
Server-Library/C Reference Manual

Open Server™
15.0



DOCUMENT ID: DC35400-01-1500-05

LAST REVISED: December 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed 
are trademarks of Sybase, Inc.  ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

Server-Library/C Reference Manual iii

About This Book ...........................................................................................................................  xi

CHAPTER 1 Introducing Open Server ................................................................  1
Client/Server overview .....................................................................  1
Types of clients ................................................................................  2
Types of servers...............................................................................  2
Open server configurations ..............................................................  3

Standalone open server application ..........................................  4
Auxiliary open server application...............................................  4
Gateway Open Server application.............................................  5

Open Server .....................................................................................  5
The Open Server libraries .........................................................  6
Network services .......................................................................  6

Using Open Server...........................................................................  7
The CS_CONTEXT structure ....................................................  7
Steps in a simple program.........................................................  7

Basic Open Server program.............................................................  8
Open Server events .......................................................................  13

Default event handlers ............................................................  14
Non client-initiated events .......................................................  14

Registered procedures ...................................................................  14
Returning results to clients .............................................................  15

Types of result data.................................................................  15
Order of results........................................................................  16

Error handling.................................................................................  16
Multithread programming ...............................................................  17
Summary of changes for version 15.0............................................  17

CHAPTER 2 Topics.............................................................................................  19
Attention events .............................................................................  20

Interrupt-level activity ..............................................................  20
Coding recommendations for attention events........................  21
Handling disconnects ..............................................................  21



Contents

iv Open Server

Example ..................................................................................  22
Browse mode .................................................................................  22

Example ..................................................................................  24
Capabilities.....................................................................................  24

Request capabilities ................................................................  25
Response capabilities .............................................................  28
Transparent negotiation ..........................................................  30
Server-wide defaults................................................................  31
Explicit negotiation ..................................................................  35
Ad hoc retrieval of capability information.................................  37
A note on pre-10.0 clients .......................................................  37
Example ..................................................................................  37

Client command errors...................................................................  38
Sending messages with srv_sendinfo .....................................  38
Sequencing long messages ....................................................  38
Extended error data.................................................................  39

Connection migration .....................................................................  40
In-batch migration and idle migration ......................................  40
Context migration ....................................................................  41
APIs used in connection migration ..........................................  42
Instructing clients to migrate to a different server....................  48
Accepting connections from migrated clients ..........................  52
Error messages .......................................................................  52

CS_BROWSEDESC structure .......................................................  52
CS_DATAFMT structure ................................................................  54
CS_IODESC structure ...................................................................  57
CS-Library ......................................................................................  59

Common routines ....................................................................  59
Common data structures .........................................................  60
Error handling..........................................................................  60

CS_SERVERMSG structure ..........................................................  60
Cursors...........................................................................................  63

Cursor overview ......................................................................  63
Advantages of cursors.............................................................  63
Open Server applications and cursors ....................................  64
Handling cursor requests ........................................................  72
Key data ..................................................................................  76
Update columns ......................................................................  76
Example ..................................................................................  76

Scrollable cursors...........................................................................  77
SRV_CURDESC2 structure ....................................................  77

Data stream messages ..................................................................  80
Data stream messages overview ............................................  80
Retrieving client data stream messages .................................  80



Contents

Server-Library/C Reference Manual v

Sending data stream messages to a client .............................  81
Directory services...........................................................................  81

Specifying a directory driver ....................................................  82
Registering an Open Server application with a directory ........  82

Dynamic SQL .................................................................................  83
Advantages of dynamic SQL...................................................  83
Handling dynamic SQL requests.............................................  84
Example ..................................................................................  89

Errors .............................................................................................  89
Types of errors ........................................................................  90
Severity of errors .....................................................................  90
Error numbers and corresponding message text ....................  91
Example ..................................................................................  92

Events ............................................................................................  92
Event overview ........................................................................  92
What is an event handler?.......................................................  93
Standard events ......................................................................  93
Programmer-defined events....................................................  97
Example ..................................................................................  97

Gateway applications .....................................................................  98
Passthrough mode ..................................................................  99

International support ......................................................................  99
Localizing an Open Server application..................................  100
Supporting localized clients...................................................  101
Using a CS_LOCALE structure to set custom localization values 

101
Responding to client requests ...............................................  104
Localization properties ..........................................................  106
Localization examples ...........................................................  107

Language calls .............................................................................  107
Login redirection and extended HA failover support ....................  108
Messages.....................................................................................  109
Multithread programming .............................................................  109

What is a thread? ..................................................................  109
Thread types .........................................................................  110
Scheduling.............................................................................  113
Tools and techniques ............................................................  115
Programming considerations.................................................  118
Example ................................................................................  119

Negotiated behavior .....................................................................  119
Login negotiations .................................................................  120
Ad hoc negotiations...............................................................  122
Example ................................................................................  122

Options.........................................................................................  122



Contents

vi Open Server

Inside the SRV_OPTION event handler................................  123
Option descriptions and default values .................................  123
Example ................................................................................  127

Partial update ...............................................................................  127
Open Server set-up ...............................................................  127

Passthrough mode .......................................................................  129
Regular passthrough mode ...................................................  130
Event handler passthrough mode .........................................  132

Processing parameter and row data ............................................  134
A note on terminology ...........................................................  134
The Open Server data processing model..............................  134
Retrieving parameters ...........................................................  135
Returning rows ......................................................................  136
Returning return parameters .................................................  136
A closer look at describing, binding, and transferring............  136
Returning parameters in a language data stream.................  138
Example ................................................................................  139

Properties.....................................................................................  139
Context properties .................................................................  140
Server properties...................................................................  141
Thread properties ..................................................................  148

Registered procedures.................................................................  162
Standard remote procedure calls ..........................................  163
Advantages of registered procedures ...................................  163
Notification procedures..........................................................  164
Creating registered procedures.............................................  164
The mechanics of registered procedures ..............................  164
System registered procedures ..............................................  166
Using callback handlers with registered procedures .............  167
Example ................................................................................  169

Remote procedure calls ...............................................................  169
Example ................................................................................  170

Security services ..........................................................................  170
Security service properties ....................................................  171
How do security services work with Open Server? ...............  179
Using security mechanisms with Open Server applications..  181
Determining which security services are active.....................  184
Scenarios for using security services with Open Server 

applications.....................................................................  185
Text and image ............................................................................  196

Processing text and image data ............................................  197
Example ................................................................................  198

Types ...........................................................................................  199
Routines that manipulate datatypes ......................................  201



Contents

Server-Library/C Reference Manual vii

Open Server datatypes .........................................................  201

CHAPTER 3 Routines.......................................................................................  211
srv_alloc .......................................................................................  215
srv_alt_bind..................................................................................  217
srv_alt_descfmt ............................................................................  221
srv_alt_header .............................................................................  225
srv_alt_xferdata............................................................................  228
srv_bind........................................................................................  229
srv_bmove....................................................................................  235
srv_bzero .....................................................................................  236
srv_callback .................................................................................  238
srv_capability ...............................................................................  242
srv_capability_info........................................................................  243
srv_createmsgq............................................................................  247
srv_createmutex...........................................................................  249
srv_createproc .............................................................................  251
srv_cursor_props .........................................................................  253
srv_dbg_stack ..............................................................................  256
srv_dbg_switch ............................................................................  258
srv_define_event..........................................................................  259
srv_deletemsgq............................................................................  261
srv_deletemutex...........................................................................  263
srv_descfmt..................................................................................  265
srv_dynamic .................................................................................  268
srv_envchange.............................................................................  273
srv_event......................................................................................  275
srv_event_deferred ......................................................................  278
srv_free ........................................................................................  280
srv_freeserveraddrs .....................................................................  281
srv_get_text..................................................................................  282
srv_getloginfo...............................................................................  284
srv_getmsgq.................................................................................  286
srv_getobjid..................................................................................  289
srv_getobjname............................................................................  292
srv_getserverbyname...................................................................  294
srv_handle....................................................................................  295
srv_init ..........................................................................................  298
srv_langcpy ..................................................................................  300
srv_langlen...................................................................................  302
srv_lockmutex ..............................................................................  304
srv_log..........................................................................................  307
srv_mask......................................................................................  309
srv_msg........................................................................................  311



Contents

viii Open Server

srv_negotiate................................................................................  314
srv_numparams ...........................................................................  321
srv_options...................................................................................  323
srv_orderby ..................................................................................  329
srv_poll (UNIX only) .....................................................................  331
srv_props .....................................................................................  334
srv_putmsgq.................................................................................  340
srv_realloc....................................................................................  342
srv_recvpassthru..........................................................................  344
srv_regcreate ...............................................................................  346
srv_regdefine ...............................................................................  348
srv_regdrop ..................................................................................  352
srv_regexec..................................................................................  354
srv_reginit.....................................................................................  356
srv_reglist.....................................................................................  358
srv_reglistfree...............................................................................  360
srv_regnowatch............................................................................  361
srv_regparam ...............................................................................  363
srv_regwatch................................................................................  366
srv_regwatchlist ...........................................................................  369
srv_rpcdb .....................................................................................  371
srv_rpcname ................................................................................  372
srv_rpcnumber .............................................................................  375
srv_rpcoptions..............................................................................  376
srv_rpcowner................................................................................  378
srv_run .........................................................................................  380
srv_s_ssl_local_id ........................................................................  381
srv_select (UNIX only) .................................................................  381
srv_send_ctlinfo ...........................................................................  385
srv_send_data..............................................................................  386
srv_send_text...............................................................................  390
srv_senddone...............................................................................  393
srv_sendinfo.................................................................................  398
srv_sendpassthru.........................................................................  401
srv_sendstatus .............................................................................  404
srv_setcolutype ............................................................................  405
srv_setcontrol ...............................................................................  407
srv_setloginfo ...............................................................................  409
srv_setpri......................................................................................  411
srv_signal (UNIX only) .................................................................  413
srv_sleep......................................................................................  416
srv_spawn ....................................................................................  419
srv_symbol ...................................................................................  422
srv_tabcolname............................................................................  426



Contents

Server-Library/C Reference Manual ix

srv_tabname ................................................................................  429
srv_termproc ................................................................................  431
srv_text_info.................................................................................  432
srv_thread_props .........................................................................  435
srv_timedsleep .............................................................................  440
srv_ucwakeup ..............................................................................  441
srv_unlockmutex ..........................................................................  443
srv_version...................................................................................  444
srv_wakeup ..................................................................................  445
srv_xferdata .................................................................................  448
srv_yield .......................................................................................  450

CHAPTER 4 System Registered Procedures.................................................  453
sp_ps............................................................................................  453
sp_regcreate ................................................................................  456
sp_regdrop ...................................................................................  463
sp_reglist......................................................................................  464
sp_regnowatch.............................................................................  465
sp_regwatch.................................................................................  465
sp_regwatchlist ............................................................................  467
sp_serverinfo................................................................................  467
sp_terminate ................................................................................  468
sp_who.........................................................................................  470

Glossary .....................................................................................................................................  473

Index ...........................................................................................................................................  481



Contents

x Open Server



Server-Library/C Reference Manual xi

About This Book

This manual, the Open Server Server-Library/C Reference Manual, 
contains reference information for the C version of Open Server™ Server-
Library.

Audience The Open Server Server-Library/C Reference Manual is designed as a 
reference manual for programmers who are writing Open Server 
applications. It is written for application programmers who are familiar 
with the C programming language.

How to use this book When writing an Open Server application, use the Open Server Server-
Library/C Reference Manual as a source of reference information.

Chapter 1, “Introducing Open Server,” contains a brief introduction to 
Open Server.

Chapter 2, “Topics,”contains information on how to accomplish specific 
programming tasks, such as using Server-Library routines to read a text 
or image value from the server. This chapter also contains information on 
Open Server structures, programming techniques, and error handling.

Chapter 3, “Routines,” contains specific information about each Server-
Library routine, such as what parameters the routine accepts and what 
values it returns.

Chapter 4, “System Registered Procedures,”contains information on the 
registered procedures that Server-Library automatically provides. It 
includes a description of parameters, results, and messages.

Glossary words appear in bold the first time they are used in the text of 
this manual.

Related documents The Sybase® document set includes a wide range of user guides and 
reference manuals that describe all aspects of the Sybase relational 
database management system. Because application development can draw 
on a number of different parts of the Sybase system, you may encounter 
most of the Sybase document set at some time or another. A few manuals 
that will prove to be particularly useful: 



 

xii  Open Server

• The Open Server and SDK New Features for Microsoft Windows, Linux, 
and UNIX, which describes new features available for Open Server and 
the Software Developer’s Kit. This document is revised to include new 
features as they become available.

• The Open Client™ Client-Library/C Reference Manual contains reference 
information for Client-Library™, a collection of routines for use in 
writing client applications.

• The Open Client DB-Library/C Reference Manual describes DB-
Library™. Like Client-Library, DB-Library is a collection of routines for 
use in writing client applications.

• The Sybase Adaptive Server® Enterprise Reference Manual describes 
Transact-SQL®, the database language an application uses to create and 
manipulate Sybase Adaptive Server Enterprise database objects.

• The SDK and Open Server Installation Guide for Microsoft Windows and 
SDK and Open Server Installation Guide for UNIX explain how to install 
Open Server.

• The Open Client and Open Server Common Libraries Reference Manual 
contains reference information for: 

• CS-Library

• Bulk-Library

• The Open Client and Open Server Programmer’s Supplement for your 
platform contains platform-specific programming information, including 
information about: 

• Compiling and linking an application

• The sample programs that are included with Open Client and Open 
Server products

• Routines that have platform-specific behaviors

• The Open Client and Open Server Configuration Guide for your platform 
contains platform-specific configuration information, including 
information about: 

• The interfaces file

• Localization

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 



     About This Book

Server-Library/C Reference Manual xiii

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://www.sybase.com/support/manuals/.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe 
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at 
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base 
Product; or select the platform and product under Search by Platform.



 

xiv  Open Server

3 Select Search to display the availability and certification report for the 
selection.

❖ Creating a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and 
software 
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at 
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name 
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is 
displayed.

Padlock icons indicate that you do not have download authorization for 
certain EBF/Maintenance releases because you are not registered as a 
Technical Support Contact. If you have not registered, but have valid 
information provided by your Sybase representative or through your 
support contract, click Edit Roles to add the “Technical Support Contact” 
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the 
product description to download the software.

Conventions Table 1: Syntax conventions

Key Definition 

command Command names, command option names, utility names, 
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are 
in italics.

{ } Curly braces indicate that you choose at least one of the 
enclosed options. Do not include braces in your option.



     About This Book

Server-Library/C Reference Manual xv

Online help Open Server version 15.0 includes a number of sample Open Server 
application programs. They are located in 
$SYBASE/$SYBASE_OCS/sample/srvlibrary for UNIX, and 
%SYBASE%\%SYBASE_OCS%\sample\srvlib for Microsoft Windows. The 
Open Client and Open Server Programmer’s Supplement for your platform 
summarizes each sample program and describes the requirements for running 
each.

If you have access to a SQL Server version 10.0 or later, you can use sp-syntax, 
a Sybase system procedure, to retrieve the syntax of Server-Library routines. 
For information on how to install sp-syntax, see the System Administration 
Guide for your platform. For information on how to run sp-syntax, see its 
reference page in the Adaptive Server Enterprise Reference Manual.

Accessibility 
features

This document is available in an HTML version that is specialized for 
accessibility. You can navigate the HTML with an adaptive technology such as 
a screen reader, or view it with a screen enlarger. 

Open Client and Open Server documentation has been tested for compliance 
with U.S. government Section 508 Accessibility requirements. Documents that 
comply with Section 508 generally also meet non-U.S. accessibility guidelines, 
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note  You might need to configure your accessibility tool for optimal use. 
Some screen readers pronounce text based on its case; for example, they 
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as 
words. You might find it helpful to configure your tool to announce syntax 
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase 
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility 
site includes links to information on Section 508 and W3C standards.

[ ] Brackets mean choosing one or more of the enclosed items is 
optional. Do not include brackets in your option.

( ) Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options 
shown.

, The comma means you can choose as many of the options 
shown as you like, separating your choices with commas to 
be typed as part of the command.

Key Definition 



 

xvi  Open Server

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.



Server-Library/C Reference Manual 1

C H A P T E R  1 Introducing Open Server

This chapter contains the following topics:

Client/Server overview
Client/server architecture divides the work of computing between clients 
and servers.

Clients make requests of servers and process the results of those requests. 
For example, a client application might request temperature data from a 
database server. Another client application might send a request to an 
environmental control server to lower the temperature in a room.

Servers respond to requests by returning data or other information to 
clients, or by taking some action. For example, a database server returns 
tabular data and information about that data to clients, and an electronic 
mail server directs incoming mail toward its final destination.

Topic Page
Client/Server overview 1

Types of clients 2

Types of servers 2

Open server configurations 3

Open Server 5

Using Open Server 7

Basic Open Server program 8

Open Server events 13

Registered procedures 14

Returning results to clients 15

Error handling 16

Multithread programming 17

Summary of changes for version 15.0 17



Types of clients 

2  Open Server

Client/server architecture has several advantages over traditional program 
architectures: 

• Application size and complexity can be significantly reduced, because 
common services are handled in a single location, the server. This 
simplifies client applications, reduces duplicate code, and makes 
application maintenance easier.

• Client/server architecture facilitates communication between varied 
applications. Client applications that use dissimilar communication 
protocols cannot communicate directly, but can communicate through a 
server that “speaks” both protocols, known as a gateway.

• Client/server architecture enables applications to be developed with 
distinct components. These components can be modified or replaced 
without affecting other parts of the application.

Types of clients
A client is any application that makes requests of a server. Sybase clients 
include: 

• Sybase SQL Toolset™ products

• Standalone utilities provided with Adaptive Server Enterprise, such as isql 
and bcp

• Applications written using Open Client libraries

• Applications written using Embedded SQL™

• PowerBuilder® applications

Types of servers
The Sybase product line includes servers and tools for building servers: 

• Adaptive Server Enterprise is a database server. An Adaptive Server 
Enterprise manages information stored in one or more databases.



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 3

• Open Server provides the tools and interfaces needed to create a custom 
server. A custom server built with Open Server is called an “Open Server 
application.” 

An Open Server application can be any type of server. For example, an Open 
Server application can perform specialized calculations, provide access to real-
time data, or interface with services such as electronic mail. You create an 
Open Server application using the building blocks provided by Open Server 
Server-Library.

Adaptive Server Enterprise and Open Server applications are similar in some 
ways: 

• Adaptive Server Enterprise and Open Server applications are both servers 
that respond to client requests.

• Clients communicate with both Adaptive Server Enterprise and Open 
Server applications through Open Client libraries.

But they also differ: 

• An application programmer must create an Open Server application, using 
Open Server’s building blocks and supplying custom code. Adaptive 
Server Enterprise is complete and does not require custom code.

• An Open Server application can be any kind of server, and can be written 
to understand any language. Adaptive Server Enterprise is a database 
server, and understands only Transact-SQL.

• An Open Server application can communicate with “foreign” applications 
and servers that are not based on Sybase’s Tabular Data Stream™, or TDS, 
protocol. It can also communicate with Sybase applications and servers. 
Adaptive Server Enterprise can communicate directly only with Sybase 
applications and servers. To communicate with foreign applications and 
servers, Adaptive Server Enterprise must use an Open Server gateway 
application as an intermediary.

Open server configurations
An Open Server application’s position in the client/server architecture depends 
on its function. Open Server applications fall into one of three functional 
categories: 

• Standalone



Open server configurations 

4  Open Server

• Auxiliary

• Gateway

Standalone open server application
A client can connect directly to a standalone Open Server application.

The client submits requests to the server using: 

• Remote Procedure Calls (RPCs), which allow you to execute registered 
procedures on an Open Server application. Registered procedures are 
defined pieces of Open Server code stored by the Open Server application. 
They can be user-defined or system-defined procedures.

• A cursor command.

• Any other kind of client command.

The Open Server application programmer supplies code to process client 
commands.

The standalone Open Server application makes no external requests to respond 
to a client request.

Auxiliary open server application
An auxiliary Open Server application can support Adaptive Server Enterprise 
by processing RPCs:

The client connects directly to Adaptive Server Enterprise and uses Transact-
SQL for its language requests. To execute a registered procedure on the Open 
Server application, the client prefixes the procedure name with the name of the 
Open Server application in the Transact-SQL statement, which causes 
Adaptive Server Enterprise to initiate an RPC. For example, this client 
statement causes the procedure “print_calls” to be executed on the Open Server 
application named “OpnSrv211”: 

exec OpnSrv211...print_calls

An RPC is the only type of client command that can be sent to an Open Server 
application directly from an Adaptive Server Enterprise. You can initiate the 
RPC calls by using stored procedures, triggers, or threshold management in 
Adaptive Server Enterprise. RPCs give you access to: 



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 5

• Operating system functionality, such as sending e-mail and printing.

• Whatever functions you have defined in your Open Server application 
code.

The Open Server application can return information to the Adaptive Server 
Enterprise, or back to the client through Adaptive Server Enterprise.

Using server-to-server RPCs, an Open Server application can perform 
specialized calculations, provide access to real-time data, and permit Adaptive 
Server Enterprise to access services such as electronic mail.

Gateway Open Server application
A gateway server enables a client to access a server that may or may not be able 
to accept the client connection directly. The gateway does not have to connect 
to an Adaptive Server Enterprise or, for that matter, to any DBMS server. It 
could connect to a file system or an application program that can act as a server.

An Open Server application that accesses an Adaptive Server Enterprise or 
another Open Server application includes both Client-Library and Server-
Library routines. It assumes both client and server roles. In the server role, it 
uses Open Server to interface with clients. In the client role, it uses Client-
Library routines to send requests to, and receive results from, an Adaptive 
Server Enterprise or another Open Server. See “Gateway applications” on page 
98 for details.

The gateway above connects clients to an Adaptive Server Enterprise. The 
dotted lines in the illustration indicate that this particular gateway uses “TDS 
passthrough mode,” a low-overhead method of passing requests and results 
between Sybase clients and Sybase servers. See “Passthrough mode” on page 
129 for details.

Open Server
Open Server provides the tools and interfaces needed to create custom server 
applications.

Broadly speaking, Open Server contains a programming interface, in the form 
of libraries of functions, and network services.



Open Server 

6  Open Server

The Open Server libraries
The libraries that make up the Open Server programming interface are: 

• Server-Library, a collection of routines for use in writing server 
applications. Server-Library includes routines that: 

• Listen for commands from clients

• Return results to clients

• Set application attributes

• Handle error conditions

• Schedule interactions with clients

• Provide a variety of information about client connections

• CS-Library, a collection of utility routines that are useful to both client and 
server applications. All Server-Library programs must include at least one 
call to CS-Library, because Server-Library routines use a structure that is 
allocated in CS-Library.

Both Open Client and Open Server use CS-Library, which contains utility 
routines for both client and server applications.

Standalone and auxiliary Open Server applications include calls to Server-
Library and CS-Library. Gateway applications include calls to Server-Library, 
CS-Library, and Client-Library.

Open Server also contains a set of header files that define structures, types, and 
values used by Server-Library routines. They are: 

• ospublic.h

• oserror.h

• oscompat.h

Network services
Open Server network services are, in most cases, transparent to Open Server 
developers and end users of Open Server applications. On PC platforms, 
however, networking services are externalized.

Network services include Net-Library, which provides support for specific 
network protocols, such as TCP/IP.



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 7

Using Open Server
You write an Open Server application by using calls to Server-Library and CS-
Library routines to set up structures, listen for connection requests from clients 
and other servers, process client requests, and clean up memory. A gateway 
application also includes calls to Client-Library routines.

An Open Server application program is compiled in the same way as any other 
C language program. On most UNIX platforms, you need to include these 
libraries when you compile and link your program (file names or extensions 
may vary by platform): 

• libsybsrv.a

• libsybcs.a

• libsybcomn.a

• libsybtcl.a

• libsybintl.a

• libsybblk.a – if you are using bulk copy routines

• libsybct.a – if you are using a gateway

The library files are located in the $SYBASE/$SYBASE_OCS/lib directory.

The CS_CONTEXT structure
An Open Server application requires a CS_CONTEXT structure, which 
defines a particular application “context,” or operating environment. A 
CS_CONTEXT structure contains localization information, as well as server-
wide control information. The first step in any Open Server application 
program is to call cs_ctx_alloc to allocate a CS_CONTEXT structure.

An application programmer shapes an application’s behavior and attributes by 
manipulating the contents of the application’s CS_CONTEXT structure. See 
“Properties” on page 139 for more information.

Steps in a simple program
On most platforms, creating a simple Open Server application program 
involves these steps:



Basic Open Server program 

8  Open Server

The sample program in the following section demonstrates all but step 4; it 
does not install user-defined event handlers. Therefore, the default handlers 
will execute instead.

Basic Open Server program
This code illustrates the basic framework of an Open Server application 
program: 

/*
 **    This program demonstrates the minimum steps necessary 
 **    to initialize and start up an Open Server application. 
 **    No user-defined event handlers are installed, therefore
 **    the default handlers will execute instead. 
 */

/*
 ** Include the required Open Server header files.

Step Function Routines

1 Set up the Open Server operating environment 
by allocating structures and setting global 
attributes, known as properties.

cs_ctx_alloc

srv_version

srv_props

2 Define error handling. Applications may install 
an error handling routine, which Open Server 
calls when it detects an error. Applications may 
also call the srv_sendinfo routine on an ad hoc 
basis to send error messages to the client, or 
srv_log to write to the log file. See “Errors” on 
page 89 for details.

srv_props(SRV_S_
ERRHANDLE)

3 Initialize the server. srv_init

4 Install event-handling routines, which Open 
Server calls when client commands trigger 
Open Server events. An Open Server 
application does most of its work inside its 
event-handling routines. Refer to “Open 
Server events” on page 13 for more 
information.

srv_handle

5 Start the server running. In this state, the server 
simply listens for client requests.

srv_run

6 Clean up and exit. cs_ctx_drop



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 9

 **
 **    ospublic.h: Public Open Server structures, typedefs,
 **    defines, and function prototypes.
 **
 **    oserror.h:   Open Server error number #defines. This header
 **    file is only required if the Open Server application wants
 **    to detect specific errors inside the Open Server error
 **    handler.
 */

#include        <ospublic.h>
 #include        <oserror.h>

/*
 **    Include the operating system specific header files required
 **    by this Open Server application.
 */
 #include        <stdio.h>

 /*
 ** Local defines.
 **
 **    OS_ARGCOUNT    Expected number of command line arguments
 */
 #define        OS_ARGCOUNT    2
 
 
 /*
 **    This Open Server application expects the following 
 **    command line arguments:
 **
 **    servername: The name of the Open Server application.
 **
 **    This name must exist in the interfaces file defined by
 **    the SYBASE environment variable.
 **
 ** Returns:
 **    0        Open Server exited successfully.
 **    1        An error was detected during initialization.
 */

 int    main(argc, argv)
 int    argc;
 char    *argv[];
 {
     CS_CONTEXT    *cp;              /* Context structure */  
     CS_CHAR       *servername;      /* Open Server name */



Basic Open Server program 

10  Open Server

     CS_CHAR       logfile[512];     /* Log file name */ 
     CS_BOOL       ok;               /* Error control flag */
     SRV_SERVER    *ssp;             /* Server control structure*/
 
     /* Initialization.      */
     ok = CS_TRUE;
 
     /*
     ** Read the command line options.  There must be one
     ** argument specifying the server name.
     */

     if(argc != OS_ARGCOUNT)
     {
         (CS_VOID)fprintf(stderr, "Invalid number of
         arguments(%d)\n",argc);

         (CS_VOID)fprintf(stderr, "Usage: <program> 
         <server name>\n");
         exit(1);
     }
 
     /*
     ** Initialize ‘servername' to the command line argument
     ** provided.
     */

     servername = (CS_CHAR *)argv[1];
 
     /*
     ** Allocate a CS-Library context structure to define the
     ** default localization information.  Open Server 
     ** also stores global state information in this structure
     ** during initialization.

     */
     if(cs_ctx_alloc(CS_VERSION_110, &cp) != CS_SUCCEED)
     {
         (CS_VOID)fprintf(stderr, "%s: cs_ctx_alloc failed",
         servername);
         exit(1);
     }
 
     /*
     ** Default Open Server localization information can be
     ** changed here before calling srv_version, using cs_config



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 11

     ** and cs_locale.
     */
 
     /*
     ** Set the Open Server version and context information
     */
     if(srv_version(cp, CS_VERSION_110) != CS_SUCCEED)
     {
         /*
         ** Release the context structure already allocated.
         */
         (CS_VOID)cs_ctx_drop(cp);
 
         (CS_VOID)fprintf(stderr, "%s: srv_version failed",
         servername);
         exit(1);
     }
 
     /*
     ** There is no error handler installed in this sample
     ** Open Server application.  Any errors detected by Open
     ** Server are written to the Open Server log file
     ** configured below.  A real Open Server application would
     ** install an error handler after calling srv_version, using 
     ** srv_props(SRV_S_ERRHANDLE). Then, any subsequent errors
     ** will be detected by the Open Server application code.
     */
 
     /*
     ** Default Open Server global properties can be changed here
     ** before calling srv_init.  We choose just to change the
     ** default log file name to use the name of this Open
     ** Server application.
     */
 
     /*
     ** Build a new Open Server log file name using ‘servername'
     */
     (CS_VOID)sprintf(logfile, "%s.log", servername);
 
     /*
     ** Set the new log file name using the global SRV_S_LOGFILE
     ** property.
     */
     if(srv_props(cp, CS_SET, SRV_S_LOGFILE, logfile,
     CS_NULLTERM,(CS_INT *)NULL) != CS_SUCCEED)



Basic Open Server program 

12  Open Server

     {
         /*
         ** Release the context structure already allocated.
         */
         (CS_VOID)cs_ctx_drop(cp);
 
         (CS_VOID)fprintf(stderr,"%s: srv_props(SRV_S_LOGFILE)
         failed\n",servername);
         exit(1);
     }
 
     /*
     ** Initialize Open Server. This causes Open Server to
     ** allocate internal control structures based on the global
     ** properties set above. Open Server also looks up 
     ** the application name in the interfaces file.
     */
     if((ssp = srv_init((SRV_CONFIG *)NULL, servername,
     CS_NULLTERM))== (SRV_SERVER *)NULL)
     {
         /*
         ** Release the context structure already allocated
         */
         (CS_VOID)cs_ctx_drop(cp);
 
         (CS_VOID)fprintf(stderr, "%s: srv_init failed\n",
         servername);
         exit(1);
     }
 
     /*
     ** Start the Open Server application running.  We don't
     ** install any event handlers in this simple example.  This
     ** causes Open Server to use the default event handlers.
     **
     ** The call to srv_run does not return until a fatal error is
     ** detected by this Open Server application, or a SRV_STOP
     ** event is queued.  Since we haven't installed any event
     ** handlers, the only way to stop this Open Server
     ** application is to kill the operating system process in
     ** which it is running.
     */
     if(srv_run((SRV_SERVER *)NULL) == CS_FAIL)
     {
         (CS_VOID)fprintf(stderr, "%s: srv_run failed\n",
         servername);



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 13

         ok = CS_FALSE;
     }
 
     /*
     ** Release all allocated control structures and exit.
     */
     (CS_VOID)srv_free(ssp);
     (CS_VOID)cs_ctx_drop(cp);
     exit(ok ? 0 : 1);
 }

Open Server events
The requests a client sends to an Open Server application trigger events in the 
server. This causes the client’s server process, known as a thread, to execute a 
routine that processes the event. This routine is called an event handler.

There are many types of standard events defined internally by Server-Library, 
the most common of which are shown in this table:

For more information, see “Events” on page 92.

Client request Event type Open Server event

ct_command(CS_LANG_
CMD)

ct_send

Language SRV_LANGUAGE

ct_command(CS_RPC_C
MD)

ct_send

RPC SRV_RPC

ct_cancel Attention SRV_ATTENTION

ct_connect Connect SRV_CONNECT

ct_close

ct_exit

Disconnect SRV_DISCONNECT

Non client-initiated Start SRV_START

Non client-initiated Stop SRV_STOP



Registered procedures 

14  Open Server

Default event handlers
Default event handlers exist for most of the standard events, but usually you 
will replace these with your own coded event handlers. Most of the default 
event handlers simply echo the request. For example, the default language 
event handler returns the message: 

No language handler installed.

Installing an event handler automatically overrides the default event handler.

Non client-initiated events
Some events cannot be directly triggered by client programs: 

• User-defined events

• SRV_STOP, which is triggered by calling srv_event in the Open Server 
code

• SRV_START, which occurs as a part of the start-up process

Registered procedures
A registered procedure is a piece of Open Server/C code identified by a name. 
When an application registers a procedure, it maps the procedure name to a 
routine, so that when Open Server detects this procedure name in an incoming 
RPC datastream, it can call a specific routine immediately without raising a 
SRV_RPC event.

When an Open Server application receives an RPC, it looks up the procedure 
name in the list of registered procedures. If the name is registered, the runtime 
system executes the routine associated with the registered procedure. If the 
procedure name is not found in the list of registered procedures, Open Server 
calls the SRV_RPC event handler. 

System registered procedures are built-in procedures that are internal to all 
Open Server applications. See Chapter 4, “System Registered Procedures” for 
a detailed description of each system registered procedure.

See “Registered procedures” on page 162 for details on registered procedures. 



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 15

Returning results to clients
This section describes the types and order of result data that can be sent and 
returned to clients.

Types of result data
An Open Server application can send results to a client as:

• Messages

• Rows of data

• Result parameters

• Status values

A single client request can obtain more than one set of results. After sending 
the first result set, call srv_senddone with a status of SRV_DONE_MORE if 
there are more result sets for the request. Call srv_senddone with a status of 
SRV_DONE_FINAL if there are no more results. Calling srv_senddone with a 
SRV_DONE_FINAL status is the minimum response to a client request. The 
client waits until it receives srv_senddone(SRV_DONE_FINAL) before 
proceeding.

Messages

An application can send error messages to clients with srv_sendinfo. Client-
Library programs process messages with a message handler routine. These 
routines typically display the message information on the user’s terminal. If the 
message is an error message, the client program can attempt to recover from 
the error or exit.

Data rows

Open Server can return rows of data to clients just as Adaptive Server 
Enterprise returns the results of SQL queries. A row consists of one or more 
columns of data. See “Processing parameter and row data” on page 134 for 
details.



Error handling 

16  Open Server

Parameters

Parameters are data that is passed using client commands between clients and 
the Open Server application.

Status values

An application can call srv_sendstatus to return an optional status value to a 
client application. The status is a CS_INT value that has an application-specific 
meaning. CS_INT is an Open Server data type; see “Types” on page 199 for 
more information. There can be only one status value for each set of results. 

Order of results
The order in which you return results to clients is important:

• Do not interrupt a set of data rows with other kinds of results. Data rows 
must be sent one after another until the entire set has been sent to the client. 
For example, you cannot send a few rows, then send a message, then send 
more rows.

• After you have sent all of the data rows (if any), you can send messages 
and status information to the client in any order.

• At the end of a set of results, call srv_senddone to signal the end of the 
results.

Error handling
One of the first actions to take in an Open Server application is to install an 
error handler with srv_props. If no error handler has been installed, Open 
Server writes the error messages to the log file. See “Errors” on page 89 for 
details.



CHAPTER 1    Introducing Open Server

Server-Library/C Reference Manual 17

Multithread programming
Open Server employs a multithread architecture. This architecture allows 
application developers to create multithread servers. A multithread server is a 
collection of threads, each executing routines to accomplish its specific task. 
For example, each client uses a thread that manages its connection and 
executes the event handlers and procedures that fulfill its requests. The Open 
Server runtime system employs several threads that manage server activities 
such as delivering messages, handling network communications, and 
scheduling tasks in the server. You can “spawn” threads for other nonclient 
activities.

See “Multithread programming” on page 109 for details.

Summary of changes for version 15.0
This section contains information on changes to this manual in this version. 
The changes are:

• Sybase library name change: Naming conventions for Open Server and 
SDK libraries have changed, with the addition of syb to Sybase libraries. 
Names for non-Sybase libraries remain the same.

• BCP partitions: You can now copy ASE partitions with added support for 
BLKLIB and BCP programs.

• BCP computed columns: Two new Client-Library options have been 
added to support BCP computed columns.

CS_OPT_HIDE_VCC instructs the Adaptive Server to hide Virtual 
Computed Columns (VCC), while CS_OPT_SHOW_FI adds columns for 
each Functional Index (FI).

• Large identifiers: Limits on lengths of identifiers have been reduced. This 
is now 255 bytes for identifiers.

• Unilib® support: Unicode Infrastructure Library (Unilib), an independent 
library of Unicode-based routines, has been included to facilitate 
character-set conversion.

• ASE default packet size support: You can now configure packet size 
centrally on the server, with the default set to 8192 bytes.



Summary of changes for version 15.0 

18  Open Server

• Clusters support: A cluster of servers can now perform load balancing for 
all client connections coming into the cluster.

• Scrollable cursors: You can now set the position of a cursor anywhere in 
the cursor result set.

• Table 1-1 lists the new datatypes introduced in this version:

Table 1-1: New datatypes

Type 
category

Open Client and Server 
type constant Description

Corresponding C 
datatype

Corresponding
server 
datatype

XML type CS_XML_TYPE Variable-length 
character type

CS_XML xml

Numeric types CS_BIGINT_TYPE 8-byte integer type CS_BIGINT bigint

CS_USMALLINT_TYPE 2-byte unsigned 
integer type

CS_USMALLINT usmallint

CS_UINT_TYPE 4-byte unsigned 
integer type

CS_UINT uint

CS_UBIGINT_TYPE 8-byte unsigned 
integer type

CS_UBIGINT ubigint

Text and image 
types

CS_UNITEXT_TYPE Variable-length 
character type

CS_UNITEXT unitext



Server-Library/C Reference Manual 19

C H A P T E R  2 Topics

This chapter contains information on: 

• Open Server programming topics, such as processing parameter and 
row data, and support for text and image

• How to use Open Server routines to accomplish specific 
programming tasks, such as responding to cursor requests and 
handling errors

• Open Server properties, datatypes, and structures

This chapter contains the following topics:

Topic Page
Attention events 20

Browse mode 22

Capabilities 24

Client command errors 38

Connection migration 40

CS_BROWSEDESC structure 52

CS_DATAFMT structure 54

CS_IODESC structure 57

CS-Library 59

CS_SERVERMSG structure 60

Cursors 63

Scrollable cursors 77

Data stream messages 80

Directory services 81

Dynamic SQL 83

Errors 89

Events 92

Gateway applications 98

International support 99

Language calls 107

Login redirection and extended HA failover support 108



Attention events 

20  Open Server

Attention events
When a client application cancels a request through a dbcancel or ct_cancel 
command, it triggers an Open Server SRV_ATTENTION event. Open Server 
then calls the Open Server application’s SRV_ATTENTION event handler. 
Once the SRV_ATTENTION event handler returns, Open Server resumes 
processing where it left off when the attention event was detected.

Interrupt-level activity
A SRV_ATTENTION event handler is the only event handler that runs at 
interrupt level. An Open Server application can only issue the following 
Server-Library calls from inside a SRV_ATTENTION handler: 

• srv_wakeup with the wakeflags argument set to SRV_M_WAKE_INTR

• srv_ucwakeup with the wakeflags argument set to SRV_M_WAKE_INTR

• srv_thread_props with the cmd argument set to CS_GET

• srv_props with the cmd argument set to CS_GET

• srv_event_deferred

Messages 109

Multithread programming 109

Negotiated behavior 119

Options 122

Partial update 127

Passthrough mode 129

Processing parameter and row data 134

Properties 139

Registered procedures 162

Remote procedure calls 169

Security services 170

Text and image 196

Types 199

Topic Page



CHAPTER 2    Topics

Server-Library/C Reference Manual 21

No other Server-Library routines can be called from the SRV_ATTENTION 
event handler, or from other interrupt-level code.

Coding recommendations for attention events
Attention events are problematic if they arrive while noninterrupt-level handler 
code is executing. An application may do work it no longer needs to do because 
the client has cancelled a request.

It is the application’s responsibility to check for attention event periodically if 
it is performing a time-consuming I/O task or compute-intensive work at the 
noninterrupt level. The application code should periodically check for attention 
events using srv_thread_props, with cmd set to CS_GET and property set to 
SRV_T_GOTATTENTION.

Once it detects an attention event, the Open Server application code can 
continue to send results, but clients ignore them. The simplest way the 
application can respond to an attention event is to send a SRV_DONE_FINAL 
to the client and return.

An attention event can arrive while the Client-Library portion of the gateway 
application code is executing. The application can call ct_command with the 
type argument set to CS_CANCEL_ATTN in its SRV_ATTENTION event 
handler to force the Client-Library routine to return to noninterrupt-level code. 
Because this command does not take effect unless an attention event arrives, a 
gateway application should call it routinely.

All gateway calls performing client I/O should check for attention events with 
srv_thread_props before calling ct_send. This ensures that a query will not be 
sent to a remote server once the client has already cancelled it.

Handling disconnects
If an Open Server application is in the middle of returning results to a client and 
the client abruptly disconnects, the application continues to return results until 
it detects that the connection has been closed. Open Server subsequently calls 
the SRV_DISCONNECT event handler. In this scenario, the application 
continues to send results to a client that can no longer receive them. An abrupt 
client disconnect can occur if: 

• A client calls ct_close before handling all the results the server is sending 
it.



Browse mode 

22  Open Server

• The client process dies suddenly.

• The machine goes down.

To avoid this situation, an application can request that Open Server first calls 
the application’s SRV_ATTENTION event handler in response to a client 
disconnect, and then calls the SRV_DISCONNECT event handler. For Open 
Server to handle disconnects in this fashion, an application must use srv_props 
to set the SRV_S_DISCONNECT property to CS_TRUE. The 
SRV_DISCONNECT event handler is still called in the usual way, but it is 
called after the SRV_ATTENTION handler. The SRV_S_DISCONNECT 
property defaults to CS_FALSE.

The SRV_ATTENTION handler initiates the appropriate steps to terminate the 
I/O activity and stop the return of results from the routine that was executing at 
the time of the disconnect. An application can thus respond to disconnects in 
the same way that it would to attentions.

Using its SRV_ATTENTION event handler, an application can determine 
which event triggered the handler—an attention or a disconnect—by calling 
srv_props with cmd set to CS_GET and property set to 
SRV_S_ATTNREASON.

Example
The sample ctos.c includes attention handling code.

Browse mode

Note  Browse mode is included to provide compatibility with Open Client 
libraries older than version 11.1. Sybase discourages its use in Open Server 
Server-Library applications, because cursors provide the same functionality in 
a more portable and flexible manner. Additionally, browse mode is Sybase-
specific and is not suited for use in a heterogeneous environment.



CHAPTER 2    Topics

Server-Library/C Reference Manual 23

Browse mode provides a means for searching through database rows and 
updating their values one row at a time. From the standpoint of a client 
application program, the process involves several steps, because each row must 
be transferred from the database into client application program variables 
before it can be browsed and updated.

Because a row being browsed is not the actual row residing in the database but 
a copy residing in program variables, the program must update the original 
database row with changes made to the variables’ values. In multiuser 
situations, the program must ensure that updates made to the database by one 
user do not overwrite recent updates made by another user. Such overwrites 
occur because a client application typically selects a number of rows from a 
database to update at one time, but the application’s users browse and update 
the database one row at a time. A timestamp column in browsable tables 
provides the information necessary to regulate this type of multiuser updating.

Client applications that permit users to enter ad hoc browse mode queries must 
update underlying database tables if a user command alters a table’s contents. 
Consequently, these applications may need information about the underlying 
structure of a browse mode command.

Open Server includes two routines that provide such information, srv_tabname 
and srv_tabcolname: 

• srv_tabname provides the name and number of each table involved in the 
browse mode command.

• srv_tabcolname returns a variety of information about result columns 
through a CS_BROWSEDESC structure. For more information, see 
“CS_BROWSEDESC structure” on page 52.

An Open Server application that receives browse mode requests can call these 
two routines, along with the standard data binding routines, to return browse 
mode information. The specific steps are: 

1 Call srv_tabname once for each table that is the source of a result row.

2 Call srv_descfmt followed by srv_tabcolname once for each column in the 
result row.

If the Open Server application has set the status field of the 
CS_BROWSEDESC structure to CS_RENAMED, this means that the 
client application’s browse mode select statement renamed the column. 
The Open Server application must fill in the original name of the column 
in the database, and the length of its name, in the origname and orignlen 
fields in the CS_BROWSEDESC structure prior to calling 
srv_tabcolname.



Capabilities 

24  Open Server

3 Bind and transfer the column data using the srv_bind and srv_xferdata 
routines, respectively.

Note  Because srv_tabcolname requires information returned by 
srv_tabname—the unique table number—srv_tabname must precede a call to 
srv_tabcolname.

For more information on browse mode, see the Sybase Open Client Client-
Library/C Reference Manual.

Example
The sample program ctos.c includes code to process browse mode information.

Capabilities
An Open Server application and a client must agree on what requests the client 
can issue and what responses the Open Server application will return. For 
example, a client may want to issue language requests, but the Open Server 
application may not be equipped with a parser to process such requests. 
Similarly, a client may not want the Open Server application to return text or 
image data if the client is not equipped to handle it. A client/server 
connection’s capabilities determine the types of client requests and server 
responses permitted for that connection.

The Open Server application ultimately determines which capabilities are valid 
for the connection. If the client does not accept these capabilities, its only 
option is to close the connection.

There are two types of capability negotiation: transparent and explicit. In 
transparent negotiations, the Open Server application assigns a default set of 
possible client requests and Open Server responses. In explicit negotiations, 
the Open Server application includes code to negotiate capabilities, using the 
srv_capability_info routine.

Transparent negotiation is part of both Open Server and Open Client’s default 
behavior. Therefore, an Open Server application must call srv_capability_info if 
it wants to support something other than the default set of capabilities.



CHAPTER 2    Topics

Server-Library/C Reference Manual 25

Request capabilities
Table 2-1 describes each request capability:



Capabilities 

26  Open Server

Table 2-1: Request capabilities

CS_REQUEST 
capability Meaning

Capability
relates to

CS_CAP_
EXTENDEDFAILOVER

Extended HA failover Connections

CS_CON_INBAND In-band (non-expedited) attentions Connections

CS_CON_OOB Out-of-band (expedited) attentions Connections

CS_CSR_ABS Fetch of specified absolute cursor row Cursors

CS_CSR_FIRST Fetch of first cursor row Cursors

CS_CSR_LAST Fetch of last cursor row Cursors

CS_CSR_MULTI Multi-row cursor fetch Cursors

CS_CSR_PREV Fetch previous cursor row Cursors

CS_CSR_REL Fetch specified relative cursor row Cursors

CS_DATA_BIN Binary datatype Datatypes

CS_DATA_VBIN Variable-length binary type Datatypes

CS_DATA_LBIN Long variable-length binary datatype Datatypes

CS_DATA_BIT Bit datatype Datatypes

CS_DATA_BITN Nullable bit datatype Datatypes

CS_DATA_BOUNDARY Boundary datatype Datatypes

CS_DATA_CHAR Character datatype Datatypes

CS_DATA_VCHAR Variable-length character datatype Datatypes

CS_DATA_LCHAR Long variable-length character 
datatype

Datatypes

CS_DATA_DATE Date datatype Datatype

CS_DATA_DATE4 Short datetime datatype Datatypes

CS_DATA_DATE8 Datetime datatype Datatypes

CS_DATA_DATETIMEN Null datetime values Datatypes

CS_DATA_DEC Decimal datatype Datatypes

CS_DATA_FLT4 4-byte float datatype Datatypes

CS_DATA_FLT8 8-byte float datatype Datatypes

CS_DATA_FLTN Nullable float datatype Datatypes

CS_DATA_IMAGE Image datatype Datatypes

CS_DATA_INT1 Tiny integer datatype Datatypes

CS_DATA_INT2 Small integer datatype Datatypes

CS_DATA_INT4 Integer datatype Datatypes

CS_DATA_INT8 Big integer datatype Datatypes

CS_DATA_INTN Null integers Datatypes

CS_DATA_MNY4 Short money datatype Datatypes



CHAPTER 2    Topics

Server-Library/C Reference Manual 27

CS_DATA_MNY8 Money datatype Datatypes

CS_DATA_MONEYN Null money values Datatypes

CS_DATA_NUM Numeric datatype Datatypes

CS_DATA_SENSITIVITY Sensitivity datatype Datatypes

CS_DATA_TEXT Text datatype Datatypes

CS_DATA_TIME Time datatype Datatypes

CS_DATA_UCHAR 2-byte character datatype Datatypes

CS_DATA_UNITEXT Unitext datatype Datatypes

CS_DATA_XML XML datatype Datatypes

CS_OPTION_GET Current option values Datatypes

CS_PROTO_DYNAMIC Use TDS DESCIN/OUT protocol Commands

CS_PROTO_DYNPROC Add “create proc” in the front of 
dynamic prepares

Commands

CS_REQ_BCP Bulk copy requests Commands

CS_REQ_CURSOR Cursor requests Commands

CS_REQ_DBRPC2 Large RPC name requests Commands

CS_REQ_DYN Dynamic SQL requests Commands

CS_REQ_LANG Language requests Commands

CS_REQ_LARGEIDENT Large identifier requests Commands

CS_REQ_MIGRATE Migration requests Connection

CS_REQ_MSG Message data Commands

CS_REQ_MSTMT Multiple server commands per Client-
Library request

Connection

CS_REQ_NOTIF Event notifications Connection

CS_REQ_SRVPKTSIZE Server-specified packetsize Connection

CS_REQ_PARAM Parameter data Commands

CS_REQ_RPC Remote procedure requests Commands

CS_REQ_URGNOTIF Use 5.0 event notification protocol Commands

CS_WIDETABLES Wider and increased number of 
columns per table

Commands

CS_REQUEST 
capability Meaning

Capability
relates to



Capabilities 

28  Open Server

Response capabilities
Table 2-2 describes each response capability.

Note  Response capabilities indicate the kinds of responses the client does not 
want to receive.



CHAPTER 2    Topics

Server-Library/C Reference Manual 29

Table 2-2: Response capabilities

CS_RESPONSE capability Meaning
Capability
relates to

CS_CON_NOINBAND No in-band (non-expedited) 
attentions

Connections

CS_CON_NOOOB No out-of-band (expedited) 
attentions

Connections

CS_NO_SRVPKTSIZE No server-specified packetsize Connections

CS_DATA_NOBIN No binary datatype Datatypes

CS_DATA_NOVBIN No variable-length binary type Datatypes

CS_DATA_NOLBIN No long variable-length binary 
datatype

Datatypes

CS_DATA_NOBIT No bit datatype Datatypes

CS_DATA_NOBOUNDARY No boundary datatype Datatypes

CS_DATA_NOCHAR No character datatype Datatypes

CS_DATA_NOVCHAR No variable-length character 
datatype

Datatypes

CS_DATA_NOLCHAR No long variable-length character 
datatype

Datatypes

CS_DATA_NODATE No date datatype Datatypes

CS_DATA_NODATE4 No short datetime datatype Datatypes

CS_DATA_NODATE8 No datetime datatype Datatypes

CS_DATA_NODATETIMEN No null datetime values Datatypes

CS_DATA_NODEC No decimal datatype Datatypes

CS_DATA_NOFLT4 No 4-byte float datatype Datatypes

CS_DATA_NOFLT8 No 8-byte float datatype Datatypes

CS_DATA_NOIMAGE No image datatype Datatypes

CS_DATA_NOINT1 No tiny integer datatype Datatypes

CS_DATA_NOINT2 No small integer datatype Datatypes

CS_DATA_NOINT4 No integer datatype Datatypes

CS_DATA_NOINT8 No big integer datatype Datatypes

CS_DATA_NOINTN No null integers Datatypes

CS_DATA_NOMNY4 No short money datatype Datatypes

CS_DATA_NOMNY8 No money datatype Datatypes

CS_DATA_NOMONEYN No null money values Datatypes

CS_DATA_NONUM No numeric datatype Datatypes

CS_DATA_NOSENSITIVITY No sensitivity datatype Datatypes

CS_DATA_NOTEXT No text datatype Datatypes

CS_DATA_NOTIME No time datatype Datatype



Capabilities 

30  Open Server

Note  When an Open Server application defines the client data format using the 
srv_descfmt routine, Open Server verifies that the response capability for the 
relevant datatype is not set. If it is set, either the client has requested the server 
not to send results pertaining to that datatype or the TDS version of the client 
connection does not support that datatype. In such cases, Open Server raises an 
error and srv_descfmt returns CS_FAIL.

Transparent negotiation
Open Server includes a set of default capability values. For a list of defaults, 
see “Server-wide defaults” on page 31. These defaults are server-wide; they 
apply to all client connections. When the defaults are used, all capabilities 
Open Server supports are turned on.

An Open Server application can change the server-wide default values during 
initialization by calling the srv_props routine. See srv_props on page 334.

When a DB-Library or Client-Library client logs in to an Open Server 
application, it sends a list of desired capabilities in its login record. In 
transparent negotiation, Open Server finds the intersection of its default values 
and the client values. The resulting values are the capabilities supported on that 
connection.

CS_DATA_NOUCHAR No 2-byte character datatype Datatypes

CS_DATA_NOUNITEXT No Unitext datatype Datatypes

CS_DATA_NOXML No XML datatype Datatypes

CS_RES_NOEED No extended error results Results

CS_RES_NOMSG No message results Results

CS_RES_NOPARAM No result parameters Results

CS_RES_NOTDSDEBUG No TDS debug token Results

CS_NO_LARGEIDENT No large identifiers Commands

CS_NOWIDETABLES No increase in column size or 
number of columns per table

Commands

CS_RESPONSE capability Meaning
Capability
relates to



CHAPTER 2    Topics

Server-Library/C Reference Manual 31

When does transparent negotiation take place?

Transparent negotiation takes place when: 

• An Open Server application does not have a SRV_CONNECT handler 
other than the default handler.

• An Open Server application does not explicitly include code in its custom 
SRV_CONNECT event handler to override default capabilities.

Note  In passthrough mode, srv_getloginfo and srv_setloginfo handle capability 
negotiation transparently.

Server-wide defaults
Table 2-3 indicates the default setting for each request capability by TDS 
version. A 1 indicates that the capability is supported in the TDS version. A 0 
indicates that the capability is not supported.



Capabilities 

32  Open Server

Table 2-3: Request capabilities by TDS version

CS_REQUEST capability 4.0 4.0.2 4.2 4.6 5.0

CS_CAP_EXTENDEDFAILOVER 0 0 0 0 1

CS_CON_INBAND 0 0 0 0 1

CS_CON_OOB 1 1 1 1 0

CS_CSR_ABS 0 0 0 0 0

CS_CSR_FIRST 0 0 0 0 0

CS_CSR_LAST 0 0 0 0 0

CS_CSR_MULTI 0 0 0 0 0

CS_CSR_PREV 0 0 0 0 0

CS_CSR_REL 0 0 0 0 0

CS_DATA_BIN 1 1 1 1 1

CS_DATA_BIT 1 1 1 1 1

CS_DATA_BITN 0 0 0 0 0

CS_DATA_BOUNDARY 0 0 0 0 0

CS_DATA_CHAR 1 1 1 1 1

CS_DATA_DATE 0 0 0 0 1

CS_DATA_DATE4 0 0 1 1 1

CS_DATA_DATE8 1 1 1 1 1

CS_DATA_DATETIME 1 1 1 1 1

CS_DATA_DEC 0 0 0 0 0

CS_DATA_FLT4 0 0 1 1 1

CS_DATA_FLT8 1 1 1 1 1

CS_DATA_FLTN 1 1 1 1 1

CS_DATA_IMAGE 1 1 1 1 1

CS_DATA_INT1 1 1 1 1 1

CS_DATA_INT2 1 1 1 1 1

CS_DATA_INT4 1 1 1 1 1

CS_DATA_INT8 0 0 0 0 1

CS_DATA_INTN 1 1 1 1 1

CS_DATA_LBIN 0 0 0 0 0

CS_DATA_LCHAR 0 0 0 0 0

CS_DATA_MNY4 0 0 1 1 1

CS_DATA_MNY8 1 1 1 1 1

CS_DATA_MONEYN 1 1 1 1 1

CS_DATA_NUM 0 0 0 0 0

CS_DATA_SENSITIVITY 0 0 0 0 0

CS_DATA_TEXT 1 1 1 1 1



CHAPTER 2    Topics

Server-Library/C Reference Manual 33

Table 2-4 describes the default setting for each response capability by TDS 
version. 

• 1 indicates that the capability is not supported in the TDS version. 

• 0 indicates that the capability is supported.

CS_DATA_TIME 0 0 0 0 1

CS_DATA_UCHAR 0 0 0 0 1

CS_DATA_UNITEXT 0 0 0 0 1

CS_DATA_VBIN 1 1 1 1 1

CS_DATA_VCHAR 1 1 1 1 1

CS_DATA_XML 0 0 0 0 1

CS_OPTION_GET 0 0 0 0 0

CS_PROTO_DYNAMIC 0 0 0 0 0

CS_PROTO_DYNPROC 0 0 0 0 0

CS_REQ_BCP 1 1 1 1 1

CS_REQ_CURSOR 0 0 0 0 0

CS_REQ_DBRPC2 0 0 0 0 1

CS_REQ_DYN 0 0 0 0 0

CS_REQ_LANG 1 1 1 1 1

CS_REQ_LARGEIDENT 0 0 0 0 1

CS_REQ_MIGRATE 0 0 0 0 1

CS_REQ_MSG 0 0 0 0 0

CS_REQ_MSTMT 0 0 0 0 0

CS_REQ_NOTIF 0 0 0 1 1

CS_REQ_PARAM 0 0 0 0 0

CS_REQ_RPC 1 1 1 1 1

CS_REQ_SRVPKTSIZE 0 0 0 0 1

CS_REQ_URGNOTIF 0 0 0 0 0

CS_WIDETABLES 0 0 0 0 1

CS_REQUEST capability 4.0 4.0.2 4.2 4.6 5.0



Capabilities 

34  Open Server

Table 2-4: Response capabilities by TDS version

CS_RESPONSE capability 4.0 4.0.2 4.2 4.6 5.0

CS_CON_NOINBAND 1 1 1 1 1

CS_CON_NOOOB 0 0 0 0 0

CS_DATA_NOBIN 0 0 0 0 0

CS_DATA_NOBIT 0 0 0 0 0

CS_DATA_NOBOUNDARY 1 1 1 1 1

CS_DATA_NOCHAR 0 0 0 0 0

CS_DATA_NODATE4 1 1 0 0 0

CS_DATA_NODATE8 0 0 0 0 0

CS_DATA_NODATETIME 0 0 0 0 0

CS_DATA_NODEC 1 1 1 1 1

CS_DATA_NOFLT4 1 1 0 0 0

CS_DATA_NOFLT8 0 0 0 0 0

CS_DATA_NOIMAGE 0 0 0 0 0

CS_DATA_NOINT1 0 0 0 0 0

CS_DATA_NOINT2 0 0 0 0 0

CS_DATA_NOINT4 0 0 0 0 0

CS_DATA_NOINT8 1 1 1 1 0

CS_DATA_NOINTN 0 0 0 0 0

CS_DATA_NOLBIN 1 1 1 1 1

CS_DATA_NOLCHAR 1 1 1 1 1

CS_DATA_NOMNY4 1 1 0 0 0

CS_DATA_NOMNY8 0 0 0 0 0

CS_DATA_NOMONEY 0 0 0 0 0

CS_DATA_NONUM 1 1 1 1 1

CS_DATA_NOSENSITIVITY 1 1 1 1 1

CS_DATA_NOSINT1 1 1 1 1 0

CS_DATA_NOTEXT 0 0 0 0 0

CS_DATA_NOUCHAR 1 1 1 1 0

CS_DATA_NOUNITEXT 1 1 1 1 0

CS_DATA_NOVBIN 0 0 0 0 0

CS_DATA_NOVCHAR 0 0 0 0 0

CS_DATA_NOXML 1 1 1 1 0

CS_RES_NOEED 1 1 1 1 1

CS_RES_NOMSG 1 1 1 1 1

CS_RES_NOPARAM 1 1 1 1 1

CS_RES_NOTDSDEBUG 1 1 1 1 1



CHAPTER 2    Topics

Server-Library/C Reference Manual 35

Explicit negotiation
Explicit negotiation takes place at connect time, from within the 
SRV_CONNECT event handler. The Open Server application retrieves the list 
of request capabilities sent by the client and returns the list of request 
capabilities it will accept. The process is repeated, this time with the list of 
response capabilities a client does not want to receive or those the Open Server 
application cannot return.

An application can retrieve and send capabilities one at a time or can retrieve 
and send an entire bitmask of capabilities at once. Open Server provides 
macros to test, clear, and set bits in a capability mask. For more information, 
see “Capability macros” on page 36.

Negotiating capabilities one at a time

To negotiate request capabilities one at a time, an application must make the 
following calls for each capability you want to negotiate: 

1 Call srv_capability_info with the cmd argument set to CS_GET, the type 
argument set to CS_CAP_REQUEST, and the capability argument set to 
the capability of interest. If the *valp argument contains CS_TRUE, the 
client will request this type of capability. If *valp contains CS_FALSE, the 
client will not.

2 Call srv_capability_info with the cmd argument set to CS_SET, the type 
argument set to CS_CAP_REQUEST, and the capability argument set to 
the capability of interest, and *valp set to a Boolean value. The application 
sets *valp to CS_TRUE to support this type of capability and CS_FALSE 
to decline it.

An application negotiates response capabilities in a similar fashion, except that 
it must set the type argument to CS_CAP_RESPONSE.

An Open Server application only needs to call srv_capability_info for the 
request and response capabilities that it negotiates explicitly. The default 
values are used for all the other capabilities.

CS_NO_LARGEIDENT 1 1 1 1 0

CS_NO_SRVPKTSIZE 1 1 1 1 0

CS_NOWIDETABLES 1 1 1 1 0

CS_RESPONSE capability 4.0 4.0.2 4.2 4.6 5.0



Capabilities 

36  Open Server

Negotiating using a capability bitmask 

To negotiate request capabilities using a capability bitmask, an application 
must: 

1 Read in the entire bitmask by calling srv_capability_info with the cmd 
argument set to CS_GET, the type argument set to CS_CAP_REQUEST, 
the capability argument set to CS_ALL_CAPS, and valp pointing to the 
CS_CAP_TYPE structure that will contain the bitmask.

2 Test, set, or clear particular bits in the bitmask using the 
CS_TST_CAPMASK, CS_SET_CAPMASK and CS_CLR_CAPMASK 
macros.

An application negotiates response capabilities in a similar fashion, except that 
it must set the type argument to CS_CAP_RESPONSE.

Gateway applications should use the mask method to negotiate capabilities. As 
the following diagram illustrates, the gateway calls srv_capability_info to 
retrieve the remote client’s capability mask and sends those capabilities to the 
remote server by calling ct_capability prior to calling ct_connect. Once the 
remote connection has been established, the gateway can retrieve the capability 
masks that the remote server has sent using ct_capability and then define them 
on the remote client connection, using srv_capability_info.

Capability macros

Table 2-5 describes the macros that an application can use to manipulate a 
capability bitmask:

Table 2-5: Capability macros

When negotiating capabilities explicitly, rather than using the default settings, 
the following two rules apply: 

• CS_CAP_REQUEST 
 Applications can only turn CS_CAP_REQUEST capabilities “off” from 
an “on” status.

Macro name Function

CS_TST_CAPMASK Test to see whether a specific capability is set to 
CS_TRUE or CS_FALSE

CS_SET_CAPMASK Set a specific capability to CS_TRUE

CS_CLR_CAPMASK Set a specific capability to CS_FALSE.



CHAPTER 2    Topics

Server-Library/C Reference Manual 37

If an application tries to turn a CS_CAP_REQUEST capability “off,” 
which is already in an “off” status, Open Server restores the default status 
and does not raise an error.

• CS_CAP_RESPONSE
 Applications can only turn CS_CAP_RESPONSE capabilities “on” from 
an “off” status.

If an application tries to turn a CS_CAP_RESPONSE capability “on,” 
which is already in an “on” status, Open Server restores the default status 
and does not raise an error. 

Ad hoc retrieval of capability information
An Open Server application can call srv_capability_info from within any 
handler at any time to retrieve a list of capabilities in effect for that particular 
client connection. In a SRV_CONNECT event handler, however, the capability 
masks retrieved are not the final masks for the connection. Rather, they are the 
client’s requested capabilities combined with the Open Server application’s 
defaults. Connection capabilities are not final until the SRV_CONNECT 
handler has returned.

A note on pre-10.0 clients
An Open Server application can negotiate capabilities with clients running any 
TDS version. If a pre-10.0 client makes a connection, Open Server simulates 
capability negotiation. In this scenario, the Open Server application does not 
need to know what TDS version the client is running.

Example
The sample program ctos.c includes code illustrating capability negotiation.



Client command errors 

38  Open Server

Client command errors
A client sometimes sends an incomplete or nonsensical request to an Open 
Server application. Requests can be incomplete or meaningless because of 
faulty client code or because of a network problem. An Open Server 
application should handle these errors in the event handler for the client 
request, by sending the appropriate error messages to the client.

Sending messages with srv_sendinfo
An Open Server application calls srv_sendinfo to send error messages to a 
client. An Open Server application describes the message in a 
CS_SERVERMSG structure and then calls srv_sendinfo to send this description 
to the client.

For more information, see “CS_SERVERMSG structure” on page 60.

Sequencing long messages 
An Open Server application stores the message text itself in the text field of the 
CS_SERVERMSG structure. text has a maximum length of CS_MAX_MSG 
bytes.

An Open Server application uses as many CS_SERVERMSG structures as 
necessary to return the full text of a message. The application returns the first 
CS_MAX_MSG bytes in one structure, the second CS_MAX_MSG bytes in a 
second structure, and so forth. This process is known as “chunking” the 
message.

An application calls srv_sendinfo as many times as there are “chunks”. If the 
entire message fits in one structure, the application only needs to call 
srv_sendinfo once.

CS_SERVERMSG structure fields for sequenced messages

The status field in the CS_SERVERMSG structure indicates whether the 
structure contains a whole message or a chunk of a message.

Table 2-6 lists status values that are related to sequenced messages:



CHAPTER 2    Topics

Server-Library/C Reference Manual 39

Table 2-6: Status values for sequenced messages

The textlen field in the CS_SERVERMSG structure always reflects the length 
of the current message chunk.

All other fields in the CS_SERVERMSG are repeated with each message 
chunk.

Extended error data
Some server messages include “extended error data” associated with them. 
Extended error data is simply additional information about the error.

For Adaptive Server messages, the additional information most typically 
indicates which column or columns provoked the error.

What is extended error data good for?

Client applications that allow users to enter or edit data often need to report 
errors to their users at the column level. The standard server message 
mechanism, however, makes column-level information available only within 
the text of the server message. Extended error data provides a means for 
applications to conveniently access column-level information.

For example, imagine a client application that allows users to enter and edit 
data in the titleauthor table in the pubs2 database. titleauthor uses a key 
composed of two columns, au_id and title_id. Any attempt to enter a row with 
an au_id and title_id that match an existing row causes a “duplicate key” 
message to be sent to the client application.

On receiving this message, the client application needs to identify the problem 
column or columns to the end user, so that the user can correct them. This 
information is not available in the duplicate key message, except in the 
message text. The information is available, however, as extended error data.

Symbolic value To indicate

CS_FIRST_CHUNK The message text is the first chunk of the message.

CS_LAST_CHUNK The message text is the last chunk of the message.

An application sets both CS_FIRST_CHUNK and 
CS_LAST_CHUNK on if the message text in the structure 
is the entire message.

An application sets neither CS_FIRST_CHUNK nor 
CS_LAST_CHUNK on if message text in the structure is a 
middle chunk.



Connection migration 

40  Open Server

Sending extended error data to a client

An Open Server application sets the CS_HASEED bit of the status field of the 
CS_SERVERMSG structure if extended error data is available for the message.

An Open Server application sends extended error data as parameters to the 
srv_sendinfo routine. The application describes, binds, and sends the error 
parameters using the srv_descfmt, srv_bind, and srv_xferdata routines, 
respectively.

The application must describe, bind, and send the error parameters 
immediately after calling srv_sendinfo, before sending other results and before 
calling to srv_senddone. The application must invoke srv_descfmt, srv_bind 
and srv_xferdata with a type argument of SRV_ERRORDATA.

If an application calls srv_sendinfo with the status field of the 
CS_SERVERMSG structure set to CS_HASEED but fails to send error 
parameters, Open Server raises a fatal process error when the application calls 
srv_senddone.

Connection migration
Connection migration allows an Open Server application to dynamically 
distribute its load, provide transparent failover support, and, where there are 
multiple Open Server applications that perform different functions, to redirect 
a client to an Open Server that can fulfill the client’s request.

The application programming interface (APIs) discussed below enable Open 
Server to start, complete, and cancel a migration request, and to react to 
migration messages from the client. It can also detect whether a new 
connection is a migrating connection and retrieves a unique identifier from the 
connection.

In-batch migration and idle migration
With in-batch migration, the client migrates while waiting for results from the 
original server. Conversely, with idle migration, the client is not waiting for any 
result from the original server.



CHAPTER 2    Topics

Server-Library/C Reference Manual 41

In-batch migration enables Open Server to delay sending or completing results 
until after a connection has migrated. This is useful if Open Server cannot 
service the specific request or if it has no time to complete the request. With in-
batch migration, Open Server can send a part of the result from the original 
server, and, after migration, the server the client has migrated to can send rest 
of the result from the SRV_MIGRATE_RESUME event handler. 

Note  The original server can send a complete result to the client, in which case 
the new server does not send any result. Likewise, the original server may not 
send any result to the client, in which case, the new server must send the 
complete result to the client.

In an in-batch migration, your application must ensure that the unsent 
commands and messages are part of the client context. The new server must 
also access the number of rows affected by the command and the transaction 
state of the connection. The new server sends this information to the client 
using srv_senddone().

Context migration
Open Server supports seamless migration of the client’s connection. However, 
the responsibility of sharing and migrating the client’s context lies with your 
application. You can implement context migration in different ways, such as 
through a shared file system or a network communication.

For an in-batch migration, the server that the client is migrating to does not 
know what type of event was raised in the original server. If your application 
needs this information, you must migrate the information as part of the client’s 
context.

With idle migration, the client is not waiting for actual results from Open 
Server. Because there is no active query to migrate, idle migration is easier to 
implement than in-batch migration. However, idle migration still requires that 
your application fulfills any pending requests that may arrive before the client 
starts the migration.



Connection migration 

42  Open Server

APIs used in connection migration
This section discusses the APIs that support connection migration. For more 
information about using these APIs, see “Instructing clients to migrate to a 
different server” on page 48.

CS_REQ_MIGRATE

The CS_REQ_MIGRATE request capability indicates if a client supports the 
migration protocol and if the client is capable of migrating to another server 
when requested. You can use srv_capability_info() to retrieve the 
CS_REQ_MIGRATE capability information. For example:

CS_RETCODE ret;
CS_BOOL migratable;
ret = srv_capability_info(sp, CS_GET, CS_CAP_REQUEST,

CS_REQ_MIGRATE, &migratable);

SRV_CTL_MIGRATE

SRV_CTL_MIGRATE is a srv_send_ctlinfo() control type. You can use 
SRV_CTL_MIGRATE to send a migration request to the client or cancel a 
previous migration request, provided the client supports migration and has 
received a session ID when it first connected to the session.

Requesting a client migration

This sample code sends a request to the client to migrate to server “target”:

CS_RETCODE ret;
SRV_CTLITEM *srvitems;
CS_CHAR *target;
/*
** request a migration to server 'target'
*/
srvitems = (SRV_CTLITEM *) srv_alloc(sizeof

(SRV_CTLITEM));
srvitems[0].srv_ctlitemtype = SRV_CT_SERVERNAME;
srvitems[0].srv_ctllength = strlen(target);
srvitems[0].srv_ctlptr = target;
ret = srv_send_ctlinfo(sp, SRV_CTL_MIGRATE, 1,

srvitems);
srv_free(srvitems);



CHAPTER 2    Topics

Server-Library/C Reference Manual 43

Your application can still send the SRV_CTL_MIGRATE control type even if 
a migration has already been requested. Open Server cancels the earlier 
migration request and sends a new request to the client. The return values for a 
new migration request are:

Cancelling a migration

You can also use the SRV_CTL_MIGRATE control type to cancel a previous 
migration request. In this case, paramcnt must be 0 and param must be a NULL 
pointer. For example:

ret = srv_send_ctlinfo(sp, SRV_CTL_MIGRATE, 0, NULL);
if (ret != CS_SUCCEED)
{
...
}

SRV_CTL_MIGRATE can be used by any thread in an Open Server 
application. However, a thread cancelling the migration of a client thread’s 
connection has different requirements than a client thread cancelling its own 
connection migration:

• Any Open Server thread can cancel a migration, however, the cancellation 
must be requested before the SRV_MIGRATE_STATE event handler 
informs the client thread that the client is ready to migrate.

• The client thread can cancel a migration even inside the 
SRV_MIGRATE_STATE event handler. However, the client thread 
cannot cancel a migration after it exits the SRV_MIGRATE_STATE event 
with a SRV_MIG_READY state.

The return values of a migration cancellation are:

Return value Description

CS_SUCCEED The migration request was sent successfully.

CS_FAIL The migration request failed due to one of the following 
reasons:

• The Open Server thread does not support connection 
migration.

• An earlier migration request was sent and the client has 
started migrating to the new server.



Connection migration 

44  Open Server

Note  Open Server does not trigger a new migrate state event when a migration 
request is successfully cancelled.

SRV_MIGRATE_RESUME

When a client migrates to a new server while waiting for results, the new server 
invokes the SRV_MIGRATE_RESUME event after the client connection has 
successfully migrated. If the migration request failed or is cancelled, the event 
is invoked from the original server.

In the SRV_MIGRATE_RESUME event handler, your application does not 
have to send any actual result to the client, except for the SRV_DONE_FINAL 
result type that must always be sent. The only result that the default 
SRV_MIGRATE_RESUME sends to the client is SRV_DONE_FINAL.

This is an example of a SRV_MIGRATE_RESUME event handler:

/*
** Simple migrate_resume event handler.
*/
CS_RETCODE CS_PUBLIC
migrate_resume_handler(SRV_PROC *sp)
{

CS_RETCODE ret;
ret = srv_senddone(sp, SRV_DONE_FINAL,

CS_TRAN_COMPLETED, 0);
if (ret == CS_FAIL)
{

...

}
return CS_SUCCEED;

}

...

Return value Description

CS_SUCCEED The migration request was cancelled successfully.

CS_FAIL The migration cancellation failed due to one of these reasons:

• There is no migration in progress.

• The client has started migrating to the new server.



CHAPTER 2    Topics

Server-Library/C Reference Manual 45

/*
** Install the migrate-resume event handler
*/
srv_handle(server, SRV_MIGRATE_RESUME,

migrate_resume_handler);
...

SRV_MIGRATE_STATE

SRV_MIGRATE_STATE is an event that is triggered whenever the migration 
state has transitioned to SRV_MIG_READY or SRV_MIG_FAILED, the 
transition being a result of a migration message from a client. The 
SRV_MIGRATE_STATE event handler is invoked in these situations:

This is an example of a SRV_MIGRATE_STATE event handler:

/*
** Simple migrate-state event handler
*/
CS_RETCODE CS_PUBLIC
migrate_state_handler(SRV_PROC *sp)
{

SRV_MIG_STATE migration_state;
ret = srv_thread_props(sp, CS_GET,

SRV_T_MIGRATE_STATE, &migration_state, 
sizeof (migration_state), NULL);

...

SRV_T_MIGRATE_
STATE Situation Possible application action

SRV_MIG_READY The client has sent a message to the 
server indicating that it has detected 
the request and is ready to migrate. The 
server determines whether to continue 
the migration or not.

One of the following:

• Make the context available for the other 
servers.

• Cancel the migration if the application 
decides that migration is no longer 
needed.

• Request another migration if a new 
migration target has been selected.

SRV_MIG_FAILED The client has sent a message to the 
server indicating that the migration 
failed.

One of the following:

• Access the client context and continue 
serving the connection.

• Request another migration.



Connection migration 

46  Open Server

switch(migration_state)
{

case SRV_MIG_READY:
...

case SRV_MIG_FAILED:
...

}
}

...

/*
** Install the migrate-state change event handler
*/
srv_handle(server, SRV_MIGRATE_STATE, 
migrate_state_handler);
...

When working with the SRV_MIGRATE_STATE event handler:

• If the client thread cancels the migration from inside the 
SRV_MIGRATE_STATE event handler, your application must make sure 
that the context is consistent. For instance, you cannot expect a different 
server to use the context your application has created.

• If a new migration request is sent from within the 
SRV_MIGRATE_STATE event handler, this handler is called again when 
the client is ready to start with the new requested migration.

SRV_T_MIGRATE_STATE property and SRV_MIG_STATE enumerated type

SRV_T_MIGRATE_STATE indicates the migration state of the client. 
SRV_T_MIGRATE_STATE is a read-only property that any thread can access. 
The possible migration states are:

SRV_MIG_STATE is an enumerated datatype that models the 
SRV_T_MIGRATE_STATE property. Declare SRV_MIG_STATE as:

State Value Description

SRV_MIG_NONE 0 There is no migration in progress.

SRV_MIG_REQUESTED 1 A migration has been requested by the server.

SRV_MIG_READY 2 The client has received the request and is ready to migrate.

SRV_MIG_MIGRATING 3 The client is now migrating to the specified server.

SRV_MIG_CANCELLED 4 The migration request has been cancelled.

SRV_MIG_FAILED 5 The client failed to migrate.



CHAPTER 2    Topics

Server-Library/C Reference Manual 47

typedef enum
{

SRV_MIG_NONE,
SRV_MIG_REQUESTED,
SRV_MIG_READY,
SRV_MIG_MIGRATING,
SRV_MIG_CANCELLED,
SRV_MIG_FAILED

} SRV_MIG_STATE;

This sample code shows how you can retrieve SRV_T_MIGRATE_STATE 
values; in case of a successful migration, the client exits and the 
SRV_DISCONNECT event handler is called with a SRV_MIG_MIGRATING 
status:

CS_RETCODE ret;
SRV_MIG_STATE migration_state;
ret = srv_thread_props(sp, CS_GET, SRV_T_MIGRATE_STATE,

&migration_state, sizeof (migration_state), NULL);
if (ret != CS_SUCCEED)
{
...
}

SRV_T_MIGRATED

SRV_T_MIGRATED is a Boolean property that indicates whether a connection 
is a new connection or a migrated connection. This read-only property is set to 
true when the client is migrating or has migrated to the server. This sample 
code retrieves the value of SRV_T_MIGRATED:

CS_RETCODE ret;
CS_BOOL migrated;
status = srv_thread_props(sp, CS_GET, SRV_T_MIGRATED,

&migrated, sizeof (migrated), NULL);

SRV_T_SESSIONID

The SRV_T_SESSIONID is a thread property that retrieves the session ID that 
the client sends to Open Server. You can set the SRV_T_SESSIONID property 
using the srv_thread_props() function, given that:

• The srv_thread_props(CS_SET, SRV_T_SESSIONID) call is made inside 
the SRV_CONNECT event handler and,

• The client supports connection migration or high availability.



Connection migration 

48  Open Server

This sample code sets the SRV_T_SESSIONID property:

CS_RETCODE ret;
CS_SESSIONID hasessionid;
ret = srv_thread_props(sp, CS_SET, SRV_T_SESSIONID,

hasessionid, sizeof(hasessionid), NULL);

Note  For HA-failover, you must program an srv_negotiate() sequence to send 
the session ID to the client.

Instructing clients to migrate to a different server
This section discusses the requirements for an Open Server to migrate clients 
to other servers. When migrating clients to a different server your application 
must:

1 Create a unique session ID and send it to the clients in the connection 
handler.

2 Initiate connection migration.

3 Handle migration events.

4 Share the context of the connection, using the connection’s session ID, to 
other servers.

5 (Optional) Act on ongoing migrations in existing handlers.

The following sections further discuss these activities.

Requesting a client to migrate

Open Server can use srv_send_ctlinfo() to send a migration request to the client. 
Client migration can be requested from any Open Server thread. 

Managing the connect (SRV_CONNECT) event

In the SRV_CONNECT event handler, your application must:

• Check the SRV_T_MIGRATED property and determine if the connection 
is a migrated connection. If it is, your application must access the context 
based on the session ID provided by the client. The session ID can be 
retrieved using the SRV_T_SESSIONID thread property.



CHAPTER 2    Topics

Server-Library/C Reference Manual 49

• Check CS_REQ_MIGRATE to determine if the client supports connection 
migration. If the client supports connection migration, your application 
must send a session ID using the SRV_T_SESSIONID property to the 
client if the client has not yet received a session ID. By assigning the client 
a session ID, your application can instruct the client to migrate when the 
need arises.

Managing the migrate state (SRV_MIGRATE_STATE) event

The SRV_MIGRATE_STATE event handler must manage the migration state 
changes and execute the actions appropriate for each change:

• SRV_MIGRATE_STATE changed to SRV_MIG_READY

A “ready” migration state indicates that the client is prepared to migrate 
and, for now, is not going to send any request. In the 
SRV_MIGRATE_STATE event handler, Open Server shares the client 
context with the server the client is migrating to. Afterwards, your 
application can return from the event handler, and Open Server can 
automatically instruct the client to start the migration.

• SRV_MIGRATE_STATE changed to SRV_MIG_FAILED

If the SRV_MIGRATE_STATE event handler is triggered because the 
migration state changed to “failed,” your application must access the 
context again. Your application can request another migration attempt 
from the SRV_MIG_STATE event handler using the srv_send_ctlinfo() 
function. However, the client may have sent another query before it 
indicates it is ready to migrate again. The application must be able to 
service or migrate such a request.

Sharing client context

For servers to start and continue servicing a client, the servers must have access 
to the client’s context which is identified by the client’s session ID. Typically, 
the client’s context contains data, such as global data, that event handlers for 
the client can access. The amount of context required for a connection depends 
on the service that the Open Server application provides. The more context-
free the service is, the less context needs to be shared.



Connection migration 

50  Open Server

Managing the migrate resume (SRV_MIGRATE_RESUME) event

Your application sends the remaining results and messages to the client inside 
the SRV_MIGRATE_RESUME event handler. The results and messages that 
Open Server sends to the client depend on your application and the migration 
type. However, your application must end the SRV_MIGRATE_RESUME 
event handler by sending the SRV_DONE_FINAL result type to the client.

Managing the disconnect (SRV_DISCONNECT) event

In the SRV_DISCONNECT event handler, your application must check 
SRV_T_MIGRATE_STATE to determine the client’s migration state:

• A migration state of SRV_MIG_REQUESTED indicates that the 
SRV_DISCONNECT event has been triggered because the Open Server 
application terminated the connection before the client could respond to 
the migration request.

• A migration state of SRV_MIG_MIGRATING indicates that the 
SRV_DISCONNECT event has been triggered because the client 
application, after a successful migrating to the new server, closed the 
connection.

• For all other migration states, the client must make sure that connection-
specific context is cleaned up because no other server will pick up this 
context.

Managing in-batch migration

An event handler that runs for long periods of time must occasionally inspect 
the migration state. Other Open Server threads can send a migration request 
even while an event handler process is still running. In this case, the event 
handler, if it is able to, must interrupt the process, and postpone the generation 
and sending of results until the connection has migrated to the new server.

Attention handling

When a client sends an attention message to cancel an outstanding request, the 
SRV_T_GOTATTENTION thread property is set to CS_TRUE and the 
SRV_ATTENTION event handler is called. The specific attention handling 
needs of a connection migration are described below:

• For the SRV_MIGRATE_STATE event handler and SRV_MIG_READY 
state:



CHAPTER 2    Topics

Server-Library/C Reference Manual 51

If the attention message arrives in the SRV_MIGRATE_STATE event 
handler before the client indicates that it is ready to migrate, Open Server 
acknowledges the attention when the SRV_MIGRATE_STATE event 
handler ends. This completes the request from the client. After a 
successful migration, the server that the client has migrated to does not 
receive this attention message and, because the client is not waiting for 
results from Open Server, the SRV_MIGRATE_RESUME event handler 
is not called.

Thus, your application must check if the SRV_T_GOTATTENTION 
property is set to CS_TRUE before making the context available to other 
servers. If SRV_T_GOTATTENTION is set to CS_TRUE, you must 
update the context to indicate that the client has cancelled the operation. 

• For the SRV_MIGRATE_RESUME event handler:

If the client has sent the attention message after the client indicated that it 
is ready to migrate and the migration succeeded, the attention is sent to the 
server to which the client has migrated. It is therefore possible that, after a 
successful migration, an attention can be received by the 
SRV_MIGRATE_RESUME event handler even if the original server has 
updated the context to reflect the cancellation. Thus, your application must 
check if the client has sent an attention to the server before it can execute 
the SRV_MIGRATE_RESUME event handler.

Disconnecting Open Server

Your application can terminate a client connection even when a migration has 
been requested; however, a new client command that is sent just before Open 
Server issued the termination command may get lost. To avoid this, your 
application must:

• If possible, avoid terminating connections when a client is instructed to 
migrate.

• If there is a need to disconnect a client, Open Server must set a reasonable 
wait time before requesting the migration. This gives a client the time to 
detect the migration request before it issues another command.

• When Open Server terminates a connection, the SRV_DISCONNECT 
event handler is called. Inside this handler, ensure that the context is 
available to other servers if the migration state is still set to 
SRV_MIG_REQUESTED.



CS_BROWSEDESC structure 

52  Open Server

Accepting connections from migrated clients
Open Server can determine if a new connection is migrating or has migrated by 
inspecting the SRV_T_MIGRATED property in the SRV_CONNECT event 
handler. If SRV_T_MIGRATED is TRUE, you can retrieve the session ID from 
the client using the SRV_T_SESSIONID property. You can also change the 
session ID, but this is not required to migrate the client later.

If the client was executing a command when it migrated, the 
SRV_MIGRATE_RESUME event is triggered and Open Server can send 
results to the client to complete the command. Your application is responsible 
for retrieving the session information. You must also determine whether you 
still need to send results to the client from within the 
SRV_MIGRATE_RESUME event handler.

Error messages
These are the error messages that you might encounter when using the 
connection migration feature:

CS_BROWSEDESC structure
srv_tabname and srv_tabcolname use a CS_BROWSEDESC structure to return 
information about the underlying structure of a browse mode query.

A CS_BROWSEDESC structure is defined as follows: 

/*
 ** CS_BROWSEDESC
 ** The Open Server browse column description
 ** structure.

Error Description

srv_thread_props(): Property - SRV_T_SESSIONID 
is not available

You try to retrieve a session ID that the client has not yet 
received.

srv_send_ctlinfo(SRV_CTL_MIGRATE): Connection 
cannot migrate

The client does not support migration.

srv_send_ctlinfo(SRV_CTL_MIGRATE): Migration 
can no longer be cancelled

You requested for a cancellation of a migration that has 
already started.

Migration failed but no SRV_MIGRATE_STATE 
handler was installed

The default SRV_MIGRATE_STATE handler detects a 
migration failure.



CHAPTER 2    Topics

Server-Library/C Reference Manual 53

 */
 typedef struct _cs_browsedesc
 {
     CS_INT       status;
     CS_BOOL      isbrowse;
     CS_CHAR      origname[CS_MAX_NAME];
     CS_INT       orignlen;
     CS_INT       tablenum;
     CS_CHAR      tablename[CS_OBJ_NAME];
     CS_INT       tabnlen;
 } CS_BROWSEDESC;

where: 

• status is a bitmask of the following symbols, OR’d together:

CS_EXPRESSION indicates the column is the result of an expression – 
for example, “sum*2” in the query: 

     select sum*2 from areas

CS_RENAMED indicates that the column’s heading is not the original 
name of the column. Columns will have a different heading from the 
column name in the database if they are the result of a query of the form: 

     select Author = au_lname from authors

• isbrowse indicates whether or not the column can be updated in browse-
mode.

A column can be updated if it is neither a timestamp column nor the result 
of an expression and if it belongs to a browsable table. A table is browsable 
if it possesses a unique index and a timestamp column.

isbrowse is set to CS_TRUE if the column can be updated and CS_FALSE 
if it cannot.

• origname is the original name of the column in the database.

Any updates to a column must refer to it by its original name, not the 
heading that may have been given the column in a select statement.

• orignlen is the length, in bytes, of origname.

• tablenum is the number of the table to which the column belongs. The first 
table in a select statement’s “from” list is table number 1; the second is 
table number 2; and so forth.

• tablename is the name of the table to which the column belongs.

• tabnlen is the length, in bytes, of tablename.



CS_DATAFMT structure 

54  Open Server

CS_DATAFMT structure
A CS_DATAFMT structure is used to describe data values and program 
variables. For example: 

•  srv_bind uses a CS_DATAFMT structure to describe a source or 
destination program variable.

• srv_descfmt uses a CS_DATAFMT structure to describe the client data.

• cs_convert requires CS_DATAFMT structures to describe source and 
destination data.

Most routines use only a subset of the fields in a CS_DATAFMT. For example, 
srv_bind does not use the name and usertype fields, and srv_descfmt does not 
use the format field. For information on which fields in the CS_DATAFMT a 
routine uses, see that routine’s reference page.

A CS_DATAFMT structure is defined as follows: 

typedef struct _cs_datafmt
{
     CS_CHAR       name[CS_MAX_NAME];   /* Name of data.       */
      CS_INT        namelen;             /* Length of name.     */
      CS_INT        datatype;            /* Datatype of data.   */
      CS_INT        format;              /* Format symbols.     */
      CS_INT        maxlength;           /* Max length of data. */
      CS_INT        scale;               /* Scale of data.      */
      CS_INT        precision;           /* Precision of data.  */
      CS_INT        status;              /* Status symbols.     */
 
    /*
       ** The following field is not used in Open Server.
       ** It must be set to 1 or 0.
       */
       CS_INT     count;                 

     /*
       ** These fields are used to support user-defined
       ** datatypes and international datatypes:
       */
       CS_INT    usertype;            /* User-defined type.*/
       CS_LOCALE *locale;             /* Locale information. */

} CS_DATAFMT;

where: 

• name is the name of the data, that is, the column or parameter name.



CHAPTER 2    Topics

Server-Library/C Reference Manual 55

• namelen is the length, in bytes, of name. Set namelen to CS_NULLTERM 
to indicate a null terminated name. Set namelen to 0 if name is NULL.e

• datatype is the datatype of the data, which is one of the Open Server 
datatypes listed in “Types” on page 199.

Note  The datatype field is used to describe the Open Server datatype of 
the data. usertype is only used if the data has an application-defined 
datatype in addition to an Open Server datatype.

For example, this Adaptive Server command creates the Adaptive Server 
user-defined type birthday: 

sp_addtype birthday, datetime

and this command creates a table containing a column of the new type: 

create table birthdays
(
          name         varchar(30),
          happyday     birthday
 )

An Open Server application that supported user-defined datatypes would 
return this information to the client by setting the CS_DATAFMT datatype 
field to CS_DATETIME_TYPE and the usertype field to the user-defined 
ID for the type birthday.

• format describes the destination format of character or binary data. format 
is a bitmask of these symbols, OR’d together. Table 2-7 summarizes the 
legal values for format



CS_DATAFMT structure 

56  Open Server

Table 2-7: Values for format (CS_DATAFMT) 

• maxlength can represent various lengths, depending on which Open Server 
routine is using the CS_DATAFMT. Table 2-8 describes the various 
lengths maxlength can represent:

Table 2-8: Meaning of maxlength (CS_DATAFMT)

• scale is the scale of the data. It is used only with decimal or numeric 
datatypes.

Legal values for scale are from CS_MIN_SCALE to CS_MAX_SCALE. 
The default scale is CS_DEF_SCALE.

To indicate that destination data should use the same scale as the source 
data, set scale to CS_SRC_VALUE.

• scale must be less than or equal to precision.

• precision is the precision of the data. It is used only with decimal or 
numeric datatypes.

Legal values for precision are from CS_MIN_PREC to 
CS_MAX_PREC. The default precision is CS_DEF_PREC.

To indicate that destination data should use the same precision as the 
source data, set precision to CS_SRC_VALUE:

Symbol To indicate Notes

CS_FMT_NULLTERM The data should be null terminated. For character or 
text data

CS_FMT_PADBLANK The data should be padded with 
blanks to the full length of the 
destination variable.

For character or 
text data

CS_FMT_PADNULL The data should be padded with 
NULLs to the full length of the 
destination variable.

For binary, 
image, character, 
or text data

CS_FMT_UNUSED Neither padding nor null termination 
is applicable to the datatype.

For all datatypes

Open Server 
routine maxlength is

srv_bind The length of the bind variable

srv_descfmt The maximum possible length of the column or parameter 
being described

cs_convert The length of the source data and the length of the 
destination buffer space



CHAPTER 2    Topics

Server-Library/C Reference Manual 57

• precision must be greater than or equal to scale.

• status is a bitmask used to indicate various types of information. 
Table 2-9 summarizes the types of information that status can 
contain:

Table 2-9: Values for status (CS_DATAFMT)

• count is not used by Server-Library routines. It should always be set to 0 
or 1.

• usertype is the user-defined datatype, if any, of data returned.

• locale is a pointer to a CS_LOCALE structure containing localization 
information. Set locale to NULL if localization information is not required.

CS_IODESC structure
A CS_IODESC, also called an “I/O descriptor structure,” describes text or 
image data.

Symbolic value To indicate

CS_CANBENULL The column can contain NULL.

CS_DESCIN The CS_DATAFMT structure describes a Dynamic SQL 
input parameter.

CS_DESCOUT The CS_DATAFMT structure describes a Dynamic SQL 
output parameter.

CS_HIDDEN The column is a “hidden” column that has been exposed.

CS_INPUTVALUE The parameter is an input parameter value for a cursor open 
command or a non-return RPC parameter.

CS_KEY The column is a key column.

CS_RETURN The parameter is a return parameter to an RPC command.

CS_TIMESTAMP The column is a timestamp column. An application uses 
timestamp columns when performing browse-mode updates.

CS_UPDATABLE The column is an updatable cursor column.

CS_UPDATECOL The parameter is the name of a column in the update clause 
of a cursor declare command.

CS_VERSION_KEY The column is part of the version key for the row.
 
 Adaptive Server uses version keys for positioning.

CS_NODEFAULT There is no default specified for the parameter.



CS_IODESC structure 

58  Open Server

An Open Server application calls srv_text_info with a cmd argument of 
CS_GET when processing text or image data from a client. Only the 
total_textlen field of the CS_IODESC argument is filled in by this call.

If the application is sending columns of data to a client, it calls srv_text_info 
with a cmd argument of CS_SET. In this scenario, the CS_IODESC structure 
describes a text or image column being sent. A CS_IODESC is defined as 
follows: 

typedef struct _cs_iodesc
{

      CS_INT    iotype;                  /* CS_IODATA           */
      CS_INT    datatype;                /* Text or image.      */
      CS_LOCALE *locale;                 /* Locale information. */
      CS_INT    usertype;                /* User-defined type.  */
      CS_INT    total_txtlen;            /* Total data length.  */
      CS_INT    offset;                  /* Reserved.           */
      CS_BOOL   log_on_update;           /* Log the insert.     */
      CS_CHAR   name[CS_OBJ_NAME];       /* Name of data object.*/
      CS_INT    namelen;                 /* Length of name.     */
      CS_BYTE   timestamp[CS_TS_SIZE];   /* Adaptive Server id. */
      CS_INT    timestamplen;            /* Length of timestamp.*/
      CS_BYTE   textptr[CS_TP_SIZE];     /* Adaptive Server pt  */
      CS_INT    textptrlen;              /* Length of textptr.  */
 } CS_IODESC;

where: 

• iotype indicates the type of I/O to perform. For text and image operations, 
iotype always has the value CS_IODATA.

• datatype is the datatype of the data object. The only legal values for 
datatype are CS_TEXT_TYPE and CS_IMAGE_TYPE.
locale is not currently used in Open Server. Set to NULL.
usertype is not used in Open Server.

• total_txtlen is the total length, in bytes, of the text or image value.

• offset is reserved for future use. 

• log_on_update describes whether to log the update to this text or image 
value.

• name is the name of the text or image column.

• namelen is the length, in bytes, of name, or CS_NULLTERM to indicate a 
null-terminated name.



CHAPTER 2    Topics

Server-Library/C Reference Manual 59

• timestamp is the text timestamp of the column. A text timestamp marks the 
time of a text or image column’s last modification.

• timestamplen is the length, in bytes, of timestamp.

• textptr is an array of text or image bytes for column insertion or retrieval.

• textptrlen is the length, in bytes, of textptr.

CS-Library
CS-Library is a collection of utility routines and structures useful or necessary 
to both Open Server and Open Client applications. In past versions, Server-
Library and Client-Library provided such utility routines and structures 
separately, resulting in unnecessary duplication.

Common routines
CS-Library includes routines to support: 

• Datatype conversion

• Arithmetic operations

• Character-set conversion

• Datetime operations

• Sort-order operations

• Localization routines

CS-Library also includes routines to allocate CS-Library structures.

Although you can write a standalone CS-Library application, the library’s 
primary function is to provide common utilities to Open Client and Open 
Server applications.

Some of these routines offer functionality provided by existing Server-Library 
routines. While it is not yet necessary to replace the Server-Library routines 
with their CS-Library counterparts, it may be in the future.



CS_SERVERMSG structure 

60  Open Server

Common data structures
In addition to common routines, CS-Library provides data structures useful to 
both Open Client and Open Server applications. Among these data structures 
is a CS_CONTEXT structure, which contains information about an application 
programming environment, or “context.”

An Open Server application programmer can tailor an application’s behavior 
by setting global application attributes stored in this structure. “Properties” on 
page 139 discusses this feature in detail.

Other CS-Library structures contain information about data passed between 
Open Client and Open Server applications.

Note  Because Client-Library and Server-Library programs require a context 
structure, which can only be allocated using CS-Library, all Client-Library and 
Server-Library programs must include at least two calls to CS-Library—one to 
allocate a CS_CONTEXT and one to deallocate it.

Error handling
An Open Server application should install a message callback routine with the 
cs_config routine to report CS-Library errors. A standard Open Server error 
handler installed with srv_props will not catch CS-Library errors, such as data 
conversion errors generated in a call to cs_convert.

If an Open Server application has not installed a CS-Library handler, Open 
Server installs a default handler when the application calls srv_version. This 
default handler writes CS-Library errors to the Open Server log.

For details on handling CS-Library errors and for more general information 
about CS-Library, see the Open Client and Open Server Common Libraries 
Reference Manual.

CS_SERVERMSG structure
A CS_SERVERMSG structure contains information about a server error 
message.



CHAPTER 2    Topics

Server-Library/C Reference Manual 61

Open Server uses a CS_SERVERMSG structure to send error messages to a 
client, through the srv_sendinfo routine.

A CS_SERVERMSG structure is defined as follows: 

/*
 ** CS_SERVERMSG
 ** The server message structure.
 */

typedef struct _cs_servermsg
 {
     CS_INT   msgnumber;
     CS_INT   state;
     CS_INT   severity;
     CS_CHAR  text[CS_MAX_MSG];
     CS_INT   textlen;
     CS_CHAR  svrname[CS_MAX_NAME];
     CS_INT   svrnlen;

    /*
     ** If the error involved a stored procedure,
     ** the following fields contain information
     ** about the procedure:
     */
     CS_CHAR  proc[CS_MAX_NAME];
     CS_INT   proclen;
     CS_INT   line;

    /*
     ** Other information.
     */
     CS_INT   status;
     CS_BYTE  sqlstate[CS_SQLSTATE_SIZE];
     CS_INT   sqlstatelen;
 } CS_SERVERMSG;

where: 

• msgnumber is the Open Server or application message number to report 
to the client.

• state is the state in which the message was generated. The application 
defines this.

• severity is the severity of the message.

• text is the text of the message.

• textlen is the length, in bytes, of text.



CS_SERVERMSG structure 

62  Open Server

• svrname is the name of the server that generated the message. This value 
can be the name of the Open Server application running currently, or a 
different name.

• svrnlen is the length, in bytes, of svrname.

• proc is the name of the stored procedure (if any) that caused the message.

• proclen is the length, in bytes, of proc.

• line is the line number within the stored procedure (if any) that caused the 
message.

• status contains information on whether the message chunk is the first, last, 
or a middle part of the message, and whether it includes extended error 
data. Since status is a byte-ordered flag, you can set it to more than one 
value. For example: 

mrec.status = CS_FIRST_CHUNK | CS_LAST_CHUNK;

where mrec is declared as a CS_SERVERMSG structure.

Table 2-10 describes the legal values for status:

Table 2-10: Values for status field of CS_SERVERMSG structure

• sqlstate is a byte string describing the error.

Not all server messages have SQL state values associated with them. If no 
SQL state value is associated with a message, sqlstate’s value is “ZZZZZ”.

• sqlstatelen is the length, in bytes, of the sqlstate string.

Value Meaning

CS_HASEED There is extended error data associated with the message.

CS_FIRST_CHUNK The message text contained in text is the first chunk of the 
message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are both 
on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is 
on, then text contains a middle chunk of the message.

CS_LAST_CHUNK The message text contained in text is the last chunk of the 
message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are both 
on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is 
on, then text contains a middle chunk of the message.



CHAPTER 2    Topics

Server-Library/C Reference Manual 63

For more information on sending a message in chunks, see “Client command 
errors” on page 38.

Cursors
Adaptive Server Enterprise implements cursors, which are supported by 
Server-Library and Client-Library.

For information on how cursors are implemented in Adaptive Server 
Enterprise, see the Adaptive Server Enterprise Reference Manual.

For information on how cursors are supported by Client-Library, see the Open 
Client Client-Library/C Reference Manual.

Cursor overview
A cursor is a symbolic name that is linked with a SQL statement. Declaring a 
cursor establishes this link. The SQL statement can be: 

• A SQL select statement

• A Transact-SQL execute statement

• A Dynamic SQL prepared statement

The SQL statement associated with a cursor is called the body of the cursor. 
When a client opens a cursor, it executes the body of the cursor, generating a 
result set. The Open Server application is responsible for detecting cursor 
requests and passing cursor results back to the client.

Advantages of cursors 
Cursors allow a client application to access individual rows within a result set, 
rather than merely retrieve a complete set of data rows.

A single connection can have multiple cursors open at the same time. All of the 
cursor result sets are simultaneously available to the application, which can 
fetch data rows from them at will. This is in contrast to other types of result 
sets, which must be handled one row at a time in a sequential fashion.



Cursors 

64  Open Server

Further, a client application can update underlying database tables while 
actively fetching rows in a cursor result set.

Open Server applications and cursors
This section contains basic information on Open Server cursor support. For 
specific information on how to structure a SRV_CURSOR event handler, see 
“How to respond to specific requests” on page 72.

How are cursor requests generated?

A client application requests a cursor by issuing a cursor command to an Open 
Server application.

A client application calls the Client-Library command ct_cursor to initiate a 
cursor command. For more information on ct_cursor, see the Open Client 
Client-Library/C Reference Manual.

A cursor request causes Open Server to generate a SRV_CURSOR event. To 
respond to cursor requests, an Open Server application must include a 
SRV_CURSOR event handler. 

Types of cursor commands

Table 2-11 summarizes the types of cursor commands a client can issue:

Table 2-11: Summary of cursor commands

Type of command What it does

Declare Associates a cursor name with the body of the cursor.

Open Executes the body of the cursor, generates a cursor result 
set.

Information Reports the status of the cursor, or sets the cursor row fetch 
count.

Fetch Fetches rows from the cursor result set.

Update or Delete Updates or deletes the contents of the current cursor row.

Close Makes the cursor result set unavailable. Reopening a 
cursor regenerates the cursor result set.

Deallocate Renders the cursor nonexistent. A cursor that has been 
deallocated cannot be reopened.



CHAPTER 2    Topics

Server-Library/C Reference Manual 65

A typical client application issues cursor commands in the order in which they 
are listed in Table 2-11, but the order can vary. For example, a client might 
fetch against a cursor, close the cursor, then reopen and fetch rows from it 
again.

How is cursor information exchanged with a client?

A SRV_CURSOR event handler uses the srv_cursor_props routine and the 
SRV_CURDESC structure to exchange cursor information with a client. 
srv_cursor_props sends current information to a client and retrieves cursor 
information from a client by accessing a SRV_CURDESC structure.

For more information on the srv_cursor_props routine, see srv_cursor_props 
on page 253.

Because a client and server can exchange information about multiple cursors 
during a single connection session, they need to uniquely identify each cursor. 
An Open Server application responds to a cursor declaration by sending back 
a unique cursor ID. The client and the server refer to the cursor by this ID for 
the cursor’s lifetime. 

SRV_CURDESC structure

A SRV_CURDESC structure contains information about a cursor, including: 

• The cursor’s unique ID

• The type of cursor command most recently issued by the client

• The status of the cursor

A SRV_CURDESC structure is defined as follows: 

/*
 ** SRV_CURDESC
 ** The Open Server cursor description
 ** structure.
 */
 
 typedef struct srv_curdesc
 {
     CS_INT       curid;
     CS_INT       numupcols;
     CS_INT       fetchcnt;
     CS_INT       curstatus;
     CS_INT       curcmd;
     CS_INT       cmdoptions;



Cursors 

66  Open Server

     CS_INT       fetchtype;
     CS_INT       rowoffset;
     CS_INT       curnamelen;
     CS_CHAR      curname[CS_MAX_CHAR];
     CS_INT       tabnamelen;
     CS_CHAR      tabname[CS_MAX_CHAR];
     CS_VOID      *userdata;
 
 } SRV_CURDESC;

Table 2-12 describes each field in a SRV_CURDESC structure:



CHAPTER 2    Topics

Server-Library/C Reference Manual 67

Table 2-12: Fields in a SRV_CURDESC structure

Field name Description Notes

curid The current cursor 
identifier

The Open Server application must set 
curid when responding to a 
CS_CURSOR_DECLARE command 
from the client. Any subsequent 
commands from the client that pertain to 
the declared cursor use curid as an 
identifier. curid is set to 0 if there is no 
current cursor identifier or if the client is 
requesting the status of all available 
cursors.

numupcols The number of columns 
in a cursor update 
clause

numupcols is set to 0 if there are no update 
columns. This information is available 
when the cursor is declared.

fetchcnt The current row fetch 
count for this cursor— 
that is, the number of 
rows that will be sent to 
the client in response to 
a 
CS_CURSOR_FETCH 
command

fetchcnt is set when a 
CS_CURSOR_INFO command is 
received from the client or is sent to the 
client in response to such a command. 
fetchcnt is set to 1 if the client has not 
explicitly set a row fetch count. If the 
Open Server application cannot support 
the requested fetch count, it can set this 
field to a different value before 
responding.

curstatus The status of the current 
cursor

Open Server sets the cursor status in 
response to the cursor command received 
from the client. See “Values for curstatus” 
on page 69 for a list of legal values.

curcmd The current cursor 
command type

See Table 2-14 for a list of legal values.

cmdoptions Any options associated 
with the cursor 
command

Not all commands have associated 
options. The value of cmdoptions depends 
on the cursor command. Table 2-14 
describes the possible values for 
cmdoptions, by command.



Cursors 

68  Open Server

fetchtype The type of fetch 
requested by a client

fetchtype is described when a 
CS_CURSOR_FETCH command is 
received from the client. The valid fetch 
types and their meanings are as follows: 

• CS_NEXT – next row

• CS_PREV – previous row

• CS_FIRST – first row

• CS_LAST – last row

• CS_ABSOLUTE – row identified in 
the rowoffset field

• CS_RELATIVE – current row plus or 
minus value in the rowoffset field.

Requests to an Adaptive Server will 
always have a fetchtype of CS_NEXT.

rowoffset The row position for 
CS_ABSOLUTE or 
CS_RELATIVE fetches

rowoffset is undefined for all other fetch 
types. rowoffset is set when a 
CS_CURSOR_FETCH command is 
received from the client.

curnamelen The length of the cursor 
name in curname

curnamelen is zero if curname is not valid. 
curnamelen returns the length of the 
cursor name.

curname The name of the current 
cursor

tabnamelen The length of the table 
name in tabname

tabnamelen is zero if tabname is not valid. 
tabnamelen returns the length of the table 
name. tabnamelen is described when a 
CS_CURSOR_UPDATE or 
CS_CURSOR_DELETE command is 
received from the client.

tabname The table name 
associated with a cursor 
update or delete 
command

tabname is the table name associated with 
a cursor update or delete command. 
tabname is described when a 
CS_CURSOR_UPDATE or 
CS_CURSOR_DELETE command is 
received from the client.

userdata A pointer to private data 
space

This field allows applications to associate 
data with a particular cursor without using 
global or static variables. Open Server 
does not manipulate userdata; it is 
provided only for the convenience of 
Open Server application programmers.

Field name Description Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 69

Values for curstatus

The curstatus field of the SRV_CURDESC structure is a bitmask that can take 
any combination of these values:

Table 2-13: Values for curstatus (SRV_CURDESC)

Values for curcmd

The curcmd field of the SRV_CURDESC structure can take one of the values 
described in Table 2-14. The table also lists the relevant cmdoptions values.

Value Meaning

CS_CURSTAT_DECLARED The cursor has been declared. This status is reset 
after the next cursor command has been 
processed.

CS_CURSTAT_OPEN The cursor has been opened.

CS_CURSTAT_ROWCNT The cursor has specified the number of rows that 
should be returned for the CS_CURSOR_FETCH 
command.

CS_CURSTAT_RDONLY The cursor is read-only; it cannot be updated. The 
Open Server application should return an error to 
the client if a CS_CURSOR_UPDATE or 
CS_CURSOR_DELETE is received for this 
cursor.

CS_CURSTAT_UPDATABLE The cursor can be updated.

CS_CURSTAT_CLOSED The cursor was closed but not deallocated. It can 
be opened again later. This status is also set upon 
declaration of a cursor. Open Server clears it when 
a CS_CURSOR_OPEN is received and resets it 
when a CS_CURSOR_CLOSE is received.

CS_CURSTAT_DEALLOC The cursor was closed and deallocated. No other 
status flags should be set at this time.



Cursors 

70  Open Server

Table 2-14: Values for curcmd (SRV_CURDESC)

Value Meaning
Legal values for 
cmdoptions

CS_CURSOR_CLOSE Cursor close 
command.

SRV_CUR_DEALLOC or 
SRV_CUR_UNUSED. 
SRV_CUR_DEALLOC 
indicates that the cursor will 
never be reopened. The Open 
Server application should 
delete all associated cursor 
resources. The cursor ID 
number can be reused.

CS_CURSOR_DECLARE Cursor declare 
command. The 
application can obtain 
the actual text of the 
cursor statement 
through srv_langlen 
and srv_langcpy.

SRV_CUR_UPDATABLE, 
SRV_CUR_RDONLY, or 
SRV_CUR_DYNAMIC. 
SRV_CUR_DYNAMIC 
indicates that the client 
declares the cursor against a 
dynamically prepared SQL 
statement; in this case, the 
text of the cursor statement is 
actually the name of the 
prepared statement.

CS_CURSOR_DELETE Cursor delete 
command. Performs a 
positional row delete 
through a cursor.

There are no valid options 
for this command. 
cmdoptions will always have 
the value 
SRV_CUR_UNUSED.

CS_CURSOR_FETCH Cursor fetch 
command. Performs a 
row fetch through a 
cursor.

There are no valid options 
for this command. 
cmdoptions will always have 
the value 
SRV_CUR_UNUSED.



CHAPTER 2    Topics

Server-Library/C Reference Manual 71

CS_CURSOR_INFO Cursor information 
command. The client 
sends this command 
to the Open Server 
application to set the 
cursor row fetch count 
or to request cursor 
status information. 
The Open Server 
application sends this 
command to the client 
in response to any 
cursor command 
(including 
CS_CURSOR_INFO 
itself) to describe the 
current cursor.

SRV_CUR_SETROWS 
when the client describes the 
current row fetch count. The 
fetchcnt field contains the 
requested fetch count. 
 
SRV_CUR_ASKSTATUS 
when the client requests 
status information about the 
current cursor. This 
generally occurs when the 
client has sent an attention 
and wants to see which 
cursors are still available 
afterwards. The curid field 
contains 0. The Open Server 
application should send back 
a CS_CURSOR_INFO 
response for each cursor 
currently available. 
 
SRV_CUR_INFORMSTAT
US when the Open Server 
application responds to a 
CS_CURSOR_INFO 
command. The curstatus 
field contains the cursor 
status.

CS_CURSOR_OPEN Cursor open 
command.

SRV_CUR_HASARGS or 
SRV_CUR_UNUSED.

CS_CURSOR_UPDATE Cursor update 
command. Performs a 
positional row update 
through a cursor. The 
Open Server 
application can obtain 
the actual text of the 
cursor update 
statement by calling 
srv_langlen and 
srv_langcpy.

SRV_CUR_HASARGS or 
SRV_CUR_UNUSED.

Value Meaning
Legal values for 
cmdoptions



Cursors 

72  Open Server

Handling cursor requests
An Open Server application uses a SRV_CURSOR event handler to handle 
cursor requests. The handler includes code to detect which of the cursor 
commands has been issued and to respond with the appropriate information.

The event handler first determines the current cursor and the cursor command 
that triggered the SRV_CURSOR event by calling srv_cursor_props with the 
cmd argument set to CS_GET. Open Server then fills the curcmd field of the 
Open Server application’s SRV_CURDESC structure with the command type.

The application can then determine what other information it needs to retrieve, 
if any, as well as what data to send back to the client. In some cases, it may need 
to retrieve parameter formats and parameters; in others, it may want to 
ascertain the status of the current cursor and the number of rows to fetch. In 
some cases, it may only need to send back a CS_CURSOR_INFO command; 
in others, it may need to send back result data or return parameters.

How to respond to specific requests

This section describes how a SRV_CURSOR event handler should respond to 
specific types of cursor requests.

Prior to calling srv_cursor_props with cmd set to CS_SET, an Open Server 
application must always set the curid field, and any other pertinent fields, in the 
SRV_CURDESC structure.

Table 2-15 summarizes the valid exchange of cursor requests and responses 
between a client and an Open Server application. The forward arrow (→) 
indicates that cmd is set to CS_GET—the Open Server application retrieves 
information from the client. The backward arrow (←) indicates that cmd is set 
to CS_SET—the Open Server application sends information to the client.



CHAPTER 2    Topics

Server-Library/C Reference Manual 73

Table 2-15: Valid cursor requests and responses

Client action Open Server application response

Declares a cursor
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_DECLARE)

− >Retrieve curcmd value from SRV_CURDESC
 (srv_cursor_props)
 
− >Retrieve number of cursor parameters, if any
 (srv_numparams)
 
− >Retrieve format of cursor parameters, if any
 (srv_descfmt with type argument set to SRV_CURDATA)
 
− >Retrieve update column information, if any
 (srv_descfmt with type argument set to
 SRV_UPCOLDATA)
 
− >Retrieve actual text of cursor command
 (srv_langlen and srv_langcpy)
 
< − Set cursor ID. Set curcmd field to CS_CURSOR_INFO 
and curid field to unique cursor ID
 (srv_cursor_props)

 
< − Send a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Requests the status of the current cursor or sends a 
fetch count
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_INFO)

− >Retrieve curcmd and curid cmdoptions values from 
SRV_CURDESC structure
 (srv_cursor_props)

 < − Send number of rows to be returned per fetch, if client 
set cmdoptions field to SRV_CUR_SETROWS
 
 (srv_cursor_props with curcmd set to 
CS_CURSOR_INFO)
 
 < − Send status of all available cursors, if client set 
cmdoptions field to SRV_CUR_ASKSTATUS. Set curcmd 
field to CS_CURSOR_INFO and curid field to cursor ID
 
 (srv_cursor_props once for each active—declared, opened 
or closed—cursor)
 
 < − Send a DONE packet
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)



Cursors 

74  Open Server

Opens a cursor
 (curcmd field of SRV_CURDESC contains 
CS_CURSOR_OPEN)

 - > Retrieve curcmd and curid values from 
SRV_CURDESC structure
 (srv_cursor_props)
 
 − > Retrieve number of cursor parameters, if any
 (srv_numparams)
 
 − > Retrieve format of cursor parameters and actual 
parameters, if any
 (srv_descfmt, srv_bind, srv_xferdata with type argument 
set to SRV_CURDATA)
 
 < − Send cursor status. Set curid to current cursor ID and 
curcmd to CS_CURSOR_INFO
 (srv_cursor_props)
 
 < − Describe result row formats
 (srv_descfmt with type argument set to SRV_ROWDATA)
 
 < − Send a DONE packet
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Fetches rows
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_FETCH)

− > Retrieve curcmd and curid values from 
SRV_CURDESC structure
 (srv_cursor_props)
 
< − Send result rows, fetchcnt times
 (srv_bind, srv_xferdata with type argument set to 
SRV_ROWDATA)
 
< − Send a DONE packet
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Client action Open Server application response



CHAPTER 2    Topics

Server-Library/C Reference Manual 75

Note that: 

Issues cursor update command
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_UPDATE)
 
 or 
 
 Issues cursor delete command
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_DELETE)

− > Retrieve curcmd and curid values from 
SRV_CURDESC structure
 (srv_cursor_props)
 
− > Retrieve key columns for current row
 (srv_descfmt, srv_bind, srv_xferdata with type argument 
set to SRV_KEYDATA)
 
 
 
− > Retrieve number of update values, if curcmd is 
CS_CURSOR_UPDATE
 (srv_numparams)
 
 
 
 Retrieve actual text of update statement, if curcmd is 
CS_CURSOR_UPDATE
 (srv_langlen and srv_langcpy)
 
 
 
− > Retrieve update values, if curcmd is 
CS_CURSOR_UPDATE
 (srv_descfmt, srv_bind, srv_xferdata, with type argument 
set to SRV_CURDATA)
 
 
 
< − Send a DONE packet
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Sends a cursor close command
(curcmd field of SRV_CURDESC contains 
CS_CURSOR_CLOSE)

− > Retrieve curcmd and curid values from 
SRV_CURDESC structure
 (srv_cursor_props)
 
< − Send cursor status
 (srv_cursor_props)
 
< − Send a DONE packet
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Client action Open Server application response



Cursors 

76  Open Server

• The Open Server application’s response to a cursor command always 
concludes with a call to srv_senddone with a status argument of 
“SRV_DONE_FINAL.”

• Once the Open Server application issues the first srv_cursor_props 
command with cmd set to “SET”, any further information the application 
sends will apply to this cursor until a srv_senddone with a status argument 
of SRV_DONE_FINAL is issued.

• Internally, Open Server replaces the parameter formats received when the 
client declares a cursor with those received when the client opens a cursor. 
This procedure is necessary in case the format of the parameter passed in 
is not exactly the same as that of the parameter declaration. For example, 
a parameter may be declared as a CS_INT, but the parameter being passed 
in when the cursor is opened may be of type CS_SMALLINT.

• srv_xferdata sends a single row of data, and should be called as many times 
as the number in the current cursor’s row fetch count, in response to a 
CS_CURSOR_FETCH command.

Key data
A key is a subset of row data that uniquely identifies a row. Key data uniquely 
describes the current row in an open cursor. It is used in processing 
CS_CURSOR_DELETE or CS_CURSOR_UPDATE commands. If a column 
is a key column, the status field of the CS_DATAFMT structure that describes 
the column has its CS_KEY bitmask set.

Update columns
If a client has declared a cursor as being “for update,” the cmdoptions field of 
the SRV_CURDESC structure is set to CS_FOR_UPDATE and the numupcols 
field is set to the number of update columns associated with the cursor.

Example
The sample ctos.c includes code illustrating cursor command processing. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 77

Scrollable cursors
The scrollable cursor feature provides a way to set the current position 
anywhere in the result set by specifying a NEXT, PREVIOUS, FIRST, LAST, 
ABSOLUTE or RELATIVE clause in a FETCH statement. It implements a 
scrollable cursor that is read-only with either an INSENSITIVE or a 
SEMI_SENSITIVE property.

Non-scrollable, insensitive cursors are also supported on Open Server and are 
set with the CS_NOSCROLL_INSENSITIVE option.

A new capability, CS_REQ_CURINFO3, is added to Open Server to support 
the new scrollable cursor feature. During login, CS_REQ_CURINFO3 allows 
a remote client connecting to Open Server to request scrollable cursor support.

SRV_CURDESC2 structure
The SRV_CURDESC2 scrollable cursor structure in Open Server is a superset 
of the SRV_CURDESC2 cursor structure described in “SRV_CURDESC 
structure” on page 65.

In addition to fields described in Table 2-12, Table 2-16 describes additional 
fields in the SRV_CURDESC2 structure:

Table 2-16: Additional fields in a SRV_CURDESC2 structure

Values for curstatus

In addition to options described in Table 2-13, the following cursor declare 
options are available in the curstatus field in SRV_CURDESC2:

Field name Description

currow_pos Current row position of a cursor.
curtotalrowcount Total number of rows in the result set; only applies to 

insensitive, scrollable cursors.



Scrollable cursors 

78  Open Server

Table 2-17: Values for curstatus (SRV_CURDESC2)

Values for curcmd

In addition to values in Table 2-14, the values described in Table 2-18 are 
available in the curcmd field of the SRV_CURDESC2 structure. The table also 
lists the relevant cmdoptions values:

Value Meaning

CS_CURSTAT
_SCROLLABLE 

A read-only, insensitive scrollable cursor.

CS_CURSTAT
_INSENSITIVE

A read-only, non-scrollable, insensitive cursor. 
When such a cursor is specified, 
CS_CURSTAT_INSENSITIVE must be enabled, 
and CS_CURSTAT_SCROLLABLE must be 
disabled. 
When an insensitive, scrollable cursor is specified, 
both CS_CURSTAT_INSENSITIVE and 
CS_CURSTAT_SCROLLABLE must be enabled.

CS_CURSTAT
_SEMISENSITIVE

A read-only, semi-sensitive, scrollable cursor. 
When such a cursor is specified, 
CS_CURSTAT_SCROLLABLE must also be 
enabled.



CHAPTER 2    Topics

Server-Library/C Reference Manual 79

Table 2-18: Values for curcmd (SRV_CURDESC2)

srv_cursor_props2 routine

The srv_cursor_props2 routine is added to Open Server to support the 
SRV_CURDESC2 structure.

For pre-15.0 applications, you must use the SRV_CURDESC structure and 
srv_cursor_props routine, if the application sets CS_VERSION_125.

For 15.0 applications that support scrollable cursors on Open Server, use the 
SRV_CURDESC2 structure, and set the application to CS_VERSION_150.

The arguments for srv_cursor_props2 are as follows:

ret = srv_cursor_props2(SRV_PROC *spp, CS_INT cmd, 

SRV_CURDESC2 *cdp);

Value Meaning
Legal values for 
cmdoptions

CS_NOSCROLL_
INSENSITIVE

Non-scrollable, 
insensitive cursors.

There are no valid options 
for this command. 
cmdoptions will always have 
the value 
SRV_CUR_UNUSED.

Note  If you use the CTOS 
application, do not use the 
ct_scroll_fetch routine with 
non-scrollable cursors. 
Instead, use the ct_fetch 
routine.

CS_CURSOR_
DECLARE

Scrollable cursor 
command options.

SRV_CUR_SCROLL, 
SRV_CUR_SCROLL_
INSENS, SRV_CUR_
SCROLL_SEMISENS, 
SRV_CUR_NOSCROLL_
INSENS. 

These cmdoptions are valid 
only at the cursor declare 
cycle, where the curcmd 
field of the 
SRV_CURDESC2 structure 
may contain one of these 
options, based on the remote 
client issuing a ct_cursor



Data stream messages 

80  Open Server

Data stream messages

Data stream messages overview
Data stream messages provide a way for clients and Open Server applications 
to exchange information.

RPCs provide similar functionality, but in the client-to-server direction only. 
Messages work in both directions, making them suitable for a wide variety of 
communications purposes. For example, Sybase uses messages to perform 
security handshaking at login time.

A message consists of a message ID and zero or more parameters. The client 
and Open Server application must be programmed to agree on the meaning of 
each message ID.

User-defined message IDs must be greater than or equal to CS_USER_MSGID 
and less than or equal to CS_USER_MAX_MSGID. Message IDs 
SRV_MINRESMSG through SRV_MAXRESMSG are reserved for internal 
Sybase use.

A client application sends a message by calling ct_command with type set to 
CS_MSG_CMD. This triggers a SRV_MSG event in the Open Server 
application.

Retrieving client data stream messages
A message data stream triggers an Open Server application’s SRV_MSG event 
handler. This handler can retrieve the client message. To do this: 

1 Call srv_msg with cmd set to CS_GET and msgidp pointing to the buffer 
in which Open Server should place the message ID.

srv_msg sets the statusp parameter to SRV_HASPARAMS if the message 
has parameters.

For more information, see srv_msg on page 311.

2 Call srv_numparams, if necessary, to retrieve the number of parameters.

3 Call srv_descfmt, srv_bind, and srv_xferdata to describe and retrieve each 
parameter. For more information on how to process parameters, see the 
“Processing parameter and row data” on page 134.



CHAPTER 2    Topics

Server-Library/C Reference Manual 81

An Open Server application can only retrieve messages using its SRV_MSG 
event handler.

Sending data stream messages to a client
An Open Server application can send a message to a client. To perform this 
function, the application: 

1 Calls srv_msg with cmd set to CS_SET and msgidp pointing to the buffer 
containing the message ID.

A *statusp value of SRV_HASPARAMS indicates that the message has 
parameters. A value of SRV_NOPARAMS indicates that the message has 
no parameters.

For more information see srv_msg on page 311.

2 Calls srv_descfmt, srv_bind, and srv_xferdata to describe and send each 
parameter.

An Open Server application can send messages from within any event handler 
except the SRV_ATTENTION, SRV_CONNECT, SRV_DISCONNECT, 
SRV_URGDISCONNECT, and SRV_START handlers.

Directory services
This section describes what an Open Server application needs to do to use 
directory services. It has these sections: 

• Specifying the directory driver

• Registering an Open Server application with a directory

A directory stores information as directory entries and associates a logical 
name with each entry. Each directory entry contains information about some 
network entity such as a user, a server, or a printer. A directory service 
(sometimes called a naming service) manages creation, modification, and 
retrieval of directory entries.

See the Open Client Client-Library/C Reference Manual for more information, 
and for information about how a client uses directory services.



Directory services 

82  Open Server

Specifying a directory driver
Before running an application that uses directory services, make sure that the 
libtcl.cfg file has been edited to specify the correct directory service provider. 
The libtcl.cfg file is located in the $SYBASE/$SYBASE_OCS/config directory 
or in the path specified by the context property CS_LIBTCL_CFG. The server 
property, SRV_DS_PROVIDER, returns the name of the driver specified in the 
libtcl.cfg file. For more information about the libtcl.cfg file, see the Open 
Client and Open Server Configuration Guide for each platform. See srv_props 
on page 334 for information on the SRV_DS_PROVIDER property.

The Open Client and Open Server Configuration Guide for each platform tells 
which directory services are supported by Open Client and Open Server for 
that platform.

Registering an Open Server application with a directory
An Open Server application can specify the directory provider to use and 
register itself with the directory at start-up.

To specify a directory service provider other than the default, use srv_props to 
set the SRV_S_DS_PROVIDER server property. The default value for 
SRV_S_DS_PROVIDER is platform specific, and is specified in the Open 
Client and Open Server Configuration Guide for your platform.

To register an Open Server application with the directory service, use srv_props 
to set the SRV_S_DS_REGISTER server property to CS_TRUE (the default). 
Setting SRV_S_DS_REGISTER to CS_FALSE prevents the registration.

Set these properties after allocating and initializing the CS_CONTEXT 
structure (using cs_ctx_alloc and srv_version), and before calling srv_init.

When you call srv_init, the Open Server application: 

• Retrieves its listening address from the directory service.

• Instructs the directory service to update the Open Server application’s 
directory service entry if SRV_S_DS_REGISTER is set to CS_TRUE.

• The directory service then sets its “currentStatus” attribute to “active.”

Open Server automatically uses the interfaces file as a backup directory when 
the directory service driver initialization fails. The srv_init call may fail to 
successfully access the specified directory service if any of the following 
occur: 

• The libtcl.cfg file is not in the expected location, or is unreadable.



CHAPTER 2    Topics

Server-Library/C Reference Manual 83

An informational error is returned.

• The directory service driver is not in the expected location, or is 
unreadable.

An informational error is returned.

• The directory service is not responding to requests.

An informational error is returned.

• The server entry cannot be found in the directory service.

An error is returned indicating that there are no listeners; the Open Server 
application does not use the interfaces file as a backup directory in this 
case.

Dynamic SQL
Dynamic SQL allows a client application to execute SQL statements 
containing variables whose values are determined at runtime.

A client application prepares a dynamic SQL statement by associating a SQL 
statement containing placeholders with an identifier and sending the statement 
to an Open Server application to be partially compiled and stored. The 
statement is then known as a prepared statement.

When a client application is ready to execute a prepared statement, it defines 
values to substitute for the SQL statement’s placeholders and sends a command 
to execute the statement. These values become the command’s input 
parameters.

Once the statement has executed the prescribed number of times, the client 
application deallocates the statement.

Advantages of dynamic SQL 
Dynamic SQL permits a client application to act interactively, passing different 
information at different times to the Open Server application, from the user. 
The Open Server application can then fill in the missing pieces in the SQL 
query with the data the user provides.



Dynamic SQL 

84  Open Server

For more information on how client applications use dynamic SQL, see the 
Embedded SQL/C Programmer’s Manual.

Handling dynamic SQL requests
When a client issues a dynamic command, Open Server raises a 
SRV_DYNAMIC event. If an Open Server application will be returning 
dynamic SQL results, it must include a SRV_DYNAMIC event handler to 
respond to dynamic SQL requests.

The srv_dynamic routine

From within its SRV_DYNAMIC event handler, an Open Server application 
uses the srv_dynamic routine, in conjunction with other Server-Library 
routines, to retrieve a client’s dynamic SQL command and respond to it. For 
more information, see srv_dynamic on page 268. Each client command type—
preparation, execution, deallocation—requires a particular response from the 
Open Server application.

Detecting a command type

The first task within the SRV_DYNAMIC event handler is to retrieve the type 
of dynamic command the client issued and, in some cases, the dynamic 
statement’s ID and text. It must store the information and refer back to it later 
when it responds to client requests. 

Responding to client dynamic SQL commands

Table 2-19 summarizes the valid exchange of dynamic SQL requests and 
responses between the client and the Open Server application. The forward 
arrow (→) indicates that cmd is set to CS_GET—the Open Server application 
retrieves information from the client. The backward arrow (←) indicates that 
cmd is set to CS_SET—the Open Server application sends information to the 
client.



CHAPTER 2    Topics

Server-Library/C Reference Manual 85

Table 2-19: Valid dynamic SQL requests and responses

Client action Open Server application response

Issues a prepare request
(Operation type is CS_PREPARE)

→ Retrieves the operation type.
 (srv_dynamic)
 → Retrieves the statement ID length.
 (srv_dynamic)
 → Retrieves the statement ID.
 (srv_dynamic)
 → Retrieves the statement length.
 (srv_dynamic)
 → Retrieves the statement.
 (srv_dynamic)
 ← Acknowledges the client command.
 (srv_dynamic)
 ← Sends the statement ID length.
 (srv_dynamic)
 ← Sends the statement ID.
 (srv_dynamic)
 ← Sends a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Requests a description of the statement’s input 
parameters
(Operation type is CS_DESCRIBE_INPUT)

→ Retrieves the operation type.
 (srv_dynamic)
 → Retrieves the statement ID length.
 (srv_dynamic)
 → Retrieves the statement ID.
 (srv_dynamic)
 ← Acknowledges the client command.
 (srv_dynamic)
 ← Sends the statement ID length.
 (srv_dynamic)

← Sends the statement ID.
 (srv_dynamic)
 ← Sends the format of the input parameters.
 (srv_descfmt and srv_xferdata with type argument set to 
SRV_DYNDATA. There is no need to call srv_bind, as the 
application sends formats but no actual data. The status field 
of the CS_DATAFMT structure must be OR’d with 
CS_DESCIN prior to calling srv_descfmt)
 ← Send a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)



Dynamic SQL 

86  Open Server

Requests a description of the statement’s output 
parameters

(Operation type is CS_DESCRIBE_OUTPUT)

→ Retrieves the operation type.
 (srv_dynamic)

→ Retrieves the statement ID length.
 (srv_dynamic)

→ Retrieves the statement ID.
 (srv_dynamic)
← Acknowledges the client command.
 (srv_dynamic)
← Sends the statement ID length.
 (srv_dynamic)
← Sends the statement ID.
 (srv_dynamic)
← Sends the result row formats.
 (srv_descfmt and srv_xferdata with type argument set to 
SRV_DYNDATA. There is no need to call srv_bind, as the 
application sends formats but no actual data. The status field 
of the CS_DATAFMT structure must be OR’d with 
CS_DESCOUT prior to calling srv_descfmt)
← Sends a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Client action Open Server application response



CHAPTER 2    Topics

Server-Library/C Reference Manual 87

Requests a description of the statement’s input 
parameters
(Operation type is CS_DESCRIBE_INPUT)

→ Retrieves the operation type.
 (srv_dynamic)
 → Retrieves the statement ID length.
 (srv_dynamic)
 → Retrieves the statement ID.
 (srv_dynamic)
 ← Acknowledges the client command.
 (srv_dynamic)
 ← Sends the statement ID length.
 (srv_dynamic)

← Sends the statement ID.
 (srv_dynamic)
 ← Sends the format of the input parameters.
 (srv_descfmt and srv_xferdata with type argument set to 
SRV_DYNDATA. There is no need to call srv_bind, as the 
application sends formats but no actual data. The status field 
of the CS_DATAFMT structure must be OR’d with 
CS_DESCIN prior to calling srv_descfmt)
 ← Send a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)



Dynamic SQL 

88  Open Server

Client issues an execute request
 
 (Operation type is CS_EXECUTE)

→ Retrieves the operation type.
 (srv_dynamic)
 
 → Retrieves the statement ID length.
 (srv_dynamic)
→ Retrieves the statement ID.
 (srv_dynamic)
→ Retrieves the number of dynamic parameters.
 (srv_numparams)
→ Retrieves the input parameter values.
 (srv_descfmt, srv_bind, srv_xferdata with type argument set 
to SRV_DYNDATA)
← Acknowledges the client command.
 (srv_dynamic)
← Sends the statement ID length.
 (srv_dynamic)
← Sends the statement ID.
 (srv_dynamic)
← Sends result rows.
 (srv_descfmt, srv_bind, srv_xferdata, with type argument set 
to SRV_ROWDATA)
← Sends a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Issues an execute-immediate request 
(Operation type is CS_EXEC_IMMEDIATE)

→ Retrieves the operation type.
(srv_dynamic)
→ Retrieves the statement ID length—t should be 0. 
(srv_dynamic)
→ Retrieves the statement length.
(srv_dynamic)
→ Retrieves the statement.
(srv_dynamic)
← Acknowledges the client command.
 (srv_dynamic)
← Sends a DONE packet.
(srv_senddone with status argument set to 
SRV_DONE_FINAL)

Client action Open Server application response



CHAPTER 2    Topics

Server-Library/C Reference Manual 89

Example
The sample ctos.c includes code illustrating dynamic SQL command 
processing.

Errors
By default, Open Server responds to errors by writing error messages to the log 
file. Developers can tailor an application’s response by installing an error 
handling routine.

Typically, an error handler detects the type and severity of an error, and takes 
a specific action based on these values. For example, an application may send 
particular errors to a client through the srv_sendinfo routine, while writing 
others to a log file.

To install an error handler use the srv_props routine with the property argument 
set to SRV_S_ERRHANDLE. An application should install its error handler 
just after calling srv_version to catch all types of errors. When an error occurs, 
Open Server invokes the error-handling routine that was most recently 
installed.

For more information, see srv_props on page 334.

Issues a deallocation request

(Operation type is CS_DEALLOC)

→ Retrieves the operation type.
 (srv_dynamic)
→ Retrieves the statement ID length.
 (srv_dynamic)
→ Retrieves the statement ID.
 (srv_dynamic)
← Acknowledges the client command.
 (srv_dynamic)

 ← Sends the statement ID length.
 (srv_dynamic)
← Sends the statement ID.
 (srv_dynamic)
← Sends a DONE packet.
 (srv_senddone with status argument set to 
SRV_DONE_FINAL)

Client action Open Server application response



Errors 

90  Open Server

Types of errors
An Open Server application, a client application, and Open Server itself can 
each provoke Open Server errors. Here is a description of errors that occur in 
each type of category: 

• Open Server application errors – error occurs because of a mistake in 
application code. For example, if an application attempted to send a row 
of data to a client without first describing the format of the data, Open 
Server raises an error.

• Client command errors – error occurs when a client has sent an incomplete 
or nonsensical request. Requests can be incomplete or meaningless 
because of faulty client code or because of a network problem. An Open 
Server application should handle these errors in the event handler for the 
client request, usually by sending the appropriate error messages to the 
client with srv_sendinfo. See “Client command errors” on page 38 for 
more details. The application can also set the status parameter in 
srv_senddone to SRV_DONE_ERROR to indicate that a client request 
provoked an error.

• Open Server resource errors – error originates with the Open Server itself. 
It typically occurs because of a lack of some resource, like memory or user 
connections.

Severity of errors
Each Open Server error is associated with a number, a severity level, and a 
message.

When an error occurs, the currently installed error handler function is called 
with the error number, error severity level, and the text of the message. If no 
error handler has been installed, Open Server’s log file records this 
information. An application can also explicitly write to the log file with a call 
to srv_log.

An Open Server application can set the log file’s maximum size using 
srv_props, with the property argument set to SRV_S_LOGSIZE.

Error numbers and severity levels are defined in the header file oserror.h. An 
application that uses the defined error values must include oserror.h.

Table 2-20 summarizes Open Server error severity levels:



CHAPTER 2    Topics

Server-Library/C Reference Manual 91

Table 2-20: Severity of errors

Operating system errors

When an operating system error occurs, the operating system error number is 
different than SRV_ENO_OS_ERR, and the operating system error text 
contains the description of the operating system error. For example, if srv_init 
cannot open the interfaces file, it may be due to an operating system 
permissions error.

Error numbers and corresponding message text
See the header file oserror.h for a complete list of error tokens. See the file 
oslib.loc for the corresponding error text.

Severity Meaning
Applicable 
error type

SRV_INFO An informational error. Most errors are of 
this severity. This level of severity 
indicates that an error has occurred but that 
it is not fatal. It is most often generated by 
an incorrectly invoking a Server-Library 
function. For example, calling srv_xferdata 
to send a row before describing all the 
columns with srv_descfmt generates a 
SRV_INFO error.

Open Server 
application error
 
Client command 
error

SRV_FATAL_PROCESS A fatal thread error. The thread that 
received the error has an internal error 
from which it cannot recover. For example, 
the application may have returned from an 
event without calling srv_senddone. An 
error of this severity causes Open Server to 
queue a SRV_DISCONNECT event for 
the thread, if the thread is a client thread, a 
SUB-PROC, or a site-handler. Open 
Server then kills the thread.

Open Server 
resource error

SRV_FATAL_SERVER A fatal server error. Open Server has 
detected an internal error from which it 
cannot recover. This causes Open Server to 
queue a SRV_STOP event for the Open 
Server application, which causes srv_run 
to return CS_FAIL.

Open Server 
resource error



Events 

92  Open Server

Example
All sample programs include an Open Server error handler.

Events
This section describes the following:

• Event overview

• What is an event handler?

• Standard events

• Programmer-defined events

• Example

Event overview
An Open Server application responds to requests from clients. Some of these 
requests trigger a Server-Library event.

Not all events are provoked by client activity. The application itself queues 
programmer-defined events and SRV_DISCONNECT, 
SRV_URGDISCONNECT, and SRV_STOP events by calling the srv_event or 
srv_event_deferred routine. For more information on using the srv_event 
routine to raise events, see its reference page. Open Server can also trigger a 
SRV_STOP event in response to a fatal server error. Open Server raises a 
SRV_START event automatically, as part of the server’s start-up process.

An event occurs in a specific context; it corresponds to a particular category of 
activity. For example, a connection attempt from a client or remote server 
triggers a SRV_CONNECT event, while a client’s bulk copy request causes 
Open Server to raise a SRV_BULK event.

There are two kinds of events in Open Server: standard and programmer-
defined. Standard events are defined internally in Open Server. Programmer-
defined events are, as the name suggests, defined within the application. For 
more details on both kinds of events, see“Standard events” on page 93, and 
“Programmer-defined events” on page 97.



CHAPTER 2    Topics

Server-Library/C Reference Manual 93

What is an event handler?
An event handler is a piece of code that executes when an event is initiated. 
When an event is triggered, Open Server places the event and the active thread 
on the run queue. The thread then executes a routine that processes the event. 
This routine is called an event handler.

Default and custom handlers

Open Server has a default event handler routine for each standard event, and 
one for programmer-defined events. The default handlers are placeholders for 
the custom event handlers that the application programmer installs with the 
srv_handle routine. For an application that does not use the default handlers, 
you must define and install each custom event-handling routine. For more 
information on installing handlers, see srv_handle on page 295.

Event handlers can be installed dynamically. The new event handler is called 
the next time the event is raised. Event handlers should always return 
CS_SUCCEED when successful, and CS_FAIL when they fail. Currently, the 
SRV_START handler is the only event handler whose return code Open Server 
checks. Returning CS_FAIL from a SRV_START handler causes srv_run to 
return CS_FAIL to the application without starting Open Server.

Coding custom handlers

It is the application programmer’s responsibility to decide how to respond to 
an event and to code the event handler accordingly. Event handlers typically 
include a standard set of calls to process the event data. Any additional code is 
application-specific. For example, a SRV_MSG event handler should include 
code to retrieve the text of the message as well as any parameters. But an 
application can include additional code in the SRV_MSG event handler to send 
mail to users if a particular message is retrieved.

Standard events
Table 2-21 describes each standard Open Server event and the argument the 
corresponding custom event handler should take. It also describes what 
function the corresponding default event handler performs.



Events 

94  Open Server

Table 2-21: Description of events

Event Description
Argument to 
handler Default event handler

SRV_ATTENTION An attention has been received. 
This event usually occurs when a 
client calls ct_cancel to stop results 
processing prematurely. 
SRV_ATTENTION is an 
immediate event; Open Server 
services it as soon as it occurs 
rather than adding it to the client’s 
event queue. A 
SRV_ATTENTION event 
executes at interrupt level.

SRV_PROC* The default handler takes 
no additional action.

SRV_BULK A client has issued a bulk copy 
request.

SRV_PROC* The default handler sends 
the message “No bulk 
handler installed” to the 
client. Open Server 
discards the bulk data and 
returns DONE ERROR to 
the client.

SRV_CONNECT A Client-Library client has called 
ct_connect.

SRV_PROC* The default handler accepts 
the connection.

SRV_CURSOR A client has sent a cursor request. SRV_PROC* The default handler sends 
the message “No 
SRV_CURSOR handler 
installed” to the client. 
Open Server returns DONE 
ERROR to the client.

SRV_DISCONNECT A request to disconnect a client 
connection has been made. This 
event is triggered by a client 
disconnecting from a server, an 
Open Server fatal thread error, a 
SRV_STOP event, or a call to 
srv_event made from within the 
application explicitly to 
disconnect a client. 
 
Client-Library programs call 
ct_close or ct_exit to log out of the 
Open Server application. Remote 
Adaptive Server connections 
terminate when the remote 
procedure call has completed.

SRV_PROC* The default handler takes 
no action.



CHAPTER 2    Topics

Server-Library/C Reference Manual 95

SRV_DYNAMIC A client has sent a dynamic SQL 
request.

SRV_PROC* The default handler sends 
the message “No 
SRV_DYNAMIC handler 
installed” to the client. 
Open Server returns DONE 
ERROR to the client.

SRV_FULLPASSTHRU A network read for the connection 
has completed.

(The SRV_T_FULLPASSTHRU 
property for the thread must have 
been set to CS_TRUE for this 
event to occur.

SRV_PROC* There is no default event 
handler for this event.

SRV_LANGUAGE A client has sent a language 
request, such as a SQL statement. 
A Client-Library client submits a 
language request using 
ct_command and ct_send. isql and 
other interactive query tools can 
also send language requests to the 
Open Server application.

SRV_PROC* The default handler sends 
the message “No language 
handler installed” to the 
client, along with the first 
few characters of the 
language request. Open 
Server returns DONE 
ERROR to the client.

SRV_MIGRATE_STATE This event is triggered whenever 
the migration state has transitioned 
to SRV_MIG_READY or 
SRV_MIG_FAILED, the 
transition being a result of a 
migration message from a client.

See “Connection migration” on 
page 40 for more details.

SRV_PROC* The default handler takes 
no action if the state is 
SRV_MIG_READY, and 
thus allows the client to 
continue with the 
migration. It logs an error if 
the state changes to 
SRV_MIG_FAILED.

SRV_MIGRATE_RESUME When a client migrates to a new 
server while waiting for results, 
the new server invokes the 
SRV_MIGRATE_RESUME event 
after the client connection has 
successfully migrated. If the 
migration request failed or is 
cancelled, the event is invoked 
from the original server.

See “Connection migration” on 
page 40 for more details.

SRV_PROC* The default handler only 
sends a final done 
(SRV_DONE_FINAL) to 
the client to end the results.

Event Description
Argument to 
handler Default event handler



Events 

96  Open Server

SRV_MSG A client has sent a message. SRV_PROC* The default handler sends 
the message “No 
SRV_MSG handler 
installed” to the client. 
Open Server returns DONE 
ERROR to the client.

SRV_OPTION A client has sent an option 
command.

SRV_PROC* The default handler sends 
the message “No 
SRV_OPTION handler 
installed” to the client. 
Open Server returns DONE 
ERROR to the client.

SRV_RPC A client or a remote Adaptive 
Server has issued a remote 
procedure call (RPC).

SRV_PROC* The default handler sends 
the message “RPC < 
rpcname > received. No 
remote procedure call 
handler installed” to the 
client. Open Server returns 
a DONE ERROR to the 
client.

SRV_START A call to srv_run triggers a 
SRV_START event. The Open 
Server application is up and 
running. The SRV_START event 
handler is a good place to initialize 
server resources and to spawn 
service threads.

SRV_SERVER* The default handler takes 
no action.

SRV_STOP A request to stop the Open Server 
application has been made, 
triggered by a call to srv_event or 
by an Open Server fatal server 
error. The Open Server application 
is stopped. srv_run returns 
CS_SUCCEED if the application 
requested a SRV_STOP event or 
CS_FAIL if a fatal server error 
provoked the SRV_STOP event. 
 A custom handler for this event 
can perform any necessary cleanup 
before the Open Server application 
shuts down.

SRV_SERVER* The default handler takes 
no action.

Event Description
Argument to 
handler Default event handler



CHAPTER 2    Topics

Server-Library/C Reference Manual 97

Programmer-defined events 
An application defines programmer-defined events with srv_define_event and 
installs them with srv_handle. The application must call srv_event or 
srv_event_deferred to place the new event on the client’s event queue.

The default programmer-defined event handler sends a message to the client 
stating that there is no handler installed. The message includes the event 
number and name.

Programmer-defined events can be used to provide services to other threads in 
the Open Server application. For example, such an event could allow threads 
to log transactions in a disk file. To set up this service, define the event with 
srv_define_event, install a handler routine that writes to the disk file, and create 
a service thread to which the events are queued. The service thread provides 
the transaction-logging code.

Example
The sample lang.c illustrates a simple SRV_LANGUAGE event handler.

SRV_URGDISCONNECT This event is only triggered by an 
Open Server application calling 
srv_event. In response to this 
event, Open Server calls a threads 
SRV_DISCONNECT event 
handler. Open Server places the 
event at the top of the threads event 
queue, so that it is processed as the 
next event. 
 
 An application should raise this 
event if it wants to terminate a 
thread immediately, bypassing 
other events in the queue. When a 
SRV_URGDISCONNECT event 
is raised, the I/O channel 
associated with the thread is 
marked dead.

SRV_PROC* The default handler takes 
no action.

Event Description
Argument to 
handler Default event handler



Gateway applications 

98  Open Server

Gateway applications
An Open Server application that acts as both a client and a server is called a 
gateway application. Gateway applications often act as intermediaries for 
clients and servers that cannot communicate directly.

For example, an Open Client application cannot communicate directly with an 
Oracle database engine, but the client application can communicate with an 
Open Server application that serves as a gateway to the Oracle database. In this 
case, the gateway acts as a server to the Open Client application and as a client 
to the Oracle database engine.

Another case is when a client cannot directly access a remote Adaptive Server 
because the two are running on dissimilar networks. The gateway server 
bridges this gap, retrieving the client data and repackaging it to send to the 
remote Adaptive Server. Sybase’s mirror-image client and server routines 
simplify this process. The server and client components can even share the 
same data description structure; the gateway fills in a structure with 
information from the remote client using Server-Library calls and then extracts 
that same information from the structure to send along to the remote server 
using Client-Library or DB-Library calls.

Gateways that act as clients to a Adaptive Server or to an Open Server 
application use Client-Library or DB-Library routines to fill the client role that 
they play.

Gateways that act as servers to Open Client applications use Server-Library 
routines to fill the server role that they play.

 Warning! Client-Library cannot be run in full asynchronous mode in an Open 
Server application.

The sample program ctos.c is an example of a “virtual Adaptive Server” 
gateway. The gateway demonstrates how to pass data from a remote Adaptive 
Server to a Sybase client.

 Warning! In gateway applications, the client routines execute in the context of 
an Open Server process, or thread. If this process (or the entire Open Server 
application) is terminated, any client routines that are executing will yield 
undefined results.



CHAPTER 2    Topics

Server-Library/C Reference Manual 99

Passthrough mode
In the special case of an Open Server application that connects Sybase client 
applications with an Adaptive Server, Client-Library and DB-Library provide 
a set of application protocol passthrough routines that allow the Open Server to 
pass Tabular Data Stream (TDS) packets between the client and server without 
interpreting the contents. This process works more efficiently than unpacking 
the TDS information as it arrives and repacking it before sending it on. The 
sample, fullpass.c, provides an example of this type of gateway. For more 
information, see “Passthrough mode” on page 129.

Note  Pre-10.0 versions of DB-Library must not be linked into an application 
with Open Server version 10.0 and later, although they can be used in 
application programs that serve as clients to Open Server 10.0 and later.

International support
Open Server provides support for international applications by: 

• Allowing an Open Server application to localize

An Open Server application that is localized typically: 

• Generates error messages in a local language and character set

• Uses local datetime formats

• Uses a specific character set and collating sequence (also called “sort 
order”) when converting or comparing strings

• Enabling an Open Server application to support localized clients

A localized client uses the language, datetime formats, and character set 
appropriate to its locale. These may differ from the Open Server 
application’s language, datetime formats, and character set. To support 
localized clients, an Open Server application must not only translate 
incoming data into its own language and character set but must also 
translate outgoing messages and data into the client’s language and 
character set.

This topic page contains information on: 

• Localizing an Open Server application



International support 

100  Open Server

• Supporting localized clients

• Client requests related to localization

• Localization properties

• The localization sample programs

Open Client and Open Server localization is discussed thoroughly in the Open 
Client and Open Server International Developer’s Guide. You must read this 
book to understand Server-Library’s localization mechanism and how 
environment variables affect localization.

Platform-specific localization information can be found in the Open Client and 
Open Server Configuration Guide.

Localizing an Open Server application
An Open Server application’s localization determines: 

• The language and character set in which error messages are generated. 

Note   The SRV_S_USESRVLANG and SRV_T_USESRVLANG 
properties can be used to override a server’s language when generating 
error messages.

• The character set and collating sequence used for all data operations

.

An Open Server application can use initial localization values, custom 
localization values, or both.

A typical internationalized Open Server application uses the initial localization 
values determined by the LC_ALL and LANG environment variables, or by 
the “default” entry in the locales file, to localize.

Initial localization values are determined at runtime, when the Open Server 
application calls the CS-Library routine cs_ctx_alloc to allocate a 
CS_CONTEXT structure. When an application makes this call, CS-Library 
loads initial localization information into the new context structure.

If the initial localization values do not meet an application’s needs, the 
application can use a CS_LOCALE structure to set custom localization values 
in its context structure. See “Using a CS_LOCALE structure to set custom 
localization values” on page 101 for more information.



CHAPTER 2    Topics

Server-Library/C Reference Manual 101

Supporting localized clients
For some Open Server applications, initial localization values for localized 
clients are sufficient. These Open Server applications do not need to take any 
additional steps to support localized clients.

Other Open Server applications, however, need to provide additional support 
for localized clients. In particular, an Open Server application needs to take 
additional steps to support localized clients: 

• If it will be passing CS-Library error messages back to clients

In this case, the Open Server application needs to ensure that CS-Library 
generates messages in the client’s language and the Open Server 
application’s character set.

For information on how to do this, see “Localizing CS-Library messages 
for clients” on page 102.

• If it is acting as a gateway

In this case, the Open Server application needs to ensure that a connection 
to a remote server uses the client’s language and the Open Server’s 
character set.

For information on how to do this, see “Creating localized connections for 
gateway applications” on page 103.

• If a client application asks to change its language or character set

In this case, the Open Server application needs to change the language or 
character set for the client thread.

For information on how to do this, see “Requests to change language and 
character set” on page 104.

Using a CS_LOCALE structure to set custom localization values
When a client connects to an Open Server application, Open Server creates a 
CS_LOCALE structure reflecting the client’s language and character set. For 
example, when a french/cp850 client logs in to a us_english/iso_1/binary Open 
Server application, the Open Server application creates a french/cp850 
CS_LOCALE structure for that connection.

The information in this structure is available to Open Server programmers, 
who can call cs_locale to copy the information into a newly-allocated 
CS_LOCALE structure.



International support 

102  Open Server

You can install custom localization information in the application-wide context 
structure before calling srv_version. To do this, an application: 

1 Calls cs_loc_alloc to allocate a CS_LOCALE structure.

2 Calls cs_locale with type set to CS_LC_ALL to load the CS_LOCALE 
with custom localization values. A type of CS_LC_ALL ensures that the 
CS_LOCALE is loaded with localization values that are internally 
consistent.

3 Calls cs_config with property set to CS_LOC_PROP to copy the custom 
localization values into the application’s context structure.

4 Calls cs_loc_drop to deallocate the CS_LOCALE.

Localizing CS-Library messages for clients

If an Open Server application calls a CS-Library routine with its own context 
structure as a parameter, any error messages that CS-Library generates as the 
result of the call will be in the Open Server application’s language and 
character set.

For example, if the context parameter for a cs_convert call indicates 
us_english/iso_1, CS-Library will generate a us_english/iso_1 message if the 
cs_convert call fails.

Note  If a CS-Library routine takes a CS_LOCALE structure as a parameter, 
the localization values in this structure will override the localization values in 
the context parameter.

Obtaining CS-Library messages in the Open Server application’s language and 
character set is acceptable only if the Open Server application logs the CS-
Library messages or otherwise keeps them to itself.

However, if an Open Server application will be passing CS-Library error 
messages back to a client, it needs to ensure that CS-Library generates 
messages in the client’s language and the Open Server application’s character 
set.

The messages need to be in the client’s language for the client to understand 
them.

The messages need to be in the Open Server application’s character set for two 
reasons: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 103

• Open Server applications commonly record all messages in the log file. It 
is important that all logged messages use the same character set.

• Open Server automatically performs character set translation on outgoing 
data, including messages. Generating messages in Open Server’s character 
set ensures that they will be correctly translated to the client’s character 
set.

An application can ensure that messages are generated in the correct language 
and character set by setting up a properly localized CS_CONTEXT structure 
for each client thread and then using these CS_CONTEXT structures when 
calling CS-Library routines on behalf of clients.

For information on how to localize a CS_CONTEXT structure, see 
“Localizing a CS_CONTEXT structure” on page 104.

Creating localized connections for gateway applications

If an Open Server application is acting as a gateway, it needs to ensure that a 
connection to a remote server uses the client’s language and the Open Server’s 
character set.

Note  The Open Server’s character set does not need to be the same as the 
remote server’s character set, but it must be one that the remote server is 
capable of converting to its own. 
 
 Adaptive Server can convert between any two Western European character 
sets and can convert between any two Japanese character sets, but it cannot 
convert a Western European character set to a Japanese one (and vice-versa).
 
For example, Adaptive Server can convert between ISO 8859-1 and CP850, 
because both of these character sets are in the Western European language 
group; however, Adaptive Server cannot convert between ISO 8859-1, which 
is Western European, and CP 1250, which is Eastern European.
 
Open Server can convert between any two supported character sets, whether or 
not they are in the same language group. However, when converting between 
character sets in different language groups, non-Roman characters may be lost.

The simplest way for an application to do this is to set up a properly localized 
CS_CONTEXT structure for each client connection and then allocate remote 
connections for the client within the localized context.



International support 

104  Open Server

See “Localizing a CS_CONTEXT structure” below for information on how to 
localize a CS_CONTEXT structure.

Localizing a CS_CONTEXT structure

To properly localize a CS_CONTEXT structure for a client thread, an Open 
Server application must: 

1 Call cs_ctx_alloc to allocate a CS_CONTEXT for the client thread.

2 Call cs_loc_alloc to allocate a new CS_LOCALE structure.

3 Call srv_thread_props to copy the client thread’s existing CS_LOCALE 
structure. This sets the new CS_LOCALE up with the client’s language, 
and character set.

4 Call cs_locale with type as CS_SYB_CHARSET to replace the client’s 
character set with the Open Server’s character set.

5 Call cs_config with property as CS_LOC_PROP to copy the localization 
information from the CS_LOCALE into the CS_CONTEXT.

6 Call cs_loc_drop to deallocate the CS_LOCALE, if desired. An 
application can also reuse a CS_LOCALE structure, calling cs_locale, if 
necessary, to change its localization values.

Responding to client requests
Clients can: 

• Request to change their language and character set

• Request localization information

Requests to change language and character set

When a client connects to an Open Server, it specifies a language and character 
set in the login record. Open Server uses this information to set up a 
CS_LOCALE and character set conversion routines for the client thread.

Open Server handles this automatically; an Open Server application does not 
need to take any steps to handle localized clients at login time.



CHAPTER 2    Topics

Server-Library/C Reference Manual 105

However, after logging in, clients can change their language and character set. 
If a client sends a request to change its language or character set, the Open 
Server application must make the requested changes in the client thread’s 
CS_LOCALE structure.

A client can request a change of language or character set in two ways: 

• Using a language-based option command sent with ct_command. This type 
of command triggers a SRV_LANGUAGE event, so the Open Server 
application will process the request inside a SRV_LANGUAGE event 
handler.

• Using an option command sent with ct_options. This type of command 
triggers a SRV_OPTION event, so the Open Server application will 
process the request inside a SRV_OPTION event handler.

In both cases, the Open Server application responds by: 

1 Setting up a CS_LOCALE structure with the new language or character 
set

2 Calling the srv_thread_props routine with property set to 
SRV_T_LOCALE to change the language or character set for the thread 
connection

Table 2-22 describes how to change the language or character set for a client 
thread:

Table 2-22: Changing the language or character set 

Step Application step Purpose Details

1 Call cs_loc_alloc. Allocate a 
CS_LOCALE 
structure.

This call copies the Open Server 
application context’s current 
localization information into the 
new CS_LOCALE structure.

2 Call srv_thread_props(GET) with property as 
SRV_T_LOCALE.

Copy the client 
thread’s existing 
localization values 
into the new 
CS_LOCALE 
structure.

3 Call cs_locale. Overwrite the 
CS_LOCALE 
structure with the 
requested language or 
character set.

For more information about this 
process, see “Localizing a 
CS_CONTEXT structure” on 
page 104.



International support 

106  Open Server

Requests for localization information 

After logging in, a client can ask for: 

• The name of the server’s character set

• The name of the server’s sort order

• The character-set definition for the client’s character set

• The sort order definition for the client’s sort order

Clients make these requests through the sp_serverinfo system registered 
procedure, using RPC commands.

In response, Open Server automatically returns the requested information by 
means of the sp_serverinfo system registered procedure. The Open Server 
application does not need to take any action at this point, and, in fact, is not 
aware that the request ever occurred.

For more information on these routines, see “Registered procedures” on page 
162.

Localization properties
Two properties are related to localization: 

• SRV_S_USESRVLANG 

• SRV_T_USESRVLANG

These properties determine whether Open Server generates error messages in 
the Open Server application’s language or a client’s language.

4 Call srv_thread_props(SET) with property as 
SRV_T_LOCALE.

Set up the client 
thread with the new 
language or character 
set.

5 Optionally, call cs_loc_drop. Deallocate the 
CS_LOCALE 
structure.

An application can reuse the 
CS_LOCALE structure before 
deallocating it.

If necessary, the application can 
call cs_locale to change the 
localization values in the 
structure before reusing it.

Step Application step Purpose Details



CHAPTER 2    Topics

Server-Library/C Reference Manual 107

SRV_S_USESRVLANG is a server-wide property, set through srv_props. Its 
value serves as the default value for SRV_T_USESRVLANG.

SRV_T_USESRVLANG is a thread property, set through srv_thread_props. 
When a new thread structure is allocated, SRV_T_USESRVLANG picks up a 
default value from SRV_S_USESRVLANG.

If SRV_T_USESRVLANG is CS_TRUE, Open Server generates error 
messages in the server’s language.

If SRV_T_USESRVLANG is CS_FALSE, Open Server generates error 
messages in the client’s language.

For more information on setting properties, see “Properties” on page 139.

Localization examples
The example ctos.c demonstrates one method of customizing a CS_LOCALE 
structure. The example intlchar.c handles character set and national language 
configuration and queries.

Language calls
Open Server provides functionality for processing language events in a flexible 
manner. A SRV_LANGUAGE event is triggered when a client application 
sends information through ct_command with the type argument set to 
CS_LANG_CMD. Whereas an RPC stream is composed of discrete 
elements—a name and parameters—language information arrives in a stream 
of undifferentiated characters. A SRV_LANGUAGE event handler must 
include code to parse the stream into its meaningful components. A SQL query 
is an example of a language stream.

This functionality is useful for applications that want to accept natural 
language input. For example, consider a clothing store application that lets 
users query a SQL database in English. A sales clerk could type in the question 
“How many shirts in blue?” The front-end client application could send this 
natural language query to an Open Server gateway application through a call 
to ct_command. The SRV_LANGUAGE handler parses this text, constructs 
this Transact-SQL query and sends it to a remote database: 

select quantity from inventory_tab where color = “blue” and type = “shirt”



Login redirection and extended HA failover support 

108  Open Server

A SRV_LANGUAGE event handler must process language data in steps: 

1 Call srv_langlen to retrieve the length of the language request buffer.

2 Allocate a local application buffer as large as the length returned by 
srv_langlen, plus 1 for the null-termination byte.

3 Call srv_langcpy to copy all or part of the request data into the local buffer.

4 Process the contents of the local buffer.

Login redirection and extended HA failover support
Login redirection and extended HA failover support allows a cluster of servers 
to perform load-balancing for all incoming client connections.

Three routines support this functionality: srv_send_ctlinfo, 
srv_getserverbyname, and srv_freeserveraddrs. 

The srv_send_ctlinfo routine supports both login redirection and extended HA 
failover and srv_getserverbyname, and srv_freeserveraddrs allows an Open 
Server application to translate a given server name to its connection 
information. These routines are described in “srv_send_ctlinfo” on page 385, 
“srv_getserverbyname” on page 294, and “srv_freeserveraddrs” on page 281.

The following properties support the routines:

• SRV_S_HASERVER, a read-only server property that returns the 
HAFAILOVER value from the interfaces file, which corresponds to the 
server name as set by srv_init.

• SRV_T_REDIRECT, a read-only thread property that returns the setting 
of the TDS_HA_LOG_REDIRECT bit in the login record.

• SRV_T_HA, a thread property that returns the setting of HA-related 
information from the login record as a CS_INT bitmask. Information 
provided includes session (SRV_HA_LOGIN), failover 
(SRV_HA_LOGIN_FAILOVER), and resume 
(SRV_HA_LOGIN_RESUME) bits.

• CS_SESSIONID, a type definition that holds the Session ID.

• SRV_T_SESSIONID, returns the Session ID that the client sends to Open 
Server in the login record. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 109

You can also use SRV_T_SESSIONID to send a Session ID to the client 
in the SRV_CONNECT handler. For more information see “Instructing 
clients to migrate to a different server” on page 48.

• SRV_NEG_SESSIONID, a type of negotiated login information in the 
parlance of srv_negotiate that supports the sending of client Session ID 
information.

Messages
There are three types of messages in Open Server: 

• Data stream messages – clients and servers can use data stream messages 
to exchange information. See “Data stream messages” on page 80.

• Thread messages – threads can use thread messages to exchange 
information. See “Multithread programming” on page 109.

• Error messages – Open Server reports error conditions by means of error 
messages. See “Errors” on page 89.

Multithread programming
Open Server employs a multithreaded architecture. A multithreaded server 
application acts as a collection of threads, each executing routines to 
accomplish its specific task. 

What is a thread?
A thread can be thought of as a particular path of execution through the Open 
Server application code. Each client uses a thread to manage its connection and 
call the event handlers and procedures that fulfill its requests. The Open Server 
runtime system has several threads that manage server activities such as 
delivering messages, handling server-to-server communications, and 
scheduling tasks. An application can spawn server threads for other 
application-specific activities.



Multithread programming 

110  Open Server

As a multithreaded system, an Open Server application must schedule the 
variety of activities the threads perform, negotiate the threads’ access to shared 
resources, and provide a means by which the threads communicate with each 
other. For more information, see “Scheduling” on page 113, and “Tools and 
techniques” on page 115.

Thread types   
Open Server employs four kinds of threads: preemptive, event-driven, service, 
and site-handler. 

Preemptive threads

Open Server versions 12.5 and higher include preemptive threading on all 
platforms. There are several issues to be aware of before building applications 
with these threaded libraries.

Thread-safe functions

To ensure that your application is reentrant, make sure that:

• It uses the reentrant versions of C library functions, where provided

• It uses non-reentrant C (or other) library functions safely 

• It protects global variables and shared structures with mutex (or other) 
locks

• None of its functions return a pointer to a static buffer

• It compiles with the correct processor flags and linker directives

Note  A C library function that is reentrant on one UNIX system is not 
necessarily reentrant on other UNIX systems. Consult a porting guide for your 
platform to determine if the C function is reentrant. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 111

Thread-safe code and preemptive mode

More than one Open Server thread can be running at the same time, and one 
can be preempted in favor of another. This has the benefit of increased 
concurrency, especially in SMP systems. However, it does require code to be 
thread-safe. This applies to Open Server code, the user's event handlers and 
callback functions.

SRV_S_PREEMPT behavior

When SRV_S_PREEMPT is set to CS_TRUE, multiple Open Server threads 
execute concurrently and are preempted in favor of each other by the operating 
system. These threads become unbound.

If SRV_S_PREEMPT is set to CS_FALSE, one Open Server thread cannot be 
preempted by another Open Server thread, and two Open Server threads cannot 
run at the same time. 

Also, whether SRV_S_PREEMPT is set to CS_TRUE or CS_FALSE, when 
used in conjunction with threaded libraries, some functions of 
SRV_S_CURTHREAD become disabled. This is because threaded libraries 
use signals handled by a signal-handled thread, regardless of the 
SRV_S_PREEMPT setting.

A single mutex is enabled whenever an Open Server thread resumes executing. 
The mutex is released when an Open Server thread is ready with a specific task 
and after the SRV_C_SUSPEND callback is executed. There is only one 
server-wide mutex for this.

The callback functions SRV_C_RESUME and SRV_C_SUSPEND are never 
invoked when the operating system resumes such a thread. These functions are 
invoked only when a specific Open Server thread stops or resumes execution; 
for instance, when a language request arrives for a user Open Server thread, 
and before it goes to sleep after running the language event handler.

Implementation specifics

For most UNIX platforms, threads are based on POSIX threads and are 
unbound. On HP and Linux, threads are bound. On Windows, threads are 
Win32 threads.

See the vendor documentation for your platform for more information about 
using threads on that platform. 



Multithread programming 

112  Open Server

Event-driven threads   

Threads that control client connections are event-driven. A request for action 
triggers a server event. See “Events” on page 92 for details on events.

When a client event occurs, Open Server places the event in the thread’s event 
queue. The next time the thread executes, it reads the next event request from 
the event queue. Open Server calls the event handler associated with this event. 
When the handler returns, the thread attempts to read the next event in the 
queue. If there is no event, the thread “sleeps.”

For example, when a client application attempts to log in to the server, Open 
Server creates a thread to handle the connection and puts the SRV_CONNECT 
event in the threads queue. When the thread runs, it executes the routine 
installed to handle the SRV_CONNECT event. The default handler simply 
accepts the connection. You could install a custom SRV_CONNECT handler 
that checks the login name and password, and, if both are valid, allows the user 
to log in.

Event-driven threads exist primarily to handle client requests, but they can also 
be used with programmer-defined events to execute service routines within the 
server.

Service threads   

You can create Open Server threads that run independently of any client 
connection. Such threads are called service threads because the routines they 
execute usually perform services for event-driven client threads. Unlike a 
client thread, a service thread is not activated by events. Instead, you supply a 
routine for the thread to execute when you create it. The server puts it in the run 
queue immediately. A service thread disappears once the routine it was created 
to execute returns.

An application can use service threads to accomplish a variety of tasks in an 
Open Server application. In fact, the Open Server runtime system is composed 
of service threads running server management routines. Service threads cannot 
be used to perform client I/O—that is, to read in client commands and return 
results.

Open Server schedules event code to run when an event is triggered. By 
contrast, an application must explicitly schedule service thread code using the 
srv_wakeup, srv_sleep, srv_yield routines, and it must schedule message queues 
when not running in preemptive mode.



CHAPTER 2    Topics

Server-Library/C Reference Manual 113

Site-handler threads

Open Server creates a site-handler thread when an Adaptive Server connects to 
an Open Server application.

Open Server creates a SUB-PROC when the Open Server application receives 
a server-to-server RPC. A SUB-PROC disappears when the server-to-server 
RPC completes. A site-handler thread disappears when the Adaptive Server 
closes its connection to the Open Server application.

An Open Server application only accesses a site-handler thread inside a 
SRV_CONNECT or SRV_DISCONNECT event handler. Site-handler threads 
are otherwise purely internal.

Scheduling
Open Server provides concurrency by periodically suspending the running 
thread and resuming another. This context switch can occur frequently and 
quickly so that, from the point of view of an Open Server client, threads run 
continuously.

The scheduler is the runtime system thread that performs context switches. A 
thread has an execution context that includes its stack and its machine register 
environment. The scheduler saves the execution context of the running thread, 
selects the thread to resume, restores its context, and runs it. Although the 
scheduler works invisibly, to write Open Server code you should understand: 

• How the scheduler is called (the scheduling method)

• How the scheduler selects a thread to resume

Scheduling methods   

The scheduling method determines when control is transferred from one 
running thread to another. An Open Server application uses one of two 
scheduling methods: non-preemptive or preemptive. Non-preemptive is the 
default method and the only method available on most platforms.

Non-preemptive scheduling

With non-preemptive scheduling, context switches are predictable. They can 
occur only in these situations: 

• A thread calls a Server-Library or Client-Library routine that performs 
network I/O.



Multithread programming 

114  Open Server

When a thread reads from or writes to a network connection, the runtime 
system suspends execution of the thread waiting for the read or write to 
complete. Network I/O is relatively slow, and the server can use the time 
more efficiently by allowing other threads to run while the I/O completes.

• A thread sleeps while waiting for execution to resume.

For example, a thread should wait for another thread to finish updating a 
data object in shared memory before accessing the object.   A thread sleeps 
when the application calls: 

• srv_sleep

• One of the Server-Library routines where the thread sleeps while 
waiting for a requested resource, such as 
srv_getmsgq(SRV_M_WAIT) or srv_lockmutex

• A thread calls srv_yield to intentionally suspend itself and allow other 
threads to run. The thread remains executable and resumes operation later 
at the statement after the srv_yield call. If you write a time-consuming 
routine that does not sleep or perform network I/O, you should call 
srv_yield occasionally to prevent the routine from monopolizing the server. 

Preemptive scheduling

With preemptive scheduling, a context switch can occur when any of the above 
events occurs, or when the system interrupts the running thread. Preemptive 
scheduling depends upon the thread management facilities of the operating 
system, so system-initiated context switches are not predictable. Operating 
systems often employ sophisticated algorithms to ensure optimal time 
distribution among threads.

You can choose preemptive scheduling using the srv_props routine with 
property set to SRV_S_PREEMPT. Preemptive scheduling is not available on 
every platform. Call srv_capability to determine whether it is available on your 
application’s platform.

Selecting a thread to resume   

Open Server maintains a set of run queues—lists of threads that are suspended 
but not sleeping. Each queue contains threads with the same execution priority. 
The scheduler restores the thread that has remained the longest on the highest 
priority queue. Threads normally run at the same priority level, so this selection 
method usually distributes execution time on a first-in, first-out basis.



CHAPTER 2    Topics

Server-Library/C Reference Manual 115

You can adjust the priority of a thread so that the scheduler runs it before other 
threads in the run queue, or only when there are no other threads to run. For 
example, a thread that reads real-time data could have a higher priority so that 
it runs whenever there is data to process. Be careful when adjusting priorities. 
As long as a thread has a higher priority than any other and is able to run, the 
scheduler continues to run it. If the priority stays high and the thread never 
sleeps, threads with lower priorities will never run. See srv_setpri on page 411 
for information on adjusting a thread’s priority.

When Open Server establishes a new thread, the scheduler must perform some 
work before the thread can fully share CPU time with other threads. During this 
start-up period, the scheduler effectively performs a series of internal srv_yield 
calls to allow existing threads to run. As a result, established, executable 
threads may appear to “hog” CPU and delay start-up of the new thread. Once 
the thread is established and executable, it shares CPU time according to its 
priority.

Execution priority is only an issue in Open Server applications that run in non-
preemptive mode.

Tools and techniques
Writing programs in a multithreaded environment requires constant attention 
to the interaction between threads. There are programming tools and methods 
that are especially useful in this environment. Open Server provides mutual 
exclusion semaphores (mutexes) to control access to shared resources, and 
message queues to allow threads to coordinate and communicate with one 
another. 

Mutexes

A mutual exclusion semaphore, or mutex, is a logical object that Open Server 
allows one thread, at most, to lock. It is useful for protecting shared resources 
and for building more sophisticated tools.

To understand how a mutex can be used, consider this problem:

The standard input and output is the same for every thread in an Open Server 
application running on a UNIX platform. If threads regularly write to the 
standard output, the application code must avoid mixing the output of several 
threads on the standard output.



Multithread programming 

116  Open Server

One way to prevent threads from mixing their output is to associate a mutex 
with the stdout device and require a thread to lock the mutex before writing to 
stdout. Since only one thread can lock the mutex at a time, only one thread can 
write on stdout at a time. Other threads have to wait until they are able to lock 
the mutex.

See the srv_createmutex, srv_lockmutex, srv_unlockmutex and 
srv_deletemutex reference pages for programming details.

Message queues

Message queues enable threads to communicate with each other. Message 
queues are often used to send data to spawned service threads that perform 
services for other threads. For example, you could create a message queue into 
which all threads put data destined for the log file. A spawned thread could read 
the messages from the queue and write them, in the order received, to the log 
file.

The message in a message queue is a 4-byte value, usually a pointer that 
addresses data somewhere in memory shared by the sending and receiving 
thread. The thread that puts a message into a queue and the threads that read 
the message must agree on the message format.

If the message references data elsewhere, you must make sure that the thread 
that reads the message finishes with the data before the thread that sent the 
message updates or releases the data area. To prevent the sending routine from 
overwriting or freeing the message before the message is received, the routine 
that writes messages, srv_putmsgq, has an option that causes the sending thread 
to sleep until the message is read from the queue.

See the srv_createmsgq, srv_putmsgq, srv_getmsgq, and srv_deletemsgq 
reference pages for programming details.

Protecting critical sections

To prevent Open Server from suspending a thread, you can temporarily raise 
the priority of the thread by calling srv_setpri. Server threads all start at the 
same priority level, which is represented by the SRV_C_DEFAULTPRI 
constant defined in ospublic.h. Thread priorities range from 
SRV_C_LOWPRIORITY to SRV_C_MAXPRIORITY, with 
SRV_C_DEFAULTPRI in the middle.



CHAPTER 2    Topics

Server-Library/C Reference Manual 117

Open Server always resumes the executable thread that has the highest priority. 
If more than one executable thread has the same priority, Open Server resumes 
the one that became executable first. If you raise the priority of a thread above 
that of any other thread, Open Server continues to execute the thread until it is 
no longer executable or its priority is lowered, preventing other threads from 
executing.

While raising the priority of a thread is an effective way to guarantee that no 
other thread can interfere during a critical section, it can have a detrimental 
effect on concurrency. Raising the priority permits a single thread to take over 
the server. Even the threads that make up the Open Server runtime system are 
prevented from running if you raise the priority of a thread above 
SRV_C_DEFAULTPRI. To minimize the effects, delay raising the priority 
until absolutely necessary, and lower it again as soon as possible. Do not put 
unnecessary code inside the critical section. 

Callback routines 

The srv_callback routine allows you to install a callback handler for a thread. 
Open Server calls your routine whenever the state of the thread changes to the 
state you specify. For example, you can install a SRV_C_SUSPEND callback 
handler that executes whenever the thread is suspended.

Note  The ability to install and execute callback handlers is platform-
dependent. Use srv_capability to find out if a callback handler can be installed 
for a particular state transition on your current platform.

Table 2-23 summarizes the state transitions for which srv_callback can install 
callback handlers:



Multithread programming 

118  Open Server

Table 2-23: State transitions

Programming considerations   
Although Open Server threads are threads of execution that have their own 
stack and register environments, they share the resources of the operating 
system process that is executing the Open Server runtime system.

Here are some multithread programming considerations: 

• Shared resources, such as global data, file handles, and devices, must be 
protected.

While you are updating a shared global data item, do not call a routine that 
could suspend the thread unless you have taken steps to prevent other 
threads from accessing the data. Otherwise, another thread could be 
working with inconsistent data.

State transition Meaning

SRV_C_EXIT The thread has finished executing the routine it was spawned 
to execute, or it is associated with a disconnected client. The 
handler executes in the context of the exiting thread.

SRV_C_PROCEXEC Open Server calls this callback when a registered procedure 
is about to execute. The handler executes in the context of 
the thread that requested the registered procedure. As a 
result, the SRV_C_PROCEXEC callback handler executes 
whenever a client attempts any registered procedure 
operation. You can install a callback handler that restricts 
clients’ abilities to create, delete, or execute registered 
procedures.

SRV_C_RESUME The thread is resuming. The handler executes in the context 
of the scheduler thread and uses the scheduler’s stack.

SRV_C_SUSPEND The thread is suspending. The handler executes in the 
context of the thread that is suspending and uses its stack.

SRV_C_TIMESLICE A thread has executed for a period of time (time slice) 
determined by the SRV_TIMESLICE, 
SRV_VIRTCLKRATE, and SRV_VIRTTIMER 
configuration parameters. You can use this handler to signal 
a long-running thread to call srv_yield so that other threads 
can run.



CHAPTER 2    Topics

Server-Library/C Reference Manual 119

Watch for program logic that behaves as though it has sole access to a 
resource. An example is a routine that performs part of a calculation using 
a value from a global variable, then suspends, allowing other threads to 
alter the global variable. This can cause serial consistency problems. The 
calculation may be incorrect before it is even complete.

• Avoid static variables in routines that more than one thread can execute.

If a routine alters a static variable, and multiple threads can call the routine, 
you must ensure that multiple instances of the routine do not conflict. 
There is a greater probability of inconsistent data if the routine returns a 
pointer to a static variable, since the contents of the variable can be altered 
while a thread is suspended. It is safer to use automatic variables, because 
each thread has a stack of its own. The application should provide memory 
and copy the result there. When you must use static variables, protect them 
with the techniques discussed above.

• SRV_ATTENTION events can be executed at interrupt level. If 
SRV_ATTENTION handlers manipulate application structures that are 
also changed or tested in noninterrupt level code, such as other event 
handlers or service threads, the results of the change or test are 
unpredictable. Use attention-level wakeups and sleeps to coordinate 
between interrupt-level SRV_ATTENTION handlers and non interrupt-
level code. 

Example
The sample, multthrd.c, illustrates various aspects of multithreaded 
programming. 

Negotiated behavior
An Open Server application negotiates with a client to determine the 
application’s behavior in a number of areas. Some negotiation takes place 
when the client logs in. Other negotiations can occur on an ad hoc basis during 
the lifetime of the Open Server runtime system.



Negotiated behavior 

120  Open Server

Login negotiations
Several issues are negotiated at login time. Some are negotiated transparently 
by Open Server and require no action on the part of the Open Server 
application. Others are handled explicitly with application calls. Login 
negotiations always take place inside a SRV_CONNECT event handler.

Transparent negotiation

Issues resolved that are transparent to the application include the following: 

• The character set in which character data appears. When a client logs in, it 
provides, among other information, the name of the character set 
appropriate to its locale. If the server’s character set differs from the 
client’s, Open Server converts the data to the client’s character set.

• The national language in which Open Server error messages appear.

• Byte ordering, which is platform-dependent.

• The TDS protocol level.

• Floating point representation, which is platform-dependent.

The server’s default national language and character set are established during 
initialization of the server.

A client can renegotiate the character set and national language at a later time. 
See “Ad hoc negotiations” on page 122 for more information.

Explicit negotiation

The application itself negotiates with clients to resolve these issues: 

• The kinds of requests the client can make and the kinds of responses the 
Open Server application can return, if the application declines the defaults.

• The security level at which the client and server communicate.

A client sends capabilities information after sending a login record. A client 
and the Open Server application must agree upon the set of possible requests 
and responses that can be sent on their particular connection. These capabilities 
must be established before any further requests or responses are sent. See 
“Capabilities” on page 24 for details on capabilities.



CHAPTER 2    Topics

Server-Library/C Reference Manual 121

Negotiating a secure connection

An Open Server application may want to establish a secure connection with a 
client. A secure connection is one which is established after a rigorous 
authentication of the client’s identity and verification of its password.

Note  Applications can use external security systems offered by security 
service providers, rather than including their own security code. “Security 
services” on page 170 explains how to configure an Open Server application 
to make use of third-party security service providers.

An application may perform this security check using one, some, or all of the 
following methods: 

• Send the client a challenge, which challenges the client to respond with the 
matching response.

• Send the client an encryption key, to which the client should respond with 
an encrypted password, which the application may then decrypt and verify.

• Send the client a request for security labels, which the client sends to 
establish the level of security for the connection.

• Initiate an application-defined login handshake.

• Initiate a transparent security handshake. This requires a security entry in 
the libtcl.cfg file, and that drivers for the required security services are 
installed. See “Changes to the interfaces file” on page 183, and “Security 
services” on page 170, for more information.

• Exchange the security session negotiation data between the remote server 
and the gateway client using a security session callback. See “Full 
passthrough gateway with direct security session” on page 191, and the 
Open Client Client-Library/C Reference Manual, for more information on 
security session callbacks.

An application negotiates a secure login using the srv_negotiate routine inside 
the SRV_CONNECT event handler.



Options 

122  Open Server

Ad hoc negotiations
An application may negotiate or renegotiate several issues with a client at any 
point during the time the server is up and running. Ad hoc negotiations take 
place inside a SRV_LANGUAGE event handler or a SRV_OPTION event 
handler. A client may: 

• Renegotiate the character set and national language through either a 
Transact-SQL language command or an option command.

• Determine aspects of query processing behavior through a Transact-SQL 
language command or an option command. Clients can request that 
options be set or cleared, as well as requesting the current status of a 
particular option.

For a discussion of the SRV_OPTION event and a list of options, see “Options” 
on page 122.

“International support” on page 99 covers negotiation of national language and 
character set in detail.

For more information on identifying and authenticating users in a secure 
database system, see the Adaptive Server Enterprise Reference Manual and 
“Security services” on page 170.

Example
The sample ctos.c includes code illustrating a negotiated login.

Options
Adaptive Server permits clients to determine how to handle query processing. 
It provides a variety of configurable options that govern aspects of query 
processing behavior. For more information on Adaptive Server query-
processing options, see the set command in the Adaptive Server Enterprise 
Reference Manual.

An Open Server application can respond to client requests about query 
processing options.

A client application can set, clear, and request the current value of Adaptive 
Server query-processing options in one of two ways: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 123

• Through a Transact-SQL language command

• By issuing an option command

If an application expects a client to issue language commands to make option 
requests that the application needs to process, it must include code to parse 
such requests in its SRV_LANGUAGE event handler.

Client option commands trigger a SRV_OPTION event. An application 
responds to such requests from within its SRV_OPTION event handler, using 
the srv_options command.

Inside the SRV_OPTION event handler
A client can request that an option be set or cleared, or that its current value be 
returned. Any of these commands triggers a SRV_OPTION event. Using the 
SRV_OPTION event handler, the application should: 

1 Call srv_options with the cmd argument set to CS_GET. The type of 
command the client issued (SRV_SETOPTION, SRV_CLEAROPTION, 
or SRV_GETOPTION) will be returned in optcmdp. The option itself will 
be returned in optionp. *bufp will contain all legal values associated with 
the option.

For example, if the client has requested that Adaptive Server not report the 
number of rows affected by the query, optcmdp will contain 
SRV_SETOPTION, *optionp will contain CS_OPT_NOCOUNT, and 
*bufp will contain CS_TRUE.

2 If optcmdp is either SRV_SETOPTION or SRV_CLEAROPTION, the 
application should clear or set the option accordingly in a standalone Open 
Server application. If the application is a gateway, it should send the 
appropriate client calls to manipulate the remote server’s option.

3 If optcmdp is SRV_GETOPTION, the application should call srv_options 
with cmd set to CS_SET, optcmd set to SRV_SENDOPTION, optionp set 
to the option the client seeks the value of, and bufp set to the current value.

Option descriptions and default values
Table 2-24 describes the options a client may set, retrieve, or clear, and each 
option’s default value.



Options 

124  Open Server

Table 2-24: Symbolic constants for server options

Symbolic constant What the option does Default value

CS_OPT_ANSINULL If this option is set to CS_TRUE, Adaptive Server 
enforces the ANSI behavior that “=NULL” and “is 
NULL” are not equivalent. In standard Transact SQL, 
“=NULL” and “is NULL” are treated as equivalent.
 
This option affects “<> NULL” and “is not NULL” 
behavior in a similar fashion.

CS_FALSE

CS_OPT_ANSIPERM If this option is set to CS_TRUE, Adaptive Server will 
be ANSI compliant in its permission checks on update 
and delete statements.

CS_FALSE

CS_OPT_ARITHABORT If this option is set to CS_TRUE, Adaptive Server 
aborts a query when an arithmetic exception occurs 
during its execution.

CS_FALSE

CS_OPT_ARITHIGNORE If this option is set, Adaptive Server substitutes NULL 
for selected or updated values when an arithmetic 
exception occurs during query execution. Adaptive 
Server does not return a warning message. If neither 
CS_OPT_ARITHABORT nor 
CS_OPT_ARITHIGNORE is set, Adaptive Server 
substitutes NULL and prints a warning message after 
the query has been executed.

CS_FALSE

CS_OPT_AUTHOFF Turns the specified authorization level off for the 
current server session. When a user logs in, all 
authorizations granted to that user are automatically 
turned on.

Not applicable

CS_OPT_AUTHON Turns the specified authorization level on for the 
current server session. When a user logs in, all 
authorizations granted to that user are automatically 
turned on.

Not applicable

CS_OPT_CHAINXACTS If this option is set to CS_TRUE, Adaptive Server uses 
chained transaction behavior.
 
Chained transaction behavior means that each server 
command is considered to be a distinct transaction.
 
Unchained transaction behavior requires an explicit 
commit transaction statement to define a transaction.

CS_FALSE, 
meaning unchained 
transaction behavior

CS_OPT_CURCLOSEONXACT If this option is set to CS_TRUE, all cursors opened 
within a transaction space are closed when the 
transaction completes.

CS_FALSE

CS_OPT_CURREAD Sets a security label specifying the current read level. NULL

CS_OPT_CURWRITE Sets a security label specifying the current write level. NULL



CHAPTER 2    Topics

Server-Library/C Reference Manual 125

CS_OPT_DATEFIRST This option sets the day considered to be the “first” day 
of the week.

For us_english, the 
default is 
CS_OPT_SUNDAY
.

CS_OPT_DATEFORMAT This option sets the order of the date parts 
month/day/year for entering datetime or smalldatetime 
data.

For us_english, the 
default is 
CS_OPT_FMTMD
Y.

CS_OPT_FIPSFLAG If this option is set to CS_TRUE, Adaptive Server flags 
any nonstandard SQL commands that are sent.

CS_FALSE

CS_OPT_FORCEPLAN If this option is set to CS_TRUE, Adaptive Server joins 
tables in the order in which the tables are listed in the 
“from” clause of the query.

CS_FALSE

CS_OPT_FORMATONLY If this option is set to CS_TRUE, Adaptive Server 
sends back a description of the data rather than the data 
itself, in response to a select query.

CS_FALSE

CS_OPT_GETDATA If this option is set to CS_TRUE, then Adaptive Server 
returns information on every insert, delete, or update 
command. Adaptive Server returns this information in 
the form of a message result set and parameters that an 
application can use to construct the name of the 
temporary table that will contain the rows that will be 
inserted or deleted. An update consists of insertions 
and deletions.

CS_FALSE

CS_OPT_IDENTITYOFF Disables inserts into a table‘s identity column. For more 
information, see the set command in your Adaptive 
Server documentation.

Not applicable

CS_OPT_IDENTITYON Enables inserts into a table‘s identity column. For more 
information, see the set command in your Adaptive 
Server documentation.

Not applicable

CS_OPT_ISOLATION This option is used to specify a transaction isolation 
level. Legal levels are CS_OPT_LEVEL1 and 
CS_OPT_LEVEL3. Setting CS_OPT_ISOLATION to 
CS_OPT_LEVEL3 causes all pages of tables specified 
in a select query inside a transaction to be locked for 
the duration of the transaction.

CS_OPT_LEVEL1

CS_OPT_NOCOUNT This option causes Adaptive Server to stop sending 
back information about the number of rows affected by 
each SQL statement.

CS_FALSE

Symbolic constant What the option does Default value



Options 

126  Open Server

CS_OPT_NOEXEC If this option is set to CS_TRUE, Adaptive Server 
processes queries through the compile step but does 
not execute them. This option is used with 
CS_OPT_SHOWPLAN.

CS_FALSE

CS_OPT_PARSEONLY If this option is set, the server checks the syntax of 
queries, returning error messages as necessary, but 
does not execute the queries.

CS_FALSE

CS_OPT_QUOTED_IDENT If this option is set to CS_TRUE, Adaptive Server 
treats all strings enclosed in double quotes as 
identifiers.

CS_FALSE

CS_OPT_RESTREES If this option is set, Adaptive Server checks the syntax 
of queries but does not execute them, returning parse 
resolution trees (in the form of image columns in a 
regular row result set) and error messages as needed, to 
the client.

CS_FALSE

CS_OPT_ROWCOUNT If this option is set, Adaptive Server returns only a 
maximum specified number of regular rows for select 
statements. This option does not limit the number of 
compute rows returned.
 
CS_OPT_ROWCOUNT works somewhat differently 
from most options. It is always set on, never off. 
Setting CS_OPT_ROWCOUNT to 0 sets it back to the 
default, which is to return all the rows generated by a 
select statement. Therefore, the way to turn 
CS_OPT_ROWCOUNT off is to set it on with a count 
of 0.

0, meaning all rows 
are returned

CS_OPT_SHOWPLAN If this option is set to CS_TRUE, Adaptive Server will 
generate a description of its processing plan after 
compilation and continue executing the query.

CS_FALSE

CS_OPT_STATS_IO This option determines whether Adaptive Server 
internal I/O statistics are returned to the client after 
each query.

CS_FALSE

CS_OPT_STATS_TIME This option determines whether Adaptive Server 
parsing, compilation, and execution time statistics are 
returned to the client after each query.

CS_FALSE

CS_OPT_STR_RTRUNC If this option is set to CS_TRUE, Adaptive Server will 
be ANSI-compliant with regard to right truncation of 
character data.

CS_FALSE

Symbolic constant What the option does Default value



CHAPTER 2    Topics

Server-Library/C Reference Manual 127

srv_options on page 323 lists the legal values and datatype for each option.

Example
The sample, ctos.c, includes code for processing client option commands.

Partial update
Open Client and Open Server supports the partial update of text and image 
columns. A partial update allows you to specify the part of the text or image 
field that you want to replace, delete, or insert at, and update that part only 
instead of modifying the entire field. For more information about text and 
image data handling, see the Open Client Client-Library /C Reference Manual. 

Note  Currently, Adaptive Server does not support partial update of text or 
image columns.

Open Server set-up
This section discusses how Open Server must be set up to support partial 
updates.

CS_OPT_TEXTSIZE This option changes the value of the Adaptive Server 
global variable @@textsize, which limits the size of 
text or image values that Adaptive Server returns. 
When setting this option, you supply a parameter 
which is the length, in bytes, of the longest text or 
image value that Adaptive Server should return.

32,768 bytes

CS_OPT_TRUNCIGNORE If this option is set to CS_TRUE, Adaptive Server 
ignores truncation errors, which is standard ANSI 
behavior.
 
If this option is set to CS_FALSE, Adaptive Server 
raises an error when conversion results in truncation.

CS_FALSE

Symbolic constant What the option does Default value



Partial update 

128  Open Server

sp_mda

sp_mda is a stored procedure that retrieves metadata from the server. To 
support partial updates, your Open Server application must define an sp_mda 
stored procedure and specify the updatetext syntax that an Open Client 
application must use.

An Open Client application must invoke sp_mda using these parameters and 
values:

If the server supports partial updates, sp_mda returns:

For more information about the sp_mda stored procedure, see the Mainframe 
Connect™ DB2 UDB Options for IBM CICS and IMS Installation and 
Administration Guide. For a sample implementation of sp_mda, see 
$SYBASE/$SYBASE_OCS/sample/srvlibrary/updtext.c.

SRV_T_BULKTYPE

To correctly retrieve the partially updated data sent by the client, the Open 
Server application must set SRV_T_BULKTYPE to SRV_TEXTLOAD, 
SRV_UNITEXTLOAD, or SRV_IMAGELOAD. For more information about 
SRV_T_BULKTYPE, see “SRV_T_BULKTYPE” on page 156.

Parameter Value Description

clienttype 5 5 indicates that the client is Client-Library.

mdaversion 1

clientversion 0 clientversion is an optional parameter that 
indicates the client version. The default is 0.

Parameter Value

mdinfo “UPDATETEXT”

querytype 2

query updatetext_syntax

Example:

updatetext ? ? ? {NULL | ?} {NULL | ?}

where “?” indicates the updatetext parameters.



CHAPTER 2    Topics

Server-Library/C Reference Manual 129

Handlers

The SRV_LANGUAGE and SRV_BULK handlers have to be installed in 
Open Server. Open Server uses SRV_LANGUAGE to receive the updatetext 
statement from the Client-Library. SRV_BULK, on the other hand, receives the 
data sent through ct_send_data().

For more information about SRV_LANGUAGE and SRV_BULK, see the 
Open Client and Open Server Common Libraries Reference Manual.

Passthrough mode
An Open Server application that is acting as a gateway between an Open Client 
application and an Adaptive Server can pass TDS packets between client and 
server without examining their contents. An Open Server that handles TDS 
packets in this way operates in passthrough mode.

Because the Open Server gateway application does not have to unpack the TDS 
information as it arrives from the client, and repacks information before 
sending it to the Adaptive Server, passthrough mode is very efficient.

For Open Client Server 12.5.1 and earlier, passthrough mode ensures that the 
negotiated packet size is correct by limiting the packet size requested by the 
client to the maximum size supported by the Open Server.

When a remote server supporting server-specified packetsize sets a packetsize 
larger than that configured in Open Server, the larger packetsize is used, 
regardless of the configured SRV_S_NETBUFSIZE.

There are two types of passthrough modes: 

• Regular passthrough mode

• Event handler passthrough mode

Both types of passthrough modes use the passthrough routines 
srv_recvpassthru, ct_sendpassthru, ct_recvpassthru, and srv_sendpassthru. The 
differences are as follows: 

• In regular passthrough mode, the Open Server application recognizes 
events and triggers event handlers. These event handlers are coded to call 
the passthrough routines.

For more information on regular passthrough mode, see “Regular 
passthrough mode” on page 130.



Passthrough mode 

130  Open Server

• In event handler passthrough mode, the Open Server application does not 
recognize most types of events on the connection. Instead, the full 
passthrough event handler is triggered whenever a network read for the 
connection completes. The full passthrough event handler is coded to call 
the passthrough routines.

For more information on event handler passthrough mode, see “Event 
handler passthrough mode” on page 132.

DB-Library also provides routines to support passthrough mode. See the Open 
Client DB-Library/C Reference Manual for details.

Regular passthrough mode
Initially, Sybase supported only this type of passthrough mode.

In regular passthrough mode, Open Server recognizes events 
(SRV_LANGUAGE, SRV_RPC, and so on) and triggers the appropriate event 
handlers. Individual event handlers must be coded to call passthrough routines.

Negotiating the TDS protocol level in passthrough mode

When Sybase clients and servers connect, they first agree upon the TDS 
protocol level to use, usually the latest version of the protocol that both 
programs recognize. See “Negotiated behavior” on page 119 for more 
information on initial protocol negotiation.

When an Open Server gateway application operates in passthrough mode, the 
TDS packets are created and interpreted by the remote Sybase client and 
Adaptive Server—not by the gateway. Therefore, TDS negotiation occurs 
between the two remote programs. The gateway must facilitate this negotiation 
by relaying responses between the two parties. The TDS negotiation process 
must occur inside a SRV_CONNECT event handler and involves the following 
steps: 

1 Set one of these properties: 

• SRV_T_PASSTHRU, to indicate that the thread will use regular 
passthrough mode

• SRV_T_FULLPASSTHRU, to indicate that the thread will use event 
handler passthrough mode

You must set one of these properties for srv_getloginfo and ct_setloginfo to 
negotiate client/server capabilities correctly for passthrough mode.



CHAPTER 2    Topics

Server-Library/C Reference Manual 131

2 srv_getloginfo – allocate a CS_LOGINFO structure and fill it with login 
information from the client thread. 

3 ct_setloginfo – prepare a CS_LOGINFO structure with the login 
information retrieved in step 2.

4 If the client application is using network-based authentication, perform 
these steps to transfer the client’s security principal name. These steps are 
required because the security principal name is not part of the 
CS_LOGINFO structure. 

• Call srv_thread_props(..CS_GET, SRV_T_USER) to retrieve the 
client’s security principal name.

• Call ct_con_props(..CS_SET, CS_USERNAME) to set the principal 
name for the connection to the target server.

5 Log in to the remote server by calling ct_connect.

6 ct_getloginfo – transfer login response information from a 
CS_CONNECTION structure to the newly allocated CS_LOGINFO 
structure.

7 srv_setloginfo – send the remote server’s response, retrieved in step 6, to 
the client, then release the CS_LOGINFO structure. 

Using regular passthrough mode   

Regular TDS passthrough takes place inside any event handler except 
SRV_ATTENTION, SRV_CONNECT, SRV_DISCONNECT, SRV_START, 
or SRV_STOP.

Client requests arrive in a stream of one or more TDS packets. The handler 
repeatedly calls srv_recvpassthru as long as the info argument remains set to 
SRV_I_PASSTHRU_MORE. As each packet is received, the handler calls 
ct_sendpassthru to pass the packet on to the remote Adaptive Server or Open 
Server. The remote server receives exactly the same TDS stream it would 
receive from a directly connected client.

 Warning! The latest version of TDS introduces multiple commands in a single 
batch. Only the first command triggers an event handler. Open Server will not 
call event handlers for the remaining commands.



Passthrough mode 

132  Open Server

A Client-Library routine, ct_recvpassthru, receives the TDS packets as they 
arrive at the connection. The srv_sendpassthru Server-Library routine sends 
the packet on to the client. The ct_recvpassthru routine retrieves another TDS 
packet as long as it returns CS_PASSTHRU_MORE.

Example

The sample, fullpass.c, illustrates a passthrough mode gateway.

Event handler passthrough mode
In this type of passthrough mode, Open Server does not recognize most types 
of events. Instead, Open Server invokes the full-passthrough event handler 
each time a network read for the connection completes.

Event handler passthrough mode is designed to enable client/server 
connections using per-packet security services (such as encryption) to use 
passthrough mode.

Regular passthrough mode requires that Open Server interpret packets to 
identify particular events. When packets are encrypted, this is not possible.

To use event handler passthrough mode for a thread: 

• Code a full-passthrough event handler and install it. For more information, 
see “Coding and installing a full passthrough event handler” on page 132.

• Enable event handler passthrough mode for a thread by setting 
SRV_T_FULLPASSTHRU to CS_TRUE in the Open Server connection 
handler. For more information, see “Enabling event handler passthrough 
mode for a thread” on page 133.

• Call routines to negotiate the TDS protocol level between the client and 
the target server. For more information, see “Negotiating the TDS 
protocol level” on page 133.

Coding and installing a full passthrough event handler

The prototype for a full-passthrough event handler is: 

CS_RETCODE CS_PUBLIC func (SRV_PROC *sproc);

A full-passthrough event handler calls these routines to receive and send 
packets: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 133

• srv_recvpassthru

• ct_sendpassthru

• ct_recvpassthru

• srv_sendpassthru

You will not be able to forward attention events while performing a 
srv_recvpassthru/ct_sendpassthru loop. You must add logic to the event-
handler code and attn-handler code so that an attentionevent is not forwarded 
until after the full command has been forwarded to the remote server.

A full-passthrough event handler should return CS_SUCCEED to report 
normal completion. A return value other than CS_SUCCEED kills the current 
Open Server thread.

To install a full-passthrough event handler, call srv_handle with srv_handle’s 
event parameter as SRV_FULLPASSTHRU and the handler parameter as the 
address of the handler routine.

Enabling event handler passthrough mode for a thread

To enable event handler passthrough mode for a thread, set the 
SRV_T_FULLPASSTHRU thread property to CS_TRUE in the Open Server 
connection handler.

Once event handler passthrough mode is enabled, Open Server invokes the 
full-passthrough handler each time a network read from the connection 
completes.

No events of type SRV_LANGUAGE, SRV_RPC, SRV_BULK, 
SRV_CURSOR, SRV_MSG, SRV_OPTION, or SRV_DYNAMIC are raised 
for the thread.

SRV_ATTENTION events, however, are raised. The Open Server application 
must install a SRV_ATTENTION handler to correctly handle cancel requests.

Negotiating the TDS protocol level 

Gateway applications using event handler passthrough mode facilitate the 
negotiation of the TDS protocol level between client application and target 
server in exactly the same way as applications using regular passthrough mode.

Inside the application’s connection handler, after setting 
SRV_FULLPASSTHRU to CS_TRUE, call the srv_getloginfo, ct_setloginfo, 
ct_getloginfo, and srv_setloginfo routines.



Processing parameter and row data 

134  Open Server

For more information on calling these routines, see “Negotiating the TDS 
protocol level in passthrough mode” on page 130.

Processing parameter and row data

A note on terminology
The term parameter data refers to parameters retrieved from or returned to a 
client. Some can be input parameters, while others can be output or return 
parameters. Return parameters are processed in two steps: they are partially 
processed when the Open Server application reads them into program 
variables. The processing is completed when they are sent back to the client.

The Open Server data processing model
In Open Server, three routines work together to retrieve parameter data and 
formats from a client and to send row data, and return parameters and their 
formats to a client. These routines are srv_descfmt, srv_bind, and srv_xferdata.

An application uses these routines to process any client command that provides 
parameters or requests results. RPC commands, language commands, cursor 
commands, dynamic SQL commands, message commands, and negotiated 
login commands fall into this category.

Each of the three routines takes a type argument, which indicates the type of 
data being described, bound, or transferred. For example, type would be set to 
SRV_CURDATA when describing the format of cursor command input 
parameters, whereas type would be set to SRV_ROWDATA when processing 
result rows. For a list of legal type values, see each routine’s reference page in 
Chapter 3.

All three routines take a cmd argument as well, which indicates the direction of 
data flow. A value of CS_GET instructs the Open Server application to retrieve 
information from the client, while CS_SET instructs the application to return 
results to a client.

An application can use these routines to: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 135

• Retrieve input and return parameter information inside a SRV_RPC, 
SRV_CURSOR, SRV_DYNAMIC, SRV_MSG, or SRV_CONNECT 
event handler.

• Send back result row information inside a SRV_RPC, SRV_CURSOR, 
SRV_DYNAMIC, SRV_LANGUAGE, or SRV_MSG event handler.

• Send back return parameter information inside a SRV_LANGUAGE or 
SRV_RPC handler.

Retrieving parameters
To process parameters, an application must: 

1 Call srv_numparams to determine how many parameters, if any, the 
command includes.

2 Call srv_descfmt to obtain a description of each parameter. Among other 
things, the description will indicate if the parameter is a return parameter. 
If it is, the retrieval process stops here. If the parameter is an input 
parameter, the application must continue with steps 3 and 4.

3 Call srv_bind to provide program variables in which to store the parameter 
data coming over the network from the client.

4 Call srv_xferdata to transfer the client data into the application program 
variables specified in step 3.

Return parameters contain no valid data when retrieved from a client. The 
application fills valid data in when it returns the return parameters to the client. 
Open Server transparently converts the return parameter format from the 
program variable format to the client format.

Note that from within a SRV_LANGUAGE handler, an application can 
“construct” return parameters out of an undifferentiated language stream 
without having first retrieved actual parameters. See “Returning parameters in 
a language data stream” on page 138, for further explanation.

srv_descfmt and srv_bind are called once for each parameter, while srv_xferdata 
is called once for the entire parameter stream. An application must not call 
srv_xferdata until all parameters have been described and bound.

An application must invoke the three routines with their cmd arguments set to 
CS_GET, as the application retrieves information from the client.



Processing parameter and row data 

136  Open Server

Returning rows
The processing of row data requires three basic steps: 

1 Describe each column in the row by calling srv_descfmt.

2 Indicate where the application has stored the row data and identify its 
format by calling srv_bind.

3 Transfer the data from the application program variables specified in step 
2 to the client by calling srv_xferdata.

The srv_descfmt routine must be called once for each column in a row; however 
srv_xferdata and srv_bind routines are called as many times as there are result 
rows. An application must not call srv_xferdata until all columns have been 
described and bound.

An application must invoke the three routines with their cmd arguments set to 
CS_SET as the application returns results to the client.

Returning return parameters
The processing of return parameters requires two basic steps: 

1 Indicate where the application has stored the return parameter data and 
identify its format by calling srv_bind.

2 Transfer the return parameter data from the application program variables 
specified in step 2 to the client by calling srv_xferdata.

An application must invoke the two routines with their cmd arguments set to 
CS_SET as the application returns results to the client.

If return parameters have been “constructed” out of a text stream, they need to 
be described, in addition to being bound and transferred. See “Returning 
parameters in a language data stream” on page 138, for further explanation.

A closer look at describing, binding, and transferring
This section provides more detail on the describe, bind, and transfer processes. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 137

Describing

The srv_descfmt routine gives an Open Server application the information it 
needs to send back data to the client in the format the client expects. 
Conceptually, it conveys information about how the client viewed (CS_GET) 
or will view the data (CS_SET).The srv_descfmt routine retrieves or sets a 
variety of parameter and row column characteristics.

These characteristics include, among other information: 

• The parameter or column name

• The parameter or column name length

• The parameter or column number, where the first parameter or column in 
a stream is numbered 1

• The parameter or column datatype

• Whether the parameter or column can be set to null

• Whether a parameter is a return parameter

The clfmtp argument to srv_descfmt points to a CS_DATAFMT structure 
containing this information. For details, see “CS_DATAFMT structure” on 
page 54.

Binding

To examine data it receives from clients, an Open Server application must store 
the data in local program variables. When an application calls srv_bind, it 
associates parameter or column data with a local application program variable 
and describes the format of that variable.

A call to srv_bind with cmd set to CS_GET instructs Open Server where to put 
the data coming from the client. A call to srv_bind with cmd set to CS_SET 
instructs Open Server where to find the data it is sending back to the client.

The osfmtp argument to srv_bind points to a CS_DATAFMT structure 
containing format information about the local program variables.



Processing parameter and row data 

138  Open Server

Transferring

The srv_xferdata routine moves data in and out of the local program variables 
named in a srv_bind call. When cmd is set to CS_GET, a call to srv_xferdata 
moves input parameter data from the client into the variables. When cmd is set 
to CS_SET, the routine pulls column and return parameter data out of the local 
program variables and sends it to the client.

Note  Although srv_senddone currently flushes formats and column 
information to the network, it will not in future versions. Applications should 
always use srv_xferdata to flush information to the network.

For more information on srv_bind, srv_descfmt, and srv_xferdata, see their 
respective reference pages.

Automatic conversion

When an application retrieves data, Open Server converts the data to the local 
format if the format in which the client sent the data in differs from the format 
of the application’s local program variables. If the same situation arises when 
an application sends data back to a client, Open Server converts the data to the 
client format.

Returning parameters in a language data stream
There is no notion of parameters in a language data stream. An Open Server 
application equipped to parse a text stream, however, can “construct” return 
parameters from the incoming stream. It can then load the parameters with data 
and send them back using the describe/bind/transfer procedures.

For example, a client can send a Transact-SQL stored procedure query that 
includes return parameters. An Open Server application expecting this query 
can parse for the string “output = @var” (where var is the placeholder for the 
return parameter) and send back format information and data for var.

An application can call srv_descfmt with cmd set to CS_SET and type set to 
SRV_RPCDATA from within a language event handler only.



CHAPTER 2    Topics

Server-Library/C Reference Manual 139

Example
The sample, ctos.c, processes parameter and column data using the 
describe/bind/transfer series of calls.

Properties
Properties define aspects of an Open Server application’s behavior. Open 
Server properties fall into three categories: 

• Context properties

• Server properties

• Thread properties

Context and server properties pertain to the Open Server application as a 
whole. They govern server-wide behavior and hold true for all client-server 
connections.

Thread properties pertain to client and service threads. Most are only able to be 
retrieved, not set. An application can override certain server-wide attributes on 
a per-connection basis by setting certain thread properties.

A programmer can tailor an Open Server application’s functionality by setting 
properties. In addition, an application can retrieve certain properties when it 
needs information.

You use cs_config, srv_props, and srv_thread_props, to set and retrieve context, 
server, and thread properties, respectively.

See “Context properties” on page 140, “Server properties” on page 141 and 
“Thread properties” on page 148 for more information on each type of 
property.

See the Open Client and Open Server Common Libraries Reference Manual 
section on cs_config, and the srv_props and srv_thread_props reference pages 
in this manual, for more information on setting and retrieving properties.



Properties 

140  Open Server

Context properties
Context properties are stored in a CS-Library CS_CONTEXT structure. An 
application sets or retrieves context properties using the CS-Library routine 
cs_config. See the Open Client and Open Server Common Libraries Reference 
Manual for information on this routine.

There are three kinds of context properties: 

• Context properties specific to CS-Library

cs_config sets and retrieves the values of CS-Library-specific context 
properties. With the exception of CS_LOC_PROP, properties set through 
cs_config affect only CS-Library. CS-Library-specific context properties 
are listed on the manual page for cs_config in the Open Client and Open 
Server Common Libraries Reference Manual.

• Context properties specific to Client-Library

ct_config sets and retrieves the values of Client-Library-specific context 
properties. Properties set through ct_config affect only Client-Library. See 
the Open Client Client-Library/C Reference Manual for more information.

• Context properties specific to Server-Library

srv_props sets and retrieves the values of Server-Library-specific context 
properties. Properties set through srv_props affect only Server-Library.

The context properties that an Open Server application can set include: 

• The routine Open Server calls when it detects a CS-Library error.

• Localization information, including the Open Server’s national language, 
character set, and sort order.

• The location of a pointer to application data space. This property allows 
applications to associate control information with Open Server’s context. 
Open Server does not use this pointer; it is provided for the convenience 
of Open Server application programmers.

These context properties can be both set and retrieved through the cs_config 
routine. For more information on context properties and their associated 
routines and structures, see the Open Client and Open Server Common 
Libraries Reference Manual.



CHAPTER 2    Topics

Server-Library/C Reference Manual 141

Server properties
Server properties are stored in a CS_CONTEXT structure. An application sets 
or retrieves server properties using the Server-Library routine srv_props.

Server properties determine many aspects of an Open Server application’s 
behavior, including its memory-allocation routines, and the maximum number 
of physical network connections it can establish.

For server properties to take effect, an application must set them prior to 
initialization. Open Server raises an error if a server property is set following 
initialization.

An application’s initialization code must include these steps: 

1 Allocate a CS_CONTEXT structure, through a call to cs_ctx_alloc.

2 Call srv_version to set the Open Server version number. srv_version takes 
a pointer to a CS_CONTEXT structure.

3 Call srv_props to set property defaults.

4 Call srv_init to initialize the server.

5 Start the server running with a call to srv_run.

Some properties can be set and retrieved, while others are set-only or retrieve-
only. srv_props on page 334 provides this information.

Table 2-25: Server properties 

Property name Definition Notes

SRV_S_ALLOCFUNC The address of the routine Open Server 
will use to allocate memory.

SRV_S_APICHK A Boolean indicating whether to enable 
(CS_TRUE) or disable (CS_FALSE) 
the validation of Server-Library 
arguments and state checking.

Many Server-Library 
routines internally call CS-
Library routines. For this 
reason, application 
programmers who want 
thorough argument and 
state checking should set 
the cs_config property 
CS_NOAPICHK to 
CS_FALSE.



Properties 

142  Open Server

SRV_S_ATTNREASON The reason an Open Server application’s 
attention handler was called.

Returns 
SRV_ATTENTION if a 
client attention triggered the 
SRV_ATTENTION event, 
and SRV_DISCONNECT 
if a client disconnect 
triggered the event.

SRV_S_CERT_AUTH CS_CHAR
Specify the path to the file containing 
trusted CA certificates.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_CURTHREAD The address of the active thread’s 
internal control structure.

Some 
SRV_S_CURTHREAD 
functionality becomes 
disabled when 
SRV_S_PREEMPT is used 
in conjunction with 
threaded libraries.

SRV_S_DEFQUEUESIZE Deferred event queue size.

SRV_S_DISCONNECT Set this property to CS_TRUE to call an 
application’s SRV_ATTENTION event 
handler when a client disconnects.

The SRV_ATTENTION 
event handler can be called 
at interrupt level, if the 
client disconnect is detected 
at interrupt time.

SRV_S_DSPROVIDER The directory service provider name. 
The default value is platform specific. 
See the Open Client and Open Server 
Configuration Guide for your platform.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_DSREGISTER Set to CS_TRUE to indicate that Server-
Library should register itself with a 
directory at start-up. Set to CS_FALSE 
to prevent registration.

SRV_S_ERRHANDLE The address of the Open Server error 
handler.

SRV_S_FREEFUNC The address of the routine Open Server 
uses to free memory.

SRV_S_IFILE The name of the interfaces file available 
for use by Open Server.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 143

SRV_S_LOGFILE The name of the log file Open Server 
writes to.

The SRV_S_LOGFILE 
property can be set after 
calling srv_init.

After srv_init is called, 
setting the 
SRV_S_LOGFILE 
property with bufpset to an 
empty string ("") and buflen 
set to 0 will close the log 
file.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_LOGSIZE The maximum size of the log file. If the 
log exceeds this size, Open Server will 
move the current contents of the log file 
to another file with the name 
currentfilename_old and will truncate 
the current log to 0 bytes.

SRV_S_MSGPOOL The number of messages available to an 
Open Server application at runtime.

Open Server applications 
use messages through 
srv_putmsgq. A message 
remains in use until it is 
received through 
srv_getmsgq. The value of 
an application’s 
SRV_S_MSGPOOL 
configuration parameter 
should be based on its use of 
these two routines.

SRV_S_NETBUFSIZE The maximum size of the network I/O 
buffer to be used by client connections. 
Unless explicitly set, 
SRV_S_NETBUFSIZE is the default 
maximum value of 8192 bytes.

For Open Client Server 
12.5.1 and earlier, the size 
of the network buffer is 
determined at login time. If 
a smaller size is requested, 
Open Server does not resize 
the memory buffer; it leaves 
part of it unused. For this 
reason, do not make the 
value larger than required or 
unused memory will be 
allocated. 

Property name Definition Notes



Properties 

144  Open Server

SRV_S_NETTRACEFILE Net-Library tracing written to this file. The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_NUMCONNECTIONS The maximum number of physical 
network connections the Open Sever 
application will accept.

A server-to-server 
connection is only one 
physical connection, 
regardless of how many 
subchannels are used. 
Outgoing Client-Library 
connections, for example in 
a passthrough Open Server 
application, are limited by 
the CS_MAX_CONNECT 
property. 
CS_MAX_CONNECT can 
be set using ct_config().

SRV_S_NUMMSGQUEUES The number of message queues 
available to the Open Server 
application.

SRV_S_NUMMUTEXES The number of mutual exclusion 
semaphores available to the Open 
Server application.

SRV_S_NUMREMBUF The window size used on server-to-
server connections. It indicates the 
maximum number of packets that can be 
outstanding on a logical subchannel 
before an acknowledgment is required.

SRV_S_NUMREMSITES The maximum number of remote server 
site handlers that can be active at a given 
time.

SRV_S_NUMTHREADS The maximum number of threads 
available to an Open Server application.

SRV_S_NUMUSEREVENTS The number of user events an 
application can define.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 145

SRV_S_PREEMPT A Boolean. If CS_TRUE, Open Server 
will use preemptive scheduling. If 
CS_FALSE, Open Server uses non-
preemptive scheduling.

Preemptive scheduling is 
not available on all 
platforms. Use 
srv_capability to determine 
whether it is available.

When SRV_S_PREEMPT 
is used in conjunction with 
threaded libraries, some 
functionality of 
SRV_S_CURTHREAD 
become disabled.

SRV_S_REALLOCFUNC The address of the routine Open Server 
uses to reallocate memory.

SRV_S_REQUEST_CAP The default client requests that the Open 
Server application accepts.

See “Capabilities” on page 
24.

SRV_S_RESPONSE_CAP The default responses to the client that 
the Open Server application supports.

See “Capabilities” on page 
24.

SRV_S_RETPARAMS Return parameters are sent if an error 
occurs during execution

This server property can be 
used to limit the behavior to 
specific threads by using 
the default (false).

SRV_S_SEC_KEYTAB The keytab file name (including the path 
name) for use with the DCE security 
driver.

You can specify a principal 
other than the currently 
logged-in user who is 
running the application. 
The property 
SRV_S_SEC_PRINCIPAL 
sets the principal name. The 
DCE utility dcecp allows 
you to create a keytab file. 
The keytab file is an 
ordinary UNIX file, so you 
need to set permissions on 
the file to restrict access. 
The file must be readable by 
the user who starts the Open 
Server application. See 
“Security services” on page 
170 for more information.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

Property name Definition Notes



Properties 

146  Open Server

SRV_S_SEC_PRINCIPAL The principal name to use when 
acquiring credentials for the Open 
Server application.

The value of this property defaults to the 
Open Server application’s network 
name, which can be specified through 
srv_init.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

See “Security services” on 
page 170 for more 
information about this 
property.

SRV_S_SERVERNAME The name of the Open Server 
application.

This is the name the Open 
Server application is known 
by when it is up and 
running. It is also the name 
used to look up its listen 
address in the interfaces 
file.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_SSL_CIPHER Comma-separated list of CipherSuite 
names.

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_SSL_LOCAL_ID A structure containing a file name and a 
password used to decrypt the 
information in the file. 

The maximum allowable 
length for this property is 
SRV_MAXCHAR bytes.

SRV_S_SSL_REQUEST_
CLIENT_CERT

Requires that the client provide a 
certificate to log in to an Open Server 
application.

SRV_S_SSL_VERSION Must be one of a list of defined values. The defined values are:

• CS_SSLVER_20

• CS_SSLVER_30

• CS_SSLVER_TLS1

Adaptive Server only 
accepts connections using 
the default, 
CS_SSLVER_TLS1.

SRV_S_STACKSIZE The size of the stack allocated for each 
thread.

SRV_S_TDSVERSION The Tabular Data Stream protocol 
version that Open Server uses to 
negotiate all client connections.

See 
“SRV_S_TDSVERSION” 
on page 147 for a list of 
values.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 147

SRV_S_TDSVERSION

During the client login process, Open Server negotiates with the client 
application to agree on a TDS version. The SRV_S_TDSVERSION property 
value determines Open Server’s starting point. The client agrees to 
communicate at or below this starting point. Later on in the login process, the 
Open Server application can renegotiate the TDS version for a particular 
connection, using the SRV_T_TDSVERSION thread property. See “Thread 
properties” on page 148 for details.

Table 2-26 describes the legal values for this property:

SRV_S_TIMESLICE The number of clock ticks an active 
thread consumes before the time slice 
callback routine is called.

See the srv_callback 
reference page for 
information on time slice 
callbacks.

SRV_S_TRACEFLAG The type of tracing desired. See 
“SRV_S_TRACEFLAG” 
on page 148 for a list of 
flags.

SRV_S_TRUNCATELOG A Boolean. If CS_TRUE, Open Server 
truncates the log file during start-up.

The 
SRV_S_TRUNCATELOG 
property can be set after 
calling srv_init.

SRV_S_USERVLANG A Boolean. If CS_TRUE, the Open 
Server application’s native language is 
used for error messages. If CS_FALSE, 
the client’s national language is used for 
error messages.

SRV_S_VERSION A character string that contains the 
name, version date, and copyright 
information of the Open Server Server-
Library in use.

SRV_S_VIRTCLKRATE The clock rate, in microseconds, per 
tick.

SRV_S_VIRTIMER A Boolean. If CS_TRUE, the virtual 
timer is enabled. If CS_FALSE, the 
virtual timer is disabled.

Property name Definition Notes



Properties 

148  Open Server

Table 2-26: Values for SRV_S_TDSVERSION

SRV_S_TRACEFLAG

The SRV_S_TRACEFLAG property is a bitmap. Its flags, which can be OR’d 
together, are described in Table 2-27:

Table 2-27: Values for SRV_S_TRACEFLAG

Thread properties
A thread is a piece of code that executes to accomplish a specific task or set of 
tasks. There are several types of Open Server threads. Thread properties define 
aspects of a thread’s behavior and set limits on its resources.

SRV_S_TDSVERSION value Meaning

SRV_TDSNONE Unknown version of TDS

SRV_TDS_4.0 Negotiation starts at TDS 4.0

SRV_TDS_4_0_2 Negotiation starts at TDS 4.0.2

SRV_TDS_4_2 Negotiation starts at TDS 4.2

SRV_TDS_4_6 Negotiation starts at TDS 4.6

SRV_TDS_4_9_5 Negotiation starts at TDS 4.9.5

SRV_TDS_5_0 Negotiation starts at TDS 5.0

Flag Meaning

SRV_TR_ATTN Open Server displays information indicating whether the 
Open Server application has received or acknowledged 
an attention.

SRV_TR_DEFQUEUE Open Server traces event queue activity.

SRV_TR_EVENT Open Server displays information about the events it has 
triggered.

SRV_TR_MSGQ Open Server traces message queue activity.

SRV_TR_NETDRIVER Open Server traces TCL Net-Lib driver requests.

SRV_TR_NETREQ Open Server traces TCL requests.

SRV_TR_NETWAKE Open Server traces TCL wakeup requests.

SRV_TR_TDSDATA Open Server displays TDS packet contents in 
hexadecimal and ASCII format. This is the actual TDS 
traffic between a client and the Open Server application.

SRV_TR_TDSHDR Open Server displays the TDS protocol packet header 
information, such as packet type and length.



CHAPTER 2    Topics

Server-Library/C Reference Manual 149

For more details on Open Server threads, see “Multithread programming” on 
page 109.

Only a few thread properties can be set, but all are retrievable. An application 
calls srv_thread_props to retrieve and set a thread property value. Properties 
that can be set are noted as such in the srv_thread_props reference page. An 
application can retrieve and set thread properties at any point after 
initialization.

Open Server assigns defaults for each thread property that can be set when it 
creates threads at initialization time. See srv_thread_props on page 435 for a 
list of defaults.

Table 2-28: Thread properties 

Property name Definition Notes

SRV_T_APPLNAME The client application’s name.

SRV_T_BYTEORDER The client’s requested byte-ordering 
scheme. SRV_LITTLE_ENDIAN 
indicates that the least significant byte is 
the high byte. SRV_BIG_ENDIAN 
indicates that the least significant byte is 
the low byte.

SRV_T_BULKTYPE The type of bulk transfer being sent by 
the client.

See “SRV_T_BULKTYPE” 
on page 156 for a list of legal 
values.

SRV_T_CHARTYPE The type of character data representation. See “SRV_T_CHARTYPE” 
on page 157 for a list of legal 
values.

SRV_T_CIPHER_SUITE CS_CHAR*
The CipherSuite that is used to encrypt 
and decrypt data exchanged during the 
SSL-based session. The CipherSuite is 
negotiated during the connection 
handshake.

SRV_T_CLIB The name of the library product used by 
the client to connect to the Open Server 
application.

SRV_T_CLIBVERS The version of the library product used by 
the client to connect to the Open Server 
application.

SRV_T_CLIENTLOGOUT A Boolean. Indicates whether the client 
completed an orderly or aborted logout, 
where CS_TRUE indicates an orderly 
logout.

This property can only be 
retrieved from inside the 
SRV_DISCONNECT event 
handler.



Properties 

150  Open Server

SRV_T_CONVERTSHORT A Boolean. Indicates whether to 
automatically convert 4-byte datetime, 4-
byte floating point, and 4-byte money 
datatypes to their 8-byte counterparts.

SRV_T_DUMPLOAD A Boolean. Indicates whether to disallow 
the use of dump/load and bulk insert for 
this client connection.

SRV_T_ENDPOINT The file descriptor or file handle of the 
connected client. For subchannels, the 
site handler end point value is returned. 
SRV_T_ENDPOINT is equivalent to the 
CS_ENDPOINT value in Client-Library.

Valid for client threads, site 
handlers and subchannels. Not 
valid for service threads.

See “SRV_T_ENDPOINT” 
on page 157 for an example of 
using SRV_T_ENDPOINT.

SRV_T_EVENT The Open Server event the thread is 
currently in.

See “SRV_T_EVENT” on 
page 158 for a list of legal 
values.

SRV_T_EVENTDATA A generic data address associated with a 
particular event raised by the Open 
Server application.

Data address set using 
srv_event.

SRV_T_FULLPASSTHRU A Boolean. When set to CS_TRUE, the 
SRV_FULLPASSTHRU event handler is 
activated for the thread.

Can only be set inside the 
Open Server application’s 
connect handler.

The value of the 
SRV_T_EVENT property is 
SRV_FULLPASSTHRU 
when retrieved inside the full-
passthrough event handler.

SRV_T_FLTTYPE The type of floating point representation 
used by the client.

See “SRV_T_FLTTYPE” on 
page 158 for a list of legal 
values.

SRV_T_GOTATTENTION A Boolean. Indicates whether the client 
thread has received an attention.

SRV_T_HOSTNAME The name of the host machine from 
which the client connection originated.

SRV_T_HOSTPROCID The process ID of the client program. This is the operating system 
process ID received in the 
client login record.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 151

SRV_T_IODEAD A Boolean. Indicates whether a thread’s 
I/O channel is valid.

CS_TRUE means a thread 
cannot successfully perform 
I/O, CS_FALSE means it can. 
Open Server always returns 
CS_FALSE for service 
threads.

SRV_T_LOCALE A pointer to a CS_LOCALE structure 
allocated by the Open Server application.

Use this property to retrieve or 
set localization information.

SRV_T_LOGINTYPE The type of login record received. See “SRV_T_LOGINTYPE” 
on page 159 for a list of legal 
values.

SRV_T_MIGRATED A Boolean. Indicates whether a 
connection is a new or a migrated 
connection. This read-only property is set 
to true when the client is migrating or has 
migrated to the server. 

See “SRV_T_MIGRATED” 
on page 159 for more details.

SRV_T_MIGRATE_STATE Indicates the migration state of the client. 
It is a read-only property that any thread 
can access. 

See 
“SRV_T_MIGRATE_STATE
” on page 159 for more details.

SRV_T_MACHINE The host name of the machine the client 
thread is running on.

Property name Definition Notes



Properties 

152  Open Server

SRV_T_NEGLOGIN The type of negotiated login, if any, the 
client has requested.

This property is a bitmask that 
can take any of five values:

• SRV_CHALLENGE 
signals the client’s intent to 
negotiate through a 
challenge/response 
exchange. 

• SRV_ENCRYPT signals 
the client’s intent to pass a 
symmetrically encrypted 
password.

• SRV_SECLABEL 
indicates that the client will 
send security labels.

• SRV_APPDEFINED 
indicates that an 
application-defined login 
handshake is in use.

• SRV_EXTENDED_ENCRY
PT signals the client’s intent 
to pass an assymetrically 
encrypted password.

SRV_T_NOTIFYCHARSET A Boolean. Indicates whether the client 
should be notified when the character set 
in use has changed.

SRV_T_NOTIFYDB A Boolean. Indicates whether the client 
should be notified of the outcome of a use 
db Transact-SQL command.

SRV_T_NOTIFYLANG A Boolean. Indicates whether the client 
should be notified when the national 
language in use has changed.

SRV_T_NOTIFYPND The number of pending notifications to 
be delivered to the client.

This property is retrieve-only.

SRV_T_NUMRMTPWDS The number of remote passwords.

SRV_T_PACKETSIZE The negotiated packet size used to 
communicate with the client.

The packet size is negotiated 
transparently at login time.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 153

SRV_T_PASSTHRU A Boolean. Indicates whether the client 
thread is operating in passthrough mode.

With version 11.1, this 
property can be set inside the 
application’s connect handler.

When set to CS_TRUE, the 
srv_getloginfo and 
ct_setloginfo routines 
negotiate the client 
connection’s capabilities 
independently of the Open 
Server’s capabilities. Since a 
full-passthrough gateway does 
not recognize different 
command and result types, this 
is the desired behavior.

SRV_T_PRIORITY The priority level at which Open Server 
should schedule the thread.

This property is retrieve-only. 
To set a thread’s priority, call 
srv_setpri.

SRV_T_PWD The password string the client sent in the 
login record.

For remote server connections, 
this property returns the 
remote server password.

SRV_T_RETPARAMS Return parameters are sent if an error 
occurs during execution.

If the SRV_S_RETPARAMS 
is set the RPC return behavior 
applies to all threads.

SRV_T_RMTCERTIFICATE CS_SSLCERT *
A pointer that describes the client 
certificate.

SRV_T_RMTPWDS An array of SRV_RMTPWDs. See “SRV_T_RMTPWDS” on 
page 160 for the structure’s 
definition.

SRV_T_RMTSERVER The local server name for client 
connections. The remote server name for 
server-to-server connections.

SRV_T_ROWSENT The number of rows returned to the client 
in this event.

SRV_T_SEC_CHANBIND A Boolean indicating whether channel 
binding is being used on the client/server 
connection associated with this thread.

SRV_T_SEC_CONFIDENTIALITY A Boolean indicating whether data 
confidentiality is being used on the 
client/server connection associated with 
this thread.

This is usually implemented 
using data encryption.

Property name Definition Notes



Properties 

154  Open Server

SRV_T_SEC_CREDTIMEOUT The number of seconds remaining for 
which the credentials remain valid on the 
client/server connection associated with 
this thread.

Possible values are: 

• CS_NO_LIMIT – never 
expires

• CS_UNEXPIRED – 
unexpired

• 0 – expired

• A positive number – the 
number of seconds 
remaining

SRV_T_SEC_DATAORIGIN A Boolean indicating whether data 
origination service is being used on the 
client/server connection associated with 
this thread.

SRV_T_SEC_DELEGATION A Boolean indicating whether delegation 
is enabled by the client.

All work done in this thread 
should use the client’s 
authorization level. Use the 
SRV_T_USER property to 
access the principal name. Use 
the 
SRV_T_SEC_DELEGCRED 
property to obtain the 
delegated credentials to use in 
initiating a security session 
with another security peer.

SRV_T_SEC_DELEGCRED The delegated credentials (if any) of the 
client in the current security session.

The 
SRV_T_SEC_DELEGATION 
property indicates whether 
delegation is enabled by the 
client. If it is enabled, the 
Open Server application may 
obtain the delegated 
credentials using the 
SRV_T_SEC_DELEGCRED 
property.

SRV_T_SEC_DETECTREPLAY A Boolean indicating whether detection 
of message replay is being used on the 
client/server connection associated with 
this thread.

SRV_T_SEC_DETECTSEQ A Boolean indicating whether detection 
of out-of-sequence messages is being 
used on the client/server connection 
associated with this thread.

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 155

SRV_T_SEC_INTEGRITY A Boolean indicating whether integrity 
service is being used on the client/server 
connection associated with this thread.

This is usually implemented 
using a cryptographic 
signature.

SRV_T_SEC_MECHANISM The local name of the security 
mechanism being used on the 
client/server connection associated with 
this thread.

SRV_T_SEC_MUTUALAUTH A Boolean indicating whether mutual 
authentication was performed on the 
client/server connection associated with 
this thread.

SRV_T_SEC_NETWORKAUTH A Boolean indicating whether network 
authentication was performed on the 
client/server connection associated with 
this thread.

SRV_T_SEC_SESSTIMEOUT The number of seconds remaining for 
which the security session remains valid 
on the client/server connection associated 
with this thread.

Possible values are: 

• CS_NO_LIMIT – never 
expires

• CS_UNEXPIRED – 
unexpired

• 0 – expired

• A positive number – the 
number of seconds 
remaining

SRV_T_SESSIONID Retrieves the session ID that the client 
sends to Open Server. Also, sets the 
session ID to be sent to the client in the 
SRV_CONNECT handler.

See “SRV_T_SESSIONID” 
on page 161 for more details. 

SRV_T_SSL_VERSION The SSL/TLS protocol version that was 
negotiated during the connection 
handshake.

SRV_T_SPID The thread’s process identifier. This is the unique ID assigned 
to this thread. Thread IDs are 
reused once a thread has 
exited.

SRV_T_STACKLEFT The size of unused stack available to the 
thread.

Property name Definition Notes



Properties 

156  Open Server

SRV_T_BULKTYPE

Client applications can transfer three types of bulk data to Open Server 
applications: bulk copy data, text data, and image data. The 
SRV_T_BULKTYPE property is used to set or retrieve the type of bulk data 
transfer being initiated by a client.

Table 2-29 describes the legal values for the SRV_T_BULKTYPE thread 
property:

SRV_T_TDSVERSION The version of TDS the client thread is 
using.

Setting this thread in the 
SRV_CONNECT event 
handler allows an Open Server 
application to negotiate the 
TDS version to some value 
other than Open Server’s 
default for the thread. See 
“SRV_T_TDSVERSION” on 
page 161 for a list of legal 
values.

SRV_T_TYPE The thread type. See “SRV_T_TYPE” on page 
162 for a list of legal types.

SRV_T_USER The user name the client thread logged on 
with.

SRV_T_USERDATA A generic data address used for 
application-specific purposes.

Can be set.

SRV_T_USESRVLANG A Boolean. Set to CS_TRUE if error 
messages should be in the server’s 
national language, CS_FALSE if in the 
client’s.

Set this to override the server-
wide SRV_S_USESRVLANG 
property for a thread.

SRV_T_USTATE A string describing the current state of the 
thread.

Can be set. 

Property name Definition Notes



CHAPTER 2    Topics

Server-Library/C Reference Manual 157

Table 2-29: Values for SRV_T_BULKTYPE

Open Server cannot determine automatically the type of bulk data stream a 
client sends. The Open Server application must obtain this information and 
give it to Open Server in advance of the actual SRV_BULK event, using the 
srv_thread_props routine. The application then retrieves the data inside the 
SRV_BULK event handler once the actual bulk request has been made.

For more information on bulk copy, see the Open Client and Open Server 
Common Libraries Reference Manual. For more information on text and image 
processing, see “Text and image” on page 196.

SRV_T_CHARTYPE

A client application expects character data to be represented in a particular 
way. An Open Server application can retrieve the client’s expected character 
data representation by calling srv_thread_props with property set to 
SRV_T_CHARTYPE and cmd set to CS_GET. The client will return the 
following values in *bufp:

Table 2-30: Character data representations

SRV_T_ENDPOINT

This example shows how to use SRV_T_ENDPOINT: 

CS_INT ep;
/*
 ** Get the end point
 */

if(srv_thread_props(spp, CS_GET, SRV_T_ENDPOINT, (CS_VOID *)&ep,
     CS_SIZEOF(ep), (CS_INT *)NULL) == CS_FAIL)
{
    return(CS_FAIL);

Value Meaning

SRV_BULKLOAD The client is preparing to transfer bulk copy data.

SRV_TEXTLOAD The client is preparing to transfer text data.

SRV_IMAGELOAD The client is preparing to transfer image data.

SRV_UNITEXTLOAD The client is preparing to transfer unitext data.

Value Meaning

SRV_CHAR_ASCII ASCII character format

SRV_CHAR_EBCDIC EBCDIC character format

SRV_CHAR_UNKNOWN Unknown character format



Properties 

158  Open Server

}

SRV_T_EVENT

A thread executes a particular event handler at any one time. A thread can be 
said to be inside an event when executing the event handler associated with that 
event. An Open Server application can retrieve the event that a thread is in by 
calling srv_thread_props with property set to SRV_T_EVENT and cmd set to 
CS_GET. This procedure is useful if an application uses the same event 
handler code for multiple events.

Possible events include: 

• SRV_ATTENTION

• SRV_BULK

• SRV_CONNECT

• SRV_CURSOR

• SRV_DISCONNECT

• SRV_DYNAMIC

• SRV_FULLPASSTHRU

• SRV_LANGUAGE

• SRV_MSG

• SRV_OPTION

• SRV_RPC

• SRV_START

• SRV_STOP

• User-defined events

For more information on events, see “Events” on page 92.

SRV_T_FLTTYPE

A client application expects floating point data to be represented in a particular 
way. An Open Server application can retrieve the client’s floating point 
representation by calling srv_thread_props with property set to 
SRV_T_FLTTYPE and cmd set to CS_GET. The client returns one of the 
following values in the address space to which bufp points. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 159

• SRV_FLT_IEEE – IEEE floating point format.

• SRV_FLT_ND5000 – ND5000 floating point format.

• SRV_FLT_ VAX – VAX ‘D’ floating point format.

• SRV_FLT_UNKNOWN – unknown floating point format.

SRV_T_LOGINTYPE

An Open Server application can receive any of several types of thread login 
records during the login process. The SRV_T_LOGINTYPE property indicates 
the login type. The application can call srv_thread_props with property set to 
SRV_T_LOGINTYPE and cmd set to CS_GET to retrieve the login type, 
which is returned in the buffer to which bufp points. Table 2-31 describes each 
login type:

Table 2-31: Thread login types

SRV_T_MIGRATED

A Boolean property that indicates whether a connection is a new connection or 
a migrated connection. This read-only property is set to true when the client is 
migrating or has migrated to the server. This sample code retrieves the value of 
SRV_T_MIGRATED:

CS_RETCODE ret;
CS_BOOL migrated;
status = srv_thread_props(sp, CS_GET, SRV_T_MIGRATED,

&migrated, sizeof (migrated), NULL);

See “Connection migration” on page 40 and “SRV_T_MIGRATED” on page 
159 for more details.

SRV_T_MIGRATE_STATE

SRV_T_MIGRATE_STATE indicates the migration state of the client. It is a 
read-only property that any thread can access. The possible migration states 
are:

Value Login type

SRV_SITEHANDLER A site handler login request from a remote server.

SRV_SUBCHANNEL A site handler subchannel login from a remote server.

SRV_CLIENT A login request from a client application.



Properties 

160  Open Server

SRV_MIG_STATE is an enumerated datatype that has been added to model the 
SRV_T_MIGRATE_STATE property. SRV_MIG_STATE is declared as:

typedef enum
{

SRV_MIG_NONE,
SRV_MIG_REQUESTED,
SRV_MIG_READY,
SRV_MIG_MIGRATING,
SRV_MIG_CANCELLED,
SRV_MIG_FAILED

} SRV_MIG_STATE;

This sample code shows how you can retrieve SRV_T_MIGRATE_STATE 
values; in case of a successful migration, the client exits and the 
SRV_DISCONNECT event handler is called with a SRV_MIG_MIGRATING 
status:

CS_RETCODE ret;
SRV_MIG_STATE migration_state;
ret = srv_thread_props(sp, CS_GET, SRV_T_MIGRATE_STATE,

&migration_state, sizeof (migration_state), NULL);
if (ret != CS_SUCCEED)
{
...
}

See “Connection migration” on page 40 and “SRV_T_MIGRATE_STATE” on 
page 159 for more details.

SRV_T_RMTPWDS

An application uses the SRV_T_RMTPWDS property to obtain 
name/password pairs for a remote server. The pairs are stored in a 
SRV_T_RMTPWD structure which is defined as follows: 

typedef struct srv_rmtpwd

State Value Description

SRV_MIG_NONE 0 There is no migration in progress.

SRV_MIG_REQUESTED 1 A migration has been requested by the server.

SRV_MIG_READY 2 The client has received the request and is ready to migrate.

SRV_MIG_MIGRATING 3 The client is now migrating to the specified server.

SRV_MIG_CANCELLED 4 The migration request has been cancelled.

SRV_MIG_FAILED 5 The client failed to migrate.



CHAPTER 2    Topics

Server-Library/C Reference Manual 161

 {  
     CS_INT servnamelen;
     CS_BYTEservname[CS_MAX_NAME];
     CS_INTpwdlen;
     CS_BYTEpwd[CS_MAX_NAME];
 } SRV_RMTPWD;

SRV_T_SESSIONID

The SRV_T_SESSIONID is a thread property that retrieves the session ID that 
the client sends to Open Server. An Open Server application can also set the 
SRV_T_SESSIONID property using the srv_thread_props() function, given 
that:

• The srv_thread_props(CS_SET, SRV_T_SESSIONID) call is made inside 
the SRV_CONNECT event handler and,

• The client supports connection migration or high availability.

This sample code sets the SRV_T_SESSIONID property:

CS_RETCODE ret;
CS_SESSIONID hasessionid;
ret = srv_thread_props(sp, CS_SET, SRV_T_SESSIONID,

hasessionid, sizeof(hasessionid), NULL);

Note  In version 15.0 ESD#14 and earlier, for HA-failover, you must program 
an srv_negotiate() sequence to send the session ID to the client.

SRV_T_TDSVERSION

During the client login process, Open Server negotiates with the client 
application to agree on a TDS version for all threads. The 
SRV_S_TDSVERSION property value determines Open Server’s starting 
point. The client agrees to communicate at or below this starting point. See 
“Thread properties” on page 148 for details on the SRV_S_TDSVERSION 
property. Later on in the login process, the Open Server application can 
renegotiate the TDS version for a particular thread, using the 
SRV_T_TDSVERSION property.

Table 2-32 describes the legal values for this property:



Registered procedures 

162  Open Server

Table 2-32: Values for SRV_T_TDSVERSION

SRV_T_TYPE

There are several types of Open Server threads. The SRV_T_TYPE thread 
property indicates the type of thread. An application can retrieve the thread’s 
type by calling srv_thread_props with property set to SRV_T_TYPE and cmd 
set to CS_GET.

Table 2-33 identifies the legal thread types:

Table 2-33: Thread types

See “Multithread programming” on page 109 for more information about 
thread types.

Registered procedures
A registered procedure is a piece of code identified by a name. When an 
application registers a procedure, it maps the procedure name to a routine, so 
that when Open Server detects this procedure name in an incoming RPC data 
stream, it can call a specific routine immediately without raising a SRV_RPC 
event.

SRV_T_TDSVERSION value Meaning

SRV_TDSNONE Unknown version of TDS

SRV_TDS_4.0 Negotiation starts at TDS 4.0

SRV_TDS_4_0_2 Negotiation starts at TDS 4.0.2

SRV_TDS_4_2 Negotiation starts at TDS 4.2

SRV_TDS_4_6 Negotiation starts at TDS 4.6

SRV_TDS_4_9_5 Negotiation starts at TDS 4.9.5

SRV_TDS_5_0 Negotiation starts at TDS 5.0

Value Thread type

SRV_TCLIENT A client thread

SRV_TSITE A site handler thread

SRV_TSUBPROC A remote server connection over a site handler thread

SRV_TSERVICE A service thread



CHAPTER 2    Topics

Server-Library/C Reference Manual 163

When an Open Server receives an RPC, Open Server looks up the procedure 
name in the list of registered procedures. If the name is registered, the runtime 
system executes any existing routine associated with the registered procedure. 
If the procedure name is not found in the list of registered procedures, Open 
Server calls the SRV_RPC event handler. 

Standard remote procedure calls
An Open Server application processes a conventional RPC from within the 
application’s SRV_RPC event handler. The handler code must parse the RPC 
data stream and retrieve the RPC name, the number of parameters, the 
parameter formats, and the parameter values in the process. The handler can 
then take actions based on these values. A SRV_RPC event handler must be 
coded for all possible RPCs the application programmer anticipates will come 
over the network.

Advantages of registered procedures
Registered procedures simplify RPC handling in an Open Server application 
for these reasons: 

• Registered procedures consolidate code in one place. They are executable 
objects that an Open Server application can call from other event handlers 
in addition to the SRV_RPC event handler.

• Registered procedures can be created at any time when the server is 
running, through Server-Library calls or external Client-Library or DB-
Library calls. The SRV_RPC event handler, by contrast, must be coded in 
advance of starting up the server.

• Registered procedures provide automatic datatype checking and require 
no parsing on the part of the Open Server application code.

• Clients can request notification when a registered procedure executes. The 
“notification” consists of: 

• The name of the registered procedure

• The parameter values associated with this execution of the registered 
procedure

• The notification request can be issued internally with Server-Library calls 
or externally with Client-Library or DB-Library calls.



Registered procedures 

164  Open Server

• Clients can request a list of registered procedures or a list of the procedures 
for which they have requested notifications.

Notification procedures   
Without any programmer-supplied code, an Open Server application allows 
Client-Library or DB-Library clients to create registered procedures, execute 
them, and receive notification when they execute.

Registered procedures are not required to have an executable routine in the 
Open Server application. In fact, registered procedures created by DB-Library 
or Client-Library calls cannot call a routine in Open Server. A registered 
procedure that has no executable routine associated with it is called a 
“notification procedure” because its sole purpose is to notify clients watching 
for it to execute.

Client applications communicate with each other through any Open Server 
application by using notification procedures.

Although you do not need to write any code to enable this feature, you may 
want to install a callback handler to disable or regulate the use of registered 
procedures. See “Using callback handlers with registered procedures” on page 
167, for details.

Creating registered procedures
Open Server applications can create both standard registered procedures and 
notification procedures. Client-Library and DB-Library applications can create 
notification procedures. For information on how to create registered 
procedures using Client- Library routines, see the Open Client Client-
Library/C Reference Manual.

The mechanics of registered procedures
This section provides information on how to create and execute registered 
procedures from within an Open Server application.

Registering procedures

Registering a procedure through Open Server calls requires these steps: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 165

1 Call srv_regdefine to define the procedure name and map the name to the 
function to be called when the procedure is executed.

2 Call srv_regparam to describe the parameter or parameters for the 
procedure being defined.

3 Call srv_regcreate to complete the registration of a procedure.

4 Call srv_regdrop to unregister a procedure.

Executing registered procedures

Open Server executes registered procedures in response to a client or remote 
Adaptive Server RPC, if the RPC has been registered. However, an Open 
Server application can also explicitly execute a registered procedure, instead of 
executing it in response to an RPC. For example, an application can 
synchronize the activity of multiple clients by executing a particular 
notification procedure at a particular point in the application.

Explicitly executing a registered procedure also requires several steps. They 
are as follows: 

1 Call srv_reginit to begin executing a registered procedure. This routine 
specifies the name of the registered procedure to be executed. The Open 
Server application also uses this routine to determine whether one or all of 
the client threads on the notification list will be notified.

2 Call srv_regparam to supply the parameter data for the execution.

3 Call srv_regexec to actually execute the registered procedure.

Maintaining lists

An Open Server application maintains lists of all registered procedures and 
which clients to notify when a particular registered procedure executes. This 
notification happens automatically. The following routines pertain to list 
maintenance: 

• srv_reglist – returns a list of all the procedures registered in the Open 
Server application.

• srv_regwatchlist – returns a list of all registered procedures for which the 
named client thread indicates notification requests are pending.

• srv_regwatch – adds a thread to the notification list for a registered 
procedure.



Registered procedures 

166  Open Server

• srv_regnowatch – removes a client from the notification list for a specified 
registered procedure.

• srv_reglistfree – frees a SRV_PROCLIST structure previously allocated by 
srv_reglist or srv_regwatchlist.

System registered procedures
Every Open Server application contains built-in registered procedures, called 
system registered procedures. The runtime system creates them when the 
server starts up. The system registered procedures are described in Chapter 4, 
“System Registered Procedures” Some of these procedures are useful for 
administering an Open Server application interactively. For example, you can 
use sp_who and sp_ps to list active server processes and sp_terminate to 
destroy a process.

Client applications can execute system registered procedures to perform the 
following operations: 

• Get a list of registered procedures

• Execute a registered procedure

• Request notification of a registered procedure’s execution

• Get a list of notification requests

Most system registered procedures map to an equivalent Open Server routine. 
An Open Server application and a client can request the same kind of 
information through distinct routines.

Table 2-34 matches each system registered procedure to the corresponding 
Server-Library routine, if applicable:



CHAPTER 2    Topics

Server-Library/C Reference Manual 167

Table 2-34: System registered procedures and corresponding Server-
Library routines

Using callback handlers with registered procedures
As noted in Table 2-34, several of the built-in registered procedures parallel 
Server-Library and DB-Library routines that create, delete, and execute 
registered procedures. These procedures make it possible to implement a 
security system for registered procedures by installing a callback handler that 
executes whenever a registered procedure is about to execute. When a client 
application executes a system registered procedure or one of the parallel 
Client-Library or DB-Library routines, the callback handler executes. If it 
returns SRV_S_INHIBIT, the registered procedure does not execute.

For example, to prevent clients other than “sa” from executing a procedure 
named “reinitialize”, the registered procedure callback handler could contain 
the following code: 

/*
 **   Stop users other than “sa” from executing the “reinitialize”
 **   registered procedure.
 **
 ** Parameters:
 **    spp - Handle to the current client connection.
 **
 ** Returns:
 **    CS_TRUE  Allow the user to execute
 **    CS_FALSE Disallow execution.
 */
 CS_BOOL    rpc_permission(spp)
 SRVPROC    *spp;

System registered procedure Server-Library routine

sp_ps N/A

sp_regcreate srv_regcreate/srv_regdefine

sp_regdrop srv_regdrop

sp_reglist srv_reglist

sp_regnowatch srv_regnowatch

sp_regwatch srv_regwatch

sp_regwatchlist srv_regwatchlist

sp_serverinfo N/A

sp_terminate srv_termproc

sp_who N/A



Registered procedures 

168  Open Server

 {
       CS_INT ulen;       /* User name length  */
       CS_INT rlen;       /* RPC name length   */
       CS_CHAR *rname;    /* Pointer to the RPC name */
       CS_CHAR user[256]; /* Buffer for the user name */
 
       /*
       ** Get the name of the rpc command
       */
       if ((rname = srv_rpcname(spp, &rlen)) == (CS_CHAR *)NULL)
       {
       return (CS_FALSE);
       }
 
       /*
       ** Get the user name.
       */
       if (srv_thread_props(spp, CS_GET, SRV_T_USER, 
       (CS_VOID *)user,CS_SIZEOF(user), &ulen) == CS_FAIL)
       {
       return (CS_FALSE);
       }
 
       /*
       ** If either the user name or the rpc name is NULL,
       ** indicate an error.
       */

       if (rlen <= 0 || ulen <= 0)
       {
             error (“API error”);
             return (CS_FALSE);
       }
 
       /* Null terminate the user name buffer */
       user[ulen] == ‘\0’;
 
       /*
       ** Compare the RPC name and User name for permission.
       */
       if ((strcmp(rname, “reinitialize”) == 0) && 
        (strcmp(user, “sa”) == 0))
       {
       return (CS_TRUE);
       }
 
       return (CS_FALSE);



CHAPTER 2    Topics

Server-Library/C Reference Manual 169

 }

Example
The sample regproc.c illustrates an Open Server application’s use of registered 
procedures.

Remote procedure calls
A remote procedure call, or RPC, is a mechanism by which a client application 
communicates with an Open Server application. Typically, the client issues the 
RPC to obtain information from the Open Server application. An RPC consists 
of a name and often, but not always, parameters. For example, a department 
store application could return a customer’s name and address in response to an 
RPC called get_cust. This RPC could take one parameter, a customer ID 
number.

When a client sends an RPC, Open Server checks to see whether the RPC is 
registered. A registered procedure is a special kind of RPC that Open Server 
recognizes and executes directly without calling an application’s SRV_RPC 
event handler. For more information on registered procedures, see “Registered 
procedures” on page 162.

If the RPC is not registered, Open Server triggers a SRV_RPC event. From 
within the SRV_RPC event handler, the application can retrieve the RPC’s 
name, and parameters if any, and respond appropriately. The event handler is 
coded to verify the names of all possible RPCs the client could send and the 
number of parameters each uses. The handler includes code for responding to 
each RPC and returns the error information to the client if it does not recognize 
the RPC. 

From within its SRV_RPC event handler, the application should perform the 
following steps: 

1 Call srv_rpcname to retrieve the RPC name. (An application can also 
choose to retrieve the RPC number, owner, and associated database, using 
srv_rpcnumber, srv_rpcowner, and srv_rpcdb, respectively.) If no RPC by 
that name exists, or the number, owner, or database information are 
invalid, the application returns error information through srv_sendinfo.



Security services 

170  Open Server

2 Verify that the appropriate number of parameters were sent by calling 
srv_numparams. If any of the parameter information is invalid, return error 
information through srv_sendinfo.

3 Process the parameters by calling srv_descfmt, srv_bind, and srv_xferdata. 
For details, see “Processing parameter and row data” on page 134.

4 Return any data the client expects by calling srv_descfmt, srv_bind, and 
srv_xferdata. For details, see “Processing parameter and row data” on 
page 134.

RPC parameters are passed either by name or by position. If the RPC is 
invoked with some parameters passed by name and some parameters passed 
positionally, an error will result.

An application could register all its procedures and use the SRV_RPC event 
handler to trap errors. Open Server would only call the SRV_RPC event 
handler if the client sent an unregistered and therefore invalid RPC. The 
SRV_RPC event handler, then, would use srv_sendinfo to inform the client that 
it had issued an invalid RPC.

Example
The sample, regproc.c, illustrates remote procedure calls.

Security services 
Security services allow Open Server applications to use third-party distributed 
security to authenticate users and protect data as it is transmitted between 
clients and servers.

Check your Open Client and Open Server Configuration Guide for the 
distributed security service providers that are available on your platform.

The security services available from a particular provider are referred to as a 
security mechanism. An Open Server application can support multiple security 
mechanisms, depending on availability. Open Server applications select 
security mechanisms on a per client-server dialog basis (based on client 
connection requests).

You can use Open Server’s security services to: 



CHAPTER 2    Topics

Server-Library/C Reference Manual 171

• Access credentials that are established on a system.

Credentials are the data that is transferred between peers (clients and 
servers) to establish the identity of a peer.

• Communicate the requested security mechanism during dialog 
establishment.

• Establish a security session with a remote client or server.

The security services are negotiated during security session establishment. 
Security sessions map directly to client dialogs.

• Communicate opaque tokens over a dialog to allow a security mechanism 
to communicate with its peer component. These tokens are sent during 
session establishment, and, if required, can be used for per-packet security 
services.

A token is a bit string generated by the security mechanism for security 
information exchange between peers. A token may be cryptographically 
protected.

• Bind channel identification information to a security session.

• Digitally sign tokens to assure the origin of tokens.

Security service properties
Network security services can be split into three broad categories: 

• Login authentication services

• Per-packet security services

• Secure Sockets Layer (SSL) encryption

Login authentication services

The fundamental security service is login authentication, or confirming that 
users are who they say they are. Login authentication involves user names and 
passwords. Users identify themselves by their user name, then supply their 
password as proof of their identity.



Security services 

172  Open Server

In Sybase applications, each connection between a client and a server has one 
user name associated with it. If the application uses a security mechanism, then 
Sybase uses the mechanism to authenticate this user name when the connection 
is established. The advantage of this service is that the user name/password 
pairs can be managed in a central repository, and not in the system catalogs of 
individual servers.

When an application requests to connect to a server using network-based 
authentication, Client-Library queries the connection’s security mechanism to 
confirm that the given user name represents an authenticated user. This means 
that users do not have to supply a password to connect to the server. Instead, 
users authenticate themselves to the network security system before the 
connection attempt is made. When connecting, Client-Library obtains a 
credential token from the security mechanism and sends it to the server in lieu 
of a password. The server then passes the token to the security mechanism 
again to confirm that the user name has been authenticated.

The following properties are related to login authentication:

Table 2-35: Properties that control login authentication

Network-authentication is supported by all security mechanisms. Credential 
and session timeouts are supported by some but not all security mechanisms. 
See the Open Client and Open Server Configuration Guide for information on 
which services are supported by which security mechanisms.

See the Open Client Client-Library/C Reference Manual for more information 
about these security services, and about use of security services in client 
applications.

Property Description

CS_USERNAME Specifies the user name to connect with.

CS_SEC_
NETWORKAUTH

Enables network-based user authentication.

CS_SEC_
CREDTIMEOUT

Tells whether the user’s credentials have expired.

CS_SEC_
SESSTIMEOUT

Tells whether the session between the client and the server 
has expired.

CS_SEC_
MUTUALAUTH

Set by client applications to request that the server 
authenticate itself to the client.

CS_SEC_
DELEGATION

Set by client applications to permit a gateway server to 
connect to a remote server by using the client’s delegated 
credential token.

CS_SEC_
CREDENTIALS

Used by gateway applications to forward a delegated 
credential token from the gateway’s client to a remote server.



CHAPTER 2    Topics

Server-Library/C Reference Manual 173

Per-packet security services

In some environments, distributed applications have to deal with the fact that 
the network is not physically secure. For example, unauthorized parties can 
listen to a dialog by attaching analyzers to a physical line or capturing wireless 
transmissions.

In these environments, use applications protection and authentication of 
transmitted data to assure a secure dialog.

The following properties control the use of the various per-packet services:

Table 2-36: Data authentication properties

Note  Applications that use the services described in this section incur a per-
packet overhead on all communication between the client and the server. Data 
authentication services should not be used unless application security is more 
important than application performance.

All per-packet services will perform one or both of the operations below for 
each TDS packet to be sent over a connection: 

• Encryption of the packet’s contents

Property Description

CS_SEC_
CONFIDENTIALITY

Enables data confidentiality service.

Data confidentiality encrypts all transmitted data and 
assures that strangers cannot understand in-transit data.

CS_SEC_
INTEGRITY

Enables data integrity service.

Data integrity service assures that attempts to tamper 
with in-transit data are detected.

CS_SEC_
DATAORIGIN

Enables data origin stamping.

Data origin stamping assures that received data was 
really sent by the client or the server.

CS_SEC_
DETECTREPLAY

Enables replay detection service.

Replay detection assures that attempts by strangers to 
replay captured transmissions are detected.

CS_SEC_
DETECTSEQ

Enables sequence verification service.

Sequence verification detects transmissions that arrive in 
a different order than they were sent.

CS_SEC_
CHANBIND

Enables channel binding service.

Channel binding stamps each transmission with an 
encrypted description of the client’s and server’s 
addresses.



Security services 

174  Open Server

• Computation of a digital signature that encodes the packet contents as well 
as other needed information.

If an application selects multiple per-packet services, each operation is 
performed only once per packet. For example, if the application selects the data 
confidentiality, sequence verification, data integrity, and channel binding 
services, then each packet is encrypted and accompanied by a digital signature 
that encodes the packet contents, packet sequence information, and a network 
channel identifier.

See the Open Client Client-Library/C Reference Manual for more information 
about these security services, and about use of security services in client 
applications.

SSL overview

SSL is an industry standard for sending wire- or socket-level encrypted data 
over client-to-server and server-to-server connections. Before the SSL 
connection is established, the server and the client exchange a series of I/O 
round trips to negotiate and agree upon a secure encrypted session. This is 
called the SSL handshake.

SSL handshake

When a client application requests a connection, the SSL-enabled server 
presents its certificate to prove its identity before data is transmitted. 
Essentially, the SSL handshake consists of the following steps:

• The client sends a connection request to the server. The request includes 
the SSL (or Transport Layer Security, TLS) options that the client 
supports. 

• The server returns its certificate and a list of supported CipherSuites, 
which includes SSL/TLS support options, the algorithms used for key 
exchange, and digital signatures.

• A secure, encrypted session is established when both client and server 
have agreed upon a CipherSuite. 

For more specific information about the SSL handshake and the SSL/TLS 
protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org.

SSL in Open Client and Open Server

SSL provides several levels of security.



CHAPTER 2    Topics

Server-Library/C Reference Manual 175

• When establishing a connection to an SSL-enabled server, the server 
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• Once the SSL session is established, user name and password are 
transmitted over a secure, encrypted connection.

• A comparison of the server certificate’s digital signature can determine if 
any information received from the server was modified in transit. 

SSL filter

When establishing a connection to an SSL-enabled Adaptive Server, the SSL 
security mechanism is specified as a filter on the master and query lines in the 
interfaces file (sql.ini on Windows). SSL is used as an Open Client and Open 
Server protocol layer that sits on top of the TCP/IP connection.

The SSL filter is different from other security mechanisms, such as DCE and 
Kerberos, which are defined with SECHMECH (security mechanism) lines in 
the interfaces file (sql.ini on Windows). The master and query lines determine 
the security protocols that are enforced for the connection.

For example, a typical interfaces file on a UNIX machine using SSL looks like 
this:

[SERVER]

query tcp ether hostname, port ssl
master tcp ether hostname, port ssl

A typical sql.ini file on Windows using SSL looks like this:

[SERVER]

query=TCP,hostname, port, ssl
master=TCP,hostname, port, ssl

where hostname is the name of the server to which the client is connecting and 
port is the port number of the host machine. All connection attempts to a master 
or query entry in the interfaces file with an SSL filter must support the SSL 
protocol. A server can be configured to accept SSL connections and have other 
connections that accept plain text (unencrypted data), or use other security 
mechanisms. 

For example, an Adaptive Server interfaces file on UNIX that supports both 
SSL-based connections and plain-text connections looks like:

SYBSRV1
    master tcp ether hostname 2748 ssl



Security services 

176  Open Server

    query tcp ether hostname 2748 ssl
    master tcp ether hostname 2749

In this examples, the SSL security service is specified on port number 2748. On 
SYBSRV1, Adaptive Server listens for clear text on port number 2749, which 
is without any security mechanism or security filter. 

Validating the server by its certificate

Any Open Client and Open Server connection to an SSL-enabled server 
requires that the server have a certificate file, which consists of the server’s 
certificate and an encrypted private key. The certificate must also be digitally 
signed by a CA. 

Open Client applications establish a socket connection to Adaptive Server 
similarly to the way that existing client connections are established. Before any 
user data is transmitted, an SSL handshake occurs on the socket when the 
network transport-level connect call completes on the client side and the accept 
call completes on the server side.

To make a successful connection to an SSL-enabled server:

• The SSL-enabled server must present its certificate when the client 
application makes a connection request.

• The client application must recognize the CA that signed the certificate. A 
list of all “trusted” CAs is in the trusted roots file. See “The trusted roots 
file” on page 178.

• For connections to SSL-enabled servers, the default behavior is to 
compare the common name in the server’s certificate with the server name 
in the interfaces file. In Shared Disk Cluster (SDC) environment, a client 
may specify the SSL certificate common name independent of the server 
name or the SDC instance name. For information about common name 
validation in an SDC environment see “Common name validation in an 
SDC environment” on page 177.

When establishing a connection to an SSL-enabled Adaptive Server, Adaptive 
Server loads its own encoded certificates file at start-up from:

UNIX – $SYBASE/$SYBASE_ASE/certificates/servername.crt

Windows – %SYBASE%\%SYBASE_ASE%\certificates\servername.crt

where servername is the name of the Adaptive Server as specified on the 
command line when starting the server with the -S flag or from the server’s 
environment variable $DSLISTEN. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 177

Other types of servers may store their certificate in a different location. See the 
vendor-supplied documentation for the location of your server’s certificate.

Common name validation in an SDC environment

The default behavior for SSL validation in Open Client and Open Server is to 
compare the common name in the server’s certificate with the server name 
specified by ct_connect(). In a Shared Disk Cluster (SDC) environment, a client 
may specify the SSL certificate common name independent of the server name 
or the SDC instance name. A client may connect to an SDC by its cluster 
name—which represents multiple server instances—or to a specific server 
instance.

Because the client can use the transport address to specify the common name 
used in the certificate validation, the ASE SSL certificate common name can 
be different from the server or cluster name. The transport address can be 
specified in one of the directory services like the interfaces file, LDAP or NT 
registry, or through the connection property CS_SERVERADDR.

 Syntax for UNIX This is the syntax of the server entries for the SSL-enabled ASE and cluster for 
UNIX:

CLUSTERSSL
query tcp ether hostname1 5000 ssl="CN=name1"
query tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname3 5000 ssl="CN=name3"
query tcp ether hostname4 5000 ssl="CN=name4"

ASESSL1
master tcp ether hostname1 5000 ssl="CN=name1"
query tcp ether hostname1 5000 ssl="CN=name1"

ASESSL2
master tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname2 5000 ssl="CN=name2"

ASESSL3
master tcp ether hostname3 5000 ssl="CN=name3"
query tcp ether hostname3 5000 ssl="CN=name3"

ASESSL4
master tcp ether hostname1 5000 ssl="CN=name4"
query tcp ether hostname1 5000 ssl="CN=name4"

Syntax for Windows This is the syntax of the server entries for the SSL-enabled ASE and cluster for 
Windows:



Security services 

178  Open Server

[CLUSTERSSL]
query=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname3,5000, ssl="CN=name3"
query=tcp,hostname4,5000, ssl="CN=name4"

[ASESSL1]
master=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname1,5000, ssl="CN=name1"

[ASESSL2]
master=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname2,5000, ssl="CN=name2"

[ASESSL3]
master=tcp,hostname3,5000, ssl="CN=name3"
query=tcp,hostname3,5000, ssl"CN=name3"

[ASESSL4]
master=tcp,hostname4,5000, ssl="CN=name4"
query=tcp,hostname4,5000, ssl="CN=name4"

The trusted roots file

The list of known and trusted CAs is maintained in the trusted roots file. The 
trusted roots file is similar in format to a certificate file, except that it contains 
certificates for CAs known to the entity (client applications, servers, network 
resources, and so on). The System Security Officer adds and deletes CAs using 
a standard ASCII-text editor. 

The trusted roots file for Open Client and Open Server is located in:

UNIX – $SYBASE/$SYBASE_OCS/config/trusted.txt

Windows – %SYBASE%\%SYBASE_OCS%\ini\trusted.txt

Currently, the recognized CAs are Thawte, Entrust, Baltimore, VeriSign and 
RSA.

By default, Adaptive Server stores its own trusted roots file in:

UNIX – $SYBASE/$SYBASE_ASE/certificates/servername.txt

Windows – %SYBASE%\%SYBASE_ASE%\certificates\servername.txt

Both Open Client and Open Server allow you to specify an alternate location 
for the trusted roots file:

• Open Client:



CHAPTER 2    Topics

Server-Library/C Reference Manual 179

ct_con_props (connection, CS_SET, CS_PROP_SSL_CA, 
“$SYBASE/config/trusted.txt”, CS_NULLTERM, NULL);

where $SYBASE is the installation directory. CS_PROP_SSL_CA can be 
set at the context level using ct_config(), or at the connection level using 
ct_con_props().

• Open Server:

srv_props (context, CS_SET, SRV_S_CERT_AUTH, 
“$SYBASE/config/trusted.txt”, CS_NULLTERM, NULL);

where $SYBASE is the installation directory.

bcp and isql utilities also allow you to specify an alternative location for the 
trusted roots file.The parameter -x is included in the syntax, allowing you to 
specify an alternative location for the trusted.txt file.

For a description of SSL and public-key cryptography, see the Open Client 
Client-Library Reference Manual.

How do security services work with Open Server?
To initiate security services the client sends an object identifier, which maps to 
a security mechanism, to the server when establishing a dialog. The server 
maps the object identifier to its own local name for the security mechanism. If 
the server does not support the requested security mechanism or does not 
support security sessions at all, the dialog request fails and Open Server returns 
an error.

Use of object identifiers allows local names for a security mechanism to be 
different on clients and servers. System administrators and application 
programmers can then develop their own separate local naming conventions 
for security mechanisms. See “Object identifiers” on page 182 for more 
information about object identifiers.

Server-Library allows you to specify the principal name to be used when 
acquiring credentials. This principal name is the name by which the Open 
Server application is known to the security service provider. You can use the 
SRV_S_SEC_PRINCIPAL server property with the srv_props function to set 
the application’s principal name.

If not set, the principal name defaults to the Open Server application’s network 
name, which is generally specified through srv_init.

Open Server uses credentials when establishing security sessions with clients.



Security services 

180  Open Server

The login name of the client is obtained from the security session; whatever is 
specified in the login record is ignored.

See the Open Client Client-Library/C Reference Manual for information on the 
client’s role in using security services.

Steps involved in a Client/Server dialog using security services

Open Server performs the following steps when a client initiates a dialog using 
security services: 

1 Establishes a transport connection with the client.

2 Receives the client’s login record and any opaque security tokens and 
responds with any necessary opaque tokens to the client.

3 Establishes a security session when the security message handshake 
succeeds.

When an Open Server application receives information from a client, it 
performs these steps: 

1 Processes any security messages—for instance a cryptographic 
signature—associated with the response received from the client. (A 
cryptographic signature ensures the integrity of the message).

2 Based on the security services supported on the security session, calls the 
appropriate routines—for example, to verify the signature.

3 Processes the TDS data stream as normal.

Open Server sends a response to the client in the following steps: 

1 Checks for credential or security session expiration. If an expiration is 
detected, Open Server performs error processing.

2 Based on the security services supported on this dialog, calls the 
appropriate routines—for example, to generate a cryptographic signature 
for the response.

3 Generates the required TDS to identify any per-packet security services.

A security session is terminated when the associated client dialog terminates. 
Termination may occur because of a normal client logout or error conditions.



CHAPTER 2    Topics

Server-Library/C Reference Manual 181

Using security mechanisms with Open Server applications
This section describes the changes you need to make to use third-party security 
with an Open Server application. These changes include adding: 

• An entry for each security-mechanism-to-driver mapping in the libtcl.cfg 
file.

• An entry mapping the local name of each security mechanism to a globally 
unique object identifier, in the global object identification file, 
objectid.dat.

• An entry in the interfaces file for each server using a third-party security 
mechanism, specifying all of the security mechanisms supported by a 
server.

Security drivers

Sybase provides security drivers that allow Client-Library and Server-Library 
applications to take advantage of an installed network security system. Client-
Library and Server-Library provide a generic interface for implementing 
secure applications; each Sybase security driver maps this generic interface to 
the security provider’s interface.

Security drivers are dynamically loadable, and support one or more security 
mechanisms.

The drivers for each of the currently supported security providers are: 

• libsybsdce

For DCE Security Services.

• libsybsmssp

For Microsoft NT SSPI.

libtcl.cfg configuration file

The libtcl.cfg configuration file maps the local name of the security mechanism 
to the security driver required to support that mechanism. The libtcl.cfg file is 
located in the $SYBASE/$SYBASE_OCS/config directory or in the path 
specified by the CS_LIBTCL_CFG context property. See the Open Client and 
Open Server Programmer’s Supplement for your platform for its exact 
location.



Security services 

182  Open Server

There must be an entry for each security driver in the libtcl.cfg file. Each driver 
may support one or more security mechanism. If a driver supports more than 
one security mechanism, it requires an entry for each security mechanism in the 
libtcl.cfg file.

The format of the file is as follows: 

[SECURITY]
 local-name-of-security-mechanism = path-to-the-driver init-string

where:

• path-to-the-driver – is the fully qualified pathname to the object file.

• init-string – is an argument list which varies according to each driver, of 
the general form: token = value, token = value, ....

For example, on a UNIX platform: 

[SECURITY]
 csfkrb5=libsybskrb.so secbase=@MYREALM libgss=/krb5/lib/libgss.so

The first entry in the libtcl.cfg file is the default security mechanism. Open 
Server uses the default security mechanism when an application requests 
security services, but it does not set a security mechanism.

See the Open Client and Open Server Configuration Guide for your platform, 
for more information on adding entries to libtcl.cfg.

Object identifiers

Each security mechanism has an object identifier associated with it. The 
globally unique object identifier maps to the local name for a security 
mechanism in the global object identification file, Objectid.dat. This provides 
a consistent and flexible way to communicate security mechanism names 
between clients and servers. The Objectid.dat file is located in the 
$SYBASE/config directory.

The format for the global identification file is: 

[Object Class]
      Object_Identifier Object_Name_List

For a security mechanism the entry is as follows:

Object Class – is “secmech.”



CHAPTER 2    Topics

Server-Library/C Reference Manual 183

Object_Identifier – is a sequence of non-negative integer values separated by 
dots. The object identifier is based on a naming tree defined by the 
international standards bodies CCITT and ISO. An example of an object 
identifier from the sybase root for the DCE security driver would be 897.4.6.1.

Object_Name_List – is a comma-delimited list of local security mechanism 
names.

For example: 

[secmech]
        1.3.6.1.4.1.897.4.6.3 = NTLM

Changes to the interfaces file

The format of the interfaces file has been expanded to allow specification of 
the security mechanisms supported by a server. The format is: 

SERVERNAME
      query tcp sun-ether joyce 2901
      master tcp sun-ether joyce 2901
      secmech mechanism1, mechanism2,..., mechanismN

The secmech identifier lists all of the security mechanisms supported by a 
server, and applies under the following conditions: 

• This line is optional and is only used if the server is not using a Sybase-
specific security mechanism.

• If there is no secmech entry for a server in the interfaces file, the server 
supports all the security mechanisms specified in the libtcl.cfg secmech 
entries.

• If there is a secmech entry for a server in the interfaces file, but no security 
mechanisms are specified, then the server does not support any security 
mechanisms.

mechanism1, mechanism2,...mechanismN are the object identifiers of the 
security mechanisms supported by the server. You can specify multiple 
security mechanisms using a comma (,) separator. See “Object identifiers” on 
page 182 for more information on object identifiers.



Security services 

184  Open Server

Changes to the interfaces file: the SSL filter

The SSL filter is different from other security mechanisms, such as DCE and 
Kerberos, which are defined with SECMECH (security mechanism) lines in 
the interfaces file (sql.ini on Windows). The master and query lines determine 
the security protocols that are enforced for the connection.

For example, a typical interfaces file on a UNIX machine using SSL looks like 
this:

[SERVER]
query tcp ether hostname port ssl
master tcp ether hostname port ssl

A typical sql.ini file on Windows using SSL looks like this:

[SERVER]

query=TCP,hostname,port, ssl
master=TCP,hostname,port, ssl

where hostname is the name of the server to which the client is connecting and 
port is the port number of the host machine. All connection attempts to a master 
or query entry in the interfaces file with an SSL filter must support the SSL 
protocol. A server can be configured to accept SSL connections and have other 
connections that accept plain text (unencrypted data), or use other security 
mechanisms.

Determining which security services are active
To determine which security services are active on a client-server dialog, use 
srv_thread_props to retrieve the value of the following thread properties: 

• SRV_T_SEC_CHANBIND

• SRV_T_SEC_CONFIDENTIALITY

• SRV_T_SEC_DATAORIGIN

• SRV_T_SEC_DELEGATION

• SRV_T_SEC_DETECTREPLAY

• SRV_T_SEC_DETECTSEQ

• SRV_T_SEC_INTEGRITY

• SRV_T_SEC_MUTUALAUTH

• SRV_T_SEC_NETWORKAUTH



CHAPTER 2    Topics

Server-Library/C Reference Manual 185

See Table 2-28 on page 149 for descriptions of these thread properties.

Scenarios for using security services with Open Server 
applications

This section describes how you might use security services with various Open 
Server application configurations. It discusses the following situations: 

• Simple Open Server application using a security session.

• Gateway Open Server application with separate security sessions.

• Gateway Open Server application with separate security sessions using 
delegation.

• Full passthrough gateway Open Server application with direct security 
session.

Simple application using a security session

In the simplest configuration, the client establishes a dialog using 
authentication services provided by the security mechanism. Open Server 
performs the login negotiation before the connection event handler is called. 
After the connection handler issues a srv_senddone(SRV_DONE_FINAL), Open 
Server sends a login acknowledgment with status “success” to the client.

You are not required to install a connection handler for this configuration; the 
default connection handler is sufficient. If you do install a connection handler, 
the must at least send a srv_senddone(SRV_DONE_FINAL), as shown in this 
example: 

CS_RETCODE CS_PUBLIC connect_handler(spp)
 SRV_PROC *spp;
 {

   .......

   /* 
    ** You do not need to test this srv_senddone’s return value 
    ** since Open Server will kill this thread if this call fails.
    */
    (CS_VOID)srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED,
                   (CS_INT)0);
    return(CS_SUCCEED);
 }



Security services 

186  Open Server

Gateway application with separate security sessions

In the scenario shown in the code below, the Open Server application acts as a 
gateway between the client and another server. The network identity used to 
establish the security session between the client and the gateway application 
may be different from that used to establish the security session between the 
gateway and the remote server.

The gateway application completes the login security negotiation with its 
client, pending the final login acknowledgment, before calling the connection 
handler. The connection handler needs to initiate a security-session-based login 
to the remote server using Client-Library calls before sending a 
srv_senddone(SRV_DONE_FINAL) to the client to complete the login. An 
example connection handler follows: 

CS_RETCODE CS_PUBLIC connect_handler(spp) 
 SRV_PROC *spp;
 {
    CS_CONNECTION   *conn;    /* the connection handle */
    CS_BOOL         trueval = CS_TRUE;
    CS_INT          outlen;

  ......

  allocate and set user data in spp...

  ......

  /* Allocate a connection handle */
    if (ct_con_alloc(Context, &(userdata->conn)) == CS_FAIL) 
    {
       clean up and report error...
      return(CS_FAIL);

   }

   ......

   conn = userdata->conn;
    /* 
    ** Initiate security session based login with the remote
    ** server. The user name used here may be the same as the 
    ** client user name or different 
    */
    if (ct_con_props(conn, CS_SET, CS_USERNAME, 
        (CS_VOID*)Username, STRLEN(Username), (CS_INT*)NULL)
        == CS_FAIL)
    {
       handle failure...
   }



CHAPTER 2    Topics

Server-Library/C Reference Manual 187

   /* 
    ** Set the desired security mechanism(s) or use the default
    ** security mechanism.
    */
    if (ct_con_props(conn, CS_SET, CS_SEC_MECHANISM,
          (CS_VOID*)Mechanismname, STRLEN(Mechanismname), 
          (CS_INT*)NULL) == CS_FAIL)
    {
       handle failure...
   }

   /* Set the security service-network authentication */
    if (ct_con_props(conn, CS_SET, CS_SEC_NETWORKAUTH,
          (CS_VOID*)&trueval, CS_SIZEOF(CS_BOOL), (CS_INT*)NULL)
          == CS_FAIL)
    {
       handle failure...
   }

   set other security services if required
   get and set the user’s application name, response capabilities
   set the locale and other login properties
   /* Attempt a connection to the remote server */
    if (ct_connect(conn, Servername, CS_NULLTERM) == CS_FAIL)
    {
       cleanup...
       return(CS_FAIL);
    }

   get and set the REQUEST capabilities
   get and set the RESPONSE capabilities
   ......
   /* 
    ** You do not need to test this srv_senddone’s return value
    ** since Open Server will kill this thread if this call fails. 
    */
    (CS_VOID)srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED,
                  (CS_INT)0);
    return(CS_SUCCEED);
 } 

Gateway with separate security sessions using delegation

The Open Server application can also act as a gateway between the client and 
another server, but the gateway application uses the delegated client credentials 
when establishing the security session with the remote server. A client can 
delegate only its own credentials.



Security services 

188  Open Server

The client needs to request the CS_SEC_DELEGATION service so that the 
Open Server application can obtain the delegated credentials once the security 
session is established.

As in “Simple application using a security session” on page 185, the security 
session between the client and the gateway Open Server application is 
established, except for the final login acknowledgment.

In the connection handler, the gateway application: 

1 Retrieves the delegated credentials using srv_thread_props(CS_GET, 
SRV_T_SEC_DELEGCRED).

2 Using ct_con_props(CS_SET, CS_SEC_CREDENTIALS), sets the 
delegated credentials in the Client-Library connection structure for use in 
connecting to the remote server.

3 Attempts to connect to the remote server using ct_connect.

4 Sends a srv_senddone(SRV_DONE_FINAL), to acknowledge the client’s 
login.

An example connection handler follows: 

CS_RETCODE CS_PUBLIC connect_handler(spp) 
 SRV_PROC *spp;
 {
    CS_CONNECTION *conn;    /* Connection handle */
    CS_VOID       *creds;     /* security credentials */
    CS_BOOL       trueval = CS_TRUE;
    CS_BOOL       boolval;
    CS_CHAR       mechanismname[MAX_NAMESIZE];
    CS_CHAR       username[MAX_NAMESIZE];
    CS_INT        outlen;
   ......
   allocate and set user data in spp
   ......
   /* Allocate a connection handle for the connection attempt. */
    if (ct_con_alloc(Context, &(userdata->conn)) == CS_FAIL)
    {
       return(CS_FAIL);
    }
   ......
   conn = userdata->conn;
   /* 
    ** Initiate security session based login to the target server
    */
   /* Retrieve the client user name */
    if (srv_thread_props(spp, CS_GET, SRV_T_USER,



CHAPTER 2    Topics

Server-Library/C Reference Manual 189

        (CS_VOID *)username, MAX_NAMESIZE, &outlen) == CS_FAIL) 
    {
       handle failure...
   }
   /* 
    ** Set the client’s security principal name to connect to the
    ** target server
    */
    if (ct_con_props(conn, CS_SET, CS_USERNAME,
       (CS_VOID *)username, outlen, (CS_INT *)NULL) == CS_FAIL)
    {
       handle failure...
   }
   /* Retrieve and set the security mechanism */
    if (srv_thread_props(spp, CS_GET, SRV_T_SEC_MECHANISM,
        (CS_VOID *)mechanismname, MAX_NAMESIZE, &outlen)
        == CS_FAIL) 
    {
       handle failure...
   }
   if (ct_con_props(conn, CS_SET, CS_SEC_MECHANISM,
       (CS_VOID *)mechanismname, outlen, (CS_INT *)NULL)
        == CS_FAIL)
    {
       handle failure...
   }
   /*
    ** Set security service-network authentication. Alternatively
    ** retrieve services from the current thread and set it.
    */
    if (ct_con_props(conn, CS_SET, CS_SEC_NETWORKAUTH,
       (CS_VOID *)&trueval, CS_SIZEOF(CS_BOOL), (CS_INT *)NULL)
       == CS_FAIL)
    {
       handle failure...
   }
   set other security services if needed...
   /* Ensure that the client enabled security delegation */
    if (srv_thread_props(spp, CS_GET, SRV_T_SEC_DELEGATION,
       (CS_VOID *)&boolval, CS_SIZEOF(CS_BOOL), (CS_INT *)NULL)
       == CS_FAIL)
    {
        handle failure...
    }
   if (boolval != CS_TRUE)
    {



Security services 

190  Open Server

       /* delegation not handled on this dialog */

      handle failure...
   }
   /* Retrieve the delegated credentials */
    if (srv_thread_props(spp, CS_GET, SRV_T_SEC_DELEGCRED,
       (CS_VOID *)&creds, CS_SIZEOF(CS_VOID*), (CS_INT *)NULL)
       == CS_FAIL)
    {
        handle failure...
    }
   /* 
    ** Set the delegated credentials to authenticate to the target
    ** server.
    */
    if (ct_con_props(conn, CS_SET, CS_SEC_CREDENTIALS,
       (CS_VOID *)&creds, CS_SIZEOF(CS_VOID *), (CS_INT *)NULL)
       == CS_FAIL)
    {
       handle failure...
   }
   get and set the user’s application name and response 
    capabilities...
   set the locale and other properties...
   /* Attempt a connection to the remote server */
    if (ct_connect(conn, Servername, CS_NULLTERM) == CS_FAIL)
    {
       handle failure...
   }
   Get and set the REQUEST capabilities...
   Get and set the RESPONSE capabilities...
   ......
   /* 
    ** You do not need to test this srv_senddone’s return value
    ** since Open Server will kill this thread if this call fails. 
    */
    (CS_VOID)srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED,
                  (CS_INT)0);
    return(CS_SUCCEED);
 }



CHAPTER 2    Topics

Server-Library/C Reference Manual 191

Full passthrough gateway with direct security session

A client can establish a security session using the remote server only. No per-
packet security services are performed at any intermediaries between the client 
and the remote server. If the client requests confidentiality, then the gateway 
cannot retrieve TDS tokens from the message packets. This arrangement saves 
overhead since no per-packet services are performed within the gateway, such 
as those used to decrypt received packets, and to re-encrypt them before 
transmission.

There may be multiple gateway intermediaries forming a chain of “forwarding 
servers.” In this case, each of these forwarding servers must support the same 
security mechanism.

To set up a direct security session, take the following steps in the connection 
handler of the Open Server gateway application: 

1 Use srv_getloginfo to obtain login information from the client thread.

2 Use ct_setloginfo to set this information in the connection structure to be 
used for connecting to the remote server.

3 Install a security session callback, using the following command:

ct_callback(conn, CS_SET, CS_SECSESSION_CB, secsession_cb)

When the connection to the remote server is made, the callback acts as an 
intermediary for the handshaking required between the remote server and 
the gateway’s client.

See “Security session callbacks” on page 193 for information on what the 
callback should contain.

See the Open Client Client-Library/C Reference Manual for further 
information on callbacks.

4 Call ct_connect to connect to the remote server. This call initiates 
negotiations between the client and remote server to establish a security 
session. If ct_connect returns CS_SUCCEED, then a security session has 
been successfully established.

5 Use srv_senddone(SRV_DONE_FINAL) to signal to the client that the login 
is complete.

Example connection handler

CS_RETCODE CS_PUBLIC connect_handler(spp) 
 SRV_PROC *spp;
 {



Security services 

192  Open Server

    CS_CONNECTION *conn;    /* connection handle */
    CS_VOID       *creds;   /* security credentials */
    CS_LOGINFO    *loginfo; /* login information */
    CS_BOOL       boolval;
   ......
   allocate and set user data in spp
   /* Allocate a connection handle for the connection attempt. */
    if (ct_con_alloc(Context, &(userdata->conn)) == CS_FAIL)
    {
       handle failure...
   }
   ......
   conn = userdata->conn;
   /* 
    ** Save the pointer to thread control structure in the
    ** connection handle 
    */
    if (ct_con_props(conn, CS_SET, CS_USERDATA, &spp,
       CS_SIZEOF(spp), (CS_INT *)NULL) == CS_FAIL)
    {
       handle failure...
   }
   /* Verify that security based login is requested */
    if (srv_thread_props(spp, CS_GET, SRV_T_SEC_NETWORKAUTH,
       (CS_VOID *)&boolval, CS_SIZEOF(CS_BOOL), (CS_INT *)NULL)
       == CS_FAIL) 
    {
       handle failure...
   }
   if (boolval != CS_TRUE)
    {
       handle the client request that does not use security
       session based login
      ......
      return(CS_SUCCEED);
    }

  /* Get and set the login information */
    if (srv_getloginfo(spp, &loginfo) == CS_FAIL)
    {
       handle failure...
   }
   if (ct_setloginfo(conn, loginfo) == CS_FAIL)
    {
       handle failure...
   }
   /* Install a security session callback for this connection */



CHAPTER 2    Topics

Server-Library/C Reference Manual 193

    if (ct_callback((CS_CONTEXT *)NULL, conn, CS_SET,
       CS_SECSESSION_CB, (CS_VOID *)secsession_cb) == CS_FAIL)
    {
       handle failure...
   }
   /* Attempt a connection to the remote server */
    if (ct_connect(conn, Servername, CS_NULLTERM) == CS_FAIL)
    {
       handle failure...
   }
   /* Get and set the login information */
    if (ct_getloginfo(conn, &loginfo) == CS_FAIL)
    {
       handle failure...
   }
   if (srv_setloginfo(spp, loginfo) == CS_FAIL)
    {
       handle failure...
   }
   ......
   /* 
    ** You do not need to test this srv_senddone’s return value
    ** since Open Server will kill this thread if this call fails. 
    */
    (CS_VOID)srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED,
                  (CS_INT)0);
    return(CS_SUCCEED);
 }

Security session callbacks

The security session callback routine exchanges security tokens between the 
target server (or the next intermediary of the gateway) and the gateway’s client 
applications to establish a direct security session between the client and the 
remote server. This callback procedure is similar to a challenge-response 
callback, except that it uses different parameters.

When the gateway calls ct_connect, the remote server issues one or more 
messages that contain security session information. For each security message, 
Client-Library invokes the callback with the message parameters sent by the 
remote server.

The callback routine must perform the following functions: 

1 Retrieve the parameters from the remote server’s message.

2 Send the parameters to the client, using: 



Security services 

194  Open Server

• srv_negotiate(..., CS_SET, SRV_NEG_SECSESSION)

• srv_descfmt(..., CS_SET, SRV_NEGDATA, ...)

• srv_bind(..., CS_SET, ...)

• srv_xferdata(..., CS_SET, ...)

3 Send a srv_senddone(SRV_DONE_FINAL) to the client.

4 Wait for a response from the client, using srv_negotiate(CS_GET, 
SRV_NEG_SECSESSION).

5 When the client responds, the callback routine copies the corresponding 
session data from the client to output buffers and sends it to the remote 
server, using the following functions: 

• srv_descfmt(CS_GET)

• srv_bind(CS_GET)

• srv_xferdata(CS_GET)

6 If the remote server sends another security message, the process repeats.

See the Open Client Client-Library/C Reference Manual for information on 
defining security session callbacks.

Example Client-Library security session callback routine

CS_RETCODE CS_PUBLIC secsession_cb(conn, innumparams, infmt,
    inbuf, outnumparams, outfmt, outbuf, outlen)
 CS_CONNECTION *conn;
 CS_INT        innumparams;
 CS_DATAFMT    *infmt;
 CS_BYTE       **inbuf;
 CS_INT        *outnumparams;
 CS_DATAFMT    *outfmt;
 CS_BYTE       **outbuf;
 CS_INT        *outlen;
 {
   SRV_PROC *spp; /* The SRVPROC structure associated with the
                   ** client connection */
    CS_INT i;

   /* Get the previously saved spp for the client */
    if (ct_con_props(conn, CS_GET, CS_USERDATA, &spp, 
       CS_SIZEOF(spp), (CS_INT *)NULL) != CS_SUCCEED)
    {
       return(CS_FAIL);



CHAPTER 2    Topics

Server-Library/C Reference Manual 195

    }
   /* 
    ** Use srv_negotiate to tell the client to expect a security
    ** token 
    */
    if (srv_negotiate(spp, CS_SET, SRV_NEG_SECSESSION)
       != CS_SUCCEED)
    {
       return(CS_FAIL);
    }

  /* Describe and send the security token */
    for (i = 0; i < innumparams; i++) 
    {
       if (srv_descfmt(spp, CS_SET, SRV_NEGDATA, i + 1, &infmt[i] 
          != CS_SUCCEED) 
       {
          return(CS_FAIL);
       }

      if (srv_bind(spp, CS_SET, SRV_NEGDATA, i + 1, &infmt[i], 
          inbuf[i], &(infmt[i]->maxlength), (CS_SMALLINT *)NULL)
          != CS_SUCCEED)
       {
          return(CS_FAIL);
       }

   }

   if (srv_xferdata(spp, CS_SET, SRV_NEGDATA) != CS_SUCCEED) 
    {
       return(CS_FAIL);
    }

   /* Complete this portion of the exchange */
    if (srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED, 0) 
       != CS_SUCCEED)
    {
       return(CS_FAIL);
    }

   /* Wait until the client responds */
    if (srv_negotiate(spp, CS_GET, SRV_NEG_SECSESSION)
       != CS_SUCCEED)
    {
       return(CS_FAIL);
    }

   /* Get the number of parameters in the client’s response */
    if (srv_numparams(spp, outnumparams) != CS_SUCCEED)



Text and image 

196  Open Server

    {
       return(CS_FAIL);
    }

   /* Read in the client’s response */
    for (i = 0; i < (*outnumparams); i++)
    {
       srv_bzero(&outfmt[i], sizeof(CS_DATAFMT));

      if (srv_descfmt(spp, CS_GET, SRV_NEGDATA, i + 1, &outfmt[i]
          != CS_SUCCEED) 
       {
          return(CS_FAIL);
       }

      if (srv_bind(spp, CS_GET, SRV_NEGDATA, i + 1, &outfmt[i], 
          outbuf[i], &outlen[i], (CS_SMALLINT *)NULL)
          != CS_SUCCEED)
       {
          return(CS_FAIL);
       }

   }

   if (srv_xferdata(spp, CS_GET, SRV_NEGDATA) != CS_SUCCEED) 
    {
       return(CS_FAIL);
    }

   /* Return success */
    return(CS_SUCCEED);
 }

Text and image
The text and image Adaptive Server datatypes hold large text or image values. 
The text datatype will hold up to 2,147,483,647 bytes of printable characters. 
The image datatype will hold up to 2,147,483,647 bytes of binary data.

Because they can be so large, text and image values are not actually stored in 
database tables. Instead, a pointer to the text or image value is stored in the 
table. This pointer is called a text pointer.

To ensure that competing client applications do not overwrite one another’s 
modifications to the database, a timestamp is associated with each text or 
image column. This timestamp is called a text timestamp.



CHAPTER 2    Topics

Server-Library/C Reference Manual 197

Processing text and image data
Clients send text and image data as an undifferentiated data stream, known as 
a writetext stream. Because it is not differentiated into parameters, an Open 
Server application cannot rely on the routines it normally uses in processing 
incoming parameter data: srv_descfmt srv_bind, and srv_xferdata. Instead, it 
must use a special set of text and image routines.

An Open Server application can send text or image data back to a client in one 
of two ways, depending on how many columns the return row contains. If the 
return row contains just one column, and that column contains text or image 
data, it can be treated as an undifferentiated data stream, and its processing 
deviates from the norm. If, however, the row contains other columns in 
addition to a text or image column, the text or image data is processed using 
the describe/bind/transfer method. Note that both methods have some steps in 
common.

See “Processing parameter and row data” on page 134 for details on the 
describe/bind/transfer triad of calls.

Retrieving data from a client

A writetext stream triggers a SRV_BULK event. Because text and image data 
retrieved from a client are considered bulk data, an Open Server application 
processes incoming text and image data from inside its bulk handler. For more 
information on types of bulk data see the Open Client and Open Server 
Common Libraries Reference Manual.

An application processes incoming text or image data in two steps: 

1 The srv_text_info routine retrieves a description of the text or image data 
and places the information in a CS_IODESC structure. This call returns a 
variety of information, the most important of which is the total length of 
the data. Based on the length, the application can decide whether to 
retrieve the data all at once or in sections, as well as how large a buffer to 
allocate to store the data. srv_text_info is called with the cmd argument set 
to CS_GET.

2 The srv_get_text routine actually brings the data over from the client in the 
specified section size and stores it in the specified buffer.

Note that a call to srv_text_info must always precede a call to srv_get_text. The 
srv_get_text routine must be called until all text has been read from the client. 



Text and image 

198  Open Server

Returning data to a client

An application can return text or image data inside of any event handler that 
can return row results. An application processes outgoing text or image data in 
several different steps, depending on how many columns are in the data row. If 
there is just one column, and it is a text or image column, the application takes 
the following steps: 

1 It describes the format in which the client will receive the text or image 
column, using srv_descfmt.

2 It calls srv_text_info with cmd set to CS_SET to provide the total text 
length.

3 It calls srv_send_text to send the data to the client in chunks.

If there are other columns in addition to the text and image column or columns, 
the application must take the following steps: 

1 It describes the format in which the client will receive the data using 
srv_descfmt, which is called once for each column.

2 It describes the format and location of the local program variables in which 
the Open Server application stores the information, using srv_bind, which 
must be called once for each column.

3 It provides text pointer and timestamp information by calling srv_text_info, 
which must be called once for each text or image column, with cmd set to 
CS_SET.

4 Transfer the data using srv_xferdata, which must be called as many times 
as there are rows.

See “Processing parameter and row data” on page 134 for details on partial 
update of text and image columns.

Example
The sample, ctos.c, includes code to process text and image data. 



CHAPTER 2    Topics

Server-Library/C Reference Manual 199

Types
Open Server supports a wide range of datatypes. These datatypes are shared 
with CS-Library and Client-Library. In most cases, they correspond directly to 
Adaptive Server datatypes.

Table 2-37 lists the Open Server type definitions, together with their 
corresponding type constants and Adaptive Server datatypes. More detailed 
information on each datatype follows the chart.

2.0 Open Server datatypes are included in this version for the sake of backward 
compatibility. 2.0 Server-Library routines must use 2.0 datatypes in this 
version. Table 2-37 summarizes the Open Server datatypes that all routines 
must use in future Open Server versions.

Table 2-37: Datatype summary

Type
Open Client and Open 
Server type constant Description

Corresponding 
Open Client and 
Open Server type 
definition

Corresponding
Adaptive 
Server 
datatype

Binary types CS_BINARY_TYPE Binary type CS_BINARY binary, varbinary

CS_LONGBINARY_TYPE Long binary 
type

CS_LONGBINARY NONE

CS_VARBINARY_TYPE Variable-length 
binary type

CS_VARBINARY NONE

Bit types CS_BIT_TYPE Bit type CS_BIT boolean 

Character
 types

CS_CHAR_TYPE Character type CS_CHAR char,
varchar

CS_LONGCHAR_TYPE Long character 
type

CS_LONGCHAR NONE

CS_VARCHAR_TYPE Variable-length 
character type

CS_VARCHAR NONE

CS_UNICHAR_TYPE Variable-length 
or fixed-length
character type

CS_UNICHAR unichar,
univarchar

XML type CS_XML_TYPE Variable-length 
character type

CS_XML xml



Types 

200  Open Server

Datetime types CS_DATE_TYPE 4-byte date 
datatype

CS_DATE date

CS_TIME_TYPE 4-byte time 
datatype

CS_TIME time

CS_DATETIME_TYPE 8-byte
datetime type

CS_DATETIME datetime 

CS_DATETIME4_TYPE 4-byte 
datetime type

CS_DATETIME4 smalldatetime

Numeric types CS_TINYINT_TYPE 1-byte integer 
type

CS_TINYINT tinyint 

CS_SMALLINT_TYPE 2-byte integer 
type

CS_SMALLINT smallint 

CS_INT_TYPE 4-byte integer 
type

CS_INT int 

CS_BIGINT_TYPE 8-byte integer 
type

CS_BIGINT bigint 

CS_USMALLINT_TYPE Unsigned 2-
byte integer 
type

CS_USMALLINT usmallint 

CS_UINT_TYPE Unsigned 4-
byte integer 
type

CS_UINT uint 

CS_UBIGINT_TYPE Unsigned 8-
byte integer 
type

CS_UBIGINT ubigint 

CS_DECIMAL_TYPE Decimal type CS_DECIMAL decimal 

CS_NUMERIC_TYPE Numeric type CS_NUMERIC numeric 

CS_FLOAT_TYPE 8-byte float 
type

CS_FLOAT float 

CS_REAL_TYPE 4-byte float 
type

CS_REAL real 

Money types CS_MONEY_TYPE 8-byte money 
type

CS_MONEY money 

CS_MONEY4_TYPE 4-byte money 
type

CS_MONEY4 smallmoney 

Type
Open Client and Open 
Server type constant Description

Corresponding 
Open Client and 
Open Server type 
definition

Corresponding
Adaptive 
Server 
datatype



CHAPTER 2    Topics

Server-Library/C Reference Manual 201

Routines that manipulate datatypes
CS-Library provides several routines that are useful for manipulating 
datatypes. They include: 

• cs_calc, which performs arithmetic operations on decimal, float, money, 
numeric, and real datatypes.

• cs_cmp, which compares datetime, decimal, float, money, numeric, and real 
datatypes.

• cs_convert, which converts a data value from one datatype to another.

• cs_dt_crack, which converts a machine readable datetime value into a 
user-accessible format.

• cs_dt_info, which retrieves datetime information for a national language.

These routines are documented in the Open Client and Open Server Common 
Libraries Reference Manual.

Open Server datatypes

Binary types

Open Server has three binary types, CS_BINARY, CS_LONGBINARY, and 
CS_VARBINARY.

Text and image 
types

CS_TEXT_TYPE Text type CS_TEXT text 

CS_UNITEXT_TYPE Unsigned 
variable-length 
character type

CS_UNITEXT unitext

CS_IMAGE_TYPE Image type CS_IMAGE image

Type
Open Client and Open 
Server type constant Description

Corresponding 
Open Client and 
Open Server type 
definition

Corresponding
Adaptive 
Server 
datatype



Types 

202  Open Server

• CS_BINARY corresponds to the Adaptive Server datatypes binary and 
varbinary. That is, Server-Library interprets both the server binary and 
varbinary types as CS_BINARY. For example, srv_descfmt returns 
CS_BINARY_TYPE when retrieving a description of a binary parameter 
from a client.

CS_BINARY is defined as: 

typedef unsigned char     CS_BINARY;

• CS_LONGBINARY does not correspond to any Adaptive Server 
datatype, but some Open Server applications may support 
CS_LONGBINARY. An application can use the CS_DATA_LBIN 
capability to determine whether a Client-Library connection supports 
CS_LONGBINARY.

A CS_LONGBINARY value has a maximum length of 2,147,483,647 
bytes. CS_LONGBINARY is defined as: 

typedef unsigned char       CS_LONGBINARY;

• CS_VARBINARY does not correspond to any Adaptive Server datatype. 
For this reason, Open Server routines do not return 
CS_VARBINARY_TYPE. If a datatype is described as 
CS_VARBINARY_TYPE, Open Server automatically converts it to a 
nullable CS_BINARY_TYPE before sending it to a client. 
CS_VARBINARY_TYPE can only be used when binding program 
variables. CS_VARBINARY enables programmers to write non-C 
programming language veneers for Open Server. Typical server 
applications will not use CS_VARBINARY.

CS_VARBINARY is defined as follows: 

typedef struct _cs_varybin
 {
     CS_SMALLINT      len; 
     CS_BYTE          array[CS_MAX_CHAR];  
 } CS_VARBINARY;       

where:

• len is the length of the binary array.

• array is the array itself.



CHAPTER 2    Topics

Server-Library/C Reference Manual 203

Bit type

Open Server supports a single bit type, CS_BIT. This datatype holds server bit 
(or Boolean) values of 0 or 1. When converting other types to bit, all non-zero 
values are converted to 1: 

typedef unsigned char      CS_BIT;          

Character types

Open Server has four character types, CS_CHAR, CS_LONGCHAR, 
CS_VARCHAR, and CS_UNICHAR: 

• CS_CHAR corresponds to the Adaptive Server datatypes char and varchar. 
That is, Server-Library interprets both the server char and varchar 
datatypes as CS_CHAR. For example, srv_descfmt returns 
CS_CHAR_TYPE when retrieving the description of a character 
parameter from a client.

CS_CHAR is defined as follows: 

typedef char               CS_CHAR;  

• CS_LONGCHAR does not correspond to any Adaptive Server datatype, 
but some Client-Library applications may support CS_LONGCHAR. An 
application can use the CS_DATA_LCHAR capability to determine 
whether a Client-Library connection supports CS_LONGCHAR.

A CS_LONGCHAR value supports a maximum length of 2,147,483,647 
bytes. CS_LONGCHAR is defined as follows: 

typedef unsigned char      CS_LONGCHAR;

• CS_VARCHAR does not correspond to any Adaptive Server datatype. For 
this reason, Open Server routines do not return CS_VARCHAR_TYPE. If 
a datatype is described as CS_VARCHAR_TYPE, Open Server 
automatically converts it to a nullable CS_CHAR_TYPE before sending 
it to a client. CS_VARCHAR_TYPE can only be used when binding 
program variables. CS_VARCHAR enables programmers to write non-C 
programming language veneers for Open Server. Typical server 
applications will not use CS_VARCHAR.

CS_VARCHAR is defined as follows: 

typedef struct _cs_varchar
 {
     CS_SMALLINT          len; 
     CS_BYTE              str[CS_MAX_CHAR]; 



Types 

204  Open Server

  } CS_VARCHAR;

where:

• len is the length of the string.

• str is the string itself. Note that str is not a null-terminated string.

• CS_UNICHAR corresponds to the Adaptive Server unichar fixed-width 
and univarchar variable-width datatypes. CS_UNICHAR is a shared, C-
programming datatype that can be used anywhere the CS_CHAR datatype 
is used. The CS_UNICHAR datatype stores character data in the 2-byte 
Unicode UTF-16 format.

CS_UNICHAR is defined as follows: 

typedef unsigned char CS_UNICHAR;  

XML type

CS_XML corresponds directly to Adaptive Server xml variable-length 
datatype. CS_XML can be used anywhere CS_TEXT and CS_IMAGE are 
used to represent XML documents and contents.

CS_XML is defined as follows: 

typedef unsigned char CS_XML

Datetime types

Open Server supports two datetime types, CS_DATETIME and 
CS_DATETIME4. These datatypes are intended to hold 8-byte and 4-byte 
datetime values, respectively. 

In addition, Open Server supports CS_DATE and CS_TIME datatypes. These 
datatypes behave like CS_DATETIME and CS_DATETIME4, but rather than 
store data in a single datetime value, they store data in separate 4-byte fixed-
width date or time values.

An Open Server application can use the CS-Library routine cs_dt_crack to 
extract date parts (year, month, day, and so on) from a datetime structure. 

• CS_DATETIME corresponds to the Adaptive Server datetime datatype. 
The range of legal CS_DATETIME values is from January 1, 1753 to 
December 31, 9999, with a precision of 1/300th of a second (3.33 
milliseconds): 

typedef struct _cs_datetime



CHAPTER 2    Topics

Server-Library/C Reference Manual 205

 {
     CS_INT               dtdays; 
     CS_INT               dttime; 
 } CS_DATETIME;             

where:

• dtdays is the number of days since 1/1/1900.

• dttime is the number of 300ths of a second since midnight.

• CS_DATETIME4 corresponds to the Adaptive Server smalldatetime 
datatype. The range of legal CS_DATETIME4 values is from January 1, 
1900, to June 6, 2079, with a precision of 1 minute: 

typedef struct _cs_datetime4
 {
     unsigned short        days; 
     unsigned short        minutes; 
 } CS_DATETIME4; 

where:

• days is the number of days since 1/1/1900.

• minutes is the number of minutes since midnight.

• CS_DATE corresponds to the Adaptive Server date datatype. The range of 
legal CS_DATE values is from January 1, 1753 to December 31, 9999.

typedef struct _cs_date
 {
     CS_INT days; 
 } CS_DATE;

where days is the number of days since 1/1/1900

• CS_TIME corresponds to the Adaptive Server time datatype. The range of 
legal CS_TIME values is with a precision of 1/300th of a second (3.33 
milliseconds):

typedef struct _cs_time
 {
     CS_INT time; 
 } CS_TIME;

where time is the number of 300ths of a second since midnight.



Types 

206  Open Server

Integer types

Open Server supports seven integer types: CS_TINYINT, CS_SMALLINT, 
CS_INT, CS_BIGINT, CS_USMALLINT, CS_UINT, and CS_UBIGINT.

On most platforms, CS_TINYINT is a 1-byte integer; CS_SMALLINT is a 2-
byte integer, CS_INT is a 4-byte integer, CS_BIGINT is an 8-byte integer, 
CS_USMALLINT is an unsigned 2-byte integer, CS_UINT is an unsigned 4-
byte integer and CS_UBIGINT is an unsigned 8-byte integer:

typedef unsigned char CS_TINYINT;
 typedef short CS_SMALLINT;
 typedef int CS_INT;
 typedef long long CS_BIGINT;
 typedef unsigned char CS_USMALLINT;
 typedef unsigned int CS_UINT;
 typedef unsigned long long CS_UBIGINT;

Real, float, numeric, and decimal types

• CS_REAL corresponds to the Adaptive Server datatype real. It is 
implemented as a platform-dependent C-language float type: 

typedef float                CS_REAL;      

Note  When converting 6-digit precision bigint or ubigint datatypes to real 
datatypes, note the following maximum and minimum values:

• -9223370000000000000.0 < bigint < 9223370000000000000.0

• 0 < ubigint < 18446700000000000000.0

Values outside of these ranges cause overflow errors.

• CS_FLOAT corresponds to the Adaptive Server datatype float. It is 
implemented as a platform-dependent, C-language double type: 

typedef double               CS_FLOAT;     

Note  When converting 15-digit precision bigint or ubigint datatypes to 
float datatypes, note the following maximum and minimum values:

• -9223372036854770000.0 < bigint < 9223372036854770000.0

• 0 < ubigint < 18446744073709500000.0

Values outside of these ranges cause overflow errors.



CHAPTER 2    Topics

Server-Library/C Reference Manual 207

• CS_NUMERIC and CS_DECIMAL correspond to the Adaptive Server 
datatypes numeric and decimal. These types provide platform-independent 
support for numbers with precision and scale.

The Adaptive Server datatypes numeric and decimal are equivalent; and 
CS_DECIMAL is defined as CS_NUMERIC: 

typedef struct  _cs_numeric
 {
     CS_BYTE                  precision;
     CS_BYTE                  scale;
     CS_BYTE                  array[CS_MAX_NUMLEN];
 } CS_NUMERIC;   
 
 typedef CS_NUMERIC           CS_DECIMAL; 

where:

• precision is the precision of the numeric value. Legal values for 
precision are from CS_MIN_PREC to CS_MAX_PREC. The default 
precision is CS_DEF_PREC. CS_MIN_PREC, CS_MAX_PREC, 
and CS_DEF_PREC define the minimum, maximum, and default 
precision values, respectively.

• scale is the scale of the numeric value. Legal values for scale are from 
CS_MIN_SCALE to CS_MAX_SCALE. The default scale is 
CS_DEF_SCALE. CS_MIN_SCALE, CS_MAX_SCALE, and 
CS_DEF_SCALE defines the minimum, maximum, and default scale 
values, respectively.

• scale must be less than or equal to precision.

CS_DECIMAL types use the same default values for precision and scale 
as CS_NUMERIC types.

Money types

Open Server supports two money types, CS_MONEY and CS_MONEY4. 
These datatypes are intended to hold 8-byte and 4-byte money values, 
respectively. 

• CS_MONEY corresponds to the Adaptive Server money datatype. The 
range of legal CS_MONEY values is between 
 +/- $922,337,203,685,477.5807: 

typedef struct _cs_money
 {
     CS_INT               mnyhigh;   



Types 

208  Open Server

     CS_UINT              mnylow;
   } CS_MONEY; 

• CS_MONEY4 corresponds to the Adaptive Server smallmoney datatype. 
The range of legal CS_MONEY4 values is between -$214,748.3648 and 
+$214,748.3647: 

typedef struct _cs_money4
 {
     CS_INT               mny4;
 } CS_MONEY4;  

Security types

Open Server supports Secure Adaptive Server boundary and sensitivity 
datatypes by defining the type constants CS_BOUNDARY_TYPE and 
CS_SENSITIVITY_TYPE.

These type constants differ from other Open Server type constants in that they 
do not correspond to similarly-named type definitions. Instead, they 
correspond to CS_CHAR.

This means that although Open Server routines accept and return 
CS_BOUNDARY_TYPE and CS_SENSITIVITY_TYPE to describe a 
column or variable’s datatype, any corresponding program variable must be of 
type CS_CHAR.

For example, if an application calls srv_bind with the datatype field of the 
CS_DATAFMT structure set to CS_SENSITIVITY_TYPE, the program 
variable to which the data is being bound must be of type CS_CHAR.

Text and image types

Open Server supports text datatypes, CS_TEXT and CS_UNITEXT, as well as 
an image datatype, CS_IMAGE.

• CS_TEXT corresponds to the server datatype text, which describes a 
variable-length column containing up to 2,147,483,647 bytes of printable 
character data. CS_TEXT is defined as an unsigned character: 

typedef unsigned char         CS_TEXT;



CHAPTER 2    Topics

Server-Library/C Reference Manual 209

• CS_UNITEXT corresponds to the Adaptive Server unitext variable-length 
datatype. CS_UNITEXT exhibits identical syntax and semantics to 
CS_TEXT, except that CS_UNITEXT encodes character data in the 2-
byte Unicode UTF-16 format. CS_UNITEXT can be used anywhere 
CS_TEXT is used. The maximum length of the CS_UNITEXT string 
parameter is half of the maximum length of CS_TEXT.

CS_UNITEXT is defined as follows: 

typedef unsigned short CS_UNITEXT;  

• CS_IMAGE corresponds to the server datatype image, which describes a 
variable-length column containing up to 2,147,483,647 bytes of binary 
data. CS_IMAGE is defined as an unsigned character: 

typedef unsigned char         CS_IMAGE;



Types 

210  Open Server



Server-Library/C Reference Manual 211

C H A P T E R  3 Routines

This chapter contains a reference page for each Server-Library routine.

Routine Description Page
srv_alloc Allocate memory. 215

srv_alt_bind Describe and bind the source data for a 
compute row column.

217

srv_alt_descfmt Describe the aggregate operator of a 
compute row column and the format of the 
column data returned to the client.

221

srv_alt_header Describe a compute row’s row identifier 
and bylist.

225

srv_alt_xferdata Send a compute row to a client. 228

srv_bind Describe and bind a program variable for a 
column or parameter.

229

srv_bmove Copy bytes from one memory location to 
another.

235

srv_bzero Set the contents of a memory location to 
zero.

236

srv_callback Install a state transition handler for a 
thread.

238

srv_capability Determine whether the Open Server 
supports a platform-dependent service.

242

srv_capability_info Define or retrieve capability information 
on a client connection.

243

srv_createmsgq Create a message queue. 247

srv_createmutex Create a mutual exclusion semaphore. 249

srv_createproc Create a nonclient, event-driven thread. 251

srv_cursor_props Retrieve or set information about the 
current cursor.

253

srv_dbg_stack Display the call stack of a thread. 256

srv_dbg_switch Temporarily restore another thread context 
for debugging.

258

srv_define_event Define a user event. 259

srv_deletemsgq Delete a message queue. 261



 

212  Open Server

srv_deletemutex Delete a mutex created by 
srv_createmutex.

263

srv_descfmt Describe or retrieve the description of a 
column or a parameter going to, or coming 
from, a client.

265

srv_dynamic Read or respond to a client dynamic SQL 
command.

268

srv_envchange Notify the client of an environment 
change.

273

srv_event Add an event request to a thread’s request-
handling queue.

275

srv_event_deferred Add an event request to the event queue of 
a thread as the result of an asynchronous 
event.

278

srv_free Free previously allocated memory. 280

srv_freeserveraddrs Frees memory allocated by 
srv_getserverbyname.

281

srv_get_text Read a text or image datastream from a 
client, in chunks.

282

srv_getloginfo Obtain login information from a client 
thread to prepare a passthrough connection 
with a remote server.

284

srv_getmsgq Get the next message from a message 
queue.

286

srv_getobjid Look up the object ID for a message queue 
or mutex with a specified name.

289

srv_getobjname Get the name of a message queue or mutex 
with a specified name.

292

srv_getserverbyname Returns the connection information for 
server_name, allocating memory as 
needed.

294

srv_handle Install an event handler into an Open 
Server application.

295

srv_init Initialize an Open Server application. 298

srv_langcpy Copy a client’s language request into an 
application buffer.

300

srv_langlen Return the length of the language request 
buffer.

302

srv_lockmutex Lock a mutex. 304

Routine Description Page



CHAPTER 3    Routines

Server-Library/C Reference Manual 213

srv_log Write a message to the Open Server 
application log file.

307

srv_mask Initialize, check, set, or clear bits in a 
SRV_MASK_ARRAY structure.

309

srv_msg Send or receive a message datastream. 311

srv_negotiate Send and receive negotiated login 
information to or from a client.

314

srv_numparams Return the number of parameters 
contained in the current client command.

321

srv_options Send or receive option information to or 
from a client.

323

srv_orderby Return an order-by list to a client. 329

srv_poll (UNIX only) Check for I/O events on a set of open 
streams file descriptors.

331

srv_props Define and retrieve Open Server 
properties.

334

srv_putmsgq Put a message into a message queue. 340

srv_realloc Reallocate memory. 342

srv_recvpassthru Receive a protocol packet from a client. 344

srv_regcreate Complete the registration of a registered 
procedure.

346

srv_regdefine Initiate the process of registering a 
procedure.

348

srv_regdrop Unregister a procedure. 352

srv_regexec Execute a registered procedure. 354

srv_reginit Begin executing a registered procedure. 356

srv_reglist Obtain a list of all of the procedures 
registered in the Open Server.

358

srv_reglistfree Free a previously allocated 
SRV_PROCLIST structure.

360

srv_regnowatch Remove a client thread from the 
notification list for a registered procedure.

361

srv_regparam Describe a parameter for a registered 
procedure being defined; or supply data for 
the execution of a registered procedure.

363

srv_regwatch Add a client thread to the notification list 
for a specified procedure.

366

srv_regwatchlist Return a list of all registered procedures 
for which a client thread has notification 
requests pending.

369

Routine Description Page



 

214  Open Server

srv_rpcdb Return the database component of the 
current remote procedure call’s 
designation.

371

srv_rpcname Return the name component of the current 
remote procedure call’s designation.

372

srv_rpcnumber Return the number component of the 
current remote procedure’s designation.

375

srv_rpcoptions Return the runtime options for the current 
remote procedure call.

376

srv_rpcowner Return the owner component of the current 
remote procedure call’s designation.

378

srv_run Start an Open Server. 380

srv_s_ssl_local_id Used to specify the path to the local ID 
(certificates) file.

381

srv_select (UNIX only) Check to see if a file descriptor is &ready 
for a specified I/O operation.

381

srv_send_ctlinfo Sends control messages to Client-Library. 385

srv_send_data Transfers rows containing multiple 
columns to clients.

386

srv_send_text Send a text or image datastream to a client, 
in chunks.

390

srv_senddone Send a results completion message or flush 
some results to a client.

393

srv_sendinfo Send error or informational messages to 
the client.

398

srv_sendpassthru Send a protocol packet to a client. 401

srv_sendstatus Send a status value to a client. 404

srv_setcolutype Define the user datatype to be associated 
with a column.

405

srv_setcontrol Describe user control or format 
information for columns.

407

srv_setloginfo Return protocol format information from a 
remote server to a client.

409

srv_setpri Modify the scheduling priority of a thread. 411

srv_signal (UNIX only) Install a UNIX signal handler for the 
SIGIO or SIGURG signals, using the same 
interface as signal.

413

srv_sleep Suspend the currently executing thread. 416

srv_spawn Allocate a service thread. 419

Routine Description Page



CHAPTER 3    Routines

Server-Library/C Reference Manual 215

srv_alloc
Description Allocate memory.

Syntax CS_VOID *srv_alloc(size)
 CS_INT        size;

Parameters size
The number of bytes to allocate.

srv_symbol Convert an Open Server token value to a 
readable string.

422

srv_tabcolname Associate browse mode result columns 
with result tables.

426

srv_tabname Provide the name of the table or tables 
associated with a set of browse mode 
results.

429

srv_termproc Terminate the execution of a thread. 431

srv_text_info Set or get a description of text or image 
data.

432

srv_thread_props Define and retrieve thread properties. 435

srv_timedsleep Sleep until an event is signalled. 440

srv_unlockmutex Unlock a mutex. 443

srv_version Define the version of Server-Library an 
application is using, and define the 
application’s default national language and 
character set.

444

srv_wakeup Enable sleeping threads to run. 445

srv_xferdata Send parameters or data to a client, or 
receive parameters or data from a client.

448

srv_yield Allow another thread to run. 450

Routine Description Page



srv_alloc 

216  Open Server

Return value Table 3-1: Return values (srv_alloc)

Examples

#include    <ospublic.h>
/*
 ** Local Prototype
 */
 CS_RETCODE     ex_srv_alloc PROTOTYPE((
 CS_BYTE        **bpp,
 CS_INT         size
 ));
/* 
 ** EX_SRV_ALLOC
 **
 **    Example routine to allocate the specified amount of memory
 **    using srv_alloc.
 **
 ** Arguments: 
 **    bpp     Return pointer to allocated memory here.
 **    size    Amount of memory to allocate.
 **
 ** Returns:
 **
 **    CS_SUCCEED            Memory was allocated successfully.
 **    CS_FAIL               An error was detected.
 */
 CS_RETCODE            ex_srv_alloc(bpp, size)
 CS_BYTE              **bpp;
 CS_INT               size;
 {
     /* Initialization. */
     *bpp = (CS_BYTE *)NULL;

   /*
     ** Allocate size number of bytes.
     */
     if((*bpp = (CS_BYTE *)srv_alloc(size)) == (CS_BYTE *)NULL)
     {
         return(CS_FAIL);
     }
     return(CS_SUCCEED);

Returns To indicate

A pointer to the newly allocated 
space

The location of the new space.

A null CS_VOID pointer Open Server could not allocate size bytes.



CHAPTER 3    Routines

Server-Library/C Reference Manual 217

 }

    /*
 ** Allocate size number of bytes.
 */
 if((*bpp = (CS_BYTE *)srv_alloc(size)) == (CS_BYTE *)NULL)
     {
         return(CS_FAIL);
     }
     return(CS_SUCCEED);
 }

Usage • srv_alloc allocates memory dynamically. It returns a pointer to size bytes 
if that many bytes are available.

• Any memory allocated using srv_alloc should be freed by calling srv_free.

• Use srv_alloc wherever the standard C memory allocation routines would 
be used.

• Currently, srv_alloc calls the C routine, malloc. An Open Server 
application, however, can install its own memory management routines 
using the srv_props routine. The parameter-passing conventions of the 
user-installed routines must be the same as those of malloc. If the 
application is not configured to use user-installed routines, Open Server 
will call malloc.

See also srv_free, srv_props, srv_realloc

srv_alt_bind
Description Describe and bind the source data for a compute row column.

Syntax    CS_RETCODE srv_alt_bind(spp, altid, item, osfmtp,
           varaddr, varlenp, indp) 
 
 SRV_PROC         *spp;
 CS_INT               altid;
 CS_INT               item;
CS_DATAFMT *osfmtp;
CS_BYTE           *varaddrp;

 CS_INT               *varlenp;
 CS_SMALLINT    *indp;

Parameters spp
A pointer to an internal thread control structure.



srv_alt_bind 

218  Open Server

altid
The unique identifier for the compute row in which this compute column is 
contained. The altid is defined using srv_alt_header.

item
The column’s column number in the compute row. Compute row column 
numbers start at 1.

osfmtp
A pointer to a CS_DATAFMT structure. This structure describes the format 
of the compute row column data that the application program variable 
contains.

varaddrp
A pointer to the program variable to which the outgoing data is bound.

varlenp
A pointer to the program variable containing *varaddrp’s length.

indp
A pointer to the buffer containing the null value indicator. The following 
table summarizes the values *indp can contain:

Table 3-2: Values for indp (srv_alt_bind)

If indp is NULL, the column data is assumed to be valid; that is, not null.

Return value Table 3-3: Return values (srv_alt_bind)

Examples

#include     <ospublic.h>
/*
 ** Local prototype
 */
 CS_RETCODE             ex_srv_alt_bind PROTOTYPE((
 SRV_PROC               *spp,
 CS_INT                 altid,
 CS_VOID                *sump

Value Indicates

CS_NULLDATA Column data is null.

CS_GOODDATA Column data is not null.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 219

 ));
/*
 ** EX_SRV_ALT_BIND
 **
 **    Example routine to describe and bind the source data for
 **    a compute row column. This example binds a value which
 **    is the sum of the first column of row data.
 **
 ** Arguments:
 **    spp    - A pointer to an internal thread control structure.
 **             The thread must be an active client thread that 
 **             can handle row data.
 **
 **    altid    -     The id for this compute row.
 **
 **    sump    -    A pointer to the variable which will contain
 **                 the sum of the first column of row data.
 **
 ** Returns:
 **     CS_SUCCEED - Compute row column was successfully bound.
 **     CS_FAIL    - An error was detected.
 **
 */
 CS_RETCODE          ex_srv_alt_bind(spp, altid, sump)
 SRV_PROC            *spp;
 CS_INT              altid;
 CS_VOID             *sump;
 {
    CS_DATAFMT compute_colfmt;
      /*
      **Format for this compute column.
      */
      CS_INT         namelen;
      /*
      **Length of compute column name
      */

    CS_INT        compute_colnum;
     /*
     **    The column number for this compute column.
     */

   CS_SMALLINT     indicator;
     /*
     **    Null indicator.
     */
     CS_INT            sumlen;



srv_alt_bind 

220  Open Server

     /*
     **    Length of the compute value
     */
     CS_RETCODE        result;
     /*
     **Return value from srv_alt_bind.
     */

   /*
     ** Initialize the compute column’s data format. This compute 
     ** column represents a sum of the first column of data.
     */
     namelen = 3;
     srv_bmove(“sum”, compute_colfmt.name, namelen);

   compute_colfmt.namelen = namelen;
     compute_colfmt.datatype = CS_INT_TYPE;
     compute_colfmt.format = CS_FMT_UNUSED;
     compute_colfmt.maxlength = sizeof(CS_INT);
     compute_colfmt.scale = 0;

   compute_colfmt.precision = CS_DEF_PREC;
     compute_colfmt.status = 0;
     compute_colfmt.count = 0;
     compute_colfmt.usertype = 0;
     compute_colfmt.locale = (CS_LOCALE *)NULL;

   /*
     ** Perform the bind
     */
     compute_colnum = 1;
     indicator = CS_GOODDATA;
     sumlen = sizeof(CS_INT);

   result = srv_alt_bind(spp, altid, compute_colnum,
            &compute_colfmt, sump, &sumlen, &indicator);
    return (result);
 }

Usage • Only applications that mimic Adaptive Server’s feature of returning 
compute row information will need to call srv_alt_bind. srv_alt_bind is 
most useful to applications acting as a gateway to an Adaptive Server.

• srv_alt_bind describes the format of the application program variable in 
which a compute row column’s data is stored. An application must call it 
once for each column in a compute row.



CHAPTER 3    Routines

Server-Library/C Reference Manual 221

• The srv_alt_bind routine reads from (CS_GET) or sets (CS_SET) the 
CS_DATAFMT fields listed in the table below. All other fields are 
undefined for srv_alt_bind. (Note that “osfmtp” is a pointer to the structure.

Table 3-4: CS_DATAFMT fields used (srv_alt_bind)

• If the format described by osfmtp differs from the client format set with 
srv_alt_descfmt (clfmtp), Open Server automatically converts the data to 
the client format.

• A compute result set contains only one row. However, an application can 
return multiple result sets, each with a distinct altid.

• To process compute row data, an Open Server application must:

a Call srv_alt_header to define a compute row identifier.

b Call srv_alt_descfmt for each column to describe the format the 
column data is in when the client receives it.

c Call srv_alt_bind for each column to bind the data to a local program 
variable.

d Call srv_alt_xferdata to send the row to the client, once each column 
in the compute row has been described and its data bound to a 
program variable.

• The contents of the buffers to which varaddrp, lenp, and indp point need 
not be valid until srv_xferdata is called.

See also srv_alt_descfmt, srv_alt_header, srv_alt_xferdata, “CS_DATAFMT 
structure” on page 54

srv_alt_descfmt
Description Describe the aggregate operator of a compute row column and the format of the 

column data returned to the client.

Field CS_SET CS_GET

osfmtp→datatype Datatype of application 
program variable

Datatype of application 
program variable

osfmtp→maxlength Unused Maximum length of program 
variable

osfmtp→count 0 or 1 0 or 1



srv_alt_descfmt 

222  Open Server

Syntax CS_RETCODE srv_alt_descfmt(spp, altid, optype,
                  operand, item, clfmtp)
 
 SRV_PROC         *spp;
 CS_INT                altid;
 CS_INT                optype;
 CS_TINYINT        operand;
 CS_INT                item;
 CS_DATAFMT     *clfmtp;

Parameters spp
A pointer to an internal thread control structure.

altid
The unique identifier for the compute row in which this compute column is 
contained. The altid is defined using srv_alt_header.

item
The column’s column number in the compute row. Compute row column 
numbers start at 1.

optype
The aggregate operator type of the compute row column. The following 
table lists the legal operator types:

Table 3-5: Values for optype (srv_alt_descfmt) 

operand
The select-list column the aggregate is operating on.

clfmtp
A pointer to the CS_DATAFMT structure. This structure describes the 
format the column data is in when the client receives it.

Operator type Function

CS_OP_COUNT Count aggregate operator

CS_OP_SUM Sum aggregate operator

CS_OP_AVG Average aggregate operator

CS_OP_MIN Minimum aggregate operator

CS_OP_MAX Maximum aggregate operator



CHAPTER 3    Routines

Server-Library/C Reference Manual 223

Return value Table 3-6: Return values (srv_alt_descfmt)

Examples

#include       <ospublic.h>
 /*
 ** Local Prototype
 */
 CS_RETCODE      ex_srv_alt_descfmt PROTOTYPE((
 SRV_PROC        *sproc,
 CS_INT          altid,
 CS_DATAFMT      clfmtp[]
 ));
/*
 ** EX_SRV_ALT_DESCFMT
 **   An example routine to describe the aggregate operator of 2
 **   compute row columns and the format of each of the two column
 **   data returned to the client. We will do the sum on the first
 **   column and average on the second column.
 **
 ** Arguments:
 **   sproc     A pointer to an internal thread control structure.
 **   altid     The id for the compute row in which this compute
 **             column is contained. The altid is obtained by
 **             calling srv_alt_header.
 **   clfmtp    A pointer to the array of structures describing 
 **             the format of the compute row column
 **             data when the client receives it.
 **
 ** Returns:
 **   CS_SUCCEED     If the aggregate operator and the datatype of
 **                  the compute row columns were successfully
 **                  described.
 **   CS_FAIL        An error was detected.
 */
 CS_RETCODE     ex_srv_alt_descfmt(sproc, altid, clfmtp)
 SRV_PROC       *sproc;
 CS_INT         altid;
 CS_DATAFMT     clfmtp[];
 {
      /*
      ** Describe the aggregate operator of the first compute row
      ** column and the format of the column data.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_alt_descfmt 

224  Open Server

      */
      if ( srv_alt_descfmt(sproc, altid, (CS_INT)1, CS_OP_SUM,
           (CS_TINYINT)1, &clfmtp[0]) == CS_FAIL )
      {
           return(CS_FAIL);
      }

     /*
      ** Now do the same for the second column if (srv_alt_descfmt
      ** (sproc, altid, (CS_INT)2, CS_OP_AVG, (CS_TINYINT)2,
      ** &clfmtp[1]) == CS_FAIL )
      {
           return(CS_FAIL);
      }
      */
      
      return(CS_SUCCEED);
 }

Usage • Only applications that mimic Adaptive Server’s feature of returning 
compute row information will need to call srv_alt_descfmt. srv_alt_descfmt 
is most useful to applications acting as a gateway to an Adaptive Server.

• srv_alt_descfmt describes a compute row column that the application will 
send to the client. The application calls it once for each column in the 
compute row.

• The srv_alt_descfmt routine reads from (CS_GET) or sets (CS_SET) the 
CS_DATAFMT fields listed in the table below. All other fields are 
undefined for srv_alt_descfmt. (Note that “clfmtp” is a pointer to the 
structure.

Table 3-7: CS_DATAFMT structure fields used (srv_alt_descfmt)

•  If the format described by clfmtp differs from the application program 
variable format subsequently described with srv_alt_bind (osfmtp), Open 
Server automatically converts the data to the clfmtp format description.

Field CS_SET CS_GET

clfmtp→namelen Length of name Length of name

clfmtp→status Parameter/column status Parameter status

clfmtp→name Parameter/column name Parameter name

clfmtp→datatype Remote datatype set here Remote datatype retrieved 
from here

clfmtp→maxlength Maximum length of remote 
datatype set here

Maximum length of remote 
datatype retrieved from here

clfmtp→format Remote datatype format Remote datatype formats



CHAPTER 3    Routines

Server-Library/C Reference Manual 225

• To process compute row data, an Open Server application must:

a Call srv_alt_header to define a compute row identifier.

b Call srv_alt_descfmt for each column to describe the format the 
column data is in when the client receives it.

c Call srv_alt_bind for each column to bind the data to a local program 
variable.

d Call srv_alt_xferdata to send the row to the client, once each column 
in the compute row has been described and its data bound to a 
program variable.

See also srv_alt_bind, srv_alt_header, srv_alt_xferdata, “CS_DATAFMT structure” on 
page 54

srv_alt_header
Description Describe a compute row’s row identifier and bylist.

Syntax CS_RETCODE srv_alt_header(spp, altid, numbylist,
                  bylistarrayp)
 
 SRV_PROC         *spp;
 CS_INT                altid;
 CS_INT                numbylist;
 CS_SMALLINT     *bylistarrayp;

Parameters spp
A pointer to an internal thread control structure.

altid
A unique identifier for this compute row. 

numbylist
The number of columns in the bylist of a compute row.

bylistarrayp
A pointer to an array of column numbers that make up the bylist for a 
compute row. There are as many elements as specified in numbylist. If 
numbylist is 0, bylistarrayp is ignored.



srv_alt_header 

226  Open Server

Return value Table 3-8: Return values (srv_alt_header)

Examples

#include            <ospublic.h>
/*
 ** Local Prototype
 */
 CS_RETCODE           ex_srv_alt_header PROTOTYPE((
 SRV_PROC             *spp
 ));

/* 
 ** EX_SRV_ALT_HEADER
 **
 **     Example routine to illustrate the use of srv_alt_header
 **     to describe a compute row’s row identifier and bylist.
 **
 ** Arguments:
 **     spp - A pointer to an internal thread control structure.
 **
 ** Returns:
 **
 **   CS_SUCCEED     A compute row was successfully described.
 **   CS_FAIL        An error was detected.
 */
 CS_RETCODE     ex_srv_alt_header(spp)
 SRV_PROC     *spp;

{
      CS_INT          altid;
      CS_SMALLINT     bylist[2];

    /* 
      ** Let us describe a fictitious compute row with altid =1, 
      ** and bylist = [2,4].
      */
      altid = (CS_INT)1;
      bylist[0] = (CS_SMALLINT)2;
      bylist[1] = (CS_SMALLINT)4;

     if (srv_alt_header(spp, altid,
           sizeof(bylist)/sizeof(CS_SMALLINT),
                bylist) == CS_FAIL)
           return (CS_FAIL);

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 227

     return (CS_SUCCEED);
 }

Usage • Only applications that mimic Adaptive Server’s feature of returning 
compute row information will need to call srv_alt_header. srv_alt_header 
is most useful to applications acting as a gateway to an Adaptive Server.

• srv_alt_header assigns a unique identifier to each compute row and 
describes the bylist associated with each compute row. It must be called 
once for each compute row.

• In the Adaptive Server, compute rows result from the compute clause of a 
Transact- SQL select statement. If a Transact -SQL select statement 
contains multiple compute clauses, separate compute rows are generated 
by each clause. Open Server can return rows of compute data, mimicking 
an Adaptive Server’s response to a Transact- SQL compute clause.

• A Transact -SQL select statement’s compute clause can contain the 
keyword by, followed by a list of columns. This list, known as the 
“bylist,” divides the results into subgroups, based on changing values in 
the specified columns. The compute clause’s aggregate operators are 
applied to each subgroup, generating a compute row for each subgroup.

• The array in *bylistarrayp stores the number associated with each column 
in the bylist. That number is determined by the column’s position in the 
select statement. For example, if a column were the third item in the select 
statement, it would be listed as the number 3 in the array.

• To process compute row data, an Open Server application must:

a Call srv_alt_header to define a compute row identifier.

b Call srv_alt_descfmt for each column to describe the format the 
column data is in when the client receives it.

c Call srv_alt_bind for each column to bind the data to a local program 
variable.

d Call srv_alt_xferdata to send the row to the client, once each column 
in the compute row has been described and its data bound to a 
program variable.

See also srv_alt_bind, srv_alt_descfmt, srv_alt_xferdata



srv_alt_xferdata 

228  Open Server

srv_alt_xferdata
Description Send a compute row to a client.

Syntax CS_RETCODE srv_alt_xferdata(spp, altid)

SRV_PROC     *spp;

CS_INT            altid;

Parameters spp
A pointer to an internal thread control structure.

altid
The unique identifier for the compute row being sent to the client. The altid 
is defined using srv_alt_header.

Return value Table 3-9: Return values (srv_alt_xferdata)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype.
 */

CS_RETCODE      ex_srv_alt_xferdata PROTOTYPE((
 SRV_PROC        *spp,
 CS_INT          altid
 ));

/* 
 ** EX_SRV_ALTXFERDATA
 **
**     Example routine to send a compute row the the client using
 **     srv_altxferdata.

**
** Arguments:
**     spp     A pointer to an internal thread control structure.
**  altid      The compute row identifier (defined using
 **             srv_alt_header).
 **
 ** Returns:
 **
 **    CS_SUCCEED    The row was sent to the client.
**    CS_FAIL       An error was detected.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 229

 */
 CS_RETCODE          ex_srv_alt_xferdata(spp, altid)
SRV_PROC        *spp;
CS_INT          altid;
{
     /*
     ** Send the compute row to the client.
     */
     if (srv_alt_xferdata(spp, altid) != CS_SUCCEED)
     {
          return (CS_FAIL);
     }
     return (CS_SUCCEED);
}

Usage • Only applications that mimic Adaptive Server’s feature of returning 
compute row information will need to call srv_alt_xferdata. It is most 
useful to applications acting as a gateway to an Adaptive Server.

• srv_alt_xferdata sends a compute row to the client. It is called once for each 
altid.

• To process compute row data, an Open Server application must:

a Call srv_alt_header to define a compute row identifier.

b Call srv_alt_descfmt for each column to describe the format the 
column data is in when the client receives it.

c Call srv_alt_bind for each column to bind the data to a local program 
variable.

d Call srv_alt_xferdata to send the row to the client, once each column 
in the compute row has been described and its data bound to a 
program variable.

• All compute rows must be sent to the client before sending the completion 
status with srv_senddone.

See also srv_alt_bind, srv_alt_header, srv_alt_descfmt 

srv_bind
Description Describe and bind a program variable for a column or parameter.

Syntax CS_RETCODE srv_bind(spp, cmd, type, item, osfmtp,



srv_bind 

230  Open Server

                 varaddrp, varlenp, indp)

SRV_PROC          *spp;
CS_INT                 cmd;
CS_INT                 type;
CS_INT                 item;
CS_DATAFMT *osfmtp;
CS_BYTE             *varaddrp;
CS_INT *varlenp;
CS_SMALLINT *indp;

Parameters spp
A pointer to an internal thread control structure.

cmd
cmd indicates whether the program variable stores data going out to a client 
or coming in from a client. The following table describes the legal values for 
cmd:

Table 3-10: Values for cmd (srv_bind)

type
The type of data stored into or read from the program variable. Table 3-11 
describes the legal values for type:

Table 3-11: Values for type (srv_bind)

item
The column or parameter number. Column and parameter numbers start at 1.

Value Description

CS_SET Data in the *varaddrp is sent to a client when srv_xferdata is 
called.

CS_GET *varaddrp is initialized with data from a client after a call to 
srv_xferdata.

Type Valid cmd Description of data

SRV_RPCDATA CS_SET or CS_GET RPC or stored procedure 
parameter

SRV_ROWDATA CS_SET only Result row column

SRV_CURDATA CS_GET only Cursor parameter

SRV_KEYDATA CS_GET only Cursor key column

SRV_ERRORDATA CS_SET only Error message parameter

SRV_DYNAMICDATA CS_SET or CS_GET Dynamic SQL parameter

SRV_NEGDATA CS_SET or CS_GET Negotiated login parameter

SRV_MSGDATA CS_SET or CS_GET Message parameter

SRV_LANGDATA CS_GET only Language parameter



CHAPTER 3    Routines

Server-Library/C Reference Manual 231

osfmtp
A pointer to a CS_DATAFMT structure. This structure describes the format 
of the data stored in *varaddrp.

varaddrp
A pointer to the program variable to which the column or parameter data is 
bound.

varlenp
A pointer to the length of varaddrp. Its precise meaning and characteristics 
differ depending on the value of cmd. Table 3-12 summarizes the legal 
values for varlenp:

Table 3-12: Values for varlenp (srv_bind)

When retrieving data, *varlenp is empty until the application calls 
srv_xferdata. Open Server then fills the buffer with the length of the newly 
received value. When sending data, an application fills in *varlenp points 
before calling srv_xferdata to send the data.

indp
A pointer to a buffer containing a null value indicator. Table 3-13 lists the 
legal values for *indp:

Table 3-13: Values for indp (srv_bind)

If indp is NULL, the column data is assumed to be valid; that is, not null.

If cmd is Then varlenp

CS_SET
(data going out to client)

• Cannot be NULL

• Points to the actual length of the data in *varaddrp

• Need not be valid until srv_xferdata is called

CS_GET
(data coming in from 
client)

• Can be NULL (indicating that the Open Server 
application al&ready knows the length of the data)

• Is a pointer to the program variable in which Open 
Server places the actual length of the data

• Is filled in after a call to srv_xferdata

Value Indicates

CS_NULLDATA Column or parameter data is null.

CS_GOODDATA Column or parameter data is not null.



srv_bind 

232  Open Server

Return value Table 3-14: Return values (srv_bind)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE      ex_srv_bind PROTOTYPE((
SRV_PROC               *spp,
CS_INT                 *nump,
CS_BYTE                *namep,
CS_INT                 *lenp
));
/*
 ** EX_SRV_BIND
**
**     Example routine using srv_bind to describe and bind two
 **     program.
**     variables to receive client RPC parameters. For this
 **     example, the
**     RPC is passed an employee number, and last name. A third
 **     program. 
**     variable will be bound to receive the length of the
 **     employee’s name.
**     This routine is called prior to srv_xferdata, which will
 **     actually transfer the data into the program variables.
**
** Arguments:
**     spp     A pointer to an internal thread control structure.
**     nump    A Pointer to the integer to receive the employee
 **             number.
**     namep   A Pointer to the memory area to receive the
 **             employee name.
**    lenp     A Pointer to the integer to receive the length of
 **             the employee’s name. (On input, points to the
 **             maximum length of the memory area available.)
**
** Returns:
**    CS_SUCCEED    Program variables were successfully bound.
**    CS_FAIL       An error was detected.
 */
CS_RETCODE     ex_srv_bind(spp, nump, namep, lenp)

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 233

SRV_PROC        *spp;
CS_INT          *nump;
CS_BYTE         *namep;
CS_INT          *lenp;
{
     CS_INT               param_no;
     CS_DATAFMT           varfmt;
     srv_bzero((CS_VOID *)&varfmt, (CS_INT)sizeof(varfmt));
     /*
     ** First, bind the integer to receive the employee number,
     ** param 1. Here, we know the length of the data, so no
     ** length pointer is required.
     */
     param_no = 1;
     varfmt.datatype = CS_INT_TYPE;
     varfmt.maxlength = (CS_INT)sizeof(CS_INT);
     if (srv_bind(spp, (CS_INT)CS_GET, (CS_INT)SRV_RPCDATA,
          param_no, &varfmt, (CS_BYTE *)nump, (CS_INT *)NULL,
          (CS_SMALLINT *)NULL) != CS_SUCCEED)
     {
          return(CS_FAIL);
     }
     /*
      ** Then, bind the character memory to receive the
      ** employee name, param 2.
      */
     param_no = 2;
     varfmt.datatype = CS_CHAR_TYPE;
     varfmt.maxlength = *lenp;
     if (srv_bind(spp, (CS_INT)CS_GET, (CS_INT)SRV_RPCDATA,
           param_no,
          &varfmt, namep, lenp, (CS_SMALLINT *)NULL) !=
           CS_SUCCEED)
     {
          return(CS_FAIL);
     }
     return(CS_SUCCEED);
}

Usage • srv_bind describes the format of a row column or parameter and associates 
it with an application program variable.

• srv_bind must be called once for each column in a results row or parameter 
in a parameter stream.



srv_bind 

234  Open Server

• Applications that want to change local program variable addresses 
(varaddrp, varlenp, or indp) between sending rows must call srv_bind 
followed by srv_xferdata each time such a change occurs. 

• A Server-Library application sends data to a client in two stages: 

First, it calls srv_bind with cmd equal to CS_SET. The parameters 
varaddrp, varlenp, and indp contain a pointer to the data being found, a 
pointer to its length, and a pointer to an indicator variable. At this time, 
Server-Library records the addresses passed in these pointer parameters. 

These values must remain valid until the application calls srv_xferdata, 
which is when Server-Library reads the values from those memory 
locations. For example, different buffers must be used when multiple data 
items are passed in separate calls to srv_bind.

• Error data parameters must be described (srv_descfmt), bound (srv_bind) 
and sent to the client (srv_xferdata) immediately after a call to srv_sendinfo 
and before calling srv_senddone. The type argument of the srv_descfmt, 
srv_bind, and srv_xferdata routines is set to SRV_ERRORDATA.

• Message data parameters must be described (srv_descfmt), bound 
(srv_bind), and transferred (srv_xferdata) following a call to the srv_msg 
routine. The type argument of the srv_descfmt, srv_bind, and srv_xferdata 
routines is set to SRV_MSGDATA.

• The srv_bind routine reads from (CS_GET) or sets (CS_SET) the 
CS_DATAFMT fields listed in the table below. All other fields are 
undefined for srv_bind. (Note that “osfmtp” is a pointer to the structure.

Table 3-15: CS_DATAFMT fields used (srv_bind)

To send a null value in a column, the status value of that column’s 
CS_DATAFMT structure must have the CS_CANBENULL bit set. Refer 
to Table 2-9 on page 57 for possible values of status in the 
CS_DATAFMT structure.

Field
In CS_SET operations, it 
is:

In CS_GET 
operations, it is:

osfmtp→datatype Datatype of application 
program variable

Datatype of application 
program variable

osfmtp→maxlength Actual length of program 
variable

Maximum length of 
program variable

osfmtp→count 0 or 1 0 or 1

osfmtp→status CS_CANBENULL must be set 
if you are sending null values.

Unused



CHAPTER 3    Routines

Server-Library/C Reference Manual 235

• If the format described by osfmtp differs from the format of the data 
received from the client (cmd set to CS_GET), Open Server automatically 
converts the data to osfmtp. If it differs from the format in which the data 
is sent to the client (cmd set to CS_SET), Open Server automatically 
converts it to the client format (clfmtp).

See also srv_cursor_props, srv_descfmt, srv_msg, srv_sendinfo, srv_xferdata, 
“CS_DATAFMT structure” on page 54, “Processing parameter and row data” 
on page 134.

srv_bmove
Description Copy bytes from one memory location to another.

Syntax CS_VOID srv_bmove(sourcep, destp, count)

CS_VOID     *sourcep;
CS_VOID     *destp;
CS_INT        count;

Parameters sourcep
A non-null pointer to the source of the data to be copied.

destp
A non-null pointer to the destination for the data to be copied.

count
The number of bytes to copy from sourcep to destp.

Return value None.

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_VOID          ex_srv_bmove PROTOTYPE((
CS_VOID          *src,
CS_VOID          *dest,
CS_INT           count
));

/* 
** EX_SRV_BMOVE
**



srv_bzero 

236  Open Server

**     Example routine to copy data from one area of memory to
        another.
 **
** Arguments:
**     src     - The address of the source data.
**     dest    - The address of the destination buffer.
**     count   - The number of bytes to copy.
**
** Returns:
**          Nothing.
 */
CS_VOID          ex_srv_bmove(src, dest, count)
CS_VOID          *src;
CS_VOID          *dest;
CS_INT           count;
{
     /*
     ** Call the Open Server routine that will do the
      ** actual copy.
     */
     srv_bmove(src, dest, count);

     /*
     ** All done.
     */
     return;
}

Usage • srv_bmove copies count bytes from the memory location *sourcep to the 
memory location *destp.

• Both sourcep and destp must be valid non-null pointers or a memory fault 
will occur.

• Only count bytes are moved and no null terminator is added.

See also srv_bzero 

srv_bzero
Description Set the contents of a memory location to zero.

Syntax CS_VOID srv_bzero(locationp, count)



CHAPTER 3    Routines

Server-Library/C Reference Manual 237

CS_VOID     *locationp;
CS_INT        count;

Parameters locationp
A non-null pointer to the address of the buffer to be zeroed.

count
The number of bytes at locationp to set to 0x00.

Return value None.

Examples

#include          <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE           ex_srv_bzero PROTOTYPE((
 CS_VOID              *locationp,
 CS_INT               cnt
 ))
/*
 ** EX_SRV_BZERO
**     Example routine to set the contents of a section of memory
 **     to zero using srv_bzero
**
** Arguments:
**
**     memp          Pointer to section of memory.
**     count         Number of bytes to set to zero.
**
** Returns
**     CS_SUCCEED     Arguments were valid and srv_bzero called.
**     CS_FAIL        An error was detected.
**
 */
CS_RETCODE      ex_srv_bzero(memp, count)
CS_VOID         *memp;
CS_INT          count;
{
     /* Check arguments. */
     if(memp == (CS_VOID *)NULL)
     {
          return(CS_FAIL);
     }
     if(count < 0)
     {
          return(CS_FAIL);



srv_callback 

238  Open Server

     }

     /*
     ** Set the section of memory to the value 0x00.
     */
     (CS_VOID)srv_bzero(memp,count);
     return(CS_SUCCEED);
}

Usage • srv_bzero sets count bytes to the value 0x00 at memory location locationp.

• locationp must be a valid non-null pointer or a memory fault will occur.

See also srv_bmove

srv_callback
Description Install a state transition handler for a thread.

Syntax CS_RETCODE srv_callback(spp, callback_type, funcp)

SRV_PROC         *spp;
CS_INT                callback_type;
CS_RETCODE     (*funcp)();

Parameters spp
A pointer to an internal thread control structure.

callback_type
An integer that indicates the state transition for which the callback is being 
installed. Table 3-16 summarizes the legal values for callback_type:



CHAPTER 3    Routines

Server-Library/C Reference Manual 239

Table 3-16: Values for callback_type (srv_callback)

funcp
A pointer to the function to call when the specified state transition occurs.

A callback function takes a thread pointer argument.

Return value Table 3-17: Return values (srv_callback))

Examples

#include          <stdio.h>
#include          <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE        suspend_handler PROTOTYPE((
SRV_PROC          *srvproc
));
CS_RETCODE ex_srv_callback PROTOTYPE((
SRV_PROC          *srvproc
));

CS_RETCODE     suspend_handler(srvproc)
SRV_PROC       *srvproc;

Value Description

SRV_C_EXIT The thread has returned from the entry point specified in 
srv_spawn or is associated with a disconnected client. The 
handler is executed in the context of the exiting thread.

SRV_C_PROCEXEC A registered procedure has been invoked and is about to 
execute. The handler executes in the context of the thread 
that requested the registered procedure.

SRV_C_RESUME The thread is resuming. The handler executes in the 
scheduler thread’s context and uses its stack.

SRV_C_SUSPEND The thread is suspending. The handler executes in the 
context of the thread that is suspending and uses its stack.

SRV_C_TIMESLICE The callback routine you install for this state transition is 
called when a thread has executed for a period of time (time 
slice) determined by the SRV_S_TIMESLICE, 
SRV_S_VIRTCLKRATE, and SRV_S_VIRTTIMER server 
properties. See srv_props on page 334 and “Properties” on 
page 139 for more information about these parameters.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_callback 

240  Open Server

{
     printf(“Wake me when it’s over...\n”);
     return(CS_SUCCEED);
}

/* 
** EX_SRV_CALLBACK
**
**     Example routine to install a state transition handler.
**
** Arguments:
**   srvpro  - A pointer to an internal thread control structure.
**
** Returns:
**
**     CS_SUCCEED
**     CS_FAIL
*/
CS_RETCODE          ex_srv_callback(srvproc)
SRV_PROC            *srvproc;
{
     return(srv_callback(srvproc, SRV_C_SUSPEND,
                 suspend_handler));
}

Usage • Use srv_callback to specify a routine to execute when a thread passes from 
one state to another.

• An application calls the callback routine with a pointer to the thread that 
is changing states.

• Table 3-18 summarizes the value each type of callback routine should 
return:



CHAPTER 3    Routines

Server-Library/C Reference Manual 241

Table 3-18: Valid returns for callback routines (srv_callback)

• Some callback types are not available on some platforms. You can call 
srv_capability to find out if a handler can be installed for a callback type on 
the current platform.

• To remove a callback routine installed by a previous call to srv_callback, 
install a null function in its place. For example, to de-install a previously 
SRV_C_TIMESLICE handler, issue the following command:

     srv_callback(spp, SRV_C_TIMESLICE, NULL); 

• Set the funcp argument to NULL if your application will use the callback 
handler for notifications only. See “Registered procedures” on page 162 
for more details.

See also srv_capability, srv_props, srv_termproc

Type of callback 
routine Return value

Description of 
return value

SRV_C_EXIT Ignored by Open Server, but 
should be set to 
SRV_CONTINUE for the 
sake of future compatibility.

SRV_C_PROCEXEC SRV_S_INHIBIT Cancel execution of the 
registered procedure.

SRV_S_CONTINUE Continue execution of 
the registered 
procedure.

SRV_C_RESUME Ignored by Open Server, but 
should be set to 
SRV_CONTINUE for the 
sake of future compatibility.

SRV_C_SUSPEND Ignored by Open Server, but 
should be set to 
SRV_CONTINUE for the 
sake of future compatibility.

SRV_C_TIMESLICE SRV_CONTINUE Continue execution 
uninterrupted.

SRV_TERMINATE Terminate the thread.

SRV_DEBUG Add the thread to the 
debug queue for 
subsequent 
examination with a 
debugger.



srv_capability 

242  Open Server

srv_capability
Description Determine whether Open Server supports a platform-dependent service.

Syntax CS_BOOL srv_capability(capability)

CS_INT                 capability;

Parameters capability
A constant that represents the Open Server services to test. Table 3-19 
describes the legal values for capability:

Table 3-19: Values for capability (srv_capability)

Return value Table 3-20: Return values (srv_capability)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype
 */
extern CS_RETCODE ex_srv_capability PROTOTYPE((void));
/* 
 ** EX_SRV_CAPABILITY
**
**     Example routine to determine whether srv_poll is supported 
 **     on this platform.
 **
** Arguments:
**     None.

Value Description

SRV_C_DEBUG srv_dbg_stack and srv_dbg_switch are supported.

SRV_C_EXIT A callback routine can be invoked when a thread terminates.

SRV_C_RESUME A callback routine can be invoked when a thread resumes 
execution.

SRV_C_PREEMPT Preemptive scheduling is supported.

SRV_C_SELECT srv_select is supported.

SRV_C_SUSPEND A callback routine can be invoked when a thread is 
suspended.

SRV_C_TIMESLICE A callback routine can be invoked when a thread exceeds the 
maximum number of clock ticks.

SRV_POLL srv_poll is supported.

Returns To indicate

CS_TRUE Open Server supports the service.

CS_FALSE Open Server does not support the service.



CHAPTER 3    Routines

Server-Library/C Reference Manual 243

**
** Returns:
**
**     CS_SUCCEED   srv_poll is supported on this platform.
**     CS_FAIL      srv_poll is not supported on this platform.
 */
CS_RETCODE          ex_srv_capability()
{
     CS_BOOL supported;
     /*
      ** Check to see whether srv_poll is supported on this 
      ** platform.
      */
      supported = srv_capability(SRV_C_POLL);
     /*
      ** If “supported” is CS_TRUE, we return CS_SUCCEED, if it is
      ** CS_FALSE we return CS_FAIL.
      */
      return(supported ? CS_SUCCEED : CS_FAIL);
}

Usage • srv_capability allows you to write a portable Open Server application 
program and still use services that are not available on all platforms.

• Open Server has two types of capabilities: platform capabilities and 
protocol capabilities. The srv_capability routine pertains to platform 
capabilities. The srv_capability_info routine pertains to protocol 
capabilities. See the srv_capability_info reference page, for details.

See also srv_callback, srv_capability, srv_dbg_stack, srv_dbg_switch, srv_poll (UNIX 
only), srv_select (UNIX only), srv_capability_info

srv_capability_info
Description Define or retrieve capability information on a client connection.

Syntax CS_RETCODE srv_capability_info(spp, cmd, type,

              capability, valp)

SRV_PROC      *spp;
CS_INT            cmd;
CS_INT            type;
CS_INT            capability;
CS_VOID         *valp;



srv_capability_info 

244  Open Server

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the Open Server application is defining or retrieving the 
capability information. Table 3-21 describes the legal values for cmd:

Table 3-21: Values for cmd (srv_capability_info) 

type
The capability group type. Table 3-22 summarizes the two legal types:

Table 3-22: Values for type (srv_capability_info)

capability
Specifies the capability item of interest. To set or get the bitmap for all 
capability items in a type category, set capability to CS_ALL_CAPS. See 
“Capabilities” on page 24 for a list of all request and response capabilities.

valp
A pointer to a program variable. When sending information to a client 
(CS_SET), the application sets the capability value in this variable. When 
retrieving information from a client, (CS_GET), Open Server places the 
capability value in this variable. valp should be a CS_BOOL pointer when 
the application is defining or retrieving individual capability items, and a 
CS_CAP_TYPE pointer when the application is defining or retrieving the 
full bitmap for all capability items (that is, capability is CS_ALL_CAPS).

Return value Table 3-23: Return values (srv_capability_info)

Examples

#include <ospublic.h>
CS_RETCODE     ex_srv_capability_info PROTOTYPE((

Value Meaning

CS_SET The Open Server application is defining capability information.

CS_GET The Open Server application is retrieving capability information from 
the client.

Value Meaning

CS_CAP_REQUEST The possible commands a client may want to send.

CS_CAP_RESPONSE The possible responses a client may want an Open 
Server application to withhold.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 245

 SRV_PROC       *spp
));
/*
** EX_SRV_CAPABILITY_INFO
**
**     Example routine to retrieve and define capability 
 **     information on a client connection.
**
**     This routine must called in the context of the connect
 **     handler, so that it is legal to negotiate capabilities.
**
** Arguments:
**     spp  A pointer to an internal thread control structure.
**
** Returns:
**      CS_SUCCEED - Successfully retrieved and bound capability
 **                   information.
**      CS_FAIL - An error was detected.
**
*/
CS_RETCODE               ex_srv_capability_info(spp)
SRV_PROC                 *spp;

{
     CS_RETCODE       retval;  /* Return value from Open */
                               /* Server API calls. */

     CS_CAP_TYPE      capabilities;  /* Our bit mask. */

     CS_BOOL     value; /* Set to CS_TRUE or CS_FALSE */
                        /* for individual capabilities. */

     /*
     ** In this example, we don’t want to support text or image,
      ** so we’ll see first if the client has requested this.
      ** We’ll do this by getting the entire bit mask.
     */
     retval = srv_capability_info(spp, CS_GET, CS_CAP_REQUEST,
                          CS_ALL_CAPS, (CS_VOID *)&capabilities);

     if (retval == CS_FAIL)

     {
          return (CS_FAIL);
     }



srv_capability_info 

246  Open Server

     /*
     ** Turn off text and image. 
     **
     ** The other way to do this is to just clear the
      ** CS_DATA_TEXT and CS_DATA_IMAGE bits in the capabilities
      ** bit mask, and then call srv_capability_info() with
      ** CS_ALL_CAPS for the “type” parameter and the altered
      ** bit mask as the value.
     */
     if (CS_TST_CAPMASK(&capabilities, CS_DATA_TEXT) == CS_TRUE)
     {
          value = CS_FALSE;
          retval = srv_capability_info(spp, CS_SET,
                CS_CAP_REQUEST, CS_DATA_TEXT, (CS_VOID *)&value);
          if (retval == CS_FAIL)
          {
               return (CS_FAIL);
          }
     }

     if (CS_TST_CAPMASK(&capabilities, CS_DATA_IMAGE) == CS_TRUE)
     {
          value = CS_FALSE;
          retval = srv_capability_info(spp, CS_SET,
                     CS_CAP_REQUEST, CS_DATA_IMAGE, (CS_VOID*)
                     &value);
          if (retval == CS_FAIL)
          {
               return (CS_FAIL);
          }
     }

     return (CS_SUCCEED);
}

Usage • An Open Server application and a client must agree on what requests the 
client can issue and what responses the Open Server application will 
return. A client/server connection’s capabilities determine the types of 
client requests and server responses permitted for that connection.

• Open Server assigns a default set of capabilities for all connections. An 
Open Server application that does not want the default set of capabilities 
to apply to a given connection can call srv_capability_info to negotiate 
explicitly a different set of capabilities.



CHAPTER 3    Routines

Server-Library/C Reference Manual 247

• See “Capabilities” on page 24 for a list of the default set of requests and 
response capabilities.

Note  Response capabilities indicate the kinds of responses the client does 
not want to receive.

• Open Server has two types of capabilities: platform capabilities and 
protocol capabilities. The srv_capability routine pertains to platform 
capabilities. The srv_capability_info routine pertains to protocol 
capabilities. For more information on srv_capability, see srv_capability.

See also srv_capability, srv_props, “Capabilities” on page 24, “Properties” on page 
139

srv_createmsgq
Description Create a message queue.

Syntax CS_RETCODE srv_createmsgq(msgqnamep, msgq_namelen,

              msgqidp)

CS_CHAR        *msgqnamep;
CS_INT             msgqname_len;
SRV_OBJID     *msgqidp;

Parameters msgqnamep
A pointer to the name of the queue to create. It is an error to attempt to create 
a queue that al&ready exists.

msgqname_len
The length of the name in *msgqnamep. If the name is null terminated, an 
application can set msgqname_len to CS_NULLTERM. A message queue 
can be up to SRV_MAXNAME characters long.

msgqidp
Open Server returns the ID of the newly created message queue in 
*msgqidp.



srv_createmsgq 

248  Open Server

Return value Table 3-24: Return values (srv_createmsgq)

Examples

#include <ospublic.h>

/*
** Local Prototype
*/
CS_RETCODE      ex_srv_createmsgq PROTOTYPE((
     SRV_OBJID     *msgqp,
     CS_CHAR       *msgqnm
));

/*
** EX_SRV_CREATEMSGQ
**
**     Example routine to create an Open Server message queue
 **     using srv_createmsgq.
**
** Arguments:
**     msgqp   Return pointer to the created message queue
 **             identifier.
**     msgqn   Null terminated name for the created queue.
**
** Returns:
**  CS_SUCCEED  Message queue with given name successfully
                 created.
**  CS_FAIL     An error was detected.
*/
CS_RETCODE            ex_srv_createmsgq(msgqp, msgqnm)
SRV_OBJID             *msgqp;
CS_CHAR               *msgqnm;
{
     /* Check parameters. */
     if ((CS_INT)strlen(msgqnm) > SRV_MAXNAME)
     {
          return(CS_FAIL);
     }

     /* Create the message queue. */
     if (srv_createmsgq(msgqnm, (CS_INT)CS_NULLTERM, msgqp) !=
           CS_SUCCEED)

Returns: To indicate:

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 249

     {
          return(CS_FAIL);
     }
     return(CS_SUCCEED);
}

Usage • When creating a message queue, an application must assign it a name. 
Once a message queue has been created, an application can reference it 
either by name or by ID.

• Given the ID of a message queue, use srv_getobjname to look up the name.

• SRV_OBJID is defined as a CS_INT.

• The SRV_S_NUMMSGQUEUES server property determines the number 
of message queues available to an Open Server application. Refer to 
“Server properties” on page 141 for more information.

• The SRV_S_MSGPOOL server property determines the number of 
messages available to an Open Server application at runtime. Refer to 
“Server properties” on page 141 for more information.

See also srv_deletemsgq, srv_getmsgq, srv_getobjname, srv_putmsgq 

srv_createmutex
Description Create a mutual exclusion semaphore.

Syntax CS_RETCODE srv_createmutex(mutex_namep, mutex_namelen, 
               mutex_idp)

CS_CHAR          *mutex_namep;
CS_INT               mutex_namelen;
SRV_OBJID       *mutex_idp;

Parameters mutex_namep
A pointer to the name of the mutex to create.

mutex_namelen
The length of the name in *mutex_namep. If the string is null terminated, an 
application can set mutex_namelen to CS_NULLTERM.

mutex_idp
Open Server returns the ID of the new mutex in the *mutex_idp.



srv_createmutex 

250  Open Server

Return value Table 3-25: Return values (srv_createmutex)

Examples

#include     <ospublic.h>
/*
 ** Local Prototype.
 */
CS_RETCODE               ex_srv_createmutex PROTOTYPE((
CS_CHAR           *name,
CS_INT            namelen,
SRV_OBJID         *idp
));

/* 
** EX_SRV_CREATEMUTEX
**
**     Example routine to create an Open Server mutex.
**
** Arguments:
**
**     name      The name of the mutex to create.
**     namelen   The length of name.
**     idp       The address of a SRV_OBJID, which will be set
 **               to the unique identifier for the created mutex.
**
** Returns:
**          CS_SUCCEED      The mutex was created successfuly.
**          CS_FAIL         An error was detected.
*/
CS_RETCODE           ex_srv_createmutex(name, namelen, idp)
CS_CHAR              *name;
CS_INT               namelen;
SRV_OBJID            *idp;
{
     /*
     ** Call the Open Server routine that will create
      ** the mutex.
     */
     if( srv_createmutex(name, namelen, idp) == CS_FAIL )
     {
          /*
          ** An error was al&ready raised.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 251

          */
          return CS_FAIL;
     }
     
     /*
     ** All done.
     */
     return CS_SUCCEED;
}

Usage • When creating a mutex, an application must assign it a name. Once a 
mutex has been created, the application can reference it either by name or 
by ID.

• If you have the ID of a mutex, you can use srv_getobjname to look up the 
name.

• Creating a mutex does not grant a lock to its creator. Use srv_lockmutex to 
lock it once a mutex has been created.

• SRV_OBJID is defined as a CS_INT.

See also srv_deletemutex, srv_getobjname, srv_lockmutex, srv_unlockmutex 

srv_createproc
Description Create a non-client, event-driven thread.

Syntax SRV_PROC         *srv_createproc(ssp)

SRV_SERVER     *ssp;

Parameters ssp
A pointer to the Open Server state information control structure.

Return value If successful, srv_createproc returns a pointer to the new thread control 
structure. If unsuccessful, srv_createproc returns a NULL thread pointer, and 
Open Server raises an error.



srv_createproc 

252  Open Server

Table 3-26: Return values (srv_createproc)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE               ex_srv_creatp     PROTOTYPE((
SRV_SERVER               *ssp,
SRV_PROC                 *newsp
));
/*
** EX_SRV_CREATP
**     Example routine to create a non-client, event driven 
 **     thread.
**
** Arguments:
**
**     ssp     A pointer to the Open Server state information
 **             control structure.
**    newsp    A pointer that will be returned by srv_createproc
 **             and point to the new thread control structure.
**
** Returns
**
**     CS_SUCCEED            Thread was created.
**     CS_FAIL               An error was detected.
**
 */
CS_RETCODE             ex_srv_creatp(ssp, newsp)
SRV_SERVER             *ssp;
SRV_PROC               *newsp;
{
     /* Check arguments. */
     if(ssp == (SRV_SERVER *)0)
          return(CS_FAIL);

     /*
     ** Create the new thread
     */

Returns To indicate

A pointer to the new thread control 
structure

Open Server created the thread.

A null thread pointer Open Server could not create the thread.

Open Server raises an error.



CHAPTER 3    Routines

Server-Library/C Reference Manual 253

     newsp = srv_createproc(ssp);
     if(newsp == (SRV_PROC *)NULL)
          return(CS_FAIL);
     return(CS_SUCCEED);
}

Usage • srv_createproc creates a thread that is driven by programmer-defined 
events raised by srv_event or srv_event_deferred.

• Non-client threads receive only programmer-defined events. They never 
receive client-generated events.

• Use srv_termproc to terminate a thread created with srv_createproc.

• Non-client threads have no client I/O. Calling srv_thread_props with the 
property argument set to (SRV_T_IODEAD) always returns CS_FALSE 
for a non-client thread.

See also srv_event,srv_event_deferred, srv_spawn, srv_termproc, srv_thread_props 

srv_cursor_props
Description Retrieve or set information about the current cursor.

Syntax CS_RETCODE srv_cursor_props(spp, cmd, cdp)

SRV_PROC            *spp;
CS_INT                   cmd;
SRV_CURDESC    *cdp;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether srv_cursor_props sends cursor information to the client or 
retrieves cursor information from the client. The following table describes 
the legal values for cmd:



srv_cursor_props 

254  Open Server

Table 3-27: Values for cmd (srv_cursor_props)

cdp
A pointer to a SRV_CURDESC structure. When the application is setting 
cursor information, the SRV_CURDESC structure describes the current 
cursor. When the application is retrieving information, Open Server updates 
the SRV_CURDESC structure with information about the current cursor. 
Various fields are set or filled in at various times, depending on the current 
cursor command. For an explanation of each field in cdp and how and when 
they are filled in, see “SRV_CURDESC structure” on page 65.

Return value Table 3-28: Return values (srv_cursor_props)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype.
 */
extern CS_RETCODE     ex_srv_cursor_props PROTOTYPE((
CS_VOID               *spp
));
/* 
 ** EX_SRV_CURSOR_PROPS
**
**     Example routine to retrieve information on the current
 **     cursor.
** Arguments:
**  spp  Apointer to an internal control structure.
**
** Returns:
**
**  CS_SUCCEED     Cursor information was retrieved successfully.
**  CS_FAIL        An error was detected.
*/
CS_RETCODE         ex_srv_cursor_props(spp)
SRV_PROC           *spp;

Value Description

CS_SET srv_cursor_props sends information about the current 
cursor to the client.

CS_GET srv_cursor_props retrieves information about the 
current cursor command from the client.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 255

{
     SRV_CURDESC   curdesc;

     if(srv_cursor_props(spp, CS_GET, &curdesc) == CS_FAIL)
     {
          return(CS_FAIL);
     }
     return(CS_SUCCEED);
}

Usage • An Open Server application uses srv_cursor_props to exchange active 
cursor information with the client.

• The client always initiates this exchange by issuing a cursor command. 
The client, therefore, specifies the current cursor.

• An application can only call srv_cursor_props from inside a 
SRV_CURSOR event handler.

• Open Server generates a SRV_CURSOR event in response to each cursor 
command received from a client. An application’s SRV_CURSOR event 
handler can then call srv_cursor_props with cmd set to CS_GET to 
determine the current cursor and the type of cursor command received. It 
can then decide how to respond. For a description of valid cursor 
command types and legal responses, see “Cursors” on page 63.

• Each cursor command provokes a distinct response from an Open Server 
application. The application pulls information from the SRV_CURDESC 
structure (the requested fetch count, for example), makes decisions based 
on that data, and then sets information in the structure and sends it back to 
the client using srv_cursor_props. An application can also read in 
parameters, or send back result rows and parameters, depending on the 
circumstances.

• The SRV_CURSOR event handler must acknowledge all cursor 
commands except fetch, update, and delete by sending back a cursor 
information command. The handler sets the curcmd field in the 
SRV_CURDESC structure to CS_CURSOR_INFO and then calls 
srv_cursor_props with cmd set to CS_SET. This is the very first piece of 
information the handler sends back.

• In response to a CURSOR_DECLARE command, an Open Server 
application chooses a cursor ID to uniquely identify the current cursor. The 
application then sends the cursor ID back to the client by calling 
srv_cursor_props with cmd set to CS_SET. The client and Open Server 
application subsequently refer to the current cursor by its ID rather than its 
name.



srv_dbg_stack 

256  Open Server

See also srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “Cursors” on page 63

srv_dbg_stack
Description Display the call stack of a thread.

Syntax CS_RETCODE srv_dbg_stack(spp, depth, funcp)

SRV_PROC          *spp;
CS_INT                 depth;
CS_RETCODE     (*funcp)();

Parameters spp
A pointer to an internal thread control structure.

depth
The maximum number of call stack levels to display. If depth is -1, all levels 
are displayed.

funcp
A pointer to a function that you provide to process each line of the call stack 
display. Your function is called with a pointer to a null terminated string and 
an integer that is the length of the string. The string contains the program 
counter and the routine’s parameters formatted in hexadecimal. If your 
function returns CS_FAIL, the stack trace is terminated. If it returns 
anything else, the stack trace continues until all of the routines on the call 
stack are processed or until depth stack frames are processed. If funcp is 
NULL, Open Server writes the call stack contents to stderr.

The following is a typical implementation for a function:

CS_RETCODE callstack_display(linebuf, length) 
 CS_CHAR  *linebuf; 
 CS_INT   length; 
 { 
      /* 
      ** Output each line of the stack trace to stderr.  
      */ 
      fprintf(stderr,"%s\n", linebuf); 
      return(CS_SUCCEED); 
 } 



CHAPTER 3    Routines

Server-Library/C Reference Manual 257

Return value Table 3-29: Return values (srv_dbg_stack)

Examples

#include <ospublic.h>
/*
** Local prototype.
*/
CS_RETCODE      ex_srv_dbg_stack PROTOTYPE((
SRV_PROC        *spp
));

/*
** EX_SRV_DBG_STACK
**
**     Example routine to display the call stack of a thread.
**
** Arguments:
**     spp  -  A pointer to an internal thread control structure.
**
** Returns:
**     CS_SUCCEED    Call stack successfully displayed.
**     CS_FAIL       An error was detected.
**
*/
CS_RETCODE           ex_srv_dbg_stack(spp)
SRV_PROC       *spp;
{
     CS_RETCODE retval;

     retval = srv_dbg_stack(spp, -1, (CS_RETCODE(*)())NULL);

     return (retval);
}

Usage • srv_dbg_stack is not available on all platforms. Use srv_capability to 
determine if it is available on the current platform.

• srv_dbg_stack allows you to examine the call stack of a thread during 
debugging or when handling execution errors. It can be called from a 
debugger or from the running application.

• A typical use for srv_dbg_stack is to record the stack frame in the error log 
when a serious error occurs.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_dbg_switch 

258  Open Server

• Each routine on the call stack is formatted into a string consisting of the 
program counter, in hexadecimal, followed by each parameter, also in 
hexadecimal. You will need a load map of the executable to translate the 
program counter to a function name.

• If called to display the stack of the currently running thread, srv_dbg_stack 
and the routines it calls appear at the top of the stack.

See also srv_capability, srv_dbg_switch 

srv_dbg_switch
Description Temporarily restore another thread context for debugging.

Syntax CS_RETCODE srv_dbg_switch(spid)

CS_INT           spid;

Parameters spid
The server process ID (spid) of the thread whose context should be 
temporarily restored.

Return value Table 3-30: Return values (srv_dbg_switch)

Usage • srv_dbg_switch is not available on all platforms. Use srv_capability to 
determine whether a platform supports srv_dbg_switch.

• Once a thread context is switched, continuing execution of the application 
restores the original thread context and the application continues to run 
normally.

• The thread whose context has been restored is not runnable. It can only be 
examined.

• On UNIX systems, do not call srv_dbg_switch from within system service 
routines. If you do, a SIGTRAP signal is raised and the program 
terminates.

• The spid can be obtained by calling srv_thread_props with the property 
argument set to SRV_T_SPID. It is an error to attempt to restore the 
context for the currently running thread.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 259

See also srv_capability, srv_dbg_stack

srv_define_event
Description Define a user event.

Syntax int srv_define_event(ssp, type, namep, namelen)

SRV_SERVER     *ssp;
CS_INT               type;
CS_CHAR          *namep;
CS_INT              namelen;

Parameters ssp
A pointer to the Open Server control structure.

type
The type of event. Currently, programmer-defined events must be of type 
SRV_EQUEUED.

namep
A pointer to the name of the event.

namelen
The length, in bytes, of string in *namep. If the string is null terminated, 
namelen can be CS_NULLTERM.

Return value Table 3-31: Return values (srv_define_event)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE      ex_srv_define_event PROTOTYPE((
CS_CHAR        *namep,
CS_INT         namelen,
CS_INT         *event_no
));
/* 

Returns To indicate

A non-zero integer The unique id for the vent.

0 Open Server cannot define the event.

Open Server raises an error.



srv_define_event 

260  Open Server

 ** EX_SRV_DEFINE_EVENT
**
**   Example routine to illustrate the use of srv_define_event to
 **   define an user event.
**
** Arguments:
**     namep   A pointer to the name of event.
**     namelen The length, in bytes, of string in *namep.
**     event_no  A CS_INT pointer that is initialized with
 **               the unique number for the event.
** Returns:
**
**  CS_SUCCEED   If the event was defined successfully.
**  CS_FAIL      An error was detected.
 */
CS_RETCODE     ex_srv_define_event(namep, namelen, event_no)
CS_CONTEXT *cp;
 CS_VOID        *bufp;
 CS_CHAR        *namep;
 CS_INT         namelen;
 CS_INT         *event_no;
 CS_INT         result;
{
     SRV_PROC *srvproc_ptr; /* A pointer to an internal thread
                             ** control structure */

     result = srv_props(cp, CS_GET, SRV_S_CURTHREAD, 
            bufp, sizeof(CS_INT));
     if (result == CS_FAIL)
      {
          return (CS_FAIL);
      }
     /* Now define the event. */
     if ((*event_no = srv_define_event(srvproc_ptr, SRV_EQUEUED, 
           namep, namelen)) == (CS_INT)0)
          return (CS_FAIL);
     return (CS_SUCCEED);
}

Usage • Programmer-defined events are triggered by calling srv_event rather than 
by client actions. The Open Server programmer provides a handler routine 
that executes when the event is triggered.

• Event handlers for programmer-defined events are installed in the usual 
way, with srv_handle.

• Handlers for programmer-defined events receive a pointer to the thread 
control structure for the thread that received the event.



CHAPTER 3    Routines

Server-Library/C Reference Manual 261

• Events cannot be defined unless the Open Server application has been 
configured to allow programmer-defined events. For details, see the 
srv_props reference page.

See also  srv_event, srv_event_deferred, srv_handle, srv_props, “Events” on page 92

srv_deletemsgq
Description Delete a message queue.

Syntax CS_RETCODE srv_deletemsgq(msgqnamep, msgqname_len,

              msgqid)

CS_CHAR       *msgqnamep;
CS_INT            msgqname_len;
SRV_OBJID     msgqid;

Parameters msgqnamep
A pointer to the name of the message queue to delete. It is an error to attempt 
to delete a message queue that does not exist.

msgqname_len
The length of the name pointed to by msgqname. If the name is null 
terminated, msgqname_len can be set to CS_NULLTERM.

msgqid
A SRV_OBJID that specifies the identifier of message queue to delete.

Return value Table 3-32: Return values (srv_deletemsgq)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype.
 */
CS_RETCODE      ex_srv_deletemsgq PROTOTYPE((
CS_CHAR         *msgqname,
CS_INT          msgqname_len,
SRV_OBJID msgqid

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_deletemsgq 

262  Open Server

));
/* 
 ** EX_SRV_DELETEMSGQ
**
**     Example routine using srv_deletemsgq to delete an Open
 **     Server message queue previously create by srv_createmsgq.
** This routine can be passed a value message queue name, or
 ** NULL,in which case the message queue identifier will be used.
**
** Arguments:
**  msgqname        The name of the message queue to delete. If
 **                  NULL, the msgqid is used.
 **  msgqname_len    The length of the name to which msgqname 
 **                  points.
 **  msgqid          A SRV_OBJID that specifies the identifier of
 **                  the message queue to delete.
 **
** Returns:
**
**    CS_SUCCEED    The message queue was successfully deleted.
**    CS_FAIL       An error was detected.
 */
CS_RETCODE      ex_srv_deletemsgq(msgqname, msgqname_len, msgqid)
CS_CHAR         *msgqname;
CS_INT          msgqname_len;
SRV_OBJID       msgqid;
{
     /*
      ** Delete a message queue.
      */
     if (srv_deletemsgq(msgqname, msgqname_len, msgqid) !=
           CS_SUCCEED)
     {
          return(CS_FAIL);
     }
     return(CS_SUCCEED);
}

Usage • Message queues can be deleted by either name or ID. If msgqname is not 
NULL, the message queue name is used; otherwise, the message queue ID 
is used.

• Unread messages in the queue are flushed before the queue is deleted. 
Threads waiting in srv_putmsgq wake up. srv_putmsgq returns CS_FAIL.



CHAPTER 3    Routines

Server-Library/C Reference Manual 263

• When a message queue is deleted, threads waiting for messages from the 
queue wake up with a CS_FAIL return value from srv_getmsgq, and 
srv_getmsgq’s infop argument is set to SRV_I_DELETED.

• The SRV_S_NUMMSGQUEUES server property determines the number 
of message queues available to an Open Server application. Refer to 
“Server properties” on page 141 for more information.

• The SRV_S_MSGPOOL server property determines the number of 
messages available to an Open Server application at runtime. Refer to 
“Server properties” on page 141 for more information.

See also srv_createmsgq, srv_getmsgq, srv_getobjname, srv_putmsgq 

srv_deletemutex
Description Delete a mutex created by srv_createmutex.

Syntax CS_RETCODE srv_deletemutex(mutex_namep, mutex_namelen,

               mutex_id)

CS_CHAR        *mutex_namep;
CS_INT             mutex_namelen;
SRV_OBJID      mutex_id;

Parameters mutex_namep
A pointer to the name associated with the mutex when it was created.

mutex_namelen
The length, in bytes, of the mutex_namep. If the string is null terminated, 
mutex_namelen can be set to CS_NULLTERM.

mutex_id
The unique identifier returned by srv_createmutex.

Return value Table 3-33: Return values (srv_deletemutex)

Examples

#include <ospublic.h>
/*
 ** Local Prototype.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_deletemutex 

264  Open Server

 */
CS_RETCODE    ex_srv_deletemutex PROTOTYPE((
CS_CHAR         *mtxnm,
SRV_OBJID       mtxid
));
/*
 ** EX_SRV_DELETEMUTEX
**     Example routine using srv_deletemutex to delete an
 **     Open Server mutex previously created by srv_createmutex.
 **     This routine can be passed a mutex name, or NULL,
 **     in which case the mutex identifier will be used.
** Arguments:
**     mtxnm     Null terminated mutex name, or NULL to use mutex 
 **               id.
 **    mtxid      Mutex identifier (valid only if mtxnm is NULL).
** Returns:
**   CS_SUCCEED     mutex was successfully queued for deletion.
 **   CS_FAIL        An error was detected.
 */
CS_RETCODE              ex_srv_deletemutex(mtxnm, mtxid)
CS_CHAR                 *mtxnm;
SRV_OBJID               mtxid;
{
     /* Delete the mutex. */
      if (srv_deletemutex(mtxnm, (CS_INT)CS_NULLTERM, mtxid) != 
           CS_SUCCEED)
     {
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • The mutex to delete can be referenced by its name or ID. If mutex_namep 
is not NULL, the name is used; otherwise, the ID is used.

• A mutex is not deleted until other threads waiting to lock the mutex have 
had their requests satisfied and have released their locks.

• An example of the use of mutexes appears on the srv_createmutex 
reference page.

See also srv_createmutex, srv_getobjid, srv_getobjname, srv_lockmutex



CHAPTER 3    Routines

Server-Library/C Reference Manual 265

srv_descfmt
Description Describe or retrieve the description of a column or parameter going to or 

coming from a client.

Syntax CS_RETCODE srv_descfmt(spp, cmd, type, item,

               clfmtp)

SRV_PROC        *spp;
CS_INT               cmd;
CS_INT               type;
CS_INT               item;
CS_DATAFMT *clfmtp;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether srv_descfmt describes data being sent to the client or 
retrieves a description of data received from the client. Table 3-34 describes 
the legal values for cmd:

Table 3-34: Values for cmd (srv_descfmt)

type
If cmd is CS_SET, the type of data being described. If cmd is CS_GET, the 
type of data being retrieved. Table 3-35 describes the valid types and their 
appropriate context:

Value Description

CS_SET srv_descfmt describes the format the data will be in when the client 
receives it.

CS_GET srv_descfmt retrieves the format the data was in when the client sent it.



srv_descfmt 

266  Open Server

Table 3-35: Values for type (srv_descfmt)

item
The parameter or column number. Parameter and column numbers start at 1.

clfmtp
A pointer to a CS_DATAFMT structure containing a description of the data.

Return value Table 3-36: Return values (srv_descfmt)

Examples

#include    <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE      ex_srv_descfmt PROTOTYPE((
SRV_PROC        *spp,
CS_INT          item,
CS_DATAFMT      *dp
));

/* 
** EX_SRV_DESCFMT
**
**     Example routine used to get an RPC parameter description.

Type
Permissible 
settings for cmd Description

SRV_RPCDATA CS_SET or CS_GET RPC or stored procedure 
parameters

SRV_ROWDATA CS_SET only Row data

SRV_CURDATA CS_GET only Cursor parameters

SRV_UPCOLDATA CS_GET only Cursor update columns

SRV_KEYDATA CS_GET only Cursor key data

SRV_ERRORDATA CS_SET only Extended error data

SRV_DYNDATA CS_SET or CS_GET Dynamic SQL data

SRV_NEGDATA CS_SET or CS_GET Negotiated login data

SRV_MSGDATA CS_SET or CS_GET MSG parameters

SRV_LANGDATA CS_GET only Language parameters

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 267

**
** Arguments:
**
**     spp          A pointer to an internal thread control 
                     structure.
**     item         The parameter number we’re looking for.
**     dp           The address of a CS_DATAFMT to be filled with
 **                  the parameter’s description.
**
** Returns:
**          CS_SUCCEED if the description was obtained, or
 **          CS_FAIL if an error was detected.
*/
CS_RETCODE      ex_srv_descfmt(sp, item, dp)
SRV_PROC        *sp;
CS_INT          item;
CS_DATAFMT      *dp;
{
     /*
     ** Call srv_descfmt to get the RPC parameter description.
     */
     if( srv_descfmt(sp, CS_GET, SRV_RPCDATA, item, dp) ==
           CS_FAIL )
     {
          /*
          ** An error was al&ready raised.
          */
          return CS_FAIL;
     }

     /*
     ** All done.
     */
     return CS_SUCCEED;
}

Usage • srv_descfmt describes the format of a variety of kinds of columns and 
parameter. See “CS_DATAFMT structure” on page 54 for details.

• When sending rows or parameters to the client (CS_SET), you must call 
srv_descfmt to describe how the data will look to the client. When 
receiving parameters from the client (CS_GET), call srv_descfmt to 
retrieve a description of the format the data was in when the client sent it. 
A gateway application may want to save this client format information to 
pass it on to the remote server.



srv_dynamic 

268  Open Server

• The srv_descfmt routine reads from (CS_GET) or sets (CS_SET) the 
CS_DATAFMT fields listed in the table below. All other fields are 
undefined for srv_descfmt. (Note that “clfmtp” is a pointer to the structure.

Table 3-37: CS_DATAFMT fields used (srv_descfmt)

• If the format described in the CS_DATAFMT structure (clfmtp) differs 
from the format described in the subsequent call to srv_bind (osfmtp), 
Open Server automatically converts to the client format (clfmtp) when cmd 
is CS_SET or the application format (osfmtp) when cmd is CS_GET.

• Once each column or parameter in the datastream has been described and 
bound, call srv_xferdata to send the data in the program variable to the 
client or update the program variable with data from the client.

• SRV_NEGDATA parameters can be sent or received as part of a 
negotiated login operation, after srv_negotiate has returned successfully.

• Key column numbers correspond to their number in the row.

See also srv_bind, srv_cursor_props,srv_dynamic, srv_msg, srv_negotiate, 
srv_numparams, srv_sendinfo, srv_xferdata, “CS_DATAFMT structure” on 
page 54

srv_dynamic
Description Read or respond to a client dynamic SQL command.

Syntax CS_RETCODE srv_dynamic(spp, cmd, item, bufp,

                          buflen, outlenp)

SRV_PROC       *spp;
CS_INT               cmd;
CS_INT               item;

Field CS_SET CS_GET

clfmtp→ namelen Length of name Length of name

clfmtp→ status Parameter/column status Parameter status

clfmtp→ name Parameter/column name Parameter name

clfmtp→datatype Remote datatype set here Remote datatype retrieved 
from here

clfmtp→maxlength Maximum length of 
remote datatype set here

Maximum length of remote 
datatype retrieved from here

clfmtp→format Remote datatype format Remote datatype formats



CHAPTER 3    Routines

Server-Library/C Reference Manual 269

CS_VOID            *bufp
CS_INT               buflen;
CS_INT              *outlenp

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether a dynamic command is being read from or sent to a client. 
Table 3-38 describes the legal values for cmd:

Table 3-38: Values for cmd (srv_dynamic)

item
Indicates what kind of information is being sent or retrieved. Table 3-39 
describes the legal values for item:

Table 3-39: Values for item (srv_dynamic)

bufp
A pointer to the buffer in which the item value is returned (CS_GET) or set 
(CS_SET).

buflen
The length, in bytes, of the *bufp buffer. Table 3-40 summarizes the required 
buffer sizes:

Value Description

CS_SET srv_dynamic is sending a response to a dynamic command back to a 
client.

CS_GET srv_dynamic is reading a dynamic command from a client.

Value Meaning

SRV_DYN_TYPE The type of dynamic operation being performed.

SRV_DYN_IDLEN The length of the dynamic statement ID.

SRV_DYN_ID The dynamic statement ID.

SRV_DYN_STMTLEN The length of the dynamic statement.

SRV_DYN_STMT The dynamic statement that is being prepared or 
executed.



srv_dynamic 

270  Open Server

Table 3-40: Required buffer sizes (srv_dynamic)

outlenp
A pointer to an integer variable which is set to the actual length of data 
copied into *bufp when retrieving data from the client (cmd is CS_GET). 
This argument is not required if cmd is CS_SET.

Return value Table 3-41: Return values (srv_dynamic)

Examples

#include        <ospublic.h>
/*
 ** Local Prototype
 */
extern CS_RETCODE                ex_srv_dynamic PROTOTYPE((
CS_VOID     *spp,
CS_INT      *optypep
));
/* 
 ** EX_SRV_DYNAMIC
**
**    Example routine to retrieve dynamic operation type from a
 **    client.
**
** Arguments:
**    spp      Thread control structure.
**    optypep  Dynamic operation type.
**
** Returns:
**

Value Required format (size)

SRV_DYN_TYPE sizeof(CS_INT).

SRV_DYN_IDLEN sizeof(CS_INT).

SRV_DYN_ID Varies. Determine length by first calling srv_dynamic with 
item set to CS_DYN_IDLEN and then allocate buffer size 
accordingly.

SRV_DYN_STMT
LEN

sizeof(CS_INT).

SRV_DYN_STMT Varies. Determine length by first calling srv_dynamic with 
item set to CS_DYN_STMTLEN and then allocate buffer size 
accordingly.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 271

**    CS_SUCCEED   Dynamic information was retrieved 
 **                 successfully.
**    CS_FAIL      An error was detected.
 */
CS_RETCODE      ex_srv_dynamic(spp, optypep)
SRV_PROC   *spp;
CS_INT     *optypep;
{
CS_INT     outlen;

    if(srv_dynamic(spp, CS_GET, SRV_DYN_TYPE, optypep,
         sizeof(*optypep), &outlen) == CS_FAIL)
    {
        return(CS_FAIL);
    }
    return(CS_SUCCEED);
}

Usage • The srv_dynamic routine allows an Open Server application to read a 
dynamic SQL command or send a response to such a command.

• Valid operation types (SRV_DYN_TYPE) include:

CS_PREPARE – prepare a statement (CS_GET only).

CS_DESCRIBE_INPUT – request input parameter formats for the current 
prepared statement (CS_GET only).

CS_DESCRIBE_OUTPUT – request column formats for the current 
prepared statement (CS_GET only).

CS_EXECUTE – execute a prepared statement (CS_GET only).

CS_EXEC_IMMEDIATE – execute an unprepared statement, which has 
no parameters and does not return results (CS_GET only).

CS_DEALLOC – deallocate a prepared statement (CS_GET only).

CS_ACK – acknowledge a dynamic SQL command from client (CS_SET 
only).

• Each dynamic command received from a client triggers a 
SRV_DYNAMIC event. An Open Server application can then call 
srv_dynamic, in response to each client dynamic command, to retrieve and 
store the operation type, statement ID and statement, and then 
acknowledge the client communication, by issuing a srv_dynamic call with 
type set to CS_ACK.



srv_dynamic 

272  Open Server

• It is an error to call srv_dynamic in any event handler other than a 
SRV_DYNAMIC handler.

• CS_ACK is the only dynamic operation type that can be set (cmd set to 
CS_SET).

• CS_PREPARE, CS_DESCRIBE_INPUT, CS_DESCRIBE_OUTPUT, 
CS_EXECUTE, CS_EXEC_IMMEDIATE and CS_DEALLOC are the 
only dynamic operation types that can be retrieved (cmd set to CS_GET).

• Sending a full dynamic SQL response to a client requires passing the ID 
length, the ID, and the operation type. This requires three distinct calls to 
srv_dynamic. It is an error, for example, to set just the statement ID and 
then call srv_senddone. The only exception is if the operation type is 
CS_EXEC_IMMEDIATE, for which there is no associated statement ID.

• Parameter data formats and output column formats can be sent to a client, 
in response to a CS_PREPARE dynamic command, using srv_descfmt and 
srv_xferdata with a type argument of SRV_DYNDATA. Note that srv_bind 
is not necessary here, as the application is simply sending formats.

• An Open Server application retrieves and store the parameter data sent by 
a client following the CS_EXECUTE dynamic command using 
srv_descfmt, srv_bind, and srv_xferdata, with a type argument of 
SRV_DYNDATA. The application determines the number of parameters 
using srv_numparams.

• The application sends dynamic SQL result rows to the client, in response 
to a CS_EXECUTE dynamic SQL command, using srv_descfmt, srv_bind, 
and srv_xferdata with a type argument of SRV_ROWDATA.

• A dynamic SQL command of CS_EXEC_IMMEDIATE indicates that the 
client wishes to execute a statement without parameters and receive only 
a DONE as a result. The statement is contained in the 
CS_EXEC_IMMEDIATE command stream and is accessible through 
SRV_DYN_STMT. The statement has not been previously prepared—the 
statement ID length (SRV_DYN_IDLEN) will be 0—and will cease to 
exist once the SRV_DYNAMIC event handler has exited.

See also srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “Dynamic SQL” on 
page 83



CHAPTER 3    Routines

Server-Library/C Reference Manual 273

srv_envchange
Description Notify the client of an environment change.

Syntax CS_RETCODE srv_envchange(spp, type, oldvalp
            oldvallen, newvalp, newvallen)

SRV_PROC    *spp;
CS_INT          type;
CS_CHAR     *oldvalp;
CS_INT         oldvallen
CS_CHAR     *newvalp;
CS_INT         newvallen

Parameters spp
A pointer to an internal thread control structure.

type
The environment being changed. Currently, the only legal values are 
SRV_ENVDATABASE and SRV_ENVLANG, the name of the current 
database and the current national language, respectively.

oldvalp
A pointer to the character string containing the old value. It can be NULL. 
Its length in bytes is stored in oldvallen.

oldvallen
The length, in bytes, of the string in *oldvalp. It can be CS_NULLTERM, 
which indicates that the string in *oldvalp is null terminated. It can also be 
CS_UNUSED, indicating that the string in *oldvalp is NULL.

newvalp
A pointer to the character string containing the new value of the 
environment variable. It can be null. Its length in bytes is stored in 
newvallen.

newvallen
The length, in bytes, of the string in *newvalp. It can be CS_NULLTERM, 
which indicates that the string in newvalp is null terminated. It can also be 
CS_UNUSED, indicating that the string in *newvalp is NULL.

Return value Table 3-42: Return values (srv_envchange)

Examples

#include   <ospublic.h>

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_envchange 

274  Open Server

/*
 ** Local Prototype.
 */
CS_RETCODE  ex_srv_envchange PROTOTYPE((
SRV_PROC    *spp
));
/*
 ** EX_SRV_ENVCHANGE
**
**    Example routine to notify the client of an environment
 **    change.
**
** Arguments:
**    spp    A pointer to an internal thread control structure.
**
** Returns:
**     CS_SUCCEED    Succesfully notified client of environment
 **                   change.
**     CS_FAIL       An error was detected.
**
*/
CS_RETCODE   ex_srv_envchange(spp)
SRV_PROC     *spp;
{
    CS_RETCODE   retval;
    /*
     ** Notify the client that we’ve changed the database
     ** from “master” to “pubs2”.
     */
    retval = srv_envchange(spp, SRV_ENVDATABASE, “master”,
             CS_NULLTERM, “pubs2”, CS_NULLTERM);
    return (retval);
}

Usage • There are various environment variables which can be set. Open Server 
handles some automatically, while others must be handled by an Open 
Server application. Currently, an application can only inform a client of a 
change to the current database or national language.



CHAPTER 3    Routines

Server-Library/C Reference Manual 275

• Open Server calls an Open Server application’s error handler any time one 
of the values changes. An Open Server application can change it through 
srv_envchange, or Open Server can change it using internal code, or both. 
The error number passed to the error handler is the Adaptive Server 
message number sent back to a client when one of these values changes. 
This allows a client application to match the same message number to a 
changing value, whether the client is connected to an Open Server or an 
Adaptive Server. Table 3-43 lists the message number and oserror.h 
#define that correspond to each changing value.

Table 3-43: Environment variables (srv_envchange)

srv_event
Description Add an event request to a thread’s request-handling queue.

Syntax CS_INT srv_event(spp, event, datap)

SRV_PROC    *spp;
CS_INT          event;
CS_VOID      *datap;

Parameters spp
A pointer to an internal thread control structure.

event
The token for the event to add to the client’s event queue. See “Events” on 
page 92 for a list of defined events.

datap
A pointer (CS_VOID) to data supplied by the Open Server programmer. An 
application can retrieve the data by calling srv_thread_props with property 
set to SRV_T_EVENTDATA, from within the event handler.

Changing value Message number #define in oserror.h

Current Database 5701 SQLSRV_ENVDB

National Language 5703 SQLSRV_ENVLANG



srv_event 

276  Open Server

Return value Table 3-44: Return values (srv_event)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE   ex_srv_event PROTOTYPE((
SRV_PROC     *spp,
CS_INT       event,
CS_VOID     *datap
));
/* 
 ** EX_SRV_EVENT
**
**    Example routine to queue an event request to an Open Server
 **    thread’s request-handling queue.
**
**    Note that if the event is an user-defined one, it
 **    must have been defined earlier using srv_define_event.
**
** Arguments:
**    spp        A pointer to a control structure for an Open 
 **               Server thread.
**    event      The token for the event to be added to the queue.
**    datap      Data pointer.
**
** Returns:
**
**    CS_SUCCEED    The event was queued successfully
**    CS_FAIL       An error was detected.
*/
CS_RETCODE  ex_srv_event(spp, event, datap)
SRV_PROC    *spp;
CS_INT      event;
CS_VOID     *datap;
{
    if (srv_event(spp, event, datap) == CS_FAIL)
        return (CS_FAIL);
    else
        return (CS_SUCCEED);
}

Returns To indicate

The token for the requested event. Open Server added the new event.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 277

Usage • Add an event request to the event queue of a particular client thread. Event 
requests are usually added to a event request queue automatically, for 
example, by Client-Library calls from the client application. However, 
Open Server programmers can specifically add requests with srv_event.

The following events can be added to an event queue by srv_event:

• SRV_DISCONNECT

• SRV_URGDISCONNECT 

• SRV_STOP

• Programmer-defined events

• srv_handle tells Open Server which event handler to call when an event 
occurs. If no handler is defined for a particular event, the default Open 
Server event handler is called.

• The SRV_URGDISCONNECT event causes an Open Server application’s 
SRV_DISCONNECT event handler to be called.

• The SRV_URGDISCONNECT event is queued as an urgent event. This 
allows an application to place a disconnect event at the top of a thread’s 
event queue, skipping any currently queued events. This is useful to 
implement immediate termination of an Open Server thread.

• If the event is programmer-defined, it must first be defined with 
srv_define_event before it can be triggered.

• srv_event adds any event except SRV_STOP or SRV_START to a thread’s 
event queue. In the case of a SRV_STOP or SRV_START event, spp points 
to the internal thread control structure for the thread requesting the event.

• An Open Server application cannot call any routine that does I/O from 
inside a user-defined event.

 Warning! In interrupt-level code, use srv_event_deferred instead of srv_event.

See also srv_define_event, srv_handle, srv_event_deferred, srv_thread_props, 
“Events” on page 92 



srv_event_deferred 

278  Open Server

srv_event_deferred
Description Add an event request to the event queue of a thread as the result of an 

asynchronous event.

Syntax CS_INT srv_event_deferred(spp, event, datap)

SRV_PROC    *spp;
CS_INT           event;
CS_VOID       *datap;

Parameters spp
A pointer to an internal thread control structure.

event
The event to add to the thread’s event queue.

datap
A pointer (CS_VOID) to data supplied by the Open Server programmer. An 
application can retrieve the data by calling srv_thread_props with property 
set to SRV_T_EVENTDATA from within the event handler.

Return value The requested event. If there was an error, -1 is returned.

Table 3-45: Return values (srv_event_deferred)

Examples

#include   <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE   ex_srv_event_deferred PROTOTYPE((
SRV_PROC     *spp,
CS_INT       event,
CS_VOID      *datap
));
/* 
 ** EX_SRV_EVENT_DEFERRED
**    Example routine to queue up a deferred event using
 **    srv_event_deferred. A deferred event request will 
 **    typically be made from within interrupt-level code.
** Arguments:
**    spp       A pointer to the internal thread control 
 **              structure.
**    event     The event to add to the thread’s queue.

Returns To indicate

The token for the requested event. Open Server added the new event.

-1 The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 279

**    datap     A pointer to data to attach to the event.
** Returns:
**    CS_SUCCEED    The event was sucecssfully queued.
**    CS_FAIL       An error was detected.
 */
CS_RETCODE          ex_srv_event_deferred(spp, event, datap)
SRV_PROC            *spp;
CS_INT              event;
CS_VOID             *datap;
{
      /*
      ** Add a deferred event to the event queue.
      */
     if (srv_event_deferred(spp, event, datap) == -1)
     {
            return(CS_FAIL);
      }
     return(CS_SUCCEED);
}

Usage • srv_event_deferred adds an event request to the event queue of a thread 
from interrupt-level code, such as signal delivery on UNIX. The event 
request is deferred until critical functions internal to Open Server have 
been completed, if any such functions were being performed when 
srv_event_deferred was called.

• Some Open Server applications must be able to raise events from 
interrupt-level code. For example, if you want to raise an event within the 
attention handler or you are using the alarm signal in the Open Server 
application code, you must use srv_event_deferred instead of srv_event. 
srv_event_deferred ensures that critical functions, such as updating linked 
lists or performing internal housekeeping, are completed before the event 
request is acted on.

 Warning! In interrupt-level code, use srv_event_deferred instead of 
srv_event.

• Open Server usually adds event requests to a thread’s event request queue 
automatically. However, you can specifically add requests with 
srv_event_deferred.

• The following events can be added to an event queue by 
srv_event_deferred:

• SRV_DISCONNECT



srv_free 

280  Open Server

• SRV_URGDISCONNECT

• SRV_STOP

• Programmer-defined events

• srv_handle tells the Open Server which event handler to call when an event 
occurs. If no handler is defined for a particular event, the default event 
Open Server handler is called.

• If the event is programmer-defined, it must be defined with 
srv_define_event before it can be triggered.

• srv_event adds any event except SRV_STOP or SRV_START to a thread’s 
event queue. In the case of a SRV_STOP or SRV_START event, spp points 
to the internal thread control structure for the thread requesting the event.

• An Open Server application cannot call any routine that does I/O from 
inside a user-defined event.

See also srv_define_event, srv_event, srv_handle, srv_thread_props, “Events” on page 
92

srv_free
Description Free previously allocated memory.

Syntax CS_RETCODE srv_free(mp)

CS_VOID            *mp;

Parameters mp
A pointer to the memory to be freed.

Return value Table 3-46: Return values (srv_free)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE ex_srv_free PROTOTYPE((

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 281

CS_BYTE   *p
));
/* 
 ** EX_SRV_FREE
**
**   Example routine to free memory allocated through srv_alloc.
**
** Arguments:
**        p - The address of the memory block to be freed.
**
** Returns:
**
**   CS_SUCCEED      Memory was freed successfully.
**   CS_FAIL         An error was detected.
*/
CS_RETCODE     ex_srv_free(p)
CS_BYTE        *p;
{
    /*
    ** Free the memory block.
    */
    if( srv_free(p) == CS_FAIL )
    {
        return CS_FAIL;
    }
    return CS_SUCCEED;
}

Usage • Use srv_free only to free memory allocated by srv_alloc, srv_init, or 
srv_realloc.

• Currently, srv_free calls the C routine, free. An Open Server application, 
however, can install its own memory management routines using the 
srv_props routine. The parameter-passing conventions of the user-installed 
routine must be the same as those of free. If the application is not 
configured to use the user-installed routines, it will use free.

See also srv_alloc, srv_props, srv_realloc, srv_init

srv_freeserveraddrs
Description Frees memory allocated by srv_getserverbyname.

Syntax CS_RETCODE srv_freeserveraddrs(void *resultptr)



srv_get_text 

282  Open Server

Parameters resultptr
A pointer to memory returned by srv_getserverbyname.

Return value Table 3-47: Return values (srv_freeserveraddrs)

See also srv_getserverbyname, srv_send_ctlinfo

srv_get_text
Description Read a text or image datastream from a client, in chunks.

Syntax CS_RETCODE srv_get_text(spp, bp, buflen, outlenp)

SRV_PROC    *spp;
CS_BYTE       *bp;
CS_INT           buflen;
CS_INT          *outlenp;

Parameters spp
A pointer to an internal thread control structure.

bp
A pointer to a buffer where the data from the client is placed.

buflen
The size of the *bp pointer. This indicates how many bytes are transferred 
in each chunk.

outlenp
The number of the bytes read into the *bp buffer is returned here.

Return value Table 3-48: Return values (srv_get_text)

Examples

#include        <ospublic.h>
#include        <stdio.h>
/*

Returns To indicate

CS_SUCCEED The call to srv_freeserveraddrs ran successfully.

CS_FAIL resultptr is NULL or deallocation failed.

Returns To indicate

CS_SUCCEED The call to srv_get_text ran successfully.

CS_FAIL The routine failed.

CS_END_DATA Open Server read in the entire text or image data stream.



CHAPTER 3    Routines

Server-Library/C Reference Manual 283

 ** Local Prototype
 */
CS_RETCODE    ex_srv_get_text        PROTOTYPE((
SRV_PROC      *spp,
CS_INT        *outlenp,
CS_BYTE       *bbuf
));
/*
 ** EX_SRV_GET_TEXT
 **
**    Example routine to read chunks of text or image datastream
 **    from a client into a buffer and then write it to a disk
 **    file.
**
** Arguments:
**
**    spp        Pointer to thread control structure.
**    outlenp    Number of bytes read and written.
**    bbuf       Pointer to very large buffer for text.
**
** Returns
**
**    CS_SUCCEED    The data was successfully read.
**    CS_FAIL       An error was detected.
 **
 */
#define    BUFSIZE     256
#define    FPUTS(a,b)      fputs(a,b)
CS_RETCODE  ex_srv_get_text(spp,outlenp,bbuf)
SRV_PROC    *spp;
CS_INT      *outlenp;
CS_BYTE     *bbuf;
{
   CS_INT       llen;    /* Local length. */
    CS_INT       lout;    /* Local read count. */
    CS_RETCODE   lret;    /* Local return code. */
    CS_BYTE      *lbufp;    /* Local pointer into bbuf. */
   /* Check arguments. */
   if(bbuf == (CS_VOID *)0)
      return(CS_FAIL);
   if(spp == (SRV_PROC *)0)
      return(CS_FAIL);
   llen = BUFSIZE;
   lbufp = bbuf;
   /*
    ** Loop around getting data and copy it to bbuf.



srv_getloginfo 

284  Open Server

    */
   while(lret != CS_END_DATA)
   {
        (CS_VOID)srv_bzero(lbufp,BUFSIZE);
        lout = 0;
        lret = srv_get_text(spp, lbufp, llen, &lout);
        if(lret == CS_FAIL)
            break;
        *outlenp += lout;
        lbufp += lout;
    }
    if(lret == CS_END_DATA)
        return(CS_SUCCEED);
    else
        return(lret);
}

Usage • srv_get_text is used to read bulk data from a client. The bulk data can be 
of type text or image.

• srv_get_text must be called until all of the bulk data has been read from a 
client. It returns CS_END_DATA when the whole data stream has been 
read in.

• srv_get_text can only be called from inside the SRV_BULK event handler.

• A column read with srv_get_text must be of type text or image.

• An Open Server application must call srv_text_info prior to the first call to 
srv_get_text for the data stream. The application then calls srv_get_text to 
retrieve a chunk. srv_get_text is called as many times as are necessary to 
read in the whole column.

• Open Server treats text and image data streams except that it converts only 
text data before sending it to the Open Server application. The only 
conversion by Open Server performs is character set translation.

See also srv_bind, srv_descfmt, srv_send_text, srv_text_info, srv_thread_props, 
srv_xferdata, “International support” on page 99, “Text and image” on page 
196

srv_getloginfo
Description Obtain login information from a client thread to prepare a passthrough 

connection with a remote server.



CHAPTER 3    Routines

Server-Library/C Reference Manual 285

Syntax CS_RETCODE srv_getloginfo(spp, loginfo)

SRV_PROC           *spp;
CS_LOGINFO       **loginfo;

Parameters spp
A pointer to an internal thread control structure.

loginfo
A pointer to a CS_LOGINFO pointer that will be set to the address of a 
newly allocated CS_LOGINFO structure.

Return value Table 3-49: Return values (srv_getloginfo)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
extern CS_RETCODE   ex_srv_getloginfo PROTOTYPE((
CS_VOID             *spp,
CS_VOID             **loginfopp
));
/* 
 ** EX_SRV_GETLOGINFO
**
**    Example routine to retrieve the client’s login structure.
**
** Arguments:
**   spp        Thread control structure.
**   loginfopp  A pointer to client’s login record returned here.
**
** Returns:
**
**    CS_SUCCEED    Login structure was retrieved successfully.
**    CS_FAIL       An error was detected.
*/
CS_RETCODE ex_srv_getloginfo(spp, loginfopp)
SRV_PROC   *spp;
CS_LOGINFO **loginfopp;
{
    /* Initialization. */
    *loginfopp = (CS_LOGINFO *)NULL;
    if(srv_getloginfo(spp, loginfopp) == CS_FAIL)

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_getmsgq 

286  Open Server

    {
        return(CS_FAIL);
    }
    return(CS_SUCCEED);
}

Usage • Use srv_getloginfo in gateway applications that use passthrough mode. In 
passthrough mode, a gateway application passes packets between clients 
and remote Sybase servers without interpreting the protocol.

• When a client connects directly to a server, the two programs negotiate the 
protocol format they will use to send and receive data. When you use 
protocol passthrough in a gateway application, the Open Server forwards 
protocol packets between a client and a remote server. Therefore, the client 
and the remote server must agree on the protocol version.

• srv_getloginfo is the first of four calls, two of them CS-Library calls, that 
allow a client and remote server to negotiate a protocol format. The calls, 
which can only be made in a SRV_CONNECT event handler, are:

a srv_getloginfo – allocate a CS_LOGINFO structure and fill it with 
protocol information from the client thread.

b ct_setloginfo – prepare a CS_LOGINFO structure with the protocol 
information retrieved in step 1, then log in to the remote server with 
ct_connect.

c ct_getloginfo – transfer protocol login response information from a 
CS_CONNECTION structure to the newly allocated CS_LOGINFO 
structure.

d srv_setloginfo – send the remote server’s response, retrieved in step 3, 
to the client, then release the CS_LOGINFO structure.

See also srv_recvpassthru, srv_sendpassthru, srv_setloginfo 

srv_getmsgq
Description Get the next message from a message queue.

Syntax CS_RETCODE srv_getmsgq(msgqid, msgp, getflags, infop)

SRV_OBJID    msgqid;
CS_VOID       **msgp;
CS_INT          getflags;
CS_INT         *infop;



CHAPTER 3    Routines

Server-Library/C Reference Manual 287

Parameters msgqid
The identifier for the message queue from which to get a message. To 
reference the message queue by name, call srv_getobjid with the name to 
yield the message queue ID.

msgp
A pointer to a pointer variable that srv_getmsgq sets to the message’s 
address.

getflags
The values for getflags can be OR’d together. Table 3-50 lists the legal 
values for getflags, and their significance:

Table 3-50: Values for getflags (srv_getmsgq)

infop
A pointer to a CS_INT. Table 3-51 describes the possible values returned in 
*infop if srv_getmsgq returns CS_FAIL:

Value Significance

SRV_M_WAIT If no message is available, srv_getmsgq sleeps until a 
message is delivered.

SRV_M_NOWAIT srv_getmsgq returns immediately whether a message is 
available or not.

SRV_M_READ_ONLY The default behavior of srv_getmsgq is to remove the 
message from the message list and to wake up any thread 
that is waiting for the message to be read. If 
SRV_M_READ_ONLY is set, a message pointer is 
returned, but the message is not removed from the list 
and the thread waiting for the message to be read does not 
wake up. This option can be used to peek at the head of 
the message queue to see if the message is intended for 
the thread.



srv_getmsgq 

288  Open Server

Table 3-51: Values for infop (srv_getmsgq)

Return value Table 3-52: Return values (srv_getmsgq)

Examples

#include <ospublic.h>
/*
 ** Local prototype
 */
CS_VOID    ex_srv_getmsgq PROTOTYPE((
SRV_OBJID  msgqid,
CS_INT     *infop
));
/*
 ** EX_SRV_GETMSGQ
**
**    Example routine to get messages from a message queue.
**
** Arguments:
**    msgqid-    The id of the message queue from which to get
 **               the message.
**
**    infop-     Will hold information about why this routine
 **               failed. Comes directly from srv_getmsg.
** Returns:
**    Nothing. If this routine returns, it is because srv_getmsgq
 **    failed. Check infop to see why it failed.
*/
CS_VOID    ex_srv_getmsgq(msgqid, infop)
SRV_OBJID  msgqid;
CS_INT     *infop;
{

Value Meaning

SRV_I_WOULDWAIT The SRV_M_NOWAIT flag was set in the getflags field 
and there are no messages to be read.

SRV_I_DELETED While waiting for a message, the message queue was 
deleted.

SRV_I_INTERRUPTED The SRV_M_WAIT flag was set in the getflags field and 
this call was interrupted before the message arrived.

SRV_I_UNKNOWN Some other error occurred. Look in the log file for a 
message.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 289

     CS_CHAR   *message;   /* This message is a string. */
    /*
     ** Loop processing messages. Go to sleep if no messages are
     ** available.
     */
    while (srv_getmsgq(msgqid, (CS_VOID *)&message, SRV_M_WAIT,
             infop)== CS_SUCCEED)
    {
        /* Process message.*/
    }
    /* infop will contain the reason why it failed. */
    return ;
}

Usage • srv_getmsgq puts the address of the next message from the message queue 
msgqid in *msgp.

• If the thread that sent the message specified that it would sleep until the 
message is read, it wakes up.

See also srv_createmsgq, srv_deletemsgq, srv_getobjid, srv_putmsgq 

srv_getobjid
Description Look up the object ID for a message queue or mutex with a specified name.

Syntax CS_RETCODE srv_getobjid(obj_type, obj_namep, 

                     obj_namelen, obj_idp, infop)

CS_INT           obj_type;
CS_CHAR      *obj_namep;
CS_INT           obj_namelen;
SRV_OBJID    *obj_idp;
CS_INT          *infop;

Parameters obj_type
Indicates whether the object is a mutex (SRV_C_MUTEX) or a message 
queue SRV_C_MQUEUE).

obj_namep
A pointer to a CS_CHAR buffer that contains the name of the object.

obj_namelen
The length of the string in *obj_namep. If the string is null terminated, 
obj_namelen can be CS_NULLTERM.



srv_getobjid 

290  Open Server

obj_idp
A pointer to a SRV_OBJID structure that will receive the identifier for the 
object, if found.

infop
A pointer to a CS_INT. Table 3-53 describes the possible values returned in 
*infop if srv_getobjid returns CS_FAIL:

Table 3-53: Values for infop (srv_getobjid)

Return value Table 3-54: Return values (srv_getobjid)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_INT    ex_srv_getobjid PROTOTYPE((
CS_INT    obj_type,
CS_CHAR   *obj_name,
SRV_OBJID *obj_idp
));
/*
 ** EX_SRV_GETOBJID
**   An example routine to retrieve the object id for a specified
 **   message queue or mutex name.
** Arguments:
**   obj_type  SRV_C_MUTEX if requesting a mutex object id, and
 **             SRV_C_MQUEUE if requesting a message queue object
                id.
**   obj_name  A null terminated string which specifies the name
 **             of the message queue or the mutex.
**   obj_idp   A pointer to a SRV_OBJID structure that will store
 **             the identifier for the object.
** Returns:
**   CS_SUCCEED    If the object id was retrieved
                    successfully.
**   SRV_I_NOEXIST   If the object does not exist.
** CS_FAIL    If the object was not retrieved due to an error

Value Meaning

SRV_I_NOEXIST The object does not exist.

SRV_I_UNKNOWN Some other error occurred, for example, a null object name.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 291

 */
CS_INT        ex_srv_getobjid(obj_type, obj_name, obj_idp)
CS_INT        obj_type;
CS_CHAR       *obj_name;
SRV_OBJID     *obj_idp;
{
     CS_INT   info;  /* The reason for failure. */
     CS_INT   status;  /* The return status. */
    /* Validate the obj_type. */
     if ( (obj_type != SRV_C_MUTEX) && (obj_type !=
             SRV_C_MQUEUE) )
     {
         return(CS_FAIL);
     }
    /* Make sure that the object name is not null. */
     if ( obj_name == (CS_CHAR *)NULL )
    {
         return(CS_FAIL);
     }
    /* Ensure that the pointer to the SRV_OBJID is not null */
     if ( obj_idp == (SRV_OBJID *)NULL )
    {
         return(CS_FAIL);
     }
    /* Get the object id. */
     status = (CS_INT)srv_getobjid( obj_type, obj_name,
              CS_NULLTERM, obj_idp, &info);
    /* Check the status. */
     if ( (status == CS_FAIL) && (info == SRV_I_NOEXIST) )
    {
         status = SRV_I_NOEXIST;
     }
    return(status);

 }

Usage Open Server maintains a table that maps the unique object identifiers of 
message queues and mutexes to their names. Given the name, srv_getobjid 
finds the identifier.

See also srv_createmsgq, srv_createmutex, srv_deletemsgq, srv_deletemutex, 
srv_getmsgq, srv_getobjname, srv_lockmutex,srv_putmsgq, 
srv_unlockmutex 



srv_getobjname 

292  Open Server

srv_getobjname
Description Get the name of a message queue or mutex with a specified identifier.

Syntax CS_RETCODE srv_getobjname(obj_type, obj_id, obj_namep, 
            obj_namelenp, infop)

CS_INT           obj_type;
SRV_OBJID    obj_id;
CS_CHAR      *obj_namep;
CS_INT           *obj_namelenp;
CS_INT           *infop;

Parameters obj_type
Indicates whether the object is a mutex (SRV_C_MUTEX) or a message 
queue (SRV_C_MQUEUE).

obj_id
The unique identifier of the object.

obj_namep
A pointer to a CS_CHAR buffer into which the name of the object is copied. 
The buffer must be large enough to accommodate the object name and, if 
obj_namelenp is NULL, a null character. The maximum length for an object 
name is SRV_MAXNAME characters, not including the null termination 
byte.

obj_namelenp
A pointer to a CS_INT that receives the length of the object. If 
obj_namelenp is NULL, the name that is found is copied into *obj_namep 
and terminated with a null character. Otherwise, the length of the name in 
*obj_namep is placed in *obj_namelenp.

infop
A pointer to a CS_INT that is set to SRV_I_NOEXIST if the object with ID 
obj_id does not exist.

Return value Table 3-55: Return values (srv_getobjname)

Examples

#include  <ospublic.h>
#include  <stdio.h>
/*
 ** Local Prototype
 */

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 293

CS_RETCODE  ex_srv_getobjname PROTOTYPE((
CS_INT      obj_type,
SRV_OBJID   obj_id
));
/* 
 ** EX_SRV_GETOBJNAME
**    Example routine to illustrate the use of srv_getobjname to
 **    get the name of mutex or message queue with id = obj_id
 **    where obj_id was earlier returned by srv_createmutex or
 **    srv_createmsgq.
** Arguments:
**    obj_type - Type of object; SRV_C_MUTEX or SRV_C_MQUEUE.
**    obj_id   - The unique identifier of the object.
** Returns:
**    CS_SUCCEED   Memory was allocated successfully.
**    CS_FAIL      Memory allocation failure occured.
 */
CS_RETCODE   ex_srv_getobjname(obj_type, obj_id)
CS_INT       obj_type;
SRV_OBJID    obj_id;
{
    CS_CHAR      obj_name[SRV_MAXNAME+1];
    CS_INT       obj_namelen;
    CS_INT       info;
    CS_RETCODE   ret;
    /* Get object name. */
     ret = srv_getobjname(obj_type, obj_id, obj_name,
     &obj_namelen, &info);
    /* Print information depending on retcode */
     switch(ret)
    {
       case CS_FAIL:
         if (info == SRV_I_NOEXIST)
         {
             fprintf(stderr, “%s object with id: %d does not
                     exist\n”, (obj_type == SRV_C_MUTEX) ?
                     “Mutex” :“Message Queue”, (CS_INT)obj_id);
         }
         else
             fprintf (stderr, “srv_getobjname failed\n”);
        break;
     case CS_SUCCEED:
         fprintf (stderr, “%s name: %s for id: %d\n”,
            (obj_type == SRV_C_MUTEX) ? “Mutex” : “Message Queue”,
             obj_name, (CS_INT)obj_id);
         break;



srv_getserverbyname 

294  Open Server

     default:
         fprintf (stderr, “Unknown return code from 
                  srv_getobjname\n”);
        ret = CS_FAIL;
         break;
    }
    return (ret);

 }

Usage • Open Server maintains a table that maps the unique identifiers of message 
queues and mutexes to their names. Given the identifier, srv_getobjname 
finds the name.

• In some applications, it may make more sense to reference message 
queues or mutexes by name. srv_getobjid can be used to look up the 
identifier that is used by the mutex and message queue services.

See also srv_createmsgq,srv_createmutex, srv_deletemsgq, srv_deletemutex, 
srv_getmsgq, srv_getobjid,srv_lockmutex, srv_putmsgq, srv_unlockmutex

srv_getserverbyname
Description Returns the connection information for server_name, allocating memory as 

needed. Memory allocated by srv_getserverbyname can be freed by calling 
srv_freeserveraddrs.

Syntax CS_RETCODE srv_getserverbyname(CS_CHAR *server_name, CS_INT 
namelen, CS_INT querytype, CS_INT result_type, void *resultptr, CS_INT 
*result_cnt)

Parameters server_name
Name of the server to be looked up.

namelen
Length of server_name. Can be specified as CS_NULLTERM.

querytype
Selects master (CS_ACCESS_CLIENT_MASTER) or query 
(CS_ACCESS_CLIENT_QUERY) entries for server_name.

result_type
Indicates the data format of connection information. result_type can be 
specified as SRV_C_GETADDRS or SRV_C_GETSTRS.



CHAPTER 3    Routines

Server-Library/C Reference Manual 295

resultptr
A pointer allocated by srv_getserverbyname to hold the results of a query. 
resultptr is the address of a pointer which will receive the address of the 
query results.

result_cnt
A pointer to CS_INT that contains the number of addresses returned for 
server_name.

Usage result_type can be specified as SRV_C_GETADDRS, where the information 
will be returned as an array of CS_TRANADDR structures. Alternatively, you 
can specify result_type as SRV_C_GETSTRS, which returns an array of 
pointers to character strings in the network-protocol protocol-address filter-
information format. For example, where network-protocol is “tcp”, protocol-
address is “myhost 4000”, and filter-information is “ssl”, you will receive a 
result of “tcp myhost 4000 ssl”.

See also srv_freeserveraddrs, srv_send_ctlinfo

srv_handle
Description Install an event handler in an Open Server application.

Syntax SRV_EVENTHANDLE_FUNC (*srv_handle(ssp, event,
                       handler))()

SRV_SERVER                        *ssp;
CS_INT                                    event;
SRV_EVENTHANDLE_FUNC   handler;

Parameters ssp
A pointer to the Open Server control structure. This parameter is optional. It 
is present only to provide backward compatibility.



srv_handle 

296  Open Server

event
The event that handler will handle. Here is a list of all the regular Open 
Server events:

• SRV_ATTENTION

• SRV_BULK

• SRV_CONNECT

• SRV_CURSOR

• SRV_DISCONNECT/SRV_URGDISCONNECT

• SRV_DYNAMIC

• SRV_FULLPASSTHRU

• SRV_LANGUAGE

• SRV_MSG

• SRV_OPTION

• SRV_RPC

• SRV_START

• SRV_STOP

Programmer-defined events – A programmer-defined event is defined using 
srv_define_event.

For a description of each event, see “Events” on page 92.

handler
A pointer to the function to call when an event request occurs. Passing 
NULL as the handler installs the default event handler.

Return value Table 3-56: Return values (srv_handle)

Examples

#include   <ospublic.h>
/*
 ** Local Prototype
 */
extern CS_RETCODE  ex_srv_handle PROTOTYPE((
SRV_EVENTHANDLE_FUNC       funcp

Returns To indicate

A pointer to the event handling function The location of the function.

A null pointer The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 297

));
/* 
 ** EX_SRV_HANDLE
**   Install a SRV_START handler.
** Arguments:
**    funcp  Handler to install.
** Returns:
**    CS_SUCCEED   Start handler was installed successfully.
 **    CS_FAIL      An error was detected.
 */
CS_RETCODE               ex_srv_handle(funcp)
SRV_EVENTHANDLE_FUNC     funcp;
{
    if(srv_handle((SRV_SERVER *)NULL, SRV_START, funcp) ==
         CS_FAIL)
    {
        return(CS_FAIL);
    }
    return(CS_SUCCEED);
}

Usage • srv_handle tells Open Server to call a particular function when it receives 
a request to handle a particular event.

• Open Server calls handler with one argument.

The event handlers for the following events take a pointer to an Open 
Server control structure as an argument:

• SRV_START

• SRV_STOP

The event handlers for the following events take a pointer to a thread 
control structure as an argument:

• SRV_ATTENTION

• SRV_BULK

• SRV_CONNECT

• SRV_CURSOR

• SRV_DISCONNECT/SRV_URGDISCONNECT

• SRV_DYNAMIC

• SRV_FULLPASSTHRU

• SRV_LANGUAGE



srv_init 

298  Open Server

• SRV_MSG

• SRV_OPTION

• SRV_RPC

Any programmer-defined event

• Each Open Server event has a default handler with a known name. 
Installing an event handler with srv_handle replaces the default handler.

• Event handlers can be installed dynamically. The new event handler is 
called the next time the event is raised.

• Event handlers must return CS_SUCCEED.

See also srv_define_event, srv_event, srv_event_deferred, “Events” on page 92 

srv_init
Description Initialize an Open Server application.

Syntax SRV_SERVER *srv_init(scp, servernamep, namelen)

SRV_CONFIG       *scp;
CS_CHAR            *servernamep;
CS_INT               namelen;

Parameters scp
The configuration structure that holds the values of all the Open Server 
configuration options. This argument is optional. It is included for backward 
compatibility.

servernamep
A pointer to the Open Server application name. The name you supply is 
looked up in the interfaces file to get the necessary network information. If 
you use (CS_CHAR *) NULL as the Open Server name, the value of 
DSLISTEN will be the server’s name. If DSLISTEN has not been explicitly 
set, the name defaults to the string “SYBASE”.

namelen
The length, in bytes, of the string in *servernamep. If the string is 
(CS_CHAR *) NULL, namelen is ignored. If the string is null terminated, 
namelen can be CS_NULLTERM.



CHAPTER 3    Routines

Server-Library/C Reference Manual 299

Return value Table 3-57: Return values (srv_init)

Examples

#include <ospublic.h>
/*
 ** Local prototype.
 */
SRV_SERVER    *ex_srv_init PROTOTYPE((
SRV_CONFIG    *scp
));
/*
 ** EX_SRV_INIT
**
**    Example routine to initialize an Open Server application.
**
** Arguments:
**    scp   -   A pointer to the configuration structure.
 **
** Returns:
**    On success, a pointer to a newly allocated SRV_SERVER
       structure.
**    On failure, NULL.
 **
 */
SRV_SERVER   *ex_srv_init(scp)
SRV_CONFIG   *scp;
{
    SRV_SERVER   *server;
    CS_CHAR      *servername = “EX_SERVER”;
    server = srv_init(scp, servername, CS_NULLTERM);
    return (server);
}

Usage • A server must be initialized before it is started with srv_run.

• srv_init initializes an Open Server application. The initialization process 
consists primarily of allocating the necessary data structures for the server, 
initializing the server state, and starting up the network listener.

• Most configuration options must be set before srv_init is called if values 
other than the defaults are desired. See the srv_props reference page, for a 
list of configurable options.

Returns To indicate

 SRV_SERVER pointer The routine ran successfully.

(SRV_SERVER *) NULL The routine failed.



srv_langcpy 

300  Open Server

• srv_version must be called prior to srv_init to set up library version 
information and default internationalization values.

• Open Server releases the SRV_SERVER structure when a SRV_STOP 
event occurs. An Open Server application should not release it.

• For information on designating an interfaces file, see the srv_props 
reference page. For more information on the interfaces file itself, see the 
Open Client and Open Server Programmer’s Supplement for your 
platform.

See also srv_props, srv_run, srv_version

srv_langcpy
Description Copy a client’s language request into an application buffer.

Syntax CS_INT srv_langcpy(spp, start, nbytes, bp)

SRV_PROC    *spp;
CS_INT           start;
CS_INT           nbytes;
CS_BYTE      *bp;

Parameters spp
A pointer to an internal thread control structure.

start
The point at which to start copying characters from the request buffer. The 
first character in the request buffer is the 0’th character.

nbytes
The number of characters to copy. If nbytes is -1, srv_langcpy copies as many 
bytes as possible. It is legal to copy 0 bytes. If there are not nbytes characters 
available to copy, srv_langcpy copies as many as are in the request buffer.

bp
A CS_CHAR pointer to the programmer-supplied buffer into which to copy 
the bytes.



CHAPTER 3    Routines

Server-Library/C Reference Manual 301

Return value Table 3-58: Return values (srv_langcpy)

Examples

#include  <ospublic.h>

/*
** Local Prototype
*/
CS_RETCODE     ex_srv_langcpy PROTOTYPE((
SRV_PROC       *spp,
CS_CHAR        *buf,
CS_INT         size,
CS_INT         *outlen
));

/* 
** EX_SRV_LANGCPY
**
**    Example routine to illustrate the use of srv_langcpy to
 **    copy language commands sent by a client.
**
** Arguments:
**    spp      A pointer to internal thread control structure.
**    buf      A CS_CHAR pointer to buffer for language commands.
**    size     The size of the buffer; A CS_INT.
**    outlen   A pointer to CS_INT; the actual length of
                language query copied to buf is returned here. -1
 **             is returned in case of failure.
**
** Returns:
**
**    CS_SUCCEED   Language request was copied successfully.
**    CS_FAIL      An error was detected.
*/
CS_RETCODE   ex_srv_langcpy(spp, buf, size, outlen)
SRV_PROC     *spp;
CS_CHAR      *buf;
CS_INT       size;
CS_INT       *outlen;
{
   CS_INT        act_len; /* actual length of language request */

Returns To indicate

An integer The number of bytes copied.

-1 There is no current language request from this client.



srv_langlen 

302  Open Server

    /* Initialization.*/
    *outlen = (CS_INT)-1;

    /* Get the length of language request.*/
    if ((act_len = srv_langlen(spp)) == -1)
        return (CS_FAIL);

    /* Check to see whether we got a buffer of adequate size. */
    if (size < (act_len +1))
        return (CS_FAIL);

    /* Copy language commands.*/
    if (srv_langcpy(spp, (CS_INT)0, act_len, buf) <= 0)
        return (CS_FAIL);

    /* Set the actual length copied. */
    *outlen = act_len;

    return (CS_SUCCEED);
}

Usage • When a language request is received from the client, srv_langcpy can be 
used to copy a portion of the request buffer to a Open Server program 
variable. The copy placed in the destination buffer is null terminated.

• srv_langcpy is also used to process language strings in cursor declare or 
update statements.

 Warning! srv_langcpy assumes that the destination buffer is large enough 
to handle nbytes + 1 bytes.

• To set the total length of the language request buffer call srv_langlen.

• The request buffer can contain any string of characters, including 
Transact-SQL statements. It’s up to the Open Server application to process 
the string.

See also srv_langlen 

srv_langlen
Description Return the length of the language request buffer.

Syntax CS_INT srv_langlen(spp)



CHAPTER 3    Routines

Server-Library/C Reference Manual 303

SRV_PROC    *spp;

Parameters spp
A pointer to an internal thread control structure.

Return value Table 3-59: Return values (srv_langlen)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE ex_srv_langlen PROTOTYPE((
SRV_PROC  *spp,
CS_INT    *len
));

/* 
 ** EX_SRV_LANGLEN
**  Example routine to return the length of the language request
 **  buffer using srv_langlen.
**
** Arguments:
**  spp    A pointer to the internal thread control structure.
**  len    Return pointer for the length of the language string.
 **         If there is no language command -1 is returned.
**
** Returns:
**
**   CS_SUCCEED   Language length was retrieved successfully.
**   CS_FAIL      An error was detected.
 */
CS_RETCODE   ex_srv_langlen(spp, len)
SRV_PROC     *spp;
CS_INT       *len;
{
    /* Retrieve the language length.    */
    if ((*len = srv_langlen(spp)) < 0)
    {
        return(CS_FAIL);
    }
    return(CS_SUCCEED);
}

Returns To indicate

An integer The length in bytes of the language request buffer.

-1 There is no current language request from this client.



srv_lockmutex 

304  Open Server

Usage • When a language request has been received from a client, srv_langlen 
returns the length of the request buffer.

• srv_langlen is also used to process language strings in cursor declare or 
update statements.

• All or part of the request buffer can be accessed with srv_langcpy.

• The request buffer can contain any string, including Transact-SQL 
statements. It is up to the Open Server application to process the string.

See also srv_langcpy 

srv_lockmutex
Description Lock a mutex.

Syntax CS_RETCODE srv_lockmutex(mutex_id, waitflag, infop)

SRV_OBJID       mutex_id;
CS_INT              waitflag;
CS_INT            *infop;

Parameters mutex_id
The unique mutex identifier that was returned by the call to srv_createmutex. 
Given the name of the mutex, the mutex_id can be obtained by calling 
srv_getobjid.

waitflag
Specifies whether the thread requesting the mutex lock should wait or just 
return if the mutex cannot be granted immediately. The value in *indp 
indicates whether the lock was granted. The two valid values for waitflag are 
SRV_M_WAIT, which indicates that the thread should wait if the lock 
cannot be granted immediately, and SRV_M_NOWAIT, which indicates 
that the thread should return without waiting if the lock cannot be granted.



CHAPTER 3    Routines

Server-Library/C Reference Manual 305

infop
A pointer to a CS_INT that is set to one of the following values:

SRV_I_SYNC – The lock was granted synchronously—the thread 
requesting the lock was not suspended to wait for the lock. srv_lockmutex 
returned CS_SUCCEED.

SRV_I_GRANTED – The lock was granted after the requesting thread was 
suspended to wait for another thread to release a lock on the mutex. 
srv_lockmutex returned CS_SUCCEED.

SRV_I_INTERRUPTED – The thread received an attention while waiting 
for the lock. The lock was not granted, and srv_lockmutex returned 
CS_FAIL.

SRV_I_WOULDWAIT – The waitflag parameter was set to 
SRV_M_NOWAIT and the thread would have had to wait for the lock. The 
lock was not granted, and srv_lockmutex returned CS_FAIL.

SRV_I_UNKNOWN – Some other error occurred, for example, the mutex 
does not exist. srv_lockmutex returned CS_FAIL.

Return value Table 3-60: Return values (srv_lockmutex)

Examples

#include  <ospublic.h>
/*
 ** Local Prototype
 */
CS_RETCODE    ex_srv_lockmutex PROTOTYPE((
SRV_OBJID     mid
));
/* 
 ** EX_SRV_LOCKMUTEX
 **
 **  Example routine to illustrate the use of srv_lockmutex.
 **
 ** Arguments:
 **      mid - The id of the mutex to lock.
 **
 ** Returns:
 **
 **  CS_SUCCEED   Mutex successfully locked.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_lockmutex 

306  Open Server

 **  CS_FAIL      An error was detected.
 */
CS_RETCODE   ex_srv_lockmutex(mid)
SRV_OBJID    mid;     /* The mutex id. */
{
    CS_INT   info;    /* Information output variable. */

    /*
     ** Request the mutex lock - sleep until we get it.
     */
    if( srv_lockmutex(mid, SRV_M_WAIT, &info) == CS_FAIL )
    {
        /*
         ** An error was al&ready raised.
         */
        return CS_FAIL;
    }

    /*
     ** All done.
     */
    return CS_SUCCEED;
}

Usage • Mutexes are associated with data objects and program resources that must 
be protected from simultaneous access by multiple threads.

• Mutex locks are granted to threads on a first-come, first-served basis.

• The lock is granted only if no other thread has al&ready obtained a lock 
on the mutex.

• srv_lockmutex cannot be used in a SRV_START or SRV_ATTENTION 
handler.

• A thread can lock a mutex more than once, but must call srv_unlockmutex 
once for each call to srv_lockmutex before another thread can lock the 
mutex.

• If the mutex was waiting for is deleted, srv_lockmutex returns CS_FAIL.

See also srv_createmutex, srv_deletemutex, srv_getobjid, srv_unlockmutex 



CHAPTER 3    Routines

Server-Library/C Reference Manual 307

srv_log
Description Write a message to the Open Server log file.

Syntax CS_RETCODE srv_log(ssp, datestamp, msgp, msglen)

SRV_SERVER    *ssp;
CS_BOOL           datestamp;
CS_CHAR           *msgp;
CS_INT              msglen;

Parameters ssp
The handle to the Open Server. This argument is optional. It is only present 
for backward compatibility.

datestamp
If datestamp is CS_TRUE, the current date and time is added to the 
beginning of the log message. If datestamp is CS_FALSE, the log message 
is not timestamped.

msgp
A pointer to the actual text of the message.

msglen
The length in bytes of msg. If the string in *msgp is null terminated, msglen 
can be CS_NULLTERM.

Return value Table 3-61: Return values (srv_log)

Examples

#include  <ospublic.h>
#include  <string.h>
/*
 ** Local Prototype.
 */
CS_RETCODE   ex_srv_log PROTOTYPE((
SRV_SERVER   *ssp,
CS_CHAR      *msg_txt
));
/*
 ** EX_SRV_LOG
**
**    Example routine to log a message.
**
** Arguments:

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_log 

308  Open Server

**
**  ssp         A pointer to the Open Server state information
 **              control structure.
**    msg_txt   Text of message to log.
** Returns
**
**  CS_SUCCEED      Thread was created.
**  CS_FAIL         An error was detected.
**
 */
CS_RETCODE  ex_srv_log(ssp, msg_txt)
SRV_SERVER  *ssp;
CS_CHAR     *msg_txt;
{
    CS_RETCODE        lret;
    CS_INT            msg_len;
    /* Check arguments.                    */
    if(ssp == (SRV_SERVER *)0)
        return(CS_FAIL);
    if(msg_txt == (CS_CHAR *)NULL)
        return(CS_FAIL);
    msg_len=strlen(msg_txt);
    /*
    ** Log the message -  We use CS_TRUE as the second argument
     **                    to force the date and time to be
     **                    added to the beginning of the logged
     **                    message. If you do not want a
     **                    datestamp then use CS_FALSE.
    */
    lret = srv_log(ssp,CS_TRUE,msg_txt,msg_len);
    return(lret);
}

Usage • srv_log writes messages to the Open Server log file. The default name of 
the log file is srv.log. The name can be set with srv_props.

• Messages are always appended to the log file.

• The name of the log file can be accessed with the srv_props routine.

• The newline character is not added to the text in *msgp.

• The log file is truncated based on the SRV_TRUNCATELOG property set 
through srv_props.

• If the message length exceeds SRV_MAXMSG, Open Server truncates the 
message. This holds true whether or not the message is null terminated.

• If srv_init has not completed, the message goes to the boot window.



CHAPTER 3    Routines

Server-Library/C Reference Manual 309

See also srv_props 

srv_mask
Description Initialize, set, clear or check bits in a SRV_MASK_ARRAY structure.

Syntax CS_RETCODE srv_mask(cmd, maskp, bit, infop)

CS_INT                         cmd;
SRV_MASK_ARRAY    *maskp;
CS_INT                         bit;
CS_BOOL                    *infop;

Parameters cmd
The action being performed. Table 3-62 summarizes the legal values for 
cmd:

Table 3-62: Legal values for cmd (srv_mask)

maskp
A pointer to a SRV_MASK_ARRAY structure.

bit
The bit being initialized, set, cleared, or checked in the 
SRV_MASK_ARRAY. This must be an integer between 0 and 
SRV_MAXMASK_LENGTH. SRV_MAXMASK_LENGTH is defined in 
ospublic.h.

infop
A pointer to a variable that will indicate whether or not bit is set. This 
parameter is ignored when cmd is CS_SET, CS_CLEAR, or CS_ZERO.

Value Action

CS_SET Set the bit in the SRV_MASK_ARRAY in *maskp.

CS_GET Find out whether the bit is currently set in the 
SRV_MASK_ARRAY in *maskp. If bit is set, *infop is set to 
CS_TRUE. Otherwise, it is set to CS_FALSE.

CS_CLEAR Clear the bit in the SRV_MASK_ARRAY in *maskp.

CS_ZERO Initialize the SRV_MASK_ARRAY in *maskp so that all the 
bits are off. When cmd is set to CS_ZERO, bit and infop are 
ignored.



srv_mask 

310  Open Server

Return value Table 3-63: Return values (srv_mask)

Examples

#include  <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_mask PROTOTYPE((
SRV_MASK_ARRAY  *maskptr,
CS_INT          bit
));

/* 
** EX_SRV_MASK
**
**    Example routine to manipulate bits in a SRV_MASK_ARRAY
 **    structure.
**
** Arguments:
**    maskptr    A pointer to a mask array.
**    bit        The bit to examine.
**
** Returns:
**
**    CS_SUCCEED
**    CS_FAIL
*/    
CS_RETCODE       ex_srv_mask(maskptr, bit)
SRV_MASK_ARRAY  *maskptr;
CS_INT  bit;
{
    CS_BOOL    info = CS_TRUE;

    if (srv_mask(CS_GET, maskptr, bit, &info) == CS_FAIL)
    {
         return(CS_FAIL);
    }
    else
    {
        /* Has the bit been set? */
        if (info == CS_FALSE)

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 311

            return(CS_FAIL);
        else
            return(CS_SUCCEED);
    }
}

Usage srv_mask is used to access and modify a SRV_MASK_ARRAY structure.

srv_msg
Description Send or receive a message datastream.

Syntax CS_RETCODE srv_msg(spp, cmd, msgidp, status)

SRV_PROC    *spp;
CS_INT           cmd;
CS_INT           *msgidp;
CS_INT          *statusp;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the application is calling srv_msg to send or retrieve a 
message. Table 3-64 describes the legal values for cmd:

Table 3-64: Values for cmd (srv_msg)

msgidp
A pointer to the message ID of the current message. If the Open Server 
application is sending a message (CS_SET), it must provide the message ID 
here. If the application is reading a message (CS_GET), the message ID of 
the received message is returned here. Values of SRV_MINRESMSG 
through SRV_MAXRESMSG are reserved for internal Sybase usage. Since 
the message ID is subsequently sent as a smallint (2 bytes) through TDS, the 
available range you can use for your own messages is SRV_MAXRESMSG 
to 65535, if you define message ID as an unsigned CS_SMALLINT.

Value Description

CS_SET srv_msg is setting the values for status and msgid prior to sending the 
message to the client.

CS_GET srv_msg is retrieving the status and msgid values for the message being 
received.



srv_msg 

312  Open Server

statusp
A pointer to the status of the current message. If the Open Server application 
is receiving a message (CS_GET), Open Server will update *statusp with 
the message status. If the application is sending a message (CS_SET), 
*statusp must contain the status of the message to be sent. Table 3-65 
describes the legal values for *statusp:

Table 3-65: Values for statusp (srv_msg)

Return value Table 3-66: Return values (srv_msg)

Examples

#include  <ospublic.h>
/*
 ** Local prototype.
 */
CS_RETCODE    ex_srv_msg PROTOTYPE((
SRV_PROC      *spp
));

/*
** EX_SRV_MSG
 **
 **    Example routine to receive and send a message datastream.
 **
 ** Arguments:
 **  spp  A pointer to an internal thread control structure.
 **
 ** Returns:
 **  CS_SUCCEED if we were successful in both receiving and
 **  sending a message stream.
 **
 **  CS_FAIL if an error was detected.
 **
 */
CS_RETCODE    ex_srv_msg(spp)
SRV_CONFIG    *scp;
{

Value Description

SRV_HASPARAMS The message has parameters.

SRV_NOPARAMS The message has no parameters.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 313

    CS_RETCODE      result;
    CS_INT          msgid;
    CS_INT          status;

    /*
     ** We will first get a message and process any parameters.
     */

    result = srv_msg(spp, CS_GET, &msgid, &status);

    if (result == CS_FAIL)
    {
        return (CS_FAIL);
    }

    if (status == SRV_HASPARAMS)
    {
        /* 
         ** Process parameters here using srv_bind and 
         ** srv_xferdata.
         */
    }

    /*
    ** Now, an example of sending a message.
    */
    msgid = 32768;
    status = SRV_NOPARAMS;

    result = srv_msg(spp, CS_SET, &msgid, &status);

    if (result == CS_FAIL)
    {
        return (CS_FAIL);
    }
    /* 
     ** If the message has parameters, send it across using     ** srv_xferdata 
     */
    if (status == SRV_HASPARAMS)
     {
        result = srv_xferdata(spp, CS_SET, SRV_MSGDATA);
    }
    return(result);
}

Usage • srv_msg is used to send or receive a TDS message data stream.



srv_negotiate 

314  Open Server

• Each message data stream received from a client raises a SRV_MSG 
event. A separate event is raised for each message received.

• If a message has parameters, *statusp will contain the value 
CS_HASPARAMS. The application can retrieve and store the parameters 
using srv_descfmt, srv_bind, and srv_xferdata with type set to 
SRV_MSGDATA.

• An application can determine the number of parameters for a message by 
calling srv_numparams.

• The srv_msg routine is used to send the status and ID. The actual 
parameters of the message, if any, are sent using srv_descfmt, srv_bind, and 
srv_xferdata with a type argument of SRV_MSGDATA.

• An application can send or receive multiple message data streams.

• srv_xferdata is only needed to retrieve or send message parameters. When 
using it for these cases, srv_xferdata must be called once for each message 
being sent or received. If you use srv_xferdata when no parameters exist, 
Open Server returns an error.

• srv_msg can only be called in a SRV_MSG event handler when cmd is 
CS_GET. It can be called in any event handler when cmd is CS_SET.

See also srv_bind, srv_descfmt, srv_numparams, srv_xferdata, “Data stream 
messages” on page 80

srv_negotiate
Description Send to and receive from a client, negotiated login information.

Syntax CS_RETCODE srv_negotiate(spp, cmd, type)

SRV_PROC    *spp;
CS_INT           cmd;
CS_INT          type;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the application is calling srv_negotiate to send or retrieve 
negotiated login information. Table 3-67 describes the legal values for cmd:



CHAPTER 3    Routines

Server-Library/C Reference Manual 315

Table 3-67: Values for cmd (srv_negotiate)

type
The type of negotiated login information to be sent to or read from a client. 
Table 3-68 describes the legal values for type:

Value Description

CS_SET The negotiated login information defined by type is to be 
sent to the client.

CS_GET The negotiated login information defined by type is to be 
read from the client.



srv_negotiate 

316  Open Server

Table 3-68: Values for type (srv_negotiate)

Value Description

SRV_NEG_CHALLENGE The negotiated login information is a challenge byte 
stream sent to the client (CS_SET) or a challenge 
response byte stream read from the client (CS_GET).

SRV_NEG_ENCRYPT The negotiated login information consists of an 
encryption key sent to the client. The client will then 
use this to encrypt its local and remote passwords. 
This type is only valid when cmd is CS_SET.

SRV_NEG_EXTENDED_
ENCRYPT

The negotiated login information and public key used 
to encrypt the password.These information are used 
by the client. This type is only valid when cmd is 
CS_SET.

SRV_NEG_EXTENDED_
LOCPWD

The public key encrypted password sent by the client 
in response to a SRV_NEG_EXTENDED_ENCRYPT 
challenge. This type is only valid when cmd is 
CS_GET.

SRV_NEG_EXTENDED_
REMPWD

The negotiated login information is a variable number 
of pairs of remote server names and corresponding 
public key encrypted password sent by the client in 
response to a SRV_NEG_EXTENDED_ENCRYPT 
challenge. This type is only valid when cmd is 
CS_GET.

SRV_NEG_LOCPWD The encrypted local password sent by the client in 
response to a SRV_NEG_ENCRYPT challenge. This 
type is only valid when cmd is CS_GET.

SRV_NEG_REMPWD The negotiated login information is a variable number 
of remote server name and encrypted remote 
password pairs sent by the client in response to a 
SRV_NEG_ENCRYPT challenge. This type is only 
valid when cmd is CS_GET.

SRV_NEG_SECLABEL The negotiated login information is a request for 
security labels sent to the client, or a set of security 
labels sent by the client to the server.

SRV_NEG_SECSESSION The negotiated login information is used by a full 
passthrough gateway application to establish a direct 
security session between a gateway client and a 
remote server. This is similar to challenge-response 
security negotiation. Refer to “Security services” on 
page 170 for more information and for an example 
security session callback.



CHAPTER 3    Routines

Server-Library/C Reference Manual 317

Return value Table 3-69: Return values (srv_negotiate)

Examples

#include  <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE    ex_srv_negotiate PROTOTYPE((
SRV_PROC      *sproc
));

/*
** EX_SRV_NEGOTIATE
**  An example routine to retrieve negotiated login information
 **  by using srv_negotiate.
**
** Arguments:
**  sproc  A pointer to an internal thread control structure.
**
** Returns:
**  CS_SUCCEED   The login information was retrieved.
**  CS_FAIL      An error was detected.
*/
CS_RETCODE   ex_srv_negotiate(sproc)
SRV_PROC     *sproc;
{
    /* 
    ** Check to make sure that the thread control structure is
     ** not NULL.
    */
    if ( sproc == (SRV_PROC *)NULL )
    {
        return(CS_FAIL);
    }

An integer value between 
CS_USER_MSGID and 
CS_USER_MAX_MSGID, 
inclusive.

The negotiated login information is part of an 
application-defined handshake, identified by the type 
argument itself.

Value Description

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_negotiate 

318  Open Server

    /* Now get the login information. */
    if ( srv_negotiate(sproc, CS_GET, SRV_NEG_CHALLENGE) ==          CS_FAIL )
    {
        return(CS_FAIL);
    }

    return(CS_SUCCEED);
}

Usage • srv_negotiate is used to send negotiated login information to, and receive 
negotiated login responses from, a client.

• through srv_negotiate, Open Server applications can implement a secure 
login process inside their SRV_CONNECT event handler. In a secure 
computing environment, an application may want to perform more 
rigorous authentication at connect time to verify that clients are who they 
claim to be, by issuing negotiated login challenges and encrypted 
passwords.

• An Open Server application can choose to send a challenge or encrypted 
password to the client while in the SRV_CONNECT event handler, to 
authenticate the login attempt.

• Once an application has sent a negotiated login challenge or encrypted 
password, it must read the client’s response before the connection process 
can continue.

• An Open Server application can go through as many challenge or response 
iterations as are necessary to authenticate the login attempt. However, the 
application must read in the response to each challenge before sending 
another challenge.

• Once a negotiated login challenge has been sent to a client, the application 
must read the response before the connection process can continue.

• An Open Server application must punctuate any type of challenge with a 
call to srv_senddone. If the application issues a batch of several 
challenges before it reads a response, it must call srv_senddone with a 
status argument of SRV_DONE_MORE after each challenge but the last 
one in the batch. After the last challenge in the batch, the application must 
call srv_senddone with a status argument of SRV_DONE_FINAL.



CHAPTER 3    Routines

Server-Library/C Reference Manual 319

• For application-defined handshakes, an Open Server application can set 
the type argument to a value between CS_USER_MSGID and 
CS_USER_MAX_MSGID to set the handshake type (CS_SET) or specify 
the type of reply the client should be sending in response (CS_GET). If the 
Open Server application receives an unexpected value, Open Server raises 
an error.

• When a client responds to a challenge or encrypted password, 
srv_negotiate suspends the thread’s execution until the client’s response 
has arrived. Applications should bear this in mind when coding a secure 
SRV_CONNECT event handler.

• Negotiated login challenges and responses carry data values through 
parameters, which are sent and received through srv_bind, srv_descfmt, 
and srv_xferdata.These three routines take a type argument of 
SRV_NEGDATA to define or access negotiated login data.

• Table 3-70 lists the parameter or parameters that accompany each type of 
challenge sent to a client:

Table 3-70: Required challenge parameters (srv_negotiate)

• Table 3-71 lists the parameter that should be read from a client for each 
type of negotiated login challenge:

Negotiated login type Parameters required

SRV_NEG_CHALLENGE One parameter – Challenge-data value. 
Datatype is CS_BINARY_TYPE with the 
CS_DATAFMT status field set to 
CS_CANBENULL.

SRV_NEG_ENCRYPT One parameter – Encryption key data 
value. Datatype is CS_BINARY_TYPE 
with the CS_DATAFMT status field set to 
CS_CANBENULL.

SRV_NEG_SECLABEL No parameters.

SRV_NEG_SECSESSION The security session callback specifies the 
number of parameters and their data 
formats. Refer to “Security session 
callbacks” on page 193 and to the Open 
Client Client-Library/C Reference 
Manual.

An integer value between 
CS_USER_MSGID and 
CS_USER_MAX_MSGID, inclusive.

One parameter – Application-defined 
login handshake data value.



srv_negotiate 

320  Open Server

Table 3-71: Expected challenge parameters (srv_negotiate)

• Note that a response to a password encryption challenge, 
SRV_NEG_ENCRYPT, can consist of two sets of parameters. The 
SRV_NEG_LOCPWD response carries a parameter indicating the client’s 
encrypted password. The client can also send a SRV_NEG_REMPWD 
response, which carries parameters indicating the client’s encrypted 
remote server password and the remote server name, respectively. The 
SRV_NEG_LOCPWD response to a SRV_NEG_ENCRYPT challenge 
will always be present. If no remote server passwords were sent by the 
client, a request to receive a SRV_NEG_REMPWD response will fail.

• Applications that use Open Client and Open Server to implement gateway 
functionality must use Open Client’s negotiated login callback mechanism 
to route negotiated login challenges and responses between clients and the 
remote server. In this type of application, the Open Client negotiated login 
callback must contain the Server-Library routine calls necessary to 
forward a challenge to the client, and receive the response, which Open 
Client then returns to the remote server.

Negotiated login type Parameters present

SRV_NEG_CHALLENGE One parameter – Challenge response data.

SRV_NEG_LOCPWD One parameter – Encrypted local password.

SRV_NEG_REMPWD A variable number of server-name/password 
pairs.

SRV_NEG_SECLABEL Four parameters:
 Param 1: Maximum read level label.
 Param 2: Maximum write level label.
 Param 3: Minimum write level label.
 Param 4: Current write level label.

SRV_NEG_SECSESSION The security session callback specifies the 
number of parameters and their data formats. 
Refer to “Security session callbacks” on page 
193 and to the Open Client Client-Library/C 
Reference Manual.

An integer value between 
CS_USER_MSGID and 
CS_USER_MAX_MSGID, 
inclusive.

One parameter – Application-defined login 
handshake data value.



CHAPTER 3    Routines

Server-Library/C Reference Manual 321

If the gateway application intends to establish a direct security session 
between clients and a remote server, then an Open Client security session 
callback is required. This callback must contain the Server-Library calls 
necessary to forward the opaque security tokens to the client, and receive 
the response, which the Open Client then returns to the remote server. 
Refer to “Security session callbacks” on page 193 and to the Open Client 
Client-Library/C Reference Manual, for more information.

See also srv_senddone, srv_thread_props 

srv_numparams
Description Return the number of parameters contained in the current client command.

Syntax CS_RETCODE srv_numparams(spp, numparamsp)

SRV_PROC    *spp;
CS_INT          *numparamsp;

Parameters spp
A pointer to an internal thread control structure.

numparamsp
A pointer to the number of arguments in the current client command or 
cursor data stream is returned in *numparamsp.

Return value Table 3-72: Return values (srv_numparams)

Examples

#include  <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE    ex_srv_numparams PROTOTYPE((
SRV_PROC      *spp,
CS_INT        *countp 
));

/* 
** EX_SRV_NUMPARAMS

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_numparams 

322  Open Server

**
**    Example routine to illustrate the use of srv_numparams to
 **    get the number parameters contained in the current client
 **    command.
**
** Arguments:
**    spp    A pointer to an internal thread control structure.
**    countp A pointer to the buffer in which the number of
 **           parameters in the client command is returned.
**
** Returns:
**
**  CS_SUCCEED    The number of parameters was successfully 
 **                returned.
**  CS_FAIL       An error was detected.
*/
CS_RETCODE        ex_srv_numparams(spp, countp)
SRV_PROC          *spp;
CS_INT            *countp;
{
     if (srv_numparams(spp, countp) == CS_FAIL)
        return (CS_FAIL);

    return(CS_SUCCEED);
}

Usage • srv_numparams returns the number of parameters in the current MSG, 
RPC, DYNAMIC or cursor data stream, or the number of parameters in a 
client’s response to a srv_negotiate(CS_GET) call. This number includes 
any default parameters filled in by Open Server at runtime.

• srv_numparams can only be called from handlers for specific events. Table 
3-73 lists those events and their parameters:



CHAPTER 3    Routines

Server-Library/C Reference Manual 323

Table 3-73: Events and parameters (srv_numparams)

See also srv_bind, srv_cursor_props, srv_descfmt, srv_dynamic, srv_msg, 
srv_xferdata, “Processing parameter and row data” on page 134

srv_options
Description Send option information to a client or receive option information from a client.

Syntax CS_RETCODE srv_options(spp, cmd, optcmdp, optionp,

    bufp, bufsize, outlenp)

SRV_PROC    *spp;
CS_INT           cmd;
CS_INT           *optcmdp;
CS_INT           *optionp;
CS_CHAR       *bufp;
CS_INT           bufsize;
CS_INT          *outlenp;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the application is calling srv_options to send or receive 
option information. Table 3-74 describes the legal values for cmd:

Event Parameters

SRV_CURSOR Cursor parameters.

SRV_RPC RPC parameters.

SRV_DYNAMIC Dynamic SQL parameters.

SRV_MSG MSG parameters.

SRV_LANGUAGE Language parameters. srv_numparams requires a TDS level 
of 5.0 or above to check for and retrieve parameter data in a 
language handler. You may need to add code to your 
application to check the TDS level on the connection, and 
skip srv_numparams if the TDS version is less than 
SRV_TDS_5_0. You can use the SRV_S_TDSVERSION 
property of the srv_props routine to get the TDS protocol 
version on the connection (see Table 2-25 on page 141).

After a srv_negotiate 
(CS_GET) call.

Parameters in the client’s response. For example, in the 
sample program, ctos.c.



srv_options 

324  Open Server

Table 3-74: Values for cmd (srv_options)

optcmdp
A pointer either to the program variable that will contain a client’s option 
command (CS_GET) or to the program variable that contains the Open 
Server application’s option command (CS_SET). Table 3-75 summarizes 
the legal values for *optcmdp:

Table 3-75: Values for optcmdp (srv_options)

optionp
A pointer either to the client’s requested option (CS_GET) or to the option 
with which the Open Server application is responding (CS_SET).

Value Description

CS_SET The Open Server application is sending an option command to a client.

CS_GET The Open Server application is receiving an option command from a 
client.

Value Description Cmd

SRV_SETOPTION The client is requesting that the option be set. 
The value associated with optionp is returned 
in *bufp. Open Server will set bufsize to the 
size, in bytes, of the data returned. If *bufp is 
not large enough to hold the data, the 
function will return CS_FAIL, the actual size 
of the option value, in bytes, is returned in 
*outlenp, and the values of optionp and bufp 
will remain undefined.

CS_GET

SRV_CLEAROPTION The client is requesting that optionp be set to 
its default value. The bufp and optionp values 
will remain undefined.

CS_GET

SRV_GETOPTION A client is requesting information on the 
current value in *optionp. The bufp and 
optionp values will remain undefined.

CS_GET

SRV_SENDOPTION The application is sending the current option 
value to the client in response to a 
SRV_GETOPTION command. bufp points to 
the argument associated with the option, and 
bufsize holds the size, in bytes, of the data in 
*bufp.

CS_SET



CHAPTER 3    Routines

Server-Library/C Reference Manual 325

bufp
A pointer to a buffer that will contain either the value associated with the 
option (CS_GET) or the value of the option to be sent to the requestor 
(CS_SET). The *optionp contains the option in question and *bufp contains 
its value (on a CS_SET). For a complete list of options and their legal 
values, see below.

bufsize
The length of the *bufp buffer. When sending an option that takes a 
character string option value, if the value in bufp is null terminated, pass 
bufsize as CS_NULLTERM.

outlenp
A pointer to a program variable which is set to the size, in bytes, of the 
option value returned in *bufp. This parameter is only used when cmd is set 
to CS_GET, and is optional.

Return value Table 3-76: Return values (srv_options)

Examples

#include  <ospublic.h>

/*
** Local Prototype
*/
CS_RETCODE    ex_srv_options PROTOTYPE((
SRV_PROC      *spp,
CS_INT        *rowcount
));

/* 
** EX_SRV_OPTIONS
**
**    Example routine to recieve option information for the
 **    maximum number of regular rows to return (CS_OPT_ROWCOUNT)
 **    from a client.
**
** Arguments:
**   spp       A pointer to an internal thread control structure.
**   rowcount  Return pointer for the number of rows to return.
**
** Returns:

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_options 

326  Open Server

**
**    CS_SUCCEED   Successfully retrieved option.
**    CS_FAIL      An error was detected.
*/
CS_RETCODE       ex_srv_options(spp, rowcount)
SRV_PROC         *spp;
CS_INT           *rowcount;
{
    CS_INT       optcmdp;    /* The client’s option command. */
    CS_INT       optionp;    /* The client’s option request. */

    /* Initialization. */
    optcmdp = SRV_GETOPTION;
    optionp = CS_OPT_ROWCOUNT;

    /*
    ** Get the maximum number of rows to return.
    */
    if (srv_options(spp, CS_GET, &optcmdp, &optionp, (CS_VOID
         *)rowcount, CS_SIZEOF(CS_INT), (CS_INT *)NULL) !=
         CS_SUCCEED)
    {
        return(CS_FAIL);
    }
    return(CS_SUCCEED);
}

Usage • srv_options allows an Open Server application to read option information 
from a client or send option information to a client.

• Table 3-77 summarizes the valid options, their legal values, and the 
datatype of the optionp parameter:



CHAPTER 3    Routines

Server-Library/C Reference Manual 327

Table 3-77: Description of options (srv_options)

Option Legal value bufp points to

CS_OPT_ANSINULL CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_ANSIPERM CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_ARITHABORT CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_ARITHIGNORE CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_AUTHOFF CS_OPT_SA,
 CS_OPT_SSO,
 CS_OPT_OPER

A character string

CS_OPT_AUTHON CS_OPT_SA,
 CS_OPT_SSO,
 CS_OPT_OPER

A character string

CS_OPT_CHAINXACTS CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_CURCLOSEONXAC
T

CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_CURREAD Read label (string) A character string

CS_OPT_CURWRITE Write label (string) A character string

CS_OPT_DATEFIRST CS_OPT_SUNDAY
 CS_OPT_MONDAY
 CS_OPT_TUESDAY
 CS_OPT_WEDNESDAY
 CS_OPT_THURSDAY
 CS_OPT_FRIDAY
 CS_OPT_SATURDAY

A symbolic value 
representing the 
day to use as the 
first day of the 
week

CS_OPT_DATEFORMAT CS_OPT_FMTMDY
 CS_OPT_FMTDMY
 CS_OPT_FMTYMD
 CS_OPT_FMTYDM
 CS_OPT_FMTMYD
 CS_OPT_FMTDYM

A symbolic value 
representing the 
order of year, 
month and day to 
be used in 
datetime values

CS_OPT_FIPSFLAG CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_FORCEPLAN CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_FORMATONLY CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_GETDATA CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_IDENTITYOFF A string value representing 
a table name

A character string

CS_OPT_IDENTITYON A string value representing 
a table name

A character string

CS_OPT_ISOLATION CS_OPT_LEVEL1
 CS_OPT_LEVEL3

A symbolic value 
representing the 
isolation level



srv_options 

328  Open Server

“Options” on page 122 describes each option and lists its default value.

• Open Server raises a SRV_OPTION event for each option command 
received from a client. Inside its SRV_OPTION event handler, the 
application can then call srv_options with cmd set to CS_GET to retrieve 
the option information. When srv_options returns, optcmdp, optionp, and 
*bufp will contain all of the option information received from the client. It 
is an error to call srv_options in any event handler other than a 
SRV_OPTION event handler.

• In response to SRV_SETOPTION and SRV_CLEAROPTION, the 
application must call srv_senddone with an argument of 
SRV_DONE_FINAL. If option processing is unsuccessful, the application 
must call srv_senddone with an argument of SRV_DONE_FINAL | 
SRV_DONE_ERROR.

• The application must respond to every SRV_GETOPTION command it 
receives with a call to srv_options, with optcmdp set to 
SRV_SENDOPTION and bufp pointing to the current value of the option.

• It is the application’s responsibility to ensure that the *bufp buffer is large 
enough to receive arguments sent by a client with a SRV_SETOPTION 
command. If the buffer is not large enough, srv_options will return 
CS_FAIL and outlenp will be set to the required size.

CS_OPT_NOCOUNT CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_NOEXEC CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_PARSEONLY CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_QUOTED_IDENT CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_RESTREES CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_ROWCOUNT The maximum number of 
regular rows to return

A CS_INT
 0 means all rows 
are returned

CS_OPT_SHOWPLAN CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_STATS_IO CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_STATS_TIME CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_STR_RTRUNC CS_TRUE, CS_FALSE A CS_BOOL

CS_OPT_TEXTSIZE The length, in bytes, of the 
longest text or image value 
the server should return

A CS_INT

CS_OPT_TRUNCIGNORE CS_TRUE, CS_FALSE A CS_BOOL

Option Legal value bufp points to



CHAPTER 3    Routines

Server-Library/C Reference Manual 329

• Open Server has no notion of what particular options mean. It is the Open 
Server application’s responsibility to save the client’s option commands 
and perform any actions that they require. If there is no SRV_OPTION 
event handler installed, option commands received from clients will be 
rejected with an error.

See also srv_senddone, “Options” on page 122

srv_orderby
Description Return an order-by list to a client.

Syntax CS_RETCODE srv_orderby(spp, numcols, collistp)

SRV_PROC    *spp;
CS_INT           numcols;
CS_INT          *collistp;

Parameters spp
A pointer to an internal thread control structure.

numcols
The number of columns in the order-by list. Because the columns are passed 
as an array of CS_INTs, numcols is really the number of elements in the 
collistp array.

collistp
A pointer to the array of column numbers. The size of this array is numcols.

Return value Table 3-78: Return values (srv_orderby)

Examples

#include  <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE   ex_srv_orderby PROTOTYPE((
SRV_PROC     *spp
));

/*

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_orderby 

330  Open Server

** EX_SRV_ORDERBY
**
**    Example routine using srv_orderby to define and return to a 
 **    client application the order-by list for a simple SQL
 **    command.
**    This example uses the SQL command:
**
**        “select a,b,c,d from my_tab
 **         order by c,a”
**
** Arguments:
**    spp    A pointer to the internal thread control structure.
**
** Returns:
**    CS_SUCCEED      Order-by list was successfully defined.
**    CS_FAIL         An error was detected..
*/
CS_RETCODE            ex_srv_orderby(spp)
SRV_PROC              *spp;
{
    /* There are two columns specified in the order-by clause. */
    CS_INT        collist[2];
    CS_INT        numcols;

    /* Initialization. */
    numcols = 2;

    /*
    ** Initialize the collist array in the order the
     ** columns occur in the order-by clause.
    **
    ** “c” is the 1st column specified in the order-by,
     ** and is the 3rd column specified in the select-list.
    */
    collist[0] = (CS_INT)3;
    /*
    ** “a” is the 2nd column specified in the order-by,
     ** and is the 1st column specified in the select-list.
    */
    collist[1] = (CS_INT)1;
    /*
    ** Define the order-by list.
    */
    if (srv_orderby(spp, numcols, collist) != CS_SUCCEED)
    {
        return(CS_FAIL);



CHAPTER 3    Routines

Server-Library/C Reference Manual 331

    }
    return(CS_SUCCEED);
}

Usage • srv_orderby is necessary only if you want to mimic Adaptive Server’s 
feature of returning order-by information.

• srv_orderby allows an Open Server application to return information about 
sort order to a client. In the SQL command:

select a, b, c, d
 order by c, a

The sort order is column c followed by column a. The application returns 
this information to the client by listing column 3 followed by column 1 in 
the column number array.

• The first column in a select list is column 1.

• srv_orderby must be called after a call to srv_descfmt and before a call to 
srv_bind.

srv_poll (UNIX only)
Description Check for I/O events on file descriptors for a set of open streams.

Syntax CS_INT srv_poll(fdsp, nfds, waitflag)

SRV_POLLFD         *fdsp;
CS_INT                   nfds;
CS_INT                 waitflag;

Parameters fdsp
A pointer to an array of SRV_POLLFD structures with one element for each 
open file descriptor of interest. The SRV_POLLFD structure has the 
following members:

CS_INT   srv_fd;         /* File descriptor. */
 CS_INT   srv_events;     /* Relevant events. */
 CS_INT   srv_revents;    /* Returned events. */ 

nfds
The number of elements in the *fdsp array.



srv_poll (UNIX only) 

332  Open Server

waitflag
A CS_INT value that indicates whether the thread should be suspended until 
a file descriptor is available for the desired operation. If set to 
SRV_M_WAIT, the thread is suspended and will wake when any file 
descriptor represented in the *fdsp array is available for the specified 
operation. If the flag is set to SRV_M_NOWAIT, srv_poll will perform a 
single check and return to the caller. A return status greater than zero 
indicates that a file descriptor was available for the desired operation.

Return value Table 3-79: Return values (srv_poll)

Examples

#include   <ospublic.h>
/*
** Local Prototype
*/
CS_RETCODE      ex_srv_pollPROTOTYPE((
struct pollfd   *fdp,
CS_INT          nfds
));

/*
** EX_SRV_POLL
**
**   This routine demonstrates how to use srv_poll to poll
**   application-specific file descriptors.
**
** Arguments:
**         fdp - The address of the file descriptor array.
**         nfds - The number of file descriptors to poll.
**
** Returns
**
**    CS_SUCCEED    If the data address is returned.
**    CS_FAIL       If the call to srv_poll failed.
**
*/
CS_RETCODE      ex_srv_poll(fdp, nfds)
struct pollfd   *fdp;
CS_INT          nfds;
{

Returns To indicate

An integer The number of &ready file descriptors.

-1 The routine failed.

0 No file descriptors are &ready.



CHAPTER 3    Routines

Server-Library/C Reference Manual 333

      /*
      ** Initialization.
      */
      lp = (CS_VOID *)NULL;

      /*
      ** Calls srv_poll to check if any of these file 
      ** descriptors are active; ask to sleep until at 
      ** least one of them is.
      */
      if( srv_poll(fdp, nfds, SRV_M_WAIT) == (CS_INT)-1 )
      {
          return CS_FAIL;
      }

      /*
      ** All done.
      */
      return CS_SUCCEED;
}

Usage • An application can use srv_poll to poll the file descriptor or to suspend a 
thread until there is I/O to be performed.

• Table 3-80 summarizes legal values for srv_events and srv_revents:

Table 3-80: Values for srv_events and revents (srv_poll)

• srv_poll is available on all UNIX platforms.

Note  If an application uses srv_poll on a UNIX platform that supports the 
native poll(2) system call, the application must include <sys/poll.h> before 
ospublic.h.

See also srv_capability, srv_select (UNIX only)

Value Description

SRV_POLLIN Normal read event.

SRV_POLLPRI Priority event received.

SRV_POLLOUT File descriptor is writable.

SRV_POLLERR Error occurred on file descriptor.

SRV_POLLHUP A hang up occurred on the file descriptor. This value is 
valid in returned events only.

SRV_POLLNVAL Invalid file descriptor specified in SRV_POLLFD.



srv_props 

334  Open Server

srv_props
Description Define and retrieve Open Server properties.

Syntax CS_RETCODE srv_props(cp, cmd, property, bufp, buflen,
                 outlenp)

CS_CONTEXT       *cp;
CS_INT           cmd;
CS_INT           property;
CS_VOID          *bufp;
CS_INT           buflen;
CS_INT           *outlenp;

Parameters scp
A pointer to a CS_CONTEXT structure previously allocated using 
cs_ctx_alloc.

cmd
The action to take. Table 3-81 summarizes the legal values for cmd:

Table 3-81: Values for cmd (srv_props)

property
The property being set, retrieved or cleared. See below for a list of this 
argument’s legal values.

bufp
A pointer to the Open Server application data buffer where property value 
information is placed (CS_SET) or property value information is retrieved 
(CS_GET).

buflen
The length, in bytes, of the buffer.

outlenp
A pointer to a CS_INT variable, which Open Server will set to the size, in 
bytes, of the property value retrieved. This argument is only used when cmd 
is CS_GET, and is optional.

Value Meaning

CS_SET The Open Server application is setting the property. In this case, bufp 
should contain the value the property is to be set to, and buflen 
should specify the size, in bytes, of that value.

CS_GET The Open Server application is retrieving the property. In this case, 
bufp should point to the buffer where the property value is placed, 
and buflen should be the size, in bytes, of the buffer.

CS_CLEAR The Open Server application is resetting the property to its default 
value. In this case, bufp, buflen, and outlenp are ignored.



CHAPTER 3    Routines

Server-Library/C Reference Manual 335

Return value Table 3-82: Return values (srv_props)

Examples

#include<ospublic.h>
/*
** Local prototype
*/
CS_RETCODE ex_srv_set_propPROTOTYPE((
CS_CONTEXT *cp,
CS_INT     property,
CS_VOID    *bufp,
CS_INT     buflen
));
/*
** EX_SRV_SET_PROP
**
**    Example routine to set a property using srv_props.
**
** Arguments:
**
**    *cp       Pointer to a CS_CONTEXT structure previously
**              allocated by cs_ctx_alloc.
**    property  The property being set.
**    *bufp     Pointer to the value the property is to be
**              set to.
**    buflen    The length of the value.
** 
** Returns
**
**   CS_SUCCEED   Arguments were valid and srv_props was called.
**   CS_FAIL      An error was detected.
**
*/
CS_RETCODE      ex_srv_set_prop(cp, property, bufp, buflen)
CS_CONTEXT      *cp;
CS_INT          property;
CS_VOID         *bufp;
CS_INT          buflen;
{
      /* Check arguments. */
      if(cp == (CS_CONTEXT *)NULL) 
      {

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_props 

336  Open Server

            return(CS_FAIL);
      }
      if(buflen < 1)
            return(CS_FAIL);                             
return(srv_props(cp,(CS_INT)CS_SET,property,bufp,buflen,
  (CS_INT *)0));
}

Usage • srv_props is called to define and retrieve server-wide configuration 
parameters and properties.

• srv_version must be called before srv_props can be called. 

• All properties to be set by srv_props (except SRV_S_TRACEFLAG, 
SRV_S_LOGFILE, and SRV_S_TRUNCATELOG) must be set before 
srv_init is called.

• After srv_init is called, setting the SRV_S_LOGFILE property with bufp 
set to an empty string ("") and buflen set to zero will close the log file.

• Table 3-83 summarizes the server properties, whether they can be set or 
retrieved, and the datatype of each property value:

Table 3-83: Server properties and their datatypes (srv_props)

Property
SET/ 
CLEAR GET

bufp when 
cmd is 
CS_SET

bufp when cmd is 
CS_GET

SRV_S_ALLOCFUNC Yes Yes A function 
pointer

The address of a 
function pointer

SRV_S_APICHK Yes Yes A CS_BOOL A CS_BOOL

SRV_S_ATTNREASON No Yes Not applicable A CS_INT

SRV_S_CERT_AUTH Yes Yes char* char*

SRV_S_CURTHREAD No Yes Not applicable The address of a thread 
pointer

SRV_S_DISCONNECT Yes Yes A CS_BOOL A CS_BOOL

SRV_S_DEFQUEUESIZE Yes Yes A CS_INT A CS_INT

SRV_S_DS_PROVIDER Yes Yes A pointer to a 
character string

A pointer to a character 
string

SRV_S_DS_REGISTER Yes Yes A CS_BOOL A CS_BOOL

SRV_S_ERRHANDLE Yes Yes A function 
pointer

The address of a 
function pointer

SRV_S_FREEFUNC Yes Yes A function 
pointer

The address of a 
function pointer

SRV_S_IFILE Yes Yes A character 
string

A character string



CHAPTER 3    Routines

Server-Library/C Reference Manual 337

SRV_S_LOGFILE Yes Yes A character 
string

A character string

SRV_S_LOGSIZE Yes Yes A CS_INT A CS_INT

SRV_S_MSGPOOL Yes Yes A CS_INT A CS_INT

SRV_S_NETBUFSIZE Yes Yes A CS_INT A CS_INT

SRV_S_NETTRACEFILE Yes Yes A character 
string

A character string

SRV_S_NUMCONNECTION
S

Yes Yes A CS_INT A CS_INT

SRV_S_NUMMSGQUEUES Yes Yes A CS_INT A CS_INT

SRV_S_NUMMUTEXES Yes Yes A CS_INT A CS_INT

SRV_S_NUMREMBUF Yes Yes A CS_INT A CS_INT

SRV_S_NUMREMSITES Yes Yes A CS_INT A CS_INT

SRV_S_NUMTHREADS Yes Yes A CS_INT A CS_INT

SRV_S_NUMUSEREVENTS Yes Yes A CS_INT A CS_INT

SRV_S_PREEMPT Yes Yes A CS_BOOL A CS_BOOL

SRV_S_REALLOCFUNC Yes Yes A function 
pointer

The address of a 
function pointer

SRV_S_RETPARMS Yes Yes A CS_BOOL A CS BOOL

SRV_S_REQUESTCAP Yes Yes A 
CS_CAP_TYP
E structure

A CS_CAP_TYPE 
structure

SRV_S_RESPONSECAP Yes Yes A 
CS_CAP_TYP
E structure

A CS_CAP_TYPE 
structure

SRV_S_SEC_KEYTAB Yes Yes A pointer to a 
character string

A pointer to a character 
string

SRV_S_SEC_PRINCIPAL Yes Yes A pointer to a 
character string

A pointer to a character 
string

SRV_S_SERVERNAME No Yes A character 
string

A character string

SRV_S_SSL_CIPHER Yes No char*

SRV_S_SSL_LOCAL_ID Yes Yes struct char*

SRV_S_SSL_VERSION Yes No CS_INT

SRV_S_STACKSIZE Yes Yes A CS_INT A CS_INT

SRV_S_TDSVERSION Yes Yes A CS_INT A CS_INT

SRV_S_TIMESLICE Yes Yes A CS_INT A CS_INT

Property
SET/ 
CLEAR GET

bufp when 
cmd is 
CS_SET

bufp when cmd is 
CS_GET



srv_props 

338  Open Server

• Table 3-84 lists the default value for each server property:

Table 3-84: Legal properties and their default values (srv_props)

SRV_S_TRACEFLAG Yes Yes A CS_INT (bit 
mask)

A CS_INT (bit mask)

SRV_S_TRUNCATELOG Yes Yes A CS_BOOL A CS_BOOL

SRV_S_USESRVLANG Yes Yes A CS_BOOL A CS_BOOL

SRV_S_VERSION No Yes Not applicable A character string

SRV_S_VIRTCLKRATE Yes Yes A CS_INT A CS_INT

SRV_S_VIRTTIMER Yes Yes A CS_BOOL A CS_BOOL

Property
SET/ 
CLEAR GET

bufp when 
cmd is 
CS_SET

bufp when cmd is 
CS_GET

Property Default

SRV_S_ALLOCFUNC malloc()

SRV_S_APICHK CS_TRUE

SRV_S_ATTNREASON No default

SRV_S_CURTHREAD N/A.

SRV_S_DEFQUEUESIZE SRV_DEF_DEFQUEUESIZE

SRV_S_DISCONNECT CS_FALSE

SRV_S_DS_PROVIDER Platform dependent. Refer to the Open Client and 
Open Server Configuration Guide for your 
platform.

SRV_S_DS_REGISTER CS_TRUE, Server-Library registers itself with a 
directory on start-up.

SRV_S_ERRHANDLE No error handler

SRV_S_FREEFUNC free()

SRV_S_IFILE $SYBASE/interfaces

SRV_S_LOGFILE srv.log

SRV_S_LOGSIZE Max integer value

SRV_S_MSGPOOL SRV_DEF_MSGPOOL

SRV_S_NETBUFSIZE SRV_DEF_NETBUFSIZE

SRV_S_NETTRACEFILE sybnet.dbg

SRV_S_NUMCONNECTIONS SRV_DEF_NUMCONNECTIONS

SRV_S_NUMMSGQUEUES SRV_DEF_NUMMSGQUEUES

SRV_S_NUMMUTEXES SRV_DEF_NUMMUTEXES

SRV_S_NUMREMBUF SRV_DEF_NUMREMBUF

SRV_S_NUMREMSITES SRV_DEF_NUMREMSITES

SRV_S_NUMTHREADS SRV_DEF_NUMTHREADS



CHAPTER 3    Routines

Server-Library/C Reference Manual 339

• All server properties that have a default and are settable can be reset back 
to the default value by calling srv_props with cmd set to CS_CLEAR.

• All server properties can be retrieved at any time by calling srv_props with 
cmd set to CS_GET. If the Open Server application has not defined a value 
for a property, the default value is returned.

• For a description of properties, see the Properties topic page.

• When a property is being retrieved, if buflen indicates that the user buffer 
is not big enough to hold the property value, Open Server will place the 
number of bytes required in *outlenp, and the user buffer will not be 
modified.

• The default stacksize (default value for SRV_S_STACKSIZE) depends on 
the platform used.

For native-threaded versions of Open Server, the default stacksize of 
underlying threads is used. This value can be changed by setting the 
stacksize with the SRV_S_STACKSIZE property.

Note that when setting the stacksize, stack overflow errors may occur if 
the specified stacksize is too small.

SRV_S_NUMUSEREVENTS SRV_DEF_NUMUSEREVENTS

SRV_S_PREEMPT CS_FALSE

SRV_S_REALLOCFUNC realloc()

SRV_S_REQUESTCAP See “Capabilities” on page 24

SRV_S_RESPONSECAP See “Capabilities” on page 24

SRV_S_RETPARMS No default

SRV_S_SEC_KEYTAB No default

SRV_S_SEC_PRINCIPAL Security mechanism dependent

SRV_S_SERVERNAME DSLISTEN environment variable

SRV_S_STACKSIZE SRV_DEF_STACKSIZE

0 SRV_TDS_5_0

SRV_S_TIMESLICE SRV_DEF_TIMESLICE

SRV_S_TRACEFLAG 0

SRV_S_TRUNCATELOG CS_FALSE

SRV_S_USESRVLANG CS_TRUE

SRV_S_VERSION Compile-time version string

SRV_S_VIRTCLKRATE SRV_DEF_VIRTCLKRATE

SRV_S_VIRTTIMER CS_FALSE

Property Default



srv_putmsgq 

340  Open Server

See also srv_init, srv_thread_props, srv_spawn, “Properties” on page 139

srv_putmsgq
Description Put a message into a message queue.

Syntax CS_RETCODE srv_putmsgq(msgqid, msgp, putflags)

SRV_OBJID        msgqid;
CS_VOID            *msgp;
CS_INT              putflags;

Parameters msgqid
The identifier for the message queue. If you want to reference the message 
queue by name, call srv_getobjid to look up the name and return the message 
queue ID.

msgp
A pointer to the message. The message data must be valid until it is received 
and processed.

putflags
The values for putflags can be OR’d together. Table 3-85 describes each 
value’s significance:



CHAPTER 3    Routines

Server-Library/C Reference Manual 341

Table 3-85: Values for putflags (srv_putmsgq)

Return value Table 3-86: Return values (srv_putmsgq)

Examples

#include  <ospublic.h>

/*
 ** Local Prototype.
 */
CS_RETCODE ex_srv_putmsgq PROTOTYPE((
SRV_OBJID  mqid,
CS_INT     flags
));
/* 
 ** EX_SRV_PUTMSGQ
**
**    Example routine to put a message into a message queue.
**
** Arguments:
**   msgqid    Message queue identifier.
**   putflags  Special instructions for srv_putmsgq.
**
** Returns:
**
**   CS_SUCCEED
**   CS_FAIL
 */
CS_RETCODE     ex_srv_putmsgq(mqid, flags)
SRV_OBJID      mqid;
CS_INT         flags;

Value Description

SRV_M_NOWAIT When this flag is set, the call to srv_putmsgq returns 
immediately after the message is placed in the message queue.

SRV_M_WAIT When SRV_M_WAIT is set, srv_putmsgq does not return until 
either the message is read or the queue is deleted.

SRV_M_URGENT If this flag is set, the message is put at the head of the list of 
messages in the message queue instead of at the end. If more 
than one urgent message is added to a given queue, the urgent 
messages will appear at the head of the queue in the order in 
which they were enqueued.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_realloc 

342  Open Server

{
     CS_CHAR   *msgp;

msgqp = srv_alloc(20);
     strcpy(msgp, “Hi there”);
     return(srv_putmsgq(mqid, msgp, flags));
}

Usage • srv_putmsgq puts the message in *msgp into the message queue msgqid.

• A message is always passed as a pointer. The data the message points to 
must remain valid even if the thread sending the message changes context.

In particular, be cautious when passing a message that points to a stack 
address in the context of the thread that sends the message. If you do this, 
you must guarantee that the thread that sends the message does not return 
from the frame in which it sent the message until the message has been 
removed from the queue. Otherwise, the message may point to a stack that 
is being used for other purposes.

• The SRV_S_NUMMSGQUEUES server property determines the number 
of message queues available to an Open Server application. Refer to 
“Server properties” on page 141 for more information.

• The SRV_S_MSGPOOL server property determines the number of 
messages available to an Open Server application at runtime. Refer to 
“Server properties” on page 141 for more information.

See also srv_createmsgq, srv_deletemsgq, srv_getmsgq, srv_getobjid 

srv_realloc
Description Reallocate memory.

Syntax CS_VOID* srv_realloc(mp,newsize)

CS_VOID         *mp;
CS_INT          newsize;

Parameters mp
A pointer to the old block of memory.

newsize
The number of bytes to reallocate.



CHAPTER 3    Routines

Server-Library/C Reference Manual 343

Return value Table 3-87: Return values (srv_realloc)

Examples

#include   <ospublic.h>

/*
** Local Prototype.
*/
extern CS_RETCODE ex_srv_realloc PROTOTYPE((
CS_VOID       *mp,
CS_INT       newsize
));

/* 
** EX_SRV_REALLOC
**
**   Reallocate a memory chunk.
**
** Arguments:
**    mp        A pointer to existing memory block.
**    newsize   The new size of the memory block.
**
** Returns:
**    CS_SUCCEED   Memory was allocated successfully.
**    CS_FAIL      An error was detected.
*/
CS_RETCODE      ex_srv_realloc(mp, newsize)
CS_VOID         *mp;
CS_INT          newsize;
{
      mp = srv_realloc(mp, newsize);

      if(mp == (CS_VOID *)NULL)
      {
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_realloc reallocates memory dynamically.

Returns To indicate

A pointer to the newly 
allocated space

The location of the new space.

A null pointer Server-Library could not allocate newsize bytes.



srv_recvpassthru 

344  Open Server

• It changes the size of the block referenced by mp to newsize, and returns a 
pointer to the (possibly moved) block.

• Any memory allocated using srv_realloc should be freed by calling 
srv_free.

• Use srv_realloc wherever the standard C memory-allocation routines 
would be used.

• Currently, srv_realloc calls the C routine, realloc. An Open Server 
application, however, can install its own memory management routines 
using the srv_props routine. The parameter-passing conventions of the 
user-installed routines must be the same as those of realloc. If the 
application is not configured to use the user-installed routines, Open 
Server will call realloc.

See also srv_alloc, srv_free, srv_props 

srv_recvpassthru
Description Receive a protocol packet from a client.

Syntax CS_RETCODE srv_recvpassthru(spp, recv_bufp, infop)

SRV_PROC         *spp;
CS_BYTE            **recv_bufp;
CS_INT              *infop;

Parameters spp
A pointer to an internal thread control structure.

recv_bufp
A pointer to a CS_BYTE pointer that will receive the starting address of the 
buffer containing the received protocol packet.

infop
A pointer to a CS_INT that is set to SRV_I_UNKNOWN if srv_recvpassthru 
returns CS_FAIL. Table 3-88 describes the possible values returned in 
*infop if srv_recvpassthru returns CS_SUCCEED:



CHAPTER 3    Routines

Server-Library/C Reference Manual 345

Table 3-88: CS_SUCCEED values (srv_recvpassthru)

Return value Table 3-89: Return values (srv_recvpassthru)

Examples

#include      <ospublic.h>
/*
 ** Local prototype.
 */
CS_RETCODE      ex_srv_recvpassthru PROTOTYPE((
CS_VOID         *spp
));
/*
** EX_SRV_RECVPASSTHRU
**
**   Example routine to receive protocol packets from a client.
**
** Arguments:
**   spp    A pointer to an internal thread control structure.
**
** Returns:
**   CS_SUCCEED If we were able to receive the packets.
**   CS_FAIL If were unsuccessful at receiving the packets.
**
*/
CS_RETCODE    ex_srv_recvpassthru(spp)
SRV_PROC    *spp;
{
     CS_RETCODE    result;
     CS_BYTE       *recvbuf;
     CS_INT        info;

     /*
     ** Read packets until we get the EOM flag.
     */
     do
     {

Value Description

SRV_I_PASSTHRU_MORE A protocol packet was read successfully and is not 
the end of message packet.

SRV_I_PASSTHRU_EOM The packet is the end of message packet.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_regcreate 

346  Open Server

            result = srv_recvpassthru(spp, &recvbuf, &info);
     }
     while (result == CS_SUCCEED && info == SRV_I_PASSTHRU_MORE);

     return (result);
}

Usage • srv_recvpassthru receives a protocol packet without interpreting its 
contents.

• Once srv_recvpassthru is called, the event handler that called it is in 
“passthrough” mode. Passthrough mode ends when 
SRV_I_PASSTHRU_EOM is returned in *infop.

• No other Server-Library routines can be called while the event handler is 
in passthrough mode.

• In passthrough mode, the SRV_CONNECT handler for the client must 
allow the client and remote server to negotiate the protocol packet format 
by calling srv_getloginfo, ct_setloginfo, ct_getloginfo, and srv_setloginfo. 
This allows clients and remote servers running on dissimilar platforms to 
perform any necessary data conversions.

• srv_recvpassthru can be called in all event handlers except SRV_START, 
SRV_CONNECT, SRV_STOP, SRV_DISCONNECT, 
SRV_URGDISCONNECT, and SRV_ATTENTION.

• Once it has called srv_recvpassthru, an application cannot call any other 
routine that does I/O until it has issued a srv_senddone.

See also srv_getloginfo, srv_sendpassthru, srv_setloginfo

srv_regcreate
Description Complete the registration of a registered procedure.

Syntax CS_RETCODE srv_regcreate(spp, infop)

SRV_PROC         *spp;
CS_INT              *infop;

Parameters spp
A pointer to an internal thread control structure.



CHAPTER 3    Routines

Server-Library/C Reference Manual 347

infop
A pointer to a CS_INT. Table 3-90 describes the possible values returned in 
*infop if srv_regcreate returns CS_FAIL:

Table 3-90: Values for infop (srv_regcreate)

Return value Table 3-91: Return values (srv_regcreate)

Examples

#include  <ospublic.h>

/*
** Local Prototype.
*/
CS_INT    ex_srv_regcreate PROTOTYPE((
SRV_PROC  *sproc
));

/*
** EX_SRV_REGCREATE
**    An example routine that completes the registration of a
**    registered procedure using srv_regcreate.
**
** Arguments:
**    sproc  A pointer to an internal thread control structure.
**
** Returns:
**    CS_SUCCEED   If the procedure was registered successfully.
**    CS_FAIL      If the supplied internal control structure is
 **                NULL.
**    SRV_I_EXIST       If the procedure is al&ready registered.
**    SRV_I_UNKNOWN     If some other error occurred.
*/
CS_INT    ex_srv_regcreate(sproc)
SRV_PROC  *sproc;
{
      CS_INT    info;     /* The reason for failure */

Value Description

SRV_I_PEXISTS The procedure is al&ready registered.

SRV_I_UNKNOWN Some other error occurred.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_regdefine 

348  Open Server

      /*
      ** Check whether the internal control structure is NULL.
      */
      if ( sproc == (SRV_PROC *)NULL )
      {
           return((CS_INT)CS_FAIL);
      }

      /*
      ** Now register the procedure al&ready defined by
      ** srv_regdefine and(or) srv_regparam. If an error  
      ** occurred, return the cause of error.
      */
      if ( srv_regcreate(sproc, &info) == CS_FAIL )
      {
             return(info);
      }

      /* The procedure is registered. */
      return((CS_INT)CS_SUCCEED);
}

Usage • After all information needed to register a procedure has been provided, 
srv_regcreate completes the registration.

• The procedure’s name and parameters must have been previously defined 
with srv_regdefine and srv_regparam respectively.

• Once registered, the procedure can be invoked by a client application or 
from within an Open Server application program.

• See srv_regdefine, for an example that registers a procedure.

See also srv_regdefine, srv_regdrop, srv_reglist, srv_regparam

srv_regdefine
Description Initiate the process of registering a procedure.

Syntax CS_RETCODE srv_regdefine(spp, procnamep, 

                    namelen, funcp)

SRV_PROC            *spp;
CS_CHAR              *procnamep;
CS_INT                   namelen;
SRV_EVENTHANDLE_FUNC(*funcp)();



CHAPTER 3    Routines

Server-Library/C Reference Manual 349

Parameters spp
A pointer to an internal thread control structure.

procnamep
A pointer to the name of the procedure.

namelen
The length of the procedure name. If the string in *proc_namep is null 
terminated, namelen can be CS_NULLTERM.

funcp
A pointer to the function to be called each time the procedure is executed. 
Setting this parameter to null registers a “notification” procedure. 
Notification procedures are useful for inter-client communication. For more 
information on notification procedure, see “Registered procedures” on page 
162.

Return value Table 3-92: Return values (srv_regdefine)

Examples

#include    <ospublic.h>
#include    <stdio.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_regdefine PROTOTYPE((
SRV_SERVER      *server
));
CS_RETCODE      stop_serv PROTOTYPE((
SRV_PROC        *spp
));

/*
** Local defines.
*/
#define   STOP_SERV   “stop_serv”

/*
** STOP_SERV
**    This function is called when the client sends the stop_serv 
**    registered procedure.
** 

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_regdefine 

350  Open Server

** Arguments:
**    spp A pointer to internal thread control structure.
**
** Returns:
**    SRV_CONTINUE
*/
CS_INT     stop_serv(spp)
SRV_PROC   *spp;
{
 /* Queue a SRV_STOP event. */
 (CS_VOID)srv_log((SRV_SERVER *)NULL, CS_TRUE, 
           “Stopping Server\n”, CS_NULLTERM);

     /* Send a final DONE to client to acknowledge the command. */
     if (srv_senddone(spp, SRV_DONE_FINAL, CS_TRAN_UNDEFINED,
                (CS_INT)0)
                == CS_FAIL)
     {
            fprintf(stderr, “srv_senddone failed\n”);
     }

     /* Queue a SRV_STOP event to shut down the server. */
 if (srv_event(spp, SRV_STOP, (CS_VOID *)NULL)
           == CS_FAIL)
     {
           fprintf(stderr, “Error queuing SRV_STOP event\n”);
     }
 return (SRV_CONTINUE);
}

/* 
** EX_SRV_REGDEFINE
**
**    Example routine to illustrate the use of srv_regdefine to 
**    register a procedure.
**
** Arguments:
**   server       A pointer to the Open Server control structure.
**
** Returns:
**
**   CS_SUCCEED  If procedure was registered successfully.
**   CS_FAIL     If an error occurred in registering the 
**                  procedure.
*/
CS_RETCODE      ex_srv_regdefine (server)



CHAPTER 3    Routines

Server-Library/C Reference Manual 351

SRV_SERVER      *server;
{
      SRV_PROC  *spp;
      CS_INT    info;

      /* Create a thread. */
      spp = srv_createproc(server);

      if (spp == (SRV_PROC *)NULL)
           return (CS_FAIL);

      /* Define the procedure. */
      if (srv_regdefine(spp, STOP_SERV, CS_NULLTERM, stop_serv)
           == CS_FAIL)
           return (CS_FAIL);

      /* Complete the registration. */
      if (srv_regcreate(spp, &info) == CS_FAIL)
           return (CS_FAIL);

      /* 
      ** Terminate the thread created here. We do not care about
      ** the return code from srv_termproc here.
      */
      (CS_VOID)srv_termproc(spp);

      return (CS_SUCCEED);
}

Usage • srv_regdefine is the first step in the process of registering a procedure. 
Once it is registered, a procedure can be invoked by clients or from within 
the Open Server application program.

• After calling srv_regdefine, define the procedure’s parameters with 
srv_regparam.

• Complete the processing of registering the procedure by calling 
srv_regcreate.

• If a registered procedure exists with a name identical to the one in 
procnamep, the error is detected and reported when srv_regcreate is called.

• All requested procedures should return SRV_CONTINUE.

See also srv_regcreate, srv_regdrop, srv_reglist, srv_regparam 



srv_regdrop 

352  Open Server

srv_regdrop
Description Drop or “unregister” a procedure.

Syntax CS_RETCODE srv_regdrop(spp, procnamep, 

                    namelen, info)

SRV_PROC         *spp;
CS_CHAR           *procnamep;
CS_INT                namelen;
CS_INT              *infop;

Parameters spp
A pointer to an internal thread control structure.

procnamep
A pointer to the name of the procedure.

namelen
The length of the registered procedure name. If the name is null terminated, 
namelen can be CS_NULLTERM.

infop
A pointer to a CS_INT. If srv_regdrop returns CS_FAIL, the flag is set to one 
of the following values:

• SRV_I_PNOTKNOWN – the procedure was not registered.

• SRV_I_UNKNOWN – some other error occurred.

Return value Table 3-93: Return values (srv_regdrop)

Examples

#include    <ospublic.h>
/*
 ** Local Prototype.
 */
CS_RETCODE     ex_srv_regdrop PROTOTYPE((
SRV_PROC       *spp,
CS_CHAR        *name,
CS_INT         namelen,
CS_INT         *infop
));

/*

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 353

** EX_SRV_REGDROP
**
**    Example routine to unregister a registered procedure using 
**    srv_regdrop. 
**
** Arguments:
**   spp       A pointer to an internal thread control structure.
**   name      The name of the registered procedure to drop.
**   namelen   The length of the registered procedure name.
**   infop     A return pointer to an integer containing more
**             descriptive error information if this routine
**             returns CS_FAIL.
**
** Returns:
**   CS_SUCCEED    Registered procedure was successfully deleted.
**   CS_FAIL       Registered procedure was not deleted or does 
**                  not exist.
*/
CS_RETCODE     ex_srv_regdrop(spp, name, namelen, infop)
SRV_PROC       *spp;
CS_CHAR        *name;
CS_INT         namelen;
CS_INT         *infop;
{
      /* Initialization. */
      *infop = (CS_INT)0;
      /* Execute the procedure. */
      if (srv_regdrop(spp, name, namelen, infop) != CS_SUCCEED)
      {
           /* Open Server has set infop to a specific error. */
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_regdrop drops a procedure previously registered with srv_regcreate.

• Any client threads waiting for notification of this procedure are informed 
that the procedure has been dropped.

See also srv_regcreate, srv_regdefine, srv_reglist, srv_regparam 



srv_regexec 

354  Open Server

srv_regexec
Description Execute a registered procedure.

Syntax CS_RETCODE srv_regexec(spp, infop)

SRV_PROC         *spp;
CS_INT              *infop;

Parameters spp
A pointer to an internal thread control structure.

infop
A pointer to a CS_INT. Table 3-94 describes the possible values returned in 
*infop if srv_regexec returns CS_FAIL:

Table 3-94: Values for infop (srv_regexec)

Return value Table 3-95: Return values (srv_regexec)

Examples

#include <ospublic.h>

/*
** Local Prototype
*/
CS_RETCODE      ex_srv_regexec PROTOTYPE((
SRV_PROC        *spp,
CS_INT          &infop
));

/*
** EX_SRV_REGEXEC
**
**   Example routine to complete the execution of a registered
**   procedure using srv_regexec. This routine should be called
**   after srv_reginit and srv_regparam.
**
** Arguments:

Value Description

SRV_I_PNOTKNOWN The procedure is not registered.

SRV_I_PPARAMERR There is a parameter error.

SRV_I_PNOTIFYERR An error occurred while sending notifications.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 355

**   spp       A pointer to an internal thread control structure.
**   infop     A return pointer to an integer containing more
**             descriptive error information if this routine
**             returns CS_FAIL.
**
** Returns:
**    CS_SUCCEED    Registered procedure executed successfully.
**    CS_FAIL       Registered procedure not executed, or 
**                  notifications not completed successfully.
*/
CS_RETCODE ex_srv_regexec(spp, infop)
SRV_PROC   *spp;
CS_INT     &infop;
{
      /* Initialization. */
      &infop = (CS_INT)0;

      /* Execute the procedure. */
      if (srv_regexec(spp, infop) != CS_SUCCEED)
      {
           /* 
           ** Open Server has set the argument to a specific 
           ** error. 
           */
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_regexec executes a registered procedure.

• The procedure name and its parameters must be specified with srv_reginit 
and srv_regparam before calling srv_regexec.

 Warning! Open Server system registered procedures send a final DONE. If an 
application executes a system registered procedure from an event handler using 
srv_regexec, the application must not send a final DONE from the event 
handler code. Doing so will cause Open Server to raise a state error.

See also srv_reginit, srv_regparam 



srv_reginit 

356  Open Server

srv_reginit
Description Begin executing a registered procedure.

Syntax CS_RETCODE srv_reginit(spp, procnamep,
                     namelen, options)

SRV_PROC          *spp;
CS_CHAR            *procnamep;
CS_INT                 namelen;
unsigned short      options;

Parameters spp
A pointer to an internal thread control structure.

procnamep
A pointer to the name of the registered procedure.

namelen
The length of the procedure name. If the name is null terminated, namelen 
can be CS_NULLTERM.

options
A flag that determines which threads to notify. Table 3-96 describes the legal 
values for options:

Table 3-96: Values for options (srv_reginit)

Return value Table 3-97: Return values (srv_reginit)

Examples

#include    <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE     ex_srv_reginit  PROTOTYPE((
SRV_PROC       *sp,
CS_CHAR        *pname,
CS_INT         nlen
));

Value Description

SRV_M_PNOTIFYALL Notify all waiting threads in the notification list.

SRV_M_PNOTIFYNEXT Notify only the thread that has been waiting the longest.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 357

/*
** EX_SRV_REGINIT
**
**    This routine demonstrates how to use srv_reginit to
**    initiate the execution of a registered procedure.
**
** Arguments:
**         sp       A pointer to an internal thread control 
                    structure.
**         pname    The name of the procedure to execute.
**         nlen     The length of the procedure name.
** Returns
**
**    CS_SUCCEED    If the registered procedure began execution.
**    CS_FAIL       If an error was detected.
**
*/
CS_RETCODE      ex_srv_reginit(sp, pname, nlen)
SRV_PROC        *sp;
CS_CHAR         *pname;
CS_INT          nlen;
{
      /*
      ** Call srv_reginit to initiate the execution of this
      ** registered procedure; ask that all threads waiting for
      ** notification of this event be notified.
      */
      if( srv_reginit(sp, pname, nlen, SRV_M_PNOTIFYALL) ==
            CS_FAIL )
      {
           /*
           ** An error was al&ready raised.
           */
           return CS_FAIL;
      }

      /*
      ** All done.
      */
      return CS_SUCCEED;
}

Usage • srv_reginit is the first step in the process of executing a registered 
procedure.

• The procedure’s parameters are defined with srv_regparam after srv_reginit 
has been called.



srv_reglist 

358  Open Server

• Call srv_regexec to execute the registered procedure.

• If the procedure does not exist, the error is detected and reported by 
srv_regexec.

• When a registered procedure is executed, Open Server notifies the threads 
in the procedure’s notification list. The options parameter specifies 
whether notifications are sent to all threads in the list, or just the one that 
has been waiting the longest.

• An Open Server application can nest registered procedures up to a 
maximum of 16 levels.

See also srv_regexec, srv_regparam 

srv_reglist
Description Obtain a list of all of the procedures registered in the Open Server.

Syntax CS_RETCODE srv_reglist(spp, proclistp)

SRV_PROC                  *spp;
SRV_PROCLIST          **proclistp;

Parameters spp
A pointer to an internal thread control structure.

proclistp
A pointer to a SRV_PROCLIST pointer that will be set to the address of a 
SRV_PROCLIST containing the results. The Open Server allocates the 
space for this structure at the time srv_reglist is called.

Return value Table 3-98: Return values (srv_reglist)

Examples

#include   <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_reglist PROTOTYPE((
SRV_PROC        *spp,
SRV_PROCLIST    **proclp

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 359

));

/*
** EX_SRV_REGLIST
**
** Arguments:
**
**   spp       Pointer to an internal thread control structure.
**   proclp    Pointer to a SRV_PROCLIST pointer that will be set
**             to point to the result.
**
** Returns
**
**   CS_SUCCEED    srv_reglist was successful.
**   CS_FAIL       An argument was invalid or srv_reglist failed.
**
*/
CS_RETCODE      ex_srv_reglist (spp, proclp)
SRV_PROC        *spp;
SRV_PROCLIST    **proclp;
{
      /* Check arguments. */
      if(spp == (SRV_PROC *)NULL)
      {
            return(CS_FAIL);
      }
      return(srv_reglist(spp,proclp));
}

Usage • srv_reglist returns a list of all currently registered procedures for the 
thread.

• The parameter proclistp is set to point to a structure that is allocated and 
initialized by the Open Server. The SRV_PROCLIST structure is defined 
as follows:

typedef struct srv__proclist 
 { 
      CS_INT        num_procs;      /* The number of procedures */ 
      CS_CHAR       **proc_list;    /* Array of procedure names */ 
 } SRV_PROCLIST; 

• The SRV_PROCLIST structure should be deallocated with srv_reglistfree 
when it is no longer needed.

See also srv_reglistfree 



srv_reglistfree 

360  Open Server

srv_reglistfree
Description Free a previously allocated SRV_PROCLIST structure.

Syntax CS_RETCODE srv_reglistfree(spp, proclistp)

SRV_PROC               *spp;
SRV_PROCLIST        *proclistp;

Parameters spp
A pointer to an internal thread control structure.

proc_list
A pointer to a SRV_PROCLIST structure previously allocated by srv_reglist 
or srv_regwatchlist.

Return value Table 3-99: Return values (srv_reglistfree)

Examples

#include    <ospublic.h>

/*
** Local Prototype
*/
CS_RETCODE      ex_srv_reglistfree PROTOTYPE((
SRV_PROC        *srvproc,
SRV_PROCLIST    *reglistp
));

/* 
** EX_SRV_REGLISTFREE
**
**   Example routine to free a previously allocated reglist.
**
** Arguments:
**  srvproc    A pointer to an internal thread control structure. 
**  reglistp   A pointer to the list to free.
**
** Returns:
**
**    CS_SUCCEED
**    CS_FAIL
*/
CS_RETCODE      ex_srv_reglistfree(srvproc, reglistp)

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 361

SRV_PROC        *srvproc;
SRV_PROCLIST    *reglistp;
{
       return(srv_reglistfree(srvproc, reglistp));
}

Usage srv_reglistfree deallocates a SRV_PROCLIST structure allocated by srv_reglist 
or srv_regwatchlist.

See also srv_reglist, srv_regwatchlist 

srv_regnowatch
Description Remove a client thread from the notification list for a registered procedure.

Syntax CS_RETCODE srv_regnowatch(spp, procnamep, 
                       namelen, infop)

SRV_PROC         *spp;
CS_CHAR          *procnamep;
CS_INT               namelen;
CS_INT             *infop;

Parameters spp
A pointer to an internal thread control structure.

procnamep
A pointer to the name of the procedure.

namelen
The length of the procedure name. If the name is null terminated, namelen 
can be CS_NULLTERM.

infop
A pointer to a CS_INT. Table 3-100 describes the possible values returned 
in *infop if srv_regnowatch returns CS_FAIL:



srv_regnowatch 

362  Open Server

Table 3-100: Values for infop (srv_regnowatch)

Return value Table 3-101: Return values (srv_regnowatch)

Examples

#include   <ospublic.h>

/*
** Local Prototype.
*/
extern CS_RETCODE  ex_srv_regnowatch PROTOTYPE((
CS_VOID         *spp,
CS_CHAR         *procnamep,
CS_INT          namelen
));

/* 
** EX_SRV_REGNOWATCH
**
**    Remove a client thread from the notification list for the
**    specified registered procedure.
**
** Arguments:
**   spp           A pointer to an internal thread control 
                   structure.
**   procnamep     A pointer to the name of the registered 
                   procedure.
**   namelen      The length of the registered procedure name.
**
** Returns:
**   CS_SUCCEED    The thread was removed from notification list.
**   CS_FAIL       An error was detected.
*/

Value Description

SRV_I_PNOTCLIENT A non-client thread was specified.

SRV_I_PNOTKNOWN The procedure is not known to the Open Server 
application.

SRV_I_PNOPENDING The thread is not on the notification list for this 
procedure.

SRV_I_PPARAMERR A parameter error occurred.

SRV_I_UNKNOWN Some other error occurred.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 363

CS_RETCODE      ex_srv_regnowatch(spp, procnamep, namelen)
SRV_PROC        *spp;
CS_CHAR         *procnamep;
CS_INT          namelen;
{
      if(srv_regnowatch(spp, procnamep, namelen, (CS_INT *)NULL)
           == CS_FAIL)
      {
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_regnowatch removes a client thread from the list of threads to notify 
when the specified procedure executes.

• The maximum length of a procedure name is SRV_MAXNAME.

See also srv_regwatch, srv_regwatchlist 

srv_regparam
Description Describe a parameter for a registered procedure being defined, or supply data 

for the execution of a registered procedure.

Syntax CS_RETCODE srv_regparam(spp, param_namep, namelen,
                      type, datalen, datap)

SRV_PROC         *spp;
CS_CHAR           *param_namep;
CS_INT                namelen;
CS_INT                type;
CS_INT               datalen;
CS_BYTE          *datap;

Parameters spp
A pointer to an internal thread control structure.

param_namep
A pointer to the name of the parameter. When registering the procedure, this 
parameter is mandatory. When invoking the procedure, this parameter can 
be null if the parameters are given in the same sequence they were defined 
when the procedure was registered.



srv_regparam 

364  Open Server

namelen
The length of the parameter name. If the param_namep is null terminated, 
namelen can be CS_NULLTERM.

type
The datatype of the parameter. See “Types” on page 199 for a list of Open 
Server datatypes.

datalen
The length of the parameter’s data. This parameter is ignored for fixed 
length datatypes. Set datalen to 0 to indicate a null data value. If a client fails 
to provide parameter values, the Open Server application can set the length 
of a default value here. To define a parameter with no default value, set 
datalen to SRV_NODEFAULT.

datap
A pointer to the data. If registering the procedure, the value in *datap is the 
default value for future invocations of the procedure. If invoking the 
procedure, set datap to NULL to accept the default value.

Return value Table 3-102: Return values (srv_regparam)

Examples

#include <ospublic.h>

/*
** Local prototype.
*/
CS_RETCODE  ex_srv_regparam PROTOTYPE((
SRV_PROC    *spp
));

/*
** Local defines.
*/
#define PARAMNAME (CS_CHAR *)”myparam” /* Parameter name. */

#define PARAMDEFAULT (CS_INT)100

/*
**The default value for the parameter.
*/

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 365

#define PARAMVAL (CS_INT)20 /* The value for this invocation. */

/*
** EX_SRV_REGPARAM
**
**    Example routine to describe a parameter for a registered
**    procedure. 
**
** Arguments:
**   spp   A pointer to an internal thread control structure.
**
** Returns:
**    CS_SUCCEED If we were able to describe the parameter.
**    CS_FAIL If an error was detected.
*/
CS_RETCODE      ex_srv_regparam(spp)
SRV_PROC        *spp;
{
      CS_RETCODE    result;
      CS_INT        param;

      /* Define the parameter with a default. */
      param = PARAMDEFAULT;
      result = srv_regparam(spp, PARAMNAME, CS_NULLTERM,
             CS_INT_TYPE, sizeof(CS_INT), (CS_BYTE *)&param);

      if (result == CS_FAIL)
      {
            return (CS_FAIL);
      }

      /* Define the parameter with no default. */
      result = srv_regparam(spp, PARAMNAME, CS_NULLTERM,
               CS_INT_TYPE, SRV_NODEFAULT, (CS_BYTE *)NULL);

      if (result == CS_FAIL)
      {
           return (CS_FAIL);
      }

      /* Give a non-default value for the parameter. */
      param = PARAMVAL;
      result = srv_regparam(spp, PARAMNAME, CS_NULLTERM,
                CS_INT_TYPE, sizeof(CS_INT), (CS_BYTE *)&param);
      



srv_regwatch 

366  Open Server

      return (result);
}

Usage • srv_regparam specifies a procedure parameter for an invocation of, or the 
registration of, a procedure. A call to srv_reginit or srv_regdefine must 
precede srv_regparam.

• A registered procedure can have a maximum of 1024 parameters.

• When registering a procedure, use srv_regparam to define the properties of 
the procedure’s parameters and any default values.

• When invoking a procedure, call srv_regparam for each parameter except 
those with acceptable default values.

• To indicate a null data value, set datalen to 0.

• To accept the default value for a parameter when executing a procedure, 
set datap to NULL.

• It is not necessary to call srv_regparam for a parameter if a default value 
has been provided and that value is to be used for the execution of the 
procedure.

See also srv_regcreate, srv_regdefine, srv_reginit, srv_regexec, “Types” on page 199 

srv_regwatch
Description Add a client thread to the notification list for a specified procedure.

Syntax CS_RETCODE srv_regwatch(spp, proc_namep, namelen, 
                    options, infop)

SRV_PROC         *spp;
CS_CHAR           *proc_namep;
CS_INT                namelen;
CS_INT                options;
CS_INT              *infop;

Parameters spp
A pointer to an internal thread control structure.

proc_namep
The name of the procedure.

namelen
The length of the procedure name. If the procedure name is null terminated, 
namelen can be CS_NULLTERM.



CHAPTER 3    Routines

Server-Library/C Reference Manual 367

options
A flag that specifies whether this is a one-time notification request, or a 
permanent request. Table 3-103 describes the legal values for options:

Table 3-103: Values for options (srv_regwatch)

infop
Table 3-104 describes the possible values returned in *infop if srv_regwatch 
returns CS_FAIL:

Table 3-104: Values for infop (srv_regwatch)

Return value Table 3-105: Return values (srv_regwatch)

Examples

#include     <ospublic.h>

/*
** Local Prototype.
*/
CS_INT      ex_srv_regwatch PROTOTYPE((
SRV_PROC    *sproc,
CS_CHAR     *procedure_name

Value Description

SRV_NOTIFY_ONCE After the first notification, the client thread is removed 
from the notification list for the procedure.

SRV_NOTIFY_ALWAYS The client thread will be notified each time the 
procedure executes until srv_regnowatch is used to 
remove the thread from the procedure’s notification 
list.

Value Description

SRV_I_PNOTKNOWN The procedure is not known to the Open Server 
application. The thread was not added to the 
notification list.

SRV_I_PINVOPT An invalid options value was specified. The thread was 
not added to the notification list.

SRV_I_PNOTCLIENT A non-client thread was specified. The thread was not 
added to the notification list.

SRV_I_PNOTIFYEXISTS The thread is al&ready on the notification list for the 
specified procedure.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_regwatch 

368  Open Server

));

/*
** EX_SRV_REGWATCH
**   An example routine to add a client thread to the
**   notification list for a specified procedure.
**
** Arguments:

**   sproc              A pointer to an internal thread control
**                      structure.
**   procedure_name     The null terminated procedure name.
**
** Returns:
**   CS_SUCCEED            If the thread was added to the 
**                         notification list.
**   SRV_I_PNOTKNOWN       The procedure is not known to the Open
**                         Server application.
**   SRV_I_PNOTCLIENT      A non-client thread was specified.
**   SRV_I_PNOTIFYEXISTS   The thread is al&ready on the
**                         notification list for the specified
**                         procedure.
**   CS_FAIL               The attempt to add the thread to the 
**                         notification failed due to other
**                         errors.
*/
CS_INT      ex_srv_regwatch(sproc, procedure_name)
SRV_PROC    *sproc;
CS_CHAR     *procedure_name;
{
      CS_INT    info;

      if ( srv_regwatch(sproc, procedure_name, CS_NULLTERM, 
            SRV_NOTIFY_ALWAYS, &info) == CS_FAIL )
      {
            if ( (info == SRV_I_PNOTKNOWN)
            || (info == SRV_I_PNOTCLIENT)
            || (info == SRV_I_PNOTIFYEXISTS) )
            {
                return(info);
           }
           else
           {
                return((CS_INT)CS_FAIL);
           }
      }



CHAPTER 3    Routines

Server-Library/C Reference Manual 369

      return((CS_INT)CS_SUCCEED);
}

Usage • srv_regwatch adds a thread to the list of threads to notify when the 
specified procedure executes.

• The options flag specifies whether the thread is notified every time the 
procedure executes or just once—the next time the procedure executes.

• Use srv_regnowatch to cancel a notification request.

See also srv_regnowatch, srv_regwatchlist 

srv_regwatchlist
Description Return a list of all registered procedures for which a client thread has 

notification requests pending.

Syntax CS_RETCODE srv_regwatchlist(spp, proclistp)

SRV_PROC               *spp;
SRV_PROCLIST        **proclistp;

Parameters spp
A pointer to an internal thread control structure.

proclistp
A pointer to a pointer to a structure that contains the number of registered 
procedures and the names of each registered procedure. Open Server 
allocates the space for this structure.

Return value Table 3-106: Return values (srv_regwatchlist)

Examples

#include   <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE     ex_srv_regwatchlist PROTOTYPE((
SRV_PROC       *spp

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_regwatchlist 

370  Open Server

));

/* 
** EX_SRV_REGWATCHLIST
**
**    Example routine to get a list of all registered procedures
**    for which a client thread has notifications pending.
**
** Arguments:
**    spp      A pointer to an internal thread control structure.
**
** Returns:
**
**    CS_SUCCEED    The list returned successfully.
**    CS_FAIL       An error was detected.
*/
CS_RETCODE      ex_srv_regwatchlist(spp)
SRV_PROC        *spp;
{
     SRV_PROCLIST  *listp;

     if (srv_regwatchlist(spp, &listp) == CS_FAIL)
           return (CS_FAIL);

      /* 
      **   Process the information in the list and free the 
      **   memory allocated for the list.
      */
      (CS_VOID)srv_reglistfree(spp, listp);

      return (CS_SUCCEED);
}

Usage • srv_regwatchlist returns a list of registered procedures for which the client 
thread has requested notification.

• The proclistp parameter points to a SRV_PROCLIST structure that is 
allocated and initialized by Open Server. The SRV_PROCLIST structure 
looks like this:

typedef struct srv__proclist 
{ 
    CS_INT       num_procs;     /* The number of procedure names */ 
     CS_CHAR      **proc_list;   /* The list of procedure names */ 
} SRV_PROCLIST; 

• An application deallocates the SRV_PROCLIST structure by calling 
srv_reglistfree.



CHAPTER 3    Routines

Server-Library/C Reference Manual 371

See also srv_reglistfree 

srv_rpcdb
Description Return the database component of the current remote procedure designation.

Syntax CS_CHAR *srv_rpcdb(spp, lenp)

SRV_PROC        *spp;
CS_INT             *lenp;

Parameters spp
A pointer to an internal thread control structure.

lenp
A pointer to an int variable that will contain the length of the database name. 
lenp can be NULL, in which case the length of the database name is not 
returned.

Return value Table 3-107: Return values (srv_rpcdb)

Examples

#include        <ospublic.h>
/*
 ** Local Prototype.
 */
CS_RETCODE      ex_srv_rpcdb PROTOTYPE((
SRV_PROC        *spp,
CS_CHAR         **dbp,
CS_INT          *lenp
));
/*
 ** EX_SRV_RPCDB
 **
**   Example routine to return the database component name of the
 **   current remote procedure call designation, using srv_rpcdb.

Returns To indicate

A pointer to a null terminated string 
containing the database component of the 
current RPC’s designation.

The location of the database component 
of the current RPC’s designation.

(CS_CHAR *) NULL There is no current RPC.

Open Server sets lenp to -1 and raises an 
informational error.



srv_rpcname 

372  Open Server

**
** Arguments:
**   spp   A pointer to an internal thread control structure.
 **   dbp   A return pointer to the null terminated database name.
 **   lenp  A return pointer to an integer containing the length
 **         of the database name.
**
** Returns:
**   CS_SUCCEED   Database component name returned successfully.
**   CS_FAIL      An error was detected.
 */
CS_RETCODE     ex_srv_rpcdb(spp, dbp, lenp)
SRV_PROC       *spp;
CS_CHAR        **dbp;
CS_INT         *lenp;
{
      /* Initialization.*/
      *lenp = (CS_INT)0;
      /* Retrieve the database component name. */
      if ((*dbp = (CS_CHAR *)srv_rpcdb(spp, lenp)) == (CS_CHAR
            *)NULL)
      {
           return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_rpcdb returns a CS_CHAR pointer to a null terminated string 
containing the database name component of the current remote procedure 
call designation.

• srv_rpcdb returns only the database name part of the RPC’s designation 
and does not include anything else, such as optional specifiers for owner 
or RPC number. A fully qualified stored procedure designation takes the 
form database.owner.rpcname;number. To get the other parts of the RPC’s 
designation, if any, use srv_rpcname, srv_rpcowner, and srv_rpcnumber.

See also srv_numparams, srv_rpcname, srv_rpcnumber, srv_rpcoptions, srv_rpcowner 

srv_rpcname
Description Return the name component of the current remote procedure call’s designation.

Syntax CS_CHAR *srv_rpcname(spp, lenp)



CHAPTER 3    Routines

Server-Library/C Reference Manual 373

SRV_PROC        *spp;
CS_INT             *lenp;

Parameters spp
A pointer to an internal thread control structure.

lenp
A pointer to the buffer that will contain the length of the RPC name. lenp 
can be NULL, in which case the length of the RPC name is not returned.

Return value Table 3-108: Return values (srv_rpcname)

Examples

#include        <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_rpcname PROTOTYPE((
SRV_PROC        *sp,
CS_CHAR         *buf,
CS_INT          buflen,
CS_INT          *lenp
));

/*
** EX_SRV_RPCNAME
**
**    This routine demonstrates how to use srv_rrpcname to obtain
 **    the name of the remote procedure call received by this
 **    thread.
**
** Arguments:
**   sp       A pointer to an internal thread control 
 **            structure.
**   buf      The address of the buffer in which the RPC 
 **            name will be returned.
**   buflen   The size of the name buffer.
**   lenp     The address of an integer variable, which 
 **            will be set to the length of the name 

Returns To indicate

A pointer to the null terminated 
name component of the current 
RPC’s designation.

The location of the database component of the 
current RPC’s designation.

A null pointer There is no current RPC.

Open Server sets lenp to -1 and raises an 
informational error.



srv_rpcname 

374  Open Server

 **            returned.
**
** Returns
**   CS_SUCCEED       If the RPC name is returned.
**   CS_FAIL          If an error occurred.
*/
CS_RETCODE      ex_srv_rpcname(sp, buf, buflen, lenp)
SRV_PROC        *sp;
CS_CHAR         *buf;
CS_INT          buflen;
CS_INT          *lenp;
{
CS_CHAR         *np;    /* The procedure name pointer. */

     /*
     ** Initialization.
     */
     np = (CS_CHAR *)NULL;
     *lenp = (CS_INT)0;

     /*
     ** Get the procedure name.
     */
     np = srv_rpcname(sp, lenp);

     if( np == (CS_CHAR *)NULL )
     {
           /*
           ** An error was al&ready raised.
           */
           return CS_FAIL;
     }

     /*
     ** Copy the RPC name to the output buffer.
     */
     (void)strncpy(buf, np, buflen);

     /*
     ** All done.
     */
     return CS_SUCCEED;
}

Usage • srv_rpcname returns a CS_CHAR pointer to a null terminated string 
containing the name component of the current remote procedure call 
(“RPC”) designation.



CHAPTER 3    Routines

Server-Library/C Reference Manual 375

• srv_rpcname returns only the RPC name and does not include anything 
else, such as optional specifiers for database, owner, or RPC number. For 
example, a fully qualified object name for an RPC in the Adaptive Server 
is database.owner.rpcname;number. To get the other parts of the RPC’s 
designation, if any, use srv_rpcdb, srv_rpcowner, and srv_rpcnumber.

• A user can determine whether an RPC exists by calling srv_rpcname. If the 
RPC does not exist, Open Server will return a SRV_ENORPC error. A 
user can code his or her error handler to ignore this error if detected.

See also srv_numparams, srv_rpcdb, srv_rpcnumber, srv_rpcoptions, srv_rpcowner 

srv_rpcnumber
Description Return the number component of the current remote procedure call’s 

designation.

Syntax CS_INT srv_rpcnumber(spp)

SRV_PROC *spp;

Parameters spp
A pointer to an internal thread control structure.

Return value Table 3-109: Return values (srv_rpcnumber)

Examples

#include    <ospublic.h>
/*
** Local Prototype.
*/
CS_INT     ex_srv_rpcnumber PROTOTYPE((
SRV_PROC   *spp
));

/*
** EX_SRV_RCPNUMBER

Returns To indicate

A non-zero integer The number component of the current RPC’s designation.

-1 There is no current RPC.

Open Server sets lenp to -1 and raises an informational error.

0 The client did not include a number component when it 
invoked the RPC.



srv_rpcoptions 

376  Open Server

**
**    Example routine to show hiw to get the number of the
 **    current RPC designation.
**    
**
** Arguments:
**
**   spp   A pointer to an internal thread control structure.
**
** Returns:
**
**    The number component of the current RPC’s designation. If
 **    the client used no number component when it invoked the
 **    RPC, 0 is returned. If there is not a current RPC, -1 is
 **    returned and Open Server raises an informational error. 
 */
CS_INT     ex_srv_rpcnumber(spp)
SRV_PROC   *spp;
{
      /* Check arguments. */
      if(spp == (SRV_PROC *)NULL)
      {
             return(-1);
      }
      return((CS_INT)srv_rpcnumber(spp));
}

Usage • srv_rpcnumber returns the number component of the current remote 
procedure call (“RPC”) designation.

• srv_rpcnumber returns only the number component of the RPC’s 
designation and does not include anything else, such as optional specifiers 
for owner or RPC name. A fully qualified designation for an RPC takes the 
form database.owner.rpcname;number. To get the other parts of the RPC’s 
designation, if any, use srv_rpcname, srv_rpcowner, and srv_rpcdb.

See also srv_numparams, srv_rpcdb, srv_rpcname, srv_rpcoptions, srv_rpcowner 

srv_rpcoptions
Description Return the runtime options for the current remote procedure call.

Syntax CS_INT          srv_rpcoptions(spp)

SRV_PROC        *spp;



CHAPTER 3    Routines

Server-Library/C Reference Manual 377

Parameters spp
A pointer to an internal thread control structure.

Return value Table 3-110: Return values (srv_rpcoptions)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_rpcoptions PROTOTYPE((
SRV_PROC        *spp
));

/* 
** EX_SRV_RPCOPTIONS
**
**    Example routine to retrieve RPC runtime options
**
** Arguments:
**   spp   A pointer to an internal thread control structure.
**
** Returns:
**
**   CS_SUCCEED
**   CS_FAIL
*/
CS_RETCODE      ex_srv_rpcoptions(spp)
SRV_PROC        *spp;
{
   CS_INT        options;

   if ( (options = srv_rpcoptions(spp)) == 0 )
         return(CS_FAIL);

   return(CS_SUCCEED);
}

Returns To indicate

A non-zero integer containing the runtime 
flags for the current RPC.

The current RPC’s runtime flags.

0 There is no current RPC.

Open Server raises an error.



srv_rpcowner 

378  Open Server

Usage • srv_rpcoptions returns a CS_INT value containing the runtime flags for the 
current remote procedure call.

• Currently, the only flag is SRV_PARAMRETURN. If 
SRV_PARAMRETURN is CS_TRUE, the RPC must be recompiled 
before it is executed. This is significant only if the RPC is a stored 
procedure executing on an Adaptive Server.

See also srv_numparams, srv_rpcdb, srv_rpcname, srv_rpcnumber, srv_rpcowner 

srv_rpcowner
Description Return the owner component of the current remote procedure call’s 

designation.

Syntax CS_CHAR *srv_rpcowner(spp, lenp)

SRV_PROC      *spp;
CS_INT           *lenp;

Parameters spp
A pointer to an internal thread control structure.

lenp
A pointer to a buffer that will contain the length of the owner name. lenp can 
be NULL, in which case the length of the database owner is not returned.

Return value Table 3-111: Return values (srv_rpcowner)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
extern CS_RETCODE    ex_srv_rpcowner PROTOTYPE((
CS_VOID              *spp,

Returns To indicate

A pointer to the null terminated owner 
component of the current RPC’s 
designation.

The location of the database component 
of the current RPC’s designation.

A null pointer There is no current RPC.

Open Server sets lenp to -1 and raises an 
informational error.



CHAPTER 3    Routines

Server-Library/C Reference Manual 379

CS_CHAR        *ownerp
));

/* 
** EX_SRV_RPCOWNER
**
**   Determine the owner component of an RPC destination.
**
** Arguments:
**   spp     A pointer to an internal thread control structure.
**   ownerp  A pointer to the buffer to which Open Server 
 **           returns the owner component.
**
** Returns:
**   CS_SUCCEED      Owner component returned successfully.
**   CS_FAIL         An error was detected.
*/
CS_RETCODE     ex_srv_rpcowner(spp, ownerp)
SRV_PROC       *spp;
CS_CHAR        *ownerp;
{
      CS_INT    len;

      ownerp = srv_rpcowner(spp, &len);

      if(len == (CS_INT)(-1))
      {
            return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_rpcowner returns a CS_CHAR pointer to a null terminated string 
containing the owner component of the current remote procedure call 
(“RPC”) designation.

• srv_rpcowner returns only the owner component of the RPC’s designation 
and does not include anything else, such as optional specifiers for database 
or RPC number. A fully qualified designation for an RPC takes the form 
database.owner.rpcname;number. To get the other parts of the RPC’s 
designation, if any, use srv_rpcname, srv_rpcdb, and srv_rpcnumber.

See also srv_numparams, srv_rpcdb, srv_rpcname, srv_rpcnumber, srv_rpcoptions 



srv_run 

380  Open Server

srv_run
Description Start up the Open Server application.

Syntax CS_RETCODE srv_run(ssp)

SRV_SERVER     *ssp;

Parameters ssp
A pointer to the Open Server control structure. This is an optional argument.

Return value Table 3-112: Return values (srv_run)

Examples

#include     <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE       ex_srv_run PROTOTYPE((CS_VOID));

/*
** EX_SRV_RUN
**   An example routine to start up an Open Server using srv_run.
**
** Arguments:
**   None.
**
** Returns:
**    SRV_STOP    If the server is stopped.  
**    CS_FAIL     If the server can’t be brought up.
*/
CS_RETCODE ex_srv_run()
{
      return(srv_run((SRV_SERVER *)NULL));
}

Usage • srv_run starts, or restarts, the Open Server application.

• srv_run returns when the server is stopped by a SRV_STOP event.

Returns To indicate

CS_SUCCEED The server is stopped.

CS_FAIL Open Server could not start the server.

If srv_run returns CS_FAIL, an application must call srv_init 
before calling srv_run again.



CHAPTER 3    Routines

Server-Library/C Reference Manual 381

• Once started, the server listens for a client request, calls the function 
defined to handle the request, and then continues listening for further 
requests.

• If a server has stopped, it must be re-initialized using srv_init before it is 
restarted.

Note  If srv_run is called in the entry functions of a DLL, a deadlock may arise. 
srv_run creates operating system threads and tries to synchronize them using 
system utilities. This synchronization conflicts with the operating system’s 
serialization process. 

See also srv_init, srv_props, “Events” on page 92 

srv_s_ssl_local_id
Description Properties used to specify the path to the local ID (certificates) file.

Syntax typedef struct _cs_sslid
{
        CS_CHAR     *identity_file;
        CS_CHAR     *identity_password;
} CS_SSLIDENTITY

Parameters identity_file
provides a path to the file containing a digital certificate and the associated 
private key.

CS_GET only returns the indentity_file used, and only if it is set with 
CS_CONNECTION.

identity_password
used to decrypt the private key.

srv_select (UNIX only)
Description Check to see if a file descriptor is &ready for a specified I/O operation.

Syntax CS_INT srv_select(nfds, &readmaskp, writemaskp,
                  exceptmaskp, waitflag)



srv_select (UNIX only) 

382  Open Server

CS_INT                            nfds;
SRV_MASK_ARRAY        *&readmaskp;
SRV_MASK_ARRAY        *writemaskp;
SRV_MASK_ARRAY        *exceptmaskp;
CS_INT                          waitflag;

Parameters nfds
The highest number file descriptor to check.

&readmaskp
A pointer to a SRV_MASK_ARRAY structure initialized with the mask of 
file descriptors to check for read availability.

writemaskp
A pointer to a SRV_MASK_ARRAY structure initialized with the mask of 
file descriptors to check for write availability.

exceptmaskp
A pointer to a SRV_MASK_ARRAY structure initialized with the mask of 
file descriptors to check for exceptions.

waitflag
A CS_INT that indicates whether the thread should be suspended until any 
file descriptor is available for the desired operation. See the “Comments” 
section for a description of the legal values for waitflag.

Return value The total number of file descriptors that are &ready for any of the indicated 
operations. If an error occurs, -1 is returned.

Table 3-113: Return values (srv_select)

Examples

#include    <ospublic.h>
 
 /*
 ** Local Prototype.
 */
 CS_RETCODE     ex_srv_select PROTOTYPE((
 CS_INT         readfd
 ));
 /* 
 ** EX_SRV_SELECT
 **

Returns To indicate

An integer The total number of file descriptors &ready for any of the indicated 
operations.

-1 The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 383

 **   Example routine to illustrate the use of srv_select.
 **
 ** Arguments:
 **   readfd  -  fd to be checked if it is &ready for a read **
                 operation.
 **
 ** Returns:
 **  CS_SUCCEED      If readfd is &ready for a read operation.
 **  CS_FAIL         If readfd is not &ready for a read operation.
 */
 CS_RETCODE      ex_srv_select(readfd)
 CS_INT          readfd;
 {
       SRV_MASK_ARRAY       &readmask;
       CS_BOOL              &ready;
 
       /* Initialization. */
      (CS_VOID)srv_mask(CS_ZERO, &&readmask, (CS_INT)0, (CS_BOOL 
             *)NULL);
       &ready = CS_FALSE;
 
       /* Set readfd in the mask. */
       (CS_VOID)srv_mask(CS_SET, &&readmask, readfd, (CS_BOOL
             *)NULL);
 
       /* 
       ** Check whether the descriptor is &ready for a read
       ** operation. If it is not, return.
       */
       if (srv_select(readfd+1, &&readmask, (SRV_MASK_ARRAY *)NULL,
            (SRV_MASK_ARRAY *)NULL, SRV_M_NOWAIT) <= 0 )
            return (CS_FAIL);
 
       /*
       ** A file descriptor is &ready for a read operation.
       */
       (CS_VOID)srv_mask(CS_GET, &&readmask, readfd, &&ready);
       return ((&ready) ? CS_SUCCEED : CS_FAIL);
 
 }

Usage • Use srv_select when you want to know if a network I/O operation can be 
performed on a file descriptor without requesting the I/O.

• Open Server will include the designated file descriptor in the global mask 
that it uses when it checks for file descriptor availability.



srv_select (UNIX only) 

384  Open Server

• A SRV_MASK_ARRAY is defined as follows:

 #define SRV_MASK_SIZE            (CS_INT)40
 #define SRV_MAXMASK_LENGTH
 (CS_INT)(SRV_MASK_SIZE*CS_BITS_PER_LONG)
      typedef struct        srv_mask_array
 {
   long      mask_bits[SRV_MASK_SIZE];
 } SRV_MASK_ARRAY;

SRV_MASK_SIZE indicates the number of elements in the 
SRV_MASK_ARRAY and SRV_MAXMASK_LENGTH indicates the 
maximum number of file descriptors that can be represented in the 
SRV_MASK_ARRAY.

• An Open Server application that uses external file descriptors must close 
them in an orderly fashion. An application thread must wait for a pending 
srv_select call to complete before closing an external file descriptor. If not, 
Open Server will exit.

• Table 3-114 summarizes the legal values for waitflag:

Table 3-114: Values for waitflag (srv_select)

• An application can use srv_select to poll the file descriptor and return 
immediately or not return until one of the file descriptors is &ready.

• srv_select cannot be used in a SRV_START or SRV_ATTENTION 
handler.

See also srv_mask 

Value Meaning

SRV_M_WAIT The thread is suspended and will wake up when any file 
descriptor represented in the masks is available for the 
specified operation. The return status indicates whether 
any file descriptors are available for the desired operations.

SRV_M_NOWAIT The routine will return immediately after the next network 
check. The return status indicates whether any file 
descriptors are available for the desired operations.



CHAPTER 3    Routines

Server-Library/C Reference Manual 385

srv_send_ctlinfo
Description Sends control messages to Client-Library.

Syntax CS_RETCODE srv_send_ctlinfo(SRV_PROC *srvproc, CS_INT ctl_type,

SRV_CTL_MIGRATE ctl_type, CS_INT paramcnt, SRV_CTLITEM *param)

Parameters srvproc
A pointer to an internal thread control structure.

ctl_type
The type of control message to send.

paramcnt
The number of elements in the param array.

param
Parameters for library control message.

Usage • ctl_type has the following values:

• SRV_CTL_MIGRATE

Sends migration request to the client or cancel a previous migration 
request. SRV_CTL_MIGRATE can be used only if the client supports 
migration and has received a session ID when it first connected to the 
session.

See “SRV_CTL_MIGRATE” on page 42 for more information. 

• SRV_CTL_LOGINREDIRECT

Only valid during a connect handler. When used, a SRV_PROC for 
which SRV_T_REDIRECT is true will instruct the client to restart 
login using the passed-in server addresses.

• SRV_CTL_HAUPDATE 

Valid at any time srv_sendinfo is valid. When the server sends this 
message to a client, the client will replace its current HA failover 
target information with the server connection information as 
expressed via param.

• param has the following fields:

• SRV_CTLTYPES srv_ctlitemtype, where srv_ctlitemtype indicates 
the parameter type. The following types are available:

• SRV_CT_SERVERNAME, which indicates that srv_ctlptr points 
to a CS_CHAR string containing the name of the server whose 
address will be looked up.



srv_send_data 

386  Open Server

• SRV_CT_TRANADDR, which indicates that srv_ctlptr points to a 
CS_TRANADDR structure containing the server address 
information.

• SRV_CT_ADDRSTR, which indicates that srv_ctlptr points to a 
string formated by srv_getserverbyname.

• SRV_CT_OPTION, which indicates that srv_ctlptr points to a 
CS_INT bitmask that contains a set of options for this message.

• CS_INT srv_ctllength, which is the length of variable size 
parameters. When srv_ctlitemtype is SRV_CT_SERVERNAME or 
SRV_CT_ADDRSTR, it is the length of the string pointed to by 
srv_ctlptr or CS_NULLTERM. When srv_ctlitemtype is 
SRV_CT_TRANADDR, it is the number of elements in the 
CS_TRANADDR array pointed to by srv_ctlptr.

• void *srv_ctlptr, where srv_ctlptr points to the actual parameter data.

See also srv_freeserveraddrs, srv_getserverbyname

srv_send_data
Description srv_send_data allows Open Server applications to transfer rows containing 

multiple columns to clients. It allows Open Server applications to send text, 
image, and XML data in chunks, preventing the excessive use of memory. 

Syntax CS_RETCODE srv_send_data(spp, column, buf, buflen)
SRV_PROC *spp;
CS_INT *column;
CS_BYTE *buf;
CS_INT buflen;

Parameters spp
A pointer to an internal thread control structure.

column
The number of the column in a row set.

buf
A pointer to a buffer containing the data to send to the client. This 
determines the size of a section.

buflen
The length of the *buf buffer.



CHAPTER 3    Routines

Server-Library/C Reference Manual 387

Return value Table 3-115: Return values (srv_send_data)

Examples

#include <ctpublic.h>
#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_send_data PROTOTYPE((
SRV_PROC *spp,
CS_COMMAND *cmd,
CS_INT cols
));
#define MAX_BULK 51200

/*
** EX_SRV_SEND_DATA

** Example routine to demonstrate how to write columns
** of data in a row set to a client using srv_send_data.
** This routine will send all the columns of data read
** from a server back to the client.
** Arguments:
** spp  - A pointer to an internal thread control structure.
** cmd  - The command handle for the command that is returning
** text data.
** cols  - The number of columns in a row set.
** Returns:
** CS_SUCCEED - Result set sent successfully to client.
** CS_FAIL  - An error was detected.
*/ 
CS_RETCODE ex_srv_send_data(spp, cmd, cols)
SRV_PROC *spp;
CS_COMMAND *cmd;
CS_INT cols;
{

CS_INT *len; /* Length of column data. */
CS_INT *outlen; /* Number of bytes received. */
CS_BYTE **data; /* Column data. */
CS_BYTE buf[MAX_BULK]; /* Buffer for text data. */
CS_BOOL ok; /* Error control flag. */
CS_INT i;
CS_INT ret;

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_send_data 

388  Open Server

/* Initialization. */
ok = CS_TRUE;

/*
** Transfer a row.
*/
for (i = 0; i < cols; i++)
{

if ((fmt[i].datatype != CS_TEXT_TYPE) &&
(fmt[i].datatype != CS_IMAGE_TYPE))

{
/*
** Transfer a non TEXT/IMAGE column.
*/

/* 
** Read the data of a non-text/image column
** from the server. 
*/
ret = ct_get_data(cmd, i+1, data[i],

len[i], &outlen[i]);
if ((ret != CS_SUCCEED) && (ret != CS_END_DATA)
&& (ret != CS_END_ITEM))
{

ok = CS_FALSE;
break;

}

/* 
** Write the data of a non-text/image column 
** to client. 
*/
if (ret = srv_send_data(srvproc, i+1, NULL, 0) 

!= CS_SUCCEED)
{

ok = CS_FALSE;
break;

}
}
else
{

/* 
** Transfer a TEXT/IMAGE column in small trunks.
*/



CHAPTER 3    Routines

Server-Library/C Reference Manual 389

/*
** Read a chunk of data of a text/image column
** from the server. 
*/
while ((ret = ct_get_data(cmd, i+1, buf, MAX_BULK, &len[i]))

== CS_SUCCEED)
{

/*
** Write the chunk of data to client.
*/
if (ret = srv_send_data(srvproc, i+1, buf, len[i])

!= CS_SUCCEED)
{

ok = CS_FALSE;
break;

}
}

}
}

switch(ret)
{

case CS_SUCCEED:
/* The routine completed successfully. */
case CS_END_ITEM:
/* Reached the end of this item’s value. */
case CS_END_DATA:
/* Reached the end of this row’s data. */
break;
case CS_FAIL:
/* The routine failed. */
case CS_CANCELED:
/* The get data operation was cancelled. */
case CS_PENDING:
/* Asynchronous network I/O is in effect. */
case CS_BUSY:
/* An asynchronous operation is pending. */
default:
ok = CS_FALSE;

}
return (ok ? CS_SUCCEED : CS_FAIL);

}

Usage • srv_send_data sends data of a row set column by column to a client.



srv_send_text 

390  Open Server

• When sending columns with text, image or XML data, Open Server 
applications must call srv_text_info before srv_send_data. This ensures the 
data stream is correctly set to the total length of data being sent. The 
application then calls srv_send_data to send the data in chunks, and 
continues to call the routine until there is no remaining data to be sent.

• Open Server applications can send text, image and XML data to clients 
using srv_bind and srv_xferdata. However, these routines require all data 
columns to be sent at once. srv_send_data allows applications to send text 
and image data in chunks.

• Because srv_send_data reads and sends data one column at a time, the data 
format for a whole row needs to be sent to the client together with the first 
column in the row set. To retrieve fixed I/O fields, such as object name 
before a column is read, call ct_data_info(). Note that the changeable fields 
in I/O descriptors such as pointers to text data, and length of text data are 
retrievable only after the column is read.

• Open Server applications treat text, image and XML data streams 
identically, with the exception of character set conversions. These 
conversions are only performed on text data.

See also Related srv_bind, srv_get_text, srv_text_info, srv_xferdata, srv_get_data, and 
srv_send_text routines in the Open Server 15.0 Server Library/C Reference 
Manual.

srv_send_text
Description Send a text or image data stream to a client, in chunks.

Syntax CS_RETCODE srv_send_text(spp, bp, buflen)

SRV_PROC        *spp;
CS_BYTE           *bp;
CS_INT              buflen;

Parameters spp
A pointer to an internal thread control structure.

bp
A pointer to a buffer containing the data to send to the client. This 
determines the size of a section.

buflen
The size of the *bp buffer.



CHAPTER 3    Routines

Server-Library/C Reference Manual 391

Return value Table 3-116: Return values (srv_send_text)

Examples

#include    <ctpublic.h>
#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE ex_srv_send_text PROTOTYPE((
SRV_PROC    *spp,
CS_COMMAND  *cmd
));

/*
** EX_SRV_SEND_TEXT
**
**   Example routine to demonstrate how to write text to a client
 **   using srv_send_text. This routine will send all the text
 **   read from a server back to the client.
**
** Arguments:
**   spp   A pointer to an internal thread control structure.
**   cmd   The command handle for the command that is returning
 **         text data.
**
** Returns:
**   CS_SUCCEED   Result set sent successfully to client.
**   CS_FAIL      An error was detected. 
*/
CS_RETCODE      ex_srv_send_text(spp, cmd)
SRV_PROC       *spp;
CS_COMMAND     *cmd;
{
   CS_BOOL     ok;            /* Error control flag.    */
   CS_INT      ret;           /* ct_fetch return value.  */
   CS_INT      len_read;      /* Amount of data read.    */
   CS_BYTE     data[1024];    /* Buffer for text data.    */

   /* Initialization. */
   ok = CS_TRUE;

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_send_text 

392  Open Server

   /* Read the text from the server. */
   while ((ret = ct_get_data(cmd, 1, data, CS_SIZEOF(data),
          &len_read))
         == CS_SUCCEED)
   {
         /* Write text to client a chunck at a time */
         if (srv_send_text(spp, data, len_read) != CS_SUCCEED)
         {
                ok = CS_FALSE;
                break;
         }
   }

   switch(ret)
   {
   case CS_SUCCEED:    /* The routine completed successfully. */
   case CS_END_ITEM:   /* Reached the end of this item’s value. */
   case CS_END_DATA:   /* Reached the end of this item’s value. */
        break;
   case CS_FAIL:       /* The routine failed.  */
   case CS_CANCELED:  /* The get data operation was cancelled. */
   case CS_PENDING:    /* Asynchronous network I/O is in effect. */
   case CS_BUSY:       /* An asynchronous operation is pending. */
   default:
          ok = CS_FALSE;
   }

   return (ok ? CS_SUCCEED : CS_FAIL);
}

Usage • srv_send_text is used to send a single column of text or image data to a 
client.

• The Open Server application must always call srv_text_info prior to the 
first call to srv_send_text for the data stream, to set the total length of the 
data to be sent. The application then calls srv_send_text to send a chunk. 
srv_send_text is called as many times as there are chunks.

• The item being sent to the client must have previously been described 
using srv_descfmt.

• An Open Server application can also write text and image data to a client 
using srv_bind and srv_xferdata. srv_send_text allows the application to 
send the data in chunks, whereas the standard srv_bind/srv_xferdata 
method requires that all the data in the column be sent at once.

• A column sent with srv_send_text must be of type text or image.



CHAPTER 3    Routines

Server-Library/C Reference Manual 393

• Open Server treats text and image data streams identically except for 
character set conversion, which is only performed on text data.

 Warning! An Open Server application can only use srv_send_text to send a 
row if that row contains a single column and that column contains text or image 
data.

See also srv_bind, srv_descfmt, srv_get_text, srv_text_info, srv_xferdata, “Text and 
image” on page 196

srv_senddone
Description Send a results completion message or flush results to a client.

Syntax CS_RETCODE srv_senddone(spp, status, transtate, count)

SRV_PROC         *spp;
CS_INT                status;
CS_INT                transtate;
CS_INT              count;

Parameters spp
A pointer to an internal thread control structure.

status
A 2-byte bit mask composed of one or more flags OR’d together. Table 3-
117 describes each flag:

Table 3-117: Values for status (srv_senddone)

transtate
The current state of the transaction. Table 3-118 describes the legal values 
for transtate:

Status Description

SRV_DONE_FINAL The current set of results is the final set of results.

SRV_DONE_MORE The current set of results is not the final set of results.

SRV_DONE_COUNT The count parameter contains a valid count.

SRV_DONE_ERROR The current client command got an error.

SRV_DONE_FLUSH The current result set will be sent to the client without 
waiting for a full packet.



srv_senddone 

394  Open Server

Table 3-118: Values for transtate (srv_senddone)

count
A 4-byte field containing a count for the current set of results. The count is 
valid if the SRV_DONE_COUNT flag is set in the status field.

Return value Table 3-119: Return values (srv_senddone)

Examples

#include     <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_senddone PROTOTYPE((
SRV_PROC        *spp
));

/*
** Constants and data definitions.
*/
#define    NUMROWS         3  
#define    MAXROWDATA      6

CS_STATIC CS_CHAR  *row_data[NUMROWS] = {
                    “Larry”,
                    “Curly”,
                    “Moe”
                    };

/*
** EX_SRV_SENDDONE
**
**    Example routine illustrating the use of srv_senddone. This
 **    routine will send a set of results to the client

Transaction State Description

CS_TRAN_UNDEFINED Not currently in a transaction.

CS_TRAN_COMPLETED The current transaction completed successfully.

CS_TRAN_FAIL The current transaction failed.

CS_TRAN_IN_PROGRESS Currently in a transaction.

CS_TRAN_STMT_FAIL The current transaction statement failed.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 395

 **    application, and then send the results completion message.
**
** Arguments:
**    spp     A pointer to an internal thread control structure.
**
** Returns:
**    CS_SUCCEED    Results set sent successfully to client.
**    CS_FAIL       An error was detected.
*/
CS_RETCODE      ex_srv_senddone(spp)
SRV_PROC        *spp;
{
      CS_DATAFMT      fmt;
      CS_INT          row_len;
      CS_INT          idx;

      /*
      ** Describe the format of the row data, with the single
       ** dummy column.
      */
      srv_bzero((CS_VOID *)&fmt, (CS_INT)sizeof(fmt));
      fmt.datatype = CS_CHAR_TYPE;
      fmt.maxlength = MAXROWDATA;

      if (srv_descfmt(spp, (CS_INT)CS_SET, (CS_INT)SRV_ROWDATA,
                (CS_INT)1, &fmt) != CS_SUCCEED)
      {
             (CS_VOID)srv_senddone(spp,
                (CS_INT)(SRV_DONE_FINAL | SRV_DONE_ERROR),
                (CS_INT)CS_TRAN_FAIL, (CS_INT)0);
             return(CS_FAIL);
       }

      for (idx = 0; idx < NUMROWS; ++idx)
      {
           /*
           ** Bind the row_data array element. 
           */
           row_len = (CS_INT)strlen(row_data[idx]);
           if (srv_bind(spp, (CS_INT)CS_SET, (CS_INT)SRV_ROWDATA,
               (CS_INT)1, &fmt, (CS_BYTE *)(row_data[idx]),
                &row_len, (CS_SMALLINT *)NULL) != CS_SUCCEED)
       
           {
                /* Communicate failure, and number of rows sent. */
                (CS_VOID)srv_senddone(spp,



srv_senddone 

396  Open Server

                     (CS_INT)(SRV_DONE_FINAL |
                              SRV_DONE_ERROR | SRV_DONE_COUNT),
                     (CS_INT)CS_TRAN_FAIL, (CS_INT)idx);
                return(CS_FAIL);
           }

           /*
           ** Transfer the row data.
           */
           if (srv_xferdata(spp, (CS_INT)CS_SET, SRV_ROWDATA)
                                 != CS_SUCCEED)
           {
                /* Communicate failure, and number of rows sent. */
                (CS_VOID)srv_senddone(spp,
                    (CS_INT)(SRV_DONE_FINAL |
                        SRV_DONE_ERROR | SRV_DONE_COUNT),
                    (CS_INT)CS_TRAN_FAIL, (CS_INT)idx);
                return(CS_FAIL);
            }
      }

      /* Send a status value. */
      if (srv_sendstatus(spp, (CS_INT)0) != CS_SUCCEED)
      {
            /* Communicate failure, and number of rows sent. */
            (CS_VOID)srv_senddone(spp,
                (CS_INT)(SRV_DONE_FINAL |
                    SRV_DONE_ERROR | SRV_DONE_COUNT),
                (CS_INT)CS_TRAN_FAIL, (CS_INT)NUMROWS);
            return(CS_FAIL);
      }

      /* Send the final DONE message, with the row count. */
      if (srv_senddone(spp, (CS_INT)(SRV_DONE_FINAL | 
             SRV_DONE_COUNT),
                (CS_INT)CS_TRAN_COMPLETED,
                (CS_INT)NUMROWS) != CS_SUCCEED)
      {
            /* Communicate failure, and number of rows sent. */
            (CS_VOID)srv_senddone(spp,
                (CS_INT)(SRV_DONE_FINAL |
                        SRV_DONE_ERROR | SRV_DONE_COUNT),
                (CS_INT)CS_TRAN_FAIL, (CS_INT)NUMROWS);
            return(CS_FAIL);
      }
return(CS_SUCCEED);



CHAPTER 3    Routines

Server-Library/C Reference Manual 397

}

Usage • srv_senddone sends a message to the client that the current set of results is 
complete. A client request can cause the server to execute a number of 
commands and to return a number of results sets. For each set of results, a 
completion message must be returned to the client with srv_senddone.

• If the current results are not the last set of results for the client command 
batch, the Open Server must set the status mask’s SRV_DONE_MORE 
field. Otherwise, the Open Server application must set the status field to 
SRV_DONE_FINAL to indicate that there are no more results for the 
current command batch.

• The count field indicates how many rows were affected by a particular 
command. If count actually contains a count, the SRV_DONE_COUNT 
bit should be set in the status field. This enables the client to distinguish 
between an actual count of 0 and an unused count field.

• If the SRV_CONNECT handler rejects the client login, the Open Server 
application must call srv_senddone with the status parameter set to the 
SRV_DONE_ERROR flag. The SRV_CONNECT handler must then send 
a DONE packet to the client with srv_senddone. In any case, srv_senddone 
must be called only once before the SRV_CONNECT handler returns and 
the SRV_DONE_FINAL status flag must be set.

• When a write is in progress and the network buffer fills up, Open Server 
flushes its contents. Issuing srv_senddone with status set to 
SRV_DONE_FINAL or SRV_DONE_FLUSH causes a flush of the 
network buffer, regardless of how full it is. SRV_DONE_FLUSH can be 
set with or without SRV_DONE_MORE.

• Setting status to SRV_DONE_FLUSH allows an application to flush to a 
client results that have accumulated over a long period of time.

• An application cannot set the status argument to SRV_DONE_FLUSH 
inside a SRV_CONNECTION error handler.

• Open Server does not provide any transaction management. It is the 
responsibility of the Open Server application to use the transtate argument 
as required to notify a client of the current transaction state.

Note  The transtate argument replaces the info argument in the Open Server 
2.0 version of srv_senddone.This change will cause runtime errors in existing 
applications if the value of info in the existing application is not 0.

See also srv_bind, srv_descfmt, srv_sendstatus, srv_xferdata 



srv_sendinfo 

398  Open Server

srv_sendinfo
Description Send error messages to the client.

Syntax CS_RETCODE srv_sendinfo(spp, errmsgp, transtate)

SRV_PROC                 *spp;
CS_SERVERMSG       *errmsgp;
CS_INT                      transtate;

Parameters spp
A pointer to an internal thread control structure.

errmsgp
A pointer to the CS_SERVERMSG structure containing the error message 
information to be sent to the client. See “CS_SERVERMSG structure” on 
page 60.

transtate
The current state of the transaction. Table 3-120 describes the legal values 
for transtate:

Table 3-120: Values for transtate (srv_sendinfo)

Return value Table 3-121: Return values (srv_sendinfo)

Examples

#include    <ospublic.h>
/*
** Local Prototype.
*/

CS_RETCODE      ex_srv_sendinfo  PROTOTYPE((
SRV_PROC        *sp,
CS_CHAR         *msg,
CS_INT          msglen,
CS_INT          msgnum

Transaction State Description

CS_TRAN_UNDEFINED Not currently in a transaction.

CS_TRAN_COMPLETED The current transaction completed successfully.

CS_TRAN_FAIL The current transaction failed.

CS_TRAN_IN_PROGRESS Currently in a transaction.

CS_TRAN_STMT_FAIL The current transaction statement failed.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 399

));

/*
** EX_SRV_SENDINFO
**
**    This routine demonstrates how to use srv_sendinfo to send
 **    an error message to a client.
**
** Arguments:
**         sp       A pointer to an internal thread control
 **                  structure.
**         msg      The message text to send.
**         msglen   The length of the message text to send.
**         msgnum   The message number to send.
**
** Returns
**         CS_SUCCEED     If the message is sent.
**         CS_FAIL        If an error occurred.
*/
CS_RETCODE      ex_srv_sendinfo(sp, msg, msglen, msgnum)
SRV_PROC        *sp;
CS_CHAR         *msg;
CS_INT          msglen;
CS_INT          msgnum;
{
      CS_SERVERMSG    &mrec;

      /*
      ** Initialization.
      */
      srv_bzero(&&mrec, sizeof(CS_SERVERMSG));

      /*
      ** First, determine if the message string will fit
       ** in the message structure. If not, truncate it.
      */
      if( msglen > CS_MAX_MSG )
      {
          msglen = CS_MAX_MSG;
      }

      /*
      ** Now copy the message string over.
      */
      srv_bmove(msg, &mrec.text, msglen);
      &mrec.textlen = msglen;



srv_sendinfo 

400  Open Server

      /*
      ** Set the message number we want to send.
      */
      &mrec.msgnumber = msgnum;

      /* Set the message status so that &mrec.text contains
      ** the entire message
      */
      &mrec.status = CS_FIRST_CHUNK | CS_LAST_CHUNK;

      /*
      ** Now we’re &ready to send the message.
      */
      if( srv_sendinfo(sp, &&mrec, CS_TRAN_UNDEFINED) == CS_FAIL )
      {
            /*
            ** An error was al&ready raised.
            */
            return CS_FAIL;
      }

      /*
      ** All done.
      */
      return CS_SUCCEED;
}

Usage • srv_sendinfo sends error messages to the client. It must be called once for 
each message sent.

• An application can call srv_sendinfo before or after it sends result rows. 
However, an application cannot call srv_sendinfo between calls to 
srv_descfmt or between a call to srv_descfmt and a call to srv_xferdata.

• If an Open Server application wants to send parameter data pertaining to 
an error message, it must set the status field of the CS_SERVERMSG 
structure to CS_HASEED. The application must describe, bind and send 
the error parameters immediately after calling srv_sendinfo, before 
sending other results and before a call to srv_senddone. The application 
must invoke srv_descfmt, srv_bind and srv_xferdata with a type argument 
of SRV_ERRORDATA.

• If an application calls srv_sendinfo with the status field of the 
CS_SERVERMSG structure set to CS_HASEED but fails to send error 
parameters, a fatal process error is raised when the application calls 
srv_senddone.



CHAPTER 3    Routines

Server-Library/C Reference Manual 401

• When an application calls srv_sendinfo with the status field of the 
CS_SERVERMSG structure set to CS_HASEED, Open Server will verify 
that the CS_RES_NOEED response capability is not set. If it is set, Open 
Server will raise an error. Any subsequent calls to srv_descfmt to describe 
error parameters will also provoke an error.

• For more information on sending error messages to clients, see “Client 
command errors” on page 38.

• For more information on extended error data, see “Client command 
errors” on page 38.

• For more information on the CS_SERVERMSG structure, see the 
“CS_SERVERMSG structure” on page 60.

See also srv_bind, srv_descfmt, srv_senddone, srv_xferdata, “Client command errors” 
on page 38

srv_sendpassthru
Description Send a protocol packet to a client.

Syntax CS_RETCODE srv_sendpassthru(spp, send_bufp, infop)

SRV_PROC      *spp;
CS_BYTE         *send_bufp;
CS_INT           *infop;

Parameters spp
A pointer to an internal thread control structure.

send_bufp
A pointer to a buffer that contains the protocol packet.

infop
A pointer to a CS_INT that is set to SRV_I_UNKNOWN if 
srv_sendpassthru returns CS_FAIL. Table 3-122 describes the possible 
values returned in *infop if the routine returns CS_SUCCEED:



srv_sendpassthru 

402  Open Server

Table 3-122: CS_SUCCEED values (srv_sendpassthru)

Return value Table 3-123: Return values (srv_sendpassthru)

Examples

#include    <stdio.h>
#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_sendpassthru PROTOTYPE((
SRV_PROC        *spp
));

/* 
** EX_SRV_SENDPASSTHRU
**
**  Example routine to send a protocol packet to a client.
**
** Arguments:
**  spp  A pointer to an internal thread control structure.
**
** Returns:
**
**  CS_SUCCEED 
**  CS_FAIL
*/
CS_RETCODE      ex_srv_sendpassthru(spp)
SRV_PROC        *spp;
{
      CS_BYTE    sendbuf[20];
      CS_INT     info;

      strcpy(sendbuf, “Here’s what to send”);

Value Description

SRV_I_PASSTHRU_MORE The protocol packet was sent successfully and it is 
not the end of message packet.

SRV_I_PASSTHRU_EOM The end of message protocol packet was sent 
successfully.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 403

      if (srv_sendpassthru(spp, sendbuf, &info) == CS_FAIL)
      {
            return(CS_FAIL);
      }
      else
      {
            if (info == SRV_I_PASSTHRU_MORE)
            {
                printf(“more to come...\n”);
                return(CS_SUCCEED);
            }
            else if (info == SRV_I_PASSTHRU_EOM)
            {
                printf(“That’s all.\n”);
                return(CS_SUCCEED);
            }
            else
            {
                printf(“Unknown flag returned.\n”);
                return(CS_FAIL);
            }
      }
}

Usage • srv_sendpassthru sends a protocol packet received from a client program 
or Adaptive Server without interpreting its contents.

• srv_sendpassthru performs byte ordering on protocol header fields.

• Once called, the thread that called it is in passthrough mode. Passthrough 
mode ends when the SRV_PASSTHRU_EOM is returned.

• No other Server-Library routines can be called while the event handler is 
in passthrough mode.

• To use passthrough mode, the SRV_CONNECT handler for the client 
must allow the client and remote server to negotiate the protocol format by 
calling srv_getloginfo, ct_setloginfo, ct_getloginfo, and srv_setloginfo. This 
allows clients and remote servers running on dissimilar platforms to 
perform any necessary data conversions.

• srv_sendpassthru can be used in all event handlers except 
SRV_CONNECT, SRV_DISCONNECT, SRV_START, SRV_STOP, 
SRV_URGDISCONNECT, and SRV_ATTENTION.

See also srv_getloginfo, srv_recvpassthru, srv_setloginfo 



srv_sendstatus 

404  Open Server

srv_sendstatus
Description Send a status value to a client.

Syntax CS_RETCODE srv_sendstatus(spp, value)

SRV_PROC        *spp;
CS_INT              value;

Parameters spp
A pointer to an internal thread control structure.

value
The status of the request. By convention, 0 means the request completed 
normally.

Return value Table 3-124:  Return values (srv_sendstatus)

Examples

#include    <ospublic.h>

/*
** Local prototype.
*/
CS_RETCODE        ex_srv_sendstatus PROTOTYPE((
SRV_PROC          *spp
));

/*
** EX_SRV_SENDSTATUS
**
**  Example routine to send a status value to a client.
**
** Arguments:
**    spp      A pointer to an internal thread control structure.
**
** Returns:
**  CS_SUCCEED if we were able to send the status.
**  CS_FAIL if an error was detected.
**
*/
CS_RETCODE    ex_srv_sendstatus(spp)
SRV_PROC      *spp;
{

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 405

      CS_RETCODE      result;

      /* 
      ** Send an OK status.
      */
      result = srv_sendstatus(spp, (CS_INT)0);

      return (result);
}

Usage • srv_sendstatus sends a return status value to the client in response to a 
client request. When a request is received, the programmer-installed event 
handler routine is called to service it. Part of the response to a request can 
be to return a status value.

• The status value sent by srv_sendstatus is both optional and application-
specific. It is not related to the srv_senddone status parameter.

• A status value can be sent after all rows, if any, have been sent to the client 
with srv_xferdata and before the completion status is sent with 
srv_senddone. A status value cannot be sent between a call to srv_descfmt 
and srv_bind, and a call to srv_xferdata.

• Only one status value can be sent for each set of results.

See also srv_senddone 

srv_setcolutype
Description Define the user datatype to be associated with a column.

Syntax CS_RETCODE srv_setcolutype(spp, column,utype)

SRV_PROC        *spp;
CS_INT              column;
CS_INT             utype;

Parameters spp
A pointer to an internal thread control structure.

column
The column number of the column with which to associate the user datatype. 
The first column is 1.

utype
The user-defined datatype to be associated with the column.



srv_setcolutype 

406  Open Server

Return value Table 3-125: Return values (srv_setcolutype)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE       ex_srv_setcolutype PROTOTYPE((
SRV_PROC         *spp,
CS_INT           column,
CS_INT            utype
));

/* 
** EX_SRV_SETCOLUTYPE
**
**   Example routine to define the user datatype to be associated
 **   with a column using srv_setcolutype.
**
** Arguments:
**  spp        A pointer to an internal thread control structure.
**  column     The column number associated with the type.
**  utype      The type to be associated with the column.
**
** Returns:
**
**  CS_SUCCEED      The datatype was successfully associated with
 **                  the column.
**  CS_FAIL         An error was detected.
*/
CS_RETCODE     ex_srv_setcolutype(spp, column, utype)
SRV_PROC       *spp;
CS_INT         column;
CS_INT         utype;
{
      /*
      ** Associate the type with the column.
      */
      if (srv_setcolutype(spp, column, utype) != CS_SUCCEED)
      {
            return(CS_FAIL);

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 407

      }
      return(CS_SUCCEED);
}

Usage The datatype set through srv_setcolutype is the datatype the client application 
will receive through the DB-Library call dbcolutype or through the Client-
Library call ct_describe.

srv_setcontrol
Description Describe user control or format information for columns.

Syntax CS_RETCODE srv_setcontrol(spp, colnum, ctrlinfop,
                 ctrllen)

SRV_PROC         *spp;
CS_INT                colnum;
CS_BYTE            *ctrlinfop;
CS_INT              ctrllen;

Parameters spp
A pointer to an internal thread control structure.

colnum
The number of the column to which the control information applies. The 
first column in a row is column number 1.

ctrlinfop
A pointer to the control data. Its length is given by the ctrllen parameter.

ctrllen
The length, in bytes, of the control data. There are, at most, 
SRV_MAXCHAR bytes of control information per column.

Return value Table 3-126: Return values (srv_setcontrol)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_setcontrol 

408  Open Server

CS_RETCODE     ex_srv_setcontrol PROTOTYPE((
SRV_PROC      *spp
));

/*
** Constants.
*
#define MAXROWDATA        20
#define COLCONTROL        “Emp name: %s”

/*
** EX_SRV_SETCONTROL
**
**    Example routine to describe format information for a column
 **    using srv_setcontrol. In this example, a simple character
 **    column contains an employee name.
**
** Arguments:
**    spp    A pointer to an internal thread control structure.
**
** Returns:
**    CS_SUCCEED      Control information successfully defined.
**    CS_FAIL    An error was detected.
*/
CS_RETCODE       ex_srv_setcontrol(spp)
SRV_PROC         *spp;
{
      CS_DATAFMT fmt;

      /* Describe the format of the row data for the column. */

      srv_bzero((CS_VOID *)&fmt, (CS_INT)sizeof(fmt));
      fmt.datatype = CS_CHAR_TYPE;
      fmt.maxlength = MAXROWDATA;

      if (srv_descfmt(spp, (CS_INT)CS_SET, (CS_INT)SRV_ROWDATA,
            (CS_INT)1, &fmt) != CS_SUCCEED)
      {
            return(CS_FAIL);
      }

      /* Define the control information for the column. */
      if (srv_setcontrol(spp, (CS_INT)1, (CS_BYTE *)COLCONTROL,
            (CS_INT)strlen(COLCONTROL)) != CS_SUCCEED)
      {
            return(CS_FAIL);



CHAPTER 3    Routines

Server-Library/C Reference Manual 409

      }
      return(CS_SUCCEED);
}

Usage • An Open Server application uses srv_setcontrol to tell a client about any 
user-defined format information pertinent to a particular column. For 
example, a client may want to send a particular string along with a 
particular column.

• srv_setcontrol must be called after a call to srv_descfmt and before calls to 
srv_xferdata. If called from any other context, it will return CS_FAIL.

• Control information can be associated with columns in any order. The only 
requirement is that the column must first be defined with srv_descfmt.

• It is not necessary to call srv_setcontrol for every column in a row. If an 
Open Server application does not set control information for a column, a 
null control string is returned for the column.

• An application should not return control information unless the client has 
specifically requested such information, through the client option toggle, 
CS_OPT_CONTROL.

See also srv_bind, srv_descfmt, srv_xferdata 

srv_setloginfo
Description Return protocol format information from a remote server to a client.

Syntax CS_RETCODE srv_setloginfo(spp, loginfop)

SRV_PROC         *spp;
CS_LOGINFO      *loginfop;

Parameters spp
A pointer to an internal thread control structure.

loginfop
A pointer to a CS_LOGINFO structure that has been updated by 
ct_getloginfo.



srv_setloginfo 

410  Open Server

Return value Table 3-127: Return values (srv_setloginfo)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_setloginfo     PROTOTYPE((
SRV_PROC        *spp,
CS_LOGINFO      *loginfop
));

/*
** EX_SRV_SETLOGINFO
**
**    Return protocol format information from a remote server to
 **    a client.
**    
**
** Arguments:
**
**    spp      A pointer to an internal thread control structure.
**    loginfop A pointer to a CS_LOGINFO structure that has been
 **             updated by ct_getloginfo.
**
** Returns
**
**    CS_SUCCEED  
**    CS_FAIL    
**
*/
CS_RETCODE      ex_srv_setloginfo(spp, loginfop)
SRV_PROC        *spp;
CS_LOGINFO      *loginfop;
{
      /* Check arguments. */
      if(spp == (SRV_PROC *)NULL)
      {
             return(CS_FAIL);
      }
      return(srv_setloginfo(spp,loginfop));

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 411

}

Usage • Use srv_setloginfo in gateway server applications that pass protocol 
(Tabular Data Stream) packets between clients and remote Sybase servers 
without interpreting the contents of the packet.

• When a client connects directly to a server, the two programs negotiate the 
protocol format they will use to send and receive data. When you use 
protocol passthrough in a gateway application, the Open Server forwards 
protocol packets between the client and a remote server.

• srv_setloginfo is the fourth of four calls, two of them are CT-Library calls, 
that allow a client and remote server to negotiate a TDS format. The calls, 
which can only be made in a SRV_CONNECT event handler, are:

a srv_getloginfo – Allocate a CS_LOGINFO structure and fill it with 
TDS information from the client thread.

b ct_setloginfo – Prepare a CS_LOGINFO structure with the protocol 
information retrieved in step 1, then log in to the remote server with 
ct_connect.

c ct_getloginfo – Transfer protocol login response information from a 
CS_CONNECTION structure to the newly allocated CS_LOGINFO 
structure.

d srv_setloginfo – Send the remote server’s response, retrieved in step 3, 
to the client, then release the CS_LOGINFO structure.

See also srv_getloginfo, srv_recvpassthru, srv_sendpassthru 

srv_setpri
Description Modify the scheduling priority of a thread.

Syntax CS_RETCODE srv_setpri(spp, mode, priority_value)

SRV_PROC        *spp;
CS_INT               mode;
CS_INT             priority_value;

Parameters spp
A pointer to an internal thread control structure.

mode
SRV_C_DELTAPRI, if priority_value is to adjust the current priority, or 
SRV_C_NEWPRI, if priority_value is the new priority.



srv_setpri 

412  Open Server

priority_value
If mode is SRV_C_NEWPRI, priority_value is the new priority for the 
thread. If mode is SRV_C_DELTAPRI, a negative priority_value reduces 
the current priority by its absolute value and a positive priority_value 
increases the current priority.

Return value Table 3-128: Return values (srv_setpri)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE       ex_srv_setpri PROTOTYPE((
SRV_PROC         *spp,
CS_INT           mode,
CS_INT           priority
));

/* 
** EX_SRV_SETPRI
**
**    Example routine to change a thread’s scheduling priority.
**
** Arguments:
**  spp        A pointer to an internal thread control structure.
**  mode       Indicates whether a priority is relative or 
 **              absolute.
**  priority   The change in priority value or the nrew
                 priority value.
**
** Returns:
**
**    CS_SUCCEED
**    CS_FAIL
*/
CS_RETCODE    ex_srv_setpri(spp, mode, priority)
SRV_PROC      *spp;
CS_INT        mode;
CS_INT        priority;
{

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 413

    return(srv_setpri(spp, mode, priority));
}

Usage • When a thread is started as the result of a client logging into the Open 
Server or as the result of a call to srv_createproc or srv_spawn, it has a 
priority of SRV_C_DEFAULTPRI.

• srv_setpri can change the priority by specifying the new value or by 
adjusting the current value up or down by a specified value.

• If a thread sets the priority of another thread to a level higher than its own, 
the other thread is scheduled to run immediately. Otherwise, the new 
priority of the affected thread takes effect the next time the scheduler runs.

• If a thread that never sleeps has a priority higher than other threads, the 
lower priority threads will never have a chance to execute.

• Internal Open Server threads run with a priority of 
SRV_C_DEFAULTPRI. If you raise the priority of a thread above 
SRV_C_DEFAULTPRI, it must sleep occasionally to allow these internal 
processes to run.

• It is an error to reduce the priority to less than SRV_C_LOWPRIORITY 
or to increase it to a value greater than SRV_C_MAXPRIORITY.

• srv_setpri cannot be used in a SRV_START handler.

See also srv_createproc, srv_spawn 

srv_signal (UNIX only)
Description Install a signal handler.

Syntax SRV_SIGNAL_FUNC srv_signal(sig, handler)

CS_INT                       sig;
SRV_SIGNAL_FUNC handler;

Parameters sig
The number of the UNIX signal for which a handler is installed. This is 
defined in sgs/signal.h.

handler
A pointer to a function that is called when sig is delivered to Open Server. 
Setting handler to SIG_DFL restores the default handler. Setting handler to 
SIG_IGN cause sig to be ignored.



srv_signal (UNIX only) 

414  Open Server

Return value Table 3-129: Return values (srv_signal)

Examples

#include    <errno.h>
#include    <stdio.h>
#include    <signal.h>
#include    <ospublic.h>
/*
** Local Prototype.
*/
CS_STATIC CS_VOID         ex_sigio_handler PROTOTYPE((
CS_INT                    sig
));

CS_RETCODE       ex_srv_signal PROTOTYPE((
CS_INT           *uerrno
));

/*
** Static storage.
*/
CS_STATIC CS_INT io_events = 0;

/* 
** EX_SRV_SIGNAL
**
**    Example routine to install a UNIX signal handler for SIGIO,
 **    using srv_signal.
**
** Arguments:
**    uerrno    A pointer to a user’s error number indicator.
**
** Returns:
**
**    CS_SUCCEED    Handler successfully installed.
**    CS_FAIL       Handler not installed, UNIX global errno set.
*/
CS_RETCODE      ex_srv_signal(uerrno)
CS_INT          *uerrno;
{
      /*

Returns To indicate

A pointer to the previously installed handler 
function.

The location of the function.

A null pointer The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 415

      ** Install the handler.
      */
      (CS_VOID)srv_signal((int)SIGIO,
                         (SRV_SIGNAL_FUNC)ex_sigio_handler);

     /* Was there an error condition? */
     if ((*uerrno = errno) != 0)
         return(CS_FAIL);

      return(CS_SUCCEED);
}

/*
** EX_SIGIO_HANDLER
**
**    Example signal handler to count I/O events. It prints a 
 **    message when the Open Server application has been up long 
 **    enough to get 100,000 I/O events.
**
** Arguments:
**    sig  The signal number, always SIGIO.
**
** Returns:
**    Nothing.
*/
CS_STATIC CS_VOID     ex_sigio_handler(sig)
CS_INT                sig;
{
     if (io_events == 100000)
      {
           fprintf(stderr, “The server has been up a long
                    time!!\n”);
           io_events = 0;
      }
      else
      {
           io_events++;
      }
}



srv_sleep 

416  Open Server

Usage • Open Server installs UNIX signal handlers for SIGIO and SIGURG. 
These handlers must always be active once an Open Server is started. If 
they are not active, the Server-Library I/O and attention handling routines 
will either fail to function or will be unreliable.

 Warning! Installing a UNIX signal handler using sigvec(2) or signal(2) 
can cause unpredictable results. Applications should use srv_signal.

• Open Server guarantees that all other signals are blocked while the 
application is in the signal handler.

•  UNIX documentation on signal for more information.

srv_sleep
Description Suspend the currently executing thread.

Syntax CS_RETCODE srv_sleep(sleepeventp, sleeplabelp,
                   sleepflags, infop, reserved1, 
                 reserved2)

CS_VOID         *sleepeventp;
CS_CHAR         *sleeplabelp;
CS_INT             sleepflags;
CS_INT            *infop;
CS_VOID         *reserved1;
CS_VOID         *reserved2;

Parameters sleepeventp
A generic void pointer that srv_wakeup uses to wake up the thread or 
threads. The pointer should be unique for the operating system event the 
threads are sleeping on. For example, if a message is passed to another 
thread, the sending thread could sleep until the message was processed. The 
pointer to the message would be a useful sleepevent that the receiving thread 
could pass to srv_wakeup to wake up the sender.

sleeplabelp
A pointer to a null terminated character string that identifies the event that 
the thread is sleeping on. This is useful for determining why a thread is 
sleeping. An application can display this information using the Open Server 
system registered procedure sp_ps.



CHAPTER 3    Routines

Server-Library/C Reference Manual 417

sleepflags
The value of this flag determines the manner in which the thread will wake 
up. Table 3-130 summarizes the legal values for sleepflags:

Table 3-130: Values for sleepflags (srv_sleep)

infop
A pointer to a CS_INT. Table 3-131 describes the possible values returned 
in *infop if srv_sleep returns CS_FAIL:

Table 3-131: Values for infop (srv_sleep)

reserved1
A platform-dependent handle to a mutex. This argument is ignored on non-
preemptive platforms. Set it to (CS_VOID*)0 on non-preemptive platforms.

reserved2
This parameter is not currently used. Set it to 0.

Return value Table 3-132: Return values (srv_sleep)

Examples

#include     <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_sleep  PROTOTYPE((
CS_VOID         *sleepevnt,
CS_CHAR         *sleeplbl,
CS_INT          *infop
));

/*

Value Description

SRV_M_ATTNWAKE The thread wakes up if it receives an attention.

SRV_M_NOATTNWAKE Attentions cannot wake up the thread.

Value Description

SRV_I_INTERRUPTED The thread was woken unconditionally by 
srv_ucwakeup.

SRV_I_UNKNOWN Some other error occurred. For example, the thread is 
al&ready sleeping or is invalid.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_sleep 

418  Open Server

** EX_SRV_SLEEP
**
**   This routine will suspend the currently executing thread.
**  
**
** Arguments:
**
**   
**   sleepevnt A void pointer that srv_wakeup uses to wake up 
 **             the thread. 
**   sleeplbl  A pointer to a null terminated string that
 **             identifies the event being the thread is sleeping
 **             on. This is primarily used for debugging.
 **    infop    A pointer to a CS_INT that is set to one of the 
 **             following values:
 **             SRV_I_INTERRUPTED - srv_ucwakeup 
 **             unconditionally woke the thread.
 **             SRV_I_UNKNOWN - Some other error occurred.
**   
**
** Returns
**
**    CS_SUCCEED
**    CS_FAIL
**
*/
CS_RETCODE      ex_srv_sleep(sleepevnt,sleeplbl,infop)
CS_VOID         *sleepevnt;
CS_CHAR         *sleeplbl;
CS_INT          *infop;
{
     /* Check arguments.  */
     if(sleepevnt == (CS_VOID *)NULL)
     {
           return(CS_FAIL);
     }
     /*
     ** Using SRV_M_ATTNWAKE means the thread should wake up
      ** unconditionally if it receives an attention.
     */
  
return(srv_sleep(sleepevnt,sleeplbl,SRV_M_ATTNWAKE,infop,(CS_VOID*)0,(CS_V
OID*)0));
}



CHAPTER 3    Routines

Server-Library/C Reference Manual 419

Usage • srv_sleep suspends the currently executing thread and initiates 
rescheduling. The thread will sleep until srv_wakeup is called on the same 
event.

• Depending on the value of sleepflags, a thread that is sleeping can also 
wake up by receiving an attention.

• A thread resumes execution on the statement just following the call to 
srv_sleep.

• srv_sleep cannot be used in a SRV_START handler.

• srv_sleep should not be called from interrupt level code. Any number of 
problems could occur if this rule is violated.

• Call srv_capability to determine whether your platform supports 
preemptive scheduling.

• The reserved1 parameter prevents a race condition that could occur with 
preemptive scheduling if the wakeup event occurred before the thread 
finished going to sleep. See the Open Client and Open Server 
Programmer’s Supplement for your platform for an example of 
preemptive scheduling.

See also srv_wakeup 

srv_spawn
Description Allocate a service thread.

Syntax CS_RETCODE srv_spawn(sppp, stacksize, funcp, 
                  argp, priority)

SRV_PROC            **sppp;
CS_INT                   stacksize;
CS_RETCODE        (*funcp)();
CS_VOID                *argp;
CS_INT                 priority;

Parameters sppp
A pointer to a thread structure pointer. If the call is successful, the address 
of an internal thread structure is returned in sppp.

stacksize
The size of the stack; it must be at least SRV_C_MINSTACKSIZE. Specify 
SRV_DEFAULT_STACKSIZE to use the stack size set with 
srv_props(SRV_S_STACKSIZE).



srv_spawn 

420  Open Server

funcp
A pointer to a function that is the entry point for the newly created thread. 
The thread begins by executing the routine located at funcp. The thread is 
freed when that routine returns or srv_termproc is called.

argp
A pointer that is passed to the routine in *funcp when the thread begins 
execution.

priority
An integer between SRV_C_LOWPRIORITY and 
SRV_C_MAXPRIORITY that indicates the base priority of the spawned 
thread. The default priority is SRV_C_DEFAULTPRI.

Return value srv_spawn returns CS_SUCCEED if the thread is successfully spawned. This 
guarantees only that sufficient Open Server internal resources are available. It 
does not validate the correctness of the entry point routine or its argument. If 
the thread cannot be spawned, srv_spawn returns CS_FAIL.

Table 3-133: Return values (srv_spawn)

Examples

#include    <stdio.h>
#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE       entryfunc PROTOTYPE((
CS_CHAR          *message
));

CS_RETCODE       ex_srv_spawn PROTOTYPE((
SRV_PROC         *spp,
CS_INT           stacksize,
CS_INT           priority
));

CS_RETCODE    entryfunc(message)
CS_CHAR       *message;
{
      printf(“Welcome to a new thread - %s!\n”, message);
      return(CS_SUCCEED);

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 421

}

/* 
** EX_SRV_SPAWN
**
**    Example routine to allocate a service thread
**
** Arguments:
**    spp      A pointer to an internal thread control 
 **             structure.
**    stacks   The desired thread stack size.
**    priority The desired thread scheduling priority.
**
** Returns:
**
**    CS_SUCCEED
**    CS_FAIL
*/
CS_RETCODE    ex_srv_spawn(spp, stacksize, priority)
SRV_PROC      *spp;
CS_INT        stacksize;
CS_INT        priority;
{
    CS_CHAR      msgarg[20];

    strcpy(msgarg, “come in”);

    return(srv_spawn(&spp, stacksize, entryfunc, msgarg,
              priority));
}

Usage • srv_spawn allocates a “service” thread—one that is neither event-driven 
nor associated with any client. The thread runs under the control of the 
scheduler.

• Threads created by srv_spawn are called service threads because they 
often provide services required by the event-driven threads, such as 
accessing shared devices and data objects.

• srv_spawn informs the Open Server about a new thread and makes the 
thread runnable. The thread does not begin execution immediately. The 
moment that it actually does start execution is determined by many factors, 
such as the priority of the spawned thread and the priorities of other 
runnable threads.



srv_symbol 

422  Open Server

• If you do not call srv_props to configure the stacksize with 
SRV_S_STACKSIZE, a new thread is created with the default stacksize. 
This default stacksize depends on the platform used. For native-threaded 
versions of Open Server, the default stacksize of underlying threads is 
used.

• Code executed by multiple threads must be re-entrant.

See also srv_callback, srv_createproc, srv_props, srv_termproc 

srv_symbol
Description Convert an Open Server token value to a readable string.

Syntax CS_CHAR *srv_symbol(type, symbol, lenp)

CS_INT           type;
CS_INT           symbol;
CS_INT          *lenp;

Parameters type
The type of token. Table 3-134 describes the legal token types:

Table 3-134:  Token types corresponding to type (srv_symbol)

symbol
The actual token value.

lenp
A pointer to a CS_INT variable that will contain the length of the returned 
string.

Token Type Description

SRV_DATATYPE A datatype

SRV_EVENT An event type

SRV_DONE A DONE status type

SRV_ERROR An error severity token



CHAPTER 3    Routines

Server-Library/C Reference Manual 423

Return value Table 3-135: Return values (srv_symbol)

Examples

#include    <ospublic.h>
/*
 ** Local Prototype
 */
extern CS_RETCODE       ex_srv_symbol PROTOTYPE((
CS_INT type,
CS_INT symbol,
CS_CHAR *namep
));
/* 
 ** EX_SRV_SYMBOL
**
**   Retrieve a printable string representation of an Open Server 
 **   symbol
**
** Arguments:
**     type         Symbol type
**     symbol       Symbol for which to retrieve string
**     namep        Return symbol string here
** Returns:
 **     CS_SUCCEED       Symbol string was retrieved successfully
 **     CS_FAIL          An error was detected
 */
CS_RETCODE           ex_srv_symbol(type, symbol, namep)
CS_INT               type;
CS_INT               symbol;
CS_CHAR           *namep;
{
     CS_INT          len;
     namep = srv_symbol(type, symbol, &len);
     if(namep == (CS_CHAR *)NULL)
     {
          return(CS_FAIL);
     }
     return(CS_SUCCEED);

Returns To indicate

A pointer to a null terminated character string that is 
a readable translation of an Open Server token 
value.

The token value.

A null pointer Open Server does not 
recognize the type or symbol.

Open Server sets lenp to -1.



srv_symbol 

424  Open Server

 }

Usage • srv_symbol returns a pointer to a readable null terminated string that 
describes an Open Server token value.

• The pointer srv_symbol returns points to space that is never overwritten, so 
it is safe to call srv_symbol more than once in the same statement.

• Table 3-136 summarizes the tokens srv_symbol can convert:



CHAPTER 3    Routines

Server-Library/C Reference Manual 425

Table 3-136: Convertible tokens (srv_symbol)

Token type Token Description

SRV_ERROR SRV_INFO Error severity type

SRV_ERROR SRV_FATAL_PROCESS Error severity type

SRV_ERROR SRV_FATAL_SERVER Error severity type

SRV_DONE SRV_DONE_MORE DONE packet status field

SRV_DONE SRV_DONE_ERROR DONE packet status field

SRV_DONE SRV_DONE_FINAL DONE packet status field

SRV_DONE SRV_DONE_FLUSH DONE packet status field

SRV_DONE SRV_DONE_COUNT DONE packet status field

SRV_DATATYPE CS_CHAR_TYPE Char datatype

SRV_DATATYPE CS_BINARY_TYPE Binary datatype

SRV_DATATYPE CS_TINYINT_TYPE 1-byte integer datatype

SRV_DATATYPE CS_SMALLINT_TYPE 2-byte integer datatype

SRV_DATATYPE CS_INT_TYPE 4-byte integer datatype

SRV_DATATYPE CS_REAL_TYPE Real datatype

SRV_DATATYPE CS_FLOAT_TYPE Float datatype

SRV_DATATYPE CS_BIT_TYPE Bit datatype

SRV_DATATYPE CS_DATETIME_TYPE Datetime datatype

SRV_DATATYPE CS_DATETIME4_TYPE 4-byte datetime datatype

SRV_DATATYPE CS_MONEY_TYPE Money datatype

SRV_DATATYPE CS_MONEY4_TYPE 4-byte money datatype

SRV_DATATYPE SRVCHAR Char datatype

SRV_DATATYPE SRVVARCHAR Variable-length char 
datatype

SRV_DATATYPE SRVBINARY Binary datatype

SRV_DATATYPE SRVVARBINARY Variable-length binary 
datatype

SRV_DATATYPE SRVINT1 1-byte integer datatype

SRV_DATATYPE SRVINT2 2-byte integer datatype

SRV_DATATYPE SRVINT4 4-byte integer datatype

SRV_DATATYPE SRVINTN Integer datatype, nulls 
allowed

SRV_DATATYPE SRVBIT Bit datatype

SRV_DATATYPE SRVDATETIME Datetime datatype

SRV_DATATYPE SRVDATETIME4 4-byte datetime datatype

SRV_DATATYPE SRVDATETIMN Datetime datatype, nulls 
allowed



srv_tabcolname 

426  Open Server

See also  srv_descfmt

srv_tabcolname
Description Associate browse mode result columns with result tables.

Syntax CS_RETCODE srv_tabcolname(spp, colnum, brwsdescp)

SRV_DATATYPE SRVMONEY Money datatype

SRV_DATATYPE SRVMONEY4 4-byte money datatype

SRV_DATATYPE SRVMONEYN Money datatype, nulls 
allowed

SRV_DATATYPE SRVREAL 4-byte float datatype

SRV_DATATYPE SRVFLT8 8-byte float datatype

SRV_DATATYPE SRVFLTN 8-byte float datatype, nulls 
allowed

SRV_DATATYPE SRV_LONGCHAR_TYPE Long char datatype

SRV_DATATYPE SRV_LONGBINARY_TYPE Long binary datatype

SRV_DATATYPE SRV_TEXT_TYPE Text datatype

SRV_DATATYPE SRV_IMAGE_TYPE Image datatype

SRV_DATATYPE SRV_NUMERIC_TYPE Numeric datatype

SRV_DATATYPE SRV_DECIMAL_TYPE Decimal datatype

SRV_DATATYPE SRVVOID Void datatype

SRV_EVENT SRV_ATTENTION Open Server event type

SRV_EVENT SRV_BULK Open Server event type

SRV_EVENT SRV_CONNECT Open Server event type

SRV_EVENT SRV_CURSOR Open Server event type

SRV_EVENT SRV_DISCONNECT Open Server event type

SRV_EVENT SRV_DYNAMIC Open Server event type

SRV_EVENT SRV_LANGUAGE Open Server event type

SRV_EVENT SRV_MSG Open Server event type

SRV_EVENT SRV_OPTION Open Server event type

SRV_EVENT SRV_RPC Open Server event type

SRV_EVENT SRV_START Open Server event type

SRV_EVENT SRV_STOP Open Server event type

SRV_EVENT SRV_URGDISCONNECT Open Server event type

Token type Token Description



CHAPTER 3    Routines

Server-Library/C Reference Manual 427

SRV_PROC                *spp;
CS_INT                        colnum;
CS_BROWSEDESC    *brwsdescp;

Parameters spp
A pointer to an internal thread control structure.

colnum
The number used to identify the column that was previously described using 
srv_descfmt.

brwsdescp
A pointer to a structure containing browse information about the column in 
question. Specifically, it should contain the number of the table (previously 
described through srv_tabname) containing the column and the original 
column name and name length. Note that the original column name and 
name length are only needed if the column has been renamed in the select 
statement (indicated by a status of CS_RENAMED in the 
CS_BROWSEDESC structure). For more information on the 
CS_BROWSEDESC structure, see “CS_BROWSEDESC structure” on page 
52.

Return value Table 3-137:  Return values (srv_tabcolname)

Examples

#include          <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE         ex_srv_tabcolname PROTOTYPE((
SRV_PROC           *spp,
CS_INT             colnum,
CS_BROWSEDESC      *bdp
));

/*
** EX_SRV_TABCOLNAME
**
**    Example routine to associate a browse mode result column
 **    with result tables.
**
** Arguments:

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_tabcolname 

428  Open Server

**    spp      A pointer to an internal thread control structure.
**
**    colnum   The column number.
**
**    bdp      A pointer to the browse descriptor for the
 **             column.
**
** Returns:
**     CS_SUCCEED   If we successfully associated this result
 **                  column with its table.
**
**     CS_FAIL      If an error was detected.
**
*/
CS_RETCODE          ex_srv_tabcolname(spp, colnum, bdp)
SRV_PROC           *spp;
CS_INT             colnum;
CS_BROWSEDESC      *bdp;
{
     CS_RETCODE         result;

     result = srv_tabcolname(spp, colnum, bdp);

     return (result);
}

Usage • srv_tabcolname is used to send browse mode result information to a client. 
The information an application can send includes:

• The name of the table to which a result column maps

• The real name of a column that was renamed in the client query’s 
select statement

• The column must have previously been defined using srv_descfmt.

• The table must have previously been defined using srv_tabname.

• srv_tabcolname is called once for each result column that is a column in a 
result row.

See also srv_descfmt, srv_tabname, “Browse mode” on page 22



CHAPTER 3    Routines

Server-Library/C Reference Manual 429

srv_tabname
Description Provide the name of the table or tables associated with a set of browse mode 

results.

Syntax CS_RETCODE srv_tabname(spp, tablenum, tablenamep,
                  namelen)

SRV_PROC       *spp;
CS_INT              tablenum;
CS_CHAR         *tablenamep;
CS_INT             namelen;

Parameters spp
A pointer to an internal thread control structure.

tablenum
The number used to identify the table in subsequent calls to srv_tabcolname.

tablenamep
A pointer to the name of the table. It cannot be null, as tables always have 
names.

namelen
The length, in bytes, of the table name. If namelen is CS_NULLTERM, then 
Server Library expects the table name to be null terminated.

Return value Table 3-138: Return values (srv_tabname)

Examples

#include          <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_tabname PROTOTYPE((
SRV_PROC        *sproc,
CS_INT          tablenum,
CS_CHAR         *tablename
));

/*

** EX_SRV_TABNAME
**    An example routine to provide the name of the table

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_tabname 

430  Open Server

 **    associated with a set of browse mode results.
**
** Arguments:
**    sproc         A pointer to an internal thread control
 **                  structure.

**    tablenum      The number that will be used to identify
 **                  the table in subsequent calls to

 **                  srv_tabcolname.
**    tablename     A null terminated string specifying the
 **                  table name.
**
** Returns:
**    CS_SUCCEED   If the table is successfully described.
**    CS_FAIL      If an error was detected.
*/
CS_RETCODE         ex_srv_tabname(sproc, tablenum, tablename)
SRV_PROC           *sproc;
CS_INT             tablenum;
CS_CHAR            *tablename;
{
     return( srv_tabname(sproc, tablenum, tablename,
                CS_NULLTERM) );
}

Usage • srv_tabname is used to send to a client the name of the table or tables 
associated with browse mode results.

• An Open Server application must call srv_tabname once for each table 
involved in the browse mode results.

• The tablenum must be unique for all the tables described. Tables can be 
described in any order.

• An application links browse mode result columns to particular result tables 
using the srv_tabcolname routine. A call to srv_tabname must always 
precede a call to srv_tabcolname.

See also srv_descfmt, srv_tabcolname, “Browse mode” on page 22



CHAPTER 3    Routines

Server-Library/C Reference Manual 431

srv_termproc
Description Terminate the execution of a thread.

Syntax CS_RETCODE srv_termproc(spp)

SRV_PROC       *spp;

Parameters spp
A pointer to an internal thread control structure.

Return value Table 3-139: Return values (srv_termproc)

Examples

#include          <ospublic.h>
/*
 ** Local Prototype.
 */
CS_RETCODE         ex_srv_termproc PROTOTYPE((
SRV_PROC           *spp
));

/* 
 ** EX_SRV_TERMPROC
**
**   Example routine to terminate the execution of a thread using
 **   srv_termproc.
**
** Arguments:
**   spp    A pointer to an internal thread control structure.
** Returns:
**
**    CS_SUCCEED    Thread successfully terminated
**    CS_FAIL       An error was detected.
 */
CS_RETCODE          ex_srv_termproc(spp)
SRV_PROC            *spp;
{
      /*
       ** Terminate the thread.
       */
      if (srv_termproc(spp) != CS_SUCCEED)
      {
              return(CS_FAIL);

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_text_info 

432  Open Server

      }
      return(CS_SUCCEED);
}

Usage • Using srv_createproc, Open Server applications can create event driver 
threads that are not associated with a client connection.

• srv_termproc cannot be used in a SRV_START handler.

• Do not call srv_termproc from interrupt level code; the results are 
unpredictable.

• Mutexes, mutex locks, registered procedures, queued events, and 
messages associated with a thread are destroyed when the thread 
terminates.

• The following code fragment illustrates the use of srv_termproc:

See also srv_createproc, srv_event, srv_event_deferred, srv_spawn

srv_text_info
Description Set or get a description of text or image data.

Syntax CS_RETCODE srv_text_info(spp, cmd, item, iodescp)

SRV_PROC      *spp;
CS_INT              cmd;
CS_INT              item;
CS_IODESC     *iodescp;

Parameters spp
A pointer to an internal thread control structure.

cmd
The direction of data flow. Table 3-140 summarizes the legal values for cmd:



CHAPTER 3    Routines

Server-Library/C Reference Manual 433

Table 3-140:  Values for cmd (srv_text_info)

item
The column number of the column being described. The first column in a 
row is column 1. This parameter is ignored when cmd is CS_GET.

iodescp
A pointer to a structure that describes the object name, text pointer, and 
timestamp for a text column. See “CS_IODESC structure” on page 57 for 
details.

Return value Table 3-141: Return values (srv_text_info)

Examples

#include          <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_text_info PROTOTYPE((
SRV_PROC        *spp,
CS_INT          item
CS_IODESC       *iodp
));

/*
** EX_SRV_TEXT_INFO
**
**     Example routine to set a column’s text or image data
 **     description before transferring a data row, using
 **     srv_text_info. This example routine would be used in a

Value Meaning

CS_SET The Open Server application is setting internal Server-Library 
structures to describe text or image data. The srv_text_info call will 
update a text or image column (inside Open Server) with the 
information in iodescp. (The application must have previously 
described the column using srv_descfmt.) Typically, this will be 
followed by a call to srv_send_text, or srv_bind and srv_xferdata.

CS_GET Open Server is updating the iodescp structure with the total length of 
the text or image data to be read from a client. Typically, this will be 
followed by a call to srv_get_text. See the comments section below 
for limitations regarding the CS_GET direction.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_text_info 

434  Open Server

 **     gateway application, where the Open Client application has
 **     initiated an update of text or image data.
**
** Arguments:
**    spp   A pointer to an internal thread control structure.
**    item  The column number of the column being described.
**    iodp  A pointer to a CS_IODESC structure that describes the 
 **          text or image data (This stucture is passed from the
 **          Open Client application).
**
** Returns:
**    CS_SUCCEED    Text or image data successfully described.
**    CS_FAIL      An error occurred was detected.
*/
CS_RETCODE      ex_srv_text_info(spp, item, iodp)
SRV_PROC        *spp;
CS_INT          item;
CS_IODESC       *iodp;
{
      /*
      ** Describe the text or image data for the column.
      */
      if (srv_text_info(spp, (CS_INT)CS_SET, item, iodp) !=
             CS_SUCCEED)
      {
            return(CS_FAIL);
      }
      return(CS_SUCCEED);
}

Usage • srv_text_info is used to describe text or image columns for sending a result 
row or retrieving a parameter.

• If cmd is CS_GET, srv_text_info must be called from the SRV_BULK 
event handler.

• If cmd is CS_GET, srv_text_info must be called prior to a call to 
srv_get_text.

• If cmd is CS_SET, srv_text_info must be called for each text or image 
datatype column in a row before srv_xferdata or srv_send_text is called.

• Text and image data is transferred to a client using either srv_bind followed 
by srv_xferdata, or srv_send_text.

See also srv_bind, srv_descfmt, srv_get_text, srv_send_text, srv_xferdata, “Text and 
image” on page 196



CHAPTER 3    Routines

Server-Library/C Reference Manual 435

srv_thread_props
Description Define and retrieve thread properties.

Syntax CS_RETCODE srv_thread_props(spp, cmd, property, bufp, buflen, outlenp)

SRV_PROC *spp;
CS_INT cmd;
CS_INT property;
CS_VOID *bufp;
CS_INT  buflen;
CS_INT *outlenp;

Parameters spp
A pointer to an internal thread control structure.

cmd
The action to take. Table 3-142 summarizes the legal values for cmd:

Table 3-142:  Values for cmd (srv_thread_props)

property
The property being set, retrieved or cleared. See below for a list of this 
argument’s legal values.

bufp
A pointer to the Open Server application data buffer where property value 
information from the client is placed or property value information is 
retrieved.

buflen
The length, in bytes, of the buffer.

outlenp
A pointer to a CS_INT variable, which Open Server will set to the size, in 
bytes, of the property value retrieved. This argument is only used when cmd 
is CS_GET, and is optional.

Value Meaning

CS_SET The Open Server application is setting the property. In this case, bufp 
should contain the value the property is to be set to, and buflen should 
specify the size, in bytes, of that value.

CS_GET The Open Server application is retrieving the property. In this case, 
bufp should point to the buffer where the property value is placed, 
and buflen should be the size, in bytes, of the buffer.

CS_CLEAR The Open Server application is resetting the property to its default 
value. In this case, bufp, buflen, and outlenp are ignored.



srv_thread_props 

436  Open Server

Return value Table 3-143: Return values (srv_thread_props)

Examples

#include <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE ex_srv_thread_props PROTOTYPE((
SRV_PROC  *sp,
CS_CHAR  *user,
CS_INT  ulen,
CS_INT  *lenp
));
/* 
** EX_SRV_THREAD_PROPS
**
** Example routine to obtain a client thread’s user name through
** srv_thread_props.
**
** Arguments:
** sp A pointer to an internal thread control structure.
** user A pointer to the address of the user name buffer.
** ulen The size of the user name buffer.
** lenp A pointer to an integer variable, that will be set to the length
** of the user name string.
**
** Returns:
** CS_TRUE If the user name was returned succesfully.
** CS_FALSE If an error was detected.
*/
CS_RETCODE ex_srv_thread_props(sp, user, ulen, lenp)
SRV_PROC  *sp;
CS_CHAR  *user;
CS_INT ulen;
CS_INT *lenp;
{

/*
 ** Call srv_thread_props to get the user name.
*/
if( srv_thread_props(sp, CS_GET, SRV_T_USER, user, ulen, lenp)

== CS_FAIL )
{

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 437

/*
** An error was al&ready raised.
*/
return CS_FAIL;

}
/*
** All done.
*/
return CS_SUCCEED;
}

Usage • srv_thread_props is called to define, retrieve, and reset thread properties.

• Table 3-144 summarizes legal property values, whether they can be set or 
retrieved, and each value’s datatype.

Refer to Table 2-28 on page 149 for descriptions of each thread property.

Table 3-144: Thread properties and their datatypes (srv_thread_props)

Property
SET/
CLEAR GET

bufp when cmd 
is CS_SET: bufp when cmd is CS_GET:

SRV_T_APPLNAME No Yes Not applicable A pointer to a character string

SRV_T_BYTEORDER No Yes Not applicable A pointer to a CS_INT

SRV_T_BULKTYPE No Yes Not applicable A pointer to a CS_INT

SRV_T_BYTEORDER No Yes Not applicable A pointer to a CS_INT

SRV_T_CHARTYPE No Yes Not applicable A pointer to a CS_INT

SRV_T_CLIB No Yes Not applicable A pointer to a character string

SRV_T_CLIBVERS No Yes Not applicable A pointer to a character string

SRV_T_CLIENTLOGOUT No Yes Not applicable A pointer to a CS_BOOL

SRV_T_CONVERTSHORT No Yes Not applicable A pointer to a CS_BOOL

SRV_T_DUMPLOAD No Yes Not applicable A pointer to a CS_BOOL

SRV_T_ENDPOINT No Yes Not applicable A CS_VOID pointer to a buffer 
of sufficient size to hold the end 
point (file descriptor or file 
handle).

SRV_T_EVENT No Yes Not applicable A pointer to a CS_INT

SRV_T_EVENTDATA No Yes Not applicable The address of a CS_VOID 
pointer

SRV_T_FLTTYPE No Yes Not applicable A pointer to a CS_INT

SRV_T_GOTATTENTION No Yes Not applicable A pointer to a CS_BOOL

SRV_T_HOSTNAME No Yes Not applicable A pointer to a character string

SRV_T_HOSTPROCID No Yes Not applicable A pointer to a character string

SRV_T_IODEAD No Yes Not applicable A pointer to a CS_BOOL



srv_thread_props 

438  Open Server

SRV_T_LOCALE Yes Yes A pointer to a 
CS_LOCALE 
pointer

A pointer to a CS_LOCALE 
pointer

SRV_T_LOGINTYPE No Yes Not applicable A pointer to a CS_INT

SRV_T_MACHINE No Yes Not applicable A pointer to a character string

SRV_T_MIGRATED No Yes Not applicable A pointer to a CS_BOOL

SRV_T_MIGRATE_STATE No Yes Not applicable A pointer to a 
SRV_MIG_STATE

SRV_T_NEGLOGIN No Yes Not applicable A pointer to a CS_INT

SRV_T_NOTIFYCHARSET No Yes Not applicable A pointer to a CS_BOOL

SRV_T_NOTIFYDB No Yes Not applicable A pointer to a CS_BOOL

SRV_T_NOTIFYLANG No Yes Not applicable A pointer to a CS_BOOL

SRV_T_NOTIFYPND No Yes Not applicable A pointer to a CS_INT

SRV_T_NUMRMTPWDS No Yes Not applicable A pointer to a CS_INT

SRV_T_PACKETSIZE No Yes Not applicable A pointer to a CS_INT

SRV_T_PASSTHRU No Yes Not applicable A pointer to a CS_BOOL

SRV_T_PRIORITY No Yes Not applicable A pointer to a CS_INT

SRV_T_PWD No Yes Not applicable A pointer to a character string

SRV_T_RETPARMS No Yes Not applicable Return parameters sent if an 
error occurs during execution

SRV_T_RMTPWDS No Yes Not applicable A pointer to an array of 
SRV_RMTPWD structures

SRV_T_RMTSERVER No Yes Not applicable A pointer to a character string

SRV_T_ROWSENT No Yes Not applicable A pointer to a CS_INT

SRV_T_SEC_CHANBIND No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_
CONFIDENTIALITY

No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_
CREDTIMEOUT

No Yes Not applicable A pointer to a CS_INT

SRV_T_SEC_DATAORIGIN No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_DELEGATION No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_DELEGCRED No Yes Not applicable A pointer to a CS_VOID

SRV_T_SEC_DETECTREPLAY No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_DETECTSEQ No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_INTEGRITY No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_MECHANISM No Yes Not applicable A pointer to a CS_CHAR

Property
SET/
CLEAR GET

bufp when cmd 
is CS_SET: bufp when cmd is CS_GET:



CHAPTER 3    Routines

Server-Library/C Reference Manual 439

• Table 3-145 lists the default values for the thread properties that can be 
defined (CS_SET).

Table 3-145: Definable thread properties and their default values 
(srv_thread_props)

• When the property is being retrieved (CS_GET), if buflen indicates that 
the user buffer is not big enough to hold the property value, Open Server 
will place the required number of bytes in *outlenp, and the application 
buffer will not be modified.

• See Table 2-28 on page 149 for descriptions of each thread property.

See also srv_props, “Properties” on page 139

SRV_T_SEC_
MUTUALAUTH

No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_
NETWORKAUTH

No Yes Not applicable A pointer to a CS_BOOL

SRV_T_SEC_
SESSTIMEOUT

No Yes Not applicable A pointer to a CS_INT

SRV_T_SESSIONID Yes Yes A pointer to a 
CS_SESSIONID

A pointer to a CS_SESSIONID

SRV_T_SPID No Yes Not applicable A pointer to a CS_INT

SRV_T_STACKLEFT No Yes Not applicable A pointer to a CS_INT

SRV_T_TDSVERSION Yes Yes A pointer to a 
CS_INT

A pointer to a CS_INT

SRV_T_TYPE No Yes Not applicable A pointer to a CS_INT

SRV_T_USER No Yes Not applicable A pointer to a character string

SRV_T_USERDATA Yes Yes A CS_VOID 
pointer

The address of a CS_VOID 
pointer

SRV_T_USERVLANG Yes Yes A pointer to a 
CS_BOOL

A pointer to a CS_BOOL

SRV_T_USTATE Yes Yes A pointer to a 
character string

A pointer to a character string

Property
SET/
CLEAR GET

bufp when cmd 
is CS_SET: bufp when cmd is CS_GET:

Property Default

SRV_T_USERDATA (CS_VOID *)NULL

SRV_T_USTATE NULL string

SRV_T_TDSVERSION Min (client’s, server’s default)

SRV_T_USESRVLANG Value of SRV_S_USESRVLANG

SRV_T_LOCALE (CS_LOCALE *)NULL



srv_timedsleep 

440  Open Server

srv_timedsleep
Description Sleep until an event is signalled or until the specified time expires. 

srv_timedsleep is available in the reentrant libraries only.

Syntax CS_RETCODE srv_timedsleep(sleepevent, sleeplabel,
                   sleepflags, infop, srvmutex, timeout)

CS_VOID *sleepevent;
CS_CHAR *sleeplabel;
CS_INT sleepflags;
CS_VOID *infop;
SRV_OBJID srvmutex;
CS_INT timeout;

Parameters sleepevent
A generic pointer to the event to sleep on.

sleeplabel
A pointer to a string for debugging puposes.

sleepflags
This parameter is used and performs the same usage as srv_sleep in 
suspending currently executing threads.

infop
A pointer to an integer describing the reason for a failure. The following are 
the integer values for infop:

•  SRV_I_UNKNOWN — Unknown or no error

• SRV_I_TIMEOUT — The routine timed out

• SRV_I_INTERRUPTED — The srvlib process executing this function 
was interrupted by a call to srv_ucwakeup().

Note  When this function returns SRV_I_INTERRUPTED, the srvlib 
process is interrupted while waiting on the event or while attempting to 
lock the mutex.

srvmutex
A srvlib mutex to be released when sleeping, and which will be locked after 
wakeup. Enter 0 if you do not want srv_timedsleep() to release and lock a 
mutex.

timeout
A timeout in milliseconds. Pass 0 to block indefinitely.



CHAPTER 3    Routines

Server-Library/C Reference Manual 441

Return value Table 3-146: Return values (srv_timedsleep)

Usage It is possible to pass a mutex into this function for synchronization with a 
wakeup: The mutex will be released at such a point that another thread which 
obtains the mutex lock and then calls srv_wakeup() , for this event, succeeds in 
waking up the srvlib process executing this sleep function.

If the routine returns CS_SUCCEED the srvlib mutex will be locked. It will not 
be locked by this thread if the routine returns CS_FAIL.

See also srv_wakeup 

srv_ucwakeup
Description Unconditionally wake up a sleeping thread.

Syntax CS_RETCODE srv_ucwakeup(spp, wakeflags)
SRV_PROC *spp;
CS_INT wakeflags;

Parameters spp
A pointer to an internal thread control structure.

wakeflags
A bit mask that modifies the way srv_ucwakeup behaves. Just one flag is 
defined; set wakeflags to 0 if it is not used.

SRV_M_WAKE_INTR
This flag indicates that the call to srv_ucwakeup is from interrupt level code. 
Failure to set this flag when calling srv_ucwakeup from interrupt level code 
can cause the Open Server application to behave erratically.

Return value Table 3-147: Return values (srv_ucwakeup)

Examples &num;include <ospublic.h>

Returns To indicate

CS_SUCCEED The routine succeeded.

CS_FAIL The routine failed. See the infop parameter for more 
information.

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed, because the thread does not exist or was not 
sleeping.



srv_ucwakeup 

442  Open Server

/*
** Local Protoype.
*/

CS_RETCODE      ex_srv_ucwakeup PROTOTYPE((
SRV_PROC        *sproc
));

/*
** EX_SRV_PROC
** An example routine to wake up a sleeping thread from
** a non-interrupt level by using srv_ucwakeup.
**
** Arguments:
** sproc A pointer to an internal thread control
** structure.
**
** Returns:
** CS_SUCCEED The specified thread was woken up.
** CS_FAIL An error was detected.
*/

CS_RETCODE      ex_srv_ucwakeup(sproc)
SRV_PROC        *sproc;
{
/* Wake up the specified thread. */
return( srv_ucwakeup(sproc, 0));
}

Usage • Waking a thread with srv_ucwakeup causes srv_sleep to return 
SRV_I_INTERRUPTED.

• Use srv_ucwakeup to wake a thread unconditionally. This may be 
necessary to break a deadlock condition or for cleanup.

• srv_ucwakeup cannot be used in a SRV_START handler.

• If srv_ucwakeup is called from interrupt level code, wakeflags must be set 
to SRV_M_WAKE_INTR. wakeflags must never be set to 
SRV_M_WAKE_INTR outside of an interrupt level routine.

See also srv_sleep, srv_wakeup, srv_yield



CHAPTER 3    Routines

Server-Library/C Reference Manual 443

srv_unlockmutex
Description Unlock a mutex.

Syntax CS_RETCODE srv_unlockmutex(mutexid)

SRV_OBJID              mutexid;

Parameters mutexid
The unique mutex identifier that was returned by srv_createmutex. mutexid 
can be obtained from the mutex name with srv_getobjid.

Return value Table 3-148: Return values (srv_unlockmutex)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_unlockmutex PROTOTYPE((
CS_CHAR         *mutex_name
));

/* 
** EX_SRV_UNLOCKMUTEX
**
**    Example routine to illustrate the use of srv_unlockmutex.
**
** Arguments:
**  mutex_name   The name of the mutex to be unlocked.
**
** Returns:
**
**    CS_SUCCEED Mutex successfully unlocked.
**    CS_FAIL      An error was detected.
*/
CS_RETCODE     ex_srv_unlockmutex(mutex_name)
CS_CHAR        *mutex_name;
{
     SRV_OBJID      id;
     CS_INT        info;

      /* Get the object id for the mutex. */

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_version 

444  Open Server

      if (srv_getobjid(SRV_C_MUTEX, mutex_name, CS_NULLTERM, 
            &id,  &info) == CS_FAIL)
           return (CS_FAIL);

     /* Call srv_unlockmutex to unlock it. */
    if (srv_unlockmutex(id) == CS_FAIL)
      return (CS_FAIL);

      return (CS_SUCCEED);
}

Usage • Unlocking a mutex (mutual exclusion semaphore) releases the lock held 
on the semaphore, allowing other threads to access the mutex.

• srv_unlockmutex cannot be used in a SRV_START handler.

See also srv_createmutex, srv_deletemutex, srv_getobjid 

srv_version
Description Define the version of Open Server an application is using.

Syntax CS_RETCODE srv_version(contextp, version)

CS_CONTEXT       *contextp;
CS_INT                version;

Parameters contextp
A pointer to a CS_CONTEXT structure, which the application has obtained 
through a call to cs_ctx_alloc. The CS_CONTEXT structure serves as a 
server-wide configuration structure shared with client libraries. For more 
information on the CS_CONTEXT structure, see “CS-Library” on page 59.

version
The version of Open Server the application assumes is in effect. Currently, 
the legal values for this parameter are CS_VERSION_100 and 
CS_VERSION_110, for Server Library versions 10.0 and 11.1, respectively.

Return value Table 3-149: Return values (srv_version)

Examples

#include <stdio.h>

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



CHAPTER 3    Routines

Server-Library/C Reference Manual 445

#include <ospublic.h>
......
/*
 ** This code fragment sets the Open Server version.
 */
main()
 {
CS_CONTEXT *cp;
if (cs_ctx_alloc(CS_VERSION_110, &cp) != CS_SUCCEED)
 {
     fprintf(stderr, “cs_ctx_alloc failed \n”);
      exit(1);
}
if(srv_version(cp, CS_VERSION_110) != CS_SUCCEED)
{
     /*
      ** Release the context structure al&ready allocated.
      */
     (CS_VOID)cs_ctx_drop(cp);
     (CS_VOID)fprintf(stderr, "srv_version failed \n");
       exit(1);
}
......
}

Usage • An Open Server application must call srv_version prior to calling any other 
Server-Library routines. It must be preceded by a call to the CS-Library 
routine cs_ctx_alloc.

• Applications can first set localization configuration parameters in the 
CS_CONTEXT structure, using cs_config. 

See also cs_ctx_alloc, cs_ctx_props 

srv_wakeup
Description Enable sleeping threads to run.

Syntax CS_RETCODE srv_wakeup(sleepeventp, wakeflags,
                   reserved1, reserved2)

CS_VOID          *sleepeventp;
CS_INT             wakeflags;
CS_VOID          *reserved1;
CS_VOID          *reserved2;



srv_wakeup 

446  Open Server

Parameters sleepeventp
A generic void pointer to the operating system event on which the threads 
are sleeping.

wakeflags
A bit mask that modifies the way that srv_wakeup behaves. If no bits are set, 
the default action is to wake up all threads sleeping on the event.The bits can 
be OR’d together. Table 3-150 describes the legal values for wakeflags:

Table 3-150: Values for wakeflags (srv_wakeup)

reserved1
This parameter is not used. It must be set to (CS_VOID*)0.

reserved2
This parameter is not used. It must be set to (CS_VOID*)0.

Return value srv_wakeup returns CS_FAIL if no sleeping threads were found for the event 
or if any parameters were in error. If one or more sleeping threads were found, 
srv_wakeup returns CS_SUCCEED.

Table 3-151: Return values (srv_wakeup)

Examples

#include    <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE ex_srv_wakeup PROTOTYPE((
CS_VOID    *sep
));

Value Description

SRV_M_WAKE_INTR The call to srv_wakeup is from interrupt level code. 
Failure to use this flag when calling srv_wakeup from 
interrupt level code can cause the Open Server 
application to behave erratically. 
Using this flag at non-interrupt level will cause the Open 
Server application to behave erratically.

SRV_M_WAKE_FIRST Only the first thread sleeping on the event is made 
runnable.

SRV_M_WAKE_ALL Wake up all threads sleeping on the event.

Returns To indicate

CS_SUCCEED One or more sleeping threads were found and enabled to run.

CS_FAIL The routine failed, or no sleeping threads were found.



CHAPTER 3    Routines

Server-Library/C Reference Manual 447

/*
** EX_SRV_WAKEUP
**
**    Example routine using srv_wakeup to make all Open Server
 **    threads, which were previously sleeping on the specified
 **    sleep event, runnable again.
**
** Arguments:
**    sep    A generic void pointer, which was used previously in
 **           calls to srv_sleep to suspend threads.
**
** Returns:
**    CS_SUCCEED    Threads sleeping on the specified sleep event
 **                  are runnable again.
**    CS_FAIL       An error was detected.
*/
CS_RETCODE      ex_srv_wakeup(sep)
CS_VOID         *sep;
{
      /*
      ** Wake up threads for the specified sleep event, passing
       ** zero for reserved fields.
      */
      if (srv_wakeup(sep, (CS_INT)SRV_M_WAKE_ALL,
           (CS_VOID*)0, (CS_VOID*)0) != CS_SUCCEED)
     {
           return(CS_FAIL);
     }
     return(CS_SUCCEED);
}

Usage • srv_wakeup wakes threads that are sleeping on sleepevent.

• When srv_wakeup is called from interrupt level code, the actual wakeup is 
deferred until the scheduler next executes.

• srv_wakeup cannot be used in a SRV_START handler.

• When writing preemptive mode programs with Open Server, srv_wakeup 
and srv_sleep must use platform-dependent mutexes. See the Open Client 
and Open Server Programmer’s Supplement for your platform for an 
example of preemptive scheduling.

See also srv_sleep 



srv_xferdata 

448  Open Server

srv_xferdata
Description Send parameters or data to a client, or receive parameters or data from a client.

Syntax CS_RETCODE srv_xferdata(spp, cmd, type)

SRV_PROC         *spp;
CS_INT                cmd;
CS_INT               type;

Parameters spp
A pointer to an internal thread control structure.

cmd
Indicates whether the data is going out to a client or coming in from a client. 
Table 3-152 describes the legal values for cmd:

Table 3-152: Values for cmd (srv_xferdata)

type
The type of data stored into or read from the program variable. Table 3-153 
describes the valid types and their appropriate context:

Value Description

CS_SET The application is calling srv_xferdata to send data to a client.

CS_GET The application is calling srv_xferdata to retrieve data from a client.



CHAPTER 3    Routines

Server-Library/C Reference Manual 449

Table 3-153: Values for type (srv_xferdata)

Return value Table 3-154: Return values (srv_xferdata)

Examples

#include   <ospublic.h>
/*
** Local Prototype.
*/
CS_RETCODE      ex_srv_xferdata PROTOTYPE((
SRV_PROC       *spp
));

/*
** EX_SRV_XFERDATA
**
**    This routine will send error message parameters to the
 **    specified client.
**    
**
** Arguments:
**
**    spp    A pointer to an internal thread control structure.
**
** Returns
**
**    CS_SUCCEED
**    CS_FAIL
**
*/

Type Valid cmd Description of data

SRV_RPCDATA CS_SET or CS_GET RPC parameter

SRV_ROWDATA CS_SET only Result row column

SRV_CURDATA CS_GET only Cursor parameter

SRV_KEYDATA CS_GET only Cursor key column

SRV_ERRORDATA CS_SET only Error message parameter

SRV_DYNDATA CS_SET or CS_GET Dynamic SQL parameter

SRV_NEGDATA CS_SET or CS_GET Negotiated login parameter

SRV_MSGDATA CS_SET or CS_GET Message parameter

SRV_LANGDATA CS_GET only Language parameter

Returns To indicate

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.



srv_yield 

450  Open Server

CS_RETCODE      ex_srv_xferdata(spp)
SRV_PROC        *spp;
{
    /* Check arguments.   */
    if(spp == (SRV_PROC *)NULL)
    {
        return(CS_FAIL);
    }
    return(srv_xferdata(spp,CS_SET,SRV_ERRORDATA));
}

Usage • srv_xferdata is used to send parameter or row data to a client (CS_SET), or 
retrieve parameter or key data from a client. Specifically, it moves data out 
of local program variables and across the network to the client (CS_SET), 
or across the network from a client and into local program variables 
(CS_GET).

• The data as it must appear to the client (CS_SET) or appeared to the client 
(CS_GET) must have previously been described using srv_descfmt. The 
application must also have previously called srv_bind to define local 
program variables.

• srv_xferdata must be called once for each parameter stream (CS_GET, 
CS_SET) or once for each data row (CS_SET).

See also srv_bind, srv_descfmt 

srv_yield
Description Allow another thread to run.

Syntax CS_RETCODE srv_yield()

Return value None.

Examples

#include   <stdio.h>
#include   <ospublic.h>

/*
** Local Prototype.
*/
CS_RETCODE ex_srv_yield PROTOTYPE((
    ));
/* 



CHAPTER 3    Routines

Server-Library/C Reference Manual 451

** EX_SRV_YIELD
**
**   Example routine to suspend the current thread.
** Arguments:
**    None.
**
** Returns:
**
**    CS_SUCCEED
**    CS_FAIL
*/
CS_RETCODE    ex_srv_yield()
{
    printf(“I’ll wait this one out...\n”);
    if (srv_yield() == CS_FAIL)
    {
        printf(“srv_yield() failed.\n”);
        return(CS_FAIL);
    }
    else
    {
        printf(“I’m back!\n”);
        return(CS_SUCCEED);
    }
}

Usage • srv_yield suspends the current thread and allows another runnable thread 
of the same or higher priority to run. The thread is rescheduled at a later 
time.

• srv_yield is primarily useful when using non-preemptive scheduling.

• If a thread calls srv_yield to allow a new thread which is still being 
established to run:

a Open Server completes establishing the new thread.

b If the new thread does not become runnable it will not gain control 
and the current thread will seem to get control back immediately.

Refer to “Multithread programming” on page 109.

• The thread that calls srv_yield will resume execution at the statement 
following srv_yield.

• srv_yield cannot be used in a SRV_START handler.

• Do not call srv_yield from interrupt level code.

See also srv_sleep, srv_wakeup 



srv_yield 

452  Open Server



Server-Library/C Reference Manual 453

C H A P T E R  4 System Registered Procedures

This section contains a reference page for each Server-Library system 
registered procedure. System registered procedures are the registered 
procedures built into Open Server. When the server initializes, it registers 
these procedures so that they are available in every Open Server runtime 
system. The reference pages for the procedures describe their parameters 
and the results and messages they return.

For additional information on system registered procedures, see 
“Registered procedures” on page 162.

sp_ps
Description Return detailed status information on specified Open Server threads.

Syntax sp_ps [loginame | ’spid’]

Parameters loginame
The user’s login name.

spid
The internal identification number of the thread to report on. You can 
obtain the spid from the output of a previous sp_who or sp_ps call. By 
default, all threads are listed.

System registered procedure Page
sp_ps 453

sp_regcreate 456

sp_regdrop 463

sp_reglist 464

sp_regnowatch 465

sp_regwatch 465

sp_regwatchlist 467

sp_serverinfo 467

sp_terminate 468

sp_who 470



sp_ps 

454  Open Server

Examples 1>execute utility...sp_ps 
 2>go 

                                                                                                                           
 spid  Login Name Host Name     Program Name  Task Type         ... 
 ----  ---------- ---------     ------------  --------------    ... 
    1                                         SERVER TASK       ... 
    2                                         SERVER TASK       ... 
    3                                         SERVER TASK       ... 
    4                                         SERVICE TASK      ... 
   11             hiram                       SITE HANDLER TASK ... 
   14  bud        sonoma        isql          CHILD TASK        ... 
...   Status     Sleep Event   Sleep Label       Current Command    ...

 ...   -------    -----------   -----------       ---------------    ...
 ...   runnable   369448                          NETWORK HANDLER    ...
 ...   sleeping   369544        MSG AVAILABLE     CONNECT HANDLER    ...
 ...   sleeping   369640        MSG AVAILABLE     DEFERRED HANDLER   ...
 ...   runnable        0                          SCHEDULER          ...
 ...   sleeping   369736        MSG AVAILABLE                        ...
 ...   running    416480                                             ...

  ...  Blocked    Run     Current     Stack      Net       Net 
  ...       By  Ticks    Priority    Origin    Writes    Reads 
  ...  -------  ------   --------   --------   ------   ----- 
  ...        0       0         8     2794336        0       0 
  ...        0       0         8     2810792        0       0 
  ...        0       0         8     2827184        0       0 
  ...        0       0        15     2843576        0       0 
  ...        0       0         8     2859968        2       7 
  ...        0       0         8     2909208        3       0 

This example shows isql output from the sp_ps procedure. For printing 
purposes, the report was split where indicated by ellipses.

Usage • sp_ps reports the detailed status of a specified server thread or all current 
Open Server threads. The information is useful for debugging during 
application development.

• loginame and spid are character string parameters. When using isql to 
execute sp_ps as a remote procedure call from an Adaptive Server, 
surround the spid in quotes to avoid a syntax error.

• If you do not specify loginame or spid, sp_ps lists all current threads.

• Table 4-1 summarizes the information sp_ps returns:



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 455

Table 4-1: Information returned (sp_ps)

Table 4-2 summarizes the results returned as rows with these columns:

Type of 
information Meaning

spid The internal thread number of the thread.

Login Name The name of the logged in user. Applies only to client threads.

Host Name For a client task, this is the name of the client’s machine. For 
site handlers and server-to-server RPC connections, this is the 
name of the remote Adaptive Server.

Program Name The name of the client application program.

Task Type The type of thread. The legal values are NETWORK, 
CLIENT, SERVER, SITE HANDLER, CHILD, SERVICE, 
and UNKNOWN.

Status The current status of the thread. The legal values for this 
column are running, runnable, sleeping, sick, free, stopped, 
spawned, terminal, and unknown. The one “running” task is 
the thread that is executing sp_ps.

Sleep Event The event that will cause a sleeping thread to become 
runnable.

Sleep Label A character string label that describes the sleep event.

Current Command A character string that describes the state of the thread. The 
contents of this column are set by the srv_thread_props 
routine.

Blocked By (Not currently used.

Run Ticks (Not currently used.

Current Priority The priority at which the thread is running.

Stack Origin The address in memory where the thread’s stack begins.

Net Writes The number of network writes since the thread started. This 
number applies only to site handler and client threads.

Net Reads The number of network reads since the thread started. This 
number applies only to site handler and client threads.



sp_regcreate 

456  Open Server

Table 4-2: Format of information returned (sp_ps) 

See also sp_terminate, sp_who

sp_regcreate
Description Create a registered procedure in Open Server.

Syntax sp_regcreate proc_name, parm1, parm2, ...

Parameters proc_name 
The value of proc_name specifies the name of the registered procedure to be 
created.

parm1, parm2, ...
(Optional) If the client application passes additional parameters, they 
specify the names, datatypes, and default values of the new procedure’s 
parameters.

Examples Calling sp_regcreate from a Client-Library Client

This example creates a registered procedure np_test that takes parameters:

• @p1, datatype CS_INT, no default value (that is, the value defaults to 
NULL)

Column name Datatype Length

spid CS_INT_TYPE 4

Login Name CS_CHAR_TYPE SRV_MAXNAME

Host Name CS_CHAR_TYPE SRV_MAXNAME

Program Name CS_CHAR_TYPE SRV_MAXNAME

Task Type CS_CHAR_TYPE SRV_MAXNAME

Status CS_CHAR_TYPE SRV_MAXNAME

Sleep Event CS_INT_TYPE 4

Sleep Label CS_CHAR_TYPE SRV_MAXNAME

Current Command CS_CHAR_TYPE SRV_MAXNAME

Blocked By CS_INT_TYPE 4

Run Ticks CS_INT_TYPE 4

Current Priority CS_INT_TYPE 4

Stack Origin CS_INT_TYPE 4

Net Writes CS_INT_TYPE 4

Net Reads CS_INT_TYPE 4



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 457

• @p2, datatype CS_CHAR, default value is “No value given”

• @p3, datatype CS_INT, default value is 0 (zero)

The fragment contains code for functions np_create, which creates the 
procedure, and rpc_results, which handles the results of the RPC command. 
The function ex_fetch_data (called by rpc_results) is not shown here. This 
function is defined in the file exutils.c in the Client-Library sample programs.

/*
 ** np_create() -- Example function to create a notification 
 **   procedure on an Open Server.
 **
 ** Parameters:
 **   cmd - Command handle for sending commands.
 **
 ** Returns:
 **   CS_SUCCEED - The notification procedure was successfully
 **      created.
 **   CS_FAIL - Couldn't do it. This routine fails if the 
 **      registered procedure already exists.
 */
 CS_RETCODE np_create(cmd)
 CS_COMMAND *cmd;
 {
   CS_DATAFMT datafmt;
   CS_INT     intval;
   CS_CHAR    charbuf[512];
   CS_BOOL    ok = CS_TRUE;
  /*
   ** Build up an RPC command to create the notification
   ** procedure np_test, defined as follows:
   **   np_test @p1 = <integer value>,
   **           @p2 = <character value>,
   **           @p3 = <integer value>
   */
  if (ok 
       && (ct_command(cmd, CS_RPC_CMD, 
           "sp_regcreate", CS_NULLTERM,
           CS_UNUSED) != CS_SUCCEED))
     ok = CS_FALSE;
  /*
   ** Name of the created procedure will be 'np_test'.
   */
   strcpy(datafmt.name, "proc_name");
   datafmt.namelen = strlen(datafmt.name);
   datafmt.datatype = CS_CHAR_TYPE;



sp_regcreate 

458  Open Server

   datafmt.status = CS_INPUTVALUE;
   datafmt.maxlength = 255;
   strcpy(charbuf, "np_test");
   if (ok &&
       ct_param(cmd, &datafmt, 
               (CS_VOID *)charbuf, strlen(charbuf), 0)
       != CS_SUCCEED)
   {
     fprintf(stdout, "np_create: ct_param() @proc_name failed\n");
     ok = CS_FALSE;
   }
  /*
   ** First parameter is named '@p1', is integer type, and has 
   ** no default (i.e., defaults to NULL). We pass -1 as the
   ** indicator to ct_param() to specify a NULL value.
   */
   strcpy(datafmt.name, "@p1");
   datafmt.namelen = strlen(datafmt.name);
   datafmt.datatype = CS_INT_TYPE;
   datafmt.status = CS_INPUTVALUE;
   datafmt.maxlength = CS_UNUSED;
   if (ok &&
       ct_param(cmd, &datafmt, (CS_VOID *)NULL, CS_UNUSED, -1)
       != CS_SUCCEED)
   {
     fprintf(stdout, "np_create: ct_param() @p1 failed\n");
     ok = CS_FALSE;
   }
  /*
   ** Second parameter is named '@p2', is character type, and has 
   ** default “No value given”.
   */
   strcpy(datafmt.name, "@p2");
   datafmt.namelen = strlen(datafmt.name);
   datafmt.datatype = CS_CHAR_TYPE;
   datafmt.status = CS_INPUTVALUE;
   datafmt.maxlength = 255;
   strcpy(charbuf, "No value given");
   if (ok &&
       ct_param(cmd, &datafmt, 
               (CS_VOID *)&charbuf, strlen(charbuf), 0)
       != CS_SUCCEED)
   {
     fprintf(stdout, "np_create: ct_param() @p2 failed\n");
     ok = CS_FALSE;
   }



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 459

 /*
   ** Third parameter is named '@p3', is integer type, and 
   ** has default 0 (zero).
   */
   strcpy(datafmt.name, "@p3");
   datafmt.namelen = strlen(datafmt.name);
   datafmt.datatype = CS_INT_TYPE;
   datafmt.status = CS_INPUTVALUE;
   datafmt.maxlength = CS_UNUSED;
   intval = 0;
   if (ok &&
       ct_param(cmd, &datafmt, (CS_VOID *)&intval, CS_UNUSED, 0)
       != CS_SUCCEED)
   {
     fprintf(stdout, "np_create: ct_param() @p3 failed\n");
     ok = CS_FALSE;
   }

  /*
   ** Send the RPC command.
   */
   if (ok && ct_send(cmd) != CS_SUCCEED)
     ok = CS_FALSE;

  /*
   ** Process the results from the RPC execution.
   */
   if (ok && rpc_results(cmd, CS_FALSE) != CS_SUCCEED)
     ok = CS_FALSE;

 return (ok ? CS_SUCCEED : CS_FAIL);
 
 } /* np_create */

/*
 ** rpc_results() -- Process results from an rpc.
 **
 ** Parameters
 **    cmd -- The command handle with results pending.
 **    expect_fetchable -- CS_TRUE means fetchable results
 **           are expected. They will be printed w/ the
 **           ex_fetch_data() routine (defined in file exutils.c).
 **           CS_FALSE means fetchable results cause this routine
 **           to fail.
 **
 ** Returns
 **   CS_SUCCEED -- no errors.



sp_regcreate 

460  Open Server

 **   CS_FAIL -- ct_results failed, returned a result_type value
 **      of CS_CMD_FAIL, or returned unexpected fetchable results.
 */
CS_RETCODE rpc_results(cmd, expect_fetchable)
 CS_COMMAND *cmd;
 CS_BOOL    expect_fetchable;
 {
   CS_RETCODE results_ret;
   CS_INT     result_type;
   CS_BOOL    ok = CS_TRUE;
   CS_BOOL    cmd_failed = CS_FALSE;
  while (ok && 
          (results_ret 
           = ct_results(cmd, &result_type)) 
           == CS_SUCCEED)
   {
     switch((int)result_type)
     {
       case CS_STATUS_RESULT:
       case CS_ROW_RESULT:
       case CS_COMPUTE_RESULT:
       case CS_PARAM_RESULT:
          /*
           ** These cases indicate fetchable results.
           */
           if (expect_fetchable)
           {
             /* ex_fetch_data() is defined in exutils.c */
             ok = (ex_fetch_data(cmd) == CS_SUCCEED);
           }
           else
           {
             (CS_VOID)fprintf(stdout,
                              "RPC returned unexpected result\n");
             (CS_VOID)ct_cancel(NULL, cmd, CS_CANCEL_ALL);
             ok = CS_FALSE;
           }
           break;
      case CS_CMD_SUCCEED:
       case CS_CMD_DONE:
          /* No action required */
          break;

      case CS_CMD_FAIL:
          (CS_VOID)fprintf(stdout, 
            "RPC command failed on server.\n");
          cmd_failed = CS_TRUE;



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 461

          break;
      default:
          /*
          ** Unexpected result type.
          */
          (CS_VOID)fprintf(stdout,
                           "RPC returned unexpected result\n");
          (CS_VOID)ct_cancel(NULL, cmd, CS_CANCEL_ALL);
          ok = CS_FALSE;
          break;
     } /* switch */
   } /* while */

  switch((int) results_ret)
   {
     case CS_END_RESULTS:
     case CS_CANCELED:
       break;
     case CS_FAIL:
     default:
       ok = 0;
   }
  return ((ok && !cmd_failed) ? CS_SUCCEED : CS_FAIL);
  
 } /* rpc_results() */

Calling sp_regcreate from a DB-Library Client

This example creates a registered procedure named pricechange with two 
parameters. The first parameter is @current_price and is represented using the 
SYBMONEY datatype. The second parameter is @sequence_num and is a 
SYBINT4 datatype. Neither parameter has a default value.

dbnpdefine(dbproc, "pricechange", DBNULLTERM); 
 dbregparam(dbproc, "@current_price", DBNULLTERM,
            SYBMONEY, DBNODEFAULT, NULL); 
 dbregparam(dbproc, "@sequence_num", DBNULLTERM,
            SYBINT4, DBNODEFAULT, NULL); 
 status = dbnpcreate(dbproc); 
  
 if (status == FAIL) 
 { 
 fprintf(stderr,  
     "Could not create pricechange procedure.\n"); 
 } 

Table 4-3 summarizes the calls a SRV_C_PROCEXEC callback handler would 
use to find that the pricechange procedure is being registered:



sp_regcreate 

462  Open Server

Table 4-3: Returns (sp_regcreate)

Usage • Client applications call sp_regcreate remotely to create registered 
procedures.

• Registered procedures that are created by a client application are called 
notification procedures. They cannot contain application-defined code, 
and are primarily useful for client applications that rely on registered-
procedure notifications.

• sp_regcreate’s first parameter (proc_name) is the name of the procedure to 
create. If the new registered procedure takes parameters, they are defined 
by passing additional parameters. The new procedure’s first parameter is 
passed as sp_regcreate’s second parameter, the second as sp_regcreate’s 
third, and so forth.

• Client applications built with Client-Library can create registered 
procedures by sending an RPC command that invokes sp_regcreate.

An example is provided in “Calling sp_regcreate from a Client-Library 
Client” on page 418.

• DB-Library programs create registered procedures using dbnpdefine, 
dbregparam, and dbnpcreate. dbnpdefine internally generates an RPC 
command to remotely call sp_regcreate. dbnpcreate sends the RPC and 
processes the results.

An example is provided in “Calling sp_regcreate from a DB-Library 
Client” on page 423.

• Server-Library programs can create registered procedures using 
srv_regdefine, srv_regparam, and srv_regcreate.

Messages sp_regcreate can return the following messages:

Function call Returns

srv_procname(srvproc, (int *) NULL) “sp_regcreate” 

srv_rpcparams(srvproc) 3 

srv_paramdata(srvproc, 1) “pricechange”

srv_paramdata(srvproc, 2) “@current_price”

srv_paramdata(srvproc, 3) “@sequence_num”

Number Severity Text

16505 0 Procedure was registered successfully.

16506 11 Procedure is already registered.

16507 11 Unable to register procedure.



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 463

See also sp_regdrop, sp_regnowatch, sp_regwatch, srv_regdefine, srv_regexec, 
srv_reginit, srv_regparam

sp_regdrop
Description Remove a procedure from the list of registered procedures.

Syntax sp_regdrop proc_name

Parameters proc_name
The name of the registered procedure to remove.

Examples 1>execute stock...sp_regdrop pricechange 
 2>go 

In this example, a client logged into Adaptive Server with isql uses a server-to-
server remote procedure call to execute sp_regdrop on the stock Open Server 
application. The procedure deletes the pricechange registered procedure from 
stock.

dbrpcinit(dbproc, "sp_regdrop", NULL); 
 dbrpcparam(dbproc, "proc_name", NULL, SYBCHAR, -1, 
 11, "pricechange"); 
 dbrpcsend(dbproc); 

This example uses the DB-Library RPC routines to execute sp_regdrop with a 
single parameter “pricechange”. This causes the sp_regdrop system procedure 
to delete the pricechange registered procedure from Open Server.

Usage • When a procedure is unregistered, clients that have pending notification 
requests receive a message to indicate that the procedure is no longer 
registered.

• sp_regdrop executes when a client executes dbnpdrop. The 
SRV_C_PROCEXEC callback handler can use srv_rpcname to find that 
sp_regdrop is executing. Then it can obtain a pointer to parameter number 
1, proc_name, using srv_bind and srv_xferdata.

Messages proc_name has been unregistered.

The procedure specified with the proc_name parameter was successfully 
unregistered.

proc_name is not a registered procedure.

The procedure specified with the proc_name parameter was not registered with 
Open Server.



sp_reglist 

464  Open Server

Unable to unregister proc_name.

Open Server was unable to unregister the procedure for some other reason.

See also sp_regdrop, srv_regexec, srv_reginit, srv_regparam

sp_reglist
Description List all registered procedures in Open Server.

Syntax sp_reglist 

Examples 1>execute utility...sp_reglist 
 2>go 

 Procedure Name                  
  ------------------------------  
  sp_who                          
  

                   
  sp_regwatch                     
  sp_ps                           
  sp_regdrop                      
  sp_reglist                      
  sp_regwatchlist                 
  sp_regcreate                    
  sp_regnowatch                   
  
 (0 rows affected) 

This isql example lists all of the currently registered procedures.

Usage • sp_reglist returns, as row data, the names of all of the procedures currently 
registered in Open Server.

• In a C program, you can also use sp_reglist to list the registered 
procedures.

Results are returned in rows containing a single char column with a data length 
of SRV_MAXNAME characters.

See also sp_regcreate, sp_regdrop, sp_regwatch, sp_regwatchlist



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 465

sp_regnowatch
Description Remove a client from the notification list for a procedure.

Syntax sp_regnowatch proc_name

Parameters proc_name
The name of the registered procedure.

Examples dbrpcinit(dbproc, "sp_regnowatch", (DBUSMALLINT)
            0); 
 dbrpcparam(dbproc, "@proc_name", 0, SYBCHAR, 15,
            15, "pricechange"); 
 dbrpcsend(dbproc); 

This example removes the client from the notification list for the pricechange 
registered procedure.

Usage • This registered procedure executes when a client calls dbregnowatch.

• A SRV_C_PROCEXEC callback handler can use srv_rpcname to 
determine that sp_regnowatch is executing and sp_paramdata to obtain the 
name of the procedure for which the notification request is to be removed.

Messages Notification request removed.

The notification request was removed successfully.

proc_name is not a registered procedure.

The procedure specified by proc_name is not registered in Open Server.

No requests pending.

The client had no notification requests pending for the procedure.

Unable to remove notification request.

Open Server failed to remove the notification request.

See also sp_regcreate, sp_regdrop, sp_regwatch, sp_regnowatch, sp_regwatch

sp_regwatch
Description Add the client to the notification list for a registered procedure.

Syntax sp_regwatch proc_name [options]

Parameters proc_name
The name of the registered procedure the client wishes notification for.



sp_regwatch 

466  Open Server

options
An CS_SMALLINT that specifies whether to notify the client just once or 
every time the procedure executes, and whether notification is synchronous 
or asynchronous. Table 4-4, below, shows the values that you can set for 
options. These values are bit flags, so you can set more than one at a time.

Table 4-4: Values for sp_regwatch options parameter

Examples dbrpcinit(dbproc, "sp_regwatch", (DBUSMALLINT) 0); 
 dbrpcparam(dbproc, "@proc_name", 0, SYBCHAR,
                15, 15, "pricechange"); 
 dbrpcsend(dbproc); 

This example adds the client to the notification list for a procedure called 
pricechange. Whenever the procedure executes, this client receives a 
notification.

optionval = SRV_NOTIFY_ONCE; 
 dbrpcinit(dbproc, sp_regwatch, (DBUSMALLINT)
           DBWAIT); 
 dbrpcparam(dbproc, "@proc_name", 0, SYBCHAR, 
            15, 15, pricechange"); 
 dbrpcparam(dbproc, "@options", 0, SYBINT4, -1, 
            -1, &optionval); 
 dbrpcsend(dbproc); 

This example adds the client to the notification list for a procedure called 
pricechange. It receives notification that the procedure executed just once.

Usage • Open Server executes sp_regwatch internally when a client calls 
dbnpwatch.

• If the procedure is dropped while a client is waiting for a notification, the 
client receives an error message indicating that the procedure is no longer 
registered.

Messages Notification request added.

Values for option Function

CS_NOTIFY_NOWAIT Indicates asynchronous notification

CS_NOTIFY_WAIT Indicates synchronous notification

SRV_NOTIFY_ALWAYS Open Server will notify the client every time the 
procedure executes until the client disconnects or 
calls srv_regnowatch or dbregnowatch. This is the 
default.

SRV_NOTIFY_ONCE Open Server removes the client from the 
notification list after it delivers a notification



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 467

The notification request was added successfully.

proc_name is not a registered procedure.

The procedure specified with the proc_name parameter is not registered 
with Open Server.

Unable to add notification request.

Open Server was unable to add the request for some other reason.

See also sp_regcreate, sp_regnowatch, sp_regdrop 

sp_regwatchlist
Description List the registered procedures for which the client has requested notifications.

Syntax sp_regwatchlist 

Examples 1>execute utility...sp_regwatchlist 
 2>go 

 Procedure Name                  
  ------------------------------  
  pricechange 

This isql example of a server-to-server RPC indicates that the client has 
requested notification for the pricechange registered procedure.

Usage • Open Server executes sp_regwatchlist internally when a client calls 
dbregwatchlist.

• A SRV_C_PROCEXEC callback handler can call srv_rpcname to 
establish that sp_regwatchlist is executing.

Results are returned in rows containing a single char column of 
SRV_MAXNAME characters.

See also sp_reglist, sp_regwatchlist

sp_serverinfo
Description Send information about a character set or sort order to a client.

Syntax sp_serverinfo    function [name]



sp_terminate 

468  Open Server

Parameters function
Table 4-5 summarizes the legal values for function:

Table 4-5: Values for function (sp_serverinfo)

name
The character set or sort order name. name need only be provided if function 
is set to csdefinition or sodefinition.

Usage • The remote procedure sp_serverinfo is automatically registered and 
handled as a standard system procedure, for example, sp_who. When 
sp_serverinfo is received as an RPC Open Server handles it automatically. 
The application code need not be involved.

• If a client sends an sp_serverinfo request through a language request, this 
stored procedure must be executed using the registered procedure routines 
to send the correct response.

• The information is sent to a client as a row.

sp_terminate
Description Terminate an Open Server thread.

Syntax sp_terminate spid [, options]

Parameters spid
The thread ID. This can be obtained with the sp_who procedure or by calling 
srv_thread_props.

Value Meaning

server_csname The name of the character set for the Open Server application will 
be sent as a one, single column, character row to the client.

server_soname The name of the Open Server application sort order will be sent as 
one, single column, character row to the client.

csdefinition A row containing the character set definition will be sent to the 
client. The row consists of three columns: type as a 
CS_SMALLINT_TYPE, ID as a CS_TINYINT_TYPE, and the 
character set definition as a CS_IMAGE_TYPE.

sodefinition A row containing the sort order definition will be sent to the client. 
The row consists of three columns: type as a 
CS_SMALLINT_TYPE, ID as a CS_TINYINT_TYPE, and the 
sort order definition as a CS_IMAGE_TYPE.



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 469

options
Determines whether the thread is terminated immediately or by a queued 
disconnect event. Specify “deferred” to queue a disconnect event that occurs 
after previous events are handled. This is the default action. Specify 
“immediate” to terminate the thread immediately, ignoring current or 
queued events for the thread.

Examples 1> execute utility...sp_who 
 2> go 

 spid  status     loginame      hostname   blk    cmd               
 ----- ---------- ------------ ---------- ----  ----------------
 1     runnable                              0    NETWORK HANDLER
 2     sleeping                              0    CONNECT HANDLER
 3     sleeping                              0    DEFERRED HANDLER
 4     runnable                              0    SCHEDULER
 12    runnable    ned           sonoma      0    PRINT TASK
 24    running     bud           sonoma      0
  
 (0 rows affected) 

This example shows how to use isql to locate and terminate an errant server 
thread. The thread terminates immediately.

1> execute utility...sp_terminate 12, "immediate" 
 2> go 
 
 spid = 12; 
 dbrpcinit(dbproc, "sp_terminate", (DBUSMALLINT) 0); 
 dbrpcparam(dbproc, "@spid", 0, SYBINT4, -1, 
            -1, &spid); 
 dbrpcparam(dbproc, "@options", 0, SYBCHAR, 9, 
            9, "deferred"); 
 dbrpcsend(dbproc); 

This DB-Library example queues a SRV_DISCONNECT event for the thread 
with the thread. The next time the thread becomes runnable, it receives the 
disconnect event and terminates.

Usage • Use sp_who or sp_ps to find the spid for the thread to be terminated.

• In a Server-Library program, use srv_termproc to terminate a thread.

Messages spid terminated.

spid scheduled for termination.

spid not currently in use.

See also sp_who, srv_termproc 



sp_who 

470  Open Server

sp_who
Description Return status information for specified Open Server threads.

Syntax sp_who [loginame | ’spid’]

Parameters loginame
The user’s login name.

spid
The internal identification number of the thread to report on. The spid can 
be obtained from the output of a previous sp_ps or sp_who call. If no spid is 
specified, all threads are listed.

Examples 1>execute utility...sp_who 
 2>go

  spid    status     loginame     hostname   blk cmd               
 -------- ---------- ------------ ---------- --- ----------------
        1 runnable                           0   NETWORK HANDLER
        2 sleeping                           0   CONNECT HANDLER
        3 sleeping                           0   DEFERRED HANDLER
        4 runnable                           0   SCHEDULER
       11 sleeping                hiram      0
       14 running    bud          sonoma     0

This example shows output from the sp_who procedure.

Usage • sp_who reports status information about a specified server thread or all 
current Open Server threads.

• The output from the sp_who system registered procedure matches the 
output from the Adaptive Server sp_who system procedure.

• sp_who returns a subset of the information that sp_ps returns.

• loginame and spid are character string parameters. When using isql to 
execute sp_who as a remote procedure call from an Adaptive Server, 
surround the spid in quotes to avoid a syntax error.

• If you do not specify loginame or spid, sp_who lists all current threads.

• sp_who returns the following information:

spid – the internal thread number of the thread.

status – the current status of the thread. The values for this column are:

• running

• runnable



CHAPTER 4    System Registered Procedures

Server-Library/C Reference Manual 471

• sleeping

• sick

• free

• stopped

• spawned

• terminal

• unknown

The one “running” task is the thread that is executing sp_who.

loginame – the name of the logged in user. Applies only to client threads.

hostname – for a client task, this is the name of the client’s machine. For a 
site handler thread, it is the name of the remote Adaptive Server.

blk – this field is unused and is always set to 0.

cmd – a character string that describes the state of the thread. The contents 
of this column are set by the srv_thread_props routine.

Table 4-6 summarizes the results returned as rows with these columns:

Table 4-6: Format of information returned (sp_who)

See also sp_ps, sp_terminate

Column name Datatype Length

spid CS_INT_TYPE 4

status CS_CHAR_TYPE 10

loginame CS_CHAR_TYPE 12

hostname CS_CHAR_TYPE 10

blk CS_INT_TYPE 3

cmd CS_CHAR_TYPE 16



sp_who 

472  Open Server



Server-Library/C Reference Manual 473

Glossary

Adaptive Server 
Enterprise

A server in Sybase’s client/server architecture. Adaptive Server Enterprise 
manages multiple databases and multiple users, keeps track of the actual 
location of data on disks, maintains mapping of logical data description to 
physical data storage, and maintains data and procedure caches in 
memory. Prior to version 11.5, Adaptive Server Enterprise was known as 
SQL Server.

array A structure composed of multiple identical variables that can be 
individually addressed.

array binding The process of binding a result column to an array variable. At fetch time, 
multiple rows of the column are copied into the variable.

batch A group of commands or statements.

A Client-Library command batch is one or more Client-Library 
commands terminated by an application’s call to ct_send. For example, an 
application can batch together commands to declare, set rows for, and 
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements 
submitted to an Adaptive Server by means of a single Client-Library 
command or Embedded SQL statement.

browse mode A method that DB-Library and Client-Library applications can use to 
browse through database rows, updating their values one row at a time. 
Cursors provide similar functionality and are generally more portable and 
flexible.

bulk copy A utility for copying data in and out of databases. Also called bcp.

callback event In Open Client and Open Server, an occurrence that triggers a callback 
routine.

callback routine A routine that Open Client or Open Server calls in response to a triggering 
event, known as a callback event.

capabilities A client/server connection’s capabilities determine the types of client 
requests and server responses permitted for that connection.



 Glossary

474  Open Server

character set A set of specific (usually standardized) characters with an encoding scheme 
that uniquely defines each character. ASCII and ISO 8859-1 (Latin 1) are two 
common character sets.

character set 
conversion

Changing the encoding scheme of a set of characters on the way into or out of 
a server. Conversion is used when a server and a client communicating with it 
use different character sets. For example, if Adaptive Server uses ISO 8859-1 
and a client uses Code Page 850, character set conversion must be turned on so 
that both server and client interpret the data passing back and forth in the same 
way.

client In client/server systems, the client is the part of the system that sends requests 
to servers and processes the results of those requests.

Client-Library Part of Open Client, a collection of routines for use in writing client 
applications. Client-Library is a library designed to accommodate cursors and 
other advanced features in the Sybase product line.

code set See character set.

collating sequence See sort order.

command In Client-Library, a server request initiated by an application’s call to 
ct_command, ct_dynamic, or ct_cursor and terminated by the application’s call 
to ct_send.

command structure (CS_COMMAND) A hidden Client-Library structure that Client-Library 
applications use to send commands and process results.

connection structure (CS_CONNECTION) A hidden Client-Library structure that defines a 
client/server connection within a context.

context structure (CS_CONTEXT) A CS-Library hidden structure that defines an application 
“context,” or operating environment, within a Client-Library or Open Server 
application. The CS-Library routines cs_ctx_alloc and cs_ctx_drop allocate and 
drop a context structure.

conversion See character set conversion.

CS-Library Included with both the Open Client and Open Server products, a collection of 
utility routines that are useful to both Client-Library and Server-Library 
applications.

current row With respect to cursors, the row to which a cursor points. A fetch against a 
cursor retrieves the current row.

cursor A symbolic name that is associated with a SQL statement.



     Glossary

Server-Library/C Reference Manual 475

In Embedded SQL, a cursor is a data selector that passes multiple rows of data 
to the host program, one row at a time.

database A set of related data tables and other database objects that are organized to 
serve a specific purpose.

See also scrollable cursor.

datatype A defining attribute that describes the values and operations that are legal for a 
variable.

DB-Library Part of Open Client, a collection of routines for use in writing client 
applications.

deadlock A situation that arises when two users, each having a lock on one piece of data, 
attempt to acquire a lock on the other’s piece of data. Adaptive Server detects 
deadlocks and resolves them by killing one user’s process.

default Describes the value, option, or behavior that Open Client and Open Server 
products use when none is explicitly specified.

default database The database that a user gets by default when he or she logs in to a database 
server.

default language 1. The language that Open Client and Open Server products use when an 
application does no explicit localization. The default language is determined by 
the “default” entry in the locales file.

2. The language that Adaptive Server uses for messages and prompts when a 
user has not explicitly chosen a language.

dynamic SQL Allows an Embedded SQL or Client-Library application to execute SQL 
statements containing variables whose values are determined at runtime.

error message A message that an Open Client and Open Server product issues when it detects 
an error condition.

event An occurrence that prompts an Open Server application to take certain actions. 
Client commands and certain commands within Open Server application code 
can trigger events. When an event occurs, Open Server calls either the 
appropriate event-handling routine in the application code or the appropriate 
default event handler.

event handler In Open Server, a routine that processes an event. An Open Server application 
can use the default handlers Open Server provides or can install custom event 
handlers.



 Glossary

476  Open Server

exposed structure A structure whose internals are exposed to Open Client and Open Server 
programmers. Open Client and Open Server programmers can declare, 
manipulate, and deallocate exposed structures directly. The CS_DATAFMT 
structure is an example of an exposed structure.

extended 
transaction

In Embedded SQL, a transaction composed of multiple Embedded SQL 
statements.

FIPS An acronym for Federal Information Processing Standards. If FIPS flagging is 
enabled, Adaptive Server or the Embedded SQL precompiler issue warnings 
when a non-standard extension to a SQL statement is encountered.

gateway An application that acts as an intermediary for clients and servers that cannot 
communicate directly. Acting as both client and server, a gateway application 
passes requests from a client to a server and returns results from the server to 
the client.

hidden structure A hidden structure is a structure whose internals are hidden from Open Client 
and Open Server programmers. Open Client and Open Server programmers 
must use Open Client and Open Server routines to allocate, manipulate, and 
deallocate hidden structures. The CS_CONTEXT structure is an example of a 
hidden structure.

host language The programming language in which an application is written.

host program In Embedded SQL, the application program that contains the Embedded SQL 
code.

host variable In Embedded SQL, a variable which enables data transfer between Adaptive 
Server and the application program. See also indicator variable, input 
variable, output variable, result variable, and status variable.

indicator variable A variable whose value indicates special conditions about another variable’s 
value or about fetched data.

When used with an Embedded SQL host variable, indicates when a database 
value is null.

input variable A variable that is used to pass information to a routine, a stored procedure, or 
Adaptive Server.

interfaces file A file that maps server names to transport addresses. When a client application 
calls ct_connect or dbopen to connect to a server, Client-Library or DB-Library 
searches the interfaces file for the server’s address. Note that not all platforms 
use the interfaces file. On these platforms, an alternate mechanism directs 
clients to server addresses.



     Glossary

Server-Library/C Reference Manual 477

isql script file In Embedded SQL, one of the three files the precompiler can generate. An isql 
script file contains precompiler-generated stored procedures, which are written 
in Transact-SQL.

key A subset of row data that uniquely identifies a row. Key data uniquely describes 
the current row in an open cursor.

keyword A word or phrase that is reserved for exclusive use in Transact-SQL or 
Embedded SQL. Also called a reserved word.

listing file In Embedded SQL, a listing file is one of the three files the precompiler can 
generate. A listing file contains the input file’s source statements and 
informational, warning, and error messages.

locales file A file that maps locale names to language/character set pairs. Open Client and 
Open Server products search the locales file when loading localization 
information.

locale name A character string that represents a language/character set pair. Locale names 
are listed in the locales file. Sybase predefines some locale names, but a system 
administrator can define additional locale names and add them to the locales 
file.

locale structure (CS_LOCALE) A CS-Library hidden structure that defines custom 
localization values for a Client-Library or Open Server application. An 
application can use a CS_LOCALE to define the language, character set, 
datepart ordering, and sort order it will use. The CS-Library routines 
cs_loc_alloc and cs_loc_drop allocate and drop a locale structure.

localization The process of setting up an application to run in a particular national language 
environment. An application that is localized typically generates messages in a 
local language and character set and uses local datetime formats.

login name The name a user uses to log in to a server. An Adaptive Server login name is 
valid if Adaptive Server has an entry for that user in the system table syslogins.

message number A number that uniquely identifies an error message.

message queue In Open Server, a linked list of message pointers through which threads 
communicate. Threads can write messages into and read messages from the 
queue.

multibyte character 
set

A character set that includes characters encoded using more than one byte. 
EUC JIS and Shift-JIS are examples of multibyte character sets.



 Glossary

478  Open Server

mutex A mutual exclusion semaphore. This is a logical object that an Open Server 
application uses to ensure exclusive access to a shared object.

null Having no explicitly assigned value. NULL is not equivalent to zero, or to 
blank. A value of NULL is not considered to be greater than, less than, or 
equivalent to any other value, including another value of NULL.

Open Server A Sybase product that provides tools and interfaces for creating custom 
servers.

Open Server 
application

A custom server constructed with Open Server.

output variable In Embedded SQL, a variable that passes data from a stored procedure to an 
application program.

parameter 1. A variable that is used to pass data to and retrieve data from a routine.

2. An argument to a stored procedure.

passthrough mode A state of being pertaining to gateway applications.

When in passthrough mode, a gateway relays Tabular Data Stream (TDS) 
packets between a client and a remote data source without unpacking the 
packets’ contents.

property A named value stored in a structure. Context, connection, thread, and 
command structures have properties. A structure’s properties determine how it 
behaves.

query 1. A data retrieval request; usually a select statement.

2. Any SQL statement that manipulates data.

registered procedure In Open Server, a collection of C statements stored under a name. Open Server-
supplied registered procedures are called system registered procedures.

remote procedure 
call

1. One of two ways in which a client application can execute an Adaptive 
Server stored procedure. (The other is with a Transact-SQL execute statement.) 
A Client-Library application initiates a remote procedure call command by 
calling ct_command. A DB-Library application initiates a remote procedure 
call command by calling dbrpcinit.

2. A type of request a client can make of an Open Server application. In 
response, Open Server either executes the corresponding registered procedure 
or calls the Open Server application’s RPC event handler.

3. A stored procedure executed on a different server from the server to 
which the user is connected.



     Glossary

Server-Library/C Reference Manual 479

result variable In Embedded SQL, a variable that receives the results of a select or fetch 
statement.

scrollable cursor Allows a current cursor position to be set anywhere in a result set. See also 
cursor.

server In client/server systems, the part of the system that processes client requests 
and returns results to clients.

Server-Library A collection of routines for use in writing Open Server applications.

sort order Used to determine the order in which character data is sorted. Also called 
collating sequence.

sqlca 1. In an Embedded SQL application, a SQLCA is a structure that provides a 
communication path between Adaptive Server and the application program. 
After executing each SQL statement, Adaptive Server stores return codes in the 
SQLCA.

2. In a Client-Library application, a SQLCA is a structure that the application 
can use to retrieve Client-Library and server error and informational messages.

sqlcode 1. In an Embedded SQL application, a SQLCODE is a structure that provides 
a communication path between Adaptive Server and the application program. 
After executing each SQL statement, Adaptive Server stores return codes in the 
SQLCODE. A SQLCODE can exist independently or as a variable within a 
SQLCA structure.

2. In a Client-Library application, a SQLCODE is a structure that the 
application can use to retrieve Client-Library and server error and 
informational message codes.

SQL Server See Adaptive Server Enterprise.

statement In Transact-SQL or Embedded SQL, an instruction that begins with a keyword. 
The keyword names the basic operation or command to be performed.

status variable In Embedded SQL, a variable that receives the return status value of a stored 
procedure, thereby indicating the procedure’s success of failure.

stored procedure In Adaptive Server, a collection of SQL statements and optional control-of-
flow statements stored under a name. Adaptive Server-supplied stored 
procedures are called system procedures.

System 
Administrator

The user in charge of server system administration, including creating user 
accounts, assigning permissions, and creating new databases. On Adaptive 
Server, the System Administrator’s login name is “sa.”



 Glossary

480  Open Server

system descriptor In Embedded SQL, an area of memory that holds a description of variables 
used in Dynamic SQL statements.

system procedures Stored procedures that Adaptive Server supplies for use in system 
administration. These procedures are provided as shortcuts for retrieving 
information from system tables, or as mechanisms for accomplishing database 
administration and other tasks that involve updating system tables.

system registered 
procedures

Internal registered procedures that Open Server supplies for registered 
procedure notification and status monitoring.

target file In Embedded SQL, of the three files the precompiler can generate. A target file 
is similar to the original input file, except that all SQL statements are converted 
to Client-Library function calls.

TDS (Tabular Data Stream) An application-level protocol that Sybase clients and 
servers use to communicate. It describes commands and results.

thread A path of execution through Open Server application and library code and the 
path’s associated stack space, state information, and event handlers.

Transact-SQL An enhanced version of the database language SQL. Applications can use 
Transact-SQL to communicate with Sybase Adaptive Server.

transaction One or more server commands that are treated as a single unit for the purposes 
of backup and recovery. Commands within a transaction are committed as a 
group; that is, either all of them are committed or all of them are rolled back.

transaction mode The manner in which Adaptive Server manages transactions. Adaptive Server 
supports two transaction modes: Transact-SQL mode (also called “unchained 
transactions”) and ANSI mode (also called “chained transactions”).

user name See login name.



Server-Library/C Reference Manual 481

A
ad hoc negotiations 122
Adaptive Server Enterprise Reference Manual xii
aggregates

compute rows 221
allocating

memory 215
allocating memory 141
ANSI compliance, updates and deletes 124
application name 298
application-defined login handshake 121, 152
arithmetic exceptions 124
ASCII character format 157
asynchronous events 278
attentions 150

checking for with srv_thread_props 21
coding recommendations for 21
and interrupt level 20
and the SRV_ATTENTION event handler 20

authentication of client 121

B
binary datatypes 26, 29, 201
binding

variables 229
binding data 137
bit datatype 26, 29, 202
bit masks

CS_BROWSEDESC structure 53
CS_DATAFMT status value 57
CS_KEY 76

bitmasks
capabilities 36

boundary datatype 26, 29, 208
browse mode 52

and the CS_BROWSEDESC structure 23
returning browse mode results to a client 23

steps to support 23
building an Open Server application 6, 16
bulk

copy requests 94
data transfer 149, 156
insert 150

byte ordering 120
retrieving scheme through srv_thread_props 149

bytes
copying 235

C
call stack, threads 256
callback handlers

errors 60
installing for a thread 117
registered procedures 167

callbacks
installing 238
security session 191, 193, 196
timeslice 147

capabilities 120, 242, 249
ad hoc retrieval of 37
bit masks 36
and the capability macros 36
changing default values through srv_props 30
client connection 243
and the CS_CAP_TYPE structure 36
default 30
explicit negotiation of 35
list of default values for 31, 35
macros 36
negotiating one at a time 35
negotiating with pre-10.0 clients 37
negotiation 24
Request Capabilities table 24, 27
Response Capabilities table 29, 30
TDS version 32, 37

Index



Index

482 Open Server

transparent negotiation of 30
uses of 24

certificates
SSL 177

chained transactions 124
challenge/response 152
channel binding 153, 171
character data representation 149, 157
character datatypes 26, 29, 203, 204
character set 99, 120, 140

changing 105
notification of change 152
processing client request to change 105
renegotiating 122
returning information about 106

chunks 62
messages 38

client
definition of 2
login information 284
types of clients 2

client command errors
and the CS_SERVERMSG structure 38
sending through srv_sendinfo 38, 39

client login request 159
client logout 149
client requests 120, 145
client threads 112, 162
client/server

architecture 1, 2
Client-Library

context properties 140
retrieving client version through srv_thread_props 149

clock rate 147
close, cursor command 64
collating sequence 99
columns

original names 53
Common Libraries 59
common name validation

SDC environment 177
compute rows 217, 225

and aggregates 221
sending to client 228

concurrency 113, 117
connect handler. See SRV_CONNECT event handler 209

connection attributes. See Capabilities 24
Connection migration 40
context properties

and cs_config 140
and ct_config 140
definition of 139
and srv_props 140

context structure. See CS_CONTEXT structure 209
context switching 113
coroutine scheduling. See Non-preemptive scheduling 

113
credentials 171

delegated 154
timeout 154

cryptographic signature 155
CS_ABSOLUTE fetch type 68
CS_ACK dynamic operation 271
CS_ALL_CAPS argument 36
CS_BIGINT datatype 206
CS_BINARY datatype 199, 201
CS_BIT datatype 199, 203
CS_BOUNDARY_TYPE value 208
CS_BROWSEDESC structure 40, 53
cs_calc routine 201
CS_CANBENULL value 57, 234
CS_CANCEL_ATTN argument 21
CS_CAP_REQUEST argument 35
CS_CAP_RESPONSE capabilities 244
CS_CAP_TYPE structure 36
CS_CHAR datatype 199, 203
CS_CLR_CAPMASK macro 36
cs_cmp routine 201
cs_config command 60, 102, 104, 139
CS_CONNECTION structure 131
CS_CONTEXT structure 7, 60, 102, 103, 140
cs_convert command 102

CS_DATAFMT structure 54
cs_convert routine 201
cs_ctx_alloc command 104
CS_CURSOR_CLOSE command 70, 75
CS_CURSOR_DECLARE command 67, 70, 73
CS_CURSOR_DELETE command 68, 70, 75
CS_CURSOR_FETCH command 67, 70, 74
CS_CURSOR_INFO command 67, 71, 73
CS_CURSOR_OPEN value 71, 74
CS_CURSOR_UPDATE command 68, 71, 75



Index

Server-Library/C Reference Manual 483

CS_CURSTAT_CLOSED value 69
CS_CURSTAT_DEALLOC value 69
CS_CURSTAT_DECLARED value 69
CS_CURSTAT_OPEN value 69, 78
CS_CURSTAT_RDONLY value 69
CS_CURSTAT_ROWCNT value 69, 78
CS_CURSTAT_UPDATABLE value 69
CS_DATA_LBIN capability 202
CS_DATA_LCHAR capability 203
CS_DATAampfmt structure 268
CS_DATAFMT structure 53, 57, 137
CS_DATE datatype 200, 204
CS_DATETIME datatype 200, 204
CS_DATETIME4 datatype 200, 204, 205
CS_DEALLOC dynamic operation 271
CS_DEALLOC value 89
CS_DECIMAL datatype 200, 207
CS_DEF_PREC value 56, 207
CS_DEF_SCALE value 56, 207
CS_DESCIN value 57, 85, 87
CS_DESCOUT value 57, 86
CS_DESCRIBE_INPUT dynamic operation 272
CS_DESCRIBE_INPUT value 85, 87
CS_DESCRIBE_OUTPUT dynamic operation 272
CS_DESCRIBE_OUTPUT value 86
cs_dt_crack routine 201, 204
cs_dt_info routine 201
CS_EXEC_IMMEDIATE dynamic operation 271
CS_EXEC_IMMEDIATE value 88
CS_EXECUTE dynamic operation 271
CS_EXECUTE value 88
CS_EXPRESSION argument 53
CS_FIRST fetch type 68
CS_FIRST_CHUNK argument 39, 62
CS_FLOAT datatype 200, 206
CS_FMT_NULLTERM argument 56
CS_FMT_PADBLANK argument 56
CS_FMT_PADNULL argument 56
CS_FMT_UNUSED argument 56
CS_FOR_UPDATE value 76
CS_GOODDATA value 218, 231
CS_HASEED bit 40, 62
CS_HIDDEN value 57
CS_IMAGE datatype 201, 208, 209
CS_IMAGE_TYPE value 58
CS_INPUTVALUE value 57

CS_INT datatype 200, 206
CS_IODATA value 58
CS_IODESC structure 57, 59, 197
CS_KEY value 57, 76
CS_LANG_CMD value 107
CS_LAST fetch type 68
CS_LAST_CHUNK argument 39, 62
CS_LC_ALL value 102
cs_loc_alloc command 102, 104
cs_loc_drop command 102, 104
CS_LOC_PROP value 102, 104
cs_locale command 101, 102, 104
CS_LOCALE structure 57, 151
CS_LOGINFO structure 131, 286
CS_LONGBINARY datatype 199, 202
CS_LONGCHAR datatype 199, 203
CS_MAX_MSG argument 38
CS_MAX_PREC value 56, 207
CS_MAX_SCALE value 56, 207
CS_MIN_PREC value 56, 207
CS_MIN_SCALE value 56, 207
CS_MONEY datatype 200, 207
CS_MONEY4 datatype 200, 207
CS_NEXT fetch type 68
CS_NOAPICHK value 141
CS_NODEFAULT value 57
CS_NULLDATA value 231
CS_NUMERIC datatype 200, 206
CS_OP_AVG operator type 222
CS_OP_COUNT operator type 222
CS_OP_MAX operator type 222
CS_OP_MIN operator type 222
CS_OP_SUM operator type 222
CS_OPT_ANSINULL server option 124
CS_OPT_ANSIPERM server option 124
CS_OPT_ARITHABORT server option 124
CS_OPT_ARITHIGNORE server option 124
CS_OPT_AUTHOFF server option 124
CS_OPT_AUTHON server option 124
CS_OPT_CHAINXACTS server option 124
CS_OPT_CURCLOSEONXACT server option 124
CS_OPT_CURREAD server option 124
CS_OPT_CURWRITE server option 124
CS_OPT_DATEFIRST server option 125
CS_OPT_DATEFORMAT server option 125
CS_OPT_FIPSFLAG server option 125



Index

484 Open Server

CS_OPT_FORCEPLAN server option 125
CS_OPT_FORMATONLY server option 125
CS_OPT_GETDATA server option 125
CS_OPT_IDENTITYOFF server option 125
CS_OPT_IDENTITYON server option 125
CS_OPT_ISOLATION server option 125
CS_OPT_LEVEL1 value 125
CS_OPT_NOCOUNT server option 123, 125
CS_OPT_NOEXEC server option 126
CS_OPT_PARSEONLY server option 126
CS_OPT_QUOTED_IDENT server option 126
CS_OPT_RESTREES server option 126
CS_OPT_ROWCOUNT server option 126
CS_OPT_SHOWPLAN server option 126
CS_OPT_STATS_IO server option 126
CS_OPT_STATS_TIME server option 126
CS_OPT_STR_RTRUNC server option 126
CS_OPT_TEXTSIZE server option 127
CS_OPT_TRUNCIGNORE server option 127
CS_PASSTHRU_MORE value 132
CS_PREPARE dynamic operation 272
CS_PREPARE value 85
CS_PREV fetch type 68
CS_REAL datatype 200, 206
CS_RELATIVE fetch type 68
CS_RENAMED argument 53
CS_REQ_MIGRATE 42
CS_REQUEST capabilities 32
CS_RESPONSE capabilities 34
CS_RESPONSE_CAP argument 35
CS_RETURN value 57
CS_SECSESSION_CB value 191
CS_SENSITIVITY_TYPE value 208
CS_SERVERMSG structure 38, 60, 62

CS_HASEED bit 40
CS_SET_CAPMASK macro 36
CS_SMALLINT datatype 200, 206
CS_SRC_VALUE argument 56
CS_SYB_CHARSET value 104
CS_TEXT datatype 201, 208
CS_TEXT_TYPE value 58
CS_TIME datatype 200, 204
CS_TIMESTAMP value 57
CS_TINYINT datatype 200, 206
CS_TST_CAPMASK macro 36
CS_UBIGINT datatype 206

CS_UINT datatype 206
CS_UNICHAR datatype 199, 204
CS_UNITEXT datatype 208, 209
CS_UPDATABLE value 57
CS_UPDATECOL value 57
CS_USER_MAX_MSGID value 80
CS_USER_MSGID value 80
CS_USMALLINT datatype 206
CS_VARBINARY datatype 199, 202
CS_VARCHAR datatype 199, 201, 203
CS_VERSION_KEY value 57
CS_XML datatype 199
CS-Library 59, 60

context properties 140
definition of 6, 59
error messages 101, 102
errors 60, 140

ct_cancel command 94
ct_capability command 36
ct_close command 94
ct_command command 21, 80, 95, 107
ct_connect command 36, 94
ct_cursor command 64
ct_exit command 94
ct_getloginfo command 131
ct_recvpassthru command 132
ct_send command 95
ct_sendpassthru command 131
ct_setloginfo 131
curcmd field, SRV_CURDESC structure 69, 78
curid field, SRV_CURDESC structure 72
cursor commands 134
cursor handler. See SRV_CURSOR event handler 209
cursors 27, 63, 76

benefits of using 63
CS_DATAFMT structure 57
definition of 63
fetch types 68
fetching rows 26
handling cursor requests 72, 76
ID 65
and key data 76
server option 124
and the SRV_CURDESC structure 65, 76
and the SRV_CURSOR event handler 72
srv_cursor_props 253



Index

Server-Library/C Reference Manual 485

types of cursor commands 64
update columns 76
update text 71
updates 67, 76

curstatus field
SRV_CURDESC structure 69

D
data

confidentiality 153
describing, binding, transferring of 136
integrity 155
origination 154

datastream messages. See Messages 80
datatype Summary table 199, 201
datatypes 201

See also Types 198
response capabilities 30
routines that manipulate 201

dates
order of parts 125

datetime datatypes 26, 29, 204
conversion to 8-byte 150

datetime formats 99
dbcancel command 20
deallocate, cursor command 64
debugging 241, 258
decimal datatype 26, 29, 56
declare, cursor command 64
default event handlers 93
deferred event

queue size 142
delegated credentials 154
delete, cursor command 64
deletes 125
describing

columns and parameters 265
describing data 136
detection of message replay 154
directory drivers 82
directory service provider 142
directory services 81, 83
disconnect handler. See SRV_DISCONNECT event 

handler 209

disconnects
handling of 21

distributed service providers 170
double quotes, identifers 126
DSLISTEN environment variable 298
dump/load 150
dynamic SQL 27, 83, 89

benefits of using 83
commands 134
CS_DATAFMT structure 57
cursors 63
responding to client Dynamic SQL commands 84
srv_dynamic 268
and the SRV_DYNAMIC event handler 84
and the srv_dynamic routine 84
uses for 83

dynamic SQL handler. See SRV_DYNAMIC event 
handler 209

E
EBCDIC character format 157
encryption 153

key 121
passwords 152

environment changes 273
environment variables 274
error handler 60, 89, 142
error handlers

environment variable changes 275
installation of 8, 16

error messages 38
sending to a client 38

errors 38, 60, 89, 92
See also client command errors 38
column-level information 39
CS-Library 60
extended data 39
local language messages 100, 102
numbers 91
severity of 90
types of 90

event handlers
coding custom handlers 93
default 93



Index

486 Open Server

default versus custom 93
definition of 93
interrupt level 20
messages 81
srv_capability 37
srv_handle 295

event queue 112
event-driven threads 110
events 92, 97

attention 20
cursor 64, 72
definition of 92
disconnects 21
dynamic SQL 84
handling 8
list of standard 93, 97
message 80
notifications 27
programmer-defined 97
srv_event 275

execute statement 63
explicit negotiation 24, 120
extended error data 39, 40

definition of 39
sending to a client 39

F
fatal errors 91
fetch types 68
fetching rows 26, 64
file descriptor

endpoint 150
first day of week 125
floating point datatype 26, 29

conversion to 8-byte 150
representation 150

floating point representation 120, 158
free, C routine 281
freeing memory 142, 280

G
gateway applications 98, 99, 101, 103, 123, 129

attentions 21
direct security sessions 185, 191
separate security sessions 185
srv_getloginfo 286

H
help

Technical Support xv
hidden columns

CS_DATAFMT structure 57
host machine, of client 150

I
I/O channel

threads 151
I/O descriptor structure 57
identifiers 126
identity columns 125
image data 57

transferring 157
image datatype 26, 196

srv_get_text 282
in-band attentions 26
information, cursor command 64
informational errors 91
initialization

setting properties during 141
summary of steps in 141

inserts 125
installing

error handlers 89
event handlers 295
Open Server applications xi

integer types 26, 29, 206
integrity service 155
interfaces file 183

directory services 82
looking up server name in 146
specifying name of through srv_props 142

intermediary applications 98
internal I/O statistics 126
international support. See localization 99



Index

Server-Library/C Reference Manual 487

interrupt level
and attentions 20
Server-Library calls permitted at 20

interrupts 20, 94, 119, 142
is NULL 124
isbrowse structure element 53

J
joins 125

K
keys 76

L
language

calls 107
commands 134
datastream 138
requests 95

language and character set 99
changing 104

language handler. See SRV_LANGUAGE event 
handler 209

libtcl.cfg file 82
listening address 82
local language 120
localization 99, 107, 140

creating localized connections 103
and the CS_LOCALE structure 100, 101
of a CS_CONTEXT structure 104
of an Open Server application 100, 102
properties related to 106
returning localization information to clients 106
and sp_serverinfo 106
supporting localized clients 100, 104

localized clients 99, 101
locking 115
log file 90, 103, 116

configuring size of through srv_props 143
maximum size 143

name 143
specifying through srv_props 143
truncation at startup 147

login negotiations 119
login requests 159
logout, by client 149

M
macros

capabilities 36
malloc C routine 217
maximum rows 126
memory

allocating 141, 145, 215
freeing routines, specifying through srv_props 142
moving bytes 235
reallocation routines, specifying through srv_props 

145
setting to zero 236
srv_free 280

message event 80
message handler. See SRV_MSG event handler 209
message queues

activity 148
configuring number of through srv_props 144
creating 247
definition of 116
deleting 261
object IDs 289
srv_getmsgq 286
srv_getobjname 292

message replay 154
messages 27, 134

chunking 38, 62
data parameters 234
definition of 80
error 38
and event handlers 81
ID 80
number available 143
numbers 61
receiving 80
retrieving from client 80
severity 61



Index

488 Open Server

text length 38
types of in Open Server 108

money datatype 27, 29, 207
conversion to 8-byte 150

multithread programming 109, 119
and callback handlers 117, 118
definition of thread 109
and message queues 116
and mutexes 115
overview of 16
special programming considerations 118, 119
and srv_setpri 116
thread scheduling 113, 115
tools and techniques for 115, 118
types of threads 110, 113

mutexes
configuring number of through srv_props 144
creating 249
definition of 115
deleting 263
object IDs 289
srv_getobjname 292

mutual authentication 155

N
naming services 81, 83
national language 120, 140, 147, 156

notification of change 152
renegotiating 122

negotiated behavior 119, 122
negotiated login

commands 134
retrieving client request for through srv_thread_props 

152
negotiated packet size 152
negotiating

capabilities 24
in the SRV_CONNECT event handler 120
TDS protocol level 130, 133
transparently 30
via options commands or language commands 122

Net-Library
providing network services 6

net-Library tracing file

specifying through srv_props 144
network authentication 155
network connections

configuring number of through srv_props 144
network I/O buffer

configuring size of through srv_props 143
non-client events 92
non-client threads 251
non-preemptive scheduling

definition of 113
specifying with srv_props 145

non-standard SQL 125
notification

registered procedures 163
notification procedures 164
nullable bit datatype 26
nulls 124

O
Open Server

header files 6
position in client/server architecture 3

Open Server application
a simple program 8, 10
auxiliary 4
contrasted with SQL Server 3
definition of 3
gateway 5
initializing 8
stand-alone 4

open, cursor command 64
operating system errors 91
options 122, 127

default values for 123, 127
description of 123, 127
setting and retrieving 123

oserror.h header file 90
ospublic.h header file 116
out-of-band attentions 26

P
packet size 152



Index

Server-Library/C Reference Manual 489

padding 56
parameter data 134
parameters

retrieving from a client 135
return parameters 16
RPC 170

parse resolution trees 126
pass-through mode 99, 127, 132

gateway 127
gateway with direct security session 185, 191
negotiating the TDS level in 130, 133
routines used in 131

passthrough mode 153
password

retrieving clientxd5 s via srv_thread_props 153
platform capabilities 243, 247
platform-dependent services 242
precision

decimal datatype 56, 207
preemptive thread scheduling 113, 114

definition of 113
specifying through srv_props 145

preemptive threads 110
scheduling 242

prepared statement 83
preparing

statements 271
principals 179
priority levels 114, 153
process ID

client 150
processing parameter and row data 134
programmer-defined events 92, 97
protocol capabilities 243, 247
providers, directory services 82

Q
query

information 125
processing behavior 122
syntax 126

R
real-time data 115
receiving messages 80
registered procedures

benefits of 163
contrasted with remote procedure calls 163
definition of 14, 162
executing 165
maintaining lists of 165
steps to register 164
using callback handlers with 167

registering
with a directory 82, 142

remote passwords 152
retrieving through srv_thread_props 152

remote passwords, retrieving through srv_thread_props 
152

remote procedure calls 27, 96, 134, 169, 170
CS_DATAFMT structure 57
definition of 169
processing of 169

remote servers 98
passwords 153, 160
retrieving name of through srv_thread_props 153
security sessions 171

renegotiating client/server behavior 122
request Capabilities table 25, 27
requests

dynamic SQL 84
response Capabilities table 29, 30
responses 145
results

order returned in 16
overview of 14
processing 15

retrieving parameter data 134
return parameters 134

processing 136
processing in a SRV_LANGUAGE event handler 

138
returning parameters 134, 136

language datastream 138
returning rows 135
row data 134
rows

affected 125



Index

490 Open Server

maximum 126
processing 23, 136

RPC. See Remote procedure calls 169
run queues 114

S
sample programs xii

See the Open Client and Open Server Programmer’s 
Supplement for your platform xii

scale
decimal datatype 56, 207

scheduling threads 113, 115
secure connections 121

negotiating with client to establish 121
security datatypes 208
security labels 121, 124, 152
security levels 120

negotiation of 120
security mechanisms 170

interfaces file 183
local name 155
local names 179

security services 170, 196
thread properties 153

security session callback 191, 193, 196
security sessions

gateway applications 185
simple Open Server application 185
timeout 155

select query option 125
select statements 126
sending

messages to client 81
row data 134

sensitivity datatype 27, 29, 208
server error messages 60
server name

specifying through srv_props 146
server properties

definition of 140
Server-Library

context properties 140
server-Library

version 147

servers
types of servers 2

service threads 97, 110, 112, 162
set command 122
severity of errors 90
shared disk cluster environment

certificate 177
signals (UNIX) 279
significant byte 149
SIGTRAP signal 258
site handler 110, 162

configuring number of through srv_props 144
login request 159
subchannel login 159

sleeping threads 114
sort order 99, 106, 140

returning information about 106
sp_ps 166, 453, 456
sp_regcreate 456
sp_regdrop 463
sp_reglist 464
sp_regnowatch 464, 465
sp_regwatch 465, 467
sp_regwatchlist 467
sp_serverinfo 106, 467, 468

responding to sp_serverinfo requests 106
sp_terminate 166, 468, 469
sp_who 166, 469, 471
SQL queries 107
srv_alloc 215, 217
srv_alt_bind 217, 221, 225, 229
srv_alt_descampfmt 221, 225, 229
srv_alt_header 221, 225, 226, 229
srv_alt_xferdata 221, 225, 227, 229
SRV_APPDEFINED value 152
SRV_ATTENTION event 20, 94, 119, 142
SRV_ATTENTION event handler 20, 22, 142

calling to handle client disconnect 22
SRV_BIG_ENDIAN value 149
srv_bind 134, 137, 229, 232

CS_DATAFMT structure 54
srv_bmove 235, 236
SRV_BULK event 92, 94, 157, 197
SRV_BULKLOAD value 157
srv_bzero 236, 238
SRV_C_DEBUG capability 242



Index

Server-Library/C Reference Manual 491

SRV_C_DEFAULTPRI constant 116
SRV_C_EXIT callback type 239
SRV_C_EXIT capability 242
SRV_C_EXIT state transition 118
SRV_C_LOWPRIORITY constant 116
SRV_C_MAXPRIORITY constant 116
SRV_C_MQUEUE value 292
SRV_C_MUTEX value 292
SRV_C_PREEMPT capability 242
SRV_C_PROCEXEC callback type 239
SRV_C_PROCEXEC state transition 118
SRV_C_RESUME callback type 239
SRV_C_RESUME capability 242
SRV_C_RESUME state transition 118
SRV_C_SELECT capability 242
SRV_C_SUSPEND callback handler 117
SRV_C_SUSPEND callback type 239
SRV_C_SUSPEND capability 242
SRV_C_SUSPEND state transition 118
SRV_C_TIMESLICE callback type 239
SRV_C_TIMESLICE capability 242
SRV_C_TIMESLICE state transition 118
srv_callback 238, 241

in multithread programming 117, 118
srv_capability 114, 241, 242
srv_capability_info 24, 35, 36, 243, 244

event handlers 37
SRV_CHALLENGE value 152
SRV_CHAR_ASCII value 157
SRV_CHAR_EBCDIC value 157
SRV_CHAR_UNKNOWN value 157
SRV_CLEAROPTION value 123
SRV_CLIENT login type 159
SRV_CONNECT event 92, 94, 112
SRV_CONNECT event handler 31, 35, 37, 120, 121, 

135, 156, 185
passthrough mode 130
security sessions 186, 191
srv_getloginfo 286

SRV_CONTINUE return value 241
srv_createmsgq 116, 247, 249
srv_createmutex 251
srv_createproc 251, 253
SRV_CTL_MIGRATE 42
SRV_CUR_ASKSTATUS value 71
SRV_CUR_DEALLOC value 70, 79

SRV_CUR_DYNAMIC value 70
SRV_CUR_HASARGS value 71
SRV_CUR_INFORMSTATUS value 71
SRV_CUR_RDONLY value 70
SRV_CUR_SETROWS value 71
SRV_CUR_UNUSED value 70, 71, 79
SRV_CUR_UPDATABLE value 70, 79
SRV_CURDATA type of data 230
SRV_CURDATA value 134
SRV_CURDESC structure 65, 68, 255

curcmd field 69, 78
curid field 72
curstatus field 69

SRV_CURSOR event 72, 94
SRV_CURSOR event handler 64, 72, 135, 255
srv_cursor_props 65, 73, 253, 256
srv_dbg_stack 256, 258
srv_dbg_switch 258, 259
SRV_DEBUG return value 241
srv_define_event 97, 259, 261
srv_deletemsgq 116, 261, 263
srv_deletemutex 263, 264
srv_descampfmt 264, 268
srv_descfmt 30, 134, 137

CS_DATAFMT structure 54
SRV_CURDATA argument 73
SRV_UPCOLDATA argument 73

SRV_DISCONNECT event 92, 94, 142, 277, 279
fatal errors 91

SRV_DISCONNECT event handler 21, 97, 149
SRV_DS_PROVIDER property 82, 181
SRV_DYN_ values 269
srv_dynamic 84, 268, 272
SRV_DYNAMIC event 95, 271
SRV_DYNAMIC event handler 84, 135
SRV_DYNAMICDATA type of data 230
SRV_DYNDATA value 85, 86, 87
SRV_ENCRYPT value 152
SRV_ENO_OS_ERR value 91
srv_envchange 272, 273
SRV_EQUEUED event type 259
SRV_ERRORDATA argument 40
SRV_ERRORDATA type of data 230
srv_event 92, 94, 96, 97, 260, 273, 277
srv_event_deferred 20, 97, 278, 280
SRV_FATAL_PROCESS error severity 91



Index

492 Open Server

SRV_FATAL_SERVER error severity 91
SRV_FLT_ floating point formats 158
srv_free 217, 280, 281
srv_freeserveraddrs 281
srv_get_text 197, 281, 284
srv_getloginfo 31, 130, 284, 286
srv_getmsgq 114, 116, 286, 289
srv_getobjid 289, 291
srv_getobjname 249, 251, 291, 294
SRV_GETOPTION value 123
srv_getserverbyname 294
srv_handle 93, 294, 298
SRV_HASPARAMS value 80, 81
SRV_I_DELETED value 288
SRV_I_INTERRUPTED value 288
SRV_I_NOEXIST value 290
SRV_I_PASSTHRU_MORE value 131
SRV_I_UNKNOWN value 288, 290
SRV_I_WOULDWAIT value 288
SRV_IMAGELOAD value 157
SRV_INFO error severity 91
srv_init 298, 300

and directory services 82
SRV_KEYDATA type of data 230
srv_langcpy 108, 300, 302
SRV_LANGDATA type 230
srv_langlen 108, 302, 304
SRV_LANGUAGE event 95, 107
SRV_LANGUAGE event handler 97, 107, 135

option requests 123
renegotiating behavior 122

SRV_LITTLE_ENDIAN value 149
srv_lockmutex 114, 304, 306
srv_log 90, 306, 309
SRV_M_NOWAIT value 287
SRV_M_READ_ONLY value 287
SRV_M_WAIT value 287
SRV_M_WAKE_INTR 20
srv_mask 309, 310
SRV_MAXRESMSG message ID 80
SRV_MIG_STATE enumerated type 46
SRV_MIGRATE_RESUME 44
SRV_MIGRATE_RESUME event 95
SRV_MIGRATE_STATE 45
SRV_MINRESMSG message ID 80
srv_msg 80, 81, 310, 312

SRV_MSG event 80, 96
SRV_MSG event handler 93, 135
SRV_MSGDATA type of data 230, 234
SRV_NEGDATA type of data 230
srv_negotiate 121, 314, 321
SRV_NOPARAMS value 81
srv_numparams 135, 170, 321, 323
SRV_OPTION event 95, 96, 123
SRV_OPTION event handler

renegotiating behavior 122
srv_options 123, 323, 329
srv_orderby 329
srv_poll (UNIX only) 331, 333
SRV_POLL capability 242
SRV_PROC structure 94
SRV_PROCLIST structure 166
srv_props 20, 139, 333, 335
srv_putmsgq 116, 340, 342
srv_realloc 342, 344
srv_recvpassthru 131, 344, 346
srv_regcreate 165, 346, 348
srv_regdefine 165, 348, 351
srv_regdrop 165, 351, 353
srv_regexec 165, 353, 355
srv_reginit 165, 355, 358
srv_reglist 165, 358, 359
srv_reglistfree 166, 359, 361
srv_regnowatch 165, 361, 363
srv_regparam 165, 363, 366
srv_regwatch 165, 366, 369
srv_regwatchlist 165, 369, 371
SRV_ROWDATA type of data 230
SRV_ROWDATA value 134
SRV_RPC event 96, 169

and registered procedures 162
SRV_RPC event handler 135, 163, 169

trapping errors 170
SRV_RPCDATA type of data 230
srv_rpcdb 169, 371, 372
srv_rpcname 169, 372, 375
srv_rpcnumber 169, 375, 376
srv_rpcoptions 376, 378
srv_rpcowner 169, 378, 379
srv_run 96, 379, 381
SRV_S_ALLOCFUNC property 141
SRV_S_APICHK property 141



Index

Server-Library/C Reference Manual 493

SRV_S_ATTNREASON property 142
SRV_S_CURTHREAD property 142
SRV_S_DEFQUEUESIZE property 142
SRV_S_DISCONNECT property 22, 142
SRV_S_DS_REGISTER property 82, 142
SRV_S_DSPROVIDER property 142
SRV_S_ERRHANDLE property 89, 142
SRV_S_FREEFUNC property 142
SRV_S_IFILE property 142
SRV_S_INHIBIT property 167
SRV_S_INHIBIT return value 241
SRV_S_LOGFILE property 143
SRV_S_LOGSIZE property 90, 143
SRV_S_MSGPOOL property 143
SRV_S_NETBUFSIZE property 143
SRV_S_NETTRACEFILE property 144
SRV_S_NUMCONNECTIONS property 144
SRV_S_NUMMSGQUEUES property 144
SRV_S_NUMMUTEXES property 144
SRV_S_NUMREMBUF property 144
SRV_S_NUMREMSITES property 144
SRV_S_NUMTHREADS property 144
SRV_S_NUMUSEREVENTS property 144
SRV_S_PREEMPT property 114, 145
SRV_S_REALLOCFUNC property 145
SRV_S_REQUEST_CAP property 145
SRV_S_RESPONSE_CAP property 145
SRV_S_RETPARAMS property 145
SRV_S_RETPARMS property 145
SRV_S_SEC_PRINCIPAL property 146, 179
SRV_S_SERVERNAME property 146
SRV_S_STACKSIZE property 146
SRV_S_TDSVERSION property 146, 147, 161
SRV_S_TIMESLICE property 147
SRV_S_TRACEFLAG property 147, 148
SRV_S_TRUNCATELOG property 147
SRV_S_USERVLANG property 147
SRV_S_USESRVLANG property 100, 106, 156
SRV_S_VERSION property 147
SRV_S_VIRTCLKRATE property 147
SRV_S_VIRTIMER property 147
SRV_SECLABEL value 152
srv_select (UNIX only) 381, 384
srv_send_ctlinfo 385
srv_send_data 386
srv_send_text 198, 384, 393

srv_senddone 393, 397
srv_sendinfo 38, 397, 401
srv_sendpassthru 132, 401, 403
srv_sendstatus 403, 405
SRV_SERVER structure 300
srv_setcolutype 405, 406
srv_setcontrol 406, 409
srv_setloginfo 31, 409, 411
SRV_SETOPTION value 123
srv_setpri 411, 413

in multithread programming 116
srv_signal (UNIX only) 413, 414
SRV_SITEHANDLER login type 159
srv_sleep 112, 114, 416, 419
srv_spawn 419, 422
SRV_START event 92, 96
SRV_START handler 93
SRV_STOP event 92, 94, 96, 277, 280

fatal errors 91
SRV_SERVER structure 300

SRV_SUBCHANNEL login type 159
srv_symbol 422, 423
SRV_T_APPLNAME property 149
SRV_T_BULKTYPE property 149, 156
SRV_T_BYTEORDER property 149
SRV_T_CHARTYPE property 157
SRV_T_CLIB property 149
SRV_T_CLIBVERS property 149
SRV_T_CLIENTLOGOUT property 149
SRV_T_CONVERTSHORT property 150
SRV_T_DUMPLOAD property 150
SRV_T_ENDPOINT property 150
SRV_T_EVENT property 150, 158
SRV_T_EVENTDATA property 150
SRV_T_FLTTYPE property 150, 158
SRV_T_GOTATTENTION property 21, 150
SRV_T_HOSTNAME property 150
SRV_T_HOSTPROCID property 150
SRV_T_IODEAD property 151
SRV_T_LOCALE property 151
SRV_T_LOGINTYPE property 151, 159
SRV_T_MACHINE property 151
SRV_T_MIGRATE_STATE 151
SRV_T_MIGRATED 47
SRV_T_MIGRATED property 151
SRV_T_NEGLOGIN property 152



Index

494 Open Server

SRV_T_NOTIFYCHARSET property 152
SRV_T_NOTIFYDB property 152
SRV_T_NOTIFYLANG property 152
SRV_T_NUMRMTPWDS property 152
SRV_T_PACKETSIZE property 152
SRV_T_PASSTHRU property 153
SRV_T_PRIORITY property 153
SRV_T_PWD property 153
SRV_T_RETPARAMS property 153
SRV_T_RMTPWD structure 160
SRV_T_RMTPWDS property 153, 160
SRV_T_RMTSERVER property 153
SRV_T_ROWSENT property 153
SRV_T_SEC_CHANBIND property 153
SRV_T_SEC_CONFIDENTIALITY property 153
SRV_T_SEC_CREDTIMEOUT property 154
SRV_T_SEC_DATAORIGIN property 154
SRV_T_SEC_DELEGATION property 154
SRV_T_SEC_DELEGCRED property 154
SRV_T_SEC_DETECTREPLAY property 154
SRV_T_SEC_DETECTSEQ property 154
SRV_T_SEC_INTEGRITY property 155
SRV_T_SEC_MECHANISM property 155
SRV_T_SEC_MUTUALAUTH property 155
SRV_T_SEC_NETWORKAUTH property 155
SRV_T_SEC_SESSTIMEOUT property 155
SRV_T_SESSIONID 47
SRV_T_SPID property 155
SRV_T_STACKLEFT property 155
SRV_T_TDSVERSION property 156
SRV_T_TYPE property 156, 162
SRV_T_USER property 156
SRV_T_USERDATA property 156
SRV_T_USESRVLANG property 100, 106, 156
SRV_T_USTATE property 156
srv_tabcolname 426, 428

calling to return browse mode results 23
srv_tabname 428, 430

calling to return browse mode results 23
SRV_TCLIENT thread type 162
SRV_TDS_ values 148, 162
srv_termproc 253, 430, 431
srv_text_info 58, 197, 432, 434
SRV_TEXTLOAD value 157
srv_thread_props 139, 149, 434, 436
srv_thread_props property 20

SRV_TIMESLICE configuration parameter 118
SRV_TR_ATTN value 148
SRV_TR_DEFQUEUE value 148
SRV_TR_EVENT value 148
SRV_TR_MSGQ value 148
SRV_TR_NETDRIVER value 148
SRV_TR_NETREQ value 148
SRV_TR_NETWAKE value 148
SRV_TR_TDSDATA value 148
SRV_TR_TDSHDR value 148
SRV_TSERVICE thread type 162
SRV_TSITE thread type 162
SRV_TSUBPROC thread type 162
srv_ucwakeup 20
srv_ucwakeup 441
SRV_UNITEXTLOAD value 157
srv_unlockmutex 444
SRV_URGDISCONNECT event 92, 97, 277, 279
srv_version 444, 445
SRV_VIRTCLKRATE configuration parameter 118
SRV_VIRTTIMER configuration parameter 118
srv_wakeup 20, 112, 441, 445, 447
srv_xferdata 134, 138, 234, 448, 450
srv_yield 112, 114, 450, 451
SSL

certificates 177
SDC 177

stack size
threads 146

stack space
determining through srv_thread_props 155

standard events 92
start handler. See SRV_START handler 209
state transition handler. See Callbacks 238
state transitions

for srv_callback 118
status values

returning to client 16
suspended threads 114
switching

thread contexts 258
system registered procedures

definition of 166
mapping to Server-Library routines 166



Index

Server-Library/C Reference Manual 495

T
Tabular Data Stream protocol. See TDS 3
TCL

Net-Lib driver requests 148
wakeup requests 148

TDS
definition of 3
pass-through mode 99
protocol level 120
retrieving and setting client threadxd5 s version via 

srv_thread_props 156
specifying initial version value for through 

srv_props 146
TDS packets

header information 148
pass-through mode 129

TDS version 147
and capabilities 37
legal values 147
negotiation 161

Technical Support xv
text and image 196, 198
text and image data

retrieving from a client 197, 198
sending to a client 197

text and image datatypes 208
text datatype 27, 29, 57, 196, 208

srv_get_text 282
text pointer 196
text timestamp 196
transferring 157

@@textsize global variable 127
third-party security 170
threads

See also multithread programming 109
call stack 256
communication 116
configuring number available, through srv_props 

144
current state 156
definition 109
IDs 155
login records 159
messages 109
non-client 251
preemptive 110

properties 148, 160
stack size 146
state transitions 238
switching contexts 258
Thread Properties table 149, 156
types 110, 162
types, retrieving clientxd5 s via srv_thread_props 

156
time slice callback 147
trace flags

summary of Open Server trace flags 148
tracing 147, 148
transaction isolation 125
transferring data 137
transparent negotiation 30, 120

capabilities 24
types 199, 209

U
unchained transactions 124
updates 125

cursors 64, 67, 76
use db command 152
user authorizations 124
user events

defining 259
number 144

user name
retrieving clientxd5 s via srv_thread_props 156

user-defined events 277, 280

V
variable-length binary datatype 26

long 26
version string 147
virtual timer 147

W
weeks, first day 125
writetext stream 197



Index

496 Open Server

X
XML datatype 204


	Server-Library/C Reference Manual
	About This Book
	CHAPTER 1 Introducing Open Server
	Client/Server overview
	Types of clients
	Types of servers
	Open server configurations
	Standalone open server application
	Auxiliary open server application
	Gateway Open Server application

	Open Server
	The Open Server libraries
	Network services

	Using Open Server
	The CS_CONTEXT structure
	Steps in a simple program

	Basic Open Server program
	Open Server events
	Default event handlers
	Non client-initiated events

	Registered procedures
	Returning results to clients
	Types of result data
	Messages
	Data rows
	Parameters
	Status values

	Order of results

	Error handling
	Multithread programming
	Summary of changes for version 15.0

	CHAPTER 2 Topics
	Attention events
	Interrupt-level activity
	Coding recommendations for attention events
	Handling disconnects
	Example

	Browse mode
	Example

	Capabilities
	Request capabilities
	Response capabilities
	Transparent negotiation
	When does transparent negotiation take place?

	Server-wide defaults
	Explicit negotiation
	Negotiating capabilities one at a time
	Negotiating using a capability bitmask
	Capability macros

	Ad hoc retrieval of capability information
	A note on pre-10.0 clients
	Example

	Client command errors
	Sending messages with srv_sendinfo
	Sequencing long messages
	CS_SERVERMSG structure fields for sequenced messages

	Extended error data
	What is extended error data good for?
	Sending extended error data to a client


	Connection migration
	In-batch migration and idle migration
	Context migration
	APIs used in connection migration
	CS_REQ_MIGRATE
	SRV_CTL_MIGRATE
	SRV_MIGRATE_RESUME
	SRV_MIGRATE_STATE
	SRV_T_MIGRATE_STATE property and SRV_MIG_STATE enumerated type
	SRV_T_MIGRATED
	SRV_T_SESSIONID

	Instructing clients to migrate to a different server
	Requesting a client to migrate
	Managing the connect (SRV_CONNECT) event
	Managing the migrate state (SRV_MIGRATE_STATE) event
	Sharing client context
	Managing the migrate resume (SRV_MIGRATE_RESUME) event
	Managing the disconnect (SRV_DISCONNECT) event
	Managing in-batch migration
	Attention handling
	Disconnecting Open Server

	Accepting connections from migrated clients
	Error messages

	CS_BROWSEDESC structure
	CS_DATAFMT structure
	CS_IODESC structure
	CS-Library
	Common routines
	Common data structures
	Error handling

	CS_SERVERMSG structure
	Cursors
	Cursor overview
	Advantages of cursors
	Open Server applications and cursors
	How are cursor requests generated?
	Types of cursor commands
	How is cursor information exchanged with a client?
	SRV_CURDESC structure
	Values for curstatus
	Values for curcmd

	Handling cursor requests
	How to respond to specific requests

	Key data
	Update columns
	Example

	Scrollable cursors
	SRV_CURDESC2 structure
	Values for curstatus
	Values for curcmd
	srv_cursor_props2 routine


	Data stream messages
	Data stream messages overview
	Retrieving client data stream messages
	Sending data stream messages to a client

	Directory services
	Specifying a directory driver
	Registering an Open Server application with a directory

	Dynamic SQL
	Advantages of dynamic SQL
	Handling dynamic SQL requests
	The srv_dynamic routine
	Detecting a command type
	Responding to client dynamic SQL commands

	Example

	Errors
	Types of errors
	Severity of errors
	Operating system errors

	Error numbers and corresponding message text
	Example

	Events
	Event overview
	What is an event handler?
	Default and custom handlers
	Coding custom handlers

	Standard events
	Programmer-defined events
	Example

	Gateway applications
	Passthrough mode

	International support
	Localizing an Open Server application
	Supporting localized clients
	Using a CS_LOCALE structure to set custom localization values
	Localizing CS-Library messages for clients
	Creating localized connections for gateway applications
	Localizing a CS_CONTEXT structure

	Responding to client requests
	Requests to change language and character set
	Requests for localization information

	Localization properties
	Localization examples

	Language calls
	Login redirection and extended HA failover support
	Messages
	Multithread programming
	What is a thread?
	Thread types
	Preemptive threads
	Thread-safe functions
	Thread-safe code and preemptive mode
	Implementation specifics
	Event-driven threads
	Service threads
	Site-handler threads

	Scheduling
	Scheduling methods
	Selecting a thread to resume

	Tools and techniques
	Mutexes
	Message queues
	Protecting critical sections
	Callback routines

	Programming considerations
	Example

	Negotiated behavior
	Login negotiations
	Transparent negotiation
	Explicit negotiation
	Negotiating a secure connection

	Ad hoc negotiations
	Example

	Options
	Inside the SRV_OPTION event handler
	Option descriptions and default values
	Example

	Partial update
	Open Server set-up
	sp_mda
	SRV_T_BULKTYPE
	Handlers


	Passthrough mode
	Regular passthrough mode
	Negotiating the TDS protocol level in passthrough mode
	Using regular passthrough mode
	Example

	Event handler passthrough mode
	Coding and installing a full passthrough event handler
	Enabling event handler passthrough mode for a thread
	Negotiating the TDS protocol level


	Processing parameter and row data
	A note on terminology
	The Open Server data processing model
	Retrieving parameters
	Returning rows
	Returning return parameters
	A closer look at describing, binding, and transferring
	Describing
	Binding
	Transferring
	Automatic conversion

	Returning parameters in a language data stream
	Example

	Properties
	Context properties
	Server properties
	SRV_S_TDSVERSION
	SRV_S_TRACEFLAG

	Thread properties
	SRV_T_BULKTYPE
	SRV_T_CHARTYPE
	SRV_T_ENDPOINT
	SRV_T_EVENT
	SRV_T_FLTTYPE
	SRV_T_LOGINTYPE
	SRV_T_MIGRATED
	SRV_T_MIGRATE_STATE
	SRV_T_RMTPWDS
	SRV_T_SESSIONID
	SRV_T_TDSVERSION
	SRV_T_TYPE


	Registered procedures
	Standard remote procedure calls
	Advantages of registered procedures
	Notification procedures
	Creating registered procedures
	The mechanics of registered procedures
	Registering procedures
	Executing registered procedures
	Maintaining lists

	System registered procedures
	Using callback handlers with registered procedures
	Example

	Remote procedure calls
	Example

	Security services
	Security service properties
	Login authentication services
	Per-packet security services
	SSL overview

	How do security services work with Open Server?
	Steps involved in a Client/Server dialog using security services

	Using security mechanisms with Open Server applications
	Security drivers
	libtcl.cfg configuration file
	Object identifiers
	Changes to the interfaces file
	Changes to the interfaces file: the SSL filter

	Determining which security services are active
	Scenarios for using security services with Open Server applications
	Simple application using a security session
	Gateway application with separate security sessions
	Gateway with separate security sessions using delegation
	Full passthrough gateway with direct security session


	Text and image
	Processing text and image data
	Retrieving data from a client
	Returning data to a client

	Example

	Types
	Routines that manipulate datatypes
	Open Server datatypes
	Binary types
	Bit type
	Character types
	XML type
	Datetime types
	Integer types
	Real, float, numeric, and decimal types
	Money types
	Security types
	Text and image types



	CHAPTER 3 Routines
	srv_alloc
	srv_alt_bind
	srv_alt_descfmt
	srv_alt_header
	srv_alt_xferdata
	srv_bind
	srv_bmove
	srv_bzero
	srv_callback
	srv_capability
	srv_capability_info
	srv_createmsgq
	srv_createmutex
	srv_createproc
	srv_cursor_props
	srv_dbg_stack
	srv_dbg_switch
	srv_define_event
	srv_deletemsgq
	srv_deletemutex
	srv_descfmt
	srv_dynamic
	srv_envchange
	srv_event
	srv_event_deferred
	srv_free
	srv_freeserveraddrs
	srv_get_text
	srv_getloginfo
	srv_getmsgq
	srv_getobjid
	srv_getobjname
	srv_getserverbyname
	srv_handle
	srv_init
	srv_langcpy
	srv_langlen
	srv_lockmutex
	srv_log
	srv_mask
	srv_msg
	srv_negotiate
	srv_numparams
	srv_options
	srv_orderby
	srv_poll (UNIX only)
	srv_props
	srv_putmsgq
	srv_realloc
	srv_recvpassthru
	srv_regcreate
	srv_regdefine
	srv_regdrop
	srv_regexec
	srv_reginit
	srv_reglist
	srv_reglistfree
	srv_regnowatch
	srv_regparam
	srv_regwatch
	srv_regwatchlist
	srv_rpcdb
	srv_rpcname
	srv_rpcnumber
	srv_rpcoptions
	srv_rpcowner
	srv_run
	srv_s_ssl_local_id
	srv_select (UNIX only)
	srv_send_ctlinfo
	srv_send_data
	srv_send_text
	srv_senddone
	srv_sendinfo
	srv_sendpassthru
	srv_sendstatus
	srv_setcolutype
	srv_setcontrol
	srv_setloginfo
	srv_setpri
	srv_signal (UNIX only)
	srv_sleep
	srv_spawn
	srv_symbol
	srv_tabcolname
	srv_tabname
	srv_termproc
	srv_text_info
	srv_thread_props
	srv_timedsleep
	srv_ucwakeup
	srv_unlockmutex
	srv_version
	srv_wakeup
	srv_xferdata
	srv_yield

	CHAPTER 4 System Registered Procedures
	sp_ps
	sp_regcreate
	sp_regdrop
	sp_reglist
	sp_regnowatch
	sp_regwatch
	sp_regwatchlist
	sp_serverinfo
	sp_terminate
	sp_who

	Glossary
	Index


