SYBASE

Client-Library/C Programmers Guide

Open Client™
15.5

DOCUMENT ID: DC35570-01-1550-01
LAST REVISED: October 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. inthe U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

N o o 10} A I YT = o Yo iX
CHAPTER 1 Getting Started with

ClEeNT-Library ..o e e 1
Client-Library OVEIVIEWoceiiueieaiiiee e 1
Types of Client-Library applicationscccccooioiiiiiiiiiiiiee e, 1
Adaptive Server Enterprise client applications.............cccccceeen. 2
Open Server client or gateway applications............ccccccevveeeiiens 3

A simple SamPpPle Program.........ccceeiieiiiiiiiee e eeiieeeee e e srareee e 4
BUIldiNg PrOogramsoocviiiiiiieeii e 4
Steps iN the eXamPle ... 5
SOUICE lISHING ..evviiie ittt 6
Step 1: Set up the Client-Library programming environment 18
Header fileS ... 18
Allocating a context StrUCLUIec.everiiiieeeiiee e 18
Setting CS-Library context propertiescccccevvivieviieeens 18
Initializing Client-Librarycoooooeoiiiieee e 19
Setting Client-Library context propertiescccccccveviceeens 19
External configuration..........cccccevieiiiiiiiiee e 20
Step 2: Define error handlingcccvvvvveiiiniiiiii e 20
Step 3: CONNECL 0 @ SEIVET ...uuviieiiiiiiiiiiiiiiiiiiniiiiiiiieeiieeeaaes 22
Allocating a connection StrUCIUIeooccuvvvieeieeeiiiiiiiieeeeeennn 22
Setting connection structure propertieS.........cccevvvvveeeeeerniinnns 22
LOQQING iN 0 @ SEIVETeviiiiiiie ettt 23
Step 4: Send commands t0 the SEerver.........cccccceeeeviiciiiieeee e 24
Allocating a command StrUCLUrecocoeeeeniiieee e 24
Setting command structure propertiescccccvvevieeriieeens 24
Executing a command.........cccceeevieiiiiiiiie e 25
Step 5: Process the results of the command..............cccccceeeeeeis 25
Step 6: FINISN ..o 27
Deallocating command StruCtUrescccceeeeevvvvvereeeeeeeeciennen, 27
Closing and deallocating coONNECHIONSccovvvivviiieeeeeeeniiins 27
Exiting Client-Librarycccoooceeeiiiie e, 27
Deallocating a context StruCtUreevveeeviiiviieenieee s, 27

Client-Library/C Programmers Guide iii

Contents

CHAPTER 2

CHAPTER 3

Understanding Structures, Constants, and Conventions.......... 29
HIAEN STIUCIUIES ... 29
CS_CONTEXT .ottt ettt st 30
CS_CONNECTION ...ttt 31
CS_COMMAND ... 31
Control structure hierarchyccccccoeeeiviiieee e 31
Connection and command FUIESccccuiiiieeeeiiiciiiiie e e 31
CS_LOGINFO ... e e 32
CS_DS_OBJIECT ..ovitieeeeeeeeeeeeeeeeeeeeeeenevenenen s 32
CS_BLKDESC ... 33
CS_LOCALE ..ottt 33
EXPOSEA SIIUCIUMES ...vvviiiiieeiiiiiiiieee et 33
CS_BROWSEDESC ..ottt 34
CS_CLIENTMSG ..ottt 34
CS_DATAFMT Lottt 35

CS _DATEREC ...ttt 35
CS_IODESC. ...ttt 36
CS_PROP_SSL_LOCALIDcoovoveveeereeeeereeeeeeeeeeeeeeeeeen. 36
CS_SERVERMSG ... 36
SQLCA, SQLCODE, and SQLSTATEccceovveereeeeeeeeeeeenn. 36
SO D A et aaees 37
L0001 153 -1 £ UUUPPTPRN 37
TYPE CONSLANTS ..., 37
Format CONSEANTS.........ccuvveiiiiiii e 38
Other symbolic CONStaNtSuevviieiiiiiiiiiiiee e 38
CONVENTIONS .ottt 39
NULL and unused parameterscceveveeeeviiiivieeeneeeesisinieeenns 39
INpUt parameter StHNGScooveeviiiiiiiie e 40
Output parameter StriNgS.........uvveeeeeeeiiiiiiiee e e e e 40
Pointers to basic StruCtUrescccvvveeee e, 40
IEEM NUMDETS ..o 41
action, buffer, buflen, and outlen ..ol 41
Using Open Client and Server Datatypes......ccccccvvvvvvvviiiiiieeenennn. 45
Types and type CONSIANESccueiiriiiiiee e 45
Where are datatypes declared?cccvvvvveeeieeiiiiiiiiieee e 45
Why use Open Client and Open Server datatypes? 46
UNICHAr datAtYPe .. .uvvvieeeiiiiiieiiiee et 46
UNItEXE AAtALYPE ...vvveiieee ettt 49
XMIAAEAEYPE e 50
What are type CONStaNtS?.......ccuvvviiieeiiiiiiiiiiee e eeiiieree e 52
Datatype SUMMATYcoooiiiieieiee e 52
BINAIY TYPES. ..ot 53

27108 0 1= USSR 54

Open Client

Contents

CharacCter tYPeS ...ooeee et 54
Datetime tYPESeeeieiieiieee ettt 56
NUMETIC TYPES eieiieeetieeeeettie e ettt e e et e e e et e e e aee e e s emnee e e e nneeeeas 57
MONEY TYPES .eeeeetitieiieieeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeseeseeeesesaesnnnsneennes 58
Text and IMAGE LYPES ..uvuviiie et 58
NUll SUDSHItULION VAIUEScooiiiiiiiiiiiie e 59
Open Client user-defined datatypes.........ccccceeeeviiiiiiennieeniiiiieen, 61
CHAPTER 4 Handling Errors and MESSAQEScocuveieeeiiiiieeeeiiiiiiee e eiieeeee s 63
ADOUL MESSAGES ...vvvviiiiiiiiiiiiiiii ettt s s raee e e e 63
How to identify MEeSSAgEScuvvveviiiiiiiiiiiiee e 63
Two methods for handling messages.......ccccocccveviieeniceeens 64
Handling messages with callback routinescccccccooeviiinnnnn, 65
Defining a client-message callbackccccoocoiiiiiienenneen. 66
Defining a server-message callbackcccocoiviiiiinniinn. 67
Installing callbackscocoeiiiiiieiiee e 68
Handling messages inlineoccoiiiiin e 68
The CS_EXTRA_INF PrOPertyccouiiiciveeeiieesiiniiiieenaeessannnes 69
The CS_DIAG_TIMEOUT_FAIL Propertyccccceevveerneenineenns 70
Sequencing loNg MESSAQESuvviiiieeeiiiiiiiiiiiee e eeiiiieeeee e e e e niaees 70
Extended error dataccoovveeeeiiiieieiiiieee e 71
Uses of extended error data..........cccocvvveiiiieeeinieiee e 71
Server transaction StateSceeviiiiiee i 72
CHAPTER 5 Choosing Command TYPES......uuuuuuureriiiiieieeeeeeeeeeeee e 73
COMMANA OVEIVIEWeeiiiieieiiiieeeeeeiee e e eeee e et e e s eneee e e s eneee e e nneeeens 73
Types Of COMMANGScooiuiiieiiii e 73
EXeCUting COMMANGScecceeiiiiiiiieeeeee et e e e et e e e e e e 74
Initiating @ commandccvveeeiieiiieee e 74
Defining parameters for a commandccccccoeeeeiiceeernieen. 75
Processing reSUISooi i 75
Resending a commandccooieiiiiiiieeee e 75
Language COMMANTS.......ccoiiiuriiierieeeniiiiiiiee e e e e s ssirereee e e e s s ssneeeeees 76
Building language commandsccccceeeeeeiiiiiiiieniee e 76
Results-handling for language commands.............cccocevvvvveeen. 77
When to use language commands...........cccvveeeeeeeiiiiiiieeneeennn 77
When not to use language commands..........ccccceevvvivvvieeeeeennnn 78
RPC COMMENASceviiiiiiiieeiiiee ettt 78
Building RPC commandscccceeiiiieniiiiee e 78
RPC command results handling...........cccccooveviiiiiiciee e, 80
When to use RPC commandsccceviireeiiieee e 82
RPCs versus execute language commandsccccceeeueeeen. 83
Client-Library cursor commandscoocoveeiiieieeniieee e e 84

Client-Library/C Programmers Guide %

Contents

Building Client-Library cursor commands.............ccccvvvveeeeennnn. 84
When to use Client-Library CUrSOrs........ccccceeeeviiiiiieeeeeeeniinnns 84
When not to use Client-Library Cursors..........ccccccvvveeeeeniinnns 85
Dynamic SQL COMMANASoeeiiiiiieiiiiiee e 85
Building Dynamic SQL cOmmMandsS...........cceuiuieeeeiiieeanniieeenns 85
When to use dynamic SQL commandscccceeeeveernieeeens 85
When not to use dynamic SQL........cccoiiiieiiieeeiiiee e 86
MESSAJE COMMEANTSeeeeeeiiiieeeaiieeeeetieee e eneee e e e eneeeeeeneeeeeaeeeee e 86
When to use message cCommands.........c..ceeviueeeeriiireesnieneeenns 87
When not to use message cCommandsS..........cooovvvvveeeeeeeeniinnns 87
Package CoOmMMAaNGS.........coouiiiiiiiiiiee e 87
Send-data CoOMMANGSvveiiiiiieiiiee e 87
When to use send-data commands..........cccoocvveeeriiieeeniiieeenns 88
When not to use send-data commands............cccoocvveeeriiieeenns 88
CHAPTER 6 Writing Results-Handling Code..........ccccvviiiiiiiiiiiieeiiieeeeeeiii, 89
TYPES Of FESUILS ... 89
Structure of the basiC l00Pcvveiiiii e 90
Processing regular row reSUltScoeiiiereiiiee e 91
Processing CUrSOr r€SUILSceveiiiiieeiiiie e 93
Processing scrollable cursor results..........cccocvveeeviicciiieeneen, 95
Processing parameter reSUltSccocecviiiieeeeeeeiiiiiieee e 96
Processing return status resultS...........ccccvvvveeeeeeicciiieee e 97
Processing compute reSUScovveiiiiiiiiiiiiiee e 98
Processing Mmessage reSUItScvveeviiiiiieiie e 100
Processing describe resultsccccccviviiiieii e 101
Processing format resultS..........cccccveiiiiiiiieie e 101
Values of result_type that indicate command status.................... 103
Logical commandsccoeeeeiiiiiiiiieiee e 103
ct_results final return codecccooo i 104
CHAPTER 7 Using Client-Library CUISOIS.....cccoviiiiieiieeiiiiee e 105
CUISOF OVEIVIEW ..ceiiiiieeeieie et e e ettt e e eteee e et e e e e e e e e ameeeeeeeneeeens 105
Language cursors versus Client-Library cursors..............cccvvvee... 106
LANQUAGE CUISOIS...ciiiiiiiiieiiiiieeieeeeeeeee aeeeees 107
Client-Library CUrSOrsoocoveeioiiee i e e e 108
When to use Client-Library Cursors.........cccocoeeeeeoieeeeiiieee e 109
Benefits of Client-Library cursorsccocccvvvevveeiiiiiiiiienneennn, 109
Performance issues when using Client-Library cursors......... 111
Using Client-Library CUrSOIS.........ciuieiiiiiiiiiiiee e ieiiiieeeee e ssinieeeens 111
Step 1: Declare the CUrsOor.........ccccceeviiiiiiiiieee e 113
SteP 2: St CUISON FOWSuueiiiiiiiii s 119
Step 3: OPeN the CUISONccuviiiiiiiee et 120

Vi Open Client

Contents

Step 4: Process CUIrSOI FOWSccooiiiiiiiiiieeeiaiiiiiiieeee e 122
Step 5: CloSE the CUISOr........c..vviiiiee e 125
Step 6: Deallocate the CUrSOr........cccoeoviieeiiciiee e 125
Client-Library cursor propertieS...........eeeeiiviriieeeeeesiiiiiieeeee s 125
CHAPTER 8 Using Dynamic SQL COMMaNdsSccceevvuvieeieiiiiiiiee e 127
DynamicC SQL OVEIVIEWccuuvviiiiiie ettt 127
Benefits of dynamic SQL...........oovviiiiiiiiiiiiii e 128
Limitations of dynamic SQLcveeriiiiiiiiiiieee e 128
Performance of dynamic SQL commands..........ccccccooveuvvvenn. 128
Adaptive Server Enterprise restrictions and database requirements
129
Alternatives to dynamic SQLc.cocviiiriiieeeeiiiiiieee e 130
Using the execute-immediate method..............cccccvvveeii i, 130
When to use the execute-immediate method........................ 130
Coding an execute-immediate command..............ccccceeerinnns 131
Using the prepare-and-execute method.............ccccvveevieeiiiciinne, 131
When to use prepare-and-execute method.............cccceeeenen. 131
Program structure for the prepare-and-execute method....... 132
Step 1: Prepare the statementccccccevee i 134
Step 2: Get a description of command iNputscc.cceeeeee 134
Step 3: Get a description of command outputs 136
Step 4: Execute the prepared statement.............cccceevvineeens 137
Step 5: Deallocate the prepared statement..............ccccccee. 138
Dynamic SQL versus stored proceduresccoccoeeeeriereennnnenn. 138
CHAPTER 9 USING Dir€CtOry SErVICESoovvvviriiiiiiiiiiiieieeeeeeeeeaeaeereeeesvenennnnnns 141
Directory SErVICE OVEIVIEWc..vvveeeeeeeeiiiiiieee e e e e esnireeee e e e e e e 141
How do applications use a directory Service?ccccccveevvvcvvnnnnn. 142
Searching the direCtOrYoociieiii e 142
EXample COA........oiiiiiiie e 142
Program StruCtUIe.........oooiiiiiii e 142
Step 1: Starting the search...........cccoei i, 143
Initialize data StruCtUreS..........cccoiiiiiiiiiee e 143
Setting directory service properties........ccccceeevvvcvvveeneeeeninnnnns 144
Installing the directory callbackccccccooviiiiiiiiiieniiniinn, 145
Calling Ct_dS_TOOKUP ...evveeeiiiiiiiiiiie et 145
Example code to start a directory search..........ccccccoovvivvnenn. 145
Step 2: Collecting search results in the directory callback........... 148
Defining the directory callbackcccccoiiiiiiiiiiiiiiee 148
Directory callback exampleccccccovviieeeeeiiiiiiiieeee e 150
Step 3: Inspecting directory objectscccccvveeeiiiiiiiiiiiie e, 152
Attribute data StrUCIUIESccovviiiiiiieeeee e 153

Client-Library/C Programmers Guide Vii

Contents

Example code to inspect a directory object............cccvveeeennn. 154

Step 4: CIEANING UP...ueveeieiieeiiiiiiiieee e e e esirieeee e e e e s sibrreeeeaeessanees 166

APPENDIX A Logical Sequence of Callsccoovvvieiiiiiiiiiiiiiee e 167
Client-Library state machines.........cccccceviiiiiiiiiiiee e 167

Command-level sequence of callsccccovvviiiiiiieeeeeiiiinns 168

Commands state tablecccceeeeeiiiiiiic e 168

Initiated-commands state tableccoococviiiiiiiiiiiiiee. 168

Result-types state table...........ccocoviiii i 169

SUMIMABTY s 169

ComMmMAaNd STALESccoi i 170

Command-level routinescccceeeiiiiiiiiiiiee e 171

Callable routines in each command stateccccceeeviens 172

Initiated COMMANGScoiiiiiiiiiiiiiei e 183

Initiated command roUtiNeSeevvieeeiiiiiiiiiiie e 184

Callable routines for initiated commandscccccceeeiiinns 185

RESUIL YPES eveiiieeeieeee e 188

Result type processing routingscccoevvevvveeeeeeeesiicnvvnennn. 190

Callable routines for each result typecccoceeiiiieiiiinens 190

Pending reSUIS........oueiieiie e 193

[Lo = PRSP 195

viii Open Client

About This Book

This book contains information on how to write C applications using
Open Client™ Client-Library.

Audience This book is written for application programmers familiar with the C
programming language.

How to use this book This book contains these chapters:

Chapter 1, “ Getting Started with Client-Library” explains how to
structure a basic Client-Library program and includes asimple,
complete Client-Library application.

Chapter 2, “ Understanding Structures, Constants, and Conventions”
contains information about Client-Library structures, constants, and
parameter conventions.

Chapter 3, “Using Open Client and Server Datatypes’ contains a
summary of datatypes that can be used in a Client-Library
application.

Chapter 4, “Handling Errors and Messages’ explains how to handle
Client-Library and server errorsin your application.

Chapter 5, “Choosing Command Types’ explains when and how to
use the different command types in your application.

Chapter 6, “Writing Results-Handling Code” explains Client-
Library’s results processing model.

Chapter 7, “Using Client-Library Cursors’ explains how to declare
and manipulate Client-Library cursors.

Chapter 8, “Using Dynamic SQL Commands’ explains how to use
dynamic SQL queriesin your applications.

Chapter 9, “Using Directory Services’ containsinformation on how
to use Client-Library directory services.

Appendix A, “Logical Sequence of Calls’ contains diagrams of the
legal call sequencesin Client-Library applications.

Related documents You can see these books for more information:

Client-Library/C Programmers Guide iX

The Open Server Release Bulletin for Microsoft Windows contains
important |ast-minute information about Open Server™.

The Software Developer’s Kit Release Bulletin for Microsoft Windows
contains important | ast-minute information about Open Client and
SDK.

The jConnect for JDBC Release Bulletin versions 6.05 and 7.0 contains
important |ast-minute information about jConnect™.

The Open Client and Open Server Configuration Guide for Microsoft
W ndows containsinformation about configuring your system to run Open
Client and Open Server.

The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library.

The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

The Open Client and Open Server Programmers Supplement for Microsoft
W ndows contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

¢ The sample programs that are included with Open Client and Open
Server

¢ Routines that have platform-specific behaviors

The jConnect for JDBC Installation Guide version 6.05 contains
installation instructions for jConnect for JDBC™,

The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

The Adaptive Server Enterprise ADO.NET Data Provider Users Guide
providesinformation on how to accessdatain Adaptive Server® using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J&.

Open Client

About This Book

The Adaptive Server Enterprise ODBC Driver by Sybase Users Guide for
Windows and Linux, provides information on how to access data from
Adaptive Server on Microsoft Windows, Linux, and Apple Mac OS X
platforms, using the Open Database Connectivity (ODBC) Driver.

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

Other sources of Use the Sybase® Getting Started CD, the SyBooks™ CD, and the Sybase
information Product Manuals Web site to |earn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web site isan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

[IFinding the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Client-Library/C Programmers Guide Xi

2 Click Partner Certification Report.

3 InthePartner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Xii Open Client

About This Book

Conventions

Accessibility
features

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly braces indicate that you choose at |east one of the

enclosed options. Do not include the braces in the command.

[1] Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

This document isavailablein an HTML version that is speciaized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Client-Library/C Programmers Guide Xiii

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

Xiv Open Client

CHAPTER 1 Getting Started with
Client-Library

This chapter includes the fundamental concepts required to develop
Client-Library/C applications.

Topic Page
Client-Library overview 1
Types of Client-Library applications 1

A simple sample program 4
Step 1: Set up the Client-Library programming environment 18
Step 2: Define error handling 20
Step 3: Connect to a server 22
Step 4: Send commands to the server 24
Step 5: Process the results of the command 25
Step 6: Finish 27

Client-Library overview

Client-Library is acollection of routines for sending commands to and
retrieving results from Sybase servers.

For an overview of Sybase's client/server architecture and products, see
Chapter 1, “Introducing Client-Library,” in the Open Client Client-
Library/C Reference Manual.

Types of Client-Library applications

Client-Library applications vary mainly in the types of commands that
they send. Once connected to aserver, all client applicationsuse the “ send
commands, process results’ paradigm illustrated in Figure 1-1:

Client-Library/C Programmers Guide 1

Types of Client-Library applications

Figure 1-1: The commands/results paradigm

Client Application Server

N

=

1.Language command:

select ‘hello world’

E> select ‘hello world’ _
Receive command

2.
3. Process command
4. Send results

ARl

5.Read and process <j ‘hello world’

results

Adaptive Server Enterprise client applications

The following examplesillustrate what kinds of tasks an Adaptive Server
Enterprise client application might carry out:

¢ SQL interpreter —the client application promptsthe user for queries, sends
these queries to the server as language commands, retrieves the results
from the Adaptive Server Enterprise, and displays the results. The Sybase
isgl utility is such an application; it calls the following Client-Library
routines:

ct_command(CS_LANG_CMD) to define alanguage command and
its text

ct_send to send it to the server
ct_results to read the results
ct_res_info and ct_describe to find out column formats

ct_bind and ct_fetch to retrieve rows

See“Language commands’ on page 76. See also the example application
shown in“A simple sample program” on page 4.

Open Client

CHAPTER 1 Getting Started with Client-Library

e Data-entry — an application that always runs the same queries. The
application uses Adaptive Server Enterprise stored procedures to
implement application logic for performing inserts, updates, and menu
population. The client program invokes the stored procedures by sending
RPC commands. Such an application calls:

¢ ct_command(CS_RPC_CMD) to define an RPC command

e ct_param or ct_setparam to define parameter valueswith which to call
the procedure

e ct_send to send the command to the server
e ct_results, ct_bind, ct_fetch, and so forth, to read the results
See“RPC commands’ on page 78.

* Interactive query-by-example — an application that prompts for queries
that can contain markers, indicated by aquestion mark (?), for valuesto be
supplied at runtime. The application uses dynamic SQL commands to:

e Preparethe statement, by sending act_dynamic(CS_PREPARE)
command and handling the results

¢ Query for parameter formats, by sending a
ct_dynamic(CS_DESCRIBE_INPUT) command and handling the
results

e After prompting for input values, execute the statement by sending a
ct_dynamic(CS_EXECUTE) command and handling the results

See Chapter 8, “Using Dynamic SQL Commands.”

Open Server client or gateway applications

Open Server Server-Library isacollection of routinesthat allowsyouto create
custom server applications. Server-Library routines are documented in the
Open Server Server-Library/C Reference Manual.

The following examples illustrate the tasks that an Open Server client
application might carry out:

Client-Library/C Programmers Guide 3

A simple sample program

¢ Client for custom Open Server application — a client application sends
RPC commands to invoke custom server routines that have been
“registered” as callable server procedures in the Open Server application
program. See the Open Server Server-Library/C Reference Manual for
information on registered procedures. See “RPC commands’ on page 78
for adescription of how client applications send RPC commands.

* Notification client — Open Server provides afeature called “registered
procedure notification” that allows client applications to watch for
invocations of selected registered procedures. For example, aclient
application that caches copies of important data might watch for a
notification on aregistered procedure that updates the data. The
notification indicates when the cached copy must be refreshed. See the
“Registered Procedures’ topics page in the Open Client Client-Library/C
Reference Manual.

e Gateway application — a server application acts as an intermediary
between its own clients and other servers. The gateway accepts client
commands, forwards them to a remote server, reads the results, and
forwards the results to its own client. If the remote server is a Sybase
server, the gateway makes Client-Library calls to communicate with the
remote server.

A simple sample program

This section walks you through an sample program that connects to a server,
sends a query, processes the results, then exits. Most Client-Library
applications exhibit a program structure similar to this.

Building programs

The Open Client and Open Server Programmers Supplement for Microsoft
Windows and Open Client and Open Server Programmers Qupplement for
UNI X describe how to build aClient-Library application on your platform and
includes information about required compile/link options, library file names,
and runtime requirements.

4 Open Client

CHAPTER 1 Getting Started with Client-Library

Steps in the example
The following steps show a simple Client-Library application:

1

Set up the Client-Library programming environment:

a Usecs_ctx_alloc to allocate a context structure.

b Usecs_config to set any CS-Library properties for the context.
¢ Usect inittoinitialize Client-Library.

d Usect_config to set Client-Library properties for the context.

Define error handling. Most applications use callback routines to handle
errors:

a Usecs_config(CS_ MESSAGE_CB)toinstal aCS-Library error
callback.

b Usect callback toinstall aclient message callback.

¢ Usect_callback to install a server message callback.

Warning! Applications that do not define error handling do not receive
notification of errorsthat occur in the program, on the network, or on the
server. Code your applications to handle errors and server messages.
Applicationsthat do not perform error handling are difficult to debug and
maintain.

Connect to a server:

a Usect_con_alloc to allocate a connection structure.

b Usect con_props to set any propertiesin the connection structure
¢ Usect_connect to open a connection to a server.

d Usect_options to set any server options for this connection.
Send alanguage command to the server:

a Usect_cmd_alloc to allocate a command structure.

b Usect command to initiate alanguage command.

¢ Usect_send to send the command.

Process the results of the command:

a Usect_results to set up results for processing (called in aloop).

b Usect res_info to get information about a result set.

Client-Library/C Programmers Guide 5

A simple sample program

Cc Usect describe to get information about aresult item.
d Usect bind to bind aresult item to program data space.
e Usect fetch to fetch result rows (called in aloop).

6 Finish:
a Usect_cmd_drop to deallocate the command structure.
b Usect_close to close the connection with the server.
¢ Usect exit to exit Client-Library.

d Usecs_ctx_drop to deallocate the context structure.

Source listing

The following sample program, called firstapp.c, demonstrates the steps
outlined in the previous section. Commentary for each step follows the
example (beginning with “ Step 1: Set up the Client-Library programming
environment” on page 18).

The source code for this application isincluded with the Client-Library sample
programs. See the Client-Library chapter in the Open Client and Open Server
Programmers Supplement for Microsoft Windows or Open Client and Open
Server Programmers Supplement for UNIX for information on making and
running the sample programs.

/*
** | anguage Query Exanpl e Program
*/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctpublic. h>
#i ncl ude "exanpl e. h"

#defi ne MAXCOLUWS 2
#defi ne MAXSTRI NG 40
#define ERR CH stderr
#define OUT_CH stdout

/*
** Define a macro that exits if a function return code indicates

6 Open Client

CHAPTER 1 Getting Started with Client-Library

** failure.
*/
#define EXIT_ON_FAl L(context, ret, str) \
if (ret !'= CS_SUCCEED) \
{\
fprintf(ERR CH "Fatal error: %\n", str); \
if (context !'= (CS_CONTEXT *) NULL) \
{\
(CS_ VA D) ct_exit(context, CS_FORCE EXIT); \
(Cs_vO D) cs_ctx_drop(context); \
P\
exit(-1); \

/*
** Cal |l back routines for library errors and server nessages.
*/
CS_RETCODE CS_PUBLI C csnsg_cal | back PROTOTYPE((
CS_CONTEXT *cont ext,
CS CLIENTMSG *clientnsg));
CS_RETCODE CS_PUBLI C clientnmsg_cal | back PROTOTYPE((
CS_CONTEXT *cont ext,
CS_CONNECTI ON *connecti on,
CS_CLIENTMSG *clientnsg));
CS_RETCODE CS_PUBLI C servernsg_cal | back PROTOTYPE((
CS_CONTEXT *cont ext,
CS_CONNECTI ON *connecti on,
CS_CLI ENTMSG *servernsg));

/*

** Main entry point for the program

*/

int

mai n(int argc, char *argv[])

{
CS_CONTEXT *cont ext; /* Context structure */
CS_CONNECTI ON *connection; [/* Connection structure. */
CS_COWAND *cnd; /* Command structure. */
/* Data format structures for columm descriptions: */
CS_DATAFMT col ums[MAXCOLUWNS] ;
CS_ INT dat al engt h[MAXCOLUMWNS] ;
CS_SMALLI NT i ndi cat or [MAXCOLUWNS] ;

Client-Library/C Programmers Guide 7

A simple sample program

CS_INT count ;
CS_RETCODE ret;

CS_RETCODE results_ret;
CS_INT resul t _type;
CS_CHAR name[MAXSTRI NG ;
CS_CHAR ci ty[MAXSTRI NG ;

EX_SCREEN_| NI T() ;

/*

** Step 1: Initialize the application.

*/
For more commentary, see “ Step 1. Set up the Client-Library programming
environment” on page 18.

/*

** First allocate a context structure.

*/

context = (CS_CONTEXT *) NULL;
ret = cs_ctx_all oc(EX_CTLIB_VERSI QN, &context);
EXIT_ON_FAIL(context, ret, "cs_ctx_alloc failed");

/*

** |nitialize Cient-Library.

*/

ret = ct_init(context, EX CTLIB_VERSION);

EXI T_ON_FAl L(context, ret, "ct_init failed");

/*
** Step 2: Set up the error handling. Install callback handlers
** for: - CS-Library errors - Client-Library errors - Server
** messages
*/
For more commentary, see “ Step 2: Define error handling” on page 20.
/*
** |nstall a callback function to handle CS-Library errors
*/

ret = cs_config(context, CS SET, CS MESSAGE CB,
(Cs_va D *)csnsg_cal | back,
CS_UNUSED, NULL);
EXI T_ON_FAI L(cont ext, ret,
"cs_config(CS_MESSACGE CB) failed");

/*

8 Open Client

CHAPTER 1 Getting Started with Client-Library

** |nstall a callback function to handle Cient-Library errors
* %
** The client nmessage cal |l back receives error or informational
** messages discovered by Cient-Library.
*/
ret = ct_call back(context, NULL, CS _SET, CS_CLI ENTMSG CB,
(CS VO D *) clientnsg_call back);

EXI T_ON FAIL(context,ret,

"ct _call back for client nessages failed");

/*
** The server nessage cal |l back receives server nessages sent by
** the server. These are error or informational nessages.
*/
ret = ct_call back(context, NULL, CS_SET, CS_SERVERMSG CB,
(Cs_vaO D *) servernsg_cal | back);
EXI T_ON_FAIL(context, ret,
"ct _cal l back for server nessages failed");

/*
** Step 3: Connect to the server. W nust: - Allocate a connection
** structure. - Set user nane and password. - Create the
** connecti on.
*/
For more commentary, see “ Step 3: Connect to a server” on page 22.
/*
** First, allocate a connection structure.
*/

ret = ct_con_alloc(context, &connection);
EXIT_ON_FAIL(context, ret, "ct_con_alloc() failed");

/*

** These two calls set the user credentials (usernanme and

** password) for opening the connection.

*/

ret = ct_con_props(connection, CS_SET, CS_USERNAME,
Ex_username, CS_NULLTERM NULL);

EXI T_ON_FAIL(context, ret, "Could not set user nanme");

ret = ct_con_props(connection, CS_SET, CS_PASSWORD,
Ex_password, CS _NULLTERM NULL);

EXI T_ON _FAI L(context, ret, "Could not set password");

/*

** Create the connection.
*/

Client-Library/C Programmers Guide 9

A simple sample program

10

i f (EX_SERVER==NULL)

ret = ct_connect(connection, (CS CHAR *) NULL, 0);
el se

ret = ct_connect (connection, (CS_CHAR *)EX_SERVER, strlen(EX_SERVER));
EXIT_ON_FAIL(context, ret, "Could not connect!");

/*
** Step 4: Send a conmand to the server, as follows: - Allocate a
** CS_COWAND structure - Build a command to be sent with
** ct_command. - Send the conmand with ct_send.
*/
For more commentary, see” Step 4: Send commandsto the server” on page 24.
/*
** Al ocate a conmmand structure.
*/

ret = ct_cnd_all oc(connection, &nd);
EXIT_ON_FAIL(context, ret, "ct_cnd_alloc() failed");

/*
** |nitiate a | anguage command. This call associates a query with
** the command structure.
*/
ret = ct_comrand(cnd, CS_LANG CMD,
"select au_l name, city from pubs2..authors \
where state = 'CA'",
CS_NULLTERM CS_UNUSED) ;
EXIT_ON FAIL(context, ret, "ct_conmmand() failed");

/*

** Send the command.

*

/

ret = ct_send(cnd);

EXIT ON FAIL(context, ret, "ct_send() failed");

/*

** Step 5: Process the results of the command.

*/
For more commentary, see “Step 5: Process the results of the command” on
page 25.

while ((results_ret = ct_results(cnd, & esult_type))

== CS_SUCCEED)
{

/*

Open Client

CHAPTER 1 Getting Started with Client-Library

** ct_results sets result_type to indicate when data is
** avail abl e and to indicate conmand status codes.

*/

switch ((int)result_type)

case CS _ROW RESULT:

/*
** This result_type value indicates that the rows
** returned by the query have arrived. W bind and
** fetch the rows.
* %
** W' re expecting exactly two character col ums:
** Colum 1 is au_lnanme, 2 is au_city.
* %
** For each colum, fill in the relevant fields in
** the colum's data format structure, and bind
** the col um.
*/
col ums[0] . dat atype = CS_CHAR TYPE;
colums[0].format = CS_FMI_NULLTERM
col ums[0] . naxl engt h = MAXSTRI NG
colums[0].count = 1;
colums[0] .l ocal e = NULL;
ret = ct_bind(cnd, 1, &colums[O0],
name, &dat al engt h[0],
& ndicator[0]);

EXI T_ON_FAI L(cont ext, ret,

"ct_bind() for au_l nane failed");

/*

** Same thing for the "city' colum.
*/

colums[1] . dat atype = CS_CHAR TYPE;
colums[1].format = CS_FMI_NULLTERM
colums[1] . maxl ength = MAXSTRI NG
colums[1].count = 1;

colums[1] .l ocal e = NULL;

ret = ct_bind(cnd, 2, &columms[1l], city,
&dat al engt h[1],
& ndi cator[1]);
EXI T_ON_FAI L(cont ext, ret,
"ct_bind() for city failed");

/*
** Now fetch and print the rows.

Client-Library/C Programmers Guide 11

A simple sample program

*/

while(((ret = ct_fetch(cnmd, CS_UNUSED, CS_UNUSED,

CS_UNUSED, &count))

** Check if we hit a recoverable error.

"Error on row %d.\n",
(long) (count +1));

** \WW have a row, let's print it.

"Os: 9%\n", name, city);

== CS_SUCCEED)
|| (ret == CS_ROWNFAIL))
{
/*
*/
if(ret == CS_RONFAIL)
fprintf(ERR_CH,
}
/*
*/
fprintf(QOUT_CH,
}
/*

** We're finished processing rows, so check

** ct_fetch's final

return value to see if an

** error occurred. The final return code should be

** CS_END_DATA.

done processing rows.\n");

"ct_fetch failed");

*/
if (ret == CS_END _DATA)
{

fprintf(OUT_CH,

"\ nAl |

}
else /* Failure occurred. */
{

EXI T_ON_FAI L(context, CS_FAIL,
}
/*
** Al done with this result set.
*/
br eak;

case CS_CMD_SUCCEED:

/*

** \W executed a comand that never returns rows.

12

Open Client

CHAPTER 1 Getting Started with Client-Library

*/
fprintf(OQUT_CH "No rows returned.\n");
br eak;

case CS_CMD _FAI L:

/*
** The server encountered an error while

** processing our comrand. These errors will

be

** di splayed by the server-nessage cal | back that

** we installed earlier.
*/
br eak;

case CS_CMD_DONE:

/*

** The | ogi cal command has been conpletely

** processed.
*/
br eak;

defaul t:

/*
** W& got sonmething unexpect ed.
*/
EXI T_ON_FAI L(context, CS FAIL,

"ct_results returned unexpected result type");

br eak;

}
/*

** \WWe've finished processing results. Check the return val ue

** of ct_results() to see if everything went okay.

*
S\/Ni tch((int) results_ret)
{case CS_END_RESULTS:
/*
** Everything went fine.
*
bieak;

case CS_FAI L:

Client-Library/C Programmers Guide

13

A simple sample program

14

/*
** Sonmet hing terrible happened.
*/
EXI T_ON_FAI L(context, CS_FAIL,
"ct _results() returned CS FAIL.");
br eak;

defaul t:

/*
** \W got an unexpected return val ue.
*/
EXI T_ON FAI L(context, CS FAIL,
"ct_results returned unexpected return code");
br eak;

/*
** Step 6: dean up and exit.
*/

For more commentary, see “ Step 6: Finish” on page 27.

/*

** Drop the conmmand structure.

*/

ret = ct_cnd_drop(cnd);

EXI T_ON _FAl L(context, ret, "ct_cnd_drop failed");

/*

** Close the connection and drop its control structure.
*/

ret = ct_close(connection, CS_UNUSED);

EXIT ON FAIL(context, ret, "ct_close failed");

ret = ct_con_drop(connection);

EXI T_ON _FAl L(context, ret, "ct_con_drop failed");

/*

** ct_exit tells Cient-Library that we are done.
*/

ret = ct_exit(context, CS_UNUSED);

EXIT ON FAIL(context, ret, "ct_exit failed");

/*

** Drop the context structure.

*/

ret = cs_ctx_drop(context);

EXIT_ON FAl L(context, ret, "cs_ctx_drop failed");

Open Client

CHAPTER 1 Getting Started with Client-Library

/*
** Normal exit to the operating system
*/
exit(0);
}
/*

** Handl er for server nmessages. Cient-Library will call this

** routine when it receives a nessage fromthe server.

*/

CS_RETCODE CS_PUBLI C

servernsg_cal | back(CS_CONTEXT *cp, CS_CONNECTI ON *chp, CS_SERVERMSG *nsgp)

{

/*

** Print the nessage info.

*/

fprintf(ERR_CH,
"Server nmessage:\n\t");

fprintf(ERR_CH,
"nunber (% d) severity(%d) state(%d) line(%d)\n",
(long) nsgp->nsgnunber, (long) msgp->severity,
(long) negp->state, (long) nsgp->line);

/*
** Print the server nane if one was supplied.
*
/
if (msgp->svrnlen > 0)
fprintf(ERR._CH "\tServer name: %\n", msgp->svrnane);
/*
** Print the procedure name if one was supplied.
*
/
if (nmsgp->proclen > 0)
fprintf(ERR CH "\tProcedure nanme: %\n", nsgp->proc);

/*
** Print the null term nated nessage.
*/
fprintf(ERR CH "\t%\n", nsgp->text);
/*
** Server nessage call backs nust return CS_SUCCEED.
*/
r et ur n(CS_SUCCEED) ;
}
/*

Client-Library/C Programmers Guide 15

A simple sample program

* %
* %
* %

* %

*/

Client-Library error handler. This function will be invoked
when a dient-Library has detected an error. Before dient-
Li brary routines return CS_FAIL, this handler will be called
with additional error information.

CS_RETCODE CS_PUBLI C
clientnsg_cal | back(CS_CONTEXT *context, CS_CONNECTI ON *conn, CS_CLI ENTMSG
*ensgp)

16

/*
** Error nunber:
** Print the error's severity, nunber, origin, and
** |ayer. These four nunbers uniquely identify the error.
*/
fprintf(ERR_CH,
"Client Library error:\n\t");
fprintf(ERR_CH,
"severity(%d) number(%d) origin(%d) |layer(%d)\n",
(long) CS_SEVERI TY(ensgp- >severity),
(1 ong) CS_NUMBER(ensgp- >nsgnunber),
(long) CS_ORI A N(emsgp->nsgnunber),
(long) CS_LAYER(emnsgp->msgnunber));

/*

** Error text:

** Print the error text.

*/

fprintf(ERR_CH "\t%\n", ensgp->nsgstring);

/*

** (Operating systemerror information: Sone errors, such as

** network errors, may have an operating system error associ ated
** with them |f there was an operating systemerror, this code
** prints the error nmessage text.

*/
i f (emsgp->osstringlen > 0)
{
fprintf(ERR_CH,
"Qperating systemerror nunber(%d):\n",
(long) enmsgp->osnumnber);
fprintf(ERR CH "\t%\n", enmsgp->osstring);
}
/*

** |f we return CS_FAIL, dient-Library marks the connection as

Open Client

CHAPTER 1 Getting Started with Client-Library

** dead. This neans that it cannot be used anynore. If we return
** CS_SUCCEED, the connection renmmins alive if it was not already

** dead.

*/

return (CS_SUCCEED);
}
/*

** CS-Library error handler. This function will be invoked
** when CS-Library has detected an error.

*/

CS_RETCODE CS_PUBLI C

csnsg_cal | back(CS_CONTEXT *context, CS_CLI ENTMSG *ensgp)

{
/*

** Print the error nunber and nmessage.

*/

fprintf(ERR_CH,

"CS-Library error:\n");

fprintf(ERR_CH,
"\tseverity(%d) layer(%d) origin(%d) nunber(%d)",
(1 ong) CS_SEVERI TY(ensgp- >msgnumnber),
(1ong) CS_LAYER(emsgp->msgnunber),
(long) CS_ORI A N(emsgp->nsgnunber),
(1 ong) CS_NUMBER(ensgp->nsgnunber));

fprintf(ERR CH "\t%\n", ensgp->nsgstring);

/*

** Print any operating systemerror information.
*/

i f (ensgp->o0sstringlen > 0)

fprintf(ERR CH "Operating SystemError: %\n",
ensgp- >o0sstring);

}
return (CS_SUCCEED);

Client-Library/C Programmers Guide 17

Step 1: Set up the Client-Library programming environment

Step 1: Set up the Client-Library programming

environment

Header files

A Client-Library programming environment is defined by:
¢ A CS _CONTEXT structure, which defines a programming context

¢ A Client-Library version level, which isindicated by an application’s call
to ct_init

All Client-Library/C applications require the header file ctpublic.h, which
contains typedefs and declarations required by Client-Library routines.

Allocating a context structure

A Client-Library application calls the CS-Library routine cs_ctx_alloc to
alocate a context structure. A Client-Library application must allocate a
context structure before initializing Client-Library.

Note CS-Library routines start with the prefix “cs.” Client-Library routines
start with the prefix “ct”. All Client-Library programsinclude at least two calls
to CS-Library, because they must allocate and drop a context structure.

Setting CS-Library context properties

18

After allocating a context structure, a Client-Library application can call
cs_config to set CS-Library properties for the context structure.

Context properties define aspects of an application’s behavior at the context
level. firstapp.c calls cs_config to set the CS_MESSAGE_CB property. This
property defines a CS-Library message callback routine. An application needs
to set this property if it will be handling CS-Library errors using the callback
method. See Chapter 4, “Handling Errors and M essages.”

You may need to code your application to set other CS-Library context
propertiesaswell. Besides CS_MESSAGE_CB, applications most commonly
set the following properties with cs_config:

Open Client

CHAPTER 1 Getting Started with Client-Library

e CS _LOC_PROP - describes localization information for the context. An
application must set this property if a context requires localization
information that differs from the localization information that is available
in the operating system environment. For example, if an applicationthatis
running in a German environment requires a French context, it can call
cs_config to set the CS_LOC_PROP property.

e CS EXTERNAL_CONFIG — specifies whether ct_init will read default
application property settingsfrom the OCS runtime configuration file. See
“External configuration” on page 20.

e CS_APP_NAME - specifies a name for the application. If external
configurationisenabled (CS_EXTERNAL_CONFIGisCS_TRUE), then
the application name specifies a section of the configuration file from
which to read settings. CS_APP_NAME is aso inherited by allocated
CS_CONNECTION structures.

See cs_config in the Open Client and Open Server Common Libraries
Reference Manual.

Initializing Client-Library

Toinitialize Client-Library, an application calls ct_init, which sets up internal
control structures and defines the version of Client-Library behavior that the
application requires. ct_init must be the first Client-Library call in an
application.

Most applications call ct_init only once; however, it is not an error for an
application to call ct_init multipletimes. Client-Library permits multiple ct_init
calls because some applications cannot guarantee which of several modules
will execute first. These types of applications need to call ct_init in each
module.

ct_init takes asits parameter a symbol describing the version of Client-Library
behavior that the application expects.

If Client-Library cannot provide this behavior, ct_init returns CS_FAIL.

Setting Client-Library context properties

firstapp.c calls ct_config to set the CS_MAX_CONNECT context property.
This property specifies the maximum number of connections for a context.

Client-Library/C Programmers Guide 19

Step 2: Define error handling

Client-Library context properties serve one of two purposes.
¢ They define aspects of a context’s behavior.
CS_MAX_CONNECT isan example of this category.
¢ They define default properties for connections created from the context.

The CS_NETIO property is an example of this category. If a context
CS_NETIO property isset to CS_SYNC IO, to indicate synchronous
connections, then any connection structure allocated within the context
will be synchronous. ct_con_props can be called to change the value of
CS_NETIO for aspecific connection after it has been alocated.

For acomplete list of Client-Library context properties, see the “Properties’
topics page in the Open Client Client-Library/C Reference Manual.

Applicationsthat are not multithreaded can call ct_config to change acontext’s
properties at any time during the program’s execution. Multithreaded
applications must set context properties in single-threaded, start-up code or
limit al accessto acontext and its child connectionsto asingle thread. Seethe
“Multithreaded Programming” topics page in the Open Client Client-
Library/C Reference Manual.

When an application calls ct_config to change a context property, property
values for existing connections do not change, but connections allocated after
the ct_config call will pick up the new property values.

External configuration

As an aternative to setting properties with hard-coded ct_config calls, Client-
Library allows externa configuration of property values for applications that
have been configured to use this feature. See the topics page “Using the
Runtime Configuration File” in the Open Client Client-Library/C Reference
Manual.

Step 2: Define error handling

20

Errors can be handled inline or with callback functions. The sample program
uses callback functions. See “Two methods for handling messages’ on page
64 for information on the inline method.

Open Client

CHAPTER 1 Getting Started with Client-Library

ct_callback installs Client-Library callback routines. which are application
routines that Client-Library calls automatically when atriggering event of the
appropriate type occurs.

There are several types of callbacks, but the sasmple program installs only two:
aclient message callback, to handle Client-Library error and informational
messages, and a server message callback, to handle server error and
informationa messages.

The client message callback is called automatically whenever Client-Library
generates an error or informational message. For example, if the application
passes an invalid parameter value, or calls routines out of sequence, then
Client-Library generates an error and calls the client message callback with a
description of the error.

The server message callback is called whenever the server sends an
informational or error message during results processing. For example, if the
application sends alanguage command that contains asyntax error or refersto
anonexistent table, then the server sends a message that describes the error.

The sample program also calls cs_config to install a CS-Library error handler.
CS-Library callsthe application’s CS-Library error handler when an error
occursinaCS-Library call.

Other types of callbacks include:

e Completion callbacks, used by asynchronous connections to handle
asynchronous operation completions

* Notification callbacks, used to handle registered procedure notifications
received from an Open Server

e Signal callbacks, used by UNIX applicationsto handle non-Client-Library
signals

Seethect_callback reference page and the“ Callbacks” topics pagein the Open
Client Client-Library/C Reference Manual.

Note A CS-Library message callback is not installed in the same way as
Client-Library message callbacks. An application installs a CS-Library
message callback by calling cs_config rather than ct_callback. Once installed,
both types of callbacks function similarly.

Client-Library/C Programmers Guide 21

Step 3: Connect to a server

Step 3: Connect to a server

Connecting to a server is athree-step process. An application:

Allocates a connection structure
Sets properties for the connection, if necessary

Logsin to aserver

Allocating a connection structure
An application calls ct_con_alloc to allocate a connection structure.

Setting connection structure properties

An application callsct_con_props to set, retrieve, or clear connection structure
properties.

22

Connection properties define various aspects of a connection’s behavior. For
example:

The CS_USERNAME property defines the user name that a connection
will use when logging into a server.

The CS_APPNAME property specifiesthe application name that appears
in the Adaptive Server Enterprise sysprocess table after the connection is
opened.

The CS_PACKETSIZE property defines the Tabular Data Stream™
(TDS) packet size, which determines the size of network packets that the
application will send and receive over this connection. By default, Open
Client Server (OCS) allowsthe server to choose a packetsize between 512
and 65535 bytes. Servers supporting Server Specified Packetsize like
Adaptive Server Enterprise may choose a packetsize freely. The
packetsize may also be smaller or larger than the packetsize specified with
CS_PACKETSIZE.

When a connection structure is allocated, it picks up some default property
values from its parent context. For example, if the CS_APPNAME property is
set at the context level, al connection structures allocated from that context
inherit the application name. Other properties that do not exist at the context
level, such as CS_PACKETSIZE, default to standard Client-Library values.

Open Client

CHAPTER 1 Getting Started with Client-Library

For acomplete list of connection properties, see the ct_con_props reference
page in the Open Client Client-Library/C Reference Manual.

Required connection properties

At aminimum, an application must set the connection properties that specify
the connection’s user name (CS_USERNAME) and allow the server to
authenticate the user’sidentity. Servers can confirm auser’s identity in two
ways:

* By requiring avalid password

* By using network-based user authentication

If the server requires a password, then the application must set the
CS_PASSWORD property to the value of the user’s server password.

See the “ Security Features” topics page in the Open Client Client-Library/C
Reference Manual.

Logging in to a server

An application calls ct_connect to connect to a server. In the process of
establishing aconnection, ct_connect setsup communication with the network,
logsin to the server, and communicates any connection-specific property
information to the server.

For example, if the server supports network-based user authentication and the
client application requestsit, then Client-Library and the server query the
network’s security system to see if the user (whose name is specified by
CS_USERNAME) islogged in to the network. Applications must request
network-based user authentication by settingthe CS_SEC_NETWORKAUTH
connection property.

Client-Library/C Programmers Guide 23

Step 4: Send commands to the server

Step 4. Send commands to the server

In Client-Library, acommand is a request for action sent from the client
application to the server. Each command belongs to a command type and may
haveinput dataassociated with it. Client-Library bundlesthisinformation into
asymbolic format and sends it over the network to the server, whereit is
executed.

firstapp.c sends alanguage command to the server. Thiscommand instructsthe
server to parse and execute the query that was defined as ct_command’s text
(third) parameter. For information on other command types, see Chapter 5,
“Choosing Command Types.”

An application defines and sends commands to a server by using a
CS_COMMAND structure. To define and send a command, the application:

¢ AllocatesaCS COMMAND structure

e If necessary, sets properties for the command structure
e Initiates the command

e Definesany parameters required for the command

¢ Sendsthe command

Allocating a command structure

An application calls ct_cmd_alloc to alocate a command structure. Several
command structures can be allocated from the same connection.

Setting command structure properties

24

An application callsct_cmd_props to set, retrieve, or clear command structure
properties.

Command-structure properties determine aspects of Client-Library behavior at
the command-structure level. For example, the CS HIDDEN_KEY S property
determines whether or not Client-Library exposes any hidden keysthat are
returned as part of aresult set.

firstapp.c sets no command-structure properties; instead, it uses the default
command-level behavior. Command structuresinherit default property values
from their parent connection.

Open Client

CHAPTER 1 Getting Started with Client-Library

For acomplete list of command-structure properties, see the ct_cmd_props
reference page in the Open Client Client-Library/C Reference Manual.

Executing a command

An application calls ct_command, ct_cursor, or ct_dynamic to initiate a
command. ct_send sends any type of command to the server.

firstapp.c callsct_command toinitiate alanguage command. ct_send sendsthe
command text to the server, which parses, compiles, and executes it.

See Chapter 5, “Choosing Command Types.”

Step 5: Process the results of the command

Applications call ct_results repeatedly to handle the results returned by the
server. Almost all Client-Library programs process results by executing aloop
controlled by ct_results return status. Inside the loop, a switch takes place on
the current type of result. Different types of results require different types of
processing.

The results-processing model used in the exampleisbased on this pseudocode:

while ct_results returns CS_SUCCEED
switch on result_type
case row results
for each col um:
ct_bind
end for
while ct_fetch is returning rows
process each row
end while
check ct_fetch’s final return code
end case row results
case conmand done
case command failed
case other result type....
rai se an error
end switch
end while

Client-Library/C Programmers Guide 25

Step 5: Process the results of the command

26

check ct_results’ final return code

Note Sybase strongly recommendsthat you usethistype of program structure,
even in the case of a simple language command. In more complex programs,
you cannot predict the number and type of result sets that an application will
receive in response to a command. Code that calls ct_results in aloop is also
easier to maintain, enhance, or reuse, since the results-handling logic is
centralized.

ct_results sets up results for processing and sets the return parameter
result_type to indicate the type of result data that is available for processing.

If the select statement sent by fir stapp.c executes successfully onthe server, the
sample program receives result types of CS_ ROW_RESULT and
CS_CMD_DONE, inthat order. If the statement does not execute successfully
on the server, the program receives aresult type of CS_ CMD_FAIL.

Because this program is so simple, most result types are not included as cases
intheresult_type switch. However, the code doesraise an error for unexpected
values of result_type. Code this check into your program’s results loop—the
error raised may help you trap coding bugs early in the development cycle.

For row results, typically the number of columnsin the result set is determined
and then used to control aloop in which result items are bound to program
variables. An application can call ct_res_info to get the number of result
columns and ct_describe to get a description of each column. However, in
firstapp.c, these calls are not necessary because the example was coded with
knowledge of how many columns were selected and their format.

ct_bind bindsaresult item to aprogram variable. Binding creates an association
between aresult item and a program data space.

ct_fetch fetches result data. In the example, since binding has been specified
and the count fieldinthe CS_DATAFMT structure for each columnissetto 1,
each ct_fetch call copies onerow of datainto program data space. As each row
is fetched, the sample program printsit.

ct_fetch iscalled until there are no more rows, then the sample program checks
ct_fetch’sfinal return codeto find out whether the loop terminated normally or
because of failure.

For information on the other result types that an application can receive, see
Chapter 6, “Writing Results-Handling Code.”

Open Client

CHAPTER 1 Getting Started with Client-Library

Step 6: Finish
Before exiting, a Client-Library application must:
1 Dedlocate al command structures for each connection.
2 Close and deallocate all open connections.
3 Exit Client-Library.
4 Deallocate al context structures.

Asnoted in “Exiting Client-Library” on page 27, step 2 can be included with
step 3.

Deallocating command structures

An application calls ct_cmd_drop to deallocate a command structure. It isan
error to deallocate a command structure that has pending results or an open
cursor.

Closing and deallocating connections

An application callsct_close to close a connection and ct_con_drop to
deallocate aclosed connection. It isan error to deall ocate a connection that has
not been closed.

Exiting Client-Library

An application callsct_exit to exit Client-Library for a specific context. ct_exit
closes and deall ocates any open connections and cleans up internal Client-
Library data space. ct_exit must be the last Client-Library call for a context.

Because ct_exit closes and deallocates all open connections, it is not strictly
necessary for an application to close and deallocate connections by calling
ct_close and ct_con_drop; instead, the application can just call ct_exit.

Deallocating a context structure
The CS-Library routine cs_ctx_drop deallocates a context structure.

Client-Library/C Programmers Guide 27

Step 6: Finish

28 Open Client

CHAPTER 2 Understanding Structures,
Constants, and Conventions

This chapter contains information about Client-Library structures,

constants, and conventions.

Topic Page
Hidden structures 29
Connection and command rules 31
CS_LOGINFO 32
CS_DS OBJECT 32
CS BLKDESC 33
CS LOCALE 33
Exposed structures 33
Constants 37
Conventions 39

Hidden structures

Hidden structures are structures whose internal s are not documented. For
example, a Client-Library application needsto call CS-Library or Client-
Library routines to allocate, inspect, modify, and deallocate hidden
structures. The application cannot access the structure contents directly.

Hidden structures include:

e CS_CONTEXT, which defines a Client-Library programming

context.

« CS _CONNECTION, which defines an individual client/server

connection.

e CS_COMMAND, which isused to send commands and process

results.

Client-Library/C Programmers Guide

29

Hidden structures

CS_CONTEXT

30

¢ CS _LOGINFO, the server login information structure. This structure,
which is associated witha CS_CONNECTION, contains server login
information such as user name and password.

¢ CS DS OBUJECT, which contains information about a directory entry.

e CS BLKDESC, acontrol structure used by applications that call Bulk-
Library routines. For information on Bulk-Library, see the Open Client
and Open Server Common Libraries Reference Manual.

e CS _LOCALE, which isused to store localization information.

Before an application can initialize Client-Library, it must allocate a
CS_CONTEXT, or context, structure.

A CS_CONTEXT structure stores configuration information that describes a
particular context, or operating environment, for a set of server connections.
CS_CONTEXT isshared by CS-Library, Client-Library, and Server-Library. A
CS_CONTEXT dtructureis allocated and dropped using the CS-Library
routines cs_ctx_alloc and cs_ctx_drop.

Although an application can use more than one context, a simple application
typically requires only one.

Note An Open Client application that is running under CICS on an IBM host
is restricted to one context per application.

Some context information is stored in the form of properties. Properties have
values that an application can change to customize a context. Properties
include CS_MAX_CONNECT, which defines the maximum number of
connections allowed within the context, and CS_NETIO, which determines
whether or a context’s connections default to synchronous or asynchronous
behavior.

Connection and command structures also have properties. When a connection
isallocated, it picks up default property values from its parent context. When
acommand structure is allocated, it picks up default property values from its
parent connection.

Seethe " Properties’ topics pagein the Open Client Client-Library/C Reference
Manual.

Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

CS_CONNECTION

CS_COMMAND

A CS_CONNECTION structure stores information about a particular
client/server connection, including the user name and password for the
connection, the packet sizethe connection will use, and whether the connection
is synchronous or asynchronous.

As with a context, some connection information is stored in the form of
properties. When a connection is created, it picks up some default property
values from its parent context. Other properties (those that do not exist at the
context level, such as CS_PACKETSIZE), default to standard Client-Library
values.

Multiple connections to one or more servers can exist simultaneously within a
single context.

A CS_ COMMAND, or command, structure is used to send commandsto a
server and to process the results of those commands.

A command structure is associated with aspecific parent connection. Multiple
command structures can exist simultaneously for a single connection.

Control structure hierarchy

CS_CONTEXT, CS_CONNECTION, and CS_ COMMAND are the basic
control structuresto set up the Client-Library environment, connect to aserver,
send commands, and process results. All three of these structures are hidden.

Connection and command rules

The following rules apply to connection and command structures:

e Within a connection, the results of acommand must be completely
processed before another command can be sent.

Theexceptiontothisruleisact_cursor (CS_CURSOR_OPEN) command,
which generates a cursor result set. After ct_results returns
CS_CURSOR_RESULT to indicate that cursor results are available:

Client-Library/C Programmers Guide 31

CS_LOGINFO

CS_LOGINFO

¢ The command structure that sent the cursor open command can be
used to send a cursor update or cursor delete command related to the
newly opened cursor.

¢ Any other command structure within the connection can be used to
send a command not related to the newly opened cursor.

e A segparate command structure must be used for each Client-Library
cursor. A Client-Library cursor isone that is declared through ct_cursor.
See Chapter 7, “Using Client-Library Cursors.”

A CS_LOGINFO, or login information, structure, is used internally to contain
connection structure information, such as user name and password, that isused
when logging in to a server.

Connection properties that reside in this structure are known as login
properties.

The Client-Library routines ct_getloginfo and ct_setloginfo use a
CS_LOGINFO structure. An application can use these routines to copy login
properties from an open connection to a new connection structure.

CS_DS_OBJECT

32

A CS DS OBJECT, or directory object, structure, containsinformation about
adirectory entry. Client-Library and Server-Library use adirectory to storethe
network address information required to create connections. Storage for the
directory can be provided by the Sybase interfaces file or a network-based
directory, such as the Windows Registry.

An application receives pointersto oneor moreCS_DS OBJECT structuresas
the result of a directory search by the Client-Library routine ct_ds_lookup.

See Chapter 9, “Using Directory Services.”

Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

CS_BLKDESC

Bulk-library routinesuse a CS_BLKDESC, or bulk descriptor structure. The
bulk descriptor isthe control structure for bulk copy operations.

An application calls blk_alloc to alocate aCS_BLKDESC structure.

After completing abulk copy operation, an application freesaCS BLKDESC
by calling blk_drop.

Bulk-Library routines are documented in the Open Client and Open Server
Common Libraries Reference Manual.

CS_LOCALE

A CS LOCALE, or locale structure, can be used to specify localization
information at the context, connection, command structure, or data el ement
levels.

A CS_LOCALE structure specifies:
* A language, character set, and collating sequence

* How to represent dates, times, numeric, and monetary valuesin character
format

An application can call the CS-Library routinescs_loc_alloc, cs_locale, and
cs_loc_drop to alocate, set values for, and drop aCS_L OCALE structure.

See the “International Support” topics page in the Open Client Client-
Library/C Reference Manual.

Exposed structures

Exposed structures are structures whose internal s are documented. A Client-
Library application must all ocate any exposed structuresit intendsto use. Type
definitionsfor the exposed structures are included in the header file ctpublic.h.
In addition, Chapter 2, “Topics,” in the Open Client Client-Library/C
Reference Manual contains a topics page for each exposed structure.

Exposed structures include:

Client-Library/C Programmers Guide 33

Exposed structures

¢ CS BROWSEDESC - the browse descriptor structure

¢ CS CLIENTMSG —the Client-Library message structure
e CS DATAFMT —the data format structure

¢ CS _DATEREC - the datetime descriptor structure

e CS_IODESC —thel/O descriptor structure

e CS PROP_SSL_LOCALID —the decryption structure

¢ CS_SERVERMSG - the server message structure

¢ SQLCA —the SQL communications area structure

¢ SQLCODE - the SQL code structure

e SQLSTATE —the SQL state structure

CS_BROWSEDESC

CS_CLIENTMSG

34

ct_br_column usesaCS BROWSEDESC structureto return information about
abrowse mode column. Browse mode columns are returned by a Transact-SQL
select ... for browse statement.

See the “Browse Mode” topics page in the Open Client Client-Library/C
Reference Manual.

For a description of the fieldsina CS_BROWSEDESC structure, see the
“CS_BROWSEDESC Structure” topics page in the Open Client Client-
Library/C Reference Manual.

Client-Library usesaCS_CLIENTM SG structure to describe a Client-Library
error or informational message.

For adiscussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”

For adescription of the fieldsinaCS_CLIENTMSG structure, see the
“CS_CLIENTMSG Structure” topicspagein the Open Client Client-Library/C
Reference Manual.

Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

CS_DATAFMT

CS_DATEREC

Client-Library routines use the CS_DATAFMT structure to describe data
values and program variables.

Some routines require aCS_DATAFMT structure as an input parameter. For
example, ct_bind requires adata format structure describing the destination
variablefor abind, and ct_param requiresadataformat structure describing the
parameter being passed.

Other routinesfill in CS_DATAFMT fields with a description of output data,
which an application can then access directly. For example, ct_describe
initializesa CS_DATAFMT structure with a description of aresult dataitem.

Client-Library routines that use the CS_DATAFMT structure include ct_bind,
ct_describe, and ct_param. CS-Library routines that use CS DATAFMT
include cs_convert and cs_set_convert.

For adescription of the fieldsin aCS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics page in the Open Client Client-Library/C
Reference Manual.

WhenaCS_DATAFMT structureisan input parameter to aroutine, theroutine
ignores the contents of any fieldsin the structure that it does not use. For
example, ct_bind ignores the contents of the name, namelen, status, and
usertype fields.

The reference page for each routine that uses CS_DATAFMT contains atable
listing the fields that are used and the values they can have.

The CS_DATEREC structure is used with the CS-Library routine cs_dt_crack
to interpret date and time data returned from the server. Date and time datais
represented on the server by the date, time, datetime, datetime4, bigdatetime,
and bigtime datatypes. These datatypes are packed structures. cs_dt_crack
unpacks the date and time components into the CS_DATEREC fields.

For a description of the server datetime datatype and the equivalent Client-
Library types, see “ Datetime types’ on page 56. For a description of the
CS_DATEREC structure, see the cs_dt_crack reference page in the Open
Client and Open Server Common Libraries Reference Manual.

Client-Library/C Programmers Guide 35

Exposed structures

CS_IODESC

Client-Library usesa CS_|ODESC structure to describe text or image data.

For adiscussion of how the CS_IODESC is used to process text and image
values, seethe “text and image Data Handling” topics page in the Open Client
Client-Library/C Reference Manual.

For adescription of the fieldsin a CS_|ODESC structure, see the
“CS_IODESC Structure” topics page in the Open Client Client-Library/C
Reference Manual.

CS_PROP_SSL_LOCALID

CS_SERVERMSG

Client-Library usesaCS_PROP_SSL_L OCALID structureto specify the path
tothe Local ID (certificates) file. The CS_PROP_SSL. L OCALID structure
contains afile name and a password used to decrypt the information in thefile.

For information about CS_PROP_SSI. | OCALID, see the Open Client
Client-Library/C Reference Manual.

Client-Library usesaCS_SERVERM SG structureto describe a server error or
informational message.

For adiscussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”

For a description of the fieldsin aCS_SERVERMSG structure, see the
“CS_SERVERMSG Structure” topics page in the Open Client Client-
Library/C Reference Manual.

SQLCA, SQLCODE, and SQLSTATE

36

When an application is handling error and informational messages inline, the
Client-Library routine ct_diag can return message information in a SQLCA,
SQLCODE, or SQLSTATE structure.

For adiscussion of Client-Library message handling, see Chapter 4, “Handling
Errors and Messages.”

Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

SQLDA

Constants

Type constants

For a description of the SQLCA, SQLCODE, and SQL STATE structures, see
the“SQLCA Structure,” “ SQLCODE Structure,” and “ SQL STATE Structure”
topics pagesin the Open Client Client-Library/C Reference Manual.

Applications can use a SQLDA structure with the Client-Library routine
ct_dynsglda to pass parameters for server commands and handle the results
from server commands.

For a description of the SQLDA structure and its use in applications, see the
ct_dynsglda reference page in the Open Client Client-Library/C Reference
Manual.

Client-Library makes use of awide variety of constants, including type
constants, format constants, and other symbolic constants.

Constants related to aroutine (for example, symbolic constants used as return
values) are listed on the reference page for the routine in the Open Client
Client-Library/C Reference Manual.

Open Client and Open Server use type constants to describe the datatypes of
program variables. For example, when calling ct_bind to describe a bind
variable of type CS_DATETIME, an application sets the datatype field of the
CS _DATAFMT structureto CS_DATETIME_TY PE.

Client-Library routinesthat usetype constantsincludect_bind, ct_describe, and
ct_param. In addition, the CS-Library routine cs_convert uses type constants.

The type constant for a datatype is the name of the datatype with“_TY PE”
appended. For example, the type constant for the datatype CS_CHAR is
CS CHAR_TYPE.

With the exception of CS_CHAR, al datatypes correspond to a single type
constant.

Client-Library/C Programmers Guide 37

Constants

Format constants

CS_CHAR corresponds to three: CS_ CHAR_TYPE,
CS_BOUNDARY_TYPE, and CS_SENSITIVITY_TY PE. This means that
variables described as CS_ BOUNDARY _TYPE or
CS_SENSITIVITY_TY PE must be declared asCS_CHAR.

Table 3-3 on page 52 lists Open Client type constants.

Open Client and Open Server use format constants to describe how to format
character and binary data. In particular, the format field of the CS_DATAFMT
structure is a bitmask of format constants indicating how to format character,
text, and binary data.

Table 2-1 lists Open Client format constants:

Table 2-1: Format constants

Format constant Valid types Resulting format

CS FMT_NULLTERM Character and text Thedatais null-terminated.

CS FMT_PADBLANK | Character and text The datais padded with
blanks to the full length of
the variable.

CS FMT_PADNULL Character, text, binary, The datais padded with

and image nulls to the full length of

the variable.

CS FMT_UNUSED All No formatting takes place.

Other symbolic constants

38

Open Client makes use of awide variety of other symbolic constants. Many
Client-Library routines use symbolic constants as input and output parameter
values.

Table 2-2 lists some of the symbolic constants used in Open Client:

Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

Table 2-2: Other symbolic constants

Symbolic constant Meaning

CS FAIL A return code indicating failure

CS FALSE A Boolean false value.

CS MAX_NAME The maximum column name length
allowed by Adaptive Server Enterprise.

CS NULLTERM CS NULLTERM passed as a buffer’s

length indicates that the value contained
in the buffer is null-terminated.

CS SUCCEED A return code indicating successful
execution of alibrary call.
CS TRUE A Boolean true value.

Note The underlying values of symbolic constants may change from version
to version. For thisreason, Client-Library application programmers should
always code using the symbolic constants themsel ves and not their underlying
values.

Conventions

This section contains information about Client-Library’s parameter
conventions.

Topicsinclude NULL and unused parameters, string parameters, and the
standard Client-Library parameters action, buffer, buflen, and outlen.

NULL and unused parameters

This section contains information about NULL and unused parameters.

Pointer parameters
A pointer parameter can:
* Haveanon-NULL value
* Haveavaueof NULL

Client-Library/C Programmers Guide 39

Conventions

¢ Beunused
Pass NULL and unused pointer parameters as NULL.

If the parameter hasa NULL value, the length variable associated with the
parameter, if any, must be 0 or CS_UNUSED.

If the parameter is unused, the length variabl e associated with the parameter, if
any, must be CS_UNUSED.

Client-Library uses current programming context information to determine
whether to interpret the parameter as NULL or unused.

Non-pointer parameters
Pass non-pointer, unused parameters as CS_UNUSED.

Input parameter strings

M ost string parameters are associ ated with a parameter that indi catesthelength
of the string.

When passing a null-terminated string, an application can pass the length
parameter asCS_NULLTERM.

When passing a string that is not null-terminated, an application must set the
associated length parameter to the length, in bytes, of the string.

If astring parameter is NULL, the associated length parameter must be O or
CS_UNUSED.

Output parameter strings

An application indicates the length of a string buffer by setting an associated
length parameter. If the length parameter indicates that the buffer is not large
enough to hold a null-terminated output string, Client-Library routines return
CS FAIL.

Pointers to basic structures

All Client-Library routines take a pointer to aCS_CONTEXT structure, a
CS_CONNECTION structure, or a CS_COMMAND structure as a parameter.

40 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

Item numbers

An application must allocate these structures (using cs_ctx_alloc, ct_con_alloc,
or ct_cmd_alloc) before using them as parameters.

If an application passes an invalid control structure addressto a Client-Library
routine, the routine returns CS_FAIL, and Client-Library does not call the
application’s client message callback routine. Client-Library requires the
address of avalid control structure to retrieve the address of the application’s
callback routine.

Many Client-Library routines that process results or return information about
results take an item number as a parameter. An item number identifies aresult
item in aresult set, and can be a column number, a compute column number, a
parameter number, or areturn status number.

Item numbers start at 1 and never exceed the number of itemsin the current
result set. An application can call ct_res_info with type as CS_NUMDATA to
obtain the number of itemsin the current result set.

When the result set contains columns, itemis a column number. Columns are
returned to an application in select-list order.

When the result set contains compute columns, itemis the column number of
a compute column. Compute columns are returned in the order in which they
arelisted in the compute clause.

When the result set contains parameters, itemis a parameter number. Stored
procedure return parameters are returned in the same order in which the
parameters were originally listed in the stored procedure’s create procedure
statement. Thisis not necessarily the same order as specified in the Remote
Procedure Call (RPC) command that invoked the stored procedure. In
determining what number to pass as item, do not count nonreturn parameters.
For example, if the second parameter in a stored procedure is the only return
parameter, passitemas 1.

When the result set contains a return status, itemis aways 1, as there can be
only asingle statusin areturn status result set.

action, buffer, buflen, and outlen

Many Client-Library routines use some combination of the parameters action,
buffer, buflen, and outlen.

Client-Library/C Programmers Guide 41

Conventions

action — describes whether to set or retrieve information. For most
routines, action can take the symbolic valuesCS_GET, CS_SET, and
CS CLEAR.

If action is CS_CLEAR, buffer must be NULL, and buflen must be
CS_UNUSED.

buffer — typically a pointer to program data space.

If information is being set, buffer points to the value to use in setting the
information.

If information is being retrieved, buffer points to the space in which the
Client-Library routine places the requested information.

If information is being cleared, buffer must be NULL.

If the Client-Library routine returns CS_FAIL, *buffer remains
unchanged.

buflen —the length, in bytes, of the buffer data space.

If information is being set and the value in * buffer is null-terminated, pass
buflen asCS_NULLTERM.

If *buffer is afixed-length value, a symbolic value, or afunction, buflen
must be CS_UNUSED.

If buffer isNULL, buflen must be 0 or CS_UNUSED.
outlen — a pointer to an integer variable.
outlen must be NULL if information is being set.

When information is being retrieved, outlen is an optional parameter. If
supplied, Client-Library sets the variable to the length, in bytes, of the
requested information.

If theinformation islonger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Table 2-3 summarizes the interaction between action, buffer, buflen, and

outlen:
Table 2-3: Interaction between action, buffer, buflen, and outlen
parameters
action buffer buflen outlen What happens
CS CLEAR | NULL CS UNUSED NULL The Client-Library information is
cleared by resetting it to its default
value.
42 Open Client

CHAPTER 2 Understanding Structures, Constants, and Conventions

action buffer buflen outlen What happens

CS SET A pointer to anull- CS NULLTERM NULL The Client-Library information is
terminated character | or the length of the set to the value of the * buffer
string string, not character string.

including the null
terminator

CS SET A pointer to a The length of the NULL The Client-Library information is
character string that is | string set to the value of the * buffer
not null-terminated character string.

CS SET A pointer to a The length of the NULL The Client-Library information is
variable-length, data set to the value of the *buffer data.
noncharacter value
(for example, binary
data)

CS SET A pointer to afixed- CS UNUSED NULL The Client-Library information is
length or symbolic set to the value of the integer or
value symbolic value.

CS SET NULL Oor CS UNUSED | NULL The Client-Library information is

set to NULL.

CS GET A pointer to space The length of Supplied or | The return valueis copied to
large enough for the | *buffer NULL *huffer.
r?turn Ch‘l"‘lr acter string A null terminator is appended.
plus anull terminator If supplied, *outlen is set to the

length of thereturnvalue, including
the null terminator.

CS GET A pointer to spacethat | The length of Supplied or | No datais copied to *buffer.
isnot largeenoughfor | *buffer NULL If supplied, *outlen is set to the
the return character length of thereturn val ue, including
string plus anull the null terminator.
terminator The routine returns CS_FAIL.

CS GET A pointer to spacethat | The length of Supplied or | Thereturn valueis copied to
islarge enough for the | *buffer NULL *puffer.
returnvariable-length, I supplied, *outlen is set to the
noncharacter data length of the return value.

CS_GET A pointer to spacethat | The length of Supplied or | No datais copied to *buffer.
isnot largeenoughfor | *buffer NULL

the return variable-
length, noncharacter
data

If supplied, *outlen is set to the
length of the return value.

The routine returns CS_FAIL.

Client-Library/C Programmers Guide

43

Conventions

action buffer buflen outlen What happens
CS_GET A pointer to spacethat | CS_UNUSED Supplied or | Thereturn valueis copied to
is assumed to belarge NULL *puffer.
enough for a fixed- If supplied, *outlen is set to the
length or symbolic length of the return value,
vaue
44 Open Client

CHAPTER 3 Using Open Client and Server
Datatypes

Thischapter summarizes the datatypes that are shared by Open Client and

Open Server.
Topic Page
Types and type constants 45
Datatype summary 52
Null substitution values 59
Open Client user-defined datatypes 61

Types and type constants

Client-Library supports awide range of datatypes, which are shared with
CS-Library and Server-Library. In most cases, they correspond directly to
Adaptive Server Enterprise datatypes.

Where are datatypes declared?

The header file cstypes.h contains type definitions (typedefs) for al of the
Open Client and Open Server datatypes. The cstypes.h fileisincluded in
Client-Library applications using ctpublic.h—there is no need to include
it explicitly.

An application declaring program variabl es uses these type definitionsin
its declaration section. For example:

CS_CHAR buf fer[40];
CS_INT resul t _type, count;
CS_MONEY profit;

Client-Library/C Programmers Guide 45

Types and type constants

Why use Open Client and Open Server datatypes?

unichar datatype

46

There are two reasons why you should use Open Client and Open Server
datatypesin your application rather than the native C datatypes. heterogeneous
architecture, and portability of application code.

In aclient/server application, data may be shared among machines with
different architectures.

Open Client and Open Server datatypes provide a platform-independent
representation for datathat is transported between machines with different
architectures. For example, if aclient program is compiled and run on a
machine that stores the bytes of integer values in a different order from the
machine where the server is running, the bytes are swapped when CS_INT
values are transported over a connection. For this reason, always use the
correct CS_TY PEDEF to declare any variable that holds datato be sent to the
server or read from the results of a server command.

Open Client and Open Server datatypes also permit application source codeto
be ported between platforms. For example, aCS_INT is aways mapped to a
system datatype that matches a 4-byte integer. Always use the correct
CS_TYPEDEF to declare variables that are used in callsto Client-Library or
CS-Library routines.

unichar supports 2-byte characters, supporting multilingual client applications,
and reducing the overhead associated with character-set conversions.

Designed the same as the Open Client and Open Server CS_CHAR datatype,
CS_UNICHAR is a shared, C-programming datatype that can be used
anywherethe CS_CHAR datatypeisused. TheCS_UNICHAR datatype stores
character datain Unicode UCS Transformational Format 16-bit (UTF-16),
which is 2-byte characters.

The Open Client and Open Server CS_UNICHAR datatype correspondsto the
Adaptive Server Enterprise UNICHAR fixed-width and UNIVARCHAR
variable-width datatypes, which store 2-byte charactersin the Adaptive Server
Enterprise database.

Asastandalone, Open Client applications can use this functionality to convert
other datatypesto and from CS_UNICHAR at theclient side, evenif the server
does not have the capability to process 2-byte characters.

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

Datatypes and capabilities

To send and receive 2-byte characters, the client specifiesits preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server site.

Following are the Open Client ct_capability() parameters:

« CS DATA_UCHAR isarequest sent to the server to determine whether
the server supports 2-byte characters.

« CS DATA_NOUCHAR isaparameter sent from the client to tell the
server not to support unichar for this specific connection.

To access 2-byte character data, Open Client and Open Server implements:
* CS_UNICHAR —adatatype.

« CS_UNICHAR_TY PE —adatatype constant to identify the data’'s
datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_UNICHAR_TYPE
allowsyoutouseexisting API calls, such asct_bind, ct_describe, ct_param, and
so on.

CS_UNICHAR uses the format bitmask field of CS DATAFMT to describe
the destination format.

For example, in the Client-Library sample program, rpc.c, the
BuildRpcCommand() function contains the section of code that describes the
datatype:

strcpy (datafnt.nane, “@harparant);
dat af nt . nanel en =CS_NULLTERM

dat af nt . dat at ype = CS_CHAR_TYPE;

dat af nt . maxl engt h = CS_MAX_CHAR
datafnt.status = CS_RETURN;

datafm .| ocale = NULL;

In this example, from the uni_rpc.c sample program, the character typeis
defined asdat af nt . dat at ype = CS_CHAR_TYPE. Usean ASCI| text editor to
edit the datafmt.datatype field to:

strcpy (datafnt.name, “@harparant);
dat af nt . nanel en =CS_NULLTERM

dat af nt . dat at ype = CS_UNI CHAR TYPE;
dat af nt . maxl ength = CS_MAX CHAR;

Client-Library/C Programmers Guide 47

Types and type constants

isql and bcp utilities

Limitations

48

dat af m . status
datafnmt .l ocal e

CS_RETURN,
NULL;

Samples are found in %SYBASEY0\%SYBASE OCSY\sample for Windows,
and in $SYBASE/$SYBASE_OCS'sample for UNIX.

Since CS_UNICHAR isaUTF-16 encoded Unicode character datatypethat is
stored in 2 bytes, the maximum length of CS_UNICHAR string parameter sent
to the server isrestricted to one-half the length of CS_CHAR, which is stored
in 1-byte format.

Table 3-1 liststhe CS_ DATAFMT bitmask fields.

Table 3-1: CS_DATAFMT structure
Bitmask field Description
CS FMT_NULLTERM The datais 2-byte Unicode null-terminated (0x0000).

CS FMT_PADBLANK | Thedatais padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS FMT_PADNULL The datais padded with 2-byte Unicode nullsto the full
length of the destination variable (0x0000).

CS FMT_UNUSED No format information is provided.

Both the isgl and the bep utilities automatically support unichar dataif the
server supports 2-byte character data. bcp supports4K, 8K and 16K page sizes.

If the client’sdefault character set is UTF-8, isql displays 2-byte character data,
and bep saves 2-byte character datain the UTF-8 format. Otherwise, the data
is displayed or saved, respectively, in 2-byte Unicode datain binary format.

Usei sgl -Jutf 8 tosettheclient character set forisgl. Usebcp - Jut f 8 to set
the client character set for the bep utility.

The server to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes, and use UTF-8 as the default character set.

If the server does not support 2-byte Unicode datatypes, the server returns an
error message: “ Type not found. Uni char/univarchar is not
supported.”

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

CS_UNICHAR does not support the conversion from UTF-8 to UTF-16 byte
format for CS_BOUNDARY and CS_SENSITIVITY. All other datatype
formats are convertible.

CS_UNICHAR does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

unitext datatype

CS _UNITEXT isan Open Client and Open Server C Programming datatype
that corresponds directly totheserver UNITEXT datatype. CS_UNITEXT also
exhibitsidentical syntax and semanticsto CS_TEXT. The difference is that
CS_UNITEXT encodes character data in the Unicode UTF-16 format.

Datatypes and capabilities

To send and receive 2-byte characters, the client specifiesits preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server side.

The Open Client ct_capability() parameters:

e CS DATA_UNITEXT —isarequest sent to the server to determine
whether the server supports 2-byte Unicode datatypes.

e CS DATA_NOUNITEXT —isaparameter sent from the client to tell the
server not to send unitext for this specific connection.

To access 2-hyte character data, Open Client and Open Server implements:
e CS_UNITEXT — adatatype.

e« CS _UNITEXT_TYPE — adatatype constant to identify the data's
datatype.

Setting the CS_DATAFMT parameter’s datatypeto CS_UNITEXT_TYPE
alows you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

Since CS_UNITEXT is encoded as a UTF-16 Unicode datatype and stored in
the 2-byte format, it can be used anywhere CS_TEXT is used. The maximum
length of the CS_UNITEXT string parameter is half of the maximum length of
CS_TEXT.

Client-Library/C Programmers Guide 49

Types and type constants

isgl and bcp utilities

Limitations

xml datatype

50

Like CS TEXT, CS_UNITEXT uses CS DATAFMT to describe the
destination format. The symbols and meanings of theformat field values are as
follows:

Table 3-2: CS_DATAFMT structure
Bitmask field Description
CS_ FMT_NULLTERM The data is 2-byte Unicode null-terminated (0x0000).

CS FMT_PADBLANK | Thedatais padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS FMT_PADNULL The datais padded with 2-byte Unicode nullsto the full
length of the destination variable (0x0000).

CS FMT_UNUSED No format information is provided.

In an Open Client application, UNITEXT is aways activated, with no
configuration parameter required. UNITEXT is part of the Open Client and
Open Server libraries and the utilities (isql & bcp) that are shipped with them.
isql displays and bcp saves the server’s UNITEXT in binary format.

The server to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes.

If the server does not support 2-byte Unicode datatypes, the server returns an
error message. However, the client can convert other datatypes to or from
CS UNITEXT.

CS_UNITEXT does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

CS_XML isavariable-width Open Client and Open Server C Programming
datatype. CS XML corresponds directly to CS TEXT and CS_IMAGE
datatypes. CS_XML can be used anywhere CS TEXT and CS_IMAGE are
used to represent XML documents and contents.

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

Datatypes and capabilities

isgl and bcp utilities

Limitations

Following are the Open Client ct_capability() parameters:

 CS DATA_XML isarequest sent to the server to determine whether the
server supports XML.

« CS DATA_NOXML isaparameter sent from the client to tell the server
not to support xml for this specific connection.

To access XML datatypes, Open Client and Open Server implements:
* CS_XML —adatatype.
e« CS XML_TYPE —adatatype constant to identify the data's datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_ XML_TYPE alows
you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

Inan Open Client application, XML isaways activated, with no configuration
parameter required. XML is part of the Open Client and Open Server libraries
and the utilities (isgl & bcp) that are shipped with them. isgl displays and bcp
saves the server’s XML in binary format.

XML data can only be transmitted between client and server if the server
supports XML. If there is no support, the server returns an error message.
cs_capability is used to test if the server supports XML. A client can convert
other possible datatypesto or from the CS_XML datatype.

Note the following syntax rules of XML:

e Closing XML tags cannot be omitted.

e XML tags are case sensitive.

e XML elements must be properly nested.

e XML documents must have aroot element.

e XML attribute values must always be quoted.

With XML, white spaceis preserved and CR/LF is converted to LF.

The Open Client and Open Server does not check or validate CS_ XML
documents or contents.

Client-Library/C Programmers Guide 51

Datatype summary

What are type constants?

Type constants are symbolic values that identify the datatype of a program
variable. Many CS-Library, Client-Library, and Server-Library routines take
the address of aprogram variable asa CS_VOID * parameter. Type constants
are required to identify the datatype when passing CS VOID * parameters.
Typically, atype constant is passed to aroutine as the datatype field of a
CS_DATAFMT structure. (See“CS_DATAFMT” on page 35.)

Datatype summary

Table 3-3 lists Open Client and Open Server type constants, their
corresponding type definitions, and their corresponding Adaptive Server
Enterprise datatypes.

Adaptive Server Enterprise datatypes are identified by Transact-SQL
keywords. See the Adaptive Server Enterprise documentation for descriptions
of the Adaptive Server Enterprise datatypes.

Table 3-3: Datatype summary

Corresponding

Type Open Client and Open Corresponding C | server
category Server type constant Description datatype datatype
Binary types CS BINARY_TYPE Binary type CS BINARY binary,
varbinary
CS_LONGBINARY_TYPE | Long binary type CS_LONGBINARY | None
CS VARBINARY_TYPE Variable-length CS VARBINARY None
binary type
Bit types CS BIT_TYPE Bit type CS BIT bit
Character CS CHAR TYPE Character type CS CHAR char,
types varchar
CS LONGCHAR_TYPE Long character CS LONGCHAR None
type
CS VARCHAR_TYPE Variable-length CS VARCHAR None
character type
CS _UNICHAR_TYPE Fixed-length or CS_UNICHAR unichar
variable-length univarchar
character type
CS XML_TYPE Variable-length CS XML xml
character type
52 Open Client

CHAPTER 3 Using Open Client and Server Datatypes

Corresponding

Type Open Client and Open Corresponding C | server
category Server type constant Description datatype datatype
Datetimetype | CS DATE_TYPE 4-byte date type CS_DATE date
CS TIME_TYPE 4-byte time type CS TIME time
CS DATETIME_TYPE 8-byte datetime CS DATETIME datetime

type

CS DATETIME4 TYPE

4-byte datetime
type

CS_DATETIME4

smalldatetime

CS _BIGDATETIME_TYPE | 8-bytebinary type | CS BIGDATETIME | bigdatetime
CS BIGTIME_TYPE 8-bytebinary type | CS_BIGTIME bigtime
Numerictypes | CS TINYINT_TYPE 1-byte unsigned CS TINYINT tinyint
integer type
CS SMALLINT_TYPE 2-byte integer type | CS_SMALLINT smallint
CS INT_TYPE 4-byte integer type | CS_INT int
CS BIGINT_TYPE 8-byte integer type | CS BIGINT bigint
CS USMALLINT_TYPE 2-byte unsigned CS USMALLINT usmallint
integer type
CS UINT_TYPE 4-byte unsigned CS _UINT uint
integer type
CS _UBIGINT_TYPE 8-byte unsigned CS_UBIGINT ubigint
integer type
CS DECIMAL_TYPE Decimal type CS DECIMAL decimal
CS_ NUMERIC_TYPE Numeric type CS_NUMERIC numeric
CS FLOAT_TYPE 8-bytefloat type CS FLOAT float
CS REAL_TYPE 4-byte float type CS REAL real
Money types CS MONEY_TYPE 8-byte money type | CS_ MONEY money
CS MONEY4 TYPE 4-byte money type | CS_MONEY4 smallmoney
Text and image | CS TEXT_TYPE Text type CS TEXT text
types CS_IMAGE_TYPE Image type CS IMAGE image
CS UNITEXT_TYPE Variable-length CS_UNITEXT unitext
character type

Binary types

Open Client includes three binary types, CS_BINARY, CS_LONGBINARY,
and CS_VARBINARY:

Client-Library/C Programmers Guide

53

Datatype summary

Bit types

Character types

54

¢ CS BINARY corresponds to the Adaptive Server Enterprise types binary
and varbinary. That is, Client-Library interprets both the server binary and
varbinary types as CS_BINARY . For example, ct_describe returns
CS_BINARY _TY PE when describing aresult column that has the server
datatype varbinary.

e CS _LONGBINARY does not correspond to any Adaptive Server
Enterprise type, but some Open Server applications may support
CS _LONGBINARY. An application can call ct_capability and check the
CS DATA_LBIN capahility to determine whether an Open Server
connection supports CS_LONGBINARY. . If it does, then ct_describe can
return CS_LONGBINARY when describing aresult dataitem. A
CS_LONGBINARY vaue hasamaximum length of 2,147,483,647 bytes.

¢ CS_VARBINARY does not correspond to any Adaptive Server Enterprise
type, and Open Client routines do not return CS_VARBINARY _TY PE.
CS _VARBINARY isastructure that holds a byte array and its length:

typedef struct _cs_varybin

{
CS_SMALLI NT | en;
CS_BYTE array[CS_MAX_CHAR] ;

} CS_VARBI NARY;

CS _VARBINARY isprovided so that programmers can write non-C
programming language veneers to be written for Open Client. Typical
client applications do not use CS_VARBINARY .

Open Client supports asingle bit type, CS BIT. Thistypeisintended to hold
server bit (or Boolean) values of 0 or 1. When converting other typesto bit, all
nonzero values are converted to 1.

Open Client has four character types, CS_ CHAR, CS L ONGCHAR,
CS VARCHAR, and CS XML.:

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

« CS_CHAR corresponds to the Adaptive Server Enterprise types char and
varchar. In other words, Client-Library interprets both the server char and
varchar types as CS_CHAR. For example, ct_describe returns
CS_CHAR_TY PE when describing aresult column that has the server
datatype varchar.

e CS_LONGCHAR does not correspond to any Adaptive Server Enterprise
datatype, but some Open Server applications may support
CS_LONGCHAR. An application can call ct_capability and check the
CS_DATA_LCHAR capability to determine whether an Open Server
connection supports CS_LONGCHAR. If it does, then ct_describe can
return CS_LONGCHAR when describing aresult dataitem. A
CS_LONGCHAR vaue has a maximum length of 2,147,483,647 bytes.

¢ CS VARCHAR does not correspond to any Adaptive Server Enterprise
type. For this reason, Open Client routines do not return
CS_VARCHAR_TYPE. CS_VARCHAR isastructure provided to enable
non-C programming language veneers to be written for Open Client. It
holds a string and its length:

typedef struct_cs_varchar

{
CS_SMALLI NT | en;
CS_CHAR str[CS_MAX_CHAR] ;

} CS_VARCHAR;
Typica client applications do not use CS_ VARCHAR.

e Corresponding directly to the xml datatype, CS_ XML isan addition to
CS_TEXT and CS_IMAGE datatypes for representing XML data.
CS_XML represents XML datain an unparsed format and can be used
anywhere CS_TEXT and CS_IMAGE isused, for example, incs_convert,
ct_bind, oOr ct_param.

CS_XML only fetches dataif the server supports XML datatypes.

CS _DATA_XML (request) and CS_DATA_NOXML (response), are
added to ct_capability to determine the server’s capability to support XML
datatypes.

CS_XML isaways activated, and its datatype constant is
CS _XML_TYPE. The xml| datatype is mapped to TDS _XML.

Client-Library/C Programmers Guide 55

Datatype summary

Datetime types

56

Open Client supports six datetime types. CS_DATE, CS_TIME,
CS_DATETIME, CS _DATETIME4, CS BIGDATETIME, and

CS BIGTIME. These datatypes are intended to hold 8-byte and 4-byte
datetime values.

The CS_BIGDATETIME and CS_BIGTIME datatypes provide microsecond-
level precision for time data. These datatypes are intended to hold 8-byte
binary values.These datatypes function similarly to the respective
CS_DATETIME and CS_TIME datatypes: The CS_BIGDATETIME datatype
can be used anywhere that the CS_DATETIME datatype can be used, and the
CS_BIGTIME datatype can be used anywhere that the CS_TIME datatype can
be used. All Open Client and Open Server routines that can be applied to the
CS DATETIME and CS_TIME datatypes can aso be applied to the
CS_BIGDATETIME and CS_BIGTIME datatypes.

CS_DATE corresponds to the Adaptive Server Enterprise date datatype
with arange of legal values from January 1, 0001 to December 31, 9999.

CS_TIME corresponds to the Adaptive Server Enterprise time datatype,
with arange of legal values from 12:00:00.000 to 11:59:59:999 with a
precision of 1/300th of a second (3.33 ms).

CS_DATETIME corresponds to the Adaptive Server Enterprise datetime
datatype, with arange of legal values from January 1, 1753 to December
31, 9999, with aprecision of 1/300th of a second (3.33 ms).

CS _DATETIMEA4 corresponds to the Adaptive Server Enterprise
smalldatetime datatype, with arange of legal values from January 1, 1900
to June 6, 2079, with a precision of 1 minute.

CS _BIGDATETIME corresponds to the Adaptive Server Enterprise
bigdatetime datatype and contains the number of microseconds that have
passed since January 1, 0000 00:00:00.000000. The range of legal
CS_BIGDATETIME valuesis from January 1, 0001 00:00:00.000000 to
December 31, 9999 23:59:59.999999.

Note January 1, 0000 00:00:00.000000 is the base starting value from
which microseconds are counted. Any value earlier than January 1, 0001
00:00:00.000000 isinvalid.

CS_BIGTIME corresponds to the Adaptive Server Enterprise bigtime
datatype and indicates the number of microsecondsthat have passed since
the beginning of the day. The range of legal CS_BIGTIME valuesisfrom
00:00:00.000000 to 23:59:59.999999.

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

e CS BIGDATETIME and CS BIGTIME datais presented to the client in
the native-byte order (endianness) of the underlying client platform. Any
necessary byte-swapping is performed at the server before the datais sent
to the client, or after the datais received from the client.

An application can call the CS-Library routine cs_convert to initialize a
datetime type from a character string. cs_convert recognizes all of the date and
time formats valid for Transact-SQL datetime character strings. See the
“Datatypes’ topic in the Adaptive Server Enterprise Reference Manual.

cs_convert can also convert aCS _DATETIME or CS_DATETIME4 valueinto
acharacter string.

Other routines that are useful when working with datetime values include:
e c¢s_cmp, which compares two data values.

e cs_dt_crack, which mapsadatetime valuetoaCS_DATEREC structure. A
CS_DATEREC containsdistinct fieldsfor the different parts of adatetime
value.

e cs_dt_info, whichretrieveslanguage-specific datetimeinformation such as
day names. Thisroutine also configuresthe format for converting datetime
data values to character strings.

cs_convert, cs_cmp, cs_dt_crack, and cs_dt_info use locale information that is
specified indirectly, using the CS_CONTEXT, or directly, using a
CS_LOCALEstructure. (See“CS_LOCALE” on page 33.) An application can
changethelocaleinformation for aCS_CONTEXT by calling cs_config to set
the CS_LOC_PROP property for the context.

Numeric types
Open Client supports a wide range of numeric types:

e Integer typesinclude CS TINYINT, al-byteinteger, CS SMALLINT, a
2-byteinteger, CS_INT, a4-byte integer, CS_BIGINT, an 8-byte integer,
CS USMALLINT, an unsigned 2-byte integer, CS_UINT, an unsigned 4-
byte integer and CS_UBIGINT, an unsigned 8-byte integer.

» CS_REAL corresponds to the Adaptive Server Enterprise datatype real
and is implemented as a C-language float type.

* CS_FLOAT correspondsto the Adaptive Server Enterprise datatype float
and is implemented as a C-language double type.

Client-Library/C Programmers Guide 57

Datatype summary

¢ CS NUMERICand CS DECIMAL correspond to the Adaptive Server
Enterprise datatypes numeric and decimal. These datatypes provide
platform-independent support for numbers with precision and scale.

The Adaptive Server Enterprise datatypes numeric and decimal are
equivalent, and CS_DECIMAL isdefined asCS_NUMERIC.

Money types

Open Client supportstwo money datatypes, CS_ MONEY and CS_ MONEY4.
These datatypes are intended to hold 8-byte and 4-byte money values,
respectively:

e CS_MONEY corresponds to the Adaptive Server Enterprise money
datatype, with legal values between -$922,337,203,685,477.5807 and
+$922,337,203,685,477.5807.

¢ CS_MONEY4 correspondsto the Adaptive Server Enterprise smallmoney
datatype, with legal values between -$214,748.3648 and +$214,748.3647.

An application can call the CS-Library routine cs_convert to initialize amoney
type from a character string. The cs_convert routine recognizes al of the
money formats valid for Transact-SQL money character strings. See
“Datatypes’ in the Adaptive Server Enterprise Reference Manual.

The cs_convert routine can also convert aCS_MONEY or CS MONEY 4
value into a character string.

Money values cannot be manipulated with standard C operators because they
are stored in structures. To perform arithmetic operations on money values, an
application can either:

e Cadl theCS-Library routinecs_calc to perform the arithmetic operation, or

e Cdl cs_convert to convert the money type to adatatype with astandard C
equivalent (such as CS_FL OAT).

The cs_cmp routine can be called to compare money values.

Text and image types

Open Client supports atext datatype, CS_TEXT, a unitext datatype,
CS_UNITEXT, an image datatype, CS_IMAGE:

58 Open Client

CHAPTER 3 Using Open Client and Server Datatypes

e CS_TEXT corresponds to the server datatype text, which describes a
variable-length column containing up to 2,147,483,647 bytes of printable
character data.

e CS_UNITEXT corresponds to the server datatype unitext. As with text,
unitext describes a variable length column containing up to 2,147,483,647
bytes of printable data. The difference is that unitext character datais
stored with Unicode UTF-16 encoding rather than the default character set
on the server.

e CS_IMAGE corresponds to the server datatype image, which describes a
variable-length column containing up to 2,147,483,647 bytes of binary
data.

Small text, unitext and image data values require no special handling. Result
values can be bound to program variables and subsequently fetched, and input
data values can be entered into a database using the Transact-SQL insert and
update commands. However, when text, unitext and image values are large, it
is usually more practical for an application to use routines that allow the text,
unitext or image data to be handled one chunk at atime.

These routines are:

e ct_data_info, which setsor retrieves a CS_IODESC structure. A
CS_IODESC structure describesthe text, unitext or image datathat isto be
read from or written to the server.

e ct_get_data, which reads a chunk of datafrom the result stream.
e ct_send_data, which writes a chunk of data to the command stream.

Seethe “text and image Data Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Null substitution values

When arow containing NULL valuesis fetched from a server, Client-Library
substitutes specified “null substitution values’ for the null columns when
copying the row data to program variables.

Table 3-4 lists Client-Library’s default null substitution values:

Client-Library/C Programmers Guide 59

Null substitution values

60

Table 3-4: Default null substitution values

Destination type

Null substitution value

CS BINARY_TYPE Empty array
CS VARBINARY_TYPE Empty array
CS BIT_TYPE 0

CS CHAR_TYPE Empty string
CS_VARCHAR_TYPE Empty string

CS DATE_TYPE

4 bytes of zeros

CS DATETIME_TYPE

8 bytes of zeros

CS DATETIME4_TYPE

4 bytes of zeros

CS_BIGDATETIME

8 bytes of zeros

CS BIGTIME

8 bytes of zeros

CS TINYINT_TYPE

0

CS_SMALLINT_TYPE

CS BIGINT_TYPE

CS INT_TYPE

CS UINT_TYPE

CS_UBIGINT_TYPE

o|o|Oo|Oo| o

CS_USMALLINT_TYPE

0

CS DECIMAL_TYPE

0.0 (with default scale and precision)

CS NUMERIC_TYPE

0.0 (with default scale and precision)

CS FLOAT _TYPE

0.0

CS REAL_TYPE 0.0
CS_MONEY_TYPE $0.0
CS_MONEY4 TYPE $0.0
CS_BOUNDARY_TYPE Empty string
CS SENSITIVITY_TYPE Empty string
CS TEXT_TYPE Empty string
CS UNITEXT_TYPE Empty string
CS TIME_TYPE 4 bytes of zeros
CS XML_TYPE Empty string
CS IMAGE TYPE Empty array

To change null substitution values, an application can call the CS-Library
routine cs_setnull.

Open Client

CHAPTER 3 Using Open Client and Server Datatypes

Open Client user-defined datatypes

If an application that needsto use adatatypethat isnot included in the standard
Open Client datatypes, you can create a user-defined datatype. For example,
you might create a user-defined datatype that represents encrypted character
data. To create a user-defined datatype:

1 Createthe new datatype name. For example:
t ypedef char ENCRYPTED CHAR,

2 Define atype constant that represents the datatype. For example:
#def i ne ENCRYPTED_TYPE CS_USERTYPE + 2;

Becausethe Open Client routines ct_bind and cs_set_convert use symbolic
type constants to identify datatypes, you must define atype constant for
each user-defined type. User-defined type constants must be greater than
or equal to CS_USERTYPE.

3 Call cs_set_convert to install custom conversion routines to convert
between standard Open Client datatypes and the user-defined datatype.
For the ENCRY PTED_CHAR user-defined datatype in the example
above, you might define and install custom conversion routines that
encrypt and decrypt character data. You might, for example, install an
encryption routine for conversions from CS_CHAR_TYPE to
ENCRYPTED_TYPE, and install a decryption routine for conversions
from ENCRYPTED _TYPEtoCS_CHAR_TYPE.

4 Call cs_setnull to define anull substitution value for the user-defined
datatype.

After conversion routines are installed, an application can bind server results
to a user-defined datatype:

nydat af nt . dat at ype = ENCRYPTED_CHAR;
ct_bind(cnd, 1, &mrydatafnt, nycodename, NULL,
NULL) ;

Custom conversion routines are called transparently, whenever required, by
ct_bind and cs_convert.

Note Do not confuse Open Client user-defined datatypeswith Adaptive Server
Enterprise user-defined datatypes. Open Client user-defined datatypes are C-
language types, declared within an application. Adaptive Server Enterprise
user-defined datatypes are database column datatypes, created with the system
stored procedure sp_addtype.

Client-Library/C Programmers Guide 61

Open Client user-defined datatypes

62 Open Client

CHAPTER 4 Handling Errors and Messages

This chapter describes how to program your applicationsto handle Client-
Library and server error and informational messages.

Topic Page
About messages 63
Handling messages with callback routines 65
Handling messagesinline 68
Sequencing long messages 70
Extended error data 71
Server transaction states 72

About messages

Client-Library generates messages in response to a wide range of error
and informational conditions. These messages are called “ Client-Library
messages’ or “client messages.”

Servers also generate messages in response to error and informational
conditions. These messages are called “ server messages.”

How to identify messages

Do not confuse Client-Library messageswith Client-Library return codes,
or server messages with message results.

Client-Library messages and Client-Library return codes

Client-Library messages are generated in response to Client-Library
errors and other conditions of interest. Each Client-Library message
includes a number, text, and severity level.

Client-Library/C Programmers Guide 63

About messages

Return codes are symbolic values that indicate success, failure, or other
conditions of interest. All Client-Library routines use return codes.

Generally speaking, when a Client-Library routine returns CS_FAIL, Client-
Library generates amessage, but Client-Library can also generate messages at
other times.

Applications need to handle messages in addition to checking return codes.

Server messages and message results

Two methods for

64

Do not confuse server messages and message results.

Server messages are generated by a server in response to server errors or other
exceptional conditions. Each server message includes a number, text, and
severity level.

Message results are atype of result that can be sent in response to normal
command execution—see “ Processing M essage Results’ on page 6-12.

Server messages and message results are not related.

handling messages

An application can handle Client-Library and server messages using one of two
methods:

e Callbacks—the application installs its own routines to handle Client-
Library and server messages. When amessage is generated, Client-
Library callsthe appropriate callback and passes detail s about the message
using the callback’s input parameters.

¢ Inline message handling — in mainline code, the application periodically
calls ct_diag to retrieve messages.

Callbacks have these advantages:

e They arerelatively automatic. Once installed, callbacks are triggered
whenever a message occurs.

¢ They centralize message-handling code.

e They provide away for an application to gracefully handle unexpected
errors. An application that handles errors using the inline method may not
successfully trap unanticipated errors.

Open Client

CHAPTER 4 Handling Errors and Messages

Inline error handling, on the other hand, has the advantage of operating under
an application’s direct control, which allows an application to check for
messages at particular times. For example, an application might call
ct_con_props adozen timesto customize aconnection but check for errorsonly
after the last call.

Most applications use callbacks to handle messages, but an application that is
running on a platform-and-language combination that does not support
callbacks must use the inline method.

An application indicates which method it will use by calling ct_callback to
install message callbacks or by calling ct_diag to initialize inline message
handling.

Combining the methods

An application can use different methods on different connections and can
switch back and forth between the two methods, but these techniques are not
useful in typical applications.

When moving from the inline to the callback method, installing either type of
message callback for a connection turns off inline error handling. Client-
Library discards any saved messages.

When moving from the callback to the inline method, calling ct_diag to
initialize inline message handling deinstalls aconnection’s message callbacks.
If this occurs, the connection’sfirst call to ct_diag retrieves awarning message.

Handling messages with callback routines

Most applications use callbacks to handle Client-Library and server messages.
The application defines and installs callback routinesto handle Client-Library
and server messages. When a message is generated, Client-Library calls the
appropriate callback and passes details about the message using the callback’s
input parameters.

To use the callback method, an application must define and install:
« A client-message callback to handle Client-Library messages
e A server-message callback to handle server messages

Client-Library/C Programmers Guide 65

Handling messages with callback routines

An application calls ct_callback to install a message callback. Once installed,
the callbacks are automatically triggered when a Client-Library or server
message occurs.

Client-Library stores callback locationsin the CS_CONNECTION and
CS_CONTEXT structures. Because of this, when aClient-Library error occurs
that makesa CS_CONNECTION or CS_CONTEXT structure unusable,
Client-Library cannot call the client-message callback. Instead, the routine that
caused the error returns CS_FAIL.

Defining a client-message callback

66

A client-message callback isa C function that is defined as follows:

CS_RETCODE clientnsg_cb(context, connection, nessage)

CS_CONTEXT *cont ext ;

CS_CONNECTI ON *connecti on;

CS_CLI ENTMSG *nmessage;
where:

e contextisapointer tothe CS_CONTEXT structure for which the message
occurred.

e connectionisapointer to the CS_ CONNECTION structure for which the
message occurred. connection can be NULL.

e messageisapointer toaCS CLIENTMSG structure containing Client-
Library message information. For information about the
CS_CLIENTMSG structure, seethe“CS_CLIENTMSG Structure” topics
page in the Open Client Client-Library/C Reference Manual.

message can have a new value each time the client-message callback is
called.

Like other callbacks, a client-message callback is limited as to which Client-
Library routinesit can call. A client-message callback can call only the
following routines:

e ct_config, to retrieve information only

e ct_con_props, to retrieve information or to set the CS_ USERDATA
property only

e ct_cmd_props, to retrieve information or to set the CS_USERDATA
property only

Open Client

CHAPTER 4 Handling Errors and Messages

e ct_cancel(CS_CANCEL_ATTN)
A client-message callback must return one of the following return codes:

e CS _SUCCEED, toinstruct Client-Library to continue any processing that
is occurring on this connection. In the case of timeout errors,
CS_SUCCEED causes Client-Library to wait for one additional timeout
period. At the end of this period, Client-Library calls the client-message
callback again.

e CS FAIL, toinstruct Client-Library to terminate any processing that is
currently occurring on this connection. A return of CS_FAIL resultsinthe
connection being marked as dead. To continue using the connection, the
application must close the connection and then reopen it.

Defining a server-message callback
A server-message callback isa C function that is defined as follows:

CS_RETCODE servernsg_ch(context, connection, nessage)

CS_CONTEXT *cont ext ;

CS_CONNECTI ON *connecti on;

CS_SERVERMSG *nmessage;
where:

* contextisapointer tothe CS_CONTEXT structure for which the message
occurred.

e connectionisapointer to the CS_ CONNECTION structure for which the
message occurred. connection can be NULL.

e messageisapointer to aCS SERVERMSG structure containing server
message information. Seethe“CS_SERVERMSG Structure” topics page
in the Open Client Client-Library/C Reference Manual for
CS_SERVERMSG field descriptions.

message can have a new value each time the server-message callback is
caled.

Like other callbacks, a server-message callback is limited asto which Client-
Library routinesit can call. A server-message callback can call only the
following routines:

e ct_config, to retrieve information only

Client-Library/C Programmers Guide 67

Handling messages inline

e ct_con_props, to retrieve information or to set the CS_USERDATA
property only

e ct_cmd_props, to retrieve information or to set the CS_USERDATA
property only

e ct_cancel(CS_CANCEL_ATTN)

e ct_res_info, ct_bind, ct_describe, ct_fetch, and ct_get_data, to process
extended error data only

A server-message callback must return CS_SUCCEED.

Installing callbacks

An application calls ct_callback to install aclient or server-message callback.

If an application installs callbacks at the context level, all connection structures
allocated within the context inherit the callbacks.

To “deinstall an existing callback routine, call ct_callback with action as
CS SET and funcas NULL.

To replace an existing callback routine with anew one, call ct_callback with
action as CS_SET install the new routine. ct_callback replaces the existing
callback with the new callback.

To obtain a pointer to an existing callback, call ct_callback with action as
CS_SET and func as the address of aCS_VOID * variable. ct_callback places
the address of the callback in the variable.

Handling messages inline

68

A Client-Library application calsct_diag to handle Client-Library and server
messagesinline.

An application can useinline error handling at the connection level only. That
is, inline error handling cannot be enabled for a context. If an application has
more than one connection, it must make separate ct_diag calls for each
connection.

An application calls ct_diag to:

e Initidizeinline error handling.

Open Client

CHAPTER 4 Handling Errors and Messages

e Clear messages.

e Get messages.

e Limit the number of saved messages.

* Find out how many messages are currently saved.

¢ Retrievethe CS_COMMAND structure on which extended error data (if
any) isavailable. See “ Extended error data” on page 71.

Client-Library does not start saving messages for aconnection until inline error
handling has been initialized for the connection.

An application can retrieve client-message information into a
CS_CLIENTMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. An application can retrieve server-message information with a
CS_SERVERMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. For information about these structures, see the Open Client Client-
Library/C Reference Manual.

If aClient-Library error occurs that makesa CS_CONNECTION structure
unusable, ct_diag returns CS_FAIL when called to retrieve information about
the original error.

The CS_EXTRA_INF property

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQL STATE should set the Client-Library property CS EXTRA_INF to
CS TRUE.

The CS_EXTRA_INF property determines whether or not Client-Library
returns certain kinds of informational messages, such as the number of rows
affected by acommand. Normally, an application can call ct_res_info to obtain
thisinformation. With CS_EXTRA_INF set to CS_TRUE, theinformation is
returned as a Client-Library message.

An application that is not using the SQL structures can also set
CS EXTRA_INFto CS TRUE. Inthiscase, the extrainformationis returned
as standard Client-Library messages.

Client-Library/C Programmers Guide 69

Sequencing long messages

The CS_DIAG_TIMEOUT_FAIL property

When inline error handling isin effect, the CS_DIAG_TIMEOUT_FAIL
property determines whether Client-Library fails or retries on Client-Library
timeout errors.

Sequencing long messages

70

Message callback routines and ct_diag return Client-Library and server
messagesin CS_CLIENTMSG and CS_SERVERMSG structures. In the
CS_CLIENTMSG structure, the message text is stored in the msgstring field.
Inthe CS_SERVERMSG structure, the message text is stored in the text field.
Both msgstring and text are CS_MAX_MSG byteslong.

If amessage longer than CS_MAX_MSG - 1 bytesis generated, Client-
Library’sdefault behavior isto truncate the message. However, an application
can usethe CS_NO_TRUNCATE property to instruct Client-Library to
“sequence” long messages instead of truncating them.

When Client-Library is sequencing long messages, it uses as many

CS _CLIENTMSG or CS_SERVERMSG structures as necessary to return the
full text of amessage. The message'sfirst CS_ MAX_MSG bytes are returned
in one structure, itssecond CS_MAX_MSG bytesin asecond structure, and so
forth.

Client-Library null terminates only the last chunk of a message. If a message
isexactly CS_MAX_MSG byteslong, the message isreturned in two chunks:
the first contains CS_MAX_MSG bytes of the message and the second
contains a null terminator.

If an application is using callback routines to handle messages, Client-Library
calls the callback routine once for each message chunk.

Open Client

CHAPTER 4 Handling Errors and Messages

If an application use ct_diag to handle messages, it must call ct_diag once for
each message chunk.

Note The SQLCA, SQLCODE, and SQL STATE structures do not support
sequenced messages. An application cannot use these structures to retrieve
sequenced messages. Messages that are too long for these structures are
truncated.

Operating system messages are reported in the osstring field of the
CS_CLIENTMSG structure. Client-Library does not sequence operating

system messages.

See the “Error and Message Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Extended error data

Some server messages have extended error data associated with them, whichis
additional information about the error. For Adaptive Server Enterprise
messages, the additional information usually describes which column or
columns provoked the error.

Client-Library makes extended error data available to an application in the
form of a parameter result set, where each result item is a piece of extended
error data. A piece of extended error data can be named and can be any
datatype.

An application can retrieve extended error data but is not required to do so.

Uses of extended error data

Applicationsthat allow end usersto enter or edit data.often need to report errors
to their users at the column level. However, the standard server message
mechanism makes column-level information available only within the text of
the server message. Extended error data provides a means for applications to
conveniently access column-level information.

Client-Library/C Programmers Guide 71

Server transaction states

For example, imagine an application that allows end usersto enter and edit data
in thetitleauthor tablein the pubs2 database. titleauthor uses a key composed of
two columns, au_id and title_id. Any attempt to enter arow with au_id and
title_id values that match those in an existing row causes a* duplicate key”
message to be sent to the application.

On receiving this message, the application must identify the problem column
or columns to the end user so that the user can readily correct them. This
information is also available in the text of the duplicate key message, but an
application must parse the text to extract the column names.

For information about how to identify and process extended error data, seethe
“Error and Message Handling” topics page in the Open Client Client-
Library/C Reference Manual.

Server transaction states

72

Server transaction state information is useful when an application needs to
determinethe outcome of atransaction. Table 4-1 liststhe symbolic valuesthat
represent transaction states.

Table 4-1: Transaction states

Symbolic value Meaning
CS_TRAN_IN_PROGRESS | A transactionisin progress.

CS TRAN_COMPLETED The most recent transaction completed

successfully.

CS TRAN_STMT_FAIL Themost recently executed statement in the current
transaction failed.

CS TRAN_FAIL The most recent transaction failed.

CS _TRAN_UNDEFINED A transaction state is not defined.

For information about how to retrieve server transaction statesin mainline code
and from within a server callback routine, see the “Error and Message
Handling” topics page in the Open Client Client-Library/C Reference Manual.

Open Client

CHAPTER 5 Choosing Command Types

Client-Library provides several command types. This chapter introduces
each command type, explains how they are used, and discusses their

advantages and disadvantages.
Topic Page
Command overview 73
Types of commands 73
Executing commands 74
Language commands 76
RPC commands 78
Client-Library cursor commands 84
Dynamic SQL commands 85
Message commands 86
Package commands 87
Send-data commands 87

Command overview

InaClient-Library application, acommand is a stream of TDS protocol
symbols and data sent from aclient to the server. The command describes
some operation that the server isto perform and provides parameter data
for the operation. In responseto an application’s API calls, Client-Library
encodes commands in the TDS protocol.

Types of commands

Table 5-1 summarizes the Client-Library command types.

Client-Library/C Programmers Guide 73

Executing commands

Table 5-1: Summary of command types

Command type | Initiated by Summary

Language ct_command Defines the text of a query that the server will parse, interpret, and
execute.

RPC, ct_command Specifies the name of a server procedure (Adaptive Server Enterprise

Package stored procedure or Open Server registered procedure) to be executed by

the server. The procedure must already exist on the server.

Package commands are available only to client applicationsthat connect
to Open Server for CICS server applications. They are otherwise
identical to RPC commands.

Cursor ct_cursor Initiates one of several commands to manage a Client-Library cursor.

Dynamic SQL ct_dynamic Initiatesacommand to execute aliteral SQL statement (with restrictions
on statement content) or to manage a prepared dynamic SQL statement.

Message ct_command Initiates a message command and specifies the message-command 1D
number.

Send-Data ct_command Initiates a command to upload a large text/image column value to the
Sserver.

Executing commands

All commands are executed with these steps:

1 Initiatethe command — This step identifies the command type and what it
executes.

2 Define parameter values — Some commands require parameter data as
input.

3 Sendthecommand —ct_send writesthe command symbolsand datato the
network. The server then reads, interprets, and executes the command.

4 Processtheresults of the command —ct_results, called in aloop, readsthe
results of the command. See “ Structure of the basic loop” on page 90.

Initiating a command
An application can send several types of commands to a server:

* Anapplication callsct_command toinitiate alanguage, message, package,
remote procedure call (RPC), or send-data command.

74 Open Client

CHAPTER 5 Choosing Command Types

An application callsct_cursor to initiate a cursor command.

An application calls ct_dynamic to initiate a dynamic SQL command.

Defining parameters for a command
The following types of commands can take parameters:

A language command, when the command text contains variables
An RPC command, when the stored procedure takes parameters

A cursor-declare command, when the body of the cursor contains host
language parameters

A cursor-open command, when the body of the cursor contains host
language parameters

A message command

A dynamic SQL execute command

An application calls ct_param or ct_setparam once for each parameter that a
command requires. These routines perform the same function, except that
ct_param copies a parameter value, while ct_setparam copies the address of a
variablethat containsthevalue. If ct_setparam isused, Client-Library readsthe
parameter value when the command is sent. The ct_setparam method allows
the application to change parameter val ues before resending the command.

Processing results

Each time a command is sent, the application must process or cancel the
results. A typical application callsct_results until it returns a value other than
CS_SUCCEED. See “ Structure of the basic loop” on page 90.

Resending a command

For most command types, Client-Library allows an application to resend the
command immediately after the results of previous execution have been
processed. The application resends commands as follows:

If necessary, the application changes valuesin parameter source variables.

Client-Library/C Programmers Guide 75

Language commands

The application must have specified the addresses of the parameter source
variables with ct_setparam when defining the command.

e Theapplication calls ct_send to resend the command.
An application can resend all types of commands except:
¢ Send-datacommandsinitiated by ct_command(CS_SEND_DATA_CMD)

e Send-bulk commands initiated by
ct_command(CS_SEND_BULK_CMD)

Language commands

A language command sends the text of a query to the server. The server
responds by parsing and executing the command.

Language commands for Adaptive Server Enterprise must be written in
Transact-SQL. Other servers, such as Replication Server®, use a different
language.

Building language commands

76

Your application initiates alanguage command by calling ct_command with
typeas CS_LANG_CMD and *buffer as the language text. For example, the
call below initiates alanguage command to select rows from the authors table
in the pubs2 database:

ret = ct_command(cnd, CS_LANG CMD,

"select au_l name, city from pubs2..authors \
where state = 'CA'",

CS_NULLTERM CS_UNUSED);

Language commands can take parameters. For Adaptive Server Enterprise
client applications, parameter placement is indicated by undeclared variables
inthe command text. For example, alanguage command such asthe one bel ow
takes a parameter whose value is substituted for “ @state_name”:

sel ect au_l nane, city from pubs2..authors \
where state = @tate_nane

Parameters are useful when your code executes the same language command
more than once.

Open Client

CHAPTER 5 Choosing Command Types

Results-handling for language commands

Code your application to handle the results of alanguage command with a
standard results loop, as discussed in “ Structure of the basic loop” on page 90.

L anguage commands can return the result typeslisted in Table 5-2, for the
given reasons:

Table 5-2: Result types from the execution of a language command

Result type

Meaning/when received

CS ROW_RESULT

Regular rows, sent in response to a select statement executed by the
language batch or by a called stored procedure.

CS COMPUTE_RESULT

Compute rows, sent in response to a selectstatement that contains a
compute clause. The select statement can be executed by the language
batch or by acalled stored procedure.

CS PARAM_RESULT

Output parameter values, sent in response to an exec statement that
passes parameter values. (Parameters must be qualified with output in
the exec statement.) Output parameter values are received after the
results of al statements executed by the procedure.

CS_STATUS RESULT

A stored procedure’s return status, sent in response to an exec
statement. The return statusis received after the results from all
statements executed by the procedure.

CS COMPUTEFMT_RESULT,
CS ROWFMT_RESULT

Format results, seen only if the CS_EXPOSE_FMTS connection
property isCS_TRUE (the default isCS_FALSE).

CS_CURSOR_RESULT

Cursor result rows are retrievable using ct_fetch or ct_scroll_fetch.

CS CMD_DONE

Placeholder to indicate that the results of one logical command have

been processed. Seen after the following events:

¢ Theresultsfrom each statement executed in the language batch have
been processed.

« Theresults of each select statement executed by a called stored
procedure have been completely processed.

CS_CMD_SUCCEED

Indicates the success of an insert, update, or exec statement that was
executed directly by the language batch.

CS_CMD_FAIL

Indicates that the command or a statement within the language batch
failed to execute.

When to use language commands

L anguage commands are useful to applicationsthat execute ad hoc queries. For
example, the Sybase isql command interpreter allows an end user to enter
queries, sends the queries to the server as alanguage command, and displays

the results.

Client-Library/C Programmers Guide

77

RPC commands

Language commands are also useful in client-side middieware applications
that pass SQL queries to a Sybase server through Client-Library.

When not to use language commands

For better performance, you can code applications that always execute the
same query to invoke stored proceduresinstead. Instead of coding the query in
the C application code, you can create a stored procedure to execute the query
and use an RPC command to invoke the stored procedure. This method can be
faster because the server does not need to parse and interpret the query each
timeit executes.

Stored procedures can be considerably faster when a single invocation of the
procedure replaces several client commands.

Stored procedures can be executed either by an execute language command or
by an RPC command. See “RPCs versus execute language commands’ on
page 83 for a discussion of the differences between these methods.

RPC commands

An RPC command sends the name of a stored procedure or registered
procedure to the server, plus values for the procedure’s parameters, if any. If
the procedure exists, the server executes it and returns the results.

RPC commandsto Adaptive Server Enterprise invoke stored procedures. RPC
commands to an Open Server application invoke either registered procedures
or the Open Server’'s RPC event handlers.

See the Transact-SQL Users Guide for information on creating Adaptive
Server Enterprise stored procedures. See the “Registered Procedures’ topics
page in the Open Server Server-Library/C Reference Manual for information
on registered procedures.

Building RPC commands

Your application initiates an RPC command by calling ct_command with type
asCS _RPC_CMD, *huffer as the procedure name, and option as
CS_NO_RECOMPILE, CS RECOMPILE, or CS_UNUSED. For example:

78 Open Client

CHAPTER 5 Choosing Command Types

ct_command(cnd, CS _RPC CMD, rpc_nanme, CS NULLTERM
CS_NO_RECOMPI LE)

The option value indicates whether the server should recompile the procedure.
When invoking an Adaptive Server Enterprise stored procedure,
CS_RECOMPILE is equivaent to specifying the with recompile clausein an
equivalent execute statement. See the Adaptive Server Enterprise
documentation for an explanation of when recompilation is useful.

Parameter values for an RPC command are passed with callsto ct_param or
ct_setparam. These routines are identical, except that ct_param copies a data
value, while ct_setparam copies pointers to data values. Both routines require
aCS_DATAFMT structure, an indicator variable, and the address of a data
value. Seethereference pagesfor ct_param and ct_setparam in the Open Client
Client-Library/C Reference Manual.

For RPC commands, code your ct_param or ct_setparam calls according to the
following rules:

e Pass parameter values in a datatype that matches the declaration of the
parameter in the stored procedure.

Client-Library does not convert outgoing parameter values. If necessary,
use cs_convert to convert the parameter value into the matching datatype.

e Passall parameters by name or all parameters by position.

To pass a parameter by name, copy its name into the name field of
ct_param’s Or ct_setparam’s datafmt parameter, and set datafmt.length to
match. Parameters for which you do not call ct_param or ct_setparam are
effectively passed asNULL.

To pass parameters by position, set datafmt.length to 0 and call ct_param
or ct_setparam in the order in which the parameters appear in the
procedure’s definition. To pass a parameter as NULL, set the associated
indicator variableto -1.

All parameters must be passed using the same method. RPC commands
that pass parametersby position usually perform better than those that pass
parameters by name.

e Set datafmt.status to indicate whether the parameter is areturn parameter.

CS_RETURN indicates areturn parameter; use CS_INPUTVALUE for
non-return parameters.

Client-Library/C Programmers Guide 79

RPC commands

Return parametersare similar to the“ pass by reference” facility offered by
some programming languages. The value of the parameter, with any
changes made by the procedure code, is available to the client application
after the procedure completes execution. See “ Return parameter values”
on page 81.

¢ Usect_setparam rather than ct_param when the command will be sent
multiple times with varying parameter values.

ct_setparam binds a parameter source variable to the initiated command,
alowing the application to change the parameter’s value between callsto
ct_send.

For an example that illustrates how to define an RPC command with
parameters, see the reference page for ct_param in the Open Client Client-
Library/C Reference Manual.

RPC command results handling

Code your application to handle the results of an RPC command with a
standard resultsloop, as discussed in “ Structure of the basic loop” on page 90.

RPC commands can return the result types listed in Table 5-3, for the given
reasons:

Table 5-3: Result types from the execution of an RPC command

Result type Meaning/when received
CS_ROW_RESULT Regular rows, sent in response to a select statement executed by the
procedure.
CS COMPUTE_RESULT Compute rows, sent in response to a selectstatement that contains a
compute by clause.
CS PARAM_RESULT Return (output) parameter values, received after results from all
statements in the procedure have been processed.
CS_STATUS RESULT The procedure’s return status, received after results from all statements
in the procedure have been processed.
CS COMPUTEFMT_ RESULT, Format results, seen only if the CS_EXPOSE_FMTS connection
CS ROWFMT_RESULT property is CS_TRUE (the default is CS_FALSE).
CS CMD_DONE Placeholder that indicatesthe results of onelogical command have been
processed. Seen after the following events:
» Theresultsfrom each statement executed in the language batch have
been processed
» Theresults of each select statement executed by a called stored
procedure have been completely processed

80 Open Client

CHAPTER 5 Choosing Command Types

Result type Meaning/when received

CS CMD_SUCCEED Indicates that the procedure was invoked successfully, but does not
mean that al the statements in the stored procedure executed
successfully. Applications must always check the stored procedure’s
return status val ue to determine whether an error occurred (see“ Return
status values’ on page 81).

CS CMD_FAIL Indicates that the procedure call failed. Not all errors cause

CS CMD_FAIL to bereturned. A statement may fail in the stored
procedure, but the server still returns aresult type of
CS_CMD_SUCCEED.

Applications must always check the stored procedure’s return status
value to determine whether an error occurred (see “Return status
values’ on page 81).

Return parameter values

Theserver returns parameter valuesin the results of an RPC command for each
parameter for which both of the following statements are true:

e The parameter is passed as a return parameter in the RPC command.

e The parameter is defined as an output parameter in the definition of the
procedure.

If parameter datais returned, all parameter values are returned in a
CS _ PARAM_RESULT result set.

Return status values

Return status values arereturned asa CS_STATUS RESULT result set (see
“Processing return status results’ on page 97).

Note SQL statementsthat return aresult type of CS_ CMD_FAIL when
executed by alanguage command may return CS_CMD_SUCCEED when
executed by a stored procedure. Always check a stored procedure’s return
status to determine whether the procedure executed successfully.

Client-Library/C Programmers Guide 81

RPC commands

If a procedure successfully completes execution, the return statusis either the
valueexplicitly returned by the procedure or O if the procedure lacks an explicit
return statement. However, some runtime errors cause a stored procedure to
abort before it executes to completion. For example, a select statement in the
procedure may refer to atable that no longer exists. For these errors, Adaptive
Server Enterprise aborts the execution of the procedure and returns areturn
status value that indicates the error—see the return reference pagein the
Adaptive Server Enterprise Reference Manual for alist of return status codes
and their meaning.

When aruntime error occurs inside a stored procedure, Adaptive Server
Enterprise does not return aresult type of CS_CMD_FAIL. To determine
whether a server-side error has occurred inside the procedure, applications
should always check the return status of the stored procedure. Adaptive Server
Enterprise also sends server messages that describe runtime errors.

When to use RPC commands

82

RPC commands offer the following unique benefits:
e Stored procedure parameter values do not require conversion on the server.

When invoking astored procedure with an RPC command, parametersare
passed in their declared datatypes. The server does not need to convert the
parameters from character format to their declared datatypes.

e Thereisno other way to execute Open Server registered procedures.

Open Server registered procedures provide arelatively simple way to
develop a distributed application with Open Client and Open Server.
Registered procedures can be either a function in the Open Server
application code, or aspecial type of procedure that is created by a client
application and exists only to trigger client notification eventswhen it is
executed. Thelatter typeiscreated when the client application invokesthe
sp_regcreate Open Server system registered procedure.

¢ Seethe Open Server Server-Library/C Reference Manual for
information on defining C functionsthat can be called as aregistered
procedure.

¢ Seethesp_regcreate reference page in the Open Server Server-
Library/C Reference Manual for details on how Client-Library
applications can create aregistered procedure on an Open Server.

Open Client

CHAPTER 5 Choosing Command Types

* Seethe“Registered Procedures’ topics page in the Open Client
Client-Library/C Reference Manual for information on how Client-
Library applications can receive registered procedure notifications.

RPCs versus execute language commands

A stored procedure can be executed either by an RPC command or by an
execute language statement. Remote procedure calls have afew advantages
over execute statements:

e An RPC command can be used to execute an Adaptive Server Enterprise
stored procedure or an Open Server registered procedure.

A Transact-SQL language command can be used only to execute an
Adaptive Server Enterprise stored procedure (unless the Open Server
application understands Transact-SQL).

e AnRPC command passesthe stored procedure’s parametersin their native
datatypes, in contrast to the execute statement, which passes parametersin
character format, within the text of the language command. This
difference meansthat the RPC method isfaster and more efficient than the
execute method, becauseit does not require either the application program
or the server to convert between native datatypes and their character-
format equivalents.

e Itissimpler and faster to accommodate stored procedure return parameters
if the procedure isinvoked with an RPC command instead of alanguage
command.

With an RPC command, the return parameter values automatically
become available to the application as a parameter result set. (A return
parameter must be specified as such whenitisoriginally added to the RPC
command stream with ct_param or ct_setparam.)

With an execute statement, on the other hand, the return parameter values
are available only if the language command declares local variables and
passes these variables (not constants) for the return parameters. Because
the language command contains more than one SQL statement, this
technique involves additional parsing each time the language command is
executed.

Client-Library/C Programmers Guide 83

Client-Library cursor commands

Client-Library cursor commands

A cursor isasymbolic name that an application attaches to a select statement.
The cursor supports operations to manipulate the select’s result set. See
“Cursor overview” on page 105 for alist of cursor operations.

A Client-Library cursor iscreated with act_cursor or ct_dynamic cursor-declare
command.

Building Client-Library cursor commands

Chapter 7, “Using Client-Library Cursors’ explains how to use Client-Library
cursor commands in your application. See “Using Client-Library cursors’ on
page 111 for the typical call sequence.

When to use Client-Library cursors

Use Client-Library cursors when you want to process two or more commands
at the same time while using only one server connection.

A Client-Library cursor-open command is the only command type that allows
the application to send new commands over the same connection while still
retrieving rows. After sending any other type of command, your application
must compl etely process the results of the command before another command
can be sent on the same connection. If the application design requires this
functionality, then there is no alternative to using Client-Library cursor
commands. See “Benefits of Client-Library cursors’ on page 109 and
“Connection and command rules’ on page 31.

Notethat cursors can only be declared to execute asingle select statement. See
“Step 1: Declare the cursor” on page 113.

84 Open Client

CHAPTER 5 Choosing Command Types

When not to use Client-Library cursors

Cursorsdo incur aperformance penalty relative to executing aselect statement
using a language or RPC command. The difference occurs because the cursor
requires internal Client-Library cursor-fetch commandsto retrieve cursor
rows, while aregular-row result set does not. Thus, processing the results of
the cursor-open command requires more network round trips. (See* Step 2: Set
cursor rows’ on page 119.) Thereisalso additional Adaptive Server Enterprise
internal overhead associated with cursor processing.

Dynamic SQL commands

Dynamic SQL isthe process of generating, preparing, and executing SQL
statementsat runtime using commandsinitiated by Client-Library’sct_dynamic
routine.

Building Dynamic SQL commands

Chapter 8, “Using Dynamic SQL Commands’ explains how to use Client-
Library cursor commands in your application. See “Program structure for the
prepare-and-execute method” on page 132 for the typical call sequence.

When to use dynamic SQL commands

Dynamic SQL prepared statement commands are the only command type that
alowsthe application to query the server for the inputs regquired to execute the
command and for the format of the command's results:

e A ct_dynamic describe-input command causes the server to send the
number and format of parameters that are required to execute the
statement. See “ Step 2: Get a description of command inputs’ on page
134 for details.

e A ct_dynamic describe-output command causes the server to send the
number and formats of result columnsthat the statement returns. See“ Step
3: Get adescription of command outputs’ on page 136 for details.

Client-Library/C Programmers Guide 85

Message commands

When not to use dynamic SQL

In general, dynamic SQL should not be used in applications where the design
does not require the specific advantages listed under “Benefits of dynamic
SQL” on page 128. Dynamic SQL commands incur more overhead than
language commands. Also, sincethey areimplemented internally astemporary
stored procedures, they can cause resource-contention issues in the Adaptive
Server Enterprise tempdb database.

See“Limitations of dynamic SQL” on page 128 and “ Alternatives to dynamic
SQL” on page 130.

Message commands

86

M essage commands can be used with custom Open Server applications.
Adaptive Server Enterprise does not support message commands. From the
client-application programmer’s perspective, a message command is
equivaent to an RPC command that is called by number rather than by name.

Your application initiates a message command by calling ct_command with
typeasCS_MESSAGE_CMD and *buffer astheaddressof aCS_INT variable
that contains the identifier for the message command. For example:

CS INT nsg_id;

if (ct_command(cnmd, CS MSG CMD, (CS VA D *)&nsg_id,
CS_UNUSED, CS_UNUSED)

1= CS_SUCCEED)

{

fprintf(stderr, "ftclient: ct_conmand(MSG_CMD)
failed.\n");

return CS_FAIL;

}

M essage identifiers must be known to both the client application and the Open
Server application. Typically, the message command identifiers that a server
responds to are defined in a shared header file. Sybase reserves message
identifiersin therange CS_USER_MSGID to CS_USER_MAX_MSGID
(inclusive) for customer use.

M essage commands can take parameters. These are supplied with ct_param or
ct_setparam. Whether parameters are passed by name or by position depends
on how the Open Server application is coded.

Open Client

CHAPTER 5 Choosing Command Types

Code your application to handle the results of a message command with a
standard resultsloop, asdiscussed in “ Structure of the basic loop” on page 90.
Among other result types, message commands can return message results
(result type of CS_MSG_RESULT). See “Processing message results’ on
page 100.

When to use message commands

Message commands provide an alternative to RPC commandsin the design of
the client interface for acustom Open Server application. A message command
uses an integer identifier rather than a string RPC name and lacks the
fixed-parameter list of an Open Server registered procedure.

Inthe Open Server code, message commands are handled by the message event
handler. See the Open Server Server-Library/C Reference Manual.

When not to use message commands

Adaptive Server Enterprise does not support message commands.

Package commands

Package commands are supported only on connections to an Open Server on
CICS. Package commands are otherwise similar to RPC commands.

Send-data commands

Send-datacommands, initiated with ct_command(CS_SEND_DATA), areused
to upload text or image column values in chunks.

See the “text and image Data Handling” topics page in the Open Client Client-
Library/C Reference Manual for details on how to use send-data commandsin
your application.

Client-Library/C Programmers Guide 87

Send-data commands

When to use send-data commands

For Adaptive Server Enterprise client applications, send-data commands are
the only way to upload large text or image column values achunk at atime. If
your application uploads text or image values that areto largeto fitina
contiguous memory buffer, then send-data commands are the only practical
method to perform the update.

For text or image column values that are small enough to fit into a contiguous
memory buffer, the application may achieve better performance by embedding
the values in insert language commands. See the “text and image Data
Handling” topics page in the Open Client Client-Library/C Reference Manual
for details on this method.

When not to use send-data commands

88

Generally, send-data commands should be avoided when designing the client
interface for a custom Open Server application. Open Server application
processing for send-data commands is quite complicated. If the server must
allow uploads of large values in chunks, you can design the interface so that
values are uploaded with multiple invocations of amessage, RPC, or language
command. For example, with message commands, one message command
identifier might indicate the beginning of an upload operation, and another
might indicate a command that contains (as a parameter) a chunk of the data
value.

Open Client

CHAPTER 6

Types of results

Writing Results-Handling Code

This chapter explains Client-Library’sresults-processing model. It covers

the following topics:

Topic Page
Types of results 89
Structure of the basic loop 90
Processing regular row results 91
Processing cursor results 93
Processing parameter results 96
Processing return status results 97
Processing compute results 98
Processing message results 100
Processing describe results 101
Processing format results 101
Values of result_type that indicate command status 103
ct_resultsfinal return code 104

After an application sends a command to a server, it must process any

results generated by the command. Types of results include:

¢ Regular row results —rows returned when the server processes a

select statement.

e Cursor row results—rows returned when the server processes a

ct_cursor Client-Library cursor-open command.
e Parameter results — fetchable data that can represent:

e Output values for an Adaptive Server Enterprise stored
procedure’s return parameters

e Output values for an Open Server registered procedure’s return

parameters

Client-Library/C Programmers Guide

89

Structure of the basic loop

¢ A new timestamp value for an updated text/image column (seen only
when processing the results of act_command send-data command)

¢ A new timestamp value for arow that was updated with alanguage
command containing a browse-mode update statement

e Stored procedure return status results — the return value from an Adaptive
Server Enterprise stored procedure or Open Server registered procedure.

e Compute row results —intermediate rows returned when the server
processes a select statement with a compute by clause.

¢ Message results—amessage ID returned by an Open Server application’s
message command handler while processing the results of a message
command.

¢ Describeresults —informational results that describe the format of a
prepared dynamic SQL statement’s input parameters or result columns.

e Format results— informational results used by Open Server gateway
applications to retrieve regular row and compute row formats before the
actual data arrives.

A single command can generate more than one type of result. For example, a
language command that executes a stored procedure can generate multiple
regular row and compute row result sets, a parameter result set, and areturn
status result set. For this reason, it isimportant that you code applications to
handle all types of results that a server can generate.

The simplest way for an application to handle all result typesisto process
resultsin aloop as described in the following section.

Structure of the basic loop

90

Most synchronous Client-Library programs process results using aloop
controlled by ct_results. Inside the loop, a switch takes place on the type of
result that is currently available for processing, as indicated by the value of
ct_results’ parameter result_type. Different types of results require different
types of processing.

result_typeis also used to indicate the outcome of a server command that
returns no results, for example, an insert or delete command.

M ost synchronous applications use aprogram structure similar to thefollowing
one to process results:

Open Client

CHAPTER 6 Writing Results-Handling Code

while ct_results returns CS_SUCCEED

(optional) ct_res_info to get current
conmmand nunber

switch on result_type
/*

** Values of result_type that indicate

** fetchable results:

*/

case CS_COWVPUTE_RESULT. . .
case CS_CURSOR RESULT. ..
case CS_PARAM RESULT. ..
case CS_ROWRESULT...
case CS_STATUS RESULT. ..
/ *

** Val ues of result_type that indicate

** non-fetchable results:

*/

case CS_COVPUTEFMI_RESULT. . .
case CS_MSG RESULT...

case CS_ROANFMI_RESULT. . .

case CS_DESCRI BE RESULT. ..

/*

** Ot her values of result_type:
*/

case CS_CMD DONE. . .

(optional) ct_res_info to get the

nunber of rows affected by
the current comrand
case CS_CMVD _FAIL. ..
case CS_CMD_SUCCEED. . .
end switch

end while
switch on ct_results’ final return code

case CS_END RESULTS. ..
case CS_CANCELED.. .
case CS FAIL. ..

end switch

Processing regular row results

A regular row result set is generated by the execution of a Transact-SQL select
statement on a server.

Client-Library/C Programmers Guide

91

Processing regular row results

A regular row result set contains zero or more rows of tabular data.

An application typically calls the following routines to process a regular row

result set:

e ct_res_info, which returns information about the current result set. Most
often, an application uses ct_res_info to get the number of columnsin the
current result set. However, ct_res_info also returns other types of
information—for example, the number of rows affected by the current

command.

e ct_describe, which returnsinformation about a particular result item inthe
current result set. An application generally needs to call ct_describe once
for each result item before binding each result item to a program variable.

e ct_bind, which binds aresult item to a program variable. Binding creates

an association between aresult item and a data space.

e ct_fetch, which copies result datainto bound variables.

Binding is the process of associating aresult item with program data space.
Fetching isthe process of retrieving adatainstance of aresult item. If binding
has been specified for aresult item, then fetching causes a datainstance of the

item to be copied into the program data space.

M ost synchronous applicati ons use a program structure similar to thefollowing

one to process aregular row result set:

case CS_ROW RESULT

ct_res_info(CS_NUMDATA) to get the nunber of col ums
for each col um:
ct _describe to get a description of the colum
ct_bind to bind the colum to a programvari abl e
end for
while ct_fetch returns CS_SUCCEED or CS ROWFAIL
i f CS_SUCCEED
process the row
else if CS_ROWFAIL
handl e the row failure
end if
end while
switch on ct_fetch's final return code
case CS_END DATA. ..
case CS_CANCELED.. .
case CS FAIL. ..
end switch

end case

92

Open Client

CHAPTER 6 Writing Results-Handling Code

Processing cursor results

A cursor row result set is generated when an application executes a Client-
Library cursor open command.

Note A cursor row result set is not generated when an application executes a
language command containing a Transact-SQL open statement. The open
statement opens an Adaptive Server Enterprise language cursor, which returns
regular rows each time the application executes a Transact-SQL fetch
statement. See*“ Language cursorsversus Client-Library cursors’ on page 106.

A cursor row result set contains zero or more rows of tabular data.

In general, when an application sends a command to a server, it cannot send
another command on the same connection until ct_results indicates that the
results of the first command have been completely processed (by returning
CS END_RESULTS, CS CANCELED, or CS _FAIL).

An exception to thisrule occurs when ct_results indicates cursor results. Inthis
case, an application can call ct_cursor and ct_send to send cursor-update,
cursor-delete, or cursor-close commands while processing the cursor result set.
Using aadifferent CS_COMMAND structure, the application can also send
new commands over the same connection to the server. See “Benefits of
Client-Library cursors’ on page 1009.

In addition to ct_res_info, ct_describe, ct_bind, and ct_fetch, an application can
call ct_keydata, ct_cursor, ct_param, ct_send, ct_results, and ct_cancel while
processing a cursor result set.

Most synchronous applications use aprogram structure similar to thefollowing
one to process a cursor result set:

case CS_CURSOR RESULT
ct_res_i nfo(CS_NUVDATA) to get the nunber of col ums
for each col um:
ct_describe to get a description of the colum
ct_bind to bind the colum to a programvari abl e
end for
while ct_fetch returns CS_SUCCEED or CS ROW FAIL
and cursor has not been cl osed
i f CS_SUCCEED
process the row
else if CS_ROWFAIL
handl e the row failure
end if

Client-Library/C Programmers Guide 93

Processing cursor results

94

/* For update or delete only: */
if target rowis not the row just fetched
ct _keydata to specify the target row key
end if
/* End for update or delete only */

/* To send a nested cursor update, delete, or
cl ose comand: */
ct_cursor to initiate the cursor conmand
/* For updates/del etes whose “where” cl ause
contains variables */
ct_param or ct_setparam for each paraneter
/* End for updates/del etes whose ... */
ct_send to send the command
while ct_results returns CS_SUCCEED
(...process results...)
end while
/* End to send a nested cursor conmmand */

end while
switch on ct_fetch's final return code
case CS_END DATA..
case CS_CANCELED. .
case CS FAIL..
end switch
if cursor was closed
break out of outer ct_results |oop
end if

end case

Cdlsto ct_results are nested within act_fetch loop and alarger ct_results loop
(not shown).

For nested cursor-update or cursor-del ete commands, after the inner ct_results
indicates that the results from the nested command have been completely
processed (by returning CS_END_RESULTS, CS_FAIL, or
CS_CANCELED), any subseguent callsto ct_results will operate on results
generated by the original cursor command.

For nested cursor-close commands, there are no results remaining after the
cursor is closed. In this case, the application breaks out of the outer ct_results
loop after the results of the nested cursor-close command have been processed.

Open Client

CHAPTER 6 Writing Results-Handling Code

To cancel the cursor rows returned by the cursor-open command, an
application can call ct_cancel with type asCS_CANCEL_CURRENT.
However, it is more efficient to close the cursor with a nested cursor-close
command. A CS_CANCEL_CURRENT ct_cancel call retrievesthe unwanted
rows and discards them. (It is equivalent to clearing al binds, then calling
ct_fetch until ct_fetch returns CS_END_DATA.)

Note Inyour cursor application, do not use any other type of cancel besides
CS_CANCEL_CURRENT on a connection that has an open cursor—
CS_CANCEL_ALL or CS_ CANCEL_ATTN can put a connection’s cursors
into an undefined state. Instead of canceling, the application can ssmply close
the cursor.

Processing scrollable cursor results

The program structure for processing scrollable cursor resultsis similar to that
for regular cursors. The key differenceisthat ct_scroll_fetch returns

CS SCROLL_CURSOR ENDSwhen you usethe CS_FAL SE option. Thisis
indicated as follows:

end while
switch on ct_scroll _fetch's final return code
case CS_SCROLL_CURSCR_ENDS. . .
end switch
if cursor was closed
break out of outer ct_results |oop
end if

end case

Note ct_scroll_fetch never returns CS_END_DATA asavalid return.

Note A warning messageisgenerated if certain sequences of operations cause
the cursor to move beyond the resultset boundary. Examples of this are the
sequential useof CS_PREV, CS_NEXT, CS ABSOLUTE or CS_RELATIVE
calls, with offsets of such magnitude (relative to the current cursor position),
that the cursor moves beyond the resultset boundary. The warning messages
does not indicate that an error has occurred. See the Open Client Client-
Library/C Reference Manual.

Client-Library/C Programmers Guide 95

Processing parameter results

Processing parameter results

A parameter result set contains a single row of parameters.

Several types of data can be returned to an application in the form of a
parameter result set, including:

Return parameter values

An Adaptive Server Enterprise stored procedure or an Open Server
registered procedure can return output parameter data. The

CS PARAM_RESULT result set contains new values for the procedure’s
parameters, as set by the procedure code. See “RPC commands’ on page
78 for a description of how applications execute stored procedures or
registered procedures.

Browse mode timestamp values

Browse mode is a scheme that interactive applications can use to perform
ad hoc row updates of retrieved rows. Tables involved in browse mode
require atimestamp column to control simultaneous access to the data.
After aclient application executes a browse-mode update statement,
Adaptive Server Enterprise returns a parameter result set that containsthe
new timestamp value for the updated row. See the “Browse Mode” topics
page in the Open Client Client-Library/C Reference Manual for more
details.

A text or image column timestamp

After aclient application updates atext or image column with a send-data
command, Adaptive Server Enterprise returns the new text timestamp for
the column as a parameter result set. See the “text and image Data
Handling” topics page in the Open Client Client-Library/C Reference
Manual for more details.

Message result parameters

A message result set consists of a message identifier (see “Processing
message results’ on page 100). The message result set can be followed
immediately by a parameter result set containing parameter values that
accompany the message result.

An application callsct_res_info, ct_describe, ct_bind, and ct_fetch to process a
parameter result set.

M ost synchronous applications use aprogram structure similar to thefollowing
one to process a parameter result set:

case CS_PARAM RESULT

96

Open Client

CHAPTER 6 Writing Results-Handling Code

ct_res_i nfo(CS_NUVDATA) to get the nunmber of paraneters
for each paraneter:
ct_describe to get a description of the paraneter
ct_bind to bind the paraneter to a variable
end for

while ct_fetch returns CS_SUCCEED or CS _ROW FAI L
i f CS_SUCCEED
process the row of paraneters
else if CS_ROWFAIL
handl e the failure
end if
end while

switch on ct_fetch's final return code
case CS_END DATA. ..
case CS_CANCELED.. .
case CS _FAIL. ..
end switch
end case

Processing return status results

A return status result set is generated by the execution of a stored procedure.
All stored procedures return a status number. See the description of the return
command in the Adaptive Server Enterprise Reference Manual.

A return status result set consists of asingle row containing areturn status.
An application calls ct_bind and ct_fetch to process a return status.

Most synchronous applications use aprogram structure similar to thefollowing
one to process areturn status result set:

case CS_STATUS RESULT
ct_bind to bind the status to a programvari abl e
while ct_fetch returns CS_SUCCEED or CS_ROW FAI L
i f CS_SUCCEED
process the return status
else if CS_ROWFAIL
handl e the failure
end if
end while
switch on ct_fetch’'s final return code
case CS_END _DATA. ..

Client-Library/C Programmers Guide 97

Processing compute results

case CS_CANCELED.. .
case CS FAIL...

end switch
end case

Processing compute results

98

A compute result set is generated by the execution of a Transact-SQL select
statement that contains a compute clause. A compute clause generates a
compute result set every time the value of its bylist changes. A compute result
set consists of asingle row containing a number of columns equal to the
number of row aggregates in the compute clause.

For example, consider the query:

select type, price fromtitles
where price > $12 and type |ike "%ook"
order by type, price conpute sun(price) by type

The query returns regular rows (with columnstype and price). Intermixed with
the regular rows, the query returns compute result sets each time the value of
type changesin the regular row results. Each compute result set contains a
single row with one column for the sum(price) expression.

See the Adaptive Server Enterprise Reference Manual for more exampl es of
queries with a compute clause.

In addition to ct_res_info, ct_describe, ct_bind, and ct_fetch, an application can
call ct_compute_info while processing compute row results. ct_compute_info
providesavariety of compute row information. Theinformation availablefrom
ct_compute_info includes:

e Thecompute ID for a compute row

A query can have more than one compute clause.
ct_compute_info(CS_COMP_ID) retrieves the number of the compute
clause that generated a compute result set. A compute row 1D of 1
corresponds to the first compute clause in the query.

e The compute bylist

The compute bylist isthe list of columns that follows the by keyword in
the compute clause. In the application, the bylist isrepresented by an array
of CS_SMALLINT values, each of which represents the position of a
column in the select list. For example:

Open Client

CHAPTER 6 Writing Results-Handling Code

sel ect dept, nane, year, sales from enpl oyee
order by dept, nane, year
conpute count (nane) by dept, nane

If you execute this query, then the bylist valuesare 1 and 2, corresponding
to the positions of dept and name in the select list.

ct_compute_info(CS_BYLIST_LEN) returnsthe length of the bylist, and
ct_compute_info(CS_BYLIST) populates an application-allocated array
with the bylist column numbers.

e Compute row select-list column IDs

Select-list column |Ds are available for each column in a compute row.
The select-list column ID is the select-list position of the column from
which the compute-row column was derived. For example, this query
returns compute rows containing one column for the sum(price)
expression:

select type, price fromtitles
where price > $12 and type |ike "% ook"
order by type, price conpute sun(price) by type

The corresponding select-list column ID is 2, which is the position of the
price column in the select list.

ct_compute_info retrieves compute column 1Ds when called with type as
CS_COMP_COLID and colnum as the compute column number.

+ Compute column operators

ct_compute_info, when called with type asCS_COMP_OP and colnhum as
the compute column number, retrieves a symbolic constant that indicates
the operator with which the column value was computed. See the
ct_compute_info reference page in the Open Client Client-Library/C
Reference Manual for alist of these operators.

M ost synchronous applications use aprogram structure similar to thefollowing
one to process a compute result set:

case CS_COWUTE_RESULT

(optional)ct_conpute_info to get bylist |ength,

bylist, or conpute rowid

ct_res_i nf o(CS_NUVDATA) to get the nunber of col ums

for each col um:
ct_describe to get a description of the colum
ct_bind to bind the colum to a programvari abl e
(optional: ct_conmpute_info to get the conpute

colum id or the aggregate operator for the

Client-Library/C Programmers Guide 99

Processing message results

conput e col um)
end for
while ct_fetch returns CS_SUCCEED or CS_ROW FAI L
i f CS_SUCCEED
process the conpute row
else if CS_ROWFAIL
handl e the failure
end if
end while
switch on ct_fetch’'s final return code
case CS_END DATA. ..
case CS_CANCELED.. .
case CS FAIL...
end switch

end case

Processing message results

100

All types of servers can return message results.

A message result set contains no fetchable results. Instead, a message has an
ID, which an application can retrieve by calling ct_res_info(CS_MSGTY PE).

Message IDsintherange 1-32,767 arereserved for Adaptive Server Enterprise
and Sybase internal use.

Application-defined message IDs must be in the range CS_ USER_MSGID to
CS_USER_MAX_MSGID.

If parameter values are associated with a message, they arereturned asa
separate parameter result set following the message result set. See* Processing
parameter results’ on page 96.

Note A message result set is not the same thing as a server message. Server
messages are generated in response to error conditions or to indicate server
conditions of interest. They are generally handled within an application’s
server-message callback. See Chapter 4, “Handling Errors and M essages.”

An application calls ct_res_info to retrieve amessage ID.

M ost synchronous applicati ons use a program structure similar to thefollowing
one to process a message result set:

Open Client

CHAPTER 6 Writing Results-Handling Code

case CS_MSG RESULT
ct_res_info to get the nessage ID
code to handle the nessage ID

end case

Processing describe results

A describe result set does not contain fetchable data; rather, it indicates the
existence of descriptive information returned as the result of a dynamic SQL
describe-input or describe-output command.

See " Step 2: Get a description of command inputs’ on page 134 and “ Step 3:
Get a description of command outputs’ on page 136.

An application can retrievethisinformation by calling ct_describe, ct_dyndesc,
or ct_dynsglda. See “Processing parameter descriptions’ on page 134 and
“Processing column descriptions’ on page 136.

Most applications use a program structure similar to the following one to
process a describe result set:

case CS_DESCRI BE_RESULT
ct_res_info to get the nunber of colums
for each col um:
ct_describe or ct_dyndesc to get a description
end for
end case

Processing format results

Normally, format information for regular row and compute row result setsis
only available while the application is processing the result set. At that time,
the application can call ct_res_info to retrieve the number of itemsin the result
set, ct_describe to get a description of each item, and ct_compute_info to get
compute information.

Client-Library/C Programmers Guide 101

Processing format results

This mechanism works well for most applications. Some applications,
however, need to be able to get format information for aresult set before they
process the result set. An example of this type of application is a gateway
application that repackages Adaptive Server Enterprise results before sending
them on to a non-Sybase client.

Client-Library makes advance format information available to an application
inthe form of format results. There are two typesof format results: regular row
format results and compute row format results.

Format result sets contain no fetchable results. Instead, an application can call
ct_res_info, ct_describe, and ct_compute_info to retrieve format information
after ct_results indicates format results.

To receive format results, an application must set the Client-Library
CS_EXPOSE_FMTS property to CS_TRUE.

An application can call ct_describe and ct_compute_info to retrieve format
information.

A gateway application might use a program structure similar to the following
one to process format results:

case CS_ROWMI_RESULT

ct_res_info(CS_

for each colum
ct _descri be
send the in
end for
end case

case CS_COVPUTEFMI _

ct_res_info to
for each col um
ct _descri be
(if require

NUVDATA) to get the nunber of columms
to get a columm description
formation on to the gateway client

RESULT

get the number of colums

to get a columm description
d:

ct_conpute_info for conpute information

end if requ
send the in
end for
end case

102

i red)
formation on to the gateway client

Open Client

CHAPTER 6 Writing Results-Handling Code

Values of result_type that indicate command status

In addition to indicating the type of result set that is available for processing,
ct_results setsresult_typeto the valuesbel ow to indicate the status of command
processing:

Logical commands

CS _CMD_DONE —indicates that the results of alogical command have
been completely processed. See “L ogical commands’ on page 103 for an
explanation of thisterm.

CS_CMD_SUCCEED - indicates the success of acommand that returns
no data, such as a Transact-SQL insert or delete command.

CS CMD_FAIL —indicatesthat, dueto error, the server failed to execute
aserver command. For example, the text of alanguage command might
contain a syntax error or refer to a nonexistent object. In most cases, the
server returns a server message that describes the error.

Because a Client-Library command can execute multiple server
commands, an application must either:

* Continueto call ct_results to process results generated by any other
server commands contained in the original Client-Library command,
or

e Cdl ct_cancel(CS_CANCEL_ALL) to cancel the Client-Library
command and discard its results.

ct_results setsresult_typeto CS_CMD_DONE to indicate that the results of a
logical command have been completely processed. A logical command is any
command defined using ct_command, ct_dynamic, or ct_cursor, with the
following exceptions:

Each Transact-SQL select statement that returns datainside a stored
procedure isalogica command. Other Transact-SQL statementsinside
stored procedures do not count as logical commands (including select
statements that assign valuesto local variables).

Each Transact-SQL statement executed by a dynamic SQL commandisa
distinct logical command.

Each Transact-SQL statement in the text of language commandisalogical
command.

Client-Library/C Programmers Guide 103

ct_results final return code

Logical commands and Client-Library commands are not equivalent. A Client-
Library command can execute multiple logical commands on the server, for
example, astored procedure can execute multiple select statementsthat return
data, and each such statement represents one logical command. A logical
command can generate one or more result sets; for example, aselect statement
can return multiple regular-row and compute results sets.

ct_results final return code

After handling all the results of the command, your code should check thefinal
return code from ct_results to seeif errors are indicated.

Final return code values can be the following:
e CS END_RESULT —indicates anormal loop exit.

¢ CS CANCELED —indicates that results were cancel ed:
ct_cancel(CS_CANCEL_ALL) or ct_cancel(CS_ CANCEL_ATTN) was
called while processing results.

e CS FAIL —indicates a serious client-side or network error, such asa
communication failure or amemory shortage.

104 Open Client

CHAPTER 7 Using Client-Library Cursors

This chapter explains Client-Library cursors. It covers the following

topics:
Topic Page
Cursor overview 105
Language cursors versus Client-Library cursors 106
When to use Client-Library cursors 109
Using Client-Library cursors 111
Client-Library cursor properties 125

Cursor overview

A cursor isasymbolic name that an application attaches to a select
statement. The statement can be executed and its result set manipul ated by
performing operations on the cursor.

Cursors support the following operations:

e Declare— create anew cursor by giving it a name and defining its
query.

e Set cursor rows— specify the number of rows from the result table to
be returned with each fetch operation.
¢ Open—execute the cursor’s query and prepareit for fetch operations.

¢ Fetch—retrieverowsfrom the cursor, which must be open. Each fetch
operation retrieves a single row from the query’s result table. This
applies to both scrollable and non-scrollable cursors. Under certain
conditions (as defined by the“ set cursor rows’ operation), morerows
can be returned per fetch call.

e Update — modify the valuesin afetched row. The update affects the
tables from which the row was selected.

« Delete—remove afetched row from an underlying table.

Client-Library/C Programmers Guide 105

Language cursors versus Client-Library cursors

¢ Close—ready the cursor to be either reopened or deallocated.
e Dedlocate —free the cursor’s resources.

In an Adaptive Server Enterprise client application, cursors can either be
created and manipulated with language commands or with ct_cursor
commands. Cursors created using Transact-SQL language commands are
called language cursors. Cursors created with ct_cursor commands are called
Client-Library cursors. Table 7-1 on page 107 compares the two types of
Cursors.

Language cursors versus Client-Library cursors

Table 7-1 compares Transact-SQL (language) cursor commands with Client-
Library cursor commands:

106 Open Client

CHAPTER 7 Using Client-Library Cursors

Table 7-1: Transact-SQL cursor commands versus Client-Library cursor

commands
Language
Operation command Client-Library cursor command
Declare declare cursor ct_cursor(CS_CURSOR_DECLARE)
or
ct_dynamic(CS_CURSOR_DECLARE)
Set cursor set cursor rows ct_cursor(CS_CURSOR_ROWS)
rows
Open open ct_cursor(CS_CURSOR_OPEN)
Fetch fetch ct_fetch or ct_scroll_fetch, after ct_results
has returned with aresult_type of
CS CURSOR_RESULT.
Update update ... where current | ct_cursor(CS_CURSOR_UPDATE)
of cursor_name By defaullt, affects the last fetched row,
but can be redirected to any previously
fetched row.
Delete delete ... where current | ct_cursor(CS_CURSOR_DELETE)
of cursor_name By default, affects the last fetched row,
but can be redirected to any previously
fetched row.
Close close ct_cursor(CS_CURSOR_CLOSE)
Deallocate deallocate cursor ct_cursor(CS_CURSOR_DEALLQC) or

ct_cursor(CS_CURSOR_CLOSE)

The cursor isclosed and deallocated with
onecommandif theCS_DEALLOChitis
set in ct_cursor’s option parameter.

Language cursors

On Adaptive Server Enterprise, alanguage cursor is declared with the declare
cursor statement, opened with an open statement, and fetched from using fetch
statements. See the Adaptive Server Enterprise Reference Manual for
descriptions of these commands. A Client-Library program can send all of
these statements as normal language commands.

Client-Library/C Programmers Guide

107

Language cursors versus Client-Library cursors

Once alanguage cursor has been declared and opened, each fetch language
command returns a set of regular rows (ct_results result_typeis
CS_ROW_RESULT) and can be handled just like the results of a select
command (see* Processing regular row results’ on page 91). Aswith any other
language command, the results of each command must be processed with
ct_results (and ct_fetch, if necessary) before another command can be sent on
the connection.

When declared within alanguage command sent by a client connection, a
language cursor has scope limited to that connection. In other words, only
language commands sent over the same connection can reference the cursor.

Language cursors provide the following advantage over Client-Library
Cursors:

e On Adaptive Server Enterprise, you can declare a cursor and open inside
a Transact-SQL stored procedure. Such a cursor iscalled aserver cursor.
Complex tasks that are implemented using a stored procedure and server
cursors should perform better than an equival ent implementation that uses
Client-Library cursors. The performance difference is mainly due to the
fact that the Client-Library cursor requires many network round tripsto
fetch the cursor rows (and to execute any nested update commands), while
the server cursor does not.

e Language cursors can be used with an existing client application that
handles ad hoc language commands. For example, auser of the Sybaseisq|
client application can use language cursors, even though isgl contains no
specia code to support cursors.

The Adaptive Server Enterprise Reference Manual contains more detailed
information on language cursors.

Client-Library cursors

108

A Client-Library cursor requires application programmers to code ct_cursor
callsthat declare and open the cursor. A Client-Library cursor-open command
returns a single fetchable result set of type CS_ CURSOR_RESULT.

A Client-Library cursor’s scopeis limited to a single command structure. In
fact, once a cursor is declared with a command structure, that command
structure becomes a dedicated “handle” for further operations on the cursor.

Client-Library cursors provide the following advantages over language
CUrsors:

Open Client

CHAPTER 7 Using Client-Library Cursors

Fetching from a Client-Library cursor is more simple.

Each fetch from a Client-Library cursor involves asingle ct_fetch or
ct_scroll_fetch call; after each ct_fetch or ct_scroll_fetch call that returns
rows, the application can send new commands over the connection.

Each fetch from alanguage cursor is a separate Client-Library command
that involves calls to ct_command, ct_send, ct_results, ct_fetch, and so
forth. The results of the fetch language command must be compl etely
processed before the application can send new commands over the same
connection.

A Client-Library cursor can be used to modify any previously fetched row.
A language cursor can only be used to delete or update the most recently
fetched row.

A Client-Library cursor can be declared to execute a stored procedure (as
long as the stored procedure only executes a single select statement—for
more details, see “ Step 1. Declare the cursor” on page 113). A language
cursor must be declared with a select statement.

When to use Client-Library cursors

Client-Library cursors offer some unique benefits, but they also may incur a
performance penalty relative to other command types.

Benefits of Client-Library cursors

Client-Library cursors provide the following unique benefitsto an application:

They allow the application to execute simultaneous commands on the
same connection.

They allow an application to update a table while fetching from it using
only asingle connection.

A ct_cursor cursor-open command is the only command type that allows
simultaneous command processing on a single connection. After sending any
other type of command, the application must completely process the results of
the command before sending another command. When processing the results
of a cursor-open command, the client application execute two categories of
new commands:

Client-Library/C Programmers Guide 109

When to use Client-Library cursors

¢ Nested cursor commands on the same command structure

¢ Unrelated commands executed using a different command structure

Nested cursor commands

A nested cursor command is a cursor-close, cursor-delete, or cursor-update
command that is sent while fetching the rows returned by a cursor-open
command; the processing of these commandsis*nested” within the processing
of the cursor-open command that returned the cursor rows. Before sending a
nested cursor command, the application must call ct_fetch to retrieve at least
one Cursor row.

See “Nested cursor-update or cursor-del ete commands’ on page 122 and
“Nested cursor-close commands’ on page 124.

Client-Library’s browse mode feature al so allows an application to update a
table while fetching from it. However, browse mode requires two connections
to the server. For a description of thisfeature, see the “Browse Mode” topics
page in the Open Client Client-Library/C Reference Manual.

Commands executed using a different command structure

While fetching the rows returned by a cursor-open command, any command
can be executed using a separate command structure. For example, the
application might issue a select or an update command based on the cursor
data. In this case, the application must completely process the results on the
separate command structure before fetching the next cursor row or sending a
nested cursor command. The application could also open anew cursor. In this
case, the new cursor must be opened and its command handle must be ready to
return cursor rows before the application can perform another operation on the
original cursor.

Asan example, consider an application that selectsrowsfrom an exampletable
employee that contains the following data:

emp_fname emp_Ilname emp_id mgr_id
Bob Burnett 3349 4572
Alice Williams 4572 5237
Thomas Cooper 7028 3198
Samuel Jones 6193 4572
Jennifer Uribe 0969 4572
Joachin Palmer 3198 4572

110 Open Client

CHAPTER 7 Using Client-Library Cursors

emp_fname emp_Ilname emp_id mgr_id
Jerry Howe 5939 5237
George Latimer 5237 NULL

Here, emp_id isthe employee | D number and mgr_id specifiesthe employee D
number of each employee’s manager. One of the application requirementsis
that for each fetched employee row, the application must issue another query to
find out which employees work for the last-fetched employee.

If the application usesa Client-Library cursor to select rowsfromtheemployee
table, it could send the second query by using a separate CS_ COMMAND
structure. If the application was not using cursors, it would have to issue the
second query by using a second connection to the server, or wait until it had
processed all the results from the original query to send a new command over
the same connection.

Performance issues when using Client-Library cursors

In general, aClient-Library cursor performs worse than an equivalent select
statement that is executed using a language or RPC command. An application
that does not require the special benefits listed above achieves higher
performance using language commands or RPC commands.

However, cursors may improve performance when the application would
otherwise require several connections or some sort of row-buffering
mechanism to accomplish the same task.

Using Client-Library cursors

A typical application uses the steps bel ow to declare and open aClient-Library
Cursor.

1 Send acursor-declare command.
For cursors declared with a select statement:
e ct_cursor(CS_ CURSOR _DECLARE)

e ct_param Or ct_setparam to define host variable formats

Client-Library/C Programmers Guide 111

Using Client-Library cursors

112

e ct_send (if not batching commands)

e ct_results, inaloop (if not batching commands)

For cursors declared with an execute statement:

e ct_cursor(CS_CURSOR_DECLARE)

e ct_send (if not batching commands)

e ct_results, inaloop (if not batching commands)

For cursors declared with a prepared dynamic SQL statement:
« ct_dynamic(CS_CURSOR_DECLARE)

(Optional) ct_cursor(CS_CURSOR_OPTION)

e ct_send
e ct_results, inaloop

e If acursor isdeclared with a ct_cursor command, the commandsin
steps 1, 2, and 3 can be batched: they can be sent to the server with a
singlecall to ct_send.

(Optional) Send a cursor-rows command.

¢ ct_cursor(CS_CURSOR_ROWS)

e ct_send (if not batching commands)

e ct_results, inaloop (if not batching commands)
Send a cursor-open command.

e ct_cursor(CS_CURSOR_OPEN)

e ct_param Or ct_setparam tO pass parameter values
e ct_send

e ct_results, called in astandard results |oop.

A successful open command returnsaCS_CURSOR_RESULT result set.
If batching commands, several callsto ct_results are required (to retrieve
the status results from the batched commands) before the cursor rows are
available.

Process cursor rows.
e ct_bind to bind to cursor rows

e ct_fetch or ct_scroll_fetch (called in aloop to retrieve each row)

Open Client

CHAPTER 7 Using Client-Library Cursors

¢ New commands can be sent inside the ct_fetch or ct_scroll_fetch loop,
after at least one row has been fetched. See “ Step 4: Process cursor
rows’ on page 122.

5 Closethe cursor.
e ct_cursor(CS_CURSOR_CLOSE)
e ct_send
e ct_results

An application can close and deall ocate the cursor with one command by
setting the CS_DEALLOC hit in the ct_cursor option parameter when
defining the cursor-close command. In that case, the step 6 is
unnecessary.

6 Deallocate the cursor.
e ct_cursor(CS_CURSOR_DEALLOC)
e ct_send
e ct_results

Each step in the process above sendsone Client-Library cursor command to the
server. After sending each command, the application must handle the results
with ct_results. Code your application to handle the results of a cursor
command with a standard results loop, as discussed in “ Structure of the basic
loop” on page 90.

Step 1: Declare the cursor

There are three types of cursor-declare commands. Each one executes the
cursor’s select statement differently:

e The cursor executes a select statement directly.

The application calls ct_cursor and passes the select statement as the
ct_cursor text argument.

e The cursor executes a stored procedure.

The select statement is executed by a stored procedure that has been
created ahead of time, either by the application itself or by the application
administrator. To declare the cursor, call ct_cursor and pass, as the text
argument, an execute statement that invokesthe procedure. Cursorscan be
declared only on astored procedure that containsa single select statement.

Client-Library/C Programmers Guide 113

Using Client-Library cursors

e The cursor executes a prepared dynamic SQL statement.

The application cals ct_dynamic(CS_PREPARE) to create a prepared
statement that executes the select statement. Then the application calls
ct_dynamic(CS_CURSOR_DECLARE) and passes the statement
identifier as the ct_dynamic id argument.

Declaring a cursor to directly execute a select statement

A simple cursor
declaration

Declaring a cursor
that takes parameters

114

To create acursor or scrollable cursor that directly executes aselect statement,
cal ct_cursor with type as CS_CURSOR_DECLARE and text as a select
Statement.

The following code declares a Client-Library cursor. Return code checking is
omitted for simplicity:

CS_CHAR body[1024];
strcpy(body, “select * fromtitles for read only”);
ret = ct_cursor(cnd, CS_CURSCOR _DECLARE,

“a cursor”, CS_NULLTERM

body, CS _NULLTERM CS_UNUSED);

The following code declares a Client-Library scrollable cursor. Return code
checking is omitted for simplicity:

CS_CHAR body[1024] ;
strcpy(body, “select * fromtitles”);
ret = ct_cursor(cnd, CS_CURSCOR _DECLARE,
“s cursor”, CS_NULLTERM
body, CS NULLTERM CS_SCROLL_CURSOR);

The select statement can also contain host language variables of the form
@variable_name to indicate where parameters will be substituted in the
statement when the cursor is opened. Adaptive Server Enterprise allows
variablesto substitute for valuesin the cursor’swhere clause. For example, the
following statement could be used to declare a cursor that takes a variable int
value:

SELECT title_id, title, price FROMtitles
WHERE total _sales > @al es_val

In this case, you must specify the parameter format by calling ct_param or
ct_setparam withaNULL data pointer after declaring the cursor. Each timethe
cursor isopened, the application supplies parameter valuesby calling ct_param
or ct_setparam again. This case is demonstrated by the example below:

CS_CHAR body[1024] ;
CS DATAFMT intfnt;

Open Client

CHAPTER 7 Using Client-Library Cursors

Specifying which
columns can be
updated

CS_INT sal es_val ;
strcpy(body, “select title_id, title, price from
titles where total _sales > @al es_val
for read only”);
ret = ct_cursor(cnd, CS_CURSOR DECLARE,
“a cursor”, CS_NULLTERM
body, CS NULLTERM CS_UNUSED);
error checking deleted ...

(CS_ VA Dyrmemset (& ntfnt, 0, sizeof(intfnt));
/*
** Define the format of @al es_val .
*/
intfnt.datatype = CS_I NT_TYPE;
intfnt.maxlength = CS_SI ZEOF(CS_I NT);
intfnt.status = CS_| NPUTVALUE;
ret = ct_param(cnd, & ntfnt, (CS_VA D *)NULL,
CS_UNUSED, 0);
error checking deleted ...
ret = ct_cursor(cnd, CS _CURSOR OPEN, NULL,
CS_UNUSED, NULL, CS_UNUSED,
CS_UNUSED) ;
error checking deleted ...
/*
** Supply a value for @ales_val. intfnt fields
** were set above.
*/
sal es_val = 1;
ret = ct_paranm(cmd, & ntfnt,
(CS_ VO D *)&sal es_val, CS_UNUSED, 0);
error checking deleted ...
/*
** Send the batched cursor declare and open
** commands.
*/
ret = ct_send(cnd);
error checking deleted ...

For applications that connect to Adaptive Server Enterprise, use the for read
only or for update of clausesin the select statement to specify which columns,
if any, will be updated. In the ct_cursor(CS_CURSOR_DECLARE) call, pass
the ct_cursor option parameter as CS_UNUSED to indicate that the server
should decide which columns can be updated. For example, a cursor declared
with this following statement allows updates of the price column:

SELECT title_id, title, price FROMtitles
FOR UPDATE OF price

Client-Library/C Programmers Guide 115

Using Client-Library cursors

Other servers, such as custom Open Servers, may not recognize or use the for
read only or for update of clausesin the select statement. These serversrequire
the client application to indicate which columns are to be updated with separate
callsto ct_param or ct_setparam. For details, see the reference page for
ct_cursor in the Open Client Client-Library/C Reference Manual.

Declaring a cursor to execute a stored procedure

116

You can declare cursors to execute a stored procedure that in turn executes a
single select statement. You create this style of cursor by calling ct_cursor with
type as CS_CURSOR_DECLARE and text as an execute statement that
invokes the procedure.

For example, the select statement in the example above could be invoked by a
stored procedure:

CREATE PROCEDURE titl ecursorproc
@al es_val | NT
AS
SELECT title_id, price, title FROMtitles
WHERE (total sales > @ales_val)
FOR READ ONLY

For Client-Library cursors that execute an Adaptive Server Enterprise stored
procedure, you do not use host language variables and do not define any
variable formats with ct_param—the server determines parameter formats
from the declaration of the stored procedure. The steps required to declare and
open the cursor are otherwise similar to those illustrated under “ Declaring a
cursor that takes parameters’ on page 114. The example below shows how to
declare and open a Client-Library cursor on the titlecursorproc stored
procedure:

CS_CHAR body[1024] ;
CS_DATAFMT intfnt;
CS_INT sal es_val ;

strcpy(body, “EXECUTE titlecursorproc”);
ret = ct_cursor(cnd, CS_CURSCOR DECLARE,
“a cursor”, CS_NULLTERM
body, CS NULLTERM CS_UNUSED);
error checking deleted ...
ret = ct_cursor(cnd, CS_CURSOR COPEN, NULL,
CS_UNUSED, NULL, CS_UNUSED,
CS_UNUSED) ;
error checking deleted ...
/*
** Supply a value for the @al es_val paraneter for

Open Client

CHAPTER 7 Using Client-Library Cursors

** titlecursorproc.
*/
(Cs_va D)nenset (& ntfnt, 0, sizeof(intfnt));
intfm.datatype = CS_I NT_TYPE;
intfn.maxl ength = CS_SI ZEOF(CS_| NT);
intfnt.status = CS_| NPUTVALUE;
sal es_val = 1;
ret = ct_paran(cnd, & ntfnt,
(Cs_vA D *) &sal es_val , CS_UNUSED, 0);
error checking deleted ...
/*
** Send the batched cursor declare and open
** conmmands.
*/
ret = ct_send(cnd);
error checking deleted ...
results processing deleted ...

Declaring a cursor to execute a prepared dynamic SQL statement

You can declare cursors on a prepared dynamic SQL statement that executes a
single select statement. For example, you could prepare a statement to execute
the select statement bel ow:

SELECT title_id, title, price FROMtitles
VWHERE total _sales > ? FOR READ ONLY

The“? character (the dynamic parameter marker) is a placeholder for a
parameter value that will be provided when the cursor is opened. Dynamic
SQL statements are created by sending a ct_dynamic(CS_PREPARE)
command to the server and handling the results. See “ Step 1. Prepare the
statement” on page 134 for details.

After preparing the statement, the application can call ct_dynamic with type as
CS_CURSOR_DECLARE and id as the statement identifier.

Use the for read only or for update of clausesin the select statement to specify
which columns, if any, to be updated. If the statement does not have one of
these clauses, the application can call ct_cursor(CS_CURSOR_OPTION)
immediately after calling ct_dynamic to initiate the cursor-declare command.

You cannot batch the ct_dynamic cursor-declare command ¢ with ct_cursor
CUrsOr-rows or ct_cursor CUrsor-open commands.

Thefollowing example fragment shows how to declare and open a cursor with
aprepared statement:

Client-Library/C Programmers Guide 117

Using Client-Library cursors

/*

** Prepare the statenent.

*/

strcpy(body, “SELECT title_id, title, price FROMtitles

VWHERE price > ? FOR READ ONLY");
strcpy(stmt_id, "dyn_a");
retcode = ct_dynam c(cnd, CS PREPARE, stnt_id, CS NULLTERM
body, CS_NULLTERM ;

if (retcode != CS_SUCCEED)

{
ex_error("DoCursor: ct_dynam c(prepare) failed");
return retcode;

}

if ((retcode = ct_send(cnd)) != CS_SUCCEED)
{
ex_error("DoCursor: ct_send() failed");
return retcode;

}
ct_results() loop goes here. No fetchable results are
returned ...

/*

** Declare the cursor

*/

retcode = ct_dynam c(cnd, CS_CURSOR _DECLARE,
stmt_id, CS _NULLTERM
"cursor_a", CS_NULLTERM;
if (retcode != CS_SUCCEED)
{
ex_error("DoCursor: ct_dynam c(cursor declare) failed");
return retcode;

}

if ((retcode = ct_send(cnd)) != CS_SUCCEED)
{
ex_error("DoCursor: ct_send() failed");
return retcode;

}

ct_results() loop goes here. No fetchable results are
returned by the cursor-declare command . ..

118 Open Client

CHAPTER 7 Using Client-Library Cursors

Step 2: Set cursor rows

After aClient-Library cursor is declared, an application can call ct_cursor to
specify acursor-rows setting for the cursor. The value of the cursor-rows
setting defines the number of rowsthat the server returnsto Client-Library per
internal fetch request, not the number of rows returned to an application per
ct_fetch call. Aninternal fetch request is made when more rows are needed
from the server to satisfy ct_fetch requests.

By default, the cursor-rows setting is 1. If the application does not send a
cursor-rows command that precedes the cursor-open command, the cursor
rows setting is 1. For cursors declared with ct_cursor commands, the cursor-
rows command can be batched with the cursor-open command.

The cursor-rows settings determines how many rows Client-Library receives
from the server in response to each internal Client-Library fetch request. For
example, if cursor-rows is set to 5 and the application does not use array
binding, Client-Library makes an internal fetch request when an application
callsct_fetch thefirst time, the sixth time, and so on.

To facilitate amulti-row return from ct_scroll_fetch, you must use a cursor-row
setting greater than 1. For maximum efficiency, you must also use array
binding. Your array bind count should be equal to the CS_CURSOR_ROWS
value.

Note Array binding isrequired for ct_scroll_fetch if the
CS_CURSOR_ROWSsetting isgreater than 1. Array binding can be used with
both ct_fetch and ct_scroll_fetch. If CS_ CURSOR_ROWS is set to the default
value of 1, normal program variables may be used with either API call.

If you specify acursor-rows setting greater than 1, Client-Library buffersalso
handles additiona internal row fetches transparently. When an application
callsct_fetch to fetch a cursor row, Client-Library may read the row directly
from the network, send an internal fetch request to the server to get more rows,
or retrieve the row from an internal row buffer. Two situations require Client-
Library to buffer cursor rows internally:

¢ When the application sends a nested cursor-update or cursor-del ete
command.

« When the application sends a command on adifferent command structure
than the cursor’s.

In these situations, Client-Library must read and buffer any unread rows to
clear the connection for writing.

Client-Library/C Programmers Guide 119

Using Client-Library cursors

In general, a higher cursor-rows setting can benefit application performance
when processing aread-only cursor. A higher cursor-rows setting decreasesthe
number of network round trips required to fetch rows. However, if cursor-rows
is set too high and Client-Library must buffer rows, the buffering overhead can
outweigh the gains achieved by decreasing the number of round trips.

To minimize the likelihood that Client-Library will need to buffer rows, use
array binding with an array size that matches the cursor-rows setting. See the
reference page for ct_bind in the Open Client Client-Library/C Reference
Manual.

Step 3: Open the cursor

You initiate a cursor-open command by calling
ct_cursor(CS_CURSOR_OPEN). If the cursor requires input parameters,
definethem by calling ct_param or ct_setparam once for each parameter value.
Parameter values are required if any of the following conditions are true:

e Thebody of the cursor isa SQL text string that contains host variables.

¢ Thebody of the cursor is astored procedure that requires input parameter
values.

¢ Thebody of the cursor isadynamic SQL statement that contains dynamic
parameter markers.

Applicationsthat restore cursor-open commands should call ct_setparam rather
than ct_param to specify parameter valuesfor the cursor-open command. When
ct_setparam is used, the application can change the parameter values for the
restored cursor-open command. (See “Reopening a cursor” on page 121.)

Cursor command batching

120

Cursors declared with ct_cursor can be batched. The first time a cursor is
opened, an application can send the cursor-declare, cursor-rows, and cursor-
open commands with asingle cal to ct_send and process the results with a
single results loop.

When a cursor is reopened, the application can batch a cursor-rows command
with the cursor-open command.

Batching the commands reduces the number of network round trips required to
open the cursor.

Open Client

CHAPTER 7 Using Client-Library Cursors

Reopening a cursor

After the results of a cursor-open command have been processed, the previous
cursor-open command can be restored with asingle ct_cursor call (with the
syntax described bel ow). The restore operation readies the command structure
to send the previous cursor-open command. The following command
information is restored:

* Any cursor-rows commands that were batched with the cursor-open
command.

* Parameter values for the cursor-open command that were passed with
ct_param.

* Bindings to parameter source variables that were established with
ct_setparam. ct_send readsthe current values when the restored command
issent.

Cursor-declare commands that were batched with the cursor-open command
are not restored.

An application restores a cursor-open command by calling ct_cursor with type
asCS_CURSOR_OPEN and option asCS_RESTORE_OPEN. Most
applications use the program structure below to restore and send a cursor-open
command.

/*
** Assign new variables in the program vari abl es
** pound with ct_setparam
*/
assi gnment statenent for each paraneter
source variable ...
ct_cursor (CS_CURSOR OPEN, ..., CS RESTORE _OPEN)
ct_send
handl e cursor results ...

You can also reopen a cursor by initiating a new cursor open command
(preceded by acursor-rows command if necessary). However, applicationsthat
restore the previous command can eliminate several Client-Library calls.

Client-Library/C Programmers Guide 121

Using Client-Library cursors

Step 4: Process cursor rows

Cursor results should be processed by calling ct_results in a standard loop
structure (see “ Structure of the basic loop” on page 90). Cursor rows are
available when ct_results returns with result_type equal to
CS_CURSOR_RESULT. Cursor rows are handled like any other fetchable
result set. (See “Processing cursor results’ on page 93.)

The difference from other result types is that the application can issue new
commands while fetching cursor rows. These commands can be either of two

types:
¢ Nested cursor commands — cursor-close, cursor-delete, or cursor-update

commands executed using the command structure that control s the cursor,
or

¢ All other commands— any command executed using a separate command
structure.

Nested cursor-update or cursor-delete commands

122

While processing a cursor result set, an application can update or delete any
previously fetched row in the cursor result set. The modification is propagated
back to the base tables from which the cursor result set derives.

A cursor update command isinitiated by calling ct_cursor with type as
CS_CURSOR_UPDATE, name as the name of the base table, and text asa
SQL update clause. For example, the following call builds acommand to
update arow in the authors table of the pubs2 database:

ret_code = ct_cursor(cnd, CS _CURSOR_UPDATE,
“authors”, CS_NULLTERM *“update authors \
set au_lname = ‘Barr’”, CS_NULLTERM
CS_UNUSED) ;

ct_send(cnd);

ct_results(cnd, & es_type);

The cursor update can update columns from one table only. Separate
commands can be sent to update columns from more than one table.

A cursor-delete command is initiated by calling ct_cursor with type as
CS _CURSOR_DELETE, name as the name of the base table from which to
delete the row, and text as NULL.

After sending a cursor-update or cursor-del ete command, the application must
completely process the update or delete operation before calling ct_fetch again.

Open Client

CHAPTER 7 Using Client-Library Cursors

Key columns An application should avoid updating columnsthat are part of the cursor result
set’s primary key. ct_describe setsthe CS_KEY bit in the datafmt.status field
to indicate that a column is a primary key for the result set.

Redirected updates or By default, a cursor-update or a cursor-del ete affects the last-fetched row.

deletes However, you can redirect the update or delete to affect any previously fetched
row. Redirected updates or deletes are most commonly used by applications
that perform array binding to process the cursor rows.

Cursor updates or deletes are redirected by calling ct_keydata before sending
the command.

For an application that redirects updates, you must ensure that the command
structure’'s CS_HIDDEN_KEY S property is CS_TRUE before opening the
cursor. (Usect_cmd_props to set the property for the command structure before
opening the cursor, or use ct_con_props to set it at the connection level before
alocating command structures.) CS_HIDDEN_KEY S determineswhether the
cursor’s hidden-key columns are exposed to the application.

A hidden-key column isreturned with acursor’sresult set but was not specified
in the cursor’s select list. ct_describe setsthe CS_HIDDEN bit in the
datafmt.statusfield to indicate that a column was not part of the cursor’s select
list.

Hidden-key columns provide additional information that the server requiresto
find the destination rows for cursor updates and deletes. Normally, Client-
Library handles these additional columnsinternally and does not expose them
to the application. However, applications that perform redirected updates or
deletes must handle the hidden-key columns explicitly.

To redirect a cursor update or delete, an application must call ct_keydata and
specify values for every column in the row that is a version key or a primary
key (including hidden columns). These terms are explained below:

e A primary-key column is part of the primary key for the cursor result set.
ct_describe setsthe CS_KEY hit in the datafmt.status field to indicate that
acolumn isaprimary key for the result set.

e A version-key columnisareal table column (not an expression in the
select list) that is not part of the primary key for the cursor result set.
ct_describe setsthe CS_VERSION_KEY bit in the datafmt.status field to
indicate that a column isaversion key for the result set.

A hidden-key column can be either a primary-key column or a version-key
column.

Client-Library/C Programmers Guide 123

Using Client-Library cursors

Applications that redirect cursor updates must be coded according to the rules
below:

Make sure the CS_HIDDEN_KEY S property is CS_TRUE for the
command structure before the cursor is opened.

When processing the cursor rows, cal ct_describe to obtain
CS _ DATAFMT information for al cursor columns, including hidden
columns. Save the information for use with later updates.

Ininteractive applications, usetheCS_HIDDEN bitintheCS DATAFMT
status field to determine whether a column should be displayed.

When retrieving rows, save column values for all rows that can be
updated. These values are required asinput to ct_keydata.

Toupdate apreviously fetched row, call ct_keydata for every columninthe
row whose matching CS_DATAFMT statusfield has either the CS_KEY
or CS_VERSION_KEY hit set.

Avoid updating key columns. Check the CS_KEY hit inthe
CS DATAFMT statusfield to determine whether a column is akey
column.

Nested cursor-close commands

Sending commands

124

An application can close a cursor before fetching all its rows by sending a
cursor-close command and handling the results. See“ Step 5: Close the cursor”
on page 125 for more details.

Closing acursor is preferred over calling ct_cancel to discard unwanted cursor
rows for the following reasons:

Calling ct_cancel(CS_CANCEL_ALL) or
ct_cancel(CS_CANCEL_ATTN) can cause a connection’s cursors to go
into an undefined state.

Calling ct_cancel(CS_CANCEL_CURRENT) can waste network
bandwidth. This call causes Client-Library to fetch the remaining rows
over the network and discard them.

on a different command structure

An application can send commands, which are unrelated to the original cursor,
on a separate command structure while fetching the rows from the original
Ccursor.

Open Client

CHAPTER 7 Using Client-Library Cursors

For example, the application might issue a select or an update based on the
cursor data. In this case, the application must completely process the results of
the new command before fetching the next cursor row. The application could
also open a new cursor. In this case, the new cursor must be opened and its
command handle must be ready to return cursor rows before the application
can perform another operation on the original cursor.

Step 5: Close the cursor

An application initiates a cursor-close command by calling ct_cursor with type
asCS _CURSOR_CLOSE. If the application will not use the cursor again, it
can close and deallocate the cursor with one command by passing ct_cursor’'s
option parameter as CS_DEALLOC. Otherwise, option should be
CS_UNUSED.

Step 6: Deallocate the cursor

An application initiates a cursor-deallocate command by calling ct_cursor with
typeas CS_CURSOR_DEALLOC. If an application does not explicitly
deallocate a cursor, it is deallocated when the application disconnects.

Client-Library cursor properties

Once a Client-Library cursor is declared, it is associated with only one
command structure. Applications can obtain information about the cursor
associated with acommand structure by calling ct_cmd_props to retrieve the
following properties:

¢ CS_CUR_ID - contains the cursor’s server identification number. A
cursor’s identification number can be retrieved after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor existsin a
particular command space.

¢ CS_CUR_NAME - contains the cursor’s name. An application can use
the CS_CUR_NAME property to retrieve a cursor’s name any time after
itsct_cursor(CS_CURSOR_DECLARE) call returns CS_SUCCEED.

Client-Library/C Programmers Guide 125

Client-Library cursor properties

126

¢ CS_CUR_ROWCOUNT - contains the cursor-rows setting. This setting
isthe number of rows returned to Client-Library per internal fetch request.
A cursor’srow count can be retrieved after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor existsin a
particular command space.

¢ CS _CUR_STATUS - indicates the cursor status. An application can use
the CS_CUR_STATUS property to determine:

e Whether a cursor exists within acommand space

¢ Whether the cursor is open

¢ Whether the cursor can be used for updates

¢ Whether the cursor is read-only, has sensitivity, and has scrollability.

Cdling ct_cancel can cause a connection’s cursors to enter an undefined
state. An application can use the cursor status property to determine how
acancel operation has affected a cursor.

¢ CS HAVE_CUROPEN —indicates whether the command structure has a
cursor-open command that can be restored. See “Reopening a cursor” on
page 121.

All of these properties are retrieve-only command structure properties whose
values can beretrieved by calling ct_cmd_props. See the reference page for
ct_cmd_props in the Open Client Client-Library/C Reference Manual.

Open Client

CHAPTER 8 Using Dynamic SQL Commands

This chapter explains Dynamic SQL, including:

Topic Page
Dynamic SQL overview 127
Benefits of dynamic SQL 128
Limitations of dynamic SQL 128
Alternatives to dynamic SQL 130
Using the execute-immediate method 130
Using the prepare-and-execute method 131
Dynamic SQL versus stored procedures 138

Dynamic SQL overview

Dynamic SQL isthe process of generating, preparing, and executing SQL
statements at run time using commands initiated by Client-Library’s

ct_dynamic routine.

Dynamic SQL is primarily useful for precompiler support, but it can aso

be used by interactive applications.

Client-Library and Adaptive Server Enterprise allow two methods of

dynamic SQL command execution:

» Execute-immediate — the client application sends the server a

ct_dynamic command that executes a literal statement. Thisis
essentially the same process as sending alanguage command, but
with more restrictions. (See “Language commands’ on page 76.)

* Prepare-and-execute — the client application sends the server a
sequence of server commands that prepares a statement and executes
it one or more times. The application can send additional commands
to query the server for the formats of the statement’sinput parameters

and the result set that it returns.

Client-Library/C Programmers Guide

127

Benefits of dynamic SQL

With the prepare-and-execute methaod, the client application sends a
ct_dynamic(CS_PREPARE) command to the server to create a prepared
statement. A prepared statement is similar to an Adaptive Server Enterprise
stored procedure. When either is created, the server checks the SQL statement
syntax, builds an optimized query plan, and storesthe query planin preparation
for later execution. The key differences are asfollows:

¢ The prepared statement isdropped automatically when the client program
disconnects, while the stored procedure is not.

¢ Theprepared statement isreferenced by an identifier that isvisibleonly to
the connection that created the statement, while a stored procedure name
isvisible to any client connection. However, the procedure’s permissions
may restrict which users can execute it.

¢ Theclient program can easily determine the input (parameter) and output
(result) column formats for a prepared statement without executing it.

Benefits of dynamic SQL

Using dynamic SQL commands, an application can prepare a“generic” SQL
statement once and execute it multiple times. Statements can also contain
markers for parameter valuesto be supplied at execution time, so that the
statement can be executed with varying inputs.

Limitations of dynamic SQL

Dynamic SQL has some significant limitations.

Performance of dynamic SQL commands

A dynamic SQL implementation of an application generally performs worse
than an implementation where permanent Adaptive Server Enterprise stored
procedures are created and the client program invokes them with RPC
commands.

128 Open Client

CHAPTER 8 Using Dynamic SQL Commands

When you create Adaptive Server Enterprise stored procedures for an
application, SQL statement compilation and optimization are performed once
when the procedureis created. On the other hand, a dynamic SQL application
incurs compilation and optimization overhead every time the client program
runs. A dynamic SQL implementation also incurs database space overhead
because each instance of the client program must create separate compiled
versions of the application’s prepared statements. In contrast, when you design
an application to use stored procedures and RPC commands, all instances of
the client program can share the same stored procedures.

Adaptive Server Enterprise restrictions and database requirements

Adaptive Server Enterprise implements dynamic SQL using temporary stored
procedures. A temporary stored procedureis created when a SQL statement is
prepared, and destroyed when that prepared statement is deallocated. A
prepared statement can be deallocated either explicitly with a
ct_dynamic(CS_DEALLOC) cal or implicitly when a connection is closed.

As a consequence of thisimplementation, an application accessing Adaptive
Server Enterprise and using dynamic SQL is subject to the restrictions of
Adaptive Server Enterprise stored procedures. Some of theimplications of this
are

« Temporary tables are destroyed when the prepared statement is
deallocated.

* Parameters of text and image datatypes are not supported.
e The maximum number of parameters supported is 255.

« |If thedynamic SQL statement itself executes a stored procedure (with a
Transact-SQL execute statement), output parameter values and the return
status are unavailable to the client application.

* The datatype of the parameters represented by placeholders must be
known at parsing time. The following statements are not valid:

? <op>?, (?is null)
CONVERT(<type>, ?)

See the Transact-SQL Users Guide for a complete discussion of stored
procedures.

Client-Library/C Programmers Guide 129

Alternatives to dynamic SQL

Alternatives to dynamic SQL

Developerswho learn Sybase after learning another DBM S system should not
confuse Sybase’s dynamic SQL implementation with that of other vendors.
With Adaptive Server Enterprise, most command types are “dynamic.” The
closest analogy that Adaptive Server Enterprise offers to “static SQL
commands’ are stored procedures. However, any client application can invoke
astored procedure, as long as the procedure’s permissions alow the client
program’s user to execute it. Other DBMS systems may limit the scope of a
precompiled static SQL command to the precompiled application.

For Adaptive Server Enterprise applications, many tasksthat requireyou to use
dynamic SQL with another DBM S can be implemented with Client-Library
command types other than dynamic SQL . For example:

« For an application that must execute SQL statements whose text is not
known prior to runtime, you can code the client program to define
language commands by calling ct_command. This method is appropriate
for commands that are only executed once or asmall number of times.

e For an application that must execute commands whose text is known
before runtime and where performance is important, you can create an
Adaptive Server Enterprise stored procedure and code the client program
to invoke the procedure with RPC commands (defined with ct_command).

e For anapplication that must interactively define and open cursors, you can
code the client program to define the cursor-declare commands with
ct_cursor.

Using the execute-immediate method

The execute-immediate method executes a single SQL statement by sending a
single command to the server.

When to use the execute-immediate method

A dynamic SQL statement can be executed immediately only if it meetsthe
following criteria

e It doesnot return fetchable data (it is not a select statement).

130 Open Client

CHAPTER 8 Using Dynamic SQL Commands

« It does not contain placeholders for parameters (indicated by a question
mark (?) in the text of the statement).

Dynamic parameter markersact as placehol dersthat allow usersto specify
actual datato be substituted into a SQL statement at run time.

Generally, you should use the execute-immediate method when the application
executes a statement only once. Using the execute-immediate method, an
application can execute a statement more than once, but this method incurs the
overhead associated with repeated statement preparations.

Coding an execute-immediate command

To execute adynamic SQL statement using the execute-immediate method,
code your application to:

1 Storethetext of the dynamic SQL statement in a character string host
variable,

2 Cdl ct_dynamic withtype asCS EXEC_IMMEDIATE to initiate a
command to execute the statement, buffer as the address of the string
containing the SQL statement, and id asNULL.

3 Cadl ct_send to send the command to the server.

4 Cadl ct_results in a standard loop, as described in “ Structure of the basic
loop” on page 90. The value of the *result_type parameter indicates
whether the command succeeded (CS_CMD_SUCCEED) or failed
(CS_CMD_FAIL).

Using the prepare-and-execute method

For the prepare-and-execute method, the server performs the compilation and
execute operations separately in response to distinct commands.

When to use prepare-and-execute method

An application must use this method if the dynamic SQL statement meets any
of the following criteria:

Client-Library/C Programmers Guide 131

Using the prepare-and-execute method

An application should use this method if it will execute the statement multiple
timesbecauseit incursthe overhead associ ated with statement preparation only

It returns data.

It contains placeholders for values to be supplied at execution time,

represented by a question mark (?) character in the text of the statement.

when it first prepares the statement. Each subsequent execution of the
statement does not incur the cost of recompiling the statement.

The prepare-and-execute method offers the following advantages over the
execute-immediate method:

select statements can be executed.

Performance is better when statements are executed more than once.

The statement can take parameters whose val ues can change each timethe

statement executes.

Program structure for the prepare-and-execute method

Most applications will use the steps below to prepare and execute a dynamic
SQL statement:

132

1

Prepare the dynamic SQL statement.

e ct_dynamic(CS_PREPARE)

e ct send

e ct_results, inaloop

The prepare command returns no fetchable results.

(Optional) Get a description of the parameters required to execute the
prepared statement.

¢ ct_dynamic(CS_DESCRIBE_INPUT)
e ct send
e ct_results, inaloop

ct_results returns with aresult_type of CS_DESCRIBE_RESULT to
indicate that the parameter descriptions are available.

(Optional) Get adescription of the result columnsreturned by the prepared

statement.

Open Client

CHAPTER 8 Using Dynamic SQL Commands

e ct_dynamic(CS_DESCRIBE_OUTPUT)
e ct_send
e ct_results, inaloop

ct_results returns with aresult_type of CS_DESCRIBE_RESULT to
indicate that the description is available.

4 Execute the prepared statement or declare and open a cursor on the
prepared statement.

To execute the prepared statement (without a cursor):
e ct_dynamic(CS_EXECUTE).

e If necessary, define parameter values with ct_param, ct_setparam,
ct_dyndesc, Or ct_dynsqlda.

e ct_send.
e ct_results, in aloop. Fetchable results may require processing.

For adescription of how to execute a prepared statement with a cursor, see
“Using Client-Library cursors’ on page 111.

5 Dedlocate the prepared statement.

If acursor is declared on the statement, first close and deallocate the
cursor:

e ct_cursor(CS_CURSOR_CLOSE, CS DEALLQOC) or, if thecursoris
not open, ct_cursor(CS_CURSOR_DEALLOC)

e ct_send

e ct_results, inaloop

e Initiate and send a command to deallocate the prepared statement:
e ct_dynamic(CS_DEALLOC)

e ct_send

e ct_results, inaloop

The deallocate command returns no fetchable results.

Each step in the process above sends one dynamic SQL command to the server.
After sending each command, the application must handle the results with
ct_results. Code your application to handle the results of a dynamic SQL
command with a standard results loop, as discussed in “ Structure of the basic
loop” on page 90.

Client-Library/C Programmers Guide 133

Using the prepare-and-execute method

Step 1: Prepare the statement

To initiate acommand that prepares a dynamic SQL statement, an application
callsct_dynamic with typeas CS_PREPARE, id as acharacter string statement
identifier, and buffer as the statement to prepare. For example:

char *query = “select type, title, price \
fromtitles \
where title_id = ?”
ct_dynam c(cmd, CS_PREPARE, “nyid”, CS_NULLTERM
query, CS_NULLTERM ;

Statement identifiers must be unique among other dynamic SQL statements
prepared on the same connection.

ct_send sendsthe prepare command to the server, and astandard ct_results loop
handles the results.

Step 2: Get a description of command inputs

After a statement is prepared, the application can send a describe-input
command to the server to obtain a description of any parametersthat are
required to execute the statement. This description includes the number of
input values, aswell astheir datatypes, lengths, and so on. The application can
then use this information to prompt the end user for input values. After
prompting for input values, it can pass those values to the prepared statement
just prior to executing the statement.

Initiating a describe-input command

To initiate a describe-input command, the application calls ct_dynamic with
type as CS_DESCRIBE_INPUT and id as the statement identifier. ct_send
sends the command to the server, and a standard ct_results loop handles the
results.

Processing parameter descriptions

ct_results returns with result_type of CS_DESCRIBE_RESULT to indicate
that the input parameter formats are available. Applications can retrieve the
parameter formats in one of two ways:

¢ Withct_res_info and ct_describe

134 Open Client

CHAPTER 8 Using Dynamic SQL Commands

The application callsct_res_info to determine the number of parameters;
then, for each parameter, it callsct_describe toinitializeaCS_DATAFMT
structure with a description of the parameter.

Typically, an application using this method keeps the CS_ DATAFMT
structuresin an array or list for use with later callsto ct_param or
ct_setparam.

e Withct_dyndesc or ct_dynsqglda

Both these routines allow the application to retrieve formats into a
structure that can later be used to pass parameters for the command that
executes the statement. Both of these routines:

* Retrieve adescription of the input parameters required to execute a
prepared dynamic SQL statement

« Defineinput parameter values for the execution of a prepared
statement

* Retrieve adescription of the data results that will be returned when a
prepared statement is executed

* Retrieve datavaluesin the result set returned by the execution of a
prepared statement

The differences between the routines are:

e ct_dynsglda — retrieves formats into a SQLDA structure. The
application must allocate the memory for this structure before
retrieving formats into it. ct_dynsglda requires only asingle call to
perform each operation.

e ct_dyndesc — retrieves formatsinto an internal Client-Library data
structure that is hidden from the application. ct_dyndesc requires
several callsto perform a single operation.

ct_dyndesc and ct_dynsglda both call ct_res_info and ct_describe
internally. When used to pass parameter values, ct_dyndesc and
ct_dynsglda both call ct_param internaly.

Client-Library/C Programmers Guide 135

Using the prepare-and-execute method

Step 3: Get a description of command outputs

The application can send a describe-output command to get the format of the
result columnsthat will be returned when the prepared statement executes. For
example, an interactive application might use a describe-output command to
determine the number and format of result columns to prepare data structures
that are used when displaying the query results. A describe-output command
alows the application to determine the results format without executing the
prepared statement.

Note A singledynamic SQL batch may contain multiple SQL statements. The
description of the prepared statement output, however, only describes the first
resultset. You will receive full descriptions of each resultset only when the
dynamic SQL statement is executed.

Initiating a describe-output command

To initiate a describe-output command, the application calls ct_dynamic with
type as CS_DESCRIBE_OUTPUT and id as the statement identifier. ct_send
sends the command to the server, and a standard ct_results loop handles the
results.

Processing column descriptions

136

ct_results returns with result_type of CS_DESCRIBE_RESULT to indicate
that the result column formats are available. Applications can retrieve the
column formats in one of two ways.

¢ Withct_res_info and ct_describe

The application calls ct_res_info to get the number of columns, then, for
each parameter, callsct_describe to initializeaCS_DATAFMT structure
with adescription of the column.

Typically, an application using this method maintains an array or list of
CS DATAFMT structures for use with later callsto ct_bind.

¢ With ct_dyndesc or ct_dynsqglda

Both these routines allow the application to retrieve formats into a
structure that can later be used to retrieve row data when the prepared
statement executes.

Open Client

CHAPTER 8 Using Dynamic SQL Commands

e ct_dynsglda retrieves formats into a SQLDA structure. The
application must allocate the memory for this structure before
retrieving formatsinto it.

e ct_dyndesc retrieves formatsinto an internal Client-Library data
structure that is hidden from the application.

ct_dyndesc and ct_dynsglda both call ct_res_info and ct_describe
internally. When used to retrieve row data, ct_dyndesc and ct_dynsglda
both call ct_bind internally.

Step 4: Execute the prepared statement

To initiate acommand to execute the prepared statement, the application cals
ct_dynamic with typeas CS_EXECUTE and id asthe statement identifier. The
application must define any parameters required to execute the prepared
statement. Parameter values can be defined in one of several ways:

» By caling ct_param once for each parameter. ct_param and ct_setparam
offer the best performance. ct_param does not alow the application to
change parameter val ues before resending the command.

* By calling ct_setparam once for each parameter. ct_setparam takes
pointersto parameter source values. This method is the only one that
allows parameter values to be changed before resending the command.

» By calling ct_dyndesc several timesto allocate a dynamic descriptor area,
populate it with data values, and apply it to the command.
ct_dyndesc(CS_USE _DESC) callsct_param internally.

» By caling ct_dynsglda to apply the contents of a user-allocated SQLDA
structure to the command. Note that ct_dynsglda(CS_SQLDA_PARAM)
calsct_param internally.

The application can determine the number and format of aprepared statement’s
parameters by sending a describe-input command and handling the results
before executing the prepared statement. See “ Step 2: Get a description of
command inputs’ on page 134.

ct_send sendsthe command to the server, and astandard ct_results loop handles
the results. Code your application to handle the results with a standard results
loop, as discussed in “ Structure of the basic loop” on page 90.

Client-Library/C Programmers Guide 137

Dynamic SQL versus stored procedures

Step 5: Deallocate the prepared statement

Deallocating a prepared statement frees any resources associated with it.
Explicit deallocation is optional; if the application does not explicitly

deall ocate prepared statements, the server deallocates them when the client
program disconnects.

If acursor is declared on the prepared statement, the application must first
deall ocate the cursor before deallocating the statement. See * Step 6:
Deallocate the cursor” on page 125 for details.

To initiate a command to deall ocate the prepared statement, the application
callsct_dynamic withtypeasCS _DEALLOC and id asthe statement identifier.
ct_send sendsthe command to the server, and astandard ct_results loop handles
the resuilts.

Dynamic SQL versus stored procedures

For improved performance compared to dynamic SQL, application designers
can use Adaptive Server Enterprise stored procedures as an aternative where
the application requirements allow it.

There are similarities between dynamic SQL and stored procedures:
e Creating astored procedure is analogous to preparing a dynamic SQL
statement.

e A stored procedure’sinput parameters serve the same purpose as dynamic
parameter markers.

e Executing astored procedure is equivalent to executing a prepared
statement.

Stored procedures and dynamic SQL prepared statements offer identical
functionality, with the following exceptions:

e Dynamic SQL alowsretrieval of aprepared statement’s parameter
formats, while stored procedures do not. See“ Step 2: Get a description of
command inputs’ on page 134.

138 Open Client

CHAPTER 8 Using Dynamic SQL Commands

e Theformat for stored procedure results cannot easily be determined
programmiatically without executing the procedure. Dynamic SQL allows
retrieval of a prepared statement’s result column formats without
executing the statement. See “ Step 3: Get a description of command
outputs’ on page 136.

e User-created stored procedures are permanent database objects, while
prepared statements are automatically deall ocated when the user
disconnects from the server.

A dynamic SQL statement can be replaced by a stored procedure that returns
the same results. For example, the following dynamic SQL statement queries
the pubs2..titles table for books of a certain type in a certain price range:

select * from pubs2..titles
where type = ?
and price between ? and ?

Here, the dynamic SQL statement has dynamic parameter markers (?) for a
type value and two price values.

You can create an equivalent stored procedure as follows:

create proc titles_type_pricerange
@ype char(12),
@ricel noney,
@rice2 noney
as
select * fromtitles
wher e
type = @ype
and price between @ricel and @rice2

When executed with the same input parameter values, the prepared statement
and the stored procedure return the same rows. In addition, the stored
procedure returns a return status resullt.

Client-Library/C Programmers Guide 139

Dynamic SQL versus stored procedures

140 Open Client

CHAPTER 9 Using Directory Services

Thischapter describeshow Client-Library applications can useadirectory

service.
Topic Page
Directory service overview 141
How do applications use a directory service? 142
Searching the directory 142
Step 1: Starting the search 143
Step 2: Collecting search results in the directory callback 148
Step 3: Inspecting directory objects 152
Step 4: Cleaning up 166

Directory service overview

A directory stores information as directory entries and associates a
logical name with each entry. Each directory entry contains information
about some network entity, such as a user, a server, or aprinter.

A directory service (sometimes called a naming service) manages
creation, modification, and retrieval of directory entries.

By default, Client-Library uses the Sybase interfaces file as the directory
source. Sybase also provides directory drivers for several network-based
directory services such as DCE's Cell Directory Service (CDS) and the
Windows Registry service. For information about the directory drivers
that are available on your platform, see the Open Client and Server
Configuration Guide for Microsoft Windows and Open Client and Server
Configuration Guide for UNIX.

Client-Library/C Programmers Guide 141

How do applications use a directory service?

How do applications use a directory service?

Information about Sybase serversis stored in the directory. When an
application callsct_connect to open aconnection to aserver, it passesthe name
of the server’s directory entry asthe ct_connect server_name parameter.
ct_connect looks up the entry and retrieves the server’s network address and
any other information needed to establish the connection.

Applications can also search for available servers using Client-Library
routines.

Searching the directory

Example code

Before an application can search a directory, it must have set up the Client-
Library programming environment and allocated a CS_CONNECTION
structure. See Chapter 1, “ Getting Started with Client-Library” if you do not
already know how to initialize Client-Library and allocate a connection
structure.

The usedir.c sample program demonstrates how Client-Library applications
perform adirectory search. All of the code fragmentsin this chapter are taken
from usedir.c.

Program structure

142

To perform directory search, code your application to follow the steps below:
1 Beginthe search.
e ct_con_props to set directory service properties

e ct_callback toinstall apointer to the application’s directory callback
in the connection structure

Execute application codeto initialize alist or array that will collect
directory objects

e ct_ds_lookup to begin the search

Open Client

CHAPTER 9 Using Directory Services

Note that instead of calling ct_callback here, the application could have
installed the callback in the connection’s parent context structure before
alocating the connection. Then it would become the default directory
callback for al connections allocated from the context.

2 Collect search resultsin the directory callback.
¢ (Optiona) ct_ds_objinfo to inspect the object
e (Optiona) ct_ds_dropobj to drop unwanted objects

Execute application code to collect directory objects with an application
defined list or array.

During the directory search, ct_ds_lookup invokes the directory callback
once for each entry that is found in the search.

3 Inspect the directory objects. For each directory object:
e ct_ds_objinfo to get the object’s fully qualified name
e ct_ds_objinfo to get the number of attributes
e ct_ds_objinfo to get each attribute’s metadata and values
4 Clean up.
For each object, ct_ds_dropobj to deallocate the directory object

Step 1. Starting the search

An application starts a directory search by initializing the application data
structures that will hold the results, installing a directory callback, and calling
ct_ds_lookup.

Initialize data structures

The example code in this chapter collects directory objects in adata structure
caled SERVER_INFO_LIST, which can beimplemented asan array or list of
CS DS OBJECT pointers.

The code calls the following example routines to collect directory object
structures:

e sil_init_list — allocate and initialize an empty SERVER _INFO_LIST.

Client-Library/C Programmers Guide 143

Step 1: Starting the search

sil_add_object — add a directory object to the end of a
SERVER _INFO_LIST.

sil_extract_object — given a 1-based index number, retrieve a directory
object from the SERVER _INFO_LIST.

sil_list_len — get the number of objects stored in a SERVER_INFO_LIST.

sil_drop_list — deallocate a SERVER_INFO_LIST and al its constituents.
Cdlsct_ds_dropobj to deallocate each directory object in thelist.

These routines simply manage alist of CS_ DS _OBJECT pointers. Their
implementation is not shown here, but complete code can be found in the
usedir.c sample filein the Client-Library sample programs.

Setting directory service properties

Applications call ct_con_props to set directory service properties for a
connection. Applications most commonly set the following propertiesto
control a directory search:

144

CS DS DITBASE — specifies the node in the directory where the search
begins. DIT-base values must follow the syntax rules of the directory
service. Seethe “Directory Services’ topics page in the Open Client
Client-Library/C Reference Manual for example DI T-base values.

CS DS SEARCH —constrainsthe depth that the search descends beneath
the DIT base. The possible values of CS DS SEARCH are as follows:

Value

Meaning

CS_SEARCH_ONE_LEVEL
(default)

Search includes only the leaf entries that are
immedi ate descendants of the node specified by
CS DS DITBASE.

CS SEARCH_SUBTREE

Search the entire subtree whoseroot i s specified
by CS DS DITBASE.

Note The DCE directory driver doesnot allow CS DS SEARCH to be set to
avalue other than the default, CS_ SEARCH_ONE_LEVEL.

All directory service properties have a symbolic name that begins with
“CS _DS’. Seethe “Properties’ topics page in the Open Client Client-
Library/C Reference Manual for acomplete list of Client-Library properties.

Open Client

CHAPTER 9 Using Directory Services

Installing the directory callback

An application installs a directory callback by calling ct_callback with the
action parameter as CS_SET, the type parameter asCS_DS L OOKUP_CB,
and func as the address of the applications directory callback routine.

A directory callback can be installed at the context level or the connection
level. Connections that are allocated from a context inherit the context’s
directory callback. These stepsinstall the callback at the connection level.

Coding of the callback routine is discussed under “ Step 2: Collecting search
resultsin the directory callback” on page 148.

Calling ct_ds_lookup

Applications begin a search by calling ct_ds_lookup with action as CS_SET.

ct_ds_lookup takesaCS DS LOOKUP_INFO structure asits lookup_info
parameter that describes the search request. |ookup_info—>objclass must point
at aCS_OID structure that indicates the directory object class

CS OID_OBJSERVER. The other CS DS LOOKUP_INFO fields are
currently unused and should be all passed as NULL.

ct_ds_lookup aso takes a pointer to user-allocated data as its userdata
parameter. When ct_ds_lookup invokesthe application’sdirectory callback, the
callback receives the same pointer value as an input parameter.

Example code to start a directory search

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

get _servers()
get a list of directory objects that contain details

Par aneters

pserver_li st

The following fragment declares an application routine, get_servers, that
searches for server directory class objects:

Query the directory for servers and

Pointer to allocated connection structure.

-- Address of a pointer to a SERVER | NFO LI ST.
Upon successful return, the list will be initialized
and contain an object for each server found in the

Client-Library/C Programmers Guide 145

Step 1: Starting the search

*x NOTE: The caller must clean up the list with sil_drop_list()
* when done with it.

* %

** Returns

* CS_SUCCEED or CS _FAIL.

*

CS_RETCODE get _servers (conn, pserver_list)

CS_CONNECTI ON *conn;

SERVER | NFO_LI ST **pserver_li st;

{
CS_RETCCDE ret;
CS_INT reqid;
CS v D *ol dcal | back;
CsS AdD oi d;
CS_DS_LOCKUP_I NFO | ookup_i nf o;
/*

** Steps for synchronous-node directory searches:

* %

** 1. If necessary, initialize application specific data structures
*x (Qur application collects directory objects in *pserver_list).
** 2. Save the old directory callback and install our own.

*x Set the base node in the directory to search beneath

*x (CS_Ds_DI TBASE property).

** 4. Call ct_ds_l ookup to begin the search, passing any application

w

** specific data structures as the userdata argunent.

** 5. Client-Library invokes our callback once for each found object
** (or once to report that no objects were found). The call back
* (directory_cb) receives pointers to found servers and appends
** each to the list of servers.

** 6. Check the return status of ct_ds_| ookup.
** 7. Restore call backs and properties that we changed.

*/

/*

** Step 1. Initialize the data structure (*pserver_list).
*/

ret = sil_init_list(pserver_list);

if (ret '= CS_SUCCEED || (*pserver_list) == NULL)

{

ex_error("get_servers: Could not initialize list.");
return CS_FAIL;

}
/*
** Step 2. Save the old directory callback and install our own call back,

** directory_cbh(), to receive the found objects.
*/

146 Open Client

CHAPTER 9 Using Directory Services

ret = ct_call back(NULL, conn, CS_GET,
CS DS LOOKUP_CB, &ol dcal |l back);
if (ret == CS_SUCCEED)
{
ret = ct_call back(NULL, conn, CS_SET,
CS DS LOOKUP_CB, (CS vAD *)directory_chb);
}

if (ret !'= CS_SUCCEED)

{
ex_error("get_servers: Could not install directory callback.");
return CS_FAIL;

}
/*
** Step 3. Set the base node in the directory to search beneath

*x (the CS_DS DI TBASE connecti on property).
*/

ret = provider_setup(conn);

if (ret !'= CS_SUCCEED)

{
ex_error("get_servers: Provider-specific setup failed.");
return CS_FAI L,

}

/*

** Step 4. Call ct_ds_l ookup to begin the search, passing the server |ist
** poi nter as userdat a.

** Step 5. dient-Library invokes our call back once for each found object
*x (or once to report that no objects were found). Qur call back,

*x directory_chb, will receive a pointer to each found server object

*x and appends it to the list.

** Step 6. Check the return status of ct_ds_I| ookup.

*/

/*

** Set the CS_DS LOOKUP_INFO structure fields.
*/

| ookup_i nfo. path = NULL;

| ookup_i nfo. pathlen = 0;

| ookup_info.attrfilter
| ookup_i nfo. attrsel ect

NULL,;
NULL;

strcpy(oid.oid_buffer, CS O D OBIJSERVER);
oid.oid_l ength = STRLEN(oi d. oi d_buffer);
| ookup_i nfo. obj cl ass = &oi d;

Client-Library/C Programmers Guide 147

Step 2: Collecting search results in the directory callback

/*
** Begin the search.
*/
ret = ct_ds_l ookup(conn, CS_SET, &reqid,
& ookup_info, (CS_VA D *)pserver_list);
if (ret !'= CS_SUCCEED)
{
ex_error("get_servers: Could not run search.");
return CS_FAIL;
}
/*
** Step 7. Restore callbacks and properties that we changed.
*/
ret = ct_call back(NULL, conn, CS_SET,
CS DS LOCOKUP_CB, ol dcall back);
if (ret != CS_SUCCEED)
{

ex_error("get_servers: Could not restore directory call back.");
return CS_FAIL;

}
return CS_SUCCEED,

} /* get_servers() *

Step 2: Collecting search results in the directory
callback

During the directory search, ct_ds_lookup invokes the directory callback once

for each entry that is found in the search.

Defining the directory callback
A directory callback has the following prototype:

CS_RETCODE CS_PUBLI C

directory_cb (connection, reqid, status,
numentries, ds_object, userdata)

CS_CONNECTI ON *connecti on;

CS INT reqid;

CS_RETCODE st at us;

148

CHAPTER 9 Using Directory Services

CS_INT nunmentries;

CS_DS_OBJECT *ds_obj ect;

CsS_va D *user dat a;
where:

connection isthe pointer to the CS_CONNECTION structure used for the
directory lookup.

regid isthe request identifier returned by the ct_ds_lookup call that began
the directory lookup.

statusisthe status of the directory lookup request. status can be one of the
following values:

Status value Meaning

CS SUCCEED Search was successful

CS _FAIL Search failed

CS_CANCELED Search was canceled with
ct_ds_lookup(CS_CLEAR)

numentries is the count of directory objects remaining to be examined. If
entries were found, numentries includes the current object. If no entries
were found, numentriesisO.

ds_object isapointer to information about one directory object. ds_object
is(CS_DS OBJECT *)NULL if either of thefollowing is true:

e Thedirectory lookup failed (indicated by a status value that is not
equal to CS_SUCCEED), or

« Nomatching objectswerefound (indicated by anumentriesvaluethat
isOor less).

userdata is apointer to a user-supplied data area. If the application passes
apointer asct_ds_lookup’suserdata parameter, then the directory callback
receives the same pointer when it isinvoked.

userdata provides away for the callback to communicate with mainline
code.

The callback can return CS_CONTINUE or CS_SUCCEED.

A return of CS_SUCCEED truncates the search results: Client-Library
discards any remaining directory objects and stops invoking the callback.

A return of CS_CONTINUE causes Client-Library to invoke the callback
with the next directory object in the search results.

Client-Library/C Programmers Guide 149

Step 2: Collecting search results in the directory callback

Directory callback example

/*

The following example fragment defines a directory callback. This callback:
e Confirmsthat the directory object pointer isvalid.

¢ Addsthedirectory object to the application’slist of servers by calling the
sil_add_object example routine. When the mainline code calls
ct_ds_lookup, it passesthe address of aninitialized SERVER_INFO_LIST
asthe ct_ds_lookup userdata parameter. The callback receives the same
address as its own userdata parameter.

e Ifthelist of serversisfull, the callback returns CS_SUCCEED to truncate
the search results. Otherwise, the callback returns CS_CONTINUE.

** directory _ch() -- Directory callback to install in Cient-Library.

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

When we call ct_ds_l ookup(), Cient-Library calls this function
once for each object that is found in the search.

This particular callback collects the objects in
the SERVER INFO LI ST that is received as userdata.

Par anet ers

conn -- The connection handle passed to ct_ds_| ookup() to
begi n the search.
reqgid -- The request id for the operation (assigned by Cient-Library).
status -- CS_SUCCEED when search succeeded (ds_object is valid).
CS FAIL if the search failed (ds_object is not valid).
nunmentries -- The count of objects to be returned for the
search. Includes the current object. Can be 0 if search
fail ed.
ds_object -- Pointer to a CS_DS OBJECT structure. WII
be NULL if the search fail ed.
userdata -- The address of user-allocated data that was
passed to ct_ds_| ookup().

This particular callback requires userdata to be the
address of a valid, initialized SERVER | NFO LI ST pointer.
(SERVER_I NFO LI ST is an application data structure defined
by this sanple).

Ret ur ns

CS_CONTI NUE unl ess the SERVER | NFO LI ST pointed at by userdata fills
up, then CS_SUCCEED to truncate the search results.

S_RETCODE CS_PUBLI C

150

Open Client

CHAPTER 9 Using Directory Services

directory_cb(conn, reqid, status, nunentries, ds_object, userdata)
CS_CONNECTI ON *conn;

CS_INT reqid;
CS_RETCCDE st at us;
CS_INT numentri es;
CS_DS _OBJECT *ds_obj ect;
CS va D *user dat a;
{

CS_RETCODE ret;

SERVER | NFO_LI ST *server_list;

if (status !'= CS_SUCCEED || nunentries <= 0)

{
return CS_SUCCEED;
}
/*
** Append the object to the list of servers.
*/

server _list = *((SERVER_INFO LI ST **)userdata);
ret = sil_add_object(server_list, ds_object);
if (ret !'= CS_SUCCEED)

{
/*
** Return CS_SUCCEED to discard the rest of the objects that were
** found in the search.
*/
ex_error(
"directory_cb: Too many servers! Truncating search results.");
return CS_SUCCEED;
}
/*

** Return CS_CONTINUE so Cient-Library will call us again if nore
** entries are found.

*/

return CS_CONTI NUE;

} /* directory_cb() */

Client-Library/C Programmers Guide 151

Step 3: Inspecting directory objects

Step 3: Inspecting directory objects

Applications inspect the contents of a directory object with several callsto
ct_ds_objinfo. To an application, a directory object consists of the following
visible pieces:

« The object class that the object belongs to
e Theobject’sfully qualified name
¢ A numbered set of attributes

An object’s directory object class determines the object’s attributes and the
expected syntax (that is, datatype) for each attributes’ values.

Although object attributes appear as a numbered set, an application should be
coded to work independently of the order in which attributes are returned. A
directory object class does not define an ordering of attributes, and most
directory services do not guarantee that attributes will be ordered consistently
for different directory objectsin the same object class.

Most applications use a program structure similar to the one below to inspect a
directory object:

ct_ds_objinfo to get the directory object class (optional)

ct_ds_objinfo to get the fully qualified nane

application code to process fully qualified nane ..

for each desired attribute type

ct_ds_objinfo to get number of attributes

] =
whi | is less than nunber of attributes

i +1
ct_ds_objinfo to retrieve the netadata for attribute i
conpare returned attribute type to desired attribute type
if attribute types match

/* i is the nunber of the desired attribute */
break while
end if
end while

al l ocate sufficient space for attribute i’s val ues
ct_ds_objinfo to retrieve attribute i’s val ues
application code to process attribute values ...
end for

152 Open Client

CHAPTER 9 Using Directory Services

Attribute data structures

An attribute’s metadata is represented by aCS_ATTRIBUTE structure:

typedef struct _cs_attribute

{

CS_ O D
CS_I NT
CS_I NT

} CS_ATTRI BUTE;

where:

attr_type;
attr_syntax;
attr_nunval s;

e attr_typeisaCS_OID structure that uniquely describes the type of the
attribute. Thisfield tells the application which of an object’s attributes it
has received.

e attr_syntax is asyntax specifier that tells how the attribute valueis
expressed. Attribute values are passed withinaCS_ATTRVALUE union,
and the syntax specifier tells which member of the union to use.

e attr_numvalstells how many values the attribute contains. This
information can be used to size an array of CS_ATTRVALUE unionsto

hold the attribute values.

An attribute’s val ue(s) are represented by aCS_ATTRVALUE union:

typedef struct _cs_ds_| ookup_info

{

} CS_DS_LOOKUP_I NFO

CS OD
CS_CHAR
CS_INT
CS_DS_OBJECT
CS_DS_OBJECT

*obj cl ass;
*pat h;

pat hl en;
*attrfilter;
*attrsel ect;

Applications check the syntax field of the CS_ATTRIBUTE structure to
determine which member of aCS_ATTRVALUE union contains the actual
value. The following table shows the correspondence:

CS_ATTRIBUTE syntax specifier

CS_ATTRVALUE union member

CS ATTR_SYNTAX_STRING value_string
CS ATTR_SYNTAX_BOOLEAN value_boolean
CS ATTR_SYNTAX_INTEGER value_integer
CS ATTR_SYNTAX_TRANADDR | value tranaddr
CS ATTR_SYNTAX_OID value oid

Client-Library/C Programmers Guide

153

Step 3: Inspecting directory objects

Figure 9-1 shows an exploded view of the CS_ATTRVALUE union and its

member structures:

Figure 9-1: An exploded CS_ATTRVALUE union

{S_ATTRVALUE Union

\

CS_STRING value_string;

—>£S_STRING Structure

CS_BOOL value_boolean;

CS_INT str_length;

CS_INT value_enumeration;

CS_CHAR str_buffer

QS_MAX_DS_STRING];

CS_INT value_integer;

CS_0ID value_oid; | /€S 0ID Structure

CS_INT oid_length;

CS_TRANADDRR
value_tranaddr;

CS_CHAR oid_buffer
@_MAX_DS_STRING];

CS_TRANADDR Structure
CS_INT addr_accesstype;

CS_STRING addr_trantype;

kCS_STRING addr_trantype;

Example code to inspect a directory object

The following fragment declares an example routine, show_server_info, that
prints the contents of a directory object as text.

The code uses a static array, AttributesToDisplay, that lists the attribute types
(asOID strings) for the attributeswhose val ues should beretrieved, in the order
that they should be printed.

154 Open Client

CHAPTER 9 Using Directory Services

For each row in AttributesToDisplay, the example retrieves the values for the

attribute type (if any) and prints them.

/*

** AttributesToDisplay is a read-only static array used by
** the show_ server_info() function. It contains the Object
** Jdentifier (OD) strings for the server attributes to
** display, in the order that they are to be displ ayed.

*/

t ypedef struct

CS_CHAR type_string[CS_MAX DS STRI NG ;
CS_CHAR engl i sh_name[CS_MAX_DS_STRI NG ;
} AttrForDisplay;
#def i ne N_ATTRI BUTES 7
CS_STATIC AttrForDisplay AttributesToDi spl ay[N ATTRI BUTES + 1] =
{
{CS_O D_ATTRSERVNAME, "Server nane"},
{CS_O D _ATTRSERVI CE, "Service type"},
{CS_O D_ATTRVERSI ON, "Server entry version"},
{CS_O D_ATTRSTATUS, "Server status"},
{CS_O D_ATTRADDRESS, "Network addresses"},
{CS_O D_ATTRRETRYCOUNT, "Connection retry count"},
{CS O D_ATTRLOOPDELAY, "Connection retry |oop del ay"},
{

** show _server _info()
** Sel ectively display the attributes of a server directory
** obj ect .

** Paramet ers

*x ds_object -- Pointer to the CS_DS OBJECT that describes the
** server's directory entry.

** outfile -- Open FILE handle to wite the output to.

** Dependenci es
*x Reads the contents of the AttributesToD splay gl obal array.

* *

** Returns
** CS_SUCCEED or CS_FAI L.

*/

CS_RETCODE

show_server _i nfo(ds_object, outfile)
CS_DS_OBJECT *ds_obj ect ;

Client-Library/C Programmers Guide

155

Step 3: Inspecting directory objects

FI LE *outfil e;
{
CS_RETCCDE ret;
CS_CHAR scratch_str[512];
CS_INT outl en;
CS_INT cur_attr,
CS_ATTRI BUTE attr_net adat a;
CS_ATTRVALUE *p_attrval s;
/*
** Di stinguished nane of the object.
*/

ret = ct_ds_objinfo(ds_object, CS GET, CS DS DI ST _NAME, CS_UNUSED,
(CS vAO D *)scratch_str, CS _SIZEOF(scratch_str),

&out | en);
if (ret !'= CS_SUCCEED)
{
ex_error("show server _info: get distinguished name failed.");
return CS_FAIL;
}

fprintf(outfile, "Nane in directory: %\n", scratch_str);

for (cur_attr = 0; cur_attr < N_ATTRI BUTES; cur_attr++)
{
/*
** ook for the attribute. attr_get_by type() fails if the object
** jnstance does not contain a value for the attribute. If this
** happens, we just go on to the next attribute.
*/
ret = attr_get_by_ type(ds_object,
AttributesToDi splay[cur_attr].type_string,
&attr_netadata, &p_attrvals);
if (ret == CS_SUCCEED)

fprintf(outfile, "%:\n",
AttributesToDi splay[cur_attr].english_nane);
/*
** Display the attribute val ues.
*/
ret = attr_display_values(&ttr_metadata, p_attrvals, outfile);
if (ret !'= CS_SUCCEED)
{
ex_error(
"show server_info: display attribute values failed.");
free(p_attrval s);
return CS_FAIL;

156 Open Client

CHAPTER 9 Using Directory Services

YoI*oifox/
free(p_attrvals);
YoIroifox/
}y I* for */
return CS_SUCCEED;
} /* show_server_info() */

Retrieving an attributes value

The example fragment below contains the code for the attr_get_by_type
example utility routine. attr_get_by_type takes an OID string that specifiesthe
desired attribute type, searchesfor the desired attributein the directory object’s
attribute set, and returns the attribute’s metadata and values if they are found.

/ *

** get_attr_by_type()

*x CGet netadata and attribute values for a given attribute type.

* %

** Paraneters

** ds_object -- Pointer to a valid CS_DS OBJECT hidden structure.
** attr_type_str -- Null-term nated string containing the QD for the
*x desired attribute type.

*x attr_netadata -- Pointer to a CS_ATTRI BUTE structure to
** fill in.
** p_attrvals -- Address of a CS_ATTRVALUE uni on pointer.

i I f successful, this routine allocates an array

*x of size attr_netadata->nunmval ues, retrieves values into
*x it, and returns the array address in *p_attr_val ues.

*x NOTE: The caller nust free this array when it is no | onger
** needed.

* %

** Returns
** CS FAIL if no attribute of the specified type was found.
*x CS_SUCCEED for success.

*/
CS_RETCODE
attr_get_by type(ds_object, attr_type_str, attr_netadata, p_attrvals)
CS_DS OBJECT *ds_obj ect;
CS_CHAR *attr_type_str;
CS_ATTRI BUTE *attr_met adat a;
CS_ATTRVALUE **p_attrval s;
{
CS_RETCODE ret;
CS_INT numattrs;
CS_INT cur_attr;

Client-Library/C Programmers Guide 157

Step 3: Inspecting directory objects

CS_INT outl en;

CS_INT buf | en;

CS_BOCOL found = CS_FALSE;
/*

** Check input pointers. If not NULL, nake themfail safe.
*/

if (attr_nmetadata == NULL || p_attrvals == NULL)

{

}

attr_netadata->attr_nunval s = 0;

*p_attrvals = NULL;

/*

** Get nunber of attributes.

*/

ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS NUMATTR, CS_UNUSED,
(CS_.vOD *)#_attrs, CS_SIZEOF(num attrs),

NULL) ;
if (ret !'= CS_SUCCEED)
{

return CS_FAIL;

ex_error("attr_get_by type: get nunber of attributes failed.");
return CS_FAIL;

}
/*
** Look for the matching attribute, get the values if found.
*/
for (cur_attr = 1;
cur_attr <= numattrs && found != CS_TRUE;
cur_attr++)

/*
** Get the attribute' s netadata.
*/
ret = ct_ds_objinfo(ds_object, CS_GET, CS_DS ATTRI BUTE, cur_attr,
(CS_ VA D *)attr_netadat a,
CS_SI ZEOF(CS_ATTRI BUTE), NULL);

if (ret !'= CS_SUCCEED)
{

ex_error("attr_get_by type: get attribute failed.");

return CS_FAIL;

}

/*

** Check for a match.

*/

if (mtch_OD(& attr_netadata->attr_type), attr_type_str))

158 Open Client

CHAPTER 9 Using Directory Services

{
found = CS_TRUE;
/*
** Cet the values -- we first allocate an array of
** CS_ATTRVALUE uni ons.
*/
*p_attrvals = (CS_ATTRVALUE *) mal | oc(si zeof (CS_ATTRVALUE)
* (attr_metadata->attr_nunval s));
if (p_attrvals == NULL)
{
ex_error("attr_get_by type: out of nenory!");
return CS_FAIL;
}
bufl en = CS_SI ZEOF(CS_ATTRVALUE) * (attr_netadata->attr_nunval s);
ret = ct_ds_objinfo(ds_object, CS_GET, CS DS ATTRVALS, cur_attr,
(CS_.vAD *)(*p_attrval s), buflen, &outlen);
if (ret !'= CS_SUCCEED)
{
ex_error("attr_get_by type: get attribute values failed.");
free(*p_attrval s);
*p_attrvals = NULL;
attr_netadata->attr_numval s = 0;
return CS_FAIL;
}
}
}
/*
** Got the attribute.
*/
if (found == CS_TRUE)
{
return CS_SUCCEED,
}
/*
** Not found.
*/

attr_netadata->attr_nunvals = 0;
return CS_FAIL;
} /* attr_get_by_type() */

/*

** match_O D()

** Conpare a pre-defined O D string to the contents of
** CS A D structure.

* %

Client-Library/C Programmers Guide

159

Step 3: Inspecting directory objects

** Paraneters

*x oid -- Pointer to a CS OD structure. OD>o0id_|l ength should be
*x the length of the string, not including any null-term nator.
*x oid_string -- Null-ternminated OD string to conpare.

* %

** Returns

*x Non-zero if contents of oid->o0id buffer matches contents

*x of oid_string.

*/

int match_O D(oid, oid_string)

CS_A D *oid;

CS_CHAR *o0i d_string;

{

return ((strncnp(oid_string, oid->oid_buffer, oid->o0id_length) == 0)
&& ((oid->oid_length == strlen(oid_string))));
} /* match_OD() */

Processing attribute values

The code fragment below declares an example routine, attr_display_values,
which prints the values of an attribute as text. attr_display_values callstwo
other utility routines to perform its work:

e attr_val_as_string —formats an attribute value astext and putstheresult in
acharacter array.

e attr_enum_english_name — converts an integer or enumerated attribute
valueinto a printable character string

/*

** attr_display_val ues()

*x Wites an attribute's values to the specified text

*x file.

* %

** Paraneters

*x attr_netadata -- address of the CS_ATTRIBUTE structure that

** contains netadata for the attribute.

*x attr_vals -- address of an array of CS_ATTRVALUE structures.

*x This function assunes length is attr_metadata->attr_nunval s
* and val ue syntax is attr_metadata->attr_synt ax.

** outfile -- Open FILE handle to wite to.

* %

** Returns
** CS_SUCCEED or CS_FAI L.

160 Open Client

CHAPTER 9 Using Directory Services

*/
CS_RETCODE
attr_display_values(attr_netadata, attr_vals, outfile)
CS_ATTRI BUTE *attr_met adat a;
CS_ATTRVALUE *attr_vals;
FI LE *outfil e;
{
CS_INT i;
CS_CHAR out buf [CS_MAX_DS_STRING * 3];
CS_RETCCDE ret;
/*
** Print each val ue.
*/
for (i =0; i < attr_netadata->attr_numval s; i++)
{
ret = attr_val _as_string(attr_netadata, attr_vals + i,

outbuf, CS_MAX DS STRING * 3, NULL);
if (ret !'= CS_SUCCEED)
{
ex_error("attr_display_values: attr_val _as_string() failed.");
return CS_FAIL;
}
fprintf(outfile, "\t%\n", outbuf);

}

return CS_SUCCEED;

} /* attr_display_values() */

/*

** attr_val _as_string() -- Convert the contents of a CS_ATTRVALUE union to
** a printable string.

* %

** Parameters

*x attr_netadata -- The CS_ATTRI BUTE structure containi ng netadata

*x for the attribute val ue.

** val -- Pointer to the CS_ATTRVALUE uni on.

** buffer -- Address of the buffer to receive the converted val ue.
** buflen -- Length of *buffer in bytes.

*x outlen -- If supplied, will be set to the nunber of bytes witten
*x to *buffer.

* *

** Returns
** CS_SUCCEED or CS_FAI L.
*/

CS_RETCODE

Client-Library/C Programmers Guide 161

Step 3:

Inspecting directory objects

attr_val _as_string(attr_netadata, val, buffer, buflen, outlen)

CS_ATTRI BUTE *attr_met adat a;
CS_ATTRVALUE *val ;
CS_CHAR *buf fer;
CS_I NT buf | en;
CS INT *out | en;
{
CS_CHAR out buf [CS_MAX_DS_STRING * 4];
CS_CHAR scrat ch[CS_MAX_DS_STRI NG ;
CS_RETCCDE ret;
if (buflen == 0 || buffer == NULL)
{
return CS_FAlL;
}
if (outlen !'= NULL)
{
*outlen = 0;
}
switch ((int)attr_metadata->attr_syntax)
{
case CS_ATTR_SYNTAX_STRI NG
sprintf(outbuf, "%*s",
(int)(val ->val ue_string.str_| ength),
val - >val ue_string.str_buffer);
br eak;
case CS_ATTR_SYNTAX_BOOLEAN:
sprintf(outbuf, "%",
val - >val ue_bool ean == CS_TRUE ? "True" : "False");
br eak;
case CS_ATTR _SYNTAX_| NTEGER:
case CS_ATTR_SYNTAX_ENUMERATI ON:
/*
** Some enunerated or integer attribute values should be converted
** into an english-|anguage equival ent. attr_enum english_nane()
** contains all the logic to convert #define's into human
** | anguage.
*/
ret = attr_enum.english_name((CS_I NT)(val ->val ue_enunerati on),
&(attr_metadata->attr_type),
scratch, CS_MAX DS STRING NULL);
if (ret != CS_SUCCEED)
{
ex_error("attr_val _as_string: attr_enumenglish_name() failed.");
return CS_FAIL;
}
sprintf(outbuf, "%", scratch);
162 Open Client

CHAPTER 9 Using Directory Services

br eak;

case CS_ATTR _SYNTAX_TRANADDR:
/*
** The access type is an enunerated value. Get an english | anguage
** string for it.
*/

switch ((int)(val->val ue_tranaddr. addr_accesstype))

case CS_ACCESS_CLI ENT:
sprintf(scratch, "client");
br eak;

case CS_ACCESS ADM N:
sprintf(scratch, "adm nistrative");
br eak;

case CS_ACCESS M3MTAGENT:
sprintf(scratch, "managenent agent");
br eak;

defaul t:
sprintf(scratch, "%d",

(1 ong) (val - >val ue_t ranaddr. addr _accesstype));

br eak;

}

spri nt f (out buf,
"Access type '%'; Transport type '%'; Address '%'",
scrat ch,
val - >val ue_t ranaddr. addr _trantype. str_buffer,
val - >val ue_tranaddr. addr _tranaddress. str_buffer);

br eak;

case CS_ATTR_SYNTAX_ QO D:
sprintf(outbuf, "%*s",
(int)(val ->val ue_oid. oid_I ength),
val - >val ue_oi d. oi d_buffer);
br eak;
defaul t:
sprintf(outbuf, "Unknown attribute val ue syntax");
br eak;

} /* switch */
if (strlen(outbuf) + 1 > buflen || buffer == NULL)

{
return CS_FAIL;
}
el se
{

Client-Library/C Programmers Guide 163

Step 3: Inspecting directory objects

sprintf(buffer, "%", outbuf);
if (outlen !'= NULL)
{

}

}

return CS_SUCCEED,
} /* attr_val _as_string() */
/*
** attr_enum english_name()
*x Based on the attribute type, associate an english phrase with
*x a CS INT value. Use this function to get neani ngful nanes for
** CS_ATTR_SYNTAX_ENUMERATI ON or CS_ATTR SYNTAX | NTEGER attri bute

* % val ues.
* %

*outlen = strlen(outbuf) + 1;

* If the attribute type represents a quantity and not a nuneric code,
* then the value is converted to the string representati on of the
*x nunber. Unknown codes are handl ed the same way.

* %

** Parameters

** enumval -- The integer value to convert to a string.

*x attr_type -- Pointer to an O D structure containing the O D string
*x that tells the attribute's type.

* buffer -- Address of the buffer to receive the converted val ue.

*x buflen -- Length of *buffer in bytes.

** outlen -- If supplied, will be set to the nunber of bytes witten
** to *buffer.

* %

** Returns
** CS_SUCCEED or CS_FAIL
*/

CS_RETCODE
attr_enum engl i sh_nane(enumval, attr_type, buffer, buflen, outlen)
CS_INT enumval ;

Cs_ab *attr_type;

CS_CHAR *puffer;

CS INT buf | en;

CS INT *out | en;

{
CS_CHAR out buf [CS_MAX_DS_STRI NG ;
if (buffer == NULL || buflen <= 0)
{

return CS_FAIL;

if (outlen !'= NULL)

164 Open Client

CHAPTER 9 Using Directory Services

{
*outlen = O;
}
/*
** Server version nunber.
*/
if (mtch_OD(attr_type, CS O D ATTRVERSI ON))
{
sprintf(outbuf, "%d", (long)enumyval);
}
/*
** Server's status.
*/
else if (match_OD(attr_type, CS O D ATTRSTATUS))
{
switch ((int)enumyval)
{
case CS_STATUS_ACTI VE:
sprintf(outbuf, "running");
br eak;
case CS_STATUS STOPPED:
sprintf(outbuf, "stopped");
br eak;
case CS_STATUS_FAI LED:
sprintf(outbuf, "failed");
br eak;
case CS_STATUS UNKNOMN:
sprintf(outbuf, "unknown");
br eak;
defaul t:
sprintf(outbuf, "%d", (long)enumval);
br eak;
}
}
/*

** Anything else is either an enunerated type that we don't know

** about, or it really is just a nunber. W print the nuneric val ue.
*/

el se

{

}
/*
** Transfer output to the caller's buffer.
*/

sprintf(outbuf, "%d", (long)enumyval);

Client-Library/C Programmers Guide 165

Step 4: Cleaning up

if (strlen(outbuf) + 1 > buflen || buffer == NULL)

{ return CS_FAIL;

}

el se

{
sprintf(buffer, "%", outbuf);
if (outlen !'= NULL)
{ *outlen = strlen(outbuf) + 1;
}

}

return CS_SUCCEED,
} /* attr_enumenglish_nane() */

Step 4: Cleaning up

An application can call ct_ds_dropobj to deallocate each directory object that it
received through its directory callback.

Alternatively, directory objects are dropped implicitly when the application
calsct_con_drop to drop the parent connection.

166 Open Client

APPENDIX A Logical Sequence of Calls

Client-Library uses a state machine to enforce alogical order of
operations. It stores information about the last call that an application
made and limits the calls that can follow to those that are legal. For
example, an application must call ct_connect to connect to aserver before
it can call ct_send to send commands.

Client-Library state machines

The application programming interface (API) layer of Client-Library
consists of three state machines, each corresponding to one of the three
basic control structures: CS_CONTEXT, CS_CONNECTION, or
CS_COMMAND. See*“Hidden structures’ on page 29 for adiscussion of
the basic control structures.

At the context level, an application sets up its environment by: allocating
one or more context structures, setting CS-Library properties for the
contexts, initializing Client-Library, and setting Client-Library properties
for the contexts. See “Step 1: Set up the Client-Library programming
environment” on page 18.

At the connection level, an application connects to a server by: allocating
one or more connection structures, setting properties for the connections,
opening the connections, and setting any server options for the
connections. An application can allocate a connection structure only after
a context structure has been allocated. See “ Step 3: Connect to a server”
on page 22.

At the command level, an application allocates one or more command
structures, sends commands, and processes results. An application can
allocate a command structure only after a connection structure has been
allocated. See* Step 4: Send commands to the server” on page 24.

Client-Library/C Programmers Guide 167

Client-Library state machines

Command-level sequence of calls

Commands state

Itisat the command level that the logical sequence of calls becomes complex,
due to the larger number of routines that are managed at the command level.

Client-Library’s command state machine gets help from two other state tables
when it attempts to verify that a call to a particular routine is permitted: the
initiated-commands state table and the result-types state table.

table

The commands tabl e defines the states of an application. For example, it
defines acommand-sent state to indicates that the last call an application made
was ct_send.

The commands table also maps each state to valid Client-Library routines that
an application can call while in that state. For example, in the Command Sent
state, an application can cancel the command or the result set, get or set
command structure properties, perform operations on a dynamic SQL
descriptor area, receive a TDS packet from the server, or set up results for
processing.

See “Command states’ on page 170 for a detailed description of each of the
command states. See “ Callable routines in each command state” on page 172
for alist of legal callsin each command state.

Initiated-commands state table

168

The initiated-commands table controls the use of routines that initiate and set
up commands to be sent to a server (ct_command, ct_cursor, ct_dynamic,
ct_param, and so on). It provides afiner level of enforcement than is possible
with the commands table.

For example, the command state machine ensures that ct_param is called only
after acommand has been initiated. However, it cannot prevent an application
from calling ct_param when the initiated command does not take parameters
(asinthecase of act_cursor(CS_CURSOR_CLOSE)). It isin caseslike these
that the initiated-commands table enforces the logical sequence of calls.

As another example, assume that a Client-Library cursor is declared using the
cmdl CS_COMMAND structure. After the cursor-declare command is sent to
the server and the results are processed, the state machineisin the Idle state.

Open Client

APPENDIX A Logical Sequence of Calls

From the Idle state, the command state machine permits an application to
initiate a new command. It cannot prevent an application from declaring a
second cursor using thesame CS_COMMAND structurethat it used to declare
the first cursor (cmdl).

The Initiated Commands table, however, keeps track of the state of a cursor on
acommand handle. It recognizesthat, if a cursor has been previously declared
using aparticular CS_ COMMAND structure, a second attempt to declare a
cursor using the same CS_COMMAND structureisillegal.

See“Initiated commands” on page 183 for a detail ed description of each of the
initiated command states. See “Callable routines for initiated commands’ on
page 185 for a mapping of initiated command states with Client-Library
routines.

Result-types state table

Summary

The result-types table focuses on routines that return information about result
sets. The command state machine defines states (like Fetchable Results and
Fetchable Cursor Results) that indicate when results are available. The result-
types table goes a step further by indicating the type of available results.

Thisinformation isimportant because certain routines make sense only for
certain result types. For example, calling ct_compute_info isonly logical when
compute results are avail able, and calling ct_br_column isonly logical when
regular row results are available. In cases like these, the result-types table
enforces the logical sequence of calls.

See “Result types’ on page 188 for a detailed description of each of the result
type states. See “ Callable routines for each result type” on page 190 for a
mapping of result type states with Client-Library routines.

Theinformation that followsisareferencefor valid Client-Library application
behavior. Use it when you want to verify that a particular sequence of routine
calsisvalid or when you need to know “where to go from here.”

Note Client-Library returns descriptive error messages at runtime if an
application has not called routinesin alogical sequence.

Client-Library/C Programmers Guide 169

Command states

Command states

Client-Library keepstrack of acommand’scurrent state. A command can bein
any one of the following states.

Table A-1: Command states

Command state Meaning
Idle The application:
» Hasnot yet initiated a command,
» Hascompletely processed the results of the last command,
» Hasfetched al cursor rows but has not closed the Client-Library cursor, or
» Hasclosed aClient-Library cursor that is still associated with unprocessed
results.
Command The application called ct_command, ct_cursor, or ct_dynamic to initiate a
initiated command, but it has not yet sent it to the server.
Command Theapplication called ct_send to send acommand to the server, but it has not yet
sent called ct_results to set up result data for processing.
Non-fetchable The application called ct_results and the result set contains no actual result data.
results Additional callsto ct_results are necessary.
available

Or:
The application called ct_fetch, which returned CS_END_DATA.

ANSI-style cursor end-data

The application called ct_fetch, which returned CS_END_DATA, and the
CS_ANSI_BINDS property is set.

Fetchable The application called ct_results and the result set contai ns fetchable non-cursor

results results (compute results, return parameter results, regular row results, and stored
procedure return status results). ct_fetch has not been called yet.

Fetchable The application called ct_results and the result set contains fetchable cursor

cursor results results. ct_fetch has not yet been called.

Fetchable The application initiated a cursor-close command

nested (ct_cursor(CS_CURSOR_CLOSE)) before fetching from aresult set that

command contains fetchable cursor results.

Sent fetchable The application called ct_send to send the cursor-close command to the server

nested command before fetching from a result set that contains fetchable cursor results.

Processing The application called ct_results to process the results of the cursor-close

fetchable nested command command before fetching from aresult set that contains fetchable cursor resullts.

Fetching The application called ct_fetch at least once and is currently in the process of

results fetching results (compute results, return parameter results, regular row results,

and stored procedure return status results).

Fetching cursor results

The application called ct_fetch at least once and is currently in the process of
fetching cursor row results.

170

Open Client

APPENDIX A Logical Sequence of Calls

Command state

Meaning

Fetching nested command

The application initiated one of the following commands while fetching from a
result set that contains cursor results:

e Cursor-close (ct_cursor(CS_CURSOR_CLOSE))
» Cursor-update (ct_cursor(CS_CURSOR_UPDATE))
» Cursor-delete (ct_cursor(CS_CURSOR_DELETE))

Sent fetching The application called ct_send to send the cursor-

nested close, cursor-update, or cursor-delete command to the server while fetching
command from aresult set that contains cursor results.

Processing Theapplication called ct_results to process the results of the cursor-close, cursor-

fetching nested command

update, or cursor-del ete command while fetching from aresult set that contains
Ccursor results.

Result set The application canceled the current command

canceled (ct_cancel(CS_CANCEL_ALL)). An application can call ct_results once more
to return the command to an Idle state.

Undefined The command structure isin an undefined state. Call

ct_cancel(CS_CANCEL_ALL).

In receive passthrough

The application called ct_recvpassthru and CS_PASSTHRU_MORE was
returned.

In send
passthrough

The application called ct_sendpassthru and CS_PASSTHRU_MORE was
returned.

Command-level routines

These Client-Library routines are managed at the command level:

ct_bind ct_data_info ct_param
ct_br_column ct_describe ct_recvpassthru
ct_br_table ct_dynamic ct_res_info
ct_cancel ct_dyndesc ct_results
ct_cmd_drop ct_dynsqlda ct_send
ct_cmd_props ct_fetch ct_send_data
ct_command ct_get_data ct_sendpassthru
ct_compute_info ct_getformat ct_setparam
ct_cursor ct_keydata

Client-Library/C Programmers Guide

171

Command states

Callable routines in each command state

Table A-2 maps each command state to the Client-Library routines that an
application can call while in that state. It also identifies the state of the
command after the routine has completed.

Table A-2: Callable routines at each command state

Beginning state

Callable routines

Resulting command state

Idle

ct_cancel(CS_ CANCEL_ALL)
ct_cancel(CS_CANCEL_ATTN)

« Idle, if CS_SUCCEED.
« Undefined, if CS_FAIL.

ct_cmd_drop

Idle.

ct_cmd_props

Idle.

Idle ct_command e Command initiated, if CS_SUCCEED.
« Ide,if CS FAIL.
ct_cursor e Command initiated, if CS_SUCCEED.
« Idle, if CS_FAIL.
ct_dynamic e Command initiated, if CS_SUCCEED.
« Ide,if CS FAIL.
ct_dyndesc Idle.
ct_dynsglda Idle.
ct_sendpassthru ¢ Insend passthrough, if
CS PASSTHRU_MORE.
e Command sent, if CS_PASSTHRU_EOM.
« Undefined, if CS_FAIL.
Command ct_cancel(CS_ CANCEL_ALL) * ldle if CS SUCCEED.
initiated « Command initiated, if CS_FAIL.
ct_cancel(CS_CANCEL_ATTN) Command initiated.
ct_cmd_props Command initiated.
ct_cursor Command initiated.
ct_data_info(CS_SET) Command initiated.
ct_dyndesc Command initiated.
ct_dynsglda Command initiated.
ct_param Command initiated.
ct_setparam Command initiated.
ct_send e Command sent, if CS_SUCCEED.
« lIdle if CS_ CANCELED.
« Undefined, if CS FAIL.
ct_send_data e Command initiated, if CS_SUCCEED.
* Undefined, if CS FAIL.
172 Open Client

APPENDIX A Logical Sequence of Calls

Beginning state | Callable routines

Resulting command state

Command ct_cancel(CS CANCEL_ALL)
sent

Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN)

Command sent, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cmd_props

Command sent.

ct_dynsglda

Command sent.

ct_dyndesc

Command sent.

ct_recvpassthru

In receive passthrough, if
CS_PASSTHRU_MORE.

Idle, if CS_PASSTHRU_EOM,
CS_CANCELED.

Undefined, if CS_FAIL.

ct_results

Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS MSG_RESULT, CS CMD_SUCCEED,
CS CMD_FAIL, CS CMD_DONE,

CS ROWFMT_RESULT,

CS COMPUTEFMT_RESULT, or

CS _DESCRIBE_RESULT.

Fetchable results, if CS_SUCCEED and
*result_type equals CS_ ROW_RESULT,
CS COMPUTE_RESULT,

CS PARAM_RESULT, or

CS STATUS RESULT.

Fetchable cursor results, if CS_SUCCEED and
*result_type equals CS CURSOR_RESULT.
Idle, if CS_CANCELED or

CS END_RESULTS.

Undefined, if CS_SUCCEED and *result_type
equalsCS_ CMD_FAIL.

Non-fetchable ct_br_column Non-fetchable results available.
resglts ct_br_table Non-fetchable results available.
available

ct_cancel(CS_CANCEL_ALL)

Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN)

Non-fetchable results available, if
CS_SUCCEED.

Undefined, if CS_FAIL.

Client-Library/C Programmers Guide

173

Command states

Beginning state

Callable routines

Resulting command state

Non-fetchable
results
available

ct_cancel(CS_CANCEL_CURRENT)

* Non-fetchable results available, if
CS_SUCCEED.

« Undefined, if CS FAIL.

ct_cmd_props

Non-fetchable results available.

ct_compute_info

Non-fetchable results available.

ct_describe Non-fetchable results available.
ct_dyndesc Non-fetchable results available.
ct_dynsglda Non-fetchable results available.

ct_getformat

Non-fetchable results available.

ct_res_info

Non-fetchable results available.

ANSI-style cursor
end-data

174

ct_results

¢ Fetchableresults, if CS_SUCCEED and
*result_type equals CS ROW_RESULT,
CS_COMPUTE_RESULT,
CS PARAM_RESULT, or
CS_STATUS RESULT.

 Fetchable cursor results, if CS_SUCCEED and
*result_type equals CS_CURSOR_RESULT.

« Idle, if CS_ CANCELED or
CS END_RESULTS.

« Undefined, if CS_FAIL.

ct_bind

ANSI-style cursor end-data.

ct_br_column

ANSI-style cursor end-data.

ct_br_table

ANSI-style cursor end-data.

ct_cancel(CS_ CANCEL_ALL)

¢ Result set canceled, if CS_ SUCCEED.
« Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_ATTN)

* ANSI-style cursor end-dataif CS_SUCCEED.
« Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_CURRENT)

ANSI-style cursor end-data.

ct_cmd_props

ANSI-style cursor end-data.

ct_compute_info

ANSI-style cursor end-data.

ct_describe ANSI-style cursor end-data.
ct_dyndesc ANSI-style cursor end-data.
ct_dynsglda ANSI-style cursor end-data.
ct_fetch * ANSI-style cursor end-data, if

CS_END_DATA.
« ldle if CS CANCELED.
« Undefined, if CS FAIL.

Open Client

APPENDIX A Logical Sequence of Calls

Beginning state | Callable routines

Resulting command state

ANSI-stylecursor | ct_getformat

ANSI-style cursor end-data.

end-data ct_res_info ANSI-style cursor end-data.
ct_results » Non-fetchable results available, if
CS_SUCCEED and *result_type equals
CS MSG_RESULT or CS CMD_DONE.
¢ ldle if CS_ CANCELED.
« Undefined, if CS FAIL.
Fetchable ct_bind Fetchable results.
results ct_br_column Fetchable results.
ct_br_table Fetchable results.

ct_cancel(CS_CANCEL_ALL)

* Result set canceled, if CS_SUCCEED.
* Undefined, if CS _FAIL.

ct_cancel(CS_CANCEL_ATTN)

» Fetchableresults, if CS_SUCCEED.
« Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_CURRENT)

» Non-fetchable results available, if
CS_SUCCEED.

« Ide, if CS CANCELED.
« Undefined, if CS_FAIL.

ct_cmd_props Fetchable results.
ct_compute_info Fetchable results.
ct_describe Fetchable results.
ct_dyndesc Fetchable results.
ct_dynsqglda Fetchable results.
ct_fetch ¢ Fetching results, if CS_SUCCEED or

CS_ROW_FAIL.

* Non-fetchable results available, if
CS END_DATA.

« Idle, if CS CANCELED.
« Undefined, if CS_FAIL.

ct_getformat

Fetchable results.

ct_res_info

Fetchable results.

Client-Library/C Programmers Guide

175

Command states

Beginning state

Callable routines

Resulting command state

Fetchable ct_bind Fetchable cursor results.
cursor results ct_cancel(CS_ CANCEL_ALL) + Result set canceled, if CS_SUCCEED.
« Undefined, if CS FAIL.
ct_cancel(CS_CANCEL_ATTN) « Fetchable cursor results, if CS_SUCCEED.
« Undefined, if CS FAIL.
ct_cancel(CS_CANCEL_CURRENT) | ¢ Non-fetchableresultsavailable, if
CS SUCCEED.
« ldle if CS_CANCELED.
« Undefined, if CS FAIL.
ct_cmd_props Fetchable cursor results.
ct_cursor ¢ Fetchable nested command, if CS_SUCCEED.
» Fetchable cursor results, if CS_FAIL.
ct_describe Fetchable cursor results.
ct_dyndesc Fetchable cursor results.
ct_dynsqglda Fetchable cursor results.
ct_fetch Fetching cursor results, if CS_SUCCEED or
CS_ROW_FAIL.
« lIdle, if CS_ CANCELED.
* Non-fetchable results available, if
CS END_DATA.
* ANSI-stylecursor end-data, if CS_END_DATA
and CS_ANSI_BINDS property is set.
« Undefined, if CS FAIL.
ct_getformat Fetchable cursor results.
ct_res_info Fetchable cursor results.
Fetchable ct_cancel(CS_ CANCEL_ALL) ¢ Fetchable cursor results, if CS_SUCCEED.
nested « Fetchable nested command, if CS_FAIL.
command ct_cancel(CS_CANCEL_ATTN) « Fetchable nested command, if CS_SUCCEED.
« Undefined, if CS FAIL.
ct_cmd_props Fetchable nested command.
ct_dyndesc Fetchable nested command.
ct_dynsglda Fetchable nested command.
ct_param Fetchable nested command.
ct_setparam Fetchable nested command.
ct_send e Sent fetchable nested, if CS_SUCCEED.
« lIdle if CS_ CANCELED.
« Undefined, if CS FAIL.
176 Open Client

APPENDIX A Logical Sequence of Calls

Beginning state

Callable routines

Resulting command state

Sent fetchable
nested

ct_cancel(CS CANCEL_ALL)

» Result set canceled, if CS_ SUCCEED.
* Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_ATTN)

» Sent fetchable nested, if CS_SUCCEED.
« Undefined, if CS FAIL.

ct_cmd_props

Sent fetchabl e nested.

ct_results

* Processing fetchable nested command, if
CS CMD_SUCCEED or CS CMD_FAIL.

« Idle, if CS CANCELED.
« Undefined, if CS_FAIL.

Processing
fetchable
nested
command

ct_cancel(CS CANCEL_ALL)

» Result set canceled, if CS_ SUCCEED.
« Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_ATTN)

« Processing fetchable nested command, if
CS_SUCCEED.

« Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT)

» Processing fetchable nested command, if
CS_SUCCEED.

« Undefined, if CS_FAIL.

ct_cmd_props

Processing fetchable nested command.

ct_dyndesc Processing fetchable nested command.
ct_dynsglda Processing fetchable nested command.
ct_res_info Processing fetchable nested command.
ct_results ¢ Fetchable cursor results, if

CS END_RESULTS.
« Idle, if CS_CANCELED.
« Undefined, if CS_FAIL.

Client-Library/C Programmers Guide

177

Command states

Beginning state | Callable routines

Resulting command state

Fetching results.

Fetching results.

Fetching ct_bind
results ct_br_column
ct_br_table

Fetching results.

ct_cancel(CS_CANCEL_ALL)

Result set canceled, if CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN)

Fetching results, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT)

Non-fetchable results available, if
CS_SUCCEED.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_cmd_props

Fetching results.

ct_compute_info

Fetching results.

ct_data_info(CS_GET)

Fetching results.

ct_describe

Fetching results.

ct_dyndesc

Fetching results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Fetching ct_dynsqglda
results

Fetching results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_fetch

Fetching results, if CS_SUCCEED.

Non-fetchable results available, if
CS END_DATA.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_get_data

Fetching results, if CS_SUCCEED.
Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

ct_getformat

Fetching results.

ct_res_info

Fetching results.

178

Open Client

APPENDIX A Logical Sequence of Calls

Beginning state

Callable routines

Resulting command state

Fetching
cursor
results

ct_bind

Fetching cursor results.

ct_cancel(CS CANCEL_ALL)

» Result set canceled, if CS_ SUCCEED.
« Undefined, if CS FAIL.

ct_cancel(CS_CANCEL_ATTN)

 Fetching cursor results, if CS_SUCCEED.
* Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT)

» Non-fetchable results available, if
CS_SUCCEED.

« Idle, if CS CANCELED.
« Undefined, if CS_FAIL.

ct_cmd_props

Fetching cursor results.

ct_cursor

¢ Fetching nested command, if CS_SUCCEED.
» Fetching cursor results, if CS_FAIL.

ct_describe

Fetching cursor results.

ct_dyndesc

« Fetching cursor results, if CS_ SUCCEED.
« ldle if CS_ CANCELED.
* Undefined, if CS FAIL.

ct_dynsqglda

« Fetching cursor results, if CS_ SUCCEED.
« ldle if CS_ CANCELED.
« Undefined, if CS FAIL.

ct_fetch

« Fetching cursor results, if CS_ SUCCEED.

* Non-fetchable results available, if
CS END_DATA.

* ANSI-stylecursor end-data, if CS_END_DATA
and CS_ANSI_BINDS property is set.

« Idle, if CS_CANCELED.
« Undefined, if CS_FAIL.

ct_get_data

« Fetching cursor results, if CS_ SUCCEED.
« ldle if CS_ CANCELED.
* Undefined, if CS FAIL.

ct_getformat

Fetching cursor results.

ct_keydata

Fetching cursor results.

ct_res_info

Fetching cursor results.

Client-Library/C Programmers Guide

179

Command states

Beginning state

Callable routines

Resulting command state

Fetching ct_cancel(CS_ CANCEL_ALL) Fetching cursor results, if CS_SUCCEED.
nested * Fetching nested command, if CS _FAIL.
command ct_cancel(CS_CANCEL_ATTN) + Fetching nested command, if CS_SUCCEED.
« Undefined, if CS FAIL.
ct_cmd_props Fetching nested command.
ct_dyndesc Fetching nested command.
ct_dynsqglda Fetching nested command.
ct_param Fetching nested command.
ct_setparam Fetching nested command.
ct_send « Sent fetching nested command, if
CS SUCCEED.
« ldle if CS_CANCELED.
« Undefined, if CS FAIL.
Sent fetching ct_cancel(CS_ CANCEL_ALL) ¢ Result set canceled, if CS_ SUCCEED.
nested « Undefined, if CS_FAIL.
command ct_cancel(CS_CANCEL_ATTN) « Sent fetching nested command, if
CS_SUCCEED.
« Undefined, if CS FAIL.
ct_cmd_props Sent fetching nested command.
ct_results * Processing fetching nested command, if
CS CMD_SUCCEED or CS CMD_FAIL.
« ldle if CS_CANCELED.
* Undefined, if CS FAIL.
180 Open Client

APPENDIX A Logical Sequence of Calls

Beginning state

Callable routines

Resulting command state

Processing
fetching
nested command

ct_cancel(CS CANCEL_ALL)

Result set canceled, if CS_SUCCEED.
Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN)

Processing fetching nested command, if
CS SUCCEED.

Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_CURRENT)

Processing fetching nested command, if
CS_SUCCEED.

Undefined, if CS_FAIL.

ct_cmd_props

Processing fetching nested command.

ct_dyndesc Processing fetching nested command.
ct_dynsglda Processing fetching nested command.
ct_keydata Processing fetching nested command.
ct_res_info Processing fetching nested command.
ct_results » Processing fetching nested command, if

CS_SUCCEED.

Fetching cursor results, if CS_END_RESULTS.

Idle, if CS_CANCELED.
Undefined, if CS_FAIL.

Client-Library/C Programmers Guide

181

Command states

Beginning state

Callable routines

Resulting command state

Result set ct_cancel(CS_ CANCEL_ALL) * ldle if CS SUCCEED.
canceled « Undefined, if CS_FAIL.
ct_cancel(CS_CANCEL_ATTN) « Idle, if CS_SUCCEED.
« Undefined, if CS_FAIL.
ct_cmd_drop Idle.
ct_cmd_props Idle.
ct_command e Command initiated, if CS_SUCCEED.
« Idle, if CS_FAIL.
ct_cursor e Command initiated, if CS_SUCCEED.
« Ide,if CS FAIL.
ct_dynamic e Command initiated, if CS_SUCCEED.
« Idle, if CS_FAIL.
ct_dyndesc « Idle, if CS SUCCEED, CS ROW_FAIL, or
CS CANCELED.
« Undefined, if CS_FAIL.
ct_dynsqlda « Idle, if CS SUCCEED, CS ROW_FAIL, or
CS_CANCELED.
« Undefined, if CS FAIL.
ct_results ¢ Result set canceled, if CS_SUCCEED or
CS FAIL.
« ldle if CS_CANCELED.
ct_sendpassthru Result set canceled.
Undefined ct_cancel(CS_ CANCEL_ALL) * ldle if CS SUCCEED.
« Undefined, if CS FAIL.
ct_cancel(CS_CANCEL_ATTN) Undefined.
ct_cmd_props Undefined.
ct_dyndesc Undefined.
ct_dynsglda Undefined.
In receive ct_cancel(CS_CANCEL_ALL) « Idle, if CS_SUCCEED.
passthrough « Undefined, if CS FAIL.
ct_cancel(CS_CANCEL_ATTN) Inreceive passthrough, if CS_SUCCEED.
« Undefined, if CS_FAIL.
ct_cmd_props In receive passthrough.
ct_recvpassthru ¢ lIdle if CS_ PASSTHRU_EOM or
CS_CANCELED.
* Undefined, if CS FAIL.
182 Open Client

APPENDIX A Logical Sequence of Calls

Beginning state

Callable routines

Resulting command state

In send
passthrough

ct_cancel(CS CANCEL_ALL) .

Idle, if CS_SUCCEED.
« Undefined, if CS_FAIL.

ct_cancel(CS_CANCEL_ATTN) .

In send passthrough, if CS_SUCCEED.
« Undefined, if CS FAIL.

ct_cmd_props

In send passthrough.

ct_sendpassthru .

Command sent, if CS_ PASSTHRU_EOM.
« ldle if CS_ CANCELED.
* Undefined, if CS FAIL.

Initiated commands

In addition to command states, Client-Library keeps track of initiated
commands. An initiated command can bein any one of the following states:

Table A-3: Initiated command states

Initiated command
state

Meaning

Idle

The application either has not yet initiated acommand or has completely processed the
results of the last command.

Idle, with declared cursor

The application initiated a cursor-declare command
(ct_cursor(CS_CURSOR_DECLARE)), sent the command to the server, and
completely processed the results.

Idle, with opened cursor

The application initiated a cursor-open command (ct_cursor(CS_CURSOR_OPEN)),
sent the command, and fetched all the results (ct_results returned
CS _END_RESULTS), but has not yet closed the cursor.

Opened cursor, No rows
fetched

The application called ct_results but has not yet processed any of the results.

Opened cursor, fetching
rows

The application called ct_fetch at least once and is currently in the process of fetching
results.

ct_command command
initiated

The application initiated alanguage, message, package, or RPC command using
ct_command.

Initiated send-data

The application initiated a send-data or send-bulk-data command using ct_command.

Initiated cursor-declare

The application initiated a cursor-declare command
(ct_cursor(CS_CURSOR_DECLARE)) but has not yet sent it to aserver using ct_send.

Initiated cursor-rows

The application initiated a cursor-rows command using
ct_cursor(CS_CURSOR_ROWS).

Client-Library/C Programmers Guide

183

Initiated commands

Initiated command
state

Meaning

Initiated cursor-open

The application initiated a cursor-open command (ct_cursor(CS_CURSOR_OPEN))
but has not yet sent it to a server.

Initiated cursor-close

The application initiated a cursor-close command (ct_cursor(CS_CURSOR_CL OSE))
but has not yet sent it to a server.

Initiated cursor-deallocate

The application initiated a cursor-deall ocate command
(ct_cursor(CS_CURSOR_DEALLOC)) but has not yet sent it to a server.

Initiated cursor-update

The application initiated a cursor-update command
(ct_cursor(CS_CURSOR_UPDATE)) but has not yet sent it to a server.

Initiated cursor-delete
row

The application initiated a cursor-del ete command
(ct_cursor(CS_CURSOR_DELETE)) but has not yet sent it to a server.

Initiated dynamic cursor-
declare

The application initiated a cursor-declare command on a prepared dynamic SQL
statement (ct_dynamic(CS_CURSOR_DECLARE)) but has not yet sent it to a server.

Initiated dynamic The application initiated a command to deallocate a prepared SQL statement
deallocate (ct_dynamic(CS_DEALLOC)) but has not yet sent it to a server.

Initiated dynamic The application initiated a command to retrieve input parameter information
describe (ct_dynamic(CS_DESCRIBE_INPUT)) or column list information

(ct_dynamic(CS_DESCRIBE_OUTPUT)) but has not yet sent it to a server.

Initiated dynamic execute

The application initiated a command to execute a prepared SQL statement
(ct_dynamic(CS_EXECUTE)) but has not yet sent it to a server.

Initiated dynamic execute
immediate

The application initiated a command to execute aliteral SQL statement
(ct_dynamic(CS_EXEC_IMMEDIATE)) but has not yet sent it to a server.

Initiated dynamic prepare

The application initiated a command to prepare a SQL statement
(ct_dynamic(CS_PREPARE)) but has not yet sent it to a server.

ct_send_data

The application successfully called ct_send_data at least once.

succeeded
Initiated send-bulk The application initiated a send-bulk-data command
command (ct_command(CS_SEND_BULK_CMD)) but has not yet sent it to a server.

Initiated command routines

184

The following Client-Library routines are useful for processing initiated
commands:

ct_cmd_drop ct_dynamic ct_send_data
ct_command ct_dyndesc ct_setparam
ct_cursor ct_dynsqlda ct_sendpassthru
ct_data_info ct_param

Open Client

APPENDIX A Logical Sequence of Calls

Callable routines for initiated commands

Table A-4 maps each initiated command state to the Client-Library routines
that an application can call whilein that state.

Where “none” is specified, an application can call none of the routines listed
under “Initiated command routines” on page 184. From states that map to a

“none” value in the Callable Routines column, an application’s options are to
send (ct_send) or cancel (ct_cancel) the initiated command.

Client-Library/C Programmers Guide 185

Initiated commands

Table A-4: Callable routines for initiated command states

Initiated Command

Callable Routines

Idle

ct_cmd_drop
ct_command(CS_LANG_CMD)
ct_command(CS_MSG_CMD)
ct_command(CS_PACKAGE_CMD)
ct_command(CS_RPC_CMD)
ct_command(CS_SEND_BULK_CMD)
ct_command(CS_SEND_DATA_CMD)
ct_command(CS_SEND_DATA_NOCMD)
ct_cursor(CS_CURSOR_DECLARE)
ct_dynamic(CS_CURSOR_DECLARE)
ct_dynamic(CS_DEALLOC)
ct_dynamic(CS_DESCRIBE_INPUT)
ct_dynamic(CS_DESCRIBE_OUTPUT)
ct_dynamic(CS_EXECUTE)
ct_dynamic(CS_EXEC_IMMEDIATE)
ct_dynamic(CS_PREPARE)
ct_sendpassthru

Idle, with
declared cursor

ct_cursor(CS_CURSOR_ROWYS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_CLOSE, CS DEALLOC)
ct_cursor(CS_CURSOR_DEALLOQOC)
ct_dynamic(CS_DEALLOC)

Idle, with
opened cursor

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS DEALLOC)
ct_dynamic(CS_DEALLOQOC)

Opened cursor,
no rows fetched

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS DEALLOC)

Opened cursor,
fetching rows

ct_cursor(CS_CURSOR_CLOSE)
ct_cursor(CS_CURSOR_CLOSE, CS DEALLOC)
ct_cursor(CS_CURSOR_UPDATE)
ct_cursor(CS_CURSOR_DELETE)

ct_command command
initiated

ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_PARAM)
ct_param

ct_setparam

Initiated send-data

ct_data_info(CS_SET)
ct_send_data

186

Open Client

APPENDIX A Logical Sequence of Calls

Initiated Command

Callable Routines

Initiated cursor-declare

ct_cursor(CS_CURSOR_ROWS)
ct_cursor(CS_CURSOR_OPEN)
ct_cursor(CS_CURSOR_OPTION)
ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_PARAM)
ct_param

ct_setparam

Initiated cursor-rows

ct_cursor(CS_CURSOR_OPEN)

Initiated cursor-open

ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_PARAM)

ct_param

ct_setparam
Initiated cursor-close None
Initiated cursor- None
deallocate

Initiated cursor-update

ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_PARAM)
ct_param

ct_setparam

Initiated cursor-delete None
Initiated dynamic cursor- | None
declare

Initiated dynamic None
deallocate

Initiated dynamic None
describe

Initiated dynamic execute

ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_PARAM)
ct_param

ct_setparam

Initiated dynamicexecute
immediate

None

Initiated dynamic prepare

ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_PARAM)
ct_param

ct_setparam

ct_send_data succeeded

ct_send_data

Initiated send-bulk
command

ct_send_data

Client-Library/C Programmers Guide

187

Result types

Result types

188

Client-Library restricts the routines that can be called based on the result type
if acommand isin one of the following states:

Table A-5 briefly describes the different result types:

Results available

Fetchable results

Fetchable cursor results

Fetchable nested command

Sent fetchable nested command
Processing fetchable nested command
Fetching results

Fetching cursor results

Fetching nested command

Sent fetching nested command

Processing fetching nested command

Open Client

APPENDIX A Logical Sequence of Calls

Table A-5: Result type definitions

Result type Meaning

Regular row Zero or more rows of tabular data generated by the

results execution of a Transact-SQL select statement.

Cursor row Zero or more rows of tabular data generated when an

results application executes a Client-Library cursor-open
command.

Parameter A single row of message parameters or stored procedure

results return parameters.

Stored procedurereturn | A single row containing a single value (areturn status).

status

results

Message results No dataisavailable, but an application can cdll ct_res_info
to get the message’s ID.

Compute row A single row of tabular data with a number of columns

results equal to the number of columns listed in the compute
clause that generated the compute row.

CS _ CMD_DONE The results of acommand have been completely
processed.

CS CMD_SUCCEED | A command that returns no data (such as alanguage
command containing a Transact-SQL insert statement)

was successful.

CS CMD_FAIL The server encountered an error while executing a
command.

Regular row Format information for an associated regular row result

format results Set.

Compute row Format information for an associated compute row result

format results Set.

Describe results Descriptiveinformation returned astheresult of adynamic
SQL describe input or output command.

Extended error A single row of extended error data.

data results

Notification A single row of arguments with which aregistered

results procedure was called.

See Chapter 6, “Writing Results-Handling Code” for detailed information
about the various types of results.

Client-Library/C Programmers Guide 189

Result types

Result type processing routines

The following Client-Library routines are useful for processing various types

of results:
ct_bind ct_data_info ct_getformat
ct_br_column ct_describe ct_keydata
ct_br_table ct_dyndesc ct_res_info
ct_compute_info ct_dynsqlda

Callable routines for each result type

When an application calls ct_results to find out what kind of results are
available, Client-Library defineswhich routinesare callable based on thevalue

190

of the ct_results *result_type parameter.

Table A-6 maps each result type to the Client-Library routines that an
application can legally call to process that result type.

Open Client

APPENDIX A Logical Sequence of Calls

Table A-6: Callable routines for each result type
Result type Callable routines

Regular row results ct_bind

ct_br_column

ct_br_table

ct_data_info(CS_GET)

ct_describe

ct_getformat
ct_res_info(CS_BROWSE_INFO)
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_NUMORDERCOLYS)
ct_res_info(CS_ORDERBY_COLYS)
ct_res_info(CS_TRANS STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)
Cursor row results ct_bind

ct_describe

ct_getformat

ct_keydata
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ CMD_NUMDATA)
ct_res_info(CS_TRANS STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)
Parameter results ct_bind

ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)
Stored procedure ct_bind

return status results ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS_STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsglda(CS_SQLDA_BIND)
Message results ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_MSGTY PE)
ct_res_info(CS_TRANS STATE)

Client-Library/C Programmers Guide 191

Result types

Result type Callable routines

Compute row results ct_bind
ct_compute_info
ct_describe

ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS STATE)
ct_dyndesc(CS_USE_DESC)
ct_dynsqlda(CS_SQLDA_BIND)
CS CMD_DONE ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)
CS_CMD_SUCCEED ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)
CS_CMD_FAIL ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_ROW_COUNT)
ct_res_info(CS_TRANS_STATE)
Regular row format ct_describe

results ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_CMD_NUMDATA)
ct_res_info(CS_TRANS STATE)
Compute row format ct_compute_info

results ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUM_COMPUTES)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)
Describe results ct_describe
ct_res_info(CS_CMD_NUMBER)
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS STATE)
ct_dyndesc(CS_GETATTR)
ct_dyndesc(CS_GETCNT)
ct_dynsqlda(CS_GET_IN)
ct_dynsqlda(CS_GET_OUT)
Extended error data ct_bind

results ct_describe
ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

192 Open Client

APPENDIX A Logical Sequence of Calls

Result type Callable routines
Notification results ct_bind
ct_describe

ct_res_info(CS_NUMDATA)
ct_res_info(CS_TRANS_STATE)

Pending results

Multiple command structures sharing the same connection can block one
another when results are pending on the connection. “ Pending results’ isaterm
that indicates that the results of a command have not yet been completely
processed.

For example, assume that two command structures (A and B) share the same
connection structure. If A isin the Results Available state, B is blocked from
sending a command to the server because there are results pending on the
connection. B remains blocked until A processes al the results of the current
command and transitions into a state that indicates that no results are pending.

States that indicate pending results are:

* Command sent

* Resultsavailable

e ANSI-style cursor end-data

* Fetchable results

* Sent fetchable nested command

* Processing fetchable nested command
* Fetching results

e Sent fetching nested command

e Undefined

* Inreceive passthrough

e Insend passthrough

States that do not indicate pending results are:
o ldle

e Command initiated

¢ Fetchable cursor results

Client-Library/C Programmers Guide 193

Result types

194

Fetchable nested command

Fetching cursor results

Fetching nested command
Processing fetching nested command

Result set canceled

For adefinition of each command state, see Table A-1 on page 170.

Open Client

Index

A deinstalling 68
installing 68
replacing 68
See also Client message callback 20
storing callback locations 66
using to handle messages 65
chapters in this manual, summary of ix
character datatypes 54
chunked messages 70
Client message callback
Client-Library routinesit cancall 66
defining 66
vaid returnvalues 67

action parameter 41

Adaptive Server Enterprise
implementation of dynamic SQL 129
messages and extended error data 71
transaction states 72
user-defined datatypes 61

allocating
aCS BLKDESC structure 33
aCS COMMAND structure 24
aCS _CONNECTION structure 22
aCS CONTEXT structure 18

appégcrit[i)(ijl?ﬁg andlinking 4 when Client-Library failstocal 66
finishingup 26 Client messages 63

Client-Library
compiling and linking applications 4
errorsand messages 34

runtime requirements 4
stepsinasimpleprogram 4

exiting 27

extended error data 71
B generation of messages 63
] initializing 18,19
binary datatypes 53 messages 63
bmdlng N return codes 63
. definitionof 92 column-level dataaccess 71
bit datatype 54 command structure 31, 32
blk_alloc 33 dlocating 24
blk_drop 33 _ _ deallocating 27
browse-mode column information 34 setting and retrieving properties 24
buffer parameter 42 commands

buflen parameter 42 defining parametersfor 75
bulk copy initiating 25, 74
and CS_BLKDESC structure 33 sending to aserver 23
compilingand linking 4
compute format results
C how to process 101
compute results

calbacks 20 . how to process 98
advantages over inline message handling 64 routines for processing 97
combined with inline message handling 65 connectingto aserver 5, 22

Client-Library/C Programmers Guide 195

Index

connection structure 30, 32
alocating 22
dedllocating 27
setting and retrieving properties 22
storing information as properties 31
constants 37,39
format constants 38
miscellaneous constants 38
type constants 37
context structure 30
alocating 18
CICSrestriction 30
dedllocating 27
setting Client-Library properties 19
setting CS-Library properties 18
storing information as properties 30
control structures
basic control structures 31
conventions
parameter 39, 44
CS BIGDATETIME datatype 56
CS BIGTIME datatype 56
CS BINARY datatype 53
CS BIT datatype 54
CS BLKDESC structure 30, 32
CS BROWSEDESC structure 34
CS CLIENTMSG structure 34
storing messagetext 70
CS_CMD_DONE result type
meaning of 103
CS_CMD_FAIL result type
meaning of 103
CS_CMD_SUCCEED result type
meaning of 103

CS_COMMAND structure. See command structure 24

cs config 18
whentocal 5
CS_CONNECTION structure 29
See also connection structure 22
CS_CONTEXT structure 29
See also context structure 18
cs ctx_alloc
whentocal 5
cs _ctx_drop
whentocall 6
CS_CURL_ID property 125

196

CS_CUR_NAME property 125
CS_CUR_ROWCOUNT property 125
CS CUR_STATUS property 126
CS DATAFMT structure 34, 35
and Client-Library routines 35
and CS-Library routines 35
CS DATE datatype 56
CS DATEREC structure 34
CS_DATETIME datatype 56
CS DATETIMEA4 datatype 56
CS DECIMAL datatype 58
CS _DIAG_TIMEOUT_FAIL property
and inline message handling 69
CS_DS OBJECT hidden structure 30
ct_describe
and CS DATEREC structure 35
CS_EXTRA_INF property
and inline message handling 69
CS_FAIL symbol 39
CS FALSE symbol 39
CS_FLOAT datatype 57
CS FMT_PADBLANK format constant 38
CS FMT_PADNULL format constant 38
CS FMT_UNUSED format constant 38
CS_IMAGE datatype 58
CS_INT datatype 57
CS_IODESC structure 34, 35
CS _LOC_PROP property 18
CS LOCALE structure 30, 33
CS _LOGINFO structure 29, 32
CS_LONGBINARY datatype 53
CS_LONGCHAR datatype 54
CS MAX_NAME symbol 39
CS_MESSAGE_CB property 18
CS_MONEY datatype 58
CS_MONEY4 datatype 58
CS _NO_TRUNCATE property 70
and sequenced messages 70
CS NULLTERM symbol 39
CS_NUMERIC datatype 57
CS PROP_SSL_LOCALID structure 34
CS _REAL datatype 57
CS SERVERMSG structure 34, 36
storing messagetext 70
CS_SMALLINT datatype 57
CS_TEXT datatype 58

Open Client

CS TIME datatype 56
CS TINYINT datatype 57
CS TRAN_COMPLETED transaction state 72
CS_TRAN_FAIL transaction state 72
CS_TRAN_IN_PROGRESS transaction state 72
CS TRAN_STMT_FAIL transaction state 72
CS TRAN_UNDEFINED transaction state 72
CS _UNITEXT datatype 58
CS VARBINARY datatype 53
CS VARCHAR datatype 54
CS-Library
installing a CS-Library message callback 21
setting context properties 18
cstypes.h header file 45
ct_bind 92
and CS_ DATAFMT structure 35
whentocal 6
ct_br_column 34
ct_calback 68
whentocall 5
ct_cancel
cancel cursor results 95
ct_close
whentocall 6
ct cmd dloc 24
whentocall 5
ct_cmd_drop
whentocall 6
ct_cmd _props 24
ct_command 25,74
initiating alanguage command 76
whentocall 5
ct_compute_info 98
whentocall 98,99
ct_con_adloc
whentocall 5
ct_con props 22

whentocal 5
ct_config 19
whentocal 5
ct_connect 23

whentocall 5
ct_cursor 75,111
declaring a cursor to directly execute a select
statement 114
declaring a cursor to execute a stored procedure

Client-Library/C Programmers Guide

Index

116
whentocall 5
ct_describe 92
and CS_ DATAFMT structure 35
whentocal 5
ct_diag
handling messagesinline 68
usesof 68
ct_dynamic 75, 132
declaring a cursor to execute a prepared statement

117
whentocal 5
ct_exit
whentocall 6
ct fetch 92
whentocall 6
ct_getloginfo
and CS_LOGINFO structure 32
ct init 19
whentocal 5,19
ct_keydata
whentocall 123
ct_options
whentocal 5
ct_ param 75

and CS DATAFMT structure 35
ct res info 92
whentocal 5
ct_results 90
completely processed results 93
and CS CMD_DONE 103
and CS CMD_FAIL 103
and CS CMD_SUCCEED 103
cursor results 93
other values of result_type 102
whentocal 5
ct send 25
whentocall 5
ct_setloginfo
and CS_LOGINFO structure 32
ct_setparam 75
ctpublic.h header file
contents 18
and datatype definitions 45
cursor commands
initiating 74, 111

197

Index

cursor results
how to process 92

Cursors
and prepared dynamic SQL statements 117
declaring to execute a select statement 114
declaring to execute a stored procedure 116
declaring with ct_cursor 114, 116
declaring with ct_dynamic 117
properties 125
retrieving acursor'sname 125
retrieving a cursor’ sserver ID number 125
retrieving statusof 126
retrieving the current value of cursor rows 126
setting cursor rows 119

custom data conversion routines
installing 61

D

data

describing data and program variables 35
data conversion

installing custom conversion routines 61
datatype definitions 45
datatypes

Adaptive Server user-defined types 61
binary 53

bit 54

character 54

CS BIGDATETIME 56

CS BIGTIME 56

CS BINARY 53

CSBIT 54

CS DATE 56

CS DATETIME 56

CS DATETIME4 56

CS DECIMAL 58

CS FLOAT 57

CS IMAGE 58

CS INT 57

CS LONGBINARY 53

CS LONGCHAR 54

CS MONEY 58

CS MONEY4 58

CS NUMERIC 57

198

CS REAL 57
CS TEXT 58
CS TIME 56
CS TINYINT 57
CS UNITEXT 58
CS VARBINARY 53
CS VARCHAR 54
datetime 55
decimal 57
float 57
money 58
numeric 57
redl 57
SMALLINT 57
summary of datatypes 52
text andimage 58
type constants 37
user-defined types 61
datetime datatypes 55
deallocating
aCS BLKDESC structure 33
aCS COMMAND structure 27
aCS _CONNECTION structure 27
aCS CONTEXT structure 27
decimal datatype 57
describe results
how to process 101
routines for processing 100
directory object structure 32
dynamic SQL
Adaptive Server Enterprise restrictions and
requirements 129
advantages 128
aternativeto 138
and cursors 117
cannot retrieve stored procedure output parameters
and return values 129
how Adaptive Server implementsit 129
limitations 128
performance limitations 128
purpose 127
restrictions 128
stored procedures as alternatives 138
dynamic SQL commands
initiating 75, 132

Open Client

E

error and message handling
callback method 65
defining 5
inline method 68
necessity of 5
preventing message truncation 70
and sequenced messages 70
two methods 64
errors. See messages 63
execute immediate operation
criteria 130
exiting Client-Library 26, 27
exposed structures 33
CS BROWSEDESC 34
CS CLIENTMSG 34
CS DATAFMT 34
CS DATAREC 34
CS IODESC 34
CS PROP SSL_LOCALID 34
CS SERVERMSG 34
SQLCA 34
SQLCODE 34
SQLSTATE 34
extended error data 71

F

fetching
definitionof 92

file names, of libraries 4

files
header files 18

float datatype 57

format constants 38
CS FMT_NULLTERM 38
CS FMT_PADBLANK 38
CS FMT_PADNULL 38
CS FMT_UNUSED 38

format results
and CS_EXPOSE_FMTS property 102
how to process 101
routines for processing 101

Client-Library/C Programmers Guide

Index

H

header files 18

ctpublich 45

hidden structures

CS COMMAND 29
CS_CONNECTION 29
CS CONTEXT 29

CS DS OBJECT 30

CS LOCALE 30

CS LOGINFO 30
hierarchy of control structures 31

I
initializing
Client-Library 19
exampleof 18
initiating
commands 25, 74
inline message handling 68
advantages over callbacks 65
and ct_diag 65
and SQLCA, SQLCODE, SQLSTATE structures
36
combined with callbacks 65
and CS DIAG_TIMEOUT_FAIL property 70
and CS_ EXTRA_INF property 69
international support 33
item number parameters 41

L

language command
initiating 74
localization
CS _LOCALE structure 33
routines for manipulating CS_L OCALE structure
33
loggingintoaserver 23
login properties 32
loop for processing results 90

199

Index

M

message and error handling. See error and message handling
63
message callback
Client-Library 21
CS-Library 21
message command
initiating 74
message results
different from server messages 64
how to process 99
routines for processing 99
messages
chunked 70
client messages 34, 63
Client-Library messages 63
operating system messages 71
preventing truncation 70
ranges of Sybase- and user-defined messages 100
sequenced 70
server messages 36, 63, 64
money datatypes 58

N

NULL parameters 39

NULL substitution values 59
and cs_setnull 60
CS BIGDATETIME default 60
CS BIGTIME default 60
CS BINARY_TYPE default 60
CS BIT_TYPE default 60
CS_BOUNDARY_TYPE default 60
CS_CHAR _TYPE default 60
CS DATETIME_TYPE default 60
CS DATETIME4 TYPE default 60
CS DECIMAL_TYPE default 60
CS FLOAT_TYPE default 60
CS_IMAGE_TYPE default 60
CS INT_TYPE default 60
CS_MONEY_TYPE default 60
CS MONEY4_TYPE default 60
CS NUMERIC_TYPE default 60
CS_REAL_TYPE default 60
CS SENSITIVITY_TYPE default 60

200

CS_SMALLINT_TY PE default
CS TEXT_TYPE default 60

60

CS TINYINT_TYPE default 60

CS VARBINARY _TY PE default
CS VARCHAR_TY PE default

60
60

defining for user-defined datatypes 61

numeric datatype 57

O

Open Client

user-defined datatypes 61
operating system messages 71
outlen parameter 42

P

package command
initiating 74
parameter results
how to process 96
routines for processing 96
parameters
action parameter 41
buffer parameter 42
buflen parameter 42
conventions 39, 44

defining parametersfor acommand 75

input parameter strings 40
interaction between action, buffer,
parameters 42

item numbers 41

non-pointer parameters 40

NULL parameters 39

outlen parameter 42

output parameter strings 40

pointer parameters 39

unused parameters 39
prepare and execute operations

advantages 132

criteria 131

stepsto perform 132
prepared statement

definition of 128, 134

buflen, outlen

Open Client

whentouse 131
processing results 5,25
program structure 5, 27
connectingto aserver 22
finishingup 26
installing callbacks 20
processing results 25
sending commands 23
settingup 18
stepsin asimple program 4
program variables
describing 35
properties
login properties 32
setting Client-Library context properties 19
setting command properties 24
Setting connection properties 22
setting CS-Library context properties 18

R

real datatype 57
regular row format results
how to process 101
regular row results
how to process 90
remote procedure calls
advantages 83
comparing RPCs and execute statements 83
results
how to process 5, 25
return codes 63
return status results
how to process 97
routines for processing 97
row results
how to process 90
RPC command
initiating 74

S

scope of control structures 31
send-data command

Client-Library/C Programmers Guide

Index

initiating 74
sending commandsto aserver 5, 23
sequenced messages 70
and CS_NO_TRUNCATE property 70
server message callback
Client-Library routinesit cancall 67
defining 67
vaidreturnvalue 68
server messageresults 64
server messages 36, 63
descriptionof 64
difference between server messages and message
results 100
extended error data 71
server results
how to process 25
servers
connectingto aserver 5,22
loggingintoaserver 23
sending commandsto 5, 23
transaction states 72
Setting
Client-Library context properties 19
command structure properties 24
connection structure properties 22
CS-Library context properties 18
setting up aprogram’s environment 18
QL
dynamic SQL 127
SQLCA structure 34, 36
and CS_ EXTRA_INF property 69
no support for sequenced messages 71
SQLCODE structure 34, 36
and CS_EXTRA_INF property 69
no support for sequenced messages 71
SQLSTATE structure 34, 36
and CS_ EXTRA_INF property 69
no support for sequenced messages 71
stored procedures
and Client-Library cursors 116
declaring cursorsto execute 116
structures 29, 37
alocatingaCS_COMMAND structure 24
alocatinga CS_CONNECTION structure 22
alocatinga CS_CONTEXT structure 18
basic control structures 31

201

Index

command structure 29
connection structure 29
context structure 29
control structure hierarchy 31
CS BLKDESC 32
CS CLIENTMSG 34
CS_ COMMAND 31
CS_COMMAND structure 29
CS_CONNECTION 30
CS _CONNECTION structure 29
CS_CONTEXT 30
CS CONTEXT structure 29
CS DATAFMT 34
CS DATEREC 35
CS DS OBJECT 32
CS IODESC 35
CS LOCALE 33
CS LOGINFO 32
CS SERVERMSG 36
exposed structures 33
hidden structures 29
SQLCA 36
SQLCODE 36
SQLDA 37
SQLSTATE 36
symbalic constants 38
values subject to change 39
symbols
CS FALSE 39
CS SUCCEED 39
CS TRUE 39

T

text and image

describing data 36

routines to manipulate data 59
text and image datatypes 58
transaction states 72

CS TRAN_FAIL 72

CS TRAN_IN_PROGRESS 72

CS TRAN_STMT FAIL 72

CS TRAN_UNDEFINED 72
type constants 37

definitionof 52

202

types
definitionsof 45

U

unused parameters 39
user-defined datatypes 61

Adaptive Server Enterprise user-defined types 61

Vv

version behavior of Client-Library
setting 19

Open Client

	Client-Library/C Programmers Guide
	About This Book
	CHAPTER 1 Getting Started with Client-Library
	Client-Library overview
	Types of Client-Library applications
	Adaptive Server Enterprise client applications
	Open Server client or gateway applications

	A simple sample program
	Building programs
	Steps in the example
	Source listing

	Step 1: Set up the Client-Library programming environment
	Header files
	Allocating a context structure
	Setting CS-Library context properties
	Initializing Client-Library
	Setting Client-Library context properties
	External configuration

	Step 2: Define error handling
	Step 3: Connect to a server
	Allocating a connection structure
	Setting connection structure properties
	Required connection properties

	Logging in to a server

	Step 4: Send commands to the server
	Allocating a command structure
	Setting command structure properties
	Executing a command

	Step 5: Process the results of the command
	Step 6: Finish
	Deallocating command structures
	Closing and deallocating connections
	Exiting Client-Library
	Deallocating a context structure

	CHAPTER 2 Understanding Structures, Constants, and Conventions
	Hidden structures
	CS_CONTEXT
	CS_CONNECTION
	CS_COMMAND
	Control structure hierarchy

	Connection and command rules
	CS_LOGINFO
	CS_DS_OBJECT
	CS_BLKDESC
	CS_LOCALE
	Exposed structures
	CS_BROWSEDESC
	CS_CLIENTMSG
	CS_DATAFMT
	CS_DATEREC
	CS_IODESC
	CS_PROP_SSL_LOCALID
	CS_SERVERMSG
	SQLCA, SQLCODE, and SQLSTATE
	SQLDA

	Constants
	Type constants
	Format constants
	Other symbolic constants

	Conventions
	NULL and unused parameters
	Pointer parameters
	Non-pointer parameters

	Input parameter strings
	Output parameter strings
	Pointers to basic structures
	Item numbers
	action, buffer, buflen, and outlen

	CHAPTER 3 Using Open Client and Server Datatypes
	Types and type constants
	Where are datatypes declared?
	Why use Open Client and Open Server datatypes?
	unichar datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	unitext datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	xml datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	What are type constants?

	Datatype summary
	Binary types
	Bit types
	Character types
	Datetime types
	Numeric types
	Money types
	Text and image types

	Null substitution values
	Open Client user-defined datatypes

	CHAPTER 4 Handling Errors and Messages
	About messages
	How to identify messages
	Client-Library messages and Client-Library return codes
	Server messages and message results

	Two methods for handling messages
	Combining the methods

	Handling messages with callback routines
	Defining a client-message callback
	Defining a server-message callback
	Installing callbacks

	Handling messages inline
	The CS_EXTRA_INF property
	The CS_DIAG_TIMEOUT_FAIL property

	Sequencing long messages
	Extended error data
	Uses of extended error data

	Server transaction states

	CHAPTER 5 Choosing Command Types
	Command overview
	Types of commands
	Executing commands
	Initiating a command
	Defining parameters for a command
	Processing results
	Resending a command

	Language commands
	Building language commands
	Results-handling for language commands
	When to use language commands
	When not to use language commands

	RPC commands
	Building RPC commands
	RPC command results handling
	Return parameter values
	Return status values

	When to use RPC commands
	RPCs versus execute language commands

	Client-Library cursor commands
	Building Client-Library cursor commands
	When to use Client-Library cursors
	When not to use Client-Library cursors

	Dynamic SQL commands
	Building Dynamic SQL commands
	When to use dynamic SQL commands
	When not to use dynamic SQL

	Message commands
	When to use message commands
	When not to use message commands

	Package commands
	Send-data commands
	When to use send-data commands
	When not to use send-data commands

	CHAPTER 6 Writing Results-Handling Code
	Types of results
	Structure of the basic loop
	Processing regular row results
	Processing cursor results
	Processing scrollable cursor results

	Processing parameter results
	Processing return status results
	Processing compute results
	Processing message results
	Processing describe results
	Processing format results
	Values of result_type that indicate command status
	Logical commands

	ct_results final return code

	CHAPTER 7 Using Client-Library Cursors
	Cursor overview
	Language cursors versus Client-Library cursors
	Language cursors
	Client-Library cursors

	When to use Client-Library cursors
	Benefits of Client-Library cursors
	Nested cursor commands
	Commands executed using a different command structure

	Performance issues when using Client-Library cursors

	Using Client-Library cursors
	Step 1: Declare the cursor
	Declaring a cursor to directly execute a select statement
	Declaring a cursor to execute a stored procedure
	Declaring a cursor to execute a prepared dynamic SQL statement

	Step 2: Set cursor rows
	Step 3: Open the cursor
	Cursor command batching
	Reopening a cursor

	Step 4: Process cursor rows
	Nested cursor-update or cursor-delete commands
	Nested cursor-close commands
	Sending commands on a different command structure

	Step 5: Close the cursor
	Step 6: Deallocate the cursor

	Client-Library cursor properties

	CHAPTER 8 Using Dynamic SQL Commands
	Dynamic SQL overview
	Benefits of dynamic SQL
	Limitations of dynamic SQL
	Performance of dynamic SQL commands
	Adaptive Server Enterprise restrictions and database requirements

	Alternatives to dynamic SQL
	Using the execute-immediate method
	When to use the execute-immediate method
	Coding an execute-immediate command

	Using the prepare-and-execute method
	When to use prepare-and-execute method
	Program structure for the prepare-and-execute method
	Step 1: Prepare the statement
	Step 2: Get a description of command inputs
	Initiating a describe-input command
	Processing parameter descriptions

	Step 3: Get a description of command outputs
	Initiating a describe-output command
	Processing column descriptions

	Step 4: Execute the prepared statement
	Step 5: Deallocate the prepared statement

	Dynamic SQL versus stored procedures

	CHAPTER 9 Using Directory Services
	Directory service overview
	How do applications use a directory service?
	Searching the directory
	Example code
	Program structure

	Step 1: Starting the search
	Initialize data structures
	Setting directory service properties
	Installing the directory callback
	Calling ct_ds_lookup
	Example code to start a directory search

	Step 2: Collecting search results in the directory callback
	Defining the directory callback
	Directory callback example

	Step 3: Inspecting directory objects
	Attribute data structures
	Example code to inspect a directory object
	Retrieving an attributes value
	Processing attribute values

	Step 4: Cleaning up

	APPENDIX A Logical Sequence of Calls
	Client-Library state machines
	Command-level sequence of calls
	Commands state table
	Initiated-commands state table
	Result-types state table
	Summary

	Command states
	Command-level routines
	Callable routines in each command state

	Initiated commands
	Initiated command routines
	Callable routines for initiated commands

	Result types
	Result type processing routines
	Callable routines for each result type
	Pending results

	Index

