SYBASE

Common Libraries Reference Manual

Open Client™ and Open Server™
15.5

DOCUMENT ID: DC32850-01-1550-01
LAST REVISED: October 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

WY o o 101 QI 0T = o Yo S vii
CHAPTER 1 Introducing CS-Library ... 1
CS-Library OVEIVIEWcocuiieiiiiiee et e et 1
USING CS-LIDIarycooeeee et 2
Open Client and Open Server applicationscccccceveeeninnns 2

A standalone CS-Library applicationcccccceeveeeviiiiiieennnennn, 2
SHUCTUMNES ..ottt 3
CS_CONTEXT StrUCLUIEcoeeiiiiieiiiiieeeee 3
Datatypes, constants, and CONVENLIONSccccvvveeeeeeeniiiiiiienneeennn 4
Error Nandling........oooiiiiiiee e 4
Two methods of handling messages..........cccoocoveviieeeiieeene 4
Using a callback to handle messagesccccceveveeeeiieeeencnenn. 5
Inline message handling............ccoooeiiiiiiiiii e 7
CHAPTER 2 CS-Library ROULINESccooeeiiiciceeeeee e e e 9
oS o= 1o ST 10
(13 o 1 1 o PP PPRT 12
(oS3 oo o1 T [P 13
CS_CONV_MUIE 1..eiiiiiiiie et e e e s aae e e e e e e s ennes 25
(ot ol0] 1 1Y/ =T ¢ (PP P PPPPPPPPPPPPPPPPIN 27
CS_CEX_@lIOC.... ettt 36
Lot » G o [(o] ISR PPPRPR 39
CS_CEX_gIoDalovvviiiiiiii 41
Lot o [T- To [T PEPRPN 44
Lot o | o - o] QT PRPRRN 48
(oS3 o | T o 52
CS_10C_AllOC ... i 60
(oS3 (o oo [(o] o S 61
€S _10CAIE .. 62
CS_MaNagE_CONVEIT......ooiiiiiii i 68
(ot J o] o] =T o £ 74
CS_Prop_SsSl_10Calid.........vveiiiieeiiiiii e 81

Common Libraries Reference Manual iii

Contents

CHAPTER 3

CHAPTER 4

CS_SEL_CONMVEIT ...ttt ettt ettt e eeeeeeeeeeeeeeeeeeennenees 81
CS_SEINUII ... 86
CS_SHBUII ..o 88
(oSS (0] 1 0 o RSP 91
Lo 1 1 = S 93
cs_validate _Choooii 95
CS_WIll_CONVEIT.....oiiiiiii e 96
BUIK-LIDIaryc.oooiiii e 101
Overview of BUlK-Librarycccccoooiiiiiieieee e 101
Client-side and server-side routines............cccccevveeeeriieeenne 102
Header fileS ... 102
Linking with Bulk-Librarycccccoiiiiiiiiiii e, 103
The CS_BLKDESC StrUCIUIEuvvvvieeeiiiiiiiiiiee e esiiiiieeeeeen 103
Bulk-Library client programmingcccccvvveeeeeeniiiiieieeeeeesnninnnns 103
Bulk-copy-in OperationS..........ccccuvvieiieeiiiiiiiiiiee e 104
Bulk-copy-0ut OPerations...........cccuvvviieeeiiiiiiiiiiee e 108
Copying to and from Secure Adaptive Server Enterprise...... 110
Bulk-Library gateway programmingcccccveeeeeeeiiiiivveeeeeeessiinnnns 110
Inside the SRV_LANGUAGE event handler.......................... 112
Inside the SRV_BULK event handlercccccooceeenne.n. 113
EXAMPIE ... 115
Bulk-Library ROULINESoeiiiiiiiiiii e 117
o] 121 o TS 118
BIK_DING .. 120
DIK_COIVAL ... 132
BIK_default........cooiiiiii i 134
DIK_dESCHDE ...t 135
DIK _dONE... e 138
DIK _ArOP oo 141
BIK _QEBLIOW ... e 143
o] 1 011 (=)« SR 144
o] |G T SRR 146
o] 1 o o] o LS ST 149
BIK_FOWAIIOC ... 155
o] (01110 | (o] o SRR 156
DIK _FOWXTEI ...t 156
BIK_rowWXfer_MUIt ... 160
DIK_SENAIOW ... 164
DIK_SENAEXL ... uvveiiiee i 166
DIK _SIVINIt .. 167
DIK _EEXEXTEI i 168

Open Client and Open Server

Contents

Common Libraries Reference Manual \%

Contents

Vi Open Client and Open Server

About This Book

This book contains reference information regarding:

* TheC version of CS-Library, which contains utility routines that are
useful to both Open Client™ Client-Library™ and Open Server™
Server-Library applications.

e TheCversionof Bulk-Library, which providesbulk copy routinesfor
Client-Library and Server-Library applications. Bulk copy alows
high-speed transfer of data between a database table and program
variables.

Note In previous Open Client and Open Server releases, Bulk-Library
was referred to as “the Bulk Copy routines.”

Audience This manual is designed to serve as a reference manual for programmers
who are writing Client-Library or Open Server applications. It iswritten
for application programmers who are familiar with the C programming
language.

How to use this book This book contains these chapters:

e Chapter 1, “Introducing CS-Library,” containsabrief introductionto
CS-Library.

e Chapter 2, “CS-Library Routines,” contains specific information
about each CS-Library routine, such as what parameters the routine
takes and what it returns.

e Chapter 3, “Bulk-Library,” contains a brief introduction to Bulk-
Library.

e Chapter 4, “Bulk-Library Routines,” contains specific information
on each Bulk-Library routine.

Related documents You can see these books for more information:

e The Open Server Release Bulletin for Microsoft Windows contains
important last-minute information about Open Server.

Common Libraries Reference Manual vii

Viii

The Software Developer’s Kit Release Bulletin for Microsoft Windows
contains important | ast-minute information about Open Client and
SDK.

The jConnect for JDBC Release Bulletin versions 6.05 and 7.0 contains
important |ast-minute information about jConnect™.

The Open Client and Open Server Configuration Guide for Microsoft
W ndows containsinformation about configuring your system to run Open
Client and Open Server.

The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library.

The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

The Open Client and Open Server Programmers Supplement for Microsoft
W ndows contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

¢ The sample programs that are included with Open Client and Open
Server

¢ Routines that have platform-specific behaviors

The jConnect for JDBC Installation Guide version 6.05 contains
installation instructions for jConnect for JDBC™,

The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

The Adaptive Server Enterprise ADO.NET Data Provider Users Guide
providesinformation on how to accessdatain Adaptive Server® using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J&.

The Adaptive Server Enterprise ODBC Driver by Sybase Users Guide for
Windows and Linux, provides information on how to access data from
Adaptive Server on Microsoft Windows, Linux, and Apple Mac OS X
platforms, using the Open Database Connectivity (ODBC) Driver.

Open Client and Open Server

About This Book

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access datafrom
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

Other sources of Use the Sybase® Getting Started CD, the SyBooks™ CD, and the Sybase
information Product Manuals Web site to |earn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

[IFinding the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click Partner Certification Report.

In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

Common Libraries Reference Manual iX

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/

4 Click aPartner Certification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

X Open Client and Open Server

http://certification.sybase.com/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

About This Book

Conventions

Accessibility
features

If you need help

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly braces indicate that you choose at |east one of the

enclosed options. Do not include the braces in the command.

(] Brackets mean choosing one or more of theenclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

This document isavailablein an HTML version that is speciaized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

Common Libraries Reference Manual Xi

http://www.sybase.com/accessibility

xii Open Client and Open Server

CHAPTER 1 Introducing CS-Library

This chapter gives an overview of CS-Library. It covers the following
topics:

Topic Page

CS-Library overview 1

Using CS-Library

Structures

Datatypes, constants, and conventions

Al AlWN

Error handling

CS-Library overview

CS-Library provides utility routines for use in application program
development to support:

Datatype conversion
Arithmetic operations
Character-set conversion
Datetime operations
Sort-order operations

Localized error messages

CS-Library aso includes routines to allocate and deallocate CS-Library
structures.

Although you can write a standalone CS-Library application,
CS-Library’s primary function isto provide common utility routines to
Client-Library and Server-Library applications.

Common Libraries Reference Manual

Using CS-Library

Because Client-Library and Server-Library programs require a context
structure, which can only be allocated using CS-Library, al Client-Library and
Server-Library programsinclude at least two callsto CS-Library—one to
alocate aCS_CONTEXT and oneto deallocate it.

A context structure contains information about an application’s runtime
environment, or “context.” See “ Structures’ on page 3.

Using CS-Library

You can call CS-Library routines either fromwithin aClient-Library or Server-
Library application, or from within a standalone CS-Library application.

Open Client and Open Server applications

Typically, CS-Library routines are called from within a Client-Library or
Server-Library application.

Because the Client-Library and Server-Library header files ctpublic.h and
ospublic.h include the CS-Library header file cspublic.h, Client-Library and
Server-Library applications do not need an additiona header file to make CS-
Library calls.

After calling cs_ctx_alloc to allocate aCS_CONTEXT, aClient-Library or
Server-Library application isfreeto call any other CS-Library routine.

A standalone CS-Library application

Itis possibleto write a standalone CS-Library application, athough thisis not
atypical use of CS-Library. For example, a standal one application might make
CS-Library calsto use the Open Client and Open Server datatypes and
datatype conversion routines.

Thistype of application needsto include the standard CS-Library header file,
cspublic.h.

The Open Client and Open Server Programmers Supplement includes
compiling and linking instructions for CS-Library on your platform.

Open Client and Open Server

CHAPTER 1 Introducing CS-Library

Structures

CS-Library makes use of several structures, including the CS_ CONTEXT
control structure, the CS_DATAFMT data format structure, and the
CS_LOCALE locale information structure.

The CS_CONTEXT structure is a hidden structure whose internals are not
available to an application. The CS_CONTEXT isdiscussed briefly in the
following section.

The CS_CONTEXT structure is also required for Client-Library and Server-
Library applications.

* For more information about how Client-Library usesthe CS_CONTEXT
structure, see the Open Client Client-Library/C Reference Manual or the
Open Client Client-Library/C Programmers Guide.

» For moreinformation about how Server-Library usesthe CS_CONTEXT
structure, see the Open Server Server-Library/C Reference Manual.

The CS_DATAFMT and CS_L OCALE structures are documented in Chapter
2,“Topics,” in the Open Client Client-Library/C Reference Manual.

CS_CONTEXT structure

CS-Library definesasingle control structure, CS_ CONTEXT.

A CS_CONTEXT structure stores configuration information that describes a
particular programming context. An application must allocate a
CS_CONTEXT structure before calling any other Client-Library, Server-
Library, or CS-Library routine.

An application allocatesaCS_CONTEXT structure by calling cs_ctx_alloc or
cs_ctx_global.

An application can customize aCS_CONTEXT by changing the values of
context properties. The following routines change the values of context
properties:

e TheCS-Library routine cs_config (after the context has been all ocated)

» TheClient-Library routine ct_config (after the Client-Library routine
ct_init has been called for the context)

e The Server-Library routine srv_props (after calling the Server-Library
routine srv_version for the context)

Common Libraries Reference Manual 3

Datatypes, constants, and conventions

An application should deallocate all existing context structures before exiting.
An application deallocatesa CS_CONTEXT structure by calling cs_ctx_drop.

Datatypes, constants, and conventions

CS-Library uses the same datatypes, constants, and conventions as Client-
Library and Server-Library and can be found in the following documents:

e The"Using Open Client and Open Server Datatypes’ chapter in the Open
Client Client-Library/C Programmers Guide

e The"Types’ sectionin the Open Client Client-Library/C Reference
Manual

e The"Types’ sectionin the Open Server Server-Library/C Reference
Manual

Error handling

All CS-Library routines return success or failure indications. Sybase strongly
recommends that applications check these return codes.

In addition, CS-Library routines can generate CS-Library messages, which
range in severity from informational messagesto fatal errors. Applications
should take steps to receive and handl e these messages. |n most cases, when a
CS-Library routine fails, CS-Library generates a message that describes the
reason for the failure.

Two methods of handling messages
An application can handle CS-Library messages in one of two ways.
e By installing acallback routine to handle messages
¢ Inline, using the CS-Library routine cs_diag
The callback method has the following advantages.

e Gracefully handles unexpected errors

4 Open Client and Open Server

CHAPTER 1 Introducing CS-Library

CS-Library automatically calls the appropriate message callback routine
whenever amessage is generated, so an application can trap unexpected
errors. An application using only inline error-handling logic may not
successfully trap errors that have not been anticipated.

e Centralizes message-handling code

Since dl errors are handled in the callback, there is no need to add inline
message-handling code after each CS-Library call.

Inline message handling has the advantage of allowing an application to check
for messages at particular times. For example, an application that makes a
sequence of callsto establish a connection might wait until the connection-
related call sequence is complete before checking for messages.

Most applications use the callback method to handle messages.

An applicationindicateswhich method it will usefor aparticular context either
by calling cs_config to install a message callback routine or by calling cs_diag
to initialize inline message handling.

An application can switch back and forth between the inline method and the
callback method:

« Installing a message callback routine turns off inline message handling.
Any saved messages are discarded.

e Likewise, calling cs_diag to initialize inline message handling “ de-
installs’ the application’s CS-Library message callback. As aresult, the
application’sfirst CS_GET call to cs_diag will retrieve awarning message
to this effect.

If amessage callback is not installed and inline message handling is not
enabled, CS-Library discards message information.

Using a callback to handle messages
To handle CS-Library errors with a callback function, your application must:

» Declare the callback function as described in “ Defining a CS-Library
message callback” on page 6.

« Install the callback error handler by calling cs_config to set the
CS_MESSAGE_CB property. For adetailed description, see“ CS-Library
M essage Callback property” on page 21.

Common Libraries Reference Manual 5

Error handling

Defining a CS-Library message callback

A CS-Library message callback is defined as follows:

CS_RETCODE CS_PUBLIC cslibmsg_cb(context, message)
CS_CONTEXT *context;
CS_CLIENTMSG *message;

where:

e contextisapointer tothe CS_CONTEXT structure for which the message
occurred.

e messageisapointer toaCS_CLIENTMSG structure containing message
information. For information on the CS_CLIENTMSG structure, see the
“CS_CLIENTMSG Structure” topics page in the Open Client Client-
Library/C Reference Manual. Note the following similarities with Client-
Library:

e Error severities for CS-Library errors have the same meaning as for
Client-Library errors.

¢ The message->msgnumber field is abit-packed CS INT. This
number is unpacked with the macros CS_LAYER, CS_ORIGIN,
CS NUMBER, and CS_SEVERITY. This method is the same for
Client-Library messages.

Note that message can have a new value each time the message callback
iscalled.

A CS-Library message callback must return either:

e CS_SUCCEED, toinstruct CS-Library to continue any processing that is
currently occurring on this context, or

e CS FAIL, toinstruct CS-Library to terminate any processing that is
currently occurring on this context.

CS-Library message callback example

/*
* %
* %
* %
* *
* *
* *
* %

* %

cslib err handler() - CS-Library error handler.
This routine is the CS-Library error handler used by this
application. It is called by CS-Library whenever an error

occurs. Here, we simply print the error and return.

Parameters:
context

Open Client and Open Server

CHAPTER 1

Introducing CS-Library

* %
* %
* %
* %
* %
* %
* %
* %
*/
Cs
Cs
CS

{

A pointer to the context handle for context
on which the error occurred.
error msg
The structure containing information about the
error.

Returns:
CS_SUCCEED

_RETCODE CS_PUBLIC cslib_err handler (context, errmsg)

_ CONTEXT *context ;

_CLIENTMSG *errmsg;

/*

** Print the error details.

*/

fprintf (stdout, "CS-Library error: “);

fprintf (stdout, “LAYER = (%1d) ORIGIN = (%1d) ",

CS_LAYER (errmsg->msgnumber) ,
CS_ORIGIN (errmsg->msgnumber)) ;
fprintf (stdout, "SEVERITY = (%1d) NUMBER = (%1d)\n",
CS_SEVERITY (errmsg->msgnumber) ,
CS_NUMBER (errmsg->msgnumber)) ;
fprintf (stdout, "\t%s\n", errmsg->msgstring) ;
/*
** Print any operating system error information.
*/
if (errmsg->osstringlen > 0)
{
fprintf (stdout, "CS-Library OS error %1d - %s.\n",
errmsg->osnumber, errmsg-s>osstring) ;
}
/*
** All done.
*/
return (CS_SUCCEED) ;

Inline message handling
An application calls cs_diag to initialize inline CS-Library message handling

for a context.

An application that is retrieving messages into SQLCA, SQLCODE, or
SQL STATE must set the CS-Library property CS EXTRA_INFtoCS TRUE.

Common Libraries Reference Manual

Error handling

For information on theinline method of handling CS-Library messages, seethe
reference page for cs_diag in Chapter 2, “CS-Library Routines.”

8 Open Client and Open Server

CHAPTER 2

CS-Library Routines

This chapter contains a reference page for each CS-Library routine.

Routines Description Page

cs calc Performs an arithmetic operation on two operands. 10

cs _cmp Compares two data values. 12

cs_config Setsor retrieves CS-Library properties. 13

cs_conv_mult Retrieves the conversion multiplier for converting 25
character data from one character set to another.

cs_convert Converts a data value from one datatype, locale, or format | 27
to another datatype, locale, or format.

cs _ctx_alloc AllocatesaCS_CONTEXT structure. 36

cs _ctx_drop Dedllocatesa CS_CONTEXT structure. 39

cs _ctx_global Allocates or returnsa CS_CONTEXT structure. 41

cs diag Manages inline error handling. 44

cs _dt_crack Converts a machine-readabl e datetime value into a user- 48
accessible format.

cs dt_info Sets or retrieves language-specific datetime information. 52

cs loc _alloc AllocatesaCS_LOCALE structure. 60

cs loc_drop Deallocatesa CS_LOCALE structure. 61

cs locale LoadsaCS_LOCALE structurewith localization valuesor | 62
retrieve the locale name previously used to load a
CS_LOCALE structure.

CS_manage_convert Installs or retrieves a user-defined character set conversion | 68
routine.

CS_objects Saves, retrieves, or clears objects and data associated with | 74
them.

cs prop_sd_localid Specifies the path to the local 1D (certificates) file. 81

cs set_convert Installs or retrieves a user-defined conversion routine. 81

cs_setnull Definesanull substitution valueto beused when bindingor | 86
converting NULL data.

cs_strbuild Constructs native language message strings. 88

cs_stremp Compares two strings using a specified sort order. 91

Common Libraries Reference Manual

cs_calc

cs_calc

Description

Syntax

Parameters

10

Routines Description Page

cs time Retrieves the current time. 93

cs vaidate cb A Client-Library callback routine, registered through 95
ct_callback.

cs will_convert Indicates whether a specific datatype conversion is 96
available in the Client/Server libraries.

Performs an arithmetic operation on two operands.

CS_RETCODE cs_calc(context, op, datatype, varl,

var2, dest)

CS_CONTEXT *context;
CS_INT op;
CS_INT datatype;
CS_VOID *varl,
CS_VOID *varz,
CS_VOID *dest;
context

A pointer to aCS_CONTEXT structure.

op
One of the following symbolic values:

Value of op Arithmetic operation *dest Value on return
CS ADD Addition varl + var2

CS SuB Subtraction varl - var2

CS MULT Multiplication varl* var2

CSs DIV Division varl lvar2

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Usage

See also

datatype
One of thefollowing symbolic values, to indicate the datatype of varl, var2,
and dest:

Value of datatype Indicates this datatype
CS DECIMAL_TYPE CS DECIMAL

CS MONEY_TYPE CS_MONEY

CS MONEY4 TYPE CS MONEY4

CS NUMERIC_TYPE CS NUMERIC

*varl, *var2, and *dest must al be the same datatype as indicated by the
value of datatype.

varl
A pointer to the first operand for the arithmetic operation.

var2
A pointer to the second operand for the arithmetic operation.

dest
A pointer to adestination buffer. If cs_calc returns CS_FAIL, *dest is not
modified.

cs_calc can return the following values:

Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common reasons for acs_calc failure include:
e Aninvalid parameter

e Attempted division by 0

» Destination overflow

cs_calc generates a CS-Library error message for most failure conditions. See
“Error handling” on page 4.

e varl, var2, and dest must have the same datatype, as indicated by the
datatype parameter.

¢ Incaseof error, *dest is not modified.

cs_convert

Common Libraries Reference Manual 11

cs_cmp

cs_cmp
Description

Syntax

Parameters

Return value

12

Compares two data values.

CS_RETCODE cs_cmp(context, datatype, varl, var2,

result)
CS_CONTEXT *context;
CS_INT datatype;
CS_VOID *varl;
CS_VOID *var2;
CS_INT *result;

context

A pointer toaCS_CONTEXT structure.

datatype

One of following symbolic values, to indicate the datatype of varl and var2:

Value of datatype

Indicates this datatype

CS DATE_TYPE CS DATE
CS TIME_TYPE CS TIME

CS DATETIME_TYPE CS DATETIME
CS DATETIME4 TYPE CS DATETIME4
CS DECIMAL_TYPE CS DECIMAL
CS MONEY_TYPE CS_MONEY

CS MONEY4 _TYPE CS MONEY4

CS NUMERIC_TYPE CS NUMERIC

CS BIGDATETIME_TYPE CS_BIGDATETIME
CS BIGTIME_TYPE CS BIGTIME

varl

A pointer to the first operand for the comparison.

var2

A pointer to the second operand for the comparison.

result

On successful return, *result is set to indicate the result of the comparison:

Value of *result Indicates

-1 varlislessthan var2.

varlisequa to var2.

1 varl is greater than var2.

cs_cmp can return the following values:

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Usage

See also

cs_config

Description

Syntax

Parameters

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS FAIL The routine failed. If cs_cmp returns CS_FAIL, *result is
undefined.

The most common reason for acs_cmp failureis an invalid parameter.

cs_cmp generatesa CS-Library error message for most failure conditions. See
“Error handling” on page 4.

e cs_cmp sets*result to indicate the result of the comparison.

e varl and var2 must have the same datatype, as indicated by the datatype
parameter.

» To compare string values, an application can cal cs_strcmp.

cs _calc, cs_convert, cs_strcmp

Set or retrieve CS-Library properties.

CS_RETCODE cs_config(context, action, property,
buffer, buflen, outlen)

CS_CONTEXT *context;

CS_INT action;
CS_INT property;
CS_VOID *puffer;
CS_INT buflen;
CS_INT *outlen;
context

A pointer to aCS_CONTEXT structure.

action
One of the following symbolic values:

action cs_config

CS_SET Sets the value of the property.

CS GET Retrieves the value of the property.

CS CLEAR Clearsthevalue of the property by resettingit to
its default value.

Common Libraries Reference Manual 13

cs_config

property
The property whose value is being set or retrieved, according to the
following table:

14 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-1: Values for cs_config property parameter

Value of property | Controls Action *pbuffer is

CS_APPNAME The namethe Set, retrieve, | A CS_CHAR
application callsitself. | or clear. string.

The default is
NULL.

CS_CONFIG_FILE | Thenameand path of | Set, retrieve, | A CS CHAR
the Open Client and or clear. string.

Open Server runtime The default is
configuration file. NULL, which
Meaningful only means a platform-
when external specific defaullt is
configuration has used. See

been enabled by “Runtime

setting configuration file
CS EXTERNAL_CO property” on page
NFIG 10.

CS DEFAULT _ Thenameand pathto | Set, retrieve, | A CS CHAR

IFILE an dternate default or clear. string to the new
interfaces file. interfaces file.

CS EXTERNAL_ | Whether or not the Set, retrieve, | CS TRUE or

CONFIG Client-Library routine | or clear. CS FALSE.
ct_init reads an The defaullt,
external configuration CS TRUE, is
file to set default dependent on
property values. whether the

externa
configuration file
exists. See
“External
configuration
property” on page
20.

CS EXTRA_INF Whether or not to Set, retrieve, | CS_TRUE or
return the extra or clear. CS_FALSE.
information that is CS FALSE isthe
required when default.
processing messages
inlineusing a
SQLCA, SQLCODE,
or SQLSTATE
structure.

Common Libraries Reference Manual

15

cs_config

16

Value of property | Controls Action *puffer is
CS LIBTCL_CFG | Thenameand pathto | Set, retrieve, | A CS CHAR
an adternatelibtcl.cfg | or clear. string to the new
file. libtcl.cfg
configuration file.
CS LOC_PROP A CS LOCALE Set, retrieve, | A CS LOCALE
structure that defines | or clear. structure
localization previously
information for this allocated by the
context. application.
CS MESSAGE _CB | TheCS-Library Set, retrieve, | If actionis
message callback or clear. CS_SET, *hufferis
routine, which is an the message
application-provided callback routine.
handler for CS- If actionis
Library error and CS GET, *buffer
informational isset to the address
MESSQEs. of the message
callback routine
that is currently
installed.
The default is
NULL, which
means no handler
isinstalled.
CS NOAPI_CHK Whether or not CS- Set, retrieve, | CS TRUE or
Library validates or clear. CS_FALSE.
function arguments CS FALSE, the
whenlibrary functions defgult, indicates
arecalled. that argument
checking is
performed.
CS SYBASE The location of an Set, retrieve, | A CS_CHAR
HOME alternate Sybasehome | or clear. string to the new
directory. Sybase home
directory.
CS_USERDATA User-alocated data Set, retrieve, | User-allocated
or clear. data
A default isnot
applicable.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Value of property | Controls Action *pbuffer is

CS VERSION Theversion of CS- Retrieve only. | A symbalic code

Library. indicating the

library version:

¢ CS VERSION_1
00 indicates the
context exhibits
version 10.0
behavior.

+ CS VERSION_1
10 indicates
version 11.1
behavior.

+ CS VERSION_1
20 indicates the
context exhibits
version 12.0
behavior.

« CS VERSON 1
25 indicates
version 12.5
behavior.

« CS VERSION_1
50 indicates
version 15.0
behavior.

+ CS VERSION_1
55 indicates
version 15.5
behavior.

buffer
If aproperty valueisbeing set, buffer pointsto the valueto usein setting the
property.
If aproperty value is being retrieved, buffer points to the space in which
cs_config will place the value of the property.

If aproperty valueis being cleared, pass buffer as NULL and buflen as
CS UNUSED.

Common Libraries Reference Manual 17

cs_config

Return value

Usage

18

buflen

Generally, buflen is the length, in bytes, of *buffer.

If aproperty valueis being set and the value in *buffer is null-terminated,
pass buflen asCS NULLTERM.

If *buffer isafixed-length or symbolic value, pass buflen asCS_UNUSED.

outlen

A pointer to an integer variable.
outlen isnot used if aproperty value isbeing set.

If aproperty valueisbeing retrieved, cs_config sets * outlen to the length, in
bytes, of the requested information.

If theinformation is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

outlen can be passed as NULL if the application is setting a property value
or does not require the output length of aretrieved value.

cs_config returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

There are three kinds of context properties:

e Context properties specific to CS-Library

e Context properties specific to Client-Library
e Context properties specific to Server-Library

cs_config sets and retrieves the values of CS-Library context properties.
With the exception of CS_LOC_PROP, properties set using cs_config
affect only CS-Library.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set using ct_config affect only Client-Library.

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set using srv_props affect only Server-Library.

See the “Properties’ topics page in the Open Client Client-Library/C
Reference Manual for information about Client-Library properties.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Application name property
* CS_APPNAME specifies the name that the application callsitself.

* cs_config setsthe application name for aCS_CONTEXT structure. In a
Client-Library application, allocated connections inherit the application
name from their parent CS_CONTEXT structure.

* Theapplication name specifies a section name in the Open Client and
Open Server runtime configuration file. See “ Runtime configuration file
property” on page 19.

« CS APPNAME cannot be set, retrieved, or cleared unless the
CS_CONTEXT structure was allocated with CS_VERSION_110 or later.

Runtime configuration file property

¢ CS_CONFIG_FILE specifiesthe name and path to the Open Client and
Open Server runtime configuration file.

e Thedefault valueisNULL, which meansthat the platform-specific default
file will be used:

¢« OnUNIX platforms, the default fileis
$SYBASE/$SYBASE_OCS config/ocs.cfg, where $SYBASE isthe path
to the Sybase install ation directory; this path is specified as the value
of the SYBASE environment variable.

¢ On Windows platforms, the default fileis
%SYBASEY0\%SYBASE_OCS%\ini\ocs.cfg, where %SYBASE% is
the path to the Sybase installation directory; this path is specified as
the value of the SYBASE environment variable.

Note The default value may be overridden by the environment variable,
SYBOCS_CFG

e Setting the SYBOCS_CFG environment variable overrides the
CS EXTERNAL_CONFIG default. Note that this only affects
applications which do not set the value of CSCONFIG_FILE via
cs_config.

« |If the default external-configuration file exists, Client-Library reads
configuration settings from it unless the application explicitly setsthe
CS EXTERNAL_CONFIG property to CS_FALSE. See “External
configuration property” on page 20.

e CS CONFIG_FILE cannot be set, retrieved, or cleared unless the
CS_CONTEXT structure was allocated with CS_VERSION_110 or later.

Common Libraries Reference Manual 19

cs_config

20

External configuration property

CS_EXTERNAL_CONFIG controls whether the Client-Library routine
ct_init will read the Open Client and Open Server runtime configuration
fileto set default Client-Library property values for the CS_CONTEXT
structure.

The name of the Open Client and Open Server runtime configuration file
is specified with the CS_CONFIG_FILE property. See “Runtime
configuration file property” on page 19.

The default for CS_EXTERNAL_CONFIG, CS_TRUE, depends on
whether the default external-configuration file exists (see “ Runtime
configuration file property” on page 19). If the external-configuration file
exists, then CS_ EXTERNAL_CONFIG defaultsto CS TRUE.
Otherwise, CS_ EXTERNAL_CONFIG defaultsto CS FALSE.

Configuration information is read from the section of the file labeled:
[appname]

where appname is the value of the CS_APPNAME property. (See
“Application name property” on page 19.) If the application hasnot set the
CS_APPNAME property, the configuration reads the section labeled:

[DEFAULT]

The*“Using the Open Client and Open Server Runtime Configuration File”
topics page in the Open Client Client-Library/C Reference Manual
describes the syntax and keywords for configuration file entries.

CS_EXTERNAL_CONFIG cannot be set, retrieved, or cleared unlessthe
CS_CONTEXT structureis allocated with CS_VERSION_110 or later.
(Seecs ctx_alloc.)

Extra Information property

CS_EXTRA_INF determineswhether or not CS-Library returnsthe extra
information that is required to fill in a SQLCA, SQLCODE, or
SQL STATE structure.

If an application is not retrieving messagesinto a SQL CA, SQLCODE, or
SQL STATE structure, the extrainformation is returned as ordinary CS-
Library messages.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Locale information property

e TheCS_LOC_PROP property definesa CS L OCALE structure that
contains localization information for a context. Localization information
includes alanguage, character set, datetime, money, and numeric formats,
and a collating sequence.

« CS _LOC_PROP affects both CS-Library and Client-Library, because a
new connection picks up default localization information from its parent
context.

» If anapplication does not call cs_config to define localization information
for acontext, the context uses default | ocalization information that it picks
up from the operating system environment when it is allocated. If
localization information is not available in the operating system
environment, the context uses platform-specific default localization
values.

e Thecs loc_aloc routine allocatesa CS L OCALE structure.

CS-Library Message Callback property

e TheCS _MESSAGE_CB property consists of a pointer to auser-supplied
CS-Library message callback routine. The application uses this property
toinstall ahandler for error or informational messages from CS-Library.

e Thedefault valueis NULL, meaning that no handler is installed.

* Anapplication function can be installed as a handler for CS-Library
errors.

¢ Oncethehandler isinstalled, CS-Library calls the handler when an
error or exception occursin a CS-Library routine.

e For adescription and an example of codingaCS-Library error handler, see
“Defining a CS-Library message callback” on page 6.

¢ Thefollowing code fragment demonstrates how a handler functionis
installed for CS-Library errors:

/*

** Install the function cslib err handler as the

** handler for CS-Library errors.

*/

if (cs_config(context, CS_SET, CS_MESSAGE CB,
(CS_VOID *)cslib err handler,
CS_UNUSED, NULL)

I= CS_SUCCEED)

{

/* Release the context structure. */

Common Libraries Reference Manual 21

cs_config

22

(void) cs_ctx drop (context) ;

fprintf (stdout,
"Can't install CS-Lib error handler.\
Exiting.\n") ;

exit (1) ;

}

Client-Library applications that call CS-Library routines besides
cs_ctx_alloc and cs_ctx_drop heed dedicated CS-Library error handling.
Applicationsshould either install aCS-Library error handler or handle CS-
Library errorsinline with cs_diag.

Note CS-Library error messages are not sent to the Client-Library error
handler.

Callback error handlersfor Client-Library and CS-Library areinstalled
differently:

e Anapplication installs Client-Library callback routines by calling
ct_callback.

e Anapplication installsa CS-Library message callback routine by
calling cs_config to set the value of the CS_MESSAGE_CB property.

Aside from this difference, the CS-Library message callback is similar to
the Client-Library client message callback. For general information on
callback routines, see the “ Callbacks’ topics page in the Open Client
Client-Library/C Reference Manual.

Argument checking for CS-Library calls

The CS_NOAPI_CHK property determines whether or not CS-Library
validates function arguments when alibrary function is called.

If the value of CS_NOAPI_CHK isCS_FAL SE (the default), then CS-
Library checks arguments when API functions are called. Setting
CS_NOAPI_CHK to CS_TRUE disables API checking.

For argument checking, CS-Library validates the parameters passed with
each function call. Pointers to CS-Library hidden structures such as
CS_LOCALE are checked. Field valuesin structures are al so checked for
illegal combinations. If CS-Library finds invalid arguments and AP
checkingisenabled, CS-Library generateserror messages and thefunction
fails. These messages can be trapped and displayed with a CS-Library
callback error handler.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e If thevaueof CS NOAPI_CHK isCS TRUE, arguments are not
validated before they are used. If the application passesinvalid arguments
to CS-Library, the application will not work right, resulting in memory
corruption, memory access violations (UNIX “core dumps’), or incorrect
results. No error messages are generated to warn the application of the
condition. Do not disable API argument checking until the application has
been completely debugged with API checking enabled.

Warning! Do not set CS_NOAPI_CHK to CS_TRUE unless your
application has been completely debugged with the default setting
(CS FALSE).

User-allocated data property

« TheCS_USERDATA property defines user-allocated data. This property
alows an application to associate user data with a particular context
structure.

e CS-Library copiesthe user datainto internal data space. An application
can then call cs_config at alater timeto retrieve the data.

e If you do not include astring’s null terminator when calculating itslength
during the input stage, acall to cs_config (CS_GET) will return only the
string (minusits null terminator). For example, if you input a2-byte string
with anull terminator, and specify the string’s length as 2 bytes, cs_config
(CS_GET) will return only the string. If, on the other hand, you input a 2-
byte string with anull terminator and specify the string’slength as 3 bytes,
cs_config (CS_GET) will return the string and its null terminator.

e Although Client-Library also hasaCS_USERDATA property, the Client-
Library CS_USERDATA isset only at the connection and command
levels.

Sybase home property

« TheCS _SYBASE HOME property specifies the name and path to an
aternate Sybase home directory and overrides the environment variable
$SYBASE (%SYBASEY for Windows).

e« CS _SYBASE HOME must be set before allocating a CS-Library context
because the all ocation of acontext requiresavalid Sybase home directory
fromwhich it will be set up. Thismeansthat CS_ SYBASE HOME must
be set before calling cs_ctx_alloc() or cs_ctx_global(). cs_config() must be
invoked withaNULL context to set CS_ SYBASE _HOME. For example:

ret = cs_config(NULL, CS_SET, CS SYBASE HOME,
"/work/NewSybase", CS NULLTERM, NULL) ;

Common Libraries Reference Manual 23

cs_config

See also

24

You can aso use the -y option of theisgl and bcp utilities to specify an
aternate Sybase home directory.

libtcl.cfg file property

e TheCS _LIBTCL_CFG property specifies the name and path to an
alternate libtcl.cfg file. Asin the CS_SYBASE_HOME property,
CS LIBTCL_CFG isset by cs_config() using aNULL context and must
be set before a CS-Library context is allocated. For example:

ret = cs_config(NULL, CS_SET, CS_LIBTCL CFG,
"/work/Sybase/0CS-15_5/config/libtcl.cfg",
CS_NULLTERM, NULL) ;

Default interfaces file property

e TheCS DEFAULT_IFILE property specifies the name of an alternate
interfacesfile and its path. Unlike the CT-Library property CS_IFILE,
CS DEFAULT_IFILE does not override the use of alternate directory
servicesthat have already been specified in thelibtcl.cfg file. The primary
purpose of CS_ DEFAULT _IFILE isto set a new default location for the
interfacesfile, in case the interfacesfile is being used as the directory
service.

¢ A CS-Library context must be allocated before calling cs_config() and it
must be passed in cs_config() while setting the CS_ DEFAULT _IFILE
property. For example:

ret = cs_config(ctx, CS_SET, CS_DEFAULT IFILE,
"/work/NewSybase/interfaces", CS_NULLTERM, NULL);

Version level property

¢ TheCS VERSION property represents the version of CS-Library
behavior that an application has requested using cs_ctx_alloc.

e Anapplication can only retrieve the value of CS_VERSION.
e Possiblevaluesfor CS_VERSION include the following:

e CS VERSION_100 indicates version 10.0 behavior

e CS VERSION_110indicates version 11.1 behavior

e CS VERSION_120 indicates version 12.0 behavior

e CS VERSION_125 indicates version 12.5 behavior

e CS VERSION_150 indicates version 15.0 behavior.

e CS VERSION_155 indicates version 15.5 behavior.

cs _ctx_alloc, ct_con_props, ct_config, ct_init

Open Client and Open Server

CHAPTER 2 CS-Library Routines

cs_conv_mult

Description

Syntax

Parameters

Return value

Examples

#defin
{ 1€ (

{

Common Lib

Retrieves the conversion multiplier for converting character data from one
character set to another.

CS_RETCODE cs_conv_mult(context,
srcloc,
destloc,
conv_multiplier)
CS_CONTEXT *context;
CS_LOCALE *srcloc;
CS_LOCALE *destloc;
CS_INT *conv_multiplier;
context
A pointer to aCS_CONTEXT structure.

srcloc
A pointer to the CS_LOCALE structure that describesthe source variable’s
character set. This parameter cannot be NULL.

destloc
A pointer to the CS_LOCALE structure that describes the destination
variabl€'s character set. This parameter cannot be NULL.

conv_multiplier
A pointer to aCS_INT variable. cs_conv_mult retrieves the conversion
multiplier for conversions from the character set indicated by srcloc to the
character set indicated by destloc and places it into * conv_multiplier.

cs_conv_mult returns the following values:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

The most common reason for acs_conv_mult failureis an invalid parameter.

The following code fragment retrieves the conversion multiplier for
conversions from theiso_1 character set to the eucjis character set:

e EXIT ON_FAIL(context, ret, msg) \

ret != CS_SUCCEED) \

\

fprintf (stdout, "Fatal error(%1d): %s\n", (long)ret,msg); \
if (context != (CS_CONTEXT *)NULL) \

{ (CS_VOID)ct exit (context, CS_FORCE_EXIT); \
(CS_VOID)cs ctx _drop(context); } \
exit (-1); \

raries Reference Manual 25

cs_conv_mult

I

** usa locale uses the iso_1 character set.
*/
ret = cs_loc_alloc(context, &usa locale) ;
EXIT ON FAIL(context, ret, "cs loc alloc(usa) failed.");
ret = cs_locale(context, CS _SET, usa locale,
CS_SYB CHARSET, "iso 1", CS NULLTERM, NULL) ;
EXIT ON_FAIL(context, ret, "cs_locale(usa, CHARSET) failed.");

/*

** japan_ locale uses eucjis.

*/

ret = cs_loc_alloc(context, &japan locale);

EXIT ON FAIL(context, ret, "cs loc alloc(japan) failed.");

ret = cs_locale(context, CS_SET, japan locale,
CS_SYB CHARSET, "eucjis", CS_NULLTERM, NULL);
EXIT ON_FAIL(context, ret, "cs_locale(japan, CHARSET) failed.");

/*

** Get the conversion multiplier for iso 1 to eucjis conversions.
*/

ret = cs_conv_mult (context,

usa_locale, japan_locale, &conv_mult) ;
EXIT ON_FAIL(context, ret, "cs_conv_mult (usa, japan) failed.");

fprintf (stdout,
"Conversion multiplier for iso 1 to eucjis is %1d.\n",
(long) conv_mult) ;

Usage e c¢s_conv_mult retrieves the conversion multiplier for converting character

26

data from one character set to another.

e Theconversion multiplier allowsan application to size the destination data
space for conversion of character datainto adifferent character set.

¢ When converted to another character set, character strings can grow or
shrink in length, and applications need to make sure that the destination
data space is large enough for the result. With a multi-byte character set
destination, 1-byte in the source can convert to several bytesin the
destination.

¢ Inconvertible characters are substituted with single-byte “?’, 2-byte “??’
or 3-byte “Oxefbfbd” characters.

e A conversion multiplier equals the largest number of bytesin the
destination that can replace 1 source byte.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

CS_convert

Description

Syntax

Parameters

« When converting a character string to a different character set, the

application uses the conversion multiplier to size the destination data
space, asfollows:

bytes needed = conv_mult
* srclen
* CS_SIZEOF (CS_BYTE)
+ NTB

where:

* bytes needed isthe necessary length, in bytes, of the destination data
space.

e conv_mult isthe conversion multiplier value.
e srclenisthelength, in bytes, of the source string.
e« NTBislif null termination is requested and O otherwise.

e Seethe
Open Client and Open Server International Developers Guide.

cs _convert, cs locale, cs_ manage _convert

Convertsadatavalue from one datatype, locale, or format to another datatype,
locale, or format.

CS_RETCODE cs_convert(context, srcfmt, srcdata,
destfmt, destdata, resultlen)

CS_CONTEXT *context;
CS_DATAFMT *srcfmt;
CS_VOoID *srcdata;
CS_DATAFMT *destfmt;
CS_VOoID *destdata;
CS_INT *resultlen;
context

A pointer toaCS_CONTEXT structure.

Common Libraries Reference Manual 27

cs_convert

srcfmt
A pointer toaCS_DATAFMT structure describing the source data format.
Thefieldsin *srcfmt are used as follows:

Field name Set it to

datatype A type constant representing the type of the source data
(CS_CHAR_TYPE, CS BINARY_TYPE, and so on).

maxiength The length of the datain the * srcdata buffer. Thisvalueis
ignored for fixed-length datatypes or if srcdata is NULL.

locale A pointer to aCS_LOCALE structure containing localization
values for the source data, or NULL to use localization values
from *context.

All other fields are ignored.

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topicspageinthe Open Client Client-Library/C
Reference Manual.

srcdata
A pointer to the sourcedata. Toindicate that the source datarepresentsanull
value, passsrcdataasNULL. If sredataisNULL, cs_convert placesthe null
substitution value for the datatype indicated by destfmt—>datatype in
* destdata.

Table 2-17 on page 88 lists the default null substitution value for each
datatype. An application can define custom null substitution values by
caling cs_setnull.

destfmt
A pointer to aCS_DATAFMT structure describing the destination data
format. Table 2-2 lists the fields in *destfnt that are used.

28 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-2: CS_DATAFMT fields for cs_convert’'s *destfmt parameter

Field Name

Setitto

datatype

A type constant representing the desired destination datatype
(CS_CHAR_TYPE, CS BINARY_TYPE, and so on).

maxiength

The length of the destdata buffer.

locale

A pointer to aCS_LOCALE structure containing localization
values for the destination data, or NULL to use localization
values from * context.

format

A bit mask of the following symbols:

« For character and text destinations only, use
CS FMT_NULLTERM to null-terminate the data, or
CS_FMT_PADBLANK to pad to the full length of the
variable with spaces.

¢ For character, binary, text, and image destinations, use
CS_FMT_PADNULL to pad to thefull length of thevariable
with nulls.

« When converting from a character source to a character
destination, use CS FMT_SAFESTR to double any
occurrences of the single-quote character (') in the
destination. CS_FMT_SAFESTR can be combined with
CS FMT_NULLTERM, CS FMT_PADBLANK, or
CS FMT_PADNULL.

e For any type of destination, use CS_ FMT_UNUSED if no
format information is being provided.

scale

The scale used for the destination variable.

If the source data is the same type as the destination, scale can
be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for scale from the source data.

scale must be less than or equal to precision.

precision

The precision used for the destination variable.

If the source data is the same type as the destination, precision
can be set to CS_SRC_VALUE to indicate that the destination
should pick up its value for precision from the source data.

precision must be greater than or equal to scale.

All other fields are ignored.

For general information on the CS_DATAFMT structure, see the
“CS_DATAFMT Structure” topics pageinthe Open Client Client-Library/C
Reference Manual.

destdata

A pointer to the destination buffer space.

Common Libraries Reference Manual

29

cs_convert

resultlen
A pointer to an integer variable. cs_convert sets *resultlen to the length, in
bytes, of the data placed in * destdata. If the conversion fails, cs_convert sets
*resultlen to CS_UNUSED.

resultlen is an optional parameter and can be passed as NULL.
Datatype Conversion Chart

Table 2-3 indicateswhich datatype conversionsare supported by cs_convert.
The source datatypes are listed in the leftmost column and the destination
datatypes are listed in the top row of the chart. “*” indicates that the
conversion is supported; a blank space indicates that the conversion is not

supported.
Table 2-3: Datatype conversion chart
>_
<2 | (Eeu e Z|E =
Z|< I <S5 |2 |28 <|<|2 o o
B2 | LBZEEIE S 28 alE e |wE e |2
<9 m Ol wiw| S SIS 2 Z1Z152/=0|0|W w3 -0 =
MR RN E R R R EEREEEERERE
. NS EINE R E R EREN SR EEEE R E R EEEE S
Open Client nlnlnlnlnlvlvlvlvlvlvlvlvlvlvlvlvlvlvlvlvlololololololololol e
datatypes O|O|0]|O|O|O]|O|O|O|0|0]0| 0|00 000|000 0|O|0|0]|0|0|0]|0|0|0|0
CS BINARY ol ool o|o|o|o|o|o|o|o|o|e|o|le|lelels oo o|ofe o of o .
CS_LONGBINARY ol oo oo |o|o|o|o|o|o|o|e|e|le|lels oo o|ofe o of o .
CS VARBINARY | o] o| el el el el el el el el el el el el el el] o o] of of o ool .
CS BIT
CS CHAR ol ool ool ool e|o|e|o|ele|ele|ele|ele|elelolel ols o of o .
CS LONGCHAR | o] o| ol ol el el el el el el el el el el el el el el el el el el el]+ o of o .
CS VARCHAR ol o] o| o o|o|o| o alo|o|ole|lo|elole|o|elele|olelels NINB .
CS DATETIME o el e|]> o el+]
CS_DATETIME4 AEEBREE SEBDE
CS TINYINT ol oo o|o|efe ol ol o|o|o|o|e|efe o of o o of o
CS SMALLINT ol o] o ool o|e ol o] o ool o] ele ool ool
CS INT ol o] o o o] o|e ol o] o ool o] ele ool ool
CS DECIMAL oo o|o|o|efe ol ol o|o|o|o|o|efe o of o o of o
CS NUMERIC ol oo o|o|efe ol ol o|o|o|o|e|efe o of o o of o
CS FLOAT ol o] o ool o|e ol o] o ool o] ele ool ool
CS REAL ol o] o ool o|e ol o] o e o|lo]|o|ele ool ool
CS_MONEY oo o|o|o|efe ol oo o|o|o|e|efe o of o o of o
CS_ MONEY4 oo o|o|o|efe ol oo o|o|o|o|efe o of o o of o
CS_BOUNDARY el T T

30 Open Client and Open Server

CHAPTER 2 CS-Library Routines

& >
> nd < > =
<\ wlw| = = z
Zi< %%zzhz 29 <<= o 3 |=E
x| Z OTIEIEIZA 2% |ZlGISEl |w/ S =2 (z]%
< Q@ |Foouwuwsd |5E <22 4352 kl00 w2 gL ok
213/% =532 552223 0/818 8105|212 < 2|25 2|5 5| 2
. 5_|<>‘50.:§ooﬁm§ozdo:§§mmn—§:o|:53533><|
Open Client n|nlnlun|nln|nlnlunnlnlnlnlulvlnl vl nlolvlulvolol ol vololvololo]volo
datatypes SIISISIISIIS SIS SIS SIS SIS SIS SIS IHSIHSKSI SIS IS IS I SIS S IXSI[SIS]XS)
CS SENSITIVITY o o| e of o
CS_TEXT L]
CS_IMAGE L]
CS_UNchAR o| o| 0| 0| 0| 06| 06| 0| 0| 0| o| 0| 0| o| | 0| ©| @ o| o| o| 0| o| o| o
CS_DATE . o| o| o| 0| @ . o| o
CS_T'ME L] L] L] L] L] L] L] L] L]
CS_BIGINT L]
CS_USMALLlNT o| o| 0| 0| o| 0| @ o| o| o| 0| 0| 0| 0| 0| @ o| o o . o| o
CS_UlNT o| o| 0| 0| o| o] @ o| 0| o| 0| 0| 0| | 0| @ o| o o o| o .
CS_UB'GINT L]
CS_UNITEXT L]
CS_XML o| o o o| o o o| o
Datetime Datatypes Conversion Chart
Table 2-4 indicates which datatype conversions are supported by cs_convert
for the datetime datatypes. The source datatypes are listed in the leftmost
column, and the destination datatypes are listed in the top row of the chart.
“o” indicates that the conversion is supported. A blank space indicates that
the conversion is not supported.
Table 2-4: Datetime datatype conversions
> L
<|x < owdE|l e &|E
Zig Il<|S|S|w, |z |28 <|<|2 x wlE
>|m|Z OlZIEIEIRIEIDl €lZ|| [>>I8E |w< =|=|%
T O|m Di(DOUJLug——' 2‘-“<1:—l"“‘-“Z(/)|_(_r)5m|_uz—‘-“
Szlx|_|<|Z|&|E|E 32| -|0|2|0|<| 2|21 2|2 /5|2 2 E ¥ 55 IE
_ o] 2> m|O] 2| >| 8|0 o] F| 0| £ 0| Z| k| x| S| S| a|n] | = D|A]F|m|a| 5
Open Client n|nlnln|nln|nlnlunlnlnl v nlunlvnlvlv]n| vl nlolvolulolnlolvololv
datatypes SIISIISISIISIISIS SIS SIS SISO IS IISIHS SIS IS IS S| SIS XS] TSNS}
CS_B'NARY e| 0| o| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0o | o o o| o 0| o .

CS_LONGBINARY

CS_VARBINARY

CS BIT

CS CHAR

Common Libraries Reference Manual 31

cs_convert

> AN}
EE:E %Q:LIJEE = EE
Z|I<g T3S\, |z |2€ <|<|2 o wle
z|@ 2 OIZ|ElE R 3l IEZl| [HncE &|wE =
Olm X Oolwlw|gls2 =Wl Z|o|-|lo w z|=
R R e e R R R R SRR
. | 2|S|@|0|2S|0|0|m|F| 0| 2|0 Z|T|x| S| S| a|n|F| 2| 3| 4|F|o|m) S
Open Client 0| u|n]v|n]n]v]v]v]v]v]v]v]v]v]v]v]v] v v o] V] v o] o] o] V] o]’
datatypes O|O|O|O|O|O[O]0]O]O]O]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]O
CS LONGCHAR ol o o| o o|o|o| ool ool elo|elo|ele|e|le|ele|ele|ele]e .
CS_VARCHAR ol ol o] o] oo o|o|ale]|o|e|ooale]|ole|oleloloale|olelelel |
CS DATETIME . o o 0| 0| of o o o 0| o .
CS DATETIME4 . o o o o of o o o of o o
CS BIGDATETIME . ol o o| o of e o o of o ol o
CS TINYINT
CS SMALLINT oo o|o|o|o|e oo o|o|o|o|o|lole o| o] o
CS INT ol o[el o o] o] ol ol el ol o] o] o] ele ol o]
CS_DECIMAL ol ol o] o] o] o] ool o] ol el o] ole]s ool
CS_NUMERIC ool o] o] o] o] ool o] ol el o]ele]s ool
CS_FLOAT o/ o| o| o 0| 0| @ o o| o| 0| o| 0| 0| | @ o o @
CS REAL ol o] o] o o] o|e ol ol o] oo o] o] ele NN
CS MONEY
CS MONEY4
CS BOUNDARY o of o . .
CS SENSITIVITY K T
CS TEXT elololololololololololololololololololelelelelelelel |-
CS_IMAGE ol oo ol el o]o|oole]|o|e|olole]|ele]sle ool o] o] .
CS UNICHAR o o|o|o|o| o|e|o|e|o|le|o|e|o|lelelel ole o ol e|o|e| |e
CS DATE T e e ool T
CS TIME % N Y 0 IS R 8 B e
CS BIGINT .
CS BIGTIME o o o o 0| of o o o o ol o
CS UNITEXT o o|o|o|o| o|e|o|e|o|lea|o|e|o|lelelel ole o ol o] o|e|o|lels

32 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Conversion between CS_BIGDATETIME and CS BIGTIME and the
following datatypes is not supported:

. CSBLOB
« CSLONG

« CS UBIGINT
« CSUINT

« CS_USHORT
« CS_USMALLINT
« CS XML

All conversionsto and from CS_BIGDATETIME and CS _BIGTIME are
handled in the same way as existing datetime and time conversions.

Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

A common reason for acs_convert failure is that CS-Library does not support
the requested conversion.

cs_convert conversion errors generate CS-Library error messages. See “Error
handling” on page 4.

Usage .

To determine whether a particular conversion is permitted, use
cs_will_convert.

In Client-Library applications, ct_bind sets up automatic, implicit data
conversion, which makes it unnecessary for an application to explicitly
convert result datathat is bound to program variables.

An application can install custom conversion routines by calling
cs_set_convert. Once a custom routine for a particular type of conversion
isinstalled, cs_convert or ct_bind call the custom routine whenever a
conversion of that typeis required.

cs_convert can convert between standard and user-defined datatypes. To
enable these types of conversions, an application must install the
appropriate custom conversion routines using cs_set_convert.

Seethe“ Types’ topics page in the Open Client Client-Library/C

Reference Manual. For information about Adaptive Server Enterprise
datatypes, see the Adaptive Server Enterprise Reference Manual.

Common Libraries Reference Manual 33

cs_convert

34

About specific conversions

A conversion to or from binary and image datatypes is a straight byte-
copy, except when the conversion involves character or text data. When
converting character or text data to binary or image, cs_convert interprets
the character or text string as hexadecimal, whether or not the string
contains aleading “0x.” There must be a match in the lengths of binary
data and fixed length data. If the data lengths do not match, there will be
underflow or overflow.

Converting amoney, character, or text valueto float can result in aloss of
precision. Converting afloat value to character or text can also resultin a
loss of precision.

Any length mismatch in the conversion to and from binary and image
datatypes cause error underflow or overflow. This may happen, for
example, if you are converting 1-byte binary datato integer data. Use
datatype CS_TINYINT (1-byte integer) to avoid an error.

Converting a float value to money can result in overflow, because the
maximum CS_MONEY value is $922,337,203,685,477.5807, and the
maximum CS_MONEY 4 value is $214,748.3648.

If overflow occurs when converting integer or float datato character or
text, thefirst character of the resulting value will contain an asterisk (*) to
indicate the error.

A conversion to bit has the following effect: If the value being converted
isnot 0, the bit valueis set to 1; if thevalueis 0, the bit value is set to 0.

When converting decimal or numeric datato decimal or numeric data,
CS_SRC_VALUE can be used in destfmt—>scal e and destfmt—>precision
to indicate that the destination data should have the same scale and
precision as the source. CS_SRC_VALUE isvalid only when the source
datais decimal or numeric.

Note Open Client and Open Server 15.0 and later support the unichar datatype.
For information about this datatype, see Chapter 3, “Using Open Client and
Open Server Datatypes’, in the Open Client Client-Library/C Programmers
Guide.

Converting between character sets

cs_convert performs character set conversion when:

e srctype and desttype both represent character-based types, and

Open Client and Open Server

CHAPTER 2 CS-Library Routines

e srcfmt—>locale specifies a different character set than
destfmt—>locale.

The character-based typesare CS_CHAR, CS_ LONGCHAR, CS_TEXT,
CS_UNITEXT, CS VARCHAR or CS_XML.

* You can program an application to perform character-set conversion by
following these steps:

a Cadl cs loc_aloctwiceto alocate two CS_LOCALE structures,
src_locale and dest_locale, which will be configured to describe the
locale of the source data and destination data, respectively.

b Configure the character set associated with src_locale by calling
cs _locale. The call can specify either alocale name or acharacter set
name.

To use acharacter set name, pass action as CS_SET, type as
CS_SYB_CHARSET, and buffer as the name of the character set.
Repeat to configure the character set for dest_locale.

To use alocale name, pass action as CS_SET, type as
CS_LC_CTYPE, and buffer as alocale name (the character set
associated with thelocale name will be used). Repeat to configure the
character set for dest_locale.

¢ (Optiona) Call cs_conv_mult to get the conversion multiplier for
conversions between src_locale’s character set and dest_locale’'s
character set. The conversion multiplier can be used to determine
whether the result can possibly overflow the destination space.

d Configurethe CS_DATAFMT structures to describe the datatype,
length, and format of the source and destination data. Set the locale
field inthe source CS_DATAFMT structureto src_locale, and set the
locaefieldinthedestination CS_DATAFMT structureto dest_locale.

e Cadll cs_convert to perform the conversion. This step can be repeated
as many times as necessary, using the configured CS_LOCALE and
CS_DATAFMT structures.

f Cal cs_loc_drop to deallocate each of src_locale and dest_locale
when they are no longer needed.

See also cs_conv_mult, cs_manage_convert, cs_set_convert, cs_setnull,
cs_will_convert

Common Libraries Reference Manual 35

cs_ctx_alloc

cs_ctx_alloc

Description

Syntax

Parameters

36

AllocatesaCS _CONTEXT structure.
CS_RETCODE cs_ctx_alloc(version, ctx_pointer)

CS_INT
CS_CONTEXT

version

version;
**ctx_pointer;

One of the following symbolic values, to indicate the intended version of
CS-Library behavior:

Value of version
CS_VERSION_100

Indicates
10.0 behavior

Features supported
Initial version.

CS_VERSION_110

11.1 behavior

Unicode character set support.

Use of external configuration
filesto control Client-Library
property settings.

CS_VERSION_120

12.0 behavior

All above features.

CS VERSION_125

12.5 behavior

unichar support, wide data and
columns, SSL.

CS_VERSION_150

15.0 behavior

BCP partitions, BCP computed
columns, large identifiers,
Unilib®, Adaptive Server
Enterprise default packet size,
scrollable cursors, and clusters
support. Also, support for
unitext, xml, bigint, usmallint,
uint, and ubigint datatypes. Note
the Sybase library name change.

CS VERSION_155

15.5 behavior

CS _BIGDATETIME and
CS_BIGTIME datatypes and
microsecond granularity for
time data, ct_send_data
enhancement, Open Server
dynamic listeners, Open Client
CS RES_
NOXNLMETADATA response
capability,
FIPS-140-2-compliant
password encryption.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

ctx_pointer
The address of a pointer variable. cs_ctx_alloc Sets * ctx_pointer to the
address of anewly allocated CS_CONTEXT structure.

In case of error, cs_ctx_alloc sets * ctx_pointer to NULL.

cs_ctx_alloc returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS MEM_ERROR The routine failed becauseit could not allocate sufficient
memory.

CS FAIL Theroutine failed for other reasons.

The most common reason for acs_ctx_alloc failure is a misconfigured system
environment. cs_ctx_alloc must read the locales file that specifies the default
localization values for the allocated context. If CS-Library cannot find the
localesfileor if the localesfile is misconfigured, cs_ctx_alloc fails.

Note When cs_ctx_alloc returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err file that is created in the
current working directory.

Onmost systems, the SY BA SE environment variable or logical name specifies
the location of the localesfile. The Open Client and Open Server
Configuration Guide for Microsoft Windows or Open Client and Open Server
Configuration Guide for UNIX describes the environmental configuration
required for CS-Library localization values.

Other common reasons for acs_ctx_alloc failure include:
e Memory isinsufficient.
* Locdlization files are missing.

» Thevalue of the LANG environment variable does not match an entry in
the localesfile.

Note On platformsthat have a standard error device, cs_ctx_alloc prints U.S.
English error messages to the standard error device when CS-Library cannot
findthelocalesfile. For Windowsand other platformsthat lack astandard error
device, U.S. English error messages are written to atext file called sybinit.err
in the application’s working directory.

Common Libraries Reference Manual 37

cs_ctx_alloc

Examples

/*

** ex init ()

*/
CS_RETCODE CS_PUBLIC
ex init (context)

CS_CONTEXT* *context;
{
CS_RETCODE retcode;
CS_INT netio_type = CS_SYNC IO;

/* Get a context handle to use */
retcode = cs_ctx alloc(CS _VERSION 125, context);
if (retcode != CS_SUCCEED)

ex error ("ex init: cs_ctx alloc() failed");
return retcode;

}

/* Initialize Open Client */
...CODE DELETED.....

/* Install client and server message handlers */
...CODE DELETED.....

if (retcode != CS_SUCCEED)

{

ct_exit (*context, CS_FORCE_EXIT) ;
cs_ctx drop (*context) ;
*context = NULL;

}

return retcode;

Usage ¢ A CS CONTEXT structure, also called a“ context structure,” contains
information that describes an application context. For example, a context
structure contains default localization information and definesthe version
of CS-Library that isin use.

¢ Allocating a context structure is the first step in any Client-Library or
Server-Library application.

e Afteralocatinga CS_CONTEXT structure, a Client-Library application
typically customizes the context by calling cs_config and/or ct_config to
create one or more connections within the context. A Server-Library
application can customize a context by calling cs_config and srv_props.

38 Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

CcS_ctx_drop
Description

Syntax

Parameters

Return value

Examples
/ *

To dedllocate a context structure, an application can call cs_ctx_drop.

cs_ctx_global also allocates a context structure. The difference between
cs_ctx_alloc and cs_ctx_global isthat cs_ctx_alloc allocates anew context
structure eachtimeitiscalled, whilecs_ctx_global allocates anew context
structure only once, the first timeit is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

To alow the use of sigwait in signal handling for multithreaded
applications, both cs_ctx_alloc and cs_ctx_global will block signals the
first time they are executed for a multi-threaded application. All these
signalsare blocked except for one dedicated thread, whichis controlled by
the Open Client/Open Server libraries. Thisthread will block the signal
when a corresponding signal handler isinstalled using the ct_callback or
srv_signal routines. A separate thread is subsequently spawned to invoke
sigwait for this signal and to execute the appropriate user-provided signal
handler function when the signal is received. For information on how to
override this behavior and allow your application to handle thread signals
itself, see the Chapter 2, “ Client-Library Topics* in the Open Client
Client-Library/C Reference Manual.

ct_con_alloc, ct_config, cs_ctx_drop, ¢cs_ctx_global, cs_config

Dedllocatesa CS_CONTEXT structure.
CS_RETCODE cs_ctx_drop(context)

CS_CONTEXT *context;

context
A pointer to aCS_CONTEXT structure.

cs_cxt_drop returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

cs_ctx_drop returns CS_FAIL if the context contains an open connection.

Common Libraries Reference Manual

39

cs_ctx_drop

Usage

40

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

ex ctx_cleanup ()

Parameters:
context Pointer to context structure.
status Status of last interaction with Client-

Library. If not ok, this routine will perform
a force exit.

Returns:
Result of function calls from Client-Library.

*/

cs_
ex
cs_
cs_

{

RETCODE CS_PUBLIC

ctx cleanup (context, status)
CONTEXT *context;
RETCODE status;

CS_RETCODE retcode;

CS_INT exit_option;

exit option = (status != CS SUCCEED) ? CS FORCE_EXIT
CS_UNUSED;

retcode = ct_exit (context, exit option);

if (retcode != CS_SUCCEED)

{
ex error ("ex ctx cleanup: ct_exit() failed");
return retcode;

}

retcode = cs_ctx drop(context) ;

if (retcode != CS_SUCCEED)

{
ex error ("ex ctx cleanup: cs_ctx drop() failed");
return retcode;

}

return retcode;

e A CS_CONTEXT structure describes a particular context, or operating
environment, for a set of server connections.

e OnceaCS _CONTEXT has been deallocated, it cannot be used again. To
allocateanew CS_CONTEXT, an application can call cs_ctx_alloc.

Note Sybase supports only one context handler per application program.

e A Client-Library application cannot call cs_ctx_drop to deallocate a
CS_CONTEXT structure until it has called ct_exit to clean up Client-
Library space associated with the context.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also cs_ctx_alloc, ct_close, ct_exit

cs_ctx_global

Description Allocates or returnsa CS_CONTEXT structure.
Syntax CS_RETCODE cs_ctx_global(version, ctx_pointer)
CS_INT version;

CS_CONTEXT **ctx_pointer;

Common Libraries Reference Manual 41

cs_ctx_global

Parameters version
One of the following symbolic values, to indicate the intended version of
CS-Library behavior:

Value of version Indicates Features supported
CS_VERSION_100 10.0 behavior Initial version.
CS VERSION_110 11.1 behavior Unicode character set support.

Use of external configuration
filesto control Client-Library
property settings.

CS VERSION_120 12.0 behavior All above features.

CS VERSION_125 12.5 behavior unichar support, wide data and
columns, SSL.

CS_VERSION_150 15.0 behavior BCP partitions, BCP computed

columns, large identifiers,
Unilib, Adaptive Server
Enterprise default packet size,
scrollable cursors, and clusters
support. Also support for
unitext, xml, bigint, usmallint,
uint, and ubigint datatypes. Note
Sybase library name change.

CS_VERSION_155 15.5 behavior CS BIGDATETIME and
CS_BIGTIME datatypes and
microsecond granularity for
time data, ct_send_data
enhancement, Open Server
dynamic listeners, Open Client
CS RES_
NOXNLMETADATA response
capability,
FIPS-140-2-compliant
password encryption.

If an application has aready allocated a CS_CONTEXT structure, version
must match the version previously requested.

Cctx_pointer
The address of apointer variable. cs_ctx_global sets *ctx_pointer to the
address of anew or previously alocated CS_ CONTEXT structure.

In case of error, cs_ctx_global sets*ctx_pointer to NULL.

Return value cs_ctx_global returns:

42 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Usage

See also

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS MEM_ERROR The routine failed because it could not allocate sufficient
memory.

CS FAIL Theroutine failed for other reasons.

Common reasons for acs_ctx_global failure include:

A lack of available memory

A version value that does not match a previously requested version

Note When cs_ctx_global returns CS_FAIL an extended error message is sent
to standard error (SDTERR) and to the sybinit.err file that is created in the
current working directory.

Thefirst cs_ctx_global call to execute in an application can fail due to
configuration problems. See “Returns’ under cs_ctx_alloc in this chapter.

cs_ctx_alloc also allocatesacontext structure. Theonly difference between
cs_ctx_alloc and cs_ctx_global isthat cs_ctx_alloc allocates anew context
structure eachtimeitiscalled, whilecs_ctx_global allocates anew context
structure only once, thefirst timeit is called. On subsequent calls,
cs_ctx_global simply returns a pointer to the existing context structure.

cs_ctx_global is of usein applications that need to access a single context
structure from multiple independent modul es.

To alow the use of sigwait in signal handling for multithreaded
applications, both cs_ctx_alloc and cs_ctx_global will block signals the
first time they are executed for a multi-threaded application. All these
signalsare blocked except for one dedicated thread, which is controlled by
the Open Client/Open Server libraries. Thisthread will block the signal
when a corresponding signal handler isinstalled using the ct_callback or
srv_signal routines. A separate thread is subsequently spawned to invoke
sigwait for this signal and to execute the appropriate user-provided signal
handler function when the signal is received. For information on how to
override this behavior and allow your application to handle thread signals
itself, see the Chapter 2, “Client-Library Topics* in the Open Client
Client-Library/C Reference Manual.

See cs_ctx_alloc in this chapter.

cs _ctx_alloc, cs_ctx_drop, cs_config, ct_con_alloc, ct_config

Common Libraries Reference Manual 43

cs_diag

cs_diag
Description

Syntax

Parameters

Return value

44

Manages inline error handling.

CS_RETCODE cs_diag(context, operation, type, index,

buffer)
CS_CONTEXT *context;
CS_INT operation;
CS_INT type;
CS_INT index;
CS_VOID *buffer;
context

A pointer to aCS_CONTEXT structure.

operation
The operation to perform. Table 2-5 on page 45 lists the legal symbolic
values for operation.

type
Depending on the value of operation, type indicates either the type of
structure to receive message information or the type of message on which to
operate, or both.

Possible values are:

Value of type Indicates

SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is along integer.
SQLSTATE_TYPE A SQLSTATE structure, which is a 6-element

character array.

CS CLIENTMSG _TYPE | A CS_CLIENTMSG structure. Also used to indicate
CS-Library messages.

index
Theindex of the message of interest. The first message has an index of 1,
the second an index of 2, and so forth.

buffer
A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a
CS INT.

cs_diag returns:

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.

CS_NOMSG The application attempted to retrieve a message whose

index is higher than the highest valid index. For example,
the application attempted to retrieve message number 3 but
only 2 messages were available.

Common reasons for acs_diag failure include:

Invalid context

Inability to allocate memory

Invalid parameter combination

Table 2-5: Summary of cs_diag parameter usage

Value of

operation cs_diag typeis index is buffer is

CS INIT Initializesinline | CS_UNUSED CS UNUSED | NULL
error handling.

CS MSGLIMIT | Setsthe CS CLIENTMSG_ CS UNUSED | A pointer to
maximum TYPE an integer
number of value.
messages to
store.

CS CLEAR Clearsmessage | One of thelegd type CS_UNUSED | Apointertoa
information for | values. structure
this context. whosetypeis
If buffer isnot defined by
NULL, cs_diag type, or
also clearsthe NULL.
*buffer structure
by initializing it
with blanks
and/or NULLSs,
as appropriate.

CS GET Retrieves a One of the legal type The one-based | A pointertoa
specific values. index of the structure
message. message to whosetypeis

retrieve. defined by
type.
45

Common Libraries Reference Manual

cs_diag

46

Value of

operation cs_diag typeis index is buffer is

CS_STATUS Returns the CS CLIENTMSG_ CS_UNUSED | A pointer to
current number | TYPE an integer
of stored value.
messages.

An application that includes callsto CS-Library can handle CS-Library
messages in one of two ways:

e Theapplication can call cs_config toinstall a CS-Library message
callback, or

e Theapplication can handle CS-Library messagesinline, using
cs_diag.

An application can switch back and forth between the inline method and
the callback method:

e Installing a CS-Library message callback turns off inline message
handling. Any saved messages are discarded.

e Likewise, cs_diag(CS_INIT) “de-installs’ an application’s CS-
Library message callback. If the application has a message callback
installed when cs_diag(CS_INIT) is called, the application’s first
CS_GET call to cs_diag will retrieve awarning message to this effect.

If a CS-Library message callback is not installed and inline message
handling is not enabled, CS-Library discards message information.

cs_diag manages inline message handling for a specific context. If an
application has more than one context, it must make separate cs_diag calls
for each context.

In amultithreaded application, cs_diag reports only those messages that
pertain to CS-Library calls made by the thread which has called cs_diag.
See the “Multithreaded Programming” topics page in the Open Client
Client-Library/C Reference Manual.

cs_diag allows an application to retrieve message information into a
CS_CLIENTMSG structure or a SQLCA, SQLCODE, or SQLSTATE
structure. When retrieving messages, cs_diag assumesthat buffer pointsto
astructure of the type indicated by type.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE structure must set the CS-Library context property
CS_EXTRA_INFto CS TRUE. Thisis because the SQL structures
contain information that is not ordinarily returned by CS-Library’s error-
handling mechanism.

An application that is not using the SQL structures can also set
CS _EXTRA_INFto CS TRUE. Inthis case, the extrainformation is
returned as standard CS-Library messages.

e If cs_diag does not have sufficient internal storage space in which to save
anew message, it throws away al unread messages and stops saving
messages. The next timeit is called with operation asCS_GET, it returns
a special message to indicate the space problem.

After returning this message, cs_diag starts saving messages again.
Initializing inline error handling
* Toinitidizeinline error handling, an application calls cs_diag with
operation asCS_INIT.

* Generdly, if acontext will useinline error handling, the application
should call cs_diag to initialize inline error handling for the context
immediately after allocating it.

Clearing messages
* To clear message information for a context, an application calls cs_diag
with operation as CS_CLEAR.

e cs_diag assumes that buffer points to a structure whose datatype
corresponds to the value of type.

e cs_diag clearsthe * buffer structure by setting it to blanks and/or
NULLS, as appropriate.

e Messageinformation is not cleared until an application explicitly cals
cs_diag with operation as CS_CLEAR. Retrieving a message does not
remove it from the message queue.

Retrieving messages

* Toretrieve message information, an application calls cs_diag with
operationasCS_GET, type asthetype of structurein whichto retrieve the
message, index as the one-based index of the message of interest, and
*puffer as a structure of the appropriate type.

» cs_diag fillsin the *buffer structure with the message information.

Common Libraries Reference Manual 47

cs_dt_crack

See also

cs_dt _crack

Description

Syntax

Parameters

48

e If an application attemptsto retrieve amessage whose index is higher than
the highest valid index, cs_diag returns CS_NOM SG to indicate that no
message is available.

e Seethe“SQLCA Structure,” “SQLCODE Structures,” “SQLSTATE
structure,” and “CS_CLIENTMSG Structure” topics pages in the Open
Client Client-Library/C Reference Manual for information on these
structures.

Limiting messages

e If anapplication runs on platformswith limited memory, you may want to
limit the number of messages that CS-Library saves in that application.

e Tolimit the number of saved messages, an application calls cs_diag with
operation as CS MSGLIMIT and typeas CS_CLIENTMSG_TY PE.

¢ When amessage limit isreached, CS-Library discards any new messages.

e Anapplication cannot set a message limit that is less than the number of
messages currently saved.

e CS-Library’sdefault behavior isto save an unlimited number of messages.
An application can restore this default behavior by setting a message limit
of CS_ NO_LIMIT.

Retrieving the number of messages

¢ Toretrieve the number of current messages, an application callscs_diag
with operation asCS_STATUSand typeasthe CS_CLIENTMSG_TY PE.

ct_callback, ct_options

Converts a machine-readabl e datetime val ue into a user-accessible format.

CS_RETCODE cs_dt_crack(context, datetype, dateval,
daterec)

CS_CONTEXT *context;

CS_INT datetype;
CS_VOID *dateval,;
CS_DATEREC *daterec;
context

A pointer toaCS_CONTEXT structure.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

datetype

A symbolic value indicating the datatype of *dateval:

Value of datetype

Indicates

CS DATE_TYPE

CS DATE *dateval.

CS TIME_TYPE

CS _TIME *dateval

CS DATETIME_TYPE

A CS_DATETIME *dateval.

CS DATETIME4 TYPE

A CS DATETIME4 *dateval.

CS _BIGDATETIME_TYPE

CS_BIGDATETIME *dateval.

CS BIGTIME_TYPE

dateval

A pointer to the date, time, or datetime value to be converted.

Common Libraries Reference Manual

CS BIGTIME *dateval

49

cs_dt_crack

daterec
A pointer toaCS_DATEREC structure. cs_dt_crack fills this structure with
the trandlated date, time, or datetime value. A CS_DATEREC is defined as

follows:
typedef struct cs _daterec
CS_INT dateyear; /* year */
CS_INT datemonth; /* month */
CS_INT datedmonth; /* day of month */
CS_INT datedyear; /* day of year */
Cs_INT datedweek; /* day of week */
CS_INT datehour; /* hour */
CS_INT dateminute; /* minute */
CS_INT datesecond; /* second */
CS_INT datemsecond; /* millisecond */
CS_INT datetzone; /* timezone */
CS_INT datesecfrac; /* second fractions */
CS_INT datesecprec; /* precision */

} CS_DATEREC;
where;
e dateyear isavalue greater than or equal to 1900.
e datemonthisavaluefrom0to 11.
e datedmonth isavalue from 1 to 31.
e datedyear isavaluefrom 1 to 366.
e datedweek isavaluefrom O to 6.
e datehour isavalue from 0 to 23.
e dateminuteisavaluefrom O to 59.
e datesecond isavalue from O to 59.
» datemsecond is avalue from O to 999.
¢ datetzoneisreserved for future use. cs_dt_crack does not set thisfield.

e datesecfrac is the number of second fractions. Thisfield isused only
with datetime datatypes having alevel of precision greater than
milliseconds.

e datesecprecisthe precision. For CS BIGDATETIME and
CS BIGTIME, thisfield is always 10°. Thisfield is used only with
datetime datatypes having alevel of precision greater than
milliseconds.

50 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Usage

See also

The meanings of these numbers vary according to an application’s locale.
For example, if localization information specifiesthat Sunday isthefirst day
of the week, then a datedweek value of 2 represents Tuesday. If localization
information specifies that Monday isthe first day of the week, then a
datedweek value of 2 represents Wednesday.

An application can call cs_dt_info to find out what date-related localization
values arein effect.

Thetime zonefield (datetzone) isreserved for future use. Thisfield will not
be set.

See the “International Support” topics page in the Open Client Client-
Library/C Reference Manual.

cs_dt_crack returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for acs_dt_crack failureisan invalid parameter.

cs_dt_crack converts a date, time or datetime value into its integer
components and places those componentsinto aCS_DATEREC structure.

Datetime values are stored in an internal format. For example, a
CS_DATETIME value is stored as the number of days since January 1,
1900 plus the number of three hundredths of a second since midnight.
cs_dt_crack converts avalue of thistype into aformat that an application
can more easily access.

For datetime datatypes with aprecision level up to and including
milliseconds, second fractions are stored in the datemsecond field, and the
datesecfrac field is not used. For datetime datatypeswith aprecision level
of microseconds and higher, second fractions are stored in the datesecfrac
field, and the datemsecond field is not used. Applications that call the
cs_dt_crack routine must therefore determine where to find second
fractions based on the datetime datatypes that are being used.

cs dt_info

Common Libraries Reference Manual 51

cs_dt_info

cs_dt_info
Description

Syntax

Parameters

52

Sets or retrieves language-specific date, time, or datetime information.

CS_RETCODE cs_dt_info(context, action, locale, type,
item, buffer, buflen, outlen)

CS_CONTEXT *context;

CS_INT action;
CS_LOCALE *locale;
CS_INT type;
CS_INT item;
CS_VOID *pbuffer;
CS_INT buflen;
CS_INT *outlen;
context

A pointer to aCS_CONTEXT structure.

When retrieving date, time, or datetime information, if localeis NULL,
cs_dt_info uses the default locale information contained in this context
structure.

action
One of the following symbolic values:
Value of action cs_dt_info
CS SET Sets a date, time, or datetime conversion format.
CS GET Retrieves date, time or datetime information.
locale

A pointer toaCS_LOCALE structure. A locale structure contains locale
information, including datetime information.

When setting datetime information, locale must be supplied.

When retrieving datetime information, locale can be NULL. If localeis
NULL, cs_dt_info usesthe default locale information contained in * context.

type
Thetype of information of interest. Table 2-6 lists the symbolic values that
arelegal for type.

item
When retrieving information, itemis the item number of the type category
to retrieve. For example, to retrieve the name of the first month, an
application passestype asCS MONTH and itemas 0.

When setting a datetime conversion format, passitemas CS_UNUSED.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

buffer
If datetimeinformationisbeing retrieved, buffer pointsto the spaceinwhich
cs_dt_info will place the requested information.

If buflen indicates that * buffer is not large enough to hold the requested
information, cs_dt_info sets * outlen to the length of the requested
information and returns CS_FAIL.

If adatetime conversion format is being set, buffer pointsto a symbolic
value representing a conversion format.

buflen
The length, in bytes, of *buffer.

If itemis CS_12HOUR, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

cs_dt_info sets * outlen to the length, in bytes, of the requested information.

If the requested information is larger than buflen bytes, an application can
usethe value of * outlen to determine how many bytes are needed to hold the
information.

cs_dt_info returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for acs_dt_info failureisan invalid parameter.

Usage Table 2-6: Summary of cs_dt_info parameter usage
action can
Value of type cs_dt_info be item can be *puffer is
CS MONTH Retrievesthemonth | CS_GET 0-11 A character string.
name string.
CS SHORTMONTH | Retrievestheshort | CS GET 0-11 A character string.
month name string.
CS DAYNAME Retrieves the day CS GET 0-6 A character string.
name string.
CS_DATEORDER Retrievesthedate | CS_GET CS_UNUSED A string containing the three
order string. characters“m,” “d,” and “y”
to indicate the position of the
month, day, and year in the
datetime format.

Common Libraries Reference Manual 53

cs_dt_info

action can

Value of type cs_dt_info be item can be *buffer is

CS_12HOUR Retrieves whether CS GET CS_UNUSED CS_TRUEIf 12-hour formats
or not the language areused; CS FALSE if 24-
uses 12-hour time hour formats are used.
formats.

CS DT_CONVFMT | Setsorretrievesthe | CS_GET or CS_UNUSED A symbolic value. See the
datetimeconversion | CS SET Commentssection, below, for
format. alist of possible values.

e cs_dt_info setsor retrieves native language-specific datetime information:

e cs_dt_info can return native language date part names, date part
ordering information, datetime format information, and whether or
not the language uses 12-hour date formats.

e ¢s_dt_info can set datetime format information.

e IflocaleisNULL, cs_dt_info looksfor native languagelocaleinformation
in*context. An application can set locale information for a
CS_CONTEXT by calling cs_config with property as CS L OC_PROP.

If not specifically set, localeinformationin aCS_CONTEXT defaults to
information that CS-Library picks up from the operating system when the
context is alocated. If locale information is not available from the
operating system, CS-Library uses platform-specificlocalization valuesin
the new context.

¢ Alocae'sdate-order string, which can be retrieved by calling cs_dt_info
withtypeasCS_DATEORDER, describeshow ambiguous date stringsare
resolved when converting from character datatypesto CS_DATE,
CS DATETIME or CS_DATETIMEA. For example, “04/05/96" could be
interpreted as“April 5, 1996” or “May 4, 1996.” The former result
corresponds to the date-order string of “mdy”, and the latter corresponds
to “dmy.”

Although an application cannot set alocal€'s date-order string directly, it
can call cs_|ocale and change the national -language used when converting
dates. To do this, the application calls cs_locale with action asCS_SET,
typeas CS_LC_TIME, and *buffer asalocale name. The application can
specify alocale whose national language is configured to use a different
date-order string. A national language’s date-order string is configured as
follows:

e For each national language, acommon.locfileislocated in alanguage
subdirectory in the $SYBASE/l ocal es/messages subdirectory.

54 Open Client and Open Server

CHAPTER 2 CS-Library Routines

e The"“dateformat” setting in the [datetime] section of thefile specifies
the date-order string. For example:

[datetime]
dateformat=dmy

See the Open Client and Server Configuration Guide for Microsoft
Windows or Open Client and Server Configuration Guide for UNIX.

The date conversion format, which can be set or retrieved by calling
cs_dt_info withtypeas CS DT_CONVFMT, describes the format of the
resultwhenaCS DATE,CS TIME,CS DATETIME,CS DATETIMEA4,
CS BIGDATETIME or CS _BIGTIME valueis converted to a character-
based datatype.

Table 2-7 lists the values that are legal for * buffer when typeis
CS DT_CONVFMT inconversionsfromCS_CHARtoCS DATETIME,
CS DATE, or CS_TIME. This conversion format is also used to describe

results when a character string is converted to any of these datetime

datatypes.

Table 2-7: Values for *buffer when type is CS_DT_CONVFMT

(cs_dt_info)

CS_CHAR converted from
CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:

Symbolic value Aug 24 2009 5:36PM Aug 24 2009 5:36PM
CS DATES HM hh:mm hh:mm hh:mm

17:36 00:00 17:36
CS DATES HMA hh:mm[AM|PM] hh:mm hh:mm

5:36PM 12:00AM 5:36PM
CS DATES HMS hh:mm:ss hh:mm:ss hh:mm:ss

17:36:00 00:00:00 17:36:00
CS DATES HMS hh:mm:ss hh:mm:ss hh:mm:ss
ALT 17:36:32 00:00:00 17:36:32

CS DATES HMSZA

hh:mm:ss:zzz[AM|PM]
5:36:00:000PM

hh:mm:ss:zzz[AM|PM]
12:00:00:000AM

hh:mm:ss:zzz[AM|PM]
5:36:00:000PM

CS DATES HMSZ hh:mm:ss.zzz hh:mm:ss.zzz hh:mm:ss.zzz
17:36:00:000 00:00:00:000 17:36:00:000
CS DATES_LONG mon dd yyyy hh:mm:ss.zzz mon dd yyyy hh:mm:ssizzz [AM|PM]

[AM|PM]

Aug 24 2009
05:36:00:000PM

Common Libraries Reference Manual

Aug 24 2009

05:36:00:000PM

55

cs_dt_info

CS_CHAR converted from
CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:
Symbolic value Aug 24 2009 5:36PM Aug 24 2009 5:36PM
CS_DATES LONG_ | mon ddyyyy hh:mm:ss.zzz mon dd yyyy mon dd yyyy
ALT [AM|PM] hh:mm:ss.izzz [AM|PM] | hhimm:ssizzz [AM|PM]

Aug 24 2009
05:36:00:000PM

Aug 24 2009
12:00:00:000
AM

Jan 01 1900
05:36:00:000
PM

CS DATES mon dd yyyy hh:mm:ss mon dd yyyy hh:mm:ss
MDYHMS Aug 24 2009 17:36:00 Aug 24 2009 17:36:00
CS DATES_ mon dd yyyy hh:mm:ss mon dd yyyy hhimm:ss | mon dd yyyy hh:mm:ss
MDYHMS_ALT Aug 24 2009 17:36:00 Aug 24 2009 Jan 1 1900
00:00:00 17:36:00
CS DATES_SHORT mon dd yyyy hh:mm [AM|PM] | mon dd yyyy hh:mm [AM|PM]
Aug 24 2009 5:36PM Aug 24 2009 5:36PM
CS DATES SHORT_ | mon dd yyyy hhimm [AM|PM] | mon dd yyyy hh:mm mon dd yyyy hh:mm
ALT Aug 24 2009 5:36PM [AM|PM] [AM|PM]
Aug 24 2009 Jan 1 1900
12:00AM 5:36PM
CS DATES DMY1 dd/mm/yy dd/mmlyy
24/08/09 24/08/09
CS_DATES DMYL1.Y | dd/mm/yyyy dd/mmlyyyy
YYY 24/08/2009 24/08/2009
CS DATES DYM1 dd/yy/mm dd/yy/mm
24/09/08 24/09/08
CS DATES DYML_Y | ddyyyy/mm dd/yy/mm
YYy 24/2009/08 24/2009/08
CS DATES MDY1 mm/dd/yy mm/dd/yy
08/24/09 08/24/09
CS_DATES MDY1_Y | mm/ddlyyyy mm/ddlyyyy
YYY 08/24/2009 08/24/2009
CS DATES MYD1 mm/yy/dd mm/yy/dd
08/09/24 08/2009/24
CS_DATES MYDL1_Y | mm/yyyy/dd mm/yyyy/dd
YYY 08/2009/24 08/2009/24
CS DATES YDM1 yy/dd/mm yy/dd/mm
09/24/08 09/24/08

56

Open Client and Open Server

CHAPTER 2 CS-Library Routines

CS_CHAR converted from

CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:

Symbolic value Aug 24 2009 5:36PM Aug 24 2009 5:36PM
CS DATES YDML1_Y | yyyy/dd/mm yyyy/dd/mm
YYY 2009/24/08 2009/24/08
CS DATES YMD1 yy.mm.dd yy.mm.dd

09.08.24 09.08.24
CS DATES_YMDL1.Y | yyyy.mm.dd yyyy.mm.dd
YYy 2009.08.24 2009.08.24
CS DATES DMY?2 dd.mm.yy dd.mm.yy

24.08.09 24.08.09
CS_DATES DMY2_Y | dd.mm.yyyy dd.mm.yyyy
YYy 24.08.2009 24.08.2009
CS DATES MDY?2 mon dd, yy mon dd, yy

Aug 24,09 Aug 24,09
CS_DATES_MDY2_Y | mon dd, yyyy mon dd, yyyy
Yyy Aug 24,2009 Aug 24,2009
CS DATES YMD2 yy/mm/dd yy/mm/dd

09/08/24 09/08/24
CS DATES YMD2_Y | yyyy/mm/dd yyyy/mm/dd
YYY 2009/08/24 2009/08/24
CS DATES DMY3 dd-mm-yy dd-mm-yy

24-08-09 24-08-09
CS_DATES_DMY3.Y | dd-mm-yyyy dd-mm-yyyy
YYY 24-08-2009 24-08-2009
CS DATES MDY3 mm-dd-yy mm-dd-yy

08-24-09 08-24-09
CS_DATES_MDY3_Y | mm-dd-yyyy mm-dd-yyyy
YYy 08-24-2009 08-24-2009
CS DATES YMD3 yymmdd yymmdd

090824 090824
CS_DATES_YMD3_Y | yyyymmdd yyyymmdd
YYY 20090824 20090824
CS DATES YMDTH | yyyy-mm-ddThh:mm:ss yyyy-mm-dd hh:mm:ss
MS23 2009-08-24T17:36:00 2009-08-24 17:36:00
CS _DATES_DMY4 dd mon yy dd mon yy

24 Aug 09 24 Aug 09

Common Libraries Reference Manual

57

cs_dt_info

CS_CHAR converted from
CS_DATETIME, for

CS_CHAR converted
from CS_DATE, for

CS_CHAR converted
from CS_TIME, for

example: example: example:
Symbolic value Aug 24 2009 5:36PM Aug 24 2009 5:36PM
CS_DATES DMYA4_Y | dd mon yyyy dd mon yyyy

YYY

24 Aug 2009

24 Aug 2009

58

e Table 2-8 liststhe values that are legal for *buffer when typeis
CS DT_CONVFMT in conversions between CS_CHAR and
CS_BIGDATETIME and CS_BIGTIME:

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-8: Values for *buffer when type is CS_DT_CONVFMT

(cs_dt_info)

Symbolic value

CS_CHAR converted
from
CS_BIGDATETIME, for
example:

Aug 24 2009 5:36PM

CS_CHAR converted
from CS_BIGTIME, for
example:

5:36PM

CS DATES_ hh:mm:ss.zzzzzzlAM|PM] | hh:mm:ss.zzzz[AM|PM]
HMSUSA, or 5:36:00.000000PM 5:36:00.000000PM
CS DATES
HMSUSA_YYYY
CS DATES_ hh:mm:ss.zzzzzz hh:mm:ss.zzzzzz
HMSUS, or 17:36:00.000000 17:36:00.000000
CS DATES_
HMSUS YYYY
CS DATES mon dd yy mon dd yy
LONGUSA hh:mm:ss.zzzzzz AM|PM] | hh:mm:ss.zzzzzz[AM|PM]
Aug 24 09 Jan 1 01
5:36:00.000000PM 5:36:00.000000PM
CS DATES mon dd yyyy mon dd yyyy
LONGUSA_YYYY hh:mm:ss.zzzzzz[AM|PM] | hh:mm:ss.zzzzzz[AM|PM]
Aug 24 2009 Jan 1 0001
5:36:00.000000PM 5:36:00.000000PM
CS DATES mon dd yy mon dd yy
LONGUS hh:mm:ss.zzzzzz hh:mm:ss.zzzzzz
Aug 24 09 Jan 1 01
17:36:00.000000 17:36:00.000000
CS DATES _ mon dd yyyy mon dd yy
LONGUS YYYY hh:mm:ss.zzzzzz hh:mm:ss.zzzzzz
Aug 24 2009 Jan 0 0001
17:36:00.000000 17:36:00.000000
CS_DATES_ yyyy-mm-dd yyyy-mm-dd
YMDHMSUS YYYY | hh:mm:ss.zzzzzz hh:mm:ss.zzzzzz
2009-08-24 0001-01-01

17:36:00.000000

17:36:00.000000

A cs locale (CS _SET,CS LC TIME) call or acs locale (CS_SET,
CS LC_ALL) call resets date/time conversion information to the default
settings for the specified national language.

cs_dt_crack, cs locae

Common Libraries Reference Manual

59

cs_loc_alloc

cs_loc_alloc

Description

Syntax

Parameters

Return value

Usage

60

AllocatesaCS_LOCALE structure.
CS_RETCODE cs_loc_alloc(context, loc_pointer)

CS_CONTENT *context;
CS_LOCALE **|oc_pointer;

context
A pointer toaCS_CONTEXT structure.

loc_pointer
The address of a pointer variable. cs_loc_alloc sets *loc_pointer to the
address of anewly allocated CS_LOCALE structure.

cs_loc_alloc returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

The most common reason for acs_loc_alloc failureisalack of adequate
memory.

¢ AnOpen Client and Open Server application can useaCS LOCALE
structure to define custom localization values for a context, thread,
connection, or data element. To define custom localization values, an
application:

e Cadlscs_loc_alloc to alocateaCS_LOCALE structure.

e Cadlscs locale (CS_SET) to load the CS_LOCALE with custom
values.

e UsestheCS LOCALE to set the CS_LOC_PROP property for a
context or connection; calls srv_thread_props to set the

SRV_T_LOCALE property for athread; usesthe CS LOCALEina
CS _DATAFMT structure that describes a program variable; or uses
the CS_LOCALE as aparameter to an Open Client and Open Server
routine.

e Cadlscs_loc_drop to drop the CS_LOCALE.
Localization values define:

¢ Thelanguage and character set to use for Open Client and Open
Server and Adaptive Server Enterprise messages

e How to represent dates and times

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

cs_loc _drop
Description

Syntax

Parameters

Return value

Usage

e The character set to use when converting data to and from character
datatypes

« Thecollating sequence used to define the sort order used by
cs _stremp

cs _ctx_alloc, cs_loc_drop, cs_locale

Dedllocatesa CS_LOCALE structure.
CS_RETCODE cs_loc_drop(context, locale)

CS_CONTEXT *context;
CS_LOCALE *locale;

context
A pointer to the CS_CONTEXT structure that represents the context in
which the CS_LOCALE was allocated.

locale
A pointer to aCS_LOCALE structure.

cs_loc_drop returns:

Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

¢ A CS_LOCALE structure contains localization information.

¢ OnceaCS _LOCALE structure has been deall ocated, it cannot be used
again. To alocate anew CS_LOCALE structure, an application can call
cs_loc_alloc.

« An application should take care to ensure that it does not deallocate a
CS_LOCALE dtructure that is still inuse. A CS_LOCALE structureis
considered to bein useif aCS_DATAFMT structure referencesiit.

« Anapplication can deallocate a CS_LOCALE structure after calling
cs_config or ct_con_props to set the CS_LOC_PROP property for a
context or connection. Thisis because cs_config and ct_con_props copy
information from the user-supplied CS_LOCALE structure rather than
setting up direct referencesto it.

Common Libraries Reference Manual 61

cs_locale

See also cs loc_adloc, cs locae
cs_locale
Description LoadsaCS_LOCALE structure with localization values or retrieve the locale

name previously used to load a CS_LOCALE structure.

Syntax CS_RETCODE cs_locale(context, action, locale, type,
buffer, buflen, outlen)

CS_CONTEXT *context;

CS_INT action;

CS_LOCALE *locale;

CS_INT type;

CS_CHAR *puffer;

CS_INT buflen;

CS_INT *outlen;
Parameters context

A pointer to the CS_CONTEXT structure that represents the context in
which the CS_LOCALE was alocated.

action
One of the following symbolic values:

Value of action cs_locale
CS_SET Loadsthe CS_LOCALE with new localization values.
CS GET Retrieves the locale name that was used to load the
CS LOCALE.
locale

A pointer to aCS_LOCALE structure. If actionis CS_SET, cs_locale
modifies this structure. If action isCS_GET, cs_locale examines the
structure to determine the locale name that was previoudly used to load it.

62 Open Client and Open Server

CHAPTER 2 CS-Library Routines

type

One of the following symbolic values:

Value of type

Indicates

CS LC ALL

All types of localization information.

Note CS LC ALL is“setonly”; that is, action
must be CS_SET when typeisCS LC_ALL.

CS LC_COLLATE

The collating sequence (also called “sort order”).
Open Client uses a collating sequence when
sorting and comparing character data.

CS LC CTYPE

The character set. Open Client uses a character set
when it converts to or from character datatypes.

CS LC_MESSAGE

The language and character set to use for Open
Client and Open Server and Adaptive Server
Enterprise error messages.

CS LC_TIME

The language and character set to use when
converting between datetime and character
datatypes. CS_LC_TIME controls month names
and abbreviations, datepart ordering, and whether
the “am/pm” string is used.

CS SYB_LANG,

CS SYB_CHARSET,
CS_SYB_SORTORDER,

CS SYB_LANG_CHARSET

For information on these values, see “Using
language, character set, and sort order nameswith
cs _loca€’ on page 66.

Warning! Open Server application programmers must set type to
CS_LC_ALL when configuring the CS_LOCALE structure that appliesto the
Open Server application as awhole.

buffer

If actionis CS_SET, buffer pointsto acharacter string that represents a
locale name, a character set name, alanguage name, a sort order name, or a

language/character set pair.

If actionisCS_GET, buffer pointsto the space in which cs_locale will place
alocale name, acharacter set name, alanguage name, a sort order name, or
alanguage/character set pair. On output, al names are null-terminated. The
buffer must be long enough for the name plus a null terminator.

Common Libraries Reference Manual

63

cs_locale

Return value

Usage

64

buflen
The length, in bytes, of * buffer.

If actionis CS_SET and the value in *buffer is null-terminated, pass buflen
as CS_NULLTERM.

outlen
A pointer to an integer variable.

outlenisnot used if actionisCS_SET.

If action is CS_GET and outlen is supplied, cs_locale sets * outlen to the
length, in bytes, of the locale name.

If the name is larger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the name.

If actionis CS_SET or if an application does not require return length
information, it can pass outlen as NULL.

cs_locale returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Common reasons for acs_locale failure include:

e actionisCS _SET and the * buffer locale name cannot be found in the
Sybase locales file.

e actionisCS_GET and buflen indicates that the * buffer data space istoo
small.

¢ Missina localization files.

Note cs_locale’s behavior depends on platform-specific configuration issues.
You must read the localization chapter in the Open Client and Open Server
Configuration Guide for Microsoft Windows and Open Client and Open Server
Configuration Guide for UNIX to obtain a full understanding of Client-
Library’s localization mechanism. For a discussion of programming issues
related to localization, see the Open Client and Open Server International
Developers Guide.

¢ cs_locale(CS_SET) loadsa CS_LOCALE structure with localization
values. cs_locale(CS_GET) retrieves current settings from the
CS_LOCALE structure.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

A locale name is a character string that represents alanguage/ character

set/sort order combination. For example, the locale name “fr” might

represent the language/character set/sort order combination “French,

iso_1, binary.”

e Sybase predefines some locale names in the default localesfile.

e A System Administrator can define additional locale names and add
them to the Sybase |ocales file. The Open Client and Open Server
Configuration Guide for Microsoft Windows and Open Client and

Open Server Configuration Guide for UNIX containsinstructions for
adding locale names.

See the Open Client and Open Server International Developers Guide.

Loading a CS_LOCALE structure

An application needsto initialize, or “load,” aCS_LOCALE before using
it to define custom localization values for a context, connection, or data
element.

cs_locale(CS_SET) loadsa CS_LOCALE structure with localization
values. Any localization value can be specified by giving alocale name.
Character sets, languages, and sort orders can also be specified directly by
name.

When specifying alocale name, buffer must specify a name that
corresponds to an entry in the Sybase locales file.

buffer can also be passed as NULL to specify the default locale. In this
case, cs_locale searches the operating system for alocale name to use. If
an appropriate locale name cannot be found in the operating system
environment, cs_locale uses a platform-dependent default locale name.

The localization item(s) of interest are loaded based on the configuration
of the localesfile entry. See the Open Client and Open Server
Configuration Guide for your platform.

For instructions for directly specifying character set, language, or sort
order names, see “Using language, character set, and sort order names
with cs_locale” on page 66.

After loading a CS_L OCALE with custom values, an application can:

e Cdl cs_config with property asCS_LOC_PROP to copy the custom
localization values into a context structure.

e Cadl ct_con_props with property asCS_LOC_PROP to copy the
custom localization values into a connection structure.

Common Libraries Reference Manual 65

cs_locale

e Supply the CS_LOCALE as aparameter to a routine that accepts
custom localization values (cs_dt_info, cs_strcmp, cs_time).

¢ IncludetheCS LOCALEinaCS DATAFMT structure describing a
destination program variable (cs_convert, ct_bind).

Becausecs_config copieslocaleinformation, an application can deallocate
aCS_LOCALE structure after calling cs_config to set the

CS _LOC_PROP property. Likewise, an application can deallocate a
CS_LOCALE structure after calling ct_con_props to set the

CS _LOC_PROP property. If aCS _DATAFMT structure uses a
CS_LOCALE structure, however, the application must not deall ocate the
CS _LOCALE until the CS_DATAFMT no longer referencesiit.

Thefirst time alocale name isreferenced, all localization information for
thelanguage, character set, and sort order that thelocale nameidentifiesis
read from the environment and cached into * context. If thislocale nameis
referenced again, cs_locale readstheinformationfromthe CS_CONTEXT
instead of the environment.

Retrieving a locale name

An application can retrieve the locale name that was used to load a
CS LOCALE by calling cs_locale(CS_GET) with type as the type of
localization information of interest and locale as a pointer to the
CS_LOCALE structure.

cs_locale sets* buffer to anull-terminated character string representing the
locale name that was used to load the CS_ L OCALE.

Using language, character set, and sort order names with cs_locale

It is possible for an application to use language, character set, and sort
order names, instead of alocale name, when calling cs_locale.

To use alanguage, character set, or sort order name, an application calls
cs_locale withtypeas CS_SYB_LANG, CS SYB_CHARSET,
CS_SYB_SORTORDER, or CS_SYB_LANG_CHARSET. The
following table summarizes cs_locale parameters for these values of type:

Table 2-9: Using language, character set, and sort order names with
cs_locale

Value of type action is | bufferis cs_locale
CS SYB_LANG CS SET A pointer to alanguage | Loadsthe CS_LOCALE with the
name. specified language information.
CS _GET | A pointer to dataspace. | Placesthe current language name in
*puffer. The name is null terminated.
66 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Value of type action is | bufferis cs_locale
CS SYB_CHARSET CS SET A pointer to acharacter | Loadsthe CS_LOCALE with the
set name. specified character set information.
CS GET | A pointer to dataspace. | Placesthe current character set namein
*puffer. The name is null terminated.
CS SYB_SORTORDER CS SET A pointer toasort order | Loadsthe CS_LOCALE with the
name. specified sort order information.
CS GET | A pointer to dataspace. | Places the current sort order namein
*puffer. The name is null terminated.
CS SYB_LANG_CHARSET | CS SET A pointer to astring of | Loadsthe CS_LOCALE with the
theform specified language and character set
language name. information.
character_set_name.
CS GET | A pointer to dataspace. | Places a string of the form
language_name.character_set _namein
*puffer. The string is null terminated.

e Theapplication must have previously loaded the CS_LOCALE structure
with consistent information by calling cs_locale with type as
CS LC ALL.

« If an application specifies only alanguage name, then cs_locale usesthe
character set and sort order aready specified in the preloaded
CS_LOCALE structure.

If an application specifies only a character-set name, then cs_locale uses
the language and sort order already specified in the preloaded
CS_LOCALE structure.

If an application specifies only a sort-order name, then cs_locale uses the
language and character set already specified in the prel oaded
CS_LOCALE structure.

If alanguage, character set, and sort-order combination is not valid,
cs_locale returns CS_FAIL.

e Valid language names correspond to subdirectories in the

$SYBASE/locales directory. Valid character-set names correspond to
subdirectories in the $SYBASE/charsets directory. Valid sort-order names
for a character set correspond to file names, stripped of any suffix, in the
$SYBASE/charsets/character_set_name directory.

« If therequiredlocalization filesfor the requested language or character set
do not exist, cs_locale returns CS_FAIL.

See also ¢s loc_alloc, cs loc_drop

Common Libraries Reference Manual 67

cs_manage_convert

CS_manage_convert

Description

Syntax

Parameters

68

Installs or retrieves a user-defined character-set conversion routine.

CS_RETCODE cs_manage_convert(context, action,
srctype, srcname, srcnamelen,
desttype, destname, destnamelen,
conv_multiplier, func)

CS_CONTEXT *context;

CS_INT action;

CS_INT srctype;
CS_CHAR *srcname;
CS_INT srcnamelen;
CS_INT desttype;
CS_CHAR *destname;
CS_INT destnamelen;
CS_INT *conv_multiplier;
CS_CONV_FUNC *func;

context

A pointer to aCS_CONTEXT structure.

action
One of the following symbolic values:

Value of action CcS_manage_convert

CS SET Installs a conversion routine and conversion multiplier
for conversions between the indicated datatypes and
character-set names.

CS GET Retrievesthe current conversion routineand conversion
multiplier for the indicated datatypes and character-set
names.

CS CLEAR Clears the current conversion routine by replacing it

with CS-Library’s default conversion routine for the
indicated datatypes and character-set names.

srctype

The datatype of the source datafor the conversion. In the current version,
srctype must be CS_ CHAR_TYPE.

Srchame

The name of the character set associated with srctype. This name must
correspond to the name of asubdirectory within the char sets subdirectory of
the Sybase installation directory.

srcnamelen

Thelength, in bytes, of srcname. If srcname is null-terminated, srcnamelen
can be passed as CS_ NULLTERM.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

desttype
The datatype of the destination data. In the current version, desttype must be
CS CHAR_TYPE.

destname
The name of the destination character set. This name must correspond to the
name of a subdirectory within the charsets subdirectory of the Sybase
installation directory.

destnamelen
The length, in bytes, of desthame. If destname is null-terminated,
destnamelen can be passed as CS_NULLTERM.

conv_multiplier
The address of aCS_INT variable. When actionis CS_SET, pass
*conv_multiplier asthe conversion multiplier for theindicated character-set
conversion. When action is CS_GET, *conv_multiplier receives the
conversion multiplier for the indicated character-set conversion. When
actionisCS_CLEAR, pass conv_multiplier asNULL.

See“Meaning of the conversion multiplier” on page 71 for aexplanation of
how applications use this number.

func
The address of aCS_CONV_FUNC variable, which itself isa pointer to a
character-set conversion routine. “ Defining a custom character set
conversion routine” on page 71 describes the requirements for coding a
custom character-set conversion routine.

If aconversion routine is being installed, *func points to the conversion
routine to be installed.

If aconversion routine is being retrieved, cs_manage_convert sets*func to
point to the currently installed character-set conversion routine for srcname
to destname conversions, or to NULL if no custom routine isinstalled.

If aconversion routine is being cleared, pass *func as NULL.

Note func represents a pointer to a pointer to afunction. There are special
requirements for passing this parameter. See the exampl e code fragment under
“Installing a custom character set conversion routine” on page 73.

Return value cs_manage_convert returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.

Common Libraries Reference Manual 69

cs_manage_convert

Usage

70

Returns Indicates

CS FAIL The routine failed.

The most common reason for acs_manage_convert failureis an invalid
parameter.

cs_manage_convert alows an application to install a custom character-set
conversion routine that converts data from one character set to ancther.

Character set conversion

Client-Library, CS-Library, and Server-Library can all perform character-
set conversion. Character-set conversion occurs when an application
converts between any two character datatypes and associates different
character sets with the source and destination.

¢ InCS-Library, cs_convert performs character-set conversion when
converting between two character datatypes if the destfmt
CS _DATAFMT structure specifies (or defaults to) a different locale
than the srcfmt CS_DATAFMT structure.

¢ InClient-Library, an application can request character-set conversion
for fetched character data by binding the column to a character-
datatype variable and passing apointer toaCS_LOCALE inct_bind’'s
datafmt that is different from the connection’slocale (that is, the
CS _LOC_PROP connection property).

¢ InServer-Library, al character data sent to aclient or received from
aclient isautomatically converted between the client thread's
character set and the Open Server character set.

The character datatypes are CS_CHAR, CS_LONGCHAR, CS_TEXT,
CS_UNITEXT, CS_UNICHAR, CS VARCHAR and CS_XML.

cs_manage_convert requires an application to pass both srctype and
desttypeas CS_CHAR_TYPE. However, CS-Library, Client-Library, and
Server-Library will call the conversion routineto convert between any two
character-based types when the conversion local es specify the character
sets associated with the conversion routine.

The most common reason for installing a custom conversion routineisto
improve performance by replacing an indirect conversion with adirect
conversion.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

A custom character-set conversion routine can improve performancein
applicationsthat rely on character-set conversionswhere CS-Library does
not use direct character-set conversion. Indirect character-set conversion
convertsfirst to Unicode UTF-8, and then from Unicode UTF-8 to the
destination character set. Applicationsthat perform these conversions can
improve performance by installing a custom routine that supports direct
conversion.

For example, an Open Server application could install a custom routineto
convert between 1SO 8859-1 and EUC JIS. Thisdirect conversion may be
faster than the indirect conversion (1SO 8859-1 to/from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

« To find out whether a specific character conversion isdirect or indirect,
look in the source character set’s conversion configuration file. If thereis
an entry for the destination character set, then the conversion is direct.
Character set configuration files are described in the Open Client and
Open Server International Developers Guide.

¢ Seethe Open Client and Open Server International Developers Guide.

Meaning of the conversion multiplier

* Applications must provide cs_manage_convert with a conversion
multiplier for conversions between the indicated character sets.

« Thevaue of the conversion multiplier equals the largest number of bytes
in the destination result that can replace one source byte when converting
between the indicated character sets.

* Applications can retrieve the conversion multiplier for a specific
character-set conversion with cs_conv_mult. This number allows the
application to determine the destination space needed for a conversion.

Defining a custom character set conversion routine
¢ A custom character-set conversion routine is defined as follows:

CS_RETCODE CS_PUBLIC
convfunc (context, srcfmt, srcdata,
destfmt, destdata, destlen)

CS_CONTEXT *context;

CS_DATAFMT *srcfmt;

CS_VOID *srcdata;

CS_DATAFMT *destfmt;

CS _VOID *destdata;

CS INT *destlen;
where:

Common Libraries Reference Manual 71

cs_manage_convert

72

e contextisapointer toaCS CONTEXT structure.

e srcfmtisapointertoaCS _DATAFMT structure describing the source
data. srcfmt—>maxlength describes the actual length, in bytes, of the
source data.

e srcdataisapointer to the source data.

e destfimtisapointer toaCS DATAFMT structure describing the
destination data. destfmt—>maxlength describes the actua length, in
bytes, of the destination data space.

¢ destdata is apointer to the destination data space.

destlen is a pointer to an integer. The conversion routine should set
*destlen to the number of bytes placed in * destdata. If the routinewritesa
truncated result, it should set *destlen as the number of bytes written
before truncation.

Note When converting into aCS_VARCHAR structure, the conversion
routine should set both *destlen and the CS VARCHAR's|en field to the
number of bytes written to the CS_ VARCHAR's str field.

cs_config isthe only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

A custom character-set conversion routine can return any of the values
listed in Table 2-10.

e If the conversion routine returns a value from Table 2-10 other than
CS_SUCCEED, then the application receives a Client-Library or CS-
Library message that corresponds to the indicated error condition.

e If the conversion routine returns avalue that is not listed in
Table 2-10, then the application receives an “ Unknown return code”
error message from Client-Library or CS-Library.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

#define MULT ISO 1 TO EUCJIS 4

Table 2-10: Return values for a custom conversion routine

Return value

Indicates

CS_SUCCEED

Successful conversion.

CS_TRUNCATED

The conversion resulted in truncation.

CS MEM_ERROR

A memory allocation failure has occurred.

CS EBADXLT Some characters could not be translated.

CS_ENOXLT The requested translation is not supported.

CS EDOMAIN The source value is outside the domain of
legal values for the datatype.

CS EDIVZERO Division by 0 is not allowed.

CS_EOVERFLOW

The conversion resulted in overflow.

CS_EUNDERFLOW

The conversion resulted in underflow.

CS EPRECISION

The conversion resulted in loss of precision.

CS ESCALE Anillega scale value was encountered.

CS _ ESYNTAX The conversion resulted in avalue which is
not syntactically correct for the destination
type.

CS ESTYLE The conversion operation was stopped due to

astyleerror.

Installing a custom character set conversion routine

« Thefollowing code demonstrates calling cs_manage_convert to install a
custom conversion routine. The code is based on the assumption that the
installed routine has been defined correctly. (See “Defining a custom
character set conversion routine” on page 71.) The program variable
p_conv_func is used to pass the address of the conversion routine.

CS CONV_FUNC p conv_func;
conv_mult = MULT ISO 1 TO EUCJIS;

CS_INT

/*

** Install the routine charconv_iso 1 TO eucjis() to convert
** character data from iso_1 character set to eucjis character
** set.
*/
p_conv_func = charconv_iso 1 TO eucjis;
if (cs_manage convert (context, CS_ SET,

CS_CHAR TYPE, "iso_ 1", CS_NULLTERM,

CS_CHAR TYPE, "eucjis", CS_NULLTERM,

&conv_mult, &p_conv_func)

!= CS_SUCCEED)

Common Libraries Reference Manual 73

cs_objects

fprintf (stdout, "cs manage convert () failed!\n");
(CS_VOID)ct exit (context, CS_FORCE EXIT) ;
(CS_VOID)cs_ctx drop (context) ;

exit (-1);

}

See also

CS_objects
Description

Syntax

Parameters

74

cs_conv_mult, cs_convert, cs_locale, cs_set_convert

Saves, retrieves, or clears objects and data associated with them.

CS_RETCODE cs_objects(context, action, objname,
objdata)

CS_CONTEXT *context;
CS_INT action;
CS_OBJNAME *objname;
CS_OBJDATA *objdata;
context
A pointer toaCS_CONTEXT structure.

action
One of the following symbolic values:

Value of action cs_objects
CS SET Saves an object.
CS GET Retrieves the first matching object that it finds.
CS CLEAR Clears all matching objects.
objname

A pointer to an object name structure. * objname names and describes the
object of interest. An object name structure is defined as follows:

/*

** CS_OBJNAME

*/

typedef struct cs objname

{
CS_BOOL thinkexists;
CS_INT object_type;
CS_CHAR last name [CS_MAX CHAR];
CS INT Inlen;
CS_CHAR first name[CS MAX CHAR];

Open Client and Open Server

CHAPTER 2 CS-Library Routines

CS_INT
CS_VOID
CS_INT
CS_VOID
CS_INT

} CS_OBUNAME;

The object_type, last_name, first_name, scope, and thread fields form a

fnlen;
*scope;
scopelen;
*thread;
threadlen;

five-part key that identifies a stored object (see “ cs_objects naming keys’

on page 79). Table 2-11 describes the CS_OBINAME fields:

Common Libraries Reference Manual

75

cs_objects

Table 2-11: CS_OBJNAME fields

Field Description Notes
thinkexists | Indicates whether the The value of thinkexists affects the
application expectsthis | cs_objects return code. For more
object to exist. information, see the Return values.
object_type | Thetype of theobject. | Thisfield isthefirst part of afive-part key.
object_type can be one of these values:
¢ CS CONNECTNAME
+ CS_CURSORNAME
¢ CS STATEMENTNAME
« CS CURRENT_CONNECTION
e CS WILDCARD (matches any value)
¢ A user-defined value. User-defined
values must be >= 100.
last_name | The“last name” Thisfield is the second part of afive-part
associated with the key.
object of interest, if any.
Inlen Thelength, in bytes, of | Canbe CS NULLTERM to indicate anull-
last_name. terminated last_name.
CanbeCS _UNUSED toindicate aninternal
“unused” valuefor last_name.
For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
last_name value.
first_name | The“first name” Thisfield isthe third part of afive-part key.
associated with the
object of interest, if any.
fnlen Thelength, in bytes, of | Can be CS_NULLTERM to indicate anull-
first_name. terminated first_name.
CanbeCS_UNUSED toindicate aninternal
“unused” valuefor first_name.
For CS_GET and CS_CLEAR operations,
can be CS_WILDCARD to match any
first_name value.
scope Datathat describesthe | Thisfield isthefourth part of afive-part key.

76

scope of the object.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Field Description Notes
scopelen The length, in bytes, of | Canbe CS_ NULLTERM to indicate null-
scope. terminated scope data.

CanbeCS_UNUSED toindicate an internal
“unused” value for * scope.

For CS_GET and CS_CLEAR operations,
canbeCS_WILDCARD to match any scope

value.
thread Platform-specificdata | Thisfield isthefifth part of afive-part key.
that is used to
distinguish threadsin a
multi-threaded

execution environment.

threadlen The length, in bytes, of | Can be CS_NULLTERM to indicate null-
thread. terminated thread data.

CanbeCS_UNUSED toindicate an internal
“unused” value for *thread.

For CS_GET and CS_CLEAR operations,
can be CS_ WILDCARD to match any
thread value.

objdata
A pointer to an object data structure. * objdata is the object of interest and
any data associated with it. An object data structure is defined as follows:

/ *

** CS_OBJDATA

*/

typedef struct cs objdata

{
CS_BOOL actuallyexists;
CS_CONNECTION *connection;
CS_COMMAND *command ;
CS _VOID *buffer;
CS INT buflen;

} CS_NAMEDATA;
Table 2-12 describesthe CS_OBJDATA fields:

Common Libraries Reference Manual 77

cs_objects

Table 2-12: CS_OBJDATA fields

Field Description Notes
actuallyexists | Indicates whether this cs_objects sets actuallyexiststo
object actualy exists. CS_TRUE if it finds a matching object.
cs_objects sets actuallyexists to
CS FALSE if it doesnot find a
matching object.
connection A pointer to the
CS_CONNECTION
structure representing the
connection in which the
object exists.
command A pointer to the Can be NULL.
CS_COMMAND structure
representing the command
space with which the
object is associated.
buffer A pointer to dataspace. An | If actionisCS_SET, *buffer contains
application can use buffer | the data to associate with the object.
to assoc ‘_"'Ie datawith a If actionis CS_GET, cs_objects sets
saved object. *buffer to the data associated with the
object being retrieved.
buflen The length, in bytes, of If actionisCS_SET, buflenisthelength

*puffer.

of the data contained in * buffer. Can be
CS _NULLTERM to indicate null-
terminated data. Can be CS_UNUSED
to indicate that there is no data
associated with the object being saved.

If actionis CS_GET, buflen isthe
maximum capacity of *buffer.
cs_objects overwrites buflen with the
number of bytes copied to *buffer. If
buflenis CS_UNUSED, cs_objects
overwrites buflen with the length of the
data but does not copy it to * buffer.

Return value

cs_objects returnsCS_SUCCEED or CS_FAIL depending onthevalues passed

as action and objname—>thinkexists (See Table 2-11 on page 76). Table 2-13

lists the return code for each combination:

78

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-13: cs_objects return values

cs_objects Called with

cs_objects returns

objname—t
hinkexists Last-name
action As As No match match Full match
CS GET CS TRUE CS FAIL CS FAIL CS_SUCCEED
CS GET CS FALSE CS_SUCCEED CS SUCCEED CS SUCCEED
CS SET CS TRUE CS FAIL CS FAIL CS _SUCCEED
CS_SET CS FALSE CS_SUCCEED CS_ SUCCEED CS FAIL
CS CLEAR CS TRUE CS FAIL CS _FAIL CS_SUCCEED
CS CLEAR CS FALSE CS_SUCCEED CS SUCCEED CS SUCCEED
Usage Table 2-14: Summary of cs_objects parameter usage
Value of
action objname is objdata is
CS SET A five-part key for the The object to save and any additional
object. datato savewithit.
CS GET A five-part key for the Set to the retrieved object.
object.
CS CLEAR | A five-part key for the CS UNUSED.
object.

* cs_objects isuseful in precompiler applications that need to retrieve

structures and data items by name.

cs_objects naming keys

e cs_objects uses afive-part key, composed of the object_type, last_name,
first_name, scope, and thread fields of * objname structure.

e« OnCS_SET operations, cs_objects usesthiskey to storethe * objdata

object.

¢ OnCS_GET operations, cs_objects usesthiskey to retrieve an object

specification into * objdata.

e OnCS_CLEAR operations, cs_objects clears all objects that match

the key.

e Table2-15 describestherulesthat cs_objects usesto determinewhether or

not key fields match:

Common Libraries Reference Manual

79

cs_objects

See also

80

Table 2-15: cs_objects key matching rules

Stored key length is

Stored key length is

*objname key length is | CS_UNUSED another legal value
CS WILDCARD Match Match

CS_UNUSED Match No match

Another Lega Value No match Match, if thenamesmatch

and have the same length.

e cs_objects can achieve two types of matches:

e “last-namematches,” inwhich thelast_name, scope, and thread parts

of the key match.

e “full matches,” in which all five parts of the key match.

The type of match that cs_objects achieves, together with action and

objname—>thinkexists, determine its return code.

e OnCS_GET and CS_CLEAR operations, an application may specify
CS_WILDCARD for one or more * objname key fields:

¢ OnaCS_GET operation, cs_objects sets *objdata to reflect the first
matching object that it finds.

e OnaCS_CLEAR operation, cs_objects clears all matching objects.

Retrieving “Current Connection” objects
e If anapplication has previously saved aCS_CURRENT_CONNECTION

object, it can retrieve the current connection by:

e Cadlling cs_objects with objname—>object_type as
CS_CURRENT_CONNECTION, Inlen as CS_UNUSED, and fnlen
asCS _UNUSED. cs_objects ignores the last_name and first_name
fields of objname, and sets objdata—>buffer to the name of the current
connection and objdata—>buflen to the length of this name.

e Cadlling cs_objects with objname—>object_type as
CS_CONNECTNAMEand objname—>last_name and objname—
>Inlen as the newly retrieved connection name and name length.
cs_objects sets objdata to the retrieved connection.

Warning! An application cannot call cs_objects(CS_SET) from within a
completion callback routine.

cs ctx_aloc

Open Client and Open Server

CHAPTER 2 CS-Library Routines

cs_prop_ssl localid
Description Specifies the path to the local 1D (certificates) file.

Syntax typedef struct _cs_sslid

CS_CHAR *identity_file;
CS_CHAR *identity_password;
} CS_SSLIDENTITY

Parameters identity file
provides a path to the file containing a digital certificate and the associated
private key.

CS_GET only returnsthe indentity_file used, and only if it is set with
CS_CONNECTION.

identity password
used to decrypt the private key.

cs_set_convert

Description Installs or retrieves a user-defined conversion routine.

Syntax CS_RETCODE cs_set_convert(context, action, srctype,
desttype, func)

CS_CONTEXT *context;

CS_INT action;

CS_INT srctype;

CS_INT desttype;

CS_CONV_FUNC *func;
Parameters context

A pointer to aCS_CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

action
One of the following symbolic values:

Value of action cs_set_convert

CS SET Installs a conversion routine.

CS GET Retrieves the current conversion routine of this type.

CS _CLEAR Clears the current conversion routine by replacing it
with CS-Library’s default conversion routine of this
type.

Common Libraries Reference Manual 81

cs_set_convert

srctype
The datatype of the source data for the conversion.

desttype
The datatype of the destination data.

func
A pointer toaCS_CONV_FUNC variable, which is a pointer to a custom
conversion function. “Defining a custom conversion routine” on page 83
describes the prototype for a custom conversion function.

If aconversion routine is being installed, * func points to the conversion
routine that you wish to install.

If aconversion routineisbeing retrieved, cs_set_convert sets * func to point
to the currently installed conversion routine.

If aconversion routine is being cleared, pass *func as NULL.

Note func represents a pointer to a pointer to a function. There are special
requirements for passing this parameter. See the exampl e code fragment under
“Installing a custom conversion routine” on page 85.

Return value cs_set_convert returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

The most common reason for acs_set_convert failure is an invalid parameter.

Usage e Anapplication caninstall custom conversion routines to convert data
between:

e Standard Open Client or Open Server datatypes
e Standard and user-defined datatypes
e User-defined datatypes

e Onceacustomroutineisinstalled for aparticular conversion, the
client/server libraries call the custom routine transparently whenever a
conversion of the specified typeis required.

e A Client-Library or Server-Library application creates a user-defined
datatype by declaring it:

typedef CS SMALLINT EMPLOYEE ID;

82 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Because the Open Client routines ct_bind and cs_convert use integer
symbolic constants to identify datatypes, it is often convenient for an
application to declare atype constant for auser-defined type. User-defined
types must be defined as greater than or equal to CS_USERTY PE:

#define EMPLOYEE ID TYPE CS_USERTYPE + 1;

To enable conversion between a user-defined type and standard CS-
Library datatypes, an application can call cs_set_convert to install user-
defined conversion routines for the new type.

* Toclear acustom conversion routine, an application can call
cs_set_convert with action as CS_CLEAR and func as NULL.
cs_set_convert replaces the custom routine with CS-Library’s default
conversion routine of the appropriate type, if any.

* Anapplication can cal cs_setnull to define null substitution values for a
user-defined type.
Defining a custom conversion routine
e A custom conversion routine is defined as follows:
CS_RETCODE CS_PUBLIC

convfunc (context, srcfmt, srcdata,
destfmt, destdata, destlen)

CS_CONTEXT *context;

CS_DATAFMT *srcfmt;

CS_VOID *srcdata;

CS_DATAFMT *destfmt;

CS_VOID *destdata;

CS INT *destlen;
where:

e context isapointer toaCS _CONTEXT structure.

* srcfmtisapointer toaCS_DATAFMT structure describing the source
data. srcfmt—maxlength describes the actual length, in bytes, of the
source data.

» srcdataisapointer to the source data.

o destfmtisapointer toaCS DATAFMT structure describing the
destination data. destfmt—maxlength describes the actual length, in
bytes, of the destination data space.

* destdata is apointer to the destination data space.

Common Libraries Reference Manual 83

cs_set_convert

¢ destlenisapointer to an integer. If the conversion is successful, the
custom routine should set *destlen to the number of bytes placed in
*destdata.

e cs_config isthe only CS-Library, Client-Library, or Server-Library
function that can be called from within a custom conversion routine.

« Thefollowing table lists the legal return values for a custom conversion
routine. CS-Library will raise a CS-Library error if any value other than
CS_SUCCEED isreturned. Other values should be returned to indicate
error conditions, as described in Table 2-16.

« Iftheconversionroutinereturnsavaluelistedin Table 2-16 other than
CS_SUCCEED, then the application receivesa Client-Library or CS
underscore -Library message that corresponds to the indicated error
condition.

e If the conversion routine returns a value that is not listed in Table 2-
16, then the application receives an “Unknown return code” error
message from Client-Library or CS-Library:

84 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Table 2-16: Return values for a custom conversion routine

Return value

Indicates

CS_SUCCEED

Successful conversion.

CS_TRUNCATED

The conversion resulted in truncation.

CS MEM_ERROR

A memory allocation failure has occurred.

CS_EBADXLT

Some characters could not be translated.

CS ENOXLT

The requested translation is not supported.

CS EDOMAIN

The source value is outside the domain of
legal values for the datatype.

CS_EDIVZERO

Division by 0 is not allowed.

CS_EOVERFLOW

The conversion resulted in overflow.

CS_EUNDERFLOW

The conversion resulted in underflow.

CS EPRECISION

The conversion resulted in loss of precision.

CS ESCALE

Anillega scale value was encountered.

CS ESYNTAX

The conversion resulted in avalue which is
not syntactically correct for the destination

type.

CS ESTYLE

The conversion operation was stopped due to
astyleerror.

Installing a custom conversion routine

The following code demonstrates calling cs_set_convert to install acustom
conversion routine, MyConvert, which converts from CS_CHAR to the user
defined type indicated by MY _USER_TY PE. The code assumes that
MyConvert iS a a custom conversion routine that has been defined correctly.
(See “Defining a custom conversion routing” on page 83.) The program

variable myfunc is used to pass the address of the conversion routine.
#define MY USER TYPE (CS_USER TYPE + 2)
CS_CONV_FUNC p conv_func;

p_conv_func = MyConvert;
if (cs_set convert (context, CS _SET, CS CHAR TYPE, MY USER_TYPE,
&p_conv_func) != CS_SUCCEED)
{

fprintf (stdout, "cs_set convert (MY USER TYPE) failed!\n");
(CS_VOID)ct_ exit (context, CS_FORCE_EXIT) ;
(CS_VOID)cs_ctx_drop (context) ;

exit (1) ;

}

See also cs _convert, cs_manage_convert, cs_setnull, ct_bind

Common Libraries Reference Manual 85

cs_setnull

cs_setnull

Description Definesanull substitution value to be used when binding or converting NULL
data.

Syntax CS_RETCODE cs_setnull(context, datafmt, buffer,
buflen)

CS_CONTEXT *context;
CS_DATAFMT *datafmt;
CS_VOID *puffer;
CS_INT buflen;
Parameters context
A pointer toaCS_CONTEXT structure. cs_setnull defines a null
substitution value for this context.

datafmt
A pointer toaCS _DATAFMT structure describing the datatype for which a
null substitution value is being defined.

buffer
A pointer to the null substitution value. * buffer’s datatype must match
datafmt—>type.

buflen
The length, in bytes, of * buffer.

Return value cs_set_null returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

Common reasons for acs_setnull failure include:
e A memory alocation error
¢ Aninvalid parameter

Usage ¢ If ANSI-stylebindsarein effect, CS-Library doesnot use null substitution
values. To activate ANSI-style binds, an application sets the Client-
Library property CS_ANSI_BINDSto CS TRUE.

*« When ANSI-style binds are not in effect and source datafor a conversion
isNULL, CS-Library sets the destination data to the predefined null
substitution value for that destination type. For example, converting a
NULL value of any typeto aCS_CHAR destination results in an empty
string.

86 Open Client and Open Server

CHAPTER 2 CS-Library Routines

« InaClient-Library application, null substitution values are defined at the
context level. When a Client-Library connection is allocated, it picks up
null substitution values from its parent context.

¢ When convertingaNULL sourcevaluetoaCS CHAR or CS_BINARY
destination variable, CS-Library first puts 0 bytesinto the destination and
then uses the format field of the CS_DATAFMT structure that describes
the destination to determine whether to pad or null-terminate.

e Toreinstate CS-Library’s origina default null substitution value for a
particular datatype, an application can call cs_setnull with buffer asNULL.

e CS-Library and Client-Library use the following default null substitution
values:

Common Libraries Reference Manual 87

cs_strbuild

See also

cs_strbuild

Description

Syntax

88

Table 2-17: Default null substitution values

Destination type

Null substitution value

CS BINARY_TYPE Empty array
CS_VARBINARY_TYPE Empty array
CS BIT_TYPE 0

CS CHAR_TYPE Empty string
CS VARCHAR_TYPE Empty string

CS DATE_TYPE

4 bytes of zeros

CS TIME_TYPE

4 bytes of zeros

CS BIGDATETIME_TYPE

8 bytes of zeros

CS BIGTIME_TYPE

8 bytes of zeros

CS DATETIME_TYPE

8 bytes of zeros

CS _DATETIME4_TYPE

4 bytes of zeros

CS TINYINT_TYPE 0
CS SMALLINT_TYPE 0
CS INT_TYPE 0

CS DECIMAL_TYPE

0.0 (with default scale and precision)

CS_NUMERIC_TYPE

0.0 (with default scale and precision)

CS FLOAT TYPE

0.0

CS REAL_TYPE 0.0

CS MONEY_TYPE $0.0
CS_MONEY4_TYPE $0.0

CS BOUNDARY_TYPE Empty string
CS SENSITIVITY_TYPE Empty string
CS TEXT_TYPE Empty string
CS UNITEXT_TYPE Empty string
CS IMAGE_TYPE Empty array
CS XML_TYPE Empty string

cs set_convert, cs will_convert

Constructs native language message strings.

CS_RETCODE cs_strbuild(context, buffer, buflen,

resultlen, text, textlen

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Parameters

[, formats, formatlen]
[, arguments]);

CS_CONTEXT *context;
CS_CHAR *puffer;

CS_INT buflen;
CS_INT *resultlen;
CS_CHAR *text;
CS_INT textlen;
CS_CHAR *formats; [* Optional */
CS_INT formatlen; [* Optional */
<optional arguments>
context

A pointer to aCS_CONTEXT structure.
buffer

A pointer to the spacein which cs_strbuild placesthe finished message. Note
that the finished message is not null-terminated. An application must use
*resultlen to determine the length of the message placed in * buffer.

buflen
The length, in bytes, of the * buffer data space.

resultlen
A pointer to an integer variable. cs_strbuild sets *resultlen to the length, in
bytes, of the string placed in * buffer.

text
A pointer to the unfinished text of the message. The *text string contains
message text and placeholders for variables. A placeholder has the form
%integer!, for example, %1!, %2!, and so forth. Theinteger indicateswhich
argument to substitute for aparticular placeholder. Arguments are numbered
from left to right.

textlen
The length, in bytes, of *text. If *text is null-terminated, pass textlen as
CS_NULLTERM.

formats
A pointer to a string containing one sprintf-style format specifier for each
place holder in the *text string.

formatlen
The length, in bytes, of *formats. If *formatsis null-terminated, pass
formatlen as CS_NULLTERM.

Common Libraries Reference Manual 89

cs_strbuild

Return value

Usage

90

arguments
The values which will be converted to character according to the *formats
string and substituted into the * text string to produce the message that is
placed in *buffer.

There must be one argument for each place holder. The first value
corresponds to the first format and the %1! placeholder, the second value
corresponds to the second format and the %2! placeholder, and so forth.

If insufficient arguments are supplied, cs_strbuild generates unpredictable
results.

If too many arguments are supplied, the excess arguments are ignored.

cs_str_build returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

e cs_strbuild builds a printable native-language message string from a text
containing place holdersfor values, aformat string containing information
on the types and appearances of the values, and a variable number of
arguments that represent the values.

¢ Parametersin error messages can occur in different ordersin different

languages. cs_strbuild allows an application to construct error messagesin
asprintf-like fashion to ensure easy translation of error messagesfrom one
language to another.

For example, consider an error message that informsthe user of amisused
keyword in astored procedure. The message requiresthree arguments: the
misused keyword, the line in which the keyword occurs, and the name of
the stored procedure. Inthe U.S. English localization file, the message text
appears as.

The keyword ‘%1!' is misused in line %2! of stored
procedure ‘%3!‘.

In the Spanish localization file, the same message appears as:

En linea %2! de stored procedure '%3!‘', la palabra
‘%1!' esta mal usado!

The cs_strbuild call for either of the above messagesis:

cs_strbuild(context, &mybuffer, buflength,
&resultlength, messagetext, CS_NULLTERM,
“%s, %d, %s”, CS _NULLTERM,

Open Client and Open Server

CHAPTER 2 CS-Library Routines

See also

cs_strcmp

Description

Syntax

Parameters

keyword, linenum, sp name) ;
The only difference is the content of messagetext.

» cs_strbuild format specifiers can be separated by other characters, or they
can be adjacent to each other. Thisallows existing message stringsin U.S.
English to be used as format parameters. The first format specifier
describes the %1! placeholder, the second describes the %2! placeholder,
and so forth.

cs dt_crack, cs dt_info, cs_locale

Compares two strings using a specified sort order.

CS_RETCODE cs_strcmp(context, locale, type, strl,
lenl, str2, len2, result)

CS_CONTEXT *context;
CS_LOCALE *locale;

CS_INT type;
CS_CHAR *strl;
CS_INT lenl;
CS_CHAR *str2;
CS_INTI len2;
CS_INT *result;
context

A pointer to aCS_CONTEXT structure.

locale
A pointer to aCS_LOCALE structure. A CS_LOCALE structure contains
locale information, including the collating sequence that cs_strcmp uses to
define a sort order.

An application can call cs_locale withtypeasCS LC_COLLATE or
CS_SYB_SORTORDER to change the collating sequence in a
CS_LOCALE structure.

locale can be NULL. If localeisNULL, cs_strcmp uses whatever
localization information is defined in the context CS_CONTEXT structure.
Localization information is always defined at the context level, because a
CS _CONTEXT picks up default localization information when it is
allocated.

Common Libraries Reference Manual 91

cs_strcmp

type
The type of comparison to perform.

If typeis CS_COMPARE, cs_strcmp performs alexicographic comparison.

If typeis CS_SORT, the values are compared as they would appear in a
sortedlist. Itispossiblefor stringsthat arelexicographically equal to belong
in different placesin a sorted list.

strl
A pointer to the first string for the comparison.

lenl
Thelength, in bytes, of *str1. If *strlis null-terminated, pass lenl as
CS_NULLTERM.

str2
A pointer to the second string for the comparison.

len2
The length, in bytes, of *str2. If *str2 is null-terminated, pass len2 as
CS_NULLTERM.

result
A pointer to the result of the comparison. The following table lists the
possible values for *result:

Value of *result Indicates
<0 strlislexicographically lessthan str2, or strl appears
before str2 in a sorted list.
0 strlislexicographically equal to stri, or strlisidentical
tostr2.
>0 strlislexicographically greater than str2, or str1 appears
after str2 in asorted list.
Return value cs_strcmp returns:
Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Usage e cs_stremp sets *result to indicate the result of the comparison.

e Some languages contain strings that are lexicographically equal,
according to a specific sort order, but contain different characters.
Although the strings are lexicographically equal, there is a standard order
used when placing them into a sorted list.

92 Open Client and Open Server

CHAPTER 2 CS-Library Routines

An application can use cs_strcmp to compare strings either
lexicographically or how they appear in asorted list. For example, givena
sort order that specifiesthat uppercase characters appear before lowercase
charactersin a sorted list:

e Thestrings“ABC” and “abc” are lexicographically equal.

A call tocs_stremp that compares“ABC” (asstrl) and “abc” as(str2)
with type as CS_COMPARE returns with result set to 0.

« “ABC” appearsbefore“abc” in asorted list.

A call tocs_stremp that compares“ABC” (asstrl) and “abc” as(str2)
with type as CS_SORT returns with result set to avalue less than 0.

e cs_stremp determines which sort order to use by examining *locale, (or
*context, if localeis NULL).

e Tochangethe sort order inaCS_LOCALE structure, an application
callscs_locale with typeas CS LC _COLLATE or
CS_SYB_SORTORDER.

e Tochangethesort orderinaCS_CONTEXT structure, an application
must first set up aCS_LOCALE structure with the desired sort order
and then call cs_config to set the CS_LOC_PROP property for the

context.
See also cs_cmp, cs_locale, cs_config
cs_time
Description Retrieves the current date and time.
Syntax CS_RETCODE cs_time(context, locale, buffer, buflen,
outlen, daterec)
CS_CONTEXT *context;
CS_LOCALE *locale;
CS_VOoID *buffer;
CS_INT buflen;
CS_INT *outlen;
CS_DATEREC *daterec;
Parameters context

A pointer to aCS_CONTEXT structure.

Common Libraries Reference Manual 93

cs_time

94

locale
A pointer toaCS_LOCALE structure. A CS_LOCALE structure contains
locale information, including formatting information that cs_time uses to
create a current datetime string.

locale can be NULL. If localeisNULL, cs_time uses whatever localization
information isdefined inthe CS_CONTEXT structureindicated by context.
Localization information is always defined at the context level, because a
CS_CONTEXT picks up default localization information when it is
allocated.

buffer
A pointer to the space in which cs_time will place a character string
representing the current date and time.

buffer is an optional parameter and can be passed as NULL. If buffer is
NULL, daterec must be supplied.

buflen
The length, in bytes, of * buffer.

If buffer is supplied and buflen indicates that * buffer is not large enough to
hold the current datetime string, cs_time sets * outlen to the length of the
datetime string and returns CS_FAIL.

If buffer isNULL, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

cs_time sets *outlen to the length, in bytes, of the current datetime string.

If the string islarger than buflen bytes, an application can use the value of
*outlen to determine how many bytes are needed to hold the string.

If buffer isNULL, passoutlen asNULL.

If an application does not care about return length information, it can pass
outlen asNULL.

daterec
A pointer to aCS_DATEREC structure in which cs_time will place the
current date and time. Note that cs_time does not set the datemsecond and
datetzone fields of the CS_DATEREC structure.

See cs_dt_crack in this chapter.

daterec is an optional parameter and can be passed as NULL. If daterec is
NULL, buffer must be supplied.

Open Client and Open Server

CHAPTER 2 CS-Library Routines

Return value

Usage

See also

cs_time returns.

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common reasons for acs_time failure include:
e Aninvalid parameter.

« buflenindicatesthat the * buffer data space is not large enough to hold the
formatted datetime string.

e cs_time returns the current date and time either in character string format
orinaCS_DATEREC structure, or both.

e cs_time formats the date and time according to locale information
contained in * context.

cs_config, cs_dt_crack, cs_dt_info, cs locale

cs_validate cb

Description

Syntax

A Client-Library callback routine, registered through ct_callback.

typedef struct _cs_sslcertfield

CS_VOID *value;

CS_INT field_id;

CS_INT length;
} CS_SSLCERT_FIELD;

typedef struct _cs_sslcert

CS_INT field_count;

CS_INT extension_count;

CS_UINT start_date;

CS_UINT end_date;

CS_SSLCERT_FIELD *fieldptr;

CS_SSLCERT_FIELD *extensionptr;
} CS_SSLCERT;

typedef CS_INT (CS_PUBLIC * CS_CERT_CB) PROTOTYPE ((

CS_VOID *user_data,
CS_SSLCERT *certptr,
CS_INT cert_count,
CS_INT valid

i

Common Libraries Reference Manual 95

cs_will_convert

Parameters certptr
A pointer to an array of CS_SSL CERT which has cert_count elements. On
return from the callback, all memory used is freed.

Note Thearray isnot null terminated.

fieldptr
A pointer to field_count elements.

extensionptr
A pointer extension_count €lements.

cs_will_convert

Description Indicates whether a specific datatype conversion is available in the
Client/Server libraries.

Syntax CS_RETCODE cs_will_convert(context, srctype, desttype,
result)

CS_CONTEXT *context;

CS_INT srctype;

CS_INT desttype;

CS_BOOL *result;
Parameters context

A pointer toaCS_CONTEXT structure.

srctype
A symbolic constant representing the datatype of the source data (for
example, CS BYTE_TYPE, CS_CHAR_TYPE, and so forth).

desttype
A symbolic constant representing the datatype of the destination data.

result
A pointer to a boolean variable. cs_will_convert sets*result to CS_TRUE if
the datatype conversion is supported and CS_FALSE if the datatype
conversion is not supported.

Return value cs_will_convert returns:
Returns Indicates
CS SUCCEED The routine completed successfully.

96 Open Client and Open Server

CHAPTER 2 CS-Library Routines

Returns Indicates
CS FAIL Theroutine failed.
Examples
/*
** ex display column()
*/

CS_RETCODE CS_PUBLIC
ex display column(context, colfmt, data, datalength,
indicator)

CS_CONTEXT *context;
CS_DATAFMT *colfmt;
Cs_VOID *data;
CS INT datalength;
CS_SMALLINT indicator;
{
char *null = "NULL";
char *nc = "NO CONVERT";
char *cf = "CONVERT FAILED";

CS_DATAFMT srcfmt;
CS_DATAFMT destfmt;

CS_INT olen;
CS_CHAR wbuf [MAX_ CHAR_BUF] ;
CS_BOOL res;
CS_INT i;
CS_INT disp len;
if (indicator == CS_NULLDATA)

{

olen = strlen(null);
strcpy (wbuf, null);

}

else

{

cs _will convert (context, colfmt->datatype,
CS_CHAR TYPE, &res);

if (res != CS_TRUE)

olen = strlen(nc);
strcpy (wbuf, nc);

}

else

Common Libraries Reference Manual

97

cs_will_convert

srcfmt.datatype = colfmt->datatype;
srcfmt.format = colfmt->format;
srcfmt.locale = colfmt->locale;
srcfmt.maxlength = datalength;

destfmt.maxlength
destfmt.datatype CS CHAR TYPE;
destfmt.format CS_FMT_NULLTERM;
destfmt.locale = NULL;

MAX_CHAR_BUF;

if (cs_convert (context, &srcfmt, data,
&destfmt, wbuf, &olen) != CS SUCCEED)

olen = strlen(cf);
strcpy (wbuf, cf);

}

else

{
/*
** output length include null
** termination
*/

olen -= 1;

}

fprintf (stdout, "%s", wbuf);

disp len = ex display dlen(colfmt) ;
for (i = 0; 1 < (disp_len - olen); i++)
{

fputc (' ', stdout) ;

}

return CS_SUCCEED;

Usage e cs_will_convert alows an application to determine whether cs_convert or
ct_bind/ct_fetch are capable of performing a specific conversion. When
cs_convert is called to perform a conversion that it does not support, it
returns CS_FAIL and generates a CS-Library error.

98 Open Client and Open Server

CHAPTER 2 CS-Library Routines

e cs_convert can convert between standard and user-defined datatypes. To
enable these types of conversions, an application must install custom
conversion routines through cs_set_convert. If acustom routineis
supplied for a conversion, cs_will_convert indicates that the conversion is
supported.

Datatype conversion chart

A chart listing the datatype conversionsthat cs_convert supportsisincluded on
the manual page for cs_convert. (See Table 2-3 on page 30.)

See also cs _convert, cs_set_convert, cs_setnull

Common Libraries Reference Manual 99

cs_will_convert

100 Open Client and Open Server

CHAPTER 3 Bulk-Library

This chapter introduces Bulk-Library:

Topic Page
Overview of Bulk-Library 101
Bulk-Library client programming 103
Bulk-Library gateway programming 110

Overview of Bulk-Library

Bulk-Library/C provides routines that allow Client-Library and Server-
Library applications to use the Adaptive Server Enterprise bulk-copy
interface.

The Adaptive Server Enterprise bulk copy interface allows high-speed
transfer of data between a client application’s program variables and the
server’s database tables. It provides an aternative to the use of the SQL
insert and select commands to transfer data.

Administrators can perform bulk copy using the bep utility; programmers
can use Bulk-Library to create customized bulk-copy tools. Bulk-Library
also provides the necessary routines to enable bulk-copy support in an
Open Server gateway application.

Bulk copy of encrypted columnsis supported if Adaptive Server
Enterprise supports encrypted columns.

Note The Bulk-Library/C routines are for use with Open Client Client-
Library and Open Server Server-Library applications. DB-Library™
providesits own bulk-copy interface, which is documented in the Open
Client DB-Library/C Reference Manual.

Common Libraries Reference Manual 101

Overview of Bulk-Library

Client-side and server-side routines
Bulk-Library contains client-side and server-side routines.

Client-side Bulk-Library routines

Client-side routines allow Client-Library programmers to execute bulk-copy
commands from their programs. Client-side routines allow a program to:

e Transmit bulk-copy datato the remote server for database table population

e Extract the contents of a database table into program memory

Server-side Bulk-Library routines

Server-side routines are used with Open Server. Open Server programmers can
use these routines together with the client-side routines to allow bulk-copy
transfers through an Open Server gateway. A gateway server uses the client-
side routines to obtain bulk-copy data from the remote server and server-side
routines to forward the data to its own client. Any routine that requires a
SRV_PROC (Open Server thread-control structure) pointer as an argument is
aserver-side routine.

The server-side Bulk-Library routines require the application to be linked with
Server-Library and must be used together with the client-side routines.

Header files

The header file bkpublic.h contains Bulk-Library definitionsand isrequired in
all application source files that contain calls to Bulk-Library routines.

Client-Library applicationsthat call Bulk-Library routinesneed toinclude only
bkpublic.h, since bkpublic.h includes ctpublic.h. No harm is done if the
application includes both files.

Gateway Open Server applications that call Bulk-Library routines need to
include bkpublic.h in addition to the other include files required by Server-
Library. bkpublic.h does not include any Open Server header files.

102 Open Client and Open Server

CHAPTER 3 Bulk-Library

Linking with Bulk-Library

On most platforms, Bulk-Library isaseparatelibrary fileand must be specified
onthelink line for the application. See the Open Client and Open Server
Programmers Supplement for compiling and linking instructions on your
platform.

The CS_BLKDESC structure

All bulk-copy operations performed with Bulk-Library calls require a

CS BLKDESC structure. This structure is also called the bulk-descriptor
structure. The bulk-descriptor structure is a hidden structure that controls a
particular bulk-copy operation.

Applications allocate a bulk-descriptor structure with blk_alloc on page 118
and free the bulk descriptor’s memory with blk_drop on page 141. The
structure’sinternals are not documented, but the properties of the structure can
be retrieved and modified with the blk_props on page 149 routine.

All Bulk-Library routines except for blk_alloc require avalid bulk-descriptor
structure pointer as an input parameter.

Thebulk-descriptor structureisconsidered achild structure of Client-Library’s
connection structure. Bulk-copy operations require the connection to interact
with the remote server.

Bulk-Library client programming

Client-side Bulk-Library routines provide bulk-copy functionality to Client-
Library programs. A Client-Library programmer may find bulk-copy useful if
the application under development must exchange data with a non-database
application, load datainto a new database, or move data from one database to
another.

A Client-Library application can call Bulk-Library routinesto copy dataeither
into a database table or out from a database table.

Common Libraries Reference Manual 103

Bulk-Library client programming

¢ Bulk-copy-in operations move data from the client machine into a
database table and are typically used for database table population. For
bulk copiesinto the database, Bulk-Library transmitstabular data over the
network inits“raw” form. Bulk copies into the database can be
considerably faster than embedding the datain equivalent SQL insert
statements.

¢ Bulk-copy-out operations move data from a database tabl e to the client
program’s memory space and are typically used for data extracts. For data
extracts, bulk copy offers no performance advantage over the equivalent
SQL select statements. However, the Bulk-Library interface may be more
convenient for programmers.

Note Errors resulting from client-side Bulk-Library routines are reported as
Client-Library errors. Applications should install a Client-Library message
callback to handle these errors or handle them inline with ct_diag.

Bulk-copy-in operations

104

An application can call Bulk-Library routines to copy data from program
variablesinto adatabase table.

When copying into a database, the chief advantage of bulk copy over the SQL
insert alternative is speed.

When copying data into a non-indexed table, the high speed version of bulk
copy is used. Adaptive Server Enterprise performs no data logging during
high-speed transfers. If the system fail sbefore the transfer is compl ete, no new
datawill remain in the database. Because high-speed transfer affects the
recoverability of the database, it is enabled only when the Adaptive Server
Enterprise option select into/bulkcopy has been turned on. An application can
call the Adaptive Server Enterprise system procedure sp_dboption to turn this
option on or use the Client-Library connection property CS BULK_LOGIN.

If the select into/bulkcopy option is not turned on and a user triesto copy data
into atable that has no indexes, Adaptive Server Enterprise generates an error
message.

After abulk-copy operation is complete, the System Administrator should
dump the database to ensure its future recoverability.

When copying datainto an indexed table, a slower version of bulk copy is
automatically used, and row inserts are ogged.

Open Client and Open Server

CHAPTER 3 Bulk-Library

The bulk-copy-in process
A typical application follows these steps to perform a bulk-copy-in operation:

1 |Initializes the application in the same way as for a Client-Library
application and sets up Client-Library error handling. Bulk-Library
reports errors generated by calls to client-side routines as Client-Library
messages.

2 Allocates the connection structure to be used.

3 Callsct_con_props to set the necessary properties to connect to the target
server. In addition, the application must set the CS BULK_LOGIN
property to CS_TRUE to enable the connection to perform bulk copies.

Note Programmers can often tune the Tabular Data Stream™ (TDS)
packet size to increase throughput. A packet size larger than the default
usually increases performance. First, make sure that the Adaptive Server
Enterprise is configured to accept alarger TDS packet size, then set the
CS_PACKET_SIZE connection property in your application. See the
Adaptive Server Enterprise System Administration Guide for details on
increasing the allowable network packet size and the Open Client Client-
Library/C Reference Manual for details on connection properties.

Calls ct_connect to open the connection.
Cdlsblk_alloc to alocate a bulk-descriptor structure.
Calls blk_init to initialize the bulk-copy operation.

N o o1 b~

For each column in the target table, the application:

e (Optional) Calls blk_describe, which returns atarget column’s
description, allowing the application determine the column’sdatatype
or size.

e (Optiona) Callsblk_default, which returns a column’s default value,
if adefault is defined by the table schema. An application can call
blk_bind with *datalen as O to indicate that the bulk-copy-in operation
should use a column’s default value.

e Cadllsblk_bindto bind the variableto thetarget column. If datafor the
column will be transferred using blk_textxfer, the application must
call bik_bind with buffer as NULL.

Common Libraries Reference Manual 105

Bulk-Library client programming

106

Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column valuesfor asinglerow from the bound variablesinto
the database. For array binding, an array isbound to each column, and
multiple rows are transferred by each call to blk_rowxfer_muilt. In
either case, the application also bindsindicator and datalen variables
to the column as well. These are used to indicate the condition of the
data to be transferred.

The discussion in this chapter assumes that array binding isnot in
effect. See blk_bind in Chapter 4, “Bulk-Library Routines.”

8 Transfersthe data.

While data remains to be transferred, the application places datainto the
program variables that are bound to the table columns, then calls
blk_rowxfer_mult to transfer the row.

Before each call to blk_rowxfer_mult, for each bound column, the
application sets datalen and indicator values to specify what value should
be inserted:

datalen value indicator value Result

>0 Any (isignored). blk_rowxfer_mult reads datalen
bytes from buffer as the column
value.

0 0 The column’s default value, if

available, isinserted. If nodefaultis
available, NULL isinserted.

0 -1 NULL isinserted.

If the row contains columns whose dataiis being transferred in chunks, the
application calls blk_textxfer in aloop for each column. Data being
transferred viablk_textxfer must reside at the end of the row, following any
bound columns.

The application can call blk_done(CS BLK_BATCH), if needed, to send
abatch of rows. This call instructs the Adaptive Server Enterprise to
permanently save al rowstransferred since the application’slast blk_done
call.

Callsblk_done(CS BLK_ALL)tosendthelast batch of rowsandindicate
that the bulk-copy operation is complete.

Open Client and Open Server

CHAPTER 3 Bulk-Library

10 Callsblk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between callsto blk_rowxfer_mult to
specify adifferent program variable address or length.

Program structure for bulk-copy-in operations

Most applications use a program structure similar to the following pseudocode
to perform a bulk-copy-in operation:

ct_con_props to set connection properties
ct_connect to open the connection

blk alloc to allocate a CS BLKDESC

blk init to initiate the bulk copy

for each column
(optional: blk describe to get a description of
the column)
(optional: blk default to get the column’s default
value)
blk bind to bind the column to a program
variable, or to mark the column for transfer
via blk_textxfer
endfor

while there’s data to transfer
if it’s time to save a batch of rows
blk done (CS BLK BATCH)
endif
copy row values to program variables
call blk rowxfer mult to transfer the row data

if data is being transferred via blk textxfer
for each column to transfer
while there’s data for this column
blk textxfer to tranfer a chunk of data
endwhile
endfor
endif
endwhile
blk done (CS_BLK_ALL)
blk drop to deallocate the CS_ BLKDESC

Common Libraries Reference Manual 107

Bulk-Library client programming

Bulk-copy-out operations

The bulk-copy-out process reads rows from the server and places the column
values into program variables.

The bulk-copy-out process

108

A typical application followsthese stepsto perform abulk-copy-out operation:

1

2
3
4

Calls ct_con_props to set the required properties to open the connection.
Calls ct_connect to open the connection.

Callsblk_alloc to alocate a bulk-descriptor structure.

For each column of interest, the application:

¢ (Optional) Callsblk_describeto retrieve acolumn’sdescription. This
stepisnecessary if an application lacks information about a column’s
datatype or size.

¢ (Optional) Calls blk_bind to bind a program variable to the source
column. If the data for acolumn will be transferred via blk_textxfer,
call blk_bind with *buffer as NULL.

Columns can be bound either to scalar variables or to arrays. When
columns are bound to scalar variables, each call to blk_rowxfer_mult
transfers column values for asingle row into the bound variablesinto
the database. For array binding, an array isbound to each column, and
multiple column values are transferred into each array by each call to
blk_rowxfer_mult.

The discussion in this chapter assumesthat array binding is not used.
See blk_bind in Chapter 4, “Bulk-Library Routines’

Transfers the data by calling blk_rowxfer_mult in aloop:

The application calls blk_rowxfer_mult repeatedly to transfer each row to
program variables until blk_rowxfer_mult returns CS_END_DATA.

If the row contains columns whose data is transferred in chunks, the
application calls blk_textxfer in aloop for each column. Data being
transferred viablk_textxfer must reside at the end of the row, following any
bound columns.

Open Client and Open Server

CHAPTER 3 Bulk-Library

For example, suppose an application bulk-copiescolumns 1, 3,5, 7, and 9
and must call blk_textxfer to copy columns 7 and 9. The application calls
blk_bind oncefor each column, passing buffer asNULL for columns7 and
9. After calling blk_rowxfer_mult to transfer arow from the table, the
application must call blk_textxfer in aloop to copy the datafor column 7
and then call blk_textxfer in another loop to copy the data for column 9.

6 Callshlk_done(CS BLK_ALL)toindicatethat the bulk-copy operationis
complete.

7 Callsblk_drop to deallocate the bulk-descriptor structure.

Note An application can call blk_bind between callsto blk_rowxfer_mult to

specify different program variable address or length.

Program structure for bulk-copy-out operations

Most applications use a program structure similar to the following pseudocode

to perform a bulk-copy-out operation:

ct_con_props to set connection properties
ct_connect to open the connection
blk alloc to allocate a CS BLKDESC
blk init to initiate the bulk copy
for each column of interest
(optional: blk _describe to get a description of
the column)
blk bind to either bind the column to a program
variable or to indicate that blk textxfer will
be used to transfer data for the column.
endfor
while there’s data to transfer
call blk rowxfer mult to transfer the row data
pull data from program variables to a permanent
location, if desired.
if data is being transferred via blk textxfer
for each column to transfer
while there’s data for this column
blk_textxfer to tranfer a chunk of data
endwhile
endfor
endif
endwhile
blk done (CS_BLK ALL)
blk_drop to deallocate the CS_BLKDESC

Common Libraries Reference Manual

109

Bulk-Library gateway programming

Copying to and from Secure Adaptive Server Enterprise

Each row in a Secure Adaptive Server Enterprise table has asensitivity column,
which contains the sensitivity label for the row. Secure Adaptive Server
Enterprise uses sensitivity labels to mediate access to data.

When bulk copying into or from a Secure Adaptive Server Enterprisetable, an
application can choose whether or not to include the table's sensitivity column
in the bulk-copy operation.

To include the sensitivity column, an application sets the
BLK_SENSITIVITY_LBL property to CS_TRUE.
BLK_SENSITIVITY_LBL has adefault value of CS_FALSE, which means
that by default the sensitivity column is not included.

Users copying into the sensitivity column must have the bepin_labels_role
activated on Secure Adaptive Server Enterprise. If auser does not have this
role, the bulk-copy operation fails. See your Secure Adaptive Server Enterprise
documentation for more information on setting thisrole.

Bulk-Library gateway programming

110

The server-side Bulk-Library routines are designed to be used in gatewaysin

conjunction with the client-side routines. Note that Open Server applications

must have available avalid CS_CONNECTION structure (set up with Client-
Library calls) to call Bulk-Library routines.

Open Server provides bulk-copy functionality that allows gateway Open
Server applications to filter bulk-copy data. A gateway Open Server can
examine each row of abulk-copy operation and implement any of the
following filters:

e Discard certain rows while keeping others,
e Send al rowsto the remote server, or

¢ Route bulk-copy requests to multiple remote servers based on the row
content, as shown in the diagram below.

Open Client and Open Server

CHAPTER 3 Bulk-Library

Figure 3-1: Gateway routing bulk-copy requests

Client sends Gateway mutes

bhulk-copy-in row datatotahle T
rows fortable T

on Serverl, Server2,
or Server3 depending

A gateway’s client can issue two types of bulk requests, a TDStext/image
insert request or a TDS bulk-copy request. In the case of a TDS text/image
insert, the client simply wishesto send atext or image stream. In the case of a
TDS bulk-copy request, the client is actually initiating a bulk-copy request. In
both cases, the request handling involves processing both language
(SRV_LANGUAGE) events and bulk (SRV_BULK) events.

An Open Server application processes both requests using two event handlers:
SRV_LANGUAGE and SRV_BULK. Inside the SRV_LANGUAGE event
handler, the application determines which kind of bulk request has been issued
by the client and records this information internally. In addition, if the request
isfor bulk copy, the application allocates and initializes a bulk-descriptor
structure. Inside the SRV_BULK handler, the application retrieves the request
type and then processes the data accordingly.

Thediscussion in this section assumes that the gateway application isintended
to accept both bulk-copy insert requests and text/image insert requests. For a
description of how to handle text/image insert commands only, see the “ Text
and Image” topics page in the Open Server Server-Library/C Reference
Manual.

Note Bulk-Library reportserrorsresulting from callsto server-sideroutines as
Server-Library errors. Applicationsthat call server-side Bulk-Library routines
should install a Server-Library error handler to receive notification of these
errors.

Common Libraries Reference Manual 111

Bulk-Library gateway programming

Inside the SRV_LANGUAGE event handler

If youintend for your gateway application to handle either type of bulk request,
you must code the SRV_LANGUAGE event handler to parse for the phrase
“insert bulk” or “writetext bulk.” These phrases indicate the following:

“Insert Bulk” requests

The phrase“insert bulk” indicatestheinitiation of abulk-copy request; the
request handling will be started in the language handler and finished in the
SRV_BULK handler.

The phrase “writetext bulk” indicates that the client will issue a stream of
text or image bytes to be handled in the SRV_BULK event handler.

The text of an “insert bulk” language request looks like this:

insert bulk tablename [with nodescribe]

where “with nodescribe” is optional.
In response, the SRV_LANGUAGE event handler should:

1

Record the bulk type internally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTY PE, and bufp pointing to a
value of SRV_BULKLOAD.

Continue parsing to extract the table name, which is an argument to the
blk_init routine. The table nameisin the form of
“database.owner.tablename”, without slice information. If asliceis used
for the bulk insert command, the colon and slice number must be removed
from the table name.

Allocate a bulk-descriptor structure, CS BLKDESC, with acall to
blk_alloc.

Initialize the client half of the exchange with acal to blk_init.

If “with nodescribe” is specified, it means that this datais part of a batch,
and the table into which the bulk data will be loaded has already been
described. The application need not call blk_srvinit a second time.

If “with nodescribe” is not specified, initialize the server half of the
exchange with acall to blk_srvinit.

“Writetext Bulk” requests
Thetext of a“writetext bulk” language request 1ooks like this:

112

Open Client and Open Server

CHAPTER 3 Bulk-Library

writetext bulk dbname.tblname.colname textptr
[timestamp=timestamp] [with log]

where the timestamp and logging indicator are optional .
In response, the SRV_LANGUAGE event handler should:

1 Record the bulk typeinternally by calling srv_thread_props with cmd set
to CS_SET, property set to SRV_T_BULKTY PE, and bufp pointing to a
value of SRV_TEXTLOAD, SRV_IMAGELOAD, or
SRV_UNITEXTLOAD.

2 Continue parsing to extract the object name, whichisgenerally of theform
“dbname.tblname.colname” . This name can then be stored in the name and
namelen fields of aCS_|ODESC structure, which can later be used in the
SRV_BULK event handler as an argument to ct_data_info, if the data
stream is being passed on to a server in a gateway application.

3 Continue parsing to extract the text pointer, which will appear as alarge
hexadecimal number. Once converted from a character string to an actual
CS _BINARY value, thetext pointer and its length are stored in the textptr
and textptrlen fields of the CS_IODESC structure.

4 Continue parsing to extract the timestamp, which, if present, will appear
as “timestamp = large_hexadecimal_number” . Once converted from a
character string to an actual CS_BINARY value, the timestamp and its
length can be stored in the timestamp and timestamplen fields of the
CS_|IODESC structure.

5 Finaly, parse to extract the logging indicator, which, if present, will
appear as“withlog”. If thisindicator is present, thelog_on_update field of
the CS_|ODESC structure should be set to CS_ TRUE.

Inside the SRV_BULK event handler

Insidethe SRV_BULK event handler, the application must respond to the bulk
request that triggered the handler. However, its response depends on which
type of bulk request the client issued. The application retrievesthe request type
by calling srv_thread_props with cmd set to CS_GET and property set to
SRV_T_BULKTYPE.

Common Libraries Reference Manual 113

Bulk-Library gateway programming

114

If the request typeis SRV_TEXTLOAD, SRV_IMAGELOAD, or
SRV_UNITEXTLOAD, the application reads the text or image data from the
client in chunks, using the srv_text_info and srv_get_text routines. For details,
see the “ Text and Image” topics page in the Open Server Server-Library/C
Reference Manual.

If the request typeis SRV_BULKLOAD, the application processes the bulk-
copy rows using a combination of client-side and server-side routines. To
process the bulk-copy rows, the SRV_BULK event handler should:

1

Cdl blk_rowalloc to dlocate aCS BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

Call blk_getrow to retrieve the formatted row from the client. This call
retrieves all column data except columns of type text, image, sensitivity,
or boundary. The gateway can process these later. If the row containstext,
image, sensitivity, or boundary data, blk_getrow returns

CS BLK_HASTEXT. Otherwisg, it returns CS_SUCCEED. If there are
no more rows, the bulk-copy operation is complete and blk_getrow returns
CS_END_DATA.

If the gateway must examine the row content (for example, to route rows
to particular remote servers or reject data), it calls blk_colval to examine
the value of each column in the bulk row.

Cdll the client-side routine blk_sendrow to send the formatted rowsto the
remote server.

If an incoming bulk row contains text, image, sensitivity, or boundary
data, the server portion of the gateway calls blk_gettext to retrieve the
row’s text, image, sensitivity, or boundary portion. The handler callsthe
client-side routine blk_sendtext to send it on to the remote server.

Cadl blk_rowdrop to deallocatethe CS_BLK _ROW structure allocated by
blk_rowalloc.

Cdll the client-side routine blk_done to indicate that the batch or bulk-
copy operation is complete.

Cadll blk_drop to deallocate the bulk-descriptor structure.

Open Client and Open Server

CHAPTER 3 Bulk-Library

Example

The Open Server sample program ctos.c includes code to process bulk-copy
requests.

Common Libraries Reference Manual 115

Bulk-Library gateway programming

116 Open Client and Open Server

CHAPTER 4

This chapter contains a reference page for each Bulk-Library routine.

Bulk-Library Routines

Routines Description Page

blk_aloc AllocatesaCS BLKDESC structure. 118

blk_bind Binds a program variable and a database column. 120

blk_colval A server-side routine, obtains the column value from a 132
formatted bulk copy row.

blk_default Retrieves a column’s default value. 134

blk_describe Retrieves a description of a database column. 135

blk_done AllocatesaCS_CONTEXT structure. 138

blk_drop Deallocatesa CS_BLKDESC structure. 141

blk_getrow A server-sideroutine, retrieves and stores aformatted bulk | 143
COpy row.

blk_gettext A server-side routine, retrievesthe text, image, sensitivity, | 144
or boundary portion of an incoming bulk copy formatted
row.

blk_init Initiates a bulk copy operation. 146

blk_props Sets or retrieve bulk descriptor structure properties. 149

blk_rowalloc A server-side routine, allocates space for aformatted bulk | 155
COpy row.

blk_rowdrop A server-sideroutine, frees space previously allocated for a | 156
formatted bulk copy row.

blk_rowxfer Transfers one or more rows during a bulk copy operation | 156
without specifying or recelving arow count.

blk_rowxfer_mult Transfers one or more rows during a bulk copy operation. | 160

blk_sendrow A server-side routine, sends aformatted bulk copy row 164
obtained from blk_getrow.

blk_sendtext A server-side routine sends text, image, sensitivity, or 166
boundary datain aformatted bulk copy row obtained from
blk_sendtext.

blk_srvinit A server-side routine, copies descriptions of server table 167
columnsto the client, if required.

blk_textxfer Transfers a column’s data in chunks during a bulk copy 168

Common Libraries Reference Manual

operation.

117

blk_alloc

blk alloc

Description

Syntax

Parameters

118

Allocatesa CS BLKDESC structure.
CS_RETCODE blk_alloc(connection, version, blk_pointer)

CS_CONNECTION *connection;

CS_INT version;
CS_BLKDESC **plk_pointer;
connection

A pointer to aCS_CONNECTION structure that has been allocated with
ct_con_alloc and opened with ct_connect. A CS_CONNECTION structure
contains information about a particular client/server connection.

The connection must not have any pending results.

version
The intended version of Bulk-Library behavior. During initialization,
version'svalueis checked for compatibility with Client-Library’s version
level. version can take the following values:

Compatible Client-Library
Value Meaning version level(s)
BLK_VERSION_100 | Version 10.0 behavior CS VERSION_110,

CS VERSION_100

BLK_VERSION_110 | Version 11.0 behavior Same as BLK_VERSION_100

BLK_VERSION_120 | Version 12.0 behavior Same as
BLK_VERSION_100, 110

BLK_VERSION_125 | Version 12.5 behavior Same as
BLK_VERSION_100, 110,
120

BLK_VERSION_150 | Version 15.0 behavior Same as
BLK_VERSION_100, 110,
120, 125
BLK_VERSION_155 | Version 15.5 behavior Same as
BLK_VERSION_100, 110,
120, 125, 150

Note BLK_VERSION_100 can only be used with Open Client and Open
Server versions 11.x and higher, regardless of whether the context/ctlib is
initialized to CS_ VERSION_100 or CS VERSION_110.

The application’s Client-Library version level is determined by the call to
ct_init that initializes the connection’s parent context structure.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Examples

/*

blk_pointer
The address of a pointer variable. blk_alloc sets*blk_pointer to the address
of anewly allocated CS BLKDESC structure.

In case of error, blk_alloc sets *blk_pointer to NULL.

blk_alloc returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

The most common reason for ablk_alloc failureis alack of adequate memory.

** BulkCopyIn/()
** ExX tabname is globally defined.

*/

CS_STATIC CS_RETCODE
BulkCopyIn (connection)
CS_CONNECTION *connection;

{

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt; /* variable descriptions */
Blk Data *dptr; /* data for transfer */
CS_INT datalen(5]; /* variable data length */
CS_INT len;

CS_INT numrows ;

/*

* K
* K
* K
* K
*/
if

}

Ready to start the bulk copy in now that all the
connections have been made and have a table name.
Start by getting the bulk descriptor and
initializing.

(blk alloc (connection, BLK VERSION 100, &blkdesc)
!= CS_SUCCEED)

ex_error ("BulkCopyIn: blk alloc() failed");
return CS_FAIL;

if (blk_init (blkdesc, CS_BLK IN,

Ex tabname, strlen(Ex tabname)) == CS_FAIL)

ex error ("BulkCopyIn: blk init () failed");

Common Libraries Reference Manual 119

blk_bind

}
/*

return CS_FAIL;

** Bind the variables to the columns and send the rows,
** and then clean up.

*/

...CODE DELETED

return CS_SUCCEED;

}

Usage

See also

blk_bind

Description

Syntax

Parameters

120

A CS BLKDESC structure, also called abulk-descriptor structure, isthe
control structure for sending and receiving bulk-copy data. It isahidden
structure that contains information about a particular bulk-copy operation.

Before calling blk_alloc, an application must call the Client-Library
routines ct_con_alloc and ct_connect to allocate aCS CONNECTION
structure and open the connection.

blk_alloc must be the first routine called in a bulk-copy operation.

MultipleCS BLKDESC and CS_COMMAND structures can beallocated
on a connection, but only one CS BLKDESC or CS COMMAND
structure can be active at atime. See blk_init on page 146 in this chapter.

To dedllocatea CS_BLKDESC structure, an application can call blk_drop.

blk_drop, blk_init, ct_con_alloc, ct_connect

Bind a program variable to a database column.

CS_RETCODE blk_bind(blkdesc, colnum, datafmt, buffer,

datalen, indicator)

CS_BLKDESC *blkdesc;

CS_INT colnum;
CS_DATAFMT *datafmt;
CS_VOID *puffer;
CS_INT *datalen;
CS_SMALLINT *indicator;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesaCS BLKDESC structure.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

colnum
The number of the column to bind to the program variable. Thefirst column
in atableis column number 1, the second is number 2, and so forth. Only
visible columns are counted.

Note Setting the ct_options parameter to CS_OPT_HIDE_VCC or
CS_OPT_SHOW_FI influences which columns are visible.

If CS_ OPT_HIDE_VCCissetto CS TRUE, Virtual Computed Columns
(VCC) are not visible and not represented by column numbersin blk_bind.
Similarly, if CS_OPT_SHOW _FI remainsas CS_FAL SE, Functional Indexes
(FI) are not visible and a so not represented by column numbersin blk_bind.

See the Open Client Client-Library/C Reference Manual.

datafmt
A pointer to the CS_DATAFMT structure that describes the program
variable to bind to the column.

Table 4-1 lists the fields in *datafmt that are used by blk_bind and contains
general information about the fields. blk_bind ignores fields that it does not
use:

Common Libraries Reference Manual 121

blk_bind

Table 4-1: Fields in the CS_DATAFMT structure for blk_bind

Field name When used Sets the field to

name Not used. Not applicable.

namelen Not used. Not applicable.

datatype Always. A type constant (CS_xxx_TY PE) representing

the datatype of the program variable.

All type constants listed on the“ Types’ topics
page in the Open Client Client-Library/C
Reference Manual are valid.

Open Client user-defined types are not valid.

blk_bind supports awide range of type
conversions, so datatype can be different from
the column’s type. For instance, by specifying
avariabletypeof CS_FLOAT_TY PE, amoney
column can be bound to aCS_FLOAT
program variable. blk_rowxfer_mult on page
160 or blk_rowxfer on page 156 perform
appropriate conversions when transferring
data. For alist of the data conversions
provided by Client-Library, seecs _convert on
page 27 in Chapter 2, “CS-Library Routines.”

If datatypeis CS BOUNDARY _TY PE or
CS_SENSITIVITY_TYPE, the *buffer
program variable must be of type CS_CHAR.

format When binding | A bit-mask of the following destination types
to character or | and related symbols:

binary-type » For character and text destination types:

S::itg;,a[g " + CS_FMT_NULLTERM to null-
during copy- terminate data.

out operations; ¢ CS FMT_PADBLANK to pad to full
otherwise, variable length with spaces.

CS FMT_UN | « For character, binary, text, and image
USED. destination types:

e CS FMT_PADNULL to pad to full
variable length with nulls.
» For any destination type:
¢ CS FMT_UNUSED if no format
information is provided.
» When using array binding, the only format
flag for bulk-copy-in operationsis
CS BLK_ARRAY_MAXLEN. See“Array
binding” on page 131.

122 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Field name When used Sets the field to
maxlength When binding | The maximum length of the * buffer program
to avariable variable.
length When binding character or binary variables,
datatype. maxlength must describe the total maximum
When binding | length of the program variable, including any
to afixed- space required for special terminating bytes,
length such as anull terminator.
datatype, During a bulk-copy-in operation, maxiength
maxlengthis | specifies the maximum length of the data that
ignored. will be copied from the * buffer program
variable.
During a bulk-copy-out operation, maxlength
is the length of the *buffer program variable.
scale Only when The scale of the program variable.
binding to If the source data is the same type as the
numeric or destination, then scale can be set to
decimal CS_SRC_VALUE toindicate that the
variables. destination should pick up its value for scale
from the source data.
scale must be less than or equal to precision.
precision Only when The precision of the program variable.
binding If the source data is the same type as the
numeric or destination, then precision can be set to
decimal CS SRC_VALUE toindicate that the
destinations. destination should pick up its value for
precision from the source data.
precision must be greater than or equal to
scale.
status Not used. Not applicable.

Common Libraries Reference Manual

123

blk_bind

124

Field name When used Sets the field to
count Always. count is the number of rows to transfer per
blk_rowxfer_mult on page 160 or
blk_rowxfer on page 156 call. If count is
greater than 1, array binding is considered to
bein effect.
During a bulk-copy-out operation, if count is
larger than the number of availablerows, only
the available rows are copied.
count must have the same value for dl
columns being transferred, with one
exception: An application can intermix counts
of 0 and 1. Thisis because when count isO, 1
row istransferred.
usertype Not used. Not applicable.
locale If supplied, A pointer to aCS_LOCALE structure
localeisused. | containing locale information for the * buffer
Otherwise, program variable.
default
localization
applies.
buffer

The address of the program variable to be bound to the column specified by

colnum.

For a bulk-copy-in operations, *buffer is the program variable from which
blk_rowxfer_mult copies the data.

For bulk-copy-out operations, buffer* is the program variable in which
blk_rowxfer_mult places the copied data. If datafmt—>maxlength indicates
that * buffer is not large enough to hold the copied data, blk_rowxfer_mult
truncates the data at row transfer time. If this occurs, Bulk-Library sets
*indicator to the actual length of the available data.

A NULL buffer indicates that data for the column will be transferred using

the blk_textxfer routine.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Examples

/*

** BulkCopyIn/()

datalen
A pointer to the length, in bytes, of the * buffer data.

For bulk-copy-in operations:

If *buffer isnot NULL, * datalen representsthe actual length of the data
contained in the * buffer program variable. An application must set this
length before calling blk_rowxfer_mult or blk_rowxfer to transfer
rows. In case of variable-length data, the length may be different for
each row. If the dataisfixed-length, * datalen can be CS_UNUSED,
except for array binding. If *datalenis0, thevalue of *indicator isused
to determine whether the column’s default value or aNULL should be
inserted. See Table 4-2 on page 129 for details.

If *buffer isNULL (indicating that the datawill be transferred with
blk_textxfer), * datalen indicates the total length of the value to be
transferred.

For bulk-copy-out operations:

*datalen represents the actual length of the data copied to * buffer.
blk_rowxfer_mult or blk_rowxfer sets* datalen each timeitiscaled to
transfer arow.

Since blk_rowxfer_mult or blk_rowxfer sets datalen each timeitiscalled
to transfer arow, the datalen parameter must remain local to the
function calling blk_bind() and blk_rowxfer(), or blk_rowxfer_mult().
Failure to do so causesinvalid results.

indicator
A pointer to aCS_INT variable, or for array binding, an array of CS_INT.
At row-transfer time, blk_rowxfer_mult or blk_rowxfer read the indicator’s
contents to determine certain conditions about the bulk-copy data.

blk_bind returns:

Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_bind returns CS_FAIL if the application hasnot called blk_init to initialize
the bulk-copy operation.

** BLKDATA and DATA END are defined in the bulk copy

Common Libraries Reference Manual 125

blk_bind

** example program.

*/
CS_STATIC CS_RETCODE

BulkCopyIn (connection)

CS_CONNECTION *connection;

{
CS_BLKDESC *blkdesc;
CS_DATAFMT datafmt;
Blk Data *dptr;
CS_INT datalen[5];
CS_INT len;
CS_1INT numrows ;

/*

* %
* %
* %
*/

.CODE DELETED.. ...
/*
* %

** transfer the data.

/* variable descriptions */
/* data for transfer */
/* variable data length */

Ready to start the bulk copy in now that all the
connections have been made and have a table name.
Start by getting the bulk descriptor initializing.

Bind the wvariables to the columns and

*/

datafmt.locale = 0;
datafmt.count = 1;

dptr = BLKDATA;

while (dptr->pub_id != DATA END)

{

datafmt.datatype
datafmt.maxlength

datalen[0] = CS_UNUSED;
if (blk_bind(blkdesc, 1,
&datalen[0], NULL)

ex error ("BulkCopyIn: blk bind (1)

return CS_FAIL;

}

datafmt.datatype
datafmt.maxlength

CS_INT TYPE;
sizeof (CS_INT) ;

&datafmt, &dptr-s>pub id,
!= CS_SUCCEED)

failed") ;

CS_CHAR TYPE;
MAX PUBNAME -

1;

datalen[1l] = strlen(dptr->pub name) ;
if (blk_bind(blkdesc, 2, &datafmt, dptr->pub name,
&datalen[1], NULL) != CS_SUCCEED)

126

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

ex_error ("BulkCopyIn: blk bind(2) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX PUBCITY - 1;

datalen[2] = strlen(dptr->pub city);
if (blk_bind(blkdesc, 3, &datafmt, dptr-spub city,
&datalen[2], NULL) != CS_SUCCEED)

{

ex_error ("BulkCopyIn: blk bind(3) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX PUBST - 1;

datalen[3] = strlen(dptr->pub st);
if (blk bind(blkdesc, 4, &datafmt, dptr-spub_ st,
&datalen[3], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(4) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX BIO - 1;

datalen[4] = strlen((char *)dptr->pub bio);
if (blk bind(blkdesc, 5, &datafmt, dptr->pub bio,
&datalen[4], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(5) failed");
return CS_ FAIL;

f (blk rowxfer (blkdesc) == CS_FAIL)

ex _error ("BulkCopyIn: blk rowxfer() failed");
return CS FAIL;

}

dptr++;

}

/* Mark the operation complete and then clean up */
...CODE DELETED.....

return CS_SUCCEED;

Usage * Dblk_bind isaclient-side routine.

Common Libraries Reference Manual 127

blk_bind

blk_bind binds program variables to table columns in the database. Once
variables are bound, subsequent callsto blk_rowxfer_mult copy row data
between the database and the bound variables. The copy direction is
determined by the application’s earlier call to blk_init.

When copying into a database, an application must call blk_bind once for
each column in the database table. When copying out, an application need
not call blk_bind for columnsin which it has no interest.

To indicate that a column value will be transferred using blk_textxfer, an
application callsblk_bind with buffer asNULL. A typical application will
use blk_textxfer to transfer large text or image values.

If atext, image, boundary, or sensitivity datatype column is marked for
transfer using blk_textxfer, al subsequent columns of thesetypes must also
be marked for transfer using blk_textxfer. For example, an application
cannot mark the first text column in arow for transfer using blk_textxfer
and then bind a subsequent text column to a program variable.

An application can call blk_bind in between calls to blk_rowxfer_mult to
reflect changesin avariable’'s address or length. If an application calls
blk_bind multiple times for a single column or variable, only the last
binding takes effect.

An application can call blk_describeto initializeaCS DATAFMT
structure that describes the format of a particular column.

blk_bind for bulk-copy-in operations

Table 4-2 summarizes blk_bind usage when used for bulk-copy-in operations.
For information on datafmt fields, see Table 4-1 on page 122.

128

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Table 4-2: blk_bind parameter values for bulk copy in

When calling
blk_bind to

buffer is

datalen is

*indicator is

Bind to ascaar or
array variable from
which
blk_rowxfer_mult
will read column
values

The address of a
program variable
or array

A pointer to avariable or array
that indicates the length of the
vaues to be read from * buffer.

» If *datalenis greater than O,
*datalen values areread from
*puffer and sent asthe
column value.

* When*datalenisO, thevalue
of *indicator is used to
determine whether the
column’s default value (if
any) or NULL should be
inserted.

Theaddressof avariable or array
that suppliesindicator values for
the column.

*indicator isonly considered
when *datalen is O:

e If *indicator isO, the
column’s default value (if
available) isinserted. If no
default value is available, a
NULL isinserted.

e |f *indicator is-1, NULL is
always inserted.

Indicatethat acolumn
value will be
transferred using
blk_textxfer

NULL

Thetota length of the data that
will be sent using blk_textxfer.

In this case, datafmt—
>maxlength isignored.

Ignored.

When aBulk-Library application callsblk_bind in abulk-copy-in operation the
buffer, datalen, and indicator pointers passed to blk_bind arerecorded. Thedata
at thoselocationsmust remain valid until it isread during the call to blk_rowxfer
or blk_rowxfer_mult.

blk_bind for Bulk-Copy-Out operations

Table 4-3 summarizes blk_bind usage when used for bulk-copy-out operations.
For information on datafmt fields, see Table 4-1 on page 122.

Common Libraries Reference Manual

129

blk_bind

Table 4-3: blk_bind parameter values for bulk copy out

When calling
blk_bind to buffer is *datalen is *indicator is
Bind to ascalar or Theaddressof a | A pointer to avariableor to a Theaddressof avariableor array

array variableinto
which
blk_rowxfer_mult
will write column
values

program variable
or array

CS_INT variable for an array,
whereblk_rowxfer_multonpage
160 places the length of the
values written to *buffer.

that suppliesindicator valuesfor
the column.

blk_rowxfer_mult sets

*indicator asfollows:

e -lindicatesthedataisnull.

» Oindicates good data.

» A value greater than 0
indicates truncation occurred.

Thevaueisthe actual length
of the available data.

Indicatethat acolumn
value will be
transferred using
blk_textxfer

NULL

Ignored.

Inthis case, datafmt—>maxlength
represents the length of the
*huffer data space.

Ignored.

130

Specifying Null values for Bulk Copy into the database

¢ When copying in, an application can instruct blk_rowxfer_mult to use a
column’s default value by setting * datalen to O and * indicator to O before
calling blk_rowxfer_mult. If no default value is defined for the column,

blk_rowxfer_mult insertsa NULL value.

e Toinstruct blk_rowxfer_mult to insert aNULL regardless of acolumn’s
default value, set *datalen to 0 and *indicator to -1 before calling
blk_rowxfer_mult.

Clearing bindings

¢ Toclear abinding, call blk_bind with buffer, datafmt, datalen, and
indicator as NULL. Otherwise, bindings remain in effect until an
application callsblk_donewith typeasCS BLK_ALL toindicatethat the
bulk-copy operation is complete.

¢ Toclear all bindings, pass colnumas CS_UNUSED, with buffer, datafmt,
datalen, and indicator as NULL. An application typically clears all
bindings when it needs to change the count that is being used for array

binding.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Array binding

e Array binding isthe process of binding a column to an array of program
variables. At row-transfer time, multiple rows of the column are
transferred either to or from the array of variables with asingle
blk_rowxfer_mult call. An application indicates array binding by setting
datafmt—>count to avalue greater than 1.

» Array binding works differently for bulk-copy-in and bulk-copy-out
operations.

» For bulk-copy-in operationsthat use array binding, you must call blk_bind
with buffer, datalen, and indicator pointing to arrays. Each length and
indicator variable describes the corresponding datain the buffer array. For
fixed-length data, buffer is always a pointer to an array of fixed-length
values. For variable-length data (specifically character or binary data),
buffer isa pointer to an array of bytes. In the latter case, the packing of
valuescan beloose or dense. The application specifiesthe packing method
for each column by setting flags in the datafmt—>format field:

e Settingthe CS BLK_ARRAY_MAXLEN bit in datafmt—>format
specifies loose packing of valuesin the array. blk_rowxfer_mult
retrievesthe valuei by reading datalen[i-1] bytes starting at the byte
position computed as:

(i -1) * datafmt—>maxlength

« IftheCS BLK_ARRAY_MAXLEN bit is not set in datafmt—
>format, column values must be densely packed for blk_rowxfer_mult.
Each value must be placed in the column array immediately after the
previous value, without padding. blk_rowxfer_mult gets value i by
reading datalen[i-1] bytes starting at the byte position computed as:

datalen[i-2] + datalen[i-3] + ... + datalen[0]

In other words, the first value starts at O, the second at datalen[(Q], the
third at datalen[1] + datalen[Q], and so forth.

For example, consider a character column that will receive the values
“girl,” “boy,” “man,” and “woman,” and assume that this column is bound
with datafmt—>maxlength passed as 7. With loose array binding, the buffer
and datal en contents would be:

buffer: girl boy man woman
0 7 14 21
datalen: 4, 3, 3, 5

With densely-packed array binding, the buffer and datalen contentswould
be:

Common Libraries Reference Manual 131

blk_colval

See also

blk_colval

Description

Syntax

Parameters

132

buffer: girlboymanwoman
0 4 7 10
datalen: 4, 3, 3, 5

¢ For bulk-copy-out operations, array binding performed with blk_bind
works the same as array binding performed with ct_bind. Column arrays
for bulk-copy-out are always loosely packed.

e Whileusing array binding during a bulk-copy-out operation, it is possible
for conversion, memory, or truncation errors to occur while
blk_rowxfer_mult iswriting to the destination arrays. In this case,
blk_rowxfer_mult writesapartia result to the destination arraysand returns
CS ROW FAIL.

« If array binding isin effect (for either direction), an application cannot use
blk_textxfer to transfer data.

blk_describe, blk_default, blk_init

A server-side routine, obtains the column value from a formatted bulk-copy
row.

CS_RETCODE blk_colval(srvproc, blkdescp, rowp, colnum,
valuep, valuelen, outlenp)

SRV_PROC *Srvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;

CS_INT colnum;
CS_VOID *valuep;
CS_INT valuelen;
CS_INT *outlen;
srvproc

A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains all the information that Server-Library usesto
manage communications and data between the Open Server application and
the client.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Return value

Usage

See also

blkdescp
A pointer to aCS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously alocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the CS_BLK_ROW structurefilled in by aprior call to
blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

colnum
The column number of the column of interest. Column numbers start at 1.

valuep
A pointer to the application buffer in which the column value from the bulk-
copy row is placed.

valuelen
The size, in bytes, of the buffer to which valuep points.

outlen
A pointer toaCS_INT variable. blk_colval sets *outlen to the size, in bytes,
of the column data.

blk_colval returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

e blk_colval isaserver-side routine. After getting the value of a specified
column from aformatted bulk-copy row, it stores the value in an
application buffer.

e Thisroutine performs no implicit data conversion. Use cs_convert to
convert the data.

¢ Toexaminethe column valueafter acall to blk_colval, the application must
know the column’s datatype before making the call.

* An Open Server application cannot use thisroutineto retrieve text, image,
sensitivity, or boundary columns. Use blk_gettext to retrieve such
columns.

blk_getrow, blk_gettext

Common Libraries Reference Manual 133

blk_default

blk default

Description

Syntax

Parameters

Return value

Usage

134

Retrieves a column’s default value.

CS_RETCODE blk_default(blkdesc, colnum, buffer,
buflen, outlen)
CS_BLKDESC *blkdesc;

CS_INT colnum;
CS_VOID *puffer;
CS_INT buflen;
CS_INT *outlen;
blkdesc

A pointer to the CS_BLKDESC that serves as a control block for the bulk-
copy operation. blk_alloc allocatesa CS_BLKDESC structure.

colnum
The number of the column of interest. Thefirst column in atableis column
number 1, the second is number 2, and so forth.

buffer
A pointer to the space in which blk_default will place the default value.

buflen
The length, in bytes, of the * buffer data space.

outlen
A pointer to an integer variable.

If supplied, blk_default sets * outlen to the length, in bytes, of the default
value.

If the default value is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the value.

blk_default returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_default returns CS_FAIL if the application has not called blk_init to
initialize the bulk-copy operation.

e blk_default isaclient-side routine.

¢ Anapplication can call blk_default to find out whether a default valueis
defined for a particular target column, and, if so, what the default valueis.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Thisinformation can be useful while preparing to bulk copy rowsinto a
database. The application can set *datalen and *indicator values to
specify whether a column’s default value should be used. (datalen and
indicator are the addresses of program variables that were bound to the
column with blk_bind). See “ Specifying Null values for Bulk Copy into
the database” on page 130.

e |f the column of interest does not have a default value, blk_default sets
*outlento CS_NO_DEFAULT and returns CS_SUCCEED.

* Anapplication can retrieve column defaults with blk_default only during a
bulk-copy-in operation. The application cannot call blk_default until
blk_init(CS_BLK_IN) returns CS_SUCCEED.

See also blk_bind, blk_describe, blk_init

blk _describe

Description Retrieves a description of a database column.

Syntax CS_RETCODE blk_describe(blkdesc, colnum, datafmt)
CS_BLKDESC *blkdesc;
CS_INT colnum;
CS_DATAFMT *datafmt;

Parameters blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS BLKDESC structure.

colnum
The number of the column of interest. Thefirst column in atableiscolumn
number 1, the second is number 2, and so forth.

datafmt
A pointer to aCS _DATAFMT structure. blk_describe fills *datafmt with a
description of the database column referenced by colnum.

During abulk-copy-in operation, blk_describe fillsin thefollowing fieldsin
the CS DATAFMT:

Common Libraries Reference Manual 135

blk_describe

136

Table 4-4: CS_DATAFMT fields, as set by blk_describe for bulk-copy-in

Field

name blk_describe sets the field to

name The null-terminated name of the column, if any. A NULL nameis
indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.
OindicatesaNULL name.

datatype A type constant representing the datatype of the column. All type
constants listed on the “ Types” topics page are valid, with the
exception of CS_VARCHAR_TYPE and CS_VARBINARY_TY PE.

maxlength | The maximum possible length of the data for the column.

scale The scale of the column.

precision The precision of the column.

During a bulk-copy-out operation, blk_describe fillsin the following fields
inthe CS_DATAFMT:

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Table 4-5: CS_DATAFMT fields, as set by blk_describe for bulk-copy-

out
Field
name blk_describe sets the field to
name The null-terminated name of the column, if any. A NULL nameis
indicated by anamelen of 0.
namelen The actual length of the name, not including the null terminator.
OindicatesaNULL name.
datatype The datatype of the column. All datatypes listed on the “ Types’ topics
page in the Open Client Client-Library/C Reference Manual are valid.
maxlength | The maximum possible length of the data for the column.
scale The scale of the column.
precision The precision of the column.
status A bit mask of the following symbols, combined with a bitwise, OR:
¢« CS _CANBENULL toindicate that the column can contain NULL
values.
e CS _HIDDEN toindicate that this column is a hidden column that
has been exposed. Hidden columns are exposed when the
CS_HIDDEN_KEY Sproperty isset for thebulk descriptor’s parent
connection.
¢ CS_IDENTITY to indicate that the column is an identity column.
¢ CS KEY toindicate the column is part of the key for atable.
¢ CS_VERSION_KEY toindicate the column is part of the version
key for the row.
usertype The Adaptive Server Enterprise user-defined datatype of the column,
if any. usertypeis set in addition to (not instead of) datatype.
locale A pointer toaCS_L OCALE structure that containslocaleinformation
for the data.
Return value blk_describe returns:
Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

blk_describe returns CS_FAIL if colnum does not represent avalid result

column.

Usage * Dblk_describe isaclient-side routine.

* blk_describe describes the format of a database column. The application
can use thisinformation to:

Common Libraries Reference Manual

137

blk_done

See also

blk_done

Description

Syntax

Parameters

138

« Determine the datatype and size requirements for allocating storage
for retrieving rows (for bulk copy out of the database).

e Determine compatibility between program variable datatypes and the
database columns (by calling cs_will_convert to determine whether
the conversion is supported and, if necessary, by checking the data
lengths).

e Perform error checking. For example, the debug version of a bulk-
copy application might call blk_describe to confirm assumptions
about the format of table columns.

¢ Anapplication typically uses a column description while determining
compatible program variable types and sizes.

e Seethe“CS DATAFMT Structure” topics page in the Open Client Client-
Library/C Reference Manual for a complete description of the
CS_DATAFMT structure.

blk_default, blk_init

Marks a complete bulk-copy operation or a complete bulk-copy batch.
CS_RETCODE blk_done(blkdesc, type, outrow)

CS_BLKDESC *blkdesc;

CS_INT type;
CS_INT *outrow;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS_BLKDESC structure.

type
One of the following symbolic values:

Value of type blk_done

CS BLK_ALL Marks a compl ete bulk-copy-in or bulk-copy-out operation.

CS_BLK_BATCH Marks the end of a batch of rowsin a batched bulk-copy-in
operation.

CS BLK_CANCEL | Cancelsabulk-copy batch or bulk-copy operation.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

outrow
A pointer to an integer variable. If typeisCS BLK_BATCH or
CS BLK_ALL, blk_done sets*outrow to the number of rowsbulk copiedto
Adaptive Server Enterprise since the application’s last blk_done call. When
typeisCS_BLK_CANCEL, *outrow is set to 0.

Return value blk_done returns.
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
CS_PENDING Asynchronous network 1/O isin effect. Seethe
“Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

Common reasons for blk_done failure include:
e Aninvalid blkdesc pointer
e Aninvalidvauefor type

Examples

/*
** BulkCopyIn/()
*/

CS_STATIC CS_RETCODE
BulkCopyIn (connection)
CS_CONNECTION *connection;

{

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt; /* variable descriptions */
Blk Data *dptr; /* data for transfer */
CS_INT datalen([5]; /* variable data length */
CS_INT len;

CS_INT numrows ;

/*

** Ready to start the bulk copy in now that all the
** connections have been made and have a table name.
** Start by getting the bulk descriptor initializing.
*/

.CODE DELETED.....

/*

Common Libraries Reference Manual 139

blk_done

Usage

140

Now to bind the variables to the columns and

transfer the data

. .CODE DELETED.....

ALL the rows sent so clear up */
(blk done (blkdesc, CS_BLK ALL, &numrows) == CS FAIL)

ex _error ("BulkCopyIn: blk done() failed");
return CS FAIL;

(blk drop(blkdesc) == CS_FAIL)

ex _error ("BulkCopyIn: blk drop() failed");
return CS_FAIL;

return CS_SUCCEED;

¢ A client-sideroutine called blk_done is hecessary in both client-only and
gateway applications.

Note Setting CS_OPT_NOCOUNT before doing a bulk copy operation
on a connection, causes blk_done to erroneously report errors.

e Cdling blk_done with type asCS BLK_ALL marksthe end of a bulk-
copy operation. Once an application marks the end of a bulk-copy
operation, it cannot call any Bulk-Library routines (except for blk_drop
and blk_alloc) until it begins a new bulk-copy operation by calling
blk_init.

e Cdlingblk_done withtypeasCS BLK_BATCH marksthe end of abatch
of rows in abulk-copy-in operation. CS BLK_BATCH islegal only
during bulk-copy-in operations.

e Cdling blk_done with type as CS BLK_CANCEL cancels the current
bulk-copy operation. Rows transferred since an application’s last
blk_done(CS_BLK_BATCH) call are not saved in the database. Once an
application cancels a bulk-copy operation, it cannot call any bulk-copy
routines (except for blk_drop and blk_alloc) until it initializes a new bulk-
copy operation by calling blk_init.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk_drop

Description

Syntax

Parameters

Return value

Calling blk_done during Bulk-Copy-In operations

* When an application bulk copies data into a database, the rows are
permanently saved only when the application calls blk_done. During a
large data transfer, blk_done(CS_BLK_BATCH) can be called
periodically to “batch” the transmitted rows into smaller units of
recoverability.

« An application can batch rows by calling blk_done with type as
CS BLK_BATCH once every nrows or when thereisalull between
periods of data, asin atelemetry application. This causes all rows
transferred since the application’s last blk_done call to be permanently
saved.

» After saving abatch of rows, an application’sfirst call to blk_rowxfer or
blk_rowxfer_mult implicitly starts the next batch.

e Anapplication must call blk_done withtypeasCS BLK_ALL to sendits
final batch of rows. This call permanently saves the rows, marks the end
of the bulk-copy operation, and cleans up internal bulk-copy data
structures.

Calling blk_done during bulk-copy-out operations

e Aftertransferring thelast row in abulk-copy-out operation, an application
must call bik_done with typeas CS BLK_ALL to mark the end of the
bulk-copy operation and clean up internal bulk-copy data structures.

blk_init, blk_rowxfer, blk_rowxfer_mult

Deallocatesa CS _BLKDESC structure.
CS_RETCODE blk_drop(blkdesc)

CS_BLKDESC *blkdesc;

blkdesc
A pointer to aCS_BLKDESC previoudy allocated through blk_alloc.

blk_drop returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL Theroutine failed.

Common Libraries Reference Manual 141

blk_drop

Examples
/*
** BulkCopyIn/()
*/

CS_STATIC CS_RETCODE
BulkCopyIn (connection)
CS_CONNECTION *connection;

{

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt; /* variable descriptions */
Blk Data *dptr; /* data for transfer */
CS_INT datalen|[5]; /* variable data length */
CS_INT len;

CS_INT numrows ;

/*

** Ready to start the bulk copy in now that all the
** connections have been made and have a table name.
** Start by getting the bulk descriptor initializing.
*/

.CODE DELETED.....

/*
** Now to bind the variables to the columns and
** transfer the data
*/
.CODE DELETED.....

/* ALL the rows sent so clear up */
if (blk _done(blkdesc, CS BLK ALL, &numrows) == CS FAIL)

{

ex_error ("BulkCopyIn: blk done() failed");
return CS_FAIL;

if (blk_drop (blkdesc) == CS_FAIL)
ex_error ("BulkCopyIn: blk drop() failed");

return CS_FAIL;

return CS_SUCCEED;

}

142 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Usage

See also

blk getrow

Description

Syntax

Parameters

Return value

e A CS BLKDESC structure, also called a bulk-descriptor structure,
contains information about a particular bulk-copy operation.

¢ Once abulk-descriptor structure has been deallocated, it cannot be used
again. Toallocateanew CS_BLKDESC, an application can call blk_alloc.

e blk_dropistypically called after blk_done. It must bethelast routinecalled
in a bulk-copy operation.

blk_alloc, blk_done

Server-side routine retrieves and stores a formatted bulk-copy row.

CS_RETCODE blk_getrow(srvproc, blkdescp, rowp)

SRV_PROC *sSrvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;
srvproc
A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. It contains al the information that Server-Library usesto
manage communications and data between the Open Server and the client.

blkdescp
A pointer to aCS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously alocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to aCS_BLK_ROW structure containing space for a formatted
bulk-copy row. Space must have been previously allocated with
blk_rowalloc.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

blk_getrow returns:

Returns Indicates

CS SUCCEED The routine completed successfully.

Common Libraries Reference Manual 143

blk_gettext

Usage

See also

blk gettext

Description

Syntax

144

Returns Indicates

CS END_DATA There are no more rows.

CS BLK_HAS TEXT | Therow contains some text, image, sensitivity, or

boundary data. Use blk_gettext to retrieve the text, image,
sensitivity, or boundary data. Note that a return value of
CS BLK_HAS TEXT implies a successful return, just
like CS_SUCCEED.

CS FAIL The routine failed.

blk_getrow is a server-side routine that is useful in gateway applications.

This routine copies the incoming formatted bulk-copy row into the

CS BLK_ROW structure to which rowp points. The row datais saved
only until thenext call to blk_getrow. Theapplication must have previously
allocated the space for the row using blk_rowalloc.

Once arow has been received through blk_getrow, the application may
examine the contents of any fields (other than text, image, sensitivity, or
boundary fields) using blk_colval.

Use blk_gettext to retrieve text, image, sensitivity, and boundary fields.

A bulk-copy row may subsequently be sent to another server using the
blk_sendrow routine.

An application must read all incoming rows with blk_getrow, until there
are no more rows.

Once blk_getrow returns CS_END_DATA, the application must drop the
space allocated for the row using blk_rowdrop.

blk_colval, blk_gettext, blk_rowalloc

Server-sideroutineretrievesthetext, image, sensitivity, or boundary portion of
an incoming formatted bulk-copy row.

CS_RETCODE blk_gettext(srvproc,blkdescp, rowp, bufp, bufsize, outlenp)

SRV_PROC *srvproc;
CS_BLKDESC *blkdescp;
CS_BLK_ROW *rowp;
CS_BYTE *bufp;

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Parameters

Return value

CS_INT bufsize;
CS_INT *outlenp;
srvproc

A pointer to the SRV_PROC structure associated with the client sending the
bulk-copy row. This structure contains al the information that Server-
Library usesto manage communications and data between the Open Server
application and the client.

blkdescp
A pointer to aCS_BLKDESC structure containing information about bulk-
copy data. This structure must have been previously alocated with acall to
blk_alloc and initialized with a call to blk_init. This structure is used to
interpret incoming formatted bulk-copy rows.

rowp
A pointer to the formatted bulk-copy row read from the client through a
prior call to blk_getrow.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

bufp
A pointer to the application buffer in which Bulk-Library places the text,
image, sensitivity, or boundary data.

bufsize
The size, in bytes, of the space pointed at by bufp.

outlenp

A pointer toaCS_INT variable, which is set to the number of bytes actually
read by blk_gettext. It may be lessthan bufsize. To determine whether all of
thetext, image, sensitivity, or boundary part of the row has been read, check
for areturn code of CS_END_DATA. An *outlenp value that is less than
bufsize does not necessarily indicate the end of arow. For example, it could
indicate the end of atext, image, sensitivity, or boundary column that is not
the last column in the row.

blk_gettext returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS END_DATA There areno moretext, image, sensitivity, or boundary fields

for the current incoming bulk-copy row. Call blk_getrow to
get the next bulk-copy row.

CS FAIL The routine failed.

Common Libraries Reference Manual 145

blk_init

Usage .

blk_gettext is a server-side routine that is useful in gateway applications.

Thisroutineis used with blk_getrow and blk_colval to receive formatted
bulk-copy rows and route them to an Adaptive Server Enterprise. This
routine retrieves the text, image, sensitivity, or boundary portions of the
row.

Bulk-copy rows are formatted so that all text, image, sensitivity, and
boundary fields occur at the end of the row, after al the other types of
fields. To route arow to an Adaptive Server Enterprise, first call
blk_getrow to retrieve all the parts of the row containing other types of
fields. Then, cal blk_colval to retrieve and store portions of the row
containing other types of fields. Decide where thisdatagoesand send it to
the remote server, using blk_sendrow. Call blk_gettext to copy text,
image, sensitivity, or boundary datainto an application buffer. Finally, call
blk_sendtext to send this information to the remote server.

If anincoming bulk-copy row hasany text, image, sensitivity, or boundary
fields, blk_getrow returns CS_BLK_HAS TEXT.

It isnot an error to call blk_gettext if the row contains no text, image,
sensitivity, or boundary fields. The routine simply returns
CS END_DATA.

This routine must be called after blk_getrow. Also, it must be called until
it returns CS_END_DATA, to fully read in a bulk-copy row.

Before rows can be sent to a server, the gateway application must have set
up the bulk-copy operation with a call to blk_init.

Itiscritical that thetablefor which the bulk-copy operation wasinitialized
and the table into which the client is bulk copying are the same table.

See also blk_colval, blk_getrow, blk_gettext, blk_sendtext

blk_init

Description Initiates a bulk-copy operation.
Syntax CS_RETCODE blk_init(blkdesc, direction, tablename,
thamelen)

CS_BLKDESC *blkdesc;
CS_INT direction;

146

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

CS_CHAR *tablename;
CS_INT tnamelen;
Parameters blkdesc

A pointer to the CS_BLKDESC controlling the bulk-copy operation. An
application can allocate a CS_BLKDESC by calling blk_alloc.

The parent connection of the CS_BLKDESC must be open when blk_init is
called and cannot have any pending results.

direction
One of the following symbolic values, to indicate the direction of the bulk-

copy operation:

Value of
direction blk_init
CS BLK_IN Begins abulk-copy operation to upload rowsfrom the client to

the server.

CS BLK_OUT Begins a bulk-copy operation to download rows from the
server to the client.

tablename
A pointer to the name of thetable of interest. Any legal server table nameis
acceptable. The table name cannot contain acolon (:) or slice number.

tnamelen
The length, in bytes, of *tablename. If *tablename is null-terminated, pass
tnamelen as CS_NULLTERM.

Return value blk_init returns:
Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.
CS PENDING Asynchronous network /O isin effect. Seethe
“ Asynchronous Programming” topics pagein the Open
Client Client-Library/C Reference Manual.

A common cause of failure is specifying a non-existent table.

Examples

/*

** BulkCopyIn()

** Ex tabname is globally defined.
*/

CS_STATIC CS_RETCODE

BulkCopyIn (connection)

Common Libraries Reference Manual 147

blk_init

CS_CONNECTION *connection;

{

Usage

148

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt; /* variable descriptions */
Blk_Data *dptr; /* data for transfer */
CS_INT datalen([5]; /* variable data length */
CS INT len;

CS_INT numrows;

/*
* %
* %
* *
* %
*/
if

if

}
/*

* %

* %

*/

Ready to start the bulk copy in now that all the
connections have been made and have a table name.
Start by getting the bulk descriptor and
initializing.

(blk_alloc (connection, BLK VERSION 100, &blkdesc)
= CS_SUCCEED)

ex_error ("BulkCopyIn: blk alloc() failed");
return CS FAIL;

(blk_init (blkdesc, CS_BLK_IN,
Ex tabname, strlen(Ex tabname)) == CS_FAIL)

ex error ("BulkCopyIn: blk init () failed");
return CS FAIL;

Bind the variables to the columns and send the rows,
and then clean up.

.CODE DELETED.....

return CS_SUCCEED;

e blk_init begins a bulk-copy operation.

¢ blk_initisaclient-side routine. However, it is necessary in both client-only
and gateway applications.

¢ MultipleCS BLKDESC and CS_COMMAND structures can exist on the
same connection, but only one CS_ BLKDESC or CS_ COMMAND
structure can be active at the same time.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk_props
Description

Syntax

Parameters

« A bulk-copy operation begun with blk_init must be completed before
the connection can be used for any other operation.

* A bulk-copy operation cannot be started when the connectionisbeing
used to initiate, send, or process the results of other Client-Library or
Bulk-Library commands.

e When abulk-copy operation is complete, an application must call
blk_done with type as CS BLK_ALL to mark the end of the bulk-copy
operation and clean up internal Bulk-Library data structures.

blk_alloc, blk_bind, blk_done, blk_rowxfer_mult

Sets or retrieves bulk-descriptor structure properties.

CS_RETCODE blk_props(blkdesc, action, property,
buffer, buflen, outlen)

CS_BLKDESC *blkdesc;

CS_INT action;
CS_INT property;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;
blkdesc

A pointer to aCS_BLKDESC structure. A bulk-descriptor structure
contains information about a bulk-copy operation. blk_alloc alocates a bulk-
descriptor structure.

action
One of the following symbolic constants:

Value of

action blk_props

CS SET Sets the value of the property

CS GET Retrieves the value of the property

CS CLEAR Clearsthe value of the property by resetting it to its default value
property

A symbolic constant that indicates the property of interest. Table 4-6 on
page 151 lists valid property constants and describes each property.

Common Libraries Reference Manual 149

blk_props

buffer
If aproperty valueisbeing set, buffer pointsto the valueto usein setting the

property.

If aproperty valueis being retrieved, buffer points to the space in which
blk_props will place the requested information.

The C datatype of the value depends on the property. Refer to Table 4-6 on
page 151 for the datatype of the property of interest.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If aproperty valueis being set and the value in *buffer is null-terminated,
pass buflen asCS NULLTERM.

If *buffer is afixed-length or symbolic value, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

If aproperty valueis being set, outlen is not used and should be passed as
NULL.

If aproperty valueis being retrieved and outlen is supplied, blk_props sets
*outlen to the length, in bytes, of the requested information.

If theinformation is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the

information.
Return value blk_props returns:
Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL The routine failed.
Usage e Bulk-descriptor properties define aspects of a specific bulk-copy
operation.

e Applicationsthat set Bulk-Library properties must do so after calling
blk_allocto allocate a bul k-descriptor structure and before calling blk_init
to initiate a specific bulk-copy operation.

e Anapplication can useblk_props to set or retrievethefollowing properties:

150 Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Table 4-6: Client/Server bulk descriptor properties

Property nhame Description *puffer is Applies to | Notes
BLK_CONV Character-set conversion | CS TRUE or IN copies To disable
performed by client. CS FALSE. only character-set
conversion on the
current server
connection, set
CS_NOCHARSE
TCNV_REQD to
CS TRUE. See
the ct_con_props
section in the
Open Client
Client-Library/C
Reference
Manual.
BLK_IDENTITY Whether valuesfor a CS TRUE or IN copies
table'sidentity columnare | CS_FALSE. only
specified explicitly for The defalt is
eachrow tobeinserted. | cg paLSE,
This property cannot be | which indicates
set to CS_TRUE if that identity
BLK_IDSTARTNUM has | valuesareeither:
been set for abulk-copy- |« computed
in operation. from the
starting value
indicated by
BLK_IDSTA
RTNUM, or
» Computed by
Adaptive
Server
Enterprise as
datais
inserted,
based on
existing
identity
valuesin the
table.

Common Libraries Reference Manual

151

blk_props

Property name Description *puffer is Applies to | Notes

BLK_IDSTARTNUM The starting value for A IN copies
identity columnsin CS_NUMERIC | only
inserted rows. The first variable
inserted row uses this containing the
value, and the valueis starting identity
incremented for each value.
subsequent row. Thereisno
This property cannot be | default.
setif BLK_IDENTITY
hasbeen setto CS_ TRUE
for the bulk-copy-in
operation.

BLK_NOAPI_CHK Whether parameter and CS_TRUE or Both IN and
error checking for illegal | CS_FALSE. OUT copies
parameter valuesand state | The default is
transitionsaredisabledfor | cg pa| SE,

Bulk-Library calls. which means
error checking is
performed.

BLK_PARTITION Property to support BCP | A character Both IN and
partitionsfor BCP_IN and | string containing | OUT copies
BCP_OUT operations. the name of the

partition.

BLK_SENSITIVITY_LBL | Whether atable’s CS_TRUE or Both IN and | Secure Adaptive
sensitivity column is CS FALSE OUT copies | Server Enterprise
included in the bulk-copy | (default). only
operation.

BLK_SLICENUM For bulk-copy into a A CS INT IN copies
partitioned table. variable only
Specifies the partition containing a

number that copied rows
areinserted to.

positive value
representing the
partition number.
The default is
CS_UNUSED,
which indicates
that Adaptive
Server
Enterprise will
randomly choose
apartition
number.

152

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

BLK_IDENTITY property

e BLK_IDENTITY determines whether atable’s identity columnis
included in a bulk-copy-in operation.

e BLK_IDENTITY does not affect bulk-copy-out operations.

 IfBLK_IDENTITY isCS_TRUE, the application must supply datafor the
identity column.

If BLK_IDENTITY is CS_FALSE, the application does not need to
supply data for the identity column. In this case, the server suppliesa
default value for the column.

e BLK_IDENTITY worksby setting identity_insert on for the database table
of interest. This allows values to be inserted into the identity column.
When the bulk-copy operation isfinished, theidentity_insert option for the
table isturned off.

See the Adaptive Server Enterprise Reference Manual.

BLK_NOAPI_CHK property

e BLK_NOAPI_CHK can be setto CS_TRUE to disable parameter and
state checking of Bulk-Library calls. The default is CS_FALSE, which
enables parameter checking and state checking of each Bulk-Library call.
These two types of error checking are described below:

e Parameter checking determines whether the application has passed
valid parameters and combinations of parametersin the call.

e Sate checking ensures that calls are made in the required sequence.
For example, blk_init must be called before blk_bind.

The default error checking ensures that your application calls Bulk-
Library routinesin the appropriate manner. With API checking enabled, a
descriptive error message is raised when the application commits a usage
error, and the routine that discovers the error returns CS_FAIL.

Warning! With API checking disabled, Bulk-Library usage errors may
lead to unexpected behavior or even program crashes.

« If your application has been fully tested and completely debugged, you
may seeimproved performance with API checking disabled. Bulk-Library
also cals Client-Library internally, so to get the full benefit, you should
also disable API checking in Client-Library (by calling ct_config to set the
CS NOAPI_CHK context property to CS_TRUE).

Common Libraries Reference Manual 153

blk_props

154

BLK_NOAPI_CHK does not affect testing for errors, such as network
errors or conversion overflow, that can occur in well-behaved
applications.

BLK_SENSITIVITY_LBL property

BLK_SENSITIVITY_LBL isuseful in applications that perform bulk-
copy operations to or from Secure Adaptive Server Enterprise.

BLK_SENSITIVITY_LBL determines whether or not data for the
sensitivity column isincluded in a bulk-copy operation. By default,
sensitivity column datais not included.

BLK_SENSITIVITY_LBL affects both bulk-copy-in and bulk-copy-out
operations.

If BLK_SENSITIVITY_LBL isCS_TRUE, the application must supply
datafor the sensitivity column on bulk-copy-in operations and will receive
data from the sensitivity column on bulk-copy-out operations.

If BLK_SENSITIVITY_LBL isCS_FALSE, the application does not
need to supply datafor the sensitivity column on bulk-copy- in operations
and will not receive data from the sensitivity column on bulk-copy-out
operations.

BLK_SENSITIVITY_LBL isapplicable to Secure Adaptive Server
Enterprise copies only. blk_init failsif BLK_SENSITIVITY_LBL is
CS_TRUE and the application attempts a bulk-copy operation against a
standard Adaptive Server Enterprise.

Application users copying into the sensitivity column must have the
bepin_labels_role role activated on Secure Adaptive Server Enterprise.
blk_init failsif the bcpin_labels_role is not activated for the connection’s
user.

See your Secure Adaptive Server Enterprise documentation.

BLK_PARTITION property

Only one name can be provided. A single BLKLIB operation always
operates on an entire table or on asingle partition. If no partition nameis
provided, the BLKLIB will not operate on a specific partition but on the
entiretable.

This property can be used for both BCP_IN and BCP_OUT operations.
Either BLK_PARTITION or BLK_SLICENUM can be used; if oneisset,
the other is cleared.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk rowalloc

Description

Syntax

Parameters

Return value

Usage

See also

e TheBLK_PARTITION property does not require you to set
CS_VERSION_155 or BLK_VERSION_155.

bik_alloc, blk_init

A server-side routine, allocates space for aformatted bulk-copy row.
CS_RETCODE blk_rowalloc(srvproc, row)

SRV_PROC *sSrvproc;

CS_BLK_ROW **row;

srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library usesto manage communications and data between the Open Server
and the client.

row
A pointer to apointer toaCS_BLK_ROW structure.

The CS_BLK_ROW structure is a hidden structure that holds formatted
bulk-copy rows sent from the client.

blk_rowalloc returns:

Returns Indicates
CS SUCCEED The routine completed successfully.
CS FAIL The routine failed.

e blk_rowalloc is aserver-side routine that is useful in gateway applications.

e Thisroutine alocates space in which blk_getrow will place the formatted
bulk-copy row.

e Therow spaceisused by all callsto blk_getrow.

* When all rows have been retrieved and sent to the remote server, call
blk_rowdrop to drop the space allocated for the row.

blk_getrow, blk_rowdrop, blk_gettext

Common Libraries Reference Manual 155

blk_rowdrop

blk_rowdrop

Description

Syntax

Parameters

Return value

Usage

See also

blk _rowxfer

Description

Syntax

156

A server-side routine, frees space previously allocated for a formatted bulk-
COpy row.

CS_RETCODE blk_rowdrop(srvproc, row)

SRV_PROC *SIvproc;

CS_BLK_ROW *row;

srvproc
A pointer to the SRV_PROC structure associated with the client sending
formatted bulk-copy rows. It contains all the information that Server-
Library uses to manage communications and data between the Open Server
application and the client.

row
A pointer to ahidden CS_BLK_ROW structure that was allocated by a call
to blk_rowalloc.

blk_rowdrop returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

e blk_rowdrop isaserver-side routine that is useful in gateway applications.
e Thisroutine frees space previously allocated by blk_rowalloc.

e It must be caled after al formatted bulk-copy rows have been retrieved
and sent to the remote server.

blk_getrow, blk_rowalloc, blk_gettext

Transfers one or more rows during abulk-copy operation without specifying or
receiving arow count.

CS_RETCODE blk_rowxfer(blkdesc)

CS_BLKDESC *blkdesc;

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Parameters

Return value

Examples
/*
* %
* %

* %

*/

blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS BLKDESC structure.

blk_rowxfer returns:

Table 4-7: blk_rowxfer return values

Returns Indicates

CS SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.

CS_PENDING Asynchronous network /0O isin effect. See the

“Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

CS BLK_HAS TEXT

The row contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer data for
these columns before calling blk_rowxfer to transfer the
next row.

CS_END_DATA

When copying data out from a database, blk_rowxfer
returnsCS_END_DATA toindicatethat all rowshave been
transferred.

When copying datainto a database, blk_rowxfer does not
return CS_END_DATA.

CS ROW_FAIL

A recoverable error occurred while fetching a row.
Applies to bulk-copy-out operations only.

Recoverable errorsinclude memory allocation failuresand
conversion errors (such as overflowing the destination
buffer) that occur while copying row values to program
variables. Inthe case of buffer-overflow errors, blk_rowxfer
sets the corresponding *indicator variable(s) to avalue
greater than 0. Indi cator variables must have been specified
in the application’s callsto blk_bind.

When blk_rowxfer returnsCS_ROW_FAIL, theapplication
must continue calling blk_rowxfer to keep retrieving rows,
or it can call ct_cancel to cancel the remaining results.

BulkCopyIn ()
BLKDATA and DATA END are defined in the bulk copy
example program.

Common Libraries Reference Manual

157

blk_rowxfer

158

CS_STATIC CS_RETCODE
BulkCopyIn (connection)
CS_CONNECTION *connection;

{

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt;/* variable descriptions */
Blk Data *dptr;/* data for transfer */
CS_INTdatalen[5];/* variable data length */
CS_INT len;

CS_INT numrows;

/*
** Ready to start the bulk copy in now that all the
** connections have been made and have a table name.
** Start by getting the bulk descriptor initializing.
*/
.CODE DELETED.....

/*
** Now to bind the variables to the columns and
** transfer the data
*/
datafmt.locale = 0;
datafmt.count = 1;
dptr = BLKDATA;
while (dptr->pub id != DATA END)
{
datafmt.datatype = CS_ INT TYPE;
datafmt.maxlength = sizeof (CS_INT) ;
datalen[0] = CS_UNUSED;

if (blk_bind(blkdesc, 1, &datafmt, &dptr->pub_ id,
&datalen[0], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind (1) failed");
return CS_FAIL;
}
datafmt.datatype = CS_CHAR TYPE;
datafmt.maxlength = MAX PUBNAME - 1;

datalen[1l] = strlen(dptr->pub name) ;
if (blk _bind(blkdesc, 2, &datafmt, dptr->pub name,
&datalen[1l], NULL) != CS_SUCCEED)

ex _error ("BulkCopyIn: blk bind(2) failed");
return CS_FAIL;

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

datafmt.maxlength = MAX PUBCITY - 1;

datalen[2] = strlen(dptr->pub city);
if (blk _bind(blkdesc, 3, &datafmt, dptr-spub city,
&datalen[2], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(3) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX PUBST - 1;

datalen[3] = strlen(dptr-s>pub_st);
if (blk_bind(blkdesc, 4, &datafmt, dptr-spub_ st,
&datalen[3], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(4) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX BIO - 1;

datalen[4] = strlen((char *)dptr->pub bio);

if (blk bind(blkdesc, 5, &datafmt, dptr->pub bio,
&datalen[4], NULL) != CS_SUCCEED)

ex _error ("BulkCopyIn: blk bind(5) failed");
return CS_FAIL;

if (blk _rowxfer (blkdesc) == CS FAIL)

ex_error ("BulkCopyIn: blk rowxfer() failed");
return CS_FAIL;

}

dptr++;

}

/* ALL the rows sent so clear up */
...CODE DELETED.....

return CS_SUCCEED;

Usage « blk_rowxfer isaclient-side routine.

e blk_rowxfer isequivalent to calling blk_rowxfer_mult witha NULL
row_count parameter.

e Seeblk_rowxfer_mult in this chapter.
See also blk_bind, blk_rowxfer_mult, blk_textxfer

Common Libraries Reference Manual 159

blk_rowxfer_mult

blk _rowxfer_mult

Description

Syntax

Parameters

Return value

160

Transfers one or more rows during a bulk-copy operation.
CS_RETCODE blk_rowxfer_mult(blkdesc, row_count)

CS_BLKDESC *blkdesc;
CS_INT *row_count;

blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

row_count

A pointer toaCS_INT variable or NULL.

For bulk-copy-out operations, blk_rowxfer_mult returns with * row_count set
to the number of rows read by the call. If row_count is NULL, this
information is not available to the application. (The application can call
blk_done to determine how many rows have been transferred by the
cumulative number of blk_rowxfer_mult calls since the last blk_done call—
but it is simpler to use arow count variable.

For bulk-copy-in operations, blk_rowxfer_mult sends the number of rows
specified by *row_count to the server. If row_countisNULL or *row_count
is 0, then the number of rows specified by datafmt—>count in previous calls
to blk_bind are sent to the server.

row_count is used by applications that perform array binding. See “Array
binding” on page 131.

blk_rowxfer_mult returns:

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Table 4-8: blk_rowxfer_mult return values

Returns

Indicates

CS_SUCCEED

The routine completed successfully.

CS FAIL

Theroutine failed.

CS PENDING

Asynchronous network /O isin effect. See the
“Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

CS BLK_HAS TEXT

The row contains one or more columns which have been
marked for transfer using blk_textxfer.

The application must call blk_textxfer to transfer datafor
these columns row before calling blk_rowxfer_mult to
transfer the next row.

CS END_DATA

When copying dataout from adatabase, blk_rowxfer_mult
returns CS_END_DATA to indicate that all rows have
been transferred.

When copying datainto adatabase, blk_rowxfer_mult does
not return CS_END_DATA.

CS ROW_FAIL

A recoverable error occurred while fetching a row.
Applies to bulk-copy-out operations only.

blk_rowxfer_mult sets*row_count to indicate the number
of rows transferred (including the row containing the
error) and transfers no rows after that row. The next call
to blk_rowxfer_mult will read rows starting with the row
after the one where the error occurred.

Recoverable errors include memory alocation failures
and conversion errors (such as overflowing the
destination buffer) that occur while copying row valuesto
program variables. In the case of buffer-overflow errors,
blk_rowxfer_mult sets the corresponding * indicator
variable(s) to avalue greater than 0. Indicator variables
must have been specified in the application’s calls to
blk_bind.

When blk_rowxfer_mult returns CS_ROW _FAIL, the
application must continue calling blk_rowxfer_mult to
keep retrieving rows, or it can call ct_cancel to cancel the
remaining results.

A common reason for ablk_rowxfer_mult failure is conversion error.

Usage e blk_rowxfer_mult is a client-side routine.

* An application callsblk_rowxfer_mult to transfer rows between program
variables (bound with blk_bind) and the database table:

Common Libraries Reference Manual

161

blk_rowxfer_mult

e During a bulk-copy-in operation, blk_rowxfer_mult copies data from
program variables to the database.

e During abulk-copy-out operation, blk_rowxfer_mult copies datafrom
the database and placesit in program variables.

Application variables must first be bound to table columns with blk_bind
for blk_rowxfer_mult to read or write their contents.

blk_rowxfer_mult and bulk-copy-in operations

162

To transfer rows into a database, an application calls blk_rowxfer_mult

repeatedly to transfer values from program variablesto the database table.
See “Program structure for bulk-copy-in operations’ on page 107 for the
sequence of Bulk-Library calls used to transfer data into a database table.

During bulk-copy-in operations, the value of blk_rowxfer_mult's
*row_count parameter overrides the array lengths that were passed to
blk_bind (as datafmt—>count). The humber of rows transferred per call is
determined as follows:

e If the application passes the address of arow count variable asthe
row_count parameter, then blk_rowxfer_mult transfers either
datafmt—>count or *row_count rows, whichever is smaller.

e If the application passes row_count as NULL, blk_rowxfer_mult
always transfers datafmt—>count rows.

For example, if an application was uploading 103 rows and it used array
binding to transfer 10 rows at atime, the application would:

¢ Passdatafmt—>count as 10 in all calsto blk_bind
e Set*row_count to 10 for the first 10 calls to blk_rowxfer_mult
e Set*row_count to 3 for thefinal call to blk_rowxfer_mult

To upload row data that contains large text or image column values, you
canforgo array binding and use blk_textxfer together with blk_rowxfer_muilt
to send large values one piece at atime. See “ Transferring large text or
image values in chunks’ on page 163 for details.

A bulk-copy-in operation is not automatically terminated if
blk_rowxfer_mult returns CS_FAIL. An application can continue to call
blk_rowxfer_mult after correcting or discarding the problem row.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

blk_rowxfer_mult and bulk-copy-out operations

» Totransfer rows out of adatabase, an application calls blk_rowxfer_mult
repeatedly to read column values from the server and placethem in
program variables. See “Program structure for bulk-copy-out operations’
on page 109 for the sequence of Bulk-Library calls used to read datafrom
a database table.

» For bulk copies out of adatabase, the use of blk_rowxfer_mult is similar to
the use of the Client-Library ct_fetch routine.

e The number of rowsto be read by blk_rowxfer_mult is determined by the
value passed as datafmt—>count in the application’s calls to blk_bind.
blk_rowxfer_mult attempts to read this number of rows and write the data
to program variables.

Fewer rows may be read by the final call to blk_rowxfer_mult (that is, the
call that retrieves the last row in the table) or if a conversion error occurs
whiledataisbeing retrieved. Theformer conditionisindicated by areturn
code of CS_END_DATA,; the latter, by CS ROW_FAIL. In either case,
blk_rowxfer_mult returnswith *row_count set to the actual number of rows
read.

» Todownload row datathat containslargetext or image column values, you
canforgo array binding and use blk_textxfer together with blk_rowxfer_mult
to read large values one piece at atime. See the following section for
details.

Transferring large text or image values in chunks

« If array binding is not in effect, an application can use blk_textxfer in
conjunction with blk_rowxfer_mult to transfer rows containing large text or
image values. For information on how to do this, see“Bulk-Library client
programming” on page 103.

* For tablesthat contain large text or image columns, it is often convenient
for an application to transfer the text or image data in fixed-size chunks
rather than all at once. If acolumnistransferred all at once, the application
must have sufficient buffer space to hold the value in its entirety.

e Totransfer large column values in chunks:

e Theapplication passes buffer asNULL initsblk_bind cal for the
column. This setting specifies that data for this column will be
transferred using blk_textxfer. For a bulk-copy-in operation, the
application must also specify the length of the column value as
blk_bind's *datalen parameter.

Common Libraries Reference Manual 163

blk_sendrow

See also

blk_sendrow

Description

Syntax

Parameters

Return value

164

e Theapplication calls blk_rowxfer_mult to transfer the row.
blk_rowxfer_mult returns CS_ BLK_HAS _TEXT, indicating that
Bulk-Library expects further datafor this row to be transferred with
blk_textxfer.

e For each column requiring transfer, the application calls blk_textxfer
inaloop until blk_textxfer returnsCS_END_DATA,, indicating that all
of the data for this column has been transferred.

blk_bind, blk_textxfer

A server-side routine, sends a formatted bulk-copy row obtained from
blk_getrow.

CS_RETCODE blk_sendrow(blkdesc, row)

CS_BLKDESC *blkdesc;

CS_BLK_ROW *row;

blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

row
A pointer toaCS_BLK_ROW structure. The CS_BLK_ROW isahidden
structure that holds formatted bulk-copy rows sent from the client. A
gateway application canfill inaCS_BLK_ROW structure with aformatted
row by calling the server-side routine blk_getrow.

blk_sendrow returns:

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Usage

See also

Table 4-9: blk_sendrow return values

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed.

CS BLK_HAS TEXT | Therow contains one or more text, image, sensitivity, or

boundary columns. The application must call blk_gettext
and blk_sendtext to transfer the columns for this row
before calling blk_getrow and blk_sendrow to transfer the
next row.

CS _PENDING Asynchronous network /O isin effect. Seethe

“ Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

blk_sendrow is a server-side routine.

A gateway application uses blk_sendrow in conjunction with blk_getrow.
Together, the two routines enable a gateway application to receive
formatted bulk-copy rowsfrom an Open Client application and send them
onto Adaptive Server Enterprise.

blk_sendrow is a gateway-specific substitute for blk_rowxfer or
blk_rowxfer_mult. An application can call blk_sendrow only after calling
blk_getrow to retrieve aformatted row.

The sequence of callsin the gateway application is:
e blk_getrow, to obtain a formatted bulk-copy row
e blk_sendrow, to send the formatted row to Adaptive Server Enterprise

If blk_getrow returnsCS_ BLK_HAS TEXT, the application must call the
following routines in aloop, until bik_gettext returns CS_END_DATA:

« blk_gettext, to pick up achunk of text, image, sensitivity, or boundary
data

* blk_sendtext, to send a chunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext loop is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

blk_init, blk_sendtext, blk_colval, blk_getrow, blk_gettext

Common Libraries Reference Manual 165

blk_sendtext

blk sendtext

Description

Syntax

Parameters

Return value

Usage

166

A server-side routine, sends text, image, sensitivity, or boundary datain a
formatted bulk-copy row obtained from blk_getrow.

CS_RETCODE blk_sendtext(blkdesc, row, buffer,
buflen)

CS_BLKDESC *blkdesc;
CS_BLK_ROW *row;

CS_BYTE *puffer;
CS_INT buflen;
blkdesc

A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc allocatesa CS BLKDESC structure.

row
A pointer toaCS BLK_ROW structure. The CS_BLK_ROW structureisa
hidden structure that holdsformatted bulk-copy rows sent fromtheclient. A
gateway application canfill inaCS_BLK_ROW structure with aformatted
row by calling the blk_getrow routine.

buffer
A pointer to the space from which blk_sendtext picks up the chunk of text,
image, sensitivity, or boundary data.

buflen
The length, in bytes, of the * buffer data space.

blk_sendtext returns:

Table 4-10: blk_sendtext return values

Returns Indicates

CS SUCCEED The routine completed successfully.

CS FAIL Theroutine failed.

CS_PENDING Asynchronous network /O isin effect. See the
“ Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

¢ blk_sendtext is aclient-side routine.

« A gateway application uses blk_sendtext in conjunction with blk_gettext.
Together, the two routines enabl e agateway application to receive chunks
of text, image, sensitivity, or boundary datain formatted bulk-copy rows
from an Open Client application and send them on to Adaptive Server
Enterprise.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

See also

blk_srvinit

Description

Syntax

Parameters

e blk_sendtext is a gateway-specific substitute for blk_textxfer. An
application can call blk_sendtext only after calling blk_gettext to retrieve a
chunk of text, image, sensitivity, or boundary data belonging to a
formatted row.

* Thesequence of calsin the gateway applicationis.
e blk_getrow, to pick up aformatted bulk-copy row

e blk_sendrow, to send the formatted row to Adaptive Server
Enterprise

If blk_sendrow returns CS_ BLK_HAS TEXT, the application must call
thefollowing routinesin aloop, until blk_gettext returnsCS_END_DATA:

« blk_gettext, to pick up achunk of text, image, sensitivity, or boundary
data

e blk_sendtext, to send a chunk of text, image, sensitivity, or boundary
data

Only one blk_gettext/blk_sendtext l0op is required, no matter how many
text, image, sensitivity, or boundary columns are being transferred.

blk_init, blk_sendrow, blk_colval, blk_getrow, blk_gettext

A server-side routine, copies descriptions of server table columnsto the client,
if required.

CS_RETCODE blk_srvinit(srvproc, blkdescp)

SRV_PROC *srvproc;
CS_BLKDESC *blkdescp;

srvproc
A pointer to the SRV_PROC structure associated with the client receiving
column descriptions. It contains all theinformation that Server-Library uses
to manage communications and data between the Open Server application
and the client.

Common Libraries Reference Manual 167

blk_textxfer

Return value

Usage

See also

blk textxfer

Description

Syntax

168

blkdescp
A pointer to a structure containing information about bulk-copy data. This
structure must have been previously allocated with acall to blk_alloc and
initialized through acall to blk_init. This structure is used to correctly
interpret incoming formatted bulk-copy rows.

blk_srvinit returns:

Returns Indicates
CS_SUCCEED The routine completed successfully.
CS FAIL The routine failed; no action was taken.

e blk_srvinit is a server-side routine that is useful in gateway applications.

e Thisroutine sends the current server table column descriptionsin the
CS BLKDESC structureto theclient, if theclient's TDSversionis 5.0 or
later.

e Thisroutine must be called from within aSRV_LANGUAGE event
handler, in response to an “insert bulk” request from the client.

e Once blk_srvinit has successfully returned descriptions to the client, the
Open Server application’s SRV_BULK event handler can begin reading
bulk data from the client. The event handler first callsblk_rowalloc, then
calls blk_getrow and blk_sendrow in aloop to transfer the bulk-copy
rows.

e blk_init places the descriptionsin the CS_BLKDESC structure, so the
gateway application must call blk_init before calling blk_srvinit.

blk_init, blk_getrow, blk_rowalloc, blk_sendrow

Transfers a column’s data in chunks during a bulk-copy operation.

CS_RETCODE blk_textxfer(blkdesc, buffer, buflen,
outlen)

CS_BLKDESC *blkdesc;

CS_BYTE *puffer;
CS_INT buflen;
CS_INT *outlen;

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

Parameters

Return value

Examples

/*
* %
* %
* %

* %

*/

Cs

blkdesc
A pointer to the CS_BLKDESC that is serving as a control block for the
bulk-copy operation. blk_alloc alocatesa CS BLKDESC structure.

buffer
A pointer to the space from which blk_textxfer picks up the chunk of text,
image, sensitivity, or boundary data.

buflen
The length, in bytes, of the * buffer data space.

outlen
A pointer to an integer variable. outlen is not used for a bulk-copy-in
operation and should be passed as NULL.

For abulk-copy-out operation, * outlen represents the length, in bytes, of the
data copied to * buffer.

blk_textxfer returns:

Table 4-11: blk_textxfer return values

Returns Indicates

CS SUCCEED The routine completed successfully.

CS FAIL The routine failed.

CS END_DATA When copying data out from a database, blk_textxfer returns
CS_END_DATA to indicate that a complete column vaue
has been sent.

When copying datainto a database, blk_textxfer returns
CS_END_DATA when an amount of data equal to
blk_bind’s * datalen has been sent.

CS _PENDING Asynchronous network /O isin effect. See the
“Asynchronous Programming” topics page in the Open
Client Client-Library/C Reference Manual.

BulkCopyIn()

BLKDATA and DATA END are defined in the bulk copy
example program.

_STATIC CS_RETCODE

BulkCopyIn (connection)
CS_CONNECTION *connection;

{

Common Libraries Reference Manual 169

blk_textxfer

170

CS_BLKDESC *blkdesc;

CS_DATAFMT datafmt; /* variable descriptions */
Blk Data *dptr; /* data for transfer */
CS_INT datalen([5]; /* variable data length */
CS_INT len;

CS_INT Nnumrows ;

/*

* %
* %

* %

*/

/*

Ready to start the bulk copy in now that all the
connections have been made and have a table name.
Start by getting the bulk descriptor initializing.

.CODE DELETED.....

Bind columns and transfer rows */

dptr = BLKDATA;
while (dptr->pub_id != DATA END)

{

datafmt.datatype = CS INT TYPE;

datafmt.count = 1;
datafmt.maxlength = sizeof (CS_INT) ;
datalen[0] = CS_UNUSED;

if (blk_bind(blkdesc, 1, &datafmt, &dptr->pub_id,
&datalen[0], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind (1) failed");
return CS_FAIL;
}
datafmt.datatype = CS_CHAR_TYPE;
datafmt.maxlength = MAX PUBNAME - 1;

datalen[1l] = strlen(dptr->pub name) ;
if (blk _bind(blkdesc, 2, &datafmt, dptr->pub name,
&datalen[1], NULL) != CS_SUCCEED)

ex _error ("BulkCopyIn: blk bind(2) failed");
return CS_FAIL;

}

datafmt.maxlength = MAX PUBCITY - 1;

datalen[2] = strlen(dptr->pub _city);
if (blk_bind(blkdesc, 3, &datafmt, dptr-spub city,
&datalen([2], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(3) failed");
return CS_FAIL;

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

datafmt.maxlength = MAX PUBST - 1;

datalen[3] = strlen(dptr->pub st);
if (blk_bind(blkdesc, 4, &datafmt, dptr-s>pub_ st,
&datalen[3], NULL) != CS_SUCCEED)

ex_error ("BulkCopyIn: blk bind(4) failed");
return CS_FAIL;

}

datafmt.datatype = CS_TEXT TYPE;

datafmt.maxlength = MAX BIO - 1;

datalen[4] = strlen((char *)dptr->pub bio);

if (blk _bind(blkdesc, 5, &datafmt, NULL,
&datalen[4], NULL) != CS_SUCCEED)

ex _error ("BulkCopyIn: blk bind(5) failed");
return CS_FAIL;

}

if (blk_rowxfer (blkdesc) == CS_FAIL)

{
ex_error ("BulkCopyIn: EX BLK - Failed on \

blk rowxfer.");

return CS_FAIL;

}

if (blk textxfer (blkdesc, dptr->pub bio,
datalen[4], &len) == CS_FAIL)

{
ex_error ("BulkCopyIn: blk rowxfer() failed");
return CS_FAIL;

}

dptr++;

}

/* ALL the rows sent so clear up */
...CODE DELETED.....

return CS_SUCCEED;

Usage e blk_textxfer isaclient-side routine.

e blk_textxfer transferslarge text or image values. blk_textxfer does not
perform any data conversion; it simply transfers data.

e Therearetwo ways for an application to transfer text and image values
during a bulk-copy operation:

Common Libraries Reference Manual 171

blk_textxfer

172

e Theapplication can treat text or image datalike ordinary data: that is,
it can bind columnsto program variables and transfer rows using
blk_rowxfer_mult. Generally, thismethod is convenient for small text
and image values but not for larger ones. If the entire valueisto be
transferred by blk_rowxfer_mult, the application must allocate
program variablesthat are large enough to hold entire column values.

e Using blk_textxfer, the application can transfer text or image datain
chunks. This method allows the application to use a transfer buffer
that is smaller than the values to be transferred.

An application marks acolumn for transfer through blk_textxfer by calling
blk_bind for the column with aNULL buffer parameter. If the transfer is
going into the database, pass the total length of the value as blk_bind’s
*datalen parameter.

See Chapter 3, “Bulk-Library.”

Using blk_textxfer for bulk-copy-in operations

An application’sblk_bind callsdo not have to bein column order, but data
for blk_textxfer columns must be transferred in column order.

For example, an application can bind columns 3 and 4, and then mark
columns 2 and 1 for transfer using blk_textxfer. After calling
blk_rowxfer_mult to copy datafor columns 3 and 4, the application needs
tocall blk_textxfer to transfer datafor column 1 beforecallingit for column
2.

When copying datainto adatabase, if atext, image, boundary, or sensitivity
datatype column is marked for transfer using blk_textxfer, all subsegquent
columns of these types must also be marked for transfer using blk_textxfer.

For example, an application cannot mark thefirst text columnin arow for
transfer using bik_textxfer and then bind a subsequent text column to a
program variable.

When copying data into a database, an application is responsible for
calling blk_textxfer the correct number of times to transfer the complete
text or image value.

Using blk_textxfer for Bulk-Copy-Out operations

When using blk_textxfer to copy data out of a database, only columns that
follow bound columns are availablefor transfer using bik_textxfer. In other
words, columns being transferred using blk_textxfer must reside at the end
of row.

Open Client and Open Server

CHAPTER 4 Bulk-Library Routines

For example, an application cannot bind the first two columnsin arow to
program variables, mark the third for transfer using blk_textxfer, and bind
the fourth.

* When copying data out from a database, blk_textxfer returns
CS_END_DATA toindicate that a complete column value has been
copied.

See also blk_bind, blk_rowxfer_mult

Common Libraries Reference Manual 173

blk_textxfer

174 Open Client and Open Server

Index

A

actions
CS CLEAR 13
CS GET 13
CS SET 13
Adaptive Server Enterprise bulkcopy option 104
addition operation 10
allocating
aCS BLKDESC structure 118
aCS _CONTEXT structure 36, 41
aCS LOCALE structure 60
ANSI-style binds
null substitution values not used when in effect
86
arithmetic operations
CS ADD 10
CsS DIV 10
CS MULT 10
CS SUB 10
performing 10
array binding 130
transferring rows during a bulk copy operation
163
automatic datatype conversion 33

B

bepin_labels rolerole 110
binding

Seeblk_bind 128
bkpublic.h header file 102
blk_alloc 118,120

code example 120

reason for failure 119

what to do beforecalling 120
blk_bind 120, 132

array binding 131

binding a program variable and a database column

Common Libraries Reference Manual

120
binding a program variable to a database column
120
clearing bindings 130
code example 132
usage for bulk-copy-in operations 128
usage for bulk-copy-out operations 129
using with blk_rowxfer 128
using with blk_textxfer 128
blk colva 132,133
BLK_CONV property 151
blk_default 134, 135
whennottocall 135
whentocal 134
blk_describe 135, 138
CS DATAFMT fidldsituses 135
purpose 138
blk done 138, 141
code example 141
usage for bulk-copy-in operations 140
usage for bulk-copy-out operations 141
blk_drop 141, 143
code example 143
whentocal 143
blk_getrow 143, 144
difference from blk_gettext 144
what to do next 144
blk_gettext 144, 146
using with blk_getrow and blk_colval 146
whentocall 146
BLK_IDENTITY property 151
BLK_IDSTARTNUM property 152
blk_init 146, 149
code example 149
BLK_NOAPI_CHK property 152
BLK_PARTITION property 152
blk_props 149, 155
whentocall 150
blk_rowalloc 155
blk_rowdrop 156

175

Index

whentocal 156
blk_rowxfer 156, 159

code example 159

using with blk_bind 128

using with blk_textxfer 163
blk_rowxfer_ mult 160, 164

purpose 161

reason for failure 161
blk_sendrow 164, 165

when to useinstead of blk_rowxfer 165
blk_sendtext 166, 167

using in conjunction with blk_gettext 166

when to use instead of blk_textxfer 166

BLK_SENSITIVITY_LBL property 110, 152
BLK_SLICENUM property 152
blk_srvinit 167, 168
called in response to an |dquoinsert bulkldgquo request
168

blk_textxfer 168, 173

codeexample 173

usage for bulk-copy-in operations 172

usage for bulk-copy-out operations 172

using with blk_bind 128

using with blk_rowxfer mult 163
BLK_VERSION_100Bulk-Library versionindicator 118
BLK_VERSION_110 Bulk-Library versionindicator 118
boundary

retrieving the boundary portion of an incoming bulk

copy formatted row 144
sending boundary datain aformatted bulk copy row
166

bulk copy

Adaptive Server Enterprise bulk copy option 104

advantages over dternatives 104

allocating space for aformatted bulk copy row 155

array binding 163

bkpublic.h header file 102

BLK_SENSITIVITY_LBL property 110

bulk copy option 104

bulk copy request 111

client-side bulk copy routines 103

copying datainto adatabase 104

copying data out from adatabase 107

copying data to and from a Secure Adaptive Server

110
ctos.c sample program 115

176

deallocating descriptor structure 141
ensuring recoverability 104
error handling for client-sideroutines 104
error handling for server-sideroutines 111
examining each row of abulk copy operation 110
freeing space for aformatted bulk copy row 156
getting the column value from aformatted bulk copy
row 132
high-speed transfer 104
identity column 153
logging row inserts 104
marking a complete bulk copy operation or batch
138
processing requests using event handlers 111
purpose 103
retrieving and storing a formatted bulk copy row
143
retrieving the text, image, sensitivity, or boundary
portion of an incoming bulk copy formatted row
144
sample program 115
sending a formatted bulk copy row 164
sending text, image, sensitivity, or boundary datain a
formatted bulk copy row 166
sensitivity columndata 154
server-side bulk copy routines 110
sp_dboption system procedure 104
transferring acolumn’sdatain chunks 168
transferring one or morerows 156, 160
transferring text and image datain chunks 163
typesof bulk requests 111
writetext request 111
bulk copy operations
canceling 140
CS BLK_ALL 138
CS BLK_BATCH 138
CS BLK_CANCEL 138
initiating 146
bulk copy option 104
bulk copy request types
SRV_IMAGELOAD 114
SRV_TEXTLOAD 114
bulk descriptor structure
alocating 118
setting and retrieving properties 149
bulk descriptor structure properties

Open Client and Open Server

BLK_CONV 151

BLK_IDENTITY 151

BLK_IDSTARTNUM 152

BLK_NOAPI_CHK 152

BLK_PARTITION 152

BLK_SENSITIVITY_LBL 152

BLK_SLICENUM 152

bulk-library

compatibility with Client-Library version levels
118

specifying the desired programming interface
version level 118

C

character sets
converting between 35, 70
when to install custom character conversion
routines 71
Client-Library callbacks
installing 22
collating sequence
changing 91
column
binding a program variable and database column
120
copying acolumn descriptionto aclient 167
getting the column value from a formatted bulk
copy row 132
marking acolumn for transfer 172
retrieving a column’ s default value 134
retrieving a column’sdescription 135
transferring acolumn’s datain chunks 168
comparing
datavalues 12
strings 91
connection
retrieving the current connection 80
constructing native language message strings 88
context properties 18
changing thevaluesof 3
context structure. See CS_CONTEXT structure 3
conversion
and character sets 25
clearing a custom conversion routine 83

Common Libraries Reference Manual

Index

converting a machine-readable datetime value into a
user-accessible format 48
converting between datatypes 27
converting between standard and user-defined
datatypes 33
converting data between character sets 34
ct_bind sets up automatic datatype conversion 33
defining a custom conversion routine 83
exceptional behavior 33
how custom conversion routineswork 82
how to tell if adatatype conversionispermitted 33
indicating whether a specific datatype conversion is
available 96
installing custom conversion routines 33, 81
conversion column
and BLK_CONYV property 151
conversion multiplier
definitionof 26
installing with cs_manage convert 68
CS 12HOUR information type 54
CS_ADD arithmetic operation 10
CS_APPNAME property 15
CS BIGDATETIME_TY PE datatypetype 12, 49, 88
CS BIGTIME_TYPE datatypetype 12, 49, 83
CS BINARY_TYPE datatypetype 88
CS BIT_TYPE datatypetype 88
CS BLK_ALL operation 138
CS_BLK_BATCH operation 138
CS BLK_CANCEL operation 138
CS BLK_HAS TEXT return 144, 157, 161, 165
CS BLK_IN bulk copy direction 147
CS _BLK_OUT bulk copy direction 147
CS BLK_ROW structure 144
CS_BLKDESC structure
alocating 118
deallocating 120, 141
used by blk_srvinit 168
CS BOUNDARY _TYPE datatypetype 88
cs cac 10,11
reasons for failure 11
CS CHAR_TYPE datatypetype 88
CS CLEAR action 13
CS CLEAR operation 45
CS_CLIENTMSG_TY PE structure or message type
44
cscmp 11,13

177

Index

reason for failure 13 CS DATES MDY1 conversion format 56

cs config 13,24 CS_DATES MDY1_YYYY conversionformat 56
comparison to ct_config and srv_props 18 CS DATES MDY?2 conversion format 57

CS_CONFIG_FILE property 15 CS DATES MDY2 YYYY conversionformat 57

CS CONTEXT structure 3 CS DATES MDY3conversionformat 57
dlocating 3, 36,41 CS DATES MDY3 YYYY conversionformat 57
contents 38 CS DATES MYD1 conversion format 56
customizing 3, 38 CS DATES_SHORT conversion format 56
dedlocating 4, 39 CS_DATES _YDM1 conversion format 56, 57
purpose 3 CS DATES YMD1 conversion format 57

cs conv_mult 25,27 CS DATES YMD1 YYYY conversionformat 57
reason for failure 25 CS DATES YMD2 conversionformat 57

cs convert 27,35 CS_DATES YMD2_YYYY conversionformat 57
reason for failure 33 CS DATES _YMD3 conversion format 57

cs ctx_alloc 39 CS_DATES YMD3_YYYY conversion format 57
code example 39 CS DATES YMDTHMS23 conversion format 57
difference from cs _ctx_globa 39 CS DATETIME_TYPE datatypetype 12, 49, 88
reasons for faillure 37 CS DATETIME4_TYPE datatypetype 12, 49, 88
whentocal 2 CS DAYNAME informationtype 53

cs ctx_drop 39, 41 CS DECIMAL_TYPE datatypetype 11, 12, 88
code 39 CS DEFAULT_IFILE property 15
whennottocal 40 detailed description 24

cs ctx_global 41, 43 cs diag 43,48
purpose 43 handles messages on a per-context basis 46
reasons for failure 43 reasons for failure 45

CS_CURRENT_CONNECTION object CS DIV arithmetic operation 10
retrieving the current connection 80 CS DT_CONVFMT information type 54

CS_DATAFMT structure 3 cs dt_crack 51
fieldsused by blk_bind 121 and CS_ DATEREC structure 50
fields used by cs convert 28 cs dt info 51,59

CS DATE 55,56 reason for failure 53

CS _DATE_TYPE datatypetype 12,49, 88 whereit looks for national language locale

CS_DATEORDER informationtype 53 information 54

CS_DATEREC structure CS_EBADXLT return 73,85
definition 50 CS EDIVZEROreturn 73, 85

CS DATES DMY1 conversion format 56 CS EDOMAIN return 73, 85

CS DATES DMY1_YYYY conversionformat 56 CS END_DATA return 144, 145, 157, 161, 169

CS_DATES_DMY?2 conversion format 57 CS_ENOXLT return 73,85

CS_DATES DMY2_YYYY conversionformat 57 CS EOVERFLOW return 73, 85

CS_DATES_DMY 3 conversion format 57 CS_EPRECISION return 73, 85

CS DATES DMY3 YYYY conversionformat 57 CS ESCALEreturn 73,85

CS DATES DMY4 conversion format 57 CS ESTYLEreturn 73,85

CS DATES DMY4 YYYY conversion format 58 CS ESYNTAX return 73,85

CS_DATES_DYM1 conversion format 56 CS _EUNDERFLOW return 73, 85

CS _DATES HMS conversion format 55 CS_EXTERNAL_CONFIG property 15

CS_DATES _LONG conversion format 55, 56 CS_EXTRA_INF property 15

178 Open Client and Open Server

detailed description 20
inline message handlingand 7, 47
CS FLOAT_TYPE datatypetype 88
CS GET action 13
CS_GET operation 45
CS IMAGE_TYPE datatypetype 88
CS_INIT operation 45
CS_INT_TYPE datatypetype 88
CS LC_ALL localizationinformationtype 63
CS_LC_COLLATE localizationinformationtype 63
CS_LC_CTYPE localization information type 63
CS_LC_MESSAGE locdization information type
63
CS _LC_TIME localization information type 63
CS LIBTCL_CFG property 16
detailed description 24
cs loc_alloc 59, 61
reason for failure 60
cs loc drop 61, 62
CS _LOC_PROP property 16
detailed description 21
cs locde 62,67
reasonsfor failure 64
using language, character set, and sort order names
66
CS LOCALE structure 3
alocating 21, 60
associating withaCS_CONTEXT structure 21
deallocating 61
defining 21
initializing 65
loading with localization values 62
retrieving thelocale name 62
using an initialized structure 65
when a structure can be deallocated 61, 66
wheninuse 61
€S manage _convert 68, 74
reason for failure 70
CS MEM_ERROR return 73, 85
CS_MESSAGE_CB property 16
detailed description 21
CS MONEY_TYPE datatypetype 11, 12, 88
CS MONEY4_TYPE datatypetype 11, 12, 88
CS_MONTH information type 53
CS_MSGLIMIT operation 45
CS_MULT arithmetic operation 10

Common Libraries Reference Manual

Index

CS NOMSGreturn 45
when returned 48
CS NUMERIC_TYPE datatypetype 11, 12, 88
CS_OBJDATA structure
definition 77
cs objects 74,80
object data structure 77
object name structure 74
saving, retrieving, or clearing objects 74
types of matches achieved 80
use of afive-partkey 79
whennottocal 80
whentocall 79
CS _OBJIJNAME structure
definition 74
CS REAL_TYPE datatypetype 88
CS ROW_FAIL return 157, 161
CS_SENSITIVITY_TYPE datatypetype 88
CS SET action 13
cs set convert 80, 85
reason for failure 82
cs setnull 85, 88
reasons for failure 86
CS_SHORTMONTH information type 53
CS_SMALLINT_TYPE datatypetype 88
CS_STATUSoperation 46
cs strbuild 91
cs stremp 91, 93
CS_SUB arithmetic operation 10
CS_SYB_CHARSET localization information type
63
CS _SYB_LANG localization information type 63
CS SYB_LANG_CHARSET localization information
type 63
CS_SYB_SORTORDER localization information type
63
CS _SYBASE _HOME property 16
detailed description 23
CS_TEXT_TYPE datatypetype 88
CS TIME 55,56
cs time 93,95
reasons for failure 95
CS TIME_TYPE datatypetype 12, 49
CS TINYINT_TYPE datatype type 88
CS _USERDATA property 16
detailed description 23

179

Index

CS USERTYPE constant 83
CS_VARBINARY_TY PE datatype type 88
CS_VARCHAR_TYPE datatypetype 88
CS_VERSION property 17

detailed description 24

legal values 24
CS_VERSION_100 version number indicator 36, 42
CS_VERSION_110 version number indicator 36, 42
CS WILDCARD constant 80
cs will_convert 95,99

code example 99
CS-Library

API argument checking property 22

defined 1

error handling 4

example message callback 6

handling errorsinline 44

handling errors with amessage callback 21

howtouse 2

installing amessage callback 21

message callback property 21

properties 13

usein Client-Library and Server-Library applications

2

cspublic.h header file 2
ct_config

compared with cs_config and srv_props 18
ctos.c sample program 115
ctpublic.h header file 2
customizing a context structure 38

D

data
transferring columnsin chunks 168
transferring datain chunks 163
data values
comparing 12
converting between datatypes 27
saving, retrieving, or clearing objects and the data
associated withthem 74
datatype
creating a user-defined datatype 82
CS DATE 55
CS TIME 55

180

defining null substitution values for user-defined
datatypes 83
user-defined datatypes must be greater than or equal
to CS USERTYPE 83
datatype types
CS BIGDATETIME_TYPE 12,88
CS BIGTIME_TYPE 12,88
CS BINARY_TYPE 88
CS BIT_TYPE 88
CS BOUNDARY _TYPE 88
CS CHAR TYPE 88
CS DATE TYPE 12
CS DATETIME_TYPE 12,88
CS DATETIME4_TYPE 12,88
CS DECIMAL_TYPE 11,12,88
CS FLOAT TYPE 88
CS IMAGE _TYPE 88
CS INT_TYPE 88
CS MONEY_TYPE 11,12,88
CS MONEY4 TYPE 11,12, 88
CS NUMERIC_TYPE 11,12,88
CS REAL _TYPE 88
CS SENSITIVITY_TYPE 88
CS SMALLINT _TYPE 88
CS TEXT TYPE 88
CS TIME_TYPE 12
CS TINYINT_TYPE 88
CS VARBINARY_TYPE 88
CS VARCHAR TYPE 88
datatypes
CS DATE 56
CS TIME 56
date, retrieving the current date 93
datetime
converting a machine-readable datetime vaue into a
user-accessible format 48
datetime values stored in an internal format 51
setting or retrieving language-specific datetime
information 52
deallocating
aCS BLKDESC structure 141
aCS CONTEXT structure 39
aCS LOCALE structure 61
space for aformatted bulk copy row 156
default
retrieving a column’s default value 134

Open Client and Open Server

description
copying acolumn descriptionto aclient 167
retrieving a column’ sdescription 135
division operation 10

E

error handling

and cs config 5

andcs diag 5

and CS_NOAPI_CHK argument checking property

22

inline message handling 6

message callbacks 5

messages can be discarded 5

methods of handling errors 4, 46

switching between error handling methods 5, 46
event handlers

SRV_BULK 111

SRV_LANGUAGE 111
extrainformation property 20

G

gateway applications
and blk_getrow 144
and blk_gettext 146
and blk_rowalloc 155
and blk_rowdrop 156
and blk_sendrow 165
and blk_sendtext 166
and blk_srvinit 168

H

header files 2
bkpublic.h 102
cspublich 2
ctpublich 2
ospublich 2

hidden structures 3

Common Libraries Reference Manual

Index

identity column
and BLK_IDENTITY property 151
and BLK_IDSTARTNUM property 152
and bulk copy operations 153
information types
CS 12HOUR 54
CS DATEORDER 53
CS DAYNAME 53
CS DT_CONVFMT 54
CS MONTH 53
CS SHORTMONTH 53
inline message handling
andcs diag 5
and CS_EXTRA_INF property 7, 47
advantages 5
clearing messages 47
initializing 7, 47
limiting number of messages 48
managed on a per-context basis 46
managing 44
retrieving messages 46, 47, 48
side effects of initializing 5

L

language message strings
constructing 88
lexicographical string comparison 93
locale information property 20
locale name
defined 65
referencing 66
retrieving from aCS_LOCALE structure 62
retrieving the locale name previously used to load a
CS_LOCALE structure 66
localization
and CS_LOCALE structure 61
default localization information 21
defining custom values 60
valid language, character set, and sort order names
67
what localization values define 60
localization information types
CSLC ALL 63

181

Index

CS LC_COLLATE 63
CS LC CTYPE 63

CS LC_MESSAGE 63

CS LC_TIME 63

CS SYB_CHARSET 63

CS SYB_LANG 63

CS SYB_LANG_CHARSET 63
CS SYB_SORTORDER 63

M

marking
acolumn for transfer 172
acomplete bulk copy operation or batch 138
message callback
example 6
message callbacks
andcs config 5
advantages 4
consequences of installing a message callback
defining 5
vaidreturn vaues 6
message strings
constructing native language message strings
multiplication operation 10

N

native language message strings
constructing 88

NULL data
converting aNULL sourcevalue 87
defining anull substitution value 86

@)
operation
initiating a bulk copy operation 146
performing an arithmetic operation 10
ospublic.h header file 2

182

88

P

program variable

binding with adatabase column 120
properties

CS APPNAME 15

CS CONFIG_FILE 15

CS DEFAULT_IFILE 15

CS EXTERNAL_CONFIG 15

CS EXTRA_INF 15

CS LIBTCL_CFG 16

CS LOC_PROP 16

CS MESSAGE_CB 16

CS SYBASE HOME 16

CS USERDATA 16

CS VERSION 17

setting and retrieving bulk descriptor structure

properties 149
setting and retrieving CS-Library properties 13

row
allocating space for aformatted bulk copy row 155
freeing space for aformatted bulk copy row 156
getting the column value from aformatted bulk copy
row 132
retrieving and storing a formatted bulk copy row
143
retrieving the text, image, sensitivity, or boundary
portion of an incoming bulk copy formatted row
144
sending aformatted bulk copy row 164
sending text, image, sensitivity, or boundary datain a
formatted bulk copy row 166
transferring one or more rows during a bulk copy
operation 156, 160

S

sample programs
ctosc 115

Secure Adaptive Server
bepin_labels rolerole 110
BLK_SENSITIVITY_LBL property 154

Open Client and Open Server

bulk copies 109
sensitivity labels 110
sensitivity column
bepin_labels rolerole 110
retrieving the sensitivity portion of an incoming
bulk copy formatted row 144
sending sensitivity data in a formatted bulk copy
row 166
sensitivity label 110
BLK_SENSITIVITY_LBL property 154
whether sensitivity column dataisincluded in a
bulk copy operation 154
sort order
changinginaCS_CONTEXT structure 93
changinginaCS _LOCALE structure 93
sorted string comparison 93
sp_dboption system procedure 104
SQLCA structure
retrieving messagesinto 7
SQLCA_TYPE structuretype 44
SQL CODE structure
retrieving messagesinto 7
SQLCODE_TYPE structuretype 44
SQLSTATE structure
retrieving messagesinto 7
SQLSTATE_TYPE structuretype 44
SRV_BULK event handler 111
using with blk_srvinit 168
what it shoulddo 113
srv_get_text 114
SRV_IMAGELOAD request type 114
SRV_LANGUAGE event handler 111
calling blk_srvinit from within the event handler
168
what it shoulddo 112
Srv_props
comparison to cs_config and ct_config 18
sv_text_info 114
SRV_TEXTLOAD request type 114
SRV_UNITEXTLOAD request type 114
strings
comparing using a specified sort order 91
constructing native language message strings 88
structure types
CS CLIENTMSG_TYPE 44
SQLCA_TYPE 44

Common Libraries Reference Manual

Index

SQLCODE TYPE 44
SQLSTATE TYPE 44
structures
CS BLK_ROW 144
CS CONTEXT 3
CS DATAFMT 3
CS LOCALE 3
hidden structures 3
retrieving message information into structures 46
setting and retrieving bulk descriptor structure
properties 149
substitution values
default null substitution values 87
defining anull substitution value 86
not null when ANSI-style binds arein effect 86
null substitution values defined at context level 87
subtraction operation 10

T

Table 55,58
text and image data
retrieving the text or image portion of an incoming
bulk copy formatted row 144
sending atext or image stream 111
sending text and image datain aformatted bulk copy
row 166
transferring datain chunks 171
transferring rows during a bulk copy operation

163
transferring rowsin chunks 163
time
retrieving the current time 93
transferring

acolumn’sdatain chunks 168

rows during a bulk copy operation 156, 160

U

user-allocated data property 23
user-defined datatypes
must be greater than or equal to CS_USERTY PE
83

183

Index

Vv

values

comparing datavalues 12
variable

binding a program variable and database column 120
version level property 23

184 Open Client and Open Server

	Common Libraries Reference Manual
	About This Book
	CHAPTER 1 Introducing CS-Library
	CS-Library overview
	Using CS-Library
	Open Client and Open Server applications
	A standalone CS-Library application

	Structures
	CS_CONTEXT structure

	Datatypes, constants, and conventions
	Error handling
	Two methods of handling messages
	Using a callback to handle messages
	Defining a CS-Library message callback
	CS-Library message callback example

	Inline message handling

	CHAPTER 2 CS-Library Routines
	cs_calc
	cs_cmp
	cs_config
	cs_conv_mult
	cs_convert
	cs_ctx_alloc
	cs_ctx_drop
	cs_ctx_global
	cs_diag
	cs_dt_crack
	cs_dt_info
	cs_loc_alloc
	cs_loc_drop
	cs_locale
	cs_manage_convert
	cs_objects
	cs_prop_ssl_localid
	cs_set_convert
	cs_setnull
	cs_strbuild
	cs_strcmp
	cs_time
	cs_validate_cb
	cs_will_convert

	CHAPTER 3 Bulk-Library
	Overview of Bulk-Library
	Client-side and server-side routines
	Client-side Bulk-Library routines
	Server-side Bulk-Library routines

	Header files
	Linking with Bulk-Library
	The CS_BLKDESC structure

	Bulk-Library client programming
	Bulk-copy-in operations
	The bulk-copy-in process
	Program structure for bulk-copy-in operations

	Bulk-copy-out operations
	The bulk-copy-out process
	Program structure for bulk-copy-out operations

	Copying to and from Secure Adaptive Server Enterprise

	Bulk-Library gateway programming
	Inside the SRV_LANGUAGE event handler
	“Insert Bulk” requests
	“Writetext Bulk” requests

	Inside the SRV_BULK event handler
	Example

	CHAPTER 4 Bulk-Library Routines
	blk_alloc
	blk_bind
	blk_colval
	blk_default
	blk_describe
	blk_done
	blk_drop
	blk_getrow
	blk_gettext
	blk_init
	blk_props
	blk_rowalloc
	blk_rowdrop
	blk_rowxfer
	blk_rowxfer_mult
	blk_sendrow
	blk_sendtext
	blk_srvinit
	blk_textxfer

	Index

