SYBASE

Server-Library/C Reference Manual

Open Server™
15.0

DOCUMENT ID: DC35400-01-1500-05
LAST REVISED: December 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 1 0L A I g T =T o o PRSPPI xi
CHAPTER 1 INtroducCing OPEN SEIVET ...uuviiiiiieeieeeie s e e e e e e e e 1
CliIENt/SEIVET OVEIVIEWuvviieiiiiieie ittt 1
TYPES OF CIENES .. 2
TYPES Of SEIVEIS ..ottt 2
Open server CoNfIQUuIrationSooviiiiiiiiiee e 3
Standalone open server applicationccccceevviiiiiiiennee s 4
Auxiliary open server appliCation.........cccccovvcviveeiieenniniiiiieeneeenn 4
Gateway Open Server application..........ccvveeeieeeiiiiiieeeeee s 5
OPBIN SEIVEN ...ttt eeeeee et eeeeseeeesseeasseeeesesssnessneesnnnnnnnnnne 5
The Open Server librariesccccccoccvvveeeie e, 6
NEIWOIK SEIVICESooiiiiiieiiiiee ettt ettt naee e 6
USING OPEN SEIVEuuviiiieeiieiiiiiet e e e e s eetire et e e e e s st e e e e e s snnrraeeaaaees 7
The CS_CONTEXT StrUCIUIEevviiieriee et e e seiiiaee e 7
Steps in a SIMple Program........ccccceeeeeecciireeeee e eeesieiee e e e e e 7
BasiC OpeN SEerver PrograM...........eeeeeceeccurreeeeeeeessissnsereseesssssnnneeees 8
OPEN SEIVEI BVENLSueiieieieiieieieereeeenreeeseenesessnsnsssssesssssssssssssnsmsnnes 13
Default event handlers ... 14
Non client-initiated eVENLScccceeiviieeiiiiiee e 14
Registered ProCeAUIESocuuiiiiiiee et 14
Returning results to ClIeNtS...........eevvveiiiiiiiie e, 15
Types of result data..........c..eveeeeeiiiiiiiiiiie e 15
Order Of FESUILS......coviiii e 16
Error handling........coooiieeiiee e 16
Multithread programmingcceveeeeeeiiiiiiiiiee e 17
Summary of changes for version 15.0........cccccccevviiiviieeei e, 17
CHAPTER 2 10 12 PR 19
ALENTION BVENTS ... 20
Interrupt-level actiVitycccvveeeeeeiiiiiie e 20
Coding recommendations for attention events........................ 21
Handling diSCONNECESuvviiiiiiiiiiiiiiiee e 21

Server-Library/C Reference Manual iii

Contents

EXAMPIE . 22
BrOWSE MOUEoeiiiiiiiee ettt 22
EXAMPIE .. 24
CapPabIlitIeS.......vveiiee e 24
Request capabilitiesccccccev v 25
Response capabilitiesccccccovcviiiiiiee e 28
Transparent NegOtIAtioNcccuvviveeeeeeiiiriiee e ee e 30
Server-wide defaults...........cccoo i 31
EXplicit negotiationcccceevi i 35
Ad hoc retrieval of capability information.............cccceeevieeniiins 37
A note on pre-10.0 ClIENSoccvvvviiiiee e 37
EXAMPIE .. 37
Client COMMEANT EITOISvveiiiieie e 38
Sending messages with srv_sendinfo...........occvvveevieiiiiiiiinnen, 38
Sequencing [0Ng MESSAGESuvvveeiiiiiiiiiiiiee e eriiiieeee e e e 38
Extended error data..........cccoeeiveeieiiieiee e 39
CoNNECtioN MIGratioNcceeeiiiiiiiieiee e 40
In-batch migration and idle migration.............ccccccceevvviiiieeneennn. 40
CoNtext MIGrationcoviccuirieeeee e e e e e e 41
APIs used in connection mMigrationcccceeevvivciiieereeeesennnns 42
Instructing clients to migrate to a different server.................... 48
Accepting connections from migrated clients............cccccceeineee 52
ErrOr MESSAQES ...cvviiiiiiiiiiieieeee e 52
CS_BROWSEDESC SIIUCIUIEccoiviiieiiiiiee et 52
CS_DATAFMT SETUCIUIE ..cevveviiei ettt e e a e 54
CS _IODESC SIUCIUIE ...coeviiiiiiiie ettt e et 57
CS-LIBIary .o 59
COMMON FOULINESeeieiiiiie ettt 59
Common data StrUCLUIESeeeeiiiiieeeiiee e 60
Error handling........coeeeoiiiieiiiee e 60
CS_SERVERMSG StIUCIUIEccevvvieieieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 60
(10 250 £ T PO PP PP PP PP PPPPPPPPP 63
CUISON OVEIVIEWeiiieiiiie et e ettt e st a et e e e s nnee e e e e 63
Advantages Of CUISOIS........oiiiuiiiiiiiie it 63
Open Server applications and CUISOrSoocvvveeveeesiiivvnnenn. 64
Handling CUrSOr reQUESLScccovviiiriiiieee et 72
KEY dal@l ..o 76
Update COIUMNSuviiiiiiiiiiiiiiiee e 76
EXAMPIE . 76
SCrollable CUISOIS. ... ittt 77
SRV_CURDESC2 SIUCIUIEeuviviiiiiiieieiniiiiininiinneinnennnnnennnnns 77
Data Stream MESSAQEScceeveiieieeeeee e 80
Data stream meSSages OVEIVIEWccviecuvrrrerreeesiiniirnneeeeansns 80
Retrieving client data stream messagescccccceevvvvvvveeeeeennn, 80

Open Server

Contents

Sending data stream messages to a clientcccccoeevvneeen. 81
DIrECIOIY SEIVICES. ...t iivviiiee e e ettt e e s e e e st e e e e e s s ennaraee s 81
Specifying a directory driverccccccoovciviieeee e 82
Registering an Open Server application with a directory 82
DYNAMIC SQL ..oiiiiiiiiiiiiii et 83
Advantages of dynamic SQL........cccccvveeriiniiiiiiiieeee e 83
Handling dynamic SQL reqUeSES.........cccceevviiiviiiieneeeeniiiiieenn. 84
EXAMPIE .eeiiiiiiiit e 89
EITOIS oo 89
TYPES OF EITOIS 1eviiieiiiiiiiie et a e 90
SEVETitY OF BITOISieeiiiie et 90
Error numbers and corresponding message text 91
EXAMPIE oeiieieeeeeiie e 92
EVEINTS . 92
EVENT OVEIVIEW ...ttt 92
What is an event handler?.........ccccovieiniiiec e 93
Standard EVENTScoocuiiieiiieei e 93
Programmer-defined events..........cccuvvvveiiiiiniiiiieeee i, 97
EXAMPIE .oviiiiiiiiet e 97
Gateway appliCatioNSc.cooviiiiiiiiiee e 98
Passthrough Modeccuviviiiiiiiii e 99
International SUPPOITcoicvviiiiiiee e 99
Localizing an Open Server application...........ccccccveeviiivvnnnen. 100
Supporting localized clients.........ccccceeevvvciviiieee e, 101
Using a CS_LOCALE structure to set custom localization values
101
Responding to client requests.........ccceeveeevicciiieeecee e, 104
Localization Propertieseeeeeeeeiiiieiiieeeeeesiiiieeee e s 106
Localization eXxamplescccvveeeiiiiiiiiiiiee e 107
Language CallScocuuuiiiieiiiiiieie e 107
Login redirection and extended HA failover support 108
MESSAGES ... 109
Multithread programmingcccuvveeeeeeeiiiiiiiiiee e 109
What is @ thread?ccoovviveiiiiie e 109
TRread tYPES ...vvvieiie ittt 110
SChEAUING ...eviie e 113
Tools and teChNIQUEScccceviiiiiiiieec e 115
Programming considerations.............ccccvvveeeeeeiiiciiieeeee s 118
EXAMPIE oeviieieieiie e 119
Negotiated BENAVIONcooiiiiiiiiiec e 119
LOQIN NEQOLIALIONS ...ecoviiiiiiiieie et 120
Ad hOC NEQOLIALIONSevviiiiieii it 122
EXAMPIE .eeiieiiiiiieie e 122
(O] 1[0 ¢ 13RO PRSPPI 122

Server-Library/C Reference Manual v

Contents

Vi

Inside the SRV_OPTION event handler........................... 123
Option descriptions and default valuescccccceeeniiis 123
EXAMPIE . 127
Partial UPdatecccuvviiiieee e 127
OPEN SEIVEN SET-UP oo 127
Passthrough modecoooiiiiiiiiii e 129
Regular passthrough mode..........cccccceeeiiiiiiiii e, 130
Event handler passthrough modecccccceveeiiiiiiiiienneen, 132
Processing parameter and row datacccccceeeeeiiiiiiiieeeeeeninns 134
A note on terminologycoovvviiiiiiiiiiii e 134
The Open Server data processing Mmodel..........ccovcvvveeennenn, 134
Retrieving parametersc.cccoovvuvvieeiieeiiiiiiiieee e 135
RELUINING FOWS ..eviiiiiiiiiieeeee ettt 136
Returning return parametersccvveeeeeeiniiiiiieeee e 136
A closer look at describing, binding, and transferring............ 136
Returning parameters in a language data stream................. 138
EXAMPIE . 139
PrOPEIIES ... i 139
CONEXE PrOPETLIESvvvvieee i ittt e e e e eerttte e e e e e errare e e e e e aaees 140
SEIVEI PIrOPEITIES . uvvviieeiiiiiiieeiee e e s eettrer e e e e e s e e e e e e enraaees 141
Thread PropertieS.......cccveiieei i 148
Registered ProCEAUIES........ooivuiiiiiiee ittt 162
Standard remote procedure callSccccceeiviiiiiiieniee s 163
Advantages of registered proceduresccccceviviviiieeinnnnn. 163
Notification ProCEAUIES.coviiiiiiiiiie et 164
Creating registered proCedUIeS.......cccvvviuriieeieeeiiiiiiiiieeeee e 164
The mechanics of registered procedures.............occuvvveeeeennn. 164
System registered proCedurescccvvveeeeeeniiciiiieeeeee e 166
Using callback handlers with registered procedures............. 167
EXAMPIE . 169
Remote procedure CallScccuvvveeeiiiiciiiiiiie e 169
EXAMPIE .. 170
SECUNMLY SEIVICES .oviiiiiiiiiiiiiie e e s settie ittt e e e e s et brae e e e e e s s anabraneeaaeesannnes 170
SEeCUrity SErviCe ProPertieSccvueeeeeeviiiiiiiieeeeeeiiiiieeee e e e 171
How do security services work with Open Server? 179
Using security mechanisms with Open Server applications.. 181
Determining which security services are active.................... 184
Scenarios for using security services with Open Server
APPHCALIONS. ... 185
TEXE AN IMAGE ..vvviiieeee et a e 196
Processing text and image data.........ccccoeecvvivveeeeeeesciinieenn. 197
EXAMPIE . 198
LI/ 81 PP PPPPPPPPPRIN 199
Routines that manipulate datatypes.........ccccccceveeviiicviieeneenn. 201

Open Server

Contents

CHAPTER 3

Server-Library/C Reference Manual

Open Server datatyPescoocvvvvveeeeeeiiiiiiiiee e e essiireee e e e 201
ROULINES ..t e e 211
SIV_AIIOC ..iiiee et 215
SIV_alt_DING ..o 217
LS A 1L o (=% 0 | P PPPPPRIN 221
£ AV 1L == o = PP PPPPPRRS 225
SIV_alt Xferdata.............uuueeeeeeeieiieieireeeiiieeeeeeeereeeeraenenrenrrrrarrenrs 228
£ 2 o1 (o 1P PPPPPPPPIRS 229
£ A2 0112101V = TP PPPPPRNS 235
£ AV 0 74= o PP PPPPPPPPPRS 236
SIV_CAlIDACK ... 238
SIV_CAPADIIILY ..o 242
srv_capability_iNfO........coociiiiiiie e 243
SIV_ClEALEIMSY(-+ v vvvvvvrrnnnennnnennrenennnnnnnnnnnnsnnnsnssnnnnsnnnnnnnnssssnnssnssnnnes 247
SIV_CIEALEIMULIEX ... euveeeeeeeeeeeeeeeeeeeeeeeeeeenseseesesssnssssnsssnsssssssnnnsnssnnnes 249
SIV_CIEALEPIOC ...uuvuuteteeeuueeeeeeeeeeeeeseeeeeesesesssssnsssssssnssssssssssssnnsnsnnnnes 251
SIV_CUISOI_PTOPS ..tuuutuuuuunnnnnnnsnnnnnnnsnsnnsssnsssssssssssssssssnsssssssnnnsssssnnes 253
SIV_ADQ_SEACKeviiiiiiie ettt 256
SIV_ADG_SWILCN L. 258
SIV_defiN@ _EVENL.......ueiiiiiiiieiiiieieeeeeeeeete e eeeeeeeeeeeneneerenne 259
LS VAo (=111 (=10 0 T o PP P OTPPPRP 261
LS AV o L2112 (=T 0 (= PP PPPPRRNS 263
SIV_AESCIML .. 265
SIV_AYNAIMIC ...t e e a e e s areeaea e 268
SIV_ENVCNANGEcuiiiiiie ettt 273
LS AV == 1 | SRR PPPPPPPPPRIN 275
SIV_event_deferredoccvvieiiieei i 278
SIV_fTBB et 280
SIV_fre@Serveraddrscouuuuuuieeiiieriiiiiieeiiiiieenenrnennnrenrrrrnnnenns 281
S AV o (=] =) S PP PP PP PP PP PPPPPPPPPPPPPPPPPR 282
SIV_gEtIOgINTO ...t 284
] AV o (=3 100 T o TR TP P PP PP P PP PP PPPPPPPPPPPPPPPPPPPR 286
SIV_QetoDJid ... 289
SIV_getobNamE......ceiiiiiiiiii 292
SIV_QEetSErVErbYNAIME.uvviiiieeiiiiiiiiee e 294
SIV_NANAIE.......ccieiee e 295
1] 72011 RSP 298
LS V2 = L [o o] o) 2RSSR 300
SIV_IANGIEN ..o 302
SIV_IOCKMULEX ...t 304
1] 7200 [T R USSP 307
STV _IMASK ...etttetteeitttetteteesueeeseesssssssssssssssssesssssssssssssssssssssssssnnssnssnnnns 309
] A 1 1T TR PP P PP PP PP P PP PP PPPPPPPPPPPPPPPPPR 311
vii

Contents

viii

SIV_NEQOLIALEeviieiiiie et 314
SIV_NUMPE@IEIMS ..etettteteeeteneeeeeeeeeessesssssssnsssssssssssssssssssssssssssssssssnnns 321
SIV_OPLIONS 1ottt 323
SIV_OFAEIDY oo 329
SIV_POIL (UNDX ONIY) vt 331
LS AV 0] 0] 01O PPPPPPPPRIN 334
SIV_PULIMIST0 -+t vvvvveveennnnnnnnnnnnnennennenneeennennnnsesssnssnnsssnsnnnsssssssnnnsnsnnnnes 340
SIV_TEAIIOCii i 342
SIV_TECVPASSINIU ...uvviiiiii et 344
SIV_TEQCTEALEuuuuiuitiiiiiiiieiieeeeeteeeeeeeeeeeeeee e s e e sesessssseseseesssensnennnne 346
SIV_TegAefiNg oo 348
LS V2 (=0 [o [(o] o BT TOTTPPPRP 352
STV _TEOEXEC ...ttt e s e s s s e s s essneesnnennne 354
LS V2 (=] L0 S PP PRP TP POOTPPPRP 356
SIV_TEGIIST..eeeieiieieee e 358
SIV_TEGlISHIrEE ... 360
SIV_TegNOWALCHuviiiiii i 361
S AV (=T0 0 T= 1= 1o o P RURPPRRRPRRPPRRIN 363
SIV_TEGWALCH ...ttt e e e 366
SIV_TegWALCHIISTvvviiiiiiiiiiiiec e 369
SIV_IPCAD oo 371
SIV_TPCNANMIE ..eutitiitiiitttitteeteeeeeeeeeeeeeeeeessesssessss e s s sssssesssesssnennneennne 372
LS V2 g 01 10 0] o 1= S PP TPPPRP 375
SIV_TPCOPLIONSiieiieee ettt e e e e e e s 376
SIV_TPCOWNIET ...ttt eessneennne 378
£ 0V €01 o PSSR 380
SIV_S SSI_10CAl iuuveiiiiiiiiiiiiiiiiiiiiiiiiirieeeeeeeeeeeaeeeeeerereeereaeanrranne 381
Srv_select (UNIX ONIY) .o 381
SIV_SENd_CHNfOuvvveieiiii 385
SIV_SENA_dALA......euviiiieeii e 386
SIV_SENA_TEXE..uiiiiiiiiee e e et e e a e e a e 390
SIV_SENAUONE......cuiiiiiee ettt e e e e eea e 393
SIV_SENAINTO ..ot 398
SIV_SENAPASSINIUeeiiiiiiiiiiiccee e 401
LS A= 0 £5] = L 1P PPPPPRNS 404
SIV_SELCOIULYPE ...vvvviiiiee ettt 405
£ A= (o 0] o] (o) P PPPPRPIR 407
SIV_SEtlOGINTO ... 409
LS V1= 1 o] TR PR PPPT 411
srv_signal (UNIX OnlY) ..o 413
STV _SIBEP ciiiee i i ettt e 416
LS AV = LY o PP PPPPPPPPRIN 419
SIV_SYMDIOL .. 422
SIV_tabCOINAMEuiiiiie e 426

Open Server

Contents

CHAPTER 4

SIV_tADNAME . 429

S A2 (=] 1 01 o (oo RRPPPPPRRIN 431
SIV_teXE INTO..eiiiiiiiiie e 432
SIV_thre@d_PrOPS ..vveeeeiie ittt 435
SIV_tIMEASIEEP ..t 440
SIV_UCWAKEUPD ..ttt ettt e e e 441
SIV_UNIOCKMULEX ..uvvvvieiiiiiiveeeesesesseesssssssesessssessssssnsssnsssssssnsssnsnnnnes 443

STV VEISION ..uututututttuteeeueeesassessssssssssssssssssssssssssssssssnsssssssssssnsssnssnnnns 444
SIV_WAKEUP ettt 445
SIV_XFErdata ..o 448
SIV_YIBIA oo 450
System Registered Procedures.........cccocvvviiveeeeeeeee e cecciienes 453
L] T €1 7SS PPPPPPPPPPIN 453

S O =T 0 (o 7= L PR PPRRRRPPPRRN 456

LS T (= [0 [(o] o SO SRUR PRI 463
SP_TEGIST..eeieeei et 464
SP_TEGNOWALCKeeviiiiii et 465
SP_TEGWALCH ...ttt 465
SP_regWALCHIISEvvviiiiii it 467
SP_SEIVEINTO...ciiiiiiiiie e 467
SP_LEIMINALE .o 468
SP_WHO .. 470
.. 473
.. 481

Server-Library/C Reference Manual

Contents

X Open Server

About This Book

This manual, the Open Server Server-Library/C Reference Manual,
containsreferenceinformation for the C version of Open Server™ Server-
Library.

Audience The Open Server Server-Library/C Reference Manual is designed as a
reference manual for programmers who are writing Open Server
applications. It iswritten for application programmers who are familiar
with the C programming language.

How to use this book When writing an Open Server application, use the Open Server Server-
Library/C Reference Manual as a source of reference information.

Chapter 1, “Introducing Open Server,” contains a brief introduction to
Open Server.

Chapter 2, “Topics,” contains information on how to accomplish specific
programming tasks, such asusing Server-Library routinesto read atext
or image value from the server. This chapter also containsinformation on
Open Server structures, programming techniques, and error handling.

Chapter 3, “Routines,” contains specific information about each Server-
Library routine, such aswhat parameters the routine accepts and what
valuesit returns.

Chapter 4, “ System Registered Procedures,” contains information on the
registered procedures that Server-Library automatically provides. It
includes a description of parameters, results, and messages.

Glossary words appear in bold the first time they are used in the text of
this manual.

Related documents The Sybase® document set includes a wide range of user guides and
reference manuals that describe all aspects of the Sybase relational
database management system. Because application devel opment can draw
on anumber of different parts of the Sybase system, you may encounter
most of the Sybase document set at some time or another. A few manuals
that will prove to be particularly useful:

Server-Library/C Reference Manual Xi

Other sources of
information

Xii

The Open Server and SDK New Features for Microsoft Windows, Linux,
and UNIX, which describes new features available for Open Server and
the Software Devel oper’s Kit. This document is revised to include new
features as they become available.

TheOpen Client™ Client-Library/C Reference Manual containsreference
information for Client-Library™, a collection of routines for usein
writing client applications.

The Open Client DB-Library/C Reference Manual describes DB-
Library™. Like Client-Library, DB-Library isacollection of routinesfor
usein writing client applications.

The Sybase Adaptive Server® Enterprise Reference Manual describes
Transact-SQL®, the database language an application uses to create and
manipul ate Sybase Adaptive Server Enterprise database objects.

The SDK and Open Server Installation Guide for Microsoft Windows and
SDK and Open Server Installation Guide for UNIX explain how toinstall
Open Server.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for:

e CS-lLibrary
» Bulk-Library

The Open Client and Open Server Programmer’s Supplement for your
platform contains platform-specific programming information, including
information about:

e Compiling and linking an application

e The sample programs that are included with Open Client and Open
Server products

» Routines that have platform-specific behaviors

The Open Client and Open Server Configuration Guide for your platform
contains platform-specific configuration information, including
information about:

 Theinterfacesfile

e Localization

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

Open Server

About This Book

e The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

e The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

e The Sybase Product Manuals Web siteisan onlineversion of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybﬁse Vse{)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[JFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 Inthe Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click aCertification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Server-Library/C Reference Manual Xiii

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybase isafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
initalics.

{} Curly braces indicate that you choose at least one of the

enclosed options. Do not include bracesin your option.

Xiv Open Server

About This Book

Online help

Accessibility
features

Key Definition

[Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

Open Server version 15.0 includes a number of sample Open Server
application programs. They are located in
$SYBASE/SSYBASE_OCS'sample/srvlibrary for UNIX, and
%SYBASEY%\%SYBASE_OCSYo\sample\srvlib for Microsoft Windows. The
Open Client and Open Server Programmer’s Supplement for your platform
summarizes each sample program and describes the requirements for running
each.

If you have accessto aSQL Server version 10.0 or later, you can use sp-syntax,
a Sybase system procedure, to retrieve the syntax of Server-Library routines.
For information on how to install sp-syntax, see the System Administration
Guide for your platform. For information on how to run sp-syntax, see its
reference page in the Adaptive Server Enterprise Reference Manual.

This document is availablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Server-Library/C Reference Manual XV

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

XVi Open Server

CHAPTER 1

Introducing Open Server

This chapter contains the following topics:

Topic Page
Client/Server overview 1
Types of clients 2
Types of servers 2
Open server configurations 3
Open Server 5
Using Open Server 7
Basic Open Server program 8
Open Server events 13
Registered procedures 14
Returning results to clients 15
Error handling 16
Multithread programming 17
Summary of changes for version 15.0 17

Client/Server overview

Client/server architecture divides the work of computing between clients

and servers.

Clients make requests of servers and process the results of those requests.
For example, aclient application might request temperature data from a
database server. Another client application might send arequest to an

environmental control server to lower the temperature in aroom.

Servers respond to requests by returning data or other information to
clients, or by taking some action. For example, a database server returns
tabular data and information about that data to clients, and an electronic

mail server directs incoming mail toward its final destination.

Server-Library/C Reference Manual

Types of clients

Client/server architecture has several advantages over traditional program
architectures:

Types of clients

Application size and complexity can be significantly reduced, because
common services are handled in asingle location, the server. This
simplifies client applications, reduces duplicate code, and makes
application maintenance easier.

Client/server architecture facilitates communication between varied
applications. Client applications that use dissimilar communication
protocols cannot communicate directly, but can communicate through a
server that “ speaks” both protocols, known as a gateway.

Client/server architecture enables applications to be developed with
distinct components. These components can be modified or replaced
without affecting other parts of the application.

A client is any application that makes requests of a server. Sybase clients
include:

Types of servers

Sybase SQL Toolset™ products

Standalone utilities provided with Adaptive Server Enterprise, such asisq|
and bcp

Applications written using Open Client libraries
Applications written using Embedded SQL ™
PowerBuilder® applications

The Sybase product line includes servers and tools for building servers:

Adaptive Server Enterprise is a database server. An Adaptive Server
Enterprise manages information stored in one or more databases.

Open Server

CHAPTER 1 Introducing Open Server

e Open Server provides the tools and interfaces needed to create a custom
server. A custom server built with Open Server is called an “Open Server
application.”

An Open Server application can be any type of server. For example, an Open
Server application can perform specialized cal culations, provide accessto real -
time data, or interface with services such as electronic mail. You create an
Open Server application using the building blocks provided by Open Server
Server-Library.

Adaptive Server Enterprise and Open Server applications are similar in some
ways:

e Adaptive Server Enterprise and Open Server applications are both servers
that respond to client requests.

e Clients communicate with both Adaptive Server Enterprise and Open
Server applications through Open Client libraries.

But they aso differ:

e Anapplication programmer must create an Open Server application, using
Open Server’s building blocks and supplying custom code. Adaptive
Server Enterprise is complete and does not require custom code.

« An Open Server application can be any kind of server, and can be written
to understand any language. Adaptive Server Enterprise is a database
server, and understands only Transact-SQL.

* AnOpen Server application can communicate with “foreign” applications
and serversthat are not based on Sybase’s Tabular DataStream™, or TDS,
protocol. It can also communicate with Sybase applications and servers.
Adaptive Server Enterprise can communicate directly only with Sybase
applications and servers. To communicate with foreign applications and
servers, Adaptive Server Enterprise must use an Open Server gateway
application as an intermediary.

Open server configurations

An Open Server application’s position in the client/server architecture depends
onitsfunction. Open Server applications fall into one of three functional
categories:

* Standalone

Server-Library/C Reference Manual 3

Open server configurations

e Auxiliary

o Gateway

Standalone open server application
A client can connect directly to a standalone Open Server application.
The client submits requests to the server using:

» Remote Procedure Calls (RPCs), which allow you to execute registered
procedures on an Open Server application. Registered procedures are
defined pieces of Open Server code stored by the Open Server application.
They can be user-defined or system-defined procedures.

* A cursor command.
* Any other kind of client command.

The Open Server application programmer supplies code to process client
commands.

The standal one Open Server application makes no external requeststo respond
to aclient request.

Auxiliary open server application

An auxiliary Open Server application can support Adaptive Server Enterprise
by processing RPCs:

The client connects directly to Adaptive Server Enterprise and uses Transact-
SQL for its language requests. To execute aregistered procedure on the Open
Server application, the client prefixes the procedure name with the name of the
Open Server application in the Transact-SQL statement, which causes
Adaptive Server Enterprise to initiate an RPC. For example, this client
statement causesthe procedure“ print_calls’ to be executed on the Open Server
application named “OpnSrv211”:

exec OpnSrv2ll...print calls

An RPC isthe only type of client command that can be sent to an Open Server
application directly from an Adaptive Server Enterprise. You can initiate the
RPC calls by using stored procedures, triggers, or threshold management in
Adaptive Server Enterprise. RPCs give you access to:

4 Open Server

CHAPTER 1 Introducing Open Server

e Operating system functionality, such as sending e-mail and printing.

* Whatever functions you have defined in your Open Server application
code.

The Open Server application can return information to the Adaptive Server
Enterprise, or back to the client through Adaptive Server Enterprise.

Using server-to-server RPCs, an Open Server application can perform
specialized calculations, provide accessto real-time data, and permit Adaptive
Server Enterprise to access services such as electronic mail.

Gateway Open Server application

A gateway server enablesaclient to accessaserver that may or may not be able
to accept the client connection directly. The gateway does not have to connect
to an Adaptive Server Enterprise or, for that matter, to any DBMS server. It

could connect to afile system or an application program that can act asaserver.

An Open Server application that accesses an Adaptive Server Enterprise or
another Open Server application includes both Client-Library and Server-
Library routines. It assumes both client and server roles. In the server role, it
uses Open Server to interface with clients. In the client role, it uses Client-
Library routines to send requests to, and receive results from, an Adaptive
Server Enterprise or another Open Server. See* Gateway applications’ on page
98 for details.

The gateway above connects clients to an Adaptive Server Enterprise. The
dotted linesin theillustration indicate that this particular gateway uses“TDS
passthrough mode,” alow-overhead method of passing requests and results
between Sybase clients and Sybase servers. See “ Passthrough mode” on page
129 for details.

Open Server

Open Server provides the tools and interfaces needed to create custom server
applications.

Broadly speaking, Open Server contains a programming interface, in the form
of libraries of functions, and network services.

Server-Library/C Reference Manual 5

Open Server

The Open Server libraries
The libraries that make up the Open Server programming interface are:

e Server-Library, acollection of routines for use in writing server
applications. Server-Library includes routines that:

Listen for commands from clients
Return resultsto clients

Set application attributes

Handle error conditions

Schedule interactions with clients

Provide avariety of information about client connections

e CS-Library, acollection of utility routinesthat are useful to both client and
server applications. All Server-Library programs must include at |east one
call to CS-Library, because Server-Library routines use a structure that is
allocated in CS-Library.

Both Open Client and Open Server use CS-Library, which contains utility
routines for both client and server applications.

Standalone and auxiliary Open Server applicationsinclude callsto Server-
Library and CS-Library. Gateway applicationsinclude callsto Server-Library,
CS-Library, and Client-Library.

Open Server also containsa set of header filesthat define structures, types, and
values used by Server-Library routines. They are:

e ospublic.h

e oserror.h

e oscompat.h

Network services

Open Server network services are, in most cases, transparent to Open Server
developers and end users of Open Server applications. On PC platforms,
however, networking services are externalized.

Network servicesinclude Net-Library, which provides support for specific
network protocols, such as TCP/IP.

Open Server

CHAPTER 1 Introducing Open Server

Using Open Server

You write an Open Server application by using callsto Server-Library and CS-
Library routinesto set up structures, listen for connection requests from clients
and other servers, process client requests, and clean up memory. A gateway
application also includes calls to Client-Library routines.

An Open Server application program iscompiled in the same way as any other
C language program. On most UNIX platforms, you need to include these
libraries when you compile and link your program (file names or extensions

may vary by platform):
e libsybsrva

e libsybcsa

e libsybcomn.a

» libsybtcl.a

* libsybintl.a

« libsybblk.a —if you are using bulk copy routines
e libsybct.a—if you are using a gateway
Thelibrary files are located in the $SYBASE/$SYBASE_OCSlib directory.

The CS_CONTEXT structure

An Open Server application requiresa CS_CONTEXT structure, which
defines a particular application “context,” or operating environment. A
CS_CONTEXT structure contains localization information, as well as server-
wide control information. The first step in any Open Server application
programisto call cs_ctx_alloc to allocate a CS_CONTEXT structure.

An application programmer shapes an application’s behavior and attributes by
mani pulating the contents of the application’s CS_CONTEXT structure. See
“Properties’ on page 139 for more information.

Steps in a simple program

On most platforms, creating a simple Open Server application program
involves these steps:

Server-Library/C Reference Manual 7

Basic Open Server program

Step | Function Routines
1 Set up the Open Server operating environment | cs_ctx_alloc
by allocating structures and setting global srv version
attributes, known as properties. B
Srv_props
2 Defineerror handling. Applicationsmay install | srv_props(SRV_S
an error handling routine, which Open Server | ERRHANDLE)
callswhenit detectsan error. Applications may
also call the srv_sendinfo routine on an ad hoc
basis to send error messages to the client, or
srv_log towriteto thelog file. See “Errors’ on
page 89 for details.
3 Initialize the server. srv_init
4 Install event-handling routines, which Open srv_handle
Server calls when client commands trigger
Open Server events. An Open Server
application does most of its work inside its
event-handling routines. Refer to “Open
Server events’ on page 13 for more
information.
5 Start the server running. Inthisstate, theserver | srv_run
simply listens for client requests.
6 Clean up and exit. cs_ctx_drop

The sample program in the following section demonstrates all but step 4; it
does not install user-defined event handlers. Therefore, the default handlers
will execute instead.

Basic Open Server program

This codeillustrates the basic framework of an Open Server application

program:
/*
* %k This program demonstrates the minimum steps necessary
* % to initialize and start up an Open Server application.
** No user-defined event handlers are installed, therefore
*k the default handlers will execute instead.
*/
/*

** Tnclude the required Open Server header files.

Open Server

CHAPTER 1 Introducing Open Server

* %

** ospublic.h: Public Open Server structures, typedefs,

* % defines, and function prototypes.

* %

** oserror.h: Open Server error number #defines. This header
* % file is only required if the Open Server application wants
* % to detect specific errors inside the Open Server error

** handler.

*/
#include <ospublic.h>

#include <oserror.h>
/*

* % Include the operating system specific header files required
*% by this Open Server application.

*/

#include <stdio.h>

/*

** Toocal defines.

* %

** 0OS_ARGCOUNT Expected number of command line arguments
*/

#define OS_ARGCOUNT 2

/*

*% This Open Server application expects the following

** command line arguments:

* %

*x servername: The name of the Open Server application.

* %

*% This name must exist in the interfaces file defined by

*% the SYBASE environment variable.

* %

** Returns:

** 0 Open Server exited successfully.

* %k 1 An error was detected during initialization.

*/

int main (argc, argv)

int argc;

char *argv[];
CS_CONTEXT *Ccp; /* Context structure */
CS_CHAR *servername; /* Open Server name */

Server-Library/C Reference Manual 9

Basic Open Server program

10

CS_CHAR logfile[512]; /* Log file name */

CS_BOOL ok; /* Error control flag */
SRV_SERVER *Ssp; /* Server control structurex*/
/* Initialization. */

ok = CS_TRUE;

/*
** Read the command line options. There must be one
** grgument specifying the server name.

*/

if (argc != OS_ARGCOU'NT)

{
(CS_VOID) fprintf (stderr, "Invalid number of
arguments (%d) \n", argc) ;
(CS_VOID) fprintf (stderr, "Usage: <program>
<gserver name>\n") ;
exit (1) ;

}

/*

**x Tnitialize ‘servername' to the command line argument
** provided.

*/

servername = (CS_CHAR *)argv[1l];

/*

** Allocate a CS-Library context structure to define the
** default localization information. Open Server

** also stores global state information in this structure
** during initialization.

*/

if (cs_ctx alloc(CS_VERSION 110, &cp) != CS_SUCCEED)

{
(CS_VOID) fprintf (stderr, "%s: cs_ctx alloc failed",
servername) ;
exit (1) ;

}

/*

** Default Open Server localization information can be
** changed here before calling srv version, using cs config

Open Server

CHAPTER 1 Introducing Open Server

** and cs_locale.

*/
/*
** Set the Open Server version and context information
*/
if (srv_version(cp, CS VERSION 110) != CS SUCCEED)
/*
** Release the context structure already allocated.
*/
(CS_VOID)cs_ctx drop(cp) ;
(CS_VOID) fprintf (stderr, "%s: srv_version failed",
servername) ;
exit (1) ;
/*

** There is no error handler installed in this sample

** Open Server application. Any errors detected by Open

** Server are written to the Open Server log file

** configured below. A real Open Server application would
** install an error handler after calling srv_version, using
** srv_props (SRV_S ERRHANDLE) . Then, any subsequent errors
** will be detected by the Open Server application code.

*/

/*

** Default Open Server global properties can be changed here
** before calling srv_init. We choose just to change the

** default log file name to use the name of this Open

** Server application.

*/
/*

** Build a new Open Server log file name using ‘servername’
*/
(CS_VOID) sprintf (logfile, "%s.log", servername) ;

/*
** Set the new log file name using the global SRV_S LOGFILE
** property.

*/
if (srv_props(cp, CS SET, SRV_S LOGFILE, logfile,
CS_NULLTERM, (CS_INT *)NULL) != CS_SUCCEED)

Server-Library/C Reference Manual 11

Basic Open Server program

/*

** Release the context structure already allocated.
*/

(CS_VOID)cs ctx drop(cp) ;

(CS_VOID) fprintf (stderr, "$s: srv_props (SRV_S LOGFILE)
failed\n", servername) ;
exit (1) ;

}
/*

** Tnitialize Open Server. This causes Open Server to

** allocate internal control structures based on the global
** properties set above. Open Server also looks up

** the application name in the interfaces file.

*/
if ((ssp = srv_init ((SRV_CONFIG *)NULL, servername,
CS_NULLTERM)) == (SRV_SERVER *)NULL)
{
/*
** Release the context structure already allocated
*/
(CS_VOID)cs ctx drop(cp) ;
(CS_VOID) fprintf (stderr, "%s: srv_init failed\n",
servername) ;
exit (1) ;
}
/*

** Start the Open Server application running. We don't
** install any event handlers in this simple example. This
** causes Open Server to use the default event handlers.
* %
** The call to srv_run does not return until a fatal error is
** detected by this Open Server application, or a SRV_STOP
** event is queued. Since we haven't installed any event
** handlers, the only way to stop this Open Server
** gpplication is to kill the operating system process in
** which it is running.
*/
if (srv_run((SRV_SERVER *)NULL) == CS_FAIL)
{
(CS_VOID) fprintf (stderr, "%s: srv_run failed\n",
servername) ;

12 Open Server

CHAPTER 1 Introducing Open Server

ok = CS_FALSE;

}
/*

** Release all allocated control structures and exit.
*/

(CS_VOID) sxrv_free (ssp) ;

(CS_VOID)cs_ctx drop(cp) ;

exit(ok ? 0 : 1);

Open Server events

The requests aclient sends to an Open Server application trigger eventsin the
server. Thiscausesthe client’s server process, known asathread, to execute a
routine that processes the event. Thisroutine is called an event handler.

There are many types of standard events defined internally by Server-Library,
the most common of which are shown in thistable;

Client request Event type Open Server event
ct_command(CS_LANG_ | Language SRV_LANGUAGE
CMD)

ct_send

ct_command(CS _RPC_C RPC SRV_RPC

MD)

ct_send

ct_cancel Attention SRV_ATTENTION
ct_connect Connect SRV_CONNECT
ct_close Disconnect SRV_DISCONNECT
ct_exit

Non client-initiated Start SRV_START

Non client-initiated Stop SRV_STOP

For more information, see “ Events’ on page 92.

Server-Library/C Reference Manual 13

Registered procedures

Default event handlers

Default event handlers exist for most of the standard events, but usually you
will replace these with your own coded event handlers. Most of the default
event handlers simply echo the request. For example, the default language
event handler returns the message:

No language handler installed.

Installing an event handler automatically overrides the default event handler.

Non client-initiated events

Some events cannot be directly triggered by client programs:
* User-defined events

* SRV_STOP, which istriggered by calling srv_event in the Open Server
code

* SRV_START, which occurs as a part of the start-up process

Registered procedures

14

A registered procedure is a piece of Open Server/C code identified by aname.
When an application registers a procedure, it maps the procedure name to a
routine, so that when Open Server detects this procedure namein anincoming
RPC datastream, it can call a specific routineimmediately without raising a
SRV_RPC event.

When an Open Server application receives an RPC, it looks up the procedure
namein thelist of registered procedures. If the nameis registered, the runtime
system executes the routine associated with the registered procedure. If the
procedure name is not found in the list of registered procedures, Open Server
callsthe SRV_RPC event handler.

System registered procedures are built-in procedures that are internal to all
Open Server applications. See Chapter 4, “ System Registered Procedures’ for
adetailed description of each system registered procedure.

See " Registered procedures’ on page 162 for details on registered procedures.

Open Server

CHAPTER 1 Introducing Open Server

Returning results to clients

This section describes the types and order of result data that can be sent and
returned to clients.

Types of result data

Messages

Data rows

An Open Server application can send resultsto aclient as:
¢ Messages

* Rowsof data

* Result parameters

o Statusvalues

A single client request can obtain more than one set of results. After sending
the first result set, call srv_senddone with a status of SRV_DONE_MORE if
there are more result sets for the request. Call srv_senddone with a status of
SRV_DONE_FINAL if there areno moreresults. Calling srv_senddone with a
SRV_DONE_FINAL statusisthe minimum response to a client request. The
client waits until it receives srv_senddone(SRV_DONE_FINAL) before
proceeding.

An application can send error messages to clients with srv_sendinfo. Client-
Library programs process messages with a message handler routine. These
routinestypically display the messageinformation on the user’sterminal. If the
message is an error message, the client program can attempt to recover from
the error or exit.

Open Server can return rows of datato clients just as Adaptive Server
Enterprise returns the results of SQL queries. A row consists of one or more
columns of data. See “ Processing parameter and row data’ on page 134 for
details.

Server-Library/C Reference Manual 15

Error handling

Parameters

Parameters are data that is passed using client commands between clients and
the Open Server application.

Status values

An application can call srv_sendstatus to return an optional statusvalueto a
client application. ThestatusisaCS_INT valuethat hasan application-specific
meaning. CS_INT is an Open Server datatype; see“ Types’ on page 199 for
more information. There can be only one status value for each set of results.

Order of results
The order in which you return results to clientsis important:

» Do not interrupt a set of data rows with other kinds of results. Datarows
must be sent one after another until the entire set has been sent totheclient.
For example, you cannot send afew rows, then send a message, then send
more rows.

» After you have sent al of the data rows (if any), you can send messages
and status information to the client in any order.

e Attheend of aset of results, call srv_senddone to signal the end of the
results.

Error handling

One of the first actions to take in an Open Server application isto install an
error handler with srv_props. If no error handler has been installed, Open
Server writes the error messages to the log file. See “Errors’ on page 89 for
details.

16 Open Server

CHAPTER 1 Introducing Open Server

Multithread programming

Open Server employs a multithread architecture. This architecture allows
application developersto create multithread servers. A multithread server isa
collection of threads, each executing routines to accomplish its specific task.
For example, each client uses a thread that manages its connection and
executes the event handlers and procedures that fulfill its requests. The Open
Server runtime system employs several threads that manage server activities
such as delivering messages, handling network communications, and
scheduling tasks in the server. You can “spawn” threads for other nonclient
activities.

See “Multithread programming” on page 109 for details.

Summary of changes for version 15.0

This section contains information on changes to this manual in this version.
The changes are:

» Sybase library name change: Naming conventions for Open Server and
SDK libraries have changed, with the addition of syb to Sybase libraries.
Names for non-Sybase libraries remain the same.

« BCP partitions: You can now copy A SE partitions with added support for
BLKLIB and BCP programs.

e BCP computed columns: Two new Client-Library options have been
added to support BCP computed columns.

CS _OPT_HIDE_VCC instructs the Adaptive Server to hide Virtual
Computed Columns (VCC), whileCS_OPT_SHOW_FI adds columnsfor
each Functional Index (FI).

* Largeidentifiers: Limitson lengths of identifiers have been reduced. This
is now 255 bytes for identifiers.

* Unilib® support: Unicode I nfrastructure Library (Unilib), an independent
library of Unicode-based routines, has been included to facilitate
character-set conversion.

e ASE default packet size support: You can how configure packet size
centrally on the server, with the default set to 8192 bytes.

Server-Library/C Reference Manual 17

Summary of changes for version 15.0

e Clusterssupport: A cluster of servers can now perform load balancing for
all client connections coming into the cluster.

e Scrollable cursors: You can now set the position of a cursor anywherein
the cursor result set.

e Table 1-1 lists the new datatypes introduced in this version:

Table 1-1: New datatypes

Corresponding

Type Open Client and Server Corresponding C | server
category type constant Description datatype datatype
XML type CS_XML_TYPE Variable-length CS_XML xml
character type
Numerictypes | CS_BIGINT_TYPE 8-byteinteger type | CS_BIGINT bigint
CS_USMALLINT_TYPE 2-byte unsigned CS_USMALLINT usmallint
integer type
CS_UINT_TYPE 4-byte unsigned CS_UINT uint
integer type
CS_UBIGINT_TYPE 8-byte unsigned CS_UBIGINT ubigint
integer type
Text andimage | CS_UNITEXT_TYPE Variable-length CS_UNITEXT unitext
types character type
18 Open Server

CHAPTER 2 Topics

This chapter contains information on:

* Open Server programming topics, such as processing parameter and
row data, and support for text and image

e How to use Open Server routines to accomplish specific
programming tasks, such as responding to cursor requests and
handling errors

* Open Server properties, datatypes, and structures

This chapter contains the following topics:

Topic Page
Attention events 20
Browse mode 22
Capabilities 24
Client command errors 38
Connection migration 40
CS_BROWSEDESC structure 52
CS _DATAFMT structure 54
CS_IODESC structure 57
CS-Library 59
CS_SERVERMSG structure 60
Cursors 63
Scrollable cursors 77
Data stream messages 80
Directory services 81
Dynamic SQL 83
Errors 89
Events 92
Gateway applications 98
International support 99
Language calls 107
Login redirection and extended HA failover support 108

Server-Library/C Reference Manual 19

Attention events

Attention events

Topic Page
Messages 109
Multithread programming 109
Negotiated behavior 119
Options 122
Partial update 127
Passthrough mode 129
Processing parameter and row data 134
Properties 139
Registered procedures 162
Remote procedure calls 169
Security services 170
Text and image 196
Types 199

When a client application cancels a request through adbcancel or ct_cancel
command, it triggers an Open Server SRV_ATTENTION event. Open Server
then calls the Open Server application’s SRV_ATTENTION event handler.
Once the SRV_ATTENTION event handler returns, Open Server resumes
processing where it left off when the attention event was detected.

Interrupt-level activity

A SRV_ATTENTION event handler isthe only event handler that runs at
interrupt level. An Open Server application can only issue the following

Server-Library callsfrominside a SRV_ATTENTION handler:

20

srv_wakeup with the wakeflags argument set to SRV_M_WAKE_INTR

srv_ucwakeup with the wakeflags argument set to SRV_M_WAKE_INTR

srv_thread_props with the cmd argument set to CS_GET
srv_props With the cmd argument set to CS_GET

srv_event_deferred

Open Server

CHAPTER 2 Topics

No other Server-Library routines can be called from the SRV_ATTENTION
event handler, or from other interrupt-level code.

Coding recommendations for attention events

Attention eventsare problematicif they arrive while noninterrupt-level handler
codeisexecuting. An application may do work it no longer needsto do because
the client has cancelled a request.

Itisthe application’s responsibility to check for attention event periodically if
it is performing atime-consuming 1/0 task or compute-intensive work at the
noninterrupt level. The application code should periodically check for attention
events using srv_thread_props, with cmd set to CS_GET and property Set to
SRV_T_GOTATTENTION.

Once it detects an attention event, the Open Server application code can
continue to send results, but clients ignore them. The simplest way the
application can respond to an attention event isto send aSRV_DONE_FINAL
to the client and return.

An attention event can arrive while the Client-Library portion of the gateway
application code is executing. The application can call ct_command with the
type argument set to CS_CANCEL_ATTN inits SRV_ATTENTION event
handler to force the Client-Library routineto return to noninterrupt-level code.
Because this command does not take effect unless an attention event arrives, a
gateway application should call it routinely.

All gateway calls performing client 1/O should check for attention events with
srv_thread_props before calling ct_send. Thisensuresthat aquery will not be
sent to a remote server once the client has already cancelled it.

Handling disconnects

If an Open Server applicationisinthemiddle of returning resultstoaclient and
the client abruptly disconnects, the application continuesto return results until
it detects that the connection has been closed. Open Server subsequently calls
the SRV_DISCONNECT event handler. In this scenario, the application
continues to send resultsto a client that can no longer receive them. An abrupt
client disconnect can occur if:

e Aclient calsct_close before handling al the results the server is sending
it.

Server-Library/C Reference Manual 21

Browse mode

Example

Browse mode

22

e Theclient process dies suddenly.
e The machine goes down.

To avoid this situation, an application can request that Open Server first calls
the application's SRV_ATTENTION event handler in response to a client
disconnect, and then calls the SRV_DISCONNECT event handler. For Open
Server to handl e disconnectsin this fashion, an application must use srv_props
to set the SRV_S DISCONNECT property to CS TRUE. The
SRV_DISCONNECT event handler is still called in the usual way, but itis
called after the SRV_ATTENTION handler. The SRV_S DISCONNECT
property defaultsto CS _FALSE.

The SRV_ATTENTION handler initiates the appropriate stepsto terminate the
1/0 activity and stop the return of results from the routine that was executing at
the time of the disconnect. An application can thus respond to disconnectsin
the same way that it would to attentions.

Using its SRV_ATTENTION event handler, an application can determine
which event triggered the handler—an attention or a disconnect—by calling
srv_props With cmd set to CS_GET and property set to

SRV_S ATTNREASON.

The sample ctos.c includes attention handling code.

Note Browse modeisincluded to provide compatibility with Open Client
libraries older than version 11.1. Sybase discourages its use in Open Server
Server-Library applications, because cursors provide the same functionality in
amore portable and flexible manner. Additionally, browse mode is Sybase-
specific and is not suited for use in a heterogeneous environment.

Open Server

CHAPTER 2 Topics

Browse mode provides a means for searching through database rows and
updating their values one row at atime. From the standpoint of aclient
application program, the processinvolves several steps, because each row must
be transferred from the database into client application program variables
before it can be browsed and updated.

Because arow being browsed is not the actual row residing in the database but
acopy residing in program variables, the program must update the original
database row with changes made to the variables’ values. In multiuser
situations, the program must ensure that updates made to the database by one
user do not overwrite recent updates made by another user. Such overwrites
occur because a client application typically selects a number of rows from a
database to update at one time, but the application’s users browse and update
the database one row at atime. A timestamp column in browsable tables
provides the information necessary to regulate this type of multiuser updating.

Client applicationsthat permit usersto enter ad hoc browse mode queries must
update underlying database tables if a user command alters a table's contents.
Consequently, these applications may need information about the underlying

structure of a browse mode command.

Open Server includestwo routinesthat provide such information, srv_tabname
and srv_tabcolname:

e srv_tabname provides the name and number of each tableinvolved in the
browse mode command.

e srv_tabcolname returns avariety of information about result columns
through a CS_BROWSEDESC structure. For more information, see
“CS_BROWSEDESC structure” on page 52.

An Open Server application that receives browse mode requests can call these
two routines, along with the standard data binding routines, to return browse
mode information. The specific steps are;

1 Cadl srv_tabname once for each table that is the source of aresult row.

2 Cadll srv_descimt followed by srv_tabcolname once for each columnin the
result row.

If the Open Server application has set the status field of the

CS BROWSEDESC structure to CS_RENAMED, this means that the
client application’s browse mode select statement renamed the column.
The Open Server application must fill in the original name of the column
in the database, and the length of its name, in the origname and orignlen
fieldsin the CS_ BROWSEDESC structure prior to calling
srv_tabcolname.

Server-Library/C Reference Manual 23

Capabilities

Example

Capabilities

24

3 Bind and transfer the column data using the srv_bind and srv_xferdata
routines, respectively.

Note Because srv_tabcolname requires information returned by
srv_tabname—the unique table number—srv_tabname must precede acall to
srv_tabcolname.

For more information on browse mode, see the Sybase Open Client Client-
Library/C Reference Manual.

The sample program ctos.c includes code to process browse mode i nformation.

An Open Server application and a client must agree on what requests the client
can issue and what responses the Open Server application will return. For
example, a client may want to issue language requests, but the Open Server
application may not be equipped with a parser to process such requests.
Similarly, a client may not want the Open Server application to return text or
image dataif the client is not equipped to handleit. A client/server
connection’s capabilities determine the types of client requests and server
responses permitted for that connection.

The Open Server application ultimately determineswhich capabilitiesarevalid
for the connection. If the client does not accept these capabilities, its only
option is to close the connection.

There are two types of capability negotiation: transparent and explicit. In
transparent negotiations, the Open Server application assigns a default set of
possible client requests and Open Server responses. In explicit negotiations,
the Open Server application includes code to negotiate capabilities, using the
srv_capability_info routine.

Transparent negotiation is part of both Open Server and Open Client’s default
behavior. Therefore, an Open Server application must call srv_capability_info if
it wants to support something other than the default set of capabilities.

Open Server

CHAPTER 2 Topics

Request capabilities
Table 2-1 describes each request capability:

Server-Library/C Reference Manual 25

Capabilities

26

Table 2-1: Request capabilities

CS_REQUEST Capability
capability Meaning relates to
CS CAP_ Extended HA failover Connections
EXTENDEDFAILOVER
CS_CON_INBAND In-band (non-expedited) attentions Connections
CS_CON_0OOB Out-of-band (expedited) attentions Connections
CS CSR_ABS Fetch of specified absolute cursor row | Cursors
CS CSR_FIRST Fetch of first cursor row Cursors
CS CSR_LAST Fetch of last cursor row Cursors
CS CSR_MULTI Multi-row cursor fetch Cursors
CS CSR_PREV Fetch previous cursor row Cursors
CS CSR_REL Fetch specified relative cursor row Cursors
CS DATA_BIN Binary datatype Datatypes
CS DATA_VBIN Variable-length binary type Datatypes
CS DATA_LBIN Long variable-length binary datatype | Datatypes
CS DATA_BIT Bit datatype Datatypes
CS DATA_BITN Nullable bit datatype Datatypes
CS DATA_BOUNDARY | Boundary datatype Datatypes
CS DATA_CHAR Character datatype Datatypes
CS DATA_VCHAR Variable-length character datatype Datatypes
CS DATA_LCHAR Long variable-length character Datatypes
datatype
CS DATA_DATE Date datatype Datatype
CS DATA_DATE4 Short datetime datatype Datatypes
CS DATA_DATES Datetime datatype Datatypes
CS DATA_DATETIMEN | Null datetime values Datatypes
CS DATA_DEC Decimal datatype Datatypes
CS DATA_FLT4 4-byte float datatype Datatypes
CS DATA_FLT8 8-byte float datatype Datatypes
CS DATA_FLTN Nullable float datatype Datatypes
CS DATA_IMAGE Image datatype Datatypes
CS DATA_INT1 Tiny integer datatype Datatypes
CS DATA_INT2 Small integer datatype Datatypes
CS DATA_INT4 Integer datatype Datatypes
CS DATA_INT8 Big integer datatype Datatypes
CS DATA_INTN Null integers Datatypes
CS DATA_MNY4 Short money datatype Datatypes

Open Server

CHAPTER 2 Topics

CS_REQUEST Capability
capability Meaning relates to
CS DATA_MNYS8 Money datatype Datatypes
CS DATA_MONEYN Null money values Datatypes
CS DATA_NUM Numeric datatype Datatypes
CS DATA_SENSITIVITY | Sensitivity datatype Datatypes
CS DATA_TEXT Text datatype Datatypes
CS DATA_TIME Time datatype Datatypes
CS DATA_UCHAR 2-byte character datatype Datatypes
CS DATA_UNITEXT Unitext datatype Datatypes
CS DATA_XML XML datatype Datatypes
CS OPTION_GET Current option values Datatypes
CS PROTO_DYNAMIC Use TDS DESCIN/OUT protocol Commands
CS PROTO_DYNPROC | Add “create proc” in the front of Commands

dynamic prepares
CS REQ BCP Bulk copy requests Commands
CS REQ _CURSOR Cursor requests Commands
CS _REQ _DBRPC2 Large RPC name requests Commands
CS REQ DYN Dynamic SQL requests Commands
CS REQ LANG Language requests Commands
CS REQ LARGEIDENT | Largeidentifier requests Commands
CS REQ MIGRATE Migration requests Connection
CS REQ MSG Message data Commands
CS REQ MSTMT Multiple server commands per Client- | Connection

Library request
CS REQ NOTIF Event notifications Connection
CS REQ SRVPKTSIZE Server-specified packetsize Connection
CS REQ PARAM Parameter data Commands
CS REQ RPC Remote procedure requests Commands
CS REQ URGNOTIF Use 5.0 event notification protocol Commands
CS WIDETABLES Wider and increased number of Commands

columns per table

27

Server-Library/C Reference Manual

Capabilities

Response capabilities
Table 2-2 describes each response capability.

Note Response capabilities indicate the kinds of responses the client does not
want to receive.

28 Open Server

CHAPTER 2 Topics

Table 2-2: Response capabilities

Capability

CS_RESPONSE capability | Meaning relates to
CS_CON_NOINBAND No in-band (non-expedited) Connections

atentions
CS_CON_NOOOB No out-of-band (expedited) Connections

atentions
CS NO_SRVPKTSIZE No server-specified packetsize Connections
CS DATA_NOBIN No binary datatype Datatypes
CS DATA_NOVBIN No variable-length binary type Datatypes
CS DATA_NOLBIN No long variable-length binary Datatypes

datatype
CS DATA_NOBIT No bit datatype Datatypes
CS DATA_NOBOUNDARY | No boundary datatype Datatypes
CS DATA_NOCHAR No character datatype Datatypes
CS DATA_NOVCHAR No variable-length character Datatypes

datatype
CS DATA_NOLCHAR No long variable-length character | Datatypes

datatype
CS DATA_NODATE No date datatype Datatypes
CS DATA_NODATE4 No short datetime datatype Datatypes
CS DATA_NODATES No datetime datatype Datatypes
CS DATA_NODATETIMEN | No null datetime values Datatypes
CS DATA_NODEC No decimal datatype Datatypes
CS DATA_NOFLT4 No 4-byte float datatype Datatypes
CS DATA_NOFLT8 No 8-byte float datatype Datatypes
CS DATA_NOIMAGE No image datatype Datatypes
CS DATA_NOINT1 No tiny integer datatype Datatypes
CS DATA_NOINT2 No small integer datatype Datatypes
CS DATA_NOINT4 No integer datatype Datatypes
CS DATA_NOINT8 No big integer datatype Datatypes
CS DATA_NOINTN No null integers Datatypes
CS DATA_NOMNY 4 No short money datatype Datatypes
CS DATA_NOMNY8 No money datatype Datatypes
CS DATA_NOMONEYN No null money values Datatypes
CS DATA_NONUM No numeric datatype Datatypes
CS DATA_NOSENSITIVITY | No sensitivity datatype Datatypes
CS DATA_NOTEXT No text datatype Datatypes
CS DATA_NOTIME No time datatype Datatype

29

Server-Library/C Reference Manual

Capabilities

Capability
CS_RESPONSE capability | Meaning relates to
CS DATA_NOUCHAR No 2-byte character datatype Datatypes
CS DATA_NOUNITEXT No Unitext datatype Datatypes
CS_DATA_NOXML No XML datatype Datatypes
CS RES NOEED No extended error results Results
CS RES NOMSG No message results Results
CS RES NOPARAM No result parameters Results
CS_RES NOTDSDEBUG No TDS debug token Results
CS NO_LARGEIDENT No large identifiers Commands
CS NOWIDETABLES No increase in column size or Commands

number of columns per table

Note When an Open Server application definesthe client dataformat using the
srv_descfmt routine, Open Server verifies that the response capability for the
relevant datatypeis not set. If it isset, either the client has requested the server
not to send results pertaining to that datatype or the TDS version of the client
connection does not support that datatype. I n such cases, Open Server raisesan
error and srv_descfmt returns CS_FAIL.

Transparent negotiation

30

Open Server includes a set of default capability values. For alist of defaults,
see “ Server-wide defaults’ on page 31. These defaults are server-wide; they
apply to all client connections. When the defaults are used, all capabilities
Open Server supports are turned on.

An Open Server application can change the server-wide default values during
initialization by calling the srv_props routine. See srv_props on page 334.

When a DB-Library or Client-Library client logsin to an Open Server
application, it sends alist of desired capabilitiesin itslogin record. In
transparent negotiation, Open Server findsthe intersection of its default values
and the client values. The resulting val ues are the capabilities supported on that
connection.

Open Server

CHAPTER 2 Topics

When does transparent negotiation take place?

Transparent negotiation takes place when:

* An Open Server application does not have a SRV_CONNECT handler
other than the default handler.

e AnOpen Server application does not explicitly include code in its custom
SRV_CONNECT event handler to override default capabilities.

Note In passthrough mode, srv_getloginfo and srv_setloginfo handle capability
negotiation transparently.

Server-wide defaults

Table 2-3 indicates the default setting for each request capability by TDS
version. A 1 indicates that the capability is supported in the TDS version. A O
indicates that the capability is not supported.

Server-Library/C Reference Manual 31

Capabilities

32

Table 2-3: Request capabilities by TDS version

CS_REQUEST capability

4.0

4.0.2

N

()]

o

CS_CAP_EXTENDEDFAILOVER

o

0

CS CON_INBAND

CS_CON_OOB

CS CSR ABS

CS CSR_FIRST

CS_CSR_LAST

CS CSR_MULTI

CS CSR_PREV

CS CSR REL

CS DATA_BIN

CS DATA_BIT

CS DATA BITN

CS DATA_BOUNDARY

CS DATA_CHAR

CS DATA_DATE

CS DATA_DATE4

CS DATA_DATES

CS DATA_DATETIME

CS DATA_DEC

CS DATA_FLT4

CS DATA FLT8

CS DATA_FLTN

CS DATA_IMAGE

CS DATA_INT1

CS DATA_INT2

CS DATA_INT4

CS DATA_INT8

CS DATA_INTN

CS DATA_LBIN

CS DATA_LCHAR

CS DATA_MNY4

CS DATA_MNY8

CS DATA_MONEYN

CS DATA_NUM

CS DATA_SENSITIVITY

CS DATA_TEXT

PO O|FRI P OIOOIFR I OIFRIFPIPFPRFPIPFPPOIOIRFRP P OO OO P OOOCOO|lO|R|O

PO O|FR P OIOOIFR I OIFRIFPIPFPRFPIPFPPRPOIOIRFRP P OO OO P OOOCOOC|IO|R|O

Rrlo|o|r|r|lr|lololr|lo|r|kr|kr| kR kR RrRIrRolr kR kRl oOlrR oo kr kR oloololololr| oo~

rlo|o|r|r|rlolo|r|lolr|r|lrirlrlr R OlkR KRR oOlrolor rl oololoololr ool s

Rrlo|lo|r|r|lr|loolr|lr|lrlrlkrlrirlkrlrlolrlrlrPr ookl olooloololo|r| kv

Open Server

CHAPTER 2 Topics

CS_REQUEST capability
CS DATA_TIME

CS DATA_UCHAR

CS DATA_UNITEXT
CS DATA_VBIN

CS DATA_VCHAR

CS DATA_XML

CS OPTION_GET

CS PROTO_DYNAMIC
CS PROTO_DYNPROC
CS REQ BCP

CS REQ_CURSOR
CS REQ_DBRPC2

CS REQ DYN

CS REQ LANG

CS REQ _LARGEIDENT
CS REQ_MIGRATE

CS REQ MSG

CS REQ_MSTMT

CS REQ NOTIF

CS REQ PARAM

CS REQ_RPC

CS REQ_SRVPKTSIZE
CS REQ URGNOTIF
CS WIDETABLES

o
o
(V)
(V)
o
o

o|lo|o|r|o|lo|lo|lo|lo|o|r|o|o|o|r|o|o|o|o|r|r| o|lo|lols
o|lo|o|r|o|lo|lo|lo|lo|o|r|o|o|O|r|O|Oo|Oo|O|r|r|lo|lo|lols
o|o|o|r|o|lo|lo|lo|lo|o|r|o|o|o|r|o|o|o|o|r|r| o|lo|lol s
o|lo|o|r|o|r|o|lo|lo|o|r|o|o|o|r|o|o|o|o|r|r|lo|lo|lols
Rrlo|r|r|lolr|lololr|r|ir|o|r|o|r|o|o|o|r|r|Ir IR IRIkrlu

Table 2-4 describes the default setting for each response capability by TDS
version.

e lindicatesthat the capability is not supported in the TDS version.
e Oindicates that the capability is supported.

Server-Library/C Reference Manual 33

Capabilities

34

Table 2-4: Response capabilities by TDS version

CS_RESPONSE capability

4.0

4.0.2

4.2

()]

o

CS_CON_NOINBAND

A

1

A

CS_CON_NOOOB

CS DATA_NOBIN

CS DATA_NOBIT

CS DATA_NOBOUNDARY

CS DATA_NOCHAR

CS DATA_NODATE4

CS DATA_NODATES

CS DATA_NODATETIME

CS DATA_NODEC

CS DATA_NOFLT4

CS DATA_NOFLT8

CS DATA_NOIMAGE

CS DATA_NOINT1

CS DATA_NOINT2

CS DATA_NOINT4

CS DATA_NOINT8

CS DATA_NOINTN

CS DATA_NOLBIN

CS DATA_NOLCHAR

CS DATA_NOMNY4

CS DATA_NOMNY8

CS DATA_NOMONEY

CS DATA_NONUM

CS DATA_NOSENSITIVITY

CS DATA_NOSINT1

CS DATA_NOTEXT

CS DATA_NOUCHAR

CS DATA_NOUNITEXT

CS DATA_NOVBIN

CS DATA_NOVCHAR

CS DATA_NOXML

CS RES NOEED

CS_RES NOMSG

CS RES NOPARAM

CS RES _NOTDSDEBUG

RPlRrlRPrRr R olorlkr ok kR R ook kR R ol ololoololkr r ololrl o r ololo

Rl Rk k|l rlololk|k|lolr|kr|lrlololrrlkrlkrlolkrloloololor|lrlololrlolrlololo

RPRPFRP PP OIOIRFPOIRRPPRPOOCOIRIFRPOIRPROOCOOCOCO|RO|O|O|O|R|O|lO|O

Open Server

CHAPTER 2 Topics

CS_RESPONSE capability 40 [402 [42 [46 [50
CS NO_LARGEIDENT 1 |1 1 [1 Jo
CS NO_SRVPKTSIZE 1 |1 1 [1 Jo
CS NOWIDETABLES 1 |1 1 [1 Jo

Explicit negotiation

Explicit negotiation takes place at connect time, from within the
SRV_CONNECT event handler. The Open Server application retrievesthelist
of request capabilities sent by the client and returns the list of request
capabilitiesit will accept. The process is repeated, this time with the list of
response capabilities aclient does not want to receive or those the Open Server
application cannot return.

An application can retrieve and send capabilities one at atime or can retrieve
and send an entire bitmask of capabilities at once. Open Server provides
macros to test, clear, and set bitsin a capability mask. For more information,
see “ Capability macros’ on page 36.

Negotiating capabilities one at a time

To negotiate request capabilities one at atime, an application must make the
following calls for each capability you want to negotiate:

1 Call srv_capability_info with the cmd argument set to CS_GET, the type
argument set to CS_CAP_REQUEST, and the capability argument set to
the capability of interest. If the *valp argument contains CS_TRUE, the
client will request thistype of capability. If *valp containsCS_FAL SE, the
client will not.

2 Cadll srv_capability_info with the cmd argument set to CS_SET, the type
argument set to CS_CAP_REQUEST, and the capability argument set to
the capability of interest, and *valp set to a Boolean value. The application
sets*valp to CS_TRUE to support this type of capability and CS FALSE
to declineit.

An application negotiates response capabilitiesin asimilar fashion, except that
it must set the type argument to CS_CAP_RESPONSE.

An Open Server application only needs to call srv_capability_info for the
reguest and response capabilities that it negotiates explicitly. The default
values are used for all the other capabilities.

Server-Library/C Reference Manual 35

Capabilities

Negotiating using a capability bitmask

Capability macros

36

To negotiate request capabilities using a capability bitmask, an application
must:

1 Readintheentire bitmask by calling srv_capability_info with the cmd
argument set to CS_GET, the type argument set to CS_CAP_REQUEST,
the capability argument set to CS_ALL_CAPS, and valp pointing to the
CS _CAP_TYPE structure that will contain the bitmask.

2 Tedt, set, or clear particular bitsin the bitmask using the
CS TST_CAPMASK, CS SET_CAPMASK and CS_CLR_CAPMASK
Macros.

An application negotiates response capabilitiesin asimilar fashion, except that
it must set the type argument to CS_CAP_RESPONSE.

Gateway applications should use the mask method to negotiate capabilities. As
the following diagram illustrates, the gateway calls srv_capability_info to
retrieve the remote client’s capability mask and sends those capabilities to the
remote server by calling ct_capability prior to calling ct_connect. Once the
remote connection has been established, the gateway can retrieve the capability
masks that the remote server has sent using ct_capability and then define them
on the remote client connection, using srv_capability_info.

Table 2-5 describes the macros that an application can use to manipulate a
capability bitmask:

Table 2-5: Capability macros

Macro name Function

CS TST_CAPMASK Test to see whether a specific capability is set to
CS TRUE or CS_FALSE

CS SET_CAPMASK Set a specific capability to CS_TRUE

CS CLR_CAPMASK Set a specific capability to CS_FALSE.

When negotiating capabilities explicitly, rather than using the default settings,
the following two rules apply:

* CS_CAP_REQUEST
Applications can only turn CS_CAP_REQUEST capabilities “off” from
an “on” status.

Open Server

CHAPTER 2 Topics

If an application triesto turn aCS_CAP_REQUEST capability “off,”
whichisalready in an“off” status, Open Server restores the default status
and does not raise an error.

+ CS_CAP_RESPONSE
Applications can only turn CS_CAP_RESPONSE capabilities“on” from
an “off” status.

If an application triesto turn aCS_CAP_RESPONSE capability “on,”
whichisalready inan“on” status, Open Server restores the default status
and does not raise an error.

Ad hoc retrieval of capability information

An Open Server application can call srv_capability_info from within any
handler at any timeto retrieve alist of capabilities in effect for that particular
client connection. InaSRV_CONNECT event handler, however, the capability
masks retrieved are not the final masks for the connection. Rather, they arethe
client’s requested capabilities combined with the Open Server application’s
defaults. Connection capabilities are not final until the SRV_CONNECT
handler has returned.

A note on pre-10.0 clients

An Open Server application can negotiate capabilitieswith clients running any
TDSversion. If apre-10.0 client makes a connection, Open Server simulates
capability negotiation. In this scenario, the Open Server application does not

need to know what TDS version the client is running.

Example
The sample program ctos.c includes code illustrating capability negotiation.

Server-Library/C Reference Manual 37

Client command errors

Client command errors

A client sometimes sends an incomplete or nonsensical request to an Open
Server application. Requests can be incomplete or meaningl ess because of
faulty client code or because of a network problem. An Open Server
application should handle these errors in the event handler for the client
request, by sending the appropriate error messages to the client.

Sending messages with srv_sendinfo

Sequencing long

An Open Server application calls srv_sendinfo to send error messagesto a
client. An Open Server application describes the messagein a
CS_SERVERMSG structure and then callssrv_sendinfo to send this description
to the client.

For more information, see“CS_SERVERMSG structure” on page 60.

messages

An Open Server application storesthe messagetext itself in thetext field of the
CS_SERVERMSG structure. text has a maximum length of CS MAX_MSG
bytes.

An Open Server application uses as many CS_SERVERMSG structures as
necessary to return the full text of a message. The application returns the first
CS MAX_MSG bytesin one structure, the second CS MAX_MSG bytesina
second structure, and so forth. This process is known as “chunking” the
message.

An application calls srv_sendinfo as many times as there are “chunks’. If the
entire message fits in one structure, the application only needs to call
srv_sendinfo once.

CS_SERVERMSG structure fields for sequenced messages

38

The status field in the CS_SERVERMSG structure indicates whether the
structure contains a whole message or a chunk of a message.

Table 2-6 lists status values that are related to sequenced messages:

Open Server

CHAPTER 2 Topics

Table 2-6: Status values for sequenced messages

Symbolic value To indicate
CS FIRST_CHUNK | The message text is the first chunk of the message.
CS LAST_CHUNK The message text is the last chunk of the message.

An application sets both CS_FIRST_CHUNK and
CS _LAST_CHUNK on if the message text in the structure
is the entire message.

An application sets neither CS_FIRST_CHUNK nor
CS _LAST_CHUNK onif messagetext in the structureisa
middle chunk.

Thetextlen field in the CS_SERVERM SG structure always reflects the length
of the current message chunk.

All other fieldsin the CS_SERVERMSG are repeated with each message
chunk.

Extended error data

Some server messages include “extended error data” associated with them.
Extended error datais simply additional information about the error.

For Adaptive Server messages, the additional information most typically
indicates which column or columns provoked the error.

What is extended error data good for?

Client applications that allow users to enter or edit data often need to report
errorsto their users at the column level. The standard server message
mechanism, however, makes column-level information available only within
the text of the server message. Extended error data provides a means for
applications to conveniently access column-level information.

For example, imagine a client application that allows users to enter and edit
datain the titleauthor table in the pubs2 database. titleauthor uses akey
composed of two columns, au_id and title_id. Any attempt to enter arow with
an au_id and title_id that match an existing row causes a “duplicate key”
message to be sent to the client application.

On receiving this message, the client application needsto identify the problem
column or columns to the end user, so that the user can correct them. This
information is not available in the duplicate key message, except in the
message text. The information is available, however, as extended error data.

Server-Library/C Reference Manual 39

Connection migration

Sending extended error data to a client

An Open Server application setsthe CS_HASEED bit of the status field of the
CS_SERVERMSG structureif extended error dataisavailable for the message.

An Open Server application sends extended error data as parameters to the
srv_sendinfo routine. The application describes, binds, and sends the error
parameters using the srv_descfmt, srv_bind, and srv_xferdata routines,
respectively.

The application must describe, bind, and send the error parameters
immediately after calling srv_sendinfo, before sending other results and before
calling to srv_senddone. The application must invoke srv_descfmt, srv_bind
and srv_xferdata with atype argument of SRV_ERRORDATA.

If an application calls srv_sendinfo with the status field of the

CS _SERVERMSG structure set to CS HASEED but fails to send error
parameters, Open Server raises afatal process error when the application calls
srv_senddone.

Connection migration

Connection migration allows an Open Server application to dynamically
distribute its load, provide transparent failover support, and, where there are
multiple Open Server applications that perform different functions, to redirect
aclient to an Open Server that can fulfill the client’s request.

The application programming interface (APIs) discussed below enable Open
Server to start, complete, and cancel a migration request, and to react to
migration messages from the client. It can also detect whether a new
connection isamigrating connection and retrieves a unique identifier from the
connection.

In-batch migration and idle migration

With in-batch migration, the client migrates while waiting for results from the
original server. Conversely, with idlemigration, the client isnot waiting for any
result from the original server.

40 Open Server

CHAPTER 2 Topics

In-batch migration enables Open Server to delay sending or completing results
until after a connection has migrated. Thisis useful if Open Server cannot
service the specific request or if it has no time to compl ete the request. With in-
batch migration, Open Server can send a part of the result from the original
server, and, after migration, the server the client has migrated to can send rest
of the result from the SRV_MIGRATE_RESUME event handler.

Note Theoriginal server can send acompleteresult to theclient, in which case
the new server does not send any result. Likewise, the original server may not
send any result to the client, in which case, the new server must send the
complete result to the client.

In an in-batch migration, your application must ensure that the unsent
commands and messages are part of the client context. The new server must
also access the number of rows affected by the command and the transaction
state of the connection. The new server sends thisinformation to the client
using srv_senddone().

Context migration

Open Server supports seamless migration of the client’s connection. However,
the responsibility of sharing and migrating the client’s context lies with your
application. You can implement context migration in different ways, such as
through a shared file system or a network communication.

For an in-batch migration, the server that the client is migrating to does not
know what type of event was raised in the original server. If your application
needs thisinformation, you must migrate the information as part of theclient’s
context.

With idle migration, the client is not waiting for actual results from Open
Server. Because there is no active query to migrate, idle migration is easier to
implement than in-batch migration. However, idle migration still requires that
your application fulfills any pending requests that may arrive before the client
starts the migration.

Server-Library/C Reference Manual 41

Connection migration

APIs used in connection migration

This section discusses the APIs that support connection migration. For more
information about using these APIs, see “Instructing clientsto migrate to a

CS_REQ_MIGRATE

SRV_CTL_MIGRATE

42

different server” on page 48.

The CS_REQ_MIGRATE request capability indicatesif a client supportsthe
migration protocol and if the client is capable of migrating to another server

when requested. You can use srv_capability_info() to retrieve the
CS _REQ_MIGRATE capahility information. For example:

CS_RETCODE ret;
CS_BOOL migratable;

ret = srv_capability info(sp, CS_GET, CS_CAP_REQUEST,

CS_REQ MIGRATE, &migratable) ;

SRV_CTL_MIGRATE isasrv_send_ctlinfo() control type. You can use
SRV_CTL_MIGRATE to send amigration reguest to the client or cancel a
previous migration request, provided the client supports migration and has

received asession ID when it first connected to the session.

Requesting a client migration

This sample code sends a request to the client to migrate to server “target”:

CS_RETCODE ret;

SRV_CTLITEM *srvitems;

CS_CHAR *target;

/*

** request a migration to server 'target'

*/

srvitems = (SRV_CTLITEM *) srv_alloc(sizeof
(SRV_CTLITEM)) ;

srvitems[0] .srv_ctlitemtype = SRV_CT_SERVERNAME;

srvitems [0] .srv_ctllength = strlen(target);

srvitems [0] .srv_ctlptr = target;

ret = srv_send ctlinfo(sp, SRV_CTL MIGRATE,
srvitems) ;

srv_free(srvitems) ;

1,

Open Server

CHAPTER 2 Topics

Your application can still send the SRV_CTL_MIGRATE control type even if
amigration has already been requested. Open Server cancels the earlier
migration request and sends a new request to the client. Thereturn valuesfor a
new migration request are;

Return value Description
CS_SUCCEED The migration request was sent successfully.

CS FAIL The migration request failed due to one of the following

reasons:

» The Open Server thread does not support connection
migration.

e An earlier migration request was sent and the client has
started migrating to the new server.

Cancelling a migration

You can aso usethe SRV_CTL_MIGRATE control type to cancel a previous
migration request. In this case, paramcnt must be 0 and parammust beaNUL L
pointer. For example:

ret = srv_send ctlinfo(sp, SRV_CTL MIGRATE, 0, NULL);
if (ret != CS_SUCCEED)

{

SRV_CTL_MIGRATE can be used by any thread in an Open Server
application. However, athread cancelling the migration of aclient thread's
connection has different requirements than a client thread cancelling its own
connection migration:

e Any Open Server thread can cancel amigration, however, the cancellation
must be requested before the SRV_MIGRATE_STATE event handler
informs the client thread that the client is ready to migrate.

e Theclient thread can cancel a migration even inside the
SRV_MIGRATE_STATE event handler. However, the client thread
cannot cancel amigration after it exitsthe SRV_MIGRATE_STATE event
withaSRV_MIG_READY state.

The return values of a migration cancellation are:

Server-Library/C Reference Manual 43

Connection migration

Return value Description

CS_SUCCEED The migration request was cancelled successfully.

CS FAIL The migration cancellation failed due to one of these reasons:

e Thereisno migration in progress.

» Theclient has started migrating to the new server.

Note Open Server does not trigger anew migrate state event when amigration
request is successfully cancelled.

SRV_MIGRATE_RESUME

44

When aclient migratesto anew server whilewaiting for results, the new server
invokesthe SRV_MIGRATE_RESUME event after the client connection has
successfully migrated. If the migration request failed or is cancelled, the event
isinvoked from the original server.

In the SRV_MIGRATE_RESUME event handler, your application does not
haveto send any actual result to the client, except for the SRV_DONE_FINAL
result type that must always be sent. The only result that the default
SRV_MIGRATE_RESUME sendsto the client is SRV_DONE_FINAL.

Thisis an example of a SRV_MIGRATE_RESUME event handler:
/*

** Simple migrate resume event handler.
*/
CSs_RETCODE CS_PUBLIC
migrate resume handler (SRV_PROC *sp)
{
CS_RETCODE ret;
ret = srv_senddone (sp, SRV_DONE FINAL,
CS TRAN COMPLETED, O0);
if (ret == CS_FAIL)

{

}

return CS_SUCCEED;

Open Server

CHAPTER 2 Topics

/*

** Install the migrate-resume event handler

*/

srv_handle (server, SRV_MIGRATE RESUME,
migrate resume handler) ;

SRV_MIGRATE_STATE

SRV_MIGRATE_STATE isan event that istriggered whenever the migration
state has transitioned to SRV_MIG_READY or SRV_MIG_FAILED, the
transition being aresult of a migration message from a client. The
SRV_MIGRATE_STATE event handler isinvoked in these situations:

SRV_T_MIGRATE_
STATE Situation Possible application action

SRV_MIG_READY The client has sent a message to the One of the following:

server indicating that it has detected | . M ake the context available for the other
therequest and isready tomigrate. The servers.

server determines whether to continue
the migration or not.

» Cancel the migration if the application
decides that migration is no longer
needed.

* Request another migration if a new
migration target has been selected.

SRV_MIG_FAILED The client has sent a message to the One of the following:
server indicating that the migration « Access the client context and continue
failed. serving the connection.

* Request ancther migration.

Thisisan example of a SRV_MIGRATE_STATE event handler:
/*

** Simple migrate-state event handler
*/
CS_RETCODE CS_PUBLIC
migrate state handler (SRV_PROC *sp)
{
SRV_MIG_STATE migration_state;
ret = srv_thread props(sp, CS GET,
SRV_T_MIGRATE_ STATE, &migration_state,
sizeof (migration state), NULL);

Server-Library/C Reference Manual 45

Connection migration

switch(migration state)

{

case SRV_MIG READY:

case SRV_MIG FATLED:

/*

** Install the migrate-state change event handler
*/

srv_handle (server, SRV_MIGRATE_ STATE,

migrate state_handler) ;

When working with the SRV_MIGRATE_STATE event handler:

If the client thread cancels the migration from inside the
SRV_MIGRATE_STATE event handler, your application must make sure
that the context is consistent. For instance, you cannot expect a different
server to use the context your application has created.

If anew migration request is sent from within the
SRV_MIGRATE_STATE event handler, thishandler is called again when
the client isready to start with the new requested migration.

SRV_T_MIGRATE_STATE property and SRV_MIG_STATE enumerated type

SRV_T_MIGRATE_STATE indicates the migration state of the client.
SRV_T_MIGRATE_STATE isaread-only property that any thread can access.
The possible migration states are:

State Value Description

SRV_MIG_NONE 0 Thereis no migration in progress.
SRV_MIG_REQUESTED 1 A migration has been requested by the server.
SRV_MIG_READY 2 The client has received the request and is ready to migrate.
SRV_MIG_MIGRATING 3 The client is now migrating to the specified server.
SRV_MIG_CANCELLED 4 The migration request has been cancelled.
SRV_MIG_FAILED 5 The client failed to migrate.

46

SRV_MIG_STATE is an enumerated datatype that models the
SRV_T_MIGRATE_STATE property. Declare SRV_MIG_STATE as.

Open Server

CHAPTER 2 Topics

typedef enum

{

SRV_MIG_ NONE,
SRV_MIG REQUESTED,
SRV_MIG READY,
SRV_MIG MIGRATING,
SRV_MIG CANCELLED,
SRV _MIG FAILED

} SRV_MIG STATE;

This sample code shows how you can retrieve SRV_T_MIGRATE_STATE
values; in case of asuccessful migration, the client exits and the
SRV_DISCONNECT event handler iscalled withaSRV_MIG_MIGRATING
status:

CS_RETCODE ret;

SRV_MIG_STATE migration_state;

ret = srv_thread props(sp, CS_GET, SRV_T MIGRATE_STATE,
&migration state, sizeof (migration state), NULL) ;

if (ret != CS_SUCCEED)

{

SRV_T_MIGRATED

SRV_T_MIGRATED isaBoolean property that indicateswhether aconnection
isanew connection or amigrated connection. Thisread-only property is set to
true when the client is migrating or has migrated to the server. This sample
code retrievesthe value of SRV_T _MIGRATED:

CS_RETCODE ret;

CS_BOOL migrated;

status = srv_thread props(sp, CS_GET, SRV_T MIGRATED,
&migrated, sizeof (migrated), NULL) ;

SRV_T_SESSIONID

The SRV_T_SESSIONID isathread property that retrievesthe session ID that
the client sendsto Open Server. You can setthe SRV_T_SESSIONID property
using the srv_thread_props() function, given that:

e Thesrv_thread_props(CS_SET, SRV_T_SESSIONID) call is madeinside
the SRV_CONNECT event handler and,

* The client supports connection migration or high availability.

Server-Library/C Reference Manual 47

Connection migration

This sample code setsthe SRV_T_SESSIONID property:

CS_RETCODE ret;

CS_SESSIONID hasessionid;

ret = srv_thread props(sp, CS_SET, SRV_T_SESSIONID,
hasessionid, sizeof (hasessionid), NULL) ;

Note For HA-failover, you must program an srv_negotiate() sequence to send
the session ID to the client.

Instructing clients to migrate to a different server

This section discusses the requirements for an Open Server to migrate clients
to other servers. When migrating clients to a different server your application
must:

1 Create aunique session ID and send it to the clients in the connection
handler.

2 Initiate connection migration.
Handle migration events.

4 Sharethe context of the connection, using the connection’s session 1D, to
other servers.

5 (Optional) Act on ongoing migrations in existing handlers.

The following sections further discuss these activities.

Requesting a client to migrate

Open Server can usesrv_send_ctlinfo() to send amigration request to the client.
Client migration can be requested from any Open Server thread.

Managing the connect (SRV_CONNECT) event

In the SRV_CONNECT event handler, your application must:
e Checkthe SRV_T_MIGRATED property and determineif the connection
isamigrated connection. If it is, your application must access the context

based on the session ID provided by the client. The session ID can be
retrieved using the SRV_T_SESSIONID thread property.

48 Open Server

CHAPTER 2 Topics

Check CS_ REQ MIGRATE to determineif the client supportsconnection
migration. If the client supports connection migration, your application
must send asession ID using the SRV_T_SESSIONID property to the
client if theclient hasnot yet received asession ID. By assigning theclient
asession ID, your application can instruct the client to migrate when the
need arises.

Managing the migrate state (SRV_MIGRATE_STATE) event

The SRV_MIGRATE_STATE event handler must manage the migration state
changes and execute the actions appropriate for each change:

Sharing client context

SRV_MIGRATE_STATE changed to SRV_MIG_READY

A “ready” migration state indicates that the client is prepared to migrate
and, for now, is not going to send any request. In the
SRV_MIGRATE_STATE event handler, Open Server shares the client
context with the server the client is migrating to. Afterwards, your
application can return from the event handler, and Open Server can
automatically instruct the client to start the migration.

SRV_MIGRATE_STATE changed to SRV_MIG_FAILED

If the SRV_MIGRATE_STATE event handler istriggered because the
migration state changed to “failed,” your application must access the
context again. Your application can request another migration attempt
from the SRV_MIG_STATE event handler using the srv_send_ctlinfo()
function. However, the client may have sent another query before it
indicatesit is ready to migrate again. The application must be able to
service or migrate such arequest.

For serversto start and continue servicing aclient, the servers must have access
to the client’s context which is identified by the client’s session ID. Typically,
the client’s context contains data, such as global data, that event handlers for
the client can access. The amount of context required for aconnection depends
on the service that the Open Server application provides. The more context-
free the service s, the less context needs to be shared.

Server-Library/C Reference Manual 49

Connection migration

Managing the migrate resume (SRV_MIGRATE_RESUME) event

Your application sends the remaining results and messages to the client inside
the SRV_MIGRATE_RESUME event handler. The results and messages that
Open Server sends to the client depend on your application and the migration
type. However, your application must end the SRV_MIGRATE_RESUME
event handler by sending the SRV_DONE_FINAL result type to the client.

Managing the disconnect (SRV_DISCONNECT) event

In the SRV_DISCONNECT event handler, your application must check
SRV_T_MIGRATE_STATE to determine the client’s migration state:

e A migration state of SRV_MIG_REQUESTED indicates that the
SRV_DISCONNECT event has been triggered because the Open Server
application terminated the connection before the client could respond to
the migration request.

e A migration state of SRV_MIG_MIGRATING indicates that the
SRV_DISCONNECT event has been triggered because the client
application, after a successful migrating to the new server, closed the
connection.

« For al other migration states, the client must make sure that connection-
specific context is cleaned up because no other server will pick up this
context.

Managing in-batch migration

Attention handling

50

An event handler that runs for long periods of time must occasionally inspect
the migration state. Other Open Server threads can send a migration regquest
even while an event handler processis still running. In this case, the event
handler, if it isableto, must interrupt the process, and postpone the generation
and sending of results until the connection has migrated to the new server.

When a client sends an attention message to cancel an outstanding request, the
SRV_T_GOTATTENTION thread property is set to CS_TRUE and the
SRV_ATTENTION event handler is called. The specific attention handling
needs of a connection migration are described bel ow:

e Forthe SRV_MIGRATE_STATE event handler and SRV_MIG_READY
state:

Open Server

CHAPTER 2 Topics

If the attention message arrives in the SRV_MIGRATE_STATE event
handler before the client indicates that it is ready to migrate, Open Server
acknowledges the attention when the SRV_MIGRATE_STATE event
handler ends. This compl etes the request from the client. After a
successful migration, the server that the client has migrated to does not
receive this attention message and, because the client is not waiting for
results from Open Server, the SRV_MIGRATE_RESUME event handler
isnot called.

Thus, your application must check if the SRV_T_GOTATTENTION
property is set to CS_TRUE before making the context available to other
servers. If SRV_T_GOTATTENTION isset to CS TRUE, you must
update the context to indicate that the client has cancelled the operation.

For the SRV_MIGRATE_RESUME event handler:

If the client has sent the attention message after the client indicated that it
isready to migrate and the migration succeeded, the attention is sent to the
server to which the client has migrated. It istherefore possiblethat, after a
successful migration, an attention can be received by the
SRV_MIGRATE_RESUME event handler even if the original server has
updated the context toreflect the cancellation. Thus, your application must
check if the client has sent an attention to the server before it can execute
the SRV_MIGRATE_RESUME event handler.

Disconnecting Open Server

Your application can terminate a client connection even when a migration has
been requested; however, anew client command that is sent just before Open
Server issued the termination command may get lost. To avoid this, your
application must:

If possible, avoid terminating connections when a client is instructed to
migrate.

If thereis aneed to disconnect aclient, Open Server must set areasonable
wait time before requesting the migration. This gives a client the timeto
detect the migration regquest before it issues another command.

When Open Server terminates a connection, the SRV_DISCONNECT
event handler is called. Inside this handler, ensure that the context is
available to other serversif the migration stateis still set to
SRV_MIG_REQUESTED.

Server-Library/C Reference Manual 51

CS_BROWSEDESC structure

Accepting connections from migrated clients

Error messages

Error

Open Server can determineif anew connection ismigrating or has migrated by
inspecting the SRV_T_MIGRATED property in the SRV_CONNECT event
handler. If SRV_T_MIGRATED isTRUE, you canretrievethesession ID from
the client using the SRV_T_SESSIONID property. You can also change the
session ID, but thisis not required to migrate the client later.

If the client was executing a command when it migrated, the
SRV_MIGRATE_RESUME event is triggered and Open Server can send
results to the client to complete the command. Your application isresponsible
for retrieving the session information. You must also determine whether you
still need to send results to the client from within the
SRV_MIGRATE_RESUME event handler.

These are the error messages that you might encounter when using the
connection migration feature:

Description

srv_thread_props(): Property - SRV_T_SESSIONID | You try to retrieve asession ID that the client has not yet

isnot available

received.

srv_send_ctlinfo(SRV_CTL_MIGRATE): Connection | The client does not support migration.

cannot migrate

srv_send_ctlinfo(SRV_CTL_MIGRATE): Migration | You requested for a cancellation of a migration that has

can no longer be cancelled

aready started.

Migration failed but no SRV_MIGRATE_STATE The default SRV_MIGRATE_STATE handler detects a

handler was installed

migration failure.

CS BROWSEDESC structure

52

srv_tabname and srv_tabcolname useaCS BROWSEDESC structureto return
information about the underlying structure of a browse mode query.

A CS BROWSEDESC structure is defined as follows:

/*

** CS_BROWSEDESC

** The Open Server browse column description
** structure.

Open Server

CHAPTER 2 Topics

*/
typedef struct _cs browsedesc
{
CS_INT status;
CS_BOOL isbrowse;
CS_CHAR origname [CS_MAX NAME] ;
CS_INT orignlen;
CS_INT tablenum;
CS_CHAR tablename [CS_OBJ_NAME] ;
CS_INT tabnlen;

} CS_BROWSEDESC;
where:
e status isabitmask of the following symbols, OR’ d together:

CS_EXPRESSION indicates the column is the result of an expression —
for example, “sum*2” in the query:

select sum*2 from areas

CS_RENAMED indicates that the column’s heading is not the original
name of the column. Columns will have a different heading from the
column name in the database if they are the result of a query of the form:

select Author = au_lname from authors

e isbrowse indicates whether or not the column can be updated in browse-
mode.

A column can be updated if it is neither atimestamp column nor the result
of anexpression and if it belongsto abrowsabletable. A tableisbrowsable
if it possesses a unique index and a timestamp column.

isbrowse isset to CS_TRUE if the column can be updated and CS_FALSE
if it cannot.

e origname isthe original name of the column in the database.

Any updates to a column must refer to it by its original name, not the
heading that may have been given the column in a select statement.

e orignlen isthe length, in bytes, of origname.

e tablenum isthe number of the table to which the column belongs. Thefirst
table in aselect statement’s “from” list is table number 1; the second is
table number 2; and so forth.

* tablename isthe name of the table to which the column belongs.

« tabnlen isthe length, in bytes, of tablename.

Server-Library/C Reference Manual 53

CS_DATAFMT structure

CS_DATAFMT structure

A CS DATAFMT structure is used to describe data values and program
variables. For example:

e srv_bind usesaCS DATAFMT structure to describe a source or
destination program variable.

* srv_descfmt usesaCS _DATAFMT structure to describe the client data.

* cs_convert requires CS_DATAFMT structures to describe source and
destination data.

Most routinesuse only asubset of thefieldsinaCS_DATAFMT. For example,
srv_bind does not use the name and usertype fields, and srv_descfmt does not

use the format field. For information on which fieldsinthe CS_ DATAFMT a
routine uses, see that routine's reference page.

A CS DATAFMT structure is defined as follows:

typedef struct _cs datafmt

{

} CS_DATAFMT;

54

CS_CHAR
CS_INT
CS_INT
CS_INT
CS_INT
CS_INT
CS_INT
CS_INT

/*

name [CS_MAX NAME] ;

namelen;
datatype;
format;
maxlength;
scale;
precision;
status;

** The following field is
** Tt must be set to 1 or 0.

*/

CS_INT

/*

count ;

/*
/*
/*
/*
/*
/*
/*

/* Name of data.

Length of name.
Datatype of data.
Format symbols.

Max length of data.

Scale of data.
Precision of data.
Status symbols.

not used in Open Server.

** These fields are used to support user-defined
** datatypes and international datatypes:

*/

CS_INT

usertype;

CS_LOCALE *locale;

where;

/* User-defined type.*/

/* Locale information.

*/

*/
*/
*/
*/
*/
*/
*/
*/

e name isthe name of the data, that is, the column or parameter name.

Open Server

CHAPTER 2 Topics

namelen isthelength, in bytes, of name. Set namelen to CS_NULLTERM
to indicate anull terminated name. Set namelen to O if name isNULL.e

datatype is the datatype of the data, which is one of the Open Server
datatypes listed in “ Types’ on page 199.

Note The datatype field is used to describe the Open Server datatype of
the data. usertype isonly used if the data has an application-defined
datatype in addition to an Open Server datatype.

For example, this Adaptive Server command creates the Adaptive Server
user-defined type birthday:

sp_addtype birthday, datetime
and this command creates a table containing a column of the new type:

create table birthdays
(
name varchar (30),
happyday birthday
)

An Open Server application that supported user-defined datatypes would
return thisinformationto the client by settingthe CS_DATAFMT datatype
fieldto CS DATETIME_TY PE and the usertype field to the user-defined
ID for the type birthday.

format describes the destination format of character or binary data. format
isabitmask of these symbols, OR'’ d together. Table 2-7 summarizes the
legal values for format

Server-Library/C Reference Manual 55

CS_DATAFMT structure

Table 2-7: Values for format (CS_DATAFMT)

Symbol To indicate Notes

CS FMT_NULLTERM | Thedatashould be null terminated. | For character or

text data

CS FMT_PADBLANK | The data should be padded with For character or
blanks to the full length of the text data
destination variable.

CS FMT_PADNULL The data should be padded with For binary,
NULLsto the full length of the image, character,
destination variable. or text data

CS FMT_UNUSED Neither padding nor null termination | For all datatypes
is applicable to the datatype.

* maxlength can represent variouslengths, depending on which Open Server
routineis using the CS_DATAFMT. Table 2-8 describes the various
lengths maxlength can represent:

Table 2-8: Meaning of maxlength (CS_DATAFMT)

Open Server

routine maxlength is

srv_bind The length of the bind variable

srv_descfmt The maximum possible length of the column or parameter
being described

cs_convert The length of the source data and the length of the
destination buffer space

» scale isthe scale of the data. It is used only with decimal or numeric
datatypes.

Legal valuesfor scale arefrom CS_MIN_SCALE toCS MAX_SCALE.
The default scaleis CS DEF _SCALE.

To indicate that destination data should use the same scale as the source
data, set scale to CS_SRC VALUE.

» scale must beless than or equal to precision.

» precision isthe precision of the data. It is used only with decimal or
numeric datatypes.

Legal valuesfor precision are from CS_MIN_PREC to
CS MAX_PREC. The default precisionisCS_DEF_PREC.

To indicate that destination data should use the same precision asthe
source data, set precision to CS_SRC_VALUE:

56 Open Server

CHAPTER 2 Topics

e precision must be greater than or equal to scale.

e status isahitmask used to indicate various types of information.
Table 2-9 summarizes the types of information that status can
contain:

Table 2-9: Values for status (CS_DATAFMT)

Symbolic value To indicate

CS CANBENULL The column can contain NULL.

CS DESCIN The CS_DATAFMT structure describes a Dynamic SQL
input parameter.

CS DESCOUT The CS_DATAFMT structure describes a Dynamic SQL
output parameter.

CS HIDDEN The column isa“hidden” column that has been exposed.

CS INPUTVALUE The parameter is an input parameter value for a cursor open
command or a non-return RPC parameter.

CS KEY The column is akey column.
CS RETURN The parameter is areturn parameter to an RPC command.

CS TIMESTAMP The column is atimestamp column. An application uses
timestamp columns when performing browse-mode updates.

CS UPDATABLE The column is an updatable cursor column.

CS_UPDATECOL The parameter is the name of a column in the update clause
of acursor declare command.

CS VERSION_KEY | The column is part of the version key for the row.

Adaptive Server uses version keys for positioning.
CS NODEFAULT There is no default specified for the parameter.

e countisnot used by Server-Library routines. It should alwaysbe setto O
orl.

e usertype isthe user-defined datatype, if any, of data returned.

e locale isapointer to aCS _LOCALE structure containing localization
information. Set locale to NULL if localization informationisnot required.

CS _IODESC structure

A CS_IODESC, also called an “1/0 descriptor structure,” describes text or
image data.

Server-Library/C Reference Manual 57

CS_IODESC structure

An Open Server application calls srv_text_info with acmd argument of
CS_GET when processing text or image data from a client. Only the
total_textlen field of the CS_IODESC argument isfilled in by this call.

If the application is sending columns of datato aclient, it callssrv_text_info
with acmd argument of CS_SET. In this scenario, the CS_IODESC structure
describes a text or image column being sent. A CS_|ODESC is defined as
follows:

typedef struct cs iodesc

{

CS_INT
CS_INT
CS_LOCALE
CS_INT
CS_INT
CS_INT
CS_BOOL
CS_CHAR
CS_INT
CS_BYTE
CS_INT
CS_BYTE
CS_INT

} CS_IODESC;

58

iotype; /* CS_TODATA */
datatype; /* Text or image. */
locale; / Locale information. */
usertype; /* User-defined type. */
total_txtlen; /* Total data length. */
offset; /* Reserved. */
log _on_update; /* Log the insert. */
name [CS_OBJ_ NAME] ; /* Name of data object.*/
namelen; /* Length of name. */
timestamp [CS_TS SIZE]; /* Adaptive Server id. */
timestamplen; /* Length of timestamp.*/
textptr[CS TP SIZE]; /* Adaptive Server pt */
textptrlen; /* Length of textptr. */
where:

iotype indicates the type of 1/0O to perform. For text and image operations,
iotype always hasthe value CS |ODATA.

datatype isthe datatype of the data object. The only legal valuesfor
datatype are CS_TEXT_TYPE and CS_IMAGE_TYPE.

locale is not currently used in Open Server. Set to NULL.

usertype is not used in Open Server.

total_txtlen isthe total length, in bytes, of the text or image value.
offset is reserved for future use.

log_on_update describes whether to |og the update to this text or image
value.

name is the name of the text or image column.

namelen isthelength, in bytes, of name, or CS_ NULLTERM toindicatea
null-terminated name.

Open Server

CHAPTER 2 Topics

CS-Library

e timestamp isthetext timestamp of the column. A text timestamp marksthe
time of atext or image column’s last modification.

e timestamplen isthe length, in bytes, of timestamp.
e textptrisan array of text or image bytesfor columninsertion or retrieval.

e textptrlen isthe length, in bytes, of textptr.

CS-Libraryisacollection of utility routinesand structures useful or necessary
to both Open Server and Open Client applications. In past versions, Server-
Library and Client-Library provided such utility routines and structures
separately, resulting in unnecessary duplication.

Common routines

CS-Library includes routines to support:

« Datatype conversion

e Arithmetic operations

e Character-set conversion

« Datetime operations

e Sort-order operations

* Localization routines

CS-Library also includes routines to allocate CS-Library structures.

Although you can write a standalone CS-Library application, the library’s
primary function is to provide common utilities to Open Client and Open
Server applications.

Some of these routines offer functionality provided by existing Server-Library
routines. While it is hot yet necessary to replace the Server-Library routines
with their CS-Library counterparts, it may bein the future.

Server-Library/C Reference Manual 59

CS_SERVERMSG structure

Common data structures

Error handling

In addition to common routines, CS-Library provides data structures useful to
both Open Client and Open Server applications. Among these data structures
isaCS_CONTEXT structure, which containsinformation about an application
programming environment, or “context.”

An Open Server application programmer can tailor an application’s behavior
by setting global application attributes stored in this structure. “ Properties’ on
page 139 discusses this feature in detail .

Other CS-Library structures contain information about data passed between
Open Client and Open Server applications.

Note Because Client-Library and Server-Library programs require a context

structure, which can only be allocated using CS-Library, all Client-Library and
Server-Library programs must include at least two callsto CS-Library—oneto
allocateaCS CONTEXT and oneto dedllocateit.

An Open Server application should install amessage callback routinewith the
cs_config routine to report CS-Library errors. A standard Open Server error
handler installed with srv_props will not catch CS-Library errors, such as data
conversion errors generated in acall to cs_convert.

If an Open Server application has not installed a CS-Library handler, Open
Server installs adefault handler when the application calls srv_version. This
default handler writes CS-Library errors to the Open Server log.

For details on handling CS-Library errors and for more general information
about CS-Library, see the Open Client and Open Server Common Libraries
Reference Manual.

CS _SERVERMSG structure

60

A CS_SERVERMSG structure contains information about a server error
message.

Open Server

CHAPTER 2 Topics

Open Server usesa CS_SERVERM SG structure to send error messages to a

client, through the srv_sendinfo routine.

A CS SERVERMSG dtructure is defined as follows:

/*
** CS_SERVERMSG

** The server message structure.

*/

typedef struct cs servermsg
{
CS_INT msgnumber ;
CS_INT state;
CS_INT severity;
CS CHAR text[CS MAX MSG];
CS_INT textlen;

CS_CHAR svrname [CS_MAX NAME] ;

CS_INT svrnlen;

/*

** Tf the error involved a stored procedure,
** the following fields contain information

** about the procedure:

*/

CS_CHAR proc [CS_MAX_NAME] ;
CS_INT proclen;

CS_INT line;

/*

** Other information.
*/

CS_INT status;

CS_BYTE sqglstate[CS_SQLSTATE SIZE];

CS_INT sglstatelen;
} CS_SERVERMSG;

where;

« msgnumber isthe Open Server or application message number to report

to the client.

« state isthe state in which the message was generated. The application

defines this.
e severity isthe severity of the message.
e textisthetext of the message.

e textlen isthe length, in bytes, of text.

Server-Library/C Reference Manual

61

CS_SERVERMSG structure

62

svrname is the name of the server that generated the message. Thisvalue
can be the name of the Open Server application running currently, or a

different name.

svrnlen isthe length, in bytes, of svrname.

proc isthe name of the stored procedure (if any) that caused the message.

proclen isthe length, in bytes, of proc.

line isthe line number within the stored procedure (if any) that caused the

message.

status containsinformation on whether the message chunk isthefirst, last,
or amiddle part of the message, and whether it includes extended error
data. Since status is a byte-ordered flag, you can set it to more than one
value. For example:

mrec.status = CS_FIRST CHUNK | CS_LAST CHUNK;
where mrec is declared asa CS_SERVERMSG structure.
Table 2-10 describes the legal values for status:
Table 2-10: Values for status field of CS_SERVERMSG structure

Value

Meaning

CS HASEED

Thereis extended error data associated with the message.

CS FIRST_CHUNK

The message text contained in text is the first chunk of the
message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are both
on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is
on, then text contains a middle chunk of the message.

CS LAST_CHUNK

The message text contained in text isthe last chunk of the
message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are both
on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor CS_ LAST_CHUNK is
on, then text contains a middle chunk of the message.

sqlstate is abyte string describing the error.

Not all server messages have SQL state val ues associated with them. If no
SQL state valueisassociated with amessage, sqistate’svalueis“ZZz2ZZ".

sqglstatelen isthe length, in bytes, of the sqlstate string.

Open Server

CHAPTER 2 Topics

For more information on sending a message in chunks, see “ Client command
errors’ on page 38.

cursors

Adaptive Server Enterprise implements cursors, which are supported by
Server-Library and Client-Library.

For information on how cursors are implemented in Adaptive Server
Enterprise, see the Adaptive Server Enterprise Reference Manual.

For information on how cursors are supported by Client-Library, see the Open
Client Client-Library/C Reference Manual.

Cursor overview

A cursor isasymbolic name that islinked with a SQL statement. Declaring a
cursor establishes thislink. The SQL statement can be:

e A SQL select statement
¢ A Transact-SQL execute statement
e A Dynamic SQL prepared statement

The SQL statement associated with a cursor is called the body of the cursor.
When aclient opens a cursor, it executes the body of the cursor, generating a
result set. The Open Server application is responsible for detecting cursor
reguests and passing cursor results back to the client.

Advantages of cursors

Cursorsallow aclient application to access individual rowswithin aresult set,
rather than merely retrieve a complete set of data rows.

A single connection can have multiple cursors open at the sametime. All of the
cursor result sets are simultaneously available to the application, which can
fetch datarows from them at will. Thisisin contrast to other types of result
sets, which must be handled one row at atime in a sequential fashion.

Server-Library/C Reference Manual 63

Cursors

Further, a client application can update underlying database tables while
actively fetching rowsin a cursor result set.

Open Server applications and cursors

This section contains basic information on Open Server cursor support. For
specific information on how to structure a SRV_CURSOR event handler, see
“How to respond to specific requests’ on page 72.

How are cursor requests generated?

A client application requests acursor by issuing acursor command to an Open

Server application.

A client application calls the Client-Library command ct_cursor to initiate a
cursor command. For more information on ct_cursor, see the Open Client
Client-Library/C Reference Manual.

A cursor request causes Open Server to generate a SRV_CURSOR event. To
respond to cursor requests, an Open Server application must include a
SRV_CURSOR event handler.

Types of cursor commands

64

Table 2-11 summarizes the types of cursor commands aclient can issue:

Table 2-11: Summary of cursor commands

Type of command

What it does

Declare

Associates a cursor name with the body of the cursor.

Open Executes the body of the cursor, generates a cursor result
Set.

Information Reportsthe status of the cursor, or setsthe cursor row fetch
count.

Fetch Fetches rows from the cursor result set.

Update or Delete Updates or deletes the contents of the current cursor row.

Close Makes the cursor result set unavailable. Reopening a
cursor regenerates the cursor result set.

Deallocate Renders the cursor nonexistent. A cursor that has been

deallocated cannot be reopened.

Open Server

CHAPTER 2 Topics

A typical client application issues cursor commandsin the order in which they
arelisted in Table 2-11, but the order can vary. For example, aclient might
fetch against a cursor, close the cursor, then reopen and fetch rows from it

again.

How is cursor information exchanged with a client?

A SRV_CURSOR event handler uses the srv_cursor_props routine and the
SRV_CURDESC structure to exchange cursor information with a client.
srv_cursor_props sends current information to a client and retrieves cursor
information from a client by accessing a SRV_CURDESC structure.

For more information on the srv_cursor_props routine, see srv_cursor_props
on page 253.

Because a client and server can exchange information about multiple cursors
during a single connection session, they need to uniquely identify each cursor.
An Open Server application responds to a cursor declaration by sending back
aunique cursor ID. The client and the server refer to the cursor by thisID for
the cursor’slifetime.

SRV_CURDESC structure
A SRV_CURDESC structure contains information about a cursor, including:
e Thecursor’'sunique ID
e Thetype of cursor command most recently issued by the client
e Thegtatus of the cursor
A SRV_CURDESC structureis defined as follows:
/ *
** SRV _CURDESC

** The Open Server cursor description
** structure.

*/

typedef struct srv_curdesc

{

CS_INT curid;
CS_INT numupcols;
CS_INT fetchent;
CS_INT curstatus;
CS_INT curcmd;
CS_INT cmdoptions;

Server-Library/C Reference Manual 65

Cursors

66

CS_INT
CS_INT
CS_INT
CS_CHAR
CS_INT
CS_CHAR
CS_VvOoID

} SRV_CURDESC;
Table 2-12 describes each field in a SRV_CURDESC structure:

fetchtype;

rowoffset;
curnamelen;

curname [CS_MAX CHAR] ;
tabnamelen;

tabname [CS_MAX CHAR] ;
*userdata;

Open Server

CHAPTER 2 Topics

Table 2-12: Fields in a SRV_CURDESC structure

Field name | Description Notes
curid The current cursor The Open Server application must set
identifier curid when responding to a
CS_CURSOR_DECLARE command
from the client. Any subsequent
commands from the client that pertain to
the declared cursor use curid as an
identifier. curid isset to 0 if thereis no
current cursor identifier or if the client is
requesting the status of all available
CUrsors.
numupcols The number of columns | numupcolsissetto0if thereare no update
in acursor update columns. Thisinformation is available
clause when the cursor is declared.
fetchent The current row fetch fetchent is set when a
count for thiscursor— | CS_CURSOR_INFO command is
that is, the number of received from the client or is sent to the
rowsthat will besentto | client in response to such a command.
theclientinresponseto | fetchent isset to 1 if the client has not
a explicitly set arow fetch count. If the
CS CURSOR_FETCH | Open Server application cannot support
command the requested fetch count, it can set this
field to a different value before
responding.
curstatus Thestatusof thecurrent | Open Server sets the cursor statusin
cursor response to the cursor command received
fromtheclient. See“ Valuesfor curstatus’
on page 69 for alist of legal values.
curcmd The current cursor See Table 2-14 for alist of legal values.
command type
cmdoptions Any options associated | Not all commands have associated
with the cursor options. Thevalueof cmdoptions depends
command on the cursor command. Table 2-14

Server-Library/C Reference Manual

describes the possible values for
cmdoptions, by command.

67

Cursors

Field name | Description Notes
fetchtype Thetype of fetch fetchtype is described when a
requested by aclient CS_CURSOR_FETCH command is
received from the client. The valid fetch
types and their meanings are as follows:
e CS_NEXT —next row
¢ CS_PREV — previous row
e CS _FIRST —first row
e CS LAST —last row
¢ CS ABSOLUTE —row identified in
the rowoffset field
¢ CS _RELATIVE - current row plus or
minus value in the rowoffset field.
Requests to an Adaptive Server will
always have a fetchtype of CS_NEXT.
rowoffset The row position for rowoffset is undefined for all other fetch
CS ABSOLUTE or types. rowoffset is set when a
CS RELATIVE fetches | CS_ CURSOR_FETCH command is
received from the client.
curnamelen Thelength of thecursor | curnameleniszeroif curname isnotvalid.
name in curname curnamelen returns the length of the
Ccursor name.
curname The name of the current
cursor
tabnamelen Thelength of thetable | tabnamelen iszeroif tabnameisnotvalid.
name in tabname tabnamelen returnsthe length of the table
name. tabnamelen is described when a
CS_CURSOR_UPDATE or
CS _CURSOR_DELETE command is
received from the client.
tabname The table name tabname isthetable name associated with
associated with acursor | acursor update or delete command.
update or delete tabname is described when a
command CS_CURSOR_UPDATE or
CS CURSOR _DELETE command is
received from the client.
userdata A pointer toprivatedata | Thisfield allows applicationsto associate
space datawithaparticular cursor without using

global or static variables. Open Server
does not manipulate userdata; it is
provided only for the convenience of
Open Server application programmers.

68

Open Server

CHAPTER 2 Topics

Values for curstatus

The curstatus field of the SRV_CURDESC structure is abitmask that can take
any combination of these values:

Table 2-13: Values for curstatus (SRV_CURDESC)

Value

Meaning

CS_CURSTAT_DECLARED

The cursor has been declared. This statusis reset
after the next cursor command has been
processed.

CS CURSTAT OPEN

The cursor has been opened.

CS_CURSTAT_ROWCNT

The cursor has specified the number of rows that
should bereturned for theCS_CURSOR_FETCH
command.

CS_CURSTAT_RDONLY

The cursor isread-only; it cannot be updated. The
Open Server application should return an error to
theclient if aCS_CURSOR_UPDATE or
CS_CURSOR_DELETE isreceived for this
cursor.

CS_CURSTAT_UPDATABLE

The cursor can be updated.

CS_CURSTAT_CLOSED

The cursor was closed but not deallocated. It can
be opened again later. This statusis also set upon
declaration of acursor. Open Server clearsit when
aCS_CURSOR_OPEN isreceived and resetsiit
when aCS_CURSOR_CLOSE isreceived.

CS CURSTAT_DEALLOC

The cursor was closed and deallocated. No other
status flags should be set at thistime.

Values for curcmd

The curcmd field of the SRV_CURDESC structure can take one of the values
described in Table 2-14. The table also lists the relevant cmdoptions values.

Server-Library/C Reference Manual

69

Cursors

Table 2-14: Values for curcmd (SRV_CURDESC)

Legal values for

Value Meaning cmdoptions
CS _CURSOR_CLOSE Cursor close SRV_CUR_DEALLOC or
command. SRV_CUR_UNUSED.

SRV_CUR_DEALLOC
indicates that the cursor will
never bereopened. TheOpen
Server application should
delete all associated cursor
resources. The cursor 1D
number can be reused.

CS_CURSOR_DECLARE

Cursor declare
command. The
application can obtain
the actual text of the
cursor statement
through srv_langlen
and srv_langcpy.

SRV_CUR_UPDATABLE,
SRV_CUR_RDONLY, or
SRV_CUR_DYNAMIC.
SRV_CUR_DYNAMIC
indicates that the client
declares the cursor against a
dynamically prepared SQL
statement; in this case, the
text of the cursor statement is
actually the name of the
prepared statement.

CS CURSOR_DELETE

Cursor delete
command. Performsa
positional row delete
through a cursor.

There are no valid options
for this command.
cmdoptions will alwayshave
the value
SRV_CUR_UNUSED.

CS CURSOR _FETCH

70

Cursor fetch
command. Performsa
row fetch through a
cursor.

There are no valid options
for this command.
cmdoptions will alwayshave
the value
SRV_CUR_UNUSED.

Open Server

CHAPTER 2 Topics

Value

Meaning

Legal values for
cmdoptions

CS CURSOR_INFO

Cursor information
command. The client
sends this command
to the Open Server
application to set the
cursor row fetch count
or to request cursor
status information.
The Open Server
application sends this
commandtotheclient
in response to any
cursor command
(including
CS_CURSOR_INFO
itself) to describe the
current cursor.

SRV_CUR_SETROWS
when the client describesthe
current row fetch count. The
fetchent field contains the
requested fetch count.

SRV_CUR_ASKSTATUS
when the client requests
status information about the
current cursor. This
generaly occurs when the
client has sent an attention
and wants to see which
cursors are still available
afterwards. The curid field
contains 0. The Open Server
application should send back
aCS_CURSOR_INFO
response for each cursor
currently available.

SRV_CUR_INFORMSTAT
US when the Open Server
application respondsto a
CS_CURSOR_INFO
command. The curstatus
field contains the cursor
status.

CS CURSOR_OPEN

Cursor open
command.

SRV_CUR_HASARGS or
SRV_CUR_UNUSED.

CS_CURSOR_UPDATE

Cursor update
command. Performsa
positional row update
through a cursor. The
Open Server
application can obtain
the actual text of the
cursor update
statement by calling
srv_langlen and
srv_langcpy.

SRV_CUR_HASARGS or
SRV_CUR_UNUSED.

Server-Library/C Reference Manual

71

Cursors

Handling cursor requests

An Open Server application uses a SRV_CURSOR event handler to handle
cursor requests. The handler includes code to detect which of the cursor
commands has been issued and to respond with the appropriate information.

The event handler first determines the current cursor and the cursor command
that triggered the SRV_CURSOR event by calling srv_cursor_props with the
cmd argument set to CS_GET. Open Server then fills the curcmd field of the
Open Server application’s SRV_CURDESC structure with the command type.

The application can then determine what other information it needsto retrieve,
if any, aswell aswhat datato send back to theclient. In some cases, it may need
to retrieve parameter formats and parameters; in others, it may want to
ascertain the status of the current cursor and the number of rowsto fetch. In
some cases, it may only need to send back aCS _CURSOR_INFO command;
in others, it may need to send back result data or return parameters.

How to respond to specific requests

72

This section describes how a SRV_CURSOR event handler should respond to
specific types of cursor regquests.

Prior to calling srv_cursor_props with cmd set to CS_SET, an Open Server
application must always set the curid field, and any other pertinent fields, in the
SRV_CURDESC structure.

Table 2-15 summarizes the valid exchange of cursor requests and responses
between a client and an Open Server application. The forward arrow (—)
indicates that cmd is set to CS_GET—the Open Server application retrieves
information from the client. The backward arrow («) indicates that cmd is set
to CS_SET—the Open Server application sends information to the client.

Open Server

CHAPTER 2 Topics

Table 2-15: Valid cursor requests and responses

Client action

Open Server application response

Declares a cursor
(curcmd field of SRV_CURDESC contains
CS_CURSOR_DECLARE)

— >Retrieve curcmd value from SRV_CURDESC
(srv_cursor_props)

— >Retrieve number of cursor parameters, if any
(srv_numparams)

— >Retrieve format of cursor parameters, if any
(srv_descfmt with type argument set to SRV_CURDATA)

— >Retrieve update column information, if any
(srv_descfmt with type argument set to
SRV_UPCOLDATA)

— >Retrieve actual text of cursor command
(srv_langlen and srv_langcpy)

<—Setcursor ID. Setcurcmd fieldto CS_CURSOR_INFO
and curid field to unique cursor ID
(srv_cursor_props)

< — Send a DONE packet.
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Requests the status of the current cursor or sends a
fetch count

(curcmd field of SRV_CURDESC contains
CS_CURSOR_INFO)

Server-Library/C Reference Manual

— >Retrieve curcmd and curid cmdoptions values from
SRV_CURDESC structure
(srv_cursor_props)

< — Send number of rowsto be returned per fetch, if client
set cmdoptions field to SRV_CUR_SETROWS

(srv_cursor_props with curcmd set to
CS_CURSOR_INFO)

< — Send status of al available cursors, if client set
cmdoptions field to SRV_CUR_ASKSTATUS. Set curcmd
fieldto CS_CURSOR_INFO and curid field to cursor ID

(srv_cursor_props oncefor each active—declared, opened
or closed—cursor)

< — Send a DONE packet

(srv_senddone with status argument set to
SRV_DONE_FINAL)

73

Cursors

Client action Open Server application response
Opens a cursor - > Retrieve curcmd and curid values from
(curcmd field of SRV_CURDESC contains SRV_CURDESC structure
CS_CURSOR_OPEN) (srv_cursor_props)

— > Retrieve number of cursor parameters, if any
(srv_numparams)

— > Retrieve format of cursor parameters and actual
parameters, if any

(srv_descfmt, srv_bind, srv_xferdata with type argument
set to SRV_CURDATA)

< — Send cursor status. Set curid to current cursor 1D and
curcmd to CS_CURSOR_INFO
(srv_cursor_props)

< — Describe result row formats
(srv_descfmt with type argument set to SRV_ROWDATA)

< — Send a DONE packet
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Fetches rows — > Retrieve curcmd and curid values from
(curcmd field of SRV_CURDESC contains SRV_CURDESC structure
CS _CURSOR_FETCH) (srv_cursor_props)

< — Send result rows, fetchent times
(srv_bind, srv_xferdata with type argument set to
SRV_ROWDATA)

< — Send a DONE packet
(srv_senddone with status argument set to
SRV_DONE_FINAL)

74 Open Server

CHAPTER 2 Topics

Client action

Open Server application response

I ssues cursor update command
(curcmd field of SRV_CURDESC contains
CS_CURSOR_UPDATE)

or
Issues cursor delete command

(curcmd field of SRV_CURDESC contains
CS CURSOR_DELETE)

— > Retrieve curcmd and curid values from
SRV_CURDESC structure
(srv_cursor_props)

— > Retrieve key columns for current row
(srv_descfmt, srv_bind, srv_xferdata with type argument
set to SRV_KEYDATA)

— > Retrieve number of update values, if curcmd is
CS _CURSOR_UPDATE
(srv_numparams)

Retrieve actual text of update statement, if curcmd is
CS CURSOR_UPDATE
(srv_langlen and srv_langcpy)

— > Retrieve update values, if curcmd is

CS CURSOR_UPDATE

(srv_descfmt, srv_bind, srv_xferdata, with type argument
set to SRV_CURDATA)

< — Send a DONE packet
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Sends a cursor close command
(curcmd field of SRV_CURDESC contains
CS_CURSOR_CLOSE)

— > Retrieve curcmd and curid values from
SRV_CURDESC structure
(srv_cursor_props)

< — Send cursor status
(srv_cursor_props)

< — Send a DONE packet
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Note that:

Server-Library/C Reference Manual

75

Cursors

Key data

Update columns

Example

76

e The Open Server application’s response to a cursor command always
concludes with acall to srv_senddone with astatus argument of
“SRV_DONE_FINAL."

e Once the Open Server application issues the first srv_cursor_props
command with cmd set to “SET”, any further information the application
sendswill apply to this cursor until asrv_senddone with astatus argument
of SRV_DONE_FINAL isissued.

» Internaly, Open Server replaces the parameter formats received when the
client declares acursor with those received when the client opensacursor.
This procedure is necessary in case the format of the parameter passed in
is not exactly the same as that of the parameter declaration. For example,
aparameter may bedeclaredasaCS _INT, but the parameter being passed
in when the cursor is opened may be of type CS_ SMALLINT.

» srv_xferdata sendsasinglerow of data, and should be called as many times
as the number in the current cursor’s row fetch count, in response to a
CS CURSOR_FETCH command.

A key isasubset of row datathat uniquely identifiesarow. Key datauniquely
describes the current row in an open cursor. It isused in processing

CS CURSOR DELETE or CS CURSOR_UPDATE commands. If acolumn
isakey column, the status field of the CS_DATAFMT structure that describes
the column hasits CS_KEY bitmask set.

If aclient has declared a cursor as being “for update,” the cmdoptions field of
the SRV_CURDESC structureisset to CS_FOR_UPDATE and the numupcols
field is set to the number of update columns associated with the cursor.

The sample ctos.c includes code illustrating cursor command processing.

Open Server

CHAPTER 2 Topics

Scrollable cursors

The scrollable cursor feature provides away to set the current position
anywhere in the result set by specifying aNEXT, PREVIOUS, FIRST, LAST,
ABSOLUTE or RELATIVE clausein aFETCH statement. It implements a
scrollable cursor that is read-only with either an INSENSITIVE or a
SEMI_SENSITIVE property.

Non-scrollable, insensitive cursors are al so supported on Open Server and are
set with the CS_NOSCROLL_INSENSITIVE option.

A new capability, CS_ REQ CURINFO3, is added to Open Server to support
the new scrollable cursor feature. During login, CS_REQ CURINFO3 allows
aremote client connecting to Open Server to request scrollable cursor support.

SRV_CURDESC2 structure

The SRV_CURDESC?2 scrollable cursor structure in Open Server isasuperset
of the SRV_CURDESC2 cursor structure described in “SRV_CURDESC
structure” on page 65.

In addition to fields described in Table 2-12, Table 2-16 describes additiona
fieldsin the SRV_CURDESC?2 structure:

Table 2-16: Additional fields in a SRV_CURDESC2 structure

Field name Description

CUrrow_pos Current row position of a cursor.

curtotalrowcount Total number of rowsin the result set; only appliesto
insensitive, scrollable cursors.

Values for curstatus

In addition to options described in Table 2-13, the following cursor declare
options are available in the curstatus field in SRV_CURDESC2:

Server-Library/C Reference Manual 77

Scrollable cursors

Table 2-17: Values for curstatus (SRV_CURDESC2)

Value Meaning

CS CURSTAT A read-only, insensitive scrollable cursor.
_SCROLLABLE

CS CURSTAT A read-only, non-scrollable, insensitive cursor.

_INSENSITIVE When such a cursor is specified,
CS_CURSTAT_INSENSITIVE must be enabled,
and CS_CURSTAT_SCROLLABLE must be
disabled.

When an insensitive, scrollable cursor is specified,
both CS_CURSTAT_INSENSITIVE and
CS_CURSTAT_SCROLLABLE must be enabled.
CS CURSTAT A read-only, semi-sensitive, scrollable cursor.
_SEMISENSITIVE | When such a cursor is specified,
CS_CURSTAT_SCROLLABLE must also be
enabled.

Values for curcmd

In addition to valuesin Table 2-14, the values described in Table 2-18 are
availableinthe curcmd field of the SRV_CURDESC2 structure. Thetable also
lists the relevant cmdoptions values:

78 Open Server

CHAPTER 2 Topics

Table 2-18: Values for curcmd (SRV_CURDESC?2)

Legal values for

Value Meaning cmdoptions

CS NOSCROLL _ Non-scrollable, There are no valid options

INSENSITIVE insensitive cursors. | for this command.
cmdoptions will dwayshave
the value

SRV_CUR_UNUSED.

Note If you usethe CTOS
application, do not use the
ct_scroll_fetch routine with
non-scrollable cursors.
Instead, use the ct_fetch

routine.
CS CURSOR_ Scrollable cursor SRV_CUR_SCROLL,
DECLARE command options. SRV_CUR_SCROLL _

INSENS, SRV_CUR_
SCROLL_SEMISENS,
SRV_CUR_NOSCROLL_
INSENS.

These cmdoptions are valid
only at the cursor declare
cycle, where the curemd
field of the
SRV_CURDESC2 structure
may contain one of these
options, based on the remote
client issuing act_cursor

Srv_cursor_props2 routine

The srv_cursor_props2 routine is added to Open Server to support the
SRV_CURDESC2 structure.

For pre-15.0 applications, you must use the SRV_CURDESC structure and
srv_cursor_props routine, if the application sets CS VERSION_125.

For 15.0 applications that support scrollable cursors on Open Server, use the
SRV_CURDESC?2 structure, and set the application to CS_VERSION_150.

The arguments for srv_cursor_props2 are as follows:

ret = srv_cursor props2 (SRV_PROC *spp, CS_INT cmd,
SRV_CURDESC2 *cdp) ;

Server-Library/C Reference Manual 79

Data stream messages

Data stream messages

Data stream messages overview

Data stream messages provide away for clients and Open Server applications
to exchange information.

RPCs provide similar functionality, but in the client-to-server direction only.
Messages work in both directions, making them suitable for awide variety of
communications purposes. For example, Sybase uses messages to perform
security handshaking at login time.

A message consists of amessage ID and zero or more parameters. The client
and Open Server application must be programmed to agree on the meaning of
each message ID.

User-defined message IDs must be greater than or equal to CS_USER_MSGID
and less than or equal to CS_USER_MAX_MSGID. Message IDs
SRV_MINRESMSG through SRV_MAXRESMSG are reserved for internal
Sybase use.

A client application sends a message by calling ct_command with type set to
CS MSG_CMD. Thistriggersa SRV_MSG event in the Open Server
application.

Retrieving client data stream messages

80

A message data stream triggers an Open Server application’s SRV_MSG event
handler. This handler can retrieve the client message. To do this:

1 Call srv_msg with cmd set to CS_GET and msgidp pointing to the buffer
in which Open Server should place the message ID.

srv_msg setsthe statusp parameter to SRV_HASPARAMSif the message
has parameters.

For more information, see srv_msg on page 311.
2 Cdl srv_numparams, if necessary, to retrieve the number of parameters.

3 Call srv_descimt, srv_bind, and srv_xferdata to describe and retrieve each
parameter. For more information on how to process parameters, see the
“Processing parameter and row data” on page 134.

Open Server

CHAPTER 2 Topics

An Open Server application can only retrieve messages using its SRV_MSG
event handler.

Sending data stream messages to a client

An Open Server application can send a message to aclient. To perform this
function, the application:

1 Callssrv_msg with cmd set to CS_SET and msgidp pointing to the buffer
containing the message ID.

A *statusp value of SRV_HASPARAMS indicates that the message has
parameters. A value of SRV_NOPARAMS indicates that the message has
no parameters.

For more information see srv_msg on page 311.

2 Cadlssrv_descimt, srv_bind, and srv_xferdata to describe and send each
parameter.

An Open Server application can send messages from within any event handler
except the SRV_ATTENTION, SRV_CONNECT, SRV_DISCONNECT,
SRV_URGDISCONNECT, and SRV_START handlers.

Directory services

This section describes what an Open Server application needs to do to use
directory services. It has these sections:

e Specifying the directory driver

* Registering an Open Server application with a directory

A directory stores information as directory entries and associates alogical
name with each entry. Each directory entry contains information about some
network entity such as a user, a server, or aprinter. A directory service

(sometimes called a naming service) manages creation, modification, and
retrieval of directory entries.

Seethe Open Client Client-Library/C Reference Manual for more information,
and for information about how a client uses directory services.

Server-Library/C Reference Manual 81

Directory services

Specifying a directory driver

Before running an application that uses directory services, make sure that the
libtcl.cfg file has been edited to specify the correct directory service provider.
The libtcl.cfg file islocated in the $SYBASE/$SYBASE_OCS/config directory
or in the path specified by the context property CS LIBTCL_CFG. The server
property, SRV_DS PROVIDER, returnsthe name of the driver specifiedinthe
libtcl.cfg file. For more information about the libtcl.cfg file, see the Open
Client and Open Server Configuration Guide for each platform. Seesrv_props
on page 334 for information on the SRV_DS PROVIDER property.

The Open Client and Open Server Configuration Guide for each platformtells
which directory services are supported by Open Client and Open Server for
that platform.

Registering an Open Server application with a directory

82

An Open Server application can specify the directory provider to use and
register itself with the directory at start-up.

To specify adirectory service provider other than the default, use srv_props to
set the SRV_S DS PROVIDER server property. The default value for
SRV_S DS PROVIDER is platform specific, and is specified in the Open
Client and Open Server Configuration Guide for your platform.

Toregister an Open Server application with thedirectory service, usesrv_props
tosetthe SRV_S DS REGISTER server property to CS_TRUE (the default).
Setting SRV_S DS REGISTER to CS_FAL SE prevents the registration.

Set these properties after allocating and initializing the CS_CONTEXT
structure (using cs_ctx_alloc and srv_version), and before calling srv_init.

When you call srv_init, the Open Server application:
» Retrievesits listening address from the directory service.

» Instructsthe directory service to update the Open Server application’s
directory serviceentry if SRV_S DS REGISTER isset to CS_TRUE.

» Thedirectory service then setsits “ currentStatus” attribute to “ active.”

Open Server automatically uses the interfaces file as a backup directory when
the directory service driver initialization fails. The srv_init call may fail to
successfully access the specified directory serviceif any of the following
occur:

» Thelibtcl.cfg fileis not in the expected location, or is unreadable.

Open Server

CHAPTER 2 Topics

An informational error isreturned.

e Thedirectory service driver is not in the expected location, or is
unreadable.

An informational error is returned.
e Thedirectory serviceis not responding to requests.
An informational error is returned.
e The server entry cannot be found in the directory service.

An error isreturned indicating that there are no listeners; the Open Server
application does not use the interfaces file as a backup directory in this
case.

Dynamic SQL

Dynamic SQL allows a client application to execute SQL statements
containing variables whose val ues are determined at runtime.

A client application prepares a dynamic SQL statement by associating a SQL
statement containing placehol ders with an identifier and sending the statement
to an Open Server application to be partially compiled and stored. The
statement is then known as a prepared statement.

When aclient application is ready to execute a prepared statement, it defines
valuesto subgtitutefor the SQL statement’s placehol dersand sendsacommand
to execute the statement. These values become the command’s input
parameters.

Once the statement has executed the prescribed number of times, the client
application deallocates the statement.

Advantages of dynamic SQL

Dynamic SQL permitsaclient applicationto act interactively, passing different
information at different times to the Open Server application, from the user.
The Open Server application can then fill in the missing piecesin the SQL
query with the data the user provides.

Server-Library/C Reference Manual 83

Dynamic SQL

For more information on how client applications use dynamic SQL, see the
Embedded SQL/C Programmer’s Manual.

Handling dynamic SQL requests

When a client issues a dynamic command, Open Server raises a
SRV_DYNAMIC event. If an Open Server application will be returning
dynamic SQL results, it must include a SRV_DY NAMIC event handler to
respond to dynamic SQL requests.

The srv_dynamic routine

From withinits SRV_DYNAMIC event handler, an Open Server application
uses the srv_dynamic routine, in conjunction with other Server-Library
routines, to retrieve aclient’s dynamic SQL command and respond to it. For
more information, see srv_dynamic on page 268. Each client command type—
preparation, execution, deallocation—requires a particular response from the
Open Server application.

Detecting a command type

Thefirst task within the SRV_DYNAMIC event handler isto retrieve the type
of dynamic command the client issued and, in some cases, the dynamic
statement’s ID and text. It must store the information and refer back to it later
when it responds to client requests.

Responding to client dynamic SQL commands

Table 2-19 summarizes the valid exchange of dynamic SQL requests and
responses between the client and the Open Server application. The forward
arrow (—) indicatesthat cmd is set to CS_GET—the Open Server application
retrieves information from the client. The backward arrow (<) indicates that
cmd isset to CS_SET—the Open Server application sends information to the
client.

84 Open Server

CHAPTER 2 Topics

Table 2-19: Valid dynamic SQL requests and responses

Client action

Open Server application response

Issues a prepare request
(Operation typeis CS_PREPARE)

— Retrieves the operation type.
(srv_dynamic)

— Retrieves the statement 1D length.
(srv_dynamic)

— Retrieves the statement ID.
(srv_dynamic)

— Retrieves the statement length.
(srv_dynamic)

— Retrieves the statement.
(srv_dynamic)

<« Acknowledges the client command.
(srv_dynamic)

<« Sends the statement ID length.
(srv_dynamic)

<« Sends the statement ID.
(srv_dynamic)

< Sends a DONE packet.
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Requests a description of the statement’s input
parameters
(Operation typeis CS_DESCRIBE_INPUT)

Server-Library/C Reference Manual

— Retrieves the operation type.
(srv_dynamic)

— Retrieves the statement 1D length.
(srv_dynamic)

— Retrieves the statement I1D.
(srv_dynamic)

<« Acknowledges the client command.
(srv_dynamic)

<« Sends the statement ID length.
(srv_dynamic)
« Sendsthe statement ID.
(srv_dynamic)

<« Sends the format of the input parameters.
(srv_descfmt and srv_xferdata with type argument set to

SRV_DYNDATA. Thereis no need to call srv_bind, asthe
application sendsformats but no actual data. Thestatus field

of the CS_DATAFMT structure must be OR’d with

CS DESCIN prior to calling srv_descfmt)
<« Send a DONE packet.

(srv_senddone with status argument set to
SRV_DONE_FINAL)

85

Dynamic SQL

Client action

Open Server application response

Requests a description of the statement’s output
parameters

(Operation typeis CS_DESCRIBE_OUTPUT)

86

— Retrieves the operation type.

(srv_dynamic)

— Retrieves the statement ID length.

(srv_dynamic)

— Retrieves the statement ID.

(srv_dynamic)
<« Acknowledges the client command.

(srv_dynamic)
<« Sends the statement ID length.

(srv_dynamic)

« Sends the statement ID.

(srv_dynamic)
<« Sends the result row formats.

(srv_descfmt and srv_xferdata with type argument set to
SRV_DYNDATA. Thereisno need to call srv_bind, asthe
application sendsformats but no actual data. The status field
of the CS_DATAFMT structure must be OR’d with
CS _DESCOUT prior to calling srv_descfmt)
<« Sends a DONE packet.

(srv_senddone with status argument set to
SRV_DONE_FINAL)

Open Server

CHAPTER 2 Topics

Requests a description of the statement’s input

— Retrieves the operation type.

parameters
(Operation typeis CS_DESCRIBE_INPUT)

Server-Library/C Reference Manual

(srv_dynamic)

— Retrieves the statement 1D length.

(srv_dynamic)

— Retrieves the statement ID.

(srv_dynamic)
<« Acknowledges the client command.

(srv_dynamic)
<« Sends the statement ID length.

(srv_dynamic)
<« Sendsthe statement ID.

(srv_dynamic)
<« Sends the format of the input parameters.

(srv_descfmt and srv_xferdata with type argument set to
SRV_DYNDATA. Thereis no need to call srv_bind, asthe
application sendsformats but no actual data. Thestatus field
of the CS_DATAFMT structure must be OR’d with
CS DESCIN prior to calling srv_descfmt)

<« Send a DONE packet.

(srv_senddone with status argument set to
SRV_DONE_FINAL)

87

Dynamic SQL

Client action Open Server application response

Client issues an execute request — Retrieves the operation type.
(srv_dynamic)

(Operation typeis CS_EXECUTE)
— Retrieves the statement I1D length.

(srv_dynamic)
— Retrieves the statement ID.

(srv_dynamic)
— Retrieves the number of dynamic parameters.
(srv_numparams)
— Retrieves the input parameter values.

(srv_descfmt, srv_bind, srv_xferdata with type argument set
to SRV_DYNDATA)

<« Acknowledges the client command.

(srv_dynamic)

<« Sends the statement ID length.

(srv_dynamic)

« Sends the statement ID.

(srv_dynamic)

« Sends result rows.

(srv_descfmt, srv_bind, srv_xferdata, with type argument set
to SRV_ROWDATA)

<« Sends a DONE packet.

(srv_senddone with status argument set to
SRV_DONE_FINAL)

I ssues an execute-immediate request — Retrieves the operation type.
(Operation typeis CS_ EXEC _IMMEDIATE) (srv_dynamic)

— Retrieves the statement ID length—t should be 0.
(srv_dynamic)

— Retrieves the statement length.
(srv_dynamic)

— Retrieves the statement.

(srv_dynamic)

<« Acknowledges the client command.
(srv_dynamic)

<« Sends a DONE packet.

(srv_senddone with status argument set to
SRV_DONE_FINAL)

88 Open Server

CHAPTER 2 Topics

Client action Open Server application response

Issues a deallocation request — Retrieves the operation type.
(srv_dynamic)

(Operation type is CS_DEALLOC) — Retrieves the statement 1D length.

(srv_dynamic)

— Retrievesthe statement ID.
(srv_dynamic)

<« Acknowledges the client command.
(srv_dynamic)

<« Sends the statement 1D length.
(srv_dynamic)

<« Sendsthe statement ID.
(srv_dynamic)
<« Sends a DONE packet.
(srv_senddone with status argument set to
SRV_DONE_FINAL)

Example
The sample ctos.c includes code illustrating dynamic SQL command
processing.

Errors

By default, Open Server respondsto errors by writing error messagesto thelog
file. Developers can tailor an application’s response by installing an error
handling routine.

Typically, an error handler detects the type and severity of an error, and takes
a specific action based on these values. For example, an application may send
particular errorsto a client through the srv_sendinfo routine, while writing
othersto alogfile.

Toinstall an error handler usethe srv_props routine with the property argument
setto SRV_S ERRHANDLE. An application should install its error handler
just after calling srv_version to catch all types of errors. When an error occurs,
Open Server invokes the error-handling routine that was most recently
installed.

For more information, see srv_props on page 334.

Server-Library/C Reference Manual 89

Errors

Types of errors

Severity of errors

90

An Open Server application, aclient application, and Open Server itself can
each provoke Open Server errors. Here is a description of errors that occur in
each type of category:

e Open Server application errors — error occurs because of amistakein
application code. For example, if an application attempted to send arow
of datato aclient without first describing the format of the data, Open
Server raises an error.

e Clientcommand errors—error occurswhen aclient has sent anincomplete
or nonsensical request. Requests can be incomplete or meaningless
because of faulty client code or because of a network problem. An Open
Server application should handle these errors in the event handler for the
client request, usually by sending the appropriate error messages to the
client with srv_sendinfo. See “ Client command errors’ on page 38 for
more details. The application can also set the status parameter in
srv_senddone to SRV_DONE_ERROR to indicate that a client request
provoked an error.

e Open Server resource errors—error originates with the Open Server itself.
It typically occurs because of alack of someresource, like memory or user
connections.

Each Open Server error is associated with a number, a severity level, and a
message.

When an error occurs, the currently installed error handler function is called
with the error number, error severity level, and the text of the message. If no
error handler has been installed, Open Server’slog file records this

information. An application can also explicitly write to the log file with a call
to srv_log.

An Open Server application can set the log file's maximum size using
srv_props, with the property argument set to SRV_S L OGSIZE.

Error numbers and severity levels are defined in the header file oserror.h. An
application that uses the defined error values must include oserror.h.

Table 2-20 summarizes Open Server error severity levels:

Open Server

CHAPTER 2 Topics

Table 2-20: Severity of errors

Applicable
Severity Meaning error type
SRV_INFO Aninformational error. Most errors are of | Open Server

this severity. Thislevel of severity
indicatesthat an error has occurred but that
itisnot fatal. It is most often generated by
an incorrectly invoking a Server-Library
function. For example, callingsrv_xferdata
to send arow before describing al the
columns with srv_descfmt generates a
SRV_INFO error.

application error

Client command
error

SRV_FATAL_PROCESS

A fatal thread error. The thread that
received the error has an internal error
fromwhichit cannot recover. For example,
the application may have returned from an
event without calling srv_senddone. An
error of thisseverity causes Open Server to
queue a SRV_DISCONNECT event for
thethread, if the thread isaclient thread, a
SUB-PROC, or asite-handler. Open
Server then kills the thread.

Open Server
resource error

SRV_FATAL_SERVER

A fatal server error. Open Server has
detected an internal error from which it
cannot recover. Thiscauses Open Server to
queue a SRV_STOP event for the Open
Server application, which causes srv_run
toreturn CS_FAIL.

Open Server
resource error

Operating system errors

When an operating system error occurs, the operating system error number is
different than SRV_ENO_OS ERR, and the operating system error text
contains the description of the operating system error. For example, if srv_init
cannot open the interfacesfile, it may be due to an operating system

permissions error.

Error numbers and corresponding message text

See the header file oserror.h for acomplete list of error tokens. See thefile
odlib.loc for the corresponding error text.

Server-Library/C Reference Manual

91

Events

Example

Events

Event overview

92

All sample programsinclude an Open Server error handler.

This section describes the following:
* Event overview

* What isan event handler?

+ Standard events

e Programmer-defined events

e Example

An Open Server application responds to requests from clients. Some of these
requests trigger a Server-Library event.

Not all events are provoked by client activity. The application itself queues
programmer-defined events and SRV_DISCONNECT,
SRV_URGDISCONNECT, and SRV_STOP events by calling thesrv_event or
srv_event_deferred routine. For more information on using the srv_event
routine to raise events, see its reference page. Open Server can also trigger a
SRV_STOP event in response to afatal server error. Open Server raises a
SRV_START event automatically, as part of the server’s start-up process.

An event occursin aspecific context; it correspondsto a particular category of
activity. For example, a connection attempt from a client or remote server
triggers a SRV_CONNECT event, while a client’s bulk copy request causes
Open Server to raisea SRV_BULK event.

There are two kinds of eventsin Open Server: standard and programmer-
defined. Standard events are defined internally in Open Server. Programmer-
defined events are, as the name suggests, defined within the application. For
more details on both kinds of events, see” Standard events’ on page 93, and
“Programmer-defined events’ on page 97.

Open Server

CHAPTER 2 Topics

What is an event handler?

An event handler is a piece of code that executes when an event isinitiated.
When an event istriggered, Open Server placesthe event and the active thread
on the run queue. The thread then executes a routine that processes the event.
Thisroutineis called an event handler.

Default and custom handlers

Open Server has a default event handler routine for each standard event, and
one for programmer-defined events. The default handlers are placeholders for
the custom event handlers that the application programmer installs with the
srv_handle routine. For an application that does not use the default handlers,
you must define and install each custom event-handling routine. For more
information on installing handlers, see srv_handle on page 295.

Event handlers can be installed dynamically. The new event handler is called
the next time the event israised. Event handlers should always return
CS_SUCCEED when successful, and CS_FAIL when they fail. Currently, the
SRV_START handler isthe only event handler whose return code Open Server
checks. Returning CS_FAIL from a SRV_START handler causes srv_run to
return CS_FAIL to the application without starting Open Server.

Coding custom handlers

Standard events

It isthe application programmer’s responsibility to decide how to respond to
an event and to code the event handler accordingly. Event handlers typically
include astandard set of callsto process the event data. Any additional codeis
application-specific. For example, a SRV_MSG event handler should include
code to retrieve the text of the message as well as any parameters. But an
application caninclude additional codeinthe SRV_MSG event handler to send
mail to usersif a particular message is retrieved.

Table 2-21 describes each standard Open Server event and the argument the
corresponding custom event handler should take. It also describes what
function the corresponding default event handler performs.

Server-Library/C Reference Manual 93

Events

Table 2-21: Description of events

Argument to

Event Description handler Default event handler
SRV_ATTENTION An attention has been received. SRV_PROC* The default handler takes
This event usually occurs when a no additional action.
clientcallsct_cancel tostopresults
processing prematurely.
SRV_ATTENTION isan
immediate event; Open Server
servicesit as soon asit occurs
rather than adding it to the client’s
event queue. A
SRV_ATTENTION event
executes at interrupt level.
SRV_BULK A client hasissued abulk copy SRV_PROC* The default handler sends
request. the message “No bulk
handler installed” to the
client. Open Server
discards the bulk data and
returns DONE ERROR to
the client.
SRV_CONNECT A Client-Library client hascalled | SRV_PROC* The default handler accepts
ct_connect. the connection.
SRV_CURSOR A client has sent a cursor request. | SRV_PROC* The default handler sends
the message “No
SRV_CURSOR handler
installed” to the client.
Open Server returns DONE
ERROR to the client.
SRV_DISCONNECT A request to disconnect aclient SRV_PROC* The default handler takes

94

connection has been made. This
event istriggered by aclient
disconnecting from a server, an
Open Server fatal thread error, a
SRV_STOP event, or acal to
srv_event made from within the
application explicitly to
disconnect aclient.

Client-Library programs call
ct_close or ct_exit to log out of the
Open Server application. Remote
Adaptive Server connections
terminate when the remote
procedure call has completed.

no action.

Open Server

CHAPTER 2 Topics

Argument to

Event Description handler Default event handler
SRV_DYNAMIC A client has sent adynamic SQL | SRV_PROC* The default handler sends
reguest. the message “No
SRV_DYNAMIC handler
installed” to the client.
Open Server returns DONE
ERROR to the client.
SRV_FULLPASSTHRU A network read for the connection | SRV_PROC* There is no default event
has compl eted. handler for this event.
(The SRV_T_FULLPASSTHRU
property for the thread must have
been set to CS_TRUE for this
event to occur.
SRV_LANGUAGE A client has sent alanguage SRV_PROC* The default handler sends
request, such as a SQL statement. the message “No language
A Client-Library client submitsa handler installed” to the
language request using client, along with the first
ct_command and ct_send. isgl and few characters of the
other interactive query tools can language request. Open
al so send language requests to the Server returns DONE
Open Server application. ERROR to the client.
SRV_MIGRATE_STATE This event istriggered whenever | SRV_PROC* The default handler takes
themigration state hastransitioned no action if the stateis
to SRV_MIG_READY or SRV_MIG_READY, and
SRV_MIG_FAILED, the thus allows the client to
transition being aresult of a continue with the
migration message from aclient. migration. It logsan error if
See “Connection migration” on the state changes to
page 40 for more details. SRV_MIG_FAILED.
SRV_MIGRATE_RESUME | When aclient migratesto a new SRV_PROC* The default handler only

server while waiting for results,
the new server invokes the
SRV_MIGRATE_RESUME event
after the client connection has
successfully migrated. If the
migration request failed or is
cancelled, the event isinvoked
from the original server.

See “Connection migration” on
page 40 for more details.

Server-Library/C Reference Manual

sends afinal done
(SRV_DONE_FINAL) to
the client to end the results.

95

Events

Argument to

Event Description handler Default event handler
SRV_MSG A client has sent a message. SRV_PROC* The default handler sends
the message “No
SRV_MSG handler
installed” to the client.
Open Server returns DONE
ERROR to the client.
SRV_OPTION A client has sent an option SRV_PROC* The default handler sends
command. the message “No
SRV_OPTION handler
installed” to the client.
Open Server returns DONE
ERROR to the client.
SRV_RPC A client or aremote Adaptive SRV_PROC* The default handler sends
Server hasissued aremote the message “RPC <
procedure call (RPC). rpcname > received. No
remote procedure call
handler installed” to the
client. Open Server returns
aDONE ERROR to the
client.
SRV_START A call tosrv_run triggers a SRV_SERVER* | Thedefault handler takes
SRV_START event. The Open no action.
Server application is up and
running. The SRV_START event
handler isagood placetoinitiaize
server resources and to spawn
service threads.
SRV_STOP A request to stop the Open Server | SRV_SERVER* | The default handler takes
application has been made, no action.
triggered by acall to srv_event or
by an Open Server fatal server
error. The Open Server application
is stopped. srv_run returns
CS_SUCCEED if the application
requested a SRV_STOP event or
CS FAIL if afatal server error
provoked the SRV_STOP event.
A custom handler for this event
can performany necessary cleanup
beforethe Open Server application
shuts down.
96 Open Server

CHAPTER 2 Topics

Argument to

Event Description handler Default event handler
SRV_URGDISCONNECT Thisevent isonly triggered by an | SRV_PROC* The default handler takes
Open Server application calling no action.

srv_event. In response to this
event, Open Server calls athreads
SRV_DISCONNECT event
handler. Open Server placesthe
event at thetop of thethreadsevent
queue, so that it is processed asthe
next event.

An application should raise this
event if it wantsto terminate a
thread immediately, bypassing
other eventsin the queue. When a
SRV_URGDISCONNECT event
israised, the 1/0 channel
associated with the thread is
marked dead.

Programmer-defined events

Example

An application defines programmer-defined events with srv_define_event and
installs them with srv_handle. The application must call srv_event or
srv_event_deferred to place the new event on the client’s event queue.

The default programmer-defined event handler sends a message to the client
stating that there is no handler installed. The message includes the event
number and name.

Programmer-defined events can be used to provide servicesto other threadsin
the Open Server application. For example, such an event could allow threads
tolog transactions in a disk file. To set up this service, define the event with
srv_define_event, install ahandler routinethat writesto the disk file, and create
a service thread to which the events are queued. The service thread provides
the transaction-logging code.

The samplelang.c illustrates asimple SRV_L ANGUAGE event handler.

Server-Library/C Reference Manual 97

Gateway applications

Gateway applications

98

An Open Server application that acts as both a client and aserver iscalled a
gateway application. Gateway applications often act as intermediaries for
clients and servers that cannot communicate directly.

For example, an Open Client application cannot communicate directly with an
Oracle database engine, but the client application can communicate with an
Open Server application that servesasagateway to the Oracle database. In this
case, the gateway acts asa server to the Open Client application and asaclient
to the Oracle database engine.

Another caseiswhen aclient cannot directly access aremote Adaptive Server
because the two are running on dissimilar networks. The gateway server
bridges this gap, retrieving the client data and repackaging it to send to the
remote Adaptive Server. Sybase's mirror-image client and server routines
simplify this process. The server and client components can even share the
same data description structure; the gateway fillsin a structure with
information from the remote client using Server-Library callsand then extracts
that same information from the structure to send along to the remote server
using Client-Library or DB-Library cals.

Gateways that act as clients to a Adaptive Server or to an Open Server
application use Client-Library or DB-Library routinesto fill the client role that
they play.

Gateways that act as serversto Open Client applications use Server-Library
routinesto fill the server role that they play.

Warning! Client-Library cannot be runin full asynchronous mode in an Open
Server application.

The sample program ctos.c is an example of a“virtual Adaptive Server”
gateway. The gateway demonstrates how to pass data from aremote Adaptive
Server to a Sybase client.

Warning! In gateway applications, the client routines executein the context of
an Open Server process, or thread. If this process (or the entire Open Server
application) is terminated, any client routines that are executing will yield
undefined results.

Open Server

CHAPTER 2 Topics

Passthrough mode

In the specia case of an Open Server application that connects Sybase client
applications with an Adaptive Server, Client-Library and DB-Library provide
aset of application protocol passthrough routinesthat allow the Open Server to
pass Tabular Data Stream (TDS) packets between the client and server without
interpreting the contents. This process works more efficiently than unpacking
the TDS information as it arrives and repacking it before sending it on. The
sample, fullpass.c, provides an example of thistype of gateway. For more
information, see “ Passthrough mode” on page 129.

Note Pre-10.0 versions of DB-Library must not be linked into an application
with Open Server version 10.0 and later, although they can be used in
application programs that serve as clients to Open Server 10.0 and | ater.

International support
Open Server provides support for international applications by:
e Allowing an Open Server application to localize
An Open Server application that islocalized typicaly:
e Generates error messages in alocal language and character set
* Useslocd datetime formats

« Usesaspecific character set and collating sequence (also called “ sort
order”) when converting or comparing strings

< Enabling an Open Server application to support localized clients

A localized client uses the language, datetime formats, and character set
appropriate to its locale. These may differ from the Open Server
application’s language, datetime formats, and character set. To support
localized clients, an Open Server application must not only translate
incoming data into its own language and character set but must also
translate outgoing messages and data into the client’s language and
character set.

This topic page contains information on:

e Localizing an Open Server application

Server-Library/C Reference Manual 99

International support

e Supporting localized clients

e Client requests related to localization
e Localization properties

e Thelocalization sample programs

Open Client and Open Server localization is discussed thoroughly in the Open
Client and Open Server International Developer’s Guide. You must read this
book to understand Server-Library’s localization mechanism and how
environment variables affect |ocalization.

Platform-specific localization information can be found in the Open Client and
Open Server Configuration Guide.

Localizing an Open Server application

100

An Open Server application’s localization determines:

» Thelanguage and character set in which error messages are generated.

Note TheSRV_S USESRVLANG and SRV_T_USESRVLANG
properties can be used to override a server’s language when generating
error messages.

» The character set and collating sequence used for all data operations

An Open Server application can useinitial localization values, custom
localization values, or both.

A typical internationalized Open Server application usestheinitial localization
values determined by the LC_ALL and LANG environment variables, or by
the “default” entry in the localesfile, to localize.

Initial localization values are determined at runtime, when the Open Server
application calls the CS-Library routine cs_ctx_alloc to alocate a
CS_CONTEXT structure. When an application makes this call, CS-Library
loads initial localization information into the new context structure.

If theinitial localization values do not meet an application’'s needs, the
application can useaCS_LOCALE structureto set custom localization values
in its context structure. See “Using aCS_L OCALE structure to set custom
localization values’ on page 101 for more information.

Open Server

CHAPTER 2 Topics

Supporting localized clients

For some Open Server applications, initial localization values for localized
clients are sufficient. These Open Server applications do not need to take any
additional steps to support localized clients.

Other Open Server applications, however, need to provide additional support
for localized clients. In particular, an Open Server application needs to take
additional steps to support localized clients:

e Ifitwill be passing CS-Library error messages back to clients

In this case, the Open Server application needs to ensure that CS-Library
generates messages in the client’s language and the Open Server
application’s character set.

For information on how to do this, see “Localizing CS-Library messages
for clients” on page 102.

e Ifitisacting as agateway

Inthis case, the Open Server application needsto ensure that aconnection
to aremote server uses the client’s language and the Open Server’s
character set.

For information on how to do this, see“ Creating localized connectionsfor
gateway applications’ on page 103.

e |f aclient application asks to change its language or character set

In this case, the Open Server application needs to change the language or
character set for the client thread.

For information on how to do this, see “ Requests to change language and
character set” on page 104.

Using a CS_LOCALE structure to set custom localization values

When a client connects to an Open Server application, Open Server creates a
CS_LOCALE structure reflecting the client’s language and character set. For
example, when afrench/cp850 client logsinto aus_english/iso_1/binary Open
Server application, the Open Server application creates a french/cp850

CS _LOCALE structure for that connection.

Theinformation in this structure is available to Open Server programmers,
who can call cs_locale to copy the information into a newly-allocated
CS_LOCALE structure.

Server-Library/C Reference Manual 101

International support

You caninstall custom localization information in the application-wide context
structure before calling srv_version. To do this, an application:

1 Cadllscs_loc_alloc to alocate aCS_LOCALE structure.

2 Cadllscs_locale withtype setto CS LC ALL toload the CS LOCALE
with custom localization values. A type of CS LC_ALL ensuresthat the
CS LOCALE isloaded with localization values that are internally
consistent.

3 Cadllscs_config with property set to CS LOC_PROP to copy the custom
localization values into the application’s context structure.

4 Cadllscs_loc_drop to dealocatethe CS LOCALE.

Localizing CS-Library messages for clients

If an Open Server application calls a CS-Library routine with its own context
structure as a parameter, any error messages that CS-Library generates asthe
result of the call will be in the Open Server application’s language and
character set.

For example, if the context parameter for acs_convert call indicates
us english/iso_1, CS-Library will generate aus_english/iso_1 messageif the
cs_convert call fails.

Note If aCS-Library routine takesa CS L OCALE structure as a parameter,
the localization valuesin this structure will override the localization valuesin
the context parameter.

Obtaining CS-Library messagesin the Open Server application’slanguage and
character set is acceptable only if the Open Server application logs the CS-
Library messages or otherwise keeps them to itself.

However, if an Open Server application will be passing CS-Library error
messages back to a client, it needs to ensure that CS-Library generates
messages in the client’s language and the Open Server application’s character
Set.

The messages need to be in the client’s language for the client to understand
them.

The messages need to bein the Open Server application’s character set for two
reasons:

102 Open Server

CHAPTER 2 Topics

e Open Server applications commonly record all messagesinthelog file. It
isimportant that all logged messages use the same character set.

e Open Server automatically performs character set translation on outgoing
data, including messages. Generating messagesin Open Server’scharacter
set ensures that they will be correctly translated to the client’s character
Set.

An application can ensure that messages are generated in the correct language
and character set by setting up a properly localized CS CONTEXT structure
for each client thread and then using these CS_CONTEXT structures when
calling CS-Library routines on behalf of clients.

For information on how to localize aCS_CONTEXT structure, see
“LocalizingaCS CONTEXT structure” on page 104.

Creating localized connections for gateway applications

If an Open Server application is acting as a gateway, it needs to ensure that a
connection to aremote server usesthe client’slanguage and the Open Server’s
character set.

Note The Open Server’s character set does not need to be the same asthe
remote server’s character set, but it must be one that the remote server is
capable of converting to its own.

Adaptive Server can convert between any two Western European character
sets and can convert between any two Japanese character sets, but it cannot
convert a Western European character set to a Japanese one (and vice-versa).

For example, Adaptive Server can convert between | SO 8859-1 and CP850,
because both of these character sets are in the Western European language
group; however, Adaptive Server cannot convert between 1SO 8859-1, which
is Western European, and CP 1250, which is Eastern European.

Open Server can convert between any two supported character sets, whether or
not they are in the same language group. However, when converting between
character setsin different language groups, non-Roman characters may belost.

The simplest way for an application to do thisisto set up a properly localized
CS_CONTEXT structure for each client connection and then allocate remote
connections for the client within the localized context.

Server-Library/C Reference Manual 103

International support

See“LocalizingaCS _CONTEXT structure” below for information on how to
localizeaCS _CONTEXT structure.

Localizing a CS_CONTEXT structure

To properly localizeaCS_CONTEXT structure for a client thread, an Open
Server application must:

1
2
3

Call cs_ctx_alloc to allocatea CS_CONTEXT for the client thread.
Cdll cs_loc_alloc to allocate anew CS_LOCALE structure.

Call srv_thread_props to copy the client thread’s existing CS_ L OCALE
structure. This setsthe new CS_L OCALE up with the client’s language,
and character set.

Call cs_locale withtype asCS_SYB_CHARSET to replacethe client’s
character set with the Open Server’s character set.

Call cs_config with property as CS_LOC_PROP to copy the localization
information from the CS_LOCALE intothe CS CONTEXT.

Cdll cs_loc_drop to deallocate the CS_LOCALE, if desired. An
application can also reuse aCS_L OCALE structure, calling cs_locale, if
necessary, to change its localization values.

Responding to client requests

Clients can:

Request to change their language and character set
Request localization information

Requests to change language and character set

104

When aclient connectsto an Open Server, it specifiesalanguage and character
set in the login record. Open Server uses thisinformation to set up a
CS LOCALE and character set conversion routines for the client thread.

Open Server handles this automatically; an Open Server application does not
need to take any steps to handle localized clients at login time.

Open Server

CHAPTER 2 Topics

However, after logging in, clients can change their language and character set.
If aclient sends arequest to change its language or character set, the Open
Server application must make the requested changes in the client thread’s
CS_LOCALE structure.

A client can request a change of language or character set in two ways:

Using alanguage-based option command sent with ct_command. Thistype
of command triggers a SRV_LANGUAGE event, so the Open Server
application will process the request inside a SRV_LANGUAGE event
handler.

Using an option command sent with ct_options. This type of command
triggersa SRV_OPTION event, so the Open Server application will
process the request inside a SRV_OPTION event handler.

In both cases, the Open Server application responds by:

1

Setting up aCS_LOCALE structure with the new language or character
set

Calling the srv_thread_props routine with property set to
SRV_T_LOCALE to change the language or character set for the thread
connection

Table 2-22 describes how to change the language or character set for a client
thread:

Table 2-22: Changing the language or character set

Step | Application step Purpose Details

1 Call cs_loc_alloc. Allocate a Thiscall copiesthe Open Server
CS LOCALE application context’s current
structure. localization information into the

new CS_LOCALE structure.

2 Call srv_thread_props(GET) with property as | Copy the client

SRV_T_LOCALE. thread’s existing
localization values
into the new
CS_LOCALE
structure.

3 Cadl cs_locale. Overwrite the For more information about this
CS LOCALE process, see “Localizing a
structure with the CS_CONTEXT structure” on
requested languageor | page 104.
character set.

Server-Library/C Reference Manual 105

International support

Step | Application step Purpose Details
4 Call srv_thread_props(SET) with property as | Set up theclient
SRV_T_LOCALE. thread with the new

language or character
Set.

5 Optionally, call cs_loc_drop. Deallocate the An application can reuse the
CS LOCALE CS_LOCALE structure before
structure. dedllocating it.

If necessary, the application can
cal cs_locale to change the
localization values in the
structure before reusing it.

Requests for localization information

After logging in, aclient can ask for:
e The name of the server’s character set

e The name of the server’s sort order

* The character-set definition for the client’s character set

* Thesort order definition for the client’s sort order

Clients make these requests through the sp_serverinfo system registered

procedure, using RPC commands.

In response, Open Server automatically returns the requested information by
means of the sp_serverinfo system registered procedure. The Open Server
application does not need to take any action at this point, and, in fact, is not

aware that the request ever occurred.

For more information on these routines, see “ Registered procedures’ on page

162.

Localization properties

106

Two properties are related to localization:
* SRV_S USESRVLANG
¢ SRV_T_USESRVLANG

These properties determine whether Open Server generates error messagesin
the Open Server application’s language or aclient’s language.

Open Server

CHAPTER 2 Topics

SRV_S USESRVLANG is aserver-wide property, set through srv_props. Its
value serves as the default value for SRV_T_USESRVLANG.

SRV_T_USESRVLANG isathread property, set through srv_thread_props.
When anew thread structureisallocated, SRV_T_USESRVLANG picksup a
default value from SRV_S USESRVLANG.

If SRV_T _USESRVLANG isCS TRUE, Open Server generates error
messages in the server’s language.

If SRV_T _USESRVLANG isCS FALSE, Open Server generates error
messages in the client’s language.

For more information on setting properties, see “Properties’ on page 139.

Localization examples

The example ctos.c demonstrates one method of customizinga CS LOCALE
structure. The example intlchar.c handles character set and national language
configuration and queries.

Language calls

Open Server providesfunctionality for processing language eventsin aflexible
manner. A SRV_LANGUAGE event is triggered when a client application
sends information through ct_command with the type argument set to

CS LANG_CMD. Whereas an RPC stream is composed of discrete
elements—a name and parameters—Ilanguage information arrivesin a stream
of undifferentiated characters. A SRV_LANGUAGE event handler must
include code to parse the stream into its meaningful components. A SQL query
is an example of alanguage stream.

This functionality is useful for applications that want to accept natural
language input. For example, consider a clothing store application that lets
usersquery a SQL databasein English. A salesclerk could typein the question
“How many shirtsin blue?’ The front-end client application could send this
natural language query to an Open Server gateway application through a call
to ct_command. The SRV_L ANGUAGE handler parses this text, constructs
this Transact-SQL query and sends it to a remote database:

select quantity from inventory_tab where color = “blue” and type = “shirt”

Server-Library/C Reference Manual 107

Login redirection and extended HA failover support

A SRV_LANGUAGE event handler must process language datain steps:
1 Cadll srv_langlen to retrieve the length of the language request buffer.

2 Allocate alocal application buffer aslarge as the length returned by
srv_langlen, plus 1 for the null-termination byte.

Call srv_langcpy to copy all or part of the request datainto thelocal buffer.

4 Process the contents of the loca buffer.

Login redirection and extended HA failover support

108

Login redirection and extended HA failover support allows a cluster of servers
to perform load-balancing for all incoming client connections.

Three routines support this functionality: srv_send_ctlinfo,
srv_getserverbyname, and srv_freeserveraddrs.

The srv_send_ctlinfo routine supports both login redirection and extended HA
failover and srv_getserverbyname, and srv_freeserveraddrs allows an Open
Server application to trand ate a given server name to its connection
information. These routines are described in “srv_send_ctlinfo” on page 385,
“srv_getserverbyname” on page 294, and “ srv_freeserveraddrs’ on page 281.

The following properties support the routines:

* SRV_S HASERVER, aread-only server property that returns the
HAFAILOVER value from the interfaces file, which corresponds to the
server name as set by srv_init.

* SRV_T_REDIRECT, aread-only thread property that returns the setting
of the TDS HA_L OG_REDIRECT bit in the login record.

* SRV_T_HA, athread property that returns the setting of HA-related
information from the login record asa CS_INT bitmask. Information
provided includes session (SRV_HA_LOGIN), failover
(SRV_HA_LOGIN_FAILOVER), and resume
(SRV_HA_LOGIN_RESUME) hits.

* CS _SESSIONID, atype definition that holds the Session ID.

* SRV_T_SESSIONID, returnsthe Session ID that the client sendsto Open
Server in the login record.

Open Server

CHAPTER 2 Topics

You can also use SRV_T_SESSIONID to send a Session ID to the client
in the SRV_CONNECT handler. For more information see “Instructing
clientsto migrate to a different server” on page 48.

e SRV_NEG_SESSIONID, atype of negotiated login information in the
parlance of srv_negotiate that supports the sending of client Session ID
information.

Messages
There are three types of messagesin Open Server:

« Datastream messages — clients and servers can use data stream messages
to exchange information. See “ Data stream messages’ on page 80.

« Thread messages — threads can use thread messages to exchange
information. See “Multithread programming” on page 109.

« Error messages — Open Server reports error conditions by means of error
messages. See “Errors’ on page 89.

Multithread programming

Open Server employs a multithreaded architecture. A multithreaded server
application acts as a collection of threads, each executing routines to
accomplish its specific task.

What is a thread?

A thread can be thought of as a particular path of execution through the Open
Server application code. Each client usesathread to manageits connection and
call the event handlers and proceduresthat fulfill its requests. The Open Server
runtime system has several threads that manage server activities such as
delivering messages, handling server-to-server communications, and
scheduling tasks. An application can spawn server threads for other
application-specific activities.

Server-Library/C Reference Manual 109

Multithread programming

As amultithreaded system, an Open Server application must schedule the
variety of activitiesthe threads perform, negotiate the threads accessto shared
resources, and provide a means by which the threads communicate with each
other. For moreinformation, see “ Scheduling” on page 113, and “ Tools and
techniques’ on page 115.

Thread types

Open Server employs four kinds of threads: preemptive, event-driven, service,
and site-handler.

Preemptive threads

Open Server versions 12.5 and higher include preemptive threading on all
platforms. There are several issues to be aware of before building applications
with these threaded libraries.

Thread-safe functions
To ensure that your application is reentrant, make sure that:
* It usesthereentrant versions of C library functions, where provided
* It usesnon-reentrant C (or other) library functions safely

» |t protects global variables and shared structures with mutex (or other)
locks

* None of itsfunctions return a pointer to a static buffer

* It compileswith the correct processor flags and linker directives

Note A Clibrary function that is reentrant on one UNIX system is not
necessarily reentrant on other UNIX systems. Consult a porting guide for your
platform to determine if the C function is reentrant.

110 Open Server

CHAPTER 2 Topics

Thread-safe code and preemptive mode

More than one Open Server thread can be running at the same time, and one
can be preempted in favor of another. This has the benefit of increased
concurrency, especially in SMP systems. However, it does reguire code to be
thread-safe. This applies to Open Server code, the user's event handlers and
callback functions.

SRV_S PREEMPT behavior

When SRV_S PREEMPT isset to CS_TRUE, multiple Open Server threads
execute concurrently and are preempted in favor of each other by the operating
system. These threads become unbound.

If SRV_S PREEMPT isset to CS FALSE, one Open Server thread cannot be
preempted by another Open Server thread, and two Open Server threads cannot
run at the sametime.

Also, whether SRV_S PREEMPT isset to CS TRUE or CS_FALSE, when
used in conjunction with threaded libraries, some functions of

SRV_S CURTHREAD become disabled. Thisis because threaded libraries
use signals handled by a signal-handled thread, regardless of the

SRV_S PREEMPT setting.

A single mutex is enabled whenever an Open Server thread resumes executing.
Themutex isreleased when an Open Server thread isready with aspecific task
and after the SRV_C_SUSPEND callback is executed. Thereisonly one
server-wide mutex for this.

The callback functions SRV_C RESUME and SRV_C SUSPEND are never
invoked when the operating system resumes such athread. These functionsare
invoked only when a specific Open Server thread stops or resumes execution;
for instance, when a language request arrives for a user Open Server thread,
and before it goes to dleep after running the language event handler.

Implementation specifics

For most UNIX platforms, threads are based on POSIX threads and are
unbound. On HP and Linux, threads are bound. On Windows, threads are
Win32 threads.

See the vendor documentation for your platform for more information about
using threads on that platform.

Server-Library/C Reference Manual 111

Multithread programming

Event-driven threads

Service threads

112

Threads that control client connections are event-driven. A request for action
triggers a server event. See “Events’ on page 92 for details on events.

When aclient event occurs, Open Server places the event in the thread's event
gueue. The next time the thread executes, it reads the next event request from
the event queue. Open Server callsthe event handl er associated with this event.
When the handler returns, the thread attempts to read the next event in the
gueue. If thereis no event, the thread “ deeps.”

For example, when a client application attemptsto log in to the server, Open
Server creates athread to handle the connection and putsthe SRV_CONNECT
event in the threads queue. When the thread runs, it executes the routine
installed to handle the SRV_CONNECT event. The default handler simply
accepts the connection. You could install acustom SRV_CONNECT handler
that checksthelogin name and password, and, if both arevalid, allowsthe user
tologin.

Event-driven threads exist primarily to handle client requests, but they can also
be used with programmer-defined eventsto execute service routineswithin the
server.

You can create Open Server threads that run independently of any client
connection. Such threads are called service threads because the routines they
execute usually perform services for event-driven client threads. Unlike a
client thread, a service thread is not activated by events. Instead, you supply a
routinefor the thread to execute when you createit. The server putsitintherun
queueimmediately. A service thread disappears once theroutineit was created
to execute returns.

An application can use service threads to accomplish avariety of tasksin an
Open Server application. In fact, the Open Server runtime system is composed
of servicethreads running server management routines. Service threads cannot
be used to perform client I/O—that is, to read in client commands and return
results.

Open Server schedules event code to run when an event is triggered. By
contrast, an application must explicitly schedule service thread code using the
srv_wakeup, srv_sleep, srv_yield routines, and it must schedul e message queues
when not running in preemptive mode.

Open Server

CHAPTER 2 Topics

Site-handler threads

Scheduling

Scheduling methods

Open Server createsasite-handler thread when an Adaptive Server connectsto
an Open Server application.

Open Server creates a SUB-PROC when the Open Server application receives
a server-to-server RPC. A SUB-PROC disappears when the server-to-server
RPC completes. A site-handler thread disappears when the Adaptive Server
closes its connection to the Open Server application.

An Open Server application only accesses a site-handler thread inside a
SRV_CONNECT or SRV_DISCONNECT event handler. Site-handler threads
are otherwise purely internal.

Open Server provides concurrency by periodically suspending the running
thread and resuming another. This context switch can occur frequently and
quickly so that, from the point of view of an Open Server client, threads run
continuously.

The scheduler is the runtime system thread that performs context switches. A
thread has an execution context that includes its stack and its machine register
environment. The scheduler saves the execution context of the running thread,
selects the thread to resume, restores its context, and runsit. Although the

scheduler works invisibly, to write Open Server code you should understand:

* How the scheduler is called (the scheduling method)
e How the scheduler selects athread to resume

The scheduling method determines when control is transferred from one
running thread to another. An Open Server application uses one of two
scheduling methods: non-preemptive or preemptive. Non-preemptiveis the
default method and the only method available on most platforms.

Non-preemptive scheduling

With non-preemptive scheduling, context switches are predictable. They can
occur only in these situations:

e Athread callsaServer-Library or Client-Library routine that performs
network 1/0.

Server-Library/C Reference Manual 113

Multithread programming

Preemptive scheduling

When athread reads from or writes to a network connection, the runtime
system suspends execution of the thread waiting for the read or write to

complete. Network 1/0O isrelatively slow, and the server can use the time
more efficiently by allowing other threads to run while the I/O compl etes.

» A thread deeps while waiting for execution to resume.

For example, athread should wait for another thread to finish updating a
data object in shared memory before accessing theobject. A thread deeps
when the application calls:

* srv_sleep

e Oneof the Server-Library routines where the thread sleeps while
waiting for arequested resource, such as
srv_getmsgq(SRV_M_WAIT) or srv_lockmutex

e Athread calssrv_yield to intentionally suspend itself and allow other
threadsto run. The thread remains executabl e and resumes operation later
at the statement after the srv_yield call. If you write a time-consuming
routine that does not sleep or perform network 1/0, you should call
srv_yield occasionally to prevent the routine from monopolizing the server.

With preemptive scheduling, acontext switch can occur when any of the above
events occurs, or when the system interrupts the running thread. Preemptive
scheduling depends upon the thread management facilities of the operating
system, so system-initiated context switches are not predictable. Operating
systems often employ sophisticated algorithms to ensure optimal time
distribution among threads.

You can choose preemptive scheduling using the srv_props routine with
property set to SRV_S PREEMPT. Preemptive scheduling is not available on
every platform. Call srv_capability to determine whether it is available on your
application’s platform.

Selecting a thread to resume

114

Open Server maintains a set of run queues—Iists of threadsthat are suspended
but not sleeping. Each queue contains threads with the same execution priority.
The scheduler restores the thread that has remained the longest on the highest
priority queue. Threads normally run at the samepriority level, so thisselection
method usually distributes execution time on afirst-in, first-out basis.

Open Server

CHAPTER 2 Topics

You can adjust the priority of athread so that the scheduler runsit before other
threads in the run queue, or only when there are no other threads to run. For
example, athread that reads real-time data could have a higher priority so that
it runs whenever there is datato process. Be careful when adjusting priorities.
Aslong as athread has a higher priority than any other and is able to run, the
scheduler continues to run it. If the priority stays high and the thread never
sleeps, threads with lower prioritieswill never run. See srv_setpri on page 411
for information on adjusting athread's priority.

When Open Server establishes anew thread, the scheduler must perform some
work beforethethread can fully share CPU timewith other threads. During this
start-up period, the scheduler effectively performs a series of internal srv_yield
callsto alow existing threads to run. As aresult, established, executable
threads may appear to “hog” CPU and delay start-up of the new thread. Once
the thread is established and executable, it shares CPU time according to its
priority.

Execution priority isonly an issuein Open Server applicationsthat runin non-
preemptive mode.

Tools and techniques

Mutexes

Writing programs in a multithreaded environment requires constant attention
to the interaction between threads. There are programming tools and methods
that are especially useful in this environment. Open Server provides mutual
exclusion semaphores (mutexes) to control access to shared resources, and
message queues to allow threads to coordinate and communicate with one
another.

A mutual exclusion semaphore, or mutex, isalogical object that Open Server
allows onethread, at most, to lock. It isuseful for protecting shared resources
and for building more sophisticated tools.

To understand how a mutex can be used, consider this problem:

The standard input and output is the same for every thread in an Open Server
application running on a UNIX platform. If threads regularly write to the
standard output, the application code must avoid mixing the output of several
threads on the standard output.

Server-Library/C Reference Manual 115

Multithread programming

Message queues

One way to prevent threads from mixing their output is to associate a mutex
with the stdout device and require athread to lock the mutex before writing to
stdout. Since only onethread can lock the mutex at atime, only one thread can
write on stdout at atime. Other threads have to wait until they are able to lock
the mutex.

See the srv_createmutex, srv_lockmutex, srv_unlockmutex and
srv_deletemutex reference pages for programming details.

M essage queues enable threads to communicate with each other. Message
gueues are often used to send data to spawned service threads that perform
servicesfor other threads. For example, you could create amessage queue into
which all threads put datadestined for thelog file. A spawned thread could read
the messages from the queue and write them, in the order received, to thelog
file.

The message in a message queue is a 4-byte value, usually a pointer that
addresses data somewhere in memory shared by the sending and receiving
thread. The thread that puts a message into a queue and the threads that read
the message must agree on the message format.

If the message references data el sewhere, you must make sure that the thread
that reads the message finishes with the data before the thread that sent the
message updates or releases the data area. To prevent the sending routine from
overwriting or freeing the message before the message isreceived, the routine
that writes messages, srv_putmsgg, has an option that causes the sending thread
to sleep until the message is read from the queue.

See the srv_createmsgq, srv_putmsgq, srv_getmsgg, and srv_deletemsgq
reference pages for programming details.

Protecting critical sections

116

To prevent Open Server from suspending athread, you can temporarily raise
the priority of the thread by calling srv_setpri. Server threads all start at the
same priority level, which is represented by the SRV_C_DEFAULTPRI
constant defined in ospublic.h. Thread priorities range from
SRV_C_LOWPRIORITY to SRV_C_MAXPRIORITY, with

SRV_C DEFAULTPRI inthe middle.

Open Server

CHAPTER 2 Topics

Callback routines

Open Server alwaysresumesthe executabl e thread that hasthe highest priority.
If more than one executabl e thread has the same priority, Open Server resumes
the one that became executable first. If you raise the priority of athread above
that of any other thread, Open Server continues to execute the thread until itis
no longer executable or its priority islowered, preventing other threads from
executing.

While raising the priority of athread is an effective way to guarantee that no
other thread can interfere during a critical section, it can have a detrimental
effect on concurrency. Raising the priority permits asingle thread to take over
the server. Even the threads that make up the Open Server runtime system are
prevented from running if you raise the priority of athread above
SRV_C_DEFAULTPRI. To minimize the effects, delay raising the priority
until absolutely necessary, and lower it again as soon as possible. Do not put
unnecessary code inside the critical section.

The srv_callback routine allows you to install a callback handler for athread.
Open Server calls your routine whenever the state of the thread changesto the
state you specify. For example, you caninstall a SRV_C_SUSPEND callback
handler that executes whenever the thread is suspended.

Note The ability to install and execute callback handlersis platform-
dependent. Use srv_capability to find out if a callback handler can be installed
for aparticular state transition on your current platform.

Table 2-23 summarizes the state transitions for which srv_callback can install
callback handlers:

Server-Library/C Reference Manual 117

Multithread programming

Table 2-23: State transitions

State transition Meaning

SRV_C EXIT Thethread hasfinished executing theroutineit was spawned
to execute, or it isassociated with adisconnected client. The
handler executes in the context of the exiting thread.

SRV_C_PROCEXEC | Open Server callsthis callback when aregistered procedure
is about to execute. The handler executes in the context of
the thread that requested the registered procedure. Asa
result, the SRV_C_PROCEXEC callback handler executes
whenever aclient attempts any registered procedure
operation. You can install a callback handler that restricts
clients' abilitiesto create, delete, or execute registered
procedures.

SRV_C_RESUME The thread is resuming. The handler executesin the context
of the scheduler thread and uses the scheduler’s stack.

SRV_C_SUSPEND The thread is suspending. The handler executes in the
context of the thread that is suspending and usesiits stack.

SRV_C_TIMESLICE | A thread has executed for a period of time (time slice)
determined by the SRV_TIMESLICE,
SRV_VIRTCLKRATE, and SRV_VIRTTIMER
configuration parameters. You can use this handler to signal
along-running thread to call srv_yield so that other threads
can run.

Programming considerations

118

Although Open Server threads are threads of execution that have their own
stack and register environments, they share the resources of the operating
system process that is executing the Open Server runtime system.

Here are some multithread programming considerations;

e Shared resources, such as global data, file handles, and devices, must be
protected.

While you are updating a shared global dataitem, do not call aroutinethat
could suspend the thread unless you have taken steps to prevent other
threads from accessing the data. Otherwise, another thread could be
working with inconsistent data.

Open Server

CHAPTER 2 Topics

Watch for program logic that behaves as though it has sole access to a
resource. An exampleisaroutine that performs part of a calculation using
avalue from aglobal variable, then suspends, allowing other threads to
alter the global variable. This can cause serial consistency problems. The
calculation may be incorrect before it is even complete.

* Avoid static variables in routines that more than one thread can execute.

If aroutinealtersastatic variable, and multiple threads can call theroutine,
you must ensure that multiple instances of the routine do not conflict.
Thereisagreater probability of inconsistent dataif the routine returns a
pointer to astatic variable, since the contents of the variable can be altered
while athread is suspended. It is safer to use automatic variables, because
each thread has astack of itsown. The application should provide memory
and copy theresult there. When you must use static variabl es, protect them
with the techniques discussed above.

e SRV_ATTENTION events can be executed at interrupt level. If
SRV_ATTENTION handlers manipulate application structures that are
also changed or tested in noninterrupt level code, such as other event
handlers or service threads, the results of the change or test are
unpredictable. Use attention-level wakeups and sleepsto coordinate
between interrupt-level SRV_ATTENTION handlers and non interrupt-
level code.

Example

The sample, multthrd.c, illustrates various aspects of multithreaded
programming.

Negotiated behavior

An Open Server application negotiates with a client to determine the
application’s behavior in anumber of areas. Some negotiation takes place
when the client logsin. Other negotiations can occur on an ad hoc basis during
the lifetime of the Open Server runtime system.

Server-Library/C Reference Manual 119

Negotiated behavior

Login negotiations

Several issues are negotiated at login time. Some are negotiated transparently
by Open Server and require no action on the part of the Open Server
application. Others are handled explicitly with application calls. Login
negotiations always take place inside a SRV_CONNECT event handler.

Transparent negotiation

Explicit negotiation

120

Issues resolved that are transparent to the application include the following:

» Thecharacter set in which character dataappears. When aclient logsin, it
provides, among other information, the name of the character set
appropriate to itslocale. If the server’s character set differs from the
client’s, Open Server converts the data to the client’s character set.

» Thenational language in which Open Server error messages appear.
» Byteordering, which is platform-dependent.

» TheTDS protocol level.

» Floating point representation, which is platform-dependent.

The server’sdefault national language and character set are established during
initialization of the server.

A client can renegotiate the character set and national language at alater time.
See “Ad hoc negotiations” on page 122 for more information.

The application itself negotiates with clients to resolve these issues:

» Thekinds of requests the client can make and the kinds of responses the
Open Server application can return, if the application declines the defaullts.

e The security level at which the client and server communicate.

A client sends capabilities information after sending alogin record. A client
and the Open Server application must agree upon the set of possible requests
and responsesthat can be sent on their particular connection. These capabilities
must be established before any further requests or responses are sent. See
“Capabilities” on page 24 for details on capabilities.

Open Server

CHAPTER 2 Topics

Negotiating a secure connection

An Open Server application may want to establish a secure connection with a
client. A secure connection is one which is established after arigorous
authentication of the client’sidentity and verification of its password.

Note Applications can use external security systems offered by security
service providers, rather than including their own security code. “ Security
services’ on page 170 explains how to configure an Open Server application
to make use of third-party security service providers.

An application may perform this security check using one, some, or al of the
following methods:

* Sendtheclient achallenge, which challengestheclient to respond with the
matching response.

* Send the client an encryption key, to which the client should respond with
an encrypted password, which the application may then decrypt and verify.

* Send the client arequest for security labels, which the client sendsto
establish the level of security for the connection.

« Initiate an application-defined login handshake.

« Initiate a transparent security handshake. This requires asecurity entry in
the libtcl.cfg file, and that drivers for the required security services are
installed. See“ Changesto the interfacesfile” on page 183, and “ Security
services’ on page 170, for more information.

« Exchange the security session negotiation data between the remote server
and the gateway client using a security session callback. See “Full
passthrough gateway with direct security session” on page 191, and the
Open Client Client-Library/C Reference Manual, for more information on
security session callbacks.

An application negotiates a secure login using the srv_negotiate routine inside
the SRV_CONNECT event handler.

Server-Library/C Reference Manual 121

Options

Ad hoc negotiations

Example

Options

122

An application may negotiate or renegotiate several issueswith aclient at any
point during the time the server is up and running. Ad hoc negotiations take
placeinside a SRV_LANGUAGE event handler or aSRV_OPTION event
handler. A client may:

» Renegotiate the character set and national language through either a
Transact-SQL language command or an option command.

» Determine aspects of query processing behavior through a Transact-SQL
language command or an option command. Clients can request that
options be set or cleared, as well as requesting the current status of a
particular option.

For adiscussion of the SRV_OPTION event and alist of options, see“ Options’
on page 122.

“International support” on page 99 coversnegotiation of national language and
character set in detail.

For more information on identifying and authenticating users in a secure
database system, see the Adaptive Server Enterprise Reference Manual and
“Security services’ on page 170.

The sample ctos.c includes code illustrating a negotiated login.

Adaptive Server permits clients to determine how to handle query processing.
It provides avariety of configurable options that govern aspects of query
processing behavior. For more information on Adaptive Server query-
processing options, see the set command in the Adaptive Server Enterprise
Reference Manual.

An Open Server application can respond to client requests about query
processing options.

A client application can set, clear, and request the current value of Adaptive
Server query-processing options in one of two ways:

Open Server

CHAPTER 2 Topics

e Through a Transact-SQL language command
e By issuing an option command

If an application expects a client to issue language commands to make option
reguests that the application needs to process, it must include code to parse
such requestsin its SRV_LANGUAGE event handler.

Client option commands trigger a SRV_OPTION event. An application
responds to such requests from within its SRV_OPTION event handler, using
the srv_options command.

Inside the SRV_OPTION event handler

A client can request that an option be set or cleared, or that its current value be
returned. Any of these commands triggers a SRV_OPTION event. Using the
SRV_OPTION event handler, the application should:

1 Call srv_options with the cmd argument set to CS_GET. The type of
command the client issued (SRV_SETOPTION, SRV_CLEAROPTION,
or SRV_GETOPTION) will bereturned in optcmdp. The option itself will
be returned in optionp. *bufp will contain al legal values associated with
the option.

For example, if the client has requested that Adaptive Server not report the
number of rows affected by the query, optcmdp will contain
SRV_SETOPTION, *optionp will contain CS_OPT_NOCOUNT, and
*pufp will contain CS_TRUE.

2 If optcmdp is either SRV_SETOPTION or SRV_CLEAROPTION, the
application should clear or set the option accordingly in astandal one Open
Server application. If the application is a gateway, it should send the
appropriate client calls to manipulate the remote server’s option.

3 If optcmdp is SRV_GETOPTION, the application should call srv_options
with cmd set to CS_SET, optcmd set to SRV_SENDOPTION, optionp Set
to the option the client seeksthe value of, and bufp set to the current value.

Option descriptions and default values

Table 2-24 describes the options a client may set, retrieve, or clear, and each
option’s default value.

Server-Library/C Reference Manual 123

Options

Table 2-24: Symbolic constants for server options

Symbolic constant

What the option does

Default value

CS OPT_ANSINULL

If thisoptionis set to CS_TRUE, Adaptive Server
enforces the ANSI behavior that “=NULL” and “is
NULL” are not equivalent. In standard Transact SQL,
“=NULL" and “isNULL" are treated as equivalent.

This option affects“<> NULL" and “isnot NULL"
behavior in asimilar fashion.

CS FALSE

CS OPT_ANSIPERM

If thisoptionissetto CS_TRUE, Adaptive Server will
be ANSI compliant in its permission checks on update
and delete statements.

CS FALSE

CS OPT_ARITHABORT

If thisoptionis set to CS_TRUE, Adaptive Server
aborts a query when an arithmetic exception occurs
during its execution.

CS FALSE

CS OPT_ARITHIGNORE

If thisoptionis set, Adaptive Server substitutes NUL L
for selected or updated values when an arithmetic
exception occurs during query execution. Adaptive
Server does not return awarning message. |f neither
CS_OPT_ARITHABORT nor
CS_OPT_ARITHIGNORE is set, Adaptive Server
substitutes NULL and prints a warning message after
the query has been executed.

CS FALSE

CS OPT_AUTHOFF

Turns the specified authorization level off for the
current server session. When auser logsin, all
authorizations granted to that user are automatically
turned on.

Not applicable

CS OPT_AUTHON

Turns the specified authorization level on for the
current server session. When auser logsin, all
authorizations granted to that user are automatically
turned on.

Not applicable

CS_OPT_CHAINXACTS

If thisoptionissetto CS_TRUE, Adaptive Server uses
chained transaction behavior.

Chained transaction behavior means that each server
command is considered to be a distinct transaction.

Unchained transaction behavior requires an explicit
commit transaction statement to define a transaction.

CS FALSE,
meaning unchained
transaction behavior

CS _OPT_CURCLOSEONXACT | If thisoptionissetto CS TRUE, all cursors opened CS FALSE
within a transaction space are closed when the
transaction compl etes.

CS OPT_CURREAD Sets a security label specifying the current read level. | NULL

CS OPT_CURWRITE Sets a security label specifying the current writelevel. | NULL

124

Open Server

CHAPTER 2 Topics

Symbolic constant

What the option does

Default value

CS OPT_DATEFIRST

Thisoption setstheday considered to bethe“first” day
of the week.

For us_english, the
defaultis
CS_OPT_SUNDAY

CS_OPT_DATEFORMAT

This option sets the order of the date parts
month/day/year for entering datetime or smalldatetime
data.

For us_english, the
default is

CS OPT_FMTMD
Y.

CS OPT_FIPSFLAG

If thisoptionissetto CS_TRUE, Adaptive Server flags
any nonstandard SQL commands that are sent.

CS FALSE

CS_OPT_FORCEPLAN

If thisoptionissetto CS_TRUE, Adaptive Server joins
tablesin the order in which the tables are listed in the
“from” clause of the query.

CS FALSE

CS _OPT_FORMATONLY

If thisoption is set to CS_TRUE, Adaptive Server
sends back adescription of the datarather than the data
itself, in response to a select query.

CS FALSE

CS OPT_GETDATA

If thisoptionisset to CS_TRUE, then Adaptive Server
returns information on every insert, delete, or update
command. Adaptive Server returnsthisinformationin
the form of amessage result set and parametersthat an
application can use to construct the name of the
temporary table that will contain the rows that will be
inserted or deleted. An update consists of insertions
and deletions.

CS FALSE

CS _OPT_IDENTITY OFF

Disablesinsertsinto atable’ sidentity column. For more
information, see the set command in your Adaptive
Server documentation.

Not applicable

CS _OPT_IDENTITYON

Enablesinsertsinto atable' sidentity column. For more
information, see the set command in your Adaptive
Server documentation.

Not applicable

CS OPT_ISOLATION

This option is used to specify atransaction isolation
level. Legal levelsare CS OPT_LEVEL1 and
CS_OPT_LEVELS. Setting CS_OPT_ISOLATION to
CS _OPT_LEVEL 3 causesall pages of tables specified
in aselect query inside a transaction to be locked for
the duration of the transaction.

CS OPT_LEVEL1

CS OPT_NOCOUNT

This option causes Adaptive Server to stop sending
back information about the number of rows affected by
each SQL statement.

Server-Library/C Reference Manual

CS FALSE

125

Options

Symbolic constant

What the option does

Default value

CS_OPT_NOEXEC

If thisoptionis set to CS_TRUE, Adaptive Server
processes queries through the compile step but does
not execute them. This option is used with
CS_OPT_SHOWPLAN.

CS FALSE

CS OPT_PARSEONLY

If this option is set, the server checks the syntax of
queries, returning error messages as necessary, but
does not execute the queries.

CS FALSE

CS OPT_QUOTED_IDENT

If thisoptionis set to CS_TRUE, Adaptive Server
treats all strings enclosed in double quotes as
identifiers.

CS FALSE

CS OPT_RESTREES

If thisoption is set, Adaptive Server checks the syntax
of queries but does not execute them, returning parse
resolution trees (in the form of image columnsin a
regular row result set) and error messages as needed, to
theclient.

CS FALSE

CS_OPT_ROWCOUNT

If this option is set, Adaptive Server returns only a
maximum specified number of regular rows for select
statements. This option does not limit the number of
compute rows returned.

CS_OPT_ROWCOUNT works somewhat differently
from most options. It is always set on, never off.
Setting CS_OPT_ROWCOUNT to 0 setsit back tothe
default, which isto return al the rows generated by a
select statement. Therefore, the way to turn
CS_OPT_ROWCOUNT off isto set it on with a count
of 0.

0, meaning al rows
are returned

CS OPT_SHOWPLAN

If thisoptionissetto CS_TRUE, Adaptive Server will
generate a description of its processing plan after
compilation and continue executing the query.

CS FALSE

CS OPT_STATS |0

This option determines whether Adaptive Server
internal 1/O statistics are returned to the client after
each query.

CS FALSE

CS OPT_STATS TIME

This option determines whether Adaptive Server
parsing, compilation, and execution time statistics are
returned to the client after each query.

CS FALSE

CS OPT_STR _RTRUNC

126

If thisoptionissetto CS_TRUE, Adaptive Server will
be ANSI-compliant with regard to right truncation of
character data.

CS FALSE

Open Server

CHAPTER 2 Topics

Symbolic constant What the option does Default value

CS OPT_TEXTSIZE This option changes the value of the Adaptive Server | 32,768 bytes
global variable @@textsize, which limits the size of
text or image values that Adaptive Server returns.
When setting this option, you supply a parameter
which isthe length, in bytes, of the longest text or
image value that Adaptive Server should return.

CS _OPT_TRUNCIGNORE If thisoption is set to CS_TRUE, Adaptive Server CS FALSE

ignores truncation errors, which is standard ANSI
behavior.

If thisoption is set to CS_FAL SE, Adaptive Server
raises an error when conversion resultsin truncation.

srv_options on page 323 lists the legal values and datatype for each option.

Example

The sample, ctos.c, includes code for processing client option commands.

Partial update

Open Client and Open Server supports the partial update of text and image
columns. A partial update allows you to specify the part of the text or image
field that you want to replace, delete, or insert at, and update that part only
instead of modifying the entire field. For more information about text and
image data handling, seethe Open Client Client-Library /C Reference Manual.

Note Currently, Adaptive Server does not support partial update of text or
image columns.,

Open Server set-up

This section discusses how Open Server must be set up to support partial
updates.

Server-Library/C Reference Manual 127

Partial update

sp_mda

SRV_T_BULKTYPE

128

sp_mda is astored procedure that retrieves metadata from the server. To
support partial updates, your Open Server application must define an sp_mda
stored procedure and specify the updatetext Syntax that an Open Client
application must use.

An Open Client application must invoke sp_mda using these parameters and
values:

Parameter Value Description

clienttype 5 5 indicates that the client is Client-Library.

mdaversion 1

clientversion 0 clientversion is an optional parameter that
indicates the client version. The default is 0.

If the server supports partial updates, sp_mda returns:

Parameter Value
mdinfo “UPDATETEXT”"
querytype 2
query updatetext_syntax
Example:
updatetext ? ? ? (NULL | ?} {NULL | 2}
where“?’" indicates the updatetext parameters.

For more information about the sp_mda stored procedure, see the Mainframe
Connect™ DB2 UDB Optionsfor IBM CICS and IMS Installation and
Administration Guide. For a sample implementation of sp_mda, see
$SYBASE/$SYBASE_OCS'sample/srvlibrary/updtext.c.

To correctly retrieve the partially updated data sent by the client, the Open
Server application must set SRV_T_BULKTYPE to SRV_TEXTLOAD,
SRV_UNITEXTLOAD, or SRV_IMAGELOAD. For moreinformation about
SRV_T BULKTYPE, see“SRV_T_BULKTYPE" on page 156.

Open Server

CHAPTER 2 Topics

Handlers

The SRV_LANGUAGE and SRV_BULK handlers have to beinstalled in
Open Server. Open Server uses SRV_LANGUAGE to receive the updatetext
statement from the Client-Library. SRV_BULK, onthe other hand, receivesthe
data sent through ct_send_data().

For more information about SRV_LANGUAGE and SRV_BULK, seethe
Open Client and Open Server Common Libraries Reference Manual.

Passthrough mode

An Open Server application that is acting as agateway between an Open Client
application and an Adaptive Server can pass TDS packets between client and
server without examining their contents. An Open Server that handles TDS
packetsin this way operates in passthrough mode.

Becausethe Open Server gateway application does not haveto unpack the TDS
information as it arrives from the client, and repacks information before
sending it to the Adaptive Server, passthrough mode is very efficient.

For Open Client Server 12.5.1 and earlier, passthrough mode ensures that the
negotiated packet sizeis correct by limiting the packet size requested by the
client to the maximum size supported by the Open Server.

When aremote server supporting server-specified packetsize sets a packetsize
larger than that configured in Open Server, the larger packetsize is used,
regardless of the configured SRV_S NETBUFSIZE.

There are two types of passthrough modes:
¢ Regular passthrough mode
e Event handler passthrough mode

Both types of passthrough modes use the passthrough routines
srv_recvpassthru, ct_sendpassthru, ct_recvpassthru, and srv_sendpassthru. The
differences are as follows:

* Inregular passthrough mode, the Open Server application recognizes
events and triggers event handlers. These event handlers are coded to call
the passthrough routines.

For more information on regular passthrough mode, see “ Regular
passthrough mode” on page 130.

Server-Library/C Reference Manual 129

Passthrough mode

* Inevent handler passthrough mode, the Open Server application does not
recognize most types of events on the connection. Instead, the full
passthrough event handler is triggered whenever anetwork read for the
connection completes. The full passthrough event handler is coded to call
the passthrough routines.

For more information on event handler passthrough mode, see “ Event
handler passthrough mode” on page 132.

DB-Library also provides routines to support passthrough mode. See the Open
Client DB-Library/C Reference Manual for details.

Regular passthrough mode
Initially, Sybase supported only thistype of passthrough mode.

In regular passthrough mode, Open Server recognizes events
(SRV_LANGUAGE, SRV_RPC, and so on) and triggersthe appropriate event
handlers. Individual event handlers must be coded to call passthrough routines.

Negotiating the TDS protocol level in passthrough mode

When Sybase clients and servers connect, they first agree upon the TDS
protocol level to use, usually the latest version of the protocol that both
programs recognize. See “Negotiated behavior” on page 119 for more
information on initial protocol negotiation.

When an Open Server gateway application operates in passthrough mode, the
TDS packets are created and interpreted by the remote Sybase client and
Adaptive Server—not by the gateway. Therefore, TDS negotiation occurs
between the two remote programs. The gateway must facilitate this negotiation
by relaying responses between the two parties. The TDS negotiation process
must occur insideaSRV_CONNECT event handler and involvesthefollowing
steps:

1 Set one of these properties:

e SRV_T _PASSTHRU, to indicate that the thread will use regular
passthrough mode

e SRV_T_FULLPASSTHRU, toindicate that the thread will use event
handler passthrough mode

You must set one of these propertiesfor srv_getloginfo and ct_setloginfo to
negotiate client/server capabilities correctly for passthrough mode.

130 Open Server

CHAPTER 2 Topics

2 srv_getloginfo — allocate aCS_LOGINFO structure and fill it with login
information from the client thread.

3 ct_setloginfo —prepare aCS_LOGINFO structure with thelogin
information retrieved in step 2.

4 If theclient application is using network-based authentication, perform
these steps to transfer the client’s security principal name. These steps are
reguired because the security principal nameis not part of the
CS_LOGINFO structure.

* Call srv_thread_props(..CS_GET, SRV_T_USER) to retrieve the
client’s security principal name.

e Call ct_con_props(..CS_SET, CS_USERNAME) to set the principal
name for the connection to the target server.

5 Login tothe remote server by calling ct_connect.

6 ct_getloginfo —transfer login response information from a
CS_CONNECTION structure to the newly alocated CS LOGINFO
structure.

7 srv_setloginfo — send the remote server’s response, retrieved in step 6, to
the client, then release the CS_LOGINFO structure.

Using regular passthrough mode

Regular TDS passthrough takes place inside any event handler except
SRV_ATTENTION, SRV_CONNECT, SRV_DISCONNECT, SRV_START,
or SRV_STOP.

Client requests arrive in a stream of one or more TDS packets. The handler
repeatedly calls srv_recvpassthru as long as the info argument remains set to
SRV_|_PASSTHRU_MORE. As each packet isreceived, the handler calls
ct_sendpassthru to pass the packet on to the remote Adaptive Server or Open
Server. The remote server receives exactly the same TDS stream it would
receive from a directly connected client.

Warning! Thelatest version of TDSintroduces multiple commandsin asingle
batch. Only the first command triggers an event handler. Open Server will not
call event handlers for the remaining commands.

Server-Library/C Reference Manual 131

Passthrough mode

A Client-Library routine, ct_recvpassthru, receives the TDS packets as they
arrive at the connection. The srv_sendpassthru Server-Library routine sends
the packet on to the client. The ct_recvpassthru routine retrieves another TDS
packet as long asit returns CS_PASSTHRU_MORE.

Example

The sample, fullpass.c, illustrates a passthrough mode gateway.

Event handler passthrough mode

In this type of passthrough mode, Open Server does not recognize most types
of events. Instead, Open Server invokes the full-passthrough event handler
each time a network read for the connection compl etes.

Event handler passthrough mode is designed to enable client/server
connections using per-packet security services (such as encryption) to use
passthrough mode.

Regular passthrough mode requires that Open Server interpret packets to
identify particular events. When packets are encrypted, thisis not possible.

To use event handler passthrough mode for athread:

» Codeafull-passthrough event handler and install it. For moreinformation,
see“Coding and installing afull passthrough event handler” on page 132.

e Enable event handler passthrough mode for athread by setting
SRV_T FULLPASSTHRU to CS_TRUE in the Open Server connection
handler. For more information, see “ Enabling event handler passthrough
mode for athread” on page 133.

e Cadll routines to negotiate the TDS protocol level between the client and
the target server. For more information, see “Negotiating the TDS
protocol level” on page 133.

Coding and installing a full passthrough event handler
The prototype for a full-passthrough event handler is:
CS_RETCODE CS PUBLIC func (SRV_PROC *sproc) ;

A full-passthrough event handler calls these routines to receive and send
packets:

132 Open Server

CHAPTER 2 Topics

* srv_recvpassthru
* ct_sendpassthru
* ct_recvpassthru

e srv_sendpassthru

You will not be able to forward attention events while performing a
srv_recvpassthru/ct_sendpassthru loop. You must add logic to the event-
handler code and attn-handler code so that an attentionevent is not forwarded
until after the full command has been forwarded to the remote server.

A full-passthrough event handler should return CS_SUCCEED to report
normal completion. A return value other than CS_SUCCEED killsthe current
Open Server thread.

To ingtall afull-passthrough event handler, call srv_handle with srv_handle’s
event parameter as SRV_FULLPASSTHRU and the handler parameter as the
address of the handler routine.

Enabling event handler passthrough mode for a thread

To enable event handler passthrough mode for a thread, set the
SRV_T_FULLPASSTHRU thread property to CS_TRUE in the Open Server
connection handler.

Once event handler passthrough mode is enabled, Open Server invokes the
full-passthrough handler each time a network read from the connection
completes.

No events of type SRV_LANGUAGE, SRV_RPC, SRV_BULK,
SRV_CURSOR, SRV_MSG, SRV_OPTION, or SRV_DYNAMIC are raised
for the thread.

SRV_ATTENTION events, however, are raised. The Open Server application
must install a SRV_ATTENTION handler to correctly handle cancel requests.

Negotiating the TDS protocol level

Gateway applications using event handler passthrough mode facilitate the
negotiation of the TDS protocol level between client application and target
server in exactly the same way as applications using regular passthrough mode.

Inside the application’s connection handler, after setting
SRV_FULLPASSTHRU to CS TRUE, call the srv_getloginfo, ct_setloginfo,
ct_getloginfo, and srv_setloginfo routines.

Server-Library/C Reference Manual 133

Processing parameter and row data

For more information on calling these routines, see “Negotiating the TDS
protocol level in passthrough mode” on page 130.

Processing parameter and row data

A note on terminology

The Open Server

134

The term parameter data refers to parameters retrieved from or returned to a
client. Some can be input parameters, while others can be output or return
parameters. Return parameters are processed in two steps: they are partially
processed when the Open Server application reads them into program
variables. The processing is completed when they are sent back to the client.

data processing model

In Open Server, three routines work together to retrieve parameter data and
formats from a client and to send row data, and return parameters and their
formats to aclient. These routines are srv_descfmt, srv_bind, and srv_xferdata.

An application usesthese routinesto processany client command that provides
parameters or requests results. RPC commands, language commands, cursor
commands, dynamic SQL commands, message commands, and negotiated
login commands fall into this category.

Each of the three routines takes a type argument, which indicates the type of
data being described, bound, or transferred. For example, type would be set to
SRV_CURDATA when describing the format of cursor command input
parameters, whereas type would be set to SRV_ROWDATA when processing
result rows. For alist of legal type values, see each routine's reference pagein
Chapter 3.

All threeroutinestake acmd argument aswell, which indicates the direction of
dataflow. A valueof CS_GET instructsthe Open Server applicationto retrieve
information from the client, while CS_SET instructs the application to return
resultsto aclient.

An application can use these routines to:

Open Server

CHAPTER 2 Topics

e Retrieveinput and return parameter information inside aSRV_RPC,
SRV_CURSOR, SRV_DYNAMIC, SRV_MSG, or SRV_CONNECT
event handler.

e Send back result row information inside a SRV_RPC, SRV_CURSOR,
SRV_DYNAMIC, SRV_LANGUAGE, or SRV_MSG event handler.

e Send back return parameter information inside a SRV_LANGUAGE or
SRV_RPC handler.

Retrieving parameters
To process parameters, an application must:

1 Call srv_numparams to determine how many parameters, if any, the
command includes.

2 Cadll srv_descfmt to obtain a description of each parameter. Among other
things, the description will indicate if the parameter isareturn parameter.
If itis, the retrieval process stops here. If the parameter is an input
parameter, the application must continue with steps 3 and 4.

3 Call srv_bind to provide program variablesin which to store the parameter
data coming over the network from the client.

4 Cadl srv_xferdata to transfer the client data into the application program
variables specified in step 3.

Return parameters contain no valid data when retrieved from a client. The
application fillsvalid datain when it returns the return parametersto the client.
Open Server transparently converts the return parameter format from the
program variable format to the client format.

Note that from within a SRV_LANGUAGE handler, an application can
“construct” return parameters out of an undifferentiated language stream
without having first retrieved actual parameters. See “ Returning parametersin
alanguage data stream” on page 138, for further explanation.

srv_descfmt and srv_bind are called oncefor each parameter, whilesrv_xferdata
is called once for the entire parameter stream. An application must not call
srv_xferdata until all parameters have been described and bound.

An application must invoke the three routines with their cmd arguments set to
CS_GET, asthe application retrieves information from the client.

Server-Library/C Reference Manual 135

Processing parameter and row data

Returning rows
The processing of row data requires three basic steps:
1 Describe each column in the row by calling srv_descfmt.

2 Indicate where the application has stored the row data and identify its
format by calling srv_bind.

3 Transfer the datafrom the application program variables specified in step
2 to theclient by calling srv_xferdata.

Thesrv_descfmt routine must be called oncefor each columnin arow; however
srv_xferdata and srv_bind routines are called as many times as there are result
rows. An application must not call srv_xferdata until all columns have been
described and bound.

An application must invoke the three routines with their cmd arguments set to
CS_SET asthe application returns results to the client.

Returni ng return parameters
The processing of return parameters requires two basic steps:

1 Indicate where the application has stored the return parameter data and
identify its format by calling srv_bind.

2 Transfer thereturn parameter data from the application program variables
specified in step 2 to the client by calling srv_xferdata.

An application must invoke the two routines with their cmd arguments set to
CS_SET asthe application returns results to the client.

If return parameters have been “ constructed” out of atext stream, they need to
be described, in addition to being bound and transferred. See “Returning
parametersin alanguage data stream” on page 138, for further explanation.

A closer look at describing, binding, and transferring

This section provides more detail on the describe, bind, and transfer processes.

136 Open Server

CHAPTER 2 Topics

Describing
The srv_descfmt routine gives an Open Server application the information it
needs to send back datato the client in the format the client expects.
Conceptualy, it conveys information about how the client viewed (CS_GET)
or will view the data (CS_SET).The srv_descfmt routine retrieves or sets a
variety of parameter and row column characteristics.
These characteristics include, among other information:
e The parameter or column name
e The parameter or column name length
e The parameter or column number, where the first parameter or column in

astream is numbered 1

e The parameter or column datatype
e Whether the parameter or column can be set to null
e Whether a parameter is areturn parameter
The clfmtp argument to srv_descfmt pointsto aCS_DATAFMT structure
containing thisinformation. For details, see “CS_DATAFMT structure” on
page 54.

Binding

To examine datait receivesfrom clients, an Open Server application must store
the datain local program variables. When an application calls srv_bind, it
associates parameter or column datawith alocal application program variable
and describes the format of that variable.

A call to srv_bind with cmd set to CS_GET instructs Open Server where to put
the data coming from the client. A call to srv_bind with cmd set to CS_SET
instructs Open Server where to find the data it is sending back to the client.

The osfmtp argument to srv_bind pointsto aCS DATAFMT structure
containing format information about the local program variables.

Server-Library/C Reference Manual 137

Processing parameter and row data

Transferring

The srv_xferdata routine moves datain and out of the local program variables
named in asrv_bind call. When cmd isset to CS_GET, acall to srv_xferdata
moves input parameter data from the client into the variables. When cmd is set
to CS_SET, theroutine pulls column and return parameter data out of thelocal
program variables and sendsiit to the client.

Note Although srv_senddone currently flushes formats and column
information to the network, it will not in future versions. Applications should
always use srv_xferdata to flush information to the network.

For more information on srv_hind, srv_descfmt, and srv_xferdata, see their
respective reference pages.

Automatic conversion

When an application retrieves data, Open Server converts the datato the local
format if the format in which the client sent the datain differs from the format
of the application’s local program variables. If the same situation arises when
an application sends data back to aclient, Open Server converts the datato the
client format.

Returning parameters in a language data stream

138

There is no notion of parametersin alanguage data stream. An Open Server
application equipped to parse a text stream, however, can “construct” return
parameters from theincoming stream. It can then load the parameterswith data
and send them back using the describe/bind/transfer procedures.

For example, aclient can send a Transact-SQL stored procedure query that
includes return parameters. An Open Server application expecting this query
can parse for the string “output = @var” (where var is the placeholder for the
return parameter) and send back format information and data for var.

An application can call srv_descfmt with cmd set to CS_SET and type set to
SRV_RPCDATA from within alanguage event handler only.

Open Server

CHAPTER 2 Topics

Example

The sample, ctos.c, processes parameter and column data using the
describe/bind/transfer series of calls.

Properties

Properties define aspects of an Open Server application’s behavior. Open
Server properties fall into three categories:

e Context properties

e Server properties

e Thread properties

Context and server properties pertain to the Open Server application as a

whole. They govern server-wide behavior and hold true for all client-server
connections.

Thread properties pertain to client and service threads. Most are only ableto be
retrieved, not set. An application can override certain server-wide attributes on
a per-connection basis by setting certain thread properties.

A programmer can tailor an Open Server application’s functionality by setting
properties. In addition, an application can retrieve certain properties when it
needs information.

You usecs_config, srv_props, and srv_thread_props, to set and retrieve context,
server, and thread properties, respectively.

See “Context properties” on page 140, “ Server properties’ on page 141 and
“Thread properties’ on page 148 for more information on each type of

property.

See the Open Client and Open Server Common Libraries Reference Manual
section on cs_config, and the srv_propsand srv_thread props reference pages
in this manual, for more information on setting and retrieving properties.

Server-Library/C Reference Manual 139

Properties

Context properties

Context properties are stored in aCS-Library CS_ CONTEXT structure. An
application sets or retrieves context properties using the CS-Library routine
cs_config. Seethe Open Client and Open Server Common Libraries Reference
Manual for information on this routine.

There are three kinds of context properties:
» Context properties specific to CS-Library

cs_config sets and retrieves the values of CS-Library-specific context
properties. With the exception of CS_LOC_PROP, properties set through
cs_config affect only CS-Library. CS-Library-specific context properties
are listed on the manual page for cs_config in the Open Client and Open
Server Common Libraries Reference Manual.

e Context properties specific to Client-Library

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set through ct_config affect only Client-Library. See
the Open Client Client-Library/C Reference Manual for moreinformation.

e Context properties specific to Server-Library

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set through srv_props affect only Server-Library.

The context properties that an Open Server application can set include:
e Theroutine Open Server calls when it detectsa CS-Library error.

e Localization information, including the Open Server’s national language,
character set, and sort order.

e Thelocation of a pointer to application data space. This property allows
applications to associate control information with Open Server’s context.
Open Server does not use this pointer; it is provided for the convenience
of Open Server application programmers.

These context properties can be both set and retrieved through the cs_config
routine. For more information on context properties and their associated
routines and structures, see the Open Client and Open Server Common
Libraries Reference Manual.

140 Open Server

CHAPTER 2 Topics

Server properties

Server propertiesare storedinaCS_CONTEXT structure. An application sets
or retrieves server properties using the Server-Library routine srv_props.

Server properties determine many aspects of an Open Server application’s
behavior, including its memory-all ocation routines, and the maximum number
of physical network connectionsit can establish.

For server properties to take effect, an application must set them prior to
initialization. Open Server raises an error if a server property is set following
initialization.

An application’sinitialization code must include these steps:

1 AllocateaCS CONTEXT structure, through acall to cs_ctx_alloc.

2 Cadll srv_version to set the Open Server version number. srv_version takes
apointer toaCS CONTEXT structure.

Call srv_props to set property defaults.
4 Cdl srv_init to initialize the server.
Start the server running with a call to srv_run.

Some properties can be set and retrieved, while others are set-only or retrieve-
only. srv_props on page 334 provides this information.

Table 2-25: Server properties

Property name Definition Notes

SRV_S ALLOCFUNC The address of the routine Open Server
will use to alocate memory.

SRV_S APICHK A Boolean indicating whether to enable | Many Server-Library
(CS_TRUE) or disable (CS_FALSE) routines internally call CS-
the validation of Server-Library Library routines. For this
arguments and state checking. reason, application

programmers who want
thorough argument and
state checking should set
the cs_config property
CS NOAPICHK to

CS FALSE.

Server-Library/C Reference Manual 141

Properties

Property name

Definition

Notes

SRV_S ATTNREASON

Thereason an Open Server application’s
attention handler was called.

Returns
SRV_ATTENTION if a
clientattentiontriggeredthe
SRV_ATTENTION event,
and SRV_DISCONNECT
if aclient disconnect
triggered the event.

SRV_S CERT AUTH

CS_CHAR
Specify the path to the file containing
trusted CA certificates.

The maximum alowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S CURTHREAD

The address of the active thread’s
internal control structure.

Some

SRV_S CURTHREAD
functionality becomes
disabled when

SRV_S PREEMPT isused
in conjunction with
threaded libraries.

SRV_S DEFQUEUESIZE

Deferred event queue size.

SRV_S DISCONNECT

Set thisproperty to CS TRUEto cal an
application’s SRV_ATTENTION event
handler when a client disconnects.

The SRV_ATTENTION
event handler can be called
at interrupt level, if the
client disconnect isdetected
at interrupt time.

SRV_S DSPROVIDER

The directory service provider name.
The default value is platform specific.
See the Open Client and Open Server
Configuration Guide for your platform.

The maximum alowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S DSREGISTER

Setto CS_TRUE toindicatethat Server-
Library should register itself with a
directory at start-up. Set to CS_FALSE
to prevent registration.

SRV_S ERRHANDLE

The address of the Open Server error
handler.

SRV_S FREEFUNC

The address of the routine Open Server
uses to free memory.

SRV_S IFILE

142

The name of theinterfacesfile available
for use by Open Server.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

Open Server

CHAPTER 2 Topics

Property name

Definition

Notes

SRV_S LOGFILE

The name of the log file Open Server
writes to.

The SRV_S LOGFILE
property can be set after
caling srv_init.

After srv_initis called,
setting the

SRV_S LOGFILE
property with bufpset to an
empty string ("") and buflen
set to O will closethelog
file.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S LOGSIZE

The maximum size of thelog file. If the
log exceeds this size, Open Server will
move the current contents of thelog file
to another file with the name
currentfilename_old and will truncate
the current log to O bytes.

SRV_S MSGPOOL

The number of messagesavailableto an
Open Server application at runtime.

Open Server applications
use messages through
srv_putmsgqg. A message
remainsin use until itis
received through
srv_getmsgg. The value of
an application’s
SRV_S MSGPOOL
configuration parameter
should bebased onitsuse of
these two routines.

SRV_S NETBUFSIZE

Server-Library/C Reference Manual

The maximum size of the network 1/0
buffer to be used by client connections.
Unless explicitly set,

SRV_S NETBUFSIZE is the default
maximum value of 8192 bytes.

For Open Client Server
12.5.1 and earlier, the size
of the network buffer is
determined at login time. If
asmaller sizeis requested,
Open Server doesnot resize
thememory buffer; itleaves
part of it unused. For this
reason, do not make the
valuelarger than required or
unused memory will be
allocated.

143

Properties

Property name

Definition

Notes

SRV_S NETTRACEFILE

Net-Library tracing written to thisfile.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S NUMCONNECTIONS

The maximum number of physical
network connections the Open Sever
application will accept.

A server-to-server
connection is only one
physical connection,
regardless of how many
subchannels are used.
Outgoing Client-Library
connections, for examplein
a passthrough Open Server
application, are limited by
the CS_MAX_CONNECT
property.
CS_MAX_CONNECT can
be set using ct_config().

SRV_S NUMMSGQUEUES

The number of message queues
available to the Open Server
application.

SRV_S NUMMUTEXES

The number of mutual exclusion
semaphores available to the Open
Server application.

SRV_S NUMREMBUF

The window size used on server-to-
server connections. It indicates the
maximum number of packetsthat can be
outstanding on alogical subchannel
before an acknowledgment is required.

SRV_S NUMREMSITES

The maximum number of remote server
sitehandlersthat can beactiveat agiven
time.

SRV_S NUMTHREADS

The maximum number of threads

available to an Open Server application.

SRV_S NUMUSEREVENTS

144

The number of user events an
application can define.

Open Server

CHAPTER 2 Topics

Property name

Definition

Notes

SRV_S PREEMPT

A Boolean. If CS_TRUE, Open Server
will use preemptive scheduling. If
CS_FALSE, Open Server uses non-
preemptive scheduling.

Preemptive scheduling is
not available on all
platforms. Use
srv_capability to determine
whether it isavailable.

When SRV_S PREEMPT
is used in conjunction with
threaded libraries, some
functionality of

SRV_S CURTHREAD
become disabled.

SRV_S REALLOCFUNC

The address of the routine Open Server
uses to reallocate memory.

SRV_S REQUEST CAP

The default client requeststhat the Open
Server application accepts.

See “Capabilities’ on page
24.

SRV_S RESPONSE_CAP

The default responses to the client that
the Open Server application supports.

See “Capabilities’ on page
24.

SRV_S RETPARAMS

Return parameters are sent if an error
occurs during execution

This server property can be
used to limit the behavior to
specific threads by using
the default (false).

SRV_S SEC KEYTAB

Server-Library/C Reference Manual

Thekeytab filename (including the path
name) for use with the DCE security
driver.

You can specify a principal
other than the currently
logged-in user who is
running the application.
The property
SRV_S SEC _PRINCIPAL
setsthe principal name. The
DCE utility dcecp alows
you to create akeytab file.
The keytab fileisan
ordinary UNIX file, so you
need to set permissions on
the file to restrict access.
Thefilemust bereadableby
theuser who startsthe Open
Server application. See
“Security services’ onpage
170 for more information.
The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

145

Properties

Property name

Definition

Notes

SRV_S SEC_PRINCIPAL

The principal name to use when
acquiring credentials for the Open
Server application.

Thevalueof thisproperty defaultstothe
Open Server application’s network
name, which can be specified through
Srv_init.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.
See “ Security services’ on
page 170 for more
information about this

property.

SRV_S SERVERNAME

The name of the Open Server
application.

Thisisthe name the Open
Server applicationisknown
by when it isup and
running. It is also the name
used to look up itslisten
address in the interfaces
file.

The maximum alowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S SSL_CIPHER

Comma-separated list of CipherSuite
names.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S SSL_LOCAL_ID

A structure containing afilenameand a
password used to decrypt the
information in the file.

The maximum allowable
length for this property is
SRV_MAXCHAR bytes.

SRV_S SSL_REQUEST _
CLIENT_CERT

Requires that the client provide a
certificate to log in to an Open Server
application.

SRV_S SSL_VERSION

Must be one of alist of defined values.

The defined values are:
e CS SSLVER 20
e CS SSLVER 30
¢ CS SSLVER TLS1

Adaptive Server only
accepts connections using
the default,

CS SSLVER TLSL.

SRV_S STACKSIZE

The size of the stack allocated for each
thread.

SRV_S TDSVERSION

146

The Tabular Data Stream protocol
version that Open Server usesto
negotiate all client connections.

See

“SRV_S TDSVERSION”
on page 147 for alist of
values.

Open Server

CHAPTER 2 Topics

Property name Definition Notes
SRV_S TIMESLICE The number of clock ticks an active See the srv_callback
thread consumes before the time dice reference page for

callback routineis called.

information on time slice
callbacks.

SRV_S TRACEFLAG

The type of tracing desired.

See

“SRV_S TRACEFLAG”
on page 148 for alist of
flags.

SRV_S TRUNCATELOG

A Boolean. If CS_TRUE, Open Server | The

truncates the log file during start-up. SRV_S TRUNCATELOG
property can be set after
caling srv_init.

SRV_S USERVLANG

A Boolean. If CS_TRUE, the Open
Server application’s native language is
used for error messages. If CS_FALSE,
theclient’snational languageisused for
€rror messages.

SRV_S VERSION

A character string that contains the
name, version date, and copyright
information of the Open Server Server-
Library in use.

SRV_S VIRTCLKRATE

The clock rate, in microseconds, per
tick.

SRV_S VIRTIMER

A Boolean. If CS_TRUE, the virtua
timer isenabled. If CS_FALSE, the
virtual timer is disabled.

SRV_S_TDSVERSION

During the client login process, Open Server negotiates with the client
application to agreeon a TDS version. The SRV_S TDSVERSION property
value determines Open Server’s starting point. The client agrees to
communicate at or below this starting point. Later on in the login process, the
Open Server application can renegotiate the TDS version for a particular
connection, using the SRV_T_TDSVERSION thread property. See “ Thread
properties’ on page 148 for details.

Table 2-26 describes the legal values for this property:

Server-Library/C Reference Manual 147

Properties

Table 2-26: Values for SRV_S_TDSVERSION

SRV_S_TDSVERSION value Meaning

SRV_TDSNONE Unknown version of TDS
SRV_TDS 4.0 Negotiation startsat TDS 4.0
SRV_TDS 4 0 2 Negotiation starts at TDS 4.0.2
SRV_TDS 4 2 Negotiation startsat TDS 4.2
SRV_TDS 4 6 Negotiation starts at TDS 4.6
SRV_TDS 495 Negotiation startsat TDS 4.9.5
SRV_TDS 5 0 Negotiation startsat TDS 5.0

SRV_S_TRACEFLAG

The SRV_S TRACEFLAG property isabitmap. Itsflags, which can be OR'd
together, are described in Table 2-27:

Table 2-27: Values for SRV_S_TRACEFLAG

Flag

Meaning

SRV_TR_ATTN

Open Server displaysinformation indicating whether the
Open Server application has received or acknowledged
an attention.

SRV_TR_DEFQUEUE

Open Server traces event queue activity.

SRV_TR_EVENT

Open Server displaysinformation about the eventsit has
triggered.

SRV_TR_MSGQ

Open Server traces message queue activity.

SRV_TR NETDRIVER

Open Server traces TCL Net-Lib driver requests.

SRV_TR_NETREQ

Open Server traces TCL requests.

SRV_TR_NETWAKE

Open Server traces TCL wakeup requests.

SRV_TR TDSDATA

Open Server displays TDS packet contentsin
hexadecimal and ASCII format. Thisisthe actual TDS
traffic between aclient and the Open Server application.

SRV_TR_TDSHDR

Open Server displays the TDS protocol packet header
information, such as packet type and length.

Thread properties

A thread is a piece of code that executes to accomplish a specific task or set of
tasks. Thereare several typesof Open Server threads. Thread properties define
aspects of athread’s behavior and set limits on its resources.

148

Open Server

CHAPTER 2 Topics

For more details on Open Server threads, see “ Multithread programming” on

page 109.

Only afew thread properties can be set, but all areretrievable. An application
calls srv_thread_props to retrieve and set a thread property value. Properties
that can be set are noted as such in the srv_thread_props reference page. An
application can retrieve and set thread properties at any point after
initialization.

Open Server assigns defaults for each thread property that can be set when it
creates threads at initialization time. See srv_thread props on page 435 for a
list of defaults.

Table 2-28: Thread properties

Property name

Definition

Notes

SRV_T_APPLNAME

The client application’s name.

SRV_T_BYTEORDER

The client’s requested byte-ordering
scheme. SRV_LITTLE_ENDIAN
indicates that the least significant byteis
the high byte. SRV_BIG_ENDIAN
indicates that the least significant byteis
the low byte.

SRV_T BULKTYPE

The type of bulk transfer being sent by
the client.

See“SRV_T_BULKTYPE”
on page 156 for alist of legal
values.

SRV_T_CHARTYPE

Thetype of character data representation.

See“SRV_T_CHARTYPE”
on page 157 for alist of legal
values.

SRV_T_CIPHER_SUITE

CS_CHAR*

The CipherSuite that is used to encrypt
and decrypt data exchanged during the
SSL -based session. The CipherSuiteis
negotiated during the connection
handshake.

SRV_T CLIB

The name of the library product used by
the client to connect to the Open Server
application.

SRV_T_CLIBVERS

Theversion of thelibrary product used by
the client to connect to the Open Server
application.

SRV_T_CLIENTLOGOUT

Server-Library/C Reference Manual

A Boolean. Indicates whether the client
completed an orderly or aborted logout,
where CS_TRUE indicates an orderly
logout.

This property can only be
retrieved from inside the
SRV_DISCONNECT event
handler.

149

Properties

Property name

Definition

Notes

SRV_T_CONVERTSHORT

A Boolean. Indicates whether to
automatically convert 4-byte datetime, 4-
byte floating point, and 4-byte money
datatypes to their 8-byte counterparts.

SRV_T_DUMPLOAD

A Boolean. Indicates whether to disallow
the use of dump/load and bulk insert for
this client connection.

SRV_T_ENDPOINT

Thefile descriptor or file handle of the
connected client. For subchannels, the
site handler end point value s returned.
SRV_T_ENDPOINT isequivalent to the
CS_ENDPOINT vauein Client-Library.

Valid for client threads, site
handlersand subchannels. Not
valid for service threads.

See“SRV_T_ENDPOINT”
on page 157 for an exampl e of
using SRV_T_ENDPOINT.

SRV_T _EVENT

The Open Server event the thread is
currently in.

See“SRV_T_EVENT” on
page 158 for alist of legal
values.

SRV_T_EVENTDATA

A generic data address associated with a
particular event raised by the Open
Server application.

Data address set using
srv_event.

SRV_T_FULLPASSTHRU

A Boolean. When set to CS_TRUE, the
SRV_FULLPASSTHRU event handler is
activated for the thread.

Can only be set inside the
Open Server application’s
connect handler.

The value of the
SRV_T_EVENT property is
SRV_FULLPASSTHRU
when retrieved inside the full-
passthrough event handler.

SRV_T _FLTTYPE

The type of floating point representation
used by the client.

See“SRV_T_FLTTYPE” on
page 158 for alist of legal
values.

SRV_T_GOTATTENTION

A Boolean. Indicates whether the client
thread has received an attention.

SRV_T_HOSTNAME

The name of the host machine from
which the client connection originated.

SRV_T_HOSTPROCID

150

The process ID of the client program.

Thisisthe operating system
process ID received in the
client login record.

Open Server

CHAPTER 2 Topics

Property name

Definition

Notes

SRV_T_IODEAD

A Boolean. Indicates whether athread’s
1/0 channdl isvalid.

CS_TRUE means athread
cannot successfully perform
1/0, CS_FALSE meansit can.
Open Server always returns
CS FALSE for service
threads.

SRV_T_LOCALE

A pointer to aCS_LOCALE structure

allocated by the Open Server application.

Usethis property to retrieve or
set localization information.

SRV_T_LOGINTYPE

The type of login record received.

See“SRV_T_LOGINTYPE”
on page 159 for alist of legal
values.

SRV_T_MIGRATED

A Boolean. Indicates whether a
connectionisanew or amigrated
connection. Thisread-only property isset
totruewhentheclient ismigrating or has
migrated to the server.

See“SRV_T_MIGRATED”
on page 159 for more details.

SRV_T_MIGRATE_STATE

Indicatesthe migration state of theclient.
It isaread-only property that any thread
can access.

See
“SRV_T_MIGRATE_STATE
" on page 159 for more details.

SRV_T_MACHINE

Server-Library/C Reference Manual

The host name of the machine the client
thread is running on.

151

Properties

Property name

Definition

Notes

SRV_T_NEGLOGIN

The type of negotiated login, if any, the
client has requested.

This property isabitmask that

can take any of five values:

* SRV_CHALLENGE
signastheclient’sintent to
negotiate through a
challenge/response
exchange.

* SRV_ENCRYPT signals
the client’s intent to pass a
symmetrically encrypted
password.

e SRV_SECLABEL
indicatesthat the client will
send security labels.

« SRV_APPDEFINED
indicates that an
application-defined login
handshakeisin use.

« SRV_EXTENDED_ENCRY
PT signalstheclient’sintent
to pass an assymetrically
encrypted password.

SRV_T_NOTIFYCHARSET

A Boolean. Indicates whether the client
should be notified when the character set
in use has changed.

SRV_T_NOTIFYDB

A Boolean. Indicates whether the client
should be notified of the outcome of ause
db Transact-SQL command.

SRV_T_NOTIFYLANG

A Boolean. Indicates whether the client
should be notified when the national
language in use has changed.

SRV_T_NOTIFYPND

The number of pending notificationsto
be delivered to the client.

This property is retrieve-only.

SRV_T_NUMRMTPWDS

The number of remote passwords.

SRV_T_PACKETSIZE

152

The negotiated packet size used to
communicate with the client.

The packet size is negotiated
transparently at login time.

Open Server

CHAPTER 2 Topics

Property name

Definition

Notes

SRV_T_PASSTHRU

A Boolean. Indicates whether the client
thread is operating in passthrough mode.

With version 11.1, this
property can be set inside the
application’s connect handler.

When set to CS_TRUE, the
srv_getloginfo and
ct_setloginfo routines
negotiate the client
connection’s capabilities
independently of the Open
Server’s capabilities. Since a
full-passthrough gateway does
not recognize different
command and result types, this
isthe desired behavior.

SRV_T_PRIORITY

The priority level at which Open Server
should schedule the thread.

This property is retrieve-only.
To set athread’s priority, call
srv_setpri.

SRV_T_PWD

The password string the client sent in the
login record.

For remote server connections,
this property returns the
remote server password.

SRV_T_RETPARAMS

Return parameters are sent if an error
occurs during execution.

If the SRV_S RETPARAMS
is set the RPC return behavior
appliesto all threads.

SRV_T_RMTCERTIFICATE

CS SSLCERT *
A pointer that describes the client
certificate.

SRV_T_RMTPWDS

An array of SRV_RMTPWDs.

See“SRV_T_RMTPWDS’ on
page 160 for the structure’s
definition.

SRV_T_RMTSERVER

Thelocal server name for client
connections. The remote server name for
server-to-server connections.

SRV_T_ROWSENT

The number of rows returned to theclient
inthis event.

SRV_T_SEC_CHANBIND

A Boolean indicating whether channel
binding is being used on the client/server
connection associated with this thread.

SRV_T_SEC_CONFIDENTIALITY

Server-Library/C Reference Manual

A Boolean indicating whether data
confidentiality is being used on the
client/server connection associated with
this thread.

Thisis usualy implemented
using data encryption.

153

Properties

Property name

Definition

Notes

SRV_T_SEC_CREDTIMEOUT

The number of seconds remaining for
which the credentialsremain valid on the
client/server connection associated with
this thread.

Possible values are:

¢ CS NO_LIMIT —never
expires

e CS _UNEXPIRED —
unexpired

e O—expired

« A positive number —the

number of seconds
remaining

SRV_T_SEC_DATAORIGIN

A Boolean indicating whether data
origination service is being used on the
client/server connection associated with
thisthread.

SRV_T_SEC_DELEGATION

A Boolean indicating whether delegation
is enabled by the client.

All work done in this thread
should usetheclient’'s
authorization level. Use the
SRV_T_USER property to
accessthe principal name. Use
the

SRV_T_SEC DELEGCRED
property to obtain the
delegated credentialsto usein
initiating a security session
with another security peer.

SRV_T_SEC_DELEGCRED

The delegated credentials (if any) of the
client in the current security session.

The

SRV_T_SEC DELEGATION
property indicates whether
delegation is enabled by the
client. If it isenabled, the
Open Server application may
obtain the delegated
credentials using the
SRV_T_SEC DELEGCRED

property.

SRV_T_SEC_DETECTREPLAY

A Boolean indicating whether detection
of message replay is being used on the
client/server connection associated with
thisthread.

SRV_T_SEC_DETECTSEQ

154

A Boolean indicating whether detection
of out-of-sequence messagesis being
used on the client/server connection
associated with this thread.

Open Server

CHAPTER 2 Topics

Property name Definition Notes

SRV_T_SEC INTEGRITY A Boolean indicating whether integrity | Thisisusually implemented
serviceis being used on the client/server | using a cryptographic
connection associated with this thread. signature.

SRV_T_SEC_MECHANISM

The local name of the security
mechanism being used on the
client/server connection associated with
this thread.

SRV_T_SEC_MUTUALAUTH

A Boolean indicating whether mutual
authentication was performed on the
client/server connection associated with
this thread.

SRV_T_SEC_NETWORKAUTH

A Boolean indicating whether network
authentication was performed on the
client/server connection associated with
this thread.

SRV_T_SEC_SESSTIMEOUT

The number of seconds remaining for
which the security session remains valid
onthe client/server connection associated
with this thread.

Possible values are:

e CS NO_LIMIT —never
expires

* CS _UNEXPIRED —
unexpired

e 0—expired

« A positive number —the

number of seconds
remaining

SRV_T_SESSIONID

Retrieves the session ID that the client
sends to Open Server. Also, setsthe
session ID to be sent to the client in the
SRV_CONNECT handler.

See“SRV_T_SESSIONID”
on page 161 for more details.

SRV_T _SSL_VERSION

The SSL/TLS protocol version that was
negotiated during the connection
handshake.

SRV_T_SPID

The thread's process identifier.

Thisisthe unique ID assigned
to thisthread. Thread IDs are
reused once athread has
exited.

SRV_T_STACKLEFT

Server-Library/C Reference Manual

The size of unused stack available to the
thread.

155

Properties

Property name

Definition

Notes

SRV_T_TDSVERSION

The version of TDStheclient thread is
using.

Setting this thread in the
SRV_CONNECT event
handler allows an Open Server
application to negotiate the
TDS version to some value
other than Open Server’s
default for the thread. See
“SRV_T_TDSVERSION” on
page 161 for alist of legal
values.

SRV T TYPE

The thread type.

See“SRV_T_TYPE” on page
162 for alist of legal types.

SRV_T USER

Theuser namethe client thread logged on
with.

SRV_T_USERDATA

A generic data address used for
application-specific purposes.

Can be set.

SRV_T_USESRVLANG

A Boolean. Set to CS_TRUE if error
messages should be in the server’s

Set thisto override the server-
wideSRV_S USESRVLANG

national language, CS_FALSE if inthe | property for athread.
client’s.
SRV_T_USTATE A string describing the current state of the | Can be set.

thread.

SRV_T_BULKTYPE

156

Client applications can transfer three types of bulk datato Open Server
applications: bulk copy data, text data, and image data. The
SRV_T_BULKTY PE property is used to set or retrieve the type of bulk data
transfer being initiated by aclient.

Table 2-29 describes the legal valuesfor the SRV_T_BULKTY PE thread
property:

Open Server

CHAPTER 2 Topics

Table 2-29: Values for SRV_T_BULKTYPE

Value Meaning

SRV_BULKLOAD The client is preparing to transfer bulk copy data.
SRV_TEXTLOAD The client is preparing to transfer text data.
SRV_IMAGELOAD The client is preparing to transfer image data.
SRV_UNITEXTLOAD The client is preparing to transfer unitext data.

Open Server cannot determine automatically the type of bulk data stream a
client sends. The Open Server application must obtain this information and
giveit to Open Server in advance of the actual SRV_BULK event, using the
srv_thread_props routine. The application then retrieves the data inside the
SRV_BULK event handler once the actual bulk regquest has been made.

For more information on bulk copy, see the Open Client and Open Server
Common Libraries Reference Manual . For moreinformation on text and image
processing, see “Text and image” on page 196.

SRV_T_CHARTYPE

A client application expects character data to be represented in a particular
way. An Open Server application can retrieve the client’s expected character
data representation by calling srv_thread_props with property set to

SRV_T CHARTYPE and cmd set to CS_GET. The client will return the
following values in *bufp:

Table 2-30: Character data representations

Value Meaning
SRV_CHAR_ASCII ASCII character format
SRV_CHAR_EBCDIC EBCDIC character format
SRV_CHAR_UNKNOWN Unknown character format

SRV_T_ENDPOINT
This example shows how to use SRV_T_ENDPOINT:

CS_INT ep;

/*

** Get the end point

*/

if (srv_thread props (spp, CS_GET, SRV T ENDPOINT, (CS_VOID *)&ep,
CS_SIZEOF (ep), (CS_INT *)NULL) == CS_FAIL)

{

return (CS_FAIL) ;

Server-Library/C Reference Manual 157

Properties

SRV_T_EVENT

SRV_T_FLTTYPE

158

A thread executes a particular event handler at any onetime. A thread can be
said to beinside an event when executing the event handl er associated with that
event. An Open Server application can retrieve the event that athread isin by
calling srv_thread_props with property set to SRV_T_EVENT and cmd set to
CS_GET. This procedure is useful if an application uses the same event
handler code for multiple events.

Possible events include:
e SRV_ATTENTION

« SRV_BULK

« SRV_CONNECT

« SRV_CURSOR

« SRV_DISCONNECT
« SRV_DYNAMIC

SRV_FULLPASSTHRU
SRV_LANGUAGE

« SRV_MSG
« SRV_OPTION
« SRV_RPC

« SRV_START
« SRV_STOP

» User-defined events

For more information on events, see “ Events’ on page 92.

A client application expectsfloating point datato be represented in a particular
way. An Open Server application can retrieve the client’s floating point
representation by calling srv_thread_props with property set to

SRV_T FLTTYPE and cmd set to CS_GET. The client returns one of the
following values in the address space to which bufp points.

Open Server

CHAPTER 2 Topics

e SRV_FLT_IEEE - |EEE floating point format.

e« SRV_FLT_ND5000 — ND5000 floating point format.

e SRV_FLT_VAX -VAX ‘D’ floating point format.

e SRV_FLT_UNKNOWN —unknown floating point format.

SRV_T_LOGINTYPE

An Open Server application can receive any of several types of thread login
recordsduring thelogin process. The SRV_T_LOGINTY PE property indicates
the login type. The application can call srv_thread_props with property set to
SRV_T_LOGINTYPE and cmd set to CS_GET to retrieve the login type,
which is returned in the buffer to which bufp points. Table 2-31 describes each
login type:

Table 2-31: Thread login types

Value Login type

SRV_SITEHANDLER A site handler login request from aremote server.
SRV_SUBCHANNEL A site handler subchannel login from aremote server.
SRV_CLIENT A login request from a client application.

SRV_T_MIGRATED

A Boolean property that indicates whether a connection is anew connection or
amigrated connection. Thisread-only property is set to true when the client is
migrating or has migrated to the server. This sample code retrievesthe value of
SRV_T_MIGRATED:

CS_RETCODE ret;

CS_BOOL migrated;

status = srv_thread props(sp, CS_GET, SRV_T MIGRATED,
&migrated, sizeof (migrated), NULL) ;

See “ Connection migration” on page40and “SRV_T_MIGRATED” on page
159 for more details.

SRV_T_MIGRATE_STATE

SRV_T_MIGRATE_STATE indicates the migration state of the client. Itisa
read-only property that any thread can access. The possible migration states
are

Server-Library/C Reference Manual 159

Properties

State Value Description

SRV_MIG_NONE 0 Thereis no migration in progress.
SRV_MIG_REQUESTED 1 A migration has been requested by the server.
SRV_MIG_READY 2 The client has received the request and is ready to migrate.
SRV_MIG_MIGRATING 3 The client is now migrating to the specified server.
SRV_MIG_CANCELLED 4 The migration request has been cancelled.
SRV_MIG_FAILED 5 The client failed to migrate.

SRV_T_RMTPWDS

160

SRV_MIG_STATE isan enumerated datatypethat has been added to model the
SRV_T_MIGRATE_STATE property. SRV_MIG_STATE is declared as:

typedef enum

{

SRV_MIG NONE,
SRV_MIG REQUESTED,
SRV_MIG READY,
SRV_MIG MIGRATING,
SRV_MIG CANCELLED,
SRV_MIG FAILED

} SRV_MIG_STATE;

This sample code shows how you can retrieve SRV_T_MIGRATE_STATE
values; in case of a successful migration, the client exits and the
SRV_DISCONNECT event handler iscalledwithaSRV_MIG_MIGRATING
status:

CS_RETCODE ret;

SRV_MIG STATE migration state;

ret = srv_thread props(sp, CS_GET, SRV_T MIGRATE_STATE,
&migration state, sizeof (migration state), NULL) ;

if (ret != CS_SUCCEED)

{

See" Connection migration” on page40and“SRV_T_MIGRATE_STATE” on
page 159 for more details.

An application usesthe SRV_T_RMTPWDS property to obtain
name/password pairs for aremote server. The pairsare stored in a
SRV_T_RMTPWD structure which is defined as follows:

typedef struct srv_rmtpwd

Open Server

CHAPTER 2 Topics

SRV_T_SESSIONID

CS_INT servnamelen;
CS_BYTEservname [CS_MAX NAME] ;
CS_INTpwdlen;
CS_BYTEpwd [CS_MAX_ NAME] ;

} SRV_RMTPWD;

The SRV_T_SESSIONID isathread property that retrievesthe session ID that
the client sends to Open Server. An Open Server application can also set the
SRV_T_SESSIONID property using the srv_thread_props() function, given
that:

e Thesrv_thread_props(CS_SET, SRV_T_SESSIONID) call is madeinside
the SRV_CONNECT event handler and,

* Theclient supports connection migration or high availability.
This sample code setsthe SRV_T_SESSIONID property:

CS_RETCODE ret;

CS_SESSIONID hasessionid;

ret = srv_thread props(sp, CS_SET, SRV_T SESSIONID,
hasessionid, sizeof (hasessionid), NULL) ;

Note Inversion 15.0 ESD#14 and earlier, for HA-failover, you must program
an srv_negotiate() sequence to send the session ID to the client.

SRV_T_TDSVERSION

During the client login process, Open Server negotiates with the client
application to agree on a TDS version for all threads. The

SRV_S TDSVERSION property value determines Open Server’s starting
point. The client agrees to communicate at or below this starting point. See
“Thread properties’ on page 148 for details onthe SRV_S TDSVERSION
property. Later on in the login process, the Open Server application can
renegotiate the TDS version for a particular thread, using the
SRV_T_TDSVERSION property.

Table 2-32 describes the legal values for this property:

Server-Library/C Reference Manual 161

Registered procedures

SRV_T_TYPE

Table 2-32: Values for SRV_T_TDSVERSION

SRV_T_TDSVERSION value

Meaning

SRV_TDSNONE

Unknown version of TDS

SRV_TDS 4.0 Negotiation startsat TDS 4.0
SRV_TDS 4 0 2 Negotiation startsat TDS 4.0.2
SRV_TDS 4 2 Negotiation startsat TDS 4.2
SRV_TDS 4 6 Negotiation startsat TDS 4.6
SRV_TDS 495 Negotiation startsat TDS 4.9.5
SRV_TDS 5 0 Negotiation startsat TDS 5.0

There are several types of Open Server threads. The SRV_T_TY PE thread
property indicates the type of thread. An application can retrieve the thread's
type by calling srv_thread_props with property set to SRV_T_TYPE and cmd

setto CS_GET.

Table 2-33 identifies the legal thread types:

Table 2-33: Thread types

Value Thread type

SRV_TCLIENT A client thread

SRV_TSITE A site handler thread

SRV_TSUBPROC A remote server connection over a site handler thread
SRV_TSERVICE A service thread

See “Multithread programming” on page 109 for more information about
thread types.

Registered procedures

162

A registered procedure is a piece of code identified by a name. When an
application registers a procedure, it maps the procedure name to a routine, so
that when Open Server detects this procedure name in an incoming RPC data
stream, it can call a specific routine immediately without raising a SRV_RPC
event.

Open Server

CHAPTER 2 Topics

When an Open Server receives an RPC, Open Server looks up the procedure
namein thelist of registered procedures. If the name isregistered, the runtime
system executes any existing routine associated with the registered procedure.
If the procedure name is not found in the list of registered procedures, Open
Server callsthe SRV_RPC event handler.

Standard remote procedure calls

An Open Server application processes a conventional RPC from within the
application’s SRV_RPC event handler. The handler code must parse the RPC
data stream and retrieve the RPC name, the number of parameters, the
parameter formats, and the parameter valuesin the process. The handler can
then take actions based on these values. A SRV_RPC event handler must be
coded for al possible RPCs the application programmer anticipateswill come
over the network.

Advantages of registered procedures

Registered procedures simplify RPC handling in an Open Server application
for these reasons:

* Registered procedures consolidate code in one place. They are executable
objectsthat an Open Server application can call from other event handlers
in addition to the SRV_RPC event handler.

« Registered procedures can be created at any time when the server is
running, through Server-Library calls or external Client-Library or DB-
Library cals. The SRV_RPC event handler, by contrast, must be coded in
advance of starting up the server.

« Registered procedures provide automatic datatype checking and require
no parsing on the part of the Open Server application code.

« Clientscan request notification when aregistered procedure executes. The
“notification” consists of:

e The name of the registered procedure

e The parameter values associated with this execution of the registered
procedure

e Thenoatification request can beissued internally with Server-Library cals
or externally with Client-Library or DB-Library calls.

Server-Library/C Reference Manual 163

Registered procedures

e Clientscanrequest alist of registered proceduresor alist of the procedures
for which they have requested notifications.

Notification procedures

Without any programmer-supplied code, an Open Server application allows
Client-Library or DB-Library clients to create registered procedures, execute
them, and receive notification when they execute.

Registered procedures are not required to have an executable routine in the
Open Server application. In fact, registered procedures created by DB-Library
or Client-Library calls cannot call aroutinein Open Server. A registered
procedure that has no executable routine associated with it iscalled a
“notification procedure” becauseits sole purpose is to notify clients watching
for it to execute.

Client applications communicate with each other through any Open Server
application by using notification procedures.

Although you do not need to write any code to enable this feature, you may
want to install a callback handler to disable or regulate the use of registered
procedures. See“ Using callback handlerswith registered procedures’ on page
167, for details.

Creating registered procedures

Open Server applications can create both standard registered procedures and
notification procedures. Client-Library and DB-Library applicationscan create
notification procedures. For information on how to create registered
procedures using Client- Library routines, see the Open Client Client-
Library/C Reference Manual.

The mechanics of registered procedures

This section provides information on how to create and execute registered
procedures from within an Open Server application.

Registering procedures
Registering a procedure through Open Server calls requires these steps:

164 Open Server

CHAPTER 2 Topics

1 Call srv_regdefine to define the procedure name and map the name to the
function to be called when the procedure is executed.

2 Cadll srv_regparam to describe the parameter or parameters for the
procedure being defined.

Call srv_regcreate to complete the registration of a procedure.

4 Cal srv_regdrop to unregister a procedure.

Executing registered procedures

Open Server executes registered procedures in response to a client or remote
Adaptive Server RPC, if the RPC has been registered. However, an Open
Server application can also explicitly execute aregistered procedure, instead of
executing it in response to an RPC. For example, an application can
synchronize the activity of multiple clients by executing a particular
notification procedure at a particular point in the application.

Explicitly executing a registered procedure also requires several steps. They
are asfollows:

1 Call srv_reginit to begin executing a registered procedure. This routine
specifies the name of the registered procedure to be executed. The Open
Server application also usesthisroutine to determine whether one or al of
the client threads on the notification list will be notified.

2 Cadll srv_regparam to supply the parameter data for the execution.

3 Call srv_regexec to actually execute the registered procedure.

Maintaining lists

An Open Server application maintains lists of all registered procedures and
which clients to notify when a particular registered procedure executes. This
notification happens automatically. The following routines pertain to list
maintenance:

e srv_reglist —returns alist of all the procedures registered in the Open
Server application.

e srv_regwatchlist —returns alist of all registered procedures for which the
named client thread indicates notification requests are pending.

e srv_regwatch —adds athread to the notification list for aregistered
procedure.

Server-Library/C Reference Manual 165

Registered procedures

e srv_regnowatch —removesaclient from the notification list for aspecified
registered procedure.

* srv_reglistiree —freesaSRV_PROCLIST structure previously allocated by
srv_reglist Or srv_regwatchlist.

System registered procedures

166

Every Open Server application contains built-in registered procedures, called
system registered procedures. The runtime system creates them when the
server starts up. The system registered procedures are described in Chapter 4,
“System Registered Procedures’ Some of these procedures are useful for
administering an Open Server application interactively. For example, you can
use sp_who and sp_ps to list active server processes and sp_terminate to
destroy a process.

Client applications can execute system registered procedures to perform the
following operations:

» Getalist of registered procedures

» Execute aregistered procedure

» Request notification of aregistered procedure’s execution
» Get alist of notification requests

Most system registered procedures map to an equivalent Open Server routine.
An Open Server application and a client can request the same kind of
information through distinct routines.

Table 2-34 matches each system registered procedure to the corresponding
Server-Library routine, if applicable:

Open Server

CHAPTER 2 Topics

Table 2-34: System registered procedures and corresponding Server-

Library routines

System registered procedure

Server-Library routine

Sp_ps

N/A

sp_regcreate

srv_regcreate/srv_regdefine

sp_regdrop

srv_regdrop

sp_reglist

srv_reglist

sp_regnowatch

srv_regnowatch

sp_regwatch

srv_regwatch

sp_regwatchlist

srv_regwatchlist

sp_serverinfo N/A
sp_terminate Srv_termproc
sp_who N/A

Using callback handlers with registered procedures

Asnoted in Table 2-34, several of the built-in registered procedures parallel
Server-Library and DB-Library routines that create, delete, and execute
registered procedures. These procedures make it possible to implement a
security system for registered procedures by installing a callback handler that
executes whenever aregistered procedure is about to execute. When a client
application executes a system registered procedure or one of the parallel
Client-Library or DB-Library routines, the callback handler executes. If it
returns SRV_S INHIBIT, the registered procedure does not execute.

/*
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

CS_BOOL
SRVPROC

Parameters:
spp - Handle to the current client connection.

For example, to prevent clients other than “sa’ from executing a procedure
named “reinitialize”, the registered procedure callback handler could contain

the following code:

CS_TRUE Allow the user to execute
CS_FALSE Disallow execution.

rpc_permission (spp)

Server-Library/C Reference Manual

Stop users other than “sa” from executing the “reinitialize”
registered procedure.

167

Registered procedures

168

CS_INT ulen; /* User name length */
CS_INT rlen; /* RPC name length */
CS_CHAR *rname; /* Pointer to the RPC name */

CS_CHAR user[256]; /* Buffer for the user name */

/*

** Get the name of the rpc command

*/

if ((rname = srv_rpcname (spp, &rlen)) == (CS_CHAR *)NULL)

{

return (CS_FALSE) ;

}

/*

** Get the user name.

*/

if (srv_thread props(spp, CS GET, SRV_T USER,
(CS_VOID *)user,CS SIZEOF (user), &ulen) == CS FAIL)

{

return (CS_FALSE) ;

}
/*

** Tf either the user name or the rpc name is NULL,
** jindicate an error.

*/

if (rlen <= 0 || ulen <= 0)

{

error (“API error”) ;
return (CS_FALSE) ;

/* Null terminate the user name buffer */
user [ulen] == ‘\0’;

/*
** Compare the RPC name and User name for permission.
*/
if ((strcmp(rname, “reinitialize”) == 0) &&
(strcmp (user, “sa”) == 0))

{

return (CS_TRUE) ;

}

return (CS_FALSE) ;

Open Server

CHAPTER 2 Topics

Example

The sampleregproc.cillustrates an Open Server application’s use of registered
procedures.

Remote procedure calls

A remote procedure cdl, or RPC, isamechanism by which aclient application
communicates with an Open Server application. Typically, the client issuesthe
RPC to obtain information from the Open Server application. An RPC consists
of aname and often, but not always, parameters. For example, a department
store application could return a customer’s name and address in response to an
RPC called get_cust. This RPC could take one parameter, a customer |1D
number.

When aclient sends an RPC, Open Server checks to see whether the RPC is
registered. A registered procedureis a special kind of RPC that Open Server
recognizes and executes directly without calling an application’s SRV_RPC
event handler. For moreinformation on registered procedures, see“ Registered
procedures’ on page 162.

If the RPC is not registered, Open Server triggers a SRV_RPC event. From
within the SRV_RPC event handler, the application can retrieve the RPC's
name, and parameters if any, and respond appropriately. The event handler is
coded to verify the names of all possible RPCs the client could send and the
number of parameters each uses. The handler includes code for responding to
each RPC and returnsthe error information to theclient if it does not recognize
the RPC.

From within its SRV_RPC event handler, the application should perform the
following steps:

1 Cadll srv_rpcname to retrieve the RPC name. (An application can also
chooseto retrieve the RPC number, owner, and associated database, using
srv_rpcnumber, srv_rpcowner, and srv_rpcdb, respectively.) If no RPC by
that name exists, or the number, owner, or database information are
invalid, the application returns error information through srv_sendinfo.

Server-Library/C Reference Manual 169

Security services

Example

2 Verify that the appropriate number of parameters were sent by calling
srv_numparams. |f any of the parameter informationisinvalid, return error
information through srv_sendinfo.

3 Processthe parameters by calling srv_descfmt, srv_bind, and srv_xferdata.
For details, see “ Processing parameter and row data” on page 134.

4 Return any datathe client expects by calling srv_descfmt, srv_bind, and
srv_xferdata. For details, see “ Processing parameter and row data” on
page 134.

RPC parameters are passed either by name or by position. If the RPC is
invoked with some parameters passed by name and some parameters passed
positionally, an error will result.

An application could register all its procedures and use the SRV_RPC event
handler to trap errors. Open Server would only call the SRV_RPC event
handler if the client sent an unregistered and therefore invalid RPC. The
SRV_RPC event handler, then, would use srv_sendinfo to inform the client that
it had issued aninvalid RPC.

The sample, regproc.c, illustrates remote procedure calls.

Security services

170

Security services allow Open Server applicationsto use third-party distributed
security to authenticate users and protect data asit is transmitted between
clientsand servers.

Check your Open Client and Open Server Configuration Guide for the
distributed security service providers that are available on your platform.

The security services available from a particular provider are referredto asa
security mechanism. An Open Server application can support multiple security
mechanisms, depending on availability. Open Server applications select
security mechanisms on a per client-server dialog basis (based on client
connection requests).

You can use Open Server’s security services to:

Open Server

CHAPTER 2 Topics

e Access credentials that are established on a system.

Credentials are the data that is transferred between peers (clients and
servers) to establish the identity of a peer.

e Communicate the requested security mechanism during dialog
establishment.

e Establish a security session with aremote client or server.

The security servicesare negotiated during security session establishment.
Security sessions map directly to client dialogs.

e Communicate opaque tokens over adialog to allow a security mechanism
to communicate with its peer component. These tokens are sent during
session establishment, and, if required, can be used for per-packet security
services.

A token isahit string generated by the security mechanism for security
information exchange between peers. A token may be cryptographically
protected.

e Bind channdl identification information to a security session.

« Digitally sign tokens to assure the origin of tokens.

Security service properties
Network security services can be split into three broad categories:
« Login authentication services
e Per-packet security services

e Secure Sockets Layer (SSL) encryption

Login authentication services

The fundamental security serviceis login authentication, or confirming that
users are who they say they are. Login authentication involves user namesand
passwords. Users identify themselves by their user name, then supply their
password as proof of their identity.

Server-Library/C Reference Manual 171

Security services

172

In Sybase applications, each connection between aclient and a server has one
user name associated with it. If the application uses a security mechanism, then
Sybase uses the mechanism to authenti cate this user name when the connection
is established. The advantage of this serviceis that the user name/password
pairs can be managed in a central repository, and not in the system catal ogs of
individual servers.

When an application requests to connect to a server using network-based
authentication, Client-Library queries the connection’s security mechanism to
confirm that the given user name represents an authenticated user. This means
that users do not have to supply a password to connect to the server. Instead,
users authenticate themselves to the network security system before the
connection attempt is made. When connecting, Client-Library obtains a
credential token from the security mechanism and sendsit to the server in lieu
of apassword. The server then passes the token to the security mechanism
again to confirm that the user name has been authenticated.

The following properties are related to login authentication:

Table 2-35: Properties that control login authentication

Property Description

CS_USERNAME Specifies the user name to connect with.

CS SEC Enables network-based user authentication.

NETWORKAUTH

CS SEC Tells whether the user’s credential s have expired.

CREDTIMEOUT

CS SEC Tells whether the session between the client and the server

SESSTIMEOUT has expired.

CS SEC Set by client applications to request that the server

MUTUALAUTH authenticate itself to the client.

CS SEC Set by client applications to permit a gateway server to

DELEGATION connect to aremote server by using the client’s delegated
credential token.

CS SEC Used by gateway applications to forward a delegated

CREDENTIALS credential token from the gateway'’s client to aremote server.

Network-authentication is supported by all security mechanisms. Credential
and session timeouts are supported by some but not all security mechanisms.
See the Open Client and Open Server Configuration Guide for information on
which services are supported by which security mechanisms.

See the Open Client Client-Library/C Reference Manual for more information
about these security services, and about use of security servicesin client
applications.

Open Server

CHAPTER 2 Topics

Per-packet security services

In some environments, distributed applications have to deal with the fact that
the network is not physically secure. For example, unauthorized parties can
listento adialog by attaching analyzersto a physical line or capturing wireless
transmissions.

In these environments, use applications protection and authentication of
transmitted data to assure a secure dialog.

The following properties control the use of the various per-packet services:

Table 2-36: Data authentication properties

Property Description

CS SEC Enables data confidentiality service.

CONFIDENTIALITY Data confidentiality encrypts al transmitted data and
assures that strangers cannot understand in-transit data.

CS SEC Enables data integrity service.

INTEGRITY Data integrity service assures that attempts to tamper
with in-transit data are detected.

CS SEC Enables data origin stamping.

DATAORIGIN Data origin stamping assures that received data was
really sent by the client or the server.

CS SEC Enables replay detection service.

DETECTREPLAY Replay detection assures that attempts by strangersto
replay captured transmissions are detected.

CS SEC Enables sequence verification service.

DETECTSEQ Sequence verification detectstransmissionsthat arrivein
adifferent order than they were sent.

CS SEC Enables channel binding service.

CHANBIND Channel binding stamps each transmission with an
encrypted description of the client’s and server's
addresses.

Note Applicationsthat use the services described in this section incur a per-
packet overhead on all communication between the client and the server. Data
authenti cation services should not be used unless application security is more
important than application performance.

All per-packet services will perform one or both of the operations below for
each TDS packet to be sent over a connection:

e Encryption of the packet’s contents

Server-Library/C Reference Manual 173

Security services

SSL overview

SSL handshake

» Computation of adigital signaturethat encodesthe packet contentsaswell
as other needed information.

If an application selects multiple per-packet services, each operation is
performed only once per packet. For example, if the application selectsthe data
confidentiality, sequence verification, data integrity, and channel binding
services, then each packet is encrypted and accompanied by adigital signature
that encodes the packet contents, packet sequence information, and a network
channel identifier.

See the Open Client Client-Library/C Reference Manual for more information
about these security services, and about use of security servicesin client
applications.

SSL isan industry standard for sending wire- or socket-level encrypted data
over client-to-server and server-to-server connections. Before the SSL
connection is established, the server and the client exchange a series of 1/0
round trips to negotiate and agree upon a secure encrypted session. Thisis
called the SSL handshake.

When a client application requests a connection, the SSL -enabled server
presentsits certificate to prove itsidentity before datais transmitted.
Essentially, the SSL handshake consists of the following steps:

e Theclient sends a connection request to the server. The request includes
the SSL (or Transport Layer Security, TLS) options that the client
supports.

e Theserver returnsits certificate and a list of supported CipherSuites,
which includes SSL/TL S support options, the algorithms used for key
exchange, and digital signatures.

» A secure, encrypted session is established when both client and server
have agreed upon a CipherSuite.

For more specific information about the SSL handshake and the SSL/TLS
protocol, seethe Internet Engineering Task Force Web siteat http://www.ietf.org.

SSL in Open Client and Open Server

174

SSL provides severa levels of security.

Open Server

CHAPTER 2 Topics

SSL filter

* When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any datais transmitted.

e Oncethe SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

e A comparison of the server certificate’s digital signature can determineif
any information received from the server was modified in transit.

When establishing a connection to an SSL-enabled Adaptive Server, the SSL
security mechanism is specified as afilter on the master and query linesin the
interfaces file (sgl.ini on Windows). SSL is used as an Open Client and Open
Server protocol layer that sits on top of the TCP/IP connection.

The SSL filter is different from other security mechanisms, such as DCE and
Kerberos, which are defined with SECHMECH (security mechanism) linesin
the interfaces file (sgl.ini on Windows). The master and query lines determine
the security protocols that are enforced for the connection.

For example, atypical interfacesfile on aUNIX machine using SSL lookslike
this:
[SERVER]

query tcp ether hostname, port ssl
master tcp ether hostname, port ssl

A typical sgl.ini file on Windows using SSL looks like this:
[SERVER]

query=TCP, hostname, port, ssl
master=TCP, hostname, port, ssl

where hostnameis the name of the server to which the client is connecting and
port isthe port number of the host machine. All connection attemptsto amaster
or query entry in the interfaces file with an SSL filter must support the SSL
protocol. A server can be configured to accept SSL connections and have other
connections that accept plain text (unencrypted data), or use other security
mechanisms.

For example, an Adaptive Server interfaces file on UNIX that supports both
SSL -based connections and plain-text connections looks like:

SYBSRV1
master tcp ether hostname 2748 ssl

Server-Library/C Reference Manual 175

Security services

query tcp ether hostname 2748 ssl
master tcp ether hostname 2749

Inthisexamples, the SSL security serviceisspecified on port number 2748. On
SYBSRV1, Adaptive Server listensfor clear text on port number 2749, which
iswithout any security mechanism or security filter.

Validating the server by its certificate

Any Open Client and Open Server connection to an SSL-enabled server
requires that the server have a certificate file, which consists of the server’s
certificate and an encrypted private key. The certificate must also be digitally
signed by a CA.

Open Client applications establish a socket connection to Adaptive Server
similarly to theway that existing client connections are established. Before any
user datais transmitted, an SSL handshake occurs on the socket when the
network transport-level connect call compl eteson the client side and the accept
call completes on the server side.

To make a successful connection to an SSL-enabled server:

» The SSL-enabled server must present its certificate when the client
application makes a connection request.

» Theclient application must recognizethe CA that signed the certificate. A
list of all “trusted” CAsisin the trusted rootsfile. See “ The trusted roots
file” on page 178.

» For connections to SSL-enabled servers, the default behavior isto
compare the common namein the server’s certificate with the server name
in the interfacesfile. In Shared Disk Cluster (SDC) environment, aclient
may specify the SSL certificate common name independent of the server
name or the SDC instance name. For information about common name
validation in an SDC environment see “Common name validation in an
SDC environment” on page 177.

When establishing a connection to an SSL -enabled Adaptive Server, Adaptive
Server loads its own encoded certificates file at start-up from:

UNIX — $SYBASE/$SYBASE_ASE/certificates/servername.crt
Windows — %SYBASE%\%SYBASE ASE%o\certificates\servername.crt

where servername is the name of the Adaptive Server as specified on the
command line when starting the server with the -S flag or from the server’s
environment variable $DSLISTEN.

176 Open Server

CHAPTER 2 Topics

Other types of servers may storetheir certificatein adifferent location. Seethe
vendor-supplied documentation for the location of your server’s certificate.

Common name validation in an SDC environment

Syntax for UNIX

Syntax for Windows

The default behavior for SSL validation in Open Client and Open Server isto
compare the common name in the server’s certificate with the server name
specified by ct_connect(). InaShared Disk Cluster (SDC) environment, aclient
may specify the SSL certificate common name independent of the server name
or the SDC instance name. A client may connect to an SDC by its cluster
name—which represents multiple server instances—or to a specific server
instance.

Because the client can use the transport address to specify the common name
used in the certificate validation, the ASE SSL certificate common name can
be different from the server or cluster name. The transport address can be
specified in one of the directory serviceslike the interfacesfile, LDAP or NT
registry, or through the connection property CS_SERVERADDR.

Thisisthe syntax of the server entriesfor the SSL -enabled ASE and cluster for
UNIX:

CLUSTERSSL

query tcp ether hostnamel 5000 ssl="CN=namel"
query tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname3 5000 ssl="CN=name3"
query tcp ether hostname4 5000 ssl="CN=name4"

ASESSL1
master tcp ether hostnamel 5000 ssl="CN=namel"
query tcp ether hostnamel 5000 ssl="CN=namel"

ASESSL2
master tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname2 5000 ssl="CN=name2"

ASESSL3
master tcp ether hostname3 5000 ssl="CN=name3"
query tcp ether hostname3 5000 ssl="CN=name3"

ASESSL4
master tcp ether hostnamel 5000 ssl="CN=name4"
query tcp ether hostnamel 5000 ssl="CN=name4"

Thisisthe syntax of the server entriesfor the SSL -enabled ASE and cluster for
Windows:

Server-Library/C Reference Manual 177

Security services

The trusted roots file

178

[CLUSTERSSL]

query=tcp, hostnamel, 5000, ssl="CN=namel"
query=tcp, hostname2,5000, ssl="CN=name2"
query=tcp, hostname3,5000, ssl="CN=name3"
query=tcp, hostname4,5000, ssl="CN=name4"

[ASESSL1]
master=tcp,hostnamel, 5000, ssl="CN=namel"
query=tcp, hostnamel, 5000, ssl="CN=namel"

[ASESSL2]
master=tcp,hostname2,5000, ssl="CN=name2"
query=tcp, hostname2,5000, ssl="CN=name2"

[ASESSL3]
master=tcp,hostname3, 5000, ssl="CN=name3"
query=tcp, hostname3,5000, ssl"CN=name3"

[ASESSL4]
master=tcp,hostname4,5000, ssl="CN=name4"
query=tcp, hostname4, 5000, ssl="CN=name4"

Thelist of known and trusted CAsis maintained in the trusted rootsfile. The
trusted rootsfileis similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (client applications, servers, network
resources, and so on). The System Security Officer addsand deletes CAsusing
astandard ASClI-text editor.

The trusted roots file for Open Client and Open Server islocated in:
UNIX — $SYBASE/$SYBASE_OCS/config/trusted.txt
Windows — %SYBASEY%\%SYBASE _OCS6\initrusted.txt

Currently, the recognized CAs are Thawte, Entrust, Baltimore, VeriSign and
RSA.

By default, Adaptive Server storesits own trusted rootsfilein:
UNIX — $SYBASE/$SYBASE_ASE/certificates/servername.txt
Windows — %SYBASE%\%SYBASE ASEY6\certificates\ser ver name.txt

Both Open Client and Open Server allow you to specify an alternate location
for the trusted rootsfile:

e OpenClient:

Open Server

CHAPTER 2 Topics

ct_con props (connection, CS SET, CS PROP_SSL CA,
“SSYBASE/config/trusted.txt”, CS_NULLTERM, NULL) ;

where $SYBASE is theinstallation directory. CS_PROP_SSL._CA can be
set at the context level using ct_config(), or at the connection level using
ct_con_props().

¢ Open Server:

srv_props (context, CS_SET, SRV_S CERT_AUTH,
“SSYBASE/config/trusted.txt”, CS_NULLTERM, NULL);

where $SYBASE is the installation directory.

bep and isql utilities also allow you to specify an alternative location for the
trusted roots file.The parameter -x isincluded in the syntax, allowing you to
specify an aternative location for the trusted.txt file.

For a description of SSL and public-key cryptography, see the Open Client
Client-Library Reference Manual.

How do security services work with Open Server?

Toinitiate security servicesthe client sends an object identifier, which mapsto
a security mechanism, to the server when establishing a dialog. The server
maps the object identifier to its own local name for the security mechanism. If
the server does not support the requested security mechanism or does not
support security sessionsat al, thedial og request failsand Open Server returns
an error.

Use of object identifiers allows local names for a security mechanism to be
different on clients and servers. System administrators and application
programmers can then develop their own separate local naming conventions
for security mechanisms. See “ Object identifiers’ on page 182 for more
information about object identifiers.

Server-Library allows you to specify the principal name to be used when
acquiring credentials. This principal hame is the name by which the Open
Server application is known to the security service provider. You can use the
SRV_S SEC PRINCIPAL server property with the srv_props function to set
the application’s principal name.

If not set, the principal name defaultsto the Open Server application’s network
name, which is generally specified through srv_init.

Open Server uses credentials when establishing security sessions with clients.

Server-Library/C Reference Manual 179

Security services

Thelogin name of the client is obtained from the security session; whatever is
specified in the login record isignored.

Seethe Open Client Client-Library/C Reference Manual for information onthe
client’'srolein using security services.

Steps involved in a Client/Server dialog using security services

180

Open Server performsthe following stepswhen aclient initiates adialog using
security services:

1 Establishesatransport connection with the client.

2 Receivesthe client’slogin record and any opaque security tokens and
responds with any necessary opague tokens to the client.

3 Establishes a security session when the security message handshake
succeeds.

When an Open Server application receives information from a client, it
performs these steps:

1 Processes any security messages—for instance a cryptographic
signature—associated with the response received from the client. (A
cryptographic signature ensures the integrity of the message).

2 Based on the security services supported on the security session, callsthe
appropriate routines—for example, to verify the signature.

3 Processesthe TDS data stream as normal.
Open Server sends a response to the client in the following steps:

1 Checksfor credential or security session expiration. If an expiration is
detected, Open Server performs error processing.

2 Based on the security services supported on this dialog, callsthe
appropriate routines—for example, to generate a cryptographic signature
for the response.

3 Generatestherequired TDSto identify any per-packet security services.

A security session is terminated when the associated client dialog terminates.
Termination may occur because of anormal client logout or error conditions.

Open Server

CHAPTER 2 Topics

Using security mechanisms with Open Server applications

Security drivers

This section describes the changes you need to make to use third-party security
with an Open Server application. These changes include adding:

« Anentry for each security-mechanism-to-driver mapping in the libtcl.cfg
file.

e Anentry mapping thelocal name of each security mechanismto aglobally
unique object identifier, in the global object identification file,
objectid.dat.

« Anentry intheinterfacesfile for each server using a third-party security
mechanism, specifying all of the security mechanisms supported by a
server.

Sybase provides security driversthat allow Client-Library and Server-Library
applications to take advantage of an installed network security system. Client-
Library and Server-Library provide a generic interface for implementing
secure applications; each Sybase security driver maps this generic interface to
the security provider’sinterface.

Security drivers are dynamically loadable, and support one or more security
mechanisms.

The drivers for each of the currently supported security providers are:

e libsybsdce
For DCE Security Services.
o libsybsmssp

For Microsoft NT SSPI.

libtcl.cfg configuration file

Thelibtcl.cfg configuration file mapsthelocal name of the security mechanism
to the security driver required to support that mechanism. The libtcl.cfg fileis
located in the $SYBASE/$SYBASE_OCS/config directory or in the path
specified by the CS_LIBTCL_CFG context property. See the Open Client and
Open Server Programmer’s Supplement for your platform for its exact
location.

Server-Library/C Reference Manual 181

Security services

[SECURITY]

There must be an entry for each security driver inthelibtcl.cfg file. Each driver
may support one or more security mechanism. If adriver supports more than
one security mechanism, it requiresan entry for each security mechanisminthe
libtcl.cfg file.

The format of the fileis asfollows:

local-name-of-security-mechanism = path-to-the-driver init-string

[SECURITY]
csfkrb5=1ibsybskrb.

Object identifiers

182

where;
» path-to-the-driver —isthe fully qualified pathname to the object file.

* init-string —is an argument list which varies according to each driver, of
the general form: token = value, token = value,

For example, on a UNIX platform:

so secbase=@MYREALM libgss=/krb5/1lib/libgss.so

Thefirst entry in the libtcl.cfg file is the default security mechanism. Open
Server uses the default security mechanism when an application requests
security services, but it does not set a security mechanism.

See the Open Client and Open Server Configuration Guide for your platform,
for more information on adding entries to libtcl.cfg.

Each security mechanism has an object identifier associated with it. The
globally unique object identifier maps to the local name for a security
mechanism in the global object identification file, Objectid.dat. This provides
a consistent and flexible way to communicate security mechanism names
between clients and servers. The Objectid.dat file islocated in the
$SYBASE/config directory.

The format for the global identification fileis:

[Object Class]
Object Identifier Object Name List

For a security mechanism the entry is as follows:

Object Class—is “secmech.”

Open Server

CHAPTER 2 Topics

Object_ldentifier —is a sequence of non-negative integer values separated by
dots. The object identifier is based on a naming tree defined by the
international standards bodies CCITT and 1SO. An example of an object
identifier from the sybase root for the DCE security driver would be 897.4.6.1.

Object_Name_List —is acomma-delimited list of local security mechanism
names.

For example:

[secmech]
1.3.6.1.4.1.897.4.6.3 = NTLM

Changes to the interfaces file

The format of the interfaces file has been expanded to allow specification of
the security mechanisms supported by a server. Theformat is:

SERVERNAME
query tcp sun-ether joyce 2901
master tcp sun-ether joyce 2901
secmech mechanisml, mechanism2,..., mechanismN

The secmech identifier listsall of the security mechanisms supported by a
server, and applies under the following conditions:

e Thislineisoptiona and isonly used if the server is not using a Sybase-
specific security mechanism.

« If thereis no secmech entry for a server in the interfacesfile, the server
supports all the security mechanisms specified in the libtcl.cfg secmech
entries.

« If thereisasecmech entry for aserver intheinterfacesfile, but no security
mechanisms are specified, then the server does not support any security
mechanisms.

mechanisml, mechanism?2,...mechanismN are the object identifiers of the
security mechanisms supported by the server. You can specify multiple
security mechanisms using acomma (,) separator. See “ Object identifiers’ on
page 182 for more information on object identifiers.

Server-Library/C Reference Manual 183

Security services

Changes to the interfaces file: the SSL filter

The SSL filter is different from other security mechanisms, such as DCE and
Kerberos, which are defined with SECMECH (security mechanism) linesin
the interfacesfile (sgl.ini on Windows). The master and query lines determine
the security protocols that are enforced for the connection.

For example, atypical interfacesfile on aUNIX machine using SSL lookslike
this:

[SERVER]
query tcp ether hostname port ssl
master tcp ether hostname port ssl

A typical sql.ini file on Windows using SSL looks like this:
[SERVER]

query=TCP, hostname, port, ssl
master=TCP, hostname, port, ssl

where hostname is the name of the server to which the client is connecting and
port isthe port number of the host machine. All connection attemptsto amaster
or query entry in the interfaces file with an SSL filter must support the SSL
protocol. A server can be configured to accept SSL connections and have other
connections that accept plain text (unencrypted data), or use other security
mechanisms.

Determining which security services are active

184

To determine which security services are active on a client-server dialog, use
srv_thread_props to retrieve the value of the following thread properties:

« SRV_T_SEC CHANBIND

« SRV_T_SEC CONFIDENTIALITY
« SRV_T_SEC DATAORIGIN

« SRV_T_SEC DELEGATION

« SRV_T_SEC DETECTREPLAY

« SRV_T_SEC DETECTSEQ

« SRV_T_SEC INTEGRITY

« SRV_T _SEC MUTUALAUTH

« SRV_T_SEC NETWORKAUTH

Open Server

CHAPTER 2 Topics

See Table 2-28 on page 149 for descriptions of these thread properties.

Scenarios for using security services with Open Server
applications

This section describes how you might use security services with various Open
Server application configurations. It discusses the following situations:

* Simple Open Server application using a security session.
« Gateway Open Server application with separate security sessions.

« Gateway Open Server application with separate security sessions using
delegation.

* Full passthrough gateway Open Server application with direct security
Session.

Simple application using a security session

In the simplest configuration, the client establishes adialog using
authentication services provided by the security mechanism. Open Server
performs the login negotiation before the connection event handler is called.
After the connection handler issuesasrv_senddone(SRV_DONE_FINAL), Open
Server sends alogin acknowledgment with status “success’ to the client.

You are not required to install a connection handler for this configuration; the
default connection handler is sufficient. If you do install a connection handler,
the must at least send asrv_senddone(SRV_DONE_FINAL), as shown in this
example:

CS_RETCODE CS_PUBLIC connect handler (spp)
SRV_PROC *spp;

/*
** You do not need to test this srv_senddone’s return value
** gince Open Server will kill this thread if this call fails.
*/
(CS_VOID) srv_senddone (spp, SRV_DONE FINAL, CS_TRAN UNDEFINED,
(CS_INT)O) ;
return (CS_SUCCEED) ;

Server-Library/C Reference Manual 185

Security services

Gateway application with separate security sessions

In the scenario shown in the code bel ow, the Open Server application actsasa
gateway between the client and another server. The network identity used to
establish the security session between the client and the gateway application
may be different from that used to establish the security session between the
gateway and the remote server.

The gateway application completes the login security negotiation with its
client, pending the final login acknowledgment, before calling the connection
handler. The connection handler needsto initiate asecurity-session-based login
to the remote server using Client-Library calls before sending a
srv_senddone(SRV_DONE_FINAL) to the client to complete the login. An

example connection handler follows:

CS_RETCODE CS_PUBLIC connect handler (spp)
SRV_PROC *spp;

{

CS_CONNECTION *conn; /* the connection handle */
CS_BOOL trueval = CS_ TRUE;
CS_INT outlen;

/* Allocate a connection handle */
if (ct_con alloc(Context, &(userdata->conn)) == CS_FAIL)
{
clean up and report error...
return (CS_FAIL) ;

conn = userdata->conn;
/*
** Tnitiate security session based login with the remote
** gerver. The user name used here may be the same as the
** client user name or different

*/

if (ct_con_props(conn, CS_SET, CS_USERNAME,
(CS_VOID*)Username, STRLEN (Username), (CS_INT*)NULL)
== CS_FAIL)

handle failure...

186

Open Server

CHAPTER 2 Topics

/*
** Set the desired security mechanism(s) or use the default
** gecurity mechanism.
*/
if (ct_con_props(conn, CS_SET, CS_SEC_MECHANISM,
(CS_VOID*)Mechanismname, STRLEN (Mechanismname),
(CS_INT*)NULL) == CS_FAIL)

handle failure...

}

/* Set the security service-network authentication */

if (ct_con props(conn, CS_SET, CS SEC NETWORKAUTH,
(CS_VOID¥*) &trueval, CS_SIZEOF (CS_BOOL), (CS_INT*)NULL)
== CS_FAIL)

handle failure...

}

set other security services if required
get and set the user’s application name, response capabilities
set the locale and other login properties
/* Attempt a connection to the remote server */
if (ct_connect (conn, Servername, CS NULLTERM) == CS_FAIL)

cleanup. ..
return(CS_FAIL) ;

get and set the REQUEST capabilities
get and set the RESPONSE capabilities

** You do not need to test this srv_senddone’s return value

** gince Open Server will kill this thread if this call fails.

*/

(CS_VOID) srv_senddone (spp, SRV_DONE_FINAL, CS_TRAN UNDEFINED,
(CS_INT)O) ;

return (CS_SUCCEED) ;

Gateway with separate security sessions using delegation

The Open Server application can also act as a gateway between the client and
another server, but the gateway application usesthe delegated client credentials
when establishing the security session with the remote server. A client can
delegate only its own credentials.

Server-Library/C Reference Manual 187

Sec

urity services

The client needs to request the CS_SEC DELEGATION service so that the
Open Server application can obtain the del egated credential s once the security
session is established.

Asin“Simple application using a security session” on page 185, the security
session between the client and the gateway Open Server applicationis
established, except for the final login acknowledgment.

In the connection handler, the gateway application:

1 Retrievesthe delegated credentials using srv_thread_props(CS_GET,
SRV_T_SEC_DELEGCRED).

2 Using ct_con_props(CS_SET, CS_SEC_CREDENTIALS), setsthe
delegated credentialsin the Client-Library connection structure for usein
connecting to the remote server.

Attempts to connect to the remote server using ct_connect.

4 Sendsasrv_senddone(SRV_DONE_FINAL), to acknowledge the client’s
login.

An example connection handler follows:

CS_RETCODE CS_PUBLIC connect handler (spp)
SRV_PROC *spp;

{

188

CS_CONNECTION *conn; /* Connection handle */
CS_VOID *creds; /* security credentials */
CS_BOOL trueval = CS_TRUE;

CS_BOOL boolval;

CS_CHAR mechanismname [MAX NAMESIZE] ;

CS_CHAR username [MAX NAMESIZE] ;

CS_INT outlen;

/* Allocate a connection handle for the connection attempt. */
if (ct_con alloc(Context, &(userdata->conn)) == CS_FAIL)

{

return (CS_FAIL) ;

conn = userdata-s>conn;
/*
** Tnitiate security session based login to the target server
*/
/* Retrieve the client user name */
if (srv_thread props(spp, CS _GET, SRV_T USER,

Open Server

CHAPTER 2 Topics

(CS_VOID *)username, MAX NAMESIZE, &outlen) == CS_ FAIL)

handle failure...

/*
** Set the client’s security principal name to connect to the
** target server

*/
if (ct_con_props(conn, CS_SET, CS_USERNAME,
(CS_VOID *)username, outlen, (CS_INT *)NULL) == CS FAIL)
{
handle failure...
}

/* Retrieve and set the security mechanism */

if (srv_thread props(spp, CS_GET, SRV_T SEC MECHANISM,
(CS_VOID *)mechanismname, MAX NAMESIZE, &outlen)
== CS_FAIL)

handle failure...
}
if (ct_con props(conn, CS SET, CS SEC MECHANISM,
(CS_VOID *)mechanismname, outlen, (CS_INT *)NULL)
== CS_FAIL)

handle failure...

/*
** Set security service-network authentication. Alternatively
** retrieve services from the current thread and set it.

*/

if (ct_con props(conn, CS_SET, CS SEC NETWORKAUTH,
(CS_VOID *)&trueval, CS_SIZEOF (CS _BOOL), (CS_INT *)NULL)
== CS_FAIL)

handle failure...

}

set other security services if needed...

/* Ensure that the client enabled security delegation */

if (srv_thread_props(spp, CS_GET, SRV_T_SEC_DELEGATION,
(CS_VOID *)&boolval, CS SIZEOF (CS BOOL), (CS_INT *)NULL)
== CS_FAIL)

{
}

if (boolval != CS TRUE)

{

handle failure...

Server-Library/C Reference Manual 189

Security services

/* delegation not handled on this dialog */

handle failure...

}

/* Retrieve the delegated credentials */

if (srv_thread props(spp, CS_GET, SRV_T SEC DELEGCRED,
(CS_VOID *)&creds, CS_SIZEOF (CS_VOID*), (CS_INT *)NULL)
== CS_FAIL)
{
handle failure...
/!
** Set the delegated credentials to authenticate to the target
** gserver.
*/
if (ct_con props(conn, CS SET, CS SEC CREDENTIALS,
(CS_VOID *)&creds, CS SIZEOF(CS VOID *), (CS_INT *)NULL)
== CS_FAIL)
{
handle failure...
}
get and set the user’s application name and response
capabilities. ..
set the locale and other properties...
/* Attempt a connection to the remote server */
if (ct_connect (conn, Servername, CS NULLTERM) == CS FAIL)
{
handle failure. ..
}
Get and set the REQUEST capabilities...
Get and set the RESPONSE capabilities...
/*
** You do not need to test this srv _senddone’s return value
** gince Open Server will kill this thread if this call fails.
*/

(CS_VOID) srv_senddone (spp,

(CS_INT)O) ;

return (CS_SUCCEED) ;

190

SRV_DONE_ FINAL, CS_TRAN UNDEFINED,

Open Server

CHAPTER 2 Topics

Full passthrough gateway with direct security session

A client can establish a security session using the remote server only. No per-
packet security servicesare performed at any intermediaries between the client
and the remote server. If the client requests confidentiality, then the gateway
cannot retrieve TDS tokens from the message packets. This arrangement saves
overhead since no per-packet services are performed within the gateway, such
as those used to decrypt received packets, and to re-encrypt them before
transmission.

There may be multiple gateway intermediaries forming achain of “forwarding
servers.” Inthis case, each of these forwarding servers must support the same
security mechanism.

To set up a direct security session, take the following steps in the connection
handler of the Open Server gateway application:

1 Usesrv_getloginfo to obtain login information from the client thread.

2 Usect_setloginfo to set thisinformation in the connection structure to be
used for connecting to the remote server.

3 Ingtall asecurity session callback, using the following command:
ct_callback(conn, CS_SET, CS_SECSESSION CB, secsession cb)

When the connection to the remote server is made, the callback actsasan
intermediary for the handshaking required between the remote server and
the gateway’s client.

See " Security session callbacks’ on page 193 for information on what the
callback should contain.

See the Open Client Client-Library/C Reference Manual for further
information on callbacks.

4 Call ct_connect to connect to the remote server. This call initiates
negotiations between the client and remote server to establish a security
session. If ct_connect returns CS_SUCCEED, then a security session has
been successfully established.

5 Usesrv_senddone(SRV_DONE_FINAL) to signal to the client that thelogin
is complete.

Example connection handler

CS_RETCODE CS_PUBLIC connect handler (spp)
SRV_PROC *spp;

{

Server-Library/C Reference Manual 191

Security services

CS_CONNECTION *conn; /* connection handle */
CS_VOID *creds; /* security credentials */
CS_LOGINFO *loginfo; /* login information */
CS_BOOL boolval;

allocate and set user data in spp

/* Allocate a connection handle for the connection attempt. */

if (ct_con alloc(Context, &(userdata->conn)) == CS_FAIL)

{

handle failure...

conn = userdata-s>conn;
/*
** Save the pointer to thread control structure in the
** connection handle
*/
if (ct_con props(conn, CS _SET, CS USERDATA, &Spp,
CS_SIZEOF (spp), (CS_INT *)NULL) == CS_FAIL)

handle failure. ..

}

/* Verify that security based login is requested */

if (srv_thread props (spp, CS_GET, SRV T SEC_ NETWORKAUTH,
(CS_VOID *)s&boolval, CS_SIZEOF(CS_BOOL), (CS INT *)NULL)
== CS_FAIL)

handle failure...

}

if (boolval != CS TRUE)

{

handle the client request that does not use security
session based login

return (CS_SUCCEED) ;

}

/* Get and set the login information */
if (srv_getloginfo(spp, &loginfo) == CS FAIL)

{
}

if (ct_setloginfo(conn, loginfo) == CS FAIL)

{
}

/* Install a security session callback for this connection */

handle failure...

handle failure...

192

Open Server

CHAPTER 2 Topics

if (ct_callback((CS_CONTEXT *)NULL, conn, CS_ SET,
CS_SECSESSION CB, (CS VOID *)secsession_cb) == CS FAIL)

}

/* Attempt a connection to the remote server */
if (ct_connect (conn, Servername, CS NULLTERM) == CS FAIL)

{
}

/* Get and set the login information */
if (ct_getloginfo(conn, &loginfo) == CS FAIL)

{
}

if (srv_setloginfo(spp, loginfo) == CS_FAIL)

{

handle failure...

handle failure...

handle failure...

handle failure...

/*
** You do not need to test this srv_senddone’s return value
** gince Open Server will kill this thread if this call fails.
*/
(CS_VOID) srv_senddone (spp, SRV_DONE FINAL, CS_TRAN UNDEFINED,
(CS_INT)O) ;
return (CS_SUCCEED) ;

Security session callbacks

The security session callback routine exchanges security tokens between the
target server (or the next intermediary of the gateway) and the gateway’s client
applications to establish a direct security session between the client and the
remote server. This callback procedureis similar to a challenge-response
callback, except that it uses different parameters.

When the gateway calls ct_connect, the remote server issues one or more
messages that contain security session information. For each security message,
Client-Library invokes the callback with the message parameters sent by the
remote server.

The callback routine must perform the following functions:
1 Retrieve the parameters from the remote server’s message.

2 Send the parameters to the client, using:

Server-Library/C Reference Manual 193

Security services

e srv_negotiate(..., CS_SET, SRV_NEG_SECSESSION)
e srv_descfmt(..., CS_SET, SRV_NEGDATA, ...)
e srv_bhind(..., CS_SET, ...)
e srv_xferdata(..., CS_SET, ..))
3 Send asrv_senddone(SRV_DONE_FINAL) to the client.

4 Wait for aresponse from the client, using srv_negotiate(CS_GET,
SRV_NEG_SECSESSION).

5 When the client responds, the callback routine copies the corresponding
session data from the client to output buffers and sendsiit to the remote
server, using the following functions:

e srv_descfmt(CS_GET)
* srv_hind(CS_GET)
e srv_xferdata(CS_GET)
6 If the remote server sends another security message, the process repeats.

See the Open Client Client-Library/C Reference Manual for information on
defining security session callbacks.

Example Client-Library security session callback routine

CS_RETCODE CS_PUBLIC secsession cb(conn, innumparams, infmt,
inbuf, outnumparams, outfmt, outbuf, outlen)
CS_CONNECTION *conn;

CS_INT innumparams;
CS_DATAFMT *infmt;
CS_BYTE **inbuf;
CS_INT *outnumparams;
CS_DATAFMT *outfmt;
CS_BYTE **outbuf;
CS_INT *outlen;

{
SRV_PROC *spp; /* The SRVPROC structure associated with the
** client connection */

CS_INT i;

/* Get the previously saved spp for the client */
if (ct_con props(conn, CS GET, CS USERDATA, &Spp,

CS_SIZEOF (spp), (CS_INT *)NULL) != CS_SUCCEED)

{

return (CS_FAIL) ;

194 Open Server

CHAPTER 2 Topics

}
/*
** Use srv_negotiate to tell the client to expect a security
** token
*/
if (srv_negotiate (spp, CS_SET, SRV_NEG_SECSESSION)
!= CS_SUCCEED)
{

}

/* Describe and send the security token */
for (i = 0; i < innumparams; i++)

{

return(CS_FAIL) ;

if (srv_descfmt (spp, CS_SET, SRV _NEGDATA, i + 1, &infmt[i]
I= CS_SUCCEED)

}

if (srv_bind(spp, CS_SET, SRV _NEGDATA, i + 1, &infmt([i],
inbuf [i], &(infmt[i]->maxlength), (CS_SMALLINT *)NULL)
I= CS_SUCCEED)

return (CS_FAIL) ;

return (CS_FAIL) ;

}

if (srv_xferdata(spp, CS_SET, SRV_NEGDATA) != CS_SUCCEED)

{
}

/* Complete this portion of the exchange */
if (srv_senddone (spp, SRV _DONE FINAL, CS TRAN UNDEFINED, O0)
!= CS_SUCCEED)
{

}

/* Wait until the client responds */
if (srv_negotiate(spp, CS_GET, SRV _NEG SECSESSION)
!= CS_SUCCEED)
{

}

/* Get the number of parameters in the client'’s response */
if (srv_numparams (spp, outnumparams) != CS SUCCEED)

return(CS_FAIL) ;

return(CS_FAIL) ;

return(CS_FAIL) ;

Server-Library/C Reference Manual 195

Text and image

{
}

/* Read in the client’s response */
for (i = 0; 1 < (*outnumparams); i++)

{

return (CS_FAIL) ;

srv_bzero(&outfmt [i], sizeof (CS_DATAFMT)) ;

if (srv_descfmt (spp, CS_GET, SRV _NEGDATA, i + 1, &outfmt[i]
!= CS_SUCCEED)

}

if (srv_bind(spp, CS _GET, SRV _NEGDATA, i + 1, &outfmt[i],
outbuf [i], &outlen[i], (CS_SMALLINT *)NULL)
I= CS_SUCCEED)

return (CS_FAIL) ;

return (CS_FAIL) ;

}

if (srv_xferdata(spp, CS_GET, SRV_NEGDATA) != CS_SUCCEED)

{
}

/* Return success */
return (CS_SUCCEED) ;

return (CS_FAIL) ;

Text and image

Thetext and image Adaptive Server datatypes hold large text or image values.
The text datatype will hold up to 2,147,483,647 bytes of printable characters.
Theimage datatype will hold up to 2,147,483,647 bytes of binary data.

Because they can be so large, text and image values are not actually stored in
database tables. Instead, a pointer to the text or image value is stored in the
table. Thispointer is called atext pointer.

To ensure that competing client applications do not overwrite one another’s
modifications to the database, atimestamp is associated with each text or
image column. This timestamp is called a text timestamp.

196 Open Server

CHAPTER 2 Topics

Processing text and image data

Clients send text and image data as an undifferentiated data stream, known as
awritetext stream. Because it is not differentiated into parameters, an Open
Server application cannot rely on the routines it normally uses in processing
incoming parameter data: srv_descfmt srv_bind, and srv_xferdata. Instead, it
must use a specia set of text and image routines.

An Open Server application can send text or image data back to aclient in one
of two ways, depending on how many columns the return row contains. If the
return row contains just one column, and that column contains text or image
data, it can be treated as an undifferentiated data stream, and its processing
deviates from the norm. If, however, the row contains other columnsin
addition to atext or image column, the text or image data is processed using
the describe/bind/transfer method. Note that both methods have some stepsin
common.

See “Processing parameter and row data’ on page 134 for details on the
describe/bind/transfer triad of calls.

Retrieving data from a client

A writetext stream triggersa SRV_BULK event. Because text and image data
retrieved from a client are considered bulk data, an Open Server application
processes incoming text and image datafrom inside its bulk handler. For more
information on types of bulk data see the Open Client and Open Server
Common Libraries Reference Manual.

An application processes incoming text or image datain two steps:

1 Thesrv_text_info routine retrieves a description of the text or image data
and places theinformation in aCS_|ODESC structure. Thiscall returnsa
variety of information, the most important of which is the total length of
the data. Based on the length, the application can decide whether to
retrieve the data all at once or in sections, aswell as how large a buffer to
alocateto storethe data. srv_text_info is called with the cmd argument set
to CS_GET.

2 Thesrv_get_text routine actually bringsthe dataover fromthe client in the
specified section size and stores it in the specified buffer.

Notethat acall to srv_text_info must always precede acall tosrv_get_text. The
srv_get_text routine must be called until all text has been read from the client.

Server-Library/C Reference Manual 197

Text and image

Returning datato a client

Example

198

An application can return text or image data inside of any event handler that
can return row results. An application processes outgoing text or image datain
severa different steps, depending on how many columnsarein the datarow. If
thereisjust one column, and it isatext or image column, the application takes
the following steps:

1 It describesthe format in which the client will receive the text or image
column, using srv_descfmt.

2 ltcallssrv_text_info with cmd set to CS_SET to provide the total text
length.

3 ltcalssrv_send_text to send the data to the client in chunks.

If there are other columnsin addition to the text and image column or columns,
the application must take the following steps:

1 It describesthe format in which the client will receive the data using
srv_descfmt, which is called once for each column.

2 Itdescribestheformat and location of thelocal program variablesinwhich
the Open Server application stores the information, using srv_bind, which
must be called once for each column.

3 It providestext pointer and timestamp information by calling srv_text_info,
which must be called once for each text or image column, with cmd set to
CS_SET.

4 Transfer the data using srv_xferdata, which must be called as many times
asthere arerows.

See “Processing parameter and row data’ on page 134 for details on partial
update of text and image columns.

The sample, ctos.c, includes code to process text and image data.

Open Server

CHAPTER 2 Topics

Types
Open Server supports awide range of datatypes. These datatypes are shared
with CS-Library and Client-Library. In most cases, they correspond directly to
Adaptive Server datatypes.
Table 2-37 lists the Open Server type definitions, together with their
corresponding type constants and Adaptive Server datatypes. More detailed
information on each datatype follows the chart.
2.0 Open Server datatypes areincluded in thisversion for the sake of backward
compatibility. 2.0 Server-Library routines must use 2.0 datatypesin this
version. Table 2-37 summarizes the Open Server datatypes that al routines
must use in future Open Server versions.
Table 2-37: Datatype summary
Corresponding Corresponding
Open Client and Adaptive
Open Client and Open Open Server type Server
Type Server type constant Description definition datatype
Binary types CS BINARY_TYPE Binary type CS BINARY binary, varbinary
CS _LONGBINARY_TYPE Long binary CS_LONGBINARY NONE
type
CS VARBINARY_TYPE Variable-length | CS_VARBINARY NONE
binary type
Bit types CS BIT_TYPE Bit type CS BIT boolean
Character CS CHAR_TYPE Character type | CS CHAR char,
types varchar
CS LONGCHAR_TYPE Long character | CS_ LONGCHAR NONE
type
CS VARCHAR TYPE Variable-length | CS_VARCHAR NONE
character type
CS_UNICHAR TYPE Variable-length | CS_UNICHAR unichar,
or fixed-length univarchar
character type
XML type CS XML_TYPE Variable-length | CS_XML xml
character type

Server-Library/C Reference Manual

199

Types

Corresponding

Corresponding

Open Client and Adaptive
Open Client and Open Open Server type Server
Type Server type constant Description definition datatype
Datetimetypes | CS DATE_TYPE 4-byte date CS DATE date
datatype
CS TIME_TYPE 4-bytetime CS TIME time
datatype
CS DATETIME_TYPE 8-byte CS _DATETIME datetime
datetime type
CS_DATETIME4_TYPE 4-byte CS_DATETIME4 smalldatetime
datetime type
Numerictypes | CS TINYINT_TYPE 1-byteinteger | CS TINYINT tinyint
type
CS_SMALLINT_TYPE 2-byteinteger | CS_SMALLINT smallint
type
CS_INT_TYPE 4-byteinteger | CS_INT int
type
CS BIGINT_TYPE 8-byteinteger | CS BIGINT bigint
type
CS_USMALLINT_TYPE Unsigned 2- CS_USMALLINT usmallint
byte integer
type
CS_UINT_TYPE Unsigned 4- CS_UINT uint
byte integer
type
CS_UBIGINT_TYPE Unsigned 8- CS_UBIGINT ubigint
byte integer
type
CS_DECIMAL_TYPE Decimal type | CS DECIMAL decimal
CS_NUMERIC_TYPE Numerictype | CS NUMERIC numeric
CS FLOAT_TYPE 8-byte float CS FLOAT float
type
CS_REAL_TYPE 4-byte float CS REAL real
type
Money types CS MONEY_TYPE 8-bytemoney | CS_MONEY money
type
CS MONEY4 TYPE 4-bytemoney | CS_MONEY4 smallmoney
type
200 Open Server

CHAPTER 2 Topics

Corresponding Corresponding
Open Client and Adaptive
Open Client and Open Open Server type Server
Type Server type constant Description definition datatype
Textandimage | CS TEXT_TYPE Text type CS TEXT text
types
CS_UNITEXT_TYPE Unsigned CS_UNITEXT unitext
variable-length
character type
CS IMAGE_TYPE Image type CS_IMAGE image

Routines that manipulate datatypes

CS-Library provides several routines that are useful for manipulating
datatypes. They include:

e cs_calc, which performs arithmetic operations on decimal, float, money,
numeric, and real datatypes.

e cs_cmp, which compares datetime, decimal, float, money, numeric, and real

datatypes.

e cs_convert, which converts a data value from one datatype to another.

* c¢s_dt_crack, which converts a machine readable datetime valueinto a
user-accessible format.

e cs_dt_info, which retrieves datetime information for a national language.

These routines are documented in the Open Client and Open Server Common
Libraries Reference Manual.

Open Server datatypes

Binary types

Open Server has three binary types, CS BINARY, CS_LONGBINARY, and

CS_VARBINARY.

Server-Library/C Reference Manual

201

Types

202

CS BINARY corresponds to the Adaptive Server datatypes binary and
varbinary. That is, Server-Library interprets both the server binary and
varbinary types as CS _BINARY . For example, srv_descfmt returns
CS BINARY_TY PE when retrieving a description of a binary parameter
from aclient.

CS BINARY isdefined as:
typedef unsigned char CS_BINARY;

CS_LONGBINARY does not correspond to any Adaptive Server
datatype, but some Open Server applications may support
CS_LONGBINARY. An application can use the CS_DATA_LBIN
capability to determine whether a Client-Library connection supports
CS_LONGBINARY.

A CS L ONGBINARY value has amaximum length of 2,147,483,647
bytes. CS_LONGBINARY isdefined as:

typedef unsigned char CS LONGBINARY;

CS _VARBINARY does not correspond to any Adaptive Server datatype.
For this reason, Open Server routines do not return

CS VARBINARY_TYPE. If adatatype is described as

CS VARBINARY _TY PE, Open Server automatically convertsit to a
nullable CS_BINARY _TY PE before sending it to a client.

CS VARBINARY _TY PE can only be used when binding program
variables. CS_VARBINARY enables programmers to write non-C
programming language veneers for Open Server. Typica server
applications will not use CS VARBINARY .

CS VARBINARY isdefined asfollows:

typedef struct c¢s varybin

{

CS_SMALLINT len;
CS_BYTE array [CS_MAX CHAR];
} CS_VARBINARY;

where;
* lenisthelength of the binary array.
» arrayisthearray itself.

Open Server

CHAPTER 2 Topics

Bit type

Character types

Open Server supportsasinglebit type, CS_BIT. Thisdatatype holds server bit
(or Boolean) values of 0 or 1. When converting other typesto bit, all non-zero
values are converted to 1:

typedef unsigned char CS BIT;

Open Server has four character types, CS CHAR, CS LONGCHAR,
CS VARCHAR, and CS_UNICHAR:

CS_CHAR correspondsto the Adaptive Server datatypeschar and varchar.
That is, Server-Library interprets both the server char and varchar
datatypes as CS_CHAR. For example, srv_descfmt returns

CS _CHAR_TYPE when retrieving the description of a character
parameter from aclient.

CS CHAR isdefined asfollows:
typedef char CS_CHAR;

CS_LONGCHAR does not correspond to any Adaptive Server datatype,
but some Client-Library applications may support CS LONGCHAR. An
application can usethe CS_DATA_LCHAR capability to determine
whether a Client-Library connection supports CS LONGCHAR.

A CS_LONGCHAR value supports a maximum length of 2,147,483,647
bytes. CS_ LONGCHAR is defined as follows:

typedef unsigned char CS_ LONGCHAR;

CS_VARCHAR doesnot correspond to any Adaptive Server datatype. For
thisreason, Open Server routines do not return CS_VARCHAR_TYPE. If
adatatype is described as CS VARCHAR_TYPE, Open Server
automatically convertsit to anullable CS_ CHAR_TY PE before sending
ittoaclient. CS_VARCHAR_TY PE can only be used when binding
program variables. CS_VARCHAR enables programmersto write non-C
programming language veneers for Open Server. Typical server
applications will not use CS_VARCHAR.

CS VARCHAR isdefined asfollows:

typedef struct _cs varchar

{

CS_SMALLINT len;
CS_BYTE str[CS_MAX_CHAR] ;

Server-Library/C Reference Manual 203

Types

XML type

Datetime types

204

} CS_VARCHAR;
where;
» lenisthelength of the string.
» dristhestring itself. Note that str is not a null-terminated string.

» CS_UNICHAR corresponds to the Adaptive Server unichar fixed-width
and univarchar variable-width datatypes. CS_UNICHAR isashared, C-
programming datatype that can be used anywherethe CS_CHAR datatype
isused. The CS_UNICHAR datatype stores character data in the 2-byte
Unicode UTF-16 format.

CS UNICHAR is defined as follows:

typedef unsigned char CS_UNICHAR;

CS XML corresponds directly to Adaptive Server xml variable-length
datatype. CS XML can be used anywhere CS_ TEXT and CS_IMAGE are
used to represent XML documents and contents.

CS XML isdefined asfollows:

typedef unsigned char CS XML

Open Server supports two datetime types, CS_ DATETIME and
CS DATETIMEA. These datatypes are intended to hold 8-byte and 4-byte
datetime values, respectively.

In addition, Open Server supports CS_DATE and CS_TIME datatypes. These
datatypes behave like CS_DATETIME and CS_DATETIMEA4, but rather than
store datain a single datetime value, they store datain separate 4-byte fixed-
width date or time values.

An Open Server application can use the CS-Library routine cs_dt_crack to
extract date parts (year, month, day, and so on) from a datetime structure.

» CS _DATETIME corresponds to the Adaptive Server datetime datatype.
Therange of legal CS_DATETIME valuesis from January 1, 1753 to
December 31, 9999, with a precision of 1/300th of a second (3.33
milliseconds):

typedef struct _cs_datetime

Open Server

CHAPTER 2 Topics

CS_INT dtdays;
CS_INT dttime;
} CS_DATETIME;

where:
e dtdaysisthe number of days since 1/1/1900.
e dttimeisthe number of 300ths of a second since midnight.

CS DATETIME4 corresponds to the Adaptive Server smalldatetime
datatype. Therange of legal CS DATETIME4 valuesis from January 1,
1900, to June 6, 2079, with a precision of 1 minute;

typedef struct _cs_datetime4

{

unsigned short days;
unsigned short minutes;
} CS_DATETIME4;

where;
« daysisthe number of days since 1/1/1900.
e minutesisthe number of minutes since midnight.

CS_DATE correspondsto the Adaptive Server date datatype. The range of
legal CS DATE valuesisfrom January 1, 1753 to December 31, 9999.

typedef struct _cs_date

{
CS_INT days;
} CS_DATE;

where days is the number of days since 1/1/1900

CS_TIME correspondsto the Adaptive Server time datatype. The range of
legal CS TIME valuesiswith aprecision of 1/300th of a second (3.33
milliseconds):

typedef struct cs time

{
CS_INT time;
} CS_TIME;

where time is the number of 300ths of a second since midnight.

Server-Library/C Reference Manual 205

Types

Integer types

Open Server supports seven integer types: CS _TINYINT, CS_ SMALLINT,
CS_INT, CS BIGINT, CS_USMALLINT, CS_UINT, and CS_UBIGINT.

On most platforms, CS_TINYINT isal-byteinteger; CS SMALLINT isa2-
byte integer, CS_INT isa4-byteinteger, CS BIGINT is an 8-byte integer,
CS USMALLINT isan unsigned 2-byte integer, CS_UINT is an unsigned 4-
byte integer and CS_UBIGINT is an unsigned 8-byte integer:

typedef unsigned char CS TINYINT;
typedef short CS_SMALLINT;
typedef int CS_INT;
typedef long long CS_BIGINT;
typedef unsigned char CS_USMALLINT;
typedef unsigned int CS_UINT;

typedef unsigned long long CS UBIGINT;

Real, float, numeric, and decimal types

206

e CS _REAL corresponds to the Adaptive Server datatypereal. It is
implemented as a platform-dependent C-language float type:

typedef float CS_REAL;

Note When converting 6-digit precision bigint or ubigint datatypes to real
datatypes, note the following maximum and minimum values:

+ -9223370000000000000.0 < bigint < 9223370000000000000.0
» 0 < ubigint < 18446700000000000000.0

Values outside of these ranges cause overflow errors.

* CS _FLOAT corresponds to the Adaptive Server datatype float. It is
implemented as a platform-dependent, C-language double type:

typedef double CS_FLOAT;

Note When converting 15-digit precision bigint or ubigint datatypes to
float datatypes, note the following maximum and minimum values:

e -9223372036854770000.0 < bigint < 9223372036854 770000.0
* 0 < ubigint < 18446744073709500000.0

Values outside of these ranges cause overflow errors.

Open Server

CHAPTER 2 Topics

Money types

CS NUMERIC and CS DECIMAL correspond to the Adaptive Server
datatypes numeric and decimal. These types provide platform-independent
support for numbers with precision and scale.

The Adaptive Server datatypes numeric and decimal are equivalent; and
CS DECIMAL isdefined asCS_NUMERIC:

typedef struct _cs numeric
{
CS_BYTE precision;
CS_BYTE scale;
CS_BYTE array [CS_MAX NUMLEN] ;

} CS_NUMERIC;

typedef CS_NUMERIC CS_DECIMAL;
where:

e precision isthe precision of the numeric value. Legal valuesfor
precision arefrom CS_MIN_PREC toCS_MAX_PREC. The default
precisionis CS_DEF_PREC. CS MIN_PREC, CS MAX_PREC,
and CS_DEF_PREC define the minimum, maximum, and default
precision values, respectively.

» scaleisthescaleof thenumeric value. Lega valuesfor scalearefrom
CS MIN_SCALE to CS MAX_SCALE. The default scaleis
CS DEF_SCALE. CS MIN_SCALE, CS_MAX_SCALE, and
CS DEF_SCALE definesthe minimum, maximum, and default scale

values, respectively.
» scale must belessthan or equal to precision.

CS _DECIMAL types use the same default values for precision and scale
as CS_NUMERIC types.

Open Server supports two money types, CS MONEY and CS MONEY4.
These datatypes are intended to hold 8-byte and 4-byte money values,
respectively.

CS MONEY corresponds to the Adaptive Server money datatype. The
range of legal CS MONEY valuesis between
+/- $922,337,203,685,477.5807:

typedef struct cs money

{

CS_INT mnyhigh;

Server-Library/C Reference Manual 207

Types

CS_UINT mnylow;
} CS_MONEY;

* CS_MONEY4 corresponds to the Adaptive Server smallmoney datatype.
The range of legal CS_MONEY 4 values is between -$214,748.3648 and
+$214,748.3647:

typedef struct cs money4

{
CS_INT mny4 ;
} CS_MONEY4;

Security types

Open Server supports Secure Adaptive Server boundary and sensitivity
datatypes by defining the type constants CS_ BOUNDARY _TY PE and
CS SENSITIVITY_TYPE.

These type constants differ from other Open Server type constantsin that they
do not correspond to similarly-named type definitions. Instead, they
correspond to CS_CHAR.

This means that although Open Server routines accept and return
CS_BOUNDARY_TYPE and CS_SENSITIVITY_TYPE to describe a
column or variable's datatype, any corresponding program variable must be of
type CS_CHAR.

For example, if an application calls srv_bind with the datatype field of the
CS DATAFMT structure set to CS_SENSITIVITY _TY PE, the program
variable to which the data is being bound must be of type CS_CHAR.

Text and image types

Open Server supportstext datatypes, CS TEXT and CS_UNITEXT, aswell as
animage datatype, CS IMAGE.

e CS _TEXT corresponds to the server datatype text, which describes a
variable-length column containing up to 2,147,483,647 bytes of printable
character data. CS_TEXT is defined as an unsigned character:

typedef unsigned char CS_TEXT;

208 Open Server

CHAPTER 2 Topics

e CS_UNITEXT correspondsto the Adaptive Server unitext variable-length
datatype. CS_UNITEXT exhibitsidentical syntax and semantics to
CS _TEXT, except that CS_UNITEXT encodes character datain the 2-
byte Unicode UTF-16 format. CS_UNITEXT can be used anywhere
CS_TEXT isused. The maximum length of the CS_UNITEXT string
parameter is half of the maximum length of CS_TEXT.

CS _UNITEXT isdefined as follows:
typedef unsigned short CS_UNITEXT;

e CS_IMAGE corresponds to the server datatype image, which describes a
variable-length column containing up to 2,147,483,647 bytes of binary
data. CS_IMAGE is defined as an unsigned character:

typedef unsigned char CS IMAGE;

Server-Library/C Reference Manual 209

Types

210 Open Server

CHAPTER 3 Routines

This chapter contains a reference page for each Server-Library routine.

Routine Description Page

srv_alloc Allocate memory. 215

srv_alt_bind Describe and bind the source datafor a 217
compute row column.

srv_alt_descfmt Describe the aggregate operator of a 221
compute row column and theformat of the
column data returned to the client.

srv_alt_header Describe a compute row’s row identifier 225
and bylist.

srv_alt xferdata Send a compute row to aclient. 228

srv_bind Describe and bind aprogram variablefora | 229
column or parameter.

srv_bmove Copy bytes from one memory locationto | 235
another.

srv_bzero Set the contents of amemory locationto | 236
zero.

srv_callback Install a state transition handler for a 238
thread.

srv_capability Determine whether the Open Server 242
supports a platform-dependent service.

srv_capability_info Define or retrieve capability information | 243
on aclient connection.

Srv_createmsgq Create a message queue. 247

Srv_createmutex Create amutua exclusion semaphore. 249

Srv_createproc Create a nonclient, event-driven thread. 251

SrV_Cursor_props Retrieve or set information about the 253
current cursor.

srv_dbg_stack Display the call stack of athread. 256

srv_dbg_switch Temporarily restore another thread context | 258
for debugging.

srv_define_event Define a user event. 259

srv_deletemsgq Delete a message queue. 261

Server-Library/C Reference Manual 211

212

Routine Description Page

srv_deletemutex Delete amutex created by 263
Srv_createmutex.

srv_descfmt Describe or retrieve the description of a 265
column or a parameter going to, or coming
from, aclient.

srv_dynamic Read or respond to aclient dynamic SQL | 268
command.

srv_envchange Notify the client of an environment 273
change.

srv_event Add an event request to athread’srequest- | 275
handling queue.

srv_event_deferred Add an event request to the event queue of | 278
athread as the result of an asynchronous
event.

srv_free Free previously allocated memory. 280

srv_freeserveraddrs Frees memory allocated by 281
srv_getserverbyname.

srv_get text Read atext or image datastream from a 282
client, in chunks.

srv_getloginfo Obtain login information from a client 284
thread to prepare apassthrough connection
with aremote server.

srv_getmsgq Get the next message from a message 286
queue.

srv_getobjid Look up the object ID for amessage queue | 289
or mutex with a specified name.

srv_getobjname Get the name of amessage queue or mutex | 292
with a specified name.

srv_getserverbyname Returns the connection information for 294
server_name, allocating memory as
needed.

srv_handle Install an event handler into an Open 295
Server application.

srv_init Initialize an Open Server application. 298

srv_langcpy Copy aclient’s language request into an 300
application buffer.

srv_langlen Return the length of the language request | 302
buffer.

srv_lockmutex Lock a mutex. 304

Open Server

CHAPTER 3 Routines

Routine Description Page

srv_log Write a message to the Open Server 307
application log file.

srv_mask Initialize, check, set, or clear bitsin a 309
SRV_MASK_ARRAY structure.

srv_msg Send or receive a message datastream. 311

Srv_hegotiate Send and receive negotiated login 314
information to or from aclient.

SrV_numparams Return the number of parameters 321
contained in the current client command.

srv_options Send or receive option information to or 323
from aclient.

srv_orderby Return an order-by list to aclient. 329

srv_poll (UNIX only) Check for 1/0O events on a set of open 331
streams file descriptors.

SrV_props Define and retrieve Open Server 334
properties.

SrV_putmsgq Put a message into a message queue. 340

srv_realoc Readllocate memory. 342

srv_recvpassthru Receive a protocol packet from aclient. 344

Srv_regcreate Compl ete the registration of aregistered 346
procedure.

srv_regdefine Initiate the process of registering a 348
procedure.

srv_regdrop Unregister a procedure. 352

SIV_regexec Execute aregistered procedure. 354

Srv_reginit Begin executing aregistered procedure. 356

srv_reglist Obtain alist of all of the procedures 358
registered in the Open Server.

srv_reglistfree Free aprevioudly allocated 360
SRV_PROCLIST structure.

srv_regnowatch Remove a client thread from the 361
notification list for aregistered procedure.

SIvV_regparam Describe a parameter for aregistered 363
procedure being defined; or supply datafor
the execution of aregistered procedure.

srv_regwatch Add aclient thread to the notification list | 366
for a specified procedure.

srv_regwatchlist Return alist of all registered procedures 369
for which aclient thread has notification
reguests pending.

213

Server-Library/C Reference Manual

214

Routine Description Page

srv_rpedb Return the database component of the 371
current remote procedure call’s
designation.

SrV_rpcname Return the name component of the current | 372
remote procedure call’s designation.

srv_rpenumber Return the number component of the 375
current remote procedure’s designation.

srv_rpcoptions Return the runtime options for the current | 376
remote procedure call.

Srv_rpcowner Return the owner component of the current | 378
remote procedure call’s designation.

Srv_run Start an Open Server. 380

srv_s ssl_local_id Used to specify the path to the local 1D 381
(certificates) file.

srv_select (UNIX only) | Check to seeif afile descriptor is&ready | 381
for a specified 1/0 operation.

srv_send_ctlinfo Sends control messagesto Client-Library. | 385

srv_send_data Transfers rows containing multiple 386
columnsto clients.

srv_send_text Send atext or image datastreamto aclient, | 390
in chunks.

srv_senddone Send aresults completion messageor flush | 393
some resultsto aclient.

srv_sendinfo Send error or informational messages to 398
the client.

srv_sendpassthru Send a protocol packet to aclient. 401

srv_sendstatus Send a status value to aclient. 404

srv_setcolutype Define the user datatype to be associated | 405
with a column.

srv_setcontrol Describe user control or format 407
information for columns.

srv_setloginfo Return protocol format information froma | 409
remote server to aclient.

srv_setpri Modify the scheduling priority of athread. | 411

srv_signal (UNIX only) | Install aUNIX signal handler for the 413
SIGIO or SIGURG signals, using the same
interface as signal.

srv_sleep Suspend the currently executing thread. 416

Srv_spawn Allocate a service thread. 419

Open Server

CHAPTER 3 Routines

Routine Description Page
srv_symbol Convert an Open Server token valuetoa | 422
readable string.
srv_tabcolname Associate browse mode result columns 426
with result tables.
srv_tabname Provide the name of the table or tables 429
associated with a set of browse mode
results.
srv_termproc Terminate the execution of athread. 431
srv_text_info Set or get adescription of text or image 432
data.
srv_thread props Define and retrieve thread properties. 435
srv_timedsleep Sleep until an event is signalled. 440
srv_unlockmutex Unlock a mutex. 443
Srv_version Define the version of Server-Library an 444
application is using, and define the
application’sdefault national language and
character set.
srv_wakeup Enable sleeping threads to run. 445
srv_xferdata Send parameters or datato aclient, or 448
receive parameters or datafrom aclient.
srv_yield Allow another thread to run. 450
srv_alloc
Description Allocate memory.
Syntax CS_VOID *srv_alloc(size)
CS_INT size;
Parameters Size
The number of bytes to allocate.
Server-Library/C Reference Manual 215

srv_alloc

Return value Table 3-1: Return values (srv_alloc)
Returns To indicate
A pointer to the newly allocated The location of the new space.
space
A null CS_VOID pointer Open Server could not allocate size bytes.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE ex _srv_alloc PROTOTYPE ((
CS_BYTE **bpp,
CS_INT size
))
/*
** EX SRV_ALLOC
* %
* %k Example routine to allocate the specified amount of memory
** using srv_alloc.

* *

** Arguments:

* % bpp Return pointer to allocated memory here.
*k size Amount of memory to allocate.

* %

** Returns:
* %

** CS_SUCCEED Memory was allocated successfully.
* % CS _FAIL An error was detected.

*/

CS_RETCODE ex_srv_alloc (bpp, size)

CS_BYTE **bpp ;

CS_INT size;

{

/* Initialization. */

*bpp = (CS_BYTE *)NULL;
/*
** Allocate size number of bytes.
*/
if ((*bpp = (CS_BYTE *)srv_alloc(size)) == (CS_BYTE *)NULL)

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

216 Open Server

CHAPTER 3 Routines

/ *
** Allocate size number of bytes.
*/
if ((*bpp = (CS_BYTE *)srv_alloc(size)) == (CS_BYTE *)NULL)
{
return(CS_FAIL) ;
}
return (CS_SUCCEED) ;
}
Usage e srv_alloc alocates memory dynamically. It returns a pointer to size bytes
if that many bytes are available.

* Any memory allocated using srv_alloc should be freed by calling srv_free.

e Usesrv_alloc wherever the standard C memory allocation routines would
be used.

e Currently, srv_alloc callsthe C routine, malloc. An Open Server
application, however, can install its own memory management routines
using the srv_props routine. The parameter-passing conventions of the
user-installed routines must be the same as those of malloc. If the
application is not configured to use user-installed routines, Open Server
will call malloc.

See also srv_free, srv_props, srv_realloc

srv_alt_bind
Description

Syntax

Parameters

Describe and bind the source data for a compute row column.

CS_RETCODE srv_alt_bind(spp, altid, item, osfmtp,
varaddr, varlenp, indp)

SRV_PROC *spp;

CS_INT altid;

CS_INT item;

CS_DATAFMT *osfmtp;

CS_BYTE *varaddrp;

CS_INT *varlenp;

CS_SMALLINT *indp;
SPp

A pointer to an internal thread control structure.

Server-Library/C Reference Manual 217

srv_alt_bind

altid
The uniqueidentifier for the compute row in which this compute columnis
contained. The altid is defined using srv_alt_header.

item
The column’s column number in the compute row. Compute row column
numbers start at 1.

osfmtp
A pointertoaCS_DATAFMT structure. This structure describes the format
of the compute row column data that the application program variable
contains.

varaddrp
A pointer to the program variable to which the outgoing data is bound.

varlenp
A pointer to the program variable containing *varaddrp’s length.

indp
A pointer to the buffer containing the null value indicator. The following
table summarizes the values *indp can contain:

Table 3-2: Values for indp (srv_alt_bind)

Value Indicates
CS NULLDATA Column datais null.
CS_GOODDATA Column datais not null.

If indp isNULL, the column datais assumed to be valid; that is, not null.

Return value Table 3-3: Return values (srv_alt_bind)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** TLocal prototype
*/
CS_RETCODE ex_srv_alt bind PROTOTYPE ((
SRV_PROC *Spp,
CS_INT altid,
CS_VOID *gump

218 Open Server

CHAPTER 3 Routines

))

/*
** EX SRV_ALT BIND
* %
* % Example routine to describe and bind the source data for
* % a compute row column. This example binds a value which
*% is the sum of the first column of row data.

* %

** Arguments:

** spp - A pointer to an internal thread control structure.
** The thread must be an active client thread that

bl can handle row data.

* %

* % altid - The id for this compute row.

* %

** sump - A pointer to the variable which will contain
** the sum of the first column of row data.

* %

** Returns:

** CS_SUCCEED - Compute row column was successfully bound.
** CS_FAIL - An error was detected.

* %

*/

CS_RETCODE ex_srv_alt bind(spp, altid, sump)

SRV_PROC *Spp;

CS_INT altid;

CS_VOID *sump ;

{

CS_DATAFMT compute_colfmt;

/*
**Format for this compute column.
*/
CS_INT namelen;
/*
**Length of compute column name
*/
CS_INT compute colnum;
/*
** The column number for this compute column.
*/
CS SMALLINT indicator;
/*
* % Null indicator.
*/
CS INT sumlen;

Server-Library/C Reference Manual 219

srv_alt_bind

Usage

220

/*

** Length of the compute value
*/

CS_RETCODE result;

/*

**Return value

*/
/*

from srv_alt bind.

** Tnitialize the compute column’s data format. This compute
** column represents a sum of the first column of data.

*/

namelen = 3;

srv_bmove (“sum”, compute colfmt.name, namelen) ;

compute colfmt.namelen = namelen;

compute colfmt.
compute colfmt.
compute colfmt.
compute colfmt.

datatype = CS_INT TYPE;
format = CS_FMT UNUSED;
maxlength = sizeof (CS_INT) ;
scale = 0;

compute colfmt.precision = CS_DEF_PREC;

compute colfmt.
compute colfmt.
compute colfmt
compute colfmt.

/*
** Perform the
*/
compute_ colnum
indicator = CS

status = 0;
count = 0;

.usertype = 0;

locale = (CS_LOCALE *)NULL;

bind

= 1;
GOODDATA;

sumlen = sizeoE(CS_INT);

result = srv_alt bind(spp, altid, compute colnum,
&compute colfmt, sump, &sumlen, &indicator) ;

return (result);

Only applications that mimic Adaptive Server’s feature of returning
compute row information will need to call srv_alt_bind. srv_alt_bind is
most useful to applications acting as a gateway to an Adaptive Server.

srv_alt_bind describes the format of the application program variable in
which a compute row column’s dataiis stored. An application must call it
once for each column in a compute row.

Open Server

CHAPTER 3 Routines

e Thesrv_alt_bind routine reads from (CS_GET) or sets (CS_SET) the
CS DATAFMT fieldslisted in the table below. All other fields are
undefined for srv_alt_bind. (Notethat “osfmtp” isapointer to the structure.

Table 3-4: CS_DATAFMT fields used (srv_alt_bind)

Field CS_SET CS_GET
osfmtp—datatype Datatype of application | Datatype of application
program variable program variable
osfmtp—maxlength Unused Maximum length of program
variable
osfmtp—count Oorl Oorl

« If the format described by osfmtp differs from the client format set with
srv_alt_descfmt (clfmtp), Open Server automatically converts the data to

the client format.

e A compute result set contains only one row. However, an application can
return multiple result sets, each with adistinct altid.

« To process compute row data, an Open Server application must:

a Cadl srv_alt_header to define acompute row identifier.

b Cadl srv_alt_descfmt for each column to describe the format the
column dataisin when the client receivesit.

¢ Cadl srv_alt_bind for each column to bind the datato alocal program

variable.

d Call srv_alt_xferdata to send the row to the client, once each column
in the compute row has been described and its data bound to a
program variable.

* The contents of the buffersto which varaddrp, lenp, and indp point need
not be valid until srv_xferdata is called.

See also srv_alt_descfmt, srv_alt_header, srv_alt_xferdata, “CS DATAFMT

structure” on page 54

srv_alt_descfmt

Description Describethe aggregate operator of acompute row column and theformat of the
column datareturned to the client.

Server-Library/C Reference Manual

221

srv_alt_descfmt

Syntax CS_RETCODE srv_alt_descfmt(spp, altid, optype,
operand, item, clfmtp)

SRV_PROC *spp;

CS_INT altid;
CS_INT optype;
CS_TINYINT operand;
CS_INT item;
CS_DATAFMT *clfmtp;
Parameters spp
A pointer to an internal thread control structure.
altid

The uniqueidentifier for the compute row in which this compute columnis
contained. The altid is defined using srv_alt_header.

item
The column’s column number in the compute row. Compute row column
numbers start at 1.

optype
The aggregate operator type of the compute row column. The following
table lists the legal operator types:

Table 3-5: Values for optype (srv_alt_descfmt)

Operator type Function

CS _OP_COUNT Count aggregate operator

CS OP_SUM Sum aggregate operator

CS OP_AVG Average aggregate operator

CS OP_MIN Minimum aggregate operator

CS OP_MAX M aximum aggregate operator
operand

The select-list column the aggregate is operating on.

clfmtp

A pointer to the CS_DATAFMT structure. This structure describes the
format the column dataisin when the client receivesit.

222 Open Server

CHAPTER 3 Routines
Return value Table 3-6: Return values (srv_alt_descfmt)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE ex srv_alt descfmt PROTOTYPE ((
SRV_PROC *sproc,
CS_INT altid,
CS_DATAFMT clfmtp[]
))
/*
** EX_SRV_ALT DESCFMT
*x An example routine to describe the aggregate operator of 2
*x compute row columns and the format of each of the two column
* % data returned to the client. We will do the sum on the first
** column and average on the second column.
* %
** Arguments:
** sproc A pointer to an internal thread control structure.
* % altid The id for the compute row in which this compute
* % column is contained. The altid is obtained by
** calling srv_alt header.
* % clfmtp A pointer to the array of structures describing
** the format of the compute row column
* % data when the client receives it.
* %
** Returns:
** CS_SUCCEED If the aggregate operator and the datatype of
** the compute row columns were successfully
*% described.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex_srv_alt descfmt (sproc, altid, clfmtp)
SRV_PROC *sproc;
CS_INT altid;
CS_DATAFMT clfmtpl];
{ L
** Describe the aggregate operator of the first compute row
** column and the format of the column data.
Server-Library/C Reference Manual 223

srv_alt_descfmt

Usage

224

*/
if (srv_alt descfmt(sproc, altid,
(CS_TINYINT)1l, &clfmtp([0]) == CS_FAIL)
{
return (CS_FAIL) ;
}
/*

** Now do the same for the second column if
(CS_INT) 2,
** &clfmtp[1l]) == CS_FAIL)

** (gproc, altid,

return (CS_FAIL) ;

}
*/

return (CS_SUCCEED) ;

CS_OP_AVG,

(CS_INT)1, CS_OP_SUM,

(srv_alt descfmt
(CS_TINYINT) 2,

» Only applications that mimic Adaptive Server’s feature of returning
computerow information will needto call srv_alt_descfmt. srv_alt_descfmt
ismost useful to applications acting as a gateway to an Adaptive Server.

* srv_alt_descfmt describes a compute row column that the application will
send to the client. The application cals it once for each column in the

compute row.

* Thesrv_alt_descfmt routine reads from (CS_GET) or sets (CS_SET) the
CS DATAFMT fieldslisted in the table below. All other fields are
undefined for srv_alt_descfmt. (Note that “clfmtp” is a pointer to the

structure.

Table 3-7: CS_DATAFMT structure fields used (srv_alt_descfmt)

Field CS_SET CS_GET
clfmtp—namelen Length of name Length of name
clfmtp—status Parameter/column status Parameter status
clfmtp—name Parameter/column name Parameter name
clfmtp—datatype Remote datatype set here Remote datatype retrieved

from here

clfmtp—maxiength

Maximum length of remote
datatype set here

Maximum length of remote
datatype retrieved from here

clfmtp—format

Remote datatype format

Remote datatype formats

» If theformat described by clfmtp differs from the application program
variable format subsequently described with srv_alt_bind (osfmtp), Open
Server automatically converts the data to the clfmtp format description.

Open Server

CHAPTER 3 Routines

e To process compute row data, an Open Server application must:
a Cdl srv_alt_header to define acompute row identifier.

b Call srv_alt_descfmt for each column to describe the format the
column dataisin when the client receivesiit.

¢ Cdl srv_alt_bind for each column to bind the datato alocal program
variable.

d Call srv_alt_xferdata to send the row to the client, once each column
in the compute row has been described and its data bound to a
program variable.

See also srv_alt_bind, srv_alt_header, srv_alt xferdata, “CS DATAFMT structure” on
page 54

srv_alt_header

Description Describe a compute row’s row identifier and bylist.

Syntax CS_RETCODE srv_alt_header(spp, altid, numbylist,
bylistarrayp)

SRV_PROC *spp;

CS_INT altid;
CS_INT numbylist;
CS_SMALLINT *bylistarrayp;
Parameters spp
A pointer to an internal thread control structure.
altid

A unique identifier for this compute row.

numbylist
The number of columnsin the bylist of acompute row.

bylistarrayp
A pointer to an array of column numbers that make up the bylist for a
compute row. There are as many elements as specified in numbylist. If
numbylist is 0, bylistarrayp is ignored.

Server-Library/C Reference Manual 225

srv_alt_header

Return value Table 3-8: Return values (srv_alt_header)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE ex srv_alt header PROTOTYPE ((
SRV_PROC *spp
))
/*
** EX SRV_ALT HEADER
* %
* % Example routine to illustrate the use of srv_alt header
* % to describe a compute row’s row identifier and bylist.

* %

** Arguments:
** spp - A pointer to an internal thread control structure.
* %

** Returns:
* %

*k CS_SUCCEED A compute row was successfully described.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_alt header (spp)
SRV_PROC *SppP ;
{
CS_INT altid;
CS_SMALLINT bylist[2];
/*
** Let us describe a fictitious compute row with altid =1,
** and bylist = [2,4].
*/
altid = (CS_INT)1;
bylist [0] = (CS_SMALLINT)?2;
bylist[1] = (CS_SMALLINT)4;

if (srv_alt header(spp, altid,
sizeof (bylist) /sizeof (CS_SMALLINT),
bylist) == CS_FAIL)
return (CS_FAIL);

226 Open Server

CHAPTER 3 Routines

Usage

See also

return (CS_SUCCEED) ;

Only applications that mimic Adaptive Server’s feature of returning
compute row information will need to call srv_alt_header. srv_alt_header
is most useful to applications acting as a gateway to an Adaptive Server.

srv_alt_header assigns a unique identifier to each compute row and
describes the bylist associated with each compute row. It must be called
once for each compute row.

In the Adaptive Server, compute rows result from the compute clause of a
Transact- SQL select statement. If a Transact -SQL select statement
contains multiple compute clauses, separate compute rows are generated
by each clause. Open Server can return rows of compute data, mimicking
an Adaptive Server’s response to a Transact- SQL compute clause.

A Transact -SQL select statement’s compute clause can contain the
keyword by, followed by alist of columns. Thislist, known as the
“bylist,” divides the results into subgroups, based on changing valuesin
the specified columns. The compute clause’s aggregate operators are
applied to each subgroup, generating a compute row for each subgroup.

Thearray in *bylistarrayp stores the number associated with each column
in the bylist. That number is determined by the column’s position in the
select statement. For example, if acolumn werethethird iteminthe select
statement, it would be listed as the number 3 in the array.

To process compute row data, an Open Server application must:
a Cdl srv_alt_header to define acompute row identifier.

b Call srv_alt_descfmt for each column to describe the format the
column dataisin when the client receivesiit.

¢ Cdl srv_alt_bind for each column to bind the datato alocal program
variable.

d Call srv_alt_xferdata to send the row to the client, once each column
in the compute row has been described and its data bound to a
program variable.

srv_alt_bind, srv_alt_descfmt, srv_alt_xferdata

Server-Library/C Reference Manual 227

srv_alt_xferdata

srv_alt_xferdata

Description Send a compute row to aclient.
Syntax CS_RETCODE srv_alt_xferdata(spp, altid)
SRV_PROC *spp;
CS_INT altid;
Parameters spp
A pointer to an internal thread control structure.
altid

The uniqueidentifier for the compute row being sent to the client. The altid
is defined using srv_alt_header.

Return value Table 3-9: Return values (srv_alt_xferdata)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex srv_alt xferdata PROTOTYPE ((
SRV_PROC *Spp,
CS_INT altid
))
/*
** EX SRV_ALTXFERDATA
* %
* %k Example routine to send a compute row the the client using
*x srv_altxferdata.

* %

** Arguments:

** spp A pointer to an internal thread control structure.
**x altid The compute row identifier (defined using
*x srv_alt_ header) .

* %

** Returns:
* %

* % CS_SUCCEED The row was sent to the client.
*x CS_FAIL An error was detected.

228 Open Server

CHAPTER 3 Routines

*/
CS_RETCODE ex srv_alt xferdata(spp, altid)
SRV_PROC *sSpp;
CS_INT altid;
{
/*
** Send the compute row to the client.
*/
if (srv_alt xferdata(spp, altid) != CS_SUCCEED)
{
return (CS_FAIL);
}
return (CS_SUCCEED) ;
}

Usage e Only applications that mimic Adaptive Server’s feature of returning
compute row information will need to call srv_alt_xferdata. It is most
useful to applications acting as a gateway to an Adaptive Server.

e srv_alt_xferdata sendsacomputerow totheclient. Itiscalled oncefor each
altid.
e To process compute row data, an Open Server application must:
a Cdl srv_alt_header to define acompute row identifier.
b Call srv_alt_descfmt for each column to describe the format the
column dataisin when the client receivesit.
¢ Cdl srv_alt_bind for each column to bind the datato alocal program
variable.
d Call srv_alt_xferdata to send the row to the client, once each column
in the compute row has been described and its data bound to a
program variable.
e All compute rows must be sent to the client before sending the completion
status with srv_senddone.

See also srv_alt_bind, srv_alt_header, srv_alt_descfmt

srv_bind

Description Describe and bind a program variable for a column or parameter.

Syntax CS_RETCODE srv_bind(spp, cmd, type, item, osfmtp,

Server-Library/C Reference Manual 229

srv_hind

varaddrp, varlenp, indp)
SRV_PROC *Spp;

CS_INT cmd;
CS_INT type;
CS_INT item;
CS_DATAFMT *osfmtp;
CS_BYTE *varaddrp;
CS_INT *varlenp;
CS_SMALLINT *indp;
Parameters spp
A pointer to an internal thread control structure.
cmd

cmd indicates whether the program variabl e stores data going out to aclient
or coming infromaclient. Thefollowing table describesthe legal valuesfor

cmd:

Table 3-10: Values for cmd (srv_bind)

Value Description

CS SET Datain the *varaddrp is sent to a client when srv_xferdata is
caled.

CS GET *varaddrp isinitialized with data from a client after acall to
srv_xferdata.

type

The type of data stored into or read from the program variable. Table 3-11
describes the legal valuesfor type:

Table 3-11: Values for type (srv_bind)

Type Valid cmd Description of data
SRV_RPCDATA CS SET or CS_GET | RPC or stored procedure
parameter
SRV_ROWDATA CS_SET only Result row column
SRV_CURDATA CS _GET only Cursor parameter
SRV_KEYDATA CS_GET only Cursor key column
SRV_ERRORDATA CS_SET only Error message parameter
SRV_DYNAMICDATA | CS _SET or CS GET | Dynamic SQL parameter
SRV_NEGDATA CS SET or CS_GET | Negotiated login parameter
SRV_MSGDATA CS SET or CS_GET | Message parameter
SRV_LANGDATA CS_GET only Language parameter
item

The column or parameter number. Column and parameter numbers start at 1.

230 Open Server

CHAPTER 3 Routines

osfmtp

A pointer toaCS_DATAFMT structure. This structure describes the format
of the data stored in *varaddrp.

varaddrp

A pointer to the program variable to which the column or parameter datais

bound.

varlenp

A pointer to the length of varaddrp. Its precise meaning and characteristics
differ depending on the value of cmd. Table 3-12 summarizes the legal

values for varlenp:

Table 3-12: Values for varlenp (srv_bind)

If cmd is

Then varlenp

CS SET
(data going out to client)

Cannot be NULL
Points to the actual length of the datain *varaddrp
Need not be valid until srv_xferdata is called

CS GET
(data coming in from
client)

Can be NULL (indicating that the Open Server
application al& ready knows the length of the data)

Is a pointer to the program variable in which Open
Server placesthe actual length of the data

Isfilled in after acall to srv_xferdata

When retrieving data, *varlenp is empty until the application calls
srv_xferdata. Open Server then fills the buffer with the length of the newly
received value. When sending data, an application fillsin *varlenp points
before calling srv_xferdata to send the data.

indp

A pointer to a buffer containing a null value indicator. Table 3-13 lists the

legal valuesfor *indp:

Table 3-13: Values for indp (srv_bind)

Value

Indicates

CS _NULLDATA

Column or parameter datais null.

CS_GOODDATA

Column or parameter datais not null.

If indp isNULL, the column datais assumed to be valid; that is, not null.

Server-Library/C Reference Manual

231

srv_hind

Return value Table 3-14: Return values (srv_bind)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS RETCODE ex srv_bind PROTOTYPE ((
SRV_PROC *sSpp,
CS_INT *nump,
CS_BYTE *namep,
CS_INT *lenp
))
/*

** EX SRV_BIND

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

Example routine using srv_bind to describe and bind two
program.

variables to receive client RPC parameters. For this
example, the

RPC is passed an employee number, and last name. A third
program.

variable will be bound to receive the length of the
employee’s name.

This routine is called prior to srv xferdata, which will
actually transfer the data into the program variables.

** Arguments:

* %

* %

* %

* %

* %

* %

* %

* %

* %

spp A pointer to an internal thread control structure.
nump A Pointer to the integer to receive the employee
number.

namep A Pointer to the memory area to receive the
employee name.

lenp A Pointer to the integer to receive the length of
the employee’s name. (On input, points to the
maximum length of the memory area available.)

** Returns:

* %

* %
*/
CS_RET

232

CS_SUCCEED Program variables were successfully bound.
CS_FAIL An error was detected.
CODE ex srv_bind(spp, nump, namep, lenp)

Open Server

CHAPTER 3 Routines

SRV_PROC *Spp;
Cs_INT *nump ;
CS_BYTE *namep;
CS_INT *lenp;
{
CS_INT param no;
CS_DATAFMT varfmt;
srv_bzero((CS _VOID *)&varfmt, (CS_INT)sizeof (varfmt));
/*

** First, bind the integer to receive the employee number,
** param 1. Here, we know the length of the data, so no
** Jlength pointer is required.

*/

param no = 1;

varfmt.datatype = CS_INT TYPE;
varfmt.maxlength = (CS_INT)sizeof (CS_INT) ;

if (srv_bind(spp, (CS_INT)CS _GET, (CS_INT)SRV_RPCDATA,
param no, &varfmt, (CS_BYTE *)nump, (CS_INT *)NULL,
(CS_SMALLINT *)NULL) != CS_SUCCEED)

{

}
/*
** Then, bind the character memory to receive the
** employee name, param 2.
*/
param no = 2;
varfmt.datatype = CS_CHAR TYPE;
varfmt.maxlength = *lenp;
if (srv_bind(spp, (CS_INT)CS_GET, (CS_INT)SRV_RPCDATA,
param_no,
&varfmt, namep, lenp, (CS_SMALLINT *)NULL) !=
CS_SUCCEED)

return (CS_FAIL) ;

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage e srv_hind describestheformat of arow column or parameter and associates
it with an application program variable.

e srv_bhind must be called once for each columnin aresultsrow or parameter
in a parameter stream.

Server-Library/C Reference Manual 233

srv_hind

234

Applications that want to change local program variable addresses
(varaddrp, varlenp, or indp) between sending rows must call srv_bind
followed by srv_xferdata each time such a change occurs.

A Server-Library application sends datato a client in two stages:

First, it calls srv_bind with cmd equal to CS_SET. The parameters
varaddrp, varlenp, and indp contain a pointer to the data being found, a
pointer to its length, and a pointer to an indicator variable. At thistime,
Server-Library records the addresses passed in these pointer parameters.

These values must remain valid until the application calls srv_xferdata,
which iswhen Server-Library reads the values from those memory
locations. For example, different buffers must be used when multiple data
items are passed in separate callsto srv_bind.

Error data parameters must be described (srv_descfmt), bound (srv_bind)
and sent totheclient (srv_xferdata) immediately after acall tosrv_sendinfo
and before calling srv_senddone. The type argument of the srv_descfmt,
srv_hind, and srv_xferdata routinesis set to SRV_ERRORDATA.

Message data parameters must be described (srv_descfmt), bound
(srv_bind), and transferred (srv_xferdata) following a call to the srv_msg
routine. The type argument of the srv_descfmt, srv_bind, and srv_xferdata
routinesis set to SRV_MSGDATA.

The srv_bind routine reads from (CS_GET) or sets (CS_SET) the
CS DATAFMT fieldslisted in the table below. All other fields are
undefined for srv_bind. (Note that “osfmtp” is a pointer to the structure.

Table 3-15: CS_DATAFMT fields used (srv_bind)

In CS_SET operations, it In CS_GET
Field is: operations, it is:
osfmtp—datatype Datatype of application Datatype of application
program variable program variable
osfmtp—maxlength Actua length of program Maximum length of
variable program variable
osfmtp—count Oorl Oor1l
osfmtp—status CS_CANBENULL mustbeset | Unused
if you are sending null values.

To send anull value in a column, the status value of that column’s

CS DATAFMT structure must havethe CS_ CANBENULL bit set. Refer
to Table 2-9 on page 57 for possible values of statusin the
CS_DATAFMT structure.

Open Server

CHAPTER 3 Routines

See also

srv_bmove

Description

Syntax

Parameters

Return value

Examples

e |f theformat described by osfmtp differs from the format of the data
received from the client (cmd set to CS_GET), Open Server automatically
converts the datato osfmtp. If it differs from the format in which the data
is sent to the client (cmd set to CS_SET), Open Server automatically
convertsit to the client format (clfmtp).

srv_cursor_props, srv_descfmt, srv_msg, srv_sendinfo, srv_xferdata,
“CS_DATAFMT structure” on page 54, “ Processing parameter and row data”
on page 134.

Copy bytes from one memory location to another.

CS_VOID srv_bmove(sourcep, destp, count)

CS_VOID *sourcep;
CS_VOID *destp;
CS_INT count;

sourcep
A non-null pointer to the source of the datato be copied.

destp
A non-null pointer to the destination for the data to be copied.

count
The number of bytes to copy from sourcep to destp.

None.

#include <ospublic.h>

/*

** Local Prototype

*/
CS_VOID
CS_VOID
CS_VOID
CS_INT
)) i

/ *
** EX SRV _BMOVE
* %

ex srv_bmove PROTOTYPE ((
*src,
*dest,
count

Server-Library/C Reference Manual 235

srv_bzero

** Example routine to copy data from one area of memory to

another.
* %

** Arguments:

bl src -
* % dest -
*x count -

* %

** Returns:

The address of the source data.
The address of the destination buffer.
The number of bytes to copy.

* % Nothing.
*/
CS_VOID ex srv_bmove (src, dest, count)
Cs_VOID *src;
Cs_VOID *dest;
CS_INT count;
{ b

** Call the

Open Server routine that will do the

** gctual copy.

srv_bmove (src, dest, count);

*/
/*
** A1l done.
*/
return;
}
Usage
See also
srv_bzero
Description
Syntax
236

* srv_bmove copies count bytes from the memory location * sourcep to the
memory location * destp.

» Both sourcep and destp must be valid non-null pointers or amemory fault
will occur.

» Only count bytes are moved and no null terminator is added.

srv_bzero

Set the contents of a memory |ocation to zero.

CS_VOID srv_bhzero(locationp, count)

Open Server

CHAPTER 3 Routines

CS_VOID *locationp;
CS_INT count;

Parameters locationp
A non-null pointer to the address of the buffer to be zeroed.

count
The number of bytes at locationp to set to 0x00.

Return value None.
Examples
#include <ospublic.h>
/ *
** Local Prototype
*/
CS_RETCODE ex srv_bzero PROTOTYPE ((
CS_VOID *locationp,
CS_INT cnt
))
/ *
** EX_SRV_BZERO
* % Example routine to set the contents of a section of memory
** to zero using srv_bzero

* %

** Arguments:

* %

* % memp Pointer to section of memory.

* % count Number of bytes to set to zero.
* %

** Returns

*x CS_SUCCEED Arguments were valid and srv_bzero called.
*x CS_FAIL An error was detected.
* %
*/
CS_RETCODE ex srv_bzero(memp, count)
CS_VOID *memp ;
CS_INT count;

{

/* Check arguments. */
if (memp == (CS_VOID *)NULL)

{
}

if (count < 0)

{

return (CS_FAIL) ;

return (CS_FAIL) ;

Server-Library/C Reference Manual 237

srv_callback

}
/*

** Set the section of memory to the value 0x00.

*/

(CS_VOID) srv_bzero (memp, count) ;
return (CS_SUCCEED) ;

}

Usage

See also

srv_callback

Description

Syntax

Parameters

238

* srv_bzero sets count bytesto the value 0x00 at memory location locationp.
» locationp must be avalid non-null pointer or amemory fault will occur.

srv_bmove

Install astate transition handler for athread.

CS_RETCODE srv_callback(spp, callback_type, funcp)
SRV_PROC *spp;

CS_INT callback_type;
CS_RETCODE (*funcp)();
SPp

A pointer to an internal thread control structure.

callback_type
An integer that indicates the state transition for which the callback is being
installed. Table 3-16 summarizes the legal values for callback type:

Open Server

CHAPTER 3 Routines

Table 3-16: Values for callback_type (srv_callback)

Value Description

SRV_C _EXIT The thread has returned from the entry point specified in
srv_spawn Or is associated with a disconnected client. The
handler is executed in the context of the exiting thread.
SRV_C_PROCEXEC | A registered procedure has been invoked and is about to
execute. The handler executesin the context of the thread
that requested the registered procedure.

SRV_C_RESUME The thread is resuming. The handler executesin the
scheduler thread's context and uses its stack.
SRV_C_SUSPEND | Thethread is suspending. The handler executesin the
context of the thread that is suspending and uses its stack.
SRV_C_TIMESLICE | The calback routine you install for this state transition is
called when athread has executed for aperiod of time (time
dlice) determined by the SRV_S TIMESLICE,

SRV_S VIRTCLKRATE, and SRV_S VIRTTIMER server
properties. See srv_props on page 334 and “Properties’ on
page 139 for more information about these parameters.

funcp
A pointer to the function to call when the specified state transition occurs.

A callback function takes a thread pointer argument.

Return value Table 3-17: Return values (srv_callback))
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <stdio.h>
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE suspend handler PROTOTYPE ((
SRV_PROC *grvproc

))
CS_RETCODE ex_srv_callback PROTOTYPE ((

SRV_PROC *srvproc

)) i

CS_RETCODE suspend handler (srvproc)
SRV_PROC *sSrvproc;

Server-Library/C Reference Manual 239

srv_callback

printf (“Wake me when it’s over...\n”);
return (CS_SUCCEED) ;

/*
** EX SRV_CALLBACK
* %

* %k Example routine to install a state transition handler.

* %

** Arguments:

** srvpro - A pointer to an internal thread control structure.
* %

** Returns:
* %

*x CS_SUCCEED

** CS_FAIL

*/

CS_RETCODE ex srv_callback (srvproc)
SRV_PROC *Srvproc;

{

return (srv_callback (srvproc, SRV_C SUSPEND,
suspend handler)) ;

Usage e Usesrv_callback to specify aroutine to execute when athread passes from
one state to another.

» Anapplication calls the callback routine with a pointer to the thread that
is changing states.

e Table 3-18 summarizes the value each type of callback routine should
return:

240 Open Server

CHAPTER 3 Routines

See also

Table 3-18: Valid returns for callback routines (srv_callback)

Type of callback Description of
routine Return value return value
SRV_C _EXIT Ignored by Open Server, but

should be set to

SRV_CONTINUE for the
sake of future compatibility.

SRV_C_PROCEXEC SRV_S INHIBIT Cancel execution of the
registered procedure.
SRV_S CONTINUE Continue execution of
the registered
procedure.
SRV_C_RESUME Ignored by Open Server, but
should be set to

SRV_CONTINUE for the
sake of future compatibility.

SRV_C_SUSPEND Ignored by Open Server, but

should be set to
SRV_CONTINUE for the
sake of future compatibility.

SRV_C _TIMESLICE SRV_CONTINUE Continue execution

uninterrupted.

SRV_TERMINATE Terminate the thread.

SRV_DEBUG Add the thread to the
debug queue for
subsequent
examination with a
debugger.

Some callback types are not available on some platforms. You can call
srv_capability to find out if ahandler can beinstalled for acallback type on
the current platform.

To remove a callback routine installed by a previous call to srv_callback,
install anull function in its place. For example, to de-install a previously
SRV_C _TIMESLICE handler, issue the following command:

srv_callback (spp, SRV_C TIMESLICE, NULL) ;

Set the funcp argument to NULL if your application will use the callback
handler for notifications only. See “Registered procedures’ on page 162
for more details.

srv_capability, srv_props, srv_termproc

Server-Library/C Reference Manual 241

srv_capability

srv_capability

Description Determine whether Open Server supports a platform-dependent service.
Syntax CS_BOOL srv_capability(capability)

CS_INT capability;
Parameters capability

A constant that represents the Open Server servicesto test. Table 3-19
describes the legal values for capability:

Table 3-19: Values for capability (srv_capability)

Value Description

SRV_C DEBUG srv_dbg_stack and srv_dbg_switch are supported.

SRV_C _EXIT A callback routine can be invoked when athread terminates.

SRV_C_RESUME A callback routine can be invoked when a thread resumes
execution.

SRV_C_PREEMPT Preemptive scheduling is supported.
SRV_C_SELECT srv_select is supported.

SRV_C_SUSPEND A callback routine can be invoked when athread is
suspended.

SRV_C_TIMESLICE | A callback routine can beinvoked when athread exceedsthe
maximum number of clock ticks.

SRV_POLL srv_poll is supported.
Return value Table 3-20: Return values (srv_capability)
Returns To indicate
CS TRUE Open Server supports the service.
CS FALSE Open Server does not support the service.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
extern CS_RETCODE ex srv_capability PROTOTYPE ((void)) ;
/*
** EX SRV_CAPABILITY
* %
* % Example routine to determine whether srv poll is supported
* %k on this platform.

242

* %

** Arguments:
bl None.

Open Server

CHAPTER 3 Routines

* %

** Returns:
* %

* ok CS_SUCCEED srv_poll is supported on this platform.

* ok CS_FAIL srv_poll is not supported on this platform.
*/

CS_RETCODE ex srv_capability ()

{

CS_BOOL supported;
/*
** Check to see whether srv poll is supported on this
** platform.
*/
supported = srv_capability(SRV_C POLL) ;
/*
** If “supported” is CS_TRUE, we return CS_SUCCEED, if it is
** CS_FALSE we return CS_FAIL.
*/
return (supported ? CS_SUCCEED : CS_ FAIL);

Usage e srv_capability allows you to write a portable Open Server application
program and still use services that are not available on all platforms.

« Open Server has two types of capabilities: platform capabilities and
protocol capabilities. The srv_capability routine pertains to platform
capabilities. The srv_capability_info routine pertains to protocol
capabilities. See the srv_capability_info reference page, for details.

See also srv_callback, srv_capability, srv_dbg_stack, srv_dbg_switch, srv_poll (UNIX
only), srv_select (UNIX only), srv_capability_info

srv_capability_info
Description Define or retrieve capability information on aclient connection.

Syntax CS_RETCODE srv_capability_info(spp, cmd, type,
capability, valp)
SRV_PROC *spp;

CS_INT cmd;
CS_INT type;
CS_INT capability;

CS_VOID *valp;

Server-Library/C Reference Manual 243

srv_capability_info

Parameters Spp
A pointer to an internal thread control structure.

cmd
Indicates whether the Open Server application is defining or retrieving the
capability information. Table 3-21 describes the legal values for cmd:

Table 3-21: Values for cmd (srv_capability_info)
Value Meaning
CS SET The Open Server application is defining capability information.

CS GET The Open Server application isretrieving capability information from
the client.

type
The capability group type. Table 3-22 summarizes the two legal types:
Table 3-22: Values for type (srv_capability_info)
Value Meaning
CS _CAP_REQUEST The possible commands a client may want to send.

CS_CAP_RESPONSE The possible responses a client may want an Open
Server application to withhold.

capability
Specifies the capability item of interest. To set or get the bitmap for all
capability itemsin atype category, set capability to CS ALL_CAPS. See
“Capabilities” on page 24 for alist of all request and response capabilities.

valp
A pointer to aprogram variable. When sending information to a client
(CS_SET), the application sets the capability valuein this variable. When
retrieving information from a client, (CS_GET), Open Server places the
capability value in this variable. valp should be aCS BOOL pointer when
the application is defining or retrieving individual capability items, and a
CS _CAP_TYPE pointer when the application is defining or retrieving the
full bitmap for all capability items (that is, capability isCS ALL_CAPS).

Return value Table 3-23: Return values (srv_capability_info)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.hs>
CS_RETCODE ex_srv_capability info PROTOTYPE ((

244 Open Server

CHAPTER 3 Routines

SRV_PROC *Spp
))
/*
** EX SRV _CAPABILITY INFO
* %
* % Example routine to retrieve and define capability
*% information on a client connection.
* %
* % This routine must called in the context of the connect
* % handler, so that it is legal to negotiate capabilities.

* %

** Arguments:
** spp A pointer to an internal thread control structure.
* %

** Returns:

* ok CS_SUCCEED - Successfully retrieved and bound capability
* % information.
*x CS_FAIL - An error was detected.
* %
*/
CS_RETCODE ex srv_capability info(spp)
SRV_PROC *sSpp;
{
CS_RETCODE retval; /* Return value from Open */

/* Server API calls. */
CS_CAP_TYPE capabilities; /* Our bit mask. */

CS_BOOL value; /* Set to Cs_TRUE or CS_FALSE */
/* for individual capabilities. */

/*
** In this example, we don’'t want to support text or image,
** go we’ll see first if the client has requested this.
** We’ll do this by getting the entire bit mask.
*/
retval = srv _capability info(spp, CS_GET, CS CAP REQUEST,
CS_ALL_CAPS, (CS_VOID *)&capabilities);

if (retval == CS_FAIL)

return (CS_FAIL);

Server-Library/C Reference Manual 245

srv_capability_info

Usage

246

/*

** Turn off text and image.

* %

** The other way to do this is to just clear the

** CS_DATA TEXT and CS_DATA IMAGE bits in the capabilities

** bit mask, and then call srv capability info() with
** CS ALL CAPS for the “type” parameter and the altered
** bit mask as the value.

*/
if (CS_TST CAPMASK(&capabilities, CS_DATA TEXT) == CS_TRUE)
value = CS FALSE;
retval = srv _capability info(spp, CS_SET,
CS_CAP_REQUEST, CS_DATA TEXT, (CS_VOID *)&value);
if (retval == CS_FAIL)
return (CS_FAIL);
}
if (CS_TST CAPMASK(&capabilities, CS_DATA IMAGE) == CS_TRUE)
value = CS FALSE;
retval = srv _capability info(spp, CS_SET,
CS_CAP _REQUEST, CS_DATA IMAGE, (CS_VOID*)
&value) ;
if (retval == CS_FAIL)
return (CS_FAIL);
}

return (CS_SUCCEED) ;

* An Open Server application and a client must agree on what requests the
client can issue and what responses the Open Server application will
return. A client/server connection’s capabilities determine the types of
client requests and server responses permitted for that connection.

* Open Server assigns adefault set of capabilities for all connections. An
Open Server application that does not want the default set of capabilities
to apply to a given connection can call srv_capability_info to negotiate
explicitly adifferent set of capabilities.

Open Server

CHAPTER 3 Routines

See also

e See“Capabilities’ on page 24 for alist of the default set of requests and
response capabilities.

Note Response capabilitiesindicate the kinds of responsesthe client does
not want to receive.

* Open Server has two types of capabilities: platform capabilities and
protocol capahilities. The srv_capability routine pertains to platform
capabilities. The srv_capability_info routine pertains to protocol
capabilities. For more information on srv_capability, see srv_capability.

srv_capability, srv_props, “Capabilities’ on page 24, “Properties’ on page
139

Srv_createmsgq

Description

Syntax

Parameters

Create a message queue.
CS_RETCODE srv_createmsgq(msggnamep, msgq_namelen,

msggidp)

CS_CHAR *msggnamep;
CS_INT msggname_len;
SRV_OBJID *msgqidp;

msggnamep
A pointer to the name of the queueto create. It isan error to attempt to create
aqueue that al& ready exists.

msggname_len
The length of the name in * msggnamep. If the name is null terminated, an
application can set msggname_lento CS NULLTERM. A message queue
can be up to SRV_MAXNAME characters long.

msgqidp
Open Server returnsthe ID of the newly created message queuein

*msgqidp.

Server-Library/C Reference Manual 247

srv_createmsgq

Return

Examp

#i

/*
* %
*/
CS

))

/*
* %
* %
* %
*
* %
* %
* %
*
* %

* %

value Table 3-24: Return values (srv_createmsgq)
Returns: To indicate:
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
les
nclude <ospublic.h>
Local Prototype
_RETCODE ex_srv_createmsgqg PROTOTYPE ((
SRV_OBJID *msgap,
CS_CHAR *msggnm

EX SRV_CREATEMSGQ

Example routine to create an Open Server message queue
* using srv_createmsgq.

Arguments:

msgqgp Return pointer to the created message queue
* identifier.

msgqgn Null terminated name for the created queue.

** Returns:

** CS SUCCEED Message queue with given name successfully
created.

** CS_FAIL An error was detected.

*/

CS_RETCODE ex srv_createmsgq(msggp, msggnm)

SRV_OBJID *msgdap ;

CS_CHAR *msggnm;

{

248

/* Check parameters. */
if ((CS_INT)strlen(msggnm) > SRV _MAXNAME)

{
}

return (CS_FAIL) ;

/* Create the message queue. */
if (srv_createmsgq(msggnm, (CS_INT)CS NULLTERM, msgqgp) !=
CS_SUCCEED)

Open Server

CHAPTER 3 Routines

{
}

return (CS_FAIL) ;

return (CS_SUCCEED) ;

Usage

See also

« When creating a message queue, an application must assign it aname.
Once a message queue has been created, an application can reference it
either by name or by ID.

« GiventhelD of amessage queue, use srv_getobjname to look up the name.
e SRV_OBJD isdefinedasaCS INT.

e TheSRV_S NUMMSGQUEUES server property determines the number
of message queues available to an Open Server application. Refer to
“Server properties’ on page 141 for more information.

e TheSRV_S MSGPOOL server property determines the number of
messages available to an Open Server application at runtime. Refer to
“Server properties’ on page 141 for more information.

srv_deletemsgq, srv_getmsgg, srv_getobjname, srv_putmsgq

Srv_createmutex

Description

Syntax

Parameters

Create amutual exclusion semaphore.

CS_RETCODE srv_createmutex(mutex_namep, mutex_namelen,

mutex_idp)
CS_CHAR *mutex_namep;
CS_INT mutex_namelen;
SRV_OBJID *mutex_idp;
mutex_namep

A pointer to the name of the mutex to create.

mutex_namelen
Thelength of the namein * mutex_namep. If the string isnull terminated, an
application can set mutex_namelento CS NULLTERM.

mutex_idp
Open Server returns the ID of the new mutex in the * mutex_idp.

Server-Library/C Reference Manual 249

SIv_|

createmutex

Return value Table 3-25: Return values (srv_createmutex)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/ *
** Local Prototype.
*/
CS_RETCODE ex srv_createmutex PROTOTYPE ((
CS_CHAR *name,
CS_INT namelen,
SRV_OBJID *idp
))
/*

250

** EX SRV_CREATEMUTEX
* %

* % Example routine to create an Open Server mutex.
* %

** Arguments:
* %

* % name The name of the mutex to create.
*k namelen The length of name.
** idp The address of a SRV_OBJID, which will be set
* %k to the unique identifier for the created mutex.

* %

** Returns:

*x CS_SUCCEED The mutex was created successfuly.
*x CS_FAIL An error was detected.

*/

CS_RETCODE ex srv_createmutex(name, namelen, idp)
CS_CHAR *name;

CS_INT namelen;

SRV_OBJID *idp;

{ /*

** Call the Open Server routine that will create
** the mutex.
*/
if (srv_createmutex(name, namelen, idp) == CS_FAIL)
/*

** An error was al&ready raised.

Open Server

CHAPTER 3 Routines

*/
return CS_FAIL;

}

/*

** All done.

*/

return CS_SUCCEED;

Usage e When creating a mutex, an application must assign it a name. Once a
mutex has been created, the application can reference it either by name or
by ID.

« If youhavethe ID of amutex, you can use srv_getobjname to look up the
name.

« Creating amutex does not grant alock to its creator. Use srv_lockmutex to
lock it once a mutex has been created.

« SRV_OBJID isdefined asaCS INT.

See also srv_deletemutex, srv_getobjname, srv_lockmutex, srv_unlockmutex

Srv_createproc

Description Create anon-client, event-driven thread.

Syntax SRV_PROC *srv_createproc(ssp)
SRV_SERVER *ssp;

Parameters Ssp
A pointer to the Open Server state information control structure.

Return value If successful, srv_createproc returns a pointer to the new thread control
structure. If unsuccessful, srv_createproc returnsa NULL thread pointer, and
Open Server raises an error.

Server-Library/C Reference Manual 251

srv_createproc

Table 3-26: Return values (srv_createproc)

Returns To indicate
A pointer to the new thread control | Open Server created the thread.
structure

A null thread pointer

Open Server could not create the thread.
Open Server raises an error.

Examples
#include <ospublic.h>
/*
** TLocal Prototype
*/
CS_RETCODE ex srv_creatp
SRV_SERVER *ssp,
SRV_PROC *newsp
))
/*

252

* %

* %

* %

* %

* %

* %

* %

* %

EX_SRV_CREATP

Example routine to create a non-client,

thread.

Arguments:

ssp
control structure.

PROTOTYPE ((

event driven

A pointer to the Open Server state information

A pointer that will be returned by srv_createproc

** newsp
*x and point to the new thread control structure.
* %
** Returns
* %
** CS_SUCCEED Thread was created.
** CS _FAIL An error was detected.
* %
*/
CS_RETCODE ex srv_creatp(ssp, newsp)
SRV_SERVER *ssp;
SRV_PROC *newsp;

{

/* Check arguments. */
if (ssp == (SRV_SERVER *)0)
return (CS_FATL) ;

/*
** Create the new thread

*/

Open Server

CHAPTER 3 Routines

newsp = srv_createproc(ssp) ;

if (newsp ==

(SRV_PROC *)NULL)

return (CS_FAIL) ;
return (CS_SUCCEED) ;

Usage

See also

e srv_createproc creates athread that is driven by programmer-defined
events raised by srv_event or srv_event_deferred.

* Non-client threads receive only programmer-defined events. They never
receive client-generated events.

* Usesrv_termproc to terminate athread created with srv_createproc.

* Non-client threads have no client I/O. Calling srv_thread_props with the
property argument set to (SRV_T_IODEAD) always returns CS_FALSE
for anon-client thread.

srv_event,srv_event_deferred, srv_spawn, srv_termproc, srv_thread props

SIV_Ccursor_props

Description

Syntax

Parameters

Retrieve or set information about the current cursor.

CS_RETCODE srv_cursor_props(spp, cmd, cdp)

SRV_PROC *Spp;
CS_INT cmd;
SRV_CURDESC *cdp;
SPp
A pointer to an internal thread control structure.
cmd

Indicates whether srv_cursor_props sends cursor information to the client or
retrieves cursor information from the client. The following table describes
the legal values for cmd:

Server-Library/C Reference Manual 253

SIV_Ccursor_props

Table 3-27: Values for cmd (srv_cursor_props)

Value Description

CS SET srv_cursor_props sends information about the current
cursor to the client.

CS GET srv_cursor_props retrieves information about the
current cursor command from the client.

cdp
A pointer to a SRV_CURDESC structure. When the application is setting
cursor information, the SRV_CURDESC structure describes the current
cursor. When the application is retrieving information, Open Server updates
the SRV_CURDESC structure with information about the current cursor.
Variousfields are set or filled in at various times, depending on the current
cursor command. For an explanation of each field in cdp and how and when
they arefilled in, see “SRV_CURDESC structure” on page 65.

Return value Table 3-28: Return values (srv_cursor_props)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/ *
** TLocal Prototype.
*/
extern CS_RETCODE ex srv_cursor_ props PROTOTYPE ((
Cs_VOID *spp
))
/ *
** EX SRV_CURSOR_PROPS
* %
* % Example routine to retrieve information on the current
*x cursor.

254

** Arguments:
** gpp Apointer to an internal control structure.
* %

** Returns:
* %

** CS SUCCEED Cursor information was retrieved successfully.
** CS_FAIL An error was detected.

*/

CS_RETCODE ex_Srv_cursor_ props (spp)

SRV_PROC *sSpp;

Open Server

CHAPTER 3 Routines

SRV_CURDESC curdesc;

if (srv_cursor props (spp, CS_GET, &curdesc) == CS_FAIL)

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage * An Open Server application uses srv_cursor_props to exchange active
cursor information with the client.

* Theclient dways initiates this exchange by issuing a cursor command.
The client, therefore, specifies the current cursor.

e An application can only call srv_cursor_props from inside a
SRV_CURSOR event handler.

e Open Server generates a SRV_CURSOR event in response to each cursor
command received from aclient. An application’s SRV_CURSOR event
handler can then call srv_cursor_props with cmd set to CS_GET to
determine the current cursor and the type of cursor command received. It
can then decide how to respond. For a description of valid cursor
command types and legal responses, see “ Cursors’ on page 63.

» Each cursor command provokes a distinct response from an Open Server
application. The application pullsinformation from the SRV_CURDESC
structure (the requested fetch count, for example), makes decisions based
on that data, and then sets information in the structure and sends it back to
the client using srv_cursor_props. An application can also read in
parameters, or send back result rows and parameters, depending on the
circumstances.

e The SRV_CURSOR event handler must acknowledge all cursor
commands except fetch, update, and delete by sending back a cursor
information command. The handler sets the curcmd field in the
SRV_CURDESC structureto CS_ CURSOR_INFO and then calls
srv_cursor_props With cmd set to CS_SET. Thisisthe very first piece of
information the handler sends back.

¢ Inresponseto a CURSOR_DECLARE command, an Open Server
application choosesacursor I1D to uniquely identify the current cursor. The
application then sends the cursor 1D back to the client by calling
srv_cursor_props With cmd set to CS_SET. The client and Open Server
application subsequently refer to the current cursor by its1D rather thanits
name.

Server-Library/C Reference Manual 255

srv_dbg_stack

See also srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “ Cursors’ on page 63

srv_dbg_stack

Description Display the call stack of athread.
Syntax CS_RETCODE srv_dbg_stack(spp, depth, funcp)
SRV_PROC *Spp;
CS_INT depth;
CS_RETCODE (*funcp)();
Parameters spp
A pointer to an internal thread control structure.
depth
The maximum number of call stack levelsto display. If depthis-1, adl levels
are displayed.
funcp

A pointer to afunction that you provide to process each line of the call stack
display. Your functionis called with a pointer to anull terminated string and
an integer that is the length of the string. The string contains the program
counter and the routine's parameters formatted in hexadecimal. If your
function returns CS_FAIL, the stack traceis terminated. If it returns
anything else, the stack trace continues until all of the routines on the call
stack are processed or until depth stack frames are processed. If funcpis
NULL, Open Server writes the call stack contents to stderr.

Thefollowing is atypical implementation for a function:

CS_RETCODE callstack display(linebuf, length)

CS _CHAR *linebuf;

CS_INT length;

{
/*
** Qutput each line of the stack trace to stderr.
*/
fprintf (stderr, "$s\n", linebuf) ;
return (CS_SUCCEED) ;

256 Open Server

CHAPTER 3 Routines

Return value Table 3-29: Return values (srv_dbg_stack)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.hs>
/*
** Local prototype.
*/
CS_RETCODE ex srv_dbg stack PROTOTYPE ((
SRV_PROC *spp
))
/*

** EX SRV _DBG_STACK
* %

* ok Example routine to display the call stack of a thread.
* %

** Arguments:

* % spp - A pointer to an internal thread control structure.
* %

** Returns:

*x CS_SUCCEED Call stack successfully displayed.
*x CS_FAIL An error was detected.

* %

*/

CS_RETCODE ex srv_dbg stack (spp)

SRV_PROC *Spp;

{

CS _RETCODE retval;
retval = srv _dbg stack(spp, -1, (CS_RETCODE (*) ())NULL) ;

return (retval) ;

Usage e srv_dbg_stack isnot available on all platforms. Use srv_capability to
determineif it isavailable on the current platform.

e srv_dbg_stack alows you to examine the call stack of athread during
debugging or when handling execution errors. It can be called from a
debugger or from the running application.

e Atypical usefor srv_dbg_stack isto record the stack framein the error log
when a serious error occurs.

Server-Library/C Reference Manual 257

srv_dbg_switch

See also

e Each routine on the call stack is formatted into a string consisting of the
program counter, in hexadecimal, followed by each parameter, alsoin
hexadecimal. You will need aload map of the executable to trandate the
program counter to a function name.

» If calledtodisplay the stack of the currently running thread, srv_dbg_stack
and theroutines it calls appear at the top of the stack.

srv_capability, srv_dbg_switch

srv_dbg_switch

Description

Syntax

Parameters

Return value

Usage

258

Temporarily restore another thread context for debugging.
CS_RETCODE srv_dbg_switch(spid)
CS_INT spid;
spid
The server process ID (spid) of the thread whose context should be
temporarily restored.

Table 3-30: Return values (srv_dbg_switch)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

* srv_dbg_switch is not available on all platforms. Use srv_capability to
determine whether a platform supports srv_dbg_switch.

» Onceathread context is switched, continuing execution of the application
restores the original thread context and the application continues to run
normally.

» Thethread whose context has been restored isnot runnable. It can only be
examined.

* OnUNIX systems, do not call srv_dbg_switch from within system service
routines. If you do, a SIGTRAP signal israised and the program
terminates.

» The spid can be obtained by calling srv_thread_props with the property
argument set to SRV_T_SPID. It isan error to attempt to restore the
context for the currently running thread.

Open Server

CHAPTER 3 Routines

See also

srv_capability, srv_dbg_stack

srv_define_event

Description

Syntax

Parameters

Return value

Examples

#include

/*

Define a user event.

int srv_define_event(ssp, type, namep, namelen)
SRV_SERVER *ssp;

CS_INT type;
CS_CHAR *namep;
CS_INT namelen;
Ssp
A pointer to the Open Server control structure.
type

The type of event. Currently, programmer-defined events must be of type
SRV_EQUEUED.

namep
A pointer to the name of the event.

namelen
The length, in bytes, of string in *namep. If the string is null terminated,
namelen can be CS_ NULLTERM.

Table 3-31: Return values (srv_define_event)

Returns To indicate

A non-zero integer The uniqueid for the vent.

0 Open Server cannot define the event.
Open Server raises an error.

<ospublic.h>

** Local Prototype

*/
CS_RETCODE
CS_CHAR
CS_INT
CS_INT
))

/*

ex srv_define event PROTOTYPE ((
*namep,

namelen,

*event no

Server-Library/C Reference Manual 259

srv_define_event

** EX_ SRV _DEFINE EVENT

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

Example routine to illustrate the use of srv_define event to
define an user event.

Arguments:

namep A pointer to the name of event.

namelen The length, in bytes, of string in *namep.

event_no A CS_INT pointer that is initialized with
the unique number for the event.

Returns:

CS_SUCCEED If the event was defined successfully.

** CS_FAIL An error was detected.
*/
CS_RETCODE ex_srv_define_ event (namep, namelen, event_ no)
CS_CONTEXT *cp;
CS_VOID *pbufp;
CS_CHAR *namep;
CS_INT namelen;
CS_INT *event no;
CS_INT result;
{
SRV_PROC *srvproc_ptr; /* A pointer to an internal thread
% control structure */
result = srv _props(cp, CS GET, SRV_S CURTHREAD,
bufp, sizeof (CS_INT));
if (result == CS_FAIL)
{
return (CS_FAIL);
}
/* Now define the event. */
if ((*event no = srv _define event (srvproc ptr, SRV_EQUEUED,
namep, namelen)) == (CS_INT)O)
return (CS_FAIL);
return (CS_SUCCEED) ;
}
Usage » Programmer-defined events are triggered by calling srv_event rather than

260

by client actions. The Open Server programmer provides ahandler routine
that executes when the event istriggered.

« Event handlers for programmer-defined events are installed in the usual
way, with srv_handle.

» Handlersfor programmer-defined events receive a pointer to the thread
control structure for the thread that received the event.

Open Server

CHAPTER 3 Routines

« Events cannot be defined unless the Open Server application has been
configured to allow programmer-defined events. For details, see the

srv_props reference page.
See also srv_event, srv_event_deferred, srv_handle, srv_props, “Events’ on page 92
srv_deletemsgq
Description Delete a message queue.
Syntax CS_RETCODE srv_deletemsgq(msggnamep, msggname_len,
msgqid)

CS_CHAR *msggnamep;

CS_INT msgqgname_len;

SRV_OBJID msgqid;
Parameters msggnamep

A pointer to the name of the message queueto delete. Itisan error to attempt
to del ete a message queue that does not exist.

msggname_len
The length of the name pointed to by msggname. If the name is null
terminated, msggname_len can be set to CS_ NULLTERM.

msgqid
A SRV_OBJID that specifiesthe identifier of message queue to delete.

Return value Table 3-32: Return values (srv_deletemsgq)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/*
** TLocal Prototype.
*/
CS_RETCODE ex srv_deletemsgg PROTOTYPE ((
CS_CHAR *msggname,
CS_INT msggname_len,

SRV_OBJID msggid

Server-Library/C Reference Manual 261

srv_deletemsgq

)) i

/*

** EX SRV_DELETEMSGQ
* %
** Example routine using srv_deletemsgg to delete an Open

il Server message queue previously create by srv_createmsgqg.

** This routine can be passed a value message gueue name, Or
** NULL,in which case the message queue identifier will be used.
* %

** Arguments:

** msggname The name of the message queue to delete. If

* %k NULL, the msggid is used.

** msggname len The length of the name to which msggname

* %k points.

** msggid A SRV_OBJID that specifies the identifier of
*k the message queue to delete.

* %

** Returns:
* %

** CS_SUCCEED The message gqueue was successfully deleted.
** CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_deletemsgq (msggname, msggname len, msggid)
CS_CHAR *msggname ;
CS_INT msggname_len;
SRV_OBJID msgqgid;
{
/*
** Delete a message queue.
*/
if (srv_deletemsgq(msggname, msggname len, msggid) !=
CS_SUCCEED)

{
}

return (CS_SUCCEED) ;

return (CS_FATL) ;

Usage » Message queues can be deleted by either name or ID. If msggnameis not

262

NULL, the message queue nameis used; otherwise, the message queue ID
is used.

» Unread messages in the queue are flushed before the queue is del eted.
Threads waiting in srv_putmsgg wake up. srv_putmsgg returns CS_FAIL.

Open Server

CHAPTER 3 Routines

* When amessage queue is deleted, threads waiting for messages from the
gueue wake up with aCS_FAIL return value from srv_getmsggq, and
srv_getmsgq’s infop argument is set to SRV _| DELETED.

e TheSRV_S NUMMSGQUEUES server property determines the number
of message queues available to an Open Server application. Refer to
“Server properties’ on page 141 for more information.

e TheSRV_S MSGPOOL server property determines the number of
messages available to an Open Server application at runtime. Refer to
“Server properties’ on page 141 for more information.

See also srv_createmsgg, srv_getmsgg, srv_getobjname, srv_putmsgq

srv_deletemutex

Description Delete amutex created by srv_createmutex.
Syntax CS_RETCODE srv_deletemutex(mutex_namep, mutex_namelen,
mutex_id)
CS_CHAR *mutex_namep;
CS_INT mutex_namelen;
SRV_OBJID mutex_id;
Parameters mutex_namep

A pointer to the name associated with the mutex when it was created.

mutex_namelen
The length, in bytes, of the mutex_namep. If the string is null terminated,
mutex_namelen can be set to CS NULLTERM.

mutex_id
The unique identifier returned by srv_createmutex.

Return value Table 3-33: Return values (srv_deletemutex)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>
/*
** TLocal Prototype.

Server-Library/C Reference Manual 263

srv_deletemutex

*/
CS_RETCODE ex srv_deletemutex PROTOTYPE ((
CS_CHAR *mtxnm,
SRV_OBJID mtxid
))
/*
** EX SRV_DELETEMUTEX
** Example routine using srv deletemutex to delete an
*k Open Server mutex previously created by srv_createmutex.
* % This routine can be passed a mutex name, or NULL,
* %k in which case the mutex identifier will be used.
** Arguments:
* % mtxnm Null terminated mutex name, or NULL to use mutex
** id.
* % mtxid Mutex identifier (valid only if mtxnm is NULL) .
** Returns:
** CS_SUCCEED mutex was successfully queued for deletion.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_deletemutex (mtxnm, mtxid)
CS_CHAR *mtxnm;
SRV_OBJID mtxid;
{
/* Delete the mutex. */
if (srv_deletemutex (mtxnm, (CS_ INT)CS NULLTERM, mtxid) !=
CS_SUCCEED)
{
return (CS_FAIL) ;
}
return (CS_SUCCEED) ;
}
Usage » Themutex to delete can be referenced by itsname or ID. If mutex_namep
isnot NULL, the nameis used; otherwise, the ID is used.
e A mutex isnot deleted until other threads waiting to lock the mutex have
had their requests satisfied and have released their locks.
» Anexample of the use of mutexes appears on the srv_createmutex
reference page.
See also Srv_createmutex, srv_getobjid, srv_getobjname, srv_lockmutex

264 Open Server

CHAPTER 3 Routines

srv_descfmt

Description Describe or retrieve the description of a column or parameter going to or
coming from aclient.

Syntax CS_RETCODE srv_descfmt(spp, cmd, type, item,
clfmtp)

SRV_PROC
CS_INT
CS_INT
CS_INT

*spp;
cmd;
type;
item;

CS_DATAFMT *clfmtp;

Parameters spp

A pointer to an internal thread control structure.

cmd

Indicates whether srv_descfmt describes data being sent to the client or
retrieves adescription of datareceived from the client. Table 3-34 describes
the legal values for cmd:

Table 3-34:

Values for cmd (srv_descfmt)

Value

Description

CS SET

srv_descfmt describes the format the data will be in when the client
receivesit.

CS GET

srv_descfmt retrieves the format the data was in when the client sent it.

type

If cmdisCS_SET, thetype of data being described. If cmd is CS_GET, the
type of data being retrieved. Table 3-35 describes the valid types and their
appropriate context:

Server-Library/C Reference Manual

265

srv_descfmt

Return value

Examples

#include

/*

Table 3-35: Values for type (srv_descfmt)

Permissible
Type settings for cmd Description
SRV_RPCDATA CS SET or CS_GET | RPC or stored procedure

parameters

SRV_ROWDATA CS_SET only Row data
SRV_CURDATA CS _GET only Cursor parameters
SRV_UPCOLDATA | CS GET only Cursor update columns
SRV_KEYDATA CS _GET only Cursor key data
SRV_ERRORDATA | CS_SET only Extended error data
SRV_DYNDATA CS SET or CS_GET | Dynamic SQL data
SRV_NEGDATA CS SET or CS_GET | Negotiated login data
SRV_MSGDATA CS SET or CS_GET | MSG parameters
SRV_LANGDATA CS_GET only Language parameters

item

The parameter or column number. Parameter and column numbers start at 1.

clfmtp

A pointer toaCS_DATAFMT structure containing a description of the data.

Table 3-36: Return values (srv_descfmt)

Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** TLocal Prototype

*/
CS_RETCODE
SRV_PROC
CS_INT
CS_DATAFMT
)) i

/*

ex srv_descfmt PROTOTYPE ((

*spp,
item,
*dp

** EX SRV_DESCFMT

* %

** Example routine used to get

266

an RPC parameter description.

Open Server

CHAPTER 3 Routines

* %

** Arguments:
* %

* ok spp A pointer to an internal thread control
structure.
* % item The parameter number we'’re looking for.
* % dp The address of a CS DATAFMT to be filled with
* % the parameter’s description.

* %

** Returns:

** CS_SUCCEED if the description was obtained, or
** CS_FAIL if an error was detected.
*/
CS_RETCODE ex srv_descfmt (sp, item, dp)
SRV_PROC *Sp;
CS_INT item;
CS_DATAFMT *dp;
{ Y
** Call srv _descfmt to get the RPC parameter description.
*/
if (srv_descfmt (sp, CS_GET, SRV_RPCDATA, item, dp) ==
CS_FAIL)
{ .
** An error was al&ready raised.
*/

return CS_FAIL;

}

/*

** All done.

*/

return CS_SUCCEED;

Usage » srv_descfmt describes the format of a variety of kinds of columns and
parameter. See “CS_DATAFMT structure” on page 54 for details.

¢ When sending rows or parameters to the client (CS_SET), you must call
srv_descfmt to describe how the data will ook to the client. When
receiving parameters from the client (CS_GET), call srv_descfmt to
retrieve a description of the format the data was in when the client sent it.
A gateway application may want to save this client format information to
passit on to the remote server.

Server-Library/C Reference Manual 267

srv_dynamic

e Thesrv_descfmt routine reads from (CS_GET) or sets (CS_SET) the
CS DATAFMT fieldslisted in the table below. All other fields are
undefined for srv_descimt. (Notethat “clfmtp” isapointer to the structure.

Table 3-37: CS_DATAFMT fields used (srv_descfmt)

Field CS_SET CS_GET

clfmtp— namelen Length of name Length of name

clfmtp— status Parameter/column status | Parameter status

clfmtp— name Parameter/column name | Parameter name

clfmtp—datatype Remote datatype set here | Remote datatype retrieved
from here

clfmtp—maxlength Maximum length of Maximum length of remote

remote datatype set here | datatype retrieved from here
clfmtp—format Remote datatype format | Remote datatype formats

e If theformat described in the CS_DATAFMT structure (clfmtp) differs
from the format described in the subsequent call to srv_bind (osfmtp),
Open Server automatically convertsto theclient format (clfmtp) when cmd
isCS_SET or the application format (osfmtp) when cmd is CS_GET.

e Once each column or parameter in the datastream has been described and
bound, call srv_xferdata to send the datain the program variable to the
client or update the program variable with data from the client.

 SRV_NEGDATA parameters can be sent or received as part of a
negotiated login operation, after srv_negotiate has returned successfully.

» Key column numbers correspond to their number in the row.

See also srv_bind, srv_cursor_props,srv_dynamic, srv_msg, srv_negotiate,
srv_numparams, srv_sendinfo, srv_xferdata, “CS_DATAFMT structure” on
page 54

srv_dynamic
Description Read or respond to a client dynamic SQL command.
Syntax CS_RETCODE srv_dynamic(spp, cmd, item, bufp,

buflen, outlenp)

SRV_PROC *spp;
CS_INT cmd;
CS_INT item;

268 Open Server

CHAPTER 3 Routines

CS_VoID
CS_INT
CS_INT

Parameters spp

*bufp
buflen;
*outlenp

A pointer to an internal thread control structure.

cmd

Indicates whether a dynamic command is being read from or sent to aclient.
Table 3-38 describes the legal values for cmd:

Table 3-38:

Values for cmd (srv_dynamic)

Value

Description

CS_SET

srv_dynamic is sending a response to a dynamic command back to a
client.

CS_GET

srv_dynamic is reading a dynamic command from a client.

item

Indicates what kind of information is being sent or retrieved. Table 3-39
describes the legal values for item:

Table 3-39: Values for item (srv_dynamic)
Value Meaning
SRV_DYN_TYPE The type of dynamic operation being performed.
SRV_DYN_IDLEN The length of the dynamic statement ID.
SRV_DYN_ID The dynamic statement 1D.
SRV_DYN_STMTLEN | Thelength of the dynamic statement.
SRV_DYN_STMT The dynamic statement that is being prepared or
executed.
bufp
A pointer to the buffer in which theitem value isreturned (CS_GET) or set
(CS_SET).
buflen

Thelength, inbytes, of the* bufp buffer. Table 3-40 summarizestherequired
buffer sizes:

Server-Library/C Reference Manual

269

srv_dynamic

Return value

Table 3-40: Required buffer sizes (srv_dynamic)

Value

Required format (size)

SRV_DYN_TYPE

sizeof (CS_INT).

SRV_DYN_IDLEN

Sizeof(CS_INT).

SRV_DYN_ID

Varies. Determine length by first calling srv_dynamic with
item set to CS_DYN_IDLEN and then dlocate buffer size
accordingly.

SRV_DYN_STMT
LEN

Sizeof(CS_INT).

SRV_DYN_STMT

Varies. Determine length by first calling srv_dynamic with
item setto CS_DYN_STMTLEN and then allocate buffer size
accordingly.

outlenp

A pointer to an integer variable which is set to the actual length of data
copied into *bufp when retrieving data from the client (cmd is CS_GET).
Thisargument is not required if cmd isCS_SET.

Table 3-41: Return values (srv_dynamic)

To indicate

The routine completed successfully.

The routine failed.

Returns
CS_SUCCEED
CS FAIL
Examples
#include <ospublic.h>
/*
** TLocal Prototype
*/
extern CS_RETCODE
Cs_VOID *sSpp,
Cs_INT *optypep
))
/*

270

** EX SRV_DYNAMIC

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

ex_srv_dynamic PROTOTYPE ((

Example routine to retrieve dynamic operation type from a

client.

Arguments:

sSpp Thread control structure.
optypep Dynamic operation type.

Returns:

Open Server

CHAPTER 3 Routines

* % CS_SUCCEED Dynamic information was retrieved
** successfully.

*x CS_FAIL An error was detected.

*/

CS_RETCODE ex srv_dynamic (spp, optypep)

SRV_PROC *spp;

Cs_INT *optypep;

{

CS_INT outlen;

if (srv_dynamic(spp, CS_GET, SRV _DYN TYPE, optypep,
sizeof (*optypep), &outlen) == CS FAIL)
{

}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage e Thesrv_dynamic routine allows an Open Server application to read a
dynamic SQL command or send a response to such a command.

e Valid operation types (SRV_DYN_TY PE) include:
CS _PREPARE - prepare a statement (CS_GET only).

CS _DESCRIBE_INPUT —request input parameter formatsfor the current
prepared statement (CS_GET only).

CS DESCRIBE_OUTPUT - request column formats for the current
prepared statement (CS_GET only).

CS_EXECUTE — execute a prepared statement (CS_GET only).

CS_EXEC_IMMEDIATE — execute an unprepared statement, which has
no parameters and does not return results (CS_GET only).

CS DEALLOC — dedlocate a prepared statement (CS_GET only).

CS_ACK —acknowledge adynamic SQL command from client (CS_SET
only).

« Each dynamic command received from a client triggers a
SRV_DYNAMIC event. An Open Server application can then call
srv_dynamic, in response to each client dynamic command, to retrieve and
store the operation type, statement ID and statement, and then
acknowledgethe client communication, by issuing asrv_dynamic call with
type set to CS_ACK.

Server-Library/C Reference Manual 271

srv_dynamic

See also

272

Itisan error to call srv_dynamic in any event handler other than a
SRV_DYNAMIC handler.

CS_ACK istheonly dynamic operation type that can be set (cmd set to
CS _SET).

CS _PREPARE, CS DESCRIBE_INPUT, CS DESCRIBE_OUTPUT,
CS EXECUTE, CS_EXEC _IMMEDIATE and CS_ DEALLQOC arethe
only dynamic operation types that can be retrieved (cmd set to CS_GET).

Sending afull dynamic SQL response to a client requires passing the ID
length, the ID, and the operation type. This requires three distinct callsto
srv_dynamic. It isan error, for example, to set just the statement ID and
then call srv_senddone. The only exception isif the operation typeis

CS EXEC_IMMEDIATE, for which there is no associated statement ID.

Parameter dataformats and output column formats can be sent to aclient,
inresponsetoaCS_PREPARE dynamic command, using srv_descfmt and
srv_xferdata with atype argument of SRV_DYNDATA. Notethat srv_bind
is not necessary here, as the application is simply sending formats.

An Open Server application retrieves and store the parameter data sent by
aclient following the CS_EXECUTE dynamic command using
srv_descfmt, srv_bind, and srv_xferdata, with a type argument of
SRV_DYNDATA. The application determines the number of parameters
using srv_numparams.

The application sends dynamic SQL result rows to the client, in response
toaCS_EXECUTE dynamic SQL command, using srv_descfmt, srv_bind,
and srv_xferdata with a type argument of SRV_ROWDATA.

A dynamic SQL command of CS_ EXEC IMMEDIATE indicatesthat the
client wishes to execute a statement without parameters and receive only
aDONE as aresult. The statement is contained in the

CS EXEC_IMMEDIATE command stream and is accessible through
SRV_DYN_STMT. The statement has not been previously prepared—the
statement 1D length (SRV_DYN_IDLEN) will be 0—and will ceaseto
exist once the SRV_DYNAMIC event handler has exited.

srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “Dynamic SQL” on
page 83

Open Server

CHAPTER 3 Routines

srv_envchange

Description

Syntax

Parameters

Return value

Examples

#include

Notify the client of an environment change.

CS_RETCODE srv_envchange(spp, type, oldvalp
oldvallen, newvalp, newvallen)

SRV_PROC *spp;
CS_INT type;
CS_CHAR *oldvalp;
CS_INT oldvallen
CS_CHAR *newvalp;

CS_INT newvallen
SPp

A pointer to an internal thread control structure.
type

The environment being changed. Currently, the only legal values are
SRV_ENVDATABASE and SRV_ENVLANG, the name of the current
database and the current national language, respectively.

oldvalp
A pointer to the character string containing the old value. It can be NULL.
Itslength in bytesis stored in oldvallen.

oldvallen
The length, in bytes, of the string in *oldvalp. It can be CS_NULLTERM,
which indicates that the string in *oldvalp is null terminated. It can also be
CS_UNUSED, indicating that the string in *oldvalp isNULL.

newvalp
A pointer to the character string containing the new value of the
environment variable. It can be null. Itslength in bytesis stored in
newvallen.

newvallen
Thelength, in bytes, of the string in *newvalp. It can be CS_NULLTERM,
which indicates that the string in newvalp is null terminated. It can also be
CS _UNUSED, indicating that the string in *newvalp isNULL.

Table 3-42: Return values (srv_envchange)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

<ospublic.h>

Server-Library/C Reference Manual 273

SIv_|

envchange

/*
** Local Prototype.
*/
CS_RETCODE ex srv_envchange PROTOTYPE ((
SRV_PROC *spp
))
/*
** EX SRV_ENVCHANGE
* %
* % Example routine to notify the client of an environment
*k change.

* %

** Arguments:
** spp A pointer to an internal thread control structure.
* %

** Returns:

* CS_SUCCEED Succesfully notified client of environment
*k change.

il CS _FAIL An error was detected.

* %

*/

CS_RETCODE ex_srv_envchange (spp)

SRV_PROC *Spp;

{

CS_RETCODE retval;

/*
** Notify the client that we’ve changed the database
** from “master” to “pubs2”.
*/

retval = srv_envchange (spp, SRV_ENVDATABASE, “master”,

CS_NULLTERM, “pubs2”, CS NULLTERM) ;
return (retval) ;

Usage » Thereare various environment variables which can be set. Open Server

274

handles some automatically, while others must be handled by an Open
Server application. Currently, an application can only inform aclient of a
change to the current database or national language.

Open Server

CHAPTER 3 Routines

srv_event

Description

Syntax

Parameters

Server-Library/C Reference Manual

Open Server callsan Open Server application’s error handler any timeone
of the values changes. An Open Server application can changeit through
srv_envchange, or Open Server can changeit using internal code, or both.
The error number passed to the error handler is the Adaptive Server
message number sent back to a client when one of these values changes.
This allows a client application to match the same message number to a
changing value, whether the client is connected to an Open Server or an
Adaptive Server. Table 3-43 lists the message number and oserror.h
#define that correspond to each changing value.

Table 3-43: Environment variables (srv_envchange)

Changing value Message number #define in oserror.h
Current Database 5701 SQLSRV_ENVDB
National Language 5703 SQLSRV_ENVLANG

Add an event request to a thread’s request-handling queue.

CS_INT srv_event(spp, event, datap)
SRV_PROC *spp;

CS_INT event;
CS_VOID *datap;
Spp

A pointer to an internal thread control structure.

event
The token for the event to add to the client’s event queue. See “Events’ on

page 92 for alist of defined events.

datap
A pointer (CS_VOID) to data supplied by the Open Server programmer. An
application can retrieve the data by calling srv_thread_props with property
set to SRV_T_EVENTDATA, from within the event handler.

275

srv_event

Return value Table 3-44: Return values (srv_event)
Returns To indicate
The token for the requested event. | Open Server added the new event.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/ *
** Local Prototype
*/
CS_RETCODE ex srv_event PROTOTYPE ((
SRV_PROC *spp.,
CS_INT event,
CS_VOID *datap
))
/*
** EX SRV _EVENT
* %
bl Example routine to queue an event request to an Open Server
*k thread’s request-handling queue.
* %
* %k Note that if the event is an user-defined one, it
** must have been defined earlier using srv_define event.

276

* %

** Arguments:

* %k spp A pointer to a control structure for an Open

* % Server thread.
** event The token for the event to be added to the queue.
* % datap Data pointer.

* %

** Returns:
* %

** CS_SUCCEED The event was queued successfully
** CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_event (spp, event, datap)
SRV_PROC *sSpp;
CS_INT event;
Cs_VOID *datap;
{
if (srv_event (spp, event, datap) == CS_FAIL)
return (CS_FAIL);
else

return (CS_SUCCEED) ;

Open Server

CHAPTER 3 Routines

Usage

See also

Add an event request to the event queue of aparticular client thread. Event
reguests are usually added to a event request queue automatically, for
example, by Client-Library calls from the client application. However,
Open Server programmers can specifically add requests with srv_event.

The following events can be added to an event queue by srv_event:
*+ SRV_DISCONNECT

« SRV_URGDISCONNECT

e+ SRV_STOP

e Programmer-defined events

srv_handle tells Open Server which event handler to call when an event
occurs. If no handler is defined for a particular event, the default Open
Server event handler is called.

The SRV_URGDISCONNECT event causes an Open Server application’s
SRV_DISCONNECT event handler to be called.

The SRV_URGDISCONNECT event is queued as an urgent event. This
allows an application to place a disconnect event at the top of athread's
event queue, skipping any currently queued events. Thisis useful to
implement immediate termination of an Open Server thread.

If the event is programmer-defined, it must first be defined with
srv_define_event before it can be triggered.

srv_event addsany event except SRV_STOP or SRV_START toathread’s
event queue. Inthecaseof aSRV_STOPor SRV_START event, spp points
to theinternal thread control structure for the thread requesting the event.

An Open Server application cannot call any routine that does 1/0 from
inside a user-defined event.

Warning! Ininterrupt-level code, use srv_event_deferred instead of srv_event.

srv_define_event, srv_handle, srv_event_deferred, srv_thread_props,
“Events’ on page 92

Server-Library/C Reference Manual 277

srv_event_deferred

srv_event_deferred

Description

Syntax

Parameters

Return value

Add an event request to the event queue of athread as the result of an
asynchronous event.

CS_INT srv_event_deferred(spp, event, datap)
SRV_PROC *spp;

CS_INT event;
CS_VOID *datap;
Spp

A pointer to an internal thread control structure.

event
The event to add to the thread's event queue.

datap
A pointer (CS_VOID) to data supplied by the Open Server programmer. An
application can retrieve the data by calling srv_thread_props with property
set to SRV_T_EVENTDATA from within the event handler.

The requested event. If there was an error, -1 is returned.

Table 3-45: Return values (srv_event_deferred)

Returns To indicate
The token for the requested event. | Open Server added the new event.
-1 The routine failed.
Examples
#include <ospublic.h>
/ *
** Local Prototype
*/
CS_RETCODE ex srv_event deferred PROTOTYPE ((
SRV_PROC *spp.,
CS_INT event,
CS_VOID *datap
))
/*
** EX SRV_EVENT DEFERRED
* % Example routine to queue up a deferred event using
*x srv_event deferred. A deferred event request will
* % typically be made from within interrupt-level code.
** Arguments:
* % spp A pointer to the internal thread control
*x structure.
*k event The event to add to the thread’s queue.
278 Open Server

CHAPTER 3 Routines

* % datap A pointer to data to attach to the event.
** Returns:
* % CS_SUCCEED The event was sucecssfully queued.
* ok CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_event deferred(spp, event, datap)
SRV_PROC *Spp;
Cs_INT event;
CS_VOID *datap;
{ L

** Add a deferred event to the event gqueue.

*/

if (srv_event deferred(spp, event, datap) == -1)

{

return (CS_FAIL) ;

}

return (CS_SUCCEED) ;

Usage

srv_event_deferred adds an event request to the event queue of athread
from interrupt-level code, such as signal delivery on UNIX. The event
reguest is deferred until critical functions internal to Open Server have
been completed, if any such functions were being performed when
srv_event_deferred was called.

Some Open Server applications must be able to raise events from
interrupt-level code. For example, if you want to raise an event within the
attention handler or you are using the alarm signal in the Open Server
application code, you must use srv_event_deferred instead of srv_event.
srv_event_deferred ensuresthat critical functions, such as updating linked
lists or performing internal housekeeping, are completed before the event
reguest is acted on.

Warning! In interrupt-level code, use srv_event_deferred instead of
srv_event.

Open Server usually adds event requeststo athread’s event request queue
automatically. However, you can specifically add requests with
srv_event_deferred.

The following events can be added to an event queue by
srv_event_deferred:

« SRV_DISCONNECT

Server-Library/C Reference Manual 279

srv_free

« SRV_URGDISCONNECT
« SRV_STOP

* Programmer-defined events

» srv_handle tellsthe Open Server which event handler to call whenan event
occurs. If no handler is defined for a particular event, the default event
Open Server handler is called.

e If the event is programmer-defined, it must be defined with

srv_define_event before it can be triggered.

» srv_event addsany event except SRV_STOPor SRV_START toathread’s
event queue. Inthecaseof aSRV_STOPor SRV_START event, spp points
to the internal thread control structure for the thread requesting the event.

» AnOpen Server application cannot call any routine that does I/0 from
inside a user-defined event.

See also srv_define_event, srv_event, srv_handle, srv_thread props, “Events’ on page
92

srv_free

Description Free previoudy allocated memory.

Syntax CS_RETCODE srv_free(mp)
CS_VOID *mp;

Parameters mp

A pointer to the memory to be freed.

Return value Table 3-46: Return values (srv_free)
Returns To indicate
CS_SUCCEED The routine completed successfully.

CS FAIL

Theroutine failed.

Examples

#include <ospublic.h>
/*

** Local Prototype
*/

CS RETCODE ex srv_free PROTOTYPE ((

280

Open Server

CHAPTER 3 Routines

CS_BYTE *D
))

/*

** EX SRV_FREE
* %

* % Example routine to free memory allocated through srv _alloc.
* %

** Arguments:

* % p - The address of the memory block to be freed.

* %

** Returns:
* %

** CS_SUCCEED Memory was freed successfully.
* % CS _FAIL An error was detected.
*/
CS_RETCODE ex srv_free (p)
CS_BYTE *p;
{ e
** Free the memory block.
*/
if (srv_free(p) == CS_FAIL)

{

return CS_FAIL;

}
return CS_SUCCEED;
}
Usage * Usesrv_free only to free memory allocated by srv_alloc, srv_init, or
srv_realloc.

e Currently, srv_free callsthe C routine, free. An Open Server application,
however, can install its own memory management routines using the
srv_props routine. The parameter-passing conventionsof the user-installed
routine must be the same as those of free. If the application is not
configured to use the user-installed routines, it will use free.

See also srv_alloc, srv_props, srv_realloc, srv_init

srv_freeserveraddrs
Description Frees memory allocated by srv_getserverbyname.
Syntax CS RETCODE srv_freeserveraddrs(void *resultptr)

Server-Library/C Reference Manual 281

srv_get_text

Parameters

Return value

See also

srv_get_text

Description

Syntax

Parameters

Return value

Examples

#include
#include

/*

282

resultptr
A pointer to memory returned by srv_getserverbyname.

Table 3-47: Return values (srv_freeserveraddrs)

Returns To indicate
CS_SUCCEED The call to srv_freeserveraddrs ran successfully.
CS FAIL resultptr isNULL or deallocation failed.

srv_getserverbyname, srv_send_ctlinfo

Read atext or image datastream from aclient, in chunks.

CS_RETCODE srv_get_text(spp, bp, buflen, outlenp)

SRV_PROC *spp;
CS_BYTE *bp;

CS_INT buflen;
CS_INT *outlenp;
PP
A pointer to an internal thread control structure.
bp

A pointer to abuffer where the data from the client is placed.

buflen
The size of the * bp pointer. Thisindicates how many bytes are transferred
in each chunk.

outlenp
The number of the bytes read into the * bp buffer is returned here.

Table 3-48: Return values (srv_get_text)

Returns To indicate

CS_SUCCEED The call to srv_get_text ran successfully.

CS FAIL The routine failed.

CS END_DATA Open Server read in the entire text or image data stream.

<ospublic.h>
<stdio.h>

Open Server

CHAPTER 3 Routines
** Local Prototype
*/

CS_RETCODE ex_srv_get text PROTOTYPE ((

SRV_PROC *Spp,

CS_INT *outlenp,

CS_BYTE *bbuf

))

/*

** EX_ SRV _GET_ TEXT
* %

* ok Example routine to read chunks of text or image datastream
* % from a client into a buffer and then write it to a disk
*% file.

* %

** Arguments:

* %

* ok spp Pointer to thread control structure.

* ok outlenp Number of bytes read and written.

** bbuf Pointer to very large buffer for text.

* %

** Returns

* %

*x CS_SUCCEED The data was successfully read.

*x CS_FAIL An error was detected.

* %
*/

#define BUFSIZE 256

#define FPUTS (a, b) fputs(a,b)

CS_RETCODE ex_ srv_get_ text (spp,outlenp,bbuf)

SRV_PROC *Spp;

CS_INT *outlenp;

CS_BYTE *bbuf;

{

CS_INT llen; /* Local length. */
CS_INT lout; /* Local read count. */
CS_RETCODE lret; /* Local return code. */
CS_BYTE *1bufp; /* Local pointer into bbuf. */
/* Check arguments. */
if (bbuf == (CS_VOID *)0)
return (CS_FAIL) ;
if (spp == (SRV_PROC *)0)
return(CS_FAIL) ;
llen = BUFSIZE;
lbufp = bbuf;
/*
** Loop around getting data and copy it to bbuf.
Server-Library/C Reference Manual 283

srv_getloginfo

*/
while (lret != CS_END DATA)
{
(CS_VOID) srv_bzero(lbufp, BUFSIZE) ;
lout = 0;
lret = srv _get text(spp, lbufp, llen, &lout);
if (lret == CS_FAIL)

break;
*outlenp += lout;
lbufp += lout;

}
if (lret == CS_END DATA)
return (CS_SUCCEED) ;
else
return (lret) ;

Usage * srv_get_text isused to read bulk datafrom aclient. The bulk data can be
of type text or image.

* srv_get_text must be called until all of the bulk data has been read from a
client. It returns CS_END_DATA when the whole data stream has been
read in.

» srv_get_text canonly becalled frominsidethe SRV_BULK event handler.
* A columnread with srv_get_text must be of type text or image.

* AnOpen Server application must call srv_text_info prior to thefirst call to
srv_get_text for the data stream. The application then callssrv_get_text to
retrieve a chunk. srv_get_text is called as many times as are necessary to
read in the whole column.

» Open Server treatstext and image data streams except that it convertsonly
text data before sending it to the Open Server application. The only
conversion by Open Server performsis character set translation.

See also srv_bind, srv_descfmt, srv_send_text, srv_text_info, srv_thread_props,
srv_xferdata, “International support” on page 99, “ Text and image” on page
196

srv_getloginfo

Description Obtain login information from a client thread to prepare a passthrough
connection with aremote server.

284 Open Server

CHAPTER 3 Routines

Syntax CS_RETCODE srv_getloginfo(spp, loginfo)
SRV_PROC *spp;
CS_LOGINFO **|oginfo;

Parameters spp

A pointer to an internal thread control structure.

loginfo
A pointer to aCS_LOGINFO pointer that will be set to the address of a
newly alocated CS_LOGINFO structure.

Return value Table 3-49: Return values (srv_getloginfo)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
extern CS_RETCODE ex srv_getloginfo PROTOTYPE ((
Cs_VOID *Spp,
CS_VOID *x] oginfopp
))
/*

** EX SRV_GETLOGINFO
* %

* ok Example routine to retrieve the client’s login structure.

* %

** Arguments:

* ok spp Thread control structure.

* % loginfopp A pointer to client’s login record returned here.
* %

** Returns:
* %

* ok CS_SUCCEED Login structure was retrieved successfully.
*x CS_FAIL An error was detected.
*/

CS_RETCODE ex srv_getloginfo(spp, loginfopp)
SRV_PROC *spp;
CS_LOGINFO **loginfopp;
{
/* Initialization. */
*loginfopp = (CS_LOGINFO *)NULL;
if (sxrv_getloginfo(spp, loginfopp) == CS_FAIL)

Server-Library/C Reference Manual 285

srv_getmsgq

{

return (CS_FAIL) ;

}

return (CS_SUCCEED) ;

Usage

See also

srv_getmsgg

Description

Syntax

286

Use srv_getloginfo in gateway applications that use passthrough mode. In
passthrough mode, a gateway application passes packets between clients
and remote Sybase servers without interpreting the protocol.

When aclient connectsdirectly to aserver, the two programs negotiate the
protocol format they will use to send and receive data. When you use
protocol passthrough in a gateway application, the Open Server forwards
protocol packetsbetween aclient and aremote server. Therefore, theclient
and the remote server must agree on the protocol version.

srv_getloginfo is the first of four calls, two of them CS-Library calls, that
allow a client and remote server to negotiate a protocol format. The calls,
which can only be madein a SRV_CONNECT event handler, are:

a srv_getloginfo — allocatea CS_LOGINFO structure and fill it with
protacol information from the client thread.

b ct_setloginfo — prepare a CS_L OGINFO structure with the protocol
information retrieved in step 1, then log in to the remote server with
ct_connect.

Cc ct_getloginfo — transfer protocol login response information from a
CS_CONNECTION structure to the newly allocated CS L OGINFO
structure.

d srv_setloginfo —send the remote server’sresponse, retrieved in step 3,
to the client, then release the CS_LOGINFO structure.

srv_recvpassthru, srv_sendpassthru, srv_setloginfo

Get the next message from a message queue.

CS_RETCODE srv_getmsgq(msgqid, msgp, getflags, infop)

SRV_OBJID msgqid;
CS_VOID *msgp;
CS_INT getflags;
CS_INT *infop;

Open Server

CHAPTER 3 Routines

Parameters msgqid
Theidentifier for the message queue from which to get a message. To
reference the message queue by name, call srv_getobjid with the name to
yield the message queue ID.

msgp
A pointer to apointer variable that srv_getmsgq sets to the message's

address.

getflags
The values for getflags can be OR’ d together. Table 3-50 lists the legal
values for getflags, and their significance:

Table 3-50: Values for getflags (srv_getmsgq)

Value Significance

SRV_M_WAIT If no messageis available, srv_getmsgg deeps until a
message is delivered.

SRV_M_NOWAIT srv_getmsgq returns immediately whether amessage is

available or not.

SRV_M_READ_ONLY | The default behavior of srv_getmsgq isto remove the
message from the messagelist and to wake up any thread
that is waiting for the message to be read. If
SRV_M_READ_ONLY is set, amessage pointer is
returned, but the message is not removed from the list
and the thread waiting for the messageto beread does not
wake up. This option can be used to peek at the head of
the message queue to see if the message isintended for
the thread.

infop
A pointertoaCS_INT. Table 3-51 describes the possible valuesreturned in
*infop if srv_getmsgq returns CS_FAIL:

Server-Library/C Reference Manual 287

srv_getmsgq

Return value

Examples

288

Table 3-51: Values for infop (srv_getmsgq)
Value
SRV_|_WOULDWAIT

Meaning

The SRV_M_NOWAIT flag was set in the getflagsfield
and there are no messages to be read.

While waiting for a message, the message queue was
deleted.

TheSRV_M_WAIT flag was set inthe getflagsfield and
this call was interrupted before the message arrived.

Some other error occurred. Look in thelog file for a

SRV_|_DELETED

SRV_|_INTERRUPTED

SRV_|_UNKNOWN

message.
Table 3-52: Return values (srv_getmsgq)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

#include <ospublic.h>

/*

** TLocal prototype

*/
CS_VOID

ex srv_getmsgg PROTOTYPE ((

SRV_OBJID msgqgid,

CS_INT
))
/*

*infop

** EX SRV_GETMSGQ

* %
* %
* %

** Arguments:

* % msgqgid-
* %
* %
* % infop-
* %
** Returns:
* %
* %
*/
CS_VOID

Nothing.
failed.

ex srv_getmsgqg (msgqgid,

Example routine to get messages from a message queue.

The id of the message queue from which to get
the message.

Will hold information about why this routine
failed. Comes directly from srv_getmsg.

If this routine returns, it is because srv_getmsgg
Check infop to see why it failed.

infop)

SRV_OBJID msgqgid;

CS_INT

{

*infop;

Open Server

CHAPTER 3 Routines

CS_CHAR
/ *

message; / This message is a string. */

** Loop processing messages. Go to sleep if no messages are
** gvailable.

*/

while (srv_getmsgg(msggid, (CS_VOID *)&message, SRV _M WAIT,
infop)== CS_SUCCEED)

{

/* Process message.*/

}

/* infop will contain the reason why it failed. */

return ;

Usage

See also

srv_getobjid
Description

Syntax

Parameters

e srv_getmsgq putsthe address of the next message from the message queue
msgqid in *msgp.

e If thethread that sent the message specified that it would sleep until the
message is read, it wakes up.

srv_createmsgq, srv_deletemsgq, srv_getobjid, srv_putmsgq

Look up the object ID for a message queue or mutex with a specified name.
CS_RETCODE srv_getobjid(obj_type, obj_namep,
obj_namelen, obj_idp, infop)

CS_INT obj_type;
CS_CHAR *obj_namep;
CS_INT obj_namelen;

SRV_OBJID *obj_idp;

CS_INT *infop;

obj_type
Indicates whether the object isamutex (SRV_C_MUTEX) or a message
gqueue SRV_C MQUEUE).

obj_namep
A pointer to aCS_CHAR buffer that contains the name of the object.

obj_namelen
The length of the string in *obj_namep. If the string is null terminated,
obj_namelen can be CS NULLTERM.

Server-Library/C Reference Manual 289

srv_getobjid

obj_idp
A pointer to a SRV_OBJID structure that will receive the identifier for the
object, if found.

info
Appoi nter toaCS_INT. Table 3-53 describesthe possible valuesreturned in
*infop if srv_getobjid returns CS_FAIL:
Table 3-53: Values for infop (srv_getobjid)
Value Meaning
SRV_|I_NOEXIST The object does not exist.
SRV_I_UNKNOWN | Some other error occurred, for example, anull object name.

Return value Table 3-54: Return values (srv_getobjid)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_INT ex_srv_getobjid PROTOTYPE ((
CS_INT obj type,

CS_CHAR *obj name,

SRV_OBJID *obj_idp

))

/*

** EX SRV_GETOBJID

* %k An example routine to retrieve the object id for a specified
*x message queue or mutex name.

** Arguments:

* % obj type SRV _C MUTEX if requesting a mutex object id, and

* % SRV_C MQUEUE if requesting a message queue object
id.
* % obj name A null terminated string which specifies the name
** of the message queue or the mutex.
* % obj idp A pointer to a SRV_OBJID structure that will store
* % the identifier for the object.
** Returns:
* % CS_SUCCEED If the object id was retrieved
successfully.
** SRV_I NOEXIST If the object does not exist.
** CS FAIL If the object was not retrieved due to an error

290 Open Server

CHAPTER 3 Routines

*/
CS_INT ex srv_getobjid(obj type, obj name, obj idp)
CS_INT obj_ type;
CS_CHAR *obj name;
SRV_OBJID *obj idp;

{
CS_INT info; /* The reason for failure. */
CS_INT status; /* The return status. */
/* Validate the obj type. */
if ((obj _type != SRV_C MUTEX) && (obj type !=
SRV_C_MQUEUE))
{

}

/* Make sure that the object name is not null. */
if (obj name == (CS_CHAR *)NULL)

{
}

/* Ensure that the pointer to the SRV OBJID is not null */
P _
if (obj_idp == (SRV_OBJID *)NULL)

{
}

/* Get the object id. */

status = (CS_INT)srv_getobjid(obj type, obj name,
CS_NULLTERM, obj idp, &info);

/* Check the status. */

if ((status == CS_FAIL) && (info == SRV_I_NOEXIST))

{
}

return (status) ;

return(CS_FAIL) ;

return(CS_FAIL) ;

return(CS_FAIL) ;

status = SRV_I NOEXIST;

Usage Open Server maintains a table that maps the unique object identifiers of
message queues and mutexes to their names. Given the name, srv_getobjid
finds the identifier.

See also Srv_createmsggq, srv_createmutex, srv_deletemsgq, srv_deletemutex,
srv_getmsgq, srv_getobjname, srv_lockmutex,srv_putmsgq,
srv_unlockmutex

Server-Library/C Reference Manual 291

srv_getobjname

srv_getobjname

Description Get the name of a message queue or mutex with a specified identifier.
Syntax CS_RETCODE srv_getobjname(obj_type, obj_id, obj_namep,
obj_namelenp, infop)
CS_INT obj_type;

SRV_OBJID obj_id,;
CS_CHAR *obj_namep;

CS_INT *obj_namelenp;
CS_INT *infop;
Parameters obj_type

Indicates whether the object is amutex (SRV_C_MUTEX) or a message
queue (SRV_C_MQUEUE).

obj_id
The unique identifier of the object.

obj_namep
A pointer toaCS_CHAR buffer into which the name of the object is copied.
The buffer must be large enough to accommodate the object name and, if
obj_namelenpisNULL, anull character. The maximum Iength for an object

nameis SRV_MAXNAME characters, not including the null termination
byte.

obj_namelenp
A pointer to aCS_INT that receivesthe length of the object. If
obj_namelenp isNULL, the name that is found is copied into * obj_namep
and terminated with a null character. Otherwise, the length of the namein
*obj_namep is placed in * obj_namelenp.

infop
A pointer toaCS_INT that isset to SRV_|I_NOEXIST if the object with ID
obj_id does not exist.

Return value Table 3-55: Return values (srv_getobjname)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>
#include <stdio.h>
/*

** Local Prototype

*/

292 Open Server

CHAPTER 3 Routines

CS_RETCODE ex_ srv_getobjname PROTOTYPE ((
CS_INT obj_ type,

SRV _OBJID obj id

))i

/*
** EX SRV_GETOBJNAME
* % Example routine to illustrate the use of srv_getobjname to
* % get the name of mutex or message queue with id = obj id
** where obj id was earlier returned by srv_createmutex or
bl srv_createmsgq.
** Arguments:
* % obj type - Type of object; SRV _C MUTEX or SRV_C MQUEUE.
* % obj id - The unique identifier of the object.
** Returns:
* % CS_SUCCEED Memory was allocated successfully.
** CS_FAIL Memory allocation failure occured.
*/
CS_RETCODE ex srv_getobjname (obj type, obj id)
CS_INT obj type;
SRV_OBJID obj_id;
{
CS_CHAR obj name [SRV_MAXNAME+1] ;
CS_INT obj namelen;
CS_INT info;

CS_RETCODE ret;
/* Get object name. */
ret = srv_getobjname (obj type, obj id, obj name,
&obj namelen, &info);
/* Print information depending on retcode */
switch (ret)
{
case CS_FAIL:
if (info == SRV_I_NOEXIST)
{

fprintf (stderr, “%s object with id: %d does not

exist\n”, (obj_ type == SRV_C_MUTEX) °?
“Mutex” :“Message Queue”, (CS INT)obj id);
}
else
fprintf (stderr, “srv_getobjname failed\n”);
break;

case CS SUCCEED:
fprintf (stderr, “%s name: %s for id: %d\n”,

(obj type == SRV _C MUTEX) ? “Mutex” : “Message Queue”,
obj name, (CS_INT)obj id);
break;

Server-Library/C Reference Manual 293

srv_getserverbyname

default:
fprintf (stderr, “Unknown return code from
srv_getobjname\n”) ;
ret = CS_FAIL;
break;

}

return (ret);

Usage » Open Server maintains atable that maps the unique identifiers of message
gueues and mutexes to their names. Given the identifier, srv_getobjname
finds the name.

* Insome applications, it may make more sense to reference message
gueues or mutexes by name. srv_getobjid can be used to look up the
identifier that is used by the mutex and message queue services.

See also srv_createmsgg,srv_createmutex, srv_deletemsgq, srv_deletemutex,
srv_getmsgq, srv_getobjid,srv_lockmutex, srv_putmsgg, srv_unlockmutex

srv_getserverbyname

Description Returns the connection information for server_name, allocating memory as
needed. Memory allocated by srv_getserverbyname can be freed by calling
srv_freeserveraddrs.

Syntax CS_RETCODE srv_getserverbyname(CS_CHAR *server_name, CS_INT
namelen, CS_INT querytype, CS_INT result_type, void *resultptr, CS_INT
*result_cnt)

Parameters server_name
Name of the server to be looked up.

namelen
Length of server_name. Can be specified as CS NULLTERM.

querytype
Selects master (CS_ACCESS_CLIENT_MASTER) or query
(CS_ACCESS CLIENT_QUERY) entries for server_name.

result_type
Indicates the data format of connection information. result_type can be
specified as SRV_C_GETADDRS or SRV_C_GETSTRS.

294 Open Server

CHAPTER 3 Routines

Usage

See also

srv_handle

Description

Syntax

Parameters

resultptr
A pointer allocated by srv_getserverbyname to hold the results of a query.
resultptr is the address of a pointer which will receive the address of the
query results.

result_cnt
A pointer to CS_INT that contains the number of addresses returned for
server_name.

result_type can be specified as SRV_C _GETADDRS, where the information
will bereturned asan array of CS_TRANADDR structures. Alternatively, you
can specify result_type as SRV_C_GETSTRS, which returns an array of
pointersto character strings in the network-protocol protocol-address filter-
information format. For example, where network-protocol is“tcp”, protocol-
addressis“myhost 4000”, and filter-information is “ssl”, you will receive a
result of “tcp myhost 4000 ssl”.

srv_freeserveraddrs, srv_send_ctlinfo

Install an event handler in an Open Server application.

SRV_EVENTHANDLE_FUNC (*srv_handle(ssp, event,

handler))()
SRV_SERVER *ssp;
CS_INT event;
SRV_EVENTHANDLE_FUNC handler;

Ssp
A pointer to the Open Server control structure. This parameter isoptional. It

is present only to provide backward compatibility.

Server-Library/C Reference Manual 295

srv_handle

Return value

Examples

#include

/*

event

The event that handler will handle. Hereis alist of all the regular Open
Server events:

SRV_ATTENTION
SRV_BULK
SRV_CONNECT
SRV_CURSOR
SRV_DISCONNECT/SRV_URGDISCONNECT
SRV_DYNAMIC
SRV_FULLPASSTHRU
SRV_LANGUAGE
SRV_MSG
SRV_OPTION
SRV_RPC
SRV_START
SRV_STOP

Programmer-defined events— A programmer-defined event is defined using
srv_define_event.

For a description of each event, see “Events’ on page 92.

handler
A pointer to the function to call when an event request occurs. Passing
NULL asthe handler installs the default event handler.

Table 3-56: Return values (srv_handle)

Returns To indicate
A pointer to the event handling function The location of the function.
A null pointer Theroutine failed.

** Local Prototype

*/

extern CS_RETCODE

SRV_EVENTHANDLE FUNC

296

<ospublic.h>

ex srv_handle PROTOTYPE ((

funcp

Open Server

CHAPTER 3 Routines

));
/*
** EX_ SRV _HANDLE
*x Install a SRV_START handler.
** Arguments:

* % funcp Handler to install.
** Returns:
* % CS_SUCCEED Start handler was installed successfully.
** CS_FAIL An error was detected.
*/
CS_RETCODE ex_srv_handle (funcp)
SRV_EVENTHANDLE FUNC funcp;

{

if (srv_handle ((SRV_SERVER *)NULL, SRV_START, funcp) ==
CS_FATL)
{

}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage e srv_handle tells Open Server to cal a particular function when it receives
arequest to handle a particular event.

e Open Server calls handler with one argument.

The event handlers for the following events take a pointer to an Open
Server control structure as an argument:

« SRV_START
« SRV_STOP

The event handlers for the following events take a pointer to athread
control structure as an argument:

« SRV_ATTENTION

« SRV_BULK

« SRV_CONNECT

« SRV_CURSOR

+ SRV_DISCONNECT/SRV_URGDISCONNECT
« SRV_DYNAMIC

« SRV_FULLPASSTHRU

« SRV_LANGUAGE

Server-Library/C Reference Manual 297

srv_init

See also

srv_init
Description

Syntax

Parameters

298

« SRV_MSG
« SRV_OPTION
« SRV_RPC

Any programmer-defined event

e Each Open Server event has a default handler with a known name.
Installing an event handler with srv_handle replaces the default handler.

e Event handlers can beinstalled dynamically. The new event handler is
called the next time the event is rai sed.

e Event handlers must return CS_SUCCEED.

srv_define_event, srv_event, srv_event_deferred, “Events’ on page 92

Initialize an Open Server application.

SRV_SERVER *srv_init(scp, servernamep, namelen)
SRV_CONFIG *scp;

CS_CHAR *servernamep;
CS_INT namelen;
Scp

The configuration structure that holds the values of all the Open Server
configuration options. Thisargument isoptional. It isincluded for backward
compatibility.

server namep
A pointer to the Open Server application name. The name you supply is

looked up in theinterfaces file to get the necessary network information. If
you use (CS_CHAR *) NULL asthe Open Server name, the value of
DSLISTEN will bethe server’'sname. If DSLISTEN has not been explicitly
set, the name defaults to the string “ SYBASE”.

namelen
Thelength, in bytes, of the string in * servernamep. If the string is
(CS_CHAR*) NULL, namelen isignored. If the string is null terminated,
namelen can be CS NULLTERM.

Open Server

CHAPTER 3 Routines

Return value

Examples

Table 3-57: Return values (srv_init)

Returns To indicate
SRV_SERVER pointer The routine ran successfully.
(SRV_SERVER *) NULL Theroutine failed.

#include <ospublic.hs>

/*

** Local prototype.

*/

SRV_SERVER
SRV_CONFIG

)) i
/*

*ex srv_init PROTOTYPE ((
*scp

** EX SRV_INIT

* %

* % Example routine to initialize an Open Server application.

* %

** Arguments:

* ok scp - A pointer to the configuration structure.
* %

** Returns:

* % On success, a pointer to a newly allocated SRV_SERVER
structure.
* %k On failure, NULL.
* %
*/
SRV_SERVER *ex srv_init (scp)

SRV_CONFIG

{

*scp;

SRV_SERVER *server;

CS_CHAR
server
return

Usage

*servername = “EX SERVER”;
= srv_init (scp, servername, CS NULLTERM) ;
(server) ;

* A server must beinitialized beforeiit is started with srv_run.

e srv_init initializes an Open Server application. The initialization process
consistsprimarily of allocating the necessary data structuresfor the server,
initializing the server state, and starting up the network listener.

* Most configuration options must be set before srv_init is called if values
other than the defaults are desired. Seethe srv_propsreference page, for a
list of configurable options.

Server-Library/C Reference Manual 299

srv_langcpy

See also

srv_langcpy
Description

Syntax

Parameters

300

e srv_version must be called prior to srv_init to set up library version
information and default internationalization values.

e Open Server releases the SRV_SERVER structure when a SRV_STOP
event occurs. An Open Server application should not releaseit.

e Forinformation on designating an interfacesfile, see the srv_props
reference page. For more information on the interfaces file itself, see the
Open Client and Open Server Programmer’s Supplement for your
platform.

SIV_props, Srv_run, srv_version

Copy aclient’s language request into an application buffer.

CS_INT srv_langcpy(spp, start, nbytes, bp)
SRV_PROC *spp;

CS_INT start;
CS_INT nbytes;
CS_BYTE *bp;

Spp

A pointer to an internal thread control structure.

Start
The point at which to start copying characters from the request buffer. The
first character in the request buffer isthe 0'th character.

nbytes
The number of charactersto copy. If nbytesis-1, srv_langcpy copiesas many
bytesaspossible. Itislegal to copy 0 bytes. If there are not nbytes characters
available to copy, srv_langcpy copies as many as are in the request buffer.

bp
A CS_CHAR pointer to the programmer-supplied buffer into which to copy
the bytes.

Open Server

CHAPTER 3 Routines

Return value Table 3-58: Return values (srv_langcpy)

Returns To indicate

An integer The number of bytes copied.

-1 There is no current language request from this client.
Examples

#include <ospublic.h>

/*

** Local Prototype

*/

CS_RETCODE ex srv_langcpy PROTOTYPE ((

SRV_PROC *sSpp,

CS_CHAR *puf,

CS_INT size,

CS_INT *outlen

));

/*

** EX SRV_LANGCPY

* %

** Example routine to illustrate the use of srv_langcpy to
** copy language commands sent by a client.

* %

** Arguments:

* % sSpp A pointer to internal thread control structure.
* % buf A CS_CHAR pointer to buffer for language commands.
* % size The size of the buffer; A CS INT.
* % outlen A pointer to CS_INT; the actual length of
language query copied to buf is returned here. -1
* % is returned in case of failure.

* %

** Returns:
* %

* % CS_SUCCEED Language request was copied successfully.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_langcpy (spp, buf, size, outlen)
SRV_PROC *Spp;
CS_CHAR *pbuf;
CS_INT size;
CS_INT *outlen;
CS_INT act _len; /* actual length of language request */

Server-Library/C Reference Manual 301

srv_langlen

/* Initialization.*/

*outlen =

(CS_INT)-1;

/* Get the length of language request.*/
if ((act_len = srv_langlen(spp)) == -1)
return (CS_ FAIL);

/* Check to see whether we got a buffer of adequate size. */

if (size <
return

(act_len +1))
(CS_FAIL);

/* Copy language commands.*/
if (srv_langcpy(spp, (CS_INT)O0, act len, buf) <= 0)
return (CS_FAIL);

/* Set the actual length copied. */

*outlen =

act len;

return (CS_SUCCEED) ;

Usage

See also

srv_langlen

Description

Syntax

302

* When alanguage request is received from the client, srv_langcpy can be
used to copy a portion of the request buffer to a Open Server program
variable. The copy placed in the destination buffer is null terminated.

e srv_langcpy is also used to process language strings in cursor declare or
update statements.

Warning! srv_langcpy assumes that the destination buffer islarge enough
to handle nbytes + 1 bytes.

» Tosetthetota length of the language request buffer call srv_langlen.

» Therequest buffer can contain any string of characters, including
Transact-SQL statements. It'sup to the Open Server application to process
the string.

srv_langlen

Return the length of the language request buffer.
CS_INT srv_langlen(spp)

Open Server

CHAPTER 3 Routines

SRV_PROC *spp;

Parameters spp
A pointer to an internal thread control structure.

Return value Table 3-59: Return values (srv_langlen)
Returns To indicate
An integer The length in bytes of the language request buffer.
-1 Thereis no current language request from this client.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/

CS _RETCODE ex_ srv_langlen PROTOTYPE ((
SRV_PROC *spp,

CS_INT *len

)) i

/*
** EX SRV_LANGLEN

** Example routine to return the length of the language request
** buffer using srv_langlen.

* %

** Arguments:

** sSpp A pointer to the internal thread control structure.
** len Return pointer for the length of the language string.
* %k If there is no language command -1 is returned.

* %

** Returns:
* %

* % CS_SUCCEED Language length was retrieved successfully.

ol CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_langlen(spp, len)
SRV_PROC *Spp;
CS_INT *len;
{
/* Retrieve the language length. */
if ((*len = srv_langlen(spp)) < 0)

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Server-Library/C Reference Manual 303

srv_lockmutex

Usage

See also

* When alanguage request has been received from aclient, srv_langlen
returns the length of the request buffer.

e srv_langlen isalso used to process language strings in cursor declare or
update statements.

» All or part of the request buffer can be accessed with srv_langcpy.

e Therequest buffer can contain any string, including Transact-SQL
statements. It is up to the Open Server application to process the string.

srv_langepy

srv_lockmutex

Description

Syntax

Parameters

304

Lock a mutex.

CS_RETCODE srv_lockmutex(mutex_id, waitflag, infop)
SRV_OBJID mutex_id;

CS_INT waitflag;
CS_INT *infop;
mutex_id

The unique mutex identifier that was returned by the call to srv_createmutex.
Given the name of the mutex, the mutex_id can be obtained by calling
srv_getobjid.

waitflag
Specifies whether the thread requesting the mutex lock should wait or just
return if the mutex cannot be granted immediately. The value in *indp
indicateswhether thelock was granted. Thetwo valid valuesfor waitflag are
SRV_M_WAIT, which indicates that the thread should wait if the lock
cannot be granted immediately, and SRV_M_NOWAIT, which indicates
that the thread should return without waiting if the lock cannot be granted.

Open Server

CHAPTER 3 Routines

infop
A pointer to aCS_INT that is set to one of the following values:

SRV | _SYNC —Thelock was granted synchronously—the thread
reguesting the lock was not suspended to wait for the lock. srv_lockmutex
returned CS_SUCCEED.

SRV _| _GRANTED - Thelock was granted after the requesting thread was
suspended to wait for another thread to release alock on the mutex.
srv_lockmutex returned CS_SUCCEED.

SRV_|_INTERRUPTED - The thread received an attention while waiting
for the lock. The lock was not granted, and srv_lockmutex returned
CS FAIL.

SRV_| WOULDWAIT — The waitflag parameter was set to
SRV_M_NOWAIT and the thread would have had to wait for the lock. The
lock was not granted, and srv_lockmutex returned CS_FAIL.

SRV_| _UNKNOWN - Some other error occurred, for example, the mutex
does not exist. srv_lockmutex returned CS_FAIL.

Return value Table 3-60: Return values (srv_lockmutex)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE ex srv_lockmutex PROTOTYPE ((
SRV_OBJID mid
))
/*

** EX SRV_LOCKMUTEX

* %

** Example routine to illustrate the use of srv_lockmutex.
* %

** Arguments:

* K mid - The id of the mutex to lock.
* %

** Returns:
* %

** CS_SUCCEED Mutex successfully locked.

Server-Library/C Reference Manual 305

srv_lockmutex

* %

*/

CS _FAIL An error was detected.

CS_RETCODE ex srv_lockmutex (mid)

SRV_

{

Usage

See also

306

OBJID mid; /* The mutex id. */
CS_INT info; /* Information output variable. */
/*
** Request the mutex lock - sleep until we get it.
*/
if (srv_lockmutex(mid, SRV _M WAIT, &info) == CS_FAIL)
{
/*
** An error was al&ready raised.
*/

return CS_FAIL;

}

/*
** All done.
*/
return CS_SUCCEED;

» Mutexes are associated with data objects and program resources that must
be protected from simultaneous access by multiple threads.

» Mutex locks are granted to threads on a first-come, first-served basis.

» Thelock isgranted only if no other thread has al& ready obtained alock
on the mutex.

* srv_lockmutex cannot be used in a SRV_START or SRV_ATTENTION
handler.

» A thread can lock a mutex more than once, but must call srv_unlockmutex
once for each call to srv_lockmutex before another thread can lock the
mutex.

» If the mutex was waiting for is deleted, srv_lockmutex returns CS_FAIL.

srv_createmutex, srv_deletemutex, srv_getobjid, srv_unlockmutex

Open Server

CHAPTER 3 Routines

srv_log
Description

Syntax

Parameters

Return value

Examples

#include
#include

/*

Write a message to the Open Server log file.

CS_RETCODE srv_log(ssp, datestamp, msgp, msglen)
SRV_SERVER *ssp;

CS_BOOL datestamp;
CS_CHAR *msgp;
CS_INT msglen;
SSp

The handle to the Open Server. Thisargument is optional. It isonly present
for backward compatibility.

datestamp
If datestamp is CS_TRUE, the current date and time is added to the
beginning of the log message. If datestamp isCS_FAL SE, the log message
is not timestamped.

msgp
A pointer to the actual text of the message.

msglen
Thelength in bytes of msg. If the string in *msgp is null terminated, msglen
can be CS_NULLTERM.

Table 3-61: Return values (srv_log)

Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>
<string.hs>

** TLocal Prototype.

*/

CS_RETCODE
SRV_SERVER

CS_CHAR
)) i
/*

** EX SRV _TL.OG

* %

ex srv_log PROTOTYPE ((
*ssp,
*msg_txt

* % Example routine to log a message.

* %

** Arguments:

Server-Library/C Reference Manual 307

srv_log
* %
** gsp A pointer to the Open Server state information
*k control structure.
** msg_ txt Text of message to log.

** Returns
* %

** CS_SUCCEED Thread was created.

** CS_FAIL An error was detected.
* %

*/

CS RETCODE ex srv_log(ssp, msg txt)
SRV_SERVER *ssp;
CS_CHAR *msg_txt;
{
CS_RETCODE lret;
CS_INT msg_len;
/* Check arguments. */
if(ssp == (SRV_SERVER *)0)
return (CS_FAIL) ;
if (msg_txt == (CS_CHAR *)NULL)
return (CS_FAIL) ;
msg_ len=strlen(msg txt) ;

/*

** Log the message - We use CS TRUE as the second argument
** to force the date and time to be
* % added to the beginning of the logged
** message. If you do not want a
* %k datestamp then use CS FALSE.

*/

lret = srv_log(ssp,CS_TRUE,msg txt,msg len);
return (lret) ;

Usage * srv_log writes messages to the Open Server log file. The default name of

308

thelog fileis srv.log. The name can be set with srv_props.
» Messages are always appended to the log file.
» Thename of the log file can be accessed with the srv_props routine.
e Thenewline character is not added to the text in * msgp.

e Thelogfileistruncated based onthe SRV_TRUNCATEL OG property set
through srv_props.

» |If themessagelength exceedsSRV_MAXM SG, Open Server truncatesthe
message. This holds true whether or not the message is null terminated.

e If srv_init has not completed, the message goes to the boot window.

Open Server

CHAPTER 3 Routines

See also Srv_props
srv_mask
Description Initialize, set, clear or check bitsinaSRV_MASK_ARRAY structure.
Syntax CS_RETCODE srv_mask(cmd, maskp, bit, infop)
CS_INT cmd;
SRV_MASK_ARRAY *maskp;
CS_INT bit;
CS_BOOL *infop;
Parameters cmd
The action being performed. Table 3-62 summarizes the legal values for
cmd:
Table 3-62: Legal values for cmd (srv_mask)
Value Action
CS SET Set the bit in the SRV_MASK_ARRAY in *maskp.
CS GET Find out whether the bit is currently set in the

SRV_MASK_ARRAY in *maskp. If bitis set, *infop is set to
CS TRUE. Otherwise, itisset to CS_FALSE.

CS CLEAR Clear the bit in the SRV_MASK_ARRAY in *maskp.

CS ZERO Initialize the SRV_MASK_ARRAY in*maskp so that al the
bits are off. When cmd is set to CS_ZERO, bit and infop are
ignored.

maskp
A pointer to aSRV_MASK_ARRAY structure.
bit

The bit being initialized, set, cleared, or checked in the
SRV_MASK_ARRAY. This must be an integer between 0 and
SRV_MAXMASK_LENGTH. SRV_MAXMASK_LENGTH isdefined in
ospublic.h.

infop
A pointer to avariable that will indicate whether or not bit is set. This
parameter isignored when cmd isCS_SET, CS CLEAR, or CS_ZERO.

Server-Library/C Reference Manual 309

srv_mask

Return value Table 3-63: Return values (srv_mask)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

CS_RETCODE ex_srv_mask PROTOTYPE ((

SRV_MASK ARRAY *maskptr,

CS_INT bit

))

/*

** EX_ SRV MASK

* %

* Example routine to manipulate bits in a SRV_MASK ARRAY
*x structure.

* %

** Arguments:

** maskptr A pointer to a mask array.
* % bit The bit to examine.

* %

** Returns:
* %

** CS_SUCCEED

* ok CS_FAIL

*/

CS_RETCODE ex_srv_mask (maskptr, bit)

SRV_MASK ARRAY *maskptr;
CS_INT bit;

{

CS_BOOL info = CS_TRUE;

if (srv_mask(CS_GET, maskptr, bit, &info) == CS_FAIL)

{
}

else

{

return (CS_FAIL) ;

/* Has the bit been set? */
if (info == CS_FALSE)

310 Open Server

CHAPTER 3 Routines

return (CS_FAIL) ;
else
return (CS_SUCCEED) ;

Usage srv_mask is used to access and modify aSRV_MASK_ARRAY structure.
Srv_msg
Description Send or receive a message datastream.
Syntax CS_RETCODE srv_msg(spp, cmd, msgidp, status)
SRV_PROC *spp;
CS_INT cmd;
CS_INT *msgidp;
CS_INT *statusp;
Parameters spp
A pointer to an internal thread control structure.
cmd

Indicates whether the application is calling srv_msg to send or retrieve a
message. Table 3-64 describes the legal values for cmd:

Table 3-64: Values for cmd (srv_msg)

Value Description

CS SET | srv_msg is setting the values for status and msgid prior to sending the
message to the client.

CS _GET | srv_msg isretrieving the status and msgid values for the message being
received.

msgidp
A pointer to the message ID of the current message. If the Open Server
applicationissending amessage (CS_SET), it must provide the message ID
here. If the application is reading a message (CS_GET), the message ID of
the received message is returned here. Values of SRV_MINRESM SG
through SRV_MAXRESMSG are reserved for internal Sybase usage. Since
themessage I D is subsequently sent asasmallint (2 bytes) through TDS, the
available range you can use for your own messagesis SRV_MAXRESMSG
to 65535, if you define message ID as an unsigned CS_ SMALLINT.

Server-Library/C Reference Manual 311

srv_msg

statusp
A pointer to the status of the current message. If the Open Server application
isreceiving amessage (CS_GET), Open Server will update * statusp with
the message status. If the application is sending a message (CS_SET),
*statusp must contain the status of the message to be sent. Table 3-65
describes the legal values for * statusp:

Table 3-65: Values for statusp (srv_msg)

Value Description
SRV_HASPARAMS The message has parameters.
SRV_NOPARAMS The message has no parameters.
Return value Table 3-66: Return values (srv_msg)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local prototype.
*/
CS_RETCODE ex_srv_msg PROTOTYPE ((
SRV_PROC *sSpp
))
/*

** EX SRV _MSG
* %

* %k Example routine to receive and send a message datastream.
* %

** Arguments:

** gpp A pointer to an internal thread control structure.

** Returns:
*% CS SUCCEED if we were successful in both receiving and
** gending a message stream.

** CS FAIL if an error was detected.
* %

*/
CS_RETCODE ex srv_msg (spp)
SRV_CONFIG *scp;

{

312 Open Server

CHAPTER 3 Routines

CS_RETCODE result;

CS_INT msgid;

Cs_INT status;

/*
** We will first get a message and process any parameters.
*/

result = srv_msg(spp, CS_GET, &msgid, &status);

if (result == CS_FAIL)

{
}

if (status == SRV_HASPARAMS)

{

return (CS_FAIL);

/*
** Process parameters here using srv_bind and
** srv_xferdata.

*/
}
/*
** Now, an example of sending a message.
*/

msgid = 32768;
status = SRV_NOPARAMS;

result = srv_msg(spp, CS_SET, &msgid, &status);

if (result == CS_FAIL)

{
}

return (CS_FAIL);

/*

** Tf the message has parameters, send it across using ** srv_xferdata
*/

if (status == SRV_HASPARAMS)

{
}

return (result) ;

result = srv_xferdata(spp, CS_SET, SRV_MSGDATA) ;

Usage e srv_msg isused to send or receive a TDS message data stream.

Server-Library/C Reference Manual 313

srv_negotiate

e Each message data stream received from aclient raisesa SRV_MSG
event. A separate event israised for each message received.

» If amessage has parameters, * statusp will contain the value
CS HASPARAMS. The application can retrieve and store the parameters
using srv_descfmt, srv_bind, and srv_xferdata with type set to
SRV_MSGDATA.

» An application can determine the number of parameters for a message by
calling srv_numparams.

* Thesrv_msg routineis used to send the status and ID. The actual
parameters of the message, if any, are sent using srv_descfmt, srv_bind, and
srv_xferdata with atype argument of SRV_MSGDATA.

« Anapplication can send or receive multiple message data streams.

e srv_xferdata isonly needed to retrieve or send message parameters. When
using it for these cases, srv_xferdata must be called once for each message
being sent or received. If you use srv_xferdata when no parameters exist,
Open Server returns an error.

e srv_msg can only be called inaSRV_MSG event handler when cmd is
CS _GET. It can be called in any event handler when cmd is CS_SET.

See also srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “ Data stream
messages’ on page 80

Srv_negotiate
Description Send to and receive from aclient, negotiated login information.

Syntax CS_RETCODE srv_negotiate(spp, cmd, type)

SRV_PROC *spp;
CS_INT cmd;
CS_INT type;
Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the application is calling srv_negotiate to send or retrieve
negotiated login information. Table 3-67 describesthe legal values for cmd:

314 Open Server

CHAPTER 3 Routines

Table 3-67: Values for cmd (srv_negotiate)

Value Description

CS SET The negotiated login information defined by typeisto be
sent to the client.

CS GET The negotiated login information defined by typeisto be
read from the client.

type
Thetype of negotiated login information to be sent to or read from aclient.
Table 3-68 describes the legal values for type:

Server-Library/C Reference Manual 315

srv_negotiate

Table 3-68: Values for type (srv_negotiate)
Value Description

SRV_NEG_CHALLENGE | The negotiated login information is a challenge byte
stream sent to the client (CS_SET) or achallenge
response byte stream read from the client (CS_GET).
SRV_NEG_ENCRYPT The negotiated login information consists of an
encryption key sent to the client. The client will then
use thisto encrypt its local and remote passwords.
Thistypeisonly valid when cmd is CS_SET.

SRV_NEG_EXTENDED_ | Thenegotiated login information and public key used

ENCRYPT to encrypt the password.These information are used
by the client. Thistypeisonly valid whencmd is
CS_SET.

SRV_NEG_EXTENDED_ | The public key encrypted password sent by the client

LOCPWD inresponsetoaSRV_NEG_EXTENDED_ENCRYPT
challenge. Thistypeisonly valid when cmd is
CS_GET.

SRV_NEG_EXTENDED_ | Thenegotiated logininformation isavariable number

REMPWD of pairs of remote server names and corresponding

public key encrypted password sent by the client in
response to aSRV_NEG_EXTENDED_ENCRYPT
challenge. Thistypeisonly valid when cmd is

CS GET.

SRV_NEG_LOCPWD The encrypted local password sent by the client in
response to aSRV_NEG_ENCRYPT challenge. This
typeisonly valid when cmd isCS_GET.

SRV_NEG_REMPWD The negotiated login information isa variable number
of remote server name and encrypted remote
password pairs sent by the client in responseto a
SRV_NEG_ENCRYPT challenge. Thistypeisonly
valid when cmd isCS_GET.

SRV_NEG_SECLABEL The negotiated login information is a request for
security labels sent to the client, or a set of security
labels sent by the client to the server.

SRV_NEG_SECSESSION | The negotiated login information is used by afull
passthrough gateway application to establish adirect
security session between a gateway client and a
remote server. Thisis similar to challenge-response
security negotiation. Refer to “ Security services’ on
page 170 for more information and for an example
security session callback.

316 Open Server

CHAPTER 3 Routines

Value Description

An integer value between The negotiated login information is part of an
CS USER_MSGID and application-defined handshake, identified by the type
CS USER_MAX_MSGID, | argument itself.

inclusive.
Return value Table 3-69: Return values (srv_negotiate)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

CS_RETCODE ex_srv_negotiate PROTOTYPE ((
SRV_PROC *sproc

V)i

/*

** EX SRV_NEGOTIATE

** An example routine to retrieve negotiated login information
** by using srv_negotiate.

* %

** Arguments:

** gproc A pointer to an internal thread control structure.
* %

** Returns:
** CS SUCCEED The login information was retrieved.

** CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_negotiate (sproc)
SRV_PROC *sproc;

/*

** Check to make sure that the thread control structure is
** not NULL.

*/

if (sproc == (SRV_PROC *)NULL)

{
}

return (CS_FATL) ;

Server-Library/C Reference Manual 317

srv_negotiate

Usage

318

/* Now get the login information. */
if (srv_negotiate(sproc, CS_GET, SRV_NEG CHALLENGE) == CS_FAIL)

{
}

return (CS_SUCCEED) ;

return(CS_FAIL) ;

* srv_negotiate is used to send negotiated login information to, and receive
negotiated login responses from, a client.

» through srv_negotiate, Open Server applications can implement a secure
login processinside their SRV_CONNECT event handler. In a secure
computing environment, an application may want to perform more
rigorous authentication at connect time to verify that clients are who they
claim to be, by issuing negotiated login challenges and encrypted
passwords.

* An Open Server application can choose to send a challenge or encrypted
password to the client while in the SRV_CONNECT event handler, to
authenticate the login attempt.

» Once an application has sent a negotiated login challenge or encrypted
password, it must read the client’s response before the connection process
can continue.

» AnOpen Server application can go through as many challenge or response
iterations as are necessary to authenticate the login attempt. However, the
application must read in the response to each challenge before sending
another challenge.

» Onceanegotiated login challenge has been sent to aclient, the application
must read the response before the connection process can continue.

* An Open Server application must punctuate any type of challenge with a
call to srv_senddone. If the application issues a batch of several
challenges before it reads a response, it must call srv_senddone with a
status argument of SRV_DONE_MORE &fter each challenge but the last
oneinthe batch. After thelast challenge in the batch, the application must
call srv_senddone with a status argument of SRV_DONE_FINAL.

Open Server

CHAPTER 3 Routines

For application-defined handshakes, an Open Server application can set
the type argument to a value between CS USER_MSGID and

CS USER_MAX_MSGID to set the handshaketype (CS_SET) or specify
thetype of reply the client should be sending inresponse (CS_GET). If the
Open Server application receives an unexpected value, Open Server raises
an error.

When aclient responds to a challenge or encrypted password,
srv_negotiate suspends the thread’s execution until the client’s response
has arrived. Applications should bear thisin mind when coding a secure
SRV_CONNECT event handler.

Negotiated login challenges and responses carry data val ues through
parameters, which are sent and received through srv_bind, srv_descfmt,
and srv_xferdata.These three routines take a type argument of
SRV_NEGDATA to define or access negotiated login data.

Table 3-70 lists the parameter or parameters that accompany each type of
challenge sent to aclient:

Table 3-70: Required challenge parameters (srv_negotiate)

Negotiated login type

Parameters required

SRV_NEG_CHALLENGE

One parameter — Challenge-data value.
DatatypeisCS BINARY_TYPE withthe
CS DATAFMT statusfield set to

CS CANBENULL.

SRV_NEG_ENCRYPT

One parameter — Encryption key data
value. Datatypeis CS_BINARY_TYPE
withthe CS_DATAFMT statusfield set to
CS CANBENULL.

SRV_NEG_SECLABEL

No parameters.

SRV_NEG_SECSESSION

The security session callback specifiesthe
number of parameters and their data
formats. Refer to “ Security session
callbacks’ on page 193 and to the Open
Client Client-Library/C Reference
Manual.

An integer value between
CS USER_MSGID and
CS USER_MAX_MSGID, inclusive.

One parameter — Application-defined
login handshake data value.

e Table3-71 lists the parameter that should be read from aclient for each

type of negotiated login challenge:

Server-Library/C Reference Manual 319

srv_negotiate

320

Table 3-71: Expected challenge parameters (srv_negotiate)

Negotiated login type

Parameters present

SRV_NEG_CHALLENGE

One parameter — Challenge response data.

SRV_NEG_LOCPWD

One parameter — Encrypted local password.

SRV_NEG_REMPWD

A variable number of server-name/password
pairs.

SRV_NEG_SECLABEL

Four parameters:

Param 1: Maximum read level label.
Param 2: Maximum write level labdl.
Param 3: Minimum write level label.
Param 4: Current write level label.

SRV_NEG_SECSESSION

The security session callback specifies the
number of parameters and their data formats.
Refer to “ Security session callbacks” on page
193 and to the Open Client Client-Library/C
Reference Manual.

An integer value between
CS_USER_MSGID and
CS_USER_MAX_MSGID,
inclusive.

One parameter — Application-defined login
handshake data value.

Note that a response to a password encryption challenge,
SRV_NEG_ENCRYPT, can consist of two sets of parameters. The
SRV_NEG_|L OCPWD response carriesaparameter indicating theclient’s
encrypted password. The client can also send aSRV_NEG_REMPWD
response, which carries parameters indicating the client’s encrypted
remote server password and the remote server name, respectively. The
SRV_NEG_ L OCPWD responseto aSRV_NEG ENCRYPT challenge
will always be present. If no remote server passwords were sent by the
client, arequest to receivea SRV_NEG_REMPWD response will fail.

Applicationsthat use Open Client and Open Server to implement gateway
functionality must use Open Client’s negotiated login callback mechanism
to route negotiated login challenges and responses between clients and the
remote server. In thistype of application, the Open Client negotiated login
callback must contain the Server-Library routine calls necessary to
forward a challenge to the client, and receive the response, which Open
Client then returns to the remote server.

Open Server

CHAPTER 3 Routines

See also

If the gateway application intends to establish a direct security session
between clients and a remote server, then an Open Client security session
callback is required. This callback must contain the Server-Library cals
necessary to forward the opaque security tokens to the client, and receive
the response, which the Open Client then returns to the remote server.
Refer to “ Security session callbacks’ on page 193 and to the Open Client
Client-Library/C Reference Manual, for more information.

srv_senddone, srv_thread props

Srv_numparams

Description

Syntax

Parameters

Return value

Examples

#include

/*

** TLocal Prototype.

*/

CS_RETCODE
SRV_PROC

CS_INT
)) g

/*

Return the number of parameters contained in the current client command.

CS_RETCODE srv_numparams(spp, numparamsp)

SRV_PROC *spp;
CS_INT *numparamsp;

Spp

A pointer to an internal thread control structure.

numparamsp

A pointer to the number of argumentsin the current client command or
cursor data stream is returned in * numparamsp.

Table 3-72: Return values (srv_numparams)

Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

ex srv_numparams PROTOTYPE ((

*countp

** EX SRV_NUMPARAMS

Server-Library/C Reference Manual 321

Srv_numparams

* %

** Example routine to illustrate the use of srv_numparams to
* % get the number parameters contained in the current client
* % command.

* %

** Arguments:

** spp A pointer to an internal thread control structure.
* % countp A pointer to the buffer in which the number of
* %k parameters in the client command is returned.

* %

** Returns:
* %

** CS_SUCCEED The number of parameters was successfully
* % returned.
** CS_FAIL An error was detected.
*/
CS_RETCODE ex_ srv_numparams (spp, countp)
SRV_PROC *Spp;
Cs_INT *countp;
{
if (srv_numparams (spp, countp) == CS_ FAIL)

return (CS_FAIL);

return (CS_SUCCEED) ;

Usage e srv_numparams returns the number of parametersin the current MSG,
RPC, DYNAMIC or cursor data stream, or the number of parametersina
client’'sresponse to asrv_negotiate(CS_GET) call. This number includes
any default parametersfilled in by Open Server at runtime.

e srv_numparams canonly becalled from handlersfor specific events. Table
3-73 lists those events and their parameters:

322 Open Server

CHAPTER 3 Routines

See also

srv_options
Description

Syntax

Parameters

Table 3-73: Events and parameters (srv_numparams)

Event Parameters
SRV_CURSOR Cursor parameters.
SRV_RPC RPC parameters.
SRV_DYNAMIC Dynamic SQL parameters.
SRV_MSG MSG parameters.

SRV_LANGUAGE Language parameters. srv_numparams requiresa TDSlevel
of 5.0 or aboveto check for and retrieve parameter datain a
language handler. You may need to add code to your
application to check the TDS level on the connection, and
skip srv_numparams if the TDS version isless than
SRV_TDS 5 0. You can usethe SRV_S TDSVERSION
property of the srv_props routine to get the TDS protocol
version on the connection (see Table 2-25 on page 141).

After asrv_negotiate | Parametersin the client’s response. For example, in the
(CS_GET) call. sample program, ctos.c.

srv_bind, srv_cursor_props, srv_descfmt, srv_dynamic, srv_msg,
srv_xferdata, “Processing parameter and row data’ on page 134

Send option information to a client or receive option information from aclient.

CS_RETCODE srv_options(spp, cmd, optcmdp, optionp,
bufp, bufsize, outlenp)
SRV_PROC *spp;

CS_INT cmd;
CS_INT *optcmdp;
CS_INT *optionp;
CS_CHAR *bufp;
CS_INT bufsize;
CS_INT *outlenp;
SPp
A pointer to an internal thread control structure.
cmd

Indicates whether the application is calling srv_options to send or receive
option information. Table 3-74 describes the legal values for cmd:

Server-Library/C Reference Manual 323

srv_options

Table 3-74: Values for cmd (srv_options)
Value Description
CS SET The Open Server application issending an option command to aclient.

CS GET The Open Server application is receiving an option command from a
client.

optcrmdp
A pointer either to the program variable that will contain aclient’s option
command (CS_GET) or to the program variable that contains the Open
Server application’s option command (CS_SET). Table 3-75 summarizes
the legal values for *optcmdp:

Table 3-75: Values for optcmdp (srv_options)

Value Description Cmd

SRV_SETOPTION Theclient isrequesting that theoptionbeset. | CS_GET
Thevalueassociated with optionp isreturned
in *bufp. Open Server will set bufsize to the
size, in bytes, of thedatareturned. If *bufpis
not large enough to hold the data, the
functionwill return CS_FAIL, the actual size
of the option value, in bytes, isreturned in
*outlenp, and the values of optionp and bufp
will remain undefined.

SRV_CLEAROPTION | Theclientisrequesting that optionp besetto | CS_GET
itsdefault value. The bufp and optionp values
will remain undefined.

SRV_GETOPTION A client is requesting information on the CS GET
current value in *optionp. The bufp and
optionp values will remain undefined.

SRV_SENDOPTION The application is sending the current option | CS_SET
valueto the client in responseto a
SRV_GETOPTION command. bufp pointsto
the argument associated with the option, and
bufsize holds the size, in bytes, of the datain
*bufp.

optionp
A pointer either to the client’s requested option (CS_GET) or to the option
with which the Open Server application is responding (CS_SET).

324 Open Server

CHAPTER 3 Routines

bufp
A pointer to abuffer that will contain either the value associated with the
option (CS_GET) or the value of the option to be sent to the requestor
(CS_SET). The* optionp contains the option in question and * bufp contains
itsvalue (on aCS_SET). For acomplete list of options and their legal
values, see below.

bufsize
The length of the * bufp buffer. When sending an option that takes a
character string option value, if the valuein bufp is null terminated, pass
bufsizeasCS NULLTERM.

outlenp
A pointer to aprogram variable which is set to the size, in bytes, of the
option value returned in * bufp. This parameter isonly used when cmd is set
to CS_GET, and is optional.

Return value Table 3-76: Return values (srv_options)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>

/*

** Local Prototype

*/

CS_RETCODE ex_srv_options PROTOTYPE ((

SRV_PROC *spp.,

CS_INT *rowcount

))

/*

** EX SRV _OPTIONS

* %

* ok Example routine to recieve option information for the
** maximum number of regular rows to return (CS_OPT_ ROWCOUNT)
*% from a client.

* %
** Arguments:
* % spp A pointer to an internal thread control structure.

* ok rowcount Return pointer for the number of rows to return.
* %

** Returns:

Server-Library/C Reference Manual 325

srv_options

* %

* %

CS_SUCCEED Successfully retrieved option.

** CS_FAIL An error was detected.
*/
CS_RETCODE ex_srv_options(spp, rowcount)
SRV_PROC *SppP ;
Cs_INT *rowcount ;
{ CS_INT optcmdp; /* The client’s option command. */
CS_INT optionp; /* The client’s option request. */
/* Initialization. */
optcmdp = SRV_GETOPTION;
optionp = CS_OPT ROWCOUNT;
/ *
** Get the maximum number of rows to return.
*/
if (srv_options(spp, CS_GET, &optcmdp, &optionp, (CS _VOID
*)rowcount, CS SIZEOF(CS_INT), (CS_INT *)NULL) !=
CS_SUCCEED)
{
return(CS_FAIL) ;
}
return (CS_SUCCEED) ;
}
Usage » srv_options allows an Open Server application to read option information
from aclient or send option information to aclient.
e Table 3-77 summarizes the valid options, their legal values, and the
datatype of the optionp parameter:
326 Open Server

CHAPTER 3 Routines

Table 3-77: Description of options (srv_options)

Option Legal value bufp points to
CS OPT_ANSINULL CS TRUE, CS _FALSE A CS BOOL
CS_OPT_ANSIPERM CS TRUE, CS_FALSE A CS_BOOL
CS OPT_ARITHABORT CS TRUE, CS_FALSE A CS BOOL
CS OPT_ARITHIGNORE CS TRUE, CS FALSE A CS BOOL

CS OPT_AUTHOFF CS OFT_SA, A character string
CS_OPT_SSO,
CS_OPT_OPER

CS OPT_AUTHON CS OPFT_SA, A character string
CS_OPT_SSO,
CS_OPT_OPER

CS OPT_CHAINXACTS CS TRUE, CS FALSE A CS BOOL

CS OPT_CURCLOSEONXAC | CS TRUE, CS FALSE A CS_BOOL

T

CS OPT_CURREAD

Read |abel (string)

A character string

CS OPT_CURWRITE

Write label (string)

A character string

CS OPT_DATEFIRST

CS_OPT_SUNDAY
CS_OPT_MONDAY

CS OPT_TUESDAY
CS_OPT_WEDNESDAY
CS OPT_THURSDAY
CS OPT_FRIDAY

CS OPT_SATURDAY

A symbolic value
representing the
day to use asthe
first day of the
week

CS_OPT_DATEFORMAT

CS OPT_FMTMDY
CS OPT_FMTDMY

A symbolic value
representing the

CS OPT_FMTYMD order of year,

CS OPT_FMTYDM month and day to

CS OPT_FMTMYD beusedin

CS OPT_FMTDYM datetime values
CS OPT_FIPSFLAG CS TRUE, CS FALSE A CS BOOL
CS_OPT_FORCEPLAN CS_TRUE, CS FALSE A CS BOOL
CS_OPT_FORMATONLY CS _TRUE, CS FALSE A CS BOOL
CS _OPT_GETDATA CS TRUE, CS FALSE A CS BOOL

CS OPT_IDENTITYOFF

A string value representing
atable name

A character string

CS OPT_IDENTITYON

A string value representing
atable name

A character string

CS OPT_ISOLATION

Server-Library/C Reference Manual

CS OPT_LEVEL1
CS OPT_LEVEL3

A symbolic value
representing the
isolation level

327

srv_options

328

Option Legal value bufp points to
CS_OPT_NOCOUNT CS_TRUE, CS FALSE A CS BOOL
CS_OPT_NOEXEC CS TRUE, CS FALSE A CS BOOL
CS_OPT_PARSEONLY CS_TRUE, CS FALSE A CS BOOL
CS_OPT_QUOTED_IDENT CS TRUE, CS FALSE A CS BOOL
CS_OPT_RESTREES CS TRUE, CS FALSE A CS BOOL
CS_OPT_ROWCOUNT The maximum number of | A CS_INT

regular rows to return O meansall rows

arereturned

CS_OPT_SHOWPLAN CS TRUE, CS FALSE A CS BOOL
CS_OPT_STATS 10 CS TRUE, CS FALSE A CS BOOL
CS_OPT_STATS TIME CS TRUE, CS FALSE A CS BOOL
CS_OPT_STR_RTRUNC CS TRUE, CS FALSE A CS BOOL
CS OPT_TEXTSIZE Thelength, in bytes, of the | A CS_INT

longest text or image value

the server should return
CS_OPT_TRUNCIGNORE CS TRUE, CS FALSE A CS BOOL

“Options’ on page 122 describes each option and lists its default value.

Open Server raises a SRV_OPTION event for each option command
received from aclient. Insideits SRV_OPTION event handler, the

application can then call srv_options with cmd set to CS_GET to retrieve
the option information. When srv_options returns, optcmdp, optionp, and
*pufp will contain all of the option information received from the client. It
isan error to call srv_options in any event handler other than a
SRV_OPTION event handler.

In responseto SRV_SETOPTION and SRV_CLEAROPTION, the
application must call srv_senddone with an argument of
SRV_DONE_FINAL. If option processing isunsuccessful, the application
must call srv_senddone with an argument of SRV_DONE_FINAL |
SRV_DONE_ERROR.

The application must respond to every SRV_GETOPTION command it
receives with a call to srv_options, with optcmdp set to
SRV_SENDOPTION and bufp pointing to the current value of the option.

It isthe application’s responsibility to ensure that the * bufp buffer islarge
enough to receive arguments sent by a client with a SRV_SETOPTION
command. If the buffer is not large enough, srv_options will return
CS_FAIL and outlenp will be set to the required size.

Open Server

CHAPTER 3 Routines

See also

srv_orderby

Description

Syntax

Parameters

Return value

e Open Server has no notion of what particular options mean. It isthe Open
Server application’s responsibility to save the client’s option commands
and perform any actions that they require. If thereisno SRV_OPTION
event handler installed, option commands received from clients will be
rejected with an error.

srv_senddone, “Options’ on page 122

Return an order-by list to aclient.

CS_RETCODE srv_orderby(spp, numcols, collistp)
SRV_PROC *spp;

CS_INT numcols;
CS_INT *collistp;
Spp

A pointer to an internal thread control structure.

numcols
The number of columnsin the order-by list. Because the columns are passed
asan array of CS_INTSs, numcolsis really the number of elementsin the
collistp array.

collistp
A pointer to the array of column numbers. The size of thisarray is numcols.

Table 3-78: Return values (srv_orderby)

Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples

#include <ospublic.h>

/*

** Local Prototype

*/

CS_RETCODE ex srv_orderby PROTOTYPE ((

SRV_PROC *sSpp

))

/*

Server-Library/C Reference Manual 329

srv_orderby

330

** EX SRV_ORDERBY

* %

* %

* %

* %

* %

* %

* %

* %

* %

Example routine using srv_orderby to define and return to a

client
comman
This ex

“se
@]

** Arguments:

* %
* %
* %
* %

* %

*/

cs

Spp
Returns:

Cs_succ

CS_FAIL

RETCODE

SRV_PROC

{

/* There
Cs_INT
Cs_INT

/* Initia
numcols =

/*

** TInitia

application the order-by list for a simple SQL
d.
ample uses the SQL command:

lect a,b,c,d from my tab

rder by c,a”

A pointer to the internal thread control structure.

EED Order-by list was successfully defined.
An error was detected..

ex srv_orderby (spp)
*spp;

are two columns specified in the order-by clause. */

collist([2];
numcols;

lization. */
2;

lize the collist array in the order the

** columns occur in the order-by clause.

* %

* % \\c" iS

** and i
*/
collist [0
/*

* % \\a" iS

** and i
*/
collist[1
/*

% Define
*/

if (srv_ o

{

the 1st column specified in the order-by,
s the 3rd column specified in the select-list.

] = (CS_INT)3;

the 2nd column specified in the order-by,
s the 1st column specified in the select-list.

] = (CS_INT)1;
the order-by list.

rderby (spp, numcols, collist) != CS_ SUCCEED)

return (CS_FAIL) ;

Open Server

CHAPTER 3 Routines

}

return (CS_SUCCEED) ;

Usage

e srv_orderby ishecessary only if you want to mimic Adaptive Server's
feature of returning order-by information.

e srv_orderby allowsan Open Server application to return information about
sort order to aclient. In the SQL command:

select a, b, ¢, d
order by ¢, a

The sort order is column ¢ followed by column a. The application returns
thisinformation to the client by listing column 3 followed by column 1 in
the column number array.

¢ Thefirst columnin aselect list is column 1.

e srv_orderby must be called after acall to srv_descfmt and before acall to
srv_bind.

srv_poll (UNIX only)

Description

Syntax

Parameters

Check for 1/0 events on file descriptors for a set of open streams.

CS_INT srv_poll(fdsp, nfds, waitflag)
SRV_POLLFD *fdsp;

CS_INT nfds;
CS_INT waitflag;
fdsp

A pointer to an array of SRV_POLLFD structureswith one element for each
open file descriptor of interest. The SRV_POLLFD structure has the
following members:

CS_INT srv_fd; /* File descriptor. */
CS_INT srv_events; /* Relevant events. */
CS_INT srv_revents; /* Returned events. */

nfds

The number of elementsin the *fdsp array.

Server-Library/C Reference Manual 331

srv_poll (UNIX only)
waitflag
A CS_INT valuethat indicateswhether the thread should be suspended until
afile descriptor is available for the desired operation. If set to
SRV_M_WAIT, the thread is suspended and will wake when any file
descriptor represented in the *fdsp array is available for the specified
operation. If theflagisset to SRV_M_NOWAIT, srv_poll will perform a
single check and return to the caller. A return status greater than zero
indicates that afile descriptor was available for the desired operation.
Return value Table 3-79: Return values (srv_poll)
Returns To indicate
An integer The number of &ready file descriptors.
-1 Theroutine failed.
0 No file descriptors are & ready.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS RETCODE ex srv_pollPROTOTYPE ((
struct pollfd *fdp,
CS_INT nfds
))
/*
** EX SRV_POLL
* %
** This routine demonstrates how to use srv_poll to poll
* % application-specific file descriptors.
* %
** Arguments:
* % fdp - The address of the file descriptor array.
* % nfds - The number of file descriptors to poll.
* %
** Returns
* %
** CS_SUCCEED If the data address is returned.
** CS_FAIL If the call to srv poll failed.
* %
*/
CS_RETCODE ex_srv_poll (fdp, nfds)
struct pollfd *fdp;
CS_INT nfds;
{
332 Open Server

CHAPTER 3 Routines

/*

** Tnitialization.

*/

lp = (CS _VOID *)NULL;
/*

** Calls srv_poll to check if any of these file
** descriptors are active; ask to sleep until at

** least one of them is.

*/

if (srv_poll (fdp, nfds, SRV M WAIT) == (CS_INT)-1)
{
return CS_FAIL;
}
/*
** A1l done.
*/
return CS_SUCCEED;
}
Usage e An application can use srv_poll to poll the file descriptor or to suspend a

thread until there is 1/O to be performed.

e Table3-80 summarizeslegal values for srv_events and srv_revents:

Table 3-80: Values for srv_events and revents (srv_poll)

Value

Description

SRV_POLLIN

Normal read event.

SRV_POLLPRI

Priority event received.

SRV_POLLOUT

File descriptor iswritable.

SRV_POLLERR

Error occurred on file descriptor.

SRV_POLLHUP

A hang up occurred on the file descriptor. Thisvalueis
valid in returned events only.

SRV_POLLNVAL

Invalid file descriptor specified in SRV_POLLFD.

e srv_pollisavailableon all UNIX platforms.

Note If an application usessrv_poll on a UNIX platform that supports the
native poll(2) system call, the application must include <sys/poll.h> before

ospublic.h.

See also srv_capability, srv_select (UNIX only)

Server-Library/C Reference Manual

333

SIv_props

Srv_props
Description

Syntax

Parameters

334

Define and retrieve Open Server properties.

CS_RETCODE srv_props(cp, cmd, property, bufp, buflen,

outlenp)
CS_CONTEXT *cp;
CS_INT cmd;
CS_INT property;
CS_VOID *bufp;
CS_INT buflen;
CS_INT *outlenp;

Scp
A pointer to aCS_CONTEXT structure previously allocated using
cs_ctx_alloc.

cmd
The action to take. Table 3-81 summarizes the legal values for cmd:

Table 3-81: Values for cmd (srv_props)

Value Meaning

CS SET The Open Server application is setting the property. Inthis case, bufp
should contain the value the property is to be set to, and buflen
should specify the size, in bytes, of that value.

CS GET The Open Server application is retrieving the property. In this case,
bufp should point to the buffer where the property valueis placed,
and buflen should be the size, in bytes, of the buffer.

CS CLEAR | The Open Server application is resetting the property to its default
value. In this case, bufp, buflen, and outlenp are ignored.

property
The property being set, retrieved or cleared. See below for alist of this
argument’s legal values.

bufp
A pointer to the Open Server application data buffer where property value
information is placed (CS_SET) or property value information is retrieved
(CS_GET).

buflen
Thelength, in bytes, of the buffer.

outlenp
A pointer to aCS_INT variable, which Open Server will set to the size, in
bytes, of the property value retrieved. Thisargument is only used when cmd
isCS_GET, and is optional.

Open Server

CHAPTER 3 Routines

Return value Table 3-82: Return values (srv_props)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include<ospublic.h>
/*
** Local prototype
*/

CS_RETCODE ex srv_set propPROTOTYPE ((
CS_CONTEXT *cp,

Cs_INT property,
CS_VOID *bufp,
CS_INT buflen
))

/*

** EX SRV_SET_ PROP
* %

* Example routine to set a property using srv_props.
* %

** Arguments:
* %

* ok *cp Pointer to a CS_CONTEXT structure previously
*x allocated by cs_ctx alloc.

* % property The property being set.

* % *bufp Pointer to the value the property is to be
** set to.

* % buflen The length of the value.

* %

** Returns
* %

* CS_SUCCEED Arguments were valid and srv_props was called.

** CS FAIL An error was detected.

* *

*/

CS_RETCODE ex srv_set prop(cp, property, bufp, buflen)
CS_CONTEXT *Cp;

CS_INT property;

CS_VOID *bufp;

CS_INT buflen;

{

/* Check arguments. */
if (cp == (CS_CONTEXT *)NULL)

{

Server-Library/C Reference Manual 335

SIv_props

return(CS_FAIL) ;

}

if (buflen < 1)
return(CS_FAIL) ;
return (srv_props (cp, (CS_INT)CS_ SET,property,bufp,buflen,

(CS_INT *)0));
}
Usage * srv_props is called to define and retrieve server-wide configuration
parameters and properties.
e srv_version must be called before srv_props can be called.
e All propertiesto be set by srv_props (except SRV_S TRACEFLAG,
SRV_S LOGFILE, and SRV_S TRUNCATEL OG) must be set before
srv_initiscalled.
e After srv_initiscalled, setting the SRV_S L OGFILE property with bufp
set to an empty string (") and buflen set to zero will close the log file.
e Table 3-83 summarizes the server properties, whether they can be set or
retrieved, and the datatype of each property value:
Table 3-83: Server properties and their datatypes (srv_props)
bufp when
SET/ cmd is bufp when cmd is
Property CLEAR GET | CS_SET CS_GET
SRV_S ALLOCFUNC Yes Yes | A function The address of a
pointer function pointer
SRV_S APICHK Yes Yes | ACS BOOL | ACS BOOL
SRV_S ATTNREASON No Yes | Notapplicable | A CS INT
SRV_S CERT_AUTH Yes Yes | char* char*
SRV_S CURTHREAD No Yes | Notapplicable | The address of athread
pointer
SRV_S DISCONNECT Yes Yes | ACS BOOL A CS BOOL
SRV_S DEFQUEUESIZE Yes Yes | ACSINT A CS_ INT
SRV_S DS PROVIDER Yes Yes | A pointertoa | A pointertoacharacter
character string | string
SRV_S DS REGISTER Yes Yes | ACS BOOL A CS BOOL
SRV_S ERRHANDLE Yes Yes | A function The address of a
pointer function pointer
SRV_S FREEFUNC Yes Yes | A function The address of a
pointer function pointer
SRV_S IFILE Yes Yes | A character A character string
string

336

Open Server

CHAPTER 3 Routines

bufp when
SET/ cmd is bufp when cmd is
Property CLEAR GET | CS_SET CS_GET
SRV_S LOGFILE Yes Yes | A character A character string
string
SRV_S LOGSIZE Yes Yes | ACS INT A CS_INT
SRV_S MSGPOOL Yes Yes | ACS INT A CS INT
SRV_S NETBUFSIZE Yes Yes | ACS INT A CS_INT
SRV_S NETTRACEFILE Yes Yes | A character A character string
string
SRV_S NUMCONNECTION | Yes Yes | ACSINT A CS_INT
S
SRV_S NUMMSGQUEUES | Yes Yes | ACS INT A CS_INT
SRV_S NUMMUTEXES Yes Yes | ACS INT A CS_INT
SRV_S NUMREMBUF Yes Yes | ACS INT A CS_INT
SRV_S NUMREMSITES Yes Yes | ACSINT A CS_INT
SRV_S NUMTHREADS Yes Yes | ACSINT A CS_INT
SRV_S NUMUSEREVENTS | Yes Yes | ACS INT A CS_INT
SRV_S PREEMPT Yes Yes | ACS BOOL A CS_BOOL
SRV_S REALLOCFUNC Yes Yes | A function The address of a
pointer function pointer
SRV_S RETPARMS Yes Yes | ACS BOOL A CSBOOL
SRV_S REQUESTCAP Yes Yes | A A CS CAP_TYPE
CS CAP_TYP | structure
E structure
SRV_S RESPONSECAP Yes Yes | A A CS CAP_TYPE
CS CAP_TYP | structure
E structure
SRV_S SEC KEYTAB Yes Yes | A pointertoa | A pointertoacharacter
character string | string
SRV_S SEC PRINCIPAL Yes Yes | A pointertoa | A pointertoacharacter
character string | string
SRV_S SERVERNAME No Yes | A character A character string
string
SRV_S SSL_CIPHER Yes No | char*
SRV_S SSL_LOCAL_ID Yes Yes | struct char*
SRV_S SSL_VERSION Yes No | CSINT
SRV_S STACKSIZE Yes Yes | ACS INT A CS_INT
SRV_S TDSVERSION Yes Yes | ACS INT A CS_INT
SRV_S TIMESLICE Yes Yes | ACS INT A CS INT

Server-Library/C Reference Manual

337

SIv_props

338

bufp when
SET/ cmd is bufp when cmd is

Property CLEAR GET | CS_SET CS_GET
SRV_S TRACEFLAG Yes Yes | A CS INT (bit | A CS_INT (bit mask)

mask)
SRV_S TRUNCATELOG Yes Yes | ACS BOOL A CS BOOL
SRV_S USESRVLANG Yes Yes | A CS BOOL A CS BOOL
SRV_S VERSION No Yes | Notapplicable | A character string
SRV_S VIRTCLKRATE Yes Yes | ACS INT A CS INT
SRV_S VIRTTIMER Yes Yes | ACS BOOL A CS BOOL

e Table 3-84 liststhe default value for each server property:

Table 3-84: Legal properties and their default values (srv_props)

Property Default

SRV_S ALLOCFUNC malloc()

SRV_S APICHK CS TRUE

SRV_S ATTNREASON No default

SRV_S CURTHREAD N/A.

SRV_S DEFQUEUESIZE SRV_DEF_DEFQUEUESIZE
SRV_S DISCONNECT CS FALSE

SRV_S DS PROVIDER

Platform dependent. Refer to the Open Client and
Open Server Configuration Guide for your
platform.

SRV_S DS REGISTER

CS_TRUE, Server-Library registersitself with a
directory on start-up.

SRV_S ERRHANDLE

No error handler

SRV_S FREEFUNC

free()

SRV_S IFILE

$SYBASE/interfaces

SRV_S LOGFILE

srv.log

SRV_S LOGSIZE

Max integer value

SRV_S MSGPOOL

SRV_DEF_MSGPOOL

SRV_S NETBUFSIZE

SRV_DEF_NETBUFSIZE

SRV_S NETTRACEFILE

sybnet.dbg

SRV_S NUMCONNECTIONS

SRV_DEF_NUMCONNECTIONS

SRV_S NUMMSGQUEUES

SRV_DEF_NUMMSGQUEUES

SRV_S NUMMUTEXES

SRV_DEF_NUMMUTEXES

SRV_S NUMREMBUF

SRV_DEF_NUMREMBUF

SRV_S NUMREMSITES

SRV_DEF_NUMREMSITES

SRV_S NUMTHREADS

SRV_DEF_NUMTHREADS

Open Server

CHAPTER 3

Routines

Property

Default

SRV_S NUMUSEREVENTS

SRV_DEF_NUMUSEREVENTS

SRV_S PREEMPT

CS FALSE

SRV_S REALLOCFUNC

realloc()

SRV_S REQUESTCAP

See“ Capabilities’ on page 24

SRV_S RESPONSECAP

See “ Capabilities” on page 24

SRV_S RETPARMS

No default

SRV_S SEC KEYTAB

No default

SRV_S SEC PRINCIPAL

Security mechanism dependent

SRV_S SERVERNAME

DSLISTEN environment variable

SRV_S STACKSIZE

SRV_DEF_STACKSIZE

0 SRV_TDS 5 0
SRV_S TIMESLICE SRV_DEF TIMESLICE
SRV_S TRACEFLAG 0

SRV_S TRUNCATELOG CS FALSE

SRV_S USESRVLANG CS TRUE

SRV_S VERSION

Compile-time version string

SRV_S VIRTCLKRATE

SRV_DEF_VIRTCLKRATE

SRV_S VIRTTIMER

CS FALSE

All server properties that have adefault and are settable can be reset back
to the default value by calling srv_props with cmd set to CS_CLEAR.

All server properties can beretrieved at any time by calling srv_props with
cmd setto CS_GET. If the Open Server application has not defined avalue
for a property, the default value is returned.

For a description of properties, see the Properties topic page.

When a property isbeing retrieved, if buflen indicates that the user buffer
is not big enough to hold the property value, Open Server will place the
number of bytesrequired in * outlenp, and the user buffer will not be

modified.

Thedefault stacksize (default valuefor SRV_S STACKSIZE) dependson

the platform used.

For native-threaded versions of Open Server, the default stacksize of
underlying threads is used. This value can be changed by setting the
stacksize with the SRV_S STACKSIZE property.

Note that when setting the stacksize, stack overflow errors may occur if
the specified stacksize istoo small.

Server-Library/C Reference Manual

339

srv_putmsgq

See also

srv_putmsgq

Description

Syntax

Parameters

340

srv_init, srv_thread_props, srv_spawn, “Properties’” on page 139

Put a message into a message queue.

CS_RETCODE srv_putmsgq(msgqgid, msgp, putflags)
SRV_OBJID msgqid;

CS_VOID *msgp;
CS_INT putflags;
msgqid

Theidentifier for the message queue. If you want to reference the message
gueue by name, call srv_getobjid to look up the name and return the message
queue ID.

msgp
A pointer to the message. The message datamust bevalid until it isreceived

and processed.

putflags
The values for putflags can be OR’ d together. Table 3-85 describes each
value's significance:

Open Server

CHAPTER 3 Routines

Table 3-85: Values for putflags (srv_putmsgq)

Value Description

SRV_M_NOWAIT | Whenthisflagis set, the call to srv_putmsgq returns
immediately after the message is placed in the message queue.
SRV_M_WAIT When SRV_M_WAIT isset, srv_putmsgq does not return until
either the message is read or the queue is del eted.
SRV_M_URGENT | If thisflag is set, the message s put at the head of the list of
messages in the message queue instead of at the end. If more
than one urgent message is added to a given queue, the urgent
messages will appear at the head of the queuein the order in
which they were enqueued.

Return value Table 3-86: Return values (srv_putmsgq)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>

/*
** Local Prototype.
*/
CS _RETCODE ex_ srv_putmsgg PROTOTYPE ((
SRV_OBJID mgid,
CS_INT flags
))
/*
** EX SRV_PUTMSGQ
* %

*x Example routine to put a message into a message queue.
* %

** Arguments:

* % msggid Message queue identifier.

* ok putflags Special instructions for srv_putmsgq.

* %

** Returns:

* *

*%x CS_SUCCEED
*%x CS_FAIL

*/
CS_RETCODE ex srv_putmsgq(mgid, flags)
SRV_OBJID mgid;
CS_INT flags;

Server-Library/C Reference Manual 341

srv_realloc

CS_CHAR

*msgp;

msggp = srv_alloc(20);
strcpy (msgp, “Hi there”);
return(srv_putmsgqg(mgid, msgp, flags)) ;

Usage

See also

srv_realloc

Description

Syntax

Parameters

342

e srv_putmsgq puts the message in * msgp into the message queue msgqid.

» A message is always passed as a pointer. The data the message points to
must remain valid even if the thread sending the message changes context.

In particular, be cautious when passing a message that points to a stack
address in the context of the thread that sends the message. If you do this,
you must guarantee that the thread that sends the message does not return
from the frame in which it sent the message until the message has been
removed from the queue. Otherwise, the message may point to a stack that
isbeing used for other purposes.

« TheSRV_S NUMMSGQUEUES server property determines the number
of message queues available to an Open Server application. Refer to
“Server properties’ on page 141 for more information.

e TheSRV_S MSGPOOL server property determines the number of
messages available to an Open Server application at runtime. Refer to
“Server properties’ on page 141 for more information.

srv_createmsgq, srv_deletemsgq, srv_getmsga, srv_getobjid

Reallocate memory.

CS_VOID* srv_realloc(mp,newsize)

CS_VvoOID *mp;
CS_INT newsize;

mp
A pointer to the old block of memory.

newsize
The number of bytesto reallocate.

Open Server

CHAPTER 3 Routines

Return value Table 3-87: Return values (srv_realloc)
Returns To indicate
A pointer to the newly The location of the new space.
allocated space
A null pointer Server-Library could not allocate newsize bytes.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
extern CS_RETCODE ex_srv_realloc PROTOTYPE ((
CS_VOID *mp,
CS_INT newsize
))
/*

** EX SRV _REALLOC
* %

** Reallocate a memory chunk.

* %

** Arguments:

* ok mp A pointer to existing memory block.
* ok newsize The new size of the memory block.

* %

** Returns:

* % CS_SUCCEED Memory was allocated successfully.
fald CS_FAIL An error was detected.

*/

CS_RETCODE ex_srv_realloc (mp, newsize)

CS_VOID *mp ;

CS_INT newsize;

{

mp = srv_realloc(mp, newsize);
if(mp == (CS_VOID *)NULL)
return(CS_FAIL) ;

}

return (CS_SUCCEED) ;

Usage * srv_realloc reallocates memory dynamically.

Server-Library/C Reference Manual

343

srv_recvpassthru

See also

e It changesthe size of the block referenced by mp to newsize, and returns a
pointer to the (possibly moved) block.

* Any memory allocated using srv_realloc should be freed by calling
srv_free.

e Usesrv_realloc wherever the standard C memory-allocation routines
would be used.

e Currently, srv_realloc callsthe C routine, realloc. An Open Server
application, however, can install its own memory management routines
using the srv_props routine. The parameter-passing conventions of the
user-installed routines must be the same as those of realloc. If the
application is not configured to use the user-installed routines, Open
Server will call realloc.

srv_alloc, srv_free, srv_props

srv_recvpassthru

Description

Syntax

Parameters

344

Receive a protocol packet from aclient.

CS_RETCODE srv_recvpassthru(spp, recv_bufp, infop)
SRV_PROC *spp;

CS_BYTE **recv_bufp;
CS_INT *infop;
SPp

A pointer to an internal thread control structure.

recv_bufp
A pointer toaCS _BY TE pointer that will receive the starting address of the
buffer containing the received protocol packet.

infop
A pointertoaCS INT thatissetto SRV_I_UNKNOWN if srv_recvpassthru
returns CS_FAIL. Table 3-88 describes the possible values returned in
*infop if srv_recvpassthru returns CS_SUCCEED:

Open Server

CHAPTER 3 Routines

Table 3-88: CS_SUCCEED values (srv_recvpassthru)

Value

Description

SRV_|_PASSTHRU_MORE

A protocol packet was read successfully and is not
the end of message packet.

SRV_|_PASSTHRU_EOM

The packet is the end of message packet.

Return value Table 3-89: Return values (srv_recvpassthru)
Returns To indicate
CS SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.
Examples

#include <ospublic.h>

/*

** TLocal prototype.

*/
CS_RETCODE ex srv_recvpassthru PROTOTYPE ((
CS_VOID *spp

))
/*

** EX SRV_RECVPASSTHRU
* %

* ok Example routine to receive protocol packets from a client.

* %

** Arguments:

** spp A pointer to an internal thread control structure.

* %

** Returns:

*x CS_SUCCEED If we were able to receive the packets.

** CS_FAIL If were unsuccessful at receiving the packets.
* %
*/
CS_RETCODE ex srv_recvpassthru (spp)
SRV_PROC *Spp;
CS _RETCODE result;
CS BYTE *recvbuf;
CS_INT info;
/*
** Read packets until we get the EOM flag.
*/
do

{

Server-Library/C Reference Manual

345

srv_regcreate

result = srv_recvpassthru(spp, &recvbuf, &info);

}

while (result == CS_SUCCEED && info == SRV_TI_PASSTHRU MORE) ;

return (result) ;

Usage * srv_recvpassthru receives a protocol packet without interpreting its
contents.

* Oncesrv_recvpassthru is caled, the event handler that called it isin
“passthrough” mode. Passthrough mode ends when
SRV _| PASSTHRU_EOM isreturned in *infop.

* No other Server-Library routines can be called while the event handler is
in passthrough mode.

e In passthrough mode, the SRV_CONNECT handler for the client must
allow the client and remote server to negotiate the protocol packet format
by calling srv_getloginfo, ct_setloginfo, ct_getloginfo, and srv_setloginfo.
This alows clients and remote servers running on dissimilar platformsto
perform any necessary data conversions.

» srv_recvpassthru can be called in all event handlers except SRV_START,
SRV_CONNECT, SRV_STOP, SRV_DISCONNECT,
SRV_URGDISCONNECT, and SRV_ATTENTION.

e Onceit hascalled srv_recvpassthru, an application cannot call any other
routine that does 1/0O until it has issued asrv_senddone.

See also srv_getloginfo, srv_sendpassthru, srv_setloginfo

Srv_regcreate

Description Complete the registration of aregistered procedure.
Syntax CS_RETCODE srv_regcreate(spp, infop)
SRV_PROC *spp;
CS_INT *infop;
Parameters Spp

A pointer to an internal thread control structure.

346 Open Server

CHAPTER 3 Routines

infop
A pointer toaCS_INT. Table 3-90 describes the possible valuesreturned in
*infop if srv_regcreate returns CS_FAIL:

Table 3-90: Values for infop (srv_regcreate)

Value Description
SRV_|I_PEXISTS The procedureis al & ready registered.
SRV_|_UNKNOWN Some other error occurred.

Return value Table 3-91: Return values (srv_regcreate)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.h>

/*

** Tocal Prototype.

*/

CS_INT ex_srv_regcreate PROTOTYPE ((

SRV_PROC *sproc
));

/*

** EX SRV_REGCREATE

* ok An example routine that completes the registration of a
ol registered procedure using srv_regcreate.

* %

** Arguments:
* % sproc A pointer to an internal thread control structure.
* %

** Returns:

** CS_SUCCEED If the procedure was registered successfully.
* % CS_FAIL If the supplied internal control structure is
** NULL.

* ok SRV_I EXIST If the procedure is al&ready registered.
*x SRV_I_ UNKNOWN If some other error occurred.

*/

CS_INT ex srv_regcreate (sproc)

SRV_PROC *sproc;

{

CS_INT info; /* The reason for failure */

Server-Library/C Reference Manual 347

srv_regdefine

/*
* %
*/
if

{
}
/*

* %
* %
* %
*/
if

{
}
/*

Check whether the internal control structure is NULL.
(sproc == (SRV_PROC *)NULL)

return ((CS_INT)CS FAIL);

Now register the procedure al&ready defined by
srv_regdefine and(or) srv_regparam. If an error
occurred, return the cause of error.

(srv_regcreate (sproc, &info) == CS FAIL)

return (info) ;

The procedure is registered. */

return ((CS_INT)CS_SUCCEED) ;

Usage

See also

» After al information needed to register a procedure has been provided,
srv_regcreate completes the registration.

» The procedure’s name and parameters must have been previously defined
with srv_regdefine and srv_regparam respectively.

» Once registered, the procedure can be invoked by aclient application or
from within an Open Server application program.

* Seesrv_regdefine, for an example that registers a procedure.

srv_regdefine, srv_regdrop, srv_reglist, srv_regparam

srv_regdefine

Description

Syntax

348

Initiate the process of registering a procedure.

CS_RETCODE srv_regdefine(spp, procnamep,
namelen, funcp)

SRV_PROC *spp;
CS_CHAR *prochamep;
CS_INT namelen;

SRV_EVENTHANDLE_FUNC(*funcp)();

Open Server

CHAPTER 3 Routines

Parameters Spp
A pointer to an internal thread control structure.

procnamep
A pointer to the name of the procedure.

namelen
The length of the procedure name. If the string in * proc_namep is null
terminated, namelen can be CS NULLTERM.

funcp
A pointer to the function to be called each time the procedure is executed.
Setting this parameter to null registers a“ notification” procedure.
Notification procedures are useful for inter-client communication. For more
information on notification procedure, see“ Registered procedures’ on page

162.
Return value Table 3-92: Return values (srv_regdefine)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
#include <stdio.h>
/ *
** Local Prototype.
*/
CS_RETCODE ex_srv_regdefine PROTOTYPE ((
SRV_SERVER *server
))
CS_RETCODE stop serv PROTOTYPE ((
SRV_PROC *Spp
))
/ *
** Toocal defines.
*/
#define STOP_SERV “stop_serv”
/ *
% STOP_SERV
** This function is called when the client sends the stop_serv
* % registered procedure.

* %

Server-Library/C Reference Manual 349

srv_regdefine

** Arguments:

** spp A pointer to internal thread control structure.
* %

** Returns:

* % SRV_CONTINUE
*/
CS_INT stop_serv (spp)

SRV_PROC *spp;
/* Queue a SRV_STOP event. */
(CS_VOID)srv_log((SRV_SERVER *)NULL, CS TRUE,
“Stopping Server\n”, CS_NULLTERM) ;

/* Send a final DONE to client to acknowledge the command. */
if (srv_senddone (spp, SRV_DONE_FINAL, CS_TRAN UNDEFINED,
(CS_INT)O)
== CS_FAIL)

fprintf (stderr, “srv_senddone failed\n”);

/* Queue a SRV_STOP event to shut down the server. */
if (srv_event (spp, SRV_STOP, (CS_VOID *)NULL)
== CS_FATL)
{

}

return (SRV_CONTINUE) ;

}

fprintf (stderr, “Error queuing SRV_STOP event\n”) ;

/*

** EX SRV_REGDEFINE

* %

* % Example routine to illustrate the use of srv _regdefine to
bl register a procedure.

* %

** Arguments:

** server A pointer to the Open Server control structure.
* %

** Returns:
* %

* % CS_SUCCEED 1If procedure was registered successfully.

* % CS_FAIL If an error occurred in registering the
*x procedure.

*/

CS_RETCODE ex srv_regdefine (server)

350 Open Server

CHAPTER 3

Routines

SRV_SERVER *server;

{

Usage

See also

SRV_PROC *spp;
CS_INT info;

/* Create a thread. */
sSpp = srv_createproc (server) ;

if (spp == (SRV_PROC *)NULL)
return (CS_FAIL);

/* Define the procedure. */

if (srv_regdefine(spp, STOP_SERV, CS NULLTERM,
== CS_FAIL)
return (CS_FAIL);

/* Complete the registration. */

if (srv_regcreate (spp, &info) == CS_FAIL)
return (CS_FAIL) ;

/*

stop_serv)

** Terminate the thread created here. We do not care about

** the return code from srv_termproc here.
*/
(CS_VOID) srv_termproc (spp) ;

return (CS_SUCCEED) ;

* srv_regdefine isthefirst step in the process of registering a procedure.
Onceit isregistered, a procedure can be invoked by clients or from within

the Open Server application program.

« After calling srv_regdefine, define the procedure’s parameters with

srv_regparam.

« Complete the processing of registering the procedure by calling

srv_regcreate.

« If aregistered procedure exists with a name identical to the onein
procnamep, the error isdetected and reported when srv_regcreate iscalled.

* All requested procedures should return SRV_CONTINUE.

srv_regcreate, srv_regdrop, srv_reglist, srv_regparam

Server-Library/C Reference Manual

351

srv_regdrop

srv_regdrop
Description

Syntax

Parameters

Return value

Drop or “unregister” aprocedure.

CS_RETCODE srv_regdrop(spp, prochamep,
namelen, info)
SRV_PROC *spp;

CS_CHAR *prochamep;
CS_INT namelen;
CS_INT *infop;
SPp

A pointer to an internal thread control structure.
procnamep

A pointer to the name of the procedure.
namelen

Thelength of the registered procedure name. If the nameis null terminated,
namelen can be CS NULLTERM.

infop
A pointer toaCS INT. If srv_regdrop returnsCS_FAIL, theflagissettoone
of thefollowing values:

e SRV_| PNOTKNOWN - the procedure was not registered.
SRV_|I_UNKNOWN - some other error occurred.

Table 3-93: Return values (srv_regdrop)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/ *
** Local Prototype.
*/
CS_RETCODE ex srv_regdrop PROTOTYPE ((
SRV_PROC *sSpp,
CS_CHAR *name,
CS_INT namelen,
CS_INT *infop
))
/ *

352

Open Server

CHAPTER 3 Routines

** EX SRV_REGDROP

* %

* ok Example routine to unregister a registered procedure using
* % srv_regdrop.

* %

** Arguments:

* * Spp

*x name

* namelen
* ok infop

* %
* %

* %

** Returns:

il CS_SUCCEED

** CS_FATL
* %

*/
CS_RETCODE
SRV_PROC
CS_CHAR
CS_INT
CS_INT

{

A pointer to an internal thread control structure.
The name of the registered procedure to drop.

The length of the registered procedure name.

A return pointer to an integer containing more
descriptive error information if this routine
returns CS_FAIL.

Registered procedure was successfully deleted.
Registered procedure was not deleted or does
not exist.

ex srv_regdrop (spp, name, namelen, infop)
*spp;

*name;

namelen;

*infop;

/* Initialization. */

*infop

(CS_INT)O;

/* Execute the procedure. */
if (srv_regdrop (spp, name, namelen, infop) != CS_SUCCEED)

{

/* Open Server has set infop to a specific error. */
return(CS_FAIL) ;

}

return (CS_SUCCEED) ;

Usage

See also

* srv_regdrop drops aprocedure previoudly registered with srv_regcreate.

« Any client threads waiting for notification of this procedure are informed
that the procedure has been dropped.

srv_regereate, srv_regdefine, srv_reglist, srv_regparam

Server-Library/C Reference Manual 353

SIv_regexec

Srv_regexec

Description Execute aregistered procedure.

Syntax CS_RETCODE srv_regexec(spp, infop)
SRV_PROC *spp;
CS_INT *infop;

Parameters spp

A pointer to an internal thread control structure.

infop

A pointer toaCS _INT. Table 3-94 describes the possible valuesreturned in
*infop if srv_regexec returns CS_FAIL:

Table 3-94: Values for infop (srv_regexec)

Value

Description

SRV_|_PNOTKNOWN

The procedure is not registered.

SRV_|_PPARAMERR

Thereisaparameter error.

SRV_|_PNOTIFYERR

An error occurred while sending notifications.

Return value Table 3-95: Return values (srv_regexec)
Returns To indicate
CS_SUCCEED The routine completed successfully.

CS FAIL

Theroutine failed.

Examples

#include <ospublic.hs>

/*

** Local Prototype

*/

CS_RETCODE ex srv_regexec PROTOTYPE ((

SRV_PROC *sSpp.,

CS_INT &infop

))

/*

** EX SRV REGEXEC

* %

* % Example routine to complete the execution of a registered
* % procedure using srv_regexec. This routine should be called
* % after srv _reginit and srv_regparam.

* %

** Arguments:

354

Open Server

CHAPTER 3 Routines

* %

* %

* %

* %

* %

** Returns:

Spp
infop

A pointer to an internal thread control structure.
A return pointer to an integer containing more
descriptive error information if this routine
returns CS_FAIL.

* % CS_SUCCEED Registered procedure executed successfully.
* % CS_FAIL Registered procedure not executed, or

* ok notifications not completed successfully.
*/

CS_RETCODE ex srv_regexec (spp, infop)

SRV_PROC *spp;

CS_INT &infop;

{

Usage

See also

/* Initialization. */
&infop

(CS_INT)O;

/* Execute the procedure. */
if (srv_regexec(spp, infop) != CS_SUCCEED)

{

}

/*
* %

* %

*/

Open Server has set the argument to a specific
error.

return(CS_FAIL) ;

return (CS_SUCCEED) ;

e srv_regexec executes aregistered procedure.

e The procedure name and its parameters must be specified with srv_reginit
and srv_regparam before calling srv_regexec.

Warning! Open Server system registered procedures send afinal DONE. If an
application executes asystem registered procedure from an event handler using
srv_regexec, the application must not send a final DONE from the event
handler code. Doing so will cause Open Server to raise a state error.

Srv_reginit, srv_regparam

Server-Library/C Reference Manual 355

srv_reginit

srv_reginit
Description

Syntax

Parameters

Return value

Examples

#include

/*

Begin executing a registered procedure.

CS_RETCODE srv_reginit(spp, prochamep,
namelen, options)

SRV_PROC *Spp;

CS_CHAR *procnamep;
CS_INT namelen;
unsigned short options;
SPp

A pointer to an internal thread control structure.
procnamep

A pointer to the name of the registered procedure.
namelen

The length of the procedure name. If the nameis null terminated, namelen
can be CS_NULLTERM.

options
A flag that determineswhich threadsto notify. Table 3-96 describesthelegal
values for options:

Table 3-96: Values for options (srv_reginit)

Value Description

SRV_M_PNOTIFYALL Notify al waiting threads in the notification list.

SRV_M_PNOTIFYNEXT | Notify only the thread that has been waiting the longest.

Table 3-97: Return values (srv_reginit)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** Local Prototype.

*/
CS_RETCODE
SRV_PROC
CS_CHAR
Ccs_INT

)) i

356

ex srv_reginit PROTOTYPE ((
*Spl

*pname,

nlen

Open Server

CHAPTER 3 Routines

/*

** EX SRV_REGINIT

* %

** This routine demonstrates how to use srv_reginit to
* ok initiate the execution of a registered procedure.

* %

** Arguments:

* % sp A pointer to an internal thread control
structure.

* ok pname The name of the procedure to execute.

* ok nlen The length of the procedure name.

** Returns
* *

** CS_SUCCEED If the registered procedure began execution.
*x CS_FAIL If an error was detected.

* %

*/

CS_RETCODE ex_srv_reginit (sp, pname, nlen)

SRV_PROC *Sp;

CS_CHAR *pname ;

CS_INT nlen;

{ L

** Call srv_reginit to initiate the execution of this
** registered procedure; ask that all threads waiting for
** notification of this event be notified.

*

ié(srv_reginit (sp, pname, nlen, SRV_M PNOTIFYALL) ==
CS_FAIL)

{
/*
** An error was al&ready raised.
*/
return CS_FAIL;

}

/*

** All done.

*/

return CS_SUCCEED;

}
Usage « srv_reginit isthe first step in the process of executing aregistered
procedure.

e Theprocedure' sparametersare defined with srv_regparam after srv_reginit
has been called.

Server-Library/C Reference Manual 357

srv_reglist

See also

srv_reglist
Description

Syntax

Parameters

Return value

e Cadll srv_regexec to execute the registered procedure.

» If the procedure does not exist, the error is detected and reported by
Srv_regexec.

* Whenaregistered procedureis executed, Open Server notifiesthe threads
in the procedure’s notification list. The options parameter specifies
whether notifications are sent to all threadsin thelist, or just the one that
has been waiting the longest.

» AnOpen Server application can nest registered procedures up to a
maximum of 16 levels.

SIV_regexec, S'V_regparam

Obtain alist of al of the procedures registered in the Open Server.
CS_RETCODE srv_reglist(spp, proclistp)

SRV_PROC *spp;
SRV_PROCLIST **proclistp;
PP

A pointer to an internal thread control structure.

proclistp
A pointer to aSRV_PROCLIST pointer that will be set to the address of a
SRV_PROCLIST containing the results. The Open Server alocates the
space for this structure at the time srv_reglist is called.

Table 3-98: Return values (srv_reglist)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

CS_RETCODE ex srv_reglist PROTOTYPE ((

SRV_PROC *spp,

SRV_PROCLIST **proclp

358

Open Server

CHAPTER 3 Routines

/*
** EX SRV _REGLIST
* %

** Arguments:
* %

* % spp Pointer to an internal thread control structure.
* ok proclp Pointer to a SRV_PROCLIST pointer that will be set
* ok to point to the result.

* %

** Returns
* *

ol CS_SUCCEED srv_reglist was successful.

** CS_FAIL An argument was invalid or srv_reglist failed.
* %

*/

CS_RETCODE ex srv_reglist (spp, proclp)

SRV_PROC *Spp;

SRV_PROCLIST **proclp;

{

/* Check arguments. */
if (spp == (SRV_PROC *)NULL)

{
}

return(srv_reglist (spp,proclp)) ;

return (CS_FAIL) ;

Usage « srv_reglist returnsalist of all currently registered procedures for the
thread.

e The parameter proclistp is set to point to a structure that is allocated and
initialized by the Open Server. The SRV_PROCLIST structureis defined
asfollows:

typedef struct srv__ proclist

{

CS_INT num_procs; /* The number of procedures */
CS_CHAR **proc_list; /* Array of procedure names */
} SRV_PROCLIST;

e« TheSRV_PROCLIST structure should be deallocated with srv_reglistfree
when it isno longer needed.

See also srv_reglistfree

Server-Library/C Reference Manual 359

srv_reglistfree

srv_reglistfree

Description Free apreviously allocated SRV_PROCLIST structure.
Syntax CS_RETCODE srv_reglistfree(spp, proclistp)
SRV_PROC *Spp;
SRV_PROCLIST *proclistp;
Parameters spp

A pointer to an internal thread control structure.

proc_list
A pointer toaSRV_PROCLIST structure previously allocated by srv_reglist
or srv_regwatchlist.

Return value Table 3-99: Return values (srv_reglistfree)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE ex srv_reglistfree PROTOTYPE ((
SRV_PROC *srvproc,
SRV_PROCLIST *reglistp
))
/*

** EX SRV_REGLISTFREE
* %

* % Example routine to free a previously allocated reglist.

* %

** Arguments:

** srvproc A pointer to an internal thread control structure.
** reglistp A pointer to the list to free.

* %

** Returns:
* %

** CS_SUCCEED

** CS_FAIL

*/

CS_RETCODE ex_srv_reglistfree(srvproc, reglistp)

360 Open Server

CHAPTER 3 Routines

SRV_PROC *Srvproc;
SRV_PROCLIST *reglistp;

{

}

Usage srv_reglistfree deallocatesa SRV_PROCLIST structure allocated by srv_reglist
or srv_regwatchlist.

return(srv_reglistfree (srvproc, reglistp));

See also srv_reglist, srv_regwatchlist

srv_regnowatch

Description Remove aclient thread from the notification list for a registered procedure.

Syntax CS_RETCODE srv_regnowatch(spp, prochamep,
namelen, infop)

SRV_PROC *spp;

CS_CHAR *procnamep;
CS_INT namelen;
CS_INT *infop;
Parameters spp
A pointer to an internal thread control structure.
procnamep
A pointer to the name of the procedure.
namelen

The length of the procedure name. If the nameis null terminated, namelen
can be CS_NULLTERM.

infop
A pointer to aCS_INT. Table 3-100 describes the possible values returned
in *infop if srv_regnowatch returns CS_FAIL:

Server-Library/C Reference Manual 361

srv_regnowatch

Table 3-100: Values for infop (srv_regnowatch)

Value Description
SRV_I_PNOTCLIENT | A non-client thread was specified.

SRV_|_PNOTKNOWN | The procedureis not known to the Open Server
application.

SRV_|_PNOPENDING | Thethread is not on the naotification list for this
procedure.

SRV_I_PPARAMERR | A parameter error occurred.
SRV_I_UNKNOWN Some other error occurred.

Return value Table 3-101: Return values (srv_regnowatch)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
extern CS_RETCODE ex srv_regnowatch PROTOTYPE ((
Cs_VOID *sSpp,
CS_CHAR *procnamep,
CS_INT namelen
))
/*
** EX SRV_REGNOWATCH
* %
*% Remove a client thread from the notification list for the
* % specified registered procedure.

* %

** Arguments:

* % spp A pointer to an internal thread control
structure.

** procnamep A pointer to the name of the registered
procedure.

** namelen The length of the registered procedure name.

* %

** Returns:

* % CS_SUCCEED The thread was removed from notification list.
* % CS_FAIL An error was detected.
*/

362 Open Server

CHAPTER 3 Routines

CS_RETCODE ex srv_regnowatch (spp, procnamep, namelen)
SRV_PROC *sSpp;

CS_CHAR *procnamep ;

CS_INT namelen;

{

if (sxrv_regnowatch(spp, procnamep, namelen, (CS_INT *)NULL)
== CS_FAIL)
{

}

return (CS_SUCCEED) ;

return(CS_FAIL) ;

Usage e srv_regnowatch removes a client thread from the list of threads to notify
when the specified procedure executes.

e The maximum length of a procedure nameis SRV_MAXNAME.

See also srv_regwatch, srv_regwatchlist

Srv_regparam

Description Describe a parameter for a registered procedure being defined, or supply data
for the execution of aregistered procedure.

Syntax CS_RETCODE srv_regparam(spp, param_namep, namelen,
type, datalen, datap)

SRV_PROC *spp;

CS_CHAR *param_namep;

CS_INT namelen;

CS_INT type;

CS_INT datalen;

CS_BYTE *datap;
Parameters spp

A pointer to an internal thread control structure.

param_namep
A pointer to the name of the parameter. When registering the procedure, this
parameter is mandatory. When invoking the procedure, this parameter can
be null if the parameters are given in the same sequence they were defined
when the procedure was registered.

Server-Library/C Reference Manual 363

srv_regparam

namelen
The length of the parameter name. If the param_namep is null terminated,
namelen can be CS NULLTERM.

type
The datatype of the parameter. See “ Types’ on page 199 for alist of Open
Server datatypes.

datalen
The length of the parameter’s data. This parameter isignored for fixed
length datatypes. Set datalento Otoindicateanull datavalue. If aclient fails
to provide parameter values, the Open Server application can set the length
of adefault value here. To define a parameter with no default value, set
datalen to SRV_NODEFAULT.

datap
A pointer to the data. If registering the procedure, the value in *datap isthe
default value for future invocations of the procedure. If invoking the
procedure, set datap to NULL to accept the default value.

Return value Table 3-102: Return values (srv_regparam)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ospublic.hs>

/*

** Local prototype.

*/

CS _RETCODE ex srv_regparam PROTOTYPE ((
SRV_PROC *spp

)) i

/*

** T,ocal defines.

*/

#define PARAMNAME (CS _CHAR *)”myparam” /* Parameter name. */
#define PARAMDEFAULT (CS_INT)lOO
/*

**The default value for the parameter.

*/

364 Open Server

CHAPTER 3 Routines

#define PARAMVAL (CS_INT)20 /* The value for this invocation. */
/*
** EX SRV _REGPARAM
* %
* % Example routine to describe a parameter for a registered
** procedure.
* %
** Arguments:
* ok spp A pointer to an internal thread control structure.
* %
** Returns:
ol CS_SUCCEED If we were able to describe the parameter.
*x CS_FAIL If an error was detected.
*/
CS_RETCODE ex srv_regparam (spp)
SRV_PROC *Spp;
{

CS_RETCODE result;

CS_INT param;

/* Define the parameter with a default. */

param = PARAMDEFAULT;

result = srv_regparam(spp, PARAMNAME, CS NULLTERM,

CS_INT TYPE, sizeof (CS INT), (CS BYTE *)¶m) ;
if (result == CS_FAIL)
return (CS_FAIL);

}

/* Define the parameter with no default. */

result = srv_regparam(spp, PARAMNAME, CS NULLTERM,

CS_INT TYPE, SRV _NODEFAULT, (CS_BYTE *)NULL) ;
if (result == CS_FAIL)
{
return (CS_FAIL) ;

/* Give a non-default value for the parameter. */

param = PARAMVAL;

result = srv_regparam(spp, PARAMNAME, CS NULLTERM,

CS_INT TYPE, sizeof (CS INT), (CS BYTE *)¶m) ;
Server-Library/C Reference Manual 365

srv_regwatch

return (result);

Usage

See also

srv_regwatch

Description

Syntax

Parameters

366

* srv_regparam specifies a procedure parameter for an invocation of, or the
registration of, a procedure. A call to srv_reginit or srv_regdefine must
precede srv_regparam.

» A registered procedure can have a maximum of 1024 parameters.

* Whenregistering aprocedure, usesrv_regparam to define the properties of
the procedure’s parameters and any default values.

* Wheninvoking aprocedure, call srv_regparam for each parameter except
those with acceptable default values.

* Toindicate anull datavalue, set datalen to O.

e To accept the default value for a parameter when executing a procedure,
set datap to NULL.

e Itisnot necessary to call srv_regparam for a parameter if adefault value
has been provided and that value is to be used for the execution of the
procedure.

srv_regcreate, srv_regdefine, srv_reginit, srv_regexec, “ Types’ on page 199

Add aclient thread to the notification list for a specified procedure.

CS_RETCODE srv_regwatch(spp, proc_namep, namelen,
options, infop)

SRV_PROC *spp;

CS_CHAR *proc_namep;
CS_INT namelen;
CS_INT options;
CS_INT *infop;
SPp
A pointer to an internal thread control structure.
proc_namep
The name of the procedure.
namelen

The length of the procedure name. If the procedure nameis null terminated,
namelen can be CS NULLTERM.

Open Server

CHAPTER 3 Routines

options
A flag that specifies whether thisis a one-time notification request, or a
permanent request. Table 3-103 describes the legal values for options:

Table 3-103: Values for options (srv_regwatch)

Value

Description

SRV_NOTIFY_ONCE

After thefirst notification, the client thread is removed
from the notification list for the procedure.

SRV_NOTIFY_ALWAYS

The client thread will be notified each time the
procedure executes until srv_regnowatch is used to
remove the thread from the procedure’s notification
list.

infop

Table 3-104 describesthe possible valuesreturnedin *infop if srv_regwatch

returns CS_FAIL:

Table 3-104: Values for infop (srv_regwatch)

Value

Description

SRV_|_PNOTKNOWN

The procedure is not known to the Open Server
application. The thread was not added to the
notification list.

SRV_|_PINVOPT

Aninvalid optionsvalue was specified. Thethread was
not added to the notification list.

SRV_I_PNOTCLIENT

A non-client thread was specified. The thread was not
added to the notification list.

SRV_I_PNOTIFYEXISTS

Thethread is al&ready on the notification list for the
specified procedure.

Return value

Table 3-105: Return values (srv_regwatch)

To indicate

The routine completed successfully.

Theroutine failed.

Returns
CS _SUCCEED
CS FAIL
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_INT ex srv_regwatch PROTOTYPE ((
SRV_PROC *sproc,
CS_CHAR *procedure_name

Server-Library/C Reference Manual

367

srv_regwatch

)) i

/*

** EX SRV_REGWATCH

* % An example routine to add a client thread to the
* % notification list for a specified procedure.

* %

** Arguments:

** sproc A pointer to an internal thread control
** structure.
** procedure name The null terminated procedure name.

* %

** Returns:

*x CS_SUCCEED If the thread was added to the
* % notification list.
** SRV_I_PNOTKNOWN The procedure is not known to the Open
*x Server application.
** SRV_I PNOTCLIENT A non-client thread was specified.
** SRV_I PNOTIFYEXISTS The thread is al&ready on the
* % notification list for the specified
*k procedure.
*x CS_FAIL The attempt to add the thread to the
* % notification failed due to other
** errors.
*/
Cs_INT ex srv_regwatch (sproc, procedure name)
SRV_PROC *sproc;
CS_CHAR *procedure_name;
{
CS_INT info;
if (srv_regwatch(sproc, procedure name, CS NULLTERM,
SRV_NOTIFY ALWAYS, &info) == CS_FAIL)
{
if ((info == SRV_I PNOTKNOWN)
|| (info == SRV_I_PNOTCLIENT)
|| (info == SRV_I_PNOTIFYEXISTS))
{

return (info) ;
else

return ((CS_INT)CS FAIL) ;

368 Open Server

CHAPTER 3 Routines

Usage

See also

return ((CS_INT)CS_SUCCEED) ;

* srv_regwatch adds athread to the list of threads to notify when the
specified procedure executes.

* The options flag specifies whether the thread is notified every time the
procedure executes or just once—the next time the procedure executes.

» Usesrv_regnowatch to cancel a notification request.

srv_regnowatch, srv_regwatchlist

srv_regwatchlist

Description

Syntax

Parameters

Return value

Examples

#include

/*

Return alist of all registered procedures for which a client thread has
notification requests pending.

CS_RETCODE srv_regwatchlist(spp, proclistp)

SRV_PROC *spp;
SRV_PROCLIST **proclistp;
SPp

A pointer to an internal thread control structure.

proclistp
A pointer to apointer to a structure that contains the number of registered
procedures and the names of each registered procedure. Open Server
allocates the space for this structure.

Table 3-106: Return values (srv_regwatchlist)

Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** Local Prototype.

*/

CS_RETCODE
SRV_PROC

ex srv_regwatchlist PROTOTYPE ((
*spp

Server-Library/C Reference Manual 369

srv_regwatchlist

)) i

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

EX SRV_REGWATCHLIST

Example routine to get a list of all registered procedures
for which a client thread has notifications pending.

Arguments:
sSpp A pointer to an internal thread control structure.

Returns:

CS_SUCCEED The list returned successfully.
CS_FAIL An error was detected.

CS_RETCODE ex_srv_regwatchlist (spp)
SRV_PROC *sSpp;

{

Usage

370

SRV_PROCLIST *listp;

if (srv_regwatchlist (spp, &listp) == CS_FAIL)
return (CS_FAIL);

/*

* % Process the information in the list and free the
* % memory allocated for the list.

*/

(CS_VOID)srv_reglistfree(spp, listp);

return (CS_SUCCEED) ;

e srv_regwatchlist returnsalist of registered procedures for which the client
thread has requested notification.

e Theproclistp parameter pointsto a SRV_PROCLIST structure that is
allocated and initialized by Open Server. The SRV_PROCLIST structure
lookslike this:

typedef struct srv_ proclist

{

CS_INT num_procs; /* The number of procedure names */
CS_CHAR **proc_list; /* The list of procedure names */
} SRV_PROCLIST;

e Anapplication deallocates the SRV_PROCLIST structure by calling
srv_reglistfree.

Open Server

CHAPTER 3 Routines

See also srv_reglistfree

srv_rpcdb

Description Return the database component of the current remote procedure designation.
Syntax CS_CHAR *srv_rpcdb(spp, lenp)

SRV_PROC *spp;

CS_INT *lenp;
Parameters spp

A pointer to an internal thread control structure.

lenp
A pointer to anint variablethat will contain thelength of the database name.
lenp can be NULL, in which case the length of the database nameis not

returned.
Return value Table 3-107: Return values (srv_rpcdb)
Returns To indicate
A pointer to anull terminated string The location of the database component

containing the database component of the | of the current RPC's designation.
current RPC’s designation.

(CS_CHAR*) NULL Thereisno current RPC.

Open Server setslenp to -1 and raises an
informational error.

Examples

#include <ospublic.h>

/ *
** Local Prototype.
*/

CS_RETCODE ex srv_rpcdb PROTOTYPE ((

SRV_PROC *Spp,

CS_CHAR **dbp,

CS_INT *lenp

))

/ *
** EX_SRV_RPCDB
* %

* ok Example routine to return the database component name of the
* % current remote procedure call designation, using srv_rpcdb.

Server-Library/C Reference Manual 371

srv_rpcname

* %

** Arguments:

** spp A pointer to an internal thread control structure.

*k dbp A return pointer to the null terminated database name.
* % lenp A return pointer to an integer containing the length

* % of the database name.

* %

** Returns:

** CS_SUCCEED Database component name returned successfully.
** CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_rpcdb (spp, dbp, lenp)
SRV_PROC *Spp;
CS_CHAR **dbp;
CS_INT *lenp;

{

/* Initialization.*/

*lenp = (CS_INT)O;

/* Retrieve the database component name. */

if ((*dbp = (CS_CHAR *)srv_rpcdb(spp, lenp)) == (CS_CHAR
*) NULL)

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage e srv_rpcdb returnsaCS_CHAR pointer to anull terminated string
containing the database name component of the current remote procedure
call designation.

e srv_rpcdb returns only the database name part of the RPC’'s designation
and does not include anything else, such as optional specifiers for owner
or RPC number. A fully qualified stored procedure designation takes the
form database.owner.rpcname; number. To get the other parts of the RPC's
designation, if any, use srv_rpcname, srv_rpcowner, and srv_rpcnumber.

See also S'V_numparams, Srv_rpcname, srv_rpcnumber, srv_rpcoptions, srv_rpcowner

Srv_rpcname
Description Return the name component of the current remote procedure call’s designation.

Syntax CS_CHAR *srv_rpcname(spp, lenp)

372 Open Server

CHAPTER 3 Routines

SRV_PROC *spp;
CS_INT *lenp;
Parameters spp
A pointer to an internal thread control structure.

lenp
A pointer to the buffer that will contain the length of the RPC name. lenp
can be NULL, in which case the length of the RPC name is not returned.

Return value Table 3-108: Return values (srv_rpcname)

Returns To indicate

A pointer to the null terminated The location of the database component of the

name component of the current current RPC's designation.

RPC’s designation.

A null pointer Thereis no current RPC.
Open Server setslenp to -1 and raises an
informationa error.

Examples

#include <ospublic.h>

/*

** TLocal Prototype.

*/

CS_RETCODE ex srv_rpcname PROTOTYPE ((

SRV_PROC *sp,

CS_CHAR *buf,

CS_INT buflen,

CS_INT *lenp

))

/*

** EX SRV_RPCNAME

* %

* % This routine demonstrates how to use srv _rrpcname to obtain
* % the name of the remote procedure call received by this
*x thread.

* %

** Arguments:

* % sp A pointer to an internal thread control
*x structure.
* ok buf The address of the buffer in which the RPC
* % name will be returned.
* % buflen The size of the name buffer.
* % lenp The address of an integer variable, which
** will be set to the length of the name

Server-Library/C Reference Manual 373

srv_rpcname

* % returned.
* %
** Returns
** CS_SUCCEED If the RPC name is returned.
** CS_FAIL If an error occurred.
*/
CS_RETCODE ex srv_rpcname (sp, buf, buflen, lenp)
SRV_PROC *sp;
CS_CHAR *buf;
CS_INT buflen;
CS_INT *lenp;
{
CS_CHAR *np; /* The procedure name pointer. */
/ *
** Tnitialization.
*/
np = (CS _CHAR *)NULL;
*lenp = (CS_INT)O;
/*
** Get the procedure name.
*/
np = srv_rpcname (sp, lenp);
if (np == (CS_CHAR *)NULL)
{
/ *
** An error was al&ready raised.
*/
return CS_FAIL;
}
/ *
** Copy the RPC name to the output buffer.
*/
(void) strncpy (buf, np, buflen);
/*
** All done.
*/
return CS_SUCCEED;
}
Usage e srv_rpcname returnsaCS_CHAR pointer to anull terminated string
containing the name component of the current remote procedure call
(“RPC") designation.
374

Open Server

CHAPTER 3 Routines

e srv_rpcname returns only the RPC name and does not include anything
else, such as optional specifiersfor database, owner, or RPC number. For
example, afully qualified object namefor an RPC in the Adaptive Server
is database.owner.rpcname; number. To get the other parts of the RPC’s
designation, if any, use srv_rpcdb, srv_rpcowner, and srv_rpcnumber.

e A user candeterminewhether an RPC existsby calling srv_rpcname. If the
RPC does not exist, Open Server will return aSRV_ENORPC error. A
user can code his or her error handler to ignore this error if detected.

See also srv_numparams, srv_rpcdb, srv_rpcnumber, srv_rpcoptions, srv_rpcowner

srv_rpcnumber

Description Return the number component of the current remote procedure call’s
designation.

Syntax CS_INT srv_rpcnumber(spp)
SRV_PROC *spp;

Parameters spp

A pointer to an internal thread control structure.

Return value Table 3-109: Return values (srv_rpcnumber)
Returns To indicate
A non-zero integer The number component of the current RPC’s designation.
-1 Thereis no current RPC.
Open Server setslenp to -1 and raises an informational error.
0 The client did not include a number component when it
invoked the RPC.
Examples
#include <ospublic.h>
/*
** Tocal Prototype.
*/
CS_INT ex srv_rpcnumber PROTOTYPE ((

SRV_PROC *spp
)) i

/*
** EX SRV_RCPNUMBER

Server-Library/C Reference Manual 375

srv_rpcoptions

* %

* % Example routine to show hiw to get the number of the

* % current RPC designation.
* %

* %

** Arguments:
* %

** spp A pointer to an internal thread control structure.
* %

** Returns:
* %

** The number component of the current RPC’s designation. If
* %k the client used no number component when it invoked the
* K RPC, 0 is returned. If there is not a current RPC, -1 is
* %k returned and Open Server raises an informational error.
*/

CS_INT ex_srv_rpcnumber (spp)

SRV_PROC *Spp;

{

/* Check arguments. */
if (spp == (SRV_PROC *)NULL)

{
}

return((CS_INT)srv_rpcnumber (spp)) ;

return(-1) ;

Usage e srv_rpcnumber returns the number component of the current remote
procedure call (“RPC") designation.

e srv_rpcnumber returns only the number component of the RPC's
designation and does not include anything el se, such as optional specifiers
for owner or RPC name. A fully qualified designation for an RPC takesthe
form database.owner.rpcname; number. To get the other parts of the RPC's
designation, if any, use srv_rpcname, srv_rpcowner, and srv_rpcdb.

See also srv_numparams, srv_rpcdb, srv_rpcname, srv_rpcoptions, srv_rpcowner

Srv_rpcoptions
Description Return the runtime options for the current remote procedure call.

Syntax CS_INT Srv_rpcoptions(spp)
SRV_PROC *spp;

376 Open Server

CHAPTER 3 Routines

Parameters spp
A pointer to an internal thread control structure.
Return value Table 3-110: Return values (srv_rpcoptions)
Returns To indicate
A non-zero integer containing the runtime The current RPC’s runtime flags.
flags for the current RPC.
0 Thereisno current RPC.
Open Server raises an error.

Examples
#include <ospublic.h>
/*
** Tocal Prototype.
*/
CS_RETCODE ex srv_rpcoptions PROTOTYPE ((
SRV_PROC *Spp
))
/*

** EX SRV_RPCOPTIONS
* %

* % Example routine to retrieve RPC runtime options

* %

** Arguments:

* % spp A pointer to an internal thread control structure.
* %

** Returns:

* *

*%x CS_SUCCEED
*x CS_FAIL

*/
CS_RETCODE ex srv_rpcoptions (spp)
SRV_PROC *Spp;
{
CS_INT options;
if ((options = srv_rpcoptions(spp)) == 0)

return(CS_FAIL) ;

return (CS_SUCCEED) ;

Server-Library/C Reference Manual 377

Srv_rpcowner

Usage * srv_rpcoptions returnsaCS_INT value containing theruntime flagsfor the
current remote procedure call.

e Currently, the only flag is SRV_PARAMRETURN. If
SRV_PARAMRETURN is CS_TRUE, the RPC must be recompiled
beforeit is executed. Thisis significant only if the RPC is a stored
procedure executing on an Adaptive Server.

See also srv_numparams, srv_rpedb, srv_rpcname, srv_rpcnumber, srv_rpcowner

Srv_rpcowner

Description Return the owner component of the current remote procedure call’s
designation.

Syntax CS_CHAR *srv_rpcowner(spp, lenp)
SRV_PROC *spp;
CS_INT *lenp;

Parameters Spp

A pointer to an internal thread control structure.

lenp
A pointer to abuffer that will contain thelength of the owner name. lenp can
be NULL, in which case the length of the database owner is not returned.

Return value Table 3-111: Return values (srv_rpcowner)
Returns To indicate
A pointer to the null terminated owner The location of the database component
component of the current RPC's of the current RPC's designation.
designation.
A null pointer Thereisno current RPC.
Open Server setslenpto-1and raisesan
informational error.

Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

extern CS_RETCODE ex srv_rpcowner PROTOTYPE ((
Cs_VOID *sSpp,

378 Open Server

CHAPTER 3 Routines

CS_CHAR *ownerp
))

/*
** EX SRV_RPCOWNER

* %

* % Determine the owner component of an RPC destination.
* %

** Arguments:

* % spp A pointer to an internal thread control structure.
* ok ownerp A pointer to the buffer to which Open Server
** returns the owner component.

* %

** Returns:

* % CS_SUCCEED Owner component returned successfully.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex_srv_rpcowner (spp, ownerp)
SRV_PROC *Spp;
CS_CHAR *ownerp;
{
CS_INT len;

ownerp = srv_rpcowner (spp, &len);

if (len == (CS_INT) (-1))

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Usage e srv_rpcowner returnsaCS_CHAR pointer to anull terminated string
containing the owner component of the current remote procedure call
(“RPC") designation.

e srv_rpcowner returnsonly the owner component of the RPC’s designation
and does not include anything el se, such as optional specifiersfor database
or RPC number. A fully qualified designation for an RPC takes the form
database.owner.rpcname; number. To get the other parts of the RPC's
designation, if any, use srv_rpcname, srv_rpcdb, and srv_rpcnumber.

See also srv_numparams, srv_rpcdb, srv_rpcname, srv_rpcnumber, srv_rpcoptions

Server-Library/C Reference Manual 379

srv_run

srv_run
Description Start up the Open Server application.
Syntax CS_RETCODE srv_run(ssp)
SRV_SERVER *ssp;
Parameters Sp
A pointer to the Open Server control structure. Thisisan optional argument.
Return value Table 3-112: Return values (srv_run)
Returns To indicate
CS SUCCEED | The server is stopped.
CS FAIL Open Server could not start the server.
If srv_run returns CS_FAIL, an application must call srv_init
before calling srv_run again.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_run PROTOTYPE ((CS_VOID)) ;
/*
** EX SRV_RUN
* % An example routine to start up an Open Server using srv_run.
* %
** Arguments:
** None.
* %
** Returns:
* % SRV_STOP If the server is stopped.
* % CS_FAIL If the server can’t be brought up.
*/
CS_RETCODE ex_srv_run()

{
}

Usage

380

return (srv_run((SRV_SERVER *)NULL)) ;

* srv_run starts, or restarts, the Open Server application.
* srv_run returns when the server is stopped by a SRV_STOP event.

Open Server

CHAPTER 3 Routines

See also

e Once started, the server listens for a client request, calls the function
defined to handl e the request, and then continues listening for further
requests.

e If aserver has stopped, it must be re-initialized using srv_init beforeitis
restarted.

Note If srv_runiscaledintheentry functionsof aDLL, adeadlock may arise.
srv_run creates operating system threads and tries to synchronize them using
system utilities. This synchronization conflicts with the operating system’s
serialization process.

srv_init, srv_props, “Events’ on page 92

srv_s_ssl local id

Description

Syntax

Parameters

Properties used to specify the path to the local ID (certificates) file.

typedef struct _cs_sslid

CS_CHAR *identity_file;
CS_CHAR *identity_password;
} CS_SSLIDENTITY

identity file
provides a path to the file containing a digital certificate and the associated
private key.

CS_GET only returnsthe indentity file used, and only if it is set with
CS_CONNECTION.

identity password
used to decrypt the private key.

srv_select (UNIX only)

Description

Syntax

Check to seeif afile descriptor is & ready for a specified 1/O operation.

CS_INT srv_select(nfds, &readmaskp, writemaskp,
exceptmaskp, waitflag)

Server-Library/C Reference Manual 381

srv_select (UNIX only)

Parameters

Return value

Examples

#include

/*

CS_INT nfds;
SRV_MASK_ARRAY *&readmaskp;
SRV_MASK_ARRAY *writemaskp;
SRV_MASK_ARRAY *exceptmaskp;

CS_INT waitflag;
nfds

The highest number file descriptor to check.
&readmaskp

A pointer to aSRV_MASK_ARRAY structureinitialized with the mask of
file descriptors to check for read availability.

writemaskp
A pointer to aSRV_MASK_ARRAY structureinitialized with the mask of
file descriptors to check for write availability.

exceptmaskp
A pointer to aSRV_MASK_ARRAY structureinitialized with the mask of
file descriptors to check for exceptions.

waitflag
A CS_INT that indicates whether the thread should be suspended until any
file descriptor is available for the desired operation. See the “ Comments”
section for a description of the legal values for waitflag.

The total number of file descriptorsthat are & ready for any of the indicated
operations. If an error occurs, -1 is returned.

Table 3-113: Return values (srv_select)

Returns To indicate

An integer The total number of file descriptors & ready for any of the indicated
operations.

-1 The routine failed.

<ospublic.h>

** TLocal Prototype.

*/

CS_RETCODE
CS_INT

)) i
/*

ex srv_select PROTOTYPE ((
readfd

** EX SRV_SELECT

* %

382

Open Server

CHAPTER 3 Routines

** Example routine to illustrate the use of srv_select.

* %

** Arguments:

* % readfd - fd to be checked if it is &ready for a read **
operation.

* %

** Returns:

** CS SUCCEED If readfd is &ready for a read operation.
** CS FAIL If readfd is not &ready for a read operation.
*/
CS_RETCODE ex srv_select (readfd)
CS_INT readfd;
{
SRV_MASK ARRAY &readmask;
CS_BOOL &ready;

/* Initialization. */

(CS_VOID) srv_mask (CS_ZERO, &&readmask, (CS_INT)O0, (CS_BOOL
*)NULL) ;

&ready = CS_FALSE;

/* Set readfd in the mask. */

(CS_VOID)srv_mask (CS_SET, &&readmask, readfd, (CS_BOOL
*)NULL) ;

/*

** Check whether the descriptor is &ready for a read

** operation. If it is not, return.

*/

if (srv_select (readfd+l, &&readmask, (SRV_MASK ARRAY *)NULL,
(SRV_MASK ARRAY *)NULL, SRV_M_NOWAIT) <= 0)
return (CS_FAIL);

/*

** A file descriptor is &ready for a read operation.

*/

(CS_VOID) srv_mask (CS_GET, &&readmask, readfd, &&ready);
return ((&ready) ? CS_SUCCEED : CS_ FAIL);

Usage e Usesrv_select when you want to know if a network 1/0 operation can be
performed on a file descriptor without requesting the 1/0.

e Open Server will include the designated file descriptor in the global mask
that it uses when it checks for file descriptor availability.

Server-Library/C Reference Manual 383

srv_select (UNIX only)

e A SRV_MASK_ARRAY isdefined as follows:

#define SRV _MASK SIZE (CS_INT) 40

#define SRV_MAXMASK LENGTH

(CS_INT) (SRV_MASK SIZE*CS BITS_ PER LONG)
typedef struct srv_mask array

{

long mask bits[SRV_MASK SIZE] ;
} SRV_MASK ARRAY;

SRV_MASK_SIZE indicates the number of elementsin the
SRV_MASK_ARRAY and SRV_MAXMASK_LENGTH indicates the
maximum number of file descriptors that can be represented in the
SRV_MASK_ARRAY.

* An Open Server application that uses external file descriptors must close
them in an orderly fashion. An application thread must wait for apending
srv_select call to complete before closing an external file descriptor. If not,
Open Server will exit.

» Table 3-114 summarizes the legal values for waitflag:

Table 3-114: Values for waitflag (srv_select)
Value Meaning

SRV_M_WAIT The thread is suspended and will wake up when any file
descriptor represented in the masksis available for the
specified operation. The return status indicates whether
any file descriptors are available for the desired operations.
SRV_M_NOWAIT The routine will return immediately after the next network
check. The return status indicates whether any file
descriptors are available for the desired operations.

» Anapplication can use srv_select to poll the file descriptor and return
immediately or not return until one of the file descriptorsis & ready.

* srv_select cannot beusedin aSRV_START or SRV_ATTENTION
handler.

See also srv_mask

384 Open Server

CHAPTER 3 Routines

srv_send_ctlinfo
Sends control messages to Client-Library.

CS RETCODE srv_send_ctlinfo(SRV_PROC *srvproc, CS _INT ctl_type,
SRV_CTL_MIGRATE ctl_type, CS_INT paramcnt, SRV_CTLITEM *param)

Description

Syntax

Parameters

Usage

Server-Library/C Reference Manual

srvproc

A pointer to an internal thread control structure.

ctl_type

The type of control message to send.

parament
The number of elementsin the param array.

param

Parameters for library control message.

e ctl_type has the following values:

SRV_CTL_MIGRATE

Sends migration request to the client or cancel a previous migration
request. SRV_CTL_MIGRATE can beused only if the client supports
migration and hasreceived asession ID when it first connected to the
session.

See“SRV_CTL_MIGRATE” on page 42 for more information.
SRV_CTL_L OGINREDIRECT

Only valid during a connect handler. When used, a SRV_PROC for
which SRV_T_REDIRECT istrue will instruct the client to restart
login using the passed-in server addresses.

SRV_CTL_HAUPDATE

Valid at any time srv_sendinfo is valid. When the server sends this
message to a client, the client will replace its current HA failover
target information with the server connection information as
expressed via param.

e param hasthe following fields:

SRV_CTLTYPES srv_ctlitemtype, where srv_ctlitemtype indicates
the parameter type. The following types are available;

« SRV_CT_SERVERNAME, which indicates that srv_ctlptr points
toaCS_CHAR string containing the name of the server whose
address will be looked up.

385

srv_send_data

See also

e SRV_CT_TRANADDR, whichindicatesthat srv_ctlptr pointstoa
CS TRANADDR structure containing the server address
information.

e SRV_CT_ADDRSTIR, which indicates that srv_ctlptr pointsto a
string formated by srv_getserverbyname.

e SRV_CT_OPTION, which indicates that srv_ctlptr pointsto a
CS INT bitmask that contains a set of options for this message.

e CS_INT srv_ctllength, which is the length of variable size
parameters. When srv_ctlitemtypeis SRV_CT_SERVERNAME or
SRV_CT_ADDRSTR, itisthe length of the string pointed to by
srv_ctlptr or CS_NULLTERM. When srv_ctlitemtype is
SRV_CT_TRANADDR, it isthe number of elementsin the
CS TRANADDR array pointed to by srv_ctlptr.

e void*srv_ctlptr, where srv_ctlptr pointsto the actual parameter data.

srv_freeserveraddrs, srv_getserverbyname

srv_send_data

Description

Syntax

Parameters

386

srv_send_data allows Open Server applications to transfer rows containing
multiple columnsto clients. It allows Open Server applications to send text,
image, and XML datain chunks, preventing the excessive use of memory.

CS_RETCODE srv_send_data(spp, column, buf, buflen)
SRV_PROC *spp;

CS_INT *column;
CS_BYTE *buf;
CS_INT buflen;
Spp
A pointer to an internal thread control structure.
column
The number of the column in arow set.
buf

A pointer to abuffer containing the data to send to the client. This
determines the size of a section.

buflen
The length of the *buf buffer.

Open Server

CHAPTER 3 Routines

Return value Table 3-115: Return values (srv_send_data)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Examples

#include <ctpublic.h>
#include <ospublic.hs>
/*

** Local Prototype.

*/

CS_RETCODE ex_srv_send data PROTOTYPE ((
SRV_PROC *spp,
CS_COMMAND *cmd,
CS_INT cols

))

#define MAX BULK 51200

/*
** EX SRV_SEND DATA

** Example routine to demonstrate how to write columns
** of data in a row set to a client using srv_send data.
** This routine will send all the columns of data read
** from a server back to the client.

** Arguments:

** Spp - A pointer to an internal thread control structure.
** cmd - The command handle for the command that is returning
** text data.

** cols - The number of columns in a row set.

** Returns:

** CS SUCCEED - Result set sent successfully to client.
** CS_FAIL - An error was detected.

*/

CS_RETCODE ex srv_send data(spp, cmd, cols)

SRV_PROC *spp;

CS_COMMAND *cmd;

CS_INT cols;

{

CS_INT *len; /* Length of column data. */
CS_INT *outlen; /* Number of bytes received. */
CS BYTE **data; /* Column data. */

CS_BYTE buf [MAX BULK]; /* Buffer for text data. */
CS_BOOL ok; /* Error control flag. */

CS_INT i;

CS_INT ret;

Server-Library/C Reference Manual 387

srv_send_data

388

Initialization. */
CS_TRUE;

Transfer a row.

/*
ok =
/*
*/
for (i =
{
if ((
(
{
}
else
{
/*

* %

*/

0; 1 < cols; i++)

fmt [i] .datatype != CS TEXT TYPE) &&
fmt [i] .datatype != CS_IMAGE TYPE))
/*

** Transfer a non TEXT/IMAGE column.
*/

/*
** Read the data of a non-text/image column
** from the server.

*/
ret = ct get data(emd, i+1, datalil,
len[i], &outlen[i]);

if ((ret != CS_SUCCEED) && (ret != CS_END DATA)
&& (ret != CS_END_ITEM))
{

ok = CS_FALSE;

break;
}
/*

** Write the data of a non-text/image column
** to client.

*/
if (ret = srv_send data(srvproc, i+l, NULL, 0)
|= CS_SUCCEED)
{
ok = CS FALSE;
break;
!

Transfer a TEXT/IMAGE column in small trunks.

Open Server

CHAPTER 3 Routines

/*

** Read a chunk of data of a text/image column

** from the server.

*/

while ((ret = ct get data(cmd, i+1, buf, MAX BULK, &len[i]))
== CS_SUCCEED)

/*

** Write the chunk of data to client.

*/

if (ret = srv_send data(srvproc, i+l, buf, len[i])

!= CS_SUCCEED)

ok = CS FALSE;
break;

switch(ret)

{
case CS_SUCCEED:
/* The routine completed successfully. */
case CS_END ITEM:
/* Reached the end of this item’s value. */
case CS_END DATA:
/* Reached the end of this row’s data. */
break;
case CS FAIL:
/* The routine failed. */
case CS_CANCELED:
/* The get data operation was cancelled. */
case CS_PENDING:
/* Asynchronous network I/O is in effect. */
case CS_BUSY:
/* An asynchronous operation is pending. */
default:
ok = CS FALSE;

}

return (ok ? CS _SUCCEED : CS_FAIL);

Usage e srv_send_data sends data of arow set column by column to aclient.

Server-Library/C Reference Manual 389

srv_send_text

» When sending columns with text, image or XML data, Open Server
applicationsmust call srv_text_info beforesrv_send_data. Thisensuresthe
data stream is correctly set to the total length of data being sent. The
application then calls srv_send_data to send the datain chunks, and
continues to call the routine until there is no remaining data to be sent.

e Open Server applications can send text, image and XML datato clients
using srv_bind and srv_xferdata. However, these routines require all data
columnsto be sent at once. srv_send_data allows applicationsto send text
and image datain chunks.

» Becausesrv_send_data reads and sends dataone column at atime, thedata
format for awhole row needsto be sent to the client together with thefirst
columnin the row set. To retrieve fixed 1/0 fields, such as object name
beforeacolumnisread, cal ct_data_info(). Note that the changeablefields
in 1/O descriptors such as pointers to text data, and length of text data are
retrievable only after the column is read.

e Open Server applications treat text, image and XML data streams
identically, with the exception of character set conversions. These
conversions are only performed on text data.

See also Related srv_bind, srv_get_text, srv_text_info, srv_xferdata, srv_get_data, and
srv_send_text routinesin the Open Server 15.0 Server Library/C Reference
Manual.

srv_send_text

Description Send atext or image data stream to aclient, in chunks.
Syntax CS_RETCODE srv_send_text(spp, bp, buflen)

SRV_PROC *spp;

CS_BYTE *bp;

CS_INT buflen;
Parameters spp

A pointer to an internal thread control structure.
bp

A pointer to abuffer containing the data to send to the client. This
determines the size of a section.

buflen
The size of the * bp buffer.

390 Open Server

CHAPTER 3 Routines

Return value Table 3-116: Return values (srv_send_text)
Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ctpublic.h>
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_send text PROTOTYPE ((
SRV_PROC *Spp,

CS__COMMAND *cmd
))

/*

** EX SRV _SEND TEXT

* %

* % Example routine to demonstrate how to write text to a client
** using srv_send text. This routine will send all the text

** read from a server back to the client.

* %

** Arguments:

* % spp A pointer to an internal thread control structure.
* % cmd The command handle for the command that is returning
** text data.

* %

** Returns:
* % CS_SUCCEED Result set sent successfully to client.

*x CS_FAIL An error was detected.

*/

CS_RETCODE ex srv_send text (spp, cmd)

SRV_PROC *Spp;

CSs__COMMAND *cmd ;

{
CS_BOOL ok; /* Error control flag. */
CS_INT ret; /* ct_fetch return value. */
CS_INT len read; /* BAmount of data read. */
CS_BYTE data[1024]; /* Buffer for text data. */

/* Initialization. */
ok = CS_TRUE;

Server-Library/C Reference Manual 391

srv_send_text

Usage

392

/* Read the text

from the server. */

while ((ret = ct get data(cmd, 1, data, CS _SIZEOF (data),

&len read

))

== CS_SUCCEED)
{
/* Write text to client a chunck at a time */
if (srv_send text (spp, data, len read) != CS_ SUCCEED)
{
ok = CS FALSE;
break;

}

switch (ret)

{

case CS_SUCCEED:

case CS_END_ ITEM:
case CS_END DATA:

break;
case CS_FAIL:

case CS_CANCELED:

case CS_PENDING:
case CS_BUSY:
default:

/* The routine completed successfully. */
/* Reached the end of this item’s value. */
/* Reached the end of this item’s value. */

/* The routine failed. */

/* The get data operation was cancelled. */
/* Asynchronous network I/O is in effect. */
/* An asynchronous operation is pending. */

ok = CS_FALSE;

return (ok ? CS_

SUCCEED : CS_FAIL);

srv_send_text is used to send asingle column of text or image datato a
client.

The Open Server application must always call srv_text_info prior to the
first call to srv_send_text for the data stream, to set the total length of the
data to be sent. The application then callssrv_send_text to send a chunk.
srv_send_text is called as many times as there are chunks.

Theitem being sent to the client must have previously been described
using srv_descfmt.

An Open Server application can also write text and image datato aclient
using srv_bind and srv_xferdata. srv_send_text allows the application to
send the datain chunks, whereas the standard srv_bind/srv_xferdata
method requires that all the data in the column be sent at once.

A column sent with srv_send_text must be of type text or image.

Open Server

CHAPTER 3 Routines

e Open Server treats text and image data streams identically except for
character set conversion, which isonly performed on text data.

Warning! An Open Server application can only use srv_send_text to send a
row if that row containsasingle column and that column containstext or image
data.

See also srv_bind, srv_descfmt, srv_get text, srv_text_info, srv_xferdata, “ Text and
image” on page 196

srv_senddone

Description Send a results compl etion message or flush resultsto a client.
Syntax CS_RETCODE srv_senddone(spp, status, transtate, count)
SRV_PROC *spp;
CS_INT status;
CS_INT transtate;
CS_INT count;
Parameters spp

A pointer to an internal thread control structure.

Status
A 2-byte bit mask composed of one or more flags OR’ d together. Table 3-
117 describes each flag:

Table 3-117: Values for status (srv_senddone)

Status Description

SRV_DONE_FINAL The current set of resultsisthe final set of results.

SRV_DONE_MORE The current set of resultsis not the final set of results.

SRV_DONE_COUNT | The count parameter contains avalid count.

SRV_DONE_ERROR | The current client command got an error.

SRV_DONE_FLUSH | The current result set will be sent to the client without
waiting for afull packet.

transtate
The current state of the transaction. Table 3-118 describes the legal values
for transtate:

Server-Library/C Reference Manual 393

srv_senddone

Table 3-118: Values for transtate (srv_senddone)

Transaction State Description
CS_TRAN_UNDEFINED Not currently in atransaction.
CS_ TRAN_COMPLETED The current transaction completed successfully.
CS TRAN_FAIL The current transaction failed.
CS TRAN_IN_PROGRESS Currently in atransaction.
CS TRAN_STMT_FAIL The current transaction statement failed.
count

A 4-bytefield containing a count for the current set of results. The count is
validif the SRV_DONE_COUNT flag is set in the status field.

Return value Table 3-119: Return values (srv_senddone)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex srv_senddone PROTOTYPE ((
SRV_PROC *Spp
))
/*
** Constants and data definitioms.
*/
#define NUMROWS 3
#define MAXROWDATA 6
CS_STATIC CS_CHAR *row_data [NUMROWS] = {
“Larry" ,
w Curly" ,
\\Moe"
i
/*
** EX SRV_SENDDONE
* %
* % Example routine illustrating the use of srv_senddone. This
* % routine will send a set of results to the client

394 Open Server

CHAPTER 3 Routines

* % application, and then send the results completion message.

* %

** Arguments:

* % sSpp

* %

** Returns:

A pointer to an internal thread control structure.

ol CS_SUCCEED Results set sent successfully to client.
* % CS_FAIL An error was detected.
*/
CS_RETCODE ex_ srv_senddone (spp)
SRV_PROC *Spp;
{
CS_DATAFMT fmt;
CS_INT row_len;
CS_INT idx;
/*

** Describe the format of the row data, with the single
** dummy column.

*/

srv_bzero((CS_VOID *)&fmt, (CS_INT)sizeof (fmt));
fmt.datatype = CS_CHAR TYPE;
fmt .maxlength = MAXROWDATA;

if

for

{

(srv_descfmt (spp, (CS_INT)CS_SET, (CS_INT)SRV_ROWDATA,

(CS_INT)1, &fmt) != CS_SUCCEED)

(CS_VOID) srv_senddone (spp,
(CS_INT) (SRV_DONE_FINAL | SRV_DONE_ERROR),
(CS_INT)CS TRAN FAIL, (CS_INT)O);

return (CS_FAIL) ;

(idx = 0; 1dx < NUMROWS; ++idx)

/*

** Bind the row data array element.

*/

row len = (CS_INT)strlen(row datal[idx]);

if (srv_bind(spp, (CS_INT)CS SET, (CS_INT)SRV_ROWDATA,
(CS_INT)1, &fmt, (CS_BYTE *) (row_data[idx]),
grow_len, (CS_SMALLINT *)NULL) != CS_SUCCEED)

/* Communicate failure, and number of rows sent. */
(CS_VOID) srv_senddone (spp,

Server-Library/C Reference Manual

395

srv_senddone

(CS_INT) (SRV_DONE_FINAL |
SRV_DONE_ERROR | SRV_DONE COUNT),
(CS_INT)CS_TRAN FAIL, (CS_INT)idx);
return (CS_FAIL) ;

}

/*

** Transfer the row data.

*/

if (srv_xferdata(spp, (CS_INT)CS SET, SRV_ROWDATA)

= CS_SUCCEED)

/* Communicate failure, and number of rows sent.

(CS_VOID) srv_senddone (spp,
(CS_INT) (SRV_DONE_FINAL |
SRV_DONE_ERROR | SRV_DONE_COUNT) ,
(CS_INT)CS_TRAN FAIL, (CS_INT)idx);
return (CS_FAIL) ;

}

/* Send a status value. */
if (srv_sendstatus(spp, (CS_INT)O0) != CS_SUCCEED)
{
/* Communicate failure, and number of rows sent. */
(CS_VOID) srv_senddone (spp,
(CS_INT) (SRV_DONE_FINAL |
SRV_DONE_ERROR | SRV_DONE_COUNT) ,
(CS_INT)CS_TRAN FAIL, (CS_INT)NUMROWS) ;
return (CS_FAIL) ;

}

/* Send the final DONE message, with the row count. */
if (srv_senddone (spp, (CS_INT) (SRV_DONE FINAL |
SRV_DONE_COUNT) ,
(CS_TINT) CS_TRAN_COMPLETED,
(CS_INT)NUMROWS) != CS_SUCCEED)

/* Communicate failure, and number of rows sent. */
(CS_VOID) srv_senddone (spp,
(CS_INT) (SRV_DONE_FINAL |
SRV_DONE_ERROR | SRV_DONE_COUNT) ,
(CS_INT)CS TRAN FAIL, (CS_INT)NUMROWS) ;
return(CS_FAIL) ;

}

return (CS_SUCCEED) ;

396

*/

Open Server

CHAPTER 3 Routines

Usage

See also

srv_senddone sends amessage to the client that the current set of resultsis
complete. A client request can cause the server to execute a number of
commands and to return anumber of results sets. For each set of results, a
completion message must be returned to the client with srv_senddone.

If the current results are not the last set of results for the client command
batch, the Open Server must set the status mask’s SRV_DONE_MORE
field. Otherwise, the Open Server application must set the status field to
SRV_DONE_FINAL to indicate that there are no more results for the
current command batch.

The count field indicates how many rows were affected by a particular
command. If count actually contains a count, the SRV_DONE_COUNT
bit should be set in the status field. This enables the client to distinguish
between an actual count of 0 and an unused count field.

If the SRV_CONNECT handler rejects the client login, the Open Server
application must call srv_senddone with the status parameter set to the
SRV_DONE_ERROR flag. The SRV_CONNECT handler must then send
aDONE packet totheclient with srv_senddone. Inany case, srv_senddone
must be called only once before the SRV_CONNECT handler returns and
the SRV_DONE_FINAL status flag must be set.

When awriteisin progress and the network buffer fills up, Open Server
flushes its contents. Issuing srv_senddone with status set to
SRV_DONE_FINAL or SRV_DONE_FLUSH causes aflush of the
network buffer, regardless of how full itis. SRV_DONE_FLUSH can be
set with or without SRV_DONE_MORE.

Setting statusto SRV_DONE_FLUSH allows an application to flushto a
client results that have accumulated over along period of time.

An application cannot set the status argument to SRV_DONE_FLUSH
inside a SRV_CONNECTION error handler.

Open Server does not provide any transaction management. It isthe
responsihility of the Open Server application to usethe transtate argument
as required to notify aclient of the current transaction state.

Note The transtate argument replaces the info argument in the Open Server
2.0 version of srv_senddone.This change will cause runtime errorsin existing
applications if the value of info in the existing application is not 0.

srv_bind, srv_descfmt, srv_sendstatus, srv_xferdata

Server-Library/C Reference Manual 397

srv_sendinfo

srv_sendinfo

Description

Syntax

Parameters

Return value

Examples

398

#include

/*

Send error messages to the client.
CS_RETCODE srv_sendinfo(spp, errmsgp, transtate)

SRV_PROC *spp;
CS_SERVERMSG *errmsgp;
CS_INT transtate;
PP
A pointer to an internal thread control structure.
errmsgp

A pointer to the CS_SERVERMSG structure containing the error message
information to be sent to the client. See“CS_SERVERM SG structure”’ on

page 60.

transtate
The current state of the transaction. Table 3-120 describes the legal values
for transtate:

Table 3-120: Values for transtate (srv_sendinfo)

Transaction State Description

CS_TRAN_UNDEFINED Not currently in atransaction.

CS TRAN_COMPLETED The current transaction completed successfully.
CS TRAN_FAIL The current transaction failed.

CS _ TRAN_IN_PROGRESS Currently in atransaction.

CS TRAN_STMT_FAIL The current transaction statement failed.

Table 3-121: Return values (srv_sendinfo)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** Local Prototype.

*/

CS_RETCODE
SRV_PROC
CS_CHAR
CS_INT
CS_INT

ex srv_sendinfo PROTOTYPE ((
*sp,

*msg,

msglen,

msgnum

Open Server

CHAPTER 3 Routines
))
/*
** EX SRV _SENDINFO
* %
* %k This routine demonstrates how to use srv _sendinfo to send
** an error message to a client.
* %
** Arguments:
* % sp A pointer to an internal thread control
bl structure.
** msg The message text to send.
** msglen The length of the message text to send.
** msgnum The message number to send.
* %
** Returns
* % CS_SUCCEED If the message is sent.
*x CS_FAIL If an error occurred.
*/
CS_RETCODE ex srv_sendinfo(sp, msg, msglen, msgnum)
SRV_PROC *sp;
CS_CHAR *msg;
CS_INT msglen;
Cs_INT msgnum;
{
CS_SERVERMSG &mrec;
/*
** Tnitialization.
*/
srv_bzero (&&mrec, sizeof (CS_SERVERMSG)) ;
/*
** First, determine if the message string will fit
** in the message structure. If not, truncate it.
*/
if (msglen > CS MAX MSG)
{
msglen = CS_MAX MSG;
}
/*
** Now copy the message string over.
*/
srv_bmove (msg, &mrec.text, msglen) ;
&mrec.textlen = msglen;
Server-Library/C Reference Manual 399

srv_sendinfo

Usage

400

/*
** Set the message number we want to send.
*/

&mrec.msgnumber = msgnum;

/* Set the message status so that &mrec.text contains
** the entire message

*/

&mrec.status = CS_FIRST CHUNK | CS LAST CHUNK;

/*

** Now we’'re &ready to send the message.

*/

if (srv_sendinfo(sp, &&mrec, CS_TRAN UNDEFINED) == CS_FAIL)
/*
** An error was alé&ready raised.
*/
return CS_FAIL;

}

/*

** All done.

*/

return CS_SUCCEED;

» srv_sendinfo sends error messages to the client. It must be called once for
each message sent.

» Anapplication can call srv_sendinfo before or after it sends result rows.
However, an application cannot call srv_sendinfo between callsto
srv_descfmt or between acall to srv_descfmt and a call to srv_xferdata.

» If an Open Server application wants to send parameter data pertaining to
an error message, it must set the status field of the CS_SERVERMSG
structure to CS_HASEED. The application must describe, bind and send
the error parametersimmediately after calling srv_sendinfo, before
sending other results and before acall to srv_senddone. The application
must invoke srv_descfmt, srv_bind and srv_xferdata with a type argument
of SRV_ERRORDATA.

» If anapplication calls srv_sendinfo with the status field of the
CS _SERVERMSG structure set to CS HASEED but fails to send error
parameters, afatal process error is raised when the application calls
srv_senddone.

Open Server

CHAPTER 3 Routines

e When an application calls srv_sendinfo with the status field of the
CS_SERVERMSG structure set to CS_HASEED, Open Server will verify
that the CS_RES NOEED response capability isnot set. If it is set, Open
Server will raise an error. Any subseguent callsto srv_descfmt to describe
error parameters will also provoke an error.

e For more information on sending error messages to clients, see “ Client
command errors’ on page 38.

* For more information on extended error data, see “ Client command
errors’ on page 38.

* For more information on the CS_SERVERMSG structure, see the
“CS_SERVERMSG structure” on page 60.

See also srv_bind, srv_descfmt, srv_senddone, srv_xferdata, “ Client command errors’
on page 38

srv_sendpassthru

Description Send a protocol packet to aclient.

Syntax CS_RETCODE srv_sendpassthru(spp, send_bufp, infop)

SRV_PROC *spp;
CS_BYTE *send_bufp;
CS_INT *infop;
Parameters spp
A pointer to an internal thread control structure.

send_bufp

A pointer to abuffer that contains the protocol packet.
infop

A pointer to aCS _INT that isset to SRV_I_UNKNOWN if

srv_sendpassthru returns CS_FAIL. Table 3-122 describes the possible
values returned in *infop if the routine returns CS_SUCCEED:

Server-Library/C Reference Manual 401

srv_sendpassthru

Table 3-122: CS_SUCCEED values (srv_sendpassthru)

Value Description

SRV_|_PASSTHRU_MORE | The protocol packet was sent successfully anditis
not the end of message packet.

SRV_|_PASSTHRU_EOM The end of message protocol packet was sent

successfully.
Return value Table 3-123: Return values (srv_sendpassthru)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <stdio.h>
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex srv_sendpassthru PROTOTYPE ((
SRV_PROC *spp
))
/*

** EX SRV_SENDPASSTHRU
* %

** Example routine to send a protocol packet to a client.
* %

** Arguments:

** gpp A pointer to an internal thread control structure.
* %

** Returns:

* %

** CS_SUCCEED
** CS_FAIL

*/
CS_RETCODE ex srv_sendpassthru (spp)
SRV_PROC *sSpp;
{
CS_BYTE sendbuf [20] ;
CS_INT info;

strcpy (sendbuf, “Here’'s what to send”);

402 Open Server

CHAPTER 3 Routines

Usage

See also

if (srv_sendpassthru(spp, sendbuf, &info) == CS FAIL)

{
}

else

{

return (CS_FAIL) ;

if (info == SRV_I_PASSTHRU_MORE)
{
printf (“*more to come...\n”);
return (CS_SUCCEED) ;
else if (info == SRV_I PASSTHRU EOM)
{
printf (“That’s all.\n");
return (CS_SUCCEED) ;

}

else

{

printf (“Unknown flag returned.\n”);
return (CS_FAIL) ;

e srv_sendpassthru sends a protocol packet received from a client program

or Adaptive Server without interpreting its contents.
srv_sendpassthru performs byte ordering on protocol header fields.

Once called, the thread that called it isin passthrough mode. Passthrough
mode ends when the SRV_PASSTHRU_EOM isreturned.

No other Server-Library routines can be called while the event handler is
in passthrough mode.

To use passthrough mode, the SRV_CONNECT handler for the client
must allow the client and remote server to negotiate the protocol format by
calling srv_getloginfo, ct_setloginfo, ct_getloginfo, and srv_setloginfo. This
allows clients and remote servers running on dissimilar platformsto
perform any necessary data conversions.

srv_sendpassthru can be used in all event handlers except
SRV_CONNECT, SRV_DISCONNECT, SRV_START, SRV_STOP,
SRV_URGDISCONNECT, and SRV_ATTENTION.

srv_getloginfo, srv_recvpassthru, srv_setloginfo

Server-Library/C Reference Manual 403

srv_sendstatus

srv_sendstatus

Description Send a status value to aclient.
Syntax CS_RETCODE srv_sendstatus(spp, value)
SRV_PROC *spp;
CS_INT value;
Parameters spp
A pointer to an internal thread control structure.
value
The status of the request. By convention, 0 means the request completed
normally.
Return value Table 3-124: Return values (srv_sendstatus)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local prototype.
*/
CS_RETCODE ex srv_sendstatus PROTOTYPE ((
SRV_PROC *spp
))
/*

** EX SRV_SENDSTATUS
* %

** Example routine to send a status value to a client.

* %

** Arguments:

** spp A pointer to an internal thread control structure.
* %

** Returns:

** CS_SUCCEED if we were able to send the status.

**% CS FAIL if an error was detected.
* %

*/
CS_RETCODE ex srv_sendstatus (spp)
SRV_PROC *SppP ;

{

404 Open Server

CHAPTER 3 Routines

Usage

See also

CS_RETCODE

/*

result;

** Send an OK status.

*/

result

return

srv_sendstatus (spp, (CS_INT)O);

(result) ;

e srv_sendstatus sends areturn status value to the client in response to a
client request. When arequest isreceived, the programmer-installed event
handler routine is called to serviceit. Part of the response to arequest can
be to return a status value.

e The status value sent by srv_sendstatus is both optional and application-
specific. It isnot related to the srv_senddone status parameter.

* A statusvalue can be sent after all rows, if any, have been sent to the client
with srv_xferdata and before the completion status is sent with
srv_senddone. A status value cannot be sent between acall to srv_descfmt
and srv_bind, and a call to srv_xferdata.

* Only one status value can be sent for each set of results.

srv_senddone

srv_setcolutype

Description

Syntax

Parameters

Define the user datatype to be associated with a column.

CS_RETCODE srv_setcolutype(spp, column,utype)
SRV_PROC *spp;

CS_INT column;
CS_INT utype;
Spp

A pointer to an internal thread control structure.

column
The column number of the column with which to associatethe user datatype.
Thefirst columnis 1.

utype
The user-defined datatype to be associated with the column.

Server-Library/C Reference Manual 405

srv_setcolutype

Return value

Table 3-125: Return values (srv_setcolutype)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

CS_RETCODE ex srv_setcolutype PROTOTYPE ((

SRV_PROC *spp,

CS_INT column,

Cs_INT utype

))

/*

406

** EX SRV_SETCOLUTYPE

* %

* % Example routine to define the user datatype to be associated

* %

* %

with a column using srv_setcolutype.

** Arguments:

** spp A pointer to an internal thread control structure.
*%x column The column number associated with the type.
** utype The type to be associated with the column.

* %

** Returns:

* %

** CS_ SUCCEED The datatype was successfully associated with
*k the column.
** CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_setcolutype (spp, column, utype)
SRV_PROC *Spp;
CS_INT column;
CS_INT utype;
{
/*
** Agsociate the type with the column.
*/
if (srv_setcolutype (spp, column, utype) != CS_SUCCEED)

{

return(CS_FAIL) ;

Open Server

CHAPTER 3 Routines

}

return (CS_SUCCEED) ;

Usage

The datatype set through srv_setcolutype is the datatype the client application
will receive through the DB-Library call dbcolutype or through the Client-
Library call ct_describe.

srv_setcontrol

Description

Syntax

Parameters

Return value

Examples

#include

/*

Describe user control or format information for columns.

CS_RETCODE srv_setcontrol(spp, colnum, ctrlinfop,

ctrllen)
SRV_PROC *spp;
CS_INT colnum;
CS_BYTE *ctrlinfop;
CS_INT ctrllen;

SPp
A pointer to an internal thread control structure.

colnum
The number of the column to which the control information applies. The
first column in arow is column number 1.

ctrlinfop
A pointer to the control data. Its length is given by the ctrllen parameter.

ctrilen
The length, in bytes, of the control data. There are, at most,
SRV_MAXCHAR bytes of control information per column.

Table 3-126: Return values (srv_setcontrol)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

<ospublic.h>

** Local Prototype.

*/

Server-Library/C Reference Manual 407

srv_setcontrol

408

CS_RETCODE ex srv_setcontrol PROTOTYPE ((

SRV_PROC *Spp

))

/*

** Constants.

*

#define MAXROWDATA 20

#define COLCONTROL “Emp name: %s”

/*

** EX SRV_SETCONTROL

* %

*% Example routine to describe format information for a column
* %k using srv_setcontrol. In this example, a simple character
*k column contains an employee name.

* %

** Arguments:

** spp A pointer to an internal thread control structure.
* %

** Returns:

* % CS_SUCCEED Control information successfully defined.
** CS_FAIL An error was detected.

*/

CS_RETCODE ex srv_setcontrol (spp)

SRV_PROC *SppP ;

{

CS DATAFMT fmt;

/* Describe the format of the row data for the column. */
srv_bzero((CS_VOID *)&fmt, (CS_INT)sizeof (fmt));
fmt.datatype = CS_CHAR_TYPE;

fmt .maxlength = MAXROWDATA;

if (srv_descfmt (spp, (CS_INT)CS_SET, (CS_INT)SRV_ROWDATA,
(CS_INT)1, &fmt) != CS_SUCCEED)

return(CS_FAIL) ;
/* Define the control information for the column. */
if (srv_setcontrol (spp, (CS_INT)1l, (CS_BYTE *)COLCONTROL,

(CS_INT)strlen (COLCONTROL)) != CS_SUCCEED)

return(CS_FAIL) ;

Open Server

CHAPTER 3 Routines

}

return (CS_SUCCEED) ;

Usage * An Open Server application uses srv_setcontrol to tell a client about any
user-defined format information pertinent to a particular column. For
example, aclient may want to send a particular string along with a
particular column.

e srv_setcontrol must be called after acall to srv_descfmt and before callsto
srv_xferdata. If called from any other context, it will return CS_FAIL.

« Control information can be associated with columnsin any order. Theonly
reguirement is that the column must first be defined with srv_descfmt.

e Itisnot necessary to call srv_setcontrol for every columnin arow. If an
Open Server application does not set control information for acolumn, a
null control string is returned for the column.

« Anapplication should not return control information unlessthe client has
specifically requested such information, through the client option toggle,
CS OPT_CONTROL.

See also srv_bind, srv_descfmt, srv_xferdata

srv_setloginfo
Description Return protocol format information from aremote server to a client.

Syntax CS_RETCODE srv_setloginfo(spp, loginfop)

SRV_PROC *spp;
CS_LOGINFO *loginfop;

Parameters Spp
A pointer to an internal thread control structure.

loginfop
A pointer to aCS_LOGINFO structure that has been updated by
ct_getloginfo.

Server-Library/C Reference Manual 409

srv_setloginfo

Return value Table 3-127: Return values (srv_setloginfo)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_setloginfo PROTOTYPE ((
SRV_PROC *sSpp.,
CS_LOGINFO *loginfop
))
/*
% EX SRV_SETLOGINFO
* %
*k Return protocol format information from a remote server to
* % a client.

410

* %
* %

** Arguments:
* %

** sSpp A pointer to an internal thread control structure.
* % loginfop A pointer to a CS_LOGINFO structure that has been
* %k updated by ct getloginfo.

* %

** Returns
* %

ok CS_SUCCEED
>k CS_FAIL

* %

*/

CS_RETCODE ex srv_setloginfo(spp, loginfop)
SRV_PROC *sSpp;

CS_LOGINFO *loginfop;

{

/* Check arguments. */
if (spp == (SRV_PROC *)NULL)

{
}

return (srv_setloginfo (spp,loginfop)) ;

return(CS_FAIL) ;

Open Server

CHAPTER 3 Routines

Usage

See also

srv_setpri
Description

Syntax

Parameters

e Usesrv_setloginfo in gateway server applications that pass protocol

(Tabular Data Stream) packets between clients and remote Sybase servers
without interpreting the contents of the packet.

* Whenaclient connectsdirectly to aserver, the two programs negotiate the

protocol format they will use to send and receive data. When you use
protocol passthrough in a gateway application, the Open Server forwards
protocol packets between the client and a remote server.

e srv_setloginfo isthe fourth of four calls, two of them are CT-Library calls,

that allow aclient and remote server to negotiate a TDS format. The calls,
which can only be madein a SRV_CONNECT event handler, are:

a srv_getloginfo — Allocate aCS_LOGINFO structure and fill it with
TDS information from the client thread.

b ct_setloginfo — Preparea CS_LOGINFO structure with the protocol
information retrieved in step 1, then log in to the remote server with
ct_connect.

C ct_getloginfo — Transfer protocol login response information from a
CS_CONNECTION structure to the newly alocated CS_LOGINFO
structure.

d srv_setloginfo — Send the remote server’sresponse, retrievedin step 3,
to the client, then release the CS_LOGINFO structure.

srv_getloginfo, srv_recvpassthru, srv_sendpassthru

Modify the scheduling priority of athread.

CS_RETCODE srv_setpri(spp, mode, priority_value)
SRV_PROC *spp;

CS_INT mode;
CS_INT priority_value;
SPp

A pointer to an internal thread control structure.

mode
SRV_C DELTAPRI, if priority_valueisto adjust the current priority, or
SRV_C _NEWRPRI, if priority_ valueisthe new priority.

Server-Library/C Reference Manual 411

srv_setpri

priority value
If modeis SRV_C_NEWRPRI, priority valueisthe new priority for the
thread. If modeis SRV_C _DELTAPRI, anegative priority_value reduces
the current priority by its absolute value and a positive priority_value
increases the current priority.

Return value Table 3-128: Return values (srv_setpri)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex _srv_setpri PROTOTYPE ((
SRV_PROC *Spp,
CS_INT mode,
CS_INT priority
))
/*

** EX SRV_SETPRI
* %

* % Example routine to change a thread’s scheduling priority.
* %

** Arguments:

** sSpp A pointer to an internal thread control structure.
** mode Indicates whether a priority is relative or
*k absolute.

** priority The change in priority value or the nrew
priority value.
* %

** Returns:
* %

bl CS_SUCCEED

** CS_FAIL

*/

CS_RETCODE ex srv_setpri (spp, mode, priority)
SRV_PROC *sSpp;

CS_INT mode ;

CS_INT priority;

{

412 Open Server

CHAPTER 3 Routines

return (srv_setpri (spp, mode, priority));

Usage e When athread is started as the result of a client logging into the Open
Server or astheresult of acall to srv_createproc or srv_spawn, it hasa
priority of SRV_C DEFAULTPRI.

* srv_setpri can change the priority by specifying the new value or by
adjusting the current value up or down by a specified value.

« If athread setsthe priority of another thread to alevel higher than itsown,
the other thread is scheduled to run immediately. Otherwise, the new
priority of the affected thread takes effect the next time the schedul er runs.

« If athread that never deeps has a priority higher than other threads, the
lower priority threads will never have a chance to execute.

e Internal Open Server threads run with a priority of
SRV_C DEFAULTPRI. If you raise the priority of athread above
SRV_C DEFAULTPRI, it must sleep occasionally to allow theseinternal
processes to run.

e Itisan error to reduce the priority to lessthan SRV_C LOWPRIORITY
or toincrease it to avalue greater than SRV_C_MAXPRIORITY.

e srv_setpri cannot be used in aSRV_START handler.

See also SIV_createproc, S'V_spawn

srv_signal (UNIX only)

Description Install asignal handler.
Syntax SRV_SIGNAL_FUNC srv_signal(sig, handler)
CS_INT sig;

SRV_SIGNAL_FUNC handler;

Parameters sig
The number of the UNIX signal for which ahandler isinstalled. Thisis
defined in sgs/signal .h.

handler
A pointer to afunction that is called when sig is delivered to Open Server.
Setting handler to SIG_DFL restoresthe default handler. Setting handler to
SIG_IGN cause sig to be ignored.

Server-Library/C Reference Manual 413

srv_signal (UNIX only)

Return value Table 3-129: Return values (srv_signal)
Returns To indicate
A pointer to the previoudly installed handler The location of the function.
function.
A null pointer Theroutine failed.
Examples
#include <errno.hs>
#include <stdio.h>
#include <signal.h>
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_STATIC CS_VOID ex_sigio handler PROTOTYPE ((
CS_INT sig
))
CS_RETCODE ex_srv_signal PROTOTYPE ((
CS_INT *uerrno
))
/*
** Static storage.
*/
CS_STATIC CS_INT io events = 0;
/*
** EX SRV_SIGNAL
* %
* % Example routine to install a UNIX signal handler for SIGIO,
* % using srv_signal.

* %

** Arguments:

* % uerrno A pointer to a user’s error number indicator.

* %

** Returns:
* %

** CS_SUCCEED Handler successfully installed.

* x CS_FAIL Handler not installed, UNIX global errno set.
*/

CS_RETCODE ex srv_signal (uerrno)

CS_INT *uerrno;

{ b

414

Open Server

CHAPTER 3 Routines

** Tnstall the handler.
*/
(CS_VOID) srv_signal ((int) SIGIO,
(SRV_SIGNAL_FUNC)ex sigio_handler) ;

/* Was there an error condition? */
if ((*uerrno = errno) != 0)

return(CS_FAIL) ;

return (CS_SUCCEED) ;

/*

** EX_SIGIO HANDLER

* %

* ok Example signal handler to count I/0O events. It prints a
** message when the Open Server application has been up long
* % enough to get 100,000 I/O events.

* %

** Arguments:
* % sig The signal number, always SIGIO.
* %

** Returns:

* ok Nothing.
*/
CS_STATIC CS_VOID ex sigio handler (sig)
CS_INT sig;
if (io_events == 100000)

{

fprintf (stderr, “The server has been up a long
time!!\n”) ;
io_events = 0;

io_events++;

Server-Library/C Reference Manual 415

srv_sleep

Usage

srv_sleep

Description

Syntax

Parameters

416

e Open Server installs UNIX signal handlers for SIGIO and SIGURG.
These handlers must always be active once an Open Server is started. If
they are not active, the Server-Library 1/0 and attention handling routines
will either fail to function or will be unreliable.

Warning! Installing a UNIX signal handler using sigvec(2) or signal(2)
can cause unpredictable results. Applications should use srv_signal.

e Open Server guarantees that all other signals are blocked while the
application isin the signal handler.

UNIX documentation on signal for more information.

Suspend the currently executing thread.

CS_RETCODE srv_sleep(sleepeventp, sleeplabelp,
sleepflags, infop, reservedl,
reserved?2)

CS_VOID *sleepeventp;
CS_CHAR *sleeplabelp;
CS_INT sleepflags;
CS_INT *infop;
CS_VOID *reservedl;
CS_VOID *reserved?;

sleepeventp
A generic void pointer that srv_wakeup uses to wake up the thread or
threads. The pointer should be unique for the operating system event the
threads are sleeping on. For example, if amessage is passed to another
thread, the sending thread could sleep until the message was processed. The
pointer to the message would be auseful sleepevent that thereceiving thread
could pass to srv_wakeup to wake up the sender.

sleeplabelp
A pointer to anull terminated character string that identifies the event that
the thread is sleeping on. Thisis useful for determining why athread is
sleeping. An application can display thisinformation using the Open Server
system registered procedure sp_ps.

Open Server

CHAPTER 3 Routines

Return value

Examples

#include

/*

sleepflags
The value of this flag determines the manner in which the thread will wake
up. Table 3-130 summarizes the legal values for sleepflags:

Table 3-130: Values for sleepflags (srv_sleep)

Value Description
SRV_M_ATTNWAKE The thread wakes up if it receives an attention.
SRV_M_NOATTNWAKE Attentions cannot wake up the thread.

infop

A pointer to aCS_INT. Table 3-131 describes the possible values returned
in*infop if srv_sleep returns CS_FAIL:

Table 3-131: Values for infop (srv_sleep)

Value Description
SRV_I_INTERRUPTED | The thread was woken unconditionally by
srv_ucwakeup.

SRV_I_UNKNOWN Some other error occurred. For example, the thread is
al&ready sleeping or isinvalid.

reservedl
A platform-dependent handle to a mutex. This argument isignored on non-
preemptive platforms. Set it to (CS_VOID*)0 on non-preemptive platforms.

reserved2
This parameter is not currently used. Set it to 0.

Table 3-132: Return values (srv_sleep)

Returns To indicate
CS _SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** Local Prototype.

*/
CS_RETCODE
CS_VOID
CS_CHAR
CS_INT

)) i

/*

ex srv_sleep PROTOTYPE ((
*sleepevnt,

*sleeplbl,

*infop

Server-Library/C Reference Manual 417

srv_sleep

418

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

EX_SRV_SLEEP

This routine will suspend the currently executing thread.

Arguments:

sleepevnt A void pointer that srv_wakeup uses to wake up
the thread.

sleeplbl A pointer to a null terminated string that
identifies the event being the thread is sleeping
on. This is primarily used for debugging.

infop A pointer to a CS_INT that is set to one of the

following values:
SRV_I INTERRUPTED - srv_ucwakeup
unconditionally woke the thread.
SRV_I UNKNOWN - Some other error occurred.

** Returns
* %
* ok CS_SUCCEED
>k CS_FAIL
* %
*/
CS_RETCODE ex srv_sleep(sleepevnt,sleeplbl, infop)
CS_VOID *sleepevnt;
CS_CHAR *sleeplbl;
CS_INT *infop;
{
/* Check arguments. */
if (sleepevnt == (CS_VOID *)NULL)

{

/*
** Using SRV_M ATTNWAKE means the thread should wake up
** ynconditionally if it receives an attention.

*/

return (CS_FAIL) ;

return(srv_sleep (sleepevnt,sleeplbl, SRV _M ATTNWAKE, infop, (CS_VOID*)O0, (CS_V
OID*)0));

}

Open Server

CHAPTER 3 Routines

Usage

See also

Srv_spawn
Description

Syntax

Parameters

e srv_sleep suspends the currently executing thread and initiates
rescheduling. Thethread will sleep until srv_wakeup is called on the same
event.

« Depending on the value of sleepflags, athread that is sleeping can also
wake up by receiving an attention.

e A thread resumes execution on the statement just following the call to
srv_sleep.

e srv_sleep cannot be used in aSRV_START handler.

e srv_sleep should not be called from interrupt level code. Any number of
problems could occur if thisrule is violated.

e Cadl srv_capability to determine whether your platform supports
preemptive scheduling.

e Thereservedl parameter prevents arace condition that could occur with
preemptive scheduling if the wakeup event occurred before the thread
finished going to sleep. See the Open Client and Open Server
Programmer’s Supplement for your platform for an example of
preemptive scheduling.

srv_wakeup

Allocate a service thread.

CS_RETCODE srv_spawn(sppp, stacksize, funcp,
argp, priority)

SRV_PROC *Sppp;
CS_INT stacksize;
CS_RETCODE (*funcp)();
CS_VOID *argp;
CS_INT priority;
SPpPp

A pointer to athread structure pointer. If the call is successful, the address
of aninternal thread structureisreturned in sppp.

stacksize
Thesize of the stack; it must be at least SRV_C_MINSTACKSIZE. Specify
SRV_DEFAULT_STACKSIZE to use the stack size set with
srv_props(SRV_S STACKSIZE).

Server-Library/C Reference Manual 419

Srv_spawn

Return value

Examples

420

#include
#include

/*

funcp
A pointer to afunction that is the entry point for the newly created thread.
The thread begins by executing the routine located at funcp. The thread is
freed when that routine returns or srv_termproc is called.

argp
A pointer that is passed to the routine in *funcp when the thread begins
execution.

priority
An integer between SRV_C_LOWPRIORITY and
SRV_C MAXPRIORITY that indicates the base priority of the spawned
thread. The default priority isSRV_C _DEFAULTPRI.

srv_spawn returns CS_SUCCEED if the thread is successfully spawned. This
guarantees only that sufficient Open Server internal resources are available. It
does not validate the correctness of the entry point routine or its argument. If
the thread cannot be spawned, srv_spawn returns CS_FAIL.

Table 3-133: Return values (srv_spawn)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<stdio.h>
<ospublic.h>

** Local Prototype.

*/
CS_RETCODE
CS_CHAR

)) i

CS_RETCODE
SRV_PROC
CS_INT
CS_INT

)) i

CS_RETCODE
CS_CHAR

{

entryfunc PROTOTYPE ((
*message

ex srv_spawn PROTOTYPE ((
*spp,

stacksize,

priority

entryfunc (message)
*message;

printf (“Welcome to a new thread - %s!\n”, message);
return (CS_SUCCEED) ;

Open Server

CHAPTER 3 Routines

/*
** EX SRV_SPAWN
* %

* % Example routine to allocate a service thread
* %

** Arguments:

* ok sSpp A pointer to an internal thread control
ld structure.

* ok stacks The desired thread stack size.

* % priority The desired thread scheduling priority.

* %

** Returns:
* %

* CS_SUCCEED
*% CS_FATL
*/
CS_RETCODE ex srv_spawn (spp, stacksize, priority)
SRV_PROC *Spp ;
CS_INT stacksize;
CS_INT priority;
{
CS_CHAR msgarg [20] ;

strcpy (msgarg, “come in”);

return (srv_spawn (&spp, stacksize, entryfunc, msgarg,

priority)) ;
}
Usage * srv_spawn alocates a“service’ thread—one that is neither event-driven
nor associated with any client. The thread runs under the control of the
scheduler.

e Threads created by srv_spawn are called service threads because they
often provide services required by the event-driven threads, such as
accessing shared devices and data objects.

e srv_spawn informs the Open Server about a new thread and makes the
thread runnable. The thread does not begin execution immediately. The
moment that it actually does start executionis determined by many factors,
such as the priority of the spawned thread and the priorities of other
runnable threads.

Server-Library/C Reference Manual 421

srv_symbol

e If youdo not call srv_props to configure the stacksize with
SRV_S STACKSIZE, anew thread is created with the default stacksize.
This default stacksize depends on the platform used. For native-threaded
versions of Open Server, the default stacksize of underlying threadsis
used.

e Code executed by multiple threads must be re-entrant.

See also srv_callback, srv_createproc, srv_props, srv_termproc
srv_symbol
Description Convert an Open Server token value to a readable string.
Syntax CS_CHAR *srv_symbol(type, symbol, lenp)

CS_INT type;

CS INT symbol;

CS_INT *lenp;

Parameters type
The type of token. Table 3-134 describes the legal token types:

Table 3-134: Token types corresponding to type (srv_symbol)

Token Type Description
SRV_DATATYPE A datatype
SRV_EVENT An event type
SRV_DONE A DONE status type
SRV_ERROR An error severity token
symbol
The actual token value.
lenp
A pointer to aCS_INT variable that will contain the length of the returned
string.

422 Open Server

CHAPTER 3 Routines

Return value Table 3-135: Return values (srv_symbol)
Returns To indicate

A pointer to anull terminated character string that is | The token value.
areadable trandation of an Open Server token

value.
A null pointer Open Server does not
recognize the type or symbol.
Open Server setslenp to -1.
Examples
#include <ospublic.h>
/ *
** Local Prototype
*/
extern CS_RETCODE ex srv_symbol PROTOTYPE ((
Cs_INT type,
CS_INT symbol,
CS_CHAR *namep
))
/ *
** EX_ SRV _SYMBOL
* %
* ok Retrieve a printable string representation of an Open Server
** symbol
* %
** Arguments:
* % type Symbol type
* ok symbol Symbol for which to retrieve string
* % namep Return symbol string here
** Returns:
* % CS_SUCCEED Symbol string was retrieved successfully
** CS_FAIL An error was detected
*/
CS_RETCODE ex srv_symbol (type, symbol, namep)
CS_INT type;
CS_INT symbol;
CS_CHAR *namep ;
{
CS_INT len;
namep = srv_symbol (type, symbol, &len);
if (namep == (CS_CHAR *)NULL)

{
}

return (CS_SUCCEED) ;

return (CS_FAIL) ;

Server-Library/C Reference Manual 423

srv_symbol

Usage e srv_symbol returns a pointer to a readable null terminated string that
describes an Open Server token value.

e Thepointer srv_symbol returns pointsto spacethat is never overwritten, so
itissafeto call srv_symbol more than once in the same statement.

e Table 3-136 summarizes the tokens srv_symbol can convert:

424 Open Server

CHAPTER 3 Routines

Table 3-136: Convertible tokens (srv_symbol)

Token type Token Description
SRV_ERROR SRV_INFO Error severity type
SRV_ERROR SRV_FATAL_PROCESS Error severity type
SRV_ERROR SRV_FATAL_SERVER Error severity type
SRV_DONE SRV_DONE_MORE DONE packet status field
SRV_DONE SRV_DONE_ERROR DONE packet status field
SRV_DONE SRV_DONE_FINAL DONE packet status field
SRV_DONE SRV_DONE_FLUSH DONE packet status field
SRV_DONE SRV_DONE_COUNT DONE packet status field

SRV_DATATY PE

CS CHAR TYPE

Char datatype

SRV_DATATYPE

CS BINARY_TYPE

Binary datatype

SRV_DATATYPE

CS TINYINT_TYPE

1-byte integer datatype

SRV_DATATY PE

CS SMALLINT_TYPE

2-byte integer datatype

SRV_DATATY PE

CS INT_TYPE

4-byte integer datatype

SRV_DATATYPE | CS REAL_TYPE Real datatype
SRV_DATATYPE | CS FLOAT TYPE Float datatype
SRV_DATATYPE | CS BIT_TYPE Bit datatype

SRV_DATATY PE

CS DATETIME_TYPE

Datetime datatype

SRV_DATATYPE

CS DATETIME4_TYPE

4-byte datetime datatype

SRV_DATATYPE CS_MONEY_TYPE Money datatype
SRV_DATATYPE CS MONEY4 _TYPE 4-byte money datatype
SRV_DATATYPE SRVCHAR Char datatype
SRV_DATATYPE SRVVARCHAR Variable-length char
datatype
SRV_DATATYPE SRVBINARY Binary datatype

SRV_DATATY PE

SRVVARBINARY

Variable-length binary
datatype

SRV_DATATY PE SRVINT1 1-byte integer datatype
SRV_DATATY PE SRVINT2 2-byte integer datatype
SRV_DATATY PE SRVINT4 4-byte integer datatype
SRV_DATATY PE SRVINTN Integer datatype, nulls
alowed
SRV_DATATYPE SRVBIT Bit datatype
SRV_DATATYPE SRVDATETIME Datetime datatype
SRV_DATATYPE SRVDATETIME4 4-byte datetime datatype
SRV_DATATYPE SRVDATETIMN Datetime datatype, nulls

Server-Library/C Reference Manual

alowed

425

srv_tabcolname

Token type Token Description
SRV_DATATY PE SRVMONEY Money datatype
SRV_DATATY PE SRVMONEY 4 4-byte money datatype
SRV_DATATYPE SRVMONEYN Money datatype, nulls
alowed
SRV_DATATYPE SRVREAL 4-byte float datatype
SRV_DATATYPE SRVFLT8 8-byte float datatype
SRV_DATATYPE SRVFLTN 8-byte float datatype, nulls
allowed
SRV_DATATY PE SRV_LONGCHAR_TYPE Long char datatype
SRV_DATATY PE SRV_LONGBINARY_TYPE | Long binary datatype
SRV_DATATYPE SRV_TEXT_TYPE Text datatype
SRV_DATATY PE SRV_IMAGE_TYPE Image datatype
SRV_DATATYPE SRV_NUMERIC_TYPE Numeric datatype
SRV_DATATYPE SRV_DECIMAL_TYPE Decimal datatype
SRV_DATATY PE SRVVOID Void datatype
SRV_EVENT SRV_ATTENTION Open Server event type
SRV_EVENT SRV_BULK Open Server event type
SRV_EVENT SRV_CONNECT Open Server event type
SRV_EVENT SRV_CURSOR Open Server event type
SRV_EVENT SRV_DISCONNECT Open Server event type
SRV_EVENT SRV_DYNAMIC Open Server event type
SRV_EVENT SRV_LANGUAGE Open Server event type
SRV_EVENT SRV_MSG Open Server event type
SRV_EVENT SRV_OPTION Open Server event type
SRV_EVENT SRV_RPC Open Server event type
SRV_EVENT SRV_START Open Server event type
SRV_EVENT SRV_STOP Open Server event type
SRV_EVENT SRV_URGDISCONNECT Open Server event type
See also srv_descfmt

srv_tabcolname

Description Associate browse mode result columns with result tables.

Syntax CS_RETCODE srv_tabcolname(spp, colnum, brwsdescp)

426 Open Server

CHAPTER 3 Routines

SRV_PROC *spp;

CS_INT colnum;

CS_BROWSEDESC *brwsdescp;
Parameters Spp

A pointer to an internal thread control structure.

colnum
Thenumber used to identify the column that was previously described using
srv_descfmt.

brwsdescp
A pointer to a structure containing browse information about the column in
question. Specifically, it should contain the number of the table (previoudy
described through srv_tabname) containing the column and the original
column name and name length. Note that the original column name and
name length are only needed if the column has been renamed in the select
statement (indicated by a status of CS_ RENAMED in the
CS BROWSEDESC structure). For more information on the
CS_BROWSEDESC structure, see“CS_BROWSEDESC structure” on page

52.
Return value Table 3-137: Return values (srv_tabcolname)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/ *
** Tocal Prototype.
*/
CS_RETCODE ex srv_tabcolname PROTOTYPE ((
SRV_PROC *Spp,
CS_INT colnum,
CS_BROWSEDESC *bdp
))
/ *
** EX SRV_TABCOLNAME
* %
* % Example routine to associate a browse mode result column
* % with result tables.

* %

** Arguments:

Server-Library/C Reference Manual 427

srv_tabcolname

* %

* %

* %

* %

* %

* %

* %

spp A pointer to an internal thread control structure.
colnum The column number.

bdp A pointer to the browse descriptor for the
column.

** Returns:

* %

* %

* %

CS_SUCCEED If we successfully associated this result
column with its table.

** CS _FAIL If an error was detected.
* %
*/
CS_RETCODE ex srv_tabcolname (spp, colnum, bdp)
SRV_PROC *Spp;
CS_INT colnum;
CS_BROWSEDESC *bdp;
{
CS_RETCODE result;
result = srv_tabcolname (spp, colnum, bdp) ;
return (result) ;
}
Usage e srv_tabcolname isused to send browse mode result informationto aclient.
The information an application can send includes:
e The name of the table to which aresult column maps
e Therea name of acolumn that was renamed in the client query’s
select statement
e The column must have previously been defined using srv_descfmt.
e Thetable must have previously been defined using srv_tabname.
e srv_tabcolname iscalled once for each result column that isacolumnina
result row.
See also srv_descfmt, srv_tabname, “Browse mode” on page 22
428 Open Server

CHAPTER 3 Routines

srv_tabname

Description

Syntax

Parameters

Return value

Examples

#include

/*

Provide the name of the table or tables associated with a set of browse mode
results.

CS_RETCODE srv_tabname(spp, tablenum, tablenamep,

namelen)

SRV_PROC *Spp;
CS_INT tablenum;
CS_CHAR *tablenamep;
CS_INT namelen;
Spp

A pointer to an internal thread control structure.
tablenum

The number used to identify the table in subsequent callsto srv_tabcolname.
tablenamep

A pointer to the name of the table. It cannot be null, as tables always have
names.

namelen
Thelength, in bytes, of thetable name. If namelenisCS_NULLTERM, then
Server Library expects the table name to be null terminated.

Table 3-138: Return values (srv_tabname)

Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

<ospublic.h>

** Local Prototype.

*/
CS_RETCODE
SRV_PROC
CS_INT
CS_CHAR
))

/*

ex srv_tabname PROTOTYPE ((
*sproc,

tablenum,

*tablename

** EX SRV _TABNAME
* ok An example routine to provide the name of the table

Server-Library/C Reference Manual 429

srv_tabname

* % associated with a set of browse mode results.

* %

** Arguments:

ld sproc

* %
* % tablenum
* %

* %

* % tablename

* %

* %

** Returns:

* ok CS_SUCCEED
* ok CS_FAIL

*/

CS_RETCODE
SRV_PROC

CS_INT

CS_CHAR

{

A pointer to an internal thread control
structure.

The number that will be used to identify
the table in subsequent calls to

srv_tabcolname.
A null terminated string specifying the
table name.

If the table is successfully described.
If an error was detected.

ex srv_tabname (sproc, tablenum, tablename)
*sproc;

tablenum;

*tablename;

return(srv_tabname (sproc, tablenum, tablename,

Usage

See also

CS NULLTERM)) ;

e srv_tabname is used to send to aclient the name of the table or tables
associated with browse mode results.

e AnOpen Server application must call srv_tabname once for each table
involved in the browse mode resullts.

e Thetablenum must be unique for all the tables described. Tables can be
described in any order.

» Anapplicationlinksbrowse moderesult columnsto particular result tables
using the srv_tabcolname routine. A call to srv_tabname must always
precede acall to srv_tabcolname.

srv_descfmt, srv_tabcolname, “Browse mode” on page 22

Open Server

CHAPTER 3 Routines

srv_termproc

Description Terminate the execution of athread.

Syntax CS_RETCODE srv_termproc(spp)
SRV_PROC *spp;

Parameters spp

A pointer to an internal thread control structure.

Return value Table 3-139: Return values (srv_termproc)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_termproc PROTOTYPE ((
SRV_PROC *SpP
))
/*
** EX SRV_TERMPROC
* %
* % Example routine to terminate the execution of a thread using
** srv_termproc.

* %

** Arguments:

* % spp A pointer to an internal thread control structure.

** Returns:
* %

* CS_SUCCEED Thread successfully terminated
ol CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_termproc (spp)
SRV_PROC *Spp;
{
/*
** Terminate the thread.
*/
if (srv_termproc(spp) != CS_SUCCEED)

return (CS_FAIL) ;

Server-Library/C Reference Manual 431

srv_text_info

}

return (CS_SUCCEED) ;

Usage » Using srv_createproc, Open Server applications can create event driver
threads that are not associated with a client connection.

e srv_termproc cannot be used in aSRV_START handler.

» Do not cal srv_termproc from interrupt level code; the results are
unpredictable.

* Mutexes, mutex locks, registered procedures, queued events, and
messages associated with a thread are destroyed when the thread
terminates.

» Thefollowing code fragment illustrates the use of srv_termproc:

See also srv_createproc, srv_event, srv_event_deferred, srv_spawn

srv_text_info

Description Set or get adescription of text or image data.
Syntax CS_RETCODE srv_text_info(spp, cmd, item, iodescp)
SRV_PROC *spp;
CS_INT cmd;
CS_INT item;
CS_IODESC *iodescp;
Parameters Spp
A pointer to an internal thread control structure.
cmd

Thedirection of dataflow. Table 3-140 summarizesthelegal valuesfor cmd:

432 Open Server

CHAPTER 3 Routines

Table 3-140:

Values for cmd (srv_text_info)

Value Meaning
CS SET The Open Server application is setting interna Server-Library
structures to describe text or image data. The srv_text_info call will
update atext or image column (inside Open Server) with the
information in iodescp. (The application must have previously
described the column using srv_descfmt.) Typically, thiswill be
followed by acall to srv_send_text, or srv_bind and srv_xferdata.
CS GET Open Server isupdating the iodescp structure with the total length of
the text or image data to be read from aclient. Typicaly, thiswill be
followed by acall to srv_get_text. See the comments section below
for limitations regarding the CS_GET direction.
item
The column number of the column being described. The first columnin a
row is column 1. This parameter isignored when cmd is CS_GET.
iodescp
A pointer to astructure that describes the object name, text pointer, and
timestamp for atext column. See“CS_|ODESC structure” on page 57 for
details.
Return value Table 3-141: Return values (srv_text_info)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/ *
** TLocal Prototype.
*/
CS_RETCODE ex srv_text info PROTOTYPE ((
SRV_PROC *Spp,
CS_INT item
CS_IODESC *iodp
))
/ *
** EX SRV _TEXT INFO
* %
* % Example routine to set a column’s text or image data
* % description before transferring a data row, using
** srv_text info. This example routine would be used in a

Server-Library/C Reference Manual

433

srv_text_info

* %k gateway application, where the Open Client application has
* %k initiated an update of text or image data.
* %

** Arguments:

** sSpp A pointer to an internal thread control structure.

* % item The column number of the column being described.

* % iodp A pointer to a CS IODESC structure that describes the
* % text or image data (This stucture is passed from the
* %k Open Client application).

* %

** Returns:

* % CS_SUCCEED Text or image data successfully described.
** CS_FAIL An error occurred was detected.
*/
CS_RETCODE ex_srv_text info(spp, item, iodp)
SRV_PROC *sSpp;
CS_INT item;
Cs_TIODESC *iodp;
{
/*
** Describe the text or image data for the column.
*/
if (srv_text info(spp, (CS_INT)CS_SET, item, iodp) !=
CS_SUCCEED)

{
}

return (CS_SUCCEED) ;

return(CS_FAIL) ;

Usage * srv_text_info isused to describetext or image columnsfor sending aresult
row or retrieving a parameter.

 IfcmdisCS_GET, srv_text_info must be called from the SRV_BULK
event handler.

* If emdisCS_GET, srv_text_info must be called prior to acall to
Srv_get_text.

* If emdisCS_SET, srv_text_info must be called for each text or image
datatype column in arow before srv_xferdata or srv_send_text is called.

» Textandimagedataistransferredtoaclient using either srv_bind followed
by srv_xferdata, or srv_send_text.

See also srv_bind, srv_descfmt, srv_get_text, srv_send_text, srv_xferdata, “ Text and
image” on page 196

434 Open Server

CHAPTER 3 Routines

srv_thread _props

Description

Syntax

Parameters

Define and retrieve thread properties.

CS_RETCODE srv_thread_props(spp, cmd, property, bufp, buflen, outlenp)

SRV_PROC *spp;
CS_INT cmd;
CS_INT property;
CS_VOID *bufp;
CS_INT buflen;
CS_INT *outlenp;

SPp
A pointer to an internal thread control structure.

cmd
The action to take. Table 3-142 summarizes the legal values for cmd:

Table 3-142: Values for cmd (srv_thread_props)

Value Meaning

CS SET The Open Server application is setting the property. In this case, bufp
should contain the val ue the property isto be set to, and buflen should
specify the size, in bytes, of that value.

CS GET The Open Server application is retrieving the property. In this case,
bufp should point to the buffer where the property vaueis placed,
and buflen should be the size, in bytes, of the buffer.

CS CLEAR | The Open Server application is resetting the property to its default
value. In this case, bufp, buflen, and outlenp are ignored.

property
The property being set, retrieved or cleared. See below for alist of this
argument’s legal values.

bufp
A pointer to the Open Server application data buffer where property value
information from the client is placed or property value information is
retrieved.

buflen
The length, in bytes, of the buffer.

outlenp
A pointer to aCS_INT variable, which Open Server will set to the size, in
bytes, of the property valueretrieved. Thisargument is only used when cmd
isCS_GET, and isoptional.

Server-Library/C Reference Manual 435

srv_thread_props

Return value Table 3-143: Return values (srv_thread_props)
Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Local Prototype.
*/

CS_RETCODE ex_ srv_thread props PROTOTYPE ((
SRV_PROC *sp,

CS_CHAR *user,
CS_INT ulen,
CS_INT *lenp
));
/*

** EX_ SRV _THREAD PROPS
* %

** Example routine to obtain a client thread’s user name through

** srv_thread props.

* %

** Arguments:

** sp A pointer to an internal thread control structure.

** user A pointer to the address of the user name buffer.

** ylen The size of the user name buffer.

** lenp A pointer to an integer variable, that will be set to the length
** of the user name string.

* %

** Returns:

** CS_ TRUE If the user name was returned succesfully.
** CS FALSE If an error was detected.
*/

CS_RETCODE ex_ srv_thread props(sp, user, ulen, lenp)
SRV_PROC *sp;

CS_CHAR *user;
CS_INT ulen;
CS_INT *lenp;
{

/*

** Call srv_thread props to get the user name.
*/
if (srv_thread props(sp, CS_GET, SRV_T USER, user, ulen, lenp)
== CS_FAIL)

{

436 Open Server

CHAPTER 3 Routines

** An error was al&ready raised.

/*
*/
return CS_FAIL;
}
/*
** All done.
*/

return CS_SUCCEED;

}

Usage * srv_thread_props is called to define, retrieve, and reset thread properties.
e Table 3-144 summarizeslegal property values, whether they can be set or
retrieved, and each value's datatype.
Refer to Table 2-28 on page 149 for descriptions of each thread property.
Table 3-144: Thread properties and their datatypes (srv_thread_props)
SET/ bufp when cmd
Property CLEAR GET | is CS_SET: bufp when cmd is CS_GET:
SRV_T_APPLNAME No Yes | Not applicable A pointer to a character string
SRV_T_BYTEORDER No Yes | Not applicable A pointer toaCS_INT
SRV_T_BULKTYPE No Yes | Not applicable A pointer toaCS_INT
SRV_T_BYTEORDER No Yes | Not applicable A pointer toaCS_INT
SRV_T_CHARTYPE No Yes | Not applicable A pointer toaCS_INT
SRV_T CLIB No Yes | Not applicable A pointer to a character string
SRV_T_CLIBVERS No Yes | Not applicable A pointer to a character string
SRV_T_CLIENTLOGOUT No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_CONVERTSHORT No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_DUMPLOAD No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_ENDPOINT No Yes | Not applicable A CS _VOID pointer to a buffer
of sufficient sizeto hold theend
point (file descriptor or file
handle).
SRV_T_EVENT No Yes | Not applicable A pointer toaCS_INT
SRV_T_EVENTDATA No Yes | Not applicable The address of aCS_VOID
pointer
SRV_T FLTTYPE No Yes | Not applicable A pointer toaCS_INT
SRV_T_GOTATTENTION No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_HOSTNAME No Yes | Not applicable A pointer to a character string
SRV_T_HOSTPROCID No Yes | Not applicable A pointer to a character string
SRV_T_IODEAD No Yes | Not applicable A pointer to aCS_BOOL

Server-Library/C Reference Manual

437

srv_thread_props

438

SET/ bufpwhen cmd
Property CLEAR GET | is CS_SET: bufp when cmd is CS_GET:
SRV_T_LOCALE Yes Yes | A pointertoa A pointer toaCS_LOCALE
CS LOCALE pointer
pointer

SRV_T_LOGINTYPE No Yes | Not applicable A pointer toaCS_INT
SRV_T_MACHINE No Yes | Not applicable A pointer to a character string
SRV_T_MIGRATED No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_MIGRATE_STATE No Yes | Not applicable A pointer to a

SRV_MIG_STATE
SRV_T_NEGLOGIN No Yes | Not applicable A pointer toaCS_INT
SRV_T_NOTIFYCHARSET No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_NOTIFYDB No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_NOTIFYLANG No Yes | Notapplicable A pointer toaCS_BOOL
SRV_T_NOTIFYPND No Yes | Not applicable A pointer toaCS_INT
SRV_T_NUMRMTPWDS No Yes | Not applicable A pointer toaCS_INT
SRV_T_PACKETSIZE No Yes | Not applicable A pointer toaCS_INT
SRV_T_PASSTHRU No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_PRIORITY No Yes | Not applicable A pointer toaCS_INT
SRV_T_PWD No Yes | Not applicable A pointer to a character string
SRV_T_RETPARMS No Yes | Not applicable Return parameters sent if an

error occurs during execution
SRV_T_RMTPWDS No Yes | Not applicable A pointer to an array of

SRV_RMTPWD structures
SRV_T_RMTSERVER No Yes | Not applicable A pointer to a character string
SRV_T_ROWSENT No Yes | Not applicable A pointer toaCS_INT
SRV_T_SEC_CHANBIND No Yes | Not applicable A pointer toaCS_BOOL
SRV_T _SEC_ No Yes | Not applicable A pointer toaCS_BOOL
CONFIDENTIALITY
SRV_T _SEC_ No Yes | Not applicable A pointer toaCS_INT
CREDTIMEOUT
SRV_T_SEC DATAORIGIN No Yes | Notapplicable A pointer toaCS_BOOL
SRV_T_SEC DELEGATION No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_SEC DELEGCRED No Yes | Not applicable A pointer toaCS_VOID
SRV_T_SEC DETECTREPLAY | No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_SEC DETECTSEQ No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_SEC INTEGRITY No Yes | Not applicable A pointer toaCS_BOOL
SRV_T_SEC_MECHANISM No Yes | Not applicable A pointer toaCS_CHAR

Open Server

CHAPTER 3 Routines

SET/ bufp when cmd
Property CLEAR GET | is CS_SET: bufp when cmd is CS_GET:
SRV_T_SEC_ No Yes | Not applicable A pointer to aCS_BOOL
MUTUALAUTH
SRV_T_SEC_ No Yes | Not applicable A pointer to aCS_BOOL
NETWORKAUTH
SRV_T_SEC_ No Yes | Not applicable A pointer toaCS_INT
SESSTIMEOUT
SRV_T_SESSIONID Yes Yes | A pointertoa A pointer toaCS_SESSIONID
CS_SESSIONID
SRV_T_SPID No Yes | Not applicable A pointer toaCS_INT
SRV_T_STACKLEFT No Yes | Not applicable A pointer toaCS_INT
SRV_T_TDSVERSION Yes Yes | A pointertoa A pointer toaCS_INT
CS INT
SRV_T_TYPE No Yes | Not applicable A pointer toaCS_INT
SRV_T_USER No Yes | Not applicable A pointer to a character string
SRV_T_USERDATA Yes Yes | A CSVOID The address of aCS_VOID
pointer pointer
SRV_T_USERVLANG Yes Yes | A pointertoa A pointer toaCS_BOOL
CS BOOL
SRV_T_USTATE Yes Yes | A pointertoa A pointer to a character string
character string
e Table 3-145 lists the default values for the thread properties that can be
defined (CS_SET).
Table 3-145: Definable thread properties and their default values
(srv_thread_props)
Property Default
SRV_T_USERDATA (CS_VOID *)NULL
SRV_T_USTATE NULL string
SRV_T_TDSVERSION Min (client’s, server’s default)
SRV_T_USESRVLANG Value of SRV_S USESRVLANG
SRV_T_LOCALE (CS_LOCALE *)NULL
e When the property is being retrieved (CS_GET), if buflen indicates that
the user buffer is not big enough to hold the property value, Open Server
will place the required number of bytesin *outlenp, and the application
buffer will not be modified.
e SeeTable 2-28 on page 149 for descriptions of each thread property.
See also srv_props, “ Properties’ on page 139

Server-Library/C Reference Manual 439

srv_timedsleep

srv_timedsleep

Description Sleep until an event is signalled or until the specified time expires.
srv_timedsleep is available in the reentrant libraries only.

Syntax CS_RETCODE srv_timedsleep(sleepevent, sleeplabel,
sleepflags, infop, srvymutex, timeout)
CS_VOID *sleepevent;
CS_CHAR *sleeplabel;
CS_INT sleepflags;
CS_VOID *infop;
SRV_OBJID srvmutex;
CS_INT timeout;
Parameters dleepevent
A generic pointer to the event to sleep on.
dleeplabel
A pointer to a string for debugging puposes.
deepflags

This parameter is used and performs the same usage as srv_sleep in
suspending currently executing threads.

infop
A pointer to an integer describing the reason for afailure. Thefollowing are
the integer values for infop:

* SRV_I_UNKNOWN — Unknown or no error
e SRV_| TIMEOUT — The routine timed out

* SRV_I_INTERRUPTED — The srvlib process executing this function
was interrupted by a call to srv_ucwakeup().

Note When this function returns SRV_| INTERRUPTED, the srvlib
processisinterrupted while waiting on the event or while attempting to
lock the mutex.

srvmutex
A srvlib mutex to be released when sleeping, and which will be locked after
wakeup. Enter 0 if you do not want srv_timedsleep() to release and lock a
mutex.

timeout
A timeout in milliseconds. Pass 0 to block indefinitely.

440 Open Server

CHAPTER 3 Routines

Return value

Usage

See also

Table 3-146: Return values (srv_timedsleep)

Returns To indicate

CS_SUCCEED The routine succeeded.

CS FAIL Theroutine failed. See the infop parameter for more
information.

It is possible to pass a mutex into this function for synchronization with a
wakeup: The mutex will be released at such a point that another thread which
obtains the mutex lock and then calls srv_wakeup() , for thisevent, succeedsin
waking up the srvlib process executing this sleep function.

If theroutinereturnsCS_SUCCEED the srvlib mutex will belocked. It will not
be locked by this thread if the routine returns CS_FAIL.

srv_wakeup

srv_ucwakeup

Description

Syntax

Parameters

Return value

Examples

Unconditionally wake up a sleeping thread.

CS_RETCODE srv_ucwakeup(spp, wakeflags)
SRV_PROC *spp;
CS_INT wakeflags;

Spp
A pointer to an internal thread control structure.

wakeflags
A bit mask that modifies the way srv_ucwakeup behaves. Just oneflagis
defined; set wakeflagsto Oif it is not used.

SRV_M_WAKE_INTR
Thisflagindicatesthat the call to srv_ucwakeup isfrominterrupt level code.
Failure to set thisflag when calling srv_ucwakeup from interrupt level code
can cause the Open Server application to behave erratically.

Table 3-147: Return values (srv_ucwakeup)

Returns To indicate

CS SUCCEED The routine completed successfully.

CS FAIL Theroutinefailed, because the thread does not exist or was not
sleeping.

include <ospublic.hs>

Server-Library/C Reference Manual 441

srv_ucwakeup

/*

** Local Protoype.

*/

CS_RETCODE ex srv_ucwakeup PROTOTYPE ((
SRV_PROC *sproc

))

/*

** EX SRV_PROC
** An example routine to wake up a sleeping thread from
** 3 non-interrupt level by using srv_ucwakeup.

* %

** Arguments:

** sproc A pointer to an internal thread control

** structure.

* %

** Returns:

*% CS SUCCEED The specified thread was woken up.

** CS FAIL An error was detected.
*/

CS_RETCODE ex srv_ucwakeup (sproc)
SRV_PROC *sproc;

{

/* Wake up the specified thread. */
return(srv_ucwakeup (sproc, 0));

}

Usage » Waking athread with srv_ucwakeup causes srv_sleep to return
SRV_I_INTERRUPTED.

» Usesrv_ucwakeup to wake a thread unconditionally. This may be
necessary to break a deadlock condition or for cleanup.

* srv_ucwakeup cannot be used in aSRV_START handler.

» If srv_ucwakeup iscalled from interrupt level code, wakeflags must be set
to SRV_M_WAKE_INTR. wakeflags must never be set to
SRV_M_WAKE_INTR outside of an interrupt level routine.

See also srv_sleep, srv_wakeup, srv_yield

442 Open Server

CHAPTER 3 Routines

srv_unlockmutex

Description Unlock a mutex.

Syntax CS_RETCODE srv_unlockmutex(mutexid)
SRV_OBJID mutexid;

Parameters mutexid

The unique mutex identifier that was returned by srv_createmutex. mutexid
can be obtained from the mutex name with srv_getobjid.

Return value Table 3-148: Return values (srv_unlockmutex)
Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples
#include <ospublic.h>
/*
** Tocal Prototype.
*/
CS_RETCODE ex srv_unlockmutex PROTOTYPE ((
CS_CHAR *mutex name
))
/*

% EX SRV _UNLOCKMUTEX
* %

ol Example routine to illustrate the use of srv_unlockmutex.
* %

** Arguments:

** mutex name The name of the mutex to be unlocked.

* %

** Returns:
* %

ol CS_SUCCEED Mutex successfully unlocked.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex_ srv_unlockmutex (mutex name)
CS_CHAR *mutex name;
{

SRV_OBJID id;

CS_INT info;

/* Get the object id for the mutex. */

Server-Library/C Reference Manual 443

srv_version

if (srv_getobjid(SRV_C MUTEX, mutex name, CS NULLTERM,

&id,

&info) == CS_FAIL)

return (CS_FAIL);

/* Call srv_unlockmutex to unlock it. */
if (srv_unlockmutex(id) == CS_FAIL)
return (CS_FAIL);

return

Usage

See also

srv_version

Description

Syntax

Parameters

Return value

Examples

(CS_SUCCEED) ;

* Unlocking a mutex (mutual exclusion semaphore) releases the lock held
on the semaphore, allowing other threads to access the mutex.

* srv_unlockmutex cannot be used in a SRV_START handler.

srv_createmutex, srv_deletemutex, srv_getobjid

Define the version of Open Server an application is using.

CS_RETCODE srv_version(contextp, version)

CS_CONTEXT *contextp;
CS_INT version;

contextp
A pointertoaCS_CONTEXT structure, which the application has obtained
through a call to cs_ctx_alloc. The CS_CONTEXT structure servesas a
server-wide configuration structure shared with client libraries. For more
information onthe CS_CONTEXT structure, see“ CS-Library” on page 59.

version
The version of Open Server the application assumes isin effect. Currently,
the legal valuesfor this parameter are CS_ VERSION_100 and
CS VERSION_110, for Server Library versions 10.0 and 11.1, respectively.

Table 3-149: Return values (srv_version)

Returns To indicate
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

#include <stdio.h>

444

Open Server

srv_wakeup

Description Enable sleeping threads to run.
Syntax CS_RETCODE srv_wakeup(sleepeventp, wakeflags,
reservedl, reserved?2)
CS_VOID *sleepeventp;
CS_INT wakeflags;
CS_VOID *reservedl;
CS_VOID *reserved2;

Server-Library/C Reference Manual

CHAPTER 3 Routines
#include <ospublic.h>
** This code fragment sets the Open Server version.
*/
main ()
{
CS_CONTEXT *cp;
if (cs_ctx_alloc(CS_VERSION 110, &cp) != CS_SUCCEED)
{
fprintf (stderr, “cs _ctx alloc failed \n”);
exit (1) ;
}
if (srv_version(cp, CS VERSION 110) != CS_SUCCEED)
{
/ *
** Release the context structure al&ready allocated.
*/
(CS_VOID)cs_ctx drop(cp) ;
(CS_VOID) fprintf (stderr, "srv_version failed \n");
exit (1) ;
}
}

Usage e AnOpen Server application must call srv_version prior to calling any other
Server-Library routines. It must be preceded by acall to the CS-Library
routine cs_ctx_alloc.

e Applications can first set localization configuration parametersin the
CS_CONTEXT structure, using cs_config.
See also cs_ctx_alloc, cs_ctx_props

445

srv_wakeup

Parameters sleepeventp
A generic void pointer to the operating system event on which the threads

are sleeping.
wakeflags
A bit mask that modifiesthe way that srv_wakeup behaves. If no bitsare set,

the default action isto wake up all threads dleeping on the event. The bitscan
be OR'd together. Table 3-150 describes the legal values for wakeflags:

Table 3-150: Values for wakeflags (srv_wakeup)

Value Description

SRV_M_WAKE_INTR The call to srv_wakeup isfrom interrupt level code.
Failure to use this flag when calling srv_wakeup from
interrupt level code can cause the Open Server
application to behave erratically.

Using thisflag at non-interrupt level will cause the Open
Server application to behave erratically.
SRV_M_WAKE_FIRST | Only thefirst thread sleeping on the event is made
runnable.

SRV_M_WAKE_ALL Wake up all threads sleeping on the event.

reservedl
This parameter is not used. It must be set to (CS_VOID*)0.

reserved2
This parameter is not used. It must be set to (CS_VOID*)0.

Return value srv_wakeup returns CS_FAIL if no sleeping threads were found for the event
or if any parameterswerein error. If one or more sleeping threads were found,
srv_wakeup returns CS_SUCCEED.

Table 3-151: Return values (srv_wakeup)

Returns To indicate
CS_SUCCEED One or more sleeping threads were found and enabled to run.
CS FAIL The routine failed, or no sleeping threads were found.
Examples

#include <ospublic.h>

/*

** Local Prototype.

*/

CS_RETCODE ex_ srv_wakeup PROTOTYPE ((

Cs_VOID *sep

)) i

446 Open Server

CHAPTER 3 Routines

/ *

*% EX SRV _WAKEUP

* %

* % Example routine using srv_wakeup to make all Open Server
* % threads, which were previously sleeping on the specified
** sleep event, runnable again.

* %

** Arguments:

* ok sep A generic void pointer, which was used previously in
** calls to srv_sleep to suspend threads.

* %

** Returns:

* % CS_SUCCEED Threads sleeping on the specified sleep event
* % are runnable again.
*x CS_FAIL An error was detected.
*/
CS_RETCODE ex srv_wakeup (sep)
CS_VOID *sep;
{
/*

** Wake up threads for the specified sleep event, passing
** zero for reserved fields.
*/
if (srv_wakeup(sep, (CS_INT)SRV M WAKE ALL,
(CS_VOID*) 0, (CS VOID*)0) != CS_SUCCEED)
{

}

return (CS_SUCCEED) ;

return(CS_FAIL) ;

Usage e srv_wakeup wakes threads that are sleeping on sleepevent.

e Whensrv_wakeup iscalled frominterrupt level code, the actual wakeupis
deferred until the scheduler next executes.

e srv_wakeup cannot be used ina SRV_START handler.

e When writing preemptive mode programs with Open Server, srv_wakeup
and srv_sleep must use platform-dependent mutexes. See the Open Client
and Open Server Programmer’s Supplement for your platform for an
example of preemptive scheduling.

See also srv_sleep

Server-Library/C Reference Manual 447

srv_xferdata

srv_xferdata

Description

Syntax

Parameters

448

Send parameters or datato aclient, or receive parameters or datafrom aclient.

CS_RETCODE srv_xferdata(spp, cmd, type)
SRV_PROC *spp;

CS_INT cmd;
CS_INT type;
PP
A pointer to an internal thread control structure.
cmd

Indicates whether the datais going out to aclient or coming in from aclient.
Table 3-152 describes the legal values for cmd:

Table 3-152: Values for cmd (srv_xferdata)

Value Description

CS SET The application is calling srv_xferdata to send data to a client.

CS GET The application is calling srv_xferdata to retrieve data from a client.

type
The type of data stored into or read from the program variable. Table 3-153
describes the valid types and their appropriate context:

Open Server

CHAPTER 3 Routines

Table 3-153: Values for type (srv_xferdata)

Type Valid cmd Description of data
SRV_RPCDATA CS _SET or CS_GET RPC parameter
SRV_ROWDATA CS_SET only Result row column
SRV_CURDATA CS _GET only Cursor parameter
SRV_KEYDATA CS _GET only Cursor key column
SRV_ERRORDATA CS_SET only Error message parameter
SRV_DYNDATA CS SET or CS_GET Dynamic SQL parameter
SRV_NEGDATA CS SET or CS_GET Negotiated login parameter
SRV_MSGDATA CS SET or CS_GET Message parameter
SRV_LANGDATA CS_GET only Language parameter

Return value

Table 3-154: Return values (srv_xferdata)

Returns To indicate
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.
Examples

#include <ospublic.h>

/ *

** Tocal Prototype.

*/

CS_RETCODE ex srv_xferdata PROTOTYPE ((

SRV_PROC *Spp

))

/ *

** EX SRV _XFERDATA

* %

* % This routine will send error message parameters to the

* % specified client.

* %
* %

** Arguments:
* %

* % sSpp

* %

** Returns
* %

o CS_SUCCEED
* CS_FAIL

* %

*/

Server-Library/C Reference Manual

A pointer to an internal thread control structure.

449

srv_yield

CS_RETCODE ex srv_xferdata (spp)
SRV_PROC *Spp;
{

/* Check arguments. */

if (spp == (SRV_PROC *)NULL)

Usage

See also

srv_yield

{
}

return (CS_FAIL) ;

return (srv_xferdata (spp,CS_SET, SRV_ERRORDATA)) ;

Description

Syntax

Return value

Examples

450

#include
#include

/*

srv_|

srv_xferdata isused to send parameter or row datato aclient (CS_SET), or
retrieve parameter or key datafrom aclient. Specifically, it movesdataout
of local program variables and across the network to the client (CS_SET),
or across the network from a client and into local program variables
(CS_GET).

Thedataasit must appear to the client (CS_SET) or appeared to the client
(CS_GET) must have previously been described using srv_descfmt. The
application must also have previoudly called srv_bind to define local
program variables.

srv_xferdata must be called once for each parameter stream (CS_GET,
CS_SET) or once for each datarow (CS_SET).

bind, srv_descfmt

Allow another thread to run.

cs_

RETCODE srv_yield()

None.

<stdio.h>
<ospublic

** Local Prototype.

*/

.h>

CS_RETCODE ex_srv_yield PROTOTYPE ((

/*

)) i

Open Server

CHAPTER 3 Routines

*% EX SRV _YIELD
* %

* % Example routine to suspend the current thread.

** Arguments:
* None.
* %

** Returns:
* *

* ok CS_SUCCEED
* CS_FAIL
*/
CS_RETCODE ex srv_yield()
{
printf (*I’11l wait this one out...\n”);

if (srv_yield()

{

== CS_FATL)

printf (“srv_yield() failed.\n”);
return (CS_FAIL) ;

}

else

{

printf (*I'm back!\n”) ;
return (CS_SUCCEED) ;

Usage e srv_yield suspends the current thread and allows another runnable thread
of the same or higher priority to run. The thread is rescheduled at a later
time.

e srv_yield is primarily useful when using non-preemptive scheduling.

e |If athread callssrv_yield to allow a new thread which is still being
established to run:
a Open Server completes establishing the new thread.
b If the new thread does not become runnable it will not gain control

and the current thread will seem to get control back immediately.

Refer to “Multithread programming” on page 109.

* Thethread that calls srv_yield will resume execution at the statement
following srv_yield.

e srv_yield cannot be used ina SRV_START handler.

e Do not call srv_yield from interrupt level code.

See also srv_sleep, srv_wakeup

Server-Library/C Reference Manual 451

srv_yield

452 Open Server

CHAPTER 4

SP_PS
Description

Syntax

Parameters

System Registered Procedures

This section contains a reference page for each Server-Library system
registered procedure. System registered procedures are the registered
procedures built into Open Server. When the server initializes, it registers
these procedures so that they are available in every Open Server runtime
system. The reference pages for the procedures describe their parameters
and the results and messages they return.

For additional information on system registered procedures, see
“Registered procedures’ on page 162.

System registered procedure Page
Sp_ps 453
Sp_regcreate 456
sp_regdrop 463
sp_reglist 464
Sp_regnowatch 465
sp_regwatch 465
sp_regwatchlist 467
sp_serverinfo 467
sp_terminate 468
sp_who 470

Return detailed status information on specified Open Server threads.
sp_ps [loginame | 'spid’]
loginame
The user’slogin name.
spid
Theinternal identification number of the thread to report on. You can

obtain the spid from the output of a previous sp_who or sp_ps call. By
default, all threads are listed.

Server-Library/C Reference Manual 453

Sp_ps

Examples ls>execute utility...sp_ps
2>go
spid Login Name Host Name Program Name Task Type
1 SERVER TASK
2 SERVER TASK
3 SERVER TASK
4 SERVICE TASK
11 hiram SITE HANDLER TASK
14 Dbud sonoma isql CHILD TASK c.
Status Sleep Event Sleep Label Current Command
runnable 369448 NETWORK HANDLER
sleeping 369544 MSG AVAILABLE CONNECT HANDLER
sleeping 369640 MSG AVAILABLE DEFERRED HANDLER
runnable 0 SCHEDULER
sleeping 369736 MSG AVAILABLE
running 416480
Blocked Run Current Stack Net Net
By Ticks Priority Origin Writes Reads
0 0 8 2794336 0 0
0 0 8 2810792 0 0
0 0 8 2827184 0 0
0 0 15 2843576 0 0
0 0 8 2859968 2 7
0 0 8 2909208 3 0

This example shows isgl output from the sp_ps procedure. For printing
purposes, the report was split where indicated by ellipses.

Usage * sp_ps reportsthe detailed status of a specified server thread or all current
Open Server threads. The information is useful for debugging during
application development.

» loginame and spid are character string parameters. When using isqgl to
execute sp_ps as aremote procedure call from an Adaptive Server,
surround the spid in quotes to avoid a syntax error.

» If you do not specify loginame or spid, sp_ps lists al current threads.

» Table4-1 summarizes the information sp_psreturns:

454 Open Server

CHAPTER 4 System Registered Procedures

Table 4-1: Information returned (sp_ps)

Type of

information Meaning

spid Theinternal thread number of the thread.

Login Name The name of thelogged in user. Applies only to client threads.
Host Name For aclient task, thisis the name of the client’s machine. For

site handlers and server-to-server RPC connections, thisisthe
name of the remote Adaptive Server.

Program Name

The name of the client application program.

Task Type

Thetype of thread. The lega values are NETWORK,
CLIENT, SERVER, SSTEHANDLER, CHILD, SERVICE,
and UNKNOWN.

Status

The current status of the thread. The legal valuesfor this
column are running, runnable, sleeping, sick, free, stopped,
spawned, terminal, and unknown. The one “running” task is
the thread that is executing sp_ps.

Sleep Event

The event that will cause a sleeping thread to become
runnable.

Sleep Label

A character string label that describes the sleep event.

Current Command

A character string that describes the state of the thread. The
contents of this column are set by the srv_thread_props
routine.

Blocked By (Not currently used.

Run Ticks (Not currently used.

Current Priority The priority at which the thread is running.

Stack Origin The address in memory where the thread's stack begins.

Net Writes The number of network writes since the thread started. This
number applies only to site handler and client threads.

Net Reads The number of network reads since the thread started. This

number applies only to site handler and client threads.

Table 4-2 summarizes the results returned as rows with these columns:

Server-Library/C Reference Manual

455

sp_regcreate

Table 4-2: Format of information returned (sp_ps)

Column name Datatype Length
spid CS INT_TYPE 4
Login Name CS CHAR_TYPE SRV_MAXNAME
Host Name CS CHAR_TYPE SRV_MAXNAME
Program Name CS CHAR_TYPE SRV_MAXNAME
Task Type CS CHAR_TYPE SRV_MAXNAME
Status CS CHAR_TYPE SRV_MAXNAME
Sleep Event CS INT_TYPE 4
Sleep Label CS CHAR_TYPE SRV_MAXNAME
Current Command CS CHAR_TYPE SRV_MAXNAME
Blocked By CS INT_TYPE 4
Run Ticks CS INT_TYPE 4
Current Priority CS INT_TYPE 4
Stack Origin CS INT_TYPE 4
Net Writes CS INT_TYPE 4
Net Reads CS INT_TYPE 4
See also sp_terminate, sp_who
Sp_regcreate
Description Create aregistered procedure in Open Server.
Syntax sp_regcreate proc_name, parml, parm2, ...
Parameters proc_name
Thevalue of proc_name specifiesthe name of the registered procedureto be
created.
parml, parmz, ...
(Optional) If the client application passes additional parameters, they
specify the names, datatypes, and default values of the new procedure’s
parameters.
Examples Calling sp regcreate from a Client-Library Client

This example creates aregistered procedure np_test that takes parameters:

* @p1l, datatype CS_INT, no default value (that is, the value defaults to
NULL)

456 Open Server

CHAPTER 4 System Registered Procedures

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
*/
CS
CS

{

/

e @p2, datatype CS_CHAR, default value is“No value given”
e @p3, datatype CS_INT, default value is O (zero)

The fragment contains code for functions np_create, which creates the
procedure, and rpc_results, which handles the results of the RPC command.
The function ex_fetch_data (called by rpc_results) is not shown here. This
function is defined in the file exutils.c in the Client-Library sample programs.

np create() -- Example function to create a notification
procedure on an Open Server.

Parameters:
cmd - Command handle for sending commands.

Returns:
CS_SUCCEED - The notification procedure was successfully
created.
CS_FAIL - Couldn't do it. This routine fails if the
registered procedure already exists.

RETCODE np create (cmd)
~ COMMAND *cmd ;

CS DATAFMT datafmt;

CS_INT intval;
CS_CHAR charbuf [512] ;
CS_BOOL ok = CS_TRUE;
*

** Build up an RPC command to create the notification
** procedure np test, defined as follows:

*k np test @l = <integer value>,
** @p2 = <character value>,
* % @p3 = <integer values
*/

if (ok

/

&& (ct_command(cmd, CS_RPC_CMD,
"sp_regcreate", CS_NULLTERM,
CS_UNUSED) != CS_SUCCEED))
ok = CS_FALSE;
*
** Name of the created procedure will be 'np test'.
*/
strcpy (datafmt.name, "proc name") ;
datafmt.namelen = strlen(datafmt.name) ;
datafmt.datatype = CS CHAR TYPE;

Server-Library/C Reference Manual 457

sp_regcreate

458

datafmt.status = CS_INPUTVALUE;
datafmt.maxlength = 255;
strcpy (charbuf, "np test");
if (ok &&
ct param(cmd, &datafmt,
(CS_VOID *)charbuf, strlen(charbuf), 0)
I= CS_SUCCEED)
{
fprintf (stdout, "np create: ct param() @proc_name failed\n");
ok = CS FALSE;
)
** First parameter is named '@pl', is integer type, and has
** no default (i.e., defaults to NULL). We pass -1 as the
** indicator to ct_param() to specify a NULL value.
*/
strcpy (datafmt . .name, "@pl");
datafmt.namelen = strlen(datafmt.name) ;
datafmt.datatype = CS INT TYPE;
datafmt.status = CS_INPUTVALUE;
datafmt.maxlength = CS_UNUSED;
if (ok &&
ct param(cmd, &datafmt, (CS _VOID *)NULL, CS UNUSED, -1)
!= CS_SUCCEED)

fprintf (stdout, "np create: ct_param() @pl failed\n");
ok = CS FALSE;

}

/*
** Second parameter is named '@p2', is character type, and has
** default “No value given”.
*/

strcpy (datafmt .name, "@p2") ;
datafmt.namelen = strlen(datafmt.name) ;
datafmt.datatype = CS_CHAR_TYPE;
datafmt.status = CS_INPUTVALUE;
datafmt.maxlength = 255;
strcpy (charbuf, "No value given");
if (ok &&
ct param(cmd, &datafmt,
(CS_VOID *)&charbuf, strlen(charbuf), 0)
!= CS_SUCCEED)

fprintf (stdout, "np create: ct_param() @p2 failed\n");
ok = CS FALSE;

Open Server

CHAPTER 4 System Registered Procedures

/*
** Third parameter is named '@p3', is integer type, and
** has default 0 (zero).
*/

strcpy (datafmt .name, "@p3");
datafmt.namelen = strlen(datafmt.name) ;
datafmt.datatype = CS INT TYPE;
datafmt.status = CS_INPUTVALUE;
datafmt.maxlength = CS_UNUSED;

intval = 0;
if (ok &&
ct param(cmd, &datafmt, (CS_VOID *)&intval, CS UNUSED, 0)
!= CS_SUCCEED)
{
fprintf (stdout, "np create: ct param() @p3 failed\n");
ok = CS FALSE;
}
/*
** Send the RPC command.
*/
if (ok && ct_send(cmd) != CS_SUCCEED)
ok = CS FALSE;
/*
** Process the results from the RPC execution.
*/
if (ok && rpc_results(cmd, CS FALSE) != CS_SUCCEED)
ok = CS FALSE;
return (ok ? CS_SUCCEED : CS_FAIL);
} /* np create */
/*
** rpc results() -- Process results from an rpc.
* %
** Parameters
* %k cmd -- The command handle with results pending.
** expect_ fetchable -- CS _TRUE means fetchable results
* % are expected. They will be printed w/ the
** ex fetch data() routine (defined in file exutils.c).
** CS_FALSE means fetchable results cause this routine
* % to fail.

* %

** Returns
** CS_SUCCEED -- no errors.

Server-Library/C Reference Manual

459

sp_regcreate

* % CS_FAIL -- ct_results failed, returned a result type value
* % of CS _CMD FAIL, or returned unexpected fetchable results.
*/

CS_RETCODE rpc_results(cmd, expect fetchable)
CS_COMMAND *cmd;
CS_BOOL expect fetchable;

{

CS RETCODE results ret;

CS_INT result type;
CS_BOOL ok = CS_TRUE;
CS_BOOL cmd_failed = CS_FALSE;

while (ok &&
(results_ret
= ct_results(cmd, &result type))
== CS_SUCCEED)
{
switch((int)result type)
{
case CS_STATUS RESULT:
case CS_ROW RESULT:
case CS_COMPUTE_RESULT:
case CS_PARAM RESULT:
/*
** These cases indicate fetchable results.
*/
if (expect fetchable)
{
/* ex fetch data() is defined in exutils.c */
ok = (ex fetch data(cmd) == CS_SUCCEED) ;
}

else

{

(CS_VOID) fprintf (stdout,

"RPC returned unexpected result\n");

(CS_VOID)ct cancel (NULL, cmd, CS_CANCEL ALL) ;
ok = CS_FALSE;
}
break;
case CS_CMD_SUCCEED:
case CS_CMD_ DONE:
/* No action required */
break;

case CS_CMD FAIL:
(CS_vOID) fprintf (stdout,
"RPC command failed on server.\n");
cmd failed = CS_TRUE;

460

Open Server

CHAPTER 4 System Registered Procedures

break;

default:
/*
** Unexpected result type.
*/
(CS_voOID) fprintf (stdout,

"RPC returned unexpected result\n") ;

(CS_VOID)ct cancel (NULL, cmd, CS_CANCEL ALL) ;
ok = CS FALSE;
break;

} /* switch */

} /* while */

switch((int) results ret)

{

case CS_END RESULTS:
case CS_CANCELED:
break;
case CS_FAIL:
default:
ok = 0;
}

return ((ok && !cmd failed) ? CS _SUCCEED : CS_FAIL);

} /* rpc_results() */
Calling sp regcreate from a DB-Library Client

This example creates a registered procedure named pricechange with two
parameters. Thefirst parameter is @current_price and is represented using the
SYBMONEY datatype. The second parameter is @sequence_numand isa
SYBINT4 datatype. Neither parameter has a default value.

dbnpdefine (dbproc, "pricechange", DBNULLTERM) ;
dbregparam(dbproc, "@current price", DBNULLTERM,
SYBMONEY, DBNODEFAULT, NULL) ;
dbregparam(dbproc, "@sequence num", DBNULLTERM,
SYBINT4, DBNODEFAULT, NULL) ;
status = dbnpcreate (dbproc) ;

if (status == FAIL)

{

fprintf (stderr,
"Could not create pricechange procedure.\n") ;
}

Table4-3 summarizesthecallsaSRV_C_PROCEXEC callback handler would
use to find that the pricechange procedure is being registered:

Server-Library/C Reference Manual 461

sp_regcreate

Usage

Messages

462

Table 4-3: Returns (sp_regcreate)

Function call Returns
srv_procname(srvproc, (int *) NULL) “gp_regcreate”
Srv_rpcparams(srvproc) 3
srv_paramdata(srvproc, 1) “pricechange’

srv_paramdata(srvproc, 2)

“@current_price’

srv_paramdata(srvproc, 3)

“ @seguence_num”

» Client applications call sp_regcreate remotely to create registered

procedures.

» Registered procedures that are created by aclient application are called
notification procedures. They cannot contain application-defined code,
and are primarily useful for client applications that rely on registered-

procedure notifications.

» sp_regcreate’sfirst parameter (proc_name) isthe name of the procedureto

create. If the new registered procedure takes parameters, they are defined
by passing additional parameters. The new procedure’s first parameter is
passed as sp_regcreate’s second parameter, the second as sp_regcreate’s
third, and so forth.

Client applications built with Client-Library can create registered
procedures by sending an RPC command that invokes sp_regcreate.

An exampleis provided in “Calling sp_regcreate from a Client-Library
Client” on page 418.

DB-Library programs create registered procedures using dbnpdefine,
dbregparam, and dbnpcreate. dbnpdefine internally generates an RPC
command to remotely call sp_regcreate. dbnpcreate sends the RPC and
processes the results.

An exampleis provided in “Calling sp_regcreate from a DB-Library
Client” on page 423.

Server-Library programs can create registered procedures using
srv_regdefine, srv_regparam, and srv_regcreate.

sp_regcreate can return the following messages:

Number Severity Text

16505 0 Procedure was registered successfully.
16506 11 Procedureis already registered.

16507 11 Unable to register procedure.

Open Server

CHAPTER 4 System Registered Procedures

See also

sp_regdrop
Description

Syntax

Parameters

Examples

Usage

Messages

sp_regdrop, sp_regnowatch, sp_regwatch, srv_regdefine, srv_regexec,
Srv_reginit, srv_regparam

Remove a procedure from the list of registered procedures.
sp_regdrop proc_name

proc_name
The name of the registered procedure to remove.

l>execute stock...sp regdrop pricechange
2>go

In thisexample, aclient logged into Adaptive Server with isql uses a server-to-
server remote procedure call to execute sp_regdrop on the stock Open Server
application. The procedure deletes the pricechange registered procedure from
stock.

dbrpcinit (dbproc, "sp regdrop", NULL) ;
dbrpcparam(dbproc, "proc name", NULL, SYBCHAR, -1,
11, "pricechange") ;
dbrpcsend (dbproc) ;

This example uses the DB-Library RPC routines to execute sp_regdrop with a
single parameter “pricechange”. This causesthe sp_regdrop System procedure
to delete the pricechange registered procedure from Open Server.

* When aprocedure is unregistered, clients that have pending notification
reguests receive a message to indicate that the procedureis no longer
registered.

e sp_regdrop executes when aclient executes dbnpdrop. The
SRV_C_PROCEXEC callback handler can use srv_rpcname to find that
sp_regdrop isexecuting. Then it can obtain a pointer to parameter number
1, proc_name, using srv_bind and srv_xferdata.

proc_name has been unregistered.

The procedure specified with the proc_name parameter was successfully
unregistered.

proc_name is not a registered procedure.

The procedure specified with the proc_name parameter was not registered with
Open Server.

Server-Library/C Reference Manual 463

sp_reglist

See also

sp_reglist
Description

Syntax

Examples

Usage

See also

464

Unable to unregister proc name.
Open Server was unable to unregister the procedure for some other reason.

sp_regdrop, Srv_regexec, srv_reginit, srv_regparam

List all registered procedures in Open Server.
sp_reglist

l>execute utility...sp reglist
2>go

Procedure Name

sp_regwatch
sp_ps
sp_regdrop
sp_reglist
sp_regwatchlist
Sp_regcreate
sp_regnowatch

(0 rows affected)
Thisisgl example listsall of the currently registered procedures.

e sp_reglist returns, asrow data, the names of all of the procedures currently
registered in Open Server.

e InaC program, you can also use sp_reglist to list the registered
procedures.

Results are returned in rows containing asingle char column with adatalength
of SRV_MAXNAME characters.

Sp_regcreate, sp_regdrop, sp_regwatch, sp_regwatchlist

Open Server

CHAPTER 4 System Registered Procedures

Sp_regnowatch

Description
Syntax

Parameters

Examples

Usage

Messages

See also

sp_regwatch

Description

Syntax

Parameters

Remove aclient from the notification list for a procedure.
sp_regnowatch proc_name

proc_name
The name of the registered procedure.

dbrpcinit (dbproc, "sp regnowatch", (DBUSMALLINT)
0);
dbrpcparam(dbproc, "@proc name", 0, SYBCHAR, 15,
15, "pricechange") ;
dbrpcsend (dbproc) ;

This example removes the client from the notification list for the pricechange
registered procedure.

e Thisregistered procedure executes when aclient calls dbregnowatch.

e A SRV_C PROCEXEC callback handler can use srv_rpcname to
determinethat sp_regnowatch isexecuting and sp_paramdata to obtain the
name of the procedure for which the notification request isto be removed.

Notification request removed.

The notification request was removed successfully.
proc_name is not a registered procedure.

The procedure specified by proc_name is not registered in Open Server.
No requests pending.

The client had no notification requests pending for the procedure.
Unable to remove notification request.

Open Server failed to remove the notification request.

Sp_regcreate, sp_regdrop, sp_regwatch, sp_regnowatch, sp_regwatch

Add the client to the notification list for aregistered procedure.
sp_regwatch proc_name [options]

proc_name
The name of the registered procedure the client wishes notification for.

Server-Library/C Reference Manual 465

sp_regwatch

options
An CS SMALLINT that specifies whether to notify the client just once or
every time the procedure executes, and whether notification is synchronous
or asynchronous. Table 4-4, below, shows the values that you can set for
options. These values are hit flags, so you can set more than one at atime.

Table 4-4: Values for sp_regwatch options parameter

Values for option Function
CS _NOTIFY_NOWAIT Indicates asynchronous notification
CS _NOTIFY_WAIT Indicates synchronous notification

SRV_NOTIFY_ALWAYS Open Server will notify the client every time the
procedure executes until the client disconnects or
calls srv_regnowatch or dbregnowatch. Thisisthe
default.

SRV_NOTIFY_ONCE Open Server removes the client from the
notification list after it delivers anatification

Examples dbrpcinit (dbproc, "sp regwatch", (DBUSMALLINT) O0) ;
dbrpcparam(dbproc, "@proc name", 0, SYBCHAR,
15, 15, "pricechange") ;
dbrpcsend (dbproc) ;

This example adds the client to the notification list for a procedure called
pricechange. Whenever the procedure executes, this client receives a
notification.

optionval = SRV _NOTIFY ONCE;
dbrpcinit (dbproc, sp_regwatch, (DBUSMALLINT)
DBWAIT) ;

dbrpcparam(dbproc, "@proc name", 0, SYBCHAR,
15, 15, pricechange");

dbrpcparam (dbproc, "@options", 0, SYBINT4, -1,
-1, &optionval) ;

dbrpcsend (dbproc) ;

This example adds the client to the notification list for a procedure called
pricechange. It receives notification that the procedure executed just once.

Usage » Open Server executes sp_regwatch internally when aclient calls
dbnpwatch.

» If the procedure is dropped while a client is waiting for a notification, the
client receives an error message indicating that the procedureis no longer
registered.

Messages Notification request added.

466 Open Server

CHAPTER 4 System Registered Procedures

The notification request was added successfully.
proc _name is not a registered procedure.

The procedure specified with the proc_name parameter is not registered
with Open Server.

Unable to add notification request.
Open Server was unable to add the request for some other reason.

See also sp_regcreate, sp_regnowatch, sp_regdrop

sp_regwatchlist

Description List the registered procedures for which the client has requested notifications.
Syntax sp_regwatchlist
Examples l>execute utility...sp_regwatchlist

2>go

Procedure Name

pricechange

Thisisql example of a server-to-server RPC indicates that the client has
reguested notification for the pricechange registered procedure.

Usage e Open Server executes sp_regwatchlist internally when aclient cals
dbregwatchlist.

e A SRV_C PROCEXEC callback handler can call srv_rpcname to
establish that sp_regwatchlist is executing.

Results are returned in rows containing a single char column of
SRV_MAXNAME characters.

See also sp_reglist, sp_regwatchlist

sp_serverinfo
Description Send information about a character set or sort order to aclient.

Syntax sp_serverinfo function [name]

Server-Library/C Reference Manual 467

sp_terminate

Parameters

Usage

sp_terminate

Description

Syntax

Parameters

468

function

Table 4-5 summarizes the legal values for function:

Table 4-5: Values for function (sp_serverinfo)

Value

Meaning

server_csname

The name of the character set for the Open Server application will
be sent as a one, single column, character row to the client.

Sserver_soname

The name of the Open Server application sort order will be sent as
one, single column, character row to the client.

csdefinition

A row containing the character set definition will be sent to the
client. The row consists of three columns: type asa

CS SMALLINT_TYPE, ID asaCS TINYINT_TYPE, and the
character set definitionasaCS_IMAGE_TYPE.

sodefinition

A row containing the sort order definition will be sent to the client.
The row consists of three columns: type asa

CS SMALLINT_TYPE, ID asaCS_TINYINT_TYPE, and the
sort order definitionasaCS_IMAGE_TYPE.

name

The character set or sort order name. name need only be provided if function
is set to csdefinition or sodefinition.

» Theremote procedure sp_serverinfo is automatically registered and
handled as a standard system procedure, for example, sp_who. When
sp_serverinfo isreceived as an RPC Open Server handles it automatically.
The application code need not be involved.

» If aclient sends an sp_serverinfo request through a language request, this
stored procedure must be executed using the registered procedure routines
to send the correct response.

* Theinformation is sent to aclient asarow.

Terminate an Open Server thread.

sp_terminate spid [, options]

spid

Thethread ID. This can be obtained with the sp_who procedure or by calling
srv_thread_props.

Open Server

CHAPTER 4 System Registered Procedures

Examples

spid status

1 runnable
2 sleeping
3 sleeping
4 runnable
12 runnable
24 running

options
Determines whether the thread is terminated immediately or by a queued
disconnect event. Specify “ deferred” to queue adisconnect event that occurs
after previous events are handled. Thisis the default action. Specify
“immediate” to terminate the thread immediately, ignoring current or
gueued events for the thread.

1> execute utility...sp_who

2> go

loginame hostname blk cmd
0 NETWORK HANDLER
0 CONNECT HANDLER
0 DEFERRED HANDLER
0 SCHEDULER

ned sonoma 0 PRINT TASK

bud sonoma 0

(0 rows affected)

Usage

Messages

See also

Server-Library/C Reference Manual

This example shows how to useisql to locate and terminate an errant server
thread. The thread terminates immediately.

1> execute utility...sp terminate 12, "immediate"
2> go
spid = 12;
dbrpcinit (dbproc, "sp terminate", (DBUSMALLINT) O0);
dbrpcparam (dbproc, "@spid", 0, SYBINT4, -1,
-1, &spid);
dbrpcparam (dbproc, "@options", 0, SYBCHAR, 9,

9, "deferred") ;
dbrpcsend (dbproc) ;

This DB-Library example queuesa SRV_DISCONNECT event for the thread
with the thread. The next time the thread becomes runnable, it receives the
disconnect event and terminates.

* Usesp_who or sp_ps to find the spid for the thread to be terminated.
e InaServer-Library program, use srv_termproc to terminate a thread.
spid terminated.

spid scheduled for termination.

spid not currently in use.

sp_who, srv_termproc

469

sp_who

sp_who
Description Return status information for specified Open Server threads.
Syntax sp_who [loginame | 'spid’]
Parameters loginame
The user’slogin name.
spid
Theinternal identification number of the thread to report on. The spid can
be obtained from the output of aprevioussp_ps or sp_who call. If no spidis
specified, all threads are listed.
Examples ls>execute utility...sp_who
2>go
spid status loginame hostname blk cmd
1 runnable 0 NETWORK HANDLER
2 sleeping 0 CONNECT HANDLER
3 sleeping 0 DEFERRED HANDLER
4 runnable 0 SCHEDULER
11 sleeping hiram 0
14 running bud sonoma 0

This example shows output from the sp_who procedure.

Usage » sp_who reports status information about a specified server thread or all
current Open Server threads.

* The output from the sp_who system registered procedure matches the
output from the Adaptive Server sp_who system procedure.

* sp_who returns a subset of the information that sp_ps returns.

» loginame and spid are character string parameters. When using isqgl to
execute sp_who as aremote procedure call from an Adaptive Server,
surround the spid in quotes to avoid a syntax error.

» If you do not specify loginame or spid, sp_who lists al current threads.
» sp_who returns the following information:
spid —theinternal thread number of the thread.
status — the current status of the thread. The values for this column are:
* running

e runnable

470 Open Server

CHAPTER 4 System Registered Procedures

e sleeping
e sick

o free

e stopped

e spawned
o terminal
* unknown

The one “running” task isthe thread that is executing sp_who.

loginame — the name of the logged in user. Applies only to client threads.

hostname —for aclient task, thisisthe name of the client’s machine. For a
site handler thread, it is the name of the remote Adaptive Server.

blk —thisfield is unused and is always set to 0.

cmd —acharacter string that describesthe state of the thread. The contents
of this column are set by the srv_thread_props routine.

Table 4-6 summarizes the results returned as rows with these columns:

Table 4-6: Format of information returned (sp_who)

Column name Datatype Length
spid CS_INT_TYPE 4

status CS CHAR_TYPE 10
loginame CS CHAR_TYPE 12
hostname CS CHAR_TYPE 10

bik CS_INT_TYPE 3

cmd CS CHAR_TYPE 16

Sp_ps, sp_terminate

Server-Library/C Reference Manual

471

sp_who

472 Open Server

Glossary

Adaptive Server
Enterprise

array
array binding

batch

browse mode

bulk copy

callback event
callback routine

capabilities

A server in Sybase'sclient/server architecture. Adaptive Server Enterprise
manages multiple databases and multiple users, keeps track of the actual
location of dataon disks, maintains mapping of logical data description to
physical data storage, and maintains data and procedure cachesin
memory. Prior to version 11.5, Adaptive Server Enterprise was known as
SQL Server.

A structure composed of multiple identical variables that can be
individually addressed.

The process of binding aresult columnto an array variable. At fetch time,
multiple rows of the column are copied into the variable.

A group of commands or statements.

A Client-Library command batch is one or more Client-Library
commandsterminated by an application’scall toct_send. For example, an
application can batch together commands to declare, set rows for, and
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to an Adaptive Server by means of asingle Client-Library
command or Embedded SQL statement.

A method that DB-Library and Client-Library applications can use to
browse through database rows, updating their values one row at atime.
Cursors provide similar functionality and are generally more portable and
flexible.

A utility for copying datain and out of databases. Also called bcp.

In Open Client and Open Server, an occurrence that triggers a callback
routine.

A routinethat Open Client or Open Server callsin responseto atriggering
event, known as a callback event.

A client/server connection’s capabilities determine the types of client
reguests and server responses permitted for that connection.

Server-Library/C Reference Manual 473

Glossary

character set

character set
conversion

client

Client-Library

code set

collating sequence

command

command structure

connection structure

context structure

conversion

CS-Library

current row

cursor

474

A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII and 1SO 8859-1 (Latin 1) are two
common character sets.

Changing the encoding scheme of a set of characters on the way into or out of
aserver. Conversion is used when a server and a client communicating with it
use different character sets. For example, if Adaptive Server uses SO 8859-1
and aclient uses Code Page 850, character set conversion must be turned on so
that both server and client interpret the data passing back and forth in the same

way.

In client/server systems, the client isthe part of the system that sends requests
to servers and processes the results of those requests.

Part of Open Client, a collection of routines for use in writing client
applications. Client-Library isalibrary designed to accommodate cursors and
other advanced featuresin the Sybase product line.

Seecharacter set.
Seesort order.

In Client-Library, a server request initiated by an application’s call to
ct_command, ct_dynamic, Or ct_cursor and terminated by the application’s cal
to ct_send.

(CS_COMMAND) A hidden Client-Library structure that Client-Library
applications use to send commands and process results.

(CS_CONNECTION) A hidden Client-Library structure that defines a
client/server connection within a context.

(CS_CONTEXT) A CS-Library hidden structure that defines an application
“context,” or operating environment, within a Client-Library or Open Server
application. The CS-Library routinescs_ctx_alloc and cs_ctx_drop allocate and
drop a context structure.

See character set conversion.

Included with both the Open Client and Open Server products, a collection of
utility routines that are useful to both Client-Library and Server-Library
applications.

With respect to cursors, the row to which a cursor points. A fetch against a
cursor retrieves the current row.

A symbolic name that is associated with a SQL statement.

Open Server

Glossary

database

datatype

DB-Library

deadlock

default

default database

default language

dynamic SQL

error message

event

event handler

In Embedded SQL, acursor is adata selector that passes multiple rows of data
to the host program, onerow at atime.

A set of related data tables and other database objects that are organized to
serve a specific purpose.

See also scrollable cursor.

A defining attribute that describes the values and operationsthat arelegal for a
variable.

Part of Open Client, a collection of routines for use in writing client
applications.

A situation that arises when two users, each having alock on one piece of data,
attempt to acquire alock on the other’s piece of data. Adaptive Server detects
deadl ocks and resolves them by killing one user’s process.

Describes the value, option, or behavior that Open Client and Open Server
products use when none is explicitly specified.

The database that a user gets by default when he or she logsin to a database
server.

1. The language that Open Client and Open Server products use when an
application doesno explicit localization. Thedefault languageis determined by
the “default” entry in the localesfile.

2. The language that Adaptive Server uses for messages and prompts when a
user has not explicitly chosen alanguage.

Allows an Embedded SQL or Client-Library application to execute SQL
statements containing variables whose values are determined at runtime.

A messagethat an Open Client and Open Server product issueswhen it detects
an error condition.

An occurrence that prompts an Open Server application to take certain actions.
Client commands and certain commands within Open Server application code
can trigger events. When an event occurs, Open Server calls either the
appropriate event-handling routine in the application code or the appropriate
default event handler.

In Open Server, aroutine that processes an event. An Open Server application
can use the default handlers Open Server provides or can install custom event
handlers.

Server-Library/C Reference Manual 475

Glossary

exposed structure

extended
transaction

FIPS

gateway

hidden structure

host language

host program

host variable

indicator variable

input variable

interfaces file

476

A structure whose internals are exposed to Open Client and Open Server
programmers. Open Client and Open Server programmers can declare,
manipul ate, and deallocate exposed structures directly. The CS DATAFMT
structure is an example of an exposed structure.

In Embedded SQL, atransaction composed of multiple Embedded SQL
statements.

An acronym for Federal Information Processing Standards. If FIPSflaggingis
enabled, Adaptive Server or the Embedded SQL precompiler issue warnings
when a non-standard extension to a SQL statement is encountered.

An application that acts as an intermediary for clients and servers that cannot
communicate directly. Acting as both client and server, a gateway application
passes requests from a client to a server and returns results from the server to
the client.

A hidden structure is a structure whose internals are hidden from Open Client
and Open Server programmers. Open Client and Open Server programmers
must use Open Client and Open Server routines to allocate, manipulate, and
deallocate hidden structures. The CS_CONTEXT structureisan example of a
hidden structure.

The programming language in which an application is written.

In Embedded SQL, the application program that contains the Embedded SQL
code.

In Embedded SQL, a variable which enables data transfer between Adaptive
Server and the application program. See also indicator variable, input
variable, output variable, result variable, and status variable.

A variable whose value indicates special conditions about another variable's
value or about fetched data.

When used with an Embedded SQL host variable, indicates when a database
valueisnull.

A variable that is used to pass information to a routine, a stored procedure, or
Adaptive Server.

A filethat maps server namesto transport addresses. When aclient application
callsct_connect or dbopen to connect to aserver, Client-Library or DB-Library
searches the interfacesfile for the server’s address. Note that not all platforms
use the interfaces file. On these platforms, an aternate mechanism directs
clientsto server addresses.

Open Server

Glossary

isql script file

key

keyword

listing file

locales file

locale name

locale structure

localization

login name

message number

message queue

multibyte character
set

In Embedded SQL, one of the three files the precompiler can generate. Anisgl
script file contains precompil er-generated stored procedures, which are written
in Transact-SQL.

A subset of row datathat uniquely identifiesarow. Key datauniquely describes
the current row in an open cursor.

A word or phrase that is reserved for exclusive use in Transact-SQL or
Embedded SQL. Also called areserved word.

In Embedded SQL, alisting file is one of the three files the precompiler can
generate. A listing file contains the input file's source statements and
informational, warning, and error messages.

A filethat mapslocale namesto language/character set pairs. Open Client and
Open Server products search the locales file when loading localization
information.

A character string that represents a language/character set pair. Locale names
arelisted inthelocalesfile. Sybase predefines some local e names, but asystem
administrator can define additional locale names and add them to the locales
file.

(CS_LOCALE) A CS-Library hidden structure that defines custom
localization values for a Client-Library or Open Server application. An
application can use aCS_LOCALE to define the language, character set,
datepart ordering, and sort order it will use. The CS-Library routines
cs_loc_alloc and cs_loc_drop alocate and drop alocale structure.

The process of setting up an application to runin aparticular national language
environment. An application that islocalized typically generates messagesina
local language and character set and uses local datetime formats.

The name a user usesto log in to a server. An Adaptive Server login nameis
valid if Adaptive Server has an entry for that user in the system table syslogins.

A number that uniquely identifies an error message.

In Open Server, alinked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the
queue.

A character set that includes characters encoded using more than one byte.
EUC J S and Shift-JIS are examples of multibyte character sets.

Server-Library/C Reference Manual 477

Glossary

mutex

null

Open Server

Open Server
application

output variable

parameter

passthrough mode

property

query

registered procedure

remote procedure
call

478

A mutual exclusion semaphore. Thisisalogical object that an Open Server
application uses to ensure exclusive access to a shared object.

Having no explicitly assigned value. NULL is not equivalent to zero, or to
blank. A value of NULL is not considered to be greater than, less than, or
equivalent to any other value, including another value of NULL.

A Sybase product that provides tools and interfaces for creating custom
servers.

A custom server constructed with Open Server.

In Embedded SQL, a variable that passes data from a stored procedure to an
application program.

1. A variable that is used to pass data to and retrieve data from aroutine.

2. An argument to a stored procedure.

A state of being pertaining to gateway applications.

When in passthrough mode, a gateway relays Tabular Data Stream (TDS)
packets between aclient and a remote data source without unpacking the
packets contents.

A named value stored in a structure. Context, connection, thread, and
command structures have properties. A structure’'s properties determine how it
behaves.

1. A dataretrieval request; usually a select statement.
2. Any SQL statement that manipulates data.

In Open Server, acollection of C statements stored under aname. Open Server-
supplied registered procedures are called system registered procedures.

1. One of two ways in which a client application can execute an Adaptive
Server stored procedure. (The other iswith aTransact-SQL execute statement.)
A Client-Library application initiates a remote procedure call command by
calling ct_command. A DB-Library application initiates a remote procedure
call command by calling dbrpcinit.

2. A type of request a client can make of an Open Server application. In
response, Open Server either executes the corresponding registered procedure
or callsthe Open Server application’s RPC event handler.

3. A stored procedure executed on adifferent server from the server to
which the user is connected.

Open Server

Glossary

result variable

scrollable cursor

server

Server-Library

sort order

sglca

sqglcode

SQL Server

statement

status variable

stored procedure

System
Administrator

In Embedded SQL, avariable that receives the results of a select or fetch
statement.

Allows a current cursor position to be set anywhere in aresult set. See also
cursor.

In client/server systems, the part of the system that processes client requests
and returns results to clients.

A collection of routines for use in writing Open Server applications.

Used to determine the order in which character datais sorted. Also called
collating sequence.

1. In an Embedded SQL application, a SQLCA isa structure that provides a
communication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server storesreturn codesinthe
SQLCA.

2. InaClient-Library application, a SQLCA is a structure that the application
can useto retrieve Client-Library and server error and informational messages.

1. In an Embedded SQL application, a SQLCODE is a structure that provides
acommunication path between Adaptive Server and the application program.
After executing each SQL statement, Adaptive Server storesreturn codesinthe
SQLCODE. A SQLCODE can exist independently or as avariable within a
SQLCA structure.

2. In aClient-Library application, a SQLCODE is a structure that the
application can use to retrieve Client-Library and server error and
informationa message codes.

See Adaptive Server Enterprise.

In Transact-SQL or Embedded SQL, aninstruction that beginswith akeyword.
The keyword names the basic operation or command to be performed.

In Embedded SQL, a variable that receives the return status value of a stored
procedure, thereby indicating the procedure’s success of failure.

In Adaptive Server, acollection of SQL statements and optional control-of-
flow statements stored under a name. Adaptive Server-supplied stored
procedures are called system procedures.

The user in charge of server system administration, including creating user
accounts, assigning permissions, and creating new databases. On Adaptive
Server, the System Administrator’slogin nameis“sa.”

Server-Library/C Reference Manual 479

Glossary

system descriptor

system procedures

system registered
procedures

target file

TDS

thread

Transact-SQL

transaction

transaction mode

user name

480

In Embedded SQL, an area of memory that holds a description of variables
used in Dynamic SQL statements.

Stored procedures that Adaptive Server supplies for usein system
administration. These procedures are provided as shortcuts for retrieving
information from system tables, or as mechanismsfor accomplishing database
administration and other tasks that involve updating system tables.

Internal registered procedures that Open Server supplies for registered
procedure notification and status monitoring.

In Embedded SQL, of the threefilesthe precompiler can generate. A target file
issimilar totheoriginal input file, except that all SQL statementsare converted
to Client-Library function calls.

(Tabular Data Stream) An application-level protocol that Sybase clients and
servers use to communicate. It describes commands and resullts.

A path of execution through Open Server application and library code and the
path’'s associated stack space, state information, and event handlers.

An enhanced version of the database language SQL. Applications can use
Transact-SQL to communicate with Sybase Adaptive Server.

One or more server commandsthat are treated asa single unit for the purposes
of backup and recovery. Commands within a transaction are committed as a
group; that is, either al of them are committed or all of them are rolled back.

The manner in which Adaptive Server manages transactions. Adaptive Server
supports two transaction modes: Transact-SQL mode (also called “ unchained
transactions’) and ANSI mode (also called “ chained transactions’).

Seelogin name.

Open Server

Index

A

ad hoc negotiations 122
Adaptive Server Enterprise Reference Manual xii
aggregates
computerows 221
allocating
memory 215
alocating memory 141
ANSI compliance, updates and deletes 124
application name 298
application-defined login handshake 121, 152
arithmetic exceptions 124
ASCII character format 157
asynchronous events 278
atentions 150
checking for with srv_thread_props 21
coding recommendationsfor 21
and interrupt level 20
and the SRV_ATTENTION event handler 20
authentication of client 121

B

binary datatypes 26, 29, 201

binding
variables 229

binding data 137

bit datatype 26, 29, 202

bit masks
CS BROWSEDESC structure 53
CS DATAFMT statusvalue 57

CS KEY 76
bitmasks
capabilities 36

boundary datatype 26, 29, 208

browse mode 52
and the CS_ BROWSEDESC structure 23
returning browse mode resultsto aclient 23

Server-Library/C Reference Manual

stepsto support 23
building an Open Server application

bulk
copy requests

datatransfer 149, 156

insert 150

94

byteordering 120

retrieving scheme through srv_thread _props

bytes

copying 235

C

call stack, threads 256
callback handlers

errors 60

installing for athread 117
registered procedures 167

callbacks

installing 238

security session

timedice 147

capabilities 120, 242, 249

ad hoc retrieval of 37
bit masks 36
and the capability macros 36

changing default values through srv_props

client connection 243
and the CS_CAP_TYPE structure 36

default 30
explicit negoti

ation of

list of default values for

macros 36

191, 193, 196

35
31,35

negotiating oneat atime 35
negotiating with pre-10.0 clients 37

negotiation

Request Capabilitiestable 24, 27

24

6, 16

Response Capabilitiestable 29, 30

TDSversion

32,37

149

30

481

Index

transparent negotiation of 30
usesof 24
certificates

SSL 177
chained transactions 124
chalenge/response 152
channel binding 153, 171
character datarepresentation 149, 157
character datatypes 26, 29, 203, 204
character set 99, 120, 140

changing 105

notification of change 152
processing client request to change 105
renegotiating 122

returning information about 106
chunks 62

messages 38
client

definitionof 2
logininformation 284

typesof clients 2
client command errors

and the CS_SERVERMSG structure 38
sending through srv_sendinfo 38, 39
clientloginrequest 159
client logout 149
client requests 120, 145
client threads 112, 162
client/server

architecture 1,2
Client-Library

context properties 140
retrieving client version through srv_thread _props
clock rate 147
close, cursor command 64
collating sequence 99
columns

original names 53
Common Libraries 59
common name validation

SDC environment 177
computerows 217, 225

and aggregates 221

sendingto client 228
concurrency 113, 117

connect handler. See SRV_CONNECT event handler 209

482

connection attributes. See Capabilities 24
Connection migration 40
context properties

and cs_config 140

and ct_config 140

definition of 139

and srv_props 140
context structure. See CS_CONTEXT structure 209
context switching 113
coroutine scheduling. See Non-preemptive scheduling

113

credentials 171

delegated 154

timeout 154
cryptographic signature 155
CS ABSOLUTE fetchtype 68
CS_ACK dynamic operation 271
CS ALL_CAPSargument 36
CS_BIGINT datatype 206
CS_BINARY datatype 199, 201
CS BIT datatype 199, 203
CS_BOUNDARY_TYPEvaue 208
CS_BROWSEDESC structure 40, 53
cs cacroutine 201
CS_CANBENULL value 57,234
CS_CANCEL_ATTN argument 21
CS_CAP_REQUEST argument 35
CS_CAP_RESPONSE capabilities 244
CS _CAP_TYPE structure 36
CS_CHAR datatype 199, 203
CS CLR_CAPMASK macro 36
cs cmproutine 201
cs_configcommand 60, 102, 104, 139
CS_CONNECTION structure 131
CS_CONTEXT structure 7, 60, 102, 103, 140
cs_convert command 102

CS DATAFMT structure 54
cs_convert routine 201
cs _ctx_alloccommand 104
CS_CURSOR_CLOSE command 70, 75
CS _CURSOR_DECLARE command 67, 70, 73
CS CURSOR _DELETE command 68, 70, 75
CS CURSOR_FETCH command 67, 70, 74
CS_CURSOR_INFO command 67,71, 73
CS_CURSOR_OPEN value 71,74
CS_CURSOR_UPDATE command 68, 71, 75

Open Server

CS CURSTAT_CLOSED value 69

CS CURSTAT_DEALLOC vaue 69
CS CURSTAT_DECLARED value 69
CS CURSTAT_OPEN value 69, 78

CS CURSTAT_RDONLY vaue 69

CS _CURSTAT_ROWCNT value 69, 78
CS CURSTAT_UPDATABLEvalue 69
CS DATA_LBIN capability 202

CS DATA_LCHAR capability 203

CS DATAampfmt structure 268

CS DATAFMT structure 53, 57, 137
CS DATE datatype 200, 204

CS DATETIME datatype 200, 204

CS DATETIME4 datatype 200, 204, 205
CS DEALLOC dynamic operation 271
CS DEALLOCvalue 89

CS DECIMAL datatype 200, 207

CS DEF_PRECvdue 56,207

CS DEF_SCALEvalue 56, 207

CS DESCIN value 57, 85, 87

CS DESCOUT vdue 57,86

CS _DESCRIBE_INPUT dynamic operation 272
CS DESCRIBE_INPUT vdue 85,87
CS DESCRIBE_OUTPUT dynamic operation 272
CS DESCRIBE_OUTPUT value 86

cs dt_crack routine 201, 204

cs dt_inforoutine 201

CS EXEC_IMMEDIATE dynamic operation 271
CS EXEC_IMMEDIATE value 88

CS _EXECUTE dynamic operation 271
CS EXECUTEvdue 88
CS_EXPRESSION argument 53

CS FIRST fetchtype 68

CS FIRST_CHUNK argument 39, 62
CS FLOAT datatype 200, 206

CS FMT_NULLTERM argument 56
CS FMT_PADBLANK argument 56
CS FMT_PADNULL argument 56

CS FMT_UNUSED argument 56

CS FOR_UPDATE value 76

CS GOODDATA value 218,231

CS HASEED hit 40, 62

CS HIDDEN vaue 57

CS IMAGE datatype 201, 208, 209
CS IMAGE_TYPEvalue 58

CS INPUTVALUE value 57

Server-Library/C Reference Manual

CS_INT datatype 200, 206
CS_IODATA value 58
CS_IODESC structure 57, 59, 197
CS KEY value 57,76

CS LANG_CMDvalue 107

CS _LAST fetchtype 68

CS LAST_CHUNK argument 39,
CS LC ALL vdue 102

cs loc_alloccommand 102, 104
¢s _loc_drop command 102, 104
CS LOC _PROPvaue 102, 104
cs localecommand 101, 102, 104
CS_LOCALE structure 57,151
CS _LOGINFO structure 131, 286
CS_LONGBINARY datatype 199,

62

202

CS_LONGCHAR datatype 199, 203

CS MAX_MSG argument 38
CS_MAX_PRECvalue 56, 207
CS MAX_SCALEvaue 56,207
CS MIN_PREC value 56, 207
CS MIN_SCALE vaue 56, 207
CS_MONEY datatype 200, 207
CS_MONEY4 datatype 200, 207
CS_NEXT fetchtype 68

CS NOAPICHK value 141
CS NODEFAULT value 57

CS NULLDATA vaue 231
CS_NUMERIC datatype 200, 206
CS _OP_AVG operator type 222

CS_OP_COUNT operator type 222

CS_OP_MAX operator type 222
CS_OP_MIN operator type 222
CS_OP_SUM operator type 222
CS OPT_ANSINULL server option
CS_OPT_ANSIPERM server option

CS _OPT_ARITHABORT server option

124
124

CS _OPT_ARITHIGNORE server option

CS_OPT_AUTHOFF server option
CS _OPT_AUTHON server option

CS_OPT_CHAINXACTS server option

124
124

124

124

124

CS_OPT_CURCLOSEONXACT server option

CS_OPT_CURREAD server option
CS _OPT_CURWRITE server option
CS _OPT_DATEFIRST server option

124
124

125

CS_OPT_DATEFORMAT server option

CS_OPT_FIPSFLAG server option

125

125

Index

124

483

Index

CS_OPT_FORCEPLAN server option 125

CS OPT_FORMATONLY server option 125

CS _OPT_GETDATA server option 125

CS_OPT_IDENTITY OFF server option 125

CS_OPT_IDENTITYON server option 125

CS_OPT_ISOLATION server option 125

CS OPT_LEVEL1value 125

CS_OPT_NOCOUNT server option 123, 125

CS_OPT_NOEXEC server option 126

CS_OPT_PARSEONLY server option 126

CS_OPT_QUOTED_IDENT server option 126

CS _OPT_RESTREES server option 126

CS_OPT_ROWCOUNT server option 126

CS_OPT_SHOWPLAN server option 126

CS _OPT_STATS 10 server option 126

CS_OPT_STATS TIME server option 126

CS _OPT_STR_RTRUNC server option 126

CS_OPT_TEXTSIZE server option 127

CS_OPT_TRUNCIGNORE server option 127

CS PASSTHRU_MOREvaue 132

CS_PREPARE dynamic operation 272

CS PREPARE vaue 85

CS _PREV fetchtype 68

CS_REAL datatype 200, 206

CS RELATIVE fetchtype 68

CS_RENAMED argument 53

CS REQ MIGRATE 42

CS_REQUEST capabilities 32

CS_RESPONSE capahilities 34

CS RESPONSE_CAPargument 35

CS_RETURN value 57

CS _SECSESSION_CB value 191

CS _SENSITIVITY_TYPE value 208

CS_SERVERMSG structure 38, 60, 62
CS_HASEED hit 40

CS SET_CAPMASK macro 36

CS_SMALLINT datatype 200, 206

CS SRC_VALUE argument 56

CS SYB_CHARSET value 104

CS_TEXT datatype 201, 208

CS TEXT_TYPEvaue 58

CS_TIME datatype 200, 204

CS_TIMESTAMPvalue 57

CS_TINYINT datatype 200, 206

CS TST_CAPMASK macro 36

CS_UBIGINT datatype 206

484

CS_UINT datatype 206
CS_UNICHAR datatype 199, 204
CS_UNITEXT datatype 208, 209
CS_UPDATABLE vaue 57
CS_UPDATECOL vaue 57
CS_USER_MAX_MSGID value 80
CS_USER_MSGID vaue 80
CS_USMALLINT datatype 206
CS_VARBINARY datatype 199, 202
CS_VARCHAR datatype 199, 201, 203
CS_VERSION_KEY vdue 57
CS_XML datatype 199
CS-Library 59, 60

context properties 140

definition of 6, 59

error messages 101, 102

errors 60, 140
ct_cancel command 94
ct_capability command 36
ct_closecommand 94
ct_command command 21, 80, 95, 107
ct_connect command 36, 94
ct_cursor command 64
ct_exitcommand 94
ct_getloginfocommand 131
ct_recvpassthru command 132
ct_send command 95
ct_sendpassthru command 131
ct_setloginfo 131
curcmd field, SRV_CURDESC structure 69, 78
curid field, SRV_CURDESC structure 72
cursor commands 134

cursor handler. See SRV_CURSOR event handler 209

cursors 27,63, 76
benefitsof using 63
CS DATAFMT structure 57
definition of 63
fetchtypes 68
fetchingrows 26
handling cursor requests 72, 76
ID 65
and key data 76
server option 124
and the SRV_CURDESC structure 65, 76
and the SRV_CURSOR event handler 72
Sv_cursor_props 253

Open Server

types of cursor commands 64
update columns 76
updatetext 71
updates 67, 76

curstatus field
SRV_CURDESC structure 69

D

data
confidentiality 153
describing, binding, transferring of 136
integrity 155
origination 154
datastream messages. See Messages 80
datatype Summary table 199, 201
datatypes 201
Seeadso Types 198
response capabilities 30
routines that manipulate 201
dates
order of parts 125
datetime datatypes 26, 29, 204
conversion to 8-byte 150
datetime formats 99
dbcancel command 20
deallocate, cursor command 64
debugging 241, 258
decimal datatype 26, 29, 56
declare, cursor command 64
default event handlers 93
deferred event
queuesize 142
delegated credentials 154
delete, cursor command 64
deletes 125
describing
columns and parameters 265
describing data 136
detection of messagereplay 154
directory drivers 82
directory service provider 142
directory services 81, 83
disconnect handler. See SRV_DISCONNECT event
handler 209

Server-Library/C Reference Manual

Index

disconnects
handling of 21
distributed service providers 170
double quotes, identifers 126
DSLISTEN environment variable 298
dump/load 150
dynamic SQL 27, 83, 89
benefitsof using 83
commands 134
CS DATAFMT structure 57
cursors 63

responding to client Dynamic SQL commands
srv_dynamic 268
and the SRV_DYNAMIC event handler 84
and the srv_dynamicroutine 84
usesfor 83
dynamic SQL handler. See SRV_DYNAMIC event
handler 209
E
EBCDIC character format 157
encryption 153
key 121
passwords 152
environment changes 273
environment variables 274
error handler 60, 89, 142
error handlers
environment variable changes 275
installation of 8,16
error messages 38
sendingtoaclient 38
errors 38, 60, 89, 92
See aso client command errors 38
column-level information 39
CS-Library 60
extended data 39
local language messages 100, 102
numbers 91
severity of 90
typesof 90
event handlers
coding custom handlers 93
default 93

84

485

Index

default versus custom 93
definition of 93
interrupt level 20
messages 81
srv_capability 37
srv_handle 295
event queue 112
event-driven threads 110
events 92,97

attention 20

cursor 64,72
definition of 92
disconnects 21
dynamicSQL 84
handliing 8

list of standard 93, 97
message 80
notifications 27
programmer-defined 97
sv_event 275
execute statement 63
explicit negotiation 24, 120
extended error data 39, 40
definitionof 39
sendingtoaclient 39

F

fatal errors 91

fetchtypes 68

fetchingrows 26, 64

file descriptor
endpoint 150

first day of week 125

floating point datatype 26, 29
conversionto 8-byte 150
representation 150

attentions 21

direct security sessions 185, 191

Separate security sessions 185
srv_getloginfo 286

H

help

Technical Support xv
hidden columns

CS DATAFMT structure 57
host machine, of client 150

1/0 channel
threads 151
1/0 descriptor structure 57
identifiers 126
identity columns 125
imagedata 57
transferring 157
image datatype 26, 196
Sv_get_text 282
in-band attentions 26
information, cursor command 64
informational errors 91
initialization
setting propertiesduring 141
summary of stepsin 141
inserts 125
installing
error handlers 89
event handlers 295
Open Server applications xi
integer types 26, 29, 206

floating point representation 120, 158 integrity service 155
free, Croutine 281 interfacesfile 183
freeing memory 142, 280 directory services 82

looking up server namein 146
specifying name of through srv_props 142
intermediary applications 98
G internal 1/0 statistics 126
gateway applications 98, 99, 101, 103, 123, 129 international support. See localization 99

486 Open Server

interrupt level
and attentions 20
Server-Library calspermittedat 20
interrupts 20, 94, 119, 142
isNULL 124
isbrowse structure element 53

J

joins 125

K

keys 76

L

language
cals 107
commands 134
datastream 138
requests 95

language and character set 99
changing 104

language handler. See SRV_LANGUAGE event

handler 209

libtcl.cfg file 82
listening address 82
local language 120
localization 99, 107, 140
creating localized connections 103
and the CS_LOCALE structure 100, 101
of aCS_CONTEXT structure 104
of an Open Server application 100, 102
propertiesrelatedto 106
returning localization information to clients 106
and sp_serverinfo 106
supporting localized clients 100, 104
localized clients 99, 101
locking 115
logfile 90, 103, 116
configuring size of through srv_props 143
maximum size 143

Server-Library/C Reference Manual

Index

name 143

specifying through srv_props 143
truncation at startup 147
login negotiations 119
login requests 159
logout, by client 149

M

macros
capabilities 36

malloc C routine 217
maximum rows 126
memory

dlocating 141, 145, 215

freeing routines, specifying through srv_props 142
moving bytes 235

reallocation routines, specifying through srv_props

145

setting to zero 236

srv_free 280

message event 80

message handler. See SRV_MSG event handler 209
message queues

activity 148

configuring number of through srv_props 144
creating 247

definitionof 116

deleting 261

object IDs 289

sv_getmsgq 286

srv_getobjname 292
messagereplay 154

messages 27,134

chunking 38, 62

data parameters 234

definitionof 80

error 38

and event handlers 81

ID 80

number available 143

numbers 61

receiving 80

retrieving from client 80

severity 61

487

Index

text length 38 specifying through srv_props 144
types of in Open Server 108 network authentication 155
money datatype 27, 29, 207 network connections
conversionto 8-byte 150 configuring number of through srv_props 144
multithread programming 109, 119 network 1/0 buffer
and callback handlers 117, 118 configuring size of through srv_props 143
definition of thread 109 non-client events 92
and message queues 116 non-client threads 251
and mutexes 115 non-preemptive scheduling
overview of 16 definition of 113
special programming considerations 118, 119 specifying with srv_props 145
andsrv_setpri 116 non-standard SQL 125
thread scheduling 113, 115 notification
tools and techniquesfor 115, 118 registered procedures 163
typesof threads 110, 113 notification procedures 164
mutexes nullable bit datatype 26
configuring number of through srv_props 144 nuls 124
creating 249
definition of 115
deleting 263
object IDs 289 O
srv_getobjname 292 Open Server
mutual authentication 155 header files 6

position in client/server architecture 3
Open Server application
asimpleprogram 8, 10

N auxilialy 4
naming services 81, 83 contrasted with SQL Server 3
national language 120, 140, 147, 156 definitionof 3
notification of change 152 gateway 5
renegotiating 122 initializing 8
negotiated behavior 119, 122 stand-dlone 4
negotiated login open, cursor command 64
commands 134 operating system errors 91
retrieving client request for through srv_thread props options 122, 127
152 default valuesfor 123,127
negotiated packet size 152 description of 123, 127
negotiating setting and retrieving 123
capabilities 24 oserror.h header file 90
inthe SRV_CONNECT event handler 120 ospublic.h header file 116
TDS protocol level 130, 133 out-of-band attentions 26

transparently 30
viaoptions commands or language commands 122

Net-Library
providing network services 6 P
net-Library tracing file packet size 152

488 Open Server

padding 56
parameter data 134
parameters
retrieving fromaclient 135
return parameters 16
RPC 170
parseresolution trees 126
pass-through mode 99, 127, 132
gateway 127
gateway with direct security session 185, 191
negotiating the TDS level in - 130, 133
routinesusedin 131
passthrough mode 153
password
retrieving clientxd5 sviasrv_thread props 153
platform capabilities 243, 247
platform-dependent services 242
precision
decimal datatype 56, 207
preemptive thread scheduling 113, 114
definition of 113
specifying through srv_props 145
preemptivethreads 110
scheduling 242
prepared statement 83
preparing
statements 271
principals 179
priority levels 114, 153
process ID
client 150
processing parameter and row data 134
programmer-defined events 92, 97
protocol capabilities 243, 247
providers, directory services 82

Q

query
information 125
processing behavior 122
syntax 126

Server-Library/C Reference Manual

Index

R

rea-timedata 115
receiving messages 80
registered procedures
benefitsof 163
contrasted with remote procedure calls 163
definition of 14, 162
executing 165
maintaining listsof 165
stepstoregister 164
using callback handlerswith 167
registering
with adirectory 82, 142
remote passwords 152
retrieving through srv_thread_props 152
remote passwords, retrieving through srv_thread props
152
remote procedure calls 27, 96, 134, 169, 170
CS_DATAFMT structure 57
definition of 169
processing of 169
remote servers 98
passwords 153, 160
retrieving name of through srv_thread props 153
security sessions 171
renegotiating client/server behavior 122
request Capabilitiestable 25, 27
requests
dynamic SQL 84
response Capabilitiestable 29, 30
responses 145
results
order returned in 16
overview of 14
processing 15
retrieving parameter data 134
return parameters 134
processing 136
processing in a SRV_LANGUAGE event handler
138
returning parameters 134, 136
language datastream 138
returning rows 135

row data 134
rows
affected 125

489

Index

maximum 126

processing 23, 136
RPC. See Remote procedure calls 169
runqueues 114

S

sample programs Xii

See the Open Client and Open Server Programmer’s

Supplement for your platform xii
scae
decimal datatype 56, 207
scheduling threads 113, 115
secure connections 121
negotiating with client to establish 121
security datatypes 208
security labels 121, 124, 152
security levels 120
negotiation of 120
security mechanisms 170
interfacesfile 183
loca name 155
local names 179
security services 170, 196
thread properties 153
security session callback 191, 193, 196
security sessions
gateway applications 185
simple Open Server application 185
timeout 155
select query option 125
select statements 126
sending
messagesto client 81
row data 134
sensitivity datatype 27, 29, 208
server error messages 60
server name
specifying through srv_props 146
server properties
definition of 140
Server-Library
context properties 140
server-Library
version 147

490

servers
typesof servers 2

servicethreads 97, 110, 112, 162

set command 122

severity of errors 90

shared disk cluster environment
certificate 177

signals (UNIX) 279

significant byte 149

SIGTRAPsigna 258

sitehandler 110, 162

configuring number of through srv_props 144

loginrequest 159
subchannel login 159
deeping threads 114
sort order 99, 106, 140
returning information about 106
sp_ps 166, 453, 456
Sp_regcreate 456
sp_regdrop 463
sp_reglist 464
sp_regnowatch 464, 465
sp_regwatch 465, 467
sp_regwatchlist 467
sp_serverinfo 106, 467, 468
responding to sp_serverinfo requests 106
sp_terminate 166, 468, 469
sp_who 166, 469, 471
SQL queries 107
sv_dloc 215,217
sv_at bind 217, 221, 225, 229
srv_at_descampfmt 221, 225, 229
srv_at header 221, 225, 226, 229
srv_dt xferdata 221, 225, 227, 229
SRV_APPDEFINED value 152
SRV_ATTENTION event 20, 94, 119, 142
SRV_ATTENTION event handler 20, 22, 142
caling to handle client disconnect 22
SRV_BIG_ENDIAN value 149
sv_bind 134, 137, 229, 232
CS DATAFMT structure 54
srv_bmove 235, 236
SRV_BULK event 92, 94, 157, 197
SRV_BULKLOAD value 157
srv_bzero 236, 238
SRV_C_DEBUG capability 242

Open Server

SRV_C DEFAULTPRI constant 116
SRV_C_EXIT calback type 239
SRV_C_EXIT capability 242
SRV_C_EXIT statetransition 118
SRV_C_LOWPRIORITY constant 116
SRV_C_MAXPRIORITY constant 116
SRV_C _MQUEUE value 292
SRV_C MUTEX vaue 292
SRV_C_PREEMPT capability 242
SRV_C_PROCEXEC callback type 239
SRV_C_PROCEXEC statetransition 118
SRV_C_RESUME callback type 239
SRV_C_RESUME capability 242
SRV_C_RESUME statetransition 118
SRV_C_SELECT capability 242
SRV_C_SUSPEND cadllback handler 117
SRV_C_SUSPEND callback type 239
SRV_C_SUSPEND capability 242
SRV_C_SUSPEND statetransition 118
SRV_C_TIMESLICE callback type 239
SRV_C_TIMESLICE capability 242
SRV_C _TIMESLICE state transition 118
srv_calback 238, 241

in multithread programming 117, 118
srv_capability 114, 241, 242
srv_capability_info 24, 35, 36, 243, 244

event handlers 37
SRV_CHALLENGE value 152
SRV_CHAR_ASCII value 157
SRV_CHAR_EBCDICvaue 157
SRV_CHAR_UNKNOWN value 157
SRV_CLEAROPTION value 123
SRV_CLIENT logintype 159
SRV_CONNECT event 92, 94, 112
SRV_CONNECT eventhandler 31, 35,37, 120, 121,

135, 156, 185

passthrough mode 130

security sessions 186, 191

srv_getloginfo 286
SRV_CONTINUE returnvalue 241
sv_createmsgq 116, 247, 249
Sv_createmutex 251
srv_createproc 251, 253
SRV_CTL_MIGRATE 42
SRV_CUR_ASKSTATUSvaue 71
SRV_CUR _DEALLOCvdue 70,79

Server-Library/C Reference Manual

Index

SRV_CUR_DYNAMICvaue 70
SRV_CUR_HASARGSvdue 71
SRV_CUR_INFORMSTATUSvaue 71
SRV_CUR_RDONLY value 70
SRV_CUR_SETROWSvdue 71
SRV_CUR_UNUSED value 70, 71,79
SRV_CUR_UPDATABLEvdue 70,79
SRV_CURDATA typeof data 230
SRV_CURDATA value 134
SRV_CURDESC structure 65, 68, 255

curcmd field 69, 78

curidfield 72

curstatusfield 69
SRV_CURSOR event 72,94
SRV_CURSOR event handler 64, 72, 135, 255
SIV_cursor_props 65, 73, 253, 256
srv_dbg_stack 256, 258
srv_dbg_switch 258, 259
SRV_DEBUG returnvalue 241
srv_define_event 97, 259, 261
srv_deletemsgq 116, 261, 263
srv_deletemutex 263, 264
srv_descampfmt 264, 268
srv_descfmt 30, 134, 137

CS DATAFMT structure 54

SRV_CURDATA argument 73

SRV_UPCOLDATA argument 73
SRV_DISCONNECT event 92, 94, 142, 277, 279

fatal errors 91
SRV_DISCONNECT event handler 21, 97, 149
SRV_DS PROVIDER property 82,181
SRV_DYN_vdues 269
srv_dynamic 84, 268, 272
SRV_DYNAMICevent 95,271
SRV_DYNAMIC event handler 84, 135
SRV_DYNAMICDATA typeof data 230
SRV_DYNDATA value 85, 86, 87
SRV_ENCRYPT value 152
SRV_ENO_OS ERRvaue 91
srv_envchange 272, 273
SRV_EQUEUED event type 259
SRV_ERRORDATA argument 40
SRV_ERRORDATA typeof data 230
sv_event 92, 94, 96, 97, 260, 273, 277
srv_event_deferred 20, 97, 278, 280
SRV_FATAL_PROCESS error severity 91

491

Index

SRV_FATAL_SERVER error severity 91 SRV_MSG event 80, 96
SRV_FLT_ floating point formats 158 SRV_MSG event handler 93, 135
srv_free 217,280, 281 SRV_MSGDATA typeof data 230, 234
srv_freeserveraddrs 281 SRV_NEGDATA typeof data 230
srv_get text 197,281, 284 srv_negotiate 121, 314, 321
srv_getloginfo 31, 130, 284, 286 SRV_NOPARAMSvaue 81
sv_getmsgq 114, 116, 286, 289 sv_numparams 135, 170, 321, 323
srv_getobjid 289, 291 SRV_OPTION event 95, 96, 123
Ssrv_getobjname 249, 251, 291, 294 SRV_OPTION event handler
SRV_GETOPTION value 123 renegotiating behavior 122
srv_getserverbyname 294 srv_options 123, 323, 329
srv_handle 93, 294, 298 srv_orderby 329
SRV_HASPARAMSvaue 80, 81 srv_poll (UNIX only) 331, 333
SRV_|_DELETED value 288 SRV_POLL capability 242
SRV_|_INTERRUPTED value 288 SRV_PROC structure 94
SRV_I_NOEXIST value 290 SRV_PROCLIST structure 166
SRV_I_PASSTHRU_MORE value 131 srv_props 20, 139, 333, 335
SRV_I_UNKNOWN value 288, 290 sv_putmsgg 116, 340, 342
SRV_I_WOULDWAIT value 288 srv_redloc 342,344
SRV_IMAGELOAD vaue 157 srv_recvpassthru 131, 344, 346
SRV_INFO error severity 91 SIv_regereate 165, 346, 348
srv_init 298, 300 srv_regdefine 165, 348, 351

and directory services 82 srv_regdrop 165, 351, 353
SRV_KEYDATA typeof data 230 srv_regexec 165, 353, 355
srv_langepy 108, 300, 302 srv_reginit 165, 355, 358
SRV_LANGDATA type 230 srv_reglist 165, 358, 359
srv_langlen 108, 302, 304 srv_reglistfree 166, 359, 361
SRV_LANGUAGE event 95, 107 srv_regnowatch 165, 361, 363
SRV_LANGUAGE event handler 97, 107, 135 srv_regparam 165, 363, 366

optionrequests 123 srv_regwatch 165, 366, 369

renegotiating behavior 122 srv_regwatchlist 165, 369, 371
SRV_LITTLE_ENDIAN vaue 149 SRV_ROWDATA typeof data 230
srv_lockmutex 114, 304, 306 SRV_ROWDATA value 134
srv_log 90, 306, 309 SRV_RPCevent 96, 169
SRV_M_NOWAIT value 287 and registered procedures 162
SRV_M_READ_ONLY value 287 SRV_RPC event handler 135, 163, 169
SRV_M_WAIT value 287 trapping errors 170
SRV_M_WAKE_INTR 20 SRV_RPCDATA typeof data 230
srv_mask 309, 310 srv_rpedb 169, 371, 372
SRV_MAXRESMSG message ID 80 sv_rpename 169, 372, 375
SRV_MIG_STATE enumerated type 46 srv_rpcnumber 169, 375, 376
SRV_MIGRATE_RESUME 44 srv_rpcoptions 376, 378
SRV_MIGRATE_RESUME event 95 srv_rpcowner 169, 378, 379
SRV_MIGRATE_STATE 45 srv_run - 96, 379, 381
SRV_MINRESMSG message ID 80 SRV_S ALLOCFUNC property 141
sv_msg 80, 81, 310, 312 SRV_S APICHK property 141

492 Open Server

SRV_S ATTNREASON property 142
SRV_S CURTHREAD property 142
SRV_S DEFQUEUESIZE property 142
SRV_S DISCONNECT property 22, 142
SRV_S DS REGISTER property 82, 142
SRV_S DSPROVIDER property 142
SRV_S ERRHANDLE property 89, 142
SRV_S FREEFUNC property 142
SRV_S IFILE property 142

SRV_S INHIBIT property 167

SRV_S INHIBIT returnvalue 241
SRV_S LOGFILE property 143

SRV_S LOGSIZE property 90, 143
SRV_S MSGPOOL property 143
SRV_S NETBUFSIZE property 143
SRV_S NETTRACEFILE property 144
SRV_S NUMCONNECTIONS property 144
SRV_S NUMMSGQUEUES property 144
SRV_S NUMMUTEXES property 144
SRV_S NUMREMBUF property 144
SRV_S NUMREMSITES property 144
SRV_S NUMTHREADS property 144
SRV_S NUMUSEREVENTS property 144
SRV_S PREEMPT property 114, 145
SRV_S REALLOCFUNC property 145
SRV_S REQUEST_CAP property 145
SRV_S RESPONSE_CAP property 145
SRV_S RETPARAMSproperty 145
SRV_S RETPARMSproperty 145
SRV_S SEC PRINCIPAL property 146, 179
SRV_S SERVERNAME property 146
SRV_S STACKSIZE property 146

SRV_S TDSVERSION property 146, 147, 161

SRV_S TIMESLICE property 147
SRV_S TRACEFLAG property 147, 148
SRV_S TRUNCATELOG property 147
SRV_S USERVLANG property 147

SRV_S USESRVLANG property 100, 106, 156

SRV_S VERSION property 147
SRV_S VIRTCLKRATE property 147
SRV_S VIRTIMER property 147
SRV_SECLABEL vadue 152
srv_select (UNIX only) 381, 384
srv_send ctlinfo 385

srv_send data 386

srv_send_text 198, 384, 393

Server-Library/C Reference Manual

srv_senddone 393, 397
srv_sendinfo 38, 397, 401
srv_sendpassthru 132, 401, 403
srv_sendstatus 403, 405
SRV_SERVER structure 300
srv_setcolutype 405, 406
srv_setcontrol 406, 409
srv_setloginfo 31, 409, 411
SRV_SETOPTION value 123
srv_setpri 411, 413

in multithread programming 116
srv_signa (UNIX only) 413,414
SRV_SITEHANDLER logintype 159
sv_deep 112,114, 416, 419
sv_spawn - 419, 422
SRV_START event 92, 96
SRV_START handler 93
SRV_STOPevent 92, 94, 96, 277, 280

fatal errors 91

SRV_SERVER structure 300
SRV_SUBCHANNEL logintype 159
srv_symbol 422,423
SRV_T_APPLNAME property 149
SRV_T _BULKTYPE property 149, 156
SRV_T_BYTEORDER property 149
SRV_T_CHARTYPE property 157
SRV_T_CLIB property 149
SRV_T_CLIBVERS property 149
SRV_T_CLIENTLOGOUT property 149
SRV_T_CONVERTSHORT property 150
SRV_T_DUMPLOAD property 150
SRV_T_ENDPOINT property 150
SRV_T_EVENT property 150, 158
SRV_T_EVENTDATA property 150
SRV_T FLTTYPE property 150, 158
SRV_T_GOTATTENTION property 21, 150
SRV_T_HOSTNAME property 150
SRV_T_HOSTPROCID property 150
SRV_T_IODEAD property 151
SRV_T_LOCALE property 151
SRV_T_LOGINTYPE property 151, 159
SRV_T_MACHINE property 151
SRV_T_MIGRATE_STATE 151
SRV_T_MIGRATED 47
SRV_T_MIGRATED property 151
SRV_T_NEGLOGIN property 152

Index

493

Index

SRV_T_NOTIFYCHARSET property 152
SRV_T_NOTIFYDB property 152
SRV_T_NOTIFYLANG property 152
SRV_T_NUMRMTPWDS property 152
SRV_T_PACKETSIZE property 152
SRV_T_PASSTHRU property 153
SRV_T_PRIORITY property 153
SRV_T_PWD property 153
SRV_T_RETPARAMS property 153
SRV_T_RMTPWD structure 160
SRV_T_RMTPWDS property 153, 160
SRV_T_RMTSERVER property 153
SRV_T_ROWSENT property 153
SRV_T_SEC CHANBIND property 153

SRV_T_SEC CONFIDENTIALITY property 153

SRV_T_STACKLEFT property 155
SRV_T_TDSVERSION property 156
SRV_T_TYPE property 156, 162
SRV_T_USER property 156
SRV_T_USERDATA property 156

SRV_T_USESRVLANG property 100, 106, 156

SRV_T_USTATE property 156
srv_tabcolname 426, 428

caling to return browse mode results 23
srv_tabname 428, 430

calling to return browse mode results 23
SRV_TCLIENT thread type 162
SRV_TDS vadues 148,162
srv_termproc 253, 430, 431
srv_text_info 58, 197, 432, 434
SRV_TEXTLOAD value 157
srv_thread props 139, 149, 434, 436
srv_thread_props property 20

494

SRV_T_SEC_CREDTIMEOUT property 154
SRV_T_SEC_DATAORIGIN property 154
SRV_T_SEC _DELEGATION property 154
SRV_T_SEC_DELEGCRED property 154
SRV_T_SEC_DETECTREPLAY property 154
SRV_T_SEC _DETECTSEQ property 154
SRV_T_SEC_INTEGRITY property 155
SRV_T_SEC_MECHANISM property 155
SRV_T_SEC_MUTUALAUTH property 155
SRV_T_SEC_NETWORKAUTH property 155
SRV_T_SEC_SESSTIMEOUT property 155
SRV_T_SESSIONID 47

SRV_T_SPID property 155

SRV_TIMESLICE configuration parameter 118
SRV_TR_ATTNvalue 148
SRV_TR _DEFQUEUE value 148
SRV_TR_EVENT vaue 148
SRV_TR_MSGQvalue 148
SRV_TR_NETDRIVER value 148
SRV_TR_NETREQvaue 148
SRV_TR_NETWAKE value 148
SRV_TR_TDSDATA vaue 148
SRV_TR_TDSHDRvaue 148
SRV_TSERVICE thread type 162
SRV_TSITE thread type 162
SRV_TSUBPROC thread type 162
srv_ucwakeup 20
srv_ucwakeup 441
SRV_UNITEXTLOAD value 157
srv_unlockmutex 444
SRV_URGDISCONNECT event 92, 97, 277, 279
srv_version 444, 445
SRV_VIRTCLKRATE configuration parameter 118
SRV_VIRTTIMER configuration parameter 118
sv_wakeup 20, 112, 441, 445, 447
srv_xferdata 134, 138, 234, 448, 450
sv_yield 112, 114, 450, 451
SSL

certificates 177

sbC 177
stack size

threads 146
stack space

determining through srv_thread props 155
standard events 92
start handler. See SRV_START handler 209
state transition handler. See Callbacks 238
state transitions

for srv_callback 118
status values

returning to client 16
suspended threads 114
switching

thread contexts 258
system registered procedures

definition of 166

mapping to Server-Library routines 166

Open Server

T

Tabular Data Stream protocol. See TDS 3
TCL
Net-Lib driver requests 148
wakeup requests 148
TDS
definitionof 3
pass-through mode 99
protocol level 120
retrieving and setting client threadxd5 s version via
srv_thread_props 156
specifying initial version vaue for through
sv_props 146
TDS packets
header information 148
pass-through mode 129
TDSversion 147
and capabilities 37
legal values 147
negotiation 161
Technical Support xv
text andimage 196, 198
text and image data
retrieving from aclient
sendingtoaclient 197
text and image datatypes 208
text datatype 27, 29, 57, 196, 208
SIv_get_text 282
text pointer 196
text timestamp 196
transferring 157
@@textsize global variable 127
third-party security 170
threads
See also multithread programming 109
cal stack 256
communication 116
configuring number available, through srv_props
144
current state 156
definition 109
IDs 155
loginrecords 159
messages 109
non-client 251
preemptive 110

197, 198

Server-Library/C Reference Manual

properties 148, 160

stack size 146

state transitions 238
switching contexts 258
Thread Propertiestable 149, 156
types 110, 162

Index

types, retrieving clientxd5 svia srv_thread_props

156

timedicecalback 147
trace flags

summary of Open Server traceflags 148
tracing 147,148
transaction isolation 125
transferring data 137
transparent negotiation

capabilities 24
types 199, 209

30, 120

U

unchained transactions 124
updates 125

cursors 64, 67, 76
usedb command 152
user authorizations 124

user events
defining 259
number 144
user name

retrieving clientxd5 sviasrv_thread props
user-defined events 277, 280

Vv

variable-length binary datatype 26
long 26

versionstring 147

virtual timer 147

W

weeks, firstday 125
writetext stream 197

156

495

Index

X

XML datatype 204

496 Open Server

	Server-Library/C Reference Manual
	About This Book
	CHAPTER 1 Introducing Open Server
	Client/Server overview
	Types of clients
	Types of servers
	Open server configurations
	Standalone open server application
	Auxiliary open server application
	Gateway Open Server application

	Open Server
	The Open Server libraries
	Network services

	Using Open Server
	The CS_CONTEXT structure
	Steps in a simple program

	Basic Open Server program
	Open Server events
	Default event handlers
	Non client-initiated events

	Registered procedures
	Returning results to clients
	Types of result data
	Messages
	Data rows
	Parameters
	Status values

	Order of results

	Error handling
	Multithread programming
	Summary of changes for version 15.0

	CHAPTER 2 Topics
	Attention events
	Interrupt-level activity
	Coding recommendations for attention events
	Handling disconnects
	Example

	Browse mode
	Example

	Capabilities
	Request capabilities
	Response capabilities
	Transparent negotiation
	When does transparent negotiation take place?

	Server-wide defaults
	Explicit negotiation
	Negotiating capabilities one at a time
	Negotiating using a capability bitmask
	Capability macros

	Ad hoc retrieval of capability information
	A note on pre-10.0 clients
	Example

	Client command errors
	Sending messages with srv_sendinfo
	Sequencing long messages
	CS_SERVERMSG structure fields for sequenced messages

	Extended error data
	What is extended error data good for?
	Sending extended error data to a client

	Connection migration
	In-batch migration and idle migration
	Context migration
	APIs used in connection migration
	CS_REQ_MIGRATE
	SRV_CTL_MIGRATE
	SRV_MIGRATE_RESUME
	SRV_MIGRATE_STATE
	SRV_T_MIGRATE_STATE property and SRV_MIG_STATE enumerated type
	SRV_T_MIGRATED
	SRV_T_SESSIONID

	Instructing clients to migrate to a different server
	Requesting a client to migrate
	Managing the connect (SRV_CONNECT) event
	Managing the migrate state (SRV_MIGRATE_STATE) event
	Sharing client context
	Managing the migrate resume (SRV_MIGRATE_RESUME) event
	Managing the disconnect (SRV_DISCONNECT) event
	Managing in-batch migration
	Attention handling
	Disconnecting Open Server

	Accepting connections from migrated clients
	Error messages

	CS_BROWSEDESC structure
	CS_DATAFMT structure
	CS_IODESC structure
	CS-Library
	Common routines
	Common data structures
	Error handling

	CS_SERVERMSG structure
	Cursors
	Cursor overview
	Advantages of cursors
	Open Server applications and cursors
	How are cursor requests generated?
	Types of cursor commands
	How is cursor information exchanged with a client?
	SRV_CURDESC structure
	Values for curstatus
	Values for curcmd

	Handling cursor requests
	How to respond to specific requests

	Key data
	Update columns
	Example

	Scrollable cursors
	SRV_CURDESC2 structure
	Values for curstatus
	Values for curcmd
	srv_cursor_props2 routine

	Data stream messages
	Data stream messages overview
	Retrieving client data stream messages
	Sending data stream messages to a client

	Directory services
	Specifying a directory driver
	Registering an Open Server application with a directory

	Dynamic SQL
	Advantages of dynamic SQL
	Handling dynamic SQL requests
	The srv_dynamic routine
	Detecting a command type
	Responding to client dynamic SQL commands

	Example

	Errors
	Types of errors
	Severity of errors
	Operating system errors

	Error numbers and corresponding message text
	Example

	Events
	Event overview
	What is an event handler?
	Default and custom handlers
	Coding custom handlers

	Standard events
	Programmer-defined events
	Example

	Gateway applications
	Passthrough mode

	International support
	Localizing an Open Server application
	Supporting localized clients
	Using a CS_LOCALE structure to set custom localization values
	Localizing CS-Library messages for clients
	Creating localized connections for gateway applications
	Localizing a CS_CONTEXT structure

	Responding to client requests
	Requests to change language and character set
	Requests for localization information

	Localization properties
	Localization examples

	Language calls
	Login redirection and extended HA failover support
	Messages
	Multithread programming
	What is a thread?
	Thread types
	Preemptive threads
	Thread-safe functions
	Thread-safe code and preemptive mode
	Implementation specifics
	Event-driven threads
	Service threads
	Site-handler threads

	Scheduling
	Scheduling methods
	Selecting a thread to resume

	Tools and techniques
	Mutexes
	Message queues
	Protecting critical sections
	Callback routines

	Programming considerations
	Example

	Negotiated behavior
	Login negotiations
	Transparent negotiation
	Explicit negotiation
	Negotiating a secure connection

	Ad hoc negotiations
	Example

	Options
	Inside the SRV_OPTION event handler
	Option descriptions and default values
	Example

	Partial update
	Open Server set-up
	sp_mda
	SRV_T_BULKTYPE
	Handlers

	Passthrough mode
	Regular passthrough mode
	Negotiating the TDS protocol level in passthrough mode
	Using regular passthrough mode
	Example

	Event handler passthrough mode
	Coding and installing a full passthrough event handler
	Enabling event handler passthrough mode for a thread
	Negotiating the TDS protocol level

	Processing parameter and row data
	A note on terminology
	The Open Server data processing model
	Retrieving parameters
	Returning rows
	Returning return parameters
	A closer look at describing, binding, and transferring
	Describing
	Binding
	Transferring
	Automatic conversion

	Returning parameters in a language data stream
	Example

	Properties
	Context properties
	Server properties
	SRV_S_TDSVERSION
	SRV_S_TRACEFLAG

	Thread properties
	SRV_T_BULKTYPE
	SRV_T_CHARTYPE
	SRV_T_ENDPOINT
	SRV_T_EVENT
	SRV_T_FLTTYPE
	SRV_T_LOGINTYPE
	SRV_T_MIGRATED
	SRV_T_MIGRATE_STATE
	SRV_T_RMTPWDS
	SRV_T_SESSIONID
	SRV_T_TDSVERSION
	SRV_T_TYPE

	Registered procedures
	Standard remote procedure calls
	Advantages of registered procedures
	Notification procedures
	Creating registered procedures
	The mechanics of registered procedures
	Registering procedures
	Executing registered procedures
	Maintaining lists

	System registered procedures
	Using callback handlers with registered procedures
	Example

	Remote procedure calls
	Example

	Security services
	Security service properties
	Login authentication services
	Per-packet security services
	SSL overview

	How do security services work with Open Server?
	Steps involved in a Client/Server dialog using security services

	Using security mechanisms with Open Server applications
	Security drivers
	libtcl.cfg configuration file
	Object identifiers
	Changes to the interfaces file
	Changes to the interfaces file: the SSL filter

	Determining which security services are active
	Scenarios for using security services with Open Server applications
	Simple application using a security session
	Gateway application with separate security sessions
	Gateway with separate security sessions using delegation
	Full passthrough gateway with direct security session

	Text and image
	Processing text and image data
	Retrieving data from a client
	Returning data to a client

	Example

	Types
	Routines that manipulate datatypes
	Open Server datatypes
	Binary types
	Bit type
	Character types
	XML type
	Datetime types
	Integer types
	Real, float, numeric, and decimal types
	Money types
	Security types
	Text and image types

	CHAPTER 3 Routines
	srv_alloc
	srv_alt_bind
	srv_alt_descfmt
	srv_alt_header
	srv_alt_xferdata
	srv_bind
	srv_bmove
	srv_bzero
	srv_callback
	srv_capability
	srv_capability_info
	srv_createmsgq
	srv_createmutex
	srv_createproc
	srv_cursor_props
	srv_dbg_stack
	srv_dbg_switch
	srv_define_event
	srv_deletemsgq
	srv_deletemutex
	srv_descfmt
	srv_dynamic
	srv_envchange
	srv_event
	srv_event_deferred
	srv_free
	srv_freeserveraddrs
	srv_get_text
	srv_getloginfo
	srv_getmsgq
	srv_getobjid
	srv_getobjname
	srv_getserverbyname
	srv_handle
	srv_init
	srv_langcpy
	srv_langlen
	srv_lockmutex
	srv_log
	srv_mask
	srv_msg
	srv_negotiate
	srv_numparams
	srv_options
	srv_orderby
	srv_poll (UNIX only)
	srv_props
	srv_putmsgq
	srv_realloc
	srv_recvpassthru
	srv_regcreate
	srv_regdefine
	srv_regdrop
	srv_regexec
	srv_reginit
	srv_reglist
	srv_reglistfree
	srv_regnowatch
	srv_regparam
	srv_regwatch
	srv_regwatchlist
	srv_rpcdb
	srv_rpcname
	srv_rpcnumber
	srv_rpcoptions
	srv_rpcowner
	srv_run
	srv_s_ssl_local_id
	srv_select (UNIX only)
	srv_send_ctlinfo
	srv_send_data
	srv_send_text
	srv_senddone
	srv_sendinfo
	srv_sendpassthru
	srv_sendstatus
	srv_setcolutype
	srv_setcontrol
	srv_setloginfo
	srv_setpri
	srv_signal (UNIX only)
	srv_sleep
	srv_spawn
	srv_symbol
	srv_tabcolname
	srv_tabname
	srv_termproc
	srv_text_info
	srv_thread_props
	srv_timedsleep
	srv_ucwakeup
	srv_unlockmutex
	srv_version
	srv_wakeup
	srv_xferdata
	srv_yield

	CHAPTER 4 System Registered Procedures
	sp_ps
	sp_regcreate
	sp_regdrop
	sp_reglist
	sp_regnowatch
	sp_regwatch
	sp_regwatchlist
	sp_serverinfo
	sp_terminate
	sp_who

	Glossary
	Index

