
Programmers Supplement

Open Client™ and Open Server™
15.0

[Microsoft Windows]

DOCUMENT ID: DC35455-01-1500-05

LAST REVISED: December 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Programmers Supplement for Microsoft Windows iii

About This Book .. vii

CHAPTER 1 Building Open Client and Open Server Applications 1
Open Client and Open Server requirements.................................... 1

C compilers ... 2
Client-Library compatibility .. 2
Open Server compatibility ... 3

Environment variables and header files ... 3
Header files ... 4

Import libraries and Dynamic Link Libraries (DLLs) 5
Import libraries... 5
Dynamic link libraries (DLLs)... 5

Configuration requirements .. 6
Platform-specific default values.. 7
Client-Library programming issues... 7

ct_callback... 7
Using the debug DLLs... 8
Multithreaded support.. 8
Example compile-and-link operations 8

DB-Library programming issues... 10
Compile-and-link line examples .. 10

Server-Library programming issues ... 11
srv_callback... 11
Scheduling modes... 11
Preemptive mode programming overview............................... 11
srv_sleep ... 12
srv_wakeup ... 12
Example of compile-and-link operations 13

CHAPTER 2 Client-Library/C Sample Programs.. 15
Using Client-Library sample programs... 16
Before you begin .. 16
Location of the sample programs... 16

Contents

iv Open Client and Open Server

Header files .. 17
example.h file .. 17

Sample program summaries .. 19
Utility routines for the sample programs.................................. 19
First sample program .. 20
Modified first sample program ... 20
Array bind sample program ... 21
Asynchronous sample program... 21
Bulk copy sample program.. 22
Compute rows sample program .. 22
Directory service sample program... 23
External configuration sample program................................... 23
Implicit read-only cursor sample program 24
Localization and internationalization sample program 24
Multithreaded sample program.. 25
Read-only cursor sample program.. 25
Read-only cursor modified sample program 26
RPC command sample program ... 26
Modified RPC command sample program 26
Security service sample program.. 27
Scrollable cursors sample program... 27
Modified scrollable cursors sample program........................... 28
text and image sample program.. 28
Two phase commit sample program 29
unichar and univarchar bulk-copy sample program 29
unichar and univarchar compute sample program 29
Wide tables compute sample program.................................... 30
Wide tables cursor sample program.. 30
Wide table dynamic data sample program.............................. 31
Wide table RPC command sample program........................... 31

CHAPTER 3 Open Client DB-Library/C Sample Programs.............................. 33
Using DB-Library sample programs ... 33
Before you begin .. 34
Location of the sample programs... 34
Header files .. 35

sybdbex.h header file .. 35
Sample program summaries .. 37

Send queries, bind, and print results sample program............ 37
Insert data into new table sample program 38
Bind aggregate and compute results sample program............ 38
Row buffering sample program ... 38
Data conversion sample program ... 38
Browse mode updates sample program.................................. 39

Contents

Programmers Supplement for Microsoft Windows v

Browse mode and ad hoc queries sample program................ 39
RPC call sample program ... 39
Text and image sample program... 40
Insert image sample program.. 41
Retrieve image sample program ... 41
International language routines sample program 42
Bulk copy sample program.. 42
Two-phase commit sample program 42

CHAPTER 4 Open Server Server-Library/C Sample Programs...................... 45
Using Server-Library sample programs ... 46
Before you begin .. 46
Location and content.. 46
Tracing ... 47
Header files .. 48
Sample program summaries .. 48

Testing sample programs.. 49
Open Server introduction sample program 50
Gateway Open Server sample program.................................. 50
srv_language event handler sample program 51
TDS passthrough mode sample program 51
Registered procedures sample program 52
International languages and character sets sample program . 52
Multithreaded programming sample program 52
Security services sample program .. 53

CHAPTER 5 Open Client Embedded SQL/C... 55
Building an Embedded SQL/C executable..................................... 55

Precompiling the application ... 55
Compiling and linking the application... 57

Link libraries .. 57
Loading stored procedures.. 57

Using Embedded SQL/C sample programs 57
Before you begin ... 58
Header file ... 58
Example 1: Using cursors for database query 59
Example 2: Displaying and editing rows of a table.................. 59
ExampleHA: Using cursors for database query with HA-Failover

60
Uni_example1: Using cursors for database query with

unichar/univarchar support ... 60
Uni_example2: Displaying and editing rows of a table with

unichar/univarchar support ... 60

Contents

vi Open Client and Open Server

CHAPTER 6 Open Client Embedded SQL/COBOL... 61
Building an Embedded SQL/COBOL executable........................... 61

Precompiling the application ... 61
Compiling and linking the application... 63

Link libraries .. 63
Loading stored procedures.. 63

Using Embedded SQL/COBOL sample programs 63
General requirements.. 64
Environment variables for Micro Focus COBOL 65
Example 1: Using cursors for database query 65
Example 2: Displaying and editing rows in a table 65

APPENDIX A Utility Commands Reference.. 67
bcp ... 68
defncopy... 92
isql.. 97
instjava ... 114
extrjava... 118

APPENDIX B Precompiler Reference ... 121
cpre .. 121
cobpre .. 132

Index ... 143

About This Book

This book supplements the Open Client™ and Open Server™ reference
manuals and programmers guide. It provides the platform-specific
information you need to create, configure for, and troubleshoot
applications using Open Client and Open Server products for the
following Microsoft Windows platforms:

• Windows 2000 (x86) Service Pack 4 (32-bit)

• Windows XP (x86) Service Pack 2 (32-bit)

• Windows 2003 (x86) Service Pack 1 (32-bit)

• Windows 2003 (x64) (Service Pack 1)

From this point on, in this document, references to all Microsoft Windows
platforms will be referred to as “Windows,” except where noted
otherwise.

Audience The primary audiences for this book are:

• Desktop application developers who create Sybase® or third-party
applications using Open Client and Open Server products

• Anyone who needs information about the bcp, defncopy, and isql
utilities

• Anyone who needs information about the cpre and cobpre
precompilers.

Related documents Each Open Client and Open Server product has its own set of user
documentation. Table 1 lists the products and their related documents:

Table 1: Product documentation list

Product Related documentation

Client-Library™ Open Client Client-Library/C Reference Manual
Open Client and Open Server Common Libraries Reference
Manual
Open Client Client-Library/C Programmers Guide

DB-Library™ Open Client DB-Library/C Reference Manual
Programmers Supplement for Microsoft Windows vii

See the Open Client and Open Server Configuration Guide for Microsoft
Windows for information on how to:

• Set up your environment so that Open Client applications and servers can
communicate

• Localize Sybase applications

See the Open Server and SDK New Features for Microsoft Windows, Linux,
and UNIX, for descriptions of new features available for Open Server and the
Software Developer’s Kit. This document is revised to include new features as
they become available.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

Server-Library Open Server Server-Library/C Reference Manual
Open Client and Open Server Common Libraries Reference
Manual

Embedded SQL™ Open Client Embedded SQL/C Programmers Guide
Open Client Embedded SQL/COBOL Programmers Guide

Product Related documentation
viii Open Client and Open Server

 About This Book
To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs.

2 Click Document Types under Technical Documents from the navigation
bar on the left. Then, click Certification Report.

3 In the Certification Report filter, select Product, Platform, and Timeframe.
Then, click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.
Programmers Supplement for Microsoft Windows ix

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 2 describes the syntax conventions:

Table 2: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.
x Open Client and Open Server

 About This Book
Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
Programmers Supplement for Microsoft Windows xi

xii Open Client and Open Server

Programmers Supplement for Microsoft Windows 1

C H A P T E R 1 Building Open Client and
Open Server Applications

This chapter provides the information you need to start building
applications using Open Client and Open Server libraries on Windows
platforms. It also describes the requirements for building Windows
executables using Sybase libraries.

It covers the following topics:

Open Client and Open Server requirements
Before you compile and link Open Client and Open Server applications on
Windows platforms, you must:

• Have an ANSI-compliant C compiler installed

• Define the INCLUDE environment variable

• Define the LIB environment variable

Topic Page
Open Client and Open Server requirements 1

Environment variables and header files 3

Import libraries and Dynamic Link Libraries (DLLs) 5

Configuration requirements 6

Platform-specific default values 7

Client-Library programming issues 7

DB-Library programming issues 10

Server-Library programming issues 11

Open Client and Open Server requirements

2 Open Client and Open Server

• Set the PATH variable to include the %SYBASE%\%SYBASE_OCS%\dll
directory

Note Sybase libraries for Windows platforms are designed for Win32
applications.

C compilers
You must have an ANSI-compliant C compiler installed if you plan to use the
sample programs or to build applications. Sybase has certified Microsoft’s
Visual C++ Version 6.0. Sybase may certify other compilers. For a list of
currently certified compilers, check with your Sybase sales representative.

Compile and run an Open Client and Open Server program in the same way as
any other C language program. (Refer to the instructions provided with your
compiler for compiling and linking your application.)

 Warning! If you have problems using an ANSI-compliant C compiler that
Sybase has not certified, you can receive Sybase technical support only if the
problems can be reproduced using a Sybase-certified compiler.

Client-Library compatibility
Client-Library version 15.0 on Windows platforms is certified to work with the
Open Server and Sybase Adaptive Server® (called “SQL Server” in versions
prior to 11.5) products shown in Table 1-1:

Table 1-1: Open Client compatibility

In addition, note these compatibility issues for Open Client:

Open Client 15.0
platform

Open
Server
15.0

Open
Server
12.5.1

Adaptive
Server
15.0

Adaptive
Server
12.5.3

Windows x86
(2000, 2003, XP)

x x x x

Windows x64 (2003) x x x x

LEGEND: x = compatible; n/a = product not available on that platform.

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 3

• Header files included in an application must be the same version level as
the library with which the application is linked.

• The libraries used to build an application must be the same version level
as the library with which the application is compiled.

Open Server compatibility
Open Server version 15.0 on Windows platforms is certified to work with the
Client-Library and Adaptive Server products shown in Table 1-2:

Table 1-2: Open Server compatibility

In addition, note these compatibility issues for Open Server:

• Header files included in an application must be the same version level as
the library with which the application is linked.

• Bulk-Library routines cannot be used in applications that call Open Server
version 2.x routines.

• DB-Library/C 11.x and later is no longer supported with Open Server 11.x
and later.

Environment variables and header files
For your applications to function properly, you must set a number of
environment variables. Table 1-3 lists descriptions of the required environment
variables:

Open Server 15.0
platform

Client-
Library
15.0

Client-
Library
12.5.1

Adaptive
Server
15.0

Adaptive
Server
12.5.3

Windows x86
(2000, 2003, XP)

x x x x

Windows x64 (2003) x x x x

LEGEND: x = compatible; n/a = product not available on that platform.

Environment variables and header files

4 Open Client and Open Server

Table 1-3: Description of environment variables

Header files
This section lists the header files that you need to include when compiling your
Open Client and Open Server applications.

DB-Library header
files

• sybdb.h – contains definitions and type definitions for use with DB-
Library routines. Use sybdb.h only as documented in the Open Client DB-
Library/C Reference Manual. The sybdb.h file includes all other required
header files.

• sybfront.h – defines symbolic constants such as function return values,
described in the Open Client DB-Library/C Reference Manual, and the
exit values STDEXIT and ERREXIT. sybfront.h also includes type
definitions for datatypes that can be used in program variable declaration.

• syberror.h – contains error severity values and should be included if the
program refers to those values.

Client-Library header
files

• ctpublic.h – required by all Client-Library applications. This file includes
all other required header files.

• bkpublic.h – required if your application makes calls to Bulk-Library. This
file includes all other required header files.

Server-Library header
files

• ospublic.h – required by all Server-Library applications. This file includes
all other required header files.

• bkpublic.h – required if your application makes calls to Bulk-Library. This
file includes all other required header files.

Variable Description

INCLUDE Must contain the directory path that points to the
%SYBASE%\%SYBASE_OCS%\include directory. This directory
stores the header files when installation is complete.

LIB Must contain the directory path that points to the
%SYBASE%\%SYBASE_OCS%\lib directory. This directory stores the
import library files once installation is complete.

PATH Must contain the directory path that points to the
%SYBASE%\%SYBASE_OCS%\dll directory. This directory stores the
Sybase DLLs once installation is complete.

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 5

Import libraries and Dynamic Link Libraries (DLLs)
This section describes import libraries and Dynamic Link Libraries.

Import libraries
The Open Client and Open Server import libraries contain information used by
the linker to build Open Client and Open Server applications. Table 1-4 lists
the import libraries you should include when compiling and linking your
application:

Table 1-4: Open Client and Open Server import libraries

Dynamic link libraries (DLLs)
At runtime, Windows Open Client and Open Server library applications must
be able to call functions in the Open Client DLLs. Make sure that the Sybase
DLLs are in your path. The PATH environment variable must contain the
%SYBASE%\%SYBASE_OCS%\dll directory. Table 1-5 lists the DLLs that
are supplied with Open Client and Open Server libraries:

DB-Library import libraries Client-Library import libraries Server-Library import libraries

libsybdb.lib – DB-Library libsybct.lib – Client-Library

libsybcs.lib – CS-Library

libsybblk.lib – Bulk-Library

You need to link with the Bulk-Library
import library libsybblk.lib only if you
make Bulk-Library calls.

libsybsrv.lib – Server-Library

libsybct.lib – Client-Library

libsybcs.lib – CS-Library

libsybblk.lib – Bulk-Library

You need to link with the
Bulk-Library import library
libsybblk.lib only if you make
Bulk-Library calls.

Configuration requirements

6 Open Client and Open Server

Table 1-5: Open Client and Open Server DLLs

Configuration requirements
For the sample programs and your applications to run properly, you must meet
these configuration and system requirements:

• The SYBASE environment variable must be defined.

• The sql.ini file must have a query entry for the server name used by Open
Client applications.

• The sql.ini file must have a master entry for the server name used by Open
Server applications.

• You should have a minimum of 64MB of memory for Windows platforms.

Note For information on setting the SYBASE environment variable and
configuring the sql.ini file, see the Open Client and Open Server Configuration
Guide for Microsoft Windows.

DB-Library DLLs Client-Library DLLs Server-Library DLLs

libsybdb.dll - DB-Library

libsybintl.dll -
Localization support
library

libsybtcl.dll - Transport
control layer

libsybcomn.dll - Internal
common library

libsybunic.dll - Unicode-
Library

libsybct.dll - Client-
Library

libsybcs.dll - CS-Library

libsybintl.dll -
Localization support
library

libsybtcl.dll - Transport
control layer

libsybcomn.dll - Internal
common library

libsybblk.dll – Bulk-
Library

libsybunic.dll - Unicode-
Library

libsybct.dll - Client-
Library

libsybcs.dll - CS-Library

libsybintl.dll -
Localization support
library

libsybtcl.dll - Transport
control layer

libsybcomn.dll - Internal
common library

libsybsrv.dll – Server-
Library

libsybblk.dll – Bulk-
Library

libsybunic.dll - Unicode-
Library

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 7

Platform-specific default values
Table 1-6 lists Open Client and Open Server properties with platform-specific
default values:

Table 1-6: Client-Library platform-specific properties

Client-Library programming issues
This section explains the differences between the way certain Client-Library
routines behave on Windows platforms and how they are documented in the
Open Client Client-Library/C Reference Manual and the Open Client
Client-Library/C Programmers Guide.

ct_callback
Any Client-Library application routine that is registered with Client-Library
using ct_callback must be declared as CS_PUBLIC. See the routine
ex_clientmsg_cb in exutils.c in the sample directory for an example.

Library Property name Description Default value on Windows

Client-Library and
Server-Library

CS_IFILE The path and name of
the sql.ini file.

The sql.ini file in the %SYBASE%\ini
directory defined by the SYBASE
environment variable.

CS_MAX_CONNECT The maximum number
of connections for this
context.

25

 CS_PACKETSIZE The TDS packet size. 512 bytes

DB-Library DBSETFILE The path and name of
the sql.ini file.

The sql.ini file in the %SYBASE%\ini
directory defined by the SYBASE
environment variable.

DBSETMAXPROS The maximum number
of connections for this
context.

25

Client-Library programming issues

8 Open Client and Open Server

Using the debug DLLs
Depending upon options selected during installation, you can install both
Client-Library debug and non-debug versions of libsybct.dll. The debug
version of the DLL is stored in the debug subdirectory of the Sybase dll
directory and the non-debug version in the nondebug subdirectory. Copy the
version you want to use to the dll subdirectory of the Sybase installation
directory. The application automatically uses the DLLs in the dll subdirectory
of the Sybase installation directory. ct_debug routine works only when you use
the debug version of libsybct.dll.

Refer to the Open Client Client-Library/C Reference Manual for general
information about the debug version of Client-Library.

Multithreaded support
Client-Library version 11.1 and later supports Windows platforms thread
libraries for developing multithreaded applications. For an overview of
developing multithreaded applications, refer to the Open Client
Client-Library/C Reference Manual.

Example compile-and-link operations
A makefile for building Client-Library sample programs is provided in the
%SYBASE%\%SYBASE_OCS%\sample\ctlib directory. An example fragment
of makefile for a Windows Client-Library application for use by a Microsoft
Visual C/C++ compiler, version 6.0 is as follows:

##
Microsoft makefile for sample programs
#
###
MAKEFILE=MAKEFILE

!ifndef SYBASE
SYBASEHOME=c:\sybase
!else
SYBASEHOME=$(SYBASE)
!endif

COMPILE_DEBUG = 1

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 9

Compiler AND linker flags
!ifdef COMPILE_DEBUG
CFLAGS = /W3 /MD /nologo /Zi /DWIN32
LFLAGS= /MAP /SUBSYSTEM:CONSOLE /DEBUG /DEBUGTYPE:cv
!else
CFLAGS = /W3 /MD /nologo /Od /DWIN32
LFLAGS= /MAP /SUBSYSTEM:CONSOLE
!endif
ASYNCDEFS = -DUSE_SIG_HANDLER=0
HDRS = example.h exutils.h
MTHDRS = example.h thrdutil.h thrdfunc.h
Where to get includes and libraries
#
SYBASE is the environment variable for sybase home directory
#
SYBINCPATH = $(SYBASEHOME)\$(SYBASE_OCS)\include
BLKLIB = $(SYBASEHOME)\$(SYBASE_OCS)\lib\libsybblk.lib
CTLIB = $(SYBASEHOME)\$(SYBASE_OCS)\lib\libsybct.lib
CSLIB = $(SYBASEHOME)\$(SYBASE_OCS)\lib\libsybcs.lib
SYSLIBS= kernel32.lib advapi32.lib msvcrt.lib

The generalized how to make an .obj rule
.c.obj:

cl /I. /I$(SYBINCPATH) $(ASYNCDEFS) $(CFLAGS) -Fo$@ -c $<

all: exasync compute csr_disp getsend rpc blktxt i18n multthrd usedir firstapp
exconfig secct wide_rpc wide_dynamic wide_curupd wide_compute

uni: uni_firstapp uni_csr_disp uni_compute uni_blktxt uni_rpc

exasync compute csr_disp getsend rpc blktxt i18n multthrd usedir firstapp
exconfig secct twophase: $*.exe

 @echo Sample '$*' was built

wide_rpc wide_dynamic wide_curupd wide_compute: $*.exe
 @echo Sample '$*' was built

uni_firstapp uni_csr_disp uni_compute uni_blktxt uni_rpc: $*.exe
 @echo Sample '$*' was built

sample.exe: sample.obj $(MAKEFILE)
link $(LFLAGS) -out:$*.exe sample.obj $(SYSLIBS)

exasync.exe: ex_alib.obj ex_amain.obj exutils.obj $(MAKEFILE)
link $(LFLAGS) -out:$*.exe ex_alib.obj ex_amain.obj exutils.obj

$(SYSLIBS) $(CTLIB)$(CSLIB)

DB-Library programming issues

10 Open Client and Open Server

... compile and link lines for each Client-Library sample program goes here ...

clean:
 -del *.obj
 -del *.map
 -del *.exe
 -del *.err
 -del *.ilk
 -del *.pdb

There are a few things to note in this example:

• Sybase libraries are made for Win32 applications.

• SUBSYSTEM:CONSOLE indicates a console application.

Refer to the appropriate compile-and-link Microsoft documentation for
additional information.

DB-Library programming issues
This section explains the differences between how certain DB-Library routines
behave on Windows platforms and how they are documented in the Open
Client DB-Library/C Reference Manual.

Compile-and-link line examples
The general form of the command to compile and link a DB-Library/C
application is:

!ifdef COMPILE_DEBUG
 CFLAGS = /W3 /MD /nologo /Z7
 LFLAGS= /MAP /SUBSYSTEM:CONSOLE /DEBUG /DEBUGTYPE:cv
 !else
 CFLAGS = /W3 /MD /nologo /Od
 LFLAGS= /MAP /SUBSYSTEM:CONSOLE
 !endif

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 11

Server-Library programming issues
This section explains the differences between how certain Server-Library
routines behave on Windows and how they are documented in the Open Server
Server-Library/C Reference Manual.

srv_callback
Any Server-Library application routine that is registered with Server-Library
using srv_callback must be declared as CS_PUBLIC. See the routine
cs_err_handler in utils.c in the sample directory for an example.

Scheduling modes
Server-Library applications running under Windows can operate in either
co-routine or preemptive scheduling mode. Co-routine (the default) scheduling
is compatible with other platforms that do not support preemptive scheduling.
To choose the preemptive scheduling mode, set the SRV_PREEMPT option to
“true” using the srv_config function.

Preemptive mode programming overview
In the preemptive scheduling mode, all threads are executable at the same time.
Thread scheduling is handled by the Windows. Preemptive scheduling
prevents a single thread from monopolizing the server. When running your
application in the preemptive mode, your application can use the debugger’s
thread facility to manipulate threads. It can also perform blocking operations
without bringing the server to a halt. Preemptive mode can offer better
performance for applications that do not share much data between threads

Note To guarantee portability to platforms where only co-routine scheduling
is available, always protect global data using Server-Library’s mutex facility
rather than using the Windows-specific semaphore APIs.

This section offers information about Windows-specific preemptive
programming using the srv_sleep and srv_wakeup calls.

Server-Library programming issues

12 Open Client and Open Server

srv_sleep
This code fragment illustrates the use of srv_sleep in preemptive mode:

/*
 ** Request the mutex to prevent the logging service
 ** from calling srv_wakeup before srv_sleep is called.
 */
 if (WaitForSingleObject(Mutex,INFINITE) != WAIT_OBJECT_0)
 return(CS_FAIL);
 /*
 ** Send the log_request to the logging service.
 */
 if (srv_putmsgq(log_service,log_request, SRV_M_NOWAIT) == CS_FAIL)
 return(CS_FAIL);

 /*
 ** Sleep until the log service has processed the log request.
 */
 srv_sleep(log_request, LOGWAIT, NULL, NULL, (CS_VOID*)Mutex, (CS_VOID*)0);

srv_wakeup
When srv_sleep is used in preemptive mode using a mutex, the corresponding
srv_wakeup routine must be preceded by a request for the same mutex. This
process ensures that the sleeping thread is ready for srv_wakeup to be executed.
The following code fragment shows how srv_wakeup must be preceded by a
request for the mutex when it is used in preemptive mode:

/*
 ** Loop forever, logging language text. srv_getmsg will cause
 ** this thread to be suspended until a message is available on
 ** the log_request message queue.
 */
 while((get_status = srv_getmsgq(msgqid, &log_request,
 SRV_M_WAIT, &info)) == CS_SUCCEED)
 {
 /*
 ** Do the logging here.
 */

 /*
 ** Request the mutex to make sure the sender
 ** has called srv_sleep.
 */

CHAPTER 1 Building Open Client and Open Server Applications

Programmers Supplement for Microsoft Windows 13

 if (WaitForSingleObject(Mutex,INFINITE) != WAIT_OBJECT_0)
 return(CS_FAIL);

 /*
 ** Wake up the thread that is waiting for the language
 ** text to be logged.
 */
 srv_wakeup(log_request, SRV_M_WAKE_FIRST, (CS_VOID*)0, (CS_VOID*)0);

 /*
 ** Release the mutex.
 */
 if (!ReleaseMutex(Mutex))
 return(CS_FAIL);
 }

Example of compile-and-link operations
A makefile for building Server-Library sample programs is provided in
%SYBASE%\%SYBASE_OCS%\sample\srvlib directory. An example
fragment of makefile for compiling and linking a Windows 32-bit application
is as follows:

##
#
Microsoft makefile for building Sybase Open Server Samples for Windows
#
###
MAKEFILE=MAKEFILE
!ifndef SYBASE
SYBASEHOME=c:\sybase
!else
SYBASEHOME=$(SYBASE)\$(SYBASE_OCS)
!endif

COMPILE_DEBUG = 1
Compiler AND linker flags
!ifdef COMPILE_DEBUG
CFLAGS = /W3 /MD /nologo /Z7 /DWIN32
LFLAGS= /MAP /SUBSYSTEM:CONSOLE /DEBUG /DEBUGTYPE:cv
!else
CFLAGS = /W3 /MD /nologo /Od /DWIN32
LFLAGS= /MAP /SUBSYSTEM:CONSOLE
!endif
SYSLIBS = kernel32.lib advapi32.lib msvcrt.lib

Server-Library programming issues

14 Open Client and Open Server

SYBASELIBS = $(SYBASEHOME)\lib\libsybcs.lib $(SYBASEHOME)\lib\libsybct.lib
$(SYBASEHOME)\lib\libsybsrv.lib
BLKLIB = $(SYBASEHOME)\lib\libsybblk.lib
DBLIB = $(SYBASEHOME)\lib\libsybdb.lib
CTOSOBJ = args.obj attn.obj bulk.obj \

connect.obj ctos.obj cursor.obj \
dynamic.obj error.obj events.obj \
language.obj mempool.obj options.obj \
params.obj \
rgproc.obj results.obj rpc.obj \
send.obj shutdown.obj

all: lang fullpass ctos regproc ctwait version intlchar osintro multthrd secsrv
lang fullpass ctos regproc ctwait version intlchar osintro multthrd secsrv:
$*.exe

@echo Sample '$*' was built
The generalized how to make an .obj rule
.c.obj:

cl /I. /I$(SYBASEHOME)\include $(CFLAGS) -Fo$@ -c $<
lang.exe: lang.obj utils.obj

link $(LFLAGS) -out:$*.exe $*.obj utils.obj $(SYSLIBS) $(SYBASELIBS)
fullpass.exe: fullpass.obj utils.obj

link $(LFLAGS) -out:$*.exe $*.obj utils.obj $(SYSLIBS) $(SYBASELIBS)
ctos.exe: $(CTOSOBJ)
... compile and link lines for each Client-Library sample program goes here ...
clean:

 -del *.obj
 -del *.map
 -del *.exe
 -del *.err

/*

Note that in this example:

• Sybase libraries are made for Win32 applications.

• SUBSYSTEM:CONSOLE indicates that this is a console application.

Refer to the appropriate compile-and-link Microsoft documentation for
additional information.

Programmers Supplement for Microsoft Windows 15

C H A P T E R 2 Client-Library/C Sample
Programs

Open Client Client-Library is a collection of routines for use in writing
client applications. Client-Library includes routines that send commands
to a server and other routines that process the results of those commands.
Other routines set application properties, handle error conditions, and
provide a variety of information about an application’s interaction with a
server.

CS-Library, which is included with Open Client, is a collection of utility
routines that you can use to write an Open Client or an Open Server
application. All Client-Library applications include at least one call to
CS-Library, because Client-Library routines use a structure which is
allocated in CS-Library.

This chapter covers the following topics:

Topic Page
Using Client-Library sample programs 16

Before you begin 16

Location of the sample programs 16

Header files 17

Sample program summaries 19

Using Client-Library sample programs

16 Open Client and Open Server

Using Client-Library sample programs
The sample programs demonstrate specific Client-Library/C functionality.
These programs are designed as guides for application programmers, not as
Client-Library/C training aids. Read the descriptions at the top of each source
file and examine the source code before attempting to use the sample programs.

Note These sample programs are not intended for use in a production
environment. Programs written for a production environment need additional
error-handling and special case-handling code.

Before you begin
Before you use the Open Client sample programs:

• Set the SYBASE environment variable to the path of the Sybase release
directory (if it has not already been set).

• Set the SYBASE_OCS environment variable to the home directory of
Open Client and Open Server products. For example, OCS-15_0 is the
home directory of 15.0 version of the Open Client and Open Server
products.

• Set the DSQUERY environment variable to the server name
(server_name) to which you want to connect.

• Use make in conjunction with the provided makefile to produce a sample
executable named example_name.

For detailed information regarding configuration of your environment and
variables, refer to the Open Client and Open Server Configuration Guide for
Microsoft Windows.

Location of the sample programs
The Client-Library sample programs are located in
%SYBASE%\%SYBASE_OCS%\sample\ctlib directory. This directory
contains:

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 17

• Source code for the sample programs

• Data files for the sample programs

• The header file, example.h, for the sample programs

Note Create a backup copy of the contents of the directory where the sample
programs reside. This allows you to experiment with the sample programs
without affecting the integrity of the original files.

Header files
Table 2-1 describes header files required by all Client-Library applications.

Table 2-1: Required header files for Client-Library applications

example.h file
All of the sample programs reference the example header file, example.h. The
contents of example.h are as follows:

/*
** example.h
**
** This is the header file that goes with the Sybase

File Description

 ctpublic.h Required by all application source files that contain calls to Client-
Library, it includes:

• Definitions of symbolic constants used by Client-Library routines

• Declarations for Client-Library routines

cspublic.h The CS-Library header file, which includes:

• Definitions of common client/server symbolic constants

• Type definitions for common client/server structures

• Declarations for CS-Library routines

bkpublic.h Required in all application source files that make calls to bulk-copy
routines

cstypes.h Contains type definitions for Client-Library datatypes

sqlca.h Contains a type definition for the SQLCA define structure

Header files

18 Open Client and Open Server

** Client-Library example programs.
*/
/*
** Define symbolic names, constants, and macros
*/
#define EX_MAXSTRINGLEN 255
#define EX_BUFSIZE 1024
#define EX_CTLIB_VERSION CS_VERSION_150
#define EX_BLK_VERSION BLK_VERSION_150
#define EX_ERROR_OUT stderr
#define EX_BADVAL (CS_INT)-1
#define EX_MAX_ARR 64

/*
** exit status values
*/
#define EX_EXIT_SUCCEED 0
#define EX_EXIT_FAIL 1
/*

** Define global variables used in all sample programs
*/
#define EX_SERVER NULL /* use DSQUERY env var */
#define EX_USERNAME "sa"
#define EX_PASSWORD ""

/*
** Uncomment the following line to test the HA Failover feature.
*/
/* #define HAFAILOVER 1 */
#define EX_SCREEN_INIT()

The changes made to EX_USERNAME and EX_PASSWORD include:

• EX_USERNAME is defined in example.h as “sa.” Before you use the
sample programs, you must edit example.h and change “sa” to your server
login name.

• EX_PASSWORD is defined in example.h as null (“ ”) string. Before you
use the sample programs, you may want to edit example.h and change to
your server password.

You have three options regarding EX_PASSWORD. Choose the one that
best meets your needs:

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 19

• Method 1 – Change your server password to null (“ ”) string for the
duration of the time that you are running the examples. However, this
method creates the possibility of a security breach. While your
password is set to this published value, an unauthorized person could
log in to the server as you. If this possibility presents a problem,
choose one of the other methods of handling passwords for the sample
programs.

• Method 2 – In example.h, change the null (“ ”) string to your own
server password. Use the operating system’s protection mechanisms
to prevent others from accessing the header file while you are using
it. After finishing the example, edit the line so that it reads
“server_password” again.

• Method 3 – In the sample programs, delete the ct_con_props code that
sets the server password and substitute your own code to prompt users
for their server passwords. (As this code is platform-specific, Sybase
does not supply it.)

Sample program summaries
Sample programs are included with Client-Library to demonstrate typical uses
for Client-Library routines. Some sample programs use the sample databases
supplied with Adaptive Server. Refer to the Adaptive Server Enterprise
Installation Guide for information on installing the sample databases.

The sample programs are C source files. The appropriate compiler must be
installed on your platform if you plan to use the Client-Library sample
programs or build applications.

Utility routines for the sample programs
The exutils.c file contains utility routines that are used by all other
Client-Library sample programs. It demonstrates how an application can hide
some of the implementation details of Client-Library from a higher-level
program.

The wide_util.c file contains generic routines that are used by the wide_*
sample programs. The routines are as follows:

Sample program summaries

20 Open Client and Open Server

• The init_db routine allocates the context and initializes the library. It also
installs the callback routines and is called at the beginning of several
sample programs.

• The cleanup_db routine closes the connection to the server and cleans up
the context structure. This function is called at the end of the
wide_curupd.c and wide_dynamic.c sample programs.

• The connect_db routine connects to the server, then sets the appropriate
user name and password.

• The handle_returns routine processes the return result type.

• The fetch_n_print routine fetches the bound data into a host variable.

For more information about these routines, see the leading comments in the
example source file.

First sample program
The firstapp.c sample program is an introductory example that connects to the
server, sends a select query, and prints the rows. This example is discussed in
Chapter 1, “Getting Started With Client-Library,” in the Open Client
Client-Library/C Programmers Guide.

Modified first sample program
The uni_firstapp.c sample program is a modification of the firstapp.c sample
program for use with unichar and univarchar datatypes, and is an introductory
example that connects to the server, sends a select query, and prints the rows.
The firstapp.c program is discussed in the Open Client Client-Library/C
Programmers Guide.

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 21

Array bind sample program
The arraybind.c sample program demonstrates the use of array binding in
conjunction with a CS_LANG_CMD initiated by ct_command. The sample
program uses a hard-coded query of a hard-coded table in the pubs2 database.
This query is defined by a language command using a select statement. The
arraybind.c program then processes the results using the standard ct_results
while loop. It binds column values to program arrays, then fetches and displays
the rows in the standard ct_fetch loop.

For more information about this sample program, see the leading comments in
the example source file.

Note This sample requires the pubs2 database.

Asynchronous sample program
This sample program contains two files, ex_alib.c and ex_amain.c, which
demonstrate how to write an asynchronous layer on top of Client-Library. It
uses hooks provided by Client-Library to allow seamless polling and use of
Client-Library’s completion callbacks.

The sample program contains two files:

• ex_alib.c – contains the source code of the library portion of the example.
It is meant to be part of a library interface that supports asynchronous calls.
This module provides a way to send a query to and retrieve the results from
a server, all within one asynchronous operation.

• ex_amain.c – contains the source code of the main program that uses the
services provided by ex_alib.c.

For more information about this sample program, see the leading comments in
the example source file and the EX_AREAD.ME file.

Note This sample program requires Adaptive Server version 11.1 or later.

Sample program summaries

22 Open Client and Open Server

Bulk copy sample program
The blktxt.c sample program uses the bulk-copy routines to copy static data to
a server table. In this program, three rows of data that are bound to program
variables are sent to the server as a batch. The rows are sent again using
blk_textxfer to send the text data.

For more information about this sample program, see the leading comments in
the example source file.

Compute rows sample program
The compute.c sample program demonstrates processing of compute results
and performs the following:

• It sends a canned query to the server using a language command.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_fetch while loop.

Following is the canned query:

select type, price from titles
where type like "%cook"
order by type, price
compute sum(price) by type
compute sum(price)

This query returns both regular rows and compute rows. The compute rows are
generated by the two compute clauses:

• The first compute clause generates a compute row each time the value of
type changes:

compute sum(price) by type

• The second compute clause generates one compute row, which is the last
to be returned:

compute sum(price)

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 23

For more information about this program, see the leading comments in the
example source file.

Note This sample program requires the pubs2 database.

Directory service sample program
The directory service sample program, usedir.c, queries a directory service for
a list of available servers.

usedir.c searches for Sybase server entries in the default directory, as defined
in the driver configuration file. If a network directory service is not being used,
usedir.c queries the sql.ini file for server entries. Then, it displays a description
of each entry found and lets the user choose a server to connect to.

For more information about this sample program, see the leading comments in
the example source file. For more information about directory services, refer to
the Open Client and Open Server Configuration Guide for Microsoft
Windows.

External configuration sample program
The exconfig.c sample program demonstrates how Client-Library application
properties can be configured externally.

This example requires that you edit the default runtime configuration file,
ocs.cfg, located in %SYBASE%\%SYBASE_OCS%\ini directory. You can also
use SYBOCS_CFG environment variable to point to the ocs.cfg file.

The example sets the CS_CONFIG_BY_SERVERNAME Client-Library
property, and calls ct_connect with a server_name parameter set to “server1.”
In response, Client-Library looks for a [server1] section in the external
configuration file. To run the example, edit ocs.cfg file (if necessary), and add
the following section:

[server1]
CS_SERVERNAME = real_server_name

where real_server_name is the name of the server that you want to connect to.

Sample program summaries

24 Open Client and Open Server

For more information on how Client-Library uses external configuration files,
see the topics page “Using the Runtime Configuration File” in the Open Client
Client-Library/C Reference Manual.

Implicit read-only cursor sample program
The csr_disp_implicit.c sample program demonstrates using an implicit read-
only cursor:

• It opens a cursor with a canned query.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_fetch while loop.

The program flow is the same as the csr_disp.c sample program, with the only
difference being the usage of the CS_IMPLICIT_CURSOR option instead of
CS_READ_ONLY in the first ct_cursor call. Although, the generated output is
the same as the csr_disp.c example, the use of CS_IMPLICIT_CURSOR
potentially reduces network traffic at the network level.

When using this example, it is important to set the CS_CURSOR_ROWS option
to a value greater than 1.

This is the canned query:

select au_fname, au_lname, postalcode
from authors

For more information about this sample program, see the leading comments in
the example source file.

Note This example requires Adaptive Server version 12.5.1 or later and the
pubs2 database.

Localization and internationalization sample program
The i18n.c sample program demonstrates some of the international features
available in Client-Library, including:

• Localized error messages

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 25

• User-defined bind types

For more information about this program, see the leading comments in the
example source file.

Multithreaded sample program
This sample program contains two files, multthrd.c and thrdfunc.c, which
demonstrate a multithreaded Client-Library application.

The sample program comprises two files:

• multthrd.c – contains the source code that spawns five threads. Each
thread processes a cursor or a regular query. The main thread waits for the
other threads to complete query processing and then terminates.

• thrdfunc.c – contains platform-specific information that determines which
thread and synchronization routines the example uses for execution.

For more information about this sample program, see the leading comments in
the example source files.

Note This sample program cannot run if your platform does not have a thread
package supported by Client-Library. In addition, it requires Adaptive Server
version 11.1 or later.

Read-only cursor sample program
The csr_disp.c sample program demonstrates using a read-only cursor:

• It opens a cursor with a canned query.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_fetch while loop.

Following is the canned query:

select au_fname, au_lname, postalcode
from authors

Sample program summaries

26 Open Client and Open Server

For more information about this sample program, see the leading comments in
the example source file.

Note This sample requires a version 10.0 or later, and the pubs2 database.

Read-only cursor modified sample program
The uni_csr_disp.c sample program demonstrates using a read-only cursor. It
is a modification of the csr_disp.c sample program and requires the unipubs2
database. It performs the following:

• It opens a cursor with a canned query.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_fetch while loop.

Following is the canned query:

select au_fname, au_lname, postalcode
from authors

For instructions on installing the unipubs2 database, read the README file
available in the %SYBASE%\%SYBASE_OCS%\sample\ctlibrary directory.

RPC command sample program
The remote procedure call (RPC) command sample program, rpc.c, sends an
RPC command to a server and processes the results.

For more information about this sample program, see the leading comments in
the example source file.

Modified RPC command sample program
The uni_rpc.c sample program sends an RPC command to a server and
processes the results. This is a modification of the rpc.c sample program for use
with unichar and univarchar datatypes, and requires the unipubs2 database.

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 27

For more information about this sample program, see the leading comments in
the example source file.

For instructions on installing the unipubs2 database, read the README file
available in the %SYBASE%\%SYBASE_OCS%\sample\ctlibrary directory.

Security service sample program
The secct.c sample program demonstrates how to use network-based security
features in a Client-Library application.

To execute this sample program, DCE or Kerberos must be installed and
running on your machine. You must also connect to a server that supports
network-based security, such as Security Guardian or the secsrv.c Open Server
sample program.

For more information about this sample program, see the leading comments in
the example source file. For more information about network security services,
refer to the Open Client and Open Server Configuration Guide for Microsoft
Windows.

Scrollable cursors sample program
The csr_disp_scrollcurs.c sample program uses a scrollable cursor to retrieve
data from the authors table in the pubs2 database. It performs the following:

• It sends a canned query to the server to open a cursor.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_scroll_fetch while loop.

This example uses a single prefetch buffer and regular program variables.
Following is the canned query:

select au_fname, au_lname, postalcode
from authors

Sample program summaries

28 Open Client and Open Server

For more information about this sample program, see the leading comments in
the example source file.

Note This example requires Adaptive Server version 15.0 or later, with
scrollable cursor support and the pubs2 database.

Modified scrollable cursors sample program
The csr_disp_scrollcurs2.c sample program uses a scrollable cursor to retrieve
data from the authors table in the pubs2 database. It performs the following:

• It sends a canned query to the server to open a cursor.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches the rows using ct_scroll_fetch and displays them.

This example uses a scrollable cursor with arrays as program variables and
array binding. A single ct_scroll_fetch call displays results in an array.

This is the canned query:

select au_fname, au_lname, postalcode
from authors

For more information about this sample program, see the leading comments in
the example source file.

Note This example requires Adaptive Server version 15.0 or later, with
scrollable cursor support and the pubs2 database.

text and image sample program
The getsend.c sample program demonstrates how to retrieve and update text
data from a table containing text and other datatypes. The process
demonstrated can also be used for retrieving and updating image data. If
connecting to an Open Server application, the Open Server application must be
able to handle language commands intended for Adaptive Server.

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 29

For more information about this sample program, see the leading comments in
the example source files.

Note This sample program requires Adaptive Server version 11.1 or later, the
pubs2 database, and the authors table.

Two phase commit sample program
The twophase.c sample program performs a simple update on two different
servers. Once you run the example, use isql on each server to determine
whether the update took place.

For more information about this sample program, see the leading comments in
the example source file.

unichar and univarchar bulk-copy sample program
The uni_blktxt.c sample program uses the bulk-copy routines to copy static
data to a server table. This program has been modified for the use of the unichar
and univarchar datatypes. There are three rows of data that are bound to
program variables and then sent to the server as a batch. The rows are again
sent using blk_textxfer to send the text data.

unichar and univarchar compute sample program
The uni_compute.c sample program demonstrates processing of compute
results. It is a modification of the compute.c sample program for the unichar and
univarchar datatypes and requires the unipubs2 database. First, it sends a canned
query to the server using a language command. It processes the results using
the standard ct_results while loop. Then, it binds the column values to program
variables. Finally, it fetches and displays the rows in the standard ct_fetch while
loop.

For instructions on installing the unipubs2 database, read the README file
available in the %SYBASE%\%SYBASE_OCS%\sample\ctlibrary directory.

Sample program summaries

30 Open Client and Open Server

Wide tables compute sample program
The wide_compute.c sample program demonstrates processing of compute
results with wide tables and larger column sizes. It performs the following:

• It sends a canned query to the server using a language command.

• It processes the results using the standard ct_results while loop.

• It binds the column values to program variables.

• It fetches and displays the rows in the standard ct_fetch while loop.

Following is the canned query:

select type, price from titles
where type like "%cook"
order by type, price
compute sum(price) by type
compute sum(price)

This query returns both regular rows and compute rows. The compute rows are
generated by the two compute clauses:

• The first compute clause generates a compute row each time the value of
type changes:

compute sum(price) by type

• The second compute clause generates one compute row, which is the last
to be returned:

compute sum(price)

For more information about this sample program, see the leading comments in
the sample source file.

Note This sample requires the pubs2 database.

Wide tables cursor sample program
The wide_curupd.c sample program uses a cursor to retrieve data from the
publishers table in the pubs2 database. It retrieves data row by row and prompts
the user to input new values for the column named “state” in the publishers
table.

CHAPTER 2 Client-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 31

Inputs value for the input parameter (“state” column from the “publishers”
table) for the UPDATE. Create a publishers3 table as shown below before
running the sample program:

use pubs2
go
drop table publishers3
go
create table publishers3 (pub_id char(4) not null,
pub_name varchar(400) null, city varchar(20) null,
state char(2) null)
go
select * into publishers3 from publishers
go
create unique index pubind on publishers3(pub_id)
go

Wide table dynamic data sample program
The wide_dynamic.c sample program uses a cursor to retrieve data from the
publishers table in the pubs2 database. It retrieves data row by row and prompts
the user to input new values for the column called “state” in the publishers
table.

This program uses Dynamic SQL to retrieve values from the titles table in the
tempdb database. The select statement, which contains placeholders with
identifiers, is sent to the server to be partially compiled and stored. Therefore,
every time you call the select, you only pass new values for the key value which
determines the row to be retrieved. The behavior is similar to passing input
parameters to stored procedures. The program also uses cursors to retrieve
rows one by one, which can be manipulated as required.

Wide table RPC command sample program
The RPC command sample program, wide_rpc.c, sends an RPC command to a
server and processes the results. This is the same as the wide_rpc.c program,
but uses wide tables and larger column sizes.

For more information about this sample program, see the leading comments in
the example source file.

Sample program summaries

32 Open Client and Open Server

Programmers Supplement for Microsoft Windows 33

C H A P T E R 3 Open Client DB-Library/C Sample
Programs

Open Client DB-Library is a collection of routines you can use to write
client applications. DB-Library is the predecessor to Client-Library. New
functionality such as Directory and Security services support is not
included with DB-Library. You must use Client-Library to take advantage
of these new services.

DB-Library includes routines that send commands to a server and others
that process the results of those commands. Other routines set application
properties, handle error conditions, and provide a variety of information
about an application’s interaction with a server.

This chapter covers the following topics:

Using DB-Library sample programs
The sample programs demonstrate specific DB-Library/C functionality.
These programs are designed as guides for application programmers, not
as DB-Library/C training aids. Before you attempt to use the sample
programs, read the descriptions at the top of each source file and examine
the source code.

Note These simplified programs are not intended for use in a production
environment. Programs written for a production environment need
additional error-handling and special case-handling code.

Topic Page
Using DB-Library sample programs 33

Before you begin 34

Location of the sample programs 34

Header files 35

Sample program summaries 37

Before you begin

34 Open Client and Open Server

Before you begin
Table 3-1 lists the steps you need to take to run all sample programs for your
platform. See the individual sample programs and the README file for
additional requirements.

Table 3-1: Steps required to run DB-Library applications

Location of the sample programs
The sample programs are located in the
%SYBASE%\%SYBASE_OCS%\sample\dblib directory.

This directory contains:

• Source code for the sample programs

• Data files for the sample programs

• Header files, including sybdbex.h

Note Create a backup copy of the contents of the directory where the sample
programs reside. Then, you can experiment with the sample programs without
affecting the integrity of the original files.

Platform Steps

All
Windows
platforms

• Set the DSQUERY environment variable to the server name
(server_name) to which you want to connect.

• Set the SYBASE environment variable to the path of the Sybase
installation directory (if it has not already been set).

• Set the SYBASE_OCS environment variable to the home directory
of Open Client and Open Server products. For example, OCS-15_0
is the home directory of 15.0 version of the Open Client and Open
Server products.

• Use make in conjunction with the provided makefile to produce a
sample executable named example name.

CHAPTER 3 Open Client DB-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 35

Header files
All DB-Library/C applications require these header files:

• sybfront.h – defines symbolic constants, such as function return values
(described in the Open Client DB-Library/C Reference Manual) and the
exit values STDEXIT and ERREXIT. sybfront.h includes type definitions
for datatypes that can be used in declaring program variables.

• sybdb.h – contains additional definitions and type definitions. Most of
these are meant to be used only by DB-Library/C routines. Use the
contents of sybdb.h only as documented in the Open Client DB-Library/C
Reference Manual.

• syberror.h – contains error severity values and should be included if the
program refers to those values.

See the Open Client DB-Library/C Reference Manual for more information on
header files.

sybdbex.h header file
All the sample programs reference the example header file, sybdbex.h. The
contents of sybdbex.h are as follows:

/*
 ** sybdbex.h
 **
 ** This is the header file that goes with the
 ** Sybase DB-Library sample programs.
 **
 **
 */

 #define USER "sa"
 #define PASSWORD ""
 #define LANGUAGE "us_english"
 #define SQLBUFLEN 255
 #define ERR_CH stderr
 #define OUT_CH stdout
extern void error();

int CS_PUBLIC err_handler PROTOTYPE((
DBPROCESS *dbproc,
int severity,

Header files

36 Open Client and Open Server

int dberr,
int oserr,
char *dberrstr,
char *oserrstr));

int CS_PUBLIC msg_handler PROTOTYPE((
DBPROCESS *dbproc,
DBINT msgno,
int msgstate,
int severity,
char *msgtext,
char *srvname,
char *procname,
int line));

All the sample programs except the data conversion sample program contain
these lines:

DBSETLUSER(login, USER);
DBSETLPWD(login, PASSWORD);

The changes made to the USER, PASSWORD, and LANGUAGE variables
include:

• USER is defined in sybdbex.h as “sa.” Before you run the sample
programs, you must edit sybdbex.h and change “sa” to your server login
name.

• PASSWORD is defined in sybdbex.h as null (“ “) string. Before you run
the sample programs, you may want to edit sybdbex.h and change to your
server password.

You have three options regarding PASSWORD. Choose the one that best
meets your needs:

• Method 1 – Change your server password to “” while you are running
the examples. However, this method creates the possibility of a
security breach: While your password is set to this published value, an
unauthorized person could log into the server as you. If this possibility
presents a problem, choose one of the other methods.

• Method 2 – In sybdbex.h, change the string “” to your own server
password. Use the operating system’s protection mechanisms to
prevent others from accessing the header file while you are using it.
When you are finished with the examples, edit the line so that it again
reads “server_password.”

CHAPTER 3 Open Client DB-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 37

• Method 3 – In the sample programs, delete the ct_con_props code that
sets the server password and substitute your own code to prompt users
for their server passwords. (Because this code is platform-specific,
Sybase does not supply it.)

• LANGUAGE is defined in sybdbex.h as “us_english.” If your server’s
language is not “us_english,” you may want to edit sybdbex.h and change
“us_english” to your server’s language. The international languages
routine sample program, exampl12.c, is the only example that references
LANGUAGE.

Sample program summaries
Sample programs are included with DB-Library to demonstrate typical uses for
DB-Library routines. Some sample programs use the sample databases
supplied with Adaptive Server. Refer to the Adaptive Server Enterprise
Installation Guide for information on installing the sample databases.

The sample programs are C source files. You must install the appropriate
compiler on your platform if you plan to use the DB-Library sample programs
or build applications.

Send queries, bind, and print results sample program
The example1.c sample program sends two queries to Adaptive Server in a
single command batch, binds the results, and prints the returned rows of data.

Note Access to Adaptive Server is required.

Sample program summaries

38 Open Client and Open Server

Insert data into new table sample program
The example2.c sample program inserts data from a file into a newly created
table, selects the server rows, and binds and prints the results.

Note Access to Adaptive Server is required. This example also requires a file
named datafile (supplied) and create database permission in your login
database.

Bind aggregate and compute results sample program
The example3.c sample program selects information from the titles table in the
pubs2 database and prints it. It illustrates binding of both aggregate and
compute results.

Note Access to a Adaptive Server that contains the pubs2 database is required.

Row buffering sample program
The example4.c sample program demonstrates row buffering. It sends a query
to Adaptive Server, buffers the returned rows, and allows you to examine them
interactively.

Note Access to Adaptive Server is required.

Data conversion sample program
The example5.c sample program illustrates dbconvert, a DB-Library/C routine
that handles data conversion.

CHAPTER 3 Open Client DB-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 39

Browse mode updates sample program
The example6.c sample program demonstrates browse-mode techniques. It
creates a table, inserts data into the table, and then updates the table using
browse-mode routines. Browse mode is useful for applications that update data
one row at a time.

example6.c requires a file named datafile (supplied), which creates the table
alltypes in your default database.

Note Access to Adaptive Server is required.

Browse mode and ad hoc queries sample program
The example7.c sample program uses browse-mode techniques to determine
the source of result columns from ad hoc queries.

Determining the source of result columns is important, because a browse-mode
application can only update columns that are derived from a browsable table
and are not the result of a SQL expression.

This example demonstrates how an application can determine which columns
resulting from ad hoc queries can be updated using browse-mode techniques.

This example prompts you for an ad hoc query. Notice how the results differ
depending on whether the select query includes the keywords for browse and
whether the table you selected can be browsed.

Note Access to Adaptive Server is required.

RPC call sample program
The example8.c sample program sends a remote procedure call (RPC), prints
the result rows from the call, and prints the parameters and status returned by
the remote procedure.

Sample program summaries

40 Open Client and Open Server

To use this example, you must have create the stored procedure rpctest in your
default database. The comments at the top of the example8.c source code
specify the create procedure statement necessary for creating rpctest.

Note Access to Adaptive Server is required.

Text and image sample program
The example9.c sample program generates a random image, inserts it into a
table, and then selects the image and compares it to the original by following
these steps:

1 Inserts all data into the row except the text or image value.

2 Updates the row, setting the text or image value to NULL. This step is
necessary, because a text or image value that is null will have a valid text
pointer only if the null value was explicitly entered with the update
statement.

3 Selects the row. You must specifically select the column that is to contain
the text or image value. This step is necessary in order to provide the
application’s DBPROCESS with correct text pointer and text timestamp
information. The application should throw away the data returned by this
select command.

4 Calls dbtxtptr to retrieve the text pointer from DBPROCESS. dbtxtptr’s
column parameter is an integer that refers to the select operation performed
in step 3. For example, if “text_column” is the name of the text column,
the select statement reads:

select date_column, integer_column, text_column
from bigtable

dbtxtptr requires column to be passed as 3.

5 Calls dbtxtimestamp to retrieve the text timestamp from the DBPROCESS.
dbtxtimestamp’s column parameter refers to the select operation performed
in step 3.

6 Writes the text or image value to Adaptive Server. An application can
either:

• Write the value with a single call to dbwritetext, or

CHAPTER 3 Open Client DB-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 41

• Write the value in chunks, using dbwritetext and dbmoretext.

Note If you intend the application to perform another update to this text or
image value, you may want to save the new text timestamp that is returned by
Adaptive Server at the conclusion of a successful dbwritetext operation. The
new text timestamp can be accessed using dbtxtsnewval and stored for later
retrieval using dbtxtsput.

Also, access to a Adaptive Server that contains the pubs2 database is required.

Insert image sample program
The exampl10.c sample program prompts you for an author identification and
the name of a file containing an image, reads the image from the file, and
inserts a new row containing the author identification and the image into the
pubs2 database table au_pix. For general information on inserting text and
image values into a database table, see “Text and image sample program” on
page 40.

Note To run, exampl10.c requires access to Adaptive Server and the pubs2
database. The author identification must be of the form “nnn-nn-nnnn,” where
n is a numeric digit. Provided with the sample code, imagefile contains an
image.

Retrieve image sample program
The exampl11.c sample program retrieves an image from the au_pix table in
the pubs2 database. The author identification you enter determines which row
the program selects. After retrieving the row, this example copies the image
contained in the pic column to a file you specify.

There are two ways to retrieve a text or image value from Adaptive Server:

• exampl11.c selects the row containing the value and processes the row
using dbnextrow. After dbnextrow is called, dbdata can be used to return a
pointer to the returned image.

Sample program summaries

42 Open Client and Open Server

• You can also use dbreadtext in conjunction with dbmoretext to read a text
or image value in the form of a number of smaller chunks. For more
information on dbreadtext, see the Open Client DB-Library/C Reference
Manual.

Note Access to an Adaptive Server that contains the pubs2 database is
required.

International language routines sample program
The exampl12.c sample program retrieves data from the pubs2 database and
prints it using a us_english format.

Note Access to Adaptive Server and the pubs2 database is required.

Bulk copy sample program
The bulk-copy sample program, bulkcopy.c, uses the bulk-copy routines to
copy data from a host file into a newly created table containing several
Adaptive Server datatypes.

Note Access to Adaptive Server is required. You must have create database
and create table permission.

Two-phase commit sample program
This example, twophase.c, performs a simple update on two different servers.
See the source code for the exact contents of the update. After you have run the
example, you can use isql on each of the servers to determine whether the
update actually took place.

This example assumes that you have two Adaptive Servers running, named
“SERVICE” and “PRACTICE,” each containing the pubs2 database. If your
servers have different names, replace “SERVICE” and “PRACTICE” in the
source code with the actual names of your servers.

CHAPTER 3 Open Client DB-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 43

Before running the example, make sure that your interfaces file includes
appropriate entries for both servers. See the Open Client DB-Library/C
Reference Manual and the Open Client and Open Server Configuration Guide
for Microsoft Windows for information about the interfaces file.

If the “PRACTICE” server is on a different machine from the “SERVICE”
server, the interfaces file on that machine must also contain an entry for the
“SERVICE” query port. For details, see the Open Client DB-Library/C
Reference Manual.

Sample program summaries

44 Open Client and Open Server

Programmers Supplement for Microsoft Windows 45

C H A P T E R 4 Open Server Server-Library/C
Sample Programs

Open Server Server-Library/C is used to design servers that take
advantage of the features of the client/server architecture. These Open
Servers access data stored in foreign database management systems,
trigger external events, and respond to Open Client applications.

The client/server architecture divides the work of computing between
“clients” and “servers”:

• Clients make requests of servers and process the servers’ responses.

• Servers respond to requests and return data, parameters, and status
information to clients.

In this architecture, an Open Client application program is a client, using
the services provided by Adaptive Server and Open Server. Using
Server-Library, you can create a complete, standalone server.

This chapter covers the following topics:

Topic Page
Using Server-Library sample programs 46

Before you begin 46

Location and content 46

Tracing 47

Header files 48

Sample program summaries 48

Using Server-Library sample programs

46 Open Client and Open Server

Using Server-Library sample programs
The sample programs demonstrate specific Server-Library/C functionality.
These programs are designed as guides for application programmers, not as
Server-Library/C training aids. Read the descriptions at the top of each source
file and examine the source code before you attempt to use the sample
programs.

Note These simplified programs are not intended for use in a production
environment. Programs written for a production environment need additional
error-handling and special case-handling code.

Before you begin
Before you use the Open Server sample programs:

1 Set the SYBASE environment variable to the path of the Sybase release
directory (if it has not already been set).

2 Set the SYBASE_OCS environment variable to the home directory of
Open Client and Open Server products. For example, OCS-15_0 is the
home directory of 15.0 version of the Open Client and Open Server
products.

3 Set the DSLISTEN environment variable to your server’s name.

4 Use make in conjunction with the provided makefile to produce a sample
executable named example_name.

For detailed information regarding configuration of your environment and
variables, see the Open Client and Open Server Configuration Guide for
Microsoft Windows.

Location and content
Sample files that come with Server-Library are located in the
%SYBASE%\%SYBASE_OCS%\sample\srvlib directory.

CHAPTER 4 Open Server Server-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 47

The srvlib directory contains:

• Source code for the sample programs.

• README – a text file that has platform-specific and general notes about
building, executing, and troubleshooting the sample programs.

• makefile – provided so that you can use it to build the sample programs.
Use makefile as a starting point for your own Open Server applications.

• A SRV_CONNECT event handler.

• Error handlers.

Note Create a backup copy of the contents of the directory where the sample
programs reside. Then, you can experiment with the sample programs without
affecting the integrity of the original files.

Tracing
Tracing provides detailed information about activities carried out by your
application, depending on the options you select. The Open Server sample
programs support tracing, sending tracing output to the Open Server log file.
To enable tracing, specify the following options on the command line when
executing an sample program:

example_name [normal_sample_options]
[-h] [-d] [-i] [-a] [-m] [-t] [-e] [-q] [-n]

Table 4-1 describes the type of tracing information provided by each option:

Header files

48 Open Client and Open Server

Table 4-1: Tracing options

Note -e and -q are mutually exclusive.

Header files
The following header files are required by all Open Server applications:

• ospublic.h – contains public Open Server structures, datatype definitions,
define statements, and function prototypes

• oserror.h – contains Open Server error message numbers and text

• oscompat.h – contains mappings of old datatype definitions, datatypes,
routines, constants, and function prototypes to new versions

See the Open Server Server-Library/C Reference Manual for more information
on header files.

Sample program summaries
This section contains information about the sample programs that are included
with Server-Library. The sample programs demonstrate typical uses for
Server-Library routines in C programs.

Option Description

-h TDS header

-d TDS data

-i I/O

-a Attention

-m Message queue

-t TDS token

-e Event tracing

-q Deferred event queue

-n Net-Library tracing

CHAPTER 4 Open Server Server-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 49

The sample programs are C source files. You must have the appropriate
compiler installed for your platform if you plan to use the Server-Library
sample programs or build applications. For more information on Sybase-
supported compilers, see Chapter 1, “Building Open Client and Open Server
Applications.”

Testing sample programs
Before you run the sample program, do these steps:

1 Check if you can access to the Adaptive Server that is configured for
remote access. To do this, log into the Adaptive Server and enter the
following command:

execute sp_configure

If the Adaptive Server has already been configured for remote access, the
config_value and run_value columns for the “remote access” option should
be 1. If config_value is 0, enter the following command:

execute sp_configure ‘remote access’, 1

2 Make sure that an entry for your Open Server name exists in the sql.ini file
or the Windows registry file. Use the dsedit utility to create an entry in the
sql.ini file or the Windows registry file. For more information on dsedit, see
Open Client and Open Server Configuration Guide for Microsoft
Windows.

3 Make sure that your Open Server name exists in the Adaptive Server’s
sysservers table. To check this, log into Adaptive Server and enter the
following command:

execute sp_helpserver

This command lists all the servers that are available in the Adaptive
Server’s sysservers table. If the name of your Open Server does not appear
in this list, enter the following command:

execute sp_addserver your_open_server_name

4 Set these environment variables, if not already set:

Environment Variable Value

SYBASE Location of the Sybase home directory.

DSLISTEN Name of the Open Server application as listed in
the sql.ini file or directory service.

Sample program summaries

50 Open Client and Open Server

Open Server introduction sample program
The osintro.c sample program demonstrates the basic components that make
up an Open Server application. osintro.c does not include a language handler
and, therefore, cannot read commands sent by isql.

Gateway Open Server sample program
The ctos.c sample program is a gateway Open Server application. It uses
Server-Library calls and Client-Library calls. First, it accepts commands from
a client and passes them to a remote Adaptive Server. Then, it retrieves the
results from the remote server and passes them to the client. ctos.c processes a
variety of client commands, including:

• Bulk-copy commands

• Cursor commands

• Scrollable cursor commands

• Dynamic SQL commands

• Language commands

• Message commands

• Option commands

• Remote procedure calls (RPCs)

In addition, ctos.c responds to attention requests from a client by calling the
SRV_ATTENTION event handler. It includes an event handler routine to
process each type of client command.

Note Unlike other sample programs included with Server-Library, ctos.c
attempts to be complete. It is provided as a coding template for use in a
production environment. To terminate the ctos.c program, press CTRL-C from
the Command window. The command in the README file is incorrect.

DSQUERY Name of the Open Server as listed in the sql.ini
file or directory service.

Environment Variable Value

CHAPTER 4 Open Server Server-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 51

For more information on gateways, see the Open Server Server-Library/C
Reference Manual.

srv_language event handler sample program
The lang.c sample program demonstrates the use of a SRV_LANGUAGE
event handler. The event handler responds to client language commands with
an informational message, which it sends to the client using the srv_sendinfo
routine. This program also contains a SRV_CONNECT event handler and
error handlers.

For more information on processing language commands, see the “Language
Calls” topics page in the Open Server Server-Library/C Reference Manual.

TDS passthrough mode sample program
The fullpass.c sample program is an Open Server gateway application that
demonstrates the Tabular Data Stream™ (TDS) passthrough mode. For more
information, see the “Passthrough Mode” topics page in the Open
Server Server-Library/C Reference Manual.

The event handler routine receives client requests using srv_recvpassthru and
forwards this information to an Adaptive Server using the ct_sendpassthru
routine. After the entire client command has been forwarded to the remote
server, the event handler reads results from the remote server using
ct_recvpassthru and returns them to the client using srv_sendpassthru.

The application also includes a SRV_CONNECT event handler. This handler
uses srv_getloginfo and ct_setloginfo to forward client connection information
to the remote server. Then, it uses ct_getloginfo and srv_setloginfo to return
connection acknowledgment information to the client. All Open Server
applications that use TDS passthrough mode must include these calls in their
SRV_CONNECT event handler.

Note This application requires access to Adaptive Server.

Sample program summaries

52 Open Client and Open Server

Registered procedures sample program
The regproc.c sample program demonstrates the use of registered procedures
in Open Server 11.1 and later. The application registers several procedures at
start-up time and then waits for client commands. No Open Server event
handlers are installed.

Clients send RPC commands to execute the registered procedures defined in
regproc.c.

Several additional client programs are provided for use with regproc.c:

• version.c – executes a registered procedure (rp_version), which returns the
version number of Open Server to the client

• dbwait.c – implemented with DB-Library, requests Open Server to notify
the client when the registered procedure rp_version executes

• ctwait.c – implemented with Client-Library, requests Open Server to
notify the client when the registered procedure rp_version executes

International languages and character sets sample program
The intlchar.c sample program demonstrates how Open Server handles
international languages and character sets. It initializes values for the Open
Server application native language and character set and then changes these
values in response to client requests.

Client requests come in the form of option commands and language
commands. intlchar.c installs SRV_OPTION and SRV_LANGUAGE event
handlers and a SRV_CONNECT handler.

Multithreaded programming sample program
The multthrd.c sample program illustrates a number of Open Server
multithreaded programming features, including:

• Creation of a service thread using srv_spawn

• Interthread communication between client connection threads and the
service thread using message queues (using srv_getmsgq and
srv_putmsgq)

• Sleep and wake-up mechanisms (using srv_sleep and srv_wakeup)

CHAPTER 4 Open Server Server-Library/C Sample Programs

Programmers Supplement for Microsoft Windows 53

• The use of a callback routine (using srv_callback) to report scheduling
information

multthrd.c installs a SRV_START handler, a SRV_LANGUAGE handler, a
SRV_CONNECT handler, and callback handlers. A service thread logs all the
language queries received by the Open Server application. The following
occurs:

• In the application’s language handler, the client thread reads the query
from a client and sends a message to the service thread, known as the
logger, with the query as the message data.

• The client thread then waits (srv_sleep). When the service thread receives
the message, it wakes up the client thread (srv_wakeup).

• The logger continuously loops waiting for messages. When it receives a
message, it prints the contents of the query to a file and alerts the sender.

• The logger and client threads install SRV_C_RESUME,
SRV_C_SUSPEND, SRV_C_TIMESLICE, and SRV_C_EXIT callback
handlers to print scheduling information.

Security services sample program
The secsrv.c sample program demonstrates how Open Server uses network-
based security services.

The connection handler in this example retrieves the security properties of the
client thread and sends messages to the client that describe which security
services are active for the session.

For more information on security services, refer to the Open Client and Open
Server Configuration Guide for Microsoft Windows.

Sample program summaries

54 Open Client and Open Server

Programmers Supplement for Microsoft Windows 55

C H A P T E R 5 Open Client Embedded SQL/C

Embedded SQL is a superset of Transact-SQL that lets you embed
Transact-SQL statements in application programs written in languages
like C. Embedded SQL includes all Transact-SQL statements, and the
extensions needed to use Transact-SQL in an application program.

Embedded SQL provides a simple way to retrieve, insert, or modify data
stored in any Adaptive Server database.

This chapter covers the following topics:

Building an Embedded SQL/C executable
Following are basic steps to build an executable program from an
Embedded SQL application:

1 Precompile the application.

2 Compile the C source code generated by the precompiler.

3 Link your application to any necessary objects and libraries.

4 Load any precompiler-generated stored procedures.

The following sections describe each step.

Precompiling the application
Before you can compile your application, you must precompile the
Embedded SQL/C code, as follows:

Topic Page
Building an Embedded SQL/C executable 55

Compiling and linking the application 57

Using Embedded SQL/C sample programs 57

Building an Embedded SQL/C executable

56 Open Client and Open Server

cpre
 [-Ccompiler]
 [-Ddatabase_name]
 [-Ffips_level]
 [-G[isql_file_name]]

[-H]
 [-Iinclude_path_name]
 [-Jcharset_locale_name]
 [-Ksyntax_level]
 [-L[listing_file_name]]
 [-Ninterface_file_name]
 [-Otarget_file_name]
 [-Ppassword]
 [-Sserver_name]
 [-Ttag_id]
 [-Uuser_id]
 [-Vversion_number]
 [-Zlanguage_locale_name]
 [@options_file]...

[-a] [-b] [-c] [-d] [-e] [-f] [-h] [-l] [-m] [-p] [-r] [-s] [-u] [-v] [-w] [-x] [-y]
filename[.ext]

Note Options can be flagged using either a slash (/) or a dash (-); therefore,
cpre /l and cpre -l are equivalent.

If you enter an invalid option, the precompiler lists the options that are
available.

You must enter program, the name of the Embedded SQL/C source file. The
default extension for program is .cp. The cpre statement generates an output
file with a .c extension.

Some of the options are switches that activate features of the precompiler, such
as generating stored procedures. By default, these features are turned off. To
turn them on, include the option on the cpre statement line. Other statement
qualifiers specify values for the preprocessor—a password, for example. Enter
the value after the option (with or without intervening spaces).

Refer to Appendix B, “Precompiler Reference,” for a detailed description of
the cpre options.

CHAPTER 5 Open Client Embedded SQL/C

Programmers Supplement for Microsoft Windows 57

Compiling and linking the application
Embedded SQL versions 11.1 and later are certified using the Microsoft C
compiler on Windows platforms. Refer to the makefile for the actual compile-
and-link syntax. The makefile is located in the
%SYBASE%\%SYBASE_OCS%\sample\esqlc directory.

Link libraries
The following libraries are required on the link line:

• libsybct – Client-Library DLL

• libsybcs – CS-Library DLL

• libsybtcl – Transport Control Layer DLL

• libsybcomn– Internal Common library DLL

• libsybintl – Localization support library DLL

• libsybunic – Unicode library DLL

Loading stored procedures
Before running an Embedded SQL/C program, you must load the precompiler-
generated stored procedures into Adaptive Server. To do this, you need to
precompile the program with the -G option, which creates an isql script file.
Then, use the isql -i option to load the created file.

For more information about isql, see Appendix A, “Utility Commands
Reference.”

Using Embedded SQL/C sample programs
Embedded SQL includes two sample programs that demonstrate typical
Embedded SQL applications and are located in the
%SYBASE%\%SYBASE_OCS%\sample\esqlc directory. Included in this
directory are a README file and a makefile. This section gives a brief
description of the sample programs.

Using Embedded SQL/C sample programs

58 Open Client and Open Server

The sample programs demonstrate specific Embedded SQL/C functionality.
These programs are designed as guides for application programmers, not as
Embedded SQL/C training aids. Read the descriptions at the top of each source
file, and examine the source code before attempting to use the sample
programs.

Note These simplified programs are not intended for use in a production
environment. Programs written for a production environment need additional
error handling.

Before you begin
To run the Embedded SQL/C sample programs, set these environment
variables:

• SYBASE environment variable to the path of the Sybase installation
directory (if it has not already been set).

• SYBASE_OCS environment variable to the home directory of Open
Client and Open Server products. For example, OCS-15_0 is the home
directory of 15.0 version of the Open Client and Open Server products.

Check the sql.ini file to ensure that there is an entry for the server name used.
You can use dsedit to look at the sql.ini file. If you added servers to the sql.ini
file, as described in the Open Client and Open Server Configuration Guide for
Microsoft Windows, you can use ocscfg to test for connections to these servers.

To run the sample programs, you must access an Adaptive Server that includes
the pubs2 database. Refer to the Adaptive Server Enterprise Installation Guide
for information on installing the pubs2 database.

Before you precompile the sample programs, you must edit the example header
file, described below, and replace the user name and password with values that
are valid for your Adaptive Server. Comments in the programs show where you
should make the changes.

Header file
All the sample programs reference the example header file, sybsqlex.h. The
contents of sybsqlex.h are as follows:

/**

CHAPTER 5 Open Client Embedded SQL/C

Programmers Supplement for Microsoft Windows 59

 * *
 * sybsqlex.h - header file for Embedded SQL/C *
 * sample programs *
 * *
 **/

#define USER "username"

#define PASSWORD "password"

#define ERREXIT -1
#define STDEXIT 0

All the sample programs contain this line:

#include "sybsqlex.h"

USER and PASSWORD are defined in sybsqlex.h as “username” and
“password.” Before you run the sample programs, you must edit sybsqlex.h:
Change “username” to your Adaptive Server login name and “password” to
your Adaptive Server password.

Example 1: Using cursors for database query
The example1.cp sample program demonstrates how to use regular, non-
scrollable cursors in an interactive query program. The sample programs for
scrollable cursors are example4.pc.and example5.pc. The programs:

• Display a list of book types, from which the user selects one

• Display all titles in the selected book type and prompts for a title ID

• Display detailed information about the selected title and continues
prompting for title IDs

• Exit when Return is pressed at a prompt

Example 2: Displaying and editing rows of a table
The example2.cp sample program shows how to update a row through a cursor.
The program:

• Displays the columns in the authors table row by row.

Using Embedded SQL/C sample programs

60 Open Client and Open Server

• Lets the user update author information in all but the au_id column. If the
user presses Return for column information, that column’s data remains
unchanged.

• Sends the data to Adaptive Server after the user confirms the update.

ExampleHA: Using cursors for database query with HA-Failover
The exampleHA.cp sample program shows how Embedded SQL/C code can be
used with High Availability (HA) Failover capability. The program is similar
to example1.cp, with the addition of failover processing. Error handlers are
used to detect and handle failover.

Uni_example1: Using cursors for database query with
unichar/univarchar support

The uni_example1.cp sample program shows how cursors can be used to guide
an interactive query of the titles table. The program is similar to example1.cp,
with the addition of displaying unichar/univarchar columns. The program:

• Binds the character datatype to the unichar/univarchar column.

• Accesses unichar/univarchar data from the server, and displays in the
character format of the client’s character set.

Uni_example2: Displaying and editing rows of a table with
unichar/univarchar support

The uni_example2.cp sample program shows how cursors can be used to
display and edit rows of a table. The program is similar to example2.cp, with
the addition of displaying unichar/univarchar columns. The program:

• Binds the character datatype to the unichar/univarchar column.

• Accesses unichar/univarchar data from the server, and displays in the
character format of the client’s character set.

Programmers Supplement for Microsoft Windows 61

C H A P T E R 6 Open Client
Embedded SQL/COBOL

Embedded SQL is a superset of Transact-SQL® that lets you embed
Transact-SQL statements in application programs written in a language
like COBOL. Embedded SQL includes all Transact-SQL statements, and
the extensions needed to use Transact-SQL in an application.

Embedded SQL/COBOL provides a simple way to retrieve, insert, or
modify data stored in any Adaptive Server database.

This chapter covers the following topics:

Building an Embedded SQL/COBOL executable
To build an executable program from an Embedded SQL application:

1 Precompile the application.

2 Compile the COBOL source code generated by the precompiler.

3 Link your application, if required, to any necessary files and libraries.

4 Load any precompiler-generated stored procedures.

The following sections describe these steps.

Precompiling the application
The format of the statement to precompile an Embedded SQL source
program is as follows:

Topic Page
Building an Embedded SQL/COBOL executable 61

Compiling and linking the application 63

Using Embedded SQL/COBOL sample programs 63

Building an Embedded SQL/COBOL executable

62 Open Client and Open Server

cobpre
 [-Ccompiler]
 [-Ddatabase_name]
 [-Ffips_level]
 [-G[isql_file_name]]
 [-Iinclude_path_name]
 [-Jcharset_locale_name]

[-Ksyntax_level]
 [-L[listing_file_name]]
 [-Ninterface_file_name]
 [-Otarget_file_name]
 [-Ppassword]
 [-Sserver_name]
 [-Ttag_id]
 [-Uuser_id]
 [-Vversion_number]
 [-Zlanguage_locale_name]

[@ options_file]
[-a] [-b] [-c] [-d] [-e] [-f] [-l] [-m] [-r] [-s] [-u] [-v] [-w] [-x] [-y]
filename[.ext]

Note Options can be flagged using either a slash (/) or a dash (-); therefore,
 cobpre -l and cobpre /l are equivalent.

If you enter an invalid option, the precompiler lists the options that are
available.

program is the name of the Embedded SQL/COBOL source file. You must
enter the name of the source file. The default extension for program is .pco.
The cobpre option generates an output file with a .cbl extension.

Some of the options are switches that activate features of the precompiler, such
as generating stored procedures. These features are “off” by default. To turn
them “on” include the option on the cobpre statement line. Other statement
qualifiers specify values for the preprocessor—a password, for example. Enter
the value after the option (with or without intervening spaces).

Refer to Appendix B, “Precompiler Reference,” for a detailed description of
the cobpre options.

CHAPTER 6 Open Client Embedded SQL/COBOL

Programmers Supplement for Microsoft Windows 63

Compiling and linking the application
Embedded SQL version has been certified using the Micro Focus Net Express
4.0. Refer to the makefile located in the
%SYBASE%\%SYBASE_OCS%\sample\esqlcob directory for the actual
compile-and-link syntax.

Link libraries
Some or all of the following libraries may be required on the link command
line:

• libsybcobct – COBOL interface to Client-Library

• libsybct - Client-Library DLL

• libsybcs - CS-Library DLL

• libsybtcl – Transport Control Layer DLL

• libsybcomn – Internal common libraries DLL

• libsybintl – Localization support library DLL

• libsybunic – Unicode library DLL

Loading stored procedures
If you used the -G option when precompiling, you must load the precompiler-
generated stored procedures into Adaptive Server. You can use the isql -i option
to accomplish this task.

For more information on isql, see Appendix A, “Utility Commands
Reference.”

Using Embedded SQL/COBOL sample programs
Embedded SQL includes two sample programs that demonstrate typical
Embedded SQL applications. Sample programs are located in the
%SYBASE%\%SYBASE_OCS%\sample\esqlcob directory.

Using Embedded SQL/COBOL sample programs

64 Open Client and Open Server

A README file in the same directory contains instructions for building and
executing the sample programs and notes about using them. The COBOL.pco
file defines an Adaptive Server login name and password. Update the login
information in this file before compiling the sample programs.

Sample programs demonstrate specific Embedded SQL/COBOL functionality.
These programs are designed as guides for application programmers, not as
Embedded SQL/COBOL training aids. Read the descriptions at the top of each
source file and examine the source code before attempting to use the sample
programs.

Note These simplified programs are not intended for use in a production
environment. Programs written for a production environment need additional
error handling.

General requirements
To run the Embedded SQL/COBOL sample programs, set these environment
variables:

• SYBASE environment variable to the path of the Sybase installation
directory (if it has not already been set).

• SYBASE_OCS environment variable to the home directory of Open
Client and Open Server products. For example, OCS-15_0 is the home
directory of 15.0 version of the Open Client and Open Server products.

You need to access an Adaptive Server on which the pubs2 sample database is
installed. Refer to the Adaptive Server Enterprise Installation Guide for
information on installing the pubs2 database.

Before you precompile the programs, replace the user name and password with
values that are valid for your Adaptive Server. Comments in the programs
show where you should make the changes.

Note Before the sample programs produce any results, you may need to press
Return.

CHAPTER 6 Open Client Embedded SQL/COBOL

Programmers Supplement for Microsoft Windows 65

Environment variables for Micro Focus COBOL
Set the environment variables listed in Table 6-1 before running the Embedded
SQL/COBOL sample programs.

Table 6-1: Environment variables for COBOL compiler

Example 1: Using cursors for database query
The example1.pco sample program shows how to use regular, non-scrollable
cursors in an interactive query program. The regular, non-scrollable cursor
sample program:

• Displays a list of book types; user selects one type

• Displays all titles in the selected book type and prompts for a title ID

• Displays detailed information about the selected title and continues
prompting for title IDs

• Exits when Return is pressed at a prompt

Sample programs for scrollable cursors are example3.pco and example4.pco.
The scrollable cursor sample programs:

• Declare INSENSITIVE or SEMI_SENSITIVE scrollable cursors

• Display and print selections of book titles based upon hard-coded
FETCHES with a direction and/or offset

• Exit when the program is finished

Example 2: Displaying and editing rows in a table
The example2.pco sample program demonstrates how to update a row using a
cursor. The program:

• Displays the columns in the authors table row by row.

Environment variable Value

COBDIR Absolute path of the COBOL compiler
installation directory

COBLIB %COBDIR%\lib

PATH %COBDIR%\bin;%COBDIR%\lib

LIB %COBDIR%\lib;%LIB%

Using Embedded SQL/COBOL sample programs

66 Open Client and Open Server

• Lets the user update author information in all but the au_id column. If the
user presses Return for column information, that column’s data remains
unchanged.

• Sends the data to Adaptive Server after the user confirms the update.

Programmers Supplement for Microsoft Windows 67

A P P E N D I X A Utility Commands Reference

This appendix contains information on bcp, defncopy, isql, instjava, and
extrjava utility program commands.

Utility Description Page
bcp Bulk-copy utility, which copies a database table

to or from an operating system file in a
user-specified format.

68

defncopy Definition copy utility, which copies definitions
for specified views, rules, defaults, triggers,
procedures, or reports from a database to an
operating system file or from an operating
system file to a database.

92

isql Interactive SQL parser, which connects to and
queries an Adaptive Server or Open Server.

97

instjava Install java utility, which installs a JAR from a
client file into an Adaptive Server.

114

extrjava Extract java utility, which copies a retained JAR
and the classes it contains from an Adaptive
Server into a client file.

118

bcp

68 Open Client and Open Server

bcp
Description Copies a database table to or from an operating system file in a

user-specified format. This utility is available in the
%SYBASE%\%SYBASE_OCS%\bin directory.

Syntax bcp [[database_name.]owner.]table_name [:slice_number | partition
partition_name] {in | out} datafile

[-a display_charset]
[-A packet_size]
[-b batch_size]
[-c]
[-C]
[-d discardfileprefix]
[-e errfile]
[-E]
[-f formatfile]
[-F firstrow]
[-g id_start_value]
[-i input_file]
[-I interfaces_file]
[-J client_character_set]
[-K keytab_file]
[-L lastrow]
[-m maxerrors]
[-n]
[-N]
[-o output file]
[-P password]
[-Q]
[-r row_terminator]
[-R remote_server_principal]
[-S server]
[-t field_terminator]
[-T text_or_image_size]
[-U username]
[-v]
[-V [security_options]]
[-W]
[-X]
[-y alternate_home_directory]
[-Y]
[-z language]
[-Z security_mechanism]
[--colpasswd [[[db_name.[owner].]table_name.]

column_name [password]]]
[--hide-vcc]
[--initstring “TSQL_command”]
[--keypasswd [[db_name.[owner].]key_name [password]]]
[--maxconn maximum_connections]

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 69

[--show-fi]
[--skiprows nSkipRows]

Parameters database_name
Optional if the table being copied is in your default database or in master.
Otherwise, you must specify a database name.

owner
Optional if you or the Database Owner owns the table being copied. If you
do not specify an owner, bcp looks first for a table of that name owned by
you. Then it looks for one owned by the Database Owner. If another user
owns the table, you must specify the owner name or the command fails.

table_name
The name of the database table to copy. The table name cannot be a
Transact-SQL reserved word.

slice_number
The number of the slice of the database table to copy.

partition partition_name
The name of the partition in Adaptive Server. For multiple partitions, use a
comma-separated list of partition names.

in | out
The direction of the copy. in indicates a copy from a file into the database
table; out indicates a copy to a file from the database table.

datafile
The full path name of an operating system file. The path name can be from
1 to 255 characters in length. For multiple datafiles, use a comma-separated
list of file names. For multiple datafiles and partitions, the number of
datafiles and partitions must be the same.

-a display_charset
Allows you to run bcp from a terminal where the character set differs from
that of the machine on which bcp is running. Use -a in conjunction with -J
to specify the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

The following error message appears if the character translation file(s)
named with the -a parameter is missing, or you mistype the name(s):

Error in attempting to determine the size of a pair of
translation tables. : ‘stat’ utility failed.

bcp

70 Open Client and Open Server

-A packet_size
Specifies the network packet size to use for this bcp session. For example,
the following example sets the packet size to 4096 bytes for this bcp session:

bcp pubs2..titles out table_out -A 4096

packet_size must be between the values of the default network packet size
and maximum network packet size configuration variables, and it must be a
multiple of 512.

Use network packet sizes larger than the default to improve the performance
of large bulk-copy operations.

-b batchsize
The number of rows per batch of data copied. By default, bcp in copies n
rows in one batch, where n is equal to the batch size. Batch size applies only
when bulk copying in; it has no effect on bulk copying out. The smallest
number bcp accepts for batchsize is 1.

Note Setting the batch size to 1 causes Adaptive Server to allocate one data
page to one row copied in. This parameter only applies to fast bcp, and is only
useful in locating corrupt rows of data. Use -b 1 with care – doing so causes a
new page to be allocated for each row, and is a poor use of space.

-c
Performs the copy operation with char datatype as the default storage type
for all columns in the data file. Use this format if you are sharing data
between platforms. This parameter does not prompt for each field; it uses
char as the default storage type, no prefixes, \t (tab) as the default field
terminator, and \n (newline) as the default row terminator.

-C
Supports bulk copy of encrypted columns if Adaptive Server supports
encrypted columns. -C enables the ciphertext option before initiating the bulk
copy operation.

-d discardfileprefix
Logs the rejected rows into a dedicated discard file. The discard file has the
same format as the host file and is created by appending the input file name
to the discard file prefix supplied. You can correct the rows in this file and
use the file to reload the corrected rows.

Sybase recommends that you use the -d discardfileprefix option in
conjunction with the -e errorfile to help identify and diagnose the problem
rows logged in the discard file.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 71

-e errfile
The full path name of an error file where bcp stores all rows that bcp was
unable to transfer from the file to the database. The error messages from the
bcp program appear on your terminal and are also logged in the error file.
bcp creates an error file only when you specify this parameter. If multiple
sessions are used, the partition and filename information for the error is
added to the error file.

Sybase recommends that you use the -e errorfile option in conjunction with
the -d discardfileprefix to help identify and diagnose the problem rows logged
in the discard file.

-E
Explicitly specifies the value of a table’s IDENTITY column.

By default, when you bulk copy data into a table with an IDENTITY
column, bcp assigns each row a temporary IDENTITY column value of 0.
This is effective only when copying data into a table. bcp reads the value of
the ID column from the data file, but does not send it to the server. Instead,
as bcp inserts each row into the table, the server assigns the row a unique,
sequential IDENTITY column value, beginning with the value 1. If you
specify the -E flag when copying data into a table, bcp reads the value from
the data file and sends it to the server which inserts the value into the table.
If the number of inserted rows exceeds the maximum possible IDENTITY
column value, Adaptive Server returns an error.

By default, when you bulk copy data from a table with an IDENTITY
column, bcp excludes all information about the column from the output file.
If you specify the -E flag, bcp copies the existing IDENTITY column values
into the output file.

The -E parameter has no effect when you are bulk copying data out.
Adaptive Server copies the ID column to the data file, unless you use the -N
parameter.

You cannot use the -E and -g flags together.

bcp

72 Open Client and Open Server

-f formatfile
The full path name of a file with stored responses from a previous use of bcp
on the same table. After you answer bcp’s format questions, it prompts you
to save your answers in a format file. Creation of the format file is optional.
The default file name is bcp.fmt. The bcp program can refer to a format file
when copying data, so that you do not have to duplicate your previous
format responses interactively. Use this parameter only if you previously
created a format file that you want to use now for a copy in or out. If you do
not specify this parameter, bcp interactively queries you for format
information.

-F firstrow
The number of the first row to copy from an input file (default is the first
row). If multiple files are used, this option applies to each file.

Avoid using this parameter when performing heavy-duty, multi-process
copying, as it causes bcp to generally spend more effort to run, and does not
provide you with a faster process. Instead, use -F for single-process, ad-hoc
copying.

Note --F cannot co-exist with --skiprows.

-g id_start_value
Specifies the value of the IDENTITY column to use as a starting point for
copying data in.

You cannot use the -g and -E flags together.

-i input_file
Specifies the name of the input file. The Standard Input is used as the
default.

-I interfaces_file
Specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, bcp looks for the
interfaces file, sql.ini located in %SYBASE%\ini directory.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 73

-J client_character_set
Specifies the character set to use on the client. bcp uses a filter to convert
input between client_charset and the Adaptive Server character set.

-J client_character_set requests that Adaptive Server convert to and from
client_character_set, the character set used on the client.

-J with no argument disables character set conversion. No conversion takes
place. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform, which may not
necessarily be the character set that the client is using. For more information
about character sets and associated flags, see the Adaptive Server Enterprise
System Administration Guide.

-K keytab_file
Specifies the path to the keytab file for authentication in DCE.

-L lastrow
The number of the last row to copy from an input file (default is the last
row). If multiple files are used, this option applies to each file.

-m maxerrors
The maximum number of errors permitted before bcp aborts the copy. bcp
discards each row that it cannot insert (due to a data conversion error, or an
attempt to insert a null value into a column that does not allow them), each
rejected row as one error. If you do not include this option, bcp uses a default
value of 10.

When multiple partitions are used, this number will be used for every file.

bcp

74 Open Client and Open Server

-n
Performs the copy operation using native (operating system) formats.
Specifying the -n parameter means bcp will not prompt for each field. Files
in native data format are not human-readable.

 Warning! Do not use bcp in native format for data recovery, salvage, or to
resolve an emergency situation. Do not use bcp in native format to transport
data between different hardware platforms, different operating systems, or
different major releases of Adaptive Server. Do not use field terminators (-t) or
row terminators (-r) with bcp in native format. Results are unpredictable and
data may get corrupted. Using bcp in native format can create flat files that
cannot be reloaded into Adaptive Server, and it may be impossible to recover
the data. If you are unable to rerun bcp in character format (for example, a table
was truncated or dropped, hardware damage occurred, a database table was
dropped, and so on), the data is unrecoverable.

-N
Skips the IDENTITY column. Use this parameter when copying data in if
your host data file does not include a place holder for the IDENTITY
column values, or when copying data out, if you do not want to include the
IDENTITY column information in the host file.

You cannot use both -N and -E parameters when copying in data.

-o output_file
Specifies the name of the output file. The Standard Output is used as the
default.

-P password
Specifies an Adaptive Server password. If you do not specify
 -P password, bcp prompts for a password. You can leave out the -P flag if
your password is NULL.

-Q
Provides backward compatibility with bcp version 10.0.4 for copying
operations involving nullable columns.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 75

-r row_terminator
Specifies the row terminator.

 Warning! Do not use -t or -r parameters with bcp in native format. Results are
unpredictable and data may get corrupted.

When specifying terminators from the command line with the -t or -r
parameter, you must escape characters that have special significance to the
command prompt shell. See the examples for bcp for more information.
Either place a backslash in front of the special character or enclose it in
quotes. This is not necessary when bcp prompts you (interactive mode).

-R remote_server_principal
Specifies the principal name for the server as defined to the security
mechanism. By default, a server’s principal name matches the server’s
network name (which is specified with the -S parameter or the DSQUERY
environment variable). Use the -R parameter when the server’s principal
name and network name are not the same.

-S server
Specifies the name of the Adaptive Server to connect to. If you specify -S
with no argument, bcp uses the server specified by the DSQUERY
environment variable.

-t field_terminator
Specifies the default field terminator.

-T text_or_image_size
Allows you to specify, in bytes, the maximum length of text or image data
that Adaptive Server sends. The default is 32K. If a text or image field is
larger than the value of -T or the default, bcp does not send the overflow.

-U username
Specifies an Adaptive Server login name. If you do not specify username,
bcp uses the current user’s operating system login name.

-v
Displays the current version of bcp and a copyright message and returns to
the operating system.

bcp

76 Open Client and Open Server

-V security_options
Specifies network-based user authentication. With this parameter, the user
must log in to the network’s security system before running the utility. In
this case, users must supply their network user name with the -U parameter;
any password supplied with the -P parameter is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

• c – Enable data confidentiality service

• d – Enable credential delegation and forward the client credentials to
the gateway application

• i – Enable data integrity service

• m – Enable mutual authentication for connection establishment

• o – Enable data origin stamping service

• q – Enable out-of-sequence detection

• r – Enable data replay detection

-W
Specifies that if the server to which bcp is attempting to connect supports
neither normal password encryption nor extended password encryption,
plain text password retries are disabled. If this option is used, the
CS_SEC_NON_ENCRYPTION_RETRY connection property will be set to
CS_FALSE, and plain text (unencrypted) passwords will not be used in
retrying the connection.

Note The -W option and the CS_SEC_NON_ENCRYPTION_RETRY
property are ignored in this release.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 77

-X
Specifies that, in this connection to the server, the application initiates the
login with client-side password encryption. bcp (the client) specifies to the
server that password encryption is desired. The server sends back an
encryption key, which bcp uses to encrypt your password, and the server
uses the key to authenticate your password when it arrives.

This option can result in normal or extended password encryption,
depending on connection property settings at the server. If
CS_SEC_ENCRYPTION is set to CS_TRUE, normal password encryption
is used. If CS_SEC_EXTENDED_ENCRYPTION is set to CS_TRUE,
extended password encryption is used. If both CS_SEC_ENCRYPTION and
CS_SEC_EXTENDED_ENCRYPTION are set to CS_TRUE, extended
password encryption is used as the first preference.

If bcp crashes, the system creates a core file that contains your password. If
you did not use the encryption option, the password appears in plain text in
the file. If you used the encryption option, your password is not readable.

-y alternate_home_directory
Sets an alternate Sybase home directory.

-Y
Specifies that the character-set conversion is disabled in the server, and is
instead performed by bcp on the client side when using bcp IN. .

Note All character-set conversion is done in the server during bcp OUT.

-z language
The official name of an alternate language that the server uses to display bcp
prompts and messages. Without the -z flag, bcp uses the server’s default
language.

You can add languages to an Adaptive Server during installation or
afterwards, using either the langinst utility or the sp_addlanguage stored
procedure.

The following error message appears if an incorrect or unrecognized
language is named with -z parameter:

Unrecognized localization object. Using default value ‘us_english’.
Starting copy ...
=> warning.

bcp

78 Open Client and Open Server

-Z security_mechanism
Specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file
located in the %SYBASE%\%SYBASE_OCS%\ini directory. If no
security_mechanism name is supplied, the default mechanism is used.

Note The CS_LIBTCL_CFG property specifies the name and path to an
alternative libtcl.cfg file. For details about this property, see the Open Client
and Open Server Client Libraries Reference Manual.

For more information on security mechanism names, see the description of
the libtcl.cfg file in the Open Client and Open Server Configuration Guide
for Microsoft Windows.

--colpasswd column_name password
Sets passwords for encrypted columns by sending “set encryption passwd
password for column column_name” to ASE. This does not automatically
apply passwords to other encrypted columns, even if the second column is
encrypted with the same key. The password must be supplied a second time
to access the second column.

--hide-vcc
Instructs bcp not to copy virtual computed columns (VCC) either to or from
a datafile. When you use this parameter in bcp OUT, the datafile does not
contain data for VCC; in bcp IN, the data file may not contain data for a
VCC.

If this option is used, Adaptive Server does not calculate or send virtual
computed column data.

--initstring “TSQL_command“
Sends Transact-SQL commands to ASE before data is transferred.

Result sets issued by the initialization string are silently ignored, unless an
error occurs. If ASE returns an error, bcp stops before data is transferred and
displays an error message.

--keypasswd key_name password
Sets passwords for all columns accessed by a key by sending “set encryption
passwd password for key key_name” to ASE.

--maxconn maximum_connections
The maximum number of parallel connections permitted for each bulk copy
operation. For example, the following example sets the maximum number
of parallel connections permitted for each operation to 2:

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 79

bcp --maxconn 2

If you do not include this parameter, bcp uses a default value of 10.

--show-fi
Instructs bcp to copy functional indexes, while using either bcp IN or
bcp OUT. If this parameter is not specified, Adaptive Server generates the
value for the functional index.

--skiprows nSkipRows
Instructs bcp to skip a specified number of rows before starting to copy from
an input file. The valid range for --skiprows is between 0 and the actual
number of rows in the input file. If you provide an invalid value, an error
message displays.

Note --skiprows cannot co-exist with the -F option. Use of --skiprows with the
-F option results in an error message.

Examples Example 1 The -c parameter copies data out of the publishers table in character
format (using char for all fields). The -t field_terminator parameter ends each
field with a comma, and the -r row_terminator parameter ends each line with a
Return. bcp prompts only for a password.

bcp pubs2..publishers out pub_out -c -t , -r \r

Example 2 The -C parameter copies data out of the publishers table (with
encrypted columns) in cipher-text format, instead of plain text. Pressing Return
accepts the defaults specified by the prompts. The same prompts appear when
copying data into the publishers table.

bcp pubs2..publishers out pub_out -C
Password:
Enter the file storage type of field col1 [int]:
Enter prefix length of field col1 [0]:
Enter field terminator [none]:
Enter the file storage type of field col2 [char]:
Enter prefix length of field col2 [0]:
Enter length of field col2 [10]:
Enter field terminator [none]:
Enter the file storage type of field col3 [char]:
Enter prefix length of field col3 [1]:
Enter field terminator [none]:

bcp

80 Open Client and Open Server

Example 3 Copies data from the publishers table to a file named pub_out for
later reloading into Adaptive Server. Pressing Return accepts the defaults that
the prompts specify. The same prompts appear when copying data into the
publishers table.

bcp pubs2..publishers out pub_out
 Password:
 Enter the file storage type of field pub_id [char]:
 Enter prefix length of field pub_id [0]:
 Enter length of field pub_id [4]:
 Enter field terminator [none]:
 Enter the file storage type of field pub_name [char]:
 Enter prefix length of field pub_name [1]:
 Enter length of field pub_name [40]:
 Enter field terminator [none]:
 Enter the file storage type of field city [char]:
 Enter prefix length of field city [1]:
 Enter length of field city [20]:
 Enter field terminator [none]:
 Enter the file storage type of field state [char]:
 Enter prefix length of field state [1]:
 Enter length of field state [2]:
 Enter field terminator [none]:

Example 4 Copies data out of partition p1 of table t1 to the mypart.dat file in
the current directory.

bcp t1 partition p1 out mypart.dat

Example 5 Copies data back into Adaptive Server using the saved format file,
pub_form:

bcp pubs2..publishers in pub_out -f pub_form

Example 6 Copies a data file created with a character set used on a VT200
terminal into the pubs2..publishers table. The -z flag displays bcp messages in
French:

bcp pubs2..publishers in vt200_data -J iso_1 -z french

Example 7 Specifies that Adaptive Server send 40K of text or image data using
a packet size of 4096 bytes:

bcp pubs2..publishers out -T 40960 -A 4096

Example 8 Copies the mypart.dat file from the current directory, into table t1
of partition p1.

bcp t1 partition p1 in mypart.dat

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 81

Example 9 Copies partitions p1, p2 and p3 to files a, b and c respectively, in
the \work2\data directory.

bcp t1 partition p1, p2, p3 out \work2\data\a,
\work2\data\b, \work2\data\c

Example 10 Copies files data.first, data.last and data.other into partitions p1,
p2 and p3 respectively.

bcp t1 partition p1, p2, p3 in data.first, data.last,
data.other

Example 11 Disables replication when titles.txt data is transferred into the
pubs2 titles table:

bcp pubs2..titles in titles.txt -- initstring “set
replication off”

Note Because the set replication off command in this example is limited to the
current session in Adaptive Server, there is no need to explicitly reset the
configuration option after bcp is finished.

Example 12 Sets the password to pwd1 for encrypted column col1:

bcp mydb..mytable out myfile –U uuu –P ppp –-colpasswd
db..tbl.col1 pwd1

Example 13 Sets a prompt to enter the password for encrypted column:

bcp mydb..mytable out myfile –U uuu –P ppp –-colpasswd
db..tbl.col1
Enter column db..tbl.col1’s password: ***?

Example 14 Reads the password for encrypted column col1 from external OS
file passwordfile:

bcp mydb..mytable out myfile –U uuu –P ppp –-colpasswd
db..tbl.col1 < passwordfile

Example 15 Sets password pwd1 for encryption key key1:

bcp mydb..mytable in myfile –U uuu –p ppp –-keypasswd
db..key1 pwd1

Example 16 Creates the discard file reject_titlesfile.txt:

bcp pubs2..titles in titlesfile.txt -d reject_

Example 17 For MIT Kerberos, requests credential delegation and forwards
the client credentials to MY_GATEWAY:

bcp

82 Open Client and Open Server

bcp -Vd -SMY_GATEWAY

Example 18 bcp ignores the first two rows of the input file titles.txt, and starts
to copy from the third row.

bcp pubs2..titles in titles.txt -U username -P password
--skiprows 2

Example 19 Sets an alternate Sybase home directory to C:\work\NewSybase:

bcp tempdb..T1 out T1.out -yC:\work\NewSybase -Uuser1
-Psecret -SMYSERVER

Usage • You cannot use named pipes to copy files in or out.

• Using --hide-vcc improves performance, as Adaptive Server does not
transfer and calculate data from virtual computed columns.

• Although you can use any Transact-SQL command with --initstring as an
initialization string for bcp, you must reset possible permanent changes to
the server configuration after running bcp. You can, for example, reset
changes in a separate isql session.

• slice_number is included for backward compatibility with Adaptive
Server 12.5.x and earlier, and can be used only with round-robin
partitioned tables.

• You can specify either slice_number or partition_name, not both.

• You can specify multiple partition and data files. Separate each partition
name or data file with commas.

• If you do not specify partition_name, bcp copies to the entire table.

• bcp provides a convenient and high-speed method for transferring data
between a database table or view and an operating system file. It is capable
of reading or writing files in a wide variety of formats. When copying in
from a file, bcp inserts data into an existing database table; when copying
out to a file, bcp overwrites any previous contents of the file.

• Upon completion, bcp informs you of the number of rows of data
successfully copied, the total time the copy took, the average amount of
time in milliseconds that it took to copy one row, and the number of rows
copied per second.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 83

• The bcp utility does not insert any row that contains an entry exceeding the
character length of the corresponding target table column. For example,
bcp does not insert a row with a field of 300 bytes into a table with a
character column length of 256 bytes. Instead, bcp reports a conversion
error and skips the row. bcp does not insert truncated data into the table.
The conversion error is as follows:

cs_convert: cslib user api layer: common library
error: The result is truncated because the
conversion/operation resulted in overflow

To keep track of data that violate length requirements, run bcp with the -e
log-file name parameter. bcp records the row and the column number of the
rejected data, the error message, and the data in the log file you specify.

• Functional indexes can be copied in and out of the Adaptive Server
database using the --show-fi parameter.

• The data from the Virtual computed columns (VCC) can be eliminated
from copying in and out of the Adaptive Server database using the
--hide-vcc parameter.

Note To use a previous version of bcp, you must set the CS_BEHAVIOR
property in the [bcp] section of the ocs.cfg file:

[bcp]

CS_BEHAVIOR = CS_BEHAVIOR_100

If CS_BEHAVIOR is not set to CS_BEHAVIOR_100, you can use
functionality for bcp 11.1 and later.

Using the -d option

• Specifying the -d option applies only when bulk copying in; it is silently
ignored when used in bulk copying out.

• If you use multiple input files, one discard file is created for every input
file that has an erroneous row.

bcp

84 Open Client and Open Server

• If bcp reaches the maximum errors allowed and stops the operation, the
bcp logs all the rows from the beginning of the batch until the failed row.

Note If the discard file option is specified, the batch size is automatically
adjusted and the message Warning!!! Batch size adjusted to the
value newbatchsize, for the optimization of the discard

file feature. is displayed, when:

• -b batchsize is specified but the batch or row size is too big to hold all the
rows of the batch in memory.

• The -b batchsize option is not specified.

Copying tables with indexes or triggers

• The bcp program is optimized to load data into tables that do not have
indexes or triggers associated with them. It loads data into tables without
indexes or triggers at the fastest possible speed, with a minimum of
logging. Page allocations are logged, but the insertion of rows is not.

When you copy data into a table that has one or more indexes or triggers,
a slower version of bcp is automatically used, which logs row inserts. This
includes indexes implicitly created using the unique integrity constraint of
a create table statement. However, bcp does not enforce the other integrity
constraints defined for a table.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 85

Because the fast version of bcp inserts data without logging it, the System
Administrator or Database Owner must first set the system procedure
sp_dboption, “DB”, true. If the option is not true, and you try to copy data
into a table that has no indexes or triggers, Adaptive Server generates an
error message. You do not need to set this option to copy data out to a file,
or into a table that contains indexes or triggers.

Note Because bcp logs inserts into a table that has indexes or triggers, the
log can grow very large. You can truncate the log with dump transaction
after the bulk copy completes and after you have backed up your database
with dump database.

• While the select into/bulkcopy option is on, you are not allowed to dump
the transaction log. Issuing dump transaction produces an error message
instructing you to use dump database instead.

 Warning! Make sure that you dump your database before you turn off the
select into/bulkcopy flag. If you have inserted unlogged data into your
database, and you then perform a dump transaction before performing a
dump database, you will not be able to recover your data.

• Unlogged bcp runs slowly while a dump database is taking place.

• Table A-1 shows which version bcp uses when copying in, the necessary
settings for the select into/bulkcopy option, and whether the transaction log
is kept and can be dumped.

bcp

86 Open Client and Open Server

Table A-1: Comparing fast and slow bcp

• By default, the select into/bulkcopy option is off in newly created
databases. To change the default situation, turn this option on in the model
database.

Note The performance penalty for copying data into a table that has indexes
or triggers in place can be severe. If you are copying in a very large number of
rows, it may be faster to drop all the indexes and triggers beforehand with drop
index (or alter table for indexes created as a unique constraint) and drop trigger;
set the database option; copy the data into the table; recreate the indexes and
triggers; and then dump the database. However, you need to allocate disk space
for the construction of indexes and triggers—about 2.2 times the amount of
space needed for the data.

Responding to bcp prompts

When you copy data in or out using the -n (native format) or -c (character
format) parameter, bcp prompts only for your password, unless you supplied it
with the -P parameter. If you do not supply either the -n, -c or -f formatfile
parameter, bcp prompts you for information for each field in the table.

• Each prompt displays a default value, in brackets, which you can accept
by pressing Return. The prompts include:

• The file storage type, which can be character or any valid Adaptive
Server datatype

• The prefix length, which is an integer indicating the length in bytes of
the following data

• The storage length of the data in the file for non NULL fields

• The field terminator, which can be any character string

• Scale and precision for numeric and decimal datatypes

select into/
bulkcopy on

select into/
bulkcopy off

Fast bcp

(no indexes or triggers on target
table)

OK

dump transaction
prohibited

bcp

dump transaction
prohibited

Slow bcp

(one or more indexes or
triggers)

OK

dump transaction
prohibited

OK

dump transaction OK

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 87

The row terminator is the field terminator of the last field in the table or
file.

• The bracketed defaults represent reasonable values for the datatypes of the
field in question. For the most efficient use of space when copying out to
a file:

• Use the default prompts

• Copy all data in their table datatypes

• Use prefixes as indicated

• Do not use terminators

• Accept the default lengths

Table A-2 shows the defaults and possible alternate responses:

bcp

88 Open Client and Open Server

Table A-2: bcp prompts, their defaults and responses

• bcp can copy data out to a file either as its native (database) datatype, or as
any datatype for which implicit conversion is supported for the datatype in
question. bcp copies user-defined datatypes as their base datatype or as any
datatype for which implicit conversion is supported. For more information
on datatype conversions, see dbconvert in the Open Client DB-Library/C

Prompt Default provided Possible responses

File storage
type

Use database storage
type for most fields
except:
char for varchar
binary for varbinary

char to create or read a human-
readable file; any Adaptive Server
datatype where implicit conversion
is supported.

Prefix length • 0 for fields defined
with datatype (not
storage type)
(char and all
fixed-length
datatype)

• 1 for most other
datatypes

• 2 for binary and
varbinary saved as
char

• 4 for text and
image

0 if no prefix is desired; defaults are
recommended in all other cases.

Storage length For char and varchar,
use defined length.
For binary and
varbinary saved as
char, use default.
For all other
datatypes, use
maximum length
needed to avoid
truncation or data
overflow.

Default values, or greater, are
recommended.

Field or row
terminator

None Up to 30 characters, or one of the
following:
 \t tab
 \n newline
 \r carriage return
 \0 null terminator
 \ backslash

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 89

Reference Manual.

Note Be careful when you copy data from different versions of Adaptive
Server, because not all releases have the same datatypes.

• A prefix length is a 1-byte, 2-byte, or 4-byte integer that represents the
length of each data value in bytes. It immediately precedes the data value
in the host file.

• Be sure that fields defined in the database as char, nchar, and binary are
always padded with spaces (null bytes for binary) to the full length defined
in the database. timestamp data is treated as binary(8).

If data in varchar and varbinary fields is longer than the length you specify
for copy out, bcp silently truncates the data in the file at the specified
length.

• A field terminator string can be up to 30 characters long. The most
common terminators are a tab (entered as “\t” and used for all columns
except the last one), and a newline (entered as “\n” and used for the last
field in a row). Other terminators are: “\0” (the null terminator), “\”
(backslash), and “\r” (Return). When choosing a terminator, be sure that
its pattern does not appear in any of your character data. For example, if
you use tab terminators with a string that contains a tab, bcp can not
identify which tab represents the end of the string. Since bcp always looks
for the first possible terminator, in this case it will find the wrong one.

When a terminator or prefix is present, it affects the actual length of data
transferred. If the length of an entry being copied out to a file is less than
the storage length, it is followed immediately by the terminator, or the
prefix for the next field. The entry is not padded to the full storage length
(char, nchar, and binary data is returned from Adaptive Server already
padded to the full length).

When copying in from a file, data is transferred until either the number of
bytes indicated in the “Length” prompt has been copied or the terminator
is encountered. Once a number of bytes equal to the specified length has
been transferred, the rest of the data is flushed until the terminator is
encountered. When no terminator is used, the table storage length is
strictly observed.

bcp

90 Open Client and Open Server

• Table A-3 and Table A-4 show the interaction of prefix lengths,
terminators, and field length on the information in the file. “P” indicates
the prefix in the stored table; “T” indicates the terminator; and dashes, “--
”, show appended spaces. “...” indicates that the pattern repeats for each
field. The field length is 8 for each column, and “string” represents the 6-
character field each time.

Table A-3: Adaptive Server char data

Table A-4: Other datatypes converted to char storage

• Note that the file storage type and length of a column do not have to be the
same as the type and length of the column in the database table. (If types
and formats copied in are incompatible with the structure of the database
table, the copy fails.)

• File storage length generally indicates the maximum amount of data to be
transferred for the column, excluding terminators and/or prefixes.

• When copying data into a table, bcp observes any defaults defined for
columns and user-defined datatypes. However, bcp ignores rules in order
to load data at the fastest possible speed.

• Because bcp considers any data column that can contain null values to be
variable length, use either a length prefix or terminator to denote the length
of each row of data.

• Data written to a host file in its native format preserves all of its precision.
datetime and float values preserve all of their precision even when they are
converted to character format. Adaptive Server stores money values to a
precision of one ten-thousandth of a monetary unit. However, when money
values are converted to character format, their character format values are
recorded only to the nearest two places.

Prefix length = 0 Prefix length 1, 2 or 4

No terminator string--string-- Pstring--Pstring--

Terminator string--Tstring--T Pstring--TPstring--T

Prefix length = 0 Prefix length 1, 2 or 4

No terminator string--string-- PstringPstring

Terminator stringTstringT PstringTPstringT

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 91

• Before copying data that is in character format from a file into a database
table, check the datatype entry rules in the “Datatypes” section of the
Adaptive Server Reference Manual. Character data that is being copied
into the database with bcp must conform to those rules. Note especially
that dates in the undelimited (yy)yymmdd format may result in overflow
errors if the year is not specified first.

• When you send host data files to sites that use terminals different from
your own, inform them of the datafile_charset that you used to create the
files.

Messages

• Error in attempting to load a view of translation

tables.

The character translation file(s) named with the -q parameter is missing, or
you mistyped the name(s).

• Unable to open the discard-file discardfilename.

• I/O error while writing the bcp discardfilename.

• Unable to close the file discardfilename. Data may not

have been copied.

Permissions You must have an Adaptive Server account and the appropriate permissions on
the database tables, as well as the operating system files to use in the transfer
to use bcp.

• To copy data into a table, you must have insert permission on the table.

• To copy a table to an operating system file, you must have select
permission on the following tables:

• the table to copy

• sysobjects

• syscolumns

• sysindexes

defncopy

92 Open Client and Open Server

defncopy
Description Copies definitions for specified views, rules, defaults, triggers, or procedures

from a database to an operating system file or from an operating system file to
a database. This utility is available in the %SYBASE%\%SYBASE_OCS%\bin
directory.

Note The defncopy utility cannot copy table definitions or reports created with
Report Workbench™.

Syntax defncopy
 [-a display_charset]
 [-I interfaces_file]
 [-J [client_charset]]
 [-K keytab_file]
 [-P password]
 [-R remote_server_principal]
 [-S [server_name]]
 [-U user_name]

[-v]
 [-V [security_options]]

[-X]
 [-z language]
 [-Z security_mechanism]
 {in file_name database_name | out file_name database_name
 [owner.]object_name [[owner.]object_name...] }

Parameters -a display_charset
Runs defncopy from a terminal where the character set differs from that of
the machine on which defncopy is running.Use -a in conjunction with -J to
specify the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

Note The ascii_7 character set is compatible with all character sets. If either
the Adaptive Server’s or client’s character set is set to ascii_7, any 7-bit ASCII
character is allowed to pass between client and server unaltered. Other
characters produce conversion errors. Character set conversion issues are
covered more thoroughly in the Adaptive Server Enterprise
System Administration Guide.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 93

-I interfaces_file
Specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, defncopy looks for
an interfaces file, sql.ini located in the %SYBASE%\ini directory.

-J client_charset
Specifies the character set to use on the client. A filter converts input
between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from
client_charset, the client’s character set.

-J with no argument sets character set conversion to NULL. No conversion
takes place. Use this if the client and server are using the same character set.

Omitting -J sets the character set to a default for the platform. The default
may not be the character set that the client is using. For more information
about character sets and their associated flags, see the Adaptive Server
Enterprise System Administration Guide for your platform.

-K keytab_file
Can be used only with DCE security. It specifies a DCE keytab file that
contains the security key for the user name specified with -U parameter.
Keytab files can be created with the DCE dcecp utility. See your DCE
documentation for more information.

If the -K parameter is not provided, the user of defncopy must be logged in
to DCE with the same user name as specified with the -U parameter.

-P password
Allows you to specify your password. If you do not specify -P, defncopy
prompts for your password. This option is ignored if -V is used.

-R remote_server_principal
Specifies the principal name for the server. By default, a server’s principal
name matches the server’s network name (which is specified with the -S
parameter or the DSQUERY environment variable). Use the -R parameter
when the server’s principal name and network name are not the same.

-S server_name
Specifies the name of the Adaptive Server to connect to. If you specify -S
with no argument, defncopy looks for a server named SYBASE. If you do
not specify -S, defncopy uses the server specified by your DSQUERY
environment variable.

defncopy

94 Open Client and Open Server

-U user_name
Allows you to specify a login name. Login names are case sensitive. If you
do not specify username, defncopy uses the current user’s operating system
login name.

-v
Displays the version number and copyright message of defncopy and returns
to the operating system.

-V security_options
Specifies network-based user authentication. With this option, the user must
log in to the network’s security system before running the utility. In this case,
users must supply their network user name with the -U parameter; any
password supplied with the -P parameter is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

• c – Enable data confidentiality service

• i – Enable data integrity service

• m – Enable mutual authentication for connection establishment

• o – Enable data origin stamping service

• q – Enable out-of-sequence detection

• r – Enable data replay detection

-X
Specifies that in this connection to the server, the application initiate the
login with client-side password encryption. defncopy (the client) specifies to
the server that password encryption is desired. The server sends back an
encryption key, which defncopy uses to encrypt your password, and the
server uses the key to authenticate your password when it arrives.

If the defncopy crashes, the system creates a core file which contains your
password. If you did not use the encryption option, the password appears in
plain text in the file. If you used the encryption option, your password is not
readable.

-z language
The official name of an alternate language that the server uses to display
defncopy prompts and messages. Without the -z flag, defncopy uses the
server’s default language.

Add languages to an Adaptive Server at installation, or afterwards with the
utility langinst or the stored procedure sp_addlanguage.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 95

-Z security_mechanism
Specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file
located in the %SYBASE%\%SYBASE_OCS%ini directory. If no
security_mechanism name is supplied, the default mechanism is used. For
more information on security mechanism names, see the description of the
libtcl.cfg file in the Open Client and Open Server Configuration Guide for
Microsoft Windows.

in | out
Specifies the direction of definition copy.

file_name
Specifies the name of the operating system file destination or source for the
definition copy. The copy out overwrites any existing file.

database_name
Specifies the name of the database to copy the definitions to or from.

object_name
Specifies name(s) of database object(s) for defncopy to copy out. Do not use
object_name when copying definitions in.

owner
Specifying this is optional if you or the Database Owner own the table being
copied. If you do not specify an owner, defncopy first looks for a table of
that name that you own, and then looks for one owned by the Database
Owner. If another user owns the table, you must specify the owner name or
the command fails.

Examples Example 1 Copies definitions from the file new_proc into the database stagedb
on server MERCURY. The connection with MERCURY is established with a
user of name “sa” and a NULL password.

defncopy -Usa -P -SMERCURY in new_proc stagedb

Example 2 Copies definitions for objects sp_calccomp and sp_vacation from
the employees database on the Sybase server to the file dc.out. Messages and
prompts are displayed in french. The user is prompted for a password.

defncopy -S -z french out dc.out employees sp_calccomp sp_vacation

Usage • Invoke the defncopy program directly from the operating system. defncopy
provides a non-interactive way of copying out definitions (create
statements) for views, rules, defaults, triggers, or procedures from a
database to an operating system file. Alternatively, it copies in all the
definitions from a specified file.

defncopy

96 Open Client and Open Server

• You must have the appropriate create permission for the type of object you
are copying in. Objects copied in belong to the copier. A System
Administrator copying in definitions on behalf of a user must log in as that
user to give the user proper access to the reconstructed database objects.

• The in filename or out filename and the database name are required and
must be stated unambiguously. For copying out, use file names that reflect
both the object’s name and its owner.

• defncopy ends each definition that it copies out with the comment

/* ### DEFNCOPY: END OF DEFINITION */

When assembling definitions in an operating system file to be copied into
a database using defncopy, each definition must be terminated using the
“END OF DEFINITION” string.

• Enclose values specified to defncopy in quotation marks if they contain
characters that could be significant to the shell.

 Warning! Long comments of more than 100 characters that are placed
before a create statement may cause defncopy to fail.

New features

defncopy is built with Client-Library. The defncopy user interface is unchanged
except for the following:

• New command-line options have been added to enable network-based
security services on the connection:

-K keytab_file
 -R remote_server_principal
-V security_options
-Z security_mechanism

• The -y sybase_directory option has been removed.

Permissions • You must have select permission on the sysobjects and syscomments tables
to copy out definitions; you do not need permission on the object itself.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 97

• You may not have select permission on the text column of the
syscomments table if the System Security Officer has reset the allow select
on syscomment.text column parameter with the system procedure
sp_configure. This reset restricts select permissions to the object owner and
the System Administrator. This restriction is required in order to run
Adaptive Server in the evaluated configuration, as described in the
Adaptive Server Enterprise installation and configuration documentation
for your platform. In this case, the object owner or a System Administrator
must execute defncopy to copy out definitions.

Note If the text has been encrypted, it may be hidden from you even if you
have all the required permissions. See “Verifying and Encrypting Source
Text” in the Adaptive Server Enterprise Transact-SQL User’s Guide for
more information.

• You must have the appropriate create permission for the type of object you
are copying in. Objects copied in belong to the copier. A System
Administrator copying in definitions on behalf of a user must log in as that
user to give the user proper access to the reconstructed database objects.

isql
Description Interactive SQL parser to Adaptive Server. This utility is available in the

%SYBASE%\%SYBASE_OCS%\bin directory.

Syntax isql [-b] [-e] [-F] [-n] [-p] [-v] [-X] [-Y] [-Q]
[-a display_charset]
[-A packet_size]
[-c cmdend]
[-D database]
[-E editor]
[-h header]
[-H hostname]
[-i inputfile]
[-I interfaces_file]
[-J client_charset]
[-K keytab_file]
[-l login_timeout]
[-m errorlevel]
[-o outputfile]
[-P password]
[-R remote_server_principal]
[-s col_separator]

isql

98 Open Client and Open Server

[-S server_name]
[-t timeout]
[-U username]
[-V [security_options]]
[-w column_width]
[-W]
[-y alternate_home_directory]
[-z localename]
[-Z security_mechanism]
[--conceal [':?' | 'wildcard']]
[--help]
[--retserverror]

Parameters -a display_charset
Allows you to run isql from a terminal where the character set differs from
that of the machine on which isql is running. Use -a in conjunction with -J to
specify the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

Note The ascii_7 character set is compatible with all character sets. If either
the Adaptive Server’s or client’s character set is set to ascii_7, any 7-bit ASCII
character is allowed to pass between client and server unaltered. Other
characters produce conversion errors. Character set conversion issues are
covered more thoroughly in the Adaptive Server Enterprise
System Administration Guide.

-A packet_size
Specifies the network packet size to use for this isql session. For example,
the following sets the packet size to 4096 bytes for this isql session:

isql -A 4096

To check your network packet size, enter:

select * from sysprocesses

The value is displayed under the network_pktsz heading.

packet_size must be between the values of the default network packet size and
maximum network packet size configuration variables, and must be a
multiple of 512.

Use larger-than-default packet sizes to perform I/O-intensive operations,
such as readtext or writetext operations.

Setting or changing Adaptive Server’s packet size does not affect remote
procedure calls’ packet size.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 99

-b
Disables the display of the table headers output.

-c cmdend
Resets the command terminator. By default, you can terminate commands
and send them to Adaptive Server by typing “go” on a line by itself. When
you reset the command terminator, do not use SQL reserved words or
control characters. Make sure to escape shell meta characters, such as “?”,
“()”, “[]”, “$”, and so on.

-D database
Selects a database in which the isql session begins.

-e
Echoes input.

-E editor
Specifies an editor other than your default editor (such as edit). To invoke it,
enter its name as the first word of a line in isql.

-F
Enables the FIPS flagger. When you specify the -F parameter, the server
returns a message when it encounters a non-standard SQL command. This
option does not disable SQL extensions. Processing completes when you
issue the non-ANSI SQL command.

-h header
Specifies the number of rows to print between column headings. The default
prints headings only once for each set of query results.

-H hostname
Sets the client host name.

-i inputfile
Specifies the name of the operating system file to use for input to isql . The
file must contain command terminators (“go” by default).

• Specifying the parameter as follows is equivalent to < inputfile:

-i inputfile

• If you use -i and do not specify your password on the command line, isql
prompts you for it.

• If you use < inputfile and do not specify your password on the command
line, you must specify your password as the first line of the input file.

isql

100 Open Client and Open Server

-I interfaces_file
Specifies the name and location of the interfaces file to search when
connecting to Adaptive Server. If you do not specify -I, isql looks for an
interfaces file, sql.ini located in the %SYBASE%\ini directory.

-J client_charset
Specifies the character set to use on the client. -J client_charset requests that
Adaptive Server convert to and from client_charset, the character set used
on the client. A filter converts input between client_charset and the
Adaptive Server character set.

-J with no argument sets character set conversion to NULL. No conversion
takes place. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform. The default
may not necessarily be the character set that the client is using. For more
information about character sets and the associated flags, see the Adaptive
Server Enterprise System Administration Guide.

-K keytab_file
Can be used only with DCE security. It specifies a DCE keytab file that
contains the security key for the user name specified with -U option. Keytab
files can be created with the DCE dcecp utility. See your DCE
documentation for more information.

If the -K option is not supplied, the user of isql must be logged in to DCE with
the same user name as specified with the -U option.

-l login_timeout
Specifies the maximum timeout value allowed when connecting to Adaptive
Server. The default is 60 seconds. This value affects only the time that isql
waits for server to respond to a login attempt. To specify a timeout period
for command processing, use the -t timeout parameter.

-m errorlevel
Customizes the error message display. For errors of the severity level
specified or higher only the message number, state, and error level display;
no error text appears. For error levels lower than the specified level, nothing
appears.

-n
Removes numbering and the prompt symbol (>) from the echoed input lines
in the output file when used in conjunction with -e.

-o outputfile
Specifies the name of an operating system file to store the output from isql.
Specifying the parameter as -o outputfile is similar to > outputfile.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 101

-p
Prints performance statistics.

-P password
Specifies your Adaptive Server password. This option is ignored if -V is
used. Passwords are case sensitive and can be from 6 to 30 characters in
length. If your password is NULL, use -P without any password.

-Q
Provides clients with failover (HA) property. See the Adaptive Server
Enterprise Using Sybase Failover in a High Availability System for more
information.

-R remote_server_principal
Specifies the principal name for the server as defined to the security
mechanism. By default, a server’s principal name matches the server’s
network name (which is specified with the -S option or the DSQUERY
environment variable). Use -R when the server’s principal name and
network name are not the same.

-s col_separator
Resets the column separator character, which is blank by default. To use
characters that have special meaning to the operating system (for example,
“|”, “;”, “&”, “<“, “>”), enclose them in quotes or precede them with a
backslash.

The column separator appears at the beginning and the end of each column
of each row.

-S server_name
Specifies the name of the Adaptive Server to connect to. isql looks this name
up in the interfaces file. If you specify -S with no argument, isql looks for a
server named SYBASE. If you do not specify -S, isql looks for the server
specified by your DSQUERY environment variable.

-t timeout
Specifies the number of seconds before a SQL command times out. If you
do not specify a timeout, a command runs indefinitely. This affects
commands issued from within isql, not the connection time. The default
timeout for logging into isql is 60 seconds.

-U username
Specifies a login name. Login names are case sensitive.

isql

102 Open Client and Open Server

-V security_options
Specifies network-based user authentication. With this option, the user must
log in to the network’s security system before running the utility. In this
case, users must supply their network user name with the -U option; any
password supplied with the -P option is ignored.

-V can be followed by a security_options string of key-letter options to
enable additional security services. These key letters are:

• c – Enable data confidentiality service

• d – Enable credential delegation and forward the client credentials to
the gateway application

• i – Enable data integrity service

• m – Enable mutual authentication for connection establishment

• o – Enable data origin stamping service

• q – Enable out-of-sequence detection

• r – Enable data replay detection

-v
Prints the version and copyright message of the isql and then exits.

-w column_width
Sets the screen width for output. The default is 80 characters. When an
output line reaches its maximum screen width, it breaks into multiple lines.

-W
Specifies that if the server to which isql is attempting to connect supports
neither normal password encryption nor extended password encryption,
plain text password retries are disabled. If this option is used, the
CS_SEC_NON_ENCRYPTION_RETRY connection property will be set to
CS_FALSE, and plain text (unencrypted) passwords will not be used in
retrying the connection.

Note The -W option and the CS_SEC_NON_ENCRYPTION_RETRY
property are ignored in this release.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 103

-X
Initiates the login connection to the server with client-side password
encryption. isql (the client) specifies to the server that password encryption
is desired. The server sends back an encryption key, which isql uses to
encrypt your password, and the server uses the key to authenticate your
password when it arrives.

This option can result in normal or extended password encryption,
depending on connection property settings at the server. If
CS_SEC_ENCRYPTION is set to CS_TRUE, normal password encryption
is used. If CS_SEC_EXTENDED_ENCRYPTION is set to CS_TRUE,
extended password encryption is used. If both CS_SEC_ENCRYPTION and
CS_SEC_EXTENDED_ENCRYPTION are set to CS_TRUE, extended
password encryption is used as the first preference.

If isql crashes, the system creates a core file that contains your password. If
you did not use the encryption option, the password appears in plain text in
the file. If you used the encryption option, your password is not readable.

-y alternate_home_directory
Sets an alternate Sybase home directory.

-Y
Tells the Adaptive Server to use chain transactions.

-z localename
The official name of an alternate language to display isql prompts and
messages. Without -z, isql uses the server’s default language. Add languages
to an Adaptive Server at installation, or afterward with the utility langinst or
the sp_addlanguage stored procedure.

-Z security_mechanism
Specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file
located in the %SYBASE%\%SYBASE_OCS%\ini directory. If no
security_mechanism name is supplied, the default mechanism is used. For
more information on security mechanism names, see the description of the
libtcl.cfg file in the Open Client and Open Server Configuration Guide for
Microsoft Windows.

isql

104 Open Client and Open Server

--conceal [':?' | 'wildcard']
Hides your input during an isql session. The --conceal option is useful when
entering sensitive information, such as passwords.

wildcard, a 32-byte variable, specifies the character string that triggers isql
to prompt you for input during an isql session. For every wildcard that isql
reads, isql displays a prompt that accepts your input but does not echo the
input to the screen. The default wildcard is :?.

Note --conceal is silently ignored in batch mode.

For information on how to use the wildcard in an isql session, see “Using
prompt labels and double wildcards in an isql session” on page 112.

--help
Lists all available command-line parameters for the isql utility with a short
description of the functionality of each parameter.

--retserverror
Forces isql to terminate and return a failure code when it encounters a server
error of severity greater than 10. When isql encounters this type of abnormal
termination, it writes the label “Msg” together with the actual ASE error
number to stderr, and returns a value of “2” to the calling program. As
before, isql prints the full server error message to stdout.

Examples Example 1 Puts you in a text file where you can edit the query. When you write
and save the file, you are returned to isql. The query appears; type “go” on a
line by itself to execute it:

isql -Ujoe -Pabracadabra
1>select *
2>from authors
3>where city = "Oakland"
4>vi

Example 2 reset clears the query buffer. quit returns you to the operating
system.

isql -U alma
Password:
1>select *
2>from authors
3>where city = "Oakland"
4>reset
5>quit

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 105

Example 3 Creates column separators using the “#” character in the output in
the pubs2 database for store ID 7896:

isql -Usa -P -s#
1> use pubs2
2> go
1> select * from sales where stor_id = “7896”
#stor_id#ord_num #date #
#-------#-----------------------#---------------------------------#
#7896 #124152 # Aug 14 1986 12:00AM#
#7896 #234518 # Feb 14 1991 12:00AM#

(2 rows affected)

Example 4 For MIT Kerberos, requests credential delegation and forwards the
client credentials to MY_GATEWAY:

isql -Vd -SMY_GATEWAY

Example 5 When isql encounters a server error of severity 10 or greater, it
returns a value of “2” to the command prompt, prints the full server error
message to stdout, and writes the label “Msg” together with the actual ASE
error number to stderr.

C:\>isql -Uguest -Pguestpwd -SmyASE
--retserverror 2> isql.stderr
1> select no_column from sysobjects
2> go
Msg 207, Level 16, State 4:
Server 'myASE', Line 1:
Invalid column name 'no_column'.

C:\>echo %ERRORLEVEL%
2
C:\>type isql.stderr
Msg 207
C:\>

Example 6 When you use the --help option, isql returns a brief description of
syntax and usage for the isql utility consisting of a list of available arguments.

C:\>isql --help

usage: isql [option1] [option2] ... where [options] are...
-b Disables the display of the table headers output.
-e Echoes input.
-F Enables the FIPS flagger.
-p Prints performance statistics.
-n Removes numbering and the prompt symbol when used

isql

106 Open Client and Open Server

with -e.
-v Prints the version number and copyright message.
-W Turn off extended password encryption on connection

retries.
-X Initiates the login connection to the server with

client-side password encryption.
-Y Tells the Adaptive Server to use chained transactions.
-Q Enables the HAFAILOVER property.
-a display_charset Used in conjunction with -J to specify the character set

translation file (.xlt file) required for the conversion.
Use -a without -J only if the client character set is the
same as the default character set.

-A packet_size Specifies the network packet size to use for this isql
session.

-c cmdend Changes the command terminator.
-D database Selects the database in which the isql session begins.
-E editor Specifies an editor other than the default editor vi.
-h header Specifies the number of rows to print between column

headings.
-H hostname Sets the client host name.
-i inputfile Specifies the name of the operating system file to use

for input to isql.
-I interfaces_file Specifies the name and location of the interfaces file.
-J client_charset Specifies the character set to use on the client.
-K keytab_file Specifies the path to the keytab file used for

authentication in DCE.
-l login_timeout Specifies the number of seconds to wait for the server

to respond to a login attempt.
-m errorlevel Customizes the error message display.
-M labelname labelvalue

Used for security labels. See CS_SEC_NEGOTIATE for more
details.

-o outputfile Specifies the name of an operating system file to store
the output from isql.
-P password Specifies your Adaptive Server password.
-R remote_server_principal

Specifies the principal name for the server as defined to
the security mechanism.

-s col_separator Resets the column separator character, which is blank by
default.

-S server_name Specifies the name of the Adaptive Server to which to
connect.

-t timeout Specifies the number of seconds before a SQL command times
out.

-U username Specifies a login name. Login names are case sensitive.
-V [security_options]

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 107

Specifies network-based user authentication. Valid
[security_options]:
c - Enable data confidentiality service.
i - Enable data integrity service.
m - Enable mutual authentication for connection

establishment.
o - Enable data origin stamping service.
q - Enable out-of-sequence detection.
r - Enable data replay detection.
d - Requests credential delegation and forwards client

credentials.
-w column_width Sets the screen width for output.
-y sybase_directory

Sets an alternate location for the Sybase home directory.
-z localename Sets the official name of an alternate language to display

isql prompts and messages.
-Z security_mechanism

Specifies the name of a security mechanism to use on the
connection.

-x trusted.txt_file Specifies an alternate trusted.txt file location.
--retserverror Forces isql to terminate and return a failure code when it

encounters a server error of severity greater than 10.
--conceal [wildcard]

Obfuscates input in an ISQL session. The optional wildcard
will be used as a prompt.

Example 7 Sets an alternate Sybase home directory to C:\work\NewSybase:

C:\>isql -yC:\work\NewSybase -Uuser1 -Psecret
-SMYSERVER

Example 8 Changes password without displaying the password entered. This
example uses “old” and “new” as prompt labels:

C:\>isql -Uguest -Pguest -Smyase --conceal
1> sp_password
2> :? old
3> ,
4> :?:? new
5> go
old
new
Confirm new
Password correctly set.
(return status = 0)

isql

108 Open Client and Open Server

Example 9 Changes password without displaying the password entered. This
example uses the default wildcard as the prompt label:

C:\>isql -Uguest -Pguest -Smyase --conceal
1> sp_password
2> :?
3> ,
4> :?:?
5> go
:?
:?
Confirm :?
Password correctly set.
(return status = 0)

Example 10 Activates a role for the current user. This example uses a custom
wildcard and the prompt labels “role” and “password:”

C:\>isql -UmyAccount --conceal '*'
Password:
1> set role
2> * role
3> with passwd
4> ** password
5> on
6> go
role
password
Confirm password
1>

Usage • Following are the commands you can use at isql prompt:

• To terminate a command:

go

• To clear the query buffer:

reset

• To execute an operating system command:

!! command

• To exit from isql:

quit

or

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 109

exit

• You must set the SYBASE environment variable to the location of the
current version of the Adaptive Server before you can use isql.

• The 5701 (“changed database”) server message is no longer displayed
after login or issuing a use database command.

• Error message format differs from earlier versions of isql. If you have
scripts that perform routines based on the values of these messages you
may need to rewrite them.

• To use isql interactively, give the command isql (and any of the optional
flags) at your operating system prompt. The isql program accepts SQL
commands and sends them to Adaptive Server. The results are formatted
and printed on standard output. Exit isql with quit or exit.

• Terminate a command by typing a line beginning with the default
command terminator go or other command terminator if the -c option is
used. You may follow the command terminator with an integer to specify
how many times to run the command. For example, to execute this
command 100 times, type the following:

select x = 1
go 100

The results display once at the end of execution.

• If you enter an option more than once on the command line, isql uses the
last value. For example, if you enter the following command, “send”, the
second value for -c, overrides “.”, the first value:

isql -c. -csend

This enables you to override any aliases you set up.

• To call an editor on the current query buffer, enter its name as the first word
on a line. Define your preferred callable editor by specifying it with the
EDITOR environment variable. If EDITOR is undefined, the default is
edit.

For example, if the EDITOR environment variable is set to emacs, invoke
it from isql using “emacs” as the first word on a line.

• Execute operating system commands by starting a line with “!!” followed
by the command.

• To clear the existing query buffer, type reset on a line by itself. isql discards
any pending input. You can also press Ctrl-C anywhere on a line to cancel
the current query and return to the isql prompt.

isql

110 Open Client and Open Server

• Read in an operating system file containing a query for execution by isql
as follows:

isql -Ualma -Ppassword < input_file

The file must include a command terminator. The results appear on your
terminal. Read in an operating system file containing a query and direct
the results to another file as follows:

isql -Ualma -Ppassword < input_file > output_file

• To redirect output from the isql command line to a file, use the “>” and
“>>” operators. For example, to write the output of the select
@@servername command to a file or overwrite that file if it already exists,
enter the following command:

select @@servername
go > output_file

To write the output of the select @@version command to a new file or
append that file if it already exists, enter the following command:

select @@version
go >> output_file

• Use the “|” operator to pipe output to another command at the isql
command line. For example, to pipe the output of the sp_who command to
grep and return the lines that contain the string “sa,” enter the following
command:

sp_who
go | grep sa

• Case is significant for the isql flags.

• isql displays only 6 digits of float or real data after the decimal point,
rounding off the remainder.

• When using isql interactively, read an operating system file into the
command buffer with the command:

:r filename

Do not include a command terminator in the file; enter the terminator
interactively once you have finished editing.

• When using isql interactively, read and display an operating system file
into the command buffer with the following command:

:R filename

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 111

• When using isql interactively, you can change the current database with
the following command:

use databasename

• You can include comments in a Transact-SQL statement submitted to
Adaptive Server by isql. Open a comment with “/*”. Close it with “*/” as
shown in the following example:

select au_lname, au_fname
/*retrieve authors’ last and first names*/
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
/*this is a three-way join that links authors
**to the books they have written.*/

If you want to comment out a go command, it should not be at the
beginning of a line. For example, to comment out the go command:

/*
**go
*/

 Do not use the following:

/*
go
*/

• isql defines the order of the date format as month, date, and year (mm dd
yyy hh:mmAM (or PM)) regardless of the locale environment. To change
this default order, user the convert function.

New features

isql is built with Client-Library. The isql user interface is unchanged except:

• The 5701 (“changed database”) server message is no longer displayed
after login or issuing a use database command.

• There are two new optional flags:

-b – disables column headers from printing
-D database – selects the start-up database that isql uses

• The following command-line options have been added to enable network-
based security services on the connection:

isql

112 Open Client and Open Server

-K keytab_file
-R remote_server_principal
-V security_options
-Z security_mechanism

• Error message format is different from previous versions of isql. If you
have scripts that perform routines based on the values of these messages,
you may need to rewrite them.

• The -y sybase_directory parameter has been removed.

Additional commands within isql:

Table A-5: isql session commands

Using prompt labels and double wildcards in an isql session

In an isql session, the default prompt label is either the default wildcard :? or
the value of wildcard. You can customize the prompt label by providing a one-
word character string with a maximum length of 80 characters, after a
wildcard. If you specify a prompt label that is more than one word, the
characters after the first word are ignored.

Command Description

reset Clears the query buffer

quit or exit Exits from isql

vi Calls the editor

!! command Executes an operating system command

:r filename Reads an operating system file

:R filename Reads and displays an operating system
file

use dbname Changes the current database to dbname

command > filename Redirects output from the preceding
command to the file filename. If filename
already exists, its content is overwritten.

command >> filename Redirects output from the preceding
command to the file filename. If filename
already exists, output from command is
appended to filename.

command | application Pipes the output of a Transact-SQL
command to an external application.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 113

Double wildcards such as :?:? specify that isql needs to prompt you twice for
the same input. The second prompt requests you to confirm your first input. If
you use a double wildcard, the second prompt label starts with Confirm.

Note In an isql session, isql recognizes :? or the value of wildcard as wildcards
only when these characters are placed at the beginning of an isql line.

See also sp_addlanguage, sp_addlogin, sp_configure, sp_defaultlanguage,
sp_droplanguage, and sp_helplanguage in the Adaptive Server Enterprise
Reference Manual.

instjava

114 Open Client and Open Server

instjava
Description Installs a JAR from a client file into an Adaptive Server. This utility is available

in the %SYBASE%\%SYBASE_OCS%\bin directory.

Syntax instjava
-f file_name
[-new | -update]
[-j jar_name]
[-S server_name]
[-U user_name]
[-P password]
[-D database_name]
[-I interfaces_file]
[-a display_charset]
[-J client_charset]
[-z language]
[-t timeout]
[-v]

Parameters -f file_name
The name of the source file containing the classes to be installed in the
database.

-new | -update
Specifies whether the classes in the file already exist in the database.

If you specify the new parameter, you cannot install a class with the same
name as an existing class.

If you specify the update parameter, you can install a class with the same
name as an existing class, and the newly installed class replaces the existing
class.

-j jar_name
The name of the JAR containing the classes to be installed in the database.
Indicates that the JAR file should be saved in the database and associated
with the classes it contains.

-S server_name
The name of the server.

-U user_name
An Adaptive Server login name. If you omit the -U flag and parameter, or if
you specify the -U flag with no parameter, Adaptive Server uses the current
user’s operating system login name.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 115

-P password
An Adaptive Server password. If you omit the -P flag and parameter, instjava
prompts for a password. If you specify the -P flag with no password, the null
password is used.

-D database_name
The name of the database in which to install the JAR. If you omit the -D flag,
or if you specify the -D flag with no parameter, the user’s default database is
used.

-I interfaces_file
The name and location of the interfaces file to search when connecting to
Adaptive Server. If you omit the -I flag and parameter, or if you specify the
-I flag with no parameter, the interfaces file in the directory designated by
your SYBASE environment variable is used.

-a display_charset
Allows you to use instjava from a machine where the character set differs
that of the server. Use -a in conjunction with -J to specify the character set
translation file (.xlt file) required for the conversion. Use -a without -J only
if the client character set is the same as the default character set.

-J client_charset
Specifies the character set to use on the client. instjava uses a filter to convert
input between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from
client_charset, the character set used on the client.

-J with no argument disables character set conversion. Use this if the client
and server use the same character set.

Omitting -J sets the character set to a default for the platform, which may not
necessarily be the character set that the client is using. See the Adaptive
Server Enterprise System Administration Guide for more information about
character sets and associated flags.

-z language
The name of an alternate language for displaying instjava prompts and
messages. Without the -z flag, instjava uses the server’s default language.
You can add languages to an Adaptive Server during installation or
afterward, using the langinstall utility or the sp_addlanguage stored
procedure.

instjava

116 Open Client and Open Server

-t timeout
Specifies the number of seconds before a SQL command times out. If you
do not specify a timeout, the command runs indefinitely. This affects
commands issued from within instjava, not the connection time. The default
timeout for logging into instjava is 60 seconds.

-v
Prints the version number and copyright message for instjava and then exits.

Examples Example 1 Installs addr.jar and its classes, but does not retain the association
between the JAR and classes:

instjava -f '\home\usera\jars\addr.jar' -new

Example 2 Reinstalls addr.jar and associates its classes with the employees
JAR name:

instjava -f '\home\usera\jars\addr.jar' -update -j employees

Usage • You must set the SYBASE environment variable to the location of the
current version of Adaptive Server before you can use instjava.

• Refer to Java in Adaptive Server Enterprise for more information about
how this utility is used when Java is enabled in the database.

• Any user can reference installed classes.

• The parameter flags -f, -j, -S, -U, -P, -D, and -I can be written with or
without a space between the flag letter and the following parameter.

Adding new JARs

• If you use new with the -jar option and a JAR of that name already exists
in the database, an exception is raised.

• If any classes of the same name as those in the source JAR already exist in
the database, an exception is raised.

Updating JARs and classes

 Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, you must make sure that the modified class can
read and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access those objects without reinstalling the
class.

• If you use -update with the -jar option:

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 117

• All classes in the database associated with the target JAR are deleted
from the database and the classes in the source JAR file installed in
their place.

• If a class in the source JAR file is already installed in the database but
is not attached to a JAR, the class in the source JAR is installed in the
database and the unattached class is deleted.

• If you use -update without the -jar option:

• Classes in the source JAR file replace unattached classes of the same
name.

• Classes in the source JAR that do not correspond to an installed class
are installed as unattached classes in the database.

• If you install a new JAR with a replacement for an installed class that is
referenced by a SQLJ procedure or function, make sure that the newly
installed class has a valid signature for the SQLJ routine. If the signature
is invalid, an exception is raised when the SQLJ routine is invoked.

Locks

• When you execute instjava, an exclusive lock is placed on sysxtypes.

• If -jar is specified, an exclusive table lock is placed on sysjars.

Permissions You need to be a System Administrator or Database Owner to use instjava.

Tables used sysjars, sysxtypes

See also System procedures sp_helpjava

Utilities extrjava

extrjava

118 Open Client and Open Server

extrjava
Description Copies a retained JAR and the classes it contains from an Adaptive Server into

a client file. This utility is available in the %SYBASE%\%SYBASE_OCS%\bin
directory.

Syntax extrjava
-j jar_name
-f file_name
[-S server_name]
[-U user_name]
[-P password]
[-D database_name]
[-I interfaces_file]
[-a display_charset]
[-J client_charset]
[-z language]
[-t timeout]
[-v]

Parameters -j jar_name
The name assigned to the retained JAR in the database that is the source of
the transfer.

-f file_name
The name of the client file that is the target of the transfer.

-S server_name
The name of the server.

-U user_name
An Adaptive Server login name. If you omit the -U flag and parameter, or if
you specify the -U flag with no parameter, Adaptive Server uses the current
user’s operating system login name.

-P password
An Adaptive Server password. If you omit the -P flag and parameter,
extrjava prompts for a password. If you specify the -P flag with no password,
the null password is used.

-D database_name
The name of the database in which to install the JAR. If you omit the -D flag,
or if you specify the -D flag with no parameter, the user’s default database is
used.

APPENDIX A Utility Commands Reference

Programmers Supplement for Microsoft Windows 119

-I interfaces_file
The name and location of the interfaces file to search when connecting to
Adaptive Server. If you omit the -I flag and parameter, or if you specify the
-I flag with no parameter, the interfaces file in the directory designated by
your SYBASE environment variable is used.

-a display_charset
Allows you to use extrjava from a machine where the character set differs
that of the server. Use -a in conjunction with -J to specify the character set
translation file (.xlt file) required for the conversion. Use -a without -J only
if the client character set is the same as the default character set.

-J client_charset
Specifies the character set to use on the client. extrjava uses a filter to convert
input between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from
client_charset, the character set used on the client.

-J with no argument disables character set conversion. Use this if the client
and server use the same character set.

Omitting -J sets the character set to a default for the platform, which may not
necessarily be the character set that the client is using. See the Adaptive
Server Enterprise System Administration Guide for more information about
character sets and associated flags.

-z language
The name of an alternate language for displaying extrjava prompts and
messages. Without the -z flag, extrjava uses the server’s default language.
You can add languages to an Adaptive Server during installation or
afterward, using the langinstall utility or the sp_addlanguage stored
procedure.

-t timeout
Specifies the number of seconds before a SQL command times out. If you
do not specify a timeout, the command runs indefinitely. This affects
commands issued from within extrjava, not the connection time. The default
timeout for logging into extrjava is 60 seconds.

-v
Prints the version number and copyright message for extrjava and then exits.

Examples Downloads the classes associated with the employees JAR to the client file
newaddr.jar.

extrjava -j employees -f '\home\usera\jars\addr.jar' -new

extrjava

120 Open Client and Open Server

Usage • You must set the SYBASE environment variable to the location of the
current version of Adaptive Server before you can use extrjava.

• If the target client file already exists, extrjava overwrites its contents.

• The parameter flags -f, -j, -S, -U, -P, -D, and -I can be written with or
without a space between the flag letter and the following parameter.

• When you execute extrjava, an exclusive lock is placed on sysxtypes.

• If -jar is specified, an exclusive table lock is placed on sysjars.

• See the Adaptive Server Enterprise Java in Adaptive Server Enterprise for
more information about how this utility is used when Java is enabled in the
database.

Permissions You need to be a System Administrator or Database Owner to use extrjava.

Tables used sysjars, sysxtypes

See also System procedures sp_helpjava

Utilities instjava

Programmers Supplement for Microsoft Windows 121

A P P E N D I X B Precompiler Reference

The Embedded SQL precompilers, cpre and cobpre, share the same syntax
and flag information. This section provides a reference summary that
applies to both.

cpre
Description cpre precompiles a C source program to produce target, listing, and isql

files.

Syntax cpre
 [-C compiler]
 [-D database_name]
 [-F fips_level]
 [-G [isql_file_name]]

[-H]
 [-I include_path_name]...
 [-J charset_locale_name]
 [-K syntax_level]
 [-L [listing_file_name]]
 [-N interface_file_name]
 [-O target_file_name]
 [-P password]
 [-S server_name]
 [-T tag_id]
 [-U user_id]
 [-V version_number]
 [-Z language_locale_name]

[@ options_file]
[-a] [-b] [-c] [-d] [-e] [-f] [-h] [-l] [-m] [-p] [-r] [-s] [-u] [-v] [-w] [-x] [-y]
filename[.ext]

Note Options can be flagged using either a slash (/) or a dash (-);therefore,
 cpre -l and cpre /l are equivalent.

cpre

122 Open Client and Open Server

Parameters -C compiler
Specifies the target host language compiler values, such as:

• “ANSI_C” – ANSI C compiler.

• “MSVC” – Microsoft Visual C compiler. The output of the “MSVC”
precompiler will not generate strings longer than 1K.

-D database_name
Specifies the name of the database to parse against. Use this option when
you want to check SQL semantics at precompile time. If -G is specified, a
use database command will be added to the beginning of the filename.sql
file. If you do not use this option, the precompiler uses your default database
on the Adaptive Server.

-F fips_level
Checks for the specified conformance level. Currently, the precompiler can
check for SQL89 or SQL92E.

-G [isql_file_name] (argument is optional)
Generates stored procedures for appropriate SQL statements and saves them
to a file for input to the database through isql. If you have multiple input
files, you may use -G, but you cannot specify an argument.

If you have multiple input files or do not specify the argument, the default
target file name(s) will be the input file name(s) with the extension .isql
appended (or replacing any input file name extension).

Also, see option -Ttag_id to specify tag IDs for stored procedures.

If you do not use the -G option, no stored procedures are generated.

-H
Generates code with HA-Failover capability.

-I include_path_name
Specifies a directory complete with the path name, where Embedded SQL
will search for include files. You can specify this option any number of
times. Embedded SQL searches the directories in command-line order. If
you do not use this option, the default is the \include directory of the Sybase
release directory and the current working directory.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 123

-J charset_locale_name
Specifies the character set of the source file that is being precompiled. The
option’s value must be a locale name that corresponds to an entry in the
locales file. If you do not specify -J, the precompiler interprets the source file
as being in the precompiler’s default character set.

To determine which character set to use as the default, the precompiler looks
for a locale name. CS-Library searches for the information in the following
order:

• LC_ALL

• LANG

If LC_ALL is defined, CS-Library uses its value as the locale name. If
LC_ALL is not defined but LANG is defined, CS-Library uses its value
as the locale name. If none of these locale values are defined,
CS-Library uses a locale name of “default.”

The precompiler looks up the locale name in the locales.dat file available in
the %SYBASE%\locales directory and uses the character set associated with
the locale name as the default character set.

-K syntax_level
Specifies the level of syntax checking to perform. The choices are:

• NONE

• SYNTAX

• SEMANTIC

NONE is the default value. If you use either SYNTAX or SEMANTIC, you
must also specify the -U, -P, -S, and -D options so that Embedded SQL can
connect to your Adaptive Server.

If you do not use this option, the precompiler does not connect to a server or
perform SQL syntax checking of the input file beyond what is required to
generate the target file.

cpre

124 Open Client and Open Server

-L listing_file_name (argument is optional)
Generates one or more listing files. A listing file is a version of the input file
with each line numbered and followed by any applicable error message. If
you have multiple input files, you may use -L, but you cannot specify an
argument.

If you have multiple input files or do not specify the argument, the default
listing file name(s) will be the input file name(s) with the extension .lis
appended (or replacing any input file name extension).

If you do not use this option, no listing file is generated.

-N interface_file_name
Specifies the interface file name, sql.ini to the precompiler.

-O target_file_name
Specifies the target or output file name. If you have multiple input files, you
may not use this option (default target file names will be assigned). If you
do not use this option, the default target file name will be the input file name
with the extension .cbl appended (or replacing any input file name
extension).

-P password (used with option -Uuser_id)
Specifies an Adaptive Server password for SQL syntax checking at
precompile time. Using -P without an argument, or with the keyword NULL
as an argument, specifies a null (“ ”) password. If you use option -Uuser_id
without using -P, the precompiler prompts you to enter a password. Must be
used with the -G flag.

-S server_name
Specifies the name of the Adaptive Server for SQL syntax checking at
precompile time. If you do not use this option, the default Adaptive Server
name is taken from the DSQUERY environment variable. If DSQUERY is
not set, then SYBASE is used as the name of the server.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 125

-T tag_id (used with option -G)
Specifies a tag ID (up to 3 characters) to append to the end of the generated
stored procedure group name.

For example, if you type -Tdbg as part of your command, your generated
stored procedures will be given the name of the input file with the tag ID dbg
appended: program_dbg;1, program_dbg;2, and so on.

Programmers can use tag IDs to test changes to an existing application
without destroying the existing generated stored procedures, which may be
in use.

If you do not use this option, no tag ID is added to the stored procedure
name.

-U user_id
Specifies the Adaptive Server user ID. This option allows you to check SQL
syntax at precompile time. It causes the precompiler to pass SQL statements
to the server for parsing only. If the server detects syntax errors, the errors
are reported and no code is generated. If you are not using option -
P[password], this option prompts you to enter a password.

Also, see -K, -P, -S, and -D options.

-V version_number
Specifies the Client-Library version number. For COBOL, the version
number must match one of the values from cobpub.cbl. If you do not use this
option, the default is the most recent version of Client-Library available with
the precompiler (CS_VERSION_150 for Open Client and Open Server
version 15.0).

cpre

126 Open Client and Open Server

-Z language_locale_name
Specifies the language and character set that the precompiler uses for
messages. If you do not specify -Z, the precompiler uses its default language
and character set for messages.

To determine which language and character set to use as its default for
messages, the precompiler performs the following, in order:

1 Looks for a locale name. CS-Library searches for the information in the
following order:

• LC_ALL

• LANG

If LC_ALL is defined, CS-Library uses its value as the locale name. If
LC_ALL is not defined but LANG is defined, CS-Library uses its value
as the locale name. If none of these locale values are defined,
CS-Library uses a locale name of “default.”

2 Looks up the locale name in the locales.dat file to determine which
language and character set are associated with it.

3 Loads localized messages and character set information appropriate to
the language and character set determined in step 2.

@options_file
Can be used to specify a file containing any of the above command-line
arguments. The precompiler reads the arguments contained in this file in
addition to any arguments already specified. If the file specified with
@options_file contains names of the files to precompile, place the argument
at the end of the command line.

-a
Allows cursors to remain open across transactions. If you do not use this
option, cursors behave as though set close on endtran on were in effect. This
behavior is ANSI-compatible. See the Adaptive Server Enterprise Reference
Manual for information about cursors and transactions.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 127

-b
Disables rebinding of host variable addresses typically used in fetch
statements. If you do not use this option, a rebind occurs on every fetch
statement unless you specify otherwise in your Embedded SQL/C program.

The -b option differs in the 11.1 and 10.x versions of the Embedded SQL
precompilers as follows:

• For the 11.1 and later versions of cpre, the norebind attribute applies to
all fetch statements of a cursor whose declaration was precompiled with
the -b option.

• For the 10.0 and later versions of cpre, the norebind attribute applied to
all fetch statements in each Embedded SQL source file precompiled
with -b, regardless of where the cursors were declared.

-c
Turns on the debugging feature of Client-Library by generating calls to
ct_debug.

This option is useful during application development but should be turned
off for final application delivery. For this option to work properly, the
application must be linked and run with the libraries and DLLs located in the
%SYBASE%\%SYBASE_OCS\devlib directory of the Sybase release
directory.

-d
Turns off delimited identifiers (identifiers delimited by double quotes) and
allows quoted strings in SQL statements to be treated as character literals.

-e
When processing an exec sql connect statement, directs Client Library to use
the external configuration file to configure the connection. Also see the
-x option and CS_CONFIG_BY_SERVERNAME property in the Open
Client Client-Library/C Reference Manual.

Without this option, the precompiler generates Client Library function calls
to configure the connection. Refer to the Open Client Client-Library/C
Reference Manual for information about the external configuration file

-f
Turns on the FIPS flagger for ANSI FIPS compliance checking.

-h
Generates thread-safe code.

-l
Turns off generation of #line directives.

cpre

128 Open Client and Open Server

-m
Runs the application in Sybase auto-commit mode, which means that
transactions are not chained. Explicit begin and end transactions are required
or every statement is immediately committed. If you do not specify this
option, the application runs in ANSI-style chained transaction mode.

-p
When this option is used, a separate command handle is generated for each
SQL statement in the module that has input host variables, and sticky binds
is enabled on each command handle. This option improves performance of
repeatedly executed commands with input parameters at the cost of
increased storage space usage and longer first executions of each such
command.

Applications that rely on inserting empty strings instead of NULL strings
when the host string variable is empty do not work if the -p option is turned
on. The persistent bind implementation prevents Embedded SQL from
circumventing Client-Library protocol (which inserts NULL strings).

-r
Disables repeatable reads. If you do not use this option, a set transaction
isolation level 3 statement, which executes during connect statements, is
generated. The default isolation level is 1.

-s
Includes static function declarations.

-u
Disables ANSI binds.

-v
Displays the precompiler version information only (without precompiling).

-w
Turns off display of warning messages.

-x
Uses external configuration files. See CS_EXTERNAL_CONFIG property
described in the Open Client Client-Library/C Reference Manual and the
INITIALIZE_APPLICATION statement described in the Open Client
Embedded SQL/C Programmers Guide.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 129

-y
Supports S_TEXT and CS_IMAGE datatypes so they can be used as input
host variables. At runtime, the data is directly included into the character
string sent to the server. Only static SQL statements are supported; use of
text and image as input parameters to dynamic SQL is not supported. This
substitution of arguments into command strings is only performed if the -y
command-line option is used.

filename[.ext]
Specifies the input file name of the ESQL/C source program. The file name
format and length can be anything you want as long as it does not violate any
rules.

Examples 1 Run the precompiler (ANSI-compliant):

cpre program.pc

2 Run the precompiler with generated stored procedures and FIPS flagging
(ANSI-compliant):

cpre -G -f program1.pc

3 Run the precompiler for input file with cursors open across transactions
(not ANSI-compliant):

cpre -a program1.pc

4 Display the precompiler version information only:

cpre -v

5 Run the precompiler with the highest level of SQL checking:

 cpre -K SEMANTIC -Uuser_id -Ppassword -Sserver_name -Dpubs2 example1.pc

Usage • The cpre command defaults are set up for ANSI standard behavior.

• The -a, -c, -f, -m, -r, and -V options affect only the connect statement. If
your source file does not contain a connect statement, or if you use -e or -
x , these options have no effect.

• Option format:
Options will work with or without a space before the argument.
For example, either of these formats will work:

 -Tdbg
 or
-T dbg

cpre

130 Open Client and Open Server

• The precompiler can handle multiple input files. However, you may not
use the option -O target_file_name, but must accept the default target file
names (see “Target file” above). If you use option -G[isql_file_name], you
cannot specify an argument; the default isql file names will be
first_input_file.sql, second_input_file.sql, and so on. If you use option -
L[listing_file_name], you cannot specify an argument; the default listing
file names will be first_input_file.lis, second_input_file.lis, and so on.

• By default, cpre generate calls to ct_options that enable ANSI-style
binding of indicator variables (CS_ANSI_BINDS). If indicator variables
for nullable host variables (columns) are not available, Client-Library
generates a fatal run-time error and aborts the application in use. You can
avoid these issues by using -u with cpre. You may also disable ANSI binds
by setting CS_ANSI_BINDS to cs_false in the ocs.cfg file.

Developing an application

This section lists the steps most commonly used in developing an Embedded
SQL application. You may need to adapt this process to meet your own
requirements. These steps must be performed at the DOS command prompt.

1 Run the precompiler with options -c, -Ddatabase_name,
 -P[password], -Sserver_name, -K[SYNTAX| SEMANTIC], and -Uuser_id
for syntax checking and debugging. Do not use -G[isql_file_name].
Compile and link the program to make sure the syntax is correct.

2 Make all necessary corrections. Run the precompiler with options
-Ddatabase_name, -G[isql_file_name], and -Ttag_id to generate stored
procedures with tag IDs for a test program. Compile and link the test
program. Load the stored procedures with this command:

 isql -Ppassword -Sserver_name -Uuser_id -iisql_file_name

Run tests on your program.

3 Run the precompiler with options -Ddatabase_name and
-G[isql_file_name] (but without option -T) on the corrected version of the
program. Compile and link the program. Load the stored procedures with
this command:

 isql -Ppassword -Sserver_name -Uuser_id -iisql_file_name

The final distribution program is ready to run.

How precompilers
determine the names
of their servers

You can connect with an Adaptive Server at precompile time, which allows
you to do additional syntax checking at that time. The precompiler determines
the name of its server in one of three ways:

• Using the -S option on the cpre command line

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 131

• Setting the DSQUERY variable

• Using the default value, “SYBASE”

The -S option overrides the value set by DSQUERY.

Following is the syntax for choosing a server on the precompile command line:

cpre -Usa -P -Sserver_name

As an alternative, you can leave the server name out of the connection call or
statement, and server_name will take its value from the runtime value of the
DSQUERY environment variable. If the application user has not set
DSQUERY, the runtime value for the server name defaults to “SYBASE.” See
the Open Client and Open Server Configuration Guide for Microsoft Windows
for more information on DSQUERY.

cpre defaults

Table B-1 lists the options and defaults for the cpre and cobpre utilities:

cobpre

132 Open Client and Open Server

Table B-1: cpre and cobpre defaults

cobpre
Description cobpre precompiles a COBOL source program to produce target, listing, and

isql files.

Syntax cobpre
 [-C compiler]
 [-D database_name]
 [-F fips_level]
 [-G [isql_file_name]]
 [-I include_path_name]
 [-J charset_locale_name]

Option Default if option not used

-C compiler The mf_byte compiler for COBOL. ANSI-C for C.

-D database_name The default database on Adaptive Server.

-F fips_level (No FIPS flags available.)

-G [isql_file_name] No stored procedures are generated.

-I include_path_name Default directory is the \include directory of the
Sybase release directory.

-J charset_locale_name [platform-specific]

-K [syntax | semantic | none] If neither syntax nor semantic is selected, the default
setting is “None.”

-L [listing_file_name] No listing file is generated.

-N interface_file_name The sql.ini file in the \ini directory of the Sybase
release directory.

-O target_file_name The default target file name is the input file name with
the extension .cbl or .c appended (or replacing any
input file name extension).

-P password You are not prompted for a password unless you use
-Uuser_id.

-S server_name The default Adaptive Server name is taken from the
DSQUERY environment variable.

-T tag_id No tag IDs are added to the stored procedure names
generated with -G.

-U user_id None.

-V version_number CS_VERSION_125 for version 12.5.x and later

 CS_VERSION_150 for version 15.0 and later

-Z language_locale_name [platform/environment specific]

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 133

 [-K syntax_level]
 [-L [listing_file_name]]
 [-N interface_file_name]
 [-O target_file_name]
 [-P password]
 [-S server_name]
 [-T tag_id]
 [-U user_id]
 [-V version_number]
 [-Z language_locale_name]

[@ options_file]
[-a] [-b] [-c] [-d] [-e] [-f] [-l] [-m] [-r] [-s] [-u] [-v] [-w] [-x] [-y]
filename[.ext]

Note Options can be flagged using either a slash (/) or a dash (-);therefore,
 cobpre -l and cobpre /l are equivalent.

Parameters -C compiler
Specifies the target host language compiler values, such as:

• “mf_byte” – Micro Focus COBOL with byte-aligned data
 (-C NOIBMCOMP).

• “mf_word” – Micro Focus COBOL with word-aligned data
 (-C IBMCOMP).

-D database_name
Specifies the name of the database to parse against. Use this option when
you want to check SQL semantics at precompile time. If -G is specified, a
use database command will be added to the beginning of the filename.sql
file. If you do not use this option, the precompiler uses your default database
on the Adaptive Server.

-F fips_level
Checks for the specified conformance level. Currently, the precompiler can
check for SQL89 or SQL92E.

cobpre

134 Open Client and Open Server

-G [isql_file_name] (argument is optional)
Generates stored procedures for appropriate SQL statements and saves them
to a file for input to the database through isql. If you have multiple input
files, you may use -G, but you cannot specify an argument.

If you have multiple input files or do not specify the argument, the default
target file name(s) will be the input file name(s) with the extension .isql
appended (or replacing any input file name extension).

Also, see option -Ttag_id to specify tag IDs for stored procedures.

If you do not use the -G option, no stored procedures are generated.

-I include_path_name
Specifies a directory complete with the path name, where Embedded SQL
will search for include files. You can specify this option any number of
times. Embedded SQL searches the directories in command-line order. If
you do not use this option, the default is the \include directory of the Sybase
release directory and the current working directory.

-J charset_locale_name
Specifies the character set of the source file that is being precompiled. The
option’s value must be a locale name that corresponds to an entry in the
locales file. If you do not specify -J, the precompiler interprets the source file
as being in the precompiler’s default character set.

To determine which character set to use as the default, the precompiler looks
for a locale name. CS-Library searches for the information in the following
order:

• LC_ALL

• LANG

If LC_ALL is defined, CS-Library uses its value as the locale name. If
LC_ALL is not defined but LANG is defined, CS-Library uses its value
as the locale name. If none of these locale values are defined,
CS-Library uses a locale name of “default.”

The precompiler looks up the locale name in the locales.dat file and uses the
character set associated with the locale name as the default character set.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 135

-K syntax_level
Specifies the level of syntax checking to perform. The choices are:

• NONE

• SYNTAX

• SEMANTIC

NONE is the default value. If you use either SYNTAX or SEMANTIC, you
must also specify the -U, -P, -S, and -D options so that Embedded SQL can
connect to your Adaptive Server.

If you do not use this option, the precompiler does not connect to a server or
perform SQL syntax checking of the input file beyond what is required to
generate the target file.

-L listing_file_name (argument is optional)
Generates one or more listing files. A listing file is a version of the input file
with each line numbered and followed by any applicable error message. If
you have multiple input files, you may use -L, but you cannot specify an
argument.

If you have multiple input files or do not specify the argument, the default
listing file name(s) will be the input file name(s) with the extension .lis
appended (or replacing any input file name extension).

If you do not use this option, no listing file is generated.

-M
Turns on security feature. Sets B1 secure labels.

-N interface_file_name
Specifies the configuration file name, sql.ini to the precompiler.

-O target_file_name
Specifies the target or output file name. If you have multiple input files, you
may not use this option (default target file names will be assigned). If you
do not use this option, the default target file name will be the input file name
with the extension .cbl appended (or replacing any input file name
extension).

-P password (used with option -Uuser_id)
Specifies an Adaptive Server password for SQL syntax checking at
precompile time. -P without an argument, or with the keyword NULL as an
argument, specifies a null (“”) password. If you use option -Uuser_id without
using -P, the precompiler prompts you to enter a password. Must be used
with the -G flag.

cobpre

136 Open Client and Open Server

-S server_name
Specifies the name of the Adaptive Server for SQL syntax checking at
precompile time. If you do not use this option, the default Adaptive Server
name is taken from the DSQUERY environment variable. If DSQUERY is
not set, then SYBASE is used as the name of the server.

-T tag_id (used with option -G)
Specifies a tag ID (up to 3 characters) to append to the end of the generated
stored procedure group name.

For example, if you type -Tdbg as part of your command, your generated
stored procedures will be given the name of the input file with the tag ID dbg
appended: program_dbg;1, program_dbg;2, and so on.

Programmers can use tag IDs to test changes to an existing application
without destroying the existing generated stored procedures, which may be
in use.

If you do not use this option, no tag ID is added to the stored procedure
name.

-U user_id
Specifies the Adaptive Server user ID.

This option allows you to check SQL syntax at precompile time. It causes
the precompiler to pass SQL statements to the server for parsing only. If the
server detects syntax errors, the errors are reported and no code is generated.
If you are not using option -Ppassword, this option prompts you to enter a
password.

Also, see -K, -P, -S, and -D options.

-V version_number
Specifies the Client-Library version number. This must match one of the
values from cobpub.cbl. If you do not use this option, the default is the most
recent version of Client-Library available with the precompiler
(CS_VERSION_150 for Open Client and Open Server version 15.0).

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 137

-Z language_locale_name
Specifies the language and character set that the precompiler uses for
messages. If you do not specify -Z, the precompiler uses its default language
and character set for messages.

To determine which language and character set to use as its default for
messages, the precompiler performs the following, in order:

1 Looks for a locale name. CS-Library searches for the information in the
following order:

• LC_ALL

• LANG

If LC_ALL is defined, CS-Library uses its value as the locale name. If
LC_ALL is not defined but LANG is defined, CS-Library uses its value
as the locale name. If none of these locale values are defined, CS-
Library uses a locale name of “default.”

2 Looks up the locale name in the locales.dat file to determine which
language and character set are associated with it.

3 Loads localized messages and character set information appropriate to
the language and character set determined in step 2.

@options_file
Can be used to specify a file containing any of the above command-line
arguments. The precompiler reads the arguments contained in this file in
addition to any arguments already specified. If the file specified with
@options_file contains names of the files to precompile, place the argument
at the end of the command line.

-a
Allows cursors to remain open across transactions. If you do not use this
option, cursors behave as though set close on endtran on were in effect. This
behavior is ANSI-compatible. See the Adaptive Server Enterprise Reference
Manual for information about cursors and transactions.

cobpre

138 Open Client and Open Server

-b
Disables rebinding of host variable addresses typically used in fetch
statements. If you do not use this option, a rebind occurs on every fetch
statement unless you specify otherwise in your Embedded SQL/C program.

The -b option differs in the 11.1 and 10.x versions of the Embedded SQL
precompilers as follows:

• For the 11.1 and later versions of cobpre, the norebind attribute applies
to all fetch statements of a cursor whose declaration was precompiled
with the -b option.

• For the 10.0 and later versions of cobpre, the norebind attribute applied
to all fetch statements in each Embedded SQL source file precompiled
with -b, regardless of where the cursors were declared.

-c
Turns on the debugging feature of Client-Library by generating calls to
ct_debug.

This option is useful during application development but should be turned
off for final application delivery. For this option to work properly, the
application must be linked and run with the libraries and DLLs located in the
%SYBASE%\%SYBASE_OCS\devlib directory of the Sybase release
directory.

-d
Turns off delimited identifiers (identifiers delimited by double quotes) and
allows quoted strings in SQL statements to be treated as character literals.

-e
When processing an exec sql connect statement, directs Client Library to use
the external configuration file to configure the connection. Also see the
-x option and CS_CONFIG_BY_SERVERNAME property in the Open
Client Client-Library/C Reference Manual.

Without this option, the precompiler generates Client Library function calls
to configure the connection. Refer to the Open Client Client-Library/C
Reference Manual for information about the external configuration file

-f
Turns on the FIPS flagger for ANSI FIPS compliance checking.

-l
Turns off generation of #line directives.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 139

-m
Runs the application in Sybase auto-commit mode, which means that
transactions are not chained. Explicit begin and end transactions are required
or every statement is immediately committed. If you do not specify this
option, the application runs in ANSI-style chained transaction mode.

-r
Disables repeatable reads. If you do not use this option, a set transaction
isolation level 3 statement, which executes during connect statements, is
generated. The default isolation level is 1.

-s
Includes static function declarations.

-u
Disables ANSI binds.

-v
Displays the precompiler version information only (without precompiling).

-w
Turns off display of warning messages.

-x
Uses external configuration files. See CS_EXTERNAL_CONFIG property
described in the Open Client Client-Library/C Reference Manual and the
INITIALIZE_APPLICATION statement described in the Open Client
Embedded SQL/C Programmers Guide.

-y
Supports S_TEXT and CS_IMAGE datatypes so they can be used as input
host variables. At runtime, the data is directly included into the character
string sent to the server. Only static SQL statements are supported; use of
text and image as input parameters to dynamic SQL is not supported. This
substitution of arguments into command strings is only performed if the -y
command-line option is used.

filename[.ext]
Specifies the input file name of the ESQL/C source program. The file name
format and length can be anything you want as long as it does not violate any
rules.

Examples 1 Run the precompiler (ANSI-compliant):

cobpre program.pco

2 Run the precompiler with generated stored procedures and FIPS flagging
(ANSI-compliant):

cobpre

140 Open Client and Open Server

cobpre -G -f program1.pco

3 Run the precompiler for input file with cursors open across transactions
(not ANSI-compliant):

cobpre -a program1.pco

4 Display the precompiler version information only:

cobpre -v

5 Run the precompiler with the highest level of SQL checking:

 cobpre -KSEMANTIC -Uuser_id -Ppassword -Sserver_name
-Dpubs2 example1.pco

Usage • The cobpre| command defaults are set up for ANSI standard behavior.

• The -a, -c, -f, -m, -r, and -V options affect only the connect statement. If
your source file does not contain a connect statement, or if you use -e or -
x , these options have no effect.

• Target file:
The default target file name is the input file name with the extension .cbl
(for Micro Focus COBOL) appended (or replacing any input file name
extension). If you have only one input file, you may use option -O
target_file_name to specify a target file name. If you have multiple input
files, the default target files will be named first_input_file.cbl,
second_input_file.cbl, etc.

• Option format:
Options will work with or without a space before the argument.
For example, either of these formats will work:

 -Tdbg
 or
-T dbg

• The precompiler can handle multiple input files. However, you may not
use the option -O target_file_name, but must accept the default target file
names (see “Target file” above). If you use option -G[isql_file_name], you
cannot specify an argument; the default isql file names will be
first_input_file.sql, second_input_file.sql, and so on. If you use option -
L[listing_file_name], you cannot specify an argument; the default listing
file names will be first_input_file.lis, second_input_file.lis, and so on.

APPENDIX B Precompiler Reference

Programmers Supplement for Microsoft Windows 141

• By default, cobpre generate calls to ct_options that enable ANSI-style
binding of indicator variables (CS_ANSI_BINDS). If indicator variables
for nullable host variables (columns) are not available, Client-Library
generates a fatal run-time error and aborts the application in use. You can
avoid these issues by using -u with cobpre. You may also disable ANSI
binds by setting CS_ANSI_BINDS to cs_false in the ocs.cfg file.

Developing an application

This section lists the steps most commonly used in developing an Embedded
SQL application. You may need to adapt this process to meet your own
requirements. These steps must be performed at the DOS command prompt.

1 Run the precompiler with options -c, -Ddatabase_name,
 -P[password], -Sserver_name, -K[SYNTAX| SEMANTIC], and -Uuser_id
for syntax checking and debugging. Do not use -G[isql_file_name].
Compile and link the program to make sure the syntax is correct.

2 Make all necessary corrections. Run the precompiler with options
-Ddatabase_name, -G[isql_file_name], and -Ttag_id to generate stored
procedures with tag IDs for a test program. Compile and link the test
program. Load the stored procedures with this command:

 isql -Ppassword -Sserver_name -Uuser_id -iisql_file_name

Run tests on your program.

3 Run the precompiler with options -Ddatabase_name and
-G[isql_file_name] (but without option -T) on the corrected version of the
program. Compile and link the program. Load the stored procedures with
this command:

 isql -Ppassword -Sserver_name -Uuser_id -iisql_file_name

The final distribution program is ready to run.

How precompilers
determine the names
of their servers

You can connect with an Adaptive Server at precompile time, which allows
you to do additional syntax checking at that time. The precompiler determines
the name of its server in one of three ways:

• Using the -S option on the cpre or cobpre command line

• Setting the DSQUERY variable

• Using the default value, “SYBASE”

The -S option overrides the value set by DSQUERY.

Following is the syntax for choosing a server on the precompile command line:

cobpre -Usa -P -Sserver_name

cobpre

142 Open Client and Open Server

As an alternative, you can leave the server name out of the connection call or
statement, and server_name will take its value from the runtime value of the
DSQUERY environment variable. If the application user has not set
DSQUERY, the runtime value for the server name defaults to “SYBASE.” See
the Open Client and Open Server Configuration Guide for Microsoft Windows
for more information on DSQUERY.

cobpre defaults

See Table B-1 for a list of options and defaults for the for the cpre and cobpre
utilities.

Programmers Supplement for Microsoft Windows 143

A
Adaptive Server database 55

B
bcp 68, 91

parameters 69, 77
bkpublic.h Bulk-Library header file 4
bkpublic.h header file 17
blktxt.c sample program 22
building a Client-Library executable 10

example compile-and-link operations 8
header files 4
LIB environment variable 4
required configuration 2

building a DB-Library executable 7
header files 4
link lines 10

building a Server-Library executable 1, 14
compiling 13
linking 13

building an Embedded SQL/C executable 55
compiling 57
cpre 56
link libraries 57
linking 57
loading stored procedures 57, 63
precompiling 55
stored procedures 55

building an Embedded SQL/COBOL executable 61
building Client-Library executables

C compilers 2
Win32 identifier 8

bulkcopy.c sample program 42

C
C compilers

for Windows 2
Client-Library 29

default values on Windows 7
Dynamic Link Libraries (DLLs) 5
header files 4
sample programs 18

Client-Library sample program
for asynchronous programming 26
for read-only cursors 30

Client-Library sample programs 16, 19, 21
for asynchronous programming 21
for bulk copy 22
for configuration 20
for directory services 23
for internationalization 29
for multithreaded programming 25
for processing compute rows 22
for read-only cursors 25
for RPC commands 26
for scrollable cursors 27, 28
for text and image 28
header file 17, 19
introductory 20
user name 18
utility routines 19

cobpre
defaults 131, 142
developing an application 130, 140
utility 121, 132

compile example
Client-Library on Windows 8

compute.c sample program 22
configuration requirements

sample programs 6
cpre

options 56
utility 121, 131, 142

Index

Index

144 Open Client and Open Server

CS_IFILE property 7
CS_MAX_CONNECT property 7
CS_PACKETSIZE property 7
CS-Library 15
cspublic.h header file 17
csr_disp.c sample program 25, 30
csr_disp_scrollcurs.c sample program 27
csr_disp_scrollcurs2.c sample program 28
cstypes.h header file 17
ct_callback 7

CS_PUBLIC 7
ct_debug

DLLs 7
ctos.c sample program 50
ctpublic.h Client-Library header file 4
ctpublic.h header file 17

D
DB-Library

import libraries 5
DB-Library sample programs 37, 43

for bind aggregates and compute results 38
for browse mode and ad hoc queries 39
for browse mode updates 38
for bulk copy 42
for data conversion 38
for inserting an image 41
for inserting data into a new table 37
for international language routines 42
for making an RPC call 39
for retrieving an image 41
for row buffering 38
for sending a query and binding results 37
for text and image routines 40
for two-phase commit 42
password 36
user name 36

DBMAXPROS property 7
DBSETFILE property 7
debug DLLs 8
debugging 11
default values

Client-Library on Windows 7
defncopy 96

comments 95
parameters 92, 95
syntax 96

displaying and editing rows of a table sample program
59

DLLs
libsybblk.dll 6
libsybcomn.dll 6
libsybcs.dll 6
libsybct.dll 6
libsybdb.dll 6
libsybintl.dll 6
libsybsrv.dll 6
libsybtcl.dll 6
libsybunic.dll 6

DSLISTEN environment variable 46
Dynamic Link Libraries (DLLs)

Open Client and Open Server executables 5

E
Embedded SQL/C

building an executable 55
compiling applications 56
cpre 56
DLL 57
DSQUERY environment variable 131, 142
header file 58
linking applications 57
loading stored procedures 57
Open Client 55, 60
precompiling an application 55
pubs2 database 58
requirements 58
sample programs 57, 60
Transact-SQL 55

Embedded SQL/C sample program
for displaying and editing rows of a table 59
for using cursors for database query 59
for using cursors for database query with HA-

Failover 60
for using cursors for database query with

unichar/univarchar support 60
for using cursors for query of the titles table 60

Embedded SQL/COBOL 63

Index

Programmers Supplement for Microsoft Windows 145

building an executable 61, 63
compiling 63
cursors for database query 65
displaying and editing rows 65
executables 61
libraries 63
link libraries 63
linking 63
Open Client 66
precompiling 61
requirement 64
sample programs 63, 66
stored procedures 63

environment variables
DSLISTEN 46
INCLUDE 4
LIB 4
PATH 4
SYBASE 46

ERREXIT 4
ex_alib.c sample program 21, 26
ex_amain.c sample program 26
EX_AREAD.ME 21
ex_main.c sample program 21
EX_PASSWORD macro 18, 36
EX_USERNAME macro 18
EX_USERNAME variable 36
exampl10.c sample program 41
exampl11.c sample program 41
exampl12.c sample program 42
example.h header file 17
example1.c sample program 37
example2.c sample program 37
example3.c sample program 38
example4.c sample program 38
example5.c sample program 38
example6.c sample program 38
example7.c sample program 39
example8.c sample program 39
example9.c sample program 40
exconfig.c sample program 20
executables

building Embedded SQL/C 55
extrjava 118
exutils.c sample program 19

F
file extensions

.c 56

.cbl 62

.pc 56

.pco 62
firstapp.c sample program 20
fullpass.c sample program 51

G
getsend.c sample program 28

H
handlers 52

SRV_ATTENTION 50
SRV_C_EXIT 53
SRV_C_RESUME 53
SRV_C_SUSPEND 53
SRV_C_TIMESLICE 53
SRV_CONNECT 51, 53
SRV_LANGUAGE 51, 53
SRV_OPTION 52
SRV_START 53

header files
bkpublic.h 4, 17
Client-Library 4
cspublic.h 17
cstypes.h 17
ctpublic.h 4, 17
example.h 17
for Embedded SQL/C sample programs 58
oscompat.h 48
oserror.h 48
ospublic.h 4, 48
required for Open Server applications 48
sqlca.h 17
sybdb.h 4
syberror.h 4
sybfront.h 4
sybsqlex.h 58

Index

146 Open Client and Open Server

I
i18n.c sample program 29
import libraries

libsybblk.lib 5
libsybcomn.lib 5
libsybcs.lib 5
libsybct.lib 5
libsybdb.lib 5
libsybsrv.lib 5

INCLUDE environment variable 4
instjava 114
intlchar.c sample program 52
isql 113

character set input 100
comments 104, 110, 111
examples 78, 103
filters 100
parameters 103, 112
stored procedures 57
syntax 112

L
lang.c sample program 51
LIB environment variable 4
libcobct file 63
libcomn file 63
libcs file 63
libct file 63
libintl file 63
libraries

Embedded SQL/C 57
Embedded SQL/COBOL 63

libsybblk.dll file 6
libsybblk.lib file 5
libsybcomn.dll file 6
libsybcomn.lib file 5
libsybcs.dll file 6
libsybcs.lib file 5
libsybct.dll file 6
libsybct.lib file 5
libsybdb file 6
libsybdb.lib file 5
libsybintl.dll file 6
libsybsrv.dll file 6

libsybsrv.lib file 5
libsybtcl.dll file 6
libsybunic.dll file 6
libtcl file 63

M
Microsoft Windows platforms vii
modes

scheduling 11
multithread programming

support for Windows 8
multthrd.c sample program 25, 52

O
Open Server sample programs 48, 53

for international languages and character sets 52
for language event handler 51
for multithreaded features 52
for Open Server gateway 50
for registered procedures 51
for security services 53
for TDS passthrough mode 51
introductory 50
location 46

oscompat.h header file 48
oserror.h header file 48
osintro.c sample program 50
ospublic.h header file 48
ospublic.h Server-Library header file 4

P
PATH environment variable 4, 5
precompilers

cobpre 61
cpre 56
determining servers 130, 141
for Embedded SQL/C 55, 56
for Embedded SQL/COBOL 61, 62

preemptive mode
scheduling 11

Index

Programmers Supplement for Microsoft Windows 147

srv_sleep 12
Windows programming 11, 12

programming issues for Client-Library 8
ct_callback 7

programming issues for Client-Library on Windows
7

programming issues for Server-Library 11
scheduling modes 11
srv_callback 11

properties
CS_IFILE 7
CS_MAX_CONNECT 7
CS_PACKETSIZE 7
DBSETFILE 7
DBSETMAXPROS 7

pubs2 database 58

R
regproc.c sample program 51
requirements

configuration 6
Embedded SQL/C sample programs 58

rpc.c sample program 26

S
sample programs

Client-Library 19, 21
DB-Library 37, 43
Open Server 48, 53

sample programs for Embedded SQL/C 57, 60
displaying and editing rows of a table 59
header file 58
requirements 58
using cursors for database query 59

scheduling mode 11
srv_sleep 12
srv_wakeup 12

secsrv.c sample program 53
Server-Library

compile example 13
link example 13
programming issues 11

Server-Library sample programs
requirements 46

servers
precompilers 130, 141

sql.ini file 7
sqlca.h header file 17
srv_callback 11
srv_sleep 11
srv_wakeup 12
STDEXIT 4
stored procedures 55, 56, 61, 63

for Embedded SQL/C 57
isql 57
loading 57, 63, 130, 141

SYBASE environment variable 46, 58, 64
sybdb.h DB-Library header file 4
syberror.h DB-Library header file 4
sybfront.h DB-Library header file 4
sybsqlex.h header file 58

T
thrdfunc.c sample program 25
tracing 47

options 47
Transact-SQL 55, 61
twophase.c sample program 42

U
usedir.c sample program 23
using cursors for database query sample program 59
using cursors for database query with HA-Failover

sample program 60
using cursors for database query with unichar/univarchar

support sample program 60
using cursors for query of the titles table sample program

60
utilities

bcp 68, 91
cobpre 121, 132
cpre 121, 131, 142
defncopy 96
extrjava 118

Index

148 Open Client and Open Server

instjava 114
isql 113

W
Windows

building a Client-Library executable 10
building a DB-Library executable 7
building a Server-Library executable 1, 14
C compilers 2
multithreaded programming support 8

Windows properties
Client-Library 7
CS_IFILE 7
CS_MAX_CONNECT 7
CS_PACKETSIZE 7
DBMAXPROS 7
DBSETFILE 7

	Programmers Supplement
	About This Book
	Audience
	Related documents
	Table 1: Product documentation list
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Finding the latest information on component certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	Finding the latest information on EBFs and software maintenance
	Conventions
	Table 2: Syntax conventions
	Accessibility features
	If you need help

	CHAPTER 1 Building Open Client and Open Server Applications
	Open Client and Open Server requirements
	C compilers
	Client-Library compatibility
	Open Server compatibility

	Environment variables and header files
	Header files

	Import libraries and Dynamic Link Libraries (DLLs)
	Import libraries
	Dynamic link libraries (DLLs)

	Configuration requirements
	Platform-specific default values
	Client-Library programming issues
	ct_callback
	Using the debug DLLs
	Multithreaded support
	Example compile-and-link operations

	DB-Library programming issues
	Compile-and-link line examples

	Server-Library programming issues
	srv_callback
	Scheduling modes
	Preemptive mode programming overview
	srv_sleep
	srv_wakeup
	Example of compile-and-link operations

	CHAPTER 2 Client-Library/C Sample Programs
	Using Client-Library sample programs
	Before you begin
	Location of the sample programs
	Header files
	example.h file

	Sample program summaries
	Utility routines for the sample programs
	First sample program
	Modified first sample program
	Array bind sample program
	Asynchronous sample program
	Bulk copy sample program
	Compute rows sample program
	Directory service sample program
	External configuration sample program
	Implicit read-only cursor sample program
	Localization and internationalization sample program
	Multithreaded sample program
	Read-only cursor sample program
	Read-only cursor modified sample program
	RPC command sample program
	Modified RPC command sample program
	Security service sample program
	Scrollable cursors sample program
	Modified scrollable cursors sample program
	text and image sample program
	Two phase commit sample program
	unichar and univarchar bulk-copy sample program
	unichar and univarchar compute sample program
	Wide tables compute sample program
	Wide tables cursor sample program
	Wide table dynamic data sample program
	Wide table RPC command sample program

	CHAPTER 3 Open Client DB-Library/C Sample Programs
	Using DB-Library sample programs
	Before you begin
	Location of the sample programs
	Header files
	sybdbex.h header file

	Sample program summaries
	Send queries, bind, and print results sample program
	Insert data into new table sample program
	Bind aggregate and compute results sample program
	Row buffering sample program
	Data conversion sample program
	Browse mode updates sample program
	Browse mode and ad hoc queries sample program
	RPC call sample program
	Text and image sample program
	Insert image sample program
	Retrieve image sample program
	International language routines sample program
	Bulk copy sample program
	Two-phase commit sample program

	CHAPTER 4 Open Server Server-Library/C Sample Programs
	Using Server-Library sample programs
	Before you begin
	Location and content
	Tracing
	Header files
	Sample program summaries
	Testing sample programs
	Open Server introduction sample program
	Gateway Open Server sample program
	srv_language event handler sample program
	TDS passthrough mode sample program
	Registered procedures sample program
	International languages and character sets sample program
	Multithreaded programming sample program
	Security services sample program

	CHAPTER 5 Open Client Embedded SQL/C
	Building an Embedded SQL/C executable
	Precompiling the application

	Compiling and linking the application
	Link libraries
	Loading stored procedures

	Using Embedded SQL/C sample programs
	Before you begin
	Header file
	Example 1: Using cursors for database query
	Example 2: Displaying and editing rows of a table
	ExampleHA: Using cursors for database query with HA-Failover
	Uni_example1: Using cursors for database query with unichar/univarchar support
	Uni_example2: Displaying and editing rows of a table with unichar/univarchar support

	CHAPTER 6 Open Client Embedded SQL/COBOL
	Building an Embedded SQL/COBOL executable
	Precompiling the application

	Compiling and linking the application
	Link libraries
	Loading stored procedures

	Using Embedded SQL/COBOL sample programs
	General requirements
	Environment variables for Micro Focus COBOL
	Example 1: Using cursors for database query
	Example 2: Displaying and editing rows in a table

	APPENDIX A Utility Commands Reference
	bcp
	defncopy
	isql
	instjava
	extrjava

	APPENDIX B Precompiler Reference
	cpre
	cobpre

	Index

