'",
 CS_NULLTERM, CS_UNUSED);

Language commands can take parameters. For Adaptive Server Enterprise
client applications, parameter placement is indicated by undeclared variables
in the command text. For example, a language command such as the one below
takes a parameter whose value is substituted for “@state_name”:

select au_lname, city from pubs2..authors \
 where state = @state_name

Parameters are useful when your code executes the same language command
more than once.
76 Open Client

CHAPTER 5 Choosing Command Types
Results-handling for language commands
Code your application to handle the results of a language command with a
standard results loop, as discussed in “Structure of the basic loop” on page 90.

Language commands can return the result types listed in Table 5-2, for the
given reasons:

Table 5-2: Result types from the execution of a language command

When to use language commands
Language commands are useful to applications that execute ad hoc queries. For
example, the Sybase isql command interpreter allows an end user to enter
queries, sends the queries to the server as a language command, and displays
the results.

Result type Meaning/when received

CS_ROW_RESULT Regular rows, sent in response to a select statement executed by the
language batch or by a called stored procedure.

CS_COMPUTE_RESULT Compute rows, sent in response to a selectstatement that contains a
compute clause. The select statement can be executed by the language
batch or by a called stored procedure.

CS_PARAM_RESULT Output parameter values, sent in response to an exec statement that
passes parameter values. (Parameters must be qualified with output in
the exec statement.) Output parameter values are received after the
results of all statements executed by the procedure.

CS_STATUS_RESULT A stored procedure’s return status, sent in response to an exec
statement. The return status is received after the results from all
statements executed by the procedure.

CS_COMPUTEFMT_ RESULT,
CS_ROWFMT_RESULT

Format results, seen only if the CS_EXPOSE_FMTS connection
property is CS_TRUE (the default is CS_FALSE).

CS_CURSOR_ RESULT Cursor result rows are retrievable using ct_fetch or ct_scroll_fetch.

CS_CMD_DONE Placeholder to indicate that the results of one logical command have
been processed. Seen after the following events:

• The results from each statement executed in the language batch have
been processed.

• The results of each select statement executed by a called stored
procedure have been completely processed.

CS_CMD_SUCCEED Indicates the success of an insert, update, or exec statement that was
executed directly by the language batch.

CS_CMD_FAIL Indicates that the command or a statement within the language batch
failed to execute.
Client-Library/C Programmers Guide 77

RPC commands
Language commands are also useful in client-side middleware applications
that pass SQL queries to a Sybase server through Client-Library.

When not to use language commands
For better performance, you can code applications that always execute the
same query to invoke stored procedures instead. Instead of coding the query in
the C application code, you can create a stored procedure to execute the query
and use an RPC command to invoke the stored procedure. This method can be
faster because the server does not need to parse and interpret the query each
time it executes.

Stored procedures can be considerably faster when a single invocation of the
procedure replaces several client commands.

Stored procedures can be executed either by an execute language command or
by an RPC command. See “RPCs versus execute language commands” on
page 83 for a discussion of the differences between these methods.

RPC commands
An RPC command sends the name of a stored procedure or registered
procedure to the server, plus values for the procedure’s parameters, if any. If
the procedure exists, the server executes it and returns the results.

RPC commands to Adaptive Server Enterprise invoke stored procedures. RPC
commands to an Open Server application invoke either registered procedures
or the Open Server’s RPC event handlers.

See the Transact-SQL Users Guide for information on creating Adaptive
Server Enterprise stored procedures. See the “Registered Procedures” topics
page in the Open Server Server-Library/C Reference Manual for information
on registered procedures.

Building RPC commands
Your application initiates an RPC command by calling ct_command with type
as CS_RPC_CMD, *buffer as the procedure name, and option as
CS_NO_RECOMPILE, CS_RECOMPILE, or CS_UNUSED. For example:
78 Open Client

CHAPTER 5 Choosing Command Types
ct_command(cmd, CS_RPC_CMD, rpc_name, CS_NULLTERM,
CS_NO_RECOMPILE)

The option value indicates whether the server should recompile the procedure.
When invoking an Adaptive Server Enterprise stored procedure,
CS_RECOMPILE is equivalent to specifying the with recompile clause in an
equivalent execute statement. See the Adaptive Server Enterprise
documentation for an explanation of when recompilation is useful.

Parameter values for an RPC command are passed with calls to ct_param or
ct_setparam. These routines are identical, except that ct_param copies a data
value, while ct_setparam copies pointers to data values. Both routines require
a CS_DATAFMT structure, an indicator variable, and the address of a data
value. See the reference pages for ct_param and ct_setparam in the Open Client
Client-Library/C Reference Manual.

For RPC commands, code your ct_param or ct_setparam calls according to the
following rules:

• Pass parameter values in a datatype that matches the declaration of the
parameter in the stored procedure.

Client-Library does not convert outgoing parameter values. If necessary,
use cs_convert to convert the parameter value into the matching datatype.

• Pass all parameters by name or all parameters by position.

To pass a parameter by name, copy its name into the name field of
ct_param’s or ct_setparam’s datafmt parameter, and set datafmt.length to
match. Parameters for which you do not call ct_param or ct_setparam are
effectively passed as NULL.

To pass parameters by position, set datafmt.length to 0 and call ct_param
or ct_setparam in the order in which the parameters appear in the
procedure’s definition. To pass a parameter as NULL, set the associated
indicator variable to -1.

All parameters must be passed using the same method. RPC commands
that pass parameters by position usually perform better than those that pass
parameters by name.

• Set datafmt.status to indicate whether the parameter is a return parameter.

CS_RETURN indicates a return parameter; use CS_INPUTVALUE for
non-return parameters.
Client-Library/C Programmers Guide 79

RPC commands
Return parameters are similar to the “pass by reference” facility offered by
some programming languages. The value of the parameter, with any
changes made by the procedure code, is available to the client application
after the procedure completes execution. See “Return parameter values”
on page 81.

• Use ct_setparam rather than ct_param when the command will be sent
multiple times with varying parameter values.

ct_setparam binds a parameter source variable to the initiated command,
allowing the application to change the parameter’s value between calls to
ct_send.

For an example that illustrates how to define an RPC command with
parameters, see the reference page for ct_param in the Open Client Client-
Library/C Reference Manual.

RPC command results handling
Code your application to handle the results of an RPC command with a
standard results loop, as discussed in “Structure of the basic loop” on page 90.

RPC commands can return the result types listed in Table 5-3, for the given
reasons:

Table 5-3: Result types from the execution of an RPC command

Result type Meaning/when received

CS_ROW_RESULT Regular rows, sent in response to a select statement executed by the
procedure.

CS_COMPUTE_RESULT Compute rows, sent in response to a selectstatement that contains a
compute by clause.

CS_PARAM_RESULT Return (output) parameter values, received after results from all
statements in the procedure have been processed.

CS_STATUS_RESULT The procedure’s return status, received after results from all statements
in the procedure have been processed.

CS_COMPUTEFMT_ RESULT,
CS_ROWFMT_RESULT

Format results, seen only if the CS_EXPOSE_FMTS connection
property is CS_TRUE (the default is CS_FALSE).

CS_CMD_DONE Placeholder that indicates the results of one logical command have been
processed. Seen after the following events:

• The results from each statement executed in the language batch have
been processed

• The results of each select statement executed by a called stored
procedure have been completely processed
80 Open Client

CHAPTER 5 Choosing Command Types
Return parameter values

The server returns parameter values in the results of an RPC command for each
parameter for which both of the following statements are true:

• The parameter is passed as a return parameter in the RPC command.

• The parameter is defined as an output parameter in the definition of the
procedure.

If parameter data is returned, all parameter values are returned in a
CS_PARAM_RESULT result set.

Return status values

Return status values are returned as a CS_STATUS_RESULT result set (see
“Processing return status results” on page 97).

Note SQL statements that return a result type of CS_CMD_FAIL when
executed by a language command may return CS_CMD_SUCCEED when
executed by a stored procedure. Always check a stored procedure’s return
status to determine whether the procedure executed successfully.

CS_CMD_SUCCEED Indicates that the procedure was invoked successfully, but does not
mean that all the statements in the stored procedure executed
successfully. Applications must always check the stored procedure’s
return status value to determine whether an error occurred (see “Return
status values” on page 81).

CS_CMD_FAIL Indicates that the procedure call failed. Not all errors cause
CS_CMD_FAIL to be returned. A statement may fail in the stored
procedure, but the server still returns a result type of
CS_CMD_SUCCEED.

Applications must always check the stored procedure’s return status
value to determine whether an error occurred (see “Return status
values” on page 81).

Result type Meaning/when received
Client-Library/C Programmers Guide 81

RPC commands
If a procedure successfully completes execution, the return status is either the
value explicitly returned by the procedure or 0 if the procedure lacks an explicit
return statement. However, some runtime errors cause a stored procedure to
abort before it executes to completion. For example, a select statement in the
procedure may refer to a table that no longer exists. For these errors, Adaptive
Server Enterprise aborts the execution of the procedure and returns a return
status value that indicates the error—see the return reference page in the
Adaptive Server Enterprise Reference Manual for a list of return status codes
and their meaning.

When a runtime error occurs inside a stored procedure, Adaptive Server
Enterprise does not return a result type of CS_CMD_FAIL. To determine
whether a server-side error has occurred inside the procedure, applications
should always check the return status of the stored procedure. Adaptive Server
Enterprise also sends server messages that describe runtime errors.

When to use RPC commands
RPC commands offer the following unique benefits:

• Stored procedure parameter values do not require conversion on the server.

When invoking a stored procedure with an RPC command, parameters are
passed in their declared datatypes. The server does not need to convert the
parameters from character format to their declared datatypes.

• There is no other way to execute Open Server registered procedures.

Open Server registered procedures provide a relatively simple way to
develop a distributed application with Open Client and Open Server.
Registered procedures can be either a function in the Open Server
application code, or a special type of procedure that is created by a client
application and exists only to trigger client notification events when it is
executed. The latter type is created when the client application invokes the
sp_regcreate Open Server system registered procedure.

• See the Open Server Server-Library/C Reference Manual for
information on defining C functions that can be called as a registered
procedure.

• See the sp_regcreate reference page in the Open Server Server-
Library/C Reference Manual for details on how Client-Library
applications can create a registered procedure on an Open Server.
82 Open Client

CHAPTER 5 Choosing Command Types
• See the “Registered Procedures” topics page in the Open Client
Client-Library/C Reference Manual for information on how Client-
Library applications can receive registered procedure notifications.

RPCs versus execute language commands
A stored procedure can be executed either by an RPC command or by an
execute language statement. Remote procedure calls have a few advantages
over execute statements:

• An RPC command can be used to execute an Adaptive Server Enterprise
stored procedure or an Open Server registered procedure.

A Transact-SQL language command can be used only to execute an
Adaptive Server Enterprise stored procedure (unless the Open Server
application understands Transact-SQL).

• An RPC command passes the stored procedure’s parameters in their native
datatypes, in contrast to the execute statement, which passes parameters in
character format, within the text of the language command. This
difference means that the RPC method is faster and more efficient than the
execute method, because it does not require either the application program
or the server to convert between native datatypes and their character-
format equivalents.

• It is simpler and faster to accommodate stored procedure return parameters
if the procedure is invoked with an RPC command instead of a language
command.

With an RPC command, the return parameter values automatically
become available to the application as a parameter result set. (A return
parameter must be specified as such when it is originally added to the RPC
command stream with ct_param or ct_setparam.)

With an execute statement, on the other hand, the return parameter values
are available only if the language command declares local variables and
passes these variables (not constants) for the return parameters. Because
the language command contains more than one SQL statement, this
technique involves additional parsing each time the language command is
executed.
Client-Library/C Programmers Guide 83

Client-Library cursor commands
Client-Library cursor commands
A cursor is a symbolic name that an application attaches to a select statement.
The cursor supports operations to manipulate the select’s result set. See
“Cursor overview” on page 107 for a list of cursor operations.

A Client-Library cursor is created with a ct_cursor or ct_dynamic cursor-declare
command.

Building Client-Library cursor commands
Chapter 7, “Using Client-Library Cursors” explains how to use Client-Library
cursor commands in your application. See “Using Client-Library cursors” on
page 113 for the typical call sequence.

When to use Client-Library cursors
Use Client-Library cursors when you want to process two or more commands
at the same time while using only one server connection.

A Client-Library cursor-open command is the only command type that allows
the application to send new commands over the same connection while still
retrieving rows. After sending any other type of command, your application
must completely process the results of the command before another command
can be sent on the same connection. If the application design requires this
functionality, then there is no alternative to using Client-Library cursor
commands. See “Benefits of Client-Library cursors” on page 111 and
“Connection and command rules” on page 31.

Note that cursors can only be declared to execute a single select statement. See
“Step 1: Declare the cursor” on page 115.
84 Open Client

CHAPTER 5 Choosing Command Types
When not to use Client-Library cursors
Cursors do incur a performance penalty relative to executing a select statement
using a language or RPC command. The difference occurs because the cursor
requires internal Client-Library cursor-fetch commands to retrieve cursor
rows, while a regular-row result set does not. Thus, processing the results of
the cursor-open command requires more network round trips. (See “Step 2: Set
cursor rows” on page 121.) There is also additional Adaptive Server Enterprise
internal overhead associated with cursor processing.

Dynamic SQL commands
Dynamic SQL is the process of generating, preparing, and executing SQL
statements at runtime using commands initiated by Client-Library’s ct_dynamic
routine.

Building Dynamic SQL commands
Chapter 8, “Using Dynamic SQL Commands” explains how to use Client-
Library cursor commands in your application. See “Program structure for the
prepare-and-execute method” on page 134 for the typical call sequence.

When to use dynamic SQL commands
Dynamic SQL prepared statement commands are the only command type that
allows the application to query the server for the inputs required to execute the
command and for the format of the command’s results:

• A ct_dynamic describe-input command causes the server to send the
number and format of parameters that are required to execute the
statement. See “Step 2: Get a description of command inputs” on page
136 for details.

• A ct_dynamic describe-output command causes the server to send the
number and formats of result columns that the statement returns. See “Step
3: Get a description of command outputs” on page 138 for details.
Client-Library/C Programmers Guide 85

Message commands
When not to use dynamic SQL
In general, dynamic SQL should not be used in applications where the design
does not require the specific advantages listed under “Benefits of dynamic
SQL” on page 130. Dynamic SQL commands incur more overhead than
language commands. Also, since they are implemented internally as temporary
stored procedures, they can cause resource-contention issues in the Adaptive
Server Enterprise tempdb database.

See “Limitations of dynamic SQL” on page 130 and “Alternatives to dynamic
SQL” on page 132.

Message commands
Message commands can be used with custom Open Server applications.
Adaptive Server Enterprise does not support message commands. From the
client-application programmer’s perspective, a message command is
equivalent to an RPC command that is called by number rather than by name.

Your application initiates a message command by calling ct_command with
type as CS_MESSAGE_CMD and *buffer as the address of a CS_INT variable
that contains the identifier for the message command. For example:

CS_INT msg_id;

if (ct_command(cmd, CS_MSG_CMD, (CS_VOID *)&msg_id,

CS_UNUSED, CS_UNUSED)

!= CS_SUCCEED)

{

fprintf(stderr, "ftclient: ct_command(MSG_CMD)

failed.\n");

return CS_FAIL;

}

Message identifiers must be known to both the client application and the Open
Server application. Typically, the message command identifiers that a server
responds to are defined in a shared header file. Sybase reserves message
identifiers in the range CS_USER_MSGID to CS_USER_MAX_MSGID
(inclusive) for customer use.

Message commands can take parameters. These are supplied with ct_param or
ct_setparam. Whether parameters are passed by name or by position depends
on how the Open Server application is coded.
86 Open Client

CHAPTER 5 Choosing Command Types
Code your application to handle the results of a message command with a
standard results loop, as discussed in “Structure of the basic loop” on page 90.
Among other result types, message commands can return message results
(result type of CS_MSG_RESULT). See “Processing message results” on
page 100.

When to use message commands
Message commands provide an alternative to RPC commands in the design of
the client interface for a custom Open Server application. A message command
uses an integer identifier rather than a string RPC name and lacks the
fixed-parameter list of an Open Server registered procedure.

In the Open Server code, message commands are handled by the message event
handler. See the Open Server Server-Library/C Reference Manual.

When not to use message commands
Adaptive Server Enterprise does not support message commands.

Package commands
Package commands are supported only on connections to an Open Server on
CICS. Package commands are otherwise similar to RPC commands.

Send-data commands
Send-data commands, initiated with ct_command(CS_SEND_DATA), are used
to upload text or image column values in chunks.

See the “text and image Data Handling” topics page in the Open Client Client-
Library/C Reference Manual for details on how to use send-data commands in
your application.
Client-Library/C Programmers Guide 87

Send-data commands
When to use send-data commands
For Adaptive Server Enterprise client applications, send-data commands are
the only way to upload large text or image column values a chunk at a time. If
your application uploads text or image values that are to large to fit in a
contiguous memory buffer, then send-data commands are the only practical
method to perform the update.

For text or image column values that are small enough to fit into a contiguous
memory buffer, the application may achieve better performance by embedding
the values in insert language commands. See the “text and image Data
Handling” topics page in the Open Client Client-Library/C Reference Manual
for details on this method.

When not to use send-data commands
Generally, send-data commands should be avoided when designing the client
interface for a custom Open Server application. Open Server application
processing for send-data commands is quite complicated. If the server must
allow uploads of large values in chunks, you can design the interface so that
values are uploaded with multiple invocations of a message, RPC, or language
command. For example, with message commands, one message command
identifier might indicate the beginning of an upload operation, and another
might indicate a command that contains (as a parameter) a chunk of the data
value.
88 Open Client

C H A P T E R 6 Writing Results-Handling Code

This chapter explains Client-Library’s results-processing model. It covers
the following topics:

Types of results
After an application sends a command to a server, it must process any
results generated by the command. Types of results include:

• Regular row results – rows returned when the server processes a
select statement.

• Cursor row results – rows returned when the server processes a
ct_cursor Client-Library cursor-open command.

• Parameter results – fetchable data that can represent:

• Output values for an Adaptive Server Enterprise stored
procedure’s return parameters

• Output values for an Open Server registered procedure’s return
parameters

Topic Page
Types of results 89

Structure of the basic loop 90

Processing regular row results 91

Processing cursor results 93

Processing parameter results 96

Processing return status results 97

Processing compute results 98

Processing message results 100

Processing describe results 101

Processing format results 101

Values of result_type that indicate command status 103

ct_results final return code 104
Client-Library/C Programmers Guide 89

Structure of the basic loop
• A new timestamp value for an updated text/image column (seen only
when processing the results of a ct_command send-data command)

• A new timestamp value for a row that was updated with a language
command containing a browse-mode update statement

• Stored procedure return status results – the return value from an Adaptive
Server Enterprise stored procedure or Open Server registered procedure.

• Compute row results –intermediate rows returned when the server
processes a select statement with a compute by clause.

• Message results – a message ID returned by an Open Server application’s
message command handler while processing the results of a message
command.

• Describe results – informational results that describe the format of a
prepared dynamic SQL statement’s input parameters or result columns.

• Format results – informational results used by Open Server gateway
applications to retrieve regular row and compute row formats before the
actual data arrives.

A single command can generate more than one type of result. For example, a
language command that executes a stored procedure can generate multiple
regular row and compute row result sets, a parameter result set, and a return
status result set. For this reason, it is important that you code applications to
handle all types of results that a server can generate.

The simplest way for an application to handle all result types is to process
results in a loop as described in the following section.

Structure of the basic loop
Most synchronous Client-Library programs process results using a loop
controlled by ct_results. Inside the loop, a switch takes place on the type of
result that is currently available for processing, as indicated by the value of
ct_results’ parameter result_type. Different types of results require different
types of processing.

result_type is also used to indicate the outcome of a server command that
returns no results, for example, an insert or delete command.

Most synchronous applications use a program structure similar to the following
one to process results:
90 Open Client

CHAPTER 6 Writing Results-Handling Code
while ct_results returns CS_SUCCEED
 (optional) ct_res_info to get current
 command number
 switch on result_type
 /*
 ** Values of result_type that indicate
 ** fetchable results:
 */
 case CS_COMPUTE_RESULT...
 case CS_CURSOR_RESULT...
 case CS_PARAM_RESULT...
 case CS_ROW_RESULT...
 case CS_STATUS_RESULT...
 /*
 ** Values of result_type that indicate
 ** non-fetchable results:
 */
 case CS_COMPUTEFMT_RESULT...
 case CS_MSG_RESULT...
 case CS_ROWFMT_RESULT...
 case CS_DESCRIBE_RESULT...
 /*
 ** Other values of result_type:
 */
 case CS_CMD_DONE...
 (optional) ct_res_info to get the
 number of rows affected by
 the current command
 case CS_CMD_FAIL...
 case CS_CMD_SUCCEED...
 end switch
 end while
 switch on ct_results’ final return code
 case CS_END_RESULTS...
 case CS_CANCELED...
 case CS_FAIL...
 end switch

Processing regular row results
A regular row result set is generated by the execution of a Transact-SQL select
statement on a server.
Client-Library/C Programmers Guide 91

Processing regular row results
A regular row result set contains zero or more rows of tabular data.

An application typically calls the following routines to process a regular row
result set:

• ct_res_info, which returns information about the current result set. Most
often, an application uses ct_res_info to get the number of columns in the
current result set. However, ct_res_info also returns other types of
information—for example, the number of rows affected by the current
command.

• ct_describe, which returns information about a particular result item in the
current result set. An application generally needs to call ct_describe once
for each result item before binding each result item to a program variable.

• ct_bind, which binds a result item to a program variable. Binding creates
an association between a result item and a data space.

• ct_fetch, which copies result data into bound variables.

Binding is the process of associating a result item with program data space.
Fetching is the process of retrieving a data instance of a result item. If binding
has been specified for a result item, then fetching causes a data instance of the
item to be copied into the program data space.

Most synchronous applications use a program structure similar to the following
one to process a regular row result set:

case CS_ROW_RESULT
 ct_res_info(CS_NUMDATA) to get the number of columns
 for each column:
 ct_describe to get a description of the column
 ct_bind to bind the column to a program variable
 end for
 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 if CS_SUCCEED
 process the row
 else if CS_ROW_FAIL
 handle the row failure
 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case
92 Open Client

CHAPTER 6 Writing Results-Handling Code
Processing cursor results
A cursor row result set is generated when an application executes a Client-
Library cursor open command.

Note A cursor row result set is not generated when an application executes a
language command containing a Transact-SQL open statement. The open
statement opens an Adaptive Server Enterprise language cursor, which returns
regular rows each time the application executes a Transact-SQL fetch
statement. See “Language cursors versus Client-Library cursors” on page 108.

A cursor row result set contains zero or more rows of tabular data.

In general, when an application sends a command to a server, it cannot send
another command on the same connection until ct_results indicates that the
results of the first command have been completely processed (by returning
CS_END_RESULTS, CS_CANCELED, or CS_FAIL).

An exception to this rule occurs when ct_results indicates cursor results. In this
case, an application can call ct_cursor and ct_send to send cursor-update,
cursor-delete, or cursor-close commands while processing the cursor result set.
Using a a different CS_COMMAND structure, the application can also send
new commands over the same connection to the server. See “Benefits of
Client-Library cursors” on page 111.

In addition to ct_res_info, ct_describe, ct_bind, and ct_fetch, an application can
call ct_keydata, ct_cursor, ct_param, ct_send, ct_results, and ct_cancel while
processing a cursor result set.

Most synchronous applications use a program structure similar to the following
one to process a cursor result set:

case CS_CURSOR_RESULT
ct_res_info(CS_NUMDATA) to get the number of columns
 for each column:
 ct_describe to get a description of the column
 ct_bind to bind the column to a program variable
 end for
 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 and cursor has not been closed
 if CS_SUCCEED
 process the row
 else if CS_ROW_FAIL
 handle the row failure
 end if
Client-Library/C Programmers Guide 93

Processing cursor results
 /* For update or delete only: */
 if target row is not the row just fetched
 ct_keydata to specify the target row key
 end if
 /* End for update or delete only */

 /* To send a nested cursor update, delete, or
close command: */
 ct_cursor to initiate the cursor command
 /* For updates/deletes whose “where” clause
contains variables */
 ct_param or ct_setparam for each parameter
 /* End for updates/deletes whose ... */
 ct_send to send the command
 while ct_results returns CS_SUCCEED
 (...process results...)
 end while
 /* End to send a nested cursor command */

 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 if cursor was closed
 break out of outer ct_results loop
 end if

 end case

Calls to ct_results are nested within a ct_fetch loop and a larger ct_results loop
(not shown).

For nested cursor-update or cursor-delete commands, after the inner ct_results
indicates that the results from the nested command have been completely
processed (by returning CS_END_RESULTS, CS_FAIL, or
CS_CANCELED), any subsequent calls to ct_results will operate on results
generated by the original cursor command.

For nested cursor-close commands, there are no results remaining after the
cursor is closed. In this case, the application breaks out of the outer ct_results
loop after the results of the nested cursor-close command have been processed.
94 Open Client

CHAPTER 6 Writing Results-Handling Code
To cancel the cursor rows returned by the cursor-open command, an
application can call ct_cancel with type as CS_CANCEL_CURRENT.
However, it is more efficient to close the cursor with a nested cursor-close
command. A CS_CANCEL_CURRENT ct_cancel call retrieves the unwanted
rows and discards them. (It is equivalent to clearing all binds, then calling
ct_fetch until ct_fetch returns CS_END_DATA.)

Note In your cursor application, do not use any other type of cancel besides
CS_CANCEL_CURRENT on a connection that has an open cursor—
CS_CANCEL_ALL or CS_CANCEL_ATTN can put a connection’s cursors
into an undefined state. Instead of canceling, the application can simply close
the cursor.

Processing scrollable cursor results
The program structure for processing scrollable cursor results is similar to that
for regular cursors. The key difference is that ct_scroll_fetch returns
CS_SCROLL_CURSOR ENDS when you use the CS_FALSE option. This is
indicated as follows:

 end while
 switch on ct_scroll_fetch’s final return code
 case CS_SCROLL_CURSOR_ENDS...
 end switch
 if cursor was closed
 break out of outer ct_results loop
 end if

 end case

Note ct_scroll_fetch never returns CS_END_DATA as a valid return.

Note A warning message is generated if certain sequences of operations cause
the cursor to move beyond the resultset boundary. Examples of this are the
sequential use of CS_PREV, CS_NEXT, CS_ABSOLUTE or CS_RELATIVE
calls, with offsets of such magnitude (relative to the current cursor position),
that the cursor moves beyond the resultset boundary. The warning messages
does not indicate that an error has occurred. See the Open Client Client-
Library/C Reference Manual.
Client-Library/C Programmers Guide 95

Processing parameter results
Processing parameter results
A parameter result set contains a single row of parameters.

Several types of data can be returned to an application in the form of a
parameter result set, including:

• Return parameter values

An Adaptive Server Enterprise stored procedure or an Open Server
registered procedure can return output parameter data. The
CS_PARAM_RESULT result set contains new values for the procedure’s
parameters, as set by the procedure code. See “RPC commands” on page
78 for a description of how applications execute stored procedures or
registered procedures.

• Browse mode timestamp values

Browse mode is a scheme that interactive applications can use to perform
ad hoc row updates of retrieved rows. Tables involved in browse mode
require a timestamp column to control simultaneous access to the data.
After a client application executes a browse-mode update statement,
Adaptive Server Enterprise returns a parameter result set that contains the
new timestamp value for the updated row. See the “Browse Mode” topics
page in the Open Client Client-Library/C Reference Manual for more
details.

• A text or image column timestamp

After a client application updates a text or image column with a send-data
command, Adaptive Server Enterprise returns the new text timestamp for
the column as a parameter result set. See the “text and image Data
Handling” topics page in the Open Client Client-Library/C Reference
Manual for more details.

• Message result parameters

A message result set consists of a message identifier (see “Processing
message results” on page 100). The message result set can be followed
immediately by a parameter result set containing parameter values that
accompany the message result.

An application calls ct_res_info, ct_describe, ct_bind, and ct_fetch to process a
parameter result set.

Most synchronous applications use a program structure similar to the following
one to process a parameter result set:

case CS_PARAM_RESULT
96 Open Client

CHAPTER 6 Writing Results-Handling Code
 ct_res_info(CS_NUMDATA) to get the number of parameters
 for each parameter:
 ct_describe to get a description of the parameter
 ct_bind to bind the parameter to a variable
 end for

 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 if CS_SUCCEED
 process the row of parameters
 else if CS_ROW_FAIL
 handle the failure
 end if
 end while

 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case

Processing return status results
A return status result set is generated by the execution of a stored procedure.
All stored procedures return a status number. See the description of the return
command in the Adaptive Server Enterprise Reference Manual.

A return status result set consists of a single row containing a return status.

An application calls ct_bind and ct_fetch to process a return status.

Most synchronous applications use a program structure similar to the following
one to process a return status result set:

case CS_STATUS_RESULT
 ct_bind to bind the status to a program variable
 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 if CS_SUCCEED
 process the return status
 else if CS_ROW_FAIL
 handle the failure
 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
Client-Library/C Programmers Guide 97

Processing compute results
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case

Processing compute results
A compute result set is generated by the execution of a Transact-SQL select
statement that contains a compute clause. A compute clause generates a
compute result set every time the value of its bylist changes. A compute result
set consists of a single row containing a number of columns equal to the
number of row aggregates in the compute clause.

For example, consider the query:

select type, price from titles
 where price > $12 and type like "%cook"
 order by type, price compute sum(price) by type

The query returns regular rows (with columns type and price). Intermixed with
the regular rows, the query returns compute result sets each time the value of
type changes in the regular row results. Each compute result set contains a
single row with one column for the sum(price) expression.

See the Adaptive Server Enterprise Reference Manual for more examples of
queries with a compute clause.

In addition to ct_res_info, ct_describe, ct_bind, and ct_fetch, an application can
call ct_compute_info while processing compute row results. ct_compute_info
provides a variety of compute row information. The information available from
ct_compute_info includes:

• The compute ID for a compute row

A query can have more than one compute clause.
ct_compute_info(CS_COMP_ID) retrieves the number of the compute
clause that generated a compute result set. A compute row ID of 1
corresponds to the first compute clause in the query.

• The compute bylist

The compute bylist is the list of columns that follows the by keyword in
the compute clause. In the application, the bylist is represented by an array
of CS_SMALLINT values, each of which represents the position of a
column in the select list. For example:
98 Open Client

CHAPTER 6 Writing Results-Handling Code
select dept, name, year, sales from employee
 order by dept, name, year
 compute count(name) by dept, name

If you execute this query, then the bylist values are 1 and 2, corresponding
to the positions of dept and name in the select list.

ct_compute_info(CS_BYLIST_LEN) returns the length of the bylist, and
ct_compute_info(CS_BYLIST) populates an application-allocated array
with the bylist column numbers.

• Compute row select-list column IDs

Select-list column IDs are available for each column in a compute row.
The select-list column ID is the select-list position of the column from
which the compute-row column was derived. For example, this query
returns compute rows containing one column for the sum(price)
expression:

select type, price from titles
 where price > $12 and type like "%cook"
 order by type, price compute sum(price) by type

The corresponding select-list column ID is 2, which is the position of the
price column in the select list.

ct_compute_info retrieves compute column IDs when called with type as
CS_COMP_COLID and colnum as the compute column number.

• Compute column operators

ct_compute_info, when called with type as CS_COMP_OP and colnum as
the compute column number, retrieves a symbolic constant that indicates
the operator with which the column value was computed. See the
ct_compute_info reference page in the Open Client Client-Library/C
Reference Manual for a list of these operators.

Most synchronous applications use a program structure similar to the following
one to process a compute result set:

case CS_COMPUTE_RESULT
 (optional)ct_compute_info to get bylist length,
 bylist, or compute row id
 ct_res_info(CS_NUMDATA) to get the number of columns
 for each column:
 ct_describe to get a description of the column
 ct_bind to bind the column to a program variable
 (optional: ct_compute_info to get the compute
 column id or the aggregate operator for the
Client-Library/C Programmers Guide 99

Processing message results
 compute column)
 end for
 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 if CS_SUCCEED
 process the compute row
 else if CS_ROW_FAIL
 handle the failure
 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case

Processing message results
All types of servers can return message results.

A message result set contains no fetchable results. Instead, a message has an
ID, which an application can retrieve by calling ct_res_info(CS_MSGTYPE).

Message IDs in the range 1–32,767 are reserved for Adaptive Server Enterprise
and Sybase internal use.

Application-defined message IDs must be in the range CS_USER_MSGID to
CS_USER_MAX_MSGID.

If parameter values are associated with a message, they are returned as a
separate parameter result set following the message result set. See “Processing
parameter results” on page 96.

Note A message result set is not the same thing as a server message. Server
messages are generated in response to error conditions or to indicate server
conditions of interest. They are generally handled within an application’s
server-message callback. See Chapter 4, “Handling Errors and Messages.”

An application calls ct_res_info to retrieve a message ID.

Most synchronous applications use a program structure similar to the following
one to process a message result set:
100 Open Client

CHAPTER 6 Writing Results-Handling Code
case CS_MSG_RESULT
 ct_res_info to get the message ID
 code to handle the message ID
 end case

Processing describe results
A describe result set does not contain fetchable data; rather, it indicates the
existence of descriptive information returned as the result of a dynamic SQL
describe-input or describe-output command.

See “Step 2: Get a description of command inputs” on page 136 and “Step 3:
Get a description of command outputs” on page 138.

An application can retrieve this information by calling ct_describe, ct_dyndesc,
or ct_dynsqlda. See “Processing parameter descriptions” on page 136 and
“Processing column descriptions” on page 138.

Most applications use a program structure similar to the following one to
process a describe result set:

case CS_DESCRIBE_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe or ct_dyndesc to get a description
 end for
 end case

Processing format results
Normally, format information for regular row and compute row result sets is
only available while the application is processing the result set. At that time,
the application can call ct_res_info to retrieve the number of items in the result
set, ct_describe to get a description of each item, and ct_compute_info to get
compute information.
Client-Library/C Programmers Guide 101

Processing format results
This mechanism works well for most applications. Some applications,
however, need to be able to get format information for a result set before they
process the result set. An example of this type of application is a gateway
application that repackages Adaptive Server Enterprise results before sending
them on to a non-Sybase client.

Client-Library makes advance format information available to an application
in the form of format results. There are two types of format results: regular row
format results and compute row format results.

Format result sets contain no fetchable results. Instead, an application can call
ct_res_info, ct_describe, and ct_compute_info to retrieve format information
after ct_results indicates format results.

To receive format results, an application must set the Client-Library
CS_EXPOSE_FMTS property to CS_TRUE.

An application can call ct_describe and ct_compute_info to retrieve format
information.

A gateway application might use a program structure similar to the following
one to process format results:

case CS_ROWFMT_RESULT
 ct_res_info(CS_NUMDATA) to get the number of columns
 for each column:
 ct_describe to get a column description
 send the information on to the gateway client
 end for
 end case

 case CS_COMPUTEFMT_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a column description
 (if required:
 ct_compute_info for compute information
 end if required)
 send the information on to the gateway client
 end for
 end case
102 Open Client

CHAPTER 6 Writing Results-Handling Code
Row format caching
Open Client caches row format information that allows client applications to
request data servers to not send the row format information each time a
dynamic SQL statement is invoked. Row format caching reduces network
traffic between the data server and the client applications, thereby improving
system performance.

By default, row format caching is enabled. To disable it, set the
CS_CMD_SUPPRESS_FMT response capability to CS_FALSE. Use
ct_cmd_props to check and set the value of CS_CMD_SUPPRESS_FMT.

To determine if the server supports row format suppression, check the value of
CS_RES_SUPPRESS_FMT using ct_capability.

Note This feature is available only when a client application is connected to a
server that supports row format caching.

Values of result_type that indicate command status
In addition to indicating the type of result set that is available for processing,
ct_results sets result_type to the values below to indicate the status of command
processing:

• CS_CMD_DONE – indicates that the results of a logical command have
been completely processed. See “Logical commands” on page 104 for an
explanation of this term.

• CS_CMD_SUCCEED – indicates the success of a command that returns
no data, such as a Transact-SQL insert or delete command.

• CS_CMD_FAIL – indicates that, due to error, the server failed to execute
a server command. For example, the text of a language command might
contain a syntax error or refer to a nonexistent object. In most cases, the
server returns a server message that describes the error.

Because a Client-Library command can execute multiple server
commands, an application must either:

• Continue to call ct_results to process results generated by any other
server commands contained in the original Client-Library command,
or
Client-Library/C Programmers Guide 103

ct_results final return code
• Call ct_cancel(CS_CANCEL_ALL) to cancel the Client-Library
command and discard its results.

Logical commands
ct_results sets result_type to CS_CMD_DONE to indicate that the results of a
logical command have been completely processed. A logical command is any
command defined using ct_command, ct_dynamic, or ct_cursor, with the
following exceptions:

• Each Transact-SQL select statement that returns data inside a stored
procedure is a logical command. Other Transact-SQL statements inside
stored procedures do not count as logical commands (including select
statements that assign values to local variables).

• Each Transact-SQL statement executed by a dynamic SQL command is a
distinct logical command.

• Each Transact-SQL statement in the text of language command is a logical
command.

Logical commands and Client-Library commands are not equivalent. A Client-
Library command can execute multiple logical commands on the server, for
example, a stored procedure can execute multiple select statements that return
data, and each such statement represents one logical command. A logical
command can generate one or more result sets; for example, a select statement
can return multiple regular-row and compute results sets.

ct_results final return code
After handling all the results of the command, your code should check the final
return code from ct_results to see if errors are indicated.

Final return code values can be the following:

• CS_END_RESULT – indicates a normal loop exit.

• CS_CANCELED – indicates that results were canceled:
ct_cancel(CS_CANCEL_ALL) or ct_cancel(CS_CANCEL_ATTN) was
called while processing results.
104 Open Client

CHAPTER 6 Writing Results-Handling Code
• CS_FAIL – indicates a serious client-side or network error, such as a
communication failure or a memory shortage.
Client-Library/C Programmers Guide 105

ct_results final return code
106 Open Client

C H A P T E R 7 Using Client-Library Cursors

This chapter explains Client-Library cursors. It covers the following
topics:

Cursor overview
A cursor is a symbolic name that an application attaches to a select
statement. The statement can be executed and its result set manipulated by
performing operations on the cursor.

Cursors support the following operations:

• Declare – create a new cursor by giving it a name and defining its
query.

• Set cursor rows – specify the number of rows from the result table to
be returned with each fetch operation.

• Open – execute the cursor’s query and prepare it for fetch operations.

• Fetch – retrieve rows from the cursor, which must be open. Each fetch
operation retrieves a single row from the query’s result table. This
applies to both scrollable and non-scrollable cursors. Under certain
conditions (as defined by the “set cursor rows” operation), more rows
can be returned per fetch call.

• Update – modify the values in a fetched row. The update affects the
tables from which the row was selected.

• Delete – remove a fetched row from an underlying table.

Topic Page
Cursor overview 107

Language cursors versus Client-Library cursors 108

When to use Client-Library cursors 111

Using Client-Library cursors 113

Client-Library cursor properties 127
Client-Library/C Programmers Guide 107

Language cursors versus Client-Library cursors
• Close – ready the cursor to be either reopened or deallocated.

• Deallocate – free the cursor’s resources.

In an Adaptive Server Enterprise client application, cursors can either be
created and manipulated with language commands or with ct_cursor
commands. Cursors created using Transact-SQL language commands are
called language cursors. Cursors created with ct_cursor commands are called
Client-Library cursors. Table 7-1 on page 109 compares the two types of
cursors.

Language cursors versus Client-Library cursors
Table 7-1 compares Transact-SQL (language) cursor commands with Client-
Library cursor commands:
108 Open Client

CHAPTER 7 Using Client-Library Cursors
Table 7-1: Transact-SQL cursor commands versus Client-Library cursor
commands

Language cursors
On Adaptive Server Enterprise, a language cursor is declared with the declare
cursor statement, opened with an open statement, and fetched from using fetch
statements. See the Adaptive Server Enterprise Reference Manual for
descriptions of these commands. A Client-Library program can send all of
these statements as normal language commands.

Operation
Language
command Client-Library cursor command

Declare declare cursor ct_cursor(CS_CURSOR_DECLARE)
or
ct_dynamic(CS_CURSOR_DECLARE)

Set cursor
rows

set cursor rows ct_cursor(CS_CURSOR_ROWS)

Open open ct_cursor(CS_CURSOR_OPEN)

Fetch fetch ct_fetch or ct_scroll_fetch, after ct_results
has returned with a result_type of
CS_CURSOR_RESULT.

Update update ... where current
of cursor_name

ct_cursor(CS_CURSOR_UPDATE)

By default, affects the last fetched row,
but can be redirected to any previously
fetched row.

Delete delete ... where current
of cursor_name

ct_cursor(CS_CURSOR_DELETE)

By default, affects the last fetched row,
but can be redirected to any previously
fetched row.

Close close ct_cursor(CS_CURSOR_CLOSE)

Deallocate deallocate cursor ct_cursor(CS_CURSOR_DEALLOC) or
ct_cursor(CS_CURSOR_CLOSE)

The cursor is closed and deallocated with
one command if the CS_DEALLOC bit is
set in ct_cursor’s option parameter.
Client-Library/C Programmers Guide 109

Language cursors versus Client-Library cursors
Once a language cursor has been declared and opened, each fetch language
command returns a set of regular rows (ct_results result_type is
CS_ROW_RESULT) and can be handled just like the results of a select
command (see “Processing regular row results” on page 91). As with any other
language command, the results of each command must be processed with
ct_results (and ct_fetch, if necessary) before another command can be sent on
the connection.

When declared within a language command sent by a client connection, a
language cursor has scope limited to that connection. In other words, only
language commands sent over the same connection can reference the cursor.

Language cursors provide the following advantage over Client-Library
cursors:

• On Adaptive Server Enterprise, you can declare a cursor and open inside
a Transact-SQL stored procedure. Such a cursor is called a server cursor.
Complex tasks that are implemented using a stored procedure and server
cursors should perform better than an equivalent implementation that uses
Client-Library cursors. The performance difference is mainly due to the
fact that the Client-Library cursor requires many network round trips to
fetch the cursor rows (and to execute any nested update commands), while
the server cursor does not.

• Language cursors can be used with an existing client application that
handles ad hoc language commands. For example, a user of the Sybase isql
client application can use language cursors, even though isql contains no
special code to support cursors.

The Adaptive Server Enterprise Reference Manual contains more detailed
information on language cursors.

Client-Library cursors
A Client-Library cursor requires application programmers to code ct_cursor
calls that declare and open the cursor. A Client-Library cursor-open command
returns a single fetchable result set of type CS_CURSOR_RESULT.

A Client-Library cursor’s scope is limited to a single command structure. In
fact, once a cursor is declared with a command structure, that command
structure becomes a dedicated “handle” for further operations on the cursor.

Client-Library cursors provide the following advantages over language
cursors:
110 Open Client

CHAPTER 7 Using Client-Library Cursors
• Fetching from a Client-Library cursor is more simple.

Each fetch from a Client-Library cursor involves a single ct_fetch or
ct_scroll_fetch call; after each ct_fetch or ct_scroll_fetch call that returns
rows, the application can send new commands over the connection.

Each fetch from a language cursor is a separate Client-Library command
that involves calls to ct_command, ct_send, ct_results, ct_fetch, and so
forth. The results of the fetch language command must be completely
processed before the application can send new commands over the same
connection.

• A Client-Library cursor can be used to modify any previously fetched row.
A language cursor can only be used to delete or update the most recently
fetched row.

• A Client-Library cursor can be declared to execute a stored procedure (as
long as the stored procedure only executes a single select statement—for
more details, see “Step 1: Declare the cursor” on page 115). A language
cursor must be declared with a select statement.

When to use Client-Library cursors
Client-Library cursors offer some unique benefits, but they also may incur a
performance penalty relative to other command types.

Benefits of Client-Library cursors
Client-Library cursors provide the following unique benefits to an application:

• They allow the application to execute simultaneous commands on the
same connection.

• They allow an application to update a table while fetching from it using
only a single connection.

A ct_cursor cursor-open command is the only command type that allows
simultaneous command processing on a single connection. After sending any
other type of command, the application must completely process the results of
the command before sending another command. When processing the results
of a cursor-open command, the client application execute two categories of
new commands:
Client-Library/C Programmers Guide 111

When to use Client-Library cursors
• Nested cursor commands on the same command structure

• Unrelated commands executed using a different command structure

Nested cursor commands

A nested cursor command is a cursor-close, cursor-delete, or cursor-update
command that is sent while fetching the rows returned by a cursor-open
command; the processing of these commands is “nested” within the processing
of the cursor-open command that returned the cursor rows. Before sending a
nested cursor command, the application must call ct_fetch to retrieve at least
one cursor row.

See “Nested cursor-update or cursor-delete commands” on page 124 and
“Nested cursor-close commands” on page 126.

Client-Library’s browse mode feature also allows an application to update a
table while fetching from it. However, browse mode requires two connections
to the server. For a description of this feature, see the “Browse Mode” topics
page in the Open Client Client-Library/C Reference Manual.

Commands executed using a different command structure

While fetching the rows returned by a cursor-open command, any command
can be executed using a separate command structure. For example, the
application might issue a select or an update command based on the cursor
data. In this case, the application must completely process the results on the
separate command structure before fetching the next cursor row or sending a
nested cursor command. The application could also open a new cursor. In this
case, the new cursor must be opened and its command handle must be ready to
return cursor rows before the application can perform another operation on the
original cursor.

As an example, consider an application that selects rows from an example table
employee that contains the following data:

emp_fname emp_lname emp_id mgr_id

Bob Burnett 3349 4572

Alice Williams 4572 5237

Thomas Cooper 7028 3198

Samuel Jones 6193 4572

Jennifer Uribe 0969 4572

Joachin Palmer 3198 4572
112 Open Client

CHAPTER 7 Using Client-Library Cursors
Here, emp_id is the employee ID number and mgr_id specifies the employee ID
number of each employee’s manager. One of the application requirements is
that for each fetched employee row, the application must issue another query to
find out which employees work for the last-fetched employee.

If the application uses a Client-Library cursor to select rows from the employee
table, it could send the second query by using a separate CS_COMMAND
structure. If the application was not using cursors, it would have to issue the
second query by using a second connection to the server, or wait until it had
processed all the results from the original query to send a new command over
the same connection.

Performance issues when using Client-Library cursors
In general, a Client-Library cursor performs worse than an equivalent select
statement that is executed using a language or RPC command. An application
that does not require the special benefits listed above achieves higher
performance using language commands or RPC commands.

However, cursors may improve performance when the application would
otherwise require several connections or some sort of row-buffering
mechanism to accomplish the same task.

Using Client-Library cursors
A typical application uses the steps below to declare and open a Client-Library
cursor.

1 Send a cursor-declare command.

For cursors declared with a select statement:

• ct_cursor(CS_CURSOR_DECLARE)

• ct_param or ct_setparam to define host variable formats

Jerry Howe 5939 5237

George Latimer 5237 NULL

...

emp_fname emp_lname emp_id mgr_id
Client-Library/C Programmers Guide 113

Using Client-Library cursors
• ct_send (if not batching commands)

• ct_results, in a loop (if not batching commands)

For cursors declared with an execute statement:

• ct_cursor(CS_CURSOR_DECLARE)

• ct_send (if not batching commands)

• ct_results, in a loop (if not batching commands)

For cursors declared with a prepared dynamic SQL statement:

• ct_dynamic(CS_CURSOR_DECLARE)

• (Optional) ct_cursor(CS_CURSOR_OPTION)

• ct_send

• ct_results, in a loop

• If a cursor is declared with a ct_cursor command, the commands in
steps 1, 2, and 3 can be batched: they can be sent to the server with a
single call to ct_send.

2 (Optional) Send a cursor-rows command.

• ct_cursor(CS_CURSOR_ROWS)

• ct_send (if not batching commands)

• ct_results, in a loop (if not batching commands)

3 Send a cursor-open command.

• ct_cursor(CS_CURSOR_OPEN)

• ct_param or ct_setparam to pass parameter values

• ct_send

• ct_results, called in a standard results loop.

A successful open command returns a CS_CURSOR_RESULT result set.
If batching commands, several calls to ct_results are required (to retrieve
the status results from the batched commands) before the cursor rows are
available.

4 Process cursor rows.

• ct_bind to bind to cursor rows

• ct_fetch or ct_scroll_fetch (called in a loop to retrieve each row)
114 Open Client

CHAPTER 7 Using Client-Library Cursors
• New commands can be sent inside the ct_fetch or ct_scroll_fetch loop,
after at least one row has been fetched. See “Step 4: Process cursor
rows” on page 124.

5 Close the cursor.

• ct_cursor(CS_CURSOR_CLOSE)

• ct_send

• ct_results

An application can close and deallocate the cursor with one command by
setting the CS_DEALLOC bit in the ct_cursor option parameter when
defining the cursor-close command. In that case, the step 6 is
unnecessary.

6 Deallocate the cursor.

• ct_cursor(CS_CURSOR_DEALLOC)

• ct_send

• ct_results

Each step in the process above sends one Client-Library cursor command to the
server. After sending each command, the application must handle the results
with ct_results. Code your application to handle the results of a cursor
command with a standard results loop, as discussed in “Structure of the basic
loop” on page 90.

Step 1: Declare the cursor
There are three types of cursor-declare commands. Each one executes the
cursor’s select statement differently:

• The cursor executes a select statement directly.

The application calls ct_cursor and passes the select statement as the
ct_cursor text argument.

• The cursor executes a stored procedure.

The select statement is executed by a stored procedure that has been
created ahead of time, either by the application itself or by the application
administrator. To declare the cursor, call ct_cursor and pass, as the text
argument, an execute statement that invokes the procedure. Cursors can be
declared only on a stored procedure that contains a single select statement.
Client-Library/C Programmers Guide 115

Using Client-Library cursors
• The cursor executes a prepared dynamic SQL statement.

The application calls ct_dynamic(CS_PREPARE) to create a prepared
statement that executes the select statement. Then the application calls
ct_dynamic(CS_CURSOR_DECLARE) and passes the statement
identifier as the ct_dynamic id argument.

Declaring a cursor to directly execute a select statement

To create a cursor or scrollable cursor that directly executes a select statement,
call ct_cursor with type as CS_CURSOR_DECLARE and text as a select
statement.

A simple cursor
declaration

The following code declares a Client-Library cursor. Return code checking is
omitted for simplicity:

CS_CHAR body[1024];
strcpy(body, “select * from titles for read only”);
 ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 “a cursor”, CS_NULLTERM,
 body, CS_NULLTERM, CS_UNUSED);

The following code declares a Client-Library scrollable cursor. Return code
checking is omitted for simplicity:

CS_CHAR body[1024];
strcpy(body, “select * from titles”);
 ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 “s cursor”, CS_NULLTERM,
 body, CS_NULLTERM, CS_SCROLL_CURSOR);

Declaring a cursor
that takes parameters

The select statement can also contain host language variables of the form
@variable_name to indicate where parameters will be substituted in the
statement when the cursor is opened. Adaptive Server Enterprise allows
variables to substitute for values in the cursor’s where clause. For example, the
following statement could be used to declare a cursor that takes a variable int
value:

SELECT title_id, title, price FROM titles
 WHERE total_sales > @sales_val

In this case, you must specify the parameter format by calling ct_param or
ct_setparam with a NULL data pointer after declaring the cursor. Each time the
cursor is opened, the application supplies parameter values by calling ct_param
or ct_setparam again. This case is demonstrated by the example below:

CS_CHAR body[1024];
 CS_DATAFMT intfmt;
116 Open Client

CHAPTER 7 Using Client-Library Cursors
 CS_INT sales_val;
 strcpy(body, “select title_id, title, price from
 titles where total_sales > @sales_val
 for read only”);
 ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 “a cursor”, CS_NULLTERM,
 body, CS_NULLTERM, CS_UNUSED);
 ... error checking deleted ...

(CS_VOID)memset(&intfmt, 0, sizeof(intfmt));
/*
 ** Define the format of @sales_val.
 */
 intfmt.datatype = CS_INT_TYPE;
 intfmt.maxlength = CS_SIZEOF(CS_INT);
 intfmt.status = CS_INPUTVALUE;
ret = ct_param(cmd, &intfmt, (CS_VOID *)NULL,
 CS_UNUSED, 0);
 ... error checking deleted ...
ret = ct_cursor(cmd, CS_CURSOR_OPEN, NULL,
 CS_UNUSED, NULL, CS_UNUSED,
 CS_UNUSED);
 ... error checking deleted ...
/*
 ** Supply a value for @sales_val. intfmt fields
 ** were set above.
 */
sales_val = 1;
 ret = ct_param(cmd, &intfmt,
 (CS_VOID *)&sales_val, CS_UNUSED, 0);
 ... error checking deleted ...
/*
 ** Send the batched cursor declare and open
 ** commands.
 */
 ret = ct_send(cmd);
 ... error checking deleted ...

Specifying which
columns can be
updated

For applications that connect to Adaptive Server Enterprise, use the for read
only or for update of clauses in the select statement to specify which columns,
if any, will be updated. In the ct_cursor(CS_CURSOR_DECLARE) call, pass
the ct_cursor option parameter as CS_UNUSED to indicate that the server
should decide which columns can be updated. For example, a cursor declared
with this following statement allows updates of the price column:

SELECT title_id, title, price FROM titles
 FOR UPDATE OF price
Client-Library/C Programmers Guide 117

Using Client-Library cursors
Other servers, such as custom Open Servers, may not recognize or use the for
read only or for update of clauses in the select statement. These servers require
the client application to indicate which columns are to be updated with separate
calls to ct_param or ct_setparam. For details, see the reference page for
ct_cursor in the Open Client Client-Library/C Reference Manual.

Declaring a cursor to execute a stored procedure

You can declare cursors to execute a stored procedure that in turn executes a
single select statement. You create this style of cursor by calling ct_cursor with
type as CS_CURSOR_DECLARE and text as an execute statement that
invokes the procedure.

For example, the select statement in the example above could be invoked by a
stored procedure:

CREATE PROCEDURE titlecursorproc
 @sales_val INT
 AS
 SELECT title_id, price, title FROM titles
 WHERE (total_sales > @sales_val)
 FOR READ ONLY

For Client-Library cursors that execute an Adaptive Server Enterprise stored
procedure, you do not use host language variables and do not define any
variable formats with ct_param—the server determines parameter formats
from the declaration of the stored procedure. The steps required to declare and
open the cursor are otherwise similar to those illustrated under “Declaring a
cursor that takes parameters” on page 116. The example below shows how to
declare and open a Client-Library cursor on the titlecursorproc stored
procedure:

CS_CHAR body[1024];
 CS_DATAFMT intfmt;
 CS_INT sales_val;
strcpy(body, “EXECUTE titlecursorproc”);
 ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 “a cursor”, CS_NULLTERM,
 body, CS_NULLTERM, CS_UNUSED);
 ... error checking deleted ...
ret = ct_cursor(cmd, CS_CURSOR_OPEN, NULL,
 CS_UNUSED, NULL, CS_UNUSED,
 CS_UNUSED);
 ... error checking deleted ...
/*
 ** Supply a value for the @sales_val parameter for
118 Open Client

CHAPTER 7 Using Client-Library Cursors
 ** titlecursorproc.
 */
 (CS_VOID)memset(&intfmt, 0, sizeof(intfmt));
 intfmt.datatype = CS_INT_TYPE;
 intfmt.maxlength = CS_SIZEOF(CS_INT);
 intfmt.status = CS_INPUTVALUE;
sales_val = 1;
 ret = ct_param(cmd, &intfmt,
 (CS_VOID *)&sales_val, CS_UNUSED, 0);
 ... error checking deleted ...
/*
 ** Send the batched cursor declare and open
 ** commands.
 */
 ret = ct_send(cmd);
 ... error checking deleted ...
... results processing deleted ...

Declaring a cursor to execute a prepared dynamic SQL statement

You can declare cursors on a prepared dynamic SQL statement that executes a
single select statement. For example, you could prepare a statement to execute
the select statement below:

SELECT title_id, title, price FROM titles
 WHERE total_sales > ? FOR READ ONLY

The “?” character (the dynamic parameter marker) is a placeholder for a
parameter value that will be provided when the cursor is opened. Dynamic
SQL statements are created by sending a ct_dynamic(CS_PREPARE)
command to the server and handling the results. See “Step 1: Prepare the
statement” on page 136 for details.

After preparing the statement, the application can call ct_dynamic with type as
CS_CURSOR_DECLARE and id as the statement identifier.

Use the for read only or for update of clauses in the select statement to specify
which columns, if any, to be updated. If the statement does not have one of
these clauses, the application can call ct_cursor(CS_CURSOR_OPTION)
immediately after calling ct_dynamic to initiate the cursor-declare command.

You cannot batch the ct_dynamic cursor-declare command c with ct_cursor
cursor-rows or ct_cursor cursor-open commands.

The following example fragment shows how to declare and open a cursor with
a prepared statement:
Client-Library/C Programmers Guide 119

Using Client-Library cursors
 /*
 ** Prepare the statement.
 */
 strcpy(body, “SELECT title_id, title, price FROM titles
 WHERE price > ? FOR READ ONLY”);
 strcpy(stmt_id, "dyn_a");
 retcode = ct_dynamic(cmd, CS_PREPARE, stmt_id, CS_NULLTERM,
 body, CS_NULLTERM);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_dynamic(prepare) failed");
 return retcode;
 }

 if ((retcode = ct_send(cmd)) != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_send() failed");
 return retcode;
 }

 ... ct_results() loop goes here. No fetchable results are
 returned ...

 /*
 ** Declare the cursor
 */
 retcode = ct_dynamic(cmd, CS_CURSOR_DECLARE,
 stmt_id, CS_NULLTERM,
 "cursor_a", CS_NULLTERM);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_dynamic(cursor declare) failed");
 return retcode;
 }

 if ((retcode = ct_send(cmd)) != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_send() failed");
 return retcode;
 }

 ... ct_results() loop goes here. No fetchable results are
 returned by the cursor-declare command ...
120 Open Client

CHAPTER 7 Using Client-Library Cursors
Step 2: Set cursor rows
After a Client-Library cursor is declared, an application can call ct_cursor to
specify a cursor-rows setting for the cursor. The value of the cursor-rows
setting defines the number of rows that the server returns to Client-Library per
internal fetch request, not the number of rows returned to an application per
ct_fetch call. An internal fetch request is made when more rows are needed
from the server to satisfy ct_fetch requests.

By default, the cursor-rows setting is 1. If the application does not send a
cursor-rows command that precedes the cursor-open command, the cursor
rows setting is 1. For cursors declared with ct_cursor commands, the cursor-
rows command can be batched with the cursor-open command.

The cursor-rows settings determines how many rows Client-Library receives
from the server in response to each internal Client-Library fetch request. For
example, if cursor-rows is set to 5 and the application does not use array
binding, Client-Library makes an internal fetch request when an application
calls ct_fetch the first time, the sixth time, and so on.

To facilitate a multi-row return from ct_scroll_fetch, you must use a cursor-row
setting greater than 1. For maximum efficiency, you must also use array
binding. Your array bind count should be equal to the CS_CURSOR_ROWS
value.

Note Array binding is required for ct_scroll_fetch if the
CS_CURSOR_ROWS setting is greater than 1. Array binding can be used with
both ct_fetch and ct_scroll_fetch. If CS_CURSOR_ROWS is set to the default
value of 1, normal program variables may be used with either API call.

If you specify a cursor-rows setting greater than 1, Client-Library buffers also
handles additional internal row fetches transparently. When an application
calls ct_fetch to fetch a cursor row, Client-Library may read the row directly
from the network, send an internal fetch request to the server to get more rows,
or retrieve the row from an internal row buffer. Two situations require Client-
Library to buffer cursor rows internally:

• When the application sends a nested cursor-update or cursor-delete
command.

• When the application sends a command on a different command structure
than the cursor’s.

In these situations, Client-Library must read and buffer any unread rows to
clear the connection for writing.
Client-Library/C Programmers Guide 121

Using Client-Library cursors
In general, a higher cursor-rows setting can benefit application performance
when processing a read-only cursor. A higher cursor-rows setting decreases the
number of network round trips required to fetch rows. However, if cursor-rows
is set too high and Client-Library must buffer rows, the buffering overhead can
outweigh the gains achieved by decreasing the number of round trips.

To minimize the likelihood that Client-Library will need to buffer rows, use
array binding with an array size that matches the cursor-rows setting. See the
reference page for ct_bind in the Open Client Client-Library/C Reference
Manual.

Step 3: Open the cursor
You initiate a cursor-open command by calling
ct_cursor(CS_CURSOR_OPEN). If the cursor requires input parameters,
define them by calling ct_param or ct_setparam once for each parameter value.
Parameter values are required if any of the following conditions are true:

• The body of the cursor is a SQL text string that contains host variables.

• The body of the cursor is a stored procedure that requires input parameter
values.

• The body of the cursor is a dynamic SQL statement that contains dynamic
parameter markers.

Applications that restore cursor-open commands should call ct_setparam rather
than ct_param to specify parameter values for the cursor-open command. When
ct_setparam is used, the application can change the parameter values for the
restored cursor-open command. (See “Reopening a cursor” on page 123.)

Cursor command batching

Cursors declared with ct_cursor can be batched. The first time a cursor is
opened, an application can send the cursor-declare, cursor-rows, and cursor-
open commands with a single call to ct_send and process the results with a
single results loop.

When a cursor is reopened, the application can batch a cursor-rows command
with the cursor-open command.

Batching the commands reduces the number of network round trips required to
open the cursor.
122 Open Client

CHAPTER 7 Using Client-Library Cursors
Reopening a cursor

After the results of a cursor-open command have been processed, the previous
cursor-open command can be restored with a single ct_cursor call (with the
syntax described below). The restore operation readies the command structure
to send the previous cursor-open command. The following command
information is restored:

• Any cursor-rows commands that were batched with the cursor-open
command.

• Parameter values for the cursor-open command that were passed with
ct_param.

• Bindings to parameter source variables that were established with
ct_setparam. ct_send reads the current values when the restored command
is sent.

Cursor-declare commands that were batched with the cursor-open command
are not restored.

An application restores a cursor-open command by calling ct_cursor with type
as CS_CURSOR_OPEN and option as CS_RESTORE_OPEN. Most
applications use the program structure below to restore and send a cursor-open
command.

/*
 ** Assign new variables in the program variables
 ** bound with ct_setparam.
 */
 ... assignment statement for each parameter
 source variable ...
ct_cursor(CS_CURSOR_OPEN, ..., CS_RESTORE_OPEN)
 ct_send
 ... handle cursor results ...

You can also reopen a cursor by initiating a new cursor open command
(preceded by a cursor-rows command if necessary). However, applications that
restore the previous command can eliminate several Client-Library calls.
Client-Library/C Programmers Guide 123

Using Client-Library cursors
Step 4: Process cursor rows
Cursor results should be processed by calling ct_results in a standard loop
structure (see “Structure of the basic loop” on page 90). Cursor rows are
available when ct_results returns with result_type equal to
CS_CURSOR_RESULT. Cursor rows are handled like any other fetchable
result set. (See “Processing cursor results” on page 93.)

The difference from other result types is that the application can issue new
commands while fetching cursor rows. These commands can be either of two
types:

• Nested cursor commands – cursor-close, cursor-delete, or cursor-update
commands executed using the command structure that controls the cursor,
or

• All other commands – any command executed using a separate command
structure.

Nested cursor-update or cursor-delete commands

While processing a cursor result set, an application can update or delete any
previously fetched row in the cursor result set. The modification is propagated
back to the base tables from which the cursor result set derives.

A cursor update command is initiated by calling ct_cursor with type as
CS_CURSOR_UPDATE, name as the name of the base table, and text as a
SQL update clause. For example, the following call builds a command to
update a row in the authors table of the pubs2 database:

ret_code = ct_cursor(cmd, CS_CURSOR_UPDATE,
 “authors”, CS_NULLTERM, “update authors \
 set au_lname = ‘Barr’”, CS_NULLTERM,
 CS_UNUSED);
ct_send(cmd);
ct_results(cmd, &res_type);

The cursor update can update columns from one table only. Separate
commands can be sent to update columns from more than one table.

A cursor-delete command is initiated by calling ct_cursor with type as
CS_CURSOR_DELETE, name as the name of the base table from which to
delete the row, and text as NULL.

After sending a cursor-update or cursor-delete command, the application must
completely process the update or delete operation before calling ct_fetch again.
124 Open Client

CHAPTER 7 Using Client-Library Cursors
Key columns An application should avoid updating columns that are part of the cursor result
set’s primary key. ct_describe sets the CS_KEY bit in the datafmt.status field
to indicate that a column is a primary key for the result set.

Redirected updates or
deletes

By default, a cursor-update or a cursor-delete affects the last-fetched row.
However, you can redirect the update or delete to affect any previously fetched
row. Redirected updates or deletes are most commonly used by applications
that perform array binding to process the cursor rows.

Cursor updates or deletes are redirected by calling ct_keydata before sending
the command.

For an application that redirects updates, you must ensure that the command
structure’s CS_HIDDEN_KEYS property is CS_TRUE before opening the
cursor. (Use ct_cmd_props to set the property for the command structure before
opening the cursor, or use ct_con_props to set it at the connection level before
allocating command structures.) CS_HIDDEN_KEYS determines whether the
cursor’s hidden-key columns are exposed to the application.

A hidden-key column is returned with a cursor’s result set but was not specified
in the cursor’s select list. ct_describe sets the CS_HIDDEN bit in the
datafmt.status field to indicate that a column was not part of the cursor’s select
list.

Hidden-key columns provide additional information that the server requires to
find the destination rows for cursor updates and deletes. Normally, Client-
Library handles these additional columns internally and does not expose them
to the application. However, applications that perform redirected updates or
deletes must handle the hidden-key columns explicitly.

To redirect a cursor update or delete, an application must call ct_keydata and
specify values for every column in the row that is a version key or a primary
key (including hidden columns). These terms are explained below:

• A primary-key column is part of the primary key for the cursor result set.
ct_describe sets the CS_KEY bit in the datafmt.status field to indicate that
a column is a primary key for the result set.

• A version-key column is a real table column (not an expression in the
select list) that is not part of the primary key for the cursor result set.
ct_describe sets the CS_VERSION_KEY bit in the datafmt.status field to
indicate that a column is a version key for the result set.

A hidden-key column can be either a primary-key column or a version-key
column.
Client-Library/C Programmers Guide 125

Using Client-Library cursors
Applications that redirect cursor updates must be coded according to the rules
below:

• Make sure the CS_HIDDEN_KEYS property is CS_TRUE for the
command structure before the cursor is opened.

• When processing the cursor rows, call ct_describe to obtain
CS_DATAFMT information for all cursor columns, including hidden
columns. Save the information for use with later updates.

• In interactive applications, use the CS_HIDDEN bit in the CS_DATAFMT
status field to determine whether a column should be displayed.

• When retrieving rows, save column values for all rows that can be
updated. These values are required as input to ct_keydata.

• To update a previously fetched row, call ct_keydata for every column in the
row whose matching CS_DATAFMT status field has either the CS_KEY
or CS_VERSION_KEY bit set.

• Avoid updating key columns. Check the CS_KEY bit in the
CS_DATAFMT status field to determine whether a column is a key
column.

Nested cursor-close commands

An application can close a cursor before fetching all its rows by sending a
cursor-close command and handling the results. See “Step 5: Close the cursor”
on page 127 for more details.

Closing a cursor is preferred over calling ct_cancel to discard unwanted cursor
rows for the following reasons:

• Calling ct_cancel(CS_CANCEL_ALL) or
ct_cancel(CS_CANCEL_ATTN) can cause a connection’s cursors to go
into an undefined state.

• Calling ct_cancel(CS_CANCEL_CURRENT) can waste network
bandwidth. This call causes Client-Library to fetch the remaining rows
over the network and discard them.

Sending commands on a different command structure

An application can send commands, which are unrelated to the original cursor,
on a separate command structure while fetching the rows from the original
cursor.
126 Open Client

CHAPTER 7 Using Client-Library Cursors
For example, the application might issue a select or an update based on the
cursor data. In this case, the application must completely process the results of
the new command before fetching the next cursor row. The application could
also open a new cursor. In this case, the new cursor must be opened and its
command handle must be ready to return cursor rows before the application
can perform another operation on the original cursor.

Step 5: Close the cursor
An application initiates a cursor-close command by calling ct_cursor with type
as CS_CURSOR_CLOSE. If the application will not use the cursor again, it
can close and deallocate the cursor with one command by passing ct_cursor’s
option parameter as CS_DEALLOC. Otherwise, option should be
CS_UNUSED.

Step 6: Deallocate the cursor
An application initiates a cursor-deallocate command by calling ct_cursor with
type as CS_CURSOR_DEALLOC. If an application does not explicitly
deallocate a cursor, it is deallocated when the application disconnects.

Client-Library cursor properties
Once a Client-Library cursor is declared, it is associated with only one
command structure. Applications can obtain information about the cursor
associated with a command structure by calling ct_cmd_props to retrieve the
following properties:

• CS_CUR_ID – contains the cursor’s server identification number. A
cursor’s identification number can be retrieved after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists in a
particular command space.

• CS_CUR_NAME – contains the cursor’s name. An application can use
the CS_CUR_NAME property to retrieve a cursor’s name any time after
its ct_cursor(CS_CURSOR_DECLARE) call returns CS_SUCCEED.
Client-Library/C Programmers Guide 127

Client-Library cursor properties
• CS_CUR_ROWCOUNT – contains the cursor-rows setting. This setting
is the number of rows returned to Client-Library per internal fetch request.
A cursor’s row count can be retrieved after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists in a
particular command space.

• CS_CUR_STATUS – indicates the cursor status. An application can use
the CS_CUR_STATUS property to determine:

• Whether a cursor exists within a command space

• Whether the cursor is open

• Whether the cursor can be used for updates

• Whether the cursor is read-only, has sensitivity, and has scrollability.

Calling ct_cancel can cause a connection’s cursors to enter an undefined
state. An application can use the cursor status property to determine how
a cancel operation has affected a cursor.

• CS_HAVE_CUROPEN – indicates whether the command structure has a
cursor-open command that can be restored. See “Reopening a cursor” on
page 123.

All of these properties are retrieve-only command structure properties whose
values can be retrieved by calling ct_cmd_props. See the reference page for
ct_cmd_props in the Open Client Client-Library/C Reference Manual.
128 Open Client

C H A P T E R 8 Using Dynamic SQL Commands

This chapter explains Dynamic SQL, including:

Dynamic SQL overview
Dynamic SQL is the process of generating, preparing, and executing SQL
statements at run time using commands initiated by Client-Library’s
ct_dynamic routine.

Dynamic SQL is primarily useful for precompiler support, but it can also
be used by interactive applications.

Client-Library and Adaptive Server Enterprise allow two methods of
dynamic SQL command execution:

• Execute-immediate – the client application sends the server a
ct_dynamic command that executes a literal statement. This is
essentially the same process as sending a language command, but
with more restrictions. (See “Language commands” on page 76.)

• Prepare-and-execute – the client application sends the server a
sequence of server commands that prepares a statement and executes
it one or more times. The application can send additional commands
to query the server for the formats of the statement’s input parameters
and the result set that it returns.

Topic Page
Dynamic SQL overview 129

Benefits of dynamic SQL 130

Limitations of dynamic SQL 130

Alternatives to dynamic SQL 132

Using the execute-immediate method 132

Using the prepare-and-execute method 133

Dynamic SQL versus stored procedures 140
Client-Library/C Programmers Guide 129

Benefits of dynamic SQL
With the prepare-and-execute method, the client application sends a
ct_dynamic(CS_PREPARE) command to the server to create a prepared
statement. A prepared statement is similar to an Adaptive Server Enterprise
stored procedure. When either is created, the server checks the SQL statement
syntax, builds an optimized query plan, and stores the query plan in preparation
for later execution. The key differences are as follows:

• The prepared statement is dropped automatically when the client program
disconnects, while the stored procedure is not.

• The prepared statement is referenced by an identifier that is visible only to
the connection that created the statement, while a stored procedure name
is visible to any client connection. However, the procedure’s permissions
may restrict which users can execute it.

• The client program can easily determine the input (parameter) and output
(result) column formats for a prepared statement without executing it.

Benefits of dynamic SQL
Using dynamic SQL commands, an application can prepare a “generic” SQL
statement once and execute it multiple times. Statements can also contain
markers for parameter values to be supplied at execution time, so that the
statement can be executed with varying inputs.

Limitations of dynamic SQL
Dynamic SQL has some significant limitations.

Performance of dynamic SQL commands
A dynamic SQL implementation of an application generally performs worse
than an implementation where permanent Adaptive Server Enterprise stored
procedures are created and the client program invokes them with RPC
commands.
130 Open Client

CHAPTER 8 Using Dynamic SQL Commands
When you create Adaptive Server Enterprise stored procedures for an
application, SQL statement compilation and optimization are performed once
when the procedure is created. On the other hand, a dynamic SQL application
incurs compilation and optimization overhead every time the client program
runs. A dynamic SQL implementation also incurs database space overhead
because each instance of the client program must create separate compiled
versions of the application’s prepared statements. In contrast, when you design
an application to use stored procedures and RPC commands, all instances of
the client program can share the same stored procedures.

Adaptive Server Enterprise restrictions and database requirements
Adaptive Server Enterprise implements dynamic SQL using temporary stored
procedures. A temporary stored procedure is created when a SQL statement is
prepared, and destroyed when that prepared statement is deallocated. A
prepared statement can be deallocated either explicitly with a
ct_dynamic(CS_DEALLOC) call or implicitly when a connection is closed.

As a consequence of this implementation, an application accessing Adaptive
Server Enterprise and using dynamic SQL is subject to the restrictions of
Adaptive Server Enterprise stored procedures. Some of the implications of this
are:

• Temporary tables are destroyed when the prepared statement is
deallocated.

• Parameters of text and image datatypes are not supported.

• The maximum number of parameters supported is 255.

• If the dynamic SQL statement itself executes a stored procedure (with a
Transact-SQL execute statement), output parameter values and the return
status are unavailable to the client application.

• The datatype of the parameters represented by placeholders must be
known at parsing time. The following statements are not valid:

? <op> ?, (? is null)

CONVERT(<type>, ?)

See the Transact-SQL Users Guide for a complete discussion of stored
procedures.
Client-Library/C Programmers Guide 131

Alternatives to dynamic SQL
Alternatives to dynamic SQL
Developers who learn Sybase after learning another DBMS system should not
confuse Sybase’s dynamic SQL implementation with that of other vendors.
With Adaptive Server Enterprise, most command types are “dynamic.” The
closest analogy that Adaptive Server Enterprise offers to “static SQL
commands” are stored procedures. However, any client application can invoke
a stored procedure, as long as the procedure’s permissions allow the client
program’s user to execute it. Other DBMS systems may limit the scope of a
precompiled static SQL command to the precompiled application.

For Adaptive Server Enterprise applications, many tasks that require you to use
dynamic SQL with another DBMS can be implemented with Client-Library
command types other than dynamic SQL. For example:

• For an application that must execute SQL statements whose text is not
known prior to runtime, you can code the client program to define
language commands by calling ct_command. This method is appropriate
for commands that are only executed once or a small number of times.

• For an application that must execute commands whose text is known
before runtime and where performance is important, you can create an
Adaptive Server Enterprise stored procedure and code the client program
to invoke the procedure with RPC commands (defined with ct_command).

• For an application that must interactively define and open cursors, you can
code the client program to define the cursor-declare commands with
ct_cursor.

Using the execute-immediate method
The execute-immediate method executes a single SQL statement by sending a
single command to the server.

When to use the execute-immediate method
A dynamic SQL statement can be executed immediately only if it meets the
following criteria:

• It does not return fetchable data (it is not a select statement).
132 Open Client

CHAPTER 8 Using Dynamic SQL Commands
• It does not contain placeholders for parameters (indicated by a question
mark (?) in the text of the statement).

Dynamic parameter markers act as placeholders that allow users to specify
actual data to be substituted into a SQL statement at run time.

Generally, you should use the execute-immediate method when the application
executes a statement only once. Using the execute-immediate method, an
application can execute a statement more than once, but this method incurs the
overhead associated with repeated statement preparations.

Coding an execute-immediate command
To execute a dynamic SQL statement using the execute-immediate method,
code your application to:

1 Store the text of the dynamic SQL statement in a character string host
variable.

2 Call ct_dynamic with type as CS_EXEC_IMMEDIATE to initiate a
command to execute the statement, buffer as the address of the string
containing the SQL statement, and id as NULL.

3 Call ct_send to send the command to the server.

4 Call ct_results in a standard loop, as described in “Structure of the basic
loop” on page 90. The value of the *result_type parameter indicates
whether the command succeeded (CS_CMD_SUCCEED) or failed
(CS_CMD_FAIL).

Using the prepare-and-execute method
For the prepare-and-execute method, the server performs the compilation and
execute operations separately in response to distinct commands.

When to use prepare-and-execute method
An application must use this method if the dynamic SQL statement meets any
of the following criteria:
Client-Library/C Programmers Guide 133

Using the prepare-and-execute method
• It returns data.

• It contains placeholders for values to be supplied at execution time,
represented by a question mark (?) character in the text of the statement.

An application should use this method if it will execute the statement multiple
times because it incurs the overhead associated with statement preparation only
when it first prepares the statement. Each subsequent execution of the
statement does not incur the cost of recompiling the statement.

The prepare-and-execute method offers the following advantages over the
execute-immediate method:

• select statements can be executed.

• Performance is better when statements are executed more than once.

• The statement can take parameters whose values can change each time the
statement executes.

Program structure for the prepare-and-execute method
Most applications will use the steps below to prepare and execute a dynamic
SQL statement:

1 Prepare the dynamic SQL statement.

• ct_dynamic(CS_PREPARE)

• ct_send

• ct_results, in a loop

The prepare command returns no fetchable results.

2 (Optional) Get a description of the parameters required to execute the
prepared statement.

• ct_dynamic(CS_DESCRIBE_INPUT)

• ct_send

• ct_results, in a loop

ct_results returns with a result_type of CS_DESCRIBE_RESULT to
indicate that the parameter descriptions are available.

3 (Optional) Get a description of the result columns returned by the prepared
statement.
134 Open Client

CHAPTER 8 Using Dynamic SQL Commands
• ct_dynamic(CS_DESCRIBE_OUTPUT)

• ct_send

• ct_results, in a loop

ct_results returns with a result_type of CS_DESCRIBE_RESULT to
indicate that the description is available.

4 Execute the prepared statement or declare and open a cursor on the
prepared statement.

To execute the prepared statement (without a cursor):

• ct_dynamic(CS_EXECUTE).

• If necessary, define parameter values with ct_param, ct_setparam,
ct_dyndesc, or ct_dynsqlda.

• ct_send.

• ct_results, in a loop. Fetchable results may require processing.

For a description of how to execute a prepared statement with a cursor, see
“Using Client-Library cursors” on page 113.

5 Deallocate the prepared statement.

If a cursor is declared on the statement, first close and deallocate the
cursor:

• ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC) or, if the cursor is
not open, ct_cursor(CS_CURSOR_DEALLOC)

• ct_send

• ct_results, in a loop

• Initiate and send a command to deallocate the prepared statement:

• ct_dynamic(CS_DEALLOC)

• ct_send

• ct_results, in a loop

The deallocate command returns no fetchable results.

Each step in the process above sends one dynamic SQL command to the server.
After sending each command, the application must handle the results with
ct_results. Code your application to handle the results of a dynamic SQL
command with a standard results loop, as discussed in “Structure of the basic
loop” on page 90.
Client-Library/C Programmers Guide 135

Using the prepare-and-execute method
Step 1: Prepare the statement
To initiate a command that prepares a dynamic SQL statement, an application
calls ct_dynamic with type as CS_PREPARE, id as a character string statement
identifier, and buffer as the statement to prepare. For example:

char *query = “select type, title, price \
 from titles \
 where title_id = ?”
ct_dynamic(cmd, CS_PREPARE, “myid”, CS_NULLTERM,
 query, CS_NULLTERM);

Statement identifiers must be unique among other dynamic SQL statements
prepared on the same connection.

ct_send sends the prepare command to the server, and a standard ct_results loop
handles the results.

Step 2: Get a description of command inputs
After a statement is prepared, the application can send a describe-input
command to the server to obtain a description of any parameters that are
required to execute the statement. This description includes the number of
input values, as well as their datatypes, lengths, and so on. The application can
then use this information to prompt the end user for input values. After
prompting for input values, it can pass those values to the prepared statement
just prior to executing the statement.

Initiating a describe-input command

To initiate a describe-input command, the application calls ct_dynamic with
type as CS_DESCRIBE_INPUT and id as the statement identifier. ct_send
sends the command to the server, and a standard ct_results loop handles the
results.

Processing parameter descriptions

ct_results returns with result_type of CS_DESCRIBE_RESULT to indicate
that the input parameter formats are available. Applications can retrieve the
parameter formats in one of two ways:

• With ct_res_info and ct_describe
136 Open Client

CHAPTER 8 Using Dynamic SQL Commands
The application calls ct_res_info to determine the number of parameters;
then, for each parameter, it calls ct_describe to initialize a CS_DATAFMT
structure with a description of the parameter.

Typically, an application using this method keeps the CS_DATAFMT
structures in an array or list for use with later calls to ct_param or
ct_setparam.

• With ct_dyndesc or ct_dynsqlda

Both these routines allow the application to retrieve formats into a
structure that can later be used to pass parameters for the command that
executes the statement. Both of these routines:

• Retrieve a description of the input parameters required to execute a
prepared dynamic SQL statement

• Define input parameter values for the execution of a prepared
statement

• Retrieve a description of the data results that will be returned when a
prepared statement is executed

• Retrieve data values in the result set returned by the execution of a
prepared statement

The differences between the routines are:

• ct_dynsqlda – retrieves formats into a SQLDA structure. The
application must allocate the memory for this structure before
retrieving formats into it. ct_dynsqlda requires only a single call to
perform each operation.

• ct_dyndesc – retrieves formats into an internal Client-Library data
structure that is hidden from the application. ct_dyndesc requires
several calls to perform a single operation.

ct_dyndesc and ct_dynsqlda both call ct_res_info and ct_describe
internally. When used to pass parameter values, ct_dyndesc and
ct_dynsqlda both call ct_param internally.
Client-Library/C Programmers Guide 137

Using the prepare-and-execute method
Step 3: Get a description of command outputs
The application can send a describe-output command to get the format of the
result columns that will be returned when the prepared statement executes. For
example, an interactive application might use a describe-output command to
determine the number and format of result columns to prepare data structures
that are used when displaying the query results. A describe-output command
allows the application to determine the results format without executing the
prepared statement.

Note A single dynamic SQL batch may contain multiple SQL statements. The
description of the prepared statement output, however, only describes the first
resultset. You will receive full descriptions of each resultset only when the
dynamic SQL statement is executed.

Initiating a describe-output command

To initiate a describe-output command, the application calls ct_dynamic with
type as CS_DESCRIBE_OUTPUT and id as the statement identifier. ct_send
sends the command to the server, and a standard ct_results loop handles the
results.

Processing column descriptions

ct_results returns with result_type of CS_DESCRIBE_RESULT to indicate
that the result column formats are available. Applications can retrieve the
column formats in one of two ways:

• With ct_res_info and ct_describe

The application calls ct_res_info to get the number of columns, then, for
each parameter, calls ct_describe to initialize a CS_DATAFMT structure
with a description of the column.

Typically, an application using this method maintains an array or list of
CS_DATAFMT structures for use with later calls to ct_bind.

• With ct_dyndesc or ct_dynsqlda

Both these routines allow the application to retrieve formats into a
structure that can later be used to retrieve row data when the prepared
statement executes.
138 Open Client

CHAPTER 8 Using Dynamic SQL Commands
• ct_dynsqlda retrieves formats into a SQLDA structure. The
application must allocate the memory for this structure before
retrieving formats into it.

• ct_dyndesc retrieves formats into an internal Client-Library data
structure that is hidden from the application.

ct_dyndesc and ct_dynsqlda both call ct_res_info and ct_describe
internally. When used to retrieve row data, ct_dyndesc and ct_dynsqlda
both call ct_bind internally.

Step 4: Execute the prepared statement
To initiate a command to execute the prepared statement, the application calls
ct_dynamic with type as CS_EXECUTE and id as the statement identifier. The
application must define any parameters required to execute the prepared
statement. Parameter values can be defined in one of several ways:

• By calling ct_param once for each parameter. ct_param and ct_setparam
offer the best performance. ct_param does not allow the application to
change parameter values before resending the command.

• By calling ct_setparam once for each parameter. ct_setparam takes
pointers to parameter source values. This method is the only one that
allows parameter values to be changed before resending the command.

• By calling ct_dyndesc several times to allocate a dynamic descriptor area,
populate it with data values, and apply it to the command.
ct_dyndesc(CS_USE_DESC) calls ct_param internally.

• By calling ct_dynsqlda to apply the contents of a user-allocated SQLDA
structure to the command. Note that ct_dynsqlda(CS_SQLDA_PARAM)
calls ct_param internally.

The application can determine the number and format of a prepared statement’s
parameters by sending a describe-input command and handling the results
before executing the prepared statement. See “Step 2: Get a description of
command inputs” on page 136.

ct_send sends the command to the server, and a standard ct_results loop handles
the results. Code your application to handle the results with a standard results
loop, as discussed in “Structure of the basic loop” on page 90.
Client-Library/C Programmers Guide 139

Dynamic SQL versus stored procedures
Step 5: Deallocate the prepared statement
Deallocating a prepared statement frees any resources associated with it.
Explicit deallocation is optional; if the application does not explicitly
deallocate prepared statements, the server deallocates them when the client
program disconnects.

If a cursor is declared on the prepared statement, the application must first
deallocate the cursor before deallocating the statement. See “Step 6:
Deallocate the cursor” on page 127 for details.

To initiate a command to deallocate the prepared statement, the application
calls ct_dynamic with type as CS_DEALLOC and id as the statement identifier.
ct_send sends the command to the server, and a standard ct_results loop handles
the results.

Dynamic SQL versus stored procedures
For improved performance compared to dynamic SQL, application designers
can use Adaptive Server Enterprise stored procedures as an alternative where
the application requirements allow it.

There are similarities between dynamic SQL and stored procedures:

• Creating a stored procedure is analogous to preparing a dynamic SQL
statement.

• A stored procedure’s input parameters serve the same purpose as dynamic
parameter markers.

• Executing a stored procedure is equivalent to executing a prepared
statement.

Stored procedures and dynamic SQL prepared statements offer identical
functionality, with the following exceptions:

• Dynamic SQL allows retrieval of a prepared statement’s parameter
formats, while stored procedures do not. See “Step 2: Get a description of
command inputs” on page 136.
140 Open Client

CHAPTER 8 Using Dynamic SQL Commands
• The format for stored procedure results cannot easily be determined
programmatically without executing the procedure. Dynamic SQL allows
retrieval of a prepared statement’s result column formats without
executing the statement. See “Step 3: Get a description of command
outputs” on page 138.

• User-created stored procedures are permanent database objects, while
prepared statements are automatically deallocated when the user
disconnects from the server.

A dynamic SQL statement can be replaced by a stored procedure that returns
the same results. For example, the following dynamic SQL statement queries
the pubs2..titles table for books of a certain type in a certain price range:

select * from pubs2..titles
 where type = ?
 and price between ? and ?

Here, the dynamic SQL statement has dynamic parameter markers (?) for a
type value and two price values.

You can create an equivalent stored procedure as follows:

create proc titles_type_pricerange
 @type char(12),
 @price1 money,
 @price2 money
 as
 select * from titles
 where
 type = @type
 and price between @price1 and @price2

When executed with the same input parameter values, the prepared statement
and the stored procedure return the same rows. In addition, the stored
procedure returns a return status result.
Client-Library/C Programmers Guide 141

Dynamic SQL versus stored procedures
142 Open Client

C H A P T E R 9 Using Directory Services

This chapter describes how Client-Library applications can use a directory
service.

Directory service overview
A directory stores information as directory entries and associates a
logical name with each entry. Each directory entry contains information
about some network entity, such as a user, a server, or a printer.

A directory service (sometimes called a naming service) manages
creation, modification, and retrieval of directory entries.

By default, Client-Library uses the Sybase interfaces file as the directory
source. Sybase also provides directory drivers for several network-based
directory services such as DCE’s Cell Directory Service (CDS) and the
Windows Registry service. For information about the directory drivers
that are available on your platform, see the Open Client and Server
Configuration Guide for Microsoft Windows and Open Client and Server
Configuration Guide for UNIX.

Topic Page
Directory service overview 143

How do applications use a directory service? 144

Searching the directory 144

Step 1: Starting the search 145

Step 2: Collecting search results in the directory callback 150

Step 3: Inspecting directory objects 154

Step 4: Cleaning up 168
Client-Library/C Programmers Guide 143

How do applications use a directory service?
How do applications use a directory service?
Information about Sybase servers is stored in the directory. When an
application calls ct_connect to open a connection to a server, it passes the name
of the server’s directory entry as the ct_connect server_name parameter.
ct_connect looks up the entry and retrieves the server’s network address and
any other information needed to establish the connection.

Applications can also search for available servers using Client-Library
routines.

Searching the directory
Before an application can search a directory, it must have set up the Client-
Library programming environment and allocated a CS_CONNECTION
structure. See Chapter 1, “Getting Started with Client-Library” if you do not
already know how to initialize Client-Library and allocate a connection
structure.

Example code
The usedir.c sample program demonstrates how Client-Library applications
perform a directory search. All of the code fragments in this chapter are taken
from usedir.c.

Program structure
To perform directory search, code your application to follow the steps below:

1 Begin the search.

• ct_con_props to set directory service properties

• ct_callback to install a pointer to the application’s directory callback
in the connection structure

Execute application code to initialize a list or array that will collect
directory objects

• ct_ds_lookup to begin the search
144 Open Client

CHAPTER 9 Using Directory Services
Note that instead of calling ct_callback here, the application could have
installed the callback in the connection’s parent context structure before
allocating the connection. Then it would become the default directory
callback for all connections allocated from the context.

2 Collect search results in the directory callback.

• (Optional) ct_ds_objinfo to inspect the object

• (Optional) ct_ds_dropobj to drop unwanted objects

Execute application code to collect directory objects with an application
defined list or array.

During the directory search, ct_ds_lookup invokes the directory callback
once for each entry that is found in the search.

3 Inspect the directory objects. For each directory object:

• ct_ds_objinfo to get the object’s fully qualified name

• ct_ds_objinfo to get the number of attributes

• ct_ds_objinfo to get each attribute’s metadata and values

4 Clean up.

For each object, ct_ds_dropobj to deallocate the directory object

Step 1: Starting the search
An application starts a directory search by initializing the application data
structures that will hold the results, installing a directory callback, and calling
ct_ds_lookup.

Initialize data structures
The example code in this chapter collects directory objects in a data structure
called SERVER_INFO_LIST, which can be implemented as an array or list of
CS_DS_OBJECT pointers.

The code calls the following example routines to collect directory object
structures:

• sil_init_list – allocate and initialize an empty SERVER_INFO_LIST.
Client-Library/C Programmers Guide 145

Step 1: Starting the search
• sil_add_object – add a directory object to the end of a
SERVER_INFO_LIST.

• sil_extract_object – given a 1-based index number, retrieve a directory
object from the SERVER_INFO_LIST.

• sil_list_len – get the number of objects stored in a SERVER_INFO_LIST.

• sil_drop_list – deallocate a SERVER_INFO_LIST and all its constituents.
Calls ct_ds_dropobj to deallocate each directory object in the list.

These routines simply manage a list of CS_DS_OBJECT pointers. Their
implementation is not shown here, but complete code can be found in the
usedir.c sample file in the Client-Library sample programs.

Setting directory service properties
Applications call ct_con_props to set directory service properties for a
connection. Applications most commonly set the following properties to
control a directory search:

• CS_DS_DITBASE – specifies the node in the directory where the search
begins. DIT-base values must follow the syntax rules of the directory
service. See the “Directory Services” topics page in the Open Client
Client-Library/C Reference Manual for example DIT-base values.

• CS_DS_SEARCH – constrains the depth that the search descends beneath
the DIT base. The possible values of CS_DS_SEARCH are as follows:

Note The DCE directory driver does not allow CS_DS_SEARCH to be set to
a value other than the default, CS_SEARCH_ONE_LEVEL.

All directory service properties have a symbolic name that begins with
“CS_DS”. See the “Properties” topics page in the Open Client Client-
Library/C Reference Manual for a complete list of Client-Library properties.

Value Meaning

CS_SEARCH_ONE_LEVEL
(default)

Search includes only the leaf entries that are
immediate descendants of the node specified by
CS_DS_DITBASE.

CS_SEARCH_SUBTREE Search the entire subtree whose root is specified
by CS_DS_DITBASE.
146 Open Client

CHAPTER 9 Using Directory Services
Installing the directory callback
An application installs a directory callback by calling ct_callback with the
action parameter as CS_SET, the type parameter as CS_DS_LOOKUP_CB,
and func as the address of the applications directory callback routine.

A directory callback can be installed at the context level or the connection
level. Connections that are allocated from a context inherit the context’s
directory callback. These steps install the callback at the connection level.

Coding of the callback routine is discussed under “Step 2: Collecting search
results in the directory callback” on page 150.

Calling ct_ds_lookup
Applications begin a search by calling ct_ds_lookup with action as CS_SET.

ct_ds_lookup takes a CS_DS_LOOKUP_INFO structure as its lookup_info
parameter that describes the search request. lookup_infoobjclass must point
at a CS_OID structure that indicates the directory object class
CS_OID_OBJSERVER. The other CS_DS_LOOKUP_INFO fields are
currently unused and should be all passed as NULL.

ct_ds_lookup also takes a pointer to user-allocated data as its userdata
parameter. When ct_ds_lookup invokes the application’s directory callback, the
callback receives the same pointer value as an input parameter.

Example code to start a directory search
The following fragment declares an application routine, get_servers, that
searches for server directory class objects:

/*
 ** get_servers() -- Query the directory for servers and
 ** get a list of directory objects that contain details
 ** for each.
 **
 ** Parameters
 ** conn -- Pointer to allocated connection structure.
 ** pserver_list -- Address of a pointer to a SERVER_INFO_LIST.
 ** Upon successful return, the list will be initialized
 ** and contain an object for each server found in the
 ** search.
 **
Client-Library/C Programmers Guide 147

Step 1: Starting the search
 ** NOTE: The caller must clean up the list with sil_drop_list()
 ** when done with it.
 **
 ** Returns
 ** CS_SUCCEED or CS_FAIL.
 *
CS_RETCODE get_servers (conn, pserver_list)

 CS_CONNECTION *conn;
 SERVER_INFO_LIST **pserver_list;
 {
 CS_RETCODE ret;
 CS_INT reqid;
 CS_VOID *oldcallback;
 CS_OID oid;
 CS_DS_LOOKUP_INFO lookup_info;

 /*
 ** Steps for synchronous-mode directory searches:
 **
 ** 1. If necessary, initialize application specific data structures
 ** (Our application collects directory objects in *pserver_list).
 ** 2. Save the old directory callback and install our own.
 ** 3. Set the base node in the directory to search beneath
 ** (CS_DS_DITBASE property).
 ** 4. Call ct_ds_lookup to begin the search, passing any application
 ** specific data structures as the userdata argument.
 ** 5. Client-Library invokes our callback once for each found object
 ** (or once to report that no objects were found). The callback
 ** (directory_cb) receives pointers to found servers and appends
 ** each to the list of servers.
 ** 6. Check the return status of ct_ds_lookup.
 ** 7. Restore callbacks and properties that we changed.
 */

/*
 ** Step 1. Initialize the data structure (*pserver_list).
 */
 ret = sil_init_list(pserver_list);
 if (ret != CS_SUCCEED || (*pserver_list) == NULL)
 {
 ex_error("get_servers: Could not initialize list.");
 return CS_FAIL;

}

/*
 ** Step 2. Save the old directory callback and install our own callback,
 ** directory_cb(), to receive the found objects.
 */
148 Open Client

CHAPTER 9 Using Directory Services
 ret = ct_callback(NULL, conn, CS_GET,
 CS_DS_LOOKUP_CB, &oldcallback);
 if (ret == CS_SUCCEED)
 {
 ret = ct_callback(NULL, conn, CS_SET,
 CS_DS_LOOKUP_CB, (CS_VOID *)directory_cb);
 }
 if (ret != CS_SUCCEED)
 {
 ex_error("get_servers: Could not install directory callback.");
 return CS_FAIL;
 }

/*
 ** Step 3. Set the base node in the directory to search beneath
 ** (the CS_DS_DITBASE connection property).
 */

 ret = provider_setup(conn);
 if (ret != CS_SUCCEED)
 {
 ex_error("get_servers: Provider-specific setup failed.");
 return CS_FAIL;
 }

/*
 ** Step 4. Call ct_ds_lookup to begin the search, passing the server list
 ** pointer as userdata.
 ** Step 5. Client-Library invokes our callback once for each found object
 ** (or once to report that no objects were found). Our callback,
 ** directory_cb, will receive a pointer to each found server object
 ** and appends it to the list.
 ** Step 6. Check the return status of ct_ds_lookup.
 */

/*

 ** Set the CS_DS_LOOKUP_INFO structure fields.
 */
 lookup_info.path = NULL;
 lookup_info.pathlen = 0;
 lookup_info.attrfilter = NULL;
 lookup_info.attrselect = NULL;

 strcpy(oid.oid_buffer, CS_OID_OBJSERVER);
 oid.oid_length = STRLEN(oid.oid_buffer);
 lookup_info.objclass = &oid;
Client-Library/C Programmers Guide 149

Step 2: Collecting search results in the directory callback
 /*
 ** Begin the search.
 */
 ret = ct_ds_lookup(conn, CS_SET, &reqid,
 &lookup_info, (CS_VOID *)pserver_list);
 if (ret != CS_SUCCEED)
 {
 ex_error("get_servers: Could not run search.");
 return CS_FAIL;
 }

/*
 ** Step 7. Restore callbacks and properties that we changed.
 */
 ret = ct_callback(NULL, conn, CS_SET,
 CS_DS_LOOKUP_CB, oldcallback);
 if (ret != CS_SUCCEED)
 {
 ex_error("get_servers: Could not restore directory callback.");
 return CS_FAIL;
 }

 return CS_SUCCEED;

 } /* get_servers() *

Step 2: Collecting search results in the directory
callback

During the directory search, ct_ds_lookup invokes the directory callback once
for each entry that is found in the search.

Defining the directory callback
A directory callback has the following prototype:

CS_RETCODE CS_PUBLIC
 directory_cb (connection, reqid, status,
 numentries, ds_object, userdata)
 CS_CONNECTION *connection;
 CS_INT reqid;
 CS_RETCODE status;
150 Open Client

CHAPTER 9 Using Directory Services
 CS_INT numentries;
 CS_DS_OBJECT *ds_object;
 CS_VOID *userdata;

where:

• connection is the pointer to the CS_CONNECTION structure used for the
directory lookup.

• reqid is the request identifier returned by the ct_ds_lookup call that began
the directory lookup.

• status is the status of the directory lookup request. status can be one of the
following values:

• numentries is the count of directory objects remaining to be examined. If
entries were found, numentries includes the current object. If no entries
were found, numentries is 0.

• ds_object is a pointer to information about one directory object. ds_object
is (CS_DS_OBJECT *)NULL if either of the following is true:

• The directory lookup failed (indicated by a status value that is not
equal to CS_SUCCEED), or

• No matching objects were found (indicated by a numentries value that
is 0 or less).

• userdata is a pointer to a user-supplied data area. If the application passes
a pointer as ct_ds_lookup’s userdata parameter, then the directory callback
receives the same pointer when it is invoked.

userdata provides a way for the callback to communicate with mainline
code.

The callback can return CS_CONTINUE or CS_SUCCEED.

• A return of CS_SUCCEED truncates the search results: Client-Library
discards any remaining directory objects and stops invoking the callback.

• A return of CS_CONTINUE causes Client-Library to invoke the callback
with the next directory object in the search results.

Status value Meaning

CS_SUCCEED Search was successful

CS_FAIL Search failed

CS_CANCELED Search was canceled with
ct_ds_lookup(CS_CLEAR)
Client-Library/C Programmers Guide 151

Step 2: Collecting search results in the directory callback
Directory callback example
The following example fragment defines a directory callback. This callback:

• Confirms that the directory object pointer is valid.

• Adds the directory object to the application’s list of servers by calling the
sil_add_object example routine. When the mainline code calls
ct_ds_lookup, it passes the address of an initialized SERVER_INFO_LIST
as the ct_ds_lookup userdata parameter. The callback receives the same
address as its own userdata parameter.

• If the list of servers is full, the callback returns CS_SUCCEED to truncate
the search results. Otherwise, the callback returns CS_CONTINUE.

/*
 ** directory_cb() -- Directory callback to install in Client-Library.
 ** When we call ct_ds_lookup(), Client-Library calls this function
 ** once for each object that is found in the search.
 **
 ** This particular callback collects the objects in
 ** the SERVER_INFO_LIST that is received as userdata.
 **
 ** Parameters
 ** conn -- The connection handle passed to ct_ds_lookup() to
 ** begin the search.
 ** reqid -- The request id for the operation (assigned by Client-Library).
 ** status -- CS_SUCCEED when search succeeded (ds_object is valid).
 ** CS_FAIL if the search failed (ds_object is not valid).
 ** numentries -- The count of objects to be returned for the
 ** search. Includes the current object. Can be 0 if search
 ** failed.
 ** ds_object -- Pointer to a CS_DS_OBJECT structure. Will
 ** be NULL if the search failed.
 ** userdata -- The address of user-allocated data that was
 ** passed to ct_ds_lookup().
 **
 ** This particular callback requires userdata to be the
 ** address of a valid, initialized SERVER_INFO_LIST pointer.
 ** (SERVER_INFO_LIST is an application data structure defined
 ** by this sample).
 **
 ** Returns
 ** CS_CONTINUE unless the SERVER_INFO_LIST pointed at by userdata fills
 ** up, then CS_SUCCEED to truncate the search results.
 */

S_RETCODE CS_PUBLIC
152 Open Client

CHAPTER 9 Using Directory Services
 directory_cb(conn, reqid, status, numentries, ds_object, userdata)
 CS_CONNECTION *conn;
 CS_INT reqid;
 CS_RETCODE status;
 CS_INT numentries;
 CS_DS_OBJECT *ds_object;
 CS_VOID *userdata;
 {

 CS_RETCODE ret;
 SERVER_INFO_LIST *server_list;

 if (status != CS_SUCCEED || numentries <= 0)
 {
 return CS_SUCCEED;
 }

/*
 ** Append the object to the list of servers.
 */
 server_list = *((SERVER_INFO_LIST **)userdata);
 ret = sil_add_object(server_list, ds_object);
 if (ret != CS_SUCCEED)
 {

 /*
 ** Return CS_SUCCEED to discard the rest of the objects that were
 ** found in the search.
 */
 ex_error(
 "directory_cb: Too many servers! Truncating search results.");
 return CS_SUCCEED;
 }

/*
 ** Return CS_CONTINUE so Client-Library will call us again if more
 ** entries are found.
 */
 return CS_CONTINUE;

 } /* directory_cb() */
Client-Library/C Programmers Guide 153

Step 3: Inspecting directory objects
Step 3: Inspecting directory objects
Applications inspect the contents of a directory object with several calls to
ct_ds_objinfo. To an application, a directory object consists of the following
visible pieces:

• The object class that the object belongs to

• The object’s fully qualified name

• A numbered set of attributes

An object’s directory object class determines the object’s attributes and the
expected syntax (that is, datatype) for each attributes’ values.

Although object attributes appear as a numbered set, an application should be
coded to work independently of the order in which attributes are returned. A
directory object class does not define an ordering of attributes, and most
directory services do not guarantee that attributes will be ordered consistently
for different directory objects in the same object class.

Most applications use a program structure similar to the one below to inspect a
directory object:

ct_ds_objinfo to get the directory object class (optional)
 ct_ds_objinfo to get the fully qualified name
 ... application code to process fully qualified name ...
for each desired attribute type

 ct_ds_objinfo to get number of attributes
 i = 0
 while i is less than number of attributes
 i = i + 1
 ct_ds_objinfo to retrieve the metadata for attribute i
 compare returned attribute type to desired attribute type
 if attribute types match
 /* i is the number of the desired attribute */
 break while
 end if
 end while
 allocate sufficient space for attribute i’s values
 ct_ds_objinfo to retrieve attribute i’s values
 ... application code to process attribute values ...
 end for
154 Open Client

CHAPTER 9 Using Directory Services
Attribute data structures
An attribute’s metadata is represented by a CS_ATTRIBUTE structure:

typedef struct _cs_attribute
 {
 CS_OID attr_type;
 CS_INT attr_syntax;
 CS_INT attr_numvals;
 } CS_ATTRIBUTE;

where:

• attr_type is a CS_OID structure that uniquely describes the type of the
attribute. This field tells the application which of an object’s attributes it
has received.

• attr_syntax is a syntax specifier that tells how the attribute value is
expressed. Attribute values are passed within a CS_ATTRVALUE union,
and the syntax specifier tells which member of the union to use.

• attr_numvals tells how many values the attribute contains. This
information can be used to size an array of CS_ATTRVALUE unions to
hold the attribute values.

An attribute’s value(s) are represented by a CS_ATTRVALUE union:

typedef struct _cs_ds_lookup_info
 {
 CS_OID *objclass;
 CS_CHAR *path;
 CS_INT pathlen;
 CS_DS_OBJECT *attrfilter;
 CS_DS_OBJECT *attrselect;
 } CS_DS_LOOKUP_INFO;

Applications check the syntax field of the CS_ATTRIBUTE structure to
determine which member of a CS_ATTRVALUE union contains the actual
value. The following table shows the correspondence:

CS_ATTRIBUTE syntax specifier CS_ATTRVALUE union member

CS_ATTR_SYNTAX_STRING value_string

CS_ATTR_SYNTAX_BOOLEAN value_boolean

CS_ATTR_SYNTAX_INTEGER value_integer

CS_ATTR_SYNTAX_TRANADDR value_tranaddr

CS_ATTR_SYNTAX_OID value_oid
Client-Library/C Programmers Guide 155

Step 3: Inspecting directory objects
Figure 9-1 shows an exploded view of the CS_ATTRVALUE union and its
member structures:

Figure 9-1: An exploded CS_ATTRVALUE union

Example code to inspect a directory object
The following fragment declares an example routine, show_server_info, that
prints the contents of a directory object as text.

The code uses a static array, AttributesToDisplay, that lists the attribute types
(as OID strings) for the attributes whose values should be retrieved, in the order
that they should be printed.

CS_INT oid_length;

CS_CHAR oid_buffer
[CS_MAX_DS_STRING];

CS_INT value_enumeration;

CS_STRING value_string;

CS_BOOL value_boolean;

CS_TRANADDRR
value_tranaddr;

CS_INT value_integer;

CS_OID value_oid;

CS_STRING addr_trantype;

CS_INT str_length;

CS_CHAR str_buffer
[CS_MAX_DS_STRING];

CS_INT addr_accesstype;

CS_STRING addr_trantype;

CS_ATTRVALUE Union

CS_STRING Structure

CS_OID Structure

CS_TRANADDR Structure
156 Open Client

CHAPTER 9 Using Directory Services
For each row in AttributesToDisplay, the example retrieves the values for the
attribute type (if any) and prints them.

/*
** AttributesToDisplay is a read-only static array used by
** the show_server_info() function. It contains the Object
** Identifier (OID) strings for the server attributes to
** display, in the order that they are to be displayed.
*/
typedef struct
{

CS_CHAR type_string[CS_MAX_DS_STRING];
CS_CHAR english_name[CS_MAX_DS_STRING];

} AttrForDisplay;
#define N_ATTRIBUTES 7
CS_STATIC AttrForDisplay AttributesToDisplay[N_ATTRIBUTES + 1] =
{

{CS_OID_ATTRSERVNAME, "Server name"},
{CS_OID_ATTRSERVICE, "Service type"},
{CS_OID_ATTRVERSION, "Server entry version"},
{CS_OID_ATTRSTATUS, "Server status"},
{CS_OID_ATTRADDRESS, "Network addresses"},
{CS_OID_ATTRRETRYCOUNT, "Connection retry count"},
{CS_OID_ATTRLOOPDELAY, "Connection retry loop delay"},
{"", ""}

};
/*
** show_server_info()
** Selectively display the attributes of a server directory
** object.
**
** Parameters
** ds_object -- Pointer to the CS_DS_OBJECT that describes the
** server's directory entry.
** outfile -- Open FILE handle to write the output to.
**
** Dependencies
** Reads the contents of the AttributesToDisplay global array.
**
** Returns
** CS_SUCCEED or CS_FAIL.
*/
CS_RETCODE
show_server_info(ds_object, outfile)
CS_DS_OBJECT *ds_object;
Client-Library/C Programmers Guide 157

Step 3: Inspecting directory objects
FILE *outfile;
{

CS_RETCODE ret;
CS_CHAR scratch_str[512];
CS_INT outlen;
CS_INT cur_attr;
CS_ATTRIBUTE attr_metadata;
CS_ATTRVALUE *p_attrvals;

/*
** Distinguished name of the object.
*/

ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS_DIST_NAME, CS_UNUSED,
(CS_VOID *)scratch_str, CS_SIZEOF(scratch_str),
&outlen);

if (ret != CS_SUCCEED)
{

ex_error("show_server_info: get distinguished name failed.");
return CS_FAIL;

}

fprintf(outfile, "Name in directory: %s\n", scratch_str);

for (cur_attr = 0; cur_attr < N_ATTRIBUTES; cur_attr++)
{
/*
** Look for the attribute. attr_get_by_type() fails if the object
** instance does not contain a value for the attribute. If this
** happens, we just go on to the next attribute.
*/

ret = attr_get_by_type(ds_object,
AttributesToDisplay[cur_attr].type_string,
&attr_metadata, &p_attrvals);

if (ret == CS_SUCCEED)
{

fprintf(outfile, "%s:\n",
AttributesToDisplay[cur_attr].english_name);
/*
** Display the attribute values.
*/
ret = attr_display_values(&attr_metadata, p_attrvals, outfile);
if (ret != CS_SUCCEED)
{

ex_error(
"show_server_info: display attribute values failed.");
free(p_attrvals);
return CS_FAIL;
158 Open Client

CHAPTER 9 Using Directory Services
} /* if */
free(p_attrvals);

} /* if */
} /* for */

return CS_SUCCEED;
} /* show_server_info() */

Retrieving an attributes value

The example fragment below contains the code for the attr_get_by_type
example utility routine. attr_get_by_type takes an OID string that specifies the
desired attribute type, searches for the desired attribute in the directory object’s
attribute set, and returns the attribute’s metadata and values if they are found.

/*
** get_attr_by_type()
** Get metadata and attribute values for a given attribute type.
**
** Parameters
** ds_object -- Pointer to a valid CS_DS_OBJECT hidden structure.
** attr_type_str -- Null-terminated string containing the OID for the
** desired attribute type.
** attr_metadata -- Pointer to a CS_ATTRIBUTE structure to
** fill in.
** p_attrvals -- Address of a CS_ATTRVALUE union pointer.
** If successful, this routine allocates an array
** of size attr_metadata->numvalues, retrieves values into
** it, and returns the array address in *p_attr_values.
** NOTE: The caller must free this array when it is no longer
** needed.
**
** Returns
** CS_FAIL if no attribute of the specified type was found.
** CS_SUCCEED for success.
*/

CS_RETCODE
attr_get_by_type(ds_object, attr_type_str, attr_metadata, p_attrvals)
CS_DS_OBJECT *ds_object;
CS_CHAR *attr_type_str;
CS_ATTRIBUTE *attr_metadata;
CS_ATTRVALUE **p_attrvals;
{

CS_RETCODE ret;
CS_INT num_attrs;
CS_INT cur_attr;
Client-Library/C Programmers Guide 159

Step 3: Inspecting directory objects
CS_INT outlen;
CS_INT buflen;
CS_BOOL found = CS_FALSE;

/*
** Check input pointers. If not NULL, make them fail safe.
*/
if (attr_metadata == NULL || p_attrvals == NULL)
{

return CS_FAIL;
}
attr_metadata->attr_numvals = 0;
*p_attrvals = NULL;
/*
** Get number of attributes.
*/
ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS_NUMATTR, CS_UNUSED,

(CS_VOID *)#_attrs, CS_SIZEOF(num_attrs),
NULL);

if (ret != CS_SUCCEED)
{

ex_error("attr_get_by_type: get number of attributes failed.");
return CS_FAIL;

}

/*
** Look for the matching attribute, get the values if found.
*/
for (cur_attr = 1;

cur_attr <= num_attrs && found != CS_TRUE;
cur_attr++)

{
/*
** Get the attribute's metadata.
*/
ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS_ATTRIBUTE, cur_attr,

(CS_VOID *)attr_metadata,
CS_SIZEOF(CS_ATTRIBUTE), NULL);

if (ret != CS_SUCCEED)
{

ex_error("attr_get_by_type: get attribute failed.");
return CS_FAIL;

}

/*
** Check for a match.
*/
if (match_OID(&(attr_metadata->attr_type), attr_type_str))
160 Open Client

CHAPTER 9 Using Directory Services
{
found = CS_TRUE;
/*
** Get the values -- we first allocate an array of
** CS_ATTRVALUE unions.
*/
*p_attrvals = (CS_ATTRVALUE *) malloc(sizeof(CS_ATTRVALUE)

* (attr_metadata->attr_numvals));
if (p_attrvals == NULL)
{

ex_error("attr_get_by_type: out of memory!");
return CS_FAIL;

}
buflen = CS_SIZEOF(CS_ATTRVALUE) * (attr_metadata->attr_numvals);
ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS_ATTRVALS, cur_attr,

(CS_VOID *)(*p_attrvals), buflen, &outlen);
if (ret != CS_SUCCEED)
{

ex_error("attr_get_by_type: get attribute values failed.");
free(*p_attrvals);
*p_attrvals = NULL;
attr_metadata->attr_numvals = 0;
return CS_FAIL;

}
}

}

/*
** Got the attribute.
*/
if (found == CS_TRUE)
{

return CS_SUCCEED;
}

/*
** Not found.
*/

attr_metadata->attr_numvals = 0;
return CS_FAIL;

} /* attr_get_by_type() */

/*
** match_OID()
** Compare a pre-defined OID string to the contents of a
** CS_OID structure.
**
Client-Library/C Programmers Guide 161

Step 3: Inspecting directory objects
** Parameters
** oid -- Pointer to a CS_OID structure. OID->oid_length should be
** the length of the string, not including any null-terminator.
** oid_string -- Null-terminated OID string to compare.
**
** Returns
** Non-zero if contents of oid->oid_buffer matches contents
** of oid_string.
*/
int match_OID(oid, oid_string)

CS_OID *oid;
CS_CHAR *oid_string;
{

return ((strncmp(oid_string, oid->oid_buffer, oid->oid_length) == 0)
&& ((oid->oid_length == strlen(oid_string))));

} /* match_OID() */

Processing attribute values

The code fragment below declares an example routine, attr_display_values,
which prints the values of an attribute as text. attr_display_values calls two
other utility routines to perform its work:

• attr_val_as_string – formats an attribute value as text and puts the result in
a character array.

• attr_enum_english_name – converts an integer or enumerated attribute
value into a printable character string

.

/*
** attr_display_values()
** Writes an attribute's values to the specified text
** file.
**
** Parameters
** attr_metadata -- address of the CS_ATTRIBUTE structure that
** contains metadata for the attribute.
** attr_vals -- address of an array of CS_ATTRVALUE structures.
** This function assumes length is attr_metadata->attr_numvals
** and value syntax is attr_metadata->attr_syntax.
** outfile -- Open FILE handle to write to.
**
** Returns
** CS_SUCCEED or CS_FAIL.
162 Open Client

CHAPTER 9 Using Directory Services
*/
CS_RETCODE
attr_display_values(attr_metadata, attr_vals, outfile)
CS_ATTRIBUTE *attr_metadata;
CS_ATTRVALUE *attr_vals;
FILE *outfile;
{

CS_INT i;
CS_CHAR outbuf[CS_MAX_DS_STRING * 3];
CS_RETCODE ret;

/*
** Print each value.
*/
for (i = 0; i < attr_metadata->attr_numvals; i++)
{

ret = attr_val_as_string(attr_metadata, attr_vals + i,
outbuf, CS_MAX_DS_STRING * 3, NULL);

if (ret != CS_SUCCEED)
{

ex_error("attr_display_values: attr_val_as_string() failed.");
return CS_FAIL;

}
fprintf(outfile, "\t%s\n", outbuf);

}

return CS_SUCCEED;

} /* attr_display_values() */
/*
** attr_val_as_string() -- Convert the contents of a CS_ATTRVALUE union to
** a printable string.
**
** Parameters
** attr_metadata -- The CS_ATTRIBUTE structure containing metadata
** for the attribute value.
** val -- Pointer to the CS_ATTRVALUE union.
** buffer -- Address of the buffer to receive the converted value.
** buflen -- Length of *buffer in bytes.
** outlen -- If supplied, will be set to the number of bytes written
** to *buffer.
**
** Returns
** CS_SUCCEED or CS_FAIL.
*/

CS_RETCODE
Client-Library/C Programmers Guide 163

Step 3: Inspecting directory objects
attr_val_as_string(attr_metadata, val, buffer, buflen, outlen)
CS_ATTRIBUTE *attr_metadata;
CS_ATTRVALUE *val;
CS_CHAR *buffer;
CS_INT buflen;
CS_INT *outlen;
{

CS_CHAR outbuf[CS_MAX_DS_STRING * 4];
CS_CHAR scratch[CS_MAX_DS_STRING];
CS_RETCODE ret;

if (buflen == 0 || buffer == NULL)
{

return CS_FAIL;
}
if (outlen != NULL)
{

*outlen = 0;
}
switch ((int)attr_metadata->attr_syntax)
{

case CS_ATTR_SYNTAX_STRING:
sprintf(outbuf, "%.*s",

(int)(val->value_string.str_length),
val->value_string.str_buffer);

break;
case CS_ATTR_SYNTAX_BOOLEAN:

sprintf(outbuf, "%s",
val->value_boolean == CS_TRUE ? "True" : "False");

break;
case CS_ATTR_SYNTAX_INTEGER:
case CS_ATTR_SYNTAX_ENUMERATION:
/*
** Some enumerated or integer attribute values should be converted
** into an english-language equivalent. attr_enum_english_name()
** contains all the logic to convert #define's into human
** language.
*/

ret = attr_enum_english_name((CS_INT)(val->value_enumeration),
&(attr_metadata->attr_type),
scratch, CS_MAX_DS_STRING, NULL);

if (ret != CS_SUCCEED)
{

ex_error("attr_val_as_string: attr_enum_english_name() failed.");
return CS_FAIL;

}
sprintf(outbuf, "%s", scratch);
164 Open Client

CHAPTER 9 Using Directory Services
break;

case CS_ATTR_SYNTAX_TRANADDR:
/*
** The access type is an enumerated value. Get an english language
** string for it.
*/

switch ((int)(val->value_tranaddr.addr_accesstype))
{

case CS_ACCESS_CLIENT:
sprintf(scratch, "client");
break;

case CS_ACCESS_ADMIN:
sprintf(scratch, "administrative");
break;

case CS_ACCESS_MGMTAGENT:
sprintf(scratch, "management agent");
break;

default:
sprintf(scratch, "%ld",

(long)(val->value_tranaddr.addr_accesstype));
break;

}

sprintf(outbuf,
"Access type '%s'; Transport type '%s'; Address '%s'",
scratch,
val->value_tranaddr.addr_trantype.str_buffer,
val->value_tranaddr.addr_tranaddress.str_buffer);

break;

case CS_ATTR_SYNTAX_OID:
sprintf(outbuf, "%.*s",
(int)(val->value_oid.oid_length),
val->value_oid.oid_buffer);
break;

default:
sprintf(outbuf, "Unknown attribute value syntax");
break;

} /* switch */
if (strlen(outbuf) + 1 > buflen || buffer == NULL)
{

return CS_FAIL;
}
else
{

Client-Library/C Programmers Guide 165

Step 3: Inspecting directory objects
sprintf(buffer, "%s", outbuf);
if (outlen != NULL)
{

*outlen = strlen(outbuf) + 1;
}

}
return CS_SUCCEED;

} /* attr_val_as_string() */
/*
** attr_enum_english_name()
** Based on the attribute type, associate an english phrase with
** a CS_INT value. Use this function to get meaningful names for
** CS_ATTR_SYNTAX_ENUMERATION or CS_ATTR_SYNTAX_INTEGER attribute
** values.
**
** If the attribute type represents a quantity and not a numeric code,
** then the value is converted to the string representation of the
** number. Unknown codes are handled the same way.
**
** Parameters
** enum_val -- The integer value to convert to a string.
** attr_type -- Pointer to an OID structure containing the OID string
** that tells the attribute's type.
** buffer -- Address of the buffer to receive the converted value.
** buflen -- Length of *buffer in bytes.
** outlen -- If supplied, will be set to the number of bytes written
** to *buffer.
**
** Returns
** CS_SUCCEED or CS_FAIL
*/

CS_RETCODE
attr_enum_english_name(enum_val, attr_type, buffer, buflen, outlen)
CS_INT enum_val;
CS_OID *attr_type;
CS_CHAR *buffer;
CS_INT buflen;
CS_INT *outlen;
{

CS_CHAR outbuf[CS_MAX_DS_STRING];

if (buffer == NULL || buflen <= 0)
{

return CS_FAIL;
}
if (outlen != NULL)
166 Open Client

CHAPTER 9 Using Directory Services
{
*outlen = 0;

}

/*
** Server version number.
*/
if (match_OID(attr_type, CS_OID_ATTRVERSION))
{

sprintf(outbuf, "%ld", (long)enum_val);
}
/*
** Server's status.
*/
else if (match_OID(attr_type, CS_OID_ATTRSTATUS))
{

switch ((int)enum_val)
{

case CS_STATUS_ACTIVE:
sprintf(outbuf, "running");
break;

case CS_STATUS_STOPPED:
sprintf(outbuf, "stopped");
break;

case CS_STATUS_FAILED:
sprintf(outbuf, "failed");
break;

case CS_STATUS_UNKNOWN:
sprintf(outbuf, "unknown");
break;

default:
sprintf(outbuf, "%ld", (long)enum_val);
break;

}
}

/*
** Anything else is either an enumerated type that we don't know
** about, or it really is just a number. We print the numeric value.
*/
else
{

sprintf(outbuf, "%ld", (long)enum_val);
}

/*
** Transfer output to the caller's buffer.
*/
Client-Library/C Programmers Guide 167

Step 4: Cleaning up
if (strlen(outbuf) + 1 > buflen || buffer == NULL)
{

return CS_FAIL;
}
else
{

sprintf(buffer, "%s", outbuf);
if (outlen != NULL)
{

*outlen = strlen(outbuf) + 1;
}

}
return CS_SUCCEED;

} /* attr_enum_english_name() */

Step 4: Cleaning up
An application can call ct_ds_dropobj to deallocate each directory object that it
received through its directory callback.

Alternatively, directory objects are dropped implicitly when the application
calls ct_con_drop to drop the parent connection.
168 Open Client

A P P E N D I X A Logical Sequence of Calls

Client-Library uses a state machine to enforce a logical order of
operations. It stores information about the last call that an application
made and limits the calls that can follow to those that are legal. For
example, an application must call ct_connect to connect to a server before
it can call ct_send to send commands.

Client-Library state machines
The application programming interface (API) layer of Client-Library
consists of three state machines, each corresponding to one of the three
basic control structures: CS_CONTEXT, CS_CONNECTION, or
CS_COMMAND. See “Hidden structures” on page 29 for a discussion of
the basic control structures.

At the context level, an application sets up its environment by: allocating
one or more context structures, setting CS-Library properties for the
contexts, initializing Client-Library, and setting Client-Library properties
for the contexts. See “Step 1: Set up the Client-Library programming
environment” on page 18.

At the connection level, an application connects to a server by: allocating
one or more connection structures, setting properties for the connections,
opening the connections, and setting any server options for the
connections. An application can allocate a connection structure only after
a context structure has been allocated. See “Step 3: Connect to a server”
on page 22.

At the command level, an application allocates one or more command
structures, sends commands, and processes results. An application can
allocate a command structure only after a connection structure has been
allocated. See “Step 4: Send commands to the server” on page 24.
Client-Library/C Programmers Guide 169

Client-Library state machines
Command-level sequence of calls
It is at the command level that the logical sequence of calls becomes complex,
due to the larger number of routines that are managed at the command level.

Client-Library’s command state machine gets help from two other state tables
when it attempts to verify that a call to a particular routine is permitted: the
initiated-commands state table and the result-types state table.

Commands state table
The commands table defines the states of an application. For example, it
defines a command-sent state to indicates that the last call an application made
was ct_send.

The commands table also maps each state to valid Client-Library routines that
an application can call while in that state. For example, in the Command Sent
state, an application can cancel the command or the result set, get or set
command structure properties, perform operations on a dynamic SQL
descriptor area, receive a TDS packet from the server, or set up results for
processing.

See “Command states” on page 172 for a detailed description of each of the
command states. See “Callable routines in each command state” on page 174
for a list of legal calls in each command state.

Initiated-commands state table
The initiated-commands table controls the use of routines that initiate and set
up commands to be sent to a server (ct_command, ct_cursor, ct_dynamic,
ct_param, and so on). It provides a finer level of enforcement than is possible
with the commands table.

For example, the command state machine ensures that ct_param is called only
after a command has been initiated. However, it cannot prevent an application
from calling ct_param when the initiated command does not take parameters
(as in the case of a ct_cursor(CS_CURSOR_CLOSE)). It is in cases like these
that the initiated-commands table enforces the logical sequence of calls.

As another example, assume that a Client-Library cursor is declared using the
cmd1 CS_COMMAND structure. After the cursor-declare command is sent to
the server and the results are processed, the state machine is in the Idle state.
170 Open Client

APPENDIX A Logical Sequence of Calls
From the Idle state, the command state machine permits an application to
initiate a new command. It cannot prevent an application from declaring a
second cursor using the same CS_COMMAND structure that it used to declare
the first cursor (cmd1).

The Initiated Commands table, however, keeps track of the state of a cursor on
a command handle. It recognizes that, if a cursor has been previously declared
using a particular CS_COMMAND structure, a second attempt to declare a
cursor using the same CS_COMMAND structure is illegal.

See “Initiated commands” on page 185 for a detailed description of each of the
initiated command states. See “Callable routines for initiated commands” on
page 187 for a mapping of initiated command states with Client-Library
routines.

Result-types state table
The result-types table focuses on routines that return information about result
sets. The command state machine defines states (like Fetchable Results and
Fetchable Cursor Results) that indicate when results are available. The result-
types table goes a step further by indicating the type of available results.

This information is important because certain routines make sense only for
certain result types. For example, calling ct_compute_info is only logical when
compute results are available, and calling ct_br_column is only logical when
regular row results are available. In cases like these, the result-types table
enforces the logical sequence of calls.

See “Result types” on page 190 for a detailed description of each of the result
type states. See “Callable routines for each result type” on page 192 for a
mapping of result type states with Client-Library routines.

Summary
The information that follows is a reference for valid Client-Library application
behavior. Use it when you want to verify that a particular sequence of routine
calls is valid or when you need to know “where to go from here.”

Note Client-Library returns descriptive error messages at runtime if an
application has not called routines in a logical sequence.
Client-Library/C Programmers Guide 171

Command states
Command states
Client-Library keeps track of a command’s current state. A command can be in
any one of the following states.

Table A-1: Command states

Command state Meaning

Idle The application:

• Has not yet initiated a command,

• Has completely processed the results of the last command,

• Has fetched all cursor rows but has not closed the Client-Library cursor, or

• Has closed a Client-Library cursor that is still associated with unprocessed
results.

Command
 initiated

The application called ct_command, ct_cursor, or ct_dynamic to initiate a
command, but it has not yet sent it to the server.

Command
 sent

The application called ct_send to send a command to the server, but it has not yet
called ct_results to set up result data for processing.

Non-fetchable
results
available

The application called ct_results and the result set contains no actual result data.
Additional calls to ct_results are necessary.

Or:

The application called ct_fetch, which returned CS_END_DATA.

ANSI-style cursor end-data The application called ct_fetch, which returned CS_END_DATA, and the
CS_ANSI_BINDS property is set.

Fetchable
results

The application called ct_results and the result set contains fetchable non-cursor
results (compute results, return parameter results, regular row results, and stored
procedure return status results). ct_fetch has not been called yet.

Fetchable
cursor results

The application called ct_results and the result set contains fetchable cursor
results. ct_fetch has not yet been called.

Fetchable
nested
command

The application initiated a cursor-close command
(ct_cursor(CS_CURSOR_CLOSE)) before fetching from a result set that
contains fetchable cursor results.

Sent fetchable
nested command

The application called ct_send to send the cursor-close command to the server
before fetching from a result set that contains fetchable cursor results.

Processing
fetchable nested command

The application called ct_results to process the results of the cursor-close
command before fetching from a result set that contains fetchable cursor results.

Fetching
results

The application called ct_fetch at least once and is currently in the process of
fetching results (compute results, return parameter results, regular row results,
and stored procedure return status results).

Fetching cursor results The application called ct_fetch at least once and is currently in the process of
fetching cursor row results.
172 Open Client

APPENDIX A Logical Sequence of Calls
Command-level routines
These Client-Library routines are managed at the command level:

Fetching nested command The application initiated one of the following commands while fetching from a
result set that contains cursor results:

• Cursor-close (ct_cursor(CS_CURSOR_CLOSE))

• Cursor-update (ct_cursor(CS_CURSOR_UPDATE))

• Cursor-delete (ct_cursor(CS_CURSOR_DELETE))

Sent fetching
nested
command

The application called ct_send to send the cursor-
 close, cursor-update, or cursor-delete command to the server while fetching
from a result set that contains cursor results.

Processing
fetching nested command

The application called ct_results to process the results of the cursor-close, cursor-
update, or cursor-delete command while fetching from a result set that contains
cursor results.

Result set
canceled

The application canceled the current command
(ct_cancel(CS_CANCEL_ALL)). An application can call ct_results once more
to return the command to an Idle state.

Undefined The command structure is in an undefined state. Call
ct_cancel(CS_CANCEL_ALL).

In receive passthrough The application called ct_recvpassthru and CS_PASSTHRU_MORE was
returned.

In send
passthrough

The application called ct_sendpassthru and CS_PASSTHRU_MORE was
returned.

Command state Meaning

ct_bind ct_data_info ct_param

ct_br_column ct_describe ct_recvpassthru

ct_br_table ct_dynamic ct_res_info

ct_cancel ct_dyndesc ct_results

ct_cmd_drop ct_dynsqlda ct_send

ct_cmd_props ct_fetch ct_send_data

ct_command ct_get_data ct_sendpassthru

ct_compute_info ct_getformat ct_setparam

ct_cursor ct_keydata
Client-Library/C Programmers Guide 173

Command states
Callable routines in each command state
Table A-2 maps each command state to the Client-Library routines that an
application can call while in that state. It also identifies the state of the
command after the routine has completed.

Table A-2: Callable routines at each command state

Beginning state Callable routines Resulting command state

Idle ct_cancel(CS_CANCEL_ALL)
 ct_cancel(CS_CANCEL_ATTN)

• Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_drop Idle.

ct_cmd_props Idle.

Idle ct_command • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_cursor • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_dynamic • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_dyndesc Idle.

ct_dynsqlda Idle.

ct_sendpassthru • In send passthrough, if
CS_PASSTHRU_MORE.

• Command sent, if CS_PASSTHRU_EOM.

• Undefined, if CS_FAIL.

Command
initiated

ct_cancel(CS_CANCEL_ALL) • Idle, if CS_SUCCEED.

• Command initiated, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Command initiated.

ct_cmd_props Command initiated.

ct_cursor Command initiated.

ct_data_info(CS_SET) Command initiated.

ct_dyndesc Command initiated.

ct_dynsqlda Command initiated.

ct_param Command initiated.

ct_setparam Command initiated.

ct_send • Command sent, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_send_data • Command initiated, if CS_SUCCEED.

• Undefined, if CS_FAIL.
174 Open Client

APPENDIX A Logical Sequence of Calls
Command
sent

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Command sent, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Command sent.

ct_dynsqlda Command sent.

ct_dyndesc Command sent.

ct_recvpassthru • In receive passthrough, if
CS_PASSTHRU_MORE.

• Idle, if CS_PASSTHRU_EOM,
CS_CANCELED.

• Undefined, if CS_FAIL.

ct_results • Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS_MSG_RESULT, CS_CMD_SUCCEED,
CS_CMD_FAIL, CS_CMD_DONE,
CS_ROWFMT_RESULT,
CS_COMPUTEFMT_RESULT, or
CS_DESCRIBE_RESULT.

• Fetchable results, if CS_SUCCEED and
*result_type equals CS_ROW_RESULT,
CS_COMPUTE_RESULT,
CS_PARAM_RESULT, or
CS_STATUS_RESULT.

• Fetchable cursor results, if CS_SUCCEED and
*result_type equals CS_CURSOR_RESULT.

• Idle, if CS_CANCELED or
CS_END_RESULTS.

• Undefined, if CS_SUCCEED and *result_type
equals CS_CMD_FAIL.

Non-fetchable
results
available

ct_br_column Non-fetchable results available.

ct_br_table Non-fetchable results available.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Non-fetchable results available, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
Client-Library/C Programmers Guide 175

Command states
Non-fetchable
results
available

ct_cancel(CS_CANCEL_CURRENT) • Non-fetchable results available, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Non-fetchable results available.

ct_compute_info Non-fetchable results available.

ct_describe Non-fetchable results available.

ct_dyndesc Non-fetchable results available.

ct_dynsqlda Non-fetchable results available.

ct_getformat Non-fetchable results available.

ct_res_info Non-fetchable results available.

ANSI-style cursor
end-data

ct_results • Fetchable results, if CS_SUCCEED and
*result_type equals CS_ROW_RESULT,
CS_COMPUTE_RESULT,
CS_PARAM_RESULT, or
CS_STATUS_RESULT.

• Fetchable cursor results, if CS_SUCCEED and
*result_type equals CS_CURSOR_RESULT.

• Idle, if CS_CANCELED or
CS_END_RESULTS.

• Undefined, if CS_FAIL.

ct_bind ANSI-style cursor end-data.

ct_br_column ANSI-style cursor end-data.

ct_br_table ANSI-style cursor end-data.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • ANSI-style cursor end-data if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) ANSI-style cursor end-data.

ct_cmd_props ANSI-style cursor end-data.

ct_compute_info ANSI-style cursor end-data.

ct_describe ANSI-style cursor end-data.

ct_dyndesc ANSI-style cursor end-data.

ct_dynsqlda ANSI-style cursor end-data.

ct_fetch • ANSI-style cursor end-data, if
CS_END_DATA.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
176 Open Client

APPENDIX A Logical Sequence of Calls
ANSI-style cursor
end-data

ct_getformat ANSI-style cursor end-data.

ct_res_info ANSI-style cursor end-data.

ct_results • Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS_MSG_RESULT or CS_CMD_DONE.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Fetchable
results

ct_bind Fetchable results.

ct_br_column Fetchable results.

ct_br_table Fetchable results.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetchable results, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Non-fetchable results available, if
CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetchable results.

ct_compute_info Fetchable results.

ct_describe Fetchable results.

ct_dyndesc Fetchable results.

ct_dynsqlda Fetchable results.

ct_fetch • Fetching results, if CS_SUCCEED or
CS_ROW_FAIL.

• Non-fetchable results available, if
CS_END_DATA.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_getformat Fetchable results.

ct_res_info Fetchable results.

Beginning state Callable routines Resulting command state
Client-Library/C Programmers Guide 177

Command states
Fetchable
cursor results

ct_bind Fetchable cursor results.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetchable cursor results, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Non-fetchable results available, if
CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetchable cursor results.

ct_cursor • Fetchable nested command, if CS_SUCCEED.

• Fetchable cursor results, if CS_FAIL.

ct_describe Fetchable cursor results.

ct_dyndesc Fetchable cursor results.

ct_dynsqlda Fetchable cursor results.

ct_fetch • Fetching cursor results, if CS_SUCCEED or
CS_ROW_FAIL.

• Idle, if CS_CANCELED.

• Non-fetchable results available, if
CS_END_DATA.

• ANSI-style cursor end-data, if CS_END_DATA
and CS_ANSI_BINDS property is set.

• Undefined, if CS_FAIL.

ct_getformat Fetchable cursor results.

ct_res_info Fetchable cursor results.

Fetchable
nested
command

ct_cancel(CS_CANCEL_ALL) • Fetchable cursor results, if CS_SUCCEED.

• Fetchable nested command, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetchable nested command, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetchable nested command.

ct_dyndesc Fetchable nested command.

ct_dynsqlda Fetchable nested command.

ct_param Fetchable nested command.

ct_setparam Fetchable nested command.

ct_send • Sent fetchable nested, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
178 Open Client

APPENDIX A Logical Sequence of Calls
Sent fetchable
nested

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Sent fetchable nested, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Sent fetchable nested.

ct_results • Processing fetchable nested command, if
CS_CMD_SUCCEED or CS_CMD_FAIL.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Processing
fetchable
nested
command

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Processing fetchable nested command, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Processing fetchable nested command, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Processing fetchable nested command.

ct_dyndesc Processing fetchable nested command.

ct_dynsqlda Processing fetchable nested command.

ct_res_info Processing fetchable nested command.

ct_results • Fetchable cursor results, if
CS_END_RESULTS.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
Client-Library/C Programmers Guide 179

Command states
Fetching
results

ct_bind Fetching results.

ct_br_column Fetching results.

ct_br_table Fetching results.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetching results, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Non-fetchable results available, if
CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetching results.

ct_compute_info Fetching results.

ct_data_info(CS_GET) Fetching results.

ct_describe Fetching results.

ct_dyndesc • Fetching results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Fetching
results

ct_dynsqlda • Fetching results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_fetch • Fetching results, if CS_SUCCEED.

• Non-fetchable results available, if
CS_END_DATA.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_get_data • Fetching results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_getformat Fetching results.

ct_res_info Fetching results.

Beginning state Callable routines Resulting command state
180 Open Client

APPENDIX A Logical Sequence of Calls
Fetching
cursor
results

ct_bind Fetching cursor results.

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetching cursor results, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Non-fetchable results available, if
CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetching cursor results.

ct_cursor • Fetching nested command, if CS_SUCCEED.

• Fetching cursor results, if CS_FAIL.

ct_describe Fetching cursor results.

ct_dyndesc • Fetching cursor results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_dynsqlda • Fetching cursor results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_fetch • Fetching cursor results, if CS_SUCCEED.

• Non-fetchable results available, if
CS_END_DATA.

• ANSI-style cursor end-data, if CS_END_DATA
and CS_ANSI_BINDS property is set.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_get_data • Fetching cursor results, if CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

ct_getformat Fetching cursor results.

ct_keydata Fetching cursor results.

ct_res_info Fetching cursor results.

Beginning state Callable routines Resulting command state
Client-Library/C Programmers Guide 181

Command states
Fetching
nested
command

ct_cancel(CS_CANCEL_ALL) • Fetching cursor results, if CS_SUCCEED.

• Fetching nested command, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Fetching nested command, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Fetching nested command.

ct_dyndesc Fetching nested command.

ct_dynsqlda Fetching nested command.

ct_param Fetching nested command.

ct_setparam Fetching nested command.

ct_send • Sent fetching nested command, if
CS_SUCCEED.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Sent fetching
nested
command

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Sent fetching nested command, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Sent fetching nested command.

ct_results • Processing fetching nested command, if
CS_CMD_SUCCEED or CS_CMD_FAIL.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
182 Open Client

APPENDIX A Logical Sequence of Calls
Processing
fetching
nested command

ct_cancel(CS_CANCEL_ALL) • Result set canceled, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Processing fetching nested command, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT) • Processing fetching nested command, if
CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props Processing fetching nested command.

ct_dyndesc Processing fetching nested command.

ct_dynsqlda Processing fetching nested command.

ct_keydata Processing fetching nested command.

ct_res_info Processing fetching nested command.

ct_results • Processing fetching nested command, if
CS_SUCCEED.

• Fetching cursor results, if CS_END_RESULTS.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
Client-Library/C Programmers Guide 183

Command states
Result set
canceled

ct_cancel(CS_CANCEL_ALL) • Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_drop Idle.

ct_cmd_props Idle.

ct_command • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_cursor • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_dynamic • Command initiated, if CS_SUCCEED.

• Idle, if CS_FAIL.

ct_dyndesc • Idle, if CS_SUCCEED, CS_ROW_FAIL, or
CS_CANCELED.

• Undefined, if CS_FAIL.

ct_dynsqlda • Idle, if CS_SUCCEED, CS_ROW_FAIL, or
CS_CANCELED.

• Undefined, if CS_FAIL.

ct_results • Result set canceled, if CS_SUCCEED or
CS_FAIL.

• Idle, if CS_CANCELED.

ct_sendpassthru Result set canceled.

Undefined ct_cancel(CS_CANCEL_ALL) • Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) Undefined.

ct_cmd_props Undefined.

ct_dyndesc Undefined.

ct_dynsqlda Undefined.

In receive
passthrough

ct_cancel(CS_CANCEL_ALL) • Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • In receive passthrough, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props In receive passthrough.

ct_recvpassthru • Idle, if CS_PASSTHRU_EOM or
CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state
184 Open Client

APPENDIX A Logical Sequence of Calls
Initiated commands
In addition to command states, Client-Library keeps track of initiated
commands. An initiated command can be in any one of the following states:

Table A-3: Initiated command states

In send
passthrough

ct_cancel(CS_CANCEL_ALL) • Idle, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) • In send passthrough, if CS_SUCCEED.

• Undefined, if CS_FAIL.

ct_cmd_props In send passthrough.

ct_sendpassthru • Command sent, if CS_PASSTHRU_EOM.

• Idle, if CS_CANCELED.

• Undefined, if CS_FAIL.

Beginning state Callable routines Resulting command state

Initiated command
state Meaning

Idle The application either has not yet initiated a command or has completely processed the
results of the last command.

Idle, with declared cursor The application initiated a cursor-declare command
(ct_cursor(CS_CURSOR_DECLARE)), sent the command to the server, and
completely processed the results.

Idle, with opened cursor The application initiated a cursor-open command (ct_cursor(CS_CURSOR_OPEN)),
sent the command, and fetched all the results (ct_results returned
CS_END_RESULTS), but has not yet closed the cursor.

Opened cursor, no rows
fetched

The application called ct_results but has not yet processed any of the results.

Opened cursor, fetching
rows

The application called ct_fetch at least once and is currently in the process of fetching
results.

ct_command command
initiated

The application initiated a language, message, package, or RPC command using
ct_command.

Initiated send-data The application initiated a send-data or send-bulk-data command using ct_command.

Initiated cursor-declare The application initiated a cursor-declare command
(ct_cursor(CS_CURSOR_DECLARE)) but has not yet sent it to a server using ct_send.

Initiated cursor-rows The application initiated a cursor-rows command using
ct_cursor(CS_CURSOR_ROWS).
Client-Library/C Programmers Guide 185

Initiated commands
Initiated command routines
The following Client-Library routines are useful for processing initiated
commands:

Initiated cursor-open The application initiated a cursor-open command (ct_cursor(CS_CURSOR_OPEN))
but has not yet sent it to a server.

Initiated cursor-close The application initiated a cursor-close command (ct_cursor(CS_CURSOR_CLOSE))
but has not yet sent it to a server.

Initiated cursor-deallocate The application initiated a cursor-deallocate command
(ct_cursor(CS_CURSOR_DEALLOC)) but has not yet sent it to a server.

Initiated cursor-update The application initiated a cursor-update command
(ct_cursor(CS_CURSOR_UPDATE)) but has not yet sent it to a server.

Initiated cursor-delete
 row

The application initiated a cursor-delete command
(ct_cursor(CS_CURSOR_DELETE)) but has not yet sent it to a server.

Initiated dynamic cursor-
declare

The application initiated a cursor-declare command on a prepared dynamic SQL
statement (ct_dynamic(CS_CURSOR_DECLARE)) but has not yet sent it to a server.

Initiated dynamic
deallocate

The application initiated a command to deallocate a prepared SQL statement
(ct_dynamic(CS_DEALLOC)) but has not yet sent it to a server.

Initiated dynamic
describe

The application initiated a command to retrieve input parameter information
(ct_dynamic(CS_DESCRIBE_INPUT)) or column list information
(ct_dynamic(CS_DESCRIBE_OUTPUT)) but has not yet sent it to a server.

Initiated dynamic execute The application initiated a command to execute a prepared SQL statement
(ct_dynamic(CS_EXECUTE)) but has not yet sent it to a server.

Initiated dynamic execute
immediate

The application initiated a command to execute a literal SQL statement
(ct_dynamic(CS_EXEC_IMMEDIATE)) but has not yet sent it to a server.

Initiated dynamic prepare The application initiated a command to prepare a SQL statement
(ct_dynamic(CS_PREPARE)) but has not yet sent it to a server.

ct_send_data
succeeded

The application successfully called ct_send_data at least once.

Initiated send-bulk
command

The application initiated a send-bulk-data command
(ct_command(CS_SEND_BULK_CMD)) but has not yet sent it to a server.

Initiated command
state Meaning

ct_cmd_drop ct_dynamic ct_send_data

ct_command ct_dyndesc ct_setparam

ct_cursor ct_dynsqlda ct_sendpassthru

ct_data_info ct_param
186 Open Client

APPENDIX A Logical Sequence of Calls
Callable routines for initiated commands
Table A-4 maps each initiated command state to the Client-Library routines
that an application can call while in that state.

Where “none” is specified, an application can call none of the routines listed
under “Initiated command routines” on page 186. From states that map to a
“none” value in the Callable Routines column, an application’s options are to
send (ct_send) or cancel (ct_cancel) the initiated command.
Client-Library/C Programmers Guide 187

Initiated commands
Table A-4: Callable routines for initiated command states

Initiated Command Callable Routines

Idle ct_cmd_drop
ct_command(CS_LANG_CMD)
ct_command(CS_MSG_CMD)
ct_command(CS_PACKAGE_CMD)
ct_command(CS_RPC_CMD)
ct_command(CS_SEND_BULK_CMD)
ct_command(CS_SEND_DATA_CMD)
ct_command(CS_SEND_DATA_NOCMD)
ct_cursor(CS_CURSOR_DECLARE)
ct_dynamic(CS_CURSOR_DECLARE)
ct_dynamic(CS_DEALLOC)
ct_dynamic(CS_DESCRIBE_INPUT)
ct_dynamic(CS_DESCRIBE_OUTPUT)
ct_dynamic(CS_EXECUTE)
ct_dynamic(CS_EXEC_IMMEDIATE)
ct_dynamic(CS_PREPARE)
ct_sendpassthru

Idle, with
declared cursor

ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_cursor(CS_CURSOR_DEALLOC)
ct_dynamic(CS_DEALLOC)

Idle, with
opened cursor

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_dynamic(CS_DEALLOC)

Opened cursor,
no rows fetched

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)

Opened cursor,
fetching rows

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS_DEALLOC)
ct_cursor(CS_CURSOR_UPDATE)
ct_cursor(CS_CURSOR_DELETE)

ct_command command
initiated

ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

Initiated send-data ct_data_info(CS_SET)
ct_send_data
188 Open Client

APPENDIX A Logical Sequence of Calls
Initiated cursor-declare ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_OPTION)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

Initiated cursor-rows ct_cursor(CS_CURSOR_OPEN)

Initiated cursor-open ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

Initiated cursor-close None

Initiated cursor-
deallocate

None

Initiated cursor-update ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

Initiated cursor-delete None

Initiated dynamic cursor-
declare

None

Initiated dynamic
deallocate

None

Initiated dynamic
describe

None

Initiated dynamic execute ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

Initiated dynamic execute
immediate

None

Initiated dynamic prepare ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param
ct_setparam

ct_send_data succeeded ct_send_data

Initiated send-bulk
command

ct_send_data

Initiated Command Callable Routines
Client-Library/C Programmers Guide 189

Result types
Result types
Client-Library restricts the routines that can be called based on the result type
if a command is in one of the following states:

• Results available

• Fetchable results

• Fetchable cursor results

• Fetchable nested command

• Sent fetchable nested command

• Processing fetchable nested command

• Fetching results

• Fetching cursor results

• Fetching nested command

• Sent fetching nested command

• Processing fetching nested command

Table A-5 briefly describes the different result types:
190 Open Client

APPENDIX A Logical Sequence of Calls
Table A-5: Result type definitions

See Chapter 6, “Writing Results-Handling Code” for detailed information
about the various types of results.

Result type Meaning

Regular row
results

Zero or more rows of tabular data generated by the
execution of a Transact-SQL select statement.

Cursor row
results

Zero or more rows of tabular data generated when an
application executes a Client-Library cursor-open
command.

Parameter
results

A single row of message parameters or stored procedure
return parameters.

Stored procedure return
status
results

A single row containing a single value (a return status).

Message results No data is available, but an application can call ct_res_info
to get the message’s ID.

Compute row
results

A single row of tabular data with a number of columns
equal to the number of columns listed in the compute
clause that generated the compute row.

CS_CMD_DONE The results of a command have been completely
processed.

CS_CMD_SUCCEED A command that returns no data (such as a language
command containing a Transact-SQL insert statement)
was successful.

CS_CMD_FAIL The server encountered an error while executing a
command.

Regular row
format results

Format information for an associated regular row result
set.

Compute row
format results

Format information for an associated compute row result
set.

Describe results Descriptive information returned as the result of a dynamic
SQL describe input or output command.

Extended error
data results

A single row of extended error data.

Notification
results

A single row of arguments with which a registered
procedure was called.
Client-Library/C Programmers Guide 191

Result types
Result type processing routines
The following Client-Library routines are useful for processing various types
of results:

Callable routines for each result type
When an application calls ct_results to find out what kind of results are
available, Client-Library defines which routines are callable based on the value
of the ct_results *result_type parameter.

Table A-6 maps each result type to the Client-Library routines that an
application can legally call to process that result type.

ct_bind ct_data_info ct_getformat

ct_br_column ct_describe ct_keydata

ct_br_table ct_dyndesc ct_res_info

ct_compute_info ct_dynsqlda
192 Open Client

APPENDIX A Logical Sequence of Calls
Table A-6: Callable routines for each result type

Result type Callable routines

Regular row results ct_bind
ct_br_column
ct_br_table
ct_data_info(CS_GET)
ct_describe
ct_getformat
ct_res_info(CS_BROWSE_INFO)
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_NUMORDERCOLS)
ct_res_info(CS_ORDERBY_COLS)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)

Cursor row results ct_bind
ct_describe
ct_getformat
ct_keydata
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)

Parameter results ct_bind
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)

Stored procedure
return status results

ct_bind
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)

Message results ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_MSGTYPE)
ct_res_info(CS_TRANS_STATE)
Client-Library/C Programmers Guide 193

Result types
Compute row results ct_bind
ct_compute_info
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)

CS_CMD_DONE ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

CS_CMD_SUCCEED ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

CS_CMD_FAIL ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)

Regular row format
results

ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Compute row format
results

ct_compute_info
ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Describe results ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_GETATTR)
ct_dyndesc(CS_GETCNT)
ct_dynsqlda(CS_GET_IN)
ct_dynsqlda(CS_GET_OUT)

Extended error data
results

ct_bind
ct_describe
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Result type Callable routines
194 Open Client

APPENDIX A Logical Sequence of Calls
Pending results
Multiple command structures sharing the same connection can block one
another when results are pending on the connection. “Pending results” is a term
that indicates that the results of a command have not yet been completely
processed.

For example, assume that two command structures (A and B) share the same
connection structure. If A is in the Results Available state, B is blocked from
sending a command to the server because there are results pending on the
connection. B remains blocked until A processes all the results of the current
command and transitions into a state that indicates that no results are pending.

States that indicate pending results are:

• Command sent

• Results available

• ANSI-style cursor end-data

• Fetchable results

• Sent fetchable nested command

• Processing fetchable nested command

• Fetching results

• Sent fetching nested command

• Undefined

• In receive passthrough

• In send passthrough

States that do not indicate pending results are:

• Idle

• Command initiated

• Fetchable cursor results

Notification results ct_bind
ct_describe
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Result type Callable routines
Client-Library/C Programmers Guide 195

Result types
• Fetchable nested command

• Fetching cursor results

• Fetching nested command

• Processing fetching nested command

• Result set canceled

For a definition of each command state, see Table A-1 on page 172.
196 Open Client

Index
A
action parameter 41
Adaptive Server Enterprise

implementation of dynamic SQL 131
messages and extended error data 71
transaction states 72
user-defined datatypes 62

allocating
a CS_BLKDESC structure 33
a CS_COMMAND structure 24
a CS_CONNECTION structure 22
a CS_CONTEXT structure 18

applications
compiling and linking 4
finishing up 26
runtime requirements 4
steps in a simple program 4

B
binary datatypes 54
binding

definition of 92
bit datatype 54, 58
blk_alloc 33
blk_drop 33
browse-mode column information 34
buffer parameter 42
buflen parameter 42
bulk copy

and CS_BLKDESC structure 33

C
callbacks 20

advantages over inline message handling 64
combined with inline message handling 65
Client-Library/C Programmers Guide
deinstalling 68
installing 68
replacing 68
See also Client message callback 20
storing callback locations 66
using to handle messages 65

chapters in this manual, summary of ix
character datatypes 54
chunked messages 70
Client message callback

Client-Library routines it can call 66
defining 66
valid return values 67
when Client-Library fails to call 66

Client messages 63
Client-Library

compiling and linking applications 4
errors and messages 34
exiting 27
extended error data 71
generation of messages 63
initializing 18, 19
messages 63
return codes 63

column-level data access 71
command structure 31, 32

allocating 24
deallocating 27
setting and retrieving properties 24

commands
defining parameters for 75
initiating 25, 74
sending to a server 23

compiling and linking 4
compute format results

how to process 101
compute results

how to process 98
routines for processing 97

connecting to a server 5, 22
197

Index
connection structure 30, 32
allocating 22
deallocating 27
setting and retrieving properties 22
storing information as properties 31

constants 37, 39
format constants 38
miscellaneous constants 38
type constants 37

context structure 30
allocating 18
CICS restriction 30
deallocating 27
setting Client-Library properties 19
setting CS-Library properties 18
storing information as properties 30

control structures
basic control structures 31

conventions
parameter 39, 44

CS_BIGDATETIME datatype 56
CS_BIGTIME datatype 56
CS_BINARY datatype 54
CS_BIT datatype 54
CS_BLKDESC structure 30, 32
CS_BROWSEDESC structure 34
CS_CLIENTMSG structure 34

storing message text 70
CS_CMD_DONE result type

meaning of 103
CS_CMD_FAIL result type

meaning of 103
CS_CMD_SUCCEED result type

meaning of 103
CS_CMD_SUPPRESS_FMT 103
CS_COMMAND structure. See command structure 24
cs_config 18

when to call 5
CS_CONNECTION structure 29

See also connection structure 22
CS_CONTEXT structure 29

See also context structure 18
cs_ctx_alloc

when to call 5
cs_ctx_drop

when to call 6
198
CS_CUR_ID property 127
CS_CUR_NAME property 127
CS_CUR_ROWCOUNT property 127
CS_CUR_STATUS property 128
CS_DATAFMT structure 34, 35

and Client-Library routines 35
and CS-Library routines 35

CS_DATE datatype 56
CS_DATEREC structure 34
CS_DATETIME datatype 56
CS_DATETIME4 datatype 56
CS_DECIMAL datatype 58
CS_DIAG_TIMEOUT_FAIL property

and inline message handling 69
CS_DS_OBJECT hidden structure 30
ct_describe

and CS_DATEREC structure 35
CS_EXTRA_INF property

and inline message handling 69
CS_FAIL symbol 39
CS_FALSE symbol 39
CS_FLOAT datatype 57
CS_FMT_PADBLANK format constant 38
CS_FMT_PADNULL format constant 38
CS_FMT_UNUSED format constant 38
CS_IMAGE datatype 59
CS_INT datatype 57
CS_IODESC structure 34, 35
CS_LOC_PROP property 18
CS_LOCALE structure 30, 33
CS_LOCATOR datatype 58
CS_LOGINFO structure 29, 32
CS_LONGBINARY datatype 54
CS_LONGCHAR datatype 54
CS_MAX_NAME symbol 39
CS_MESSAGE_CB property 18
CS_MONEY datatype 58
CS_MONEY4 datatype 58
CS_NO_TRUNCATE property 70

and sequenced messages 70
CS_NULLTERM symbol 39
CS_NUMERIC datatype 57
CS_PROP_SSL_LOCALID structure 34
CS_REAL datatype 57
CS_SERVERMSG structure 34, 36

storing message text 70
Open Client

Index
CS_SMALLINT datatype 57
CS_TEXT datatype 59
CS_TIME datatype 56
CS_TINYINT datatype 57
CS_TRAN_COMPLETED transaction state 72
CS_TRAN_FAIL transaction state 72
CS_TRAN_IN_PROGRESS transaction state 72
CS_TRAN_STMT_FAIL transaction state 72
CS_TRAN_UNDEFINED transaction state 72
CS_UNITEXT datatype 59
CS_VARBINARY datatype 54
CS_VARCHAR datatype 54
CS-Library

installing a CS-Library message callback 21
setting context properties 18

cstypes.h header file 45
ct_bind 92

and CS_DATAFMT structure 35
when to call 6

ct_br_column 34
ct_callback 68

when to call 5
ct_cancel

cancel cursor results 95
ct_close

when to call 6
ct_cmd_alloc 24

when to call 5
ct_cmd_drop

when to call 6
ct_cmd_props 24
ct_command 25, 74

initiating a language command 76
when to call 5

ct_compute_info 98
when to call 98, 99

ct_con_alloc
when to call 5

ct_con_props 22
when to call 5

ct_config 19
when to call 5

ct_connect 23
when to call 5

ct_cursor 75, 113
declaring a cursor to directly execute a select
Client-Library/C Programmers Guide
statement 116
declaring a cursor to execute a stored procedure

118
when to call 5

ct_describe 92
and CS_DATAFMT structure 35
when to call 5

ct_diag
handling messages inline 68
uses of 68

ct_dynamic 75, 134
declaring a cursor to execute a prepared statement

119
when to call 5

ct_exit
when to call 6

ct_fetch 92
when to call 6

ct_getloginfo
and CS_LOGINFO structure 32

ct_init 19
when to call 5, 19

ct_keydata
when to call 125

ct_options
when to call 5

ct_param 75
and CS_DATAFMT structure 35

ct_res_info 92
when to call 5

ct_results 90
completely processed results 93
and CS_CMD_DONE 103
and CS_CMD_FAIL 103
and CS_CMD_SUCCEED 103
cursor results 93
other values of result_type 102
when to call 5

ct_send 25
when to call 5

ct_setloginfo
and CS_LOGINFO structure 32

ct_setparam 75
ctpublic.h header file

contents 18
and datatype definitions 45
199

Index
cursor commands
initiating 74, 113

cursor results
how to process 92

cursors
and prepared dynamic SQL statements 119
declaring to execute a select statement 116
declaring to execute a stored procedure 118
declaring with ct_cursor 116, 118
declaring with ct_dynamic 119
properties 127
retrieving a cursor’s name 127
retrieving a cursor’s server ID number 127
retrieving status of 128
retrieving the current value of cursor rows 128
setting cursor rows 121

custom data conversion routines
installing 62

D
data

describing data and program variables 35
data conversion

installing custom conversion routines 62
datatype definitions 45
datatypes

Adaptive Server user-defined types 62
binary 54
bit 54, 58
character 54
CS_BIGDATETIME 56
CS_BIGTIME 56
CS_BINARY 54
CS_BIT 54
CS_DATE 56
CS_DATETIME 56
CS_DATETIME4 56
CS_DECIMAL 58
CS_FLOAT 57
CS_IMAGE 59
CS_INT 57
CS_LONGBINARY 54
CS_LONGCHAR 54
CS_MONEY 58
200
CS_MONEY4 58
CS_NUMERIC 57
CS_REAL 57
CS_TEXT 59
CS_TIME 56
CS_TINYINT 57
CS_UNITEXT 59
CS_VARBINARY 54
CS_VARCHAR 54
datetime 55
decimal 57
float 57
money 58
numeric 57
real 57
SMALLINT 57
summary of datatypes 52
text and image 59
type constants 37
user-defined types 62

datetime datatypes 55
deallocating

a CS_BLKDESC structure 33
a CS_COMMAND structure 27
a CS_CONNECTION structure 27
a CS_CONTEXT structure 27

decimal datatype 57
describe results

how to process 101
routines for processing 100

directory object structure 32
dynamic SQL

Adaptive Server Enterprise restrictions and
requirements 131

advantages 130
alternative to 140
and cursors 119
cannot retrieve stored procedure output parameters

and return values 131
how Adaptive Server implements it 131
limitations 130
performance limitations 130
purpose 129
restrictions 130
stored procedures as alternatives 140

dynamic SQL commands
Open Client

Index
initiating 75, 134

E
error and message handling

callback method 65
defining 5
inline method 68
necessity of 5
preventing message truncation 70
and sequenced messages 70
two methods 64

errors. See messages 63
execute immediate operation

criteria 132
exiting Client-Library 26, 27
exposed structures 33

CS_BROWSEDESC 34
CS_CLIENTMSG 34
CS_DATAFMT 34
CS_DATAREC 34
CS_IODESC 34
CS_PROP_SSL_LOCALID 34
CS_SERVERMSG 34
SQLCA 34
SQLCODE 34
SQLSTATE 34

extended error data 71

F
fetching

definition of 92
file names, of libraries 4
files

header files 18
float datatype 57
format constants 38

CS_FMT_NULLTERM 38
CS_FMT_PADBLANK 38
CS_FMT_PADNULL 38
CS_FMT_UNUSED 38

format results
and CS_EXPOSE_FMTS property 102
Client-Library/C Programmers Guide
how to process 101
routines for processing 101

H
header files 18

ctpublic.h 45
hidden structures

CS_COMMAND 29
CS_CONNECTION 29
CS_CONTEXT 29
CS_DS_OBJECT 30
CS_LOCALE 30
CS_LOGINFO 30

hierarchy of control structures 31

I
initializing

Client-Library 19
example of 18

initiating
commands 25, 74

inline message handling 68
advantages over callbacks 65
and ct_diag 65
and SQLCA, SQLCODE, SQLSTATE structures

36
combined with callbacks 65
and CS_DIAG_TIMEOUT_FAIL property 70
and CS_EXTRA_INF property 69

international support 33
item number parameters 41

L
language command

initiating 74
localization

CS_LOCALE structure 33
routines for manipulating CS_LOCALE structure

33
logging in to a server 23
201

Index
login properties 32
loop for processing results 90

M
message and error handling. See error and message handling

63
message callback

Client-Library 21
CS-Library 21

message command
initiating 74

message results
different from server messages 64
how to process 99
routines for processing 99

messages
chunked 70
client messages 34, 63
Client-Library messages 63
operating system messages 71
preventing truncation 70
ranges of Sybase- and user-defined messages 100
sequenced 70
server messages 36, 63, 64

money datatypes 58

N
NULL parameters 39
NULL substitution values 60

and cs_setnull 61
CS_BIGDATETIME default 61
CS_BIGTIME default 61
CS_BINARY_TYPE default 61
CS_BIT_TYPE default 61
CS_BOUNDARY_TYPE default 61
CS_CHAR_TYPE default 61
CS_DATETIME_TYPE default 61
CS_DATETIME4_TYPE default 61
CS_DECIMAL_TYPE default 61
CS_FLOAT_TYPE default 61
CS_IMAGE_TYPE default 61
CS_INT_TYPE default 61
202
CS_MONEY_TYPE default 61
CS_MONEY4_TYPE default 61
CS_NUMERIC_TYPE default 61
CS_REAL_TYPE default 61
CS_SENSITIVITY_TYPE default 61
CS_SMALLINT_TYPE default 61
CS_TEXT_TYPE default 61
CS_TINYINT_TYPE default 61
CS_VARBINARY_TYPE default 61
CS_VARCHAR_TYPE default 61
defining for user-defined datatypes 62

numeric datatype 57

O
Open Client

user-defined datatypes 62
operating system messages 71
outlen parameter 42

P
package command

initiating 74
parameter results

how to process 96
routines for processing 96

parameters
action parameter 41
buffer parameter 42
buflen parameter 42
conventions 39, 44
defining parameters for a command 75
input parameter strings 40
interaction between action, buffer, buflen, outlen

parameters 42
item numbers 41
non-pointer parameters 40
NULL parameters 39
outlen parameter 42
output parameter strings 40
pointer parameters 39
unused parameters 39

prepare and execute operations
Open Client

Index
advantages 134
criteria 133
steps to perform 134

prepared statement
definition of 130, 136
when to use 133

processing results 5, 25
program structure 5, 27

connecting to a server 22
finishing up 26
installing callbacks 20
processing results 25
sending commands 23
setting up 18
steps in a simple program 4

program variables
describing 35

properties
login properties 32
setting Client-Library context properties 19
setting command properties 24
setting connection properties 22
setting CS-Library context properties 18

R
real datatype 57
regular row format results

how to process 101
regular row results

how to process 90
remote procedure calls

advantages 83
comparing RPCs and execute statements 83

results
how to process 5, 25

return codes 63
return status results

how to process 97
routines for processing 97

row results
how to process 90

RPC command
initiating 74
Client-Library/C Programmers Guide
S
scope of control structures 31
send-data command

initiating 74
sending commands to a server 5, 23
sequenced messages 70

and CS_NO_TRUNCATE property 70
server message callback

Client-Library routines it can call 67
defining 67
valid return value 68

server message results 64
server messages 36, 63

description of 64
difference between server messages and message

results 100
extended error data 71

server results
how to process 25

servers
connecting to a server 5, 22
logging in to a server 23
sending commands to 5, 23
transaction states 72

setting
Client-Library context properties 19
command structure properties 24
connection structure properties 22
CS-Library context properties 18

setting up a program’s environment 18
SQL

dynamic SQL 129
SQLCA structure 34, 36

and CS_EXTRA_INF property 69
no support for sequenced messages 71

SQLCODE structure 34, 36
and CS_EXTRA_INF property 69
no support for sequenced messages 71

SQLSTATE structure 34, 36
and CS_EXTRA_INF property 69
no support for sequenced messages 71

stored procedures
and Client-Library cursors 118
declaring cursors to execute 118

structures 29, 37
allocating a CS_COMMAND structure 24
203

Index
allocating a CS_CONNECTION structure 22
allocating a CS_CONTEXT structure 18
basic control structures 31
command structure 29
connection structure 29
context structure 29
control structure hierarchy 31
CS_BLKDESC 32
CS_CLIENTMSG 34
CS_COMMAND 31
CS_COMMAND structure 29
CS_CONNECTION 30
CS_CONNECTION structure 29
CS_CONTEXT 30
CS_CONTEXT structure 29
CS_DATAFMT 34
CS_DATEREC 35
CS_DS_OBJECT 32
CS_IODESC 35
CS_LOCALE 33
CS_LOGINFO 32
CS_SERVERMSG 36
exposed structures 33
hidden structures 29
SQLCA 36
SQLCODE 36
SQLDA 37
SQLSTATE 36

symbolic constants 38
values subject to change 39

symbols
CS_FALSE 39
CS_SUCCEED 39
CS_TRUE 39

T
text and image

describing data 36
routines to manipulate data 59

text and image datatypes 59
transaction states 72

CS_TRAN_FAIL 72
CS_TRAN_IN_PROGRESS 72
CS_TRAN_STMT_FAIL 72
204
CS_TRAN_UNDEFINED 72
type constants 37

definition of 52
types

definitions of 45

U
unused parameters 39
user-defined datatypes 62

Adaptive Server Enterprise user-defined types 62

V
version behavior of Client-Library

setting 19
Open Client

	Client-Library/C Programmers Guide
	About This Book
	CHAPTER 1 Getting Started with Client-Library
	Client-Library overview
	Types of Client-Library applications
	Adaptive Server Enterprise client applications
	Open Server client or gateway applications

	A simple sample program
	Building programs
	Steps in the example
	Source listing

	Step 1: Set up the Client-Library programming environment
	Header files
	Allocating a context structure
	Setting CS-Library context properties
	Initializing Client-Library
	Setting Client-Library context properties
	External configuration

	Step 2: Define error handling
	Step 3: Connect to a server
	Allocating a connection structure
	Setting connection structure properties
	Required connection properties

	Logging in to a server

	Step 4: Send commands to the server
	Allocating a command structure
	Setting command structure properties
	Executing a command

	Step 5: Process the results of the command
	Step 6: Finish
	Deallocating command structures
	Closing and deallocating connections
	Exiting Client-Library
	Deallocating a context structure

	CHAPTER 2 Understanding Structures, Constants, and Conventions
	Hidden structures
	CS_CONTEXT
	CS_CONNECTION
	CS_COMMAND
	Control structure hierarchy

	Connection and command rules
	CS_LOGINFO
	CS_DS_OBJECT
	CS_BLKDESC
	CS_LOCALE
	Exposed structures
	CS_BROWSEDESC
	CS_CLIENTMSG
	CS_DATAFMT
	CS_DATEREC
	CS_IODESC
	CS_PROP_SSL_LOCALID
	CS_SERVERMSG
	SQLCA, SQLCODE, and SQLSTATE
	SQLDA

	Constants
	Type constants
	Format constants
	Other symbolic constants

	Conventions
	NULL and unused parameters
	Pointer parameters
	Non-pointer parameters

	Input parameter strings
	Output parameter strings
	Pointers to basic structures
	Item numbers
	action, buffer, buflen, and outlen

	CHAPTER 3 Using Open Client and Server Datatypes
	Types and type constants
	Where are datatypes declared?
	Why use Open Client and Open Server datatypes?
	unichar datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	unitext datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	xml datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	What are type constants?

	Datatype summary
	Binary types
	Bit types
	Character types
	Datetime types
	Numeric types
	Large object locator types
	Money types
	Text and image types

	Null substitution values
	Open Client user-defined datatypes

	CHAPTER 4 Handling Errors and Messages
	About messages
	How to identify messages
	Client-Library messages and Client-Library return codes
	Server messages and message results

	Two methods for handling messages
	Combining the methods

	Handling messages with callback routines
	Defining a client-message callback
	Defining a server-message callback
	Installing callbacks

	Handling messages inline
	The CS_EXTRA_INF property
	The CS_DIAG_TIMEOUT_FAIL property

	Sequencing long messages
	Extended error data
	Uses of extended error data

	Server transaction states

	CHAPTER 5 Choosing Command Types
	Command overview
	Types of commands
	Executing commands
	Initiating a command
	Defining parameters for a command
	Processing results
	Resending a command

	Language commands
	Building language commands
	Results-handling for language commands
	When to use language commands
	When not to use language commands

	RPC commands
	Building RPC commands
	RPC command results handling
	Return parameter values
	Return status values

	When to use RPC commands
	RPCs versus execute language commands

	Client-Library cursor commands
	Building Client-Library cursor commands
	When to use Client-Library cursors
	When not to use Client-Library cursors

	Dynamic SQL commands
	Building Dynamic SQL commands
	When to use dynamic SQL commands
	When not to use dynamic SQL

	Message commands
	When to use message commands
	When not to use message commands

	Package commands
	Send-data commands
	When to use send-data commands
	When not to use send-data commands

	CHAPTER 6 Writing Results-Handling Code
	Types of results
	Structure of the basic loop
	Processing regular row results
	Processing cursor results
	Processing scrollable cursor results

	Processing parameter results
	Processing return status results
	Processing compute results
	Processing message results
	Processing describe results
	Processing format results
	Row format caching

	Values of result_type that indicate command status
	Logical commands

	ct_results final return code

	CHAPTER 7 Using Client-Library Cursors
	Cursor overview
	Language cursors versus Client-Library cursors
	Language cursors
	Client-Library cursors

	When to use Client-Library cursors
	Benefits of Client-Library cursors
	Nested cursor commands
	Commands executed using a different command structure

	Performance issues when using Client-Library cursors

	Using Client-Library cursors
	Step 1: Declare the cursor
	Declaring a cursor to directly execute a select statement
	Declaring a cursor to execute a stored procedure
	Declaring a cursor to execute a prepared dynamic SQL statement

	Step 2: Set cursor rows
	Step 3: Open the cursor
	Cursor command batching
	Reopening a cursor

	Step 4: Process cursor rows
	Nested cursor-update or cursor-delete commands
	Nested cursor-close commands
	Sending commands on a different command structure

	Step 5: Close the cursor
	Step 6: Deallocate the cursor

	Client-Library cursor properties

	CHAPTER 8 Using Dynamic SQL Commands
	Dynamic SQL overview
	Benefits of dynamic SQL
	Limitations of dynamic SQL
	Performance of dynamic SQL commands
	Adaptive Server Enterprise restrictions and database requirements

	Alternatives to dynamic SQL
	Using the execute-immediate method
	When to use the execute-immediate method
	Coding an execute-immediate command

	Using the prepare-and-execute method
	When to use prepare-and-execute method
	Program structure for the prepare-and-execute method
	Step 1: Prepare the statement
	Step 2: Get a description of command inputs
	Initiating a describe-input command
	Processing parameter descriptions

	Step 3: Get a description of command outputs
	Initiating a describe-output command
	Processing column descriptions

	Step 4: Execute the prepared statement
	Step 5: Deallocate the prepared statement

	Dynamic SQL versus stored procedures

	CHAPTER 9 Using Directory Services
	Directory service overview
	How do applications use a directory service?
	Searching the directory
	Example code
	Program structure

	Step 1: Starting the search
	Initialize data structures
	Setting directory service properties
	Installing the directory callback
	Calling ct_ds_lookup
	Example code to start a directory search

	Step 2: Collecting search results in the directory callback
	Defining the directory callback
	Directory callback example

	Step 3: Inspecting directory objects
	Attribute data structures
	Example code to inspect a directory object
	Retrieving an attributes value
	Processing attribute values

	Step 4: Cleaning up

	APPENDIX A Logical Sequence of Calls
	Client-Library state machines
	Command-level sequence of calls
	Commands state table
	Initiated-commands state table
	Result-types state table
	Summary

	Command states
	Command-level routines
	Callable routines in each command state

	Initiated commands
	Initiated command routines
	Callable routines for initiated commands

	Result types
	Result type processing routines
	Callable routines for each result type
	Pending results

	Index

