
Client-Library/C Reference Manual

Open Client™
15.7

DOCUMENT ID: DC32840-01-1570-02

LAST REVISED: June 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Client-Library/C Reference Manual iii

About This Book ... xi

CHAPTER 1 Introducing Client-Library .. 1
Sybase client/server architecture ... 1

Types of clients ... 2
Types of servers.. 2

Open Client and Open Server products ... 3
Open Client ... 3
Open Server .. 4
Shared common libraries .. 5
Client-Library is a generic interface... 6
Comparing the library approach to Embedded SQL 7

What an application developer needs to know................................. 7
Programming interfaces .. 7
Getting started... 8

CHAPTER 2 Client-Library Topics .. 9
Asynchronous programming .. 10

Asynchronous applications.. 11
Asynchronous routines.. 11
The CS_BUSY return code ... 12
Completions .. 13
Client-Library’s interrupt-level memory requirements.............. 16
Layered applications ... 17

Browse mode ... 19
Using Browse mode .. 20
The Browse mode where clause ... 21
Browse mode conditions ... 22

Callbacks.. 22
Callback types ... 23
Callbacks are not always supported.. 26
Installing a callback routine ... 26
When a callback event occurs... 27

Contents

iv Open Client

Retrieving and replacing callback routines.............................. 27
Restrictions on Client-Library calls in callbacks 27
Declaring callbacks with CS_PUBLIC 29
Client message callbacks.. 29
Completion callbacks .. 32
Directory callbacks .. 37
Encryption callbacks.. 39
Negotiation callbacks .. 43
Notification callbacks... 46
Security session callbacks .. 48
Server message callbacks .. 51
Signal callbacks... 55
SSL validation callbacks.. 57

Capabilities... 58
Wide tables and larger page size .. 59
unichar datatype.. 64
unitext datatype ... 67
xml datatype .. 69
Capabilities and the connection’s TDS level 70
Setting and retrieving capabilities.. 71

Client-Library and SQL Structures ... 72
Exposed and hidden structures... 72
CS_BROWSEDESC structure .. 74
CS_CLIENTMSG structure ... 76
CS_DATAFMT structure ... 83
CS_IODESC structure... 88
CS_OID structure .. 90
CS_SERVERMSG structure ... 92
SQLCA structure ... 94
SQLCODE structure.. 96
SQLSTATE structure... 97

Commands... 97
Sending commands... 98
Deciding which type of command to use............................... 100

Connection migration ... 101
Debugging.. 101

Enabling debugging... 102
Directory services... 103

Directory service providers and drivers 103
LDAP... 104
Use of the directory by applications 106
Directory organization ... 106

Error handling... 122
Error reporting during initialization... 122

Contents

Client-Library/C Reference Manual v

Error and message handling ... 123
The CS_EXTRA_INF property .. 126
Sequencing long messages .. 126
Extended error data... 128
Server transaction states... 130

Sample programs... 131
Client-Library routines in sample programs........................... 134

Header files .. 137
High-availability failover ... 137

Add hafailover line to interfaces file....................................... 138
Client-Library application changes .. 139
Using isql with Sybase Failover... 140

Interfaces file.. 140
Overview of Interfaces file entries ... 142
Server objects from the Interfaces file................................... 142

International Support.. 145
When an application needs to use a CS_LOCALE structure 146
Using a CS_LOCALE structure ... 146
Locating localization information ... 148
The locales file .. 149

Large objects as stored procedure parameters 150
Sending small amounts of LOB data as parameters............. 151
Sending large amounts of LOB data as parameters 153

Macros ... 158
Decoding a message number ... 158
Manipulating bits in a CS_CAP_TYPE structure................... 158
Using the sizeof operator .. 159
Prototyping functions... 159

Multithreaded applications: signal handling 160
Basic concepts .. 160
Signal handling in nonthreaded environments 161
Types of signals .. 161
Signal handlers.. 162
Signal masking .. 162
Signal delivery ... 162
Using sigwait to handle asynchronous signals...................... 163
Special Sybase signal handlers .. 164
SIGTRAP signal .. 164
Using Sun’s ALARM and SETITIMER routines..................... 165

Multithreaded programming ... 165
What is a thread .. 166
Benefits of multiple threads ... 166
Types of threads.. 167
Write thread-safe code .. 168

Contents

vi Open Client

Serializing access to shared data and shared resources...... 169
Synchronizing dependent actions ... 169
Calling thread-unsafe system routines 170
Avoiding deadlock ... 170
Client-Library restrictions for multithreaded programs 171
Calling context-level routines .. 171
Calling connection-level routines... 174
Using CS_LOCALE structures .. 175
Coding thread-safe callback routines 175
Threads and fully asynchronous mode 176
Multithreaded programming models for Client-Library 178

Options... 180
Setting options externally .. 180

Parameters... 186
Batched parameters .. 186

Properties... 187
Comparing properties, options, and capabilities 187
Login properties... 188
Setting and retrieving properties ... 188
Three kinds of context properties .. 189
Checking whether a property is supported............................ 189
Copying login properties.. 191
Setting properties externally.. 191
Properties quick reference table.. 191
About the properties .. 211

Registered procedures... 248
When Client-Library receives a notification 250
Receiving notifications asynchronously................................. 250

Results ... 251
Regular row results ... 252
Cursor row results ... 252
Parameter results .. 253
Stored procedure return status results 253
Compute row results ... 254
Message results .. 254
Describe results... 254
Format results ... 254
Program structure for processing results 255
Retrieving an item’s value ... 259
Keeping result bindings for batch processing........................ 260
 Selecting multiple rows of variable length data into an array 260

Security features .. 261
Network-based security... 262
Secure Sockets Layer in Open Client and Open Server 272

Contents

Client-Library/C Reference Manual vii

Internet communications overview .. 272
SSL overview .. 275
Adaptive Server Enterprise security features 284

Server directory object ... 287
Use of the server directory object.. 287
Contents of the server directory object.................................. 287
Server objects from the interfaces file 293

Server restrictions .. 293
Open Server restrictions.. 294
Adaptive Server Enterprise restrictions 294
Supported client/server features ... 295

text and image data handling ... 295
Retrieving a text or image column... 296
Updating a text or image column... 297
Populating a table containing text or image columns 302
Server global variables for text and image updates 303

Datatypes support .. 305
Datatype summary .. 306
Routines that manipulate datatypes 308
Open Client datatypes... 308
Open Client user-defined datatypes...................................... 317

Using the runtime configuration file.. 318
Enabling external configuration ... 319
Open Client and Open Server runtime configuration file syntax 321
Runtime configuration file keywords...................................... 324

CHAPTER 3 Routines... 333
ct_bind.. 335
ct_br_column.. 347
ct_br_table ... 348
ct_callback ... 350
ct_cancel .. 355
ct_capability ... 360
ct_close .. 369
ct_cmd_alloc .. 372
ct_cmd_drop .. 373
ct_cmd_props... 374
ct_command... 381
ct_compute_info... 390
ct_con_alloc ... 393
ct_con_drop ... 395
ct_con_props.. 397
ct_config... 412
ct_connect.. 420

Contents

viii Open Client

ct_cursor .. 425
ct_data_info.. 449
ct_debug .. 453
ct_describe... 458
ct_diag.. 464
ct_ds_dropobj... 471
ct_ds_lookup .. 472
ct_ds_objinfo .. 479
ct_dynamic ... 485
ct_dyndesc ... 492
ct_dynsqlda .. 502
ct_exit... 509
ct_fetch... 512
ct_get_data .. 519
ct_getformat ... 524
ct_getloginfo... 525
ct_init .. 527
ct_keydata.. 532
ct_labels ... 534
ct_options... 536
ct_param .. 542
ct_poll ... 552
ct_recvpassthru.. 559
ct_remote_pwd... 561
ct_res_info.. 564
ct_results.. 570
ct_scroll_fetch .. 581
ct_send... 590
ct_send_data.. 595
ct_send_params... 604
ct_sendpassthru... 606
ct_setloginfo ... 608
ct_setparam ... 609
ct_wakeup .. 622

APPENDIX A Internationalization Library Messages 627
INTE_NOVAL... 627
INTE_NOENTRY ... 627
INTE_OFLOW.. 628
INTE_ENTRYOF.. 628
INTE_ODDHEX.. 629
INTE_BADFILE .. 629
INTE_BADLOC .. 629
INTE_NOCOM ... 630

Client-Library/C Reference Manual ix

INTE_BADFFMT .. 630
INTE_BADVER... 631
INTE_BADPH... 631
INTE_BADTYPE... 631
INTE_SPECOF... 632
INTE_NOCUST .. 632
INTE_BADFMTSTR ... 633
INTE_INVALBUF.. 633
INTE_NEGBUFLEN ... 633
INTE_INVALCS .. 634
INTE_BADLFNM .. 634
INTE_INVALTEXT.. 634
INTE_INVALSRC ... 635
INTE_INVALPTR.. 635
INTE_BADNSTARS ... 636
INTE_MONTHS.. 636
INTE_SMONTHS ... 636
INTE_DAYS.. 637
INTE_PATHOF... 637
INTE_LTLONG... 638
INTE_DUPDF... 638
INTE_BADSECT .. 638
INTE_FOPEN... 639
INTE_FCLOSE ... 639
INTE_FREAD ... 640
INTE_NOSYB... 640
INTE_FINFO... 640
INTE_NOMEM.. 641

APPENDIX B SSL Error Messages ... 643
1: Vendor Call Fail .. 643
3: Memory Allocation Fail ... 643
6: Bad Pointer... 644
60: SSL Master Context Initialization fail 644
61: Setting Partial I/O fails .. 644
62: Setting SSL protocol version fails... 645
63: Create random number generator fails................................... 645
64: Initialize random number generator fails 646
65: Generate entropy for the random number generator fails 646
69: Could not duplicate context .. 646
70: Could not create child SSL/TLS context................................. 647
71: Could not get protocol version.. 647
72: Unknown protocol version .. 647
73: Unknown cipher.. 648

x Open Client

74: Setting cipher suites fails.. 648
75: Load local identity property fail ... 649
76: Load or read certification authority file fail 649
77: Cannot get peer’s certificate information 649
78: Cannot get peer’s certificate... 650
81: Cannot set certificate reference.. 650
84: SSL handshake failed... 651
85: Cannot set SSL to server side.. 651
86: Cannot set SSL to client side ... 651
87: Cannot get the SSL endpoint information............................... 652
88: Cannot get SSL context information....................................... 652
89: Read error .. 652
90: Write error... 653
91: Cannot get the count of remote certificate’s DN fields 653
92: Cannot extract Distinguished Name information 654
93: Cannot get the count of remote certificate’s extensions......... 654
94: Cannot extract extension information 654
95: Cannot get client certificate .. 655

Glossary.. 657

Index.. 673

Client-Library/C Reference Manual xi

About This Book

This book contains reference information for the C version of Open
Client™ Client-Library.

Audience This manual is a reference manual for programmers who are writing
Client-Library applications. It is written for application programmers who
are familiar with the C programming language.

How to use this book This book contains these chapters:

• Chapter 1, “Introducing Client-Library,” contains a brief
introduction to Client-Library.

• Chapter 2, “Client-Library Topics,” contains information on how to
accomplish specific programming tasks, such as using Client-Library
routines to read a text or image value from the server. This chapter
also contains information on Client-Library structures, options, error
messages, and conventions.

• Chapter 3, “Routines,” contains specific information about each
Client-Library routine, such as what parameters the routine takes and
what it returns.

• Appendix A, “Internationalization Library Messages,” contains
information about internationalization error messages.

• Appendix B, “SSL Error Messages,” contains information about
SSL-related error messages.

Related documents You can see these books for more information:

• The Open Server and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.

• The Open Server Release Bulletin for your platform contains
important last-minute information about Open Server.

• The Software Developer’s Kit Release Bulletin for your platform
contains important last-minute information about Open Client™ and
SDK.

xii Open Client

• The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

• The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

• The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

• The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The Installation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option contains information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authentication in
the Kerberos security mechanism.

• The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

• The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

• The Open Client Embedded SQL™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

 About This Book

Client-Library/C Reference Manual xiii

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

• The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNIX, provides information on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

• The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide provides information for Perl developers to connect to an Adaptive
Server database and query or change information using a Perl script.

• The Adaptive Server Enterprise extension module for PHP Programmers
Guide provides information for PHP developers to execute queries against
an Adaptive Server database.

• The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Other sources of
information

Use the Sybase Product Documentation Web site to learn more about your
product:

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

xiv Open Client

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

 About This Book

Client-Library/C Reference Manual xv

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include the braces in the command.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

xvi Open Client

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Code fragments Most code fragments in this book are taken from the Client-Library sample
programs. See the Open Client and Open Server Programmers Supplement for
your platform for a description of these samples and their location in your
Sybase installation directory.

Many code fragments in these books reference routines and symbols defined in
the sample programs, for example:

if (ct_close(connection, CS_UNUSED) != CS_SUCCEED)
 {

ex_error(“ct_close failed”);
 }

All ex_ and EX_ symbols used in this book’s code samples are defined in the
sample programs. They are not part of the Client-Library programming
interface.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Client-Library/C Reference Manual 1

C H A P T E R 1 Introducing Client-Library

This chapter provides an overview of client/server architecture and Open
Server applications:

This chapter does not contain any introductory information on developing
Client-Library applications. For that information, see Chapter 1, “Getting
Started With Client-Library,” in the Open Client Client-Library/C
Programmers Guide.

Sybase client/server architecture
Client/server architecture divides the work of computing between
“clients” and “servers.”

Clients make requests of servers and process the results of those requests.
For example, a client application might request data from a database
server. Another client application might send a request to an
environmental control server to lower the temperature in a room.

Servers respond to requests by returning data or other information to
clients, or by taking some action. For example, a database server returns
tabular data and information about that data to clients, and an electronic
mail server directs incoming mail toward its final destination.

Client/server architecture has several advantages over traditional program
architectures:

• Application size and complexity can be significantly reduced,
because common services are handled in a single location, a server.
This simplifies client applications, reduces duplicate code, and makes
application maintenance easier.

Topic Page
Sybase client/server architecture 1

Open Client and Open Server products 3

What an application developer needs to know 7

Sybase client/server architecture

2 Open Client

• Client/server architecture facilitates communication between various
applications. Client applications that use dissimilar communications
protocols cannot communicate directly, but can communicate through a
server that “speaks” both protocols.

• Client/server architecture enables applications to be developed with
distinct components, which can be modified or replaced without affecting
other parts of the application.

Types of clients
A client is any application that makes requests of a server. Clients include:

• Sybase middleware products such as OmniConnect™ and OpenSwitch™

• Standalone utilities provided with Adaptive Server Enterprise, such as isql
and bcp

• Applications written using Open Client libraries

• Java applets and applications written using jConnect™ for JDBC™

• Applications written using Embedded SQL™

Types of servers
The Sybase product line includes servers and tools for building servers:

• Adaptive Server Enterprise is a database server. Adaptive Server
Enterprises manage information stored in one or more databases.

• Open Server provides the tools and interfaces needed to create a custom
server application.

An Open Server application can be any type of server. For example, it can
perform specialized calculations, provide access to real-time data or
interface with services such as electronic mail. An Open Server
application is created individually, using the building blocks provided by
Open Server Server-Library.

Adaptive Server Enterprise and Open Server applications are similar in some
ways:

• Both servers respond to client requests.

CHAPTER 1 Introducing Client-Library

Client-Library/C Reference Manual 3

• Clients communicate with both Adaptive Server Enterprise and Open
Server applications through Open Client products.

But they also differ:

• An application programmer must create an Open Server application, using
Server-Library’s building blocks and supplying custom code. Adaptive
Server Enterprise is complete and does not require custom code.

• An Open Server application can be any kind of server and can be written
to understand any language. Adaptive Server Enterprise is a database
server and understands only Transact-SQL.

• An Open Server application can communicate with non-Sybase protocols,
as well as with Sybase applications and servers. Adaptive Server
Enterprise can communicate directly only with Sybase applications and
servers; however, Adaptive Server Enterprise can communicate with non-
Sybase applications and servers by using an Open Server gateway
application as an intermediary.

Open Client and Open Server products
Sybase provides two families of products to enable customers to write client
and server application programs:

• Open Client

• Open Server

Open Client
Open Client provides customer applications, third-party products, and other
Sybase products with the interfaces needed to communicate with Adaptive
Server Enterprise and Open Server.

Open Client can be thought of as comprising two components, programming
interfaces and network services.

Open Client provides two core programming interfaces for writing client
applications: Client-Library and DB-Library.

Open Client and Open Server products

4 Open Client

• Open Client Client-Library/C is described in this book. The Client-Library
interface supports server-managed cursors and other features in System 10
and later versions of the product line.

• Open Client DB-Library is a separate API that supports earlier Open
Client applications. DB-Library is documented in the Open Client DB-
Library/C Reference Manual.

Client-Library programs also depend on CS-Library, which provides routines
that are used in both Client-Library and Server-Library applications. Client-
Library applications can also use Bulk-Library routines to facilitate high-speed
data transfer.

CS-Library and Bulk-Library are both included in the Open Client product.
These libraries are described further in the section titled “Shared common
libraries.”

Open Client network services include Sybase Net-Library, which provides
support for specific network protocols such as TCP/IP and DECnet. The Net-
Library interface is invisible to application programmers. However, on some
platforms an application may need a different Net-Library driver for different
system network configurations. Depending on your host platform, the Net-
Library driver is specified either by the system’s Sybase configuration, or when
you compile and link your programs.

Instructions for driver configuration are in the Open Client and Open Server
Configuration Guide for your platform. Instructions for building Client-
Library programs are in the Open Client and Open Server Programmers
Supplement for your platform.

Open Server
Open Server provides the tools and interfaces needed to create custom servers.
Like Open Client, Open Server consists of an interfaces component and a
network services component.

The core programming interface for creating Open Server applications is
Server-Library. Server-Library is documented in the Open Server Server-
Library/C Reference Manual. Server-Library programs depend on
Client/Server-Library (CS-Library for short). Gateway Server-Library
applications can also use routines from Client-Library and Bulk-Library.
Client-Library, CS-Library, and Bulk-Library are all included in the Open
Server product.

Open Server network services are transparent.

CHAPTER 1 Introducing Client-Library

Client-Library/C Reference Manual 5

Shared common libraries
The Open Client and Open Server products both include Bulk-Library and
CS-Library. These libraries provide routines useful to both client applications
and server applications. CS-Library and Bulk-Library are both documented in
the Open Client and Open Server Common Libraries Reference Manual.

CS-Library

CS-Library provides utility routines for Client-Library and Open Server
programs. CS-Library allocates the core data structure (the CS_CONTEXT)
for Client-Library programs. CS-Library also provides facilities for data
conversion and localizing the client character set and language. The type
definitions for data sent between the client and server are the same for
CS-Library, Client-Library, and Server-Library.

DB-Library is not integrated with CS-Library. DB-Library and CS-Library
share no common data structures, and their datatype definitions differ.

Bulk-Library

Bulk-Library/C provides routines that allow Client-Library and Server-Library
applications to use Adaptive Server Enterprise’s bulk copy interface for high-
speed data transfer. Client-Library programmers do not need to know Bulk-
Library unless they want their applications to transfer data with the bulk copy
interface. Bulk-Library, Client-Library, and Server-Library share common
type definitions for data exchanged between client and server.

Bulk copy of encrypted columns is supported if Adaptive Server Enterprise
supports encrypted columns.

DB-Library has its own bulk copy interface and cannot be used with
Bulk-Library.

The following diagram illustrates the relationship between the libraries
included with Open Client and Open Server:

Open Client and Open Server products

6 Open Client

Figure 1-1: Open Client and Open Server library relationships

As an example, a client application might include calls to Client-Library and
CS-Library, while an application that acts as both client and server might
include calls to Client-Library, CS-Library, and Server-Library.

Although DB-Library is a completely separate interface from Client-Library,
CS-Library, and Bulk-Library, it can be used in an Open Server gateway. It
does not share Client-Library’s advantages of sharing common data structures
and type definitions with Server-Library.

Client-Library is a generic interface
Client-Library is a generic interface. Through Open Server and gateway
applications, Client-Library applications can run against non-Sybase
applications and servers as well as Adaptive Server Enterprise.

Because it is generic, Client-Library does not enforce or reflect any particular
server’s restrictions. For example, Client-Library allows text and image stored
procedure parameters, but Adaptive Server Enterprise does not.

CS-LibraryClient-Library Server-Library

Client
application

Gateway
application

Server
application

Open Client Open Server

CHAPTER 1 Introducing Client-Library

Client-Library/C Reference Manual 7

When writing a Client-Library application, keep the application’s ultimate
target server in mind. If you are unsure about what is legal on a server and what
is not, consult your server documentation.

An application can call ct_capability to find out what capabilities a particular
client/server connection supports.

Comparing the library approach to Embedded SQL
Either an Open Client library application or an Embedded SQL application can
be used to send SQL commands to Adaptive Server Enterprise.

An Embedded SQL application includes SQL commands in-line. The
Embedded SQL precompiler processes the commands into calls to Client-
Library routines. All Sybase precompilers 11.0 and later use a runtime library
composed solely of documented Client-Library and CS-Library calls.
Basically, the precompiler transforms an Embedded SQL application into a
Client-Library application, which is then compiled using the host-language
compiler.

An Open Client library application sends SQL commands through library
routines and does not require a precompiler.

Generally, an Embedded SQL application is easier to write and debug, but a
library application can take fuller advantage of the flexibility and power of
Open Client routines.

What an application developer needs to know
The following describes the required programming interfaces and a brief
description of the Client-Library functionality.

Programming interfaces
New Client-Library programmers will need to learn some or all of following
programming interfaces:

What an application developer needs to know

8 Open Client

• Client-Library, a collection of routines for use in writing client
applications. Client-Library routines begin with “ct_”, as in ct_init. These
are documented in Chapter 3, “Routines”.

• CS-Library, a collection of utility routines that are useful to both client and
server applications. All Client-Library applications will include at least
one call to CS-Library, because Client-Library routines use a structure that
is allocated in CS-Library. CS-Library routines begin with “cs_”, as in
cs_ctx_alloc. These routines are documented in the CS-Library chapters of
the Open Client and Open Server Common Libraries Reference Manual.

• Bulk-Library, a collection of routines that allow Client-Library and
Server-Library applications to use the Adaptive Server Enterprise’s bulk
copy interface for high-speed data transfer. Bulk copy of encrypted
columns is supported if Adaptive Server Enterprise supports encrypted
columns. Client-Library programmers do not need to know Bulk-Library
unless they want their program to transfer data using the bulk copy
interface. Bulk-Library routines begin with “blk_”, as in blk_alloc. These
routines are documented in the Bulk-Library chapters of the Open Client
and Open Server Common Libraries Reference Manual.

Client-Library programmers must also know something about the server to
which their client program connects.

• For connections to Adaptive Server Enterprise, a client application
developer should know the Transact-SQL language, Sybase’s
implementation of Structured Query Language that allows access to
Adaptive Server Enterprise databases. Client application programmers
must also be familiar with the tables and stored procedures that are in the
Adaptive Server Enterprise databases used by the application.

• For connections to Open Server gateways or other Open Server
applications, the client application developer should know the feature set
supported by the server. For example, not all Open Servers support
language commands. Some only provide a collection of available
registered procedures for RPC commands. When the server does support
language commands, the client programmer must know the supported
query language.

Getting started
For a quick tour of Client-Library functionality, including a simple sample
program, see Chapter 1, “Getting Started With Client-Library,” in the Open
Client Client-Library/C Programmers Guide.

Client-Library/C Reference Manual 9

C H A P T E R 2 Client-Library Topics

This chapter contains information about:

• Client-Library programming topics, such as asynchronous
programming, browse mode, and text and image support

• How to use routines to accomplish specific programming tasks, such
as declaring and opening a cursor

• Client-Library properties, datatypes, options, parameter conventions,
and structures

The following topics are included in this chapter:

Topic Page
Asynchronous programming 10

Browse mode 19

Callbacks 22

Capabilities 58

Client-Library and SQL Structures 72

Commands 97

Connection migration 101

Debugging 101

Directory services 103

Error handling 122

Sample programs 131

Header files 137

High-availability failover 137

Interfaces file 140

International Support 145

Large objects as stored procedure parameters 150

Macros 158

Multithreaded applications: signal handling 160

Multithreaded programming 165

Options 180

Parameters 186

Asynchronous programming

10 Open Client

Asynchronous programming
Asynchronous applications are designed to make constructive use of time that
would otherwise be spent waiting for certain operations to complete. Typically,
reading from and writing to a network or external device is much slower than
straightforward program execution. Also, it takes time for a server to process
commands and send results back to the client application.

Some applications execute several tasks that involve idle time. For example, an
interactive application might:

1 Wait for user input

2 Execute commands on a connection to Server X

3 Execute commands on a connection to Server Y

Client-Library’s asynchronous modes help such an application to execute these
tasks concurrently. When executing server commands, routines that send
commands or read results return immediately. This means the application calls
another routine to start command operations on another connection, and the
application responds more quickly to user input.

Client-Library’s asynchronous mode is one method for achieving concurrent
task execution. The other is to use multiple threads. For information on using
Client-Library in a multithreaded environment, see “Multithreaded
programming” on page 165.

Properties 187

Registered procedures 248

Results 251

Security features 261

Server directory object 287

Server restrictions 293

text and image data handling 295

Datatypes support 305

Using the runtime configuration file 318

Topic Page

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 11

Asynchronous applications
By default, Client-Library applications are synchronous. Routines that read
from or write to the network do not return control to the caller until all the
necessary I/O requests are complete.

When writing an asynchronous application, the application programmer must
enable asynchronous Client-Library behavior at the context or connection level
by setting the Client-Library property CS_NETIO. The possible network I/O
modes are:

• Fully asynchronous (CS_ASYNC_IO) – asynchronous routines return
CS_PENDING immediately. When the requested operation completes, the
connection’s completion callback is invoked automatically.

• Deferred asynchronous (CS_DEFER_IO) – asynchronous routines return
CS_PENDING immediately. The application must periodically call ct_poll
to check whether the operation has completed. If the operation is finished,
ct_poll invokes the connection’s completion callback. ct_poll also
indicates which operation (if any) completed, so a deferred-asynchronous
application can operate without a completion callback if desired.

• Synchronous (CS_SYNC_IO) – all Client-Library routines do not return
until the requested operation is complete. This mode is the default.

When fully asynchronous or deferred-asynchronous mode is enabled, all
Client-Library routines that read from or write to the network either:

• Initiate the requested operation and return CS_PENDING immediately, or

• Return CS_BUSY to indicate that an asynchronous operation is already
pending for this connection. Non-asynchronous routines also return
CS_BUSY if they are called when an asynchronous operation is pending
for a connection.

By returning CS_PENDING, a routine indicates that the requested operation
has begun and will complete asynchronously. The application receives the
completion status from the call either by polling (that is, calling ct_poll
periodically) or when Client-Library invokes the application’s completion
callback. Both methods are described under “Completions” on page 13.

Asynchronous routines
The following Client-Library routines behave asynchronously:

• ct_cancel

Asynchronous programming

12 Open Client

• ct_close

• ct_connect

• ct_ds_lookup

• ct_fetch

• ct_get_data

• ct_options

• ct_recvpassthru

• ct_results

• ct_send

• ct_send_data

• ct_sendpassthru

The CS_BUSY return code
Any Client-Library routine that takes a command or connection structure as a
parameter returns CS_BUSY. The CS_BUSY response indicates that a routine
cannot perform because the relevant connection is currently busy, waiting for
an asynchronous operation to complete.

An application can call the following routines while an asynchronous operation
is pending:

• Any routine that takes a CS_CONTEXT structure as a parameter. If the
CS_CONTEXT structure is an optional parameter, it must be non-NULL.

• ct_cancel(CS_CANCEL_ATTN)

• ct_cmd_props(CS_USERDATA)

• ct_con_props(CS_USERDATA)

• ct_poll

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 13

Completions
Every asynchronous mode Client-Library call that returns CS_PENDING
produces a completion status. This value corresponds to the return code that
would have been returned by a synchronous-mode call to the routine (for
example, CS_SUCCEED or CS_FAIL).

An application determines when an asynchronous routine completes either by
polling or through completion callbacks. For polling, the application
periodically calls ct_poll to determine if the asynchronous call has completed.
With completion callbacks, the application is automatically notified when
asynchronous calls complete.

To properly exit Client-Library, wait until all asynchronous operations are
complete, then call ct_exit.

If an asynchronous operation is in progress when ct_exit is called, the routine
returns CS_FAIL and does not exit Client-Library properly, even when
CS_FORCE_EXIT is used.

Deferred asynchronous completions

The application polls for the completion status by calling ct_poll periodically
until ct_poll indicates that the operation is complete. This mode of operation is
called deferred-asynchronous and corresponds to setting the CS_NETIO
property to CS_DEFER_IO.

If the application installs a completion callback, the callback routine is called
by ct_poll when ct_poll detects the completion. The application itself must call
ct_poll.

The application learns the completion status of the asynchronous call from
ct_poll. If a completion callback is installed, it also receives the completion
status as an input parameter.

Note For a description of the supported asynchronous modes, see the Client-
Library chapter in the Open Client and Open Server Programmers Supplement
for your platform.

Asynchronous programming

14 Open Client

Fully asynchronous completions

On platforms where Client-Library uses signal-driven or thread-driven I/O,
Client-Library automatically calls the application’s completion callback
routine when an asynchronous routine completes. This mode of operation is
called fully asynchronous and corresponds to setting the CS_NETIO property
to CS_ASYNC_IO.

When a connection is fully asynchronous, the application does not have to poll
for the completion status. Client-Library automatically invokes the
application’s completion callback, which receives the completion status as an
input parameter. Completion callbacks are described under “Defining a
completion callback” on page 33.

Note When using Open Server libraries built with native threading support,
CS_NETIO can be set to CS_ASYNC_IO and full asynchronous behavior is
supported. When using Open Server libraries that are not built with native
threading support, setting CS_NETIO to CS_ASYNC_IO results in behavior
that is similar to CS_DEFER_IO except that instead of the application calling
ct_poll to complete I/O operations, Open Server invokes a poll routine for the
application.

On asynchronous connections, it is possible for Client-Library to complete an
asynchronous operation and call the callback routine before the initiating
routine returns. When this happens, the initiating routine still returns
CS_PENDING, and the application’s completion callback receives the
completion status.

Client-Library’s fully asynchronous operation is either thread-driven or
signal-driven. On platforms that do not support either multiple threads or
signal-driven I/O, Client-Library cannot be fully asynchronous.

Signal-driven completion handling

On some platforms such as UNIX, Client-Library uses operating system
signals (also called interrupts) to read results and send commands over the
network. Internally, Client-Library interacts with the network using non-
blocking system calls and installs its own internal signal handler to receive the
completion status for these system calls.

Note that on signal-driven I/O platforms, Client-Library may be signal-driven
even when the CS_NETIO property is not CS_ASYNC_IO. On signal-driven
I/O platforms, Client-Library uses signal-driven I/O if any of the following is
true:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 15

• The value of the CS_NETIO connection property is CS_ASYNC_IO.

• The value of the CS_ASYNC_NOTIFS connection property is
CS_TRUE. The default is CS_FALSE. See “Asynchronous notifications”
on page 213 for a description of this property.

• The value of CS_PROP_MIGRATABLE is CS_TRUE (the default), and
the client has connected to a server that might migrate the client.

 Warning! When Client-Library uses signal-driven I/O, a signal can interrupt
the processing of system calls made by the application. If an error code
indicates that a system call was interrupted, reissue the call.

On platforms where signal-driven I/O is used to implement Client-Library’s
fully asynchronous mode, fully asynchronous applications have the following
restrictions:

• Any signal handlers required by the application must be installed using
ct_callback. See “Signal callbacks” on page 55.

• The application must provide a safe way for Client-Library to obtain
memory at the interrupt level. See “Client-Library’s interrupt-level
memory requirements” on page 16.

• On systems where Client-Library uses signal-driven I/O in fully
asynchronous mode (UNIX), be sure to check the return value and error
code after each system call to make sure that it completed properly. Some
system calls fail when interrupted by a signal. If an error code indicates
that the call was interrupted, issue the call again. This restriction is not an
issue on platforms such as Windows where Client-Library does not use
signals.

Thread-driven completion handling

On some platforms, such as Windows, Client-Library uses thread-driven I/O to
operate in fully asynchronous mode.

When this I/O strategy is used, Client-Library spawns internal worker threads
to interact with the network. When the application calls a routine that requires
network I/O, the I/O request is passed to the worker thread. The asynchronous
routine then returns CS_PENDING and the worker thread waits for the
completion. When the I/O request completes, the worker thread calls the
application’s completion callback.

Asynchronous programming

16 Open Client

On platforms where thread-driven I/O is used, fully asynchronous applications
have the following restrictions:

• All of the application’s callback functions installed for each fully
asynchronous connection must be thread-safe.

• Because the application’s completion callback is invoked by a Client-
Library worker thread, the application logic must be designed so that the
completion callback communicates with mainline code in a thread-safe
manner.

On thread-driven I/O platforms such as Windows, a fully asynchronous
program is multithreaded in its callback execution even if the mainline code is
single-threaded. For thread-driven I/O, a Client-Library worker thread
interacts with the network for each fully asynchronous connection. The worker
thread invokes the connection’s callbacks for any callback events that it
discovers. See “Fully asynchronous completions” on page 14.

Note When fully asynchronous I/O is in effect on platforms where Client-
Library uses thread-driven I/O, the application’s callbacks can invoked by a
Client-Library worker thread. On these platforms, a fully asynchronous
application’s callbacks are multithreaded even if the application itself uses a
single-threaded design.

Issues affecting multithreaded application design are discussed in
“Multithreaded programming” on page 165.

Client-Library’s interrupt-level memory requirements
On operating systems where Client-Library uses signal-driven I/O, such as
UNIX-based systems, fully asynchronous applications must provide a way for
Client-Library to satisfy its interrupt-level memory requirements.

Ordinarily, Client-Library routines satisfy their memory requirements by
calling malloc. However, not all implementations of malloc are safely called at
the interrupt level. For this reason, fully asynchronous applications are
required to provide an alternate way for Client-Library to satisfy its memory
requirements.

Client-Library provides two mechanisms by which an asynchronous
application satisfies Client-Library’s memory requirements:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 17

• The application uses the CS_MEM_POOL property to provide Client-
Library with a memory pool.

• The application uses the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation routines that Client-Library safely
calls at the interrupt level.

On platforms that use signal-driven I/O, Client-Library’s behavior is undefined
if a fully asynchronous application fails to provide a safe way for Client-
Library to satisfy memory requirements.

Client-Library attempts to satisfy memory requirements from the following
sources in the following order:

1 Memory pool

2 User-supplied allocation and free routines

3 System routines

Layered applications
Asynchronous applications are often layered. In these types of applications, the
lower layer protects the higher layer from low-level asynchronous detail.

The higher-level layer typically consists of:

• Mainline code

• Routines that asynchronously perform large operations.

In this discussion, a “large” operation is a task that requires several Client-
Library calls to complete. For example, updating a database table is a large
operation because an application calls ct_command, ct_send, and ct_results
to perform the update.

The lower-level layer typically consists of:

• The Client-Library routines required to perform a large operation

• Code to handle low-level asynchronous operation completions

Using ct_wakeup and CS_DISABLE_POLL

ct_wakeup and the CS_DISABLE_POLL property are used in layered
asynchronous applications as follows:

Asynchronous programming

18 Open Client

• A layered application uses CS_DISABLE_POLL to prevent ct_poll from
reporting asynchronous Client-Library routine completions.

• A layered application uses ct_wakeup to let the higher layer know when a
large asynchronous operation is complete.

A layered application that is using a routine to perform a large operation
typically uses ct_wakeup and CS_DISABLE_POLL as follows:

1 The application performs any necessary initialization, installs callback
routines, opens connections, and so on.

2 The application calls the routine that is performing the large operation.

3 If the application uses ct_poll to check for asynchronous completions, then
the routine must disable polling. This prevents ct_poll from reporting
lower-level asynchronous completions to the higher-level layer. To disable
polling, the routine sets CS_DISABLE_POLL to CS_TRUE.

If the application does not call ct_poll, the routine does not need to disable
polling.

4 The routine calls ct_callback to replace the higher-level layer’s completion
callback with its own completion callback.

5 The routine performs its work.

6 The routine reinstalls the higher-level layer’s completion callback.

7 If polling has been disabled, the routine enables it again by setting the
CS_DISABLE_POLL property to CS_FALSE.

8 The routine calls ct_wakeup to trigger the higher-level layer’s completion
callback routine.

An example

An application that performs asynchronous database updates might include the
routine do_update, where do_update calls all of the Client-Library routines that
are necessary to perform a database update.

The main application calls do_update asynchronously and goes on with its
other work.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 19

When called,do_update replaces the main application’s completion callback
routine with its own callback (so that the main application’s callback routine is
not triggered by low-level asynchronous completions). Then, it proceeds with
the work of the update. To perform the update, do_update calls several Client-
Library routines, including ct_send and ct_results, which behave
asynchronously. When each asynchronous routine completes, it triggers
do_update’s completion callback.

When do_update has finished the update operation, it reinstalls the main
application’s completion callback and calls ct_wakeup with function as its own
function ID. This triggers the main application’s completion callback, letting
the main application know that do_update has completed.

Browse mode

Note Browse mode is included in Client-Library to provide compatibility with
Open Server applications and older Open Client libraries. Sybase discourages
its use in new Open Client Client-Library applications because cursors provide
the same functionality in a more portable and flexible manner. Further, browse
mode is Sybase-specific and is not suited for use in a heterogeneous
environment.

Browse mode provides a means for browsing through database rows and
updating their values one row at a time. From the standpoint of an application
program, the process involves several steps, because each row must be
transferred from the database into program variables before it can be browsed
and updated.

Because a row being browsed is not the actual row residing in the database but
is a copy residing in program variables, the program must be able to ensure that
changes to the variables’ values are reliably used to update the original
database row. In particular, in multiuser situations, the program needs to ensure
that updates made to the database by one user do not unwittingly overwrite
updates made by another user between the time the program selected the row
and sent the command to update it. A timestamp column in browsable tables
provides the information necessary to regulate this type of multiuser updating.

Browse mode

20 Open Client

Because some applications permit users to enter ad hoc browse mode queries,
Client-Library provides two routines, ct_br_table and ct_br_column, that allow
an application to retrieve information about the tables and columns underlying
a browse-mode result set. This information is useful when an application is
constructing commands to perform browse-mode updates.

A browse-mode application requires two connections, one for selecting the
data and one for performing the updates.

See the Adaptive Server Enterprise Reference Manual.

Using Browse mode
Conceptually, using Browse mode involves two steps:

1 Select rows containing columns derived from one or more database tables.

2 Where appropriate, change values in columns of the result rows (not the
actual database rows), one row at a time, and use the new values to update
the original database tables.

These steps are implemented in a program as follows:

1 Set a connection’s CS_HIDDEN_KEYS property to CS_TRUE. This
ensures that Client-Library returns a table’s timestamp column as part of a
result set. In browse-mode updates, the timestamp column is used to
regulate multiuser updates.

2 Execute a select...for browse language command. This command generates
a regular row result set. This result set contains hidden key columns (one
of which is the timestamp column) in addition to explicitly selected
columns.

3 After ct_results indicates regular row results, call ct_describe to get
CS_DATAFMT descriptions of the result columns:

• To indicate the timestamp column, ct_describe sets the
CS_TIMESTAMP and CS_HIDDEN bits in the *datafmtstatus
field.

• To indicate an ordinary hidden key column, ct_describe sets the
CS_HIDDEN bit in the *datafmtstatus field. If the CS_HIDDEN bit
is not set, the column is an explicitly selected column.

4 Call ct_bind to bind the result columns of interest. An application must
bind all hidden columns because it requires these column values to build a
where clause at update time.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 21

5 Call ct_br_table, if necessary, to retrieve information about the database
tables that underlie the result set. Call ct_br_column, if necessary, to
retrieve information about a specific result set column. Both of these types
of information are useful when building a language command to update
the database.

6 Call ct_fetch in a loop to fetch rows. When a row is fetched that contains
values that need to be changed, update the database table(s) with the new
values. To do this:

• Construct a language command containing a Transact-SQL update
statement with a where clause that uses the row’s hidden columns
(including the timestamp column).

• Send the language command to the server and process the results of
the command.

A language command containing a browse-mode update statement
generates a result set of type CS_PARAM_RESULT. This result set
contains a single result item, the new timestamp for the row.

If the application plans to update this same row again, it must save the
new timestamp for later use.

After one browse-mode row has been updated, the application fetches and
process the next row.

The Browse mode where clause
To perform browse-mode updates, the application sends an update language
command with the where clause formatted as follows:

where key1 = value_1
 and key2 = value_2 ...
 and tsequal(timestamp, ts_value)

where:

• key1, value_1, key2, value_2 and so forth are the key columns and their
values, obtained by calls to ct_br_table and ct_br_column.

• ts_value is the binary timestamp column value converted to a character
string.

Callbacks

22 Open Client

Browse mode conditions
The following conditions must be true to use browse mode:

• The select command that generated the result set must end with the
keywords for browse.

• The table(s) to be updated must be browsable (each must have a unique
index and a timestamp column).

• The result columns to be updated cannot be the result of SQL expressions,
such as colname + 1.

Callbacks
Callbacks are user-supplied routines that are automatically called by Client-
Library when certain triggering events, known as callback events, occur.

Some callback events are the result of a server response arriving for an
application. For example, a notification callback event occurs when a
registered procedure notification arrives from an Open Server.

Other callback events occur at the internal Client-Library level. For example,
a client message callback event occurs when Client-Library generates an error
message.

When Client-Library recognizes a callback event, it calls the appropriate
callback routine.

Client-Library must be actively engaged in reading from the network to
recognize some callback events. Most callback events of this type are raised
automatically when Client-Library is reading results from the network.

However, for applications that use Client-Library’s asynchronous modes, or
that use Open Server registered procedure notifications, two types of callback
events may require special handling:

• The completion callback event, which occurs in asynchronous mode
applications when an asynchronous Client-Library routine completes.
Depending on the operating system, applications either receive
completions automatically or by polling. See “Completions” on page 13.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 23

• The notification callback event, which occurs when an Open Server
notification arrives for an application. Applications must take special steps
to ensure that they receive notification events. See “Receiving
notifications asynchronously” on page 250.

Note Because some types of callback routines are executed from within a
system interrupt handler or from a Client-Library worker thread, you must
code applications so that data accessed by both the application’s mainline code
and the callbacks is safely shared.

Callback types
Table 2-1 lists the types of callbacks and when they are called:

Callbacks

24 Open Client

Table 2-1: Types of callbacks

Callback
type When called How called

Client
message

In response to a Client-
Library error or
informational message

When Client-Library generates an error or
informational message, Client-Library
automatically triggers the client message
callback.

See “Client message callbacks” on page 29.

Completion When an asynchronous
Client-Library routine
completes

An asynchronous routine completion can
occur at any time.

On platforms that support signal- or thread-
driven I/O, the completion callback is
called automatically when the completion
occurs. On platforms that do not support
signal- or thread-driven I/O, an application
must use ct_poll to find out if any routines
have completed.

See “Completion callbacks” on page 32.

Directory During a directory
search that began when
the application called
ct_ds_lookup

Called automatically by Client-Library to
pass the application the directory objects
that were found in the search. On an
asynchronous connection, called before the
completion callback. On a synchronous
connection, called before ct_ds_lookup
returns. Client-Library invokes the callback
repeatedly until:

• The callback has received all directory
objects found in the lookup operation, or

• The callback returns CS_SUCCEED.

See “Directory callbacks” on page 37.

Encryption During the connection
process, in response to
a server request for an
encrypted password

If password encryption is enabled and an
encryption callback is installed, then Client-
Library automatically triggers the
encryption callback when a server requests
an encrypted password during a connection
attempt.

If encryption is enabled and an encryption
callback is not installed, then Client-Library
performs the default password encryption.

For details, see “Encryption callbacks” on
page 39.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 25

Negotiation During the connection
process:

• In response to a
server request for
login security labels

• In response to a
server challenge

If a connection’s CS_SEC_NEGOTIATE
property is CS_TRUE, then Client-Library
automatically triggers the negotiation
callback when a server requests login
security labels during a connection attempt.

If a connection’s CS_SEC_CHALLENGE
property is CS_TRUE, then Client-Library
automatically triggers the negotiation
callback when a server issues a challenge
during a connection attempt.

For details, see “Negotiation callbacks” on
page 43.

Notification When an Open Server
notification arrives

An Open Server notification can arrive at
any time. Client-Library reads the
notification information and calls the
applications’s notification callback.

The CS_ASYNC_NOTIFS property
determines how the notification callback is
triggered. See the description of this
property under “Asynchronous
notifications” on page 213 and
“Notification callbacks” on page 46.

Security
session

During the connection
process, when the
connection uses
network-based security
services

Invoked automatically by ct_connect in
response to a security session challenge
from the target server.

For details, see “Security session
callbacks” on page 48.

Note Security session callbacks are
required only in gateway applications that
set up direct security sessions between their
own client and a remote server.

Server
message

In response to a server
error or informational
message

Server messages occur as the result of
specific commands. When an application
processes the results of a command, Client-
Library reads any error or informational
messages related to the command,
automatically triggering the server message
callback.

For details, see “Server message callbacks”
on page 51.

Callback
type When called How called

Callbacks

26 Open Client

Callbacks are not always supported
Callbacks cannot be implemented for programming language and platform
combinations that do not support function calls by pointer reference. If this is
the case, an application:

• Must handle Client-Library and server messages inline, using ct_diag.

• Still uses ct_poll to check for a completion or notification callback event,
but must directly call any routine handling the event.

To determine whether callbacks are supported for a programming language and
platform version of Client-Library, use the Open Client and Open Server
Programmers Supplement for your platform.

Installing a callback routine
Applications must be coded to install any needed runtime callbacks. An
application installs a callback routine by calling ct_callback, passing a pointer
to the callback routine, and indicating its type using the type parameter.

Signal In response to an
operating-system
signal

When a signal handler has been installed
with ct_callback and a signal arrives, Client-
Library’s own signal handler automatically
calls the signal callback.

On platforms that support signals,
applications must call ct_callback to install
any needed signal handlers.

For details on signal callbacks, see “Signal
callbacks” on page 55.

SSL
validation

During the connection
process, when the
connection uses SSL
session-based security
services.

Invoked automatically by ct_connect
during the SSL handshake.

SSL validation callback is installed with
ct_callback using CS_SSLVALIDATE_CB.

For details on SSL validation callbacks, see
“SSL validation callbacks” on page 57.

Callback
type When called How called

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 27

A callback of a particular type can be installed at the context or connection
level. When a connection is allocated, it picks up default callbacks from its
parent context. An application overrides these default callbacks by calling
ct_callback to install new callbacks at the connection level.

When a callback event occurs
For most types of callbacks, when a callback event occurs:

• If a callback of the proper type exists at the proper level, it is called.

• If a callback of the proper type does not exist at the proper level then the
callback event information is discarded.

The client message callback is an exception to this rule. When an error or
informational message is generated for a connection that has no client message
callback installed, Client-Library calls the connection’s parent context’s client
message callback (if any) rather than discarding the message. If the context has
no client message callback installed, then the message is discarded.

Retrieving and replacing callback routines
To retrieve a pointer to a currently installed callback, call ct_callback with the
parameter action as CS_GET. ct_callback sets *func to the address of the current
callback. An application saves this address for reuse at a later time.

To deinstall a callback, call ct_callback with the parameter action as CS_SET
and func as NULL.

To replace an existing callback routine with a new one, call ct_callback to
install the new routine. ct_callback replaces the existing callback with the new
callback.

Restrictions on Client-Library calls in callbacks
All callback routines are limited as to which Client-Library routines they can
call, as indicated in Table 2-2:

Callbacks

28 Open Client

Table 2-2: Callbacks can call these Client-Library routines

Callback type Callable routines Permitted use

All callback
routines

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information only. The
CS_USERDATA property can be set on command
structures allocated with ct_cmd_alloc.

The CS_USERDATA property cannot be set on
command structures obtained by the call’s to
ct_con_props(CS_EED_CMD) or
ct_con_props(CS_NOTIF_CMD).

ct_cancel
(CS_CANCEL_ATTN)

Server message ct_describe The routines must be called with the command
structure returned by the callback’s
ct_con_props(CS_EED_CMD) call.

See “Extended error data” on page 128.

Notification ct_bind, ct_describe, ct_fetch,
ct_get_data,
ct_res_info(CS_NUMDATA)

The routines must be called with the command
structure returned by the callback’s
ct_con_props(CS_NOTIF_CMD) call.

This command structure allows the application to
retrieve parameter values associated with the
notification event. See “Registered procedures”
on page 248.

Completion Any Client-Library or CS-Library routine
except cs_objects(CS_SET), ct_init,
ct_exit, ct_poll, ct_setloginfo, and
ct_getloginfo.

Note cs_objects(CS_SET) is not asynchronous-
safe, and ct_init, ct_exit, and ct_getloginfo perform
system-level memory allocation or deallocation,
and should not be used.

Directory ct_ds_dropobj, ct_ds_objinfo. To drop or inspect a directory object.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 29

Declaring callbacks with CS_PUBLIC
All of an application’s Client-Library and CS-Library callbacks must be
declared with CS_PUBLIC. On some platforms (such as Windows), a compiler
may use one of many calling conventions for functions in generated code. A
function’s calling convention determines how the machine registers and the
machine stack are manipulated when the function is called. The compiler
generates different machine instructions for different calling conventions.
CS_PUBLIC (along with any required compiler options) ensures that the
application’s callbacks are compiled with the same calling convention with
which Client-Library invokes them.

Note Compiler options are described in the Open Client and Open Server
Programmers Supplement for your platform.

On many platforms, CS_PUBLIC is defined such that it adds nothing to a
function declaration. On these platforms, applications that declare callbacks
with CS_PUBLIC behave no differently than those that omit CS_PUBLIC.
However, for portability, CS_PUBLIC should be used to declare callbacks on
any platform.

Client message callbacks
An application handles Client-Library error and informational messages inline
or through a client message callback routine.

When a connection is allocated, it picks up a default client message callback
from its parent context. If the parent context has no client message callback
installed, then the connection is created without a default client message
callback.

After allocating a connection, an application:

• Installs a different client message callback for the connection.

• Calls ct_diag to initialize inline message handling for the connection. Note
that ct_diag automatically de-installs all message callbacks for the
connection.

If a client message callback is not installed for a connection or its parent
context and inline message handling is not enabled, Client-Library discards
message information.

Callbacks

30 Open Client

If callbacks are not implemented for a particular programming language or
platform version of Client-Library, an application must handle Client-Library
messages inline, using ct_diag.

If a connection is handling Client-Library messages through a client message
callback, then the callback is called whenever Client-Library generates an error
or informational message.

Note The exception to this rule is that Client-Library does not call the client
message callback when a message is generated from within most types of
callback routines. Client-Library does call the client message callback when a
message is generated within a completion callback. That is, if a Client-Library
routine fails within a callback routine other than the completion callback, the
routine returns CS_FAIL but does not trigger the client message callback.

Defining a client message callback

A client message callback is defined as follows:

CS_RETCODE CS_PUBLIC clientmsg_cb(context, connection,
 message)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_CLIENTMSG *msg;

where:

• context is a pointer to the CS_CONTEXT structure for which the message
occurred.

• connection is a pointer to the CS_CONNECTION structure for which the
message occurred. connection can be NULL.

• message is a pointer to a CS_CLIENTMSG structure containing Client-
Library message information. For information about this structure, see the
section, “Client-Library and SQL Structures” on page 72.

Note that message can have a new value each time the client message
callback is called.

A client message callback must return either CS_SUCCEED or CS_FAIL:

• CS_SUCCEED instructs Client-Library to continue any processing that is
occurring on this connection.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 31

If the callback was invoked due to a timeout error, returning
CS_SUCCEED causes Client-Library to wait for the duration of a full
timeout period before calling the client message callback again. It
continues this behavior until either the command succeeds without timing
out or until the server cancels the current command in response to a
ct_cancel(CS_CANCEL_ATTN) call from the client message callback.

Note In some cases a server may be unable to respond to a client’s
ct_cancel command. Such a situation can occur, for example, if the server
is processing a very complex query and is not in an interruptible state.

• CS_FAIL instructs Client-Library to terminate any processing that is
currently occurring on this connection. A return of CS_FAIL results in the
connection being marked as “dead”, or unusable. To continue using the
connection, the application must close the connection and reopen it.

Table 2-3 lists the Client-Library routines that a client message callback can
call:

Table 2-3: Routines that a client-message callback can call

Most applications use a client message callback that simply displays the error
details or logs them to a file. However, some applications may require a
callback that recognizes certain errors and takes specific action. See “Handling
specific Client-Library messages” on page 82.

Client message callback example

This is an example of a client message callback:

 /*
 ** ex_clientmsg_cb()
 **
 ** Type of function:
 ** Example program client message handler
 **
 ** Purpose:

Callable routine Permitted use

ct_config To retrieve information only

ct_con_props To retrieve information or to set the
CS_USERDATA property only

ct_cmd_props To retrieve information or to set the
CS_USERDATA property only

ct_cancel (CS_CANCEL_ATTN) Any circumstances

Callbacks

32 Open Client

 ** Installed as a callback into Open Client.
 **
 ** Returns:
 ** CS_SUCCEED
 **
 ** Side Effects:
 ** None
 */

 CS_RETCODE CS_PUBLIC
 ex_clientmsg_cb(context, connection, errmsg)
 CS_CONTEXT *context
 CS_CONNECTION *connection;
 CS_CLIENTMSG *errmsg;
 {
 fprintf(EX_ERROR_OUT, "\nOpen Client Message:\n");
 fprintf(EX_ERROR_OUT, "Message number:
 LAYER = (%ld) ORIGIN = (%ld) ",
 CS_LAYER(errmsg->msgnumber),
 CS_ORIGIN(errmsg->msgnumber));
 fprintf(EX_ERROR_OUT, "SEVERITY = (%ld)
 NUMBER = (%ld)\n",
 CS_SEVERITY(errmsg->msgnumber),
 CS_NUMBER(errmsg->msgnumber));
 fprintf(EX_ERROR_OUT, "Message String: %s\n",
 errmsg->msgstring);
 if (errmsg->osstringlen > 0)
 {
 fprintf(EX_ERROR_OUT, "Operating System \
 Error: %s\n", errmsg->osstring);
 }

 return CS_SUCCEED;
 }

Completion callbacks
A completion callback signals an application that an asynchronous routine has
completed.

A context or a connection is defined to be asynchronous so that routines that
read to or write from the network return immediately rather than blocking until
the necessary I/O operations have completed. The value of a connection
structure’s CS_NETIO property determines whether Client-Library routines
behave asynchronously. See “Network I/O” on page 229 for details.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 33

When a connection is asynchronous, Client-Library routines that perform
network I/O return CS_PENDING immediately rather than completing the
requested operation before returning. In a fully asynchronous application
(CS_NETIO is CS_ASYNC_IO), a completion callback is needed to notify the
mainline code of the asynchronous operation’s completion.

See “Asynchronous programming” on page 10.

Defining a completion callback

A completion callback is defined as follows:

CS_RETCODE CS_PUBLIC completion_cb(connection, cmd,
function,status)

CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT function;
CS_RETCODE status;

where:

• connection is a pointer to the CS_CONNECTION structure representing
the connection that performed the I/O for the routine.

• cmd is a pointer to the CS_COMMAND structure for the routine. cmd can
be NULL.

• function indicates which routine has completed. Table 2-4 on page 34 lists
the symbolic values possible for function:

Callbacks

34 Open Client

Table 2-4: Values for the completion callback function parameter

• status is the completion status of the completed routine. This value
corresponds to the value that would be returned by a synchronous call
under the same conditions. To find out what values status can have, see
“Returns” on the reference page for the routine that corresponds to the
value of the function parameter.

If the application calls ct_wakeup to invoke the completion callback, the
call to ct_wakeup specifies the status value received by the completion
callback.

A completion callback routine calls any Client-Library or CS-Library routine
except cs_objects (CS_SET), ct_init, ct_exit, ct_setloginfo, and ct_getloginfo.
cs_objects(CS_SET) is not asynchronous-safe, and ct_init, ct_exit, ct_setloginfo,
and ct_getloginfo perform system-level memory allocation and deallocation.

Value Meaning

BLK_DONE blk_done has completed.

BLK_INIT blk_init has completed.

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_DS_LOOKUP ct_ds_lookup has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value. This
value must be greater than or
equal to CT_USER_FUNC.

A user-defined function has completed.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 35

If a completion callback calls an asynchronous Client-Library routine, it should
return the value returned by the routine itself. Otherwise, there are no
restrictions on what a completion callback can return. Sybase recommends,
however, that the completion callback return CS_SUCCEED, if the completion
callback succeeded, or CS_FAIL, if an error occurred.

Completion callback example

The following is an example of a completion callback. This code is from the
Client-Library sample programs (file ex_alib.c):

 /*
 ** ex_acompletion_cb()
 **
 ** Type of function:
 ** example async lib
 **
 ** Purpose:
 ** Installed as a callback into Open Client. It
 ** will dispatch to the appropriate completion
 ** processing routine based on async state.
 **
 ** Another approach to callback processing is to
 ** have each completion routine install the
 ** completion callback for the next step in
 ** processing. We use one dispatch point to aid
 ** in debugging the async processing (only need
 ** to set one breakpoint).
 **
 ** Returns:
 ** Return of completion processing routine.
 **
 ** Side Effects:
 ** None
 */

 CS_STATIC CS_RETCODE CS_PUBLIC
 ex_acompletion_cb(connection, cmd, function, status)
 CS_CONNECTION *connection;
 CS_COMMAND *cmd;
 CS_INT function;
 CS_RETCODE status;
 {
 CS_RETCODE retstat;
 ExAsync *ex_async;

 /*

Callbacks

36 Open Client

 ** Extract the user area out of the command
 ** handle.
 */
 retstat = ct_cmd_props(cmd, CS_GET, CS_USERDATA,
 &ex_async, CS_SIZEOF(ex_async), NULL);
 if (retstat != CS_SUCCEED)
 {
 return retstat;
 }

 fprintf(stdout, "\nex_acompletion_cb: function \
 %ld Completed", function);

 /* Based on async state, do the right thing */
 switch ((int)ex_async->state)
 {
 case EX_ASEND:
 case EX_ACANCEL_CURRENT:
 retstat = ex_asend_comp(ex_async, connection,
 cmd, function, status);
 break;

 case EX_ARESULTS:
 retstat = ex_aresults_comp(ex_async,
 connection, cmd, function, status);
 break;

 case EX_AFETCH:
 retstat = ex_afetch_comp(ex_async,
 connection, cmd, function, status);
 break;

 case EX_ACANCEL_ALL:
 retstat = ex_adone_comp(ex_async, connection,
 cmd, function, status);
 break;

 default:
 ex_apanic("ex_acompletion_cb: unexpected \
 async state");
 break;
 }

 return retstat;
 }

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 37

Directory callbacks
The ct_ds_lookup routine and the application’s directory callback provide the
mechanism which an application uses to examine the contents of directory
entries.

When an application calls ct_ds_lookup to begin a directory search, Client-
Library retrieves the appropriate entries from the directory and then calls the
directory callback once for each entry. Each time the callback is invoked, it
receives a pointer to one directory object structure. Each directory object
structure contains a copy of information read from a directory entry.

Client-Library calls the directory callback once for each entry retrieved, as
long as the callback returns CS_CONTINUE. When the callback returns
CS_SUCCEED, Client-Library discards any remaining objects that the
callback has not received.

The directory callback calls only the Client-Library routines ct_con_props,
ct_config, ct_ds_objinfo, and ct_ds_dropobj. On an asynchronous connection,
the application uses the completion callback to call other Client-Library
routines (see Table 2-2 on page 28).

Defining a directory callback

A directory callback is defined as follows:

CS_RETCODE CS_PUBLIC
directory_cb (connection, reqid, status, numentries,

ds_object, userdata)

CS_CONNECTION *connection;
CS_INT reqid;
CS_RETCODE status;
CS_INT numentries;
CS_DS_OBJECT *ds_object;
CS_VOID *userdata;

where:

• connection is a pointer to the CS_CONNECTION structure used for the
directory lookup.

• reqid is the request identifier returned by the ct_ds_lookup call that began
the directory lookup.

• status is the status of the directory lookup request. status can be one of the
following values:

Callbacks

38 Open Client

• numentries is the count of directory objects remaining to be examined. If
entries are found, numentries includes the current object. If no entries are
found, numentries is 0.

• ds_object is a pointer to information about one directory object. ds_object
is (CS_DS_OBJECT *)NULL if either of the following is true:

• The directory lookup failed (indicated by a status value that is not
equal to CS_SUCCEED), or

• No matching objects were found (indicated by a numentries value that
is 0 or less).

• userdata is a pointer to a user-supplied data area. If the application passes
a pointer as ct_ds_lookup’s userdata parameter, then the directory callback
receives the same pointer when it is invoked. userdata provides a way for
the callback to communicate with mainline code.

Directory search results processing

A directory callback typically performs the following to collect and optionally
process the results of a directory search:

1 Checks the values of status and numentries to determine whether the
search was successful and whether entries were returned.

• A status value of CS_SUCCEED indicates that the search was
successful.

• A numentries value greater than 0 indicates that entries were found.

2 Either saves the pointer to the directory object; or copies any information
that it wants to keep (using ct_ds_objinfo to extract the information), then
frees the directory object’s memory with ct_ds_dropobj.

3 Returns control to Client-Library in one of the following ways:

• Returns CS_SUCCEED to drop all remaining unexamined entries

• Returns CS_CONTINUE so that Client-Library calls the callback
routine again to process the next object returned by the directory
search

Status value Meaning

CS_SUCCEED Search was successful.

CS_FAIL Search failed.

CS_CANCELED Search was canceled with ct_ds_lookup(CS_CLEAR).

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 39

Callback invocation sequence

If a search is successful, Client-Library invokes the directory callback with
numentries as the total number of entries to be examined. If the search finds no
entries, numentries is 0. If the search finds one or more entries, numentries
gives the number of unexamined entries including the current entry.

The application examines all the entries simply by returning CS_CONTINUE
from the callback each time Client-Library invokes the callback. ct_ds_lookup
invokes the callback repeatedly until one of the following conditions is
satisfied:

• The callback returns CS_SUCCEED.

• The callback has received every directory object in the search results. If
the callback returns CS_CONTINUE when numentries is 0 or 1, it is not
invoked again before ct_ds_lookup completes.

• If the callback returns a value other than CS_CONTINUE or
CS_SUCCEED, the current Client-Library response is the same as for
CS_SUCCEED. However, this behavior may change in future versions.
To ensure compatibility with future versions, applications should return
only CS_CONTINUE or CS_SUCCEED from directory callbacks.

If asynchronous network I/O is in effect for the connection, all invocations of
the directory callback occur before Client-Library invokes the application’s
completion callback.

If synchronous network I/O is in effect for the connection, all invocations of
the directory callback occur before ct_ds_lookup returns.

Directory callback example

Directory callbacks are used with ct_ds_lookup. See the ct_ds_lookup reference
page for an example directory callback.

Encryption callbacks
Adaptive Server Enterprise and Open Server use an encrypted password
handshake when the client requests it.

Callbacks

40 Open Client

The client application must enable password encryption by calling
ct_con_props and setting the CS_SEC_EXTENDED_ENCRYPTION or
CS_SEC_ENCRYPTION property. If an Open Client application logs onto a
server with both CS_SEC_EXTENDED_ENCRYPTION and
CS_SEC_ENCRYPTION set to CS_TRUE, it uses extended password
encryption as the first preference.

The Client-Library default encryption handler performs the password
encryption required by Adaptive Server Enterprise. Simple client applications
that connect to either of these servers do not need an encryption callback.
However, Client-Library applications that act as gateways to Adaptive Server
Enterprise need to handle password encryption explicitly. These applications
must install an encryption callback routine that passes the server’s encryption
key to the client and returns the encrypted password back to the server. See
“Password encryption in gateway applications” on page 42.

In addition, Client-Library applications that connect to an Open Server using a
customized password encryption technique must install an encryption callback
routine to perform the required password encryption.

For an explanation of the handshaking process for password encryption, see
“Security handshaking: encrypted password” on page 284.

Note Do not confuse password encryption with data encryption. An
encryption callback encrypts only passwords. Data encryption encrypts all
commands and results sent over the connection and is performed by an external
security service provider. See “Security features” on page 261.

Defining an encryption callback

The encryption callback prototype for extended and normal password
encryption are defined below.

Normal password
encryption

CS_RETCODE CS_PUBLIC encrypt_cb(connection, pwd,
pwdlen, key, keylen, buf, buflen, outlen)

CS_CONNECTION *connection;
CS_BYTE *pwd;
CS_INT pwdlen;
CS_BYTE *key;
CS_INT keylen;
CS_BYTE *buffer;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 41

CS_INT buflen;
CS_INT *outlen;

where:

• connection is a pointer to the CS_CONNECTION structure representing
the connection that is logging in to the server.

• pwd is a user password or a remote-server password to be encrypted. A
user password matches the value of the CS_PASSWORD connection
property. A remote-server password matches the string passed to
ct_remote_pwd. The pwd string is not always null-terminated.

• pwdlen is the length, in bytes, of the password.

• key is the key that the encryption callback uses to encrypt the password.
The encryption key is supplied by the remote server.

• keylen is the length, in bytes, of the encryption key.

• buffer is a pointer to a buffer. The encryption callback should place the
encrypted password in this buffer. This buffer is allocated and freed by
Client-Library. Its length is described by buflen.

• buflen is the length, in bytes, of the *buffer data space.

• outlen is a pointer to a CS_INT. The encryption callback must set *outlen
to the length of the encrypted password in *buffer.

Extended password
encryption

CS_RETCODE extended_encrypt_cb(
CS_CONNECTION *connection,
CS_BYTE *pwd,
CS_INT pwdlen,
CS_INT *ciphersuite,
CS_BYTE *pubkey,
CS_INT pubkeylen,
CS_VOID *buffer,
CS_INT buflen,
CS_INT *outlen)

where:

• connection is a pointer to the CS_CONNECTION structure representing
the connection that is logging in to the server.

• pwd is a user password or a remote-server password to be encrypted. A
user password matches the value of the CS_PASSWORD connection
property. A remote-server password matches the string passed to
ct_remote_pwd. The pwd string is not always null-terminated.

Callbacks

42 Open Client

• pwdlen is the length, in bytes, of the password.

• ciphersuite is a pointer to the ciphersuite used to encrypt the password.
This parameter is not used by the default encryption.

• pubkey is a pointer to the public key used to encrypt the password.

• pubkeylen is the length, in bytes, of the public key.

• buffer is a pointer to a buffer. The encryption callback should place the
encrypted password in this buffer. This buffer is allocated and freed by
Client-Library. Its length is described by buflen.

• buflen is the length, in bytes, of the *buffer data space.

• outlen is a pointer to a CS_INT to store the length of the newly accepted
password. The encryption callback must set *outlen to the length of the
encrypted password in *buffer.

An encryption callback should return CS_SUCCEED to indicate that the
password has been successfully encrypted. If the encryption callback returns a
value other than CS_SUCCEED, Client-Library aborts the connection attempt,
causing ct_connect to return CS_FAIL.

Password encryption in gateway applications

To handle encrypted passwords, a gateway application must:

• Supply an encryption callback routine.

• Call ct_callback to install the encryption callback either at the context level
or for a specific connection.

• Call ct_con_props to set the CS_SEC_EXTENDED_ENCRYPTION or
CS_SEC_ENCRYPTION property to CS_TRUE.

When the gateway calls ct_connect to connect to the remote server:

1 The remote server responds with an encryption key, causing Client-
Library to trigger the encryption callback.

2 The encryption callback passes the key on to the gateway’s client.

3 The gateway’s client encrypts the password and returns it to the encryption
callback.

4 The encryption callback places the encrypted password into *buffer, sets
*outlen, and returns a status code to Client-Library.

• If the callback returns CS_SUCCEED, Client-Library sends the
encrypted password to the remote server.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 43

• If the callback returns CS_FAIL, Client-Library aborts the connection
process, causing ct_connect to return CS_FAIL.

Client-Library calls the encryption once to encrypt the password defined by
CS_PASSWORD, and one additional time for each remote server password
defined by ct_remote_pwd.

A gateway to Adaptive Server Enterprise must take special steps to make sure
that encrypted remote passwords are handled correctly. The first time the
encryption callback is called for a connect attempt, the gateway must perform
the following actions:

1 Clear the default remote password with ct_remote_pwd (CS_CLEAR).

ct_connect creates a default remote password if the gateway has defined
no remote passwords before calling ct_connect. The gateway must clear
this default.

2 Challenge the gateway’s client for encrypted local and remote passwords
with srv_negotiate.

3 Call ct_remote_pwd once for each encrypted remote password.

4 Place the encrypted local password into *buffer and set *outlen to its
length.

5 Return CS_SUCCEED if no error occurred.

Each subsequent invocation of the callback should return one of the encrypted
remote passwords read from the gateway’s client in response to the challenge.

A gateway forwards the encryption key and reads the client’s response with
Server-Library calls. See srv_negotiate in the Open Server Server-Library/C
Reference Manual.

See “Choosing a network security mechanism” on page 263.

Negotiation callbacks
Client-Library uses the negotiation callback to handle both trusted-user
security handshakes and challenge/response security handshakes.

See the “Security features” on page 261.

Callbacks

44 Open Client

Challenge/response security handshakes

During server login, a challenge/response security handshake occurs when the
server issues a challenge, to which the client must respond.

A connection uses a negotiation callback to provide its response to the
challenge. To do this, the connection installs a negotiation callback routine. At
connection time, when Client-Library receives the server challenge, Client-
Library triggers the negotiation callback.

A connection that participates in challenge/response security handshakes must
have its CS_SEC_CHALLENGE property or its CS_SEC_APPDEFINED
property set to CS_TRUE.

When the application calls ct_connect to connect to the server:

1 If the server replies with a challenge, then Client-Library calls the
connection’s negotiation callback routine.

2 The negotiation callback routine generates the response and returns either
CS_CONTINUE, CS_SUCCEED, or CS_FAIL.

• If the callback routine returns CS_CONTINUE, Client-Library calls
the negotiation callback again to get an additional response.

• If the callback returns CS_SUCCEED, Client-Library sends the
response(s) to the server.

• If the callback returns CS_FAIL, Client-Library aborts the connection
process, causing ct_connect to return CS_FAIL.

Defining a negotiation callback

A negotiation callback is defined as follows:

CS_RETCODE CS_PUBLIC
negotiation_cb(connection, inmsgid, outmsgid,

inbuffmt, inbuf,outbuffmt,
outbuf, outbufoutlen)

CS_CONNECTION *connection;
CS_INT inmsgid;
CS_INT *outmsgid;
CS_DATAFMT *inbuffmt;
CS_BYTE *inbuf;
CS_DATAFMT *outbuffmt;
CS_BYTE *outbuf;
CS_INT *outbufoutlen;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 45

where:

• connection is a pointer to the CS_CONNECTION structure representing
the connection that is logging into the server.

• inmsgid is the type of information that the server is requesting. inmsgid
can be any of the following values:

• outmsgid is the type of information that the negotiation callback is
returning. This table lists the values that are legal for outmsgid:

• inbuffmt is a pointer to a CS_DATAFMT structure. If the negotiation
callback is handling a trusted-user handshake, inbuffmt is NULL. If the
negotiation callback is handling a challenge/response handshake,
*inbuffmt describes the inbuf challenge key.

• inbuf is a pointer to data space. If the negotiation callback is handling a
trusted-user handshake, inbuf is NULL. If the negotiation callback is
handling a challenge/response handshake, inbuf points to the challenge
key.

• inbuffmt is a pointer to a CS_DATAFMT structure. The negotiation
callback should fill this CS_DATAFMT with a description of the security
label or response that it is returning.

Client-Library does not define which fields in the CS_DATAFMT need to
be set.

Value of inmsgid Meaning

CS_MSG_GETLABELS The server is requesting security labels.

A value <
CS_USER_MSGID

The server is requesting a Sybase-defined value.

A user-defined value >=
CS_USER_MSGID and
<=
CS_USER_MAX_MSGID

The Open Server application is requesting an
application-defined value. The negotiation
callback’s must interpret inmsgid.

Value of outmsgid Indicates:

CS_MSG_LABELS The negotiation callback is returning security
labels.

A value <
CS_USER_MSGID

The callback is returning a Sybase-defined value.

A user-defined value >=
CS_USER_MSGID and <=
CS_USER_MAX_MSGID

The callback is returning an application-defined
value.

Callbacks

46 Open Client

• outbuf is a pointer to a buffer. The negotiation callback should place the
security label or response in this buffer. This buffer is allocated and freed
by Client-Library. Its length is described by outbuffmtmaxlength.

• outbufoutlen is the length, in bytes, of the data placed in *outbuf.

A negotiation callback must return CS_SUCCEED, CS_FAIL, or
CS_CONTINUE:

• If the callback returns CS_CONTINUE, Client-Library calls the
negotiation callback again to generate an additional security label or
response.

• If the callback returns CS_SUCCEED, Client-Library sends the security
label(s) or response(s) to the server.

• If the callback returns CS_FAIL, Client-Library aborts the connection
process, causing ct_connect to return CS_FAIL.

Notification callbacks
A registered procedure is a procedure that is defined and installed in a running
Open Server. A Client-Library application uses a remote procedure call
command to execute a registered procedure, and also “watches” for a
registered procedure to be executed by another application or by the
application itself.

To watch for the execution of a registered procedure, a Client-Library
application must be connected to the host Open Server. The client application
remotely calls the Open Server sp_regwatch system registered procedure.

When a registered procedure executes, applications watching for it receive a
notification that includes the procedure’s name and the arguments it was called
with. Client-Library receives the notification (through the connection to the
Open Server) and calls the application’s notification callback routine.

The CS_ASYNC_NOTIFS property determines how the notification callback
is triggered. See the description of this property under “Asynchronous
notifications” on page 213.

The arguments with which the registered procedure was called are available
inside the notification callback as a parameter result set. To retrieve these
arguments, an application:

• Calls ct_con_props(CS_NOTIF_CMD) to retrieve a pointer to the
command structure containing the parameter result set

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 47

• Calls ct_res_info(CS_NUMDATA), ct_describe, ct_bind, ct_fetch, and
ct_get_data to describe, bind, and fetch the parameters

See the “Registered procedures” on page 248.

Defining a notification callback

A notification callback is defined as follows:

CS_RETCODE CS_PUBLIC notification_cb(conn, proc_name,
namelen)

CS_CONNECTION *conn;
CS_CHAR *proc_name;
CS_INT namelen;

where:

• connection is a pointer to the CS_CONNECTION structure receiving the
notification. This CS_CONNECTION is the parent connection of the
CS_COMMAND that sent the request to be notified.

• proc_name is a pointer to the name of the registered procedure that has
been executed.

• namelen is the length, in bytes, of *proc_name.

A notification callback must return CS_SUCCEED.

Table 2-5 on page 48 lists the Client-Library routines that a notification
callback calls:

Callbacks

48 Open Client

Table 2-5: Routines that a notification callback can call

Retrieving notification parameters

The parameter values with which a registered procedure was invoked are
available in the notification callback. To get the values, the application
retrieves the command structure stored as the CS_NOTIF_CMD connection
property. Using this command structure, the application retrieves the parameter
values with the usual calls to ct_res_info(CS_NUMDATA), ct_describe, and
ct_fetch.

See “Registered procedures” on page 248.

Security session callbacks
An Open Server gateway needs a security session callback only if all of the
following statements are true:

• The Open Server is a gateway.

• The gateway allows clients to connect using network-based user
authentication.

• The gateway wants to establish a direct security session between the
gateway’s client and the remote server.

Callable routine Permitted use

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information only. The
CS_USERDATA property can be set on
command structures allocated with ct_cmd_alloc.

Note The CS_USERDATA property cannot be
set on the command structure obtained by the
callback’s ct_con_props(CS_NOTIF_CMD) call.

ct_cancel
(CS_CANCEL_ATTN)

Any circumstances.

ct_bind, ct_describe, ct_fetch,
ct_get_data,
ct_res_info(CS_NUMDATA)

To retrieve the notification parameter values. The
routines must be called with the command
structure returned by the callback’s
ct_con_props(CS_NOTIF_CMD) call.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 49

If not all of the above conditions apply, Client-Library provides a default
callback that is adequate.

See “Requesting login authentication services” on page 266.

Establishing a direct security session

A security session is a client/server connection where the client and the server
have agreed to use an external security mechanism (such as DCE) and a set of
security services (such as data encryption).

In a gateway application, a direct security session is established between a
gateway’s client and a remote server. The gateway acts as an intermediary
while the session is established, but afterwards, the gateway is not part of the
security session. Direct security sessions are useful in the following
circumstances:

• Full-passthrough gateways that support per-packet security services

A full-passthrough gateway establishes a direct security session to support
per-packet security services such as data integrity and data confidentiality
while eliminating some of the associated overhead. For example, if the
gateway supports data confidentiality without a direct security session, the
contents of each TDS packet that passes through the gateway must be
decrypted upon receipt and re-encrypted upon sending. If the gateway
does not inspect the packet contents, this overhead is unnecessary. With a
direct security session, no per-packet services are performed within the
gateway.

• Gateways where delegated client credentials are not available

A gateway’s clients may not delegate their security credentials to a
gateway (using the CS_SEC_DELEGATION connection property), or a
security mechanism may not support credential delegation. In these cases,
the gateway must set up a direct security session to connect to the remote
server using the same user name as the gateway’s client.

A security session callback allows the gateway to set up a direct security
session. When the connection to the remote server is made, the callback routine
acts as an intermediary for the handshaking required between the remote server
and the gateway’s client. The handshaking process is outlined below:

1 When the gateway calls ct_connect, the remote server issues one or more
security session messages.

Callbacks

50 Open Client

2 For each security session message sent by the remote server, Client-
Library invokes the callback, passing the security session information sent
by the remote server as the callback’s input parameters.

3 The callback forwards the information to the gateway’s client by calling
the Server-Library routine srv_negotiate(CS_SET,
SRV_NEG_SECSESSION).

4 The callback then reads the client’s response and returns it to Client-
Library using the callback’s output parameters.

5 Client-Library forwards the response to the remote server.

If the remote server sends another security session message, the process is
repeated.

Defining a security session callback

A security session callback is defined as follows:

CS_RETCODE CS_PUBLIC
secsession_cb (conn, numinputs, infmt, inbuf,

numoutputs, outfmt, outbuf, outlen)

CS_CONNECTION *conn;
CS_INT numinputs;
CS_DATAFMT *infmt;
CS_BYTE **inbuf;
CS_INT *numoutputs;
CS_DATAFMT *outfmt;
CS_BYTE **outbuf;
CS_INT *outlen;

where:

• connection is a pointer to the connection structure that controls the
connection to the gateway’s remote server.

• numinputs is the number of input parameters sent by the remote server
with the security session message.

• infmt is the address of an array of CS_DATAFMT structures that describe
each input parameter sent by the remote server.

• inbuf is the address of an array of CS_BYTE * pointers that point to
buffers containing the data for each input parameter. The length of each
buffer inbuf[i] is given as infmt[i] ->maxlength

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 51

• numoutputs is the address of a CS_INT. The callback must return the
number of items sent by the client in *numoutputs. On input, *numoutputs
specifies the length of the outfmt, outbuf, and outlen arrays.

• outfmt is the address of an array of CS_DATAFMT structures. The
callback must place a description of each item in the client’s response into
the corresponding CS_DATAFMT structure. The input value of
*numoutputs specifies the length of this array.

• outbuf is the address of an array of CS_BYTE * buffers. The callback must
copy the data items from the client’s response into the corresponding
buffer. The input value of *numoutputs specifies the length of this array,
and for each buffer i, the input value of outfmt[i]maxlength specifies the
allocated length of the buffer pointed at by outbuf[i].

• outlen is the address of an array of CS_INT. The callback places the
number of bytes written to each buffer into outlen[i].

The callback forwards the security session message data and reads the client’s
response with Server-Library calls. See the reference page for srv_negotiate in
the Open Server Server-Library/C Reference Manual.

A security session callback returns CS_SUCCEED or CS_FAIL. If the
callback returns CS_FAIL, Client-Library aborts the connection attempt. Other
return values are illegal: Client-Library responds by raising an error and
aborting the connection attempt.

Server message callbacks
An application handles server errors and informational messages inline or
through a server message callback routine.

When a connection is allocated, it picks up a default server message callback
from its parent context. If the parent context has no server message callback
installed, then the connection is created without a default server message
callback.

After allocating a connection, an application:

• Installs a different server message callback for the connection.

• Calls ct_diag to initialize inline message handling for the connection. Note
that ct_diag automatically deinstalls all message callbacks for the
connection.

Callbacks

52 Open Client

If a server message callback is not installed and inline message handling is not
enabled, Client-Library discards the server message information.

If callbacks are not implemented for a particular programming language and
platform version of Client-Library, an application must handle server messages
inline, using ct_diag.

If a connection is handling server messages through a server message callback,
then the callback is called whenever a server message arrives.

Defining a server message callback

A server message callback is defined as follows:

CS_RETCODE CS_PUBLIC
 servermsg_cb(context, connection, message)

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_SERVERMSG *message;

where:

• context is a pointer to the CS_CONTEXT structure for which the message
occurred.

• connection is a pointer to the CS_CONNECTION structure for which the
message occurred.

• message is a pointer to a CS_SERVERMSG structure containing server
message information. For information on this structure, see the
“CS_SERVERMSG structure” on page 92.

Note that message can have a new value each time the server message
callback is called.

• A server message callback must return CS_SUCCEED.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 53

Table 2-6: Routines that a server message callback can call

 Warning! Do not call ct_poll from within any Client-Library callback function
or from within any other function that can execute at the system-interrupt level.
Calling ct_poll at the system-interrupt level can corrupt Open Client and Open
Server internal resources and cause recursion in the application.

Server message callback example

Following is an example of a server message callback:

 /*
 ** ex_servermsg_cb()
 **
 ** Type of function:
 ** Example program server message handler
 **
 ** Purpose:
 ** Installed as a callback into Open Client.
 **
 ** Returns:
 ** CS_SUCCEED
 **

Callable routines Permitted use

ct_config To retrieve information only.

ct_con_props To retrieve information or to set the
CS_USERDATA property only.

ct_cmd_props To retrieve information only. The
CS_USERDATA property can be set on
command structures allocated with ct_cmd_alloc.

The CS_USERDATA property cannot be set on
the command structure obtained by the callback’s
ct_con_props(CS_EED_CMD).

ct_cancel
(CS_CANCEL_ATTN)

Any circumstances.

ct_bind, ct_describe, ct_fetch,
ct_get_data, ct_res_info

The routines must be called with the command
structure returned by the callback’s
ct_con_props(CS_EED_CMD) LAN.

A server message callback calls these routines
only while extended error data is available; that is,
until ct_fetch returns CS_END_DATA.

See “Extended error data” on page 128.

Callbacks

54 Open Client

 ** Side Effects:
 ** None
 */
 CS_RETCODE CS_PUBLIC
 ex_servermsg_cb(context, connection, srvmsg)
 CS_CONTEXT *connection;
 CS_CONNECTION *cmd;
 CS_SERVERMSG *srvmsg;
 {
 fprintf(EX_ERROR_OUT, "\nServer message:\n");
 fprintf(EX_ERROR_OUT, "Message number: %ld, \
 Severity %ld, ", srvmsg->msgnumber,
 srvmsg->severity);
 fprintf(EX_ERROR_OUT, "State %ld, Line %ld",
 srvmsg->state, srvmsg->line);

 if (srvmsg->svrnlen > 0)
 {
 fprintf(EX_ERROR_OUT, "\nServer '%s'",
 srvmsg->svrname);
 }

 if (srvmsg->proclen > 0)
 {
 fprintf(EX_ERROR_OUT, " Procedure '%s'",
 srvmsg->proc);
 }

 fprintf(EX_ERROR_OUT, "\nMessage String: %s",
 srvmsg->text);

 return CS_SUCCEED;
 }

Handling specific messages

In some applications, the programmer may want to code special handling for
certain message numbers.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 55

For example, if a message is known to be informational and not an error
message, you may not want the application to display the message to the end
user. The example below shows a fragment from a server message callback that
does not display messages 5701, 5703, or 5704. Adaptive Server Enterprise
always sends a 5701 message when a connection is opened and may also send
the other two. Adaptive Server Enterprise also sends a 5701 message after
every successful use database command. Some end users may not want to see
such messages. If the code shown below is placed at the top of the server
message callback, these message numbers are ignored:

 /*
 ** Ignore these Server messages:
 ** 5701 (changed database),
 ** 5703 (changed language),
 ** or 5704 (changed client character set)
 */
 if (srvmsg->msgnumber == 5701
 || srvmsg->msgnumber == 5703
 || srvmsg->msgnumber == 5704)
 {
 return CS_SUCCEED;
 }

This code is specific to Adaptive Server Enterprise. These message numbers
may mean something else entirely when connected to another type of server,
such as an Open Server gateway or a custom Open Server application.

Signal callbacks
A signal callback is called whenever a process receives a signal on a UNIX
platform.

On UNIX platforms, Client-Library uses signal-driven I/O to interact with the
network. On these platforms, if an application handles signals, it must install
the signal handler through Client-Library, even if the signals relate to non-
Client-Library work. To install a signal handler, call ct_callback instead of
using a system call. A system call to install a signal handler overwrites Client-
Library’s signal handler. If this occurs, Client-Library behavior is undefined.

When Client-Library is used in an Open Server gateway, signal handlers
should be installed using Server-Library routines.

When Client-Library receives the Client-Library signal handler:

• Performs any internal Client-Library processing that is required

Callbacks

56 Open Client

• Calls the appropriate user-defined signal callback, if any

Defining a signal callback

A signal callback must be defined according to operating system
specifications.

An application that defines and installs a signal callback must include the
appropriate operating system header file (sys/signal.h on most UNIX
platforms).

Installing a signal callback

A signal callback is installed only at the context level. Signal callbacks are
identified by adding the signal number on to the defined constant
CS_SIGNAL_CB.

The following routine demonstrates how to install a signal callback:

 /*
 ** INSTALLSIGNALCB
 **
 ** This routine installs a signal callback for the
 ** specified signal
 **
 ** Parameters:
 ** cp Context handle
 ** signo Signal number
 ** signalhandler Signal handler to install
 **
 ** Returns:
 ** CS_SUCCEED Signal handler was installed
 ** successfully
 ** CS_FAIL An error was detected while
 ** installing the signal handler
 */
 CS_RETCODE installsignalcb(cp, signo, signalhandler)
 CS_CONTEXT *cp;
 CS_INT signo;
 CS_VOID *signalhandler;
 {
 CS_INT adjustedsigno;
 CS_RETCODE ret;

 /*
 ** Add the signal number to the CS_SIGNAL_CB

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 57

 ** define to indicate the signal number that this
 ** handler is being installed for.
 */
 adjustedsigno = CS_SIGNAL_CB + signo;

 ret = ct_callback(cp, (CS_CONNECTION *)NULL,
 CS_SET, adjustedsigno, signalhandler);

 return(ret);
 }

SSL validation callbacks
The Secure Socket Layer (SSL) validation callback intercepts SSL
handshakes, overriding SSL validation checks. SSL validation callbacks are
only required when a Client-Library application wants to override SSL
validation checks.

You may, for example, attempt a SSL connection using ct_con_props
(CS_SET, CS_SERVERADDR), with the server address set to hostname port
ssl.

If the server_name parameter passed to ct_connect does not match the common
name in the server’s certificate, SSL validation fails. Use the SSL validation
callback to override this check.

Defining an SSL validation callback

An SSL validation callback is defined as follows:

CS_RETCODE CS_PUBLIC
validate_srvname_cb(CS_VOID *userdata, CS_SSLCERT *certptr,

CS_INT certcount, CS_INT valid)

where:

• userdata refers to the CS_USERDATA of the connection structure

• certptr is a pointer to an array of CS_SSLCERT structures

• certcount indicates the number of entries in the array

• valid is the value determined by the SSL validation check. valid can be any
of the following values:

Value of valid Indicates

CS_SSL_VALID_CERT Valid certificate

Capabilities

58 Open Client

SSL validation callback example

Following is an example of a SSL validation callback:

CS_RETCODE CS_PUBLIC
validate_srvname_cb(CS_VOID *userdata, CS_SSLCERT *certptr,

CS_INT certcount, CS_INT valid)
{

if (valid == CS_SSL_INVALID_MISMATCHNAME)
{

return CS_SSL_VALID_CERT;
}
else
{

return valid;
}

}

Capabilities
Capabilities describe features that a client/server connection supports. In
particular, capabilities describe the types of requests that an application sends
on a specific connection and the types of server responses that a server returns
on a specific connection.

CS_SSL_INVALID_
BADCHAIN

Certificate chain is invalid

CS_SSL_INVALID_
EXPCERT

A certificate in the chain has expired

CS_SSL_INVALID_
INCOMPLETE

Certificate chain is not terminated with self-
signed root certificate

CS_SSL_INVALID_
UNKNOWN

SSL validation check failed because of unknown
reasons

CS_SSL_INVALID_
UNTRUSTED

Certificate chain does not include a trusted
certificate

CS_SSL_INVALID_
MISSINGNAME

Common name missing in the certificate

CS_SSL_INVALID_
MISMATCHNAME

Common name does not match the server name

Value of valid Indicates

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 59

Wide tables and larger page size
Open Client and Open Server allow client applications to send and receive
wide data and data for larger numbers of columns that are supported in
Adaptive Server Enterprise; that is, columns in excess of 255 bytes, and more
than 255 columns per table.

Note Client-Library applications compiled with versions earlier than 12.5
must be recompiled with a higher version to enable larger byte limits.

Page size

Open Client and Open Server support logical page sizes of 2K, 4K, 8K, and
16K. Open Client and Open Server use the Bulk-Library (blklib) routines to
populate these pages.

Table 2-7 lists bulk library constants and their values.

Table 2-7: Page size values

Increased page size limits allow for increased number of columns, depending
upon the type of table. The limits are:

• 1024 for fixed-length columns in both all-pages locking (APL) and data-
only locking (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

Compatibility

Support for wide data and a larger number of columns is automatically enabled
if:

• The client is set to CS_VERSION_125 or later

• It is linked with Open Client Server 12.5 or later, and

blk_pagesiz
e blk_maxdatarow blk_maxcolsize blk_maxcolno blk_boundary

2K 1962 1960 1962 1960

4K 4010 4008 4010 4008

8K 8106 8104 8106 8104

16K 16298 16296 16298 16298

Capabilities

60 Open Client

• The Adaptive Server Enterprise to which it is connected has the
capabilities to handle wide tables. To determine the version of Adaptive
Server Enterprise:

1> select @@version
2> go

If Open Client and Open Server 12.5 or later blklib is linked to a version 12.5
or later bcp application that communicates with a pre-12.5 Adaptive Server
Enterprise, the bcp utility assumes that Adaptive Server Enterprise has the 2K
page size.

If the blklib is linked to a bcp application that was built with a version of the
utility earlier than 12.5, it cannot support the copy of large pages.

Wide tables

Open Client and Open Server support tables with more than 255 columns and
column sizes in excess of 255 bytes or 255-byte binary data.

Capability

To support wide tables, the client sends a login packet to the server along with
a capability packet. Possible ct_capability parameters include:

• CS_WIDETABLE – a request capability that a client sends to the server
indicating the client has the capability to receive larger data table formats.

• CS_NOWIDETABLE – a response capability that a client sends to the
server to have the server disable wide table support for this particular
connection.

If the version of the application is set to CS_VERSION_125 or later,
Client-Library always sends CS_WIDETABLE capability to the server; the
application does not have control of the request capability. However, the
application can set CS_NOWIDETABLE response capability before the
connection is established to specifically request the server not to enable wide
table capabilities.

The syntax of ct_capability is:

CS_RETCODE ct_capability (connection, action, type,
capability, value)

CS_CONNECTION *connection;
CS_INT action;
CS_INT type;
CS_INT capability;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 61

CS_VOID *value;

where the values of type are CS_WIDETABLE or CS_NOWIDETABLE.

If you do not want to enable wide table support, you can set the
CS_NOWIDETABLE response capability before calling the ct_connect
routine. This must be done before connecting to the server.

...
CS_BOOL boolv = CS_TRUE
...
retcode = ct_capability (*conn_ptr, CS_SET,

CS_CAP_RESPONSE, CS_NOWIDETABLES, &boolv);
...

ct_dynamic() with CS_CURSOR_DECLARE supports the flags
CS_PREPARE, CS_EXECUTE, and CS_EXEC_IMMEDIATE to prepare and
execute dynamic SQL statements that reference the 1024-column limit of
Adaptive Server Enterprise 12.5.

ct_param() can be used to pass as many as 1024 arguments to a dynamic SQL
statement.

Changes in application program

If the column data you are retrieving is in excess of CS_MAX_CHAR (256
characters or 256 binary data), you must edit the CS_DATAFMT structure field
datafmt.maxlength definition to the maximum length, in bytes, of the data that
you are retrieving. Otherwise, you get a truncation error.

If you expect wider columns in the client program, change the column array
size in the application program.

For example, if the application expects a column that is 300 bytes wide, then
the column should mention CS_CHAR col1[300] at an appropriate place.
Assign an appropriate length-of-character datatype, to the maxlength parameter
of the CS_DATAFMT structure for RPC applications if the column is more
than 255 bytes. The following is recommended for the CS_DATAFMT
parameter:

datafmt.datatype = CS_LONGCHAR_TYPE
datafmt.maxlength = sizeof(col1)

The following example is a small ctlib program using the pubs2 database.

1 Alter the authors table and add a column “comment” declare as a
varchar(500):

1>alter table authors add comment varchar(500) null

Capabilities

62 Open Client

2>go

2 Update the new column within the table:

1>update authors set comment = replicate (substring(state,1,1), 500)
2>go
/* This SQL command will update the comment column with a replicate of
500 times the first letter of the state for each row. */

3 Modify the example.h file to set the “new limits” capabilities:

#define EX_CTLIB_VERSION CS_VERSION_155

4 Update the exutils.h file and reset the MAX_CHAR_BUF to 16384 (16K).

5 Recompile and link ctlib using 15.5 headers and libraries.

6 Execute and test on an Adaptive Server Enterprise version 12.5 or later Xk
page size server.

If you set CS_VERSION_155, you see the following (only displays the
last 2 rows):

Heather McBadden 95688 CCC
CC
CC
CC
CC
CC
CC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Anne Ringer 84152 UUU
UU
UU
UU
UU
UU
UU
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

7 Update the example.h file and reset ctlib to CS_VERSION_120.
Recompile and link using OCS-15_5 headers and libraries.

Note If you execute the same program without setting
CS_VERSION_155 first, you retrieve only the first 255 bytes of the
comment column and cannot retrieve wide columns, even if you are using
version 12.5 or later of Adaptive Server Enterprise and OCS 15.5 libraries.

Open Client message:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 63

Message number: LAYER = (1) ORIGIN = (4) SEVERITY = (1) NUMBER = (132)
Message String: ct_fetch(): user api layer: internal common library
error: The bind of result set item 4 resulted in truncation.
Error on row 21.
Heather McBadden 95688 CC
CC
CC
CC

Open Client message:

Message number: LAYER = (1) ORIGIN = (4) SEVERITY = (1) NUMBER = (132)
Message String: ct_fetch(): user api layer: internal common library
error: The bind of result set item 4 resulted in truncation.
Error on row 22.
Anne Ringer 84152 UUU
UU
UU
UUU

Wide-table compatibility

Wide-table support is activated automatically if:

• The client is set to CS_VERSION_125 or later

• It is linked with Open Client Server 12.5 or later, and

• The Adaptive Server Enterprise to which it is connected has the
capabilities to handle wide tables.

If the Client-Library application’s version string is not set to
CS_VERSION_125 or later, and it is linked to an Open Client and Open Server
12.5 or later, the application does not support the extended limits and there is
no behavioral change.

If the Open Client and Open Server version 15.0 or 15.5 connects to a pre-12.5
Adaptive Server Enterprise, the server returns a capability bit of 0, indicating
that it does not support wide tables; the connection is still made but there are
no behavioral changes.

Capabilities

64 Open Client

If a pre-12.5 version of Open Client and Open Server connects to an Adaptive
Server Enterprise 15.0, the new limits are not enabled. However, if the
Adaptive Server Enterprise determines that it must send a wide-table format to
an older client, the data is truncated and sent.

Note Adaptive Server Enterprise version 11.0 and later returns a mask length
of 0 for any mask length in excess of 7 bytes. If the connection request receives
a capability mask of 0, you see this error message:

ct_connect(): protocol specific layer: external error:
“This server does not accept new larger cpability mask,
the original cap mask will be used.”

and the extended limits are not enabled.

CS_RES_NOXNLMETADATA response capability

The CS_RES_NOXNLMETADATA response capability improves server and
client application performance by optimizing the information type and
structure that server applications send to client applications. You can use
CS_RES_NOXNLMETADATA to inform your server to not send metadata
such as Column Label, Catalog Name, Schema Name, and Table Name when
this information is not needed.

By default, CS_RES_NOXNLMETADATA is on for applications in which the
version is set to CS_VERSION_125, CS_VERSION_150, or
CS_VERSION_155.

unichar datatype
Open Client and Open Server unichar supports 2-byte characters, supporting
multilingual client applications, and reducing the overhead associated with
character-set conversions.

Designed the same as the Open Client and Open Server CS_CHAR datatype,
CS_UNICHAR is a shared, C-programming datatype that can be used
anywhere the CS_CHAR datatype is used. The CS_UNICHAR datatype stores
character data in Unicode UCS Transformational Format 16-bit (UTF-16),
which is 2-byte characters.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 65

The Open Client and Open Server CS_UNICHAR datatype corresponds to the
Adaptive Server Enterprise 15.0 UNICHAR fixed-width and UNIVARCHAR
variable-width datatypes, which store 2-byte characters in the Adaptive Server
Enterprise database.

As a standalone, Open Client applications can use this functionality to convert
other datatypes to and from CS_UNICHAR at the client site, even if the server
does not have the capability to process 2-byte characters.

Datatypes and capabilities

To send and receive 2-byte characters, the client specifies its preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server site.

The Open Client ct_capability parameters are as follows:

• CS_DATA_UCHAR – is a request sent to the server to determine whether
the server supports 2-byte characters.

• CS_DATA_NOUCHAR – is a parameter sent from the client to tell the
server not to support unichar for this specific connection.

To access 2-byte character data, Open Client and Open Server implements the
following:

• CS_UNICHAR – a datatype.

• CS_UNICHAR_TYPE – a datatype constant to identify the data’s
datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_UNICHAR_TYPE
allows you to use existing API calls, such as ct_bind, ct_describe, ct_param, and
so on.

CS_UNICHAR uses the format bitmask field of CS_DATAFMT to describe
the destination format.

For example, in the Client-Library sample program, rpc.c, the
BuildRpcCommand() function contains the section of code that describes the
datatype:

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_CHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
datafmt.status = CS_RETURN;

Capabilities

66 Open Client

datafmt.locale = NULL;
...

In this example from the uni_rpc.c sample program, the character type is
defined as datafmt.datatype = CS_CHAR_TYPE. Use an ASCII text editor to
edit the datafmt.datatype field:

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_UNICHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;
...

Samples are found in %SYBASE%\%SYBASE_OCS%\sample for Windows,
and $SYBASE/$SYBASE_OCS/sample for UNIX.

Since CS_UNICHAR is a UTF-16 encoded Unicode character datatype that is
stored in 2 bytes, the maximum length of CS_UNICHAR string parameter sent
to the server is restricted to one-half the length of CS_CHAR, which is stored
in 1-byte format.

Table 2-8 lists the CS_DATAFMT bitmask fields.

Table 2-8: CS_DATAFMT structure

isql and bcp utilities

Both the isql and the bcp utilities automatically support unichar data if the
server supports 2-byte character data. bcp supports 4K, 8K and 16K page sizes.

If the client’s default character set is UTF-8, isql displays 2-byte character data,
and bcp saves 2-byte character data in the UTF-8 format. Otherwise, the data
is displayed or saved, respectively, in 2-byte Unicode data in binary format.

Use isql -Jutf8 to set the client character set for isql. Use bcp -Jutf8 to set
the client character set for the bcp utility.

Bitmask field Description

CS_FMT_NULLTERM The data is 2-byte Unicode null-terminated (0x0000).

CS_FMT_PADBLANK The data is padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS_FMT_PADNULL The data is padded with 2-byte Unicode nulls to the full
length of the destination variable (0x0000).

CS_FMT_UNUSED No format information is provided.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 67

Limitations

The sever to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes, and use UTF-8 as the default character set.
If the server does not support 2-byte Unicode datatypes, the server returns an
error message: “Type not found. Unichar/univarchar is not
supported.”

CS_UNICHAR does not support the conversion from UTF-8 to UTF-16 byte
format for CS_BOUNDARY and CS_SENSITIVITY. All other datatype
formats are convertible.

CS_UNICHAR does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

unitext datatype
CS_UNITEXT is an Open Client and Open Server C Programming datatype
that corresponds directly to the server UNITEXT datatype. CS_UNITEXT also
exhibits identical syntax and semantics to CS_TEXT. The difference is that
CS_UNITEXT encodes character data in the Unicode UTF-16 format.

Datatypes and capabilities

To send and receive 2-byte characters, the client specifies its preferred byte
order during the login phase of the connection. Any necessary byte-swapping
is performed on the server side.

The Open Client ct_capability() parameters are as follows:

• CS_DATA_UNITEXT – is a request sent to the server to determine
whether the server supports 2-byte Unicode datatypes.

• CS_DATA_NOUNITEXT – is a parameter sent from the client to tell the
server not to send unitext for this specific connection.

To access 2-byte character data, Open Client and Open Server implements the
following:

• CS_UNITEXT – a datatype.

• CS_UNITEXT_TYPE – a datatype constant to identify the data’s
datatype.

Capabilities

68 Open Client

Setting the CS_DATAFMT parameter’s datatype to CS_UNITEXT_TYPE
allows you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

Since CS_UNITEXT is encoded as a UTF-16 Unicode datatype and stored in
the 2-byte format, it can be used anywhere CS_TEXT is used. The maximum
length of the CS_UNITEXT string parameter is half of the maximum length of
CS_TEXT.

Like CS_TEXT, CS_UNITEXT uses CS_DATAFMT to describe the
destination format. The symbols and meanings of the format field values are as
follows:

Table 2-9: CS_DATAFMT structure

isql and bcp utilities

In an Open Client application, UNITEXT is always activated, with no
configuration parameter required. UNITEXT is part of the Open Client and
Open Server libraries and the utilities (isql & bcp) that are shipped with them.
isql displays and bcp saves the server’s UNITEXT in binary format.

Limitations

The server to which the Open Client and Open Server is connecting must
support 2-byte Unicode datatypes.

If the server does not support 2-byte Unicode datatypes, the server returns an
error message.

However, the client can convert other datatypes to or from CS_UNITEXT.

CS_UNITEXT does not provide C programming operations on UTF-16
encoded Unicode data such as Unicode character strings.

Bitmask field Description

CS_FMT_NULLTERM The data is 2-byte Unicode null-terminated (0x0000).

CS_FMT_PADBLANK The data is padded with 2-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS_FMT_PADNULL The data is padded with 2-byte Unicode nulls to the full
length of the destination variable (0x0000).

CS_FMT_UNUSED No format information is provided.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 69

xml datatype
CS_XML is a variable-width Open Client and Open Server C Programming
datatype. CS_XML corresponds directly to CS_TEXT and CS_IMAGE
datatypes. CS_XML can be used anywhere CS_TEXT and CS_IMAGE are
used to represent XML documents and contents.

Datatypes and capabilities

The Open Client ct_capability() parameters:

• CS_DATA_XML – is a request sent to the server to determine whether the
server supports XML.

• CS_DATA_NOXML – is a parameter sent from the client to tell the server
not to support xml for this specific connection.

To access XML datatypes, Open Client and Open Server implements:

• CS_XML – a datatype.

• CS_XML_TYPE – a datatype constant to identify the data’s datatype.

Setting the CS_DATAFMT parameter’s datatype to CS_XML_TYPE allows
you to use existing API calls, such as ct_bind, ct_describe, ct_param,
ct_setparam, cs_convert and so on.

isql and bcp utilities

In an Open Client application, XML is always activated, with no configuration
parameter required. XML is part of the Open Client and Open Server libraries
and the utilities (isql & bcp) that are shipped with them. isql displays and bcp
saves the server’s XML in binary format.

Limitations

XML data can only be transmitted between client and server if the server
supports XML. If there is no support, the server returns an error message.
ct_capability is used to test if the server supports XML. A client can convert
other possible datatypes to or from the CS_XML datatype.

Note the following syntax rules of XML:

• Closing XML tags cannot be omitted.

• XML tags are case sensitive.

Capabilities

70 Open Client

• XML elements must be properly nested.

• XML documents must have a root element.

• XML attribute values must always be quoted.

With XML, white space is preserved. Also, with XML, CR/LF is converted to
LF.

The Open Client and Open Server does not check or validate CS_XML
documents or contents.

Capabilities and the connection’s TDS level
Sybase clients and servers communicate using the Tabular Data Stream™
(TDS) protocol. Different TDS versions support different features. For
example, 4.0 TDS is the earliest version that supports Remote Procedure Calls
(RPCs).

The TDS version level is determined when a connection is established. When
an application calls ct_connect to connect to a server, Client-Library presents
the server with a preferred TDS level. If the server cannot support this TDS
level, it negotiates with Client-Library to find a TDS level that is acceptable.

Note jConnect does not negotiate TDS version; if the server doesn't support
TDS 5.0 jConnect will terminate the connection.

Capabilities describe which client requests and which server responses are sent
over a connection. By default, capabilities are based on the TDS version level,
but a client application can be coded to further limit response capabilities and
a server can be coded to further limit request capabilities.

When a Client-Library calls ct_capability:

1 Before opening a connection, it sets up the connection structure to tell a
server not to send a particular type of response on a connection.

2 After opening a connection, it determines whether the connection supports
a particular type of request or response.

For information on how an Open Server application sets or retrieves
capabilities, see the Open Server Server-Library/C Reference Manual.

There are two types of capabilities:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 71

• CS_CAP_REQUEST capabilities, or request capabilities, describe the
types of client requests that can be sent on a server connection.

• CS_CAP_RESPONSE capabilities, or response capabilities, describe the
types of server responses that a connection does not wish to receive.

For a list of capabilities, see the reference page for ct_capability.

Setting and retrieving capabilities
Before calling ct_connect, an application:

• Retrieves request or response capabilities to determine what request and
response features are normally supported at the connection’s current TDS
version level. A connection’s TDS level defaults to the version level that
the application requested in its call to ct_init. An application can change a
connection’s TDS level by calling ct_con_props with property as
CS_TDS_VERSION (see “TDS version” on page 238).

• Sets response capabilities to indicate that a connection does not wish to
receive particular types of responses. For example, an application sets a
connection’s TDS_RES_NOEED capability to CS_TRUE to indicate that
the connection does not wish to receive extended error data.

After a connection is open, an application:

• Retrieves request capabilities to find out what types of requests the
connection will support

• Retrieves response capabilities to find out whether the server has agreed
to withhold the previously indicated response types from the connection

Setting and retrieving multiple capabilities

Gateway applications often need to set or retrieve all capabilities of a type
category with a single call to ct_capability. To do this, an application calls
ct_capability with:

• type as the type category of interest

• capability as CS_ALL_CAPS

• value as a CS_CAP_TYPE structure

Client-Library provides the following macros to enable an application to set,
clear, and test bits in a CS_CAP_TYPE structure:

Client-Library and SQL Structures

72 Open Client

• CS_CLR_CAPMASK(mask, capability) – modifies the CS_CAP_TYPE
structure mask by clearing the bits specified in capability.

• CS_SET_CAPMASK(mask, capability) – modifies the CS_CAP_TYPE
structure mask by setting the bits specified in capability.

• CS_TST_CAPMASK(mask, capability) – determines whether the
CS_CAP_TYPE mask includes the bits specified in capability.

Client-Library and SQL Structures
This section provides an overview of Client-Library structures and the SQL
structures.

Exposed and hidden structures
Client-Library structures fall into two categories: a hidden structure is a
structure whose internals are not documented, and an exposed structure is a
structure whose internals are documented.

Exposed structures

Exposed structures provide a way for Client-Library to exchange information
with an application. Typically, applications set fields in an exposed structure
before passing the structure as a parameter to a Client-Library routine, and
retrieve the values of fields in an exposed structure after calling a Client-
Library routine.

Exposed structures include:

• CS_BROWSEDESC, the browse descriptor structure

• CS_CLIENTMSG, the Client-Library message structure

• CS_DATAFMT, the data format structure

• CS_IODESC, the I/O descriptor structure

• CS_SERVERMSG, the server message structure

• SQLCA, the SQL Communications Area structure

• SQLCODE, the SQL Code structure

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 73

• SQLSTATE, the SQL State structure

These exposed structures are documented in the following sections.

Hidden structures

Client-Library uses hidden structures to manage a variety of internal tasks.

A Client-Library application cannot directly access hidden structure internals.
Instead, the application must call Client-Library routines to allocate,
manipulate, and deallocate hidden structures.

Hidden structures include:

• CS_BLKDESC, a control structure used by Client-Library’s and Server-
Library’s bulk copy routines.

• CS_CAP_TYPE, which is used to store capability information.

• CS_COMMAND, which is used to send commands and process results.

• CS_CONNECTION, which defines an individual client/server
connection.

• CS_CONTEXT, which defines a Client-Library programming context.

• CS_LOCALE, which is used to store localization information.

• CS_LOGINFO, the server login information structure. This structure,
which is associated with a CS_CONNECTION, contains server login
information such as user name and password.

Table 2-10 lists the routines and macros that allocate, manipulate, and
deallocate hidden structures:.

Client-Library and SQL Structures

74 Open Client

Table 2-10: Routines that manipulate hidden structures

CS_BROWSEDESC structure
ct_br_column uses a CS_BROWSEDESC structure to return information about
a column returned as the result of a browse-mode select. This information is
useful when an application needs to construct a language command to update
browse-mode tables.

A CS_BROWSEDESC structure is defined as follows:

/*
 ** CS_BROWSEDESC
 ** The Client-Library browse column description
 ** structure.
 */
 typedef struct _cs_browsedesc

Structure Routines For more information

CS_BLKDESC blk_alloc, blk_drop Open Client and Open Server
Common Libraries Reference
Manual.

CS_CAP_TYPE CS_CLR_CAPMASK,
CS_SET_CAPMASK,
CS_TST_CAPMASK

“Setting and retrieving multiple
capabilities” on page 71.

CS_COMMAND ct_cmd_alloc,
ct_cmd_props,
ct_cmd_drop

Reference pages for these
routines.

CS_CONNECTION ct_con_alloc,
ct_con_props,
ct_con_drop

Reference pages for these
routines.

CS_CONTEXT cs_ctx_alloc,
ct_config,
 cs_config,
 cs_ctx_drop

Reference pages for these
routines.

CS-Library routines are
documented in the Open Client
and Open Server Common
Libraries Reference Manual.

CS_LOCALE cs_loc_alloc,
cs_locale,
cs_loc_drop

“International Support” on page
145.

Open Client and Open Server
Common Libraries Reference
Manual.

CS_LOGINFO ct_getloginfo,
ct_setloginfo

Reference pages for these
routines.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 75

 {
 CS_INT status;
 CS_BOOL isbrowse;
 CS_CHAR origname[CS_MAX_CHAR];
 CS_INT orignlen;
 CS_INT tablenum;
 CS_CHAR tablename[CS_OBJ_NAME];
 CS_INT tabnlen;
 } CS_BROWSEDESC;

where:

• status is a bitmask of the following symbols, on which a bitwise OR
operation is performed:

• CS_EXPRESSION indicates the column is the result of an
expression, for example, “sum*2” in the query “select sum*2 from
areas”.

• CS_HIDDEN indicates that the column is a hidden column that has
been exposed. See “Hidden keys” on page 224.

• CS_KEY indicates that the column is a key column. See the
ct_keydata reference page.

• CS_RENAMED indicates that the column’s heading is not the
original name of the column. Columns will have a different heading
from the column name in the data base if they are the result of a query
of the form:

 select Author = au_lname from authors

• isbrowse indicates whether or not the column can be browse-mode
updated.

A column may be updated if it is not the result of an expression and if it
belongs to a browsable table. A table is browsable if it has a unique index
and a timestamp column.

isbrowse is set to CS_TRUE if the column can be updated and CS_FALSE
if it cannot.

• origname is the original name of the column in the database. origname is
a null-terminated string.

Any updates to a column must refer to it by its original name, not the
heading that may have been given the column in a select statement.

• orignlen is the length, in bytes, of origname.

Client-Library and SQL Structures

76 Open Client

• tablenum is the number of the table to which the column belongs. The first
table in a select statement’s from list is table number 1, the second is
number 2, and so forth.

• tablename is the name of the table to which the column belongs.
tablename is a null-terminated string.

• tabnlen is the length, in bytes, of tablename.

CS_CLIENTMSG structure
A CS_CLIENTMSG structure contains information about a Client-Library
error or informational message.

Client-Library uses a CS_CLIENTMSG structure in two ways:

• For connections using the callback method to handle messages, a
CS_CLIENTMSG is the third parameter that Client-Library passes to an
application’s client message callback routine.

• For connections handling messages inline, ct_diag returns information in
a CS_CLIENTMSG.

For information on how to handle Client-Library error handling and server
message handling, see “Error handling” on page 122.

A CS_CLIENTMSG structure is defined as follows:

/*
 ** CS_CLIENTMSG
 ** The Client-Library client message structure.
 */

 typedef struct _cs_clientmsg
 {
 CS_INT severity;
 CS_MSGNUM msgnumber;
 CS_CHAR msgstring[CS_MAX_MSG];
 CS_INT msgstringlen;

 /*
 ** If the error involved the operating
 ** system, the following fields contain
 ** operating-system-specific information:
 */
 CS_INT osnumber;
 CS_CHAR osstring[CS_MAX_MSG];

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 77

 CS_INT osstringlen;

 /*
 ** Other information:
 */
 CS_INT status;
 CS_BYTE sqlstate[CS_SQLSTATE_SIZE];
 CS_INT sqlstatelen;

 } CS_CLIENTMSG;

where:

• severity is a symbolic value representing the severity of the message. Table
2-11 shows the legal values for severity:

Table 2-11: CS_CLIENTMSG severity field values

• msgnumber is the Client-Library message number. See “Client-Library
message numbers” on page 79.

• msgstring is the null-terminated Client-Library message string.

Severity Explanation

CS_SV_INFORM No error has occurred. The message is
informational.

CS_SV_CONFIG_FAIL A Sybase configuration error has been detected.
Configuration errors include missing localization
files, a missing interfaces file, and an unknown
server name in the interfaces file.

CS_SV_RETRY_FAIL An operation has failed, but can be retried.

An example of this type of operation is a network
read that times out.

CS_SV_API_FAIL A Client-Library routine generated an error. This
error is typically caused by a bad parameter or
calling sequence. The server connection is
probably usable.

CS_SV_RESOURCE_FAIL A resource error has occurred. This error is
typically caused by a malloc failure or lack of file
descriptors. The server connection is probably not
usable.

CS_SV_COMM_FAIL An unrecoverable error in the server.

The server connection is not usable.

CS_SV_INTERNAL_FAIL An internal Client-Library error has occurred.

CS_SV_FATAL A serious error has occurred. All server
connections are unusable.

Client-Library and SQL Structures

78 Open Client

If an application is not sequencing messages, msgstring is guaranteed to
be null-terminated, even if it has been truncated.

If an application is sequencing messages, msgstring is null-terminated
only if it is the last chunk of a sequenced message.

See “Sequencing long messages” on page 126.

• msgstringlen is the length, in bytes, of msgstring. This is always the actual
length, never the symbolic value CS_NULLTERM.

• osnumber is the operating system error number, if any. Client-Library sets
osnumber to 0 if no operating system error has occurred.

• osstring is the null-terminated operating system error string, if any.

• osstringlen is the length of osstring. This is always the actual length, never
the symbolic value CS_NULLTERM.

• status is a bitmask that indicates various types of information, such as
whether or not this is the first, a middle, or the last chunk of an error
message. The values that can be present in status include:

Table 2-12: CS_CLIENTMSG status field values

• sqlstate is a byte string describing the error.

Symbolic value Meaning

CS_FIRST_CHUNK The message text contained in msgstring is the first
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then msgstring contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then msgstring contains a
middle chunk of the message.

See “Sequencing long messages” on page 126.

CS_LAST_CHUNK The message text contained in msgstring is the last
chunk of the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then msgstring contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then msgstring contains a
middle chunk of the message.

See “Sequencing long messages” on page 126.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 79

Not all client messages have SQL state values associated with them. If no
SQL state value is associated with a message, sqlstate has the value
“ZZZZZ”.

• sqlstatelen is the length, in bytes, of the sqlstate string.

Client-Library message numbers

Client-Library message numbers are represented by a CS_INT value that
encodes four byte-size components.

Decoding a message number

Client-Library provides the following macros for decoding a message number
so that each component is displayed separately:

• CS_LAYER – unpacks the layer number that identifies the Client-Library
layer that generated the message.

• CS_ORIGIN – unpacks the message’s origin, which indicates whether the
error occurred internal or external to Client-Library.

• CS_SEVERITY – unpacks the severity of the message. See “Client-Library
message severities” on page 80 for a list of severity codes and their
meanings.

• CS_NUMBER – unpacks the layer-specific message number that (together
with severity, layer, and origin) identifies the message.

These macros are defined in the header file cstypes.h (which is included in
ctpublic.h).

A typical application uses these macros to split a message number into four
parts, which it then displays separately. For examples that demonstrates the use
of these macros, see “Client message callback example” on page 31 and
“Handling timeout errors” on page 240.

Client-Library and CS-Library use the message number components layer,
origin, and number as keys for building a localized message string from text
retrieved from the library’s locales file. The localized message strings are then
passed to the application as the msgstring field of the CS_CLIENTMSG
structure.

Note See the Open Client and Open Server Configuration Guide for your
platform to view the Sybase localization file structure on your platform.

Client-Library and SQL Structures

80 Open Client

The error message text is composed from the components as follows:

routine: layer: origin: description

where:

• routine is the name of the library routine where the error occurred.

• layer is a layer description retrieved from either the [cslayer] section of
cslib.loc (for CS-Library errors) or the [ctlayer] section of ctlib.loc (for
Client-Library errors).

• origin is a phrase retrieved from either the [csorigin] section of cslib.loc
(for CS-Library errors) or the [ctorigin] section of ctlib.loc (for Client-
Library errors).

• description is an error description retrieved from the appropriate layer-
specific section of the file.

The following is a U.S. English error string as it might be printed by a typical
client message callback routine:

Client Library error(16843066):
 severity(1) number(58) origin(1) layer(1)
 ct_bind(): user api layer: external error: The format
field of the CS_DATAFMT structure must be CS_FMT_UNUSED
if the datatype field is int.

Client-Library message severities

Table 2-13 lists Client-Library message severities:

Table 2-13: Client-Library message severities

Severity Explanation User action

CS_SV_INFORM No error has occurred. The
message is informational.

No action is required.

CS_SV_CONFIG_FAIL A Sybase configuration error
has been detected.
Configuration errors include
missing localization files, a
missing interfaces file, and an
unknown server name in the
interfaces file.

Raise an error so that the application’s end
user can correct the problem.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 81

CS_SV_RETRY_FAIL An operation has failed, but the
operation may be retried.

An example of this type of
operation is a network read that
times out.

The return value from an application’s client
message callback determines whether or not
Client-Library retries the operation.

If the client message callback returns
CS_SUCCEED, Client-Library retries the
operation.

If the client message callback returns
CS_FAIL, Client-Library does not retry the
operation and marks the connection as dead.
In this case, call
ct_close(CS_FORCE_CLOSE) to close the
connection and then reopen it by calling
ct_connect.

CS_SV_API_FAIL A Client-Library routine
generated an error. This error is
typically caused by a bad
parameter or calling sequence.
The server connection is
probably usable.

Call ct_cancel(CS_CANCEL_ALL) to clean
up the connection. If
ct_cancel(CS_CANCEL_ALL) returns
CS_SUCCEED, the server connection is
unharmed. It is illegal to perform this type of
cancel from within a client message callback
routine.

CS_SV_RESOURCE_FAIL A resource error has occurred.
This error is typically caused by
a malloc failure or lack of file
descriptors. The server
connection is probably not
usable.

Call ct_close(CS_FORCE_CLOSE) to close
the server connection and then reopen it, if
desired, by calling ct_connect. It is illegal to
make these calls from within a client message
callback routine.

CS_SV_COMM_FAIL An unrecoverable error in the
server communication channel
has occurred.

The server connection is not
usable.

Call ct_close(CS_FORCE_CLOSE) to close
the server connection and then re-open it, if
desired, by calling ct_connect. It is illegal to
make these calls from within a client message
callback routine.

CS_SV_INTERNAL_FAIL An internal Client-Library error
has occurred.

Call ct_exit(CS_FORCE_EXIT) to exit
Client-Library, and then exit the application. It
is illegal to call ct_exit from within a client
message callback routine.

CS_SV_FATAL A serious error has occurred.
All server connections are
unusable.

Call ct_exit(CS_FORCE_EXIT) to exit
Client-Library, and then exit the application. It
is illegal to call ct_exit from within a client
message callback routine.

Severity Explanation User action

Client-Library and SQL Structures

82 Open Client

Handling specific Client-Library messages

Most Client-Library messages represent a coding error in the program, and the
error description tells you the problem. These errors are best handled by either
displaying the message or logging it to an application error file.

In other cases, the program may want to recognize the error and take specific
action. For example:

• If a read from the server times out, then the program may decide to cancel
the command that is being processed.

• For configuration errors, the program may want to recognize the specific
problem and display an application-defined message that gives specific
instructions to the application end user.

Errors are uniquely described by the four components of the error. A macro
such as the ERROR_SNOL example below is useful for recognizing message
numbers:

/*
 ** ERROR_SNOL(error_numb, severity, number, origin, layer)
 **
 ** Error comparison for Client-Library or CS-Library errors.
 ** Breaks down a message number and compares it to the given
 ** constants for severity, number, origin, and layer. Returns
 ** non-zero if the error number matches the 4 components.
 */
 #define ERROR_SNOL (e, s, n, o, l) \
 ((CS_SEVERITY(e) == s) && (CS_NUMBER(e) == n) \
 && (CS_ORIGIN(e) == o) && (CS_LAYER(e) == l))

Table 2-14 lists the error codes for some Client-Library messages. These errors
are either recoverable, or they represent a configuration problem either on the
client machine or the remote server machine.

Table 2-14: Client-Library errors

Severity Number Origin Layer Cause

CS_SV_RETRY_FAIL 63 2 1 A read from the server timed out. See “Handling
timeout errors” on page 240.

CS_SV_CONFIG_FAIL 8 3 5 The interfaces file (or platform equivalent) was
not found.

See “Location of the interfaces file” on page 225.

CS_SV_CONFIG_FAIL 3 3 5 The server name is not found in the interfaces file
or the connection’s directory source.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 83

CS_DATAFMT structure
A CS_DATAFMT structure is used to describe data values and program
variables. For example:

• ct_bind requires a CS_DATAFMT structure to describe a destination
variable.

• ct_describe returns a CS_DATAFMT structure to describe a result data
item.

• ct_param and ct_setparam both require a CS_DATAFMT to describe an
input parameter.

• cs_convert requires CS_DATAFMT structures to describe source and
destination data. cs_convert is documented in the Open Client and Open
Server Common Libraries Reference Manual.

CS_SV_COMM_FAIL 4 3 4 The connection attempt failed because a login
dialog could not be established with the remote
server.

This error occurs when the remote server is down.

CS_SV_COMM_FAIL 131 3 5 ct_init failed because Net-Library drivers could not
be initialized. The client message callback is not
called for this error—Client-Library prints a
message to the stderr device. The most likely
cause of this error is a misconfigured [DRIVER]
section in the libtcl.cfg file. See the Open Client
and Open Server Configuration Guide for your
platform to view details on how Client-Library
loads Net-Library drivers.

CS_SV_API_FAIL 132 4 1 The bind of a result item resulted in truncation
while fetching the data.

This error occurs when calling ct_fetch if a
destination variable (bound with ct_bind) is too
small for the data to be received. If column
indicators are used, the application checks the
indicator values to see which column(s) were
truncated.

Severity Number Origin Layer Cause

Client-Library and SQL Structures

84 Open Client

Most routines use only a subset of the fields in a CS_DATAFMT. For example,
ct_bind does not use the name, status, and usertype fields, and ct_describe does
not use the format field. For information on which fields in the CS_DATAFMT
a routine uses, see the reference page for the routine.

 typedef struct _cs_datafmt
 {
 CS_CHAR name[CS_MAX_CHAR]; /* Name of data */
 CS_INT namelen; /* Length of name */
 CS_INT datatype; /* Datatype */
 CS_INT format; /* Format symbols */
 CS_INT maxlength; /* Data max length */
 CS_INT scale; /* Scale of data */
 CS_INT precision; /* Data precision */
 CS_INT status; /* Status symbols */

 /*
 ** The following field indicates the number of
 ** rows to copy, per ct_fetch call, to a bound
 ** program variable. ct_describe sets this field
 ** to a default value of 1. ct_bind is the only
 ** routine that reads this field.
 */
 CS_INT count;

 /*
 ** These fields are used to support Adaptive Server Enterprise
 ** user-defined datatypes and international
 ** datatypes:
 */
 CS_INT usertype; /* Svr user-def’d type */
 CS_LOCALE *locale; /* Locale information */

 } CS_DATAFMT;

where:

• name is the name of the data. name is often a column or parameter name.

• namelen is the length, in bytes, of name. Set namelen to CS_NULLTERM
to indicate a null-terminated name. Set namelen to 0 to if name is NULL.

• datatype is a type constant representing the datatype of the data. This is
either one of the Open Client datatypes or an Open Client user-defined
datatype. For information about datatypes, see “Datatypes support” on
page 305.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 85

Do not confuse the datatype field with the usertype field. datatype is
always used to describe the Open Client datatype of the data. usertype is
used only if the data has an Adaptive Server Enterprise user-defined
datatype in addition to an Open Client datatype.

For example, the following Adaptive Server Enterprise command creates
the server user-defined type birthday:

sp_addtype birthday, datetime

and this command creates a table containing a column of the type:

create table birthdays
 (
 name varchar(30),
 happyday birthday
)

If a Client-Library application executes a select against this table and calls
ct_describe to get a description of the birthday column in the result set, the
datatype and usertype fields in the CS_DATAFMT structure are set as
follows:

datatype is set to CS_DATETIME_TYPE.
usertype is set to the Adaptive Server Enterprise ID for the type birthday.

• format describes the destination format of character or binary data. format
is a bitmask of the following symbols, combined with the OR operator:

Table 2-15: CS_DATAFMT format field values

• maxlength represents various lengths, depending on which Open Client
routine is using the CS_DATAFMT. Table 2-16 lists the meanings of
maxlength:

Symbol Meaning Notes

CS_FMT_NULLTERM The data should be null-terminated. For character or
text data

CS_FMT_PADBLANK The data should be padded with
blanks to the full length of the
destination variable.

For character or
text data

CS_FMT_PADNULL The data should be padded with
NULLs to the full length of the
destination variable.

For character,
text, binary or
image data

CS_FMT_UNUSED No format information is being
provided.

For all datatypes

Client-Library and SQL Structures

86 Open Client

Table 2-16: CS_DATAFMT maxlength field values

• scale is the maximum number of digits to the right of the decimal point in
the data. scale is used only with decimal or numeric datatypes.

Permitted values for scale are from 0 to 77. The default is 0.
CS_MIN_SCALE, CS_MAX_SCALE, and CS_DEF_PREC define the
minimum, maximum, and default scale values, respectively.

To indicate that destination data should use the same scale as the source
data, set scale to CS_SRC_VALUE.

scale must be less than or equal to precision.

• precision is the maximum number of decimal digits that can be
represented in the data. precision is used only with decimal or numeric
datatypes.

Values for precision are from 1 to 77. The default is 18. CS_MIN_PREC,
CS_MAX_PREC, and CS_DEF_PREC define the minimum, maximum,
and default precision values, respectively.

To indicate that destination data should use the same precision as the
source data, set precision to CS_SRC_VALUE.

precision must be greater than or equal to scale.

• status is a bitmask that indicates various types of information. Table 2-17
lists the values that can make up status:

Open Client
routine Value of maxlength

ct_bind The length of the bind variable.

ct_describe The maximum possible length of the column or parameter
being described.

ct_dyndesc The maximum possible length of the column or parameter
being described.

ct_dynsqlda The maximum possible length of the column or parameter
being described.

ct_param The maximum desired length of return parameter data.

ct_setparam The maximum desired length of return parameter data. If
ct_setparam’s datalen parameter is passed as NULL,
maxlength specifies the length of all input values for the
parameter.

cs_convert The length of the source data and the length of the destination
buffer space.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 87

Table 2-17: CS_DATAFMT status field values

• count is the number of rows to copy to program variables per ct_fetch call.
count is used only by ct_bind.

Symbolic value Meaning Legal for

CS_CANBENULL The column can contain NULL
values.

ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_HIDDEN The column is a hidden column that
has been exposed.

See “Hidden keys” on page 224.

ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_IDENTITY The column is an identity column. ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_KEY The column is a key column.

See the reference page for ct_keydata.

ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_UPDATABLE The column is an updatable cursor
column.

ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_VERSION_KEY The column is part of the version key
for the row.

Adaptive Server Enterprise uses
version keys for positioning cursors.

See the reference page for ct_keydata.

ct_describe,
ct_dyndesc,
ct_dynsqlda

CS_TIMESTAMP The column is a timestamp column.
An application uses timestamp
columns when performing browse-
mode updates.

ct_describe

CS_UPDATECOL The parameter is the name of a
column in the update clause of a
cursor declare command.

ct_param,
ct_setparam,
ct_dyndesc,
ct_dynsqlda

CS_INPUTVALUE The parameter is an input parameter
value for a Client-Library command.

ct_param,
ct_setparam,
ct_dyndesc,
ct_dynsqlda

CS_RETURN The parameter is a return parameter
to an RPC command.

ct_param,
ct_setparam,
ct_dyndesc,
ct_dynsqlda

Client-Library and SQL Structures

88 Open Client

• usertype is the server user-defined datatype, if any, of data returned by the
server. usertype is used only for server user-defined types, not for Client-
Library user-defined types. For a discussion of Client-Library user-
defined types, see “Datatypes support” on page 305.

• locale is a pointer to a CS_LOCALE structure containing localization
information. Set locale to NULL if localization information is not
required.

Before using a CS_DATAFMT structure, make sure that locale is valid
either by setting it to NULL or to the address of a valid CS_LOCALE
structure.

CS_IODESC structure
A CS_IODESC structure, or I/O descriptor structure, describes text or image
data.

An application calls ct_data_info to retrieve a CS_IODESC structure after
retrieving a text or image value that it plans to update at a later time. After it
has a valid CS_IODESC, a typical application changes only the values of the
locale, total_txtlen, and log_on_update fields before using the CS_IODESC to
update the text or image value.

An application calls ct_data_info to define a CS_IODESC structure after
calling ct_command to initiate a send-data operation to update a text or image
value.

A CS_IODESC is defined as follows:

typedef struct _cs_iodesc
{

CS_INT iotype; /* CS_IODATA. */
CS_INT datatype; /* Text or image. */
CS_LOCALE *locale; /* Locale information. */
CS_INT usertype; /* User-defined type. */
CS_INT total_txtlen; /* Total data length. */
CS_INT offset; /* Reserved. */
CS_BOOL log_on_update /* Log the insert? */
CS_CHAR name[CS_OBJ_NAME]; /* Name of data object.*/
CS_INT namelen /* Length of name. */
CS_BYTE timestamp[CS_TS_SIZE]; /* Adaptive Server id. */
CS_INT timestamplen; /* Length of timestamp.*/
CS_BYTE textptr[CS_TP_SIZE]; /* Adaptive Server ptr.*/
CS_INT textptrlen; /* Length of textptr. */

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 89

CS_INT delete_length; /* Number of bytes to */
/* delete/overwrite for*/
/* partial updates. */

} CS_IODESC;

where:

• iotype indicates the type of I/O to perform. For text and image operations,
iotype can have the value CS_IODATA or CS_IOPARTIAL. The
CS_IOPARTIAL setting specifies that a partial update is to be performed
on the text or image column.

• datatype is the datatype of the data object. The values for datatype are
CS_TEXT_TYPE and CS_IMAGE_TYPE.

• locale is a pointer to a CS_LOCALE structure containing localization
information for the text or image value. Set locale to NULL if localization
information is not required.

Before using a CS_IODESC structure, make sure that locale is valid by
setting it either to NULL or to the address of a valid CS_LOCALE
structure.

• usertype is the Adaptive Server Enterprise user-defined datatype of the
data object, if any. On send-data operations, usertype is ignored. On get-
data operations, Client-Library sets usertype in addition to (not instead of)
datatype.

• total_txtlen is the total length, in bytes, of the text or image value.

Unicode and partial updates
If your client application performs partial updates on 2-byte Unicode
datatypes, the application must make sure that it sends an even number of
bytes to avoid a character split. You can use the buflen parameter of
ct_send_data and the total_txtlen field of CS_IODESC to specify the
length, in bytes, of the Unicode data. For partial updates to Unitext data, the
offset and delete_length values must be specified as a character count
while total_txtlen must be specified in bytes.

• offset indicates the first byte in the column that is affected by a partial
update.

• log_on_update describes whether the server should log the update to this
text or image value.

• name is the name of the text or image column. name is a null-terminated
string of the form table.column.

Client-Library and SQL Structures

90 Open Client

• namelen is the length, in bytes, of name (not including the null terminator).
When filling in a CS_IODESC, an application sets namelen to
CS_NULLTERM to indicate a null-terminated name.

• timestamp is the text timestamp of the column. A text timestamp marks the
time of a text or image column’s last modification.

• timestamplen is the length, in bytes, of timestamp.

• textptr is the text pointer for the column. A text pointer is an internal server
pointer that points to the data for a text or image column. textptr identifies
the target column in a send-data operation.

• textptrlen is the length, in bytes, of textptr.

• delete_length indicates the number of bytes that are to be overwritten or
deleted from column a text or image column for which a partial update has
been specified.

CS_OID structure
CS_OID structures store object identifiers.

An Object Identifier (OID) is an encoded character string that provides a
machine- and network-independent method of uniquely identifying objects in
a distributed environment. An OID functions as a symbolic global name that
means the same to all applications in a distributed environment.

 Sybase uses OIDs to represent the following:

• Directory objects.

• Attribute types within a directory object.

• Security mechanisms that assure secure client/server connections. A
security mechanism may have a different local name on the client
machine than on the server machine. To avoid confusion, an OID is used
as a global name that identifies the security mechanism for both the client
and the server. See “Choosing a network security mechanism” on page
263 for a description of how a security mechanism is associated with a
connection.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 91

Encoding of object identifiers

OIDs are encoded as a sequence of decimal integers separated by dots. OIDs
are defined according to ISO standards and organized in a hierarchy that avoids
duplication among different vendors. In the hierarchy, unique prefixes are
assigned to different vendors. For example, the prefix “1.3.1.4.1.897” belongs
to Sybase, and all Sybase OIDs have this prefix.

Definition of the CS_OID structure

A CS_OID structure is required to exchange an OID between Client-Library
routines and application code.

The CS_OID structure is used with calls to ct_ds_lookup or ct_ds_objinfo.

The CS_OID structure is defined as follows:

typedef struct _cs_oid
 {
 CS_INT oid_length;
 CS_CHAR oid_buffer[CS_MAX_DS_STRING];
 } CS_OID;

where:

• oid_length is the length of the OID string. If the OID string is null-
terminated, the length does not include the null terminator.

• oid_buffer is an array of bytes that holds the OID string. This string is not
always null-terminated.

Using predefined OID strings

The Client-Library header files define OID strings for applications to use in
initializing or comparing OIDs. Predefined OID strings are used for the
following purposes:

• Identifying directory object. Sybase directory object is Server, and the
OID is CS_OID_OBJSERVER.

See “Server directory object” on page 287

• Identifying the attributes of a given directory object. See the definition of
the directory object for the predefined OID strings that identify each
attribute.

Client-Library and SQL Structures

92 Open Client

CS_SERVERMSG structure
A CS_SERVERMSG structure contains information about a server error or
informational message.

Client-Library uses a CS_SERVERMSG structure in two ways:

• For connections using the callback method to handle messages, a
CS_SERVERMSG is the third parameter that Client-Library passes to the
connection’s server message callback.

• For connections handling messages inline, ct_diag returns information in
a CS_SERVERMSG.

For information on error and message handling, see “Error handling” on page
122.

A CS_SERVERMSG structure is defined as follows:

/*
 ** CS_SERVERMSG
 ** The Client-Library server message structure.
 */

typedef struct _cs_servermsg
 {
 CS_MSGNUM msgnumber;
 CS_INT state;
 CS_INT severity;
 CS_CHAR text[CS_MAX_MSG];
 CS_INT textlen;
 CS_CHAR svrname[CS_MAX_CHAR];
 CS_INT svrnlen;

 /*
 ** If the error involved a stored procedure,
 ** the following fields contain information
 ** about the procedure:
 */
 CS_CHAR proc[CS_MAX_CHAR];
 CS_INT proclen;
 CS_INT line;

 /*
 ** Other information.
 */
 CS_INT status;
 CS_BYTE sqlstate[CS_SQLSTATE_SIZE];
 CS_INT sqlstatelen;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 93

} CS_SERVERMSG;

where:

• msgnumber is the server message number. For a list of Adaptive Server
Enterprise messages, execute the Transact-SQL command:

select * from sysmessages

• state is the server error state.

• severity is the severity of the message. For a list of Adaptive Server
Enterprise message severities, execute the Transact-SQL command:

select distinct severity from sysmessages

• text is the text of the server message.

If an application is not sequencing messages, text is guaranteed to be null-
terminated, even if it has been truncated.

If an application is sequencing messages, text is null-terminated only if it
is the last chunk of a sequenced message.

See “Sequencing long messages” on page 126.

• textlen is the length, in bytes, of text. This is always the actual length, never
the symbolic value CS_NULLTERM.

• svrname is the name of the server that generated the message. This is the
name of the server as it appears in the interfaces file. svrname is a null-
terminated string.

• svrnlen is the length, in bytes, of svrname.

• proc is the name of the stored procedure that caused the message, if any.
proc is a null-terminated string.

• proclen is the length, in bytes, of proc.

• line is the line number, if any, of the line that caused the message. line may
be a line number in a stored procedure or a line number in a command
batch.

• status is a bitmask used to indicate various types of information, such as
whether or not extended error data is included with the message. Table 2-
18 lists the values that can be present in status:

Client-Library and SQL Structures

94 Open Client

Table 2-18: CS_SERVERMSG status field values

• sqlstate is a byte string describing the error.

Not all server messages have SQL state values associated with them. If no
SQL state value is associated with a message, sqlstate has the value
“ZZZZZ”.

• sqlstatelen is the length, in bytes, of the sqlstate string.

SQLCA structure
A SQLCA structure is used in conjunction with ct_diag to retrieve Client-
Library and server error and informational messages.

A SQLCA structure is defined as follows:

/*
 ** SQLCA
 ** The SQL Communications Area structure.
 */

 typedef struct _sqlca
 {

Symbolic value Meaning

CS_HASEED Extended error data is included with the message.

See “Extended error data” on page 128.

CS_FIRST_CHUNK The message text contained in text is the first chunk of
the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then text contains a middle
chunk of the message.

See “Sequencing long messages” on page 126.

CS_LAST_CHUNK The message text contained in text is the last chunk of
the message.

If CS_FIRST_CHUNK and CS_LAST_CHUNK are
both on, then text contains the entire message.

If neither CS_FIRST_CHUNK nor
CS_LAST_CHUNK is on, then text contains a middle
chunk of the message.

See “Sequencing long messages” on page 126.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 95

 char sqlcaid[8];
 long sqlcabc;
 long sqlcode;

 struct
 {
 long sqlerrml;
 char sqlerrmc[256];
 } sqlerrm;

 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlext[8];

 } SQLCA;

where:

• sqlcaid is “SQLCA”.

• sqlcabc is ignored.

• sqlcode is the server or Client-Library message number. For information
about how Client-Library maps message numbers to sqlcode, see
“SQLCODE structure” on page 96.

• sqlerrml is the length of the actual message text (not the length of the text
placed in sqlerrmc).

• sqlerrmc is the null-terminated text of the message. If the message is too
long for the array, Client-Library truncates it before appending the null
terminator.

• sqlerrp is the null-terminated name of the stored procedure, if any, being
executed at the time of the error. If the name is too long for the array,
Client-Library truncates it before appending the null terminator.

• sqlerrd[2] is the number of rows affected by the current command. This
field is set only if the current message is a “number of rows affected”
message. Otherwise, sqlerrd[2] has a value of CS_NO_COUNT.

• sqlwarn is an array of warnings:

• If sqlwarn[0] is blank, then all other sqlwarn variables are blank. If
sqlwarn[0] is not blank, then at least one other sqlwarn variable is set
to “W”.

Client-Library and SQL Structures

96 Open Client

• If sqlwarn[1] is “W”, then Client-Library truncated at least one
column’s value when copying it into a host variable.

• If sqlwarn[2] is “W”, then at least one null value was eliminated from
the argument set of a function.

• If sqlwarn[3] is “W”, then some but not all items in a result set have
been bound. This field is set only if the CS_ANSI_BINDS property is
set to CS_TRUE (see “ANSI-style binds” on page 211).

• If sqlwarn[4] is “W”, then a dynamic SQL update or delete statement
did not include a where clause.

• If sqlwarn[5] is “W”, then a server conversion or truncation error has
occurred.

• sqlext is ignored.

SQLCODE structure
A SQLCODE structure is used in conjunction with ct_diag to retrieve Client-
Library and server error and informational message codes.

An application must declare a SQLCODE structure as a long integer.

Client-Library always sets SQLCODE and the sqlcode field of the SQLCA
structure identically.

Mapping server messages to SQLCODE

A server message number is mapped to a SQLCODE of 0 if it has a severity of
0. Other server messages may also be mapped to a SQLCODE of 0.

Server message numbers are inverted before being placed into SQLCODE.
This ensures that SQLCODE is negative if an error has occurred.

For a list of server messages, execute the Transact-SQL statement:
select * from sysmessages

Mapping Client-Library messages to SQLCODE

The Client-Library message “No rows affected” is mapped to a SQLCODE of
100. Client-Library messages with CS_SV_INFORM severities are mapped to
a SQLCODE of 0. Other Client-Library messages may also be mapped to a
SQLCODE of 0.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 97

Client-Library message numbers are inverted before being placed into
SQLCODE. This ensures that SQLCODE is negative if an error has occurred.

See “Client-Library message numbers” on page 79.

SQLSTATE structure
A SQLSTATE structure is used in conjunction with ct_diag to retrieve SQL
state information, if any, associated with a Client-Library or server message.

An application must declare a SQLSTATE structure as an array of 6 characters.

The sqlstate fields of the CS_CLIENTMSG and CS_SERVERMSG structures
are treated identically to SQLSTATE, except that they are defined as 8 bytes.
The last 2 bytes are ignored.

Commands
In the client/server model, a server accepts commands from multiple clients
and responds by returning data and other information to the clients. Open
Client applications use Client-Library routines to communicate commands to
servers.

Table 2-19 summarizes the Client-Library command types:

Commands

98 Open Client

Table 2-19: Command types

Sending commands
All commands are defined and sent in three steps:

1 Initiate the command. This identifies the command type and what it
executes.

2 Define parameter values, if necessary.

3 Send the command. ct_send writes the command symbols and data to the
network. The server then reads the command, interprets it, and executes it.

Initiating a command

An application sends several types of commands to a server:

Command type Initiated by Summary

Language ct_command Defines the text of a query that the server
will parse, interpret, and execute.

RPC,
Package

ct_command Specifies the name of a server procedure
(Adaptive Server Enterprise stored
procedure or Open Server registered
procedure) to be executed by the server.
The procedure must already exist on the
server.

Package commands are only supported
by mainframe Open Server servers. They
are otherwise identical to RPC
commands.

Cursor ct_cursor Initiates one of several commands to
manage a Client-Library cursor.

Dynamic SQL ct_dynamic Initiates a command to execute a literal
SQL statement (with restrictions on
statement content) or to manage a
prepared dynamic SQL statement.

Message ct_command Initiates a message command and
specifies the message-command ID
number.

Send-Data ct_command Initiates a command to upload a large
text/image column value to the server.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 99

• An application calls ct_command to initiate a language, message, package,
remote procedure call (RPC), or send-data command.

• An application calls ct_cursor to initiate a cursor command.

• An application calls ct_dynamic to initiate a dynamic SQL command.

Defining parameters for a command

The following types of commands take parameters:

• A language command, when the command text contains variables

• An RPC command, when the stored procedure takes parameters

• A cursor declare command, when the body of the cursor contains host
variables or when some of the cursor’s columns are for update

• A cursor open command, when the body of the cursor contains host
language parameters

• A cursor update command, if the text of the update statement contains
variables

• A message command

• A dynamic SQL execute command

An application calls ct_param or ct_setparam once for each parameter a
command requires. These routines perform the same function, except that
ct_param copies a parameter value, while ct_setparam copies the address of a
variable that contains the value. If ct_setparam is used, Client-Library reads the
parameter value when the command is sent. This allows the application to
change the parameter values that were specified with ct_setparam before
resending the command.

Sending a command

After a command has been initiated and its parameters have been defined, an
application calls ct_send to send the command to the server. The server then
interprets the command, executes it, and returns the results to the client
application.

Commands

100 Open Client

Resending a command

For most command types, Client-Library allows an application to resend the
command after the results of previous execution have been processed.
Enhancements to ct_send, ct_cursor, and ct_bind, and the addition of
ct_setparam routine in version 11.1 allow batch-processing applications to
resend commands and reuse binds when repeatedly executing the same server
command. This feature can eliminate redundant calls to ct_bind, ct_command,
ct_cursor, and ct_param.

The application resends commands as follows:

• If necessary, the application changes values in parameter source variables.

If the command requires parameters, the application should define
parameter source variables with ct_setparam instead of passing values
with ct_param. Input parameter values passed with ct_param can not be
changed when a command is resent.

• The application calls ct_send to resend the command after the results of
the previous command execution have been processed and before a new
command is initiated on the command structure.

An application can resend all types of commands except:

• Send-data commands initiated by ct_command(CS_SEND_DATA_CMD)

• Send-bulk commands initiated by
ct_command(CS_SEND_BULK_CMD)

• ct_cursor cursor commands other than cursor-update or cursor-delete

• ct_dynamic commands other than execute-immediate commands or a
command to execute a prepared statement

Deciding which type of command to use
See Chapter 5, “Choosing Command Types,” in the Open Client Client-
Library/C Programmers Guide for guidance on which command type is right
for your application.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 101

Connection migration
Open Client supports connection migration for connections made to a server
that understands the connection migration protocol and can move client
connections to another server after login has completed. Connection migration
is enabled by the CS_PROP_MIGRATABLE property. The default for this
property is CS_TRUE, and the property is valid for both ct_config and
ct_con_props.

Note DB-Library does not support connection migration.

Debugging
The following environment variables can be used for debugging CT-Library
applications without the need to modify and relink:

• SYBOCS_DEBUG_FLAGS–enables specific diagnostic subsystems.
You can enable multiple debug options by specifying a comma-delimited
list of flags in the variable.

• SYBOCS_DEBUG_LOGFILE–specifies the log file where the
diagnostics are recorded. If you do not set this variable, messages are
written to stdout.

Note Debug flags that require devlib libraries still require devlib libraries even
when using SYBOCS_DEBUG_LOGFILE. For information about which
ct_debug flag parameters require devlib libraries, see “ct_debug” on page 453.

To use these variables, set them before calling your CT-Library application. For
example, on UNIX:

% setenv SYBOCS_DEBUG_FLAGS CS_DBG_SSL,CS_DBG_PROTOCOL
% setenv SYBOCS_DEBUG_LOGFILE libsybfssl.log
% ./isql –U sa –P –S my_ssl_server
% more libsybfssl.log

On Windows:

C:\> set SYBOCS_DEBUG_FLAGS=CS_DBG_SSL
C:\> set SYBOCS_DEBUG_LOGFILE=.\libsybfssl.log
C:\> isql –Usa –P –S my_ssl_server

Debugging

102 Open Client

C:\> type libsybfssl.log

Enabling debugging
Table 2-20 lists the keywords for configuring the debugging options for a
connection.

Table 2-20: Configuration file keywords for debugging options

CS_DEBUG specifies the data to be written to the file CS_DBG_FILE. Its
value can be a list of flags that correspond to the bitmasks for ct_debug’s flag
parameter. For meanings of these debug flags, see “ct_debug” on page 453.

The possible flags are:

• CS_DBG_ALL

• CS_DBG_API_LOGCALL

• CS_DBG_API_STATES

• CS_DBG_ASYNC

• CS_DBG_DIAG

• CS_DBG_ERROR

• CS_DBG_MEM

• CS_DBG_NETWORK

• CS_DBG_PROTOCOL

• CS_DBG_PROTOCOL_FILE

• CS_DBG_PROTOCOL_STATES

Keyword Value

CS_DBG_FILE A character string specifying the destination file name for
text-format debugging information.

CS_DBG_PROTOCOL_
FILE

This ct_debug parameter may be set without devlib libraries. If
the parameter is not set on connection, mktemp is called,
generating a unique file name to dump the protocol packets into.
The prefix string passed to mkstemp is capture. Ribo can decode
the resulting protocol file.

CS_PROTOCOL_FILE A character string specifying the destination file name for binary
format debugging information.

CS_DEBUG A character string giving a comma-separated list of debug flags.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 103

• CS_DBG_SSL

Directory services
A directory stores system information as directory entries and associates a
logical name with each entry. Each directory entry contains information about
a network entity such as a user, a server, or a printer. A directory organizes this
information and removes the requirement to modify applications when the
location of a network entity changes.

A directory service (sometimes called a naming service) manages creation,
modification, and retrieval of directory name entries.

Directory service providers and drivers
Directory driver configuration determines the default directory source for a
Client-Application. The directory is provided by either:

• The Sybase interfaces file, which is simply an operating system file on the
local host machine. If not explicitly set, the interfaces file is the default.

• Network-based directory service software, such as Distributed Computing
Environment Cell Directory Services (DCE/CDS), Lightweight Directory
Access Protocol (LDAP), or the Windows Registry.

See “Directory service provider” on page 119.

For information on configuring directory drivers, see the Open Client and
Open Server Configuration Guide for your platform.

Network-based directory services

A distributed directory service allows Client-Library and Server-Library to use
a network-based directory rather than the Sybase interfaces file as the source
for server address information. Using a network directory service can simplify
the administration of an environment that contains many client machines.

A network-based directory use requires a Sybase directory driver that interacts
with the network directory service. For Client-Library applications, the
CS_DS_PROVIDER connection property specifies the directory source to be
used by calls to ct_connect and ct_ds_lookup.

Directory services

104 Open Client

Client-Library routines ct_ds_lookup, ct_ds_objinfo, and ct_ds_dropobj allow
directory browsing. Using these routines, an application can search for
available servers in the directory or interfaces file.

LDAP
Lightweight Directory Access Protocol (LDAP) is used to access directory
listings. A directory listing, or service, provides a directory of names, profile
information, and machine addresses for every user and resource on the
network. It can be used to manage user accounts and network permissions.

LDAP servers are typically hierarchical in design and provide fast lookups of
resources. LDAP can be used as a replacement to the traditional Sybase
interfaces file (sql.ini on Windows) to store and retrieve information about
Sybase servers.

Any type of LDAP service, whether it is an actual server or a gateway to other
LDAP services, is called an LDAP server. An LDAP driver calls LDAP client
libraries to establish connections to an LDAP server. The LDAP driver and
client libraries define the communication protocol, such as whether encryption
is enabled, and the contents of messages exchanged between clients and
servers. Messages are operators, such as client requests for read, write, and
queries, and server responses, including data-format information.

When the LDAP driver connects to the LDAP server, the server establishes the
connection based on two authentication methods—anonymous access, and
user name and password authentication.

• Anonymous access – does not require any authentication information;
therefore, you do not have to set any properties. Anonymous access is
typically used for read-only privileges.

• User name and password – can be specified in the libtcl.cfg file
(libtcl64.cfg file for 64-bit platforms) as an extension to the LDAP URL
or set with property calls to Client-Library. The user name and password
that are passed to the LDAP server through Ct-Lib are separate and distinct
from the user name and password used to log in to Adaptive Server
Enterprise. Sybase strongly recommends that you use user name and
password authentication.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 105

OpenLDAP

OpenLDAP is the open-source version of LDAP. For a list of Open Client and
Open Server platforms that use OpenLDAP libraries, see the Open Server and
SDK New Features for Windows, Linux, UNIX, and Mac OS X. More
information on configuration can be found in the Open Client and Open Server
Configuration Guide for your platform.

SSL/TLS

In Open Client and Open Server 15.0 ESD #7 and later, you can establish an
encrypted (SSL) connection between the application and the LDAP server.
This encrypted connection is set up in one of two ways:

• LDAPS – connects to the secure port, typically port 636, of the LDAP
directory server. This method, also known as LDAP over SSL, is non-
standard, but widely supported.

• StartTLS – upgrades an existing standard connection, typically using port
389, to a secure connection using transport layer security. This method is
only possible if the connection uses LDAPv3.

During the SSL/TLS negotiation, the LDAP server sends its certificate to prove
its identity. The client verifies that this certificate was signed by a trusted
Certificate Authority (CA). A list of trusted CAs is maintained in the trusted
roots file trusted.txt. This file is located in $SYBASE/config or in an alternate
file location stored in the CS_PROP_SSL_CA property.

Once the LDAP server is successfully authenticated, the client and the LDAP
server continue their SSL handshake to establish the encrypted connection.
Once initiated, there is no difference between the connections established with
LDAPS and StartTLS, except that LDAPS requires a separate listener for the
LDAP server.

See the Open Client and Open Server Configuration Guide for your platform.

LDAP Directory Server lookup time limit

Connections or directory lookups to the LDAP Directory Server may be unable
to complete due to a hanging or otherwise unavailable LDAP Server.

By setting CS_DS_TIMELIMIT, you can specify time limits on failed
connections or lookups to the LDAP Directory Server. If CS_DS_TIMELIMIT
is not set, the login timeout value is used as the default time limit for LDAP
Directory Server lookups. For information on CS_DS_TIMELIMIT, refer to
Table 2-30.

Directory services

106 Open Client

Retry and delay
options

The retry option specifies the number of times to retry a search connection to
the LDAP Directory Server after the initial attempt fails or times out. The delay
option is the number of seconds to wait between a failed and new retry. Both
options are set in libtcl.cfg and apply to the designated LDAP Directory Server
only, for example:

[DIRECTORY]
myldap=libsybdldap.so retry=3 delay=5
ldap://nlnognix/dc=sybase,dc=com????bind…

By default, both options are 0.

LDAP for Microsoft Active Directory

Sybase supports LDAP for Microsoft Active Directory, which is a directory
service used to centralize networks and store information about network
resources. See “Schema and name syntax for Microsoft Active Directory” on
page 111 for information on importing directory schema and creating a
container for the Sybase server entries.

Use of the directory by applications
Client-Library applications require a directory to connect to a server. When an
application calls ct_connect, Client-Library looks up the server name in the
directory and reads the necessary information to establish a connection to the
server.

Applications can also search the directory for Sybase-defined entries by calling
ct_ds_lookup. For example, an application calls ct_ds_lookup to search for an
available server or to check the status of a particular server.

Directory organization
Since directory services are provided by different vendors, each directory may
have a different way of organizing and storing entries.

A directory has either a flat structure or a hierarchical structure. A hierarchical
structure allows related entries to be combined into distinct logical groupings
that descend from a parent entry. In a flat structure, all entries in the directory
are in one logical grouping.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 107

A hierarchical structure can be thought of as an inverted tree. The “root” entry
is at the top and is the “ancestor” of all other entries. “Parent” entries represent
logical groupings of related entries. If an entry is the parent of no other entry,
it is called a “leaf” entry.

In any directory structure, each entry has a fully qualified name that uniquely
identifies the entry. Entries also have a common name that is unique only
among entries that have the same parent node.

In a hierarchical directory structure, names must contain navigation
information. Only at the root node are the common name and the fully qualified
name the same. For any other entry, the fully qualified name is constructed by
combining the entry’s common name with the fully qualified name of the
entry’s parent node.

In a flat directory structure, there is no root node, and every entry’s fully
qualified name is the same as its common name.

The Sybase interfaces file is an example of a flat directory. Most network-
based directory services provide a hierarchical directory.

Directory entry name formats

Entry names must be recognized by the directory provider software. Each
provider requires a different name syntax. Table 2-21 illustrates some
examples of fully qualified names.

Note These examples are for discussion purposes only. For name syntax
information on directories other than the interfaces file, please see the
documentation for the network directory provider software used on your
system. All example entry names in this book are fictional.

Directory services

108 Open Client

Table 2-21: Fully qualified name syntax examples

Table 2-21 does not provide an exhaustive list of supported directory service
providers, and the providers listed may not be supported on all platforms. See
the Open Client and Open Server Configuration Guide for your platform to
view information about the supported directory providers.

Name syntax for DCE CDS

Sybase applications access a DCE directory by using DCE Cell Directory
Services (CDS) as the directory provider.

In DCE CDS, the directory name space is divided into cells. Each cell acts as
an administrative domain for managing network resources and their users. In
CDS, a fully qualified name can be cell-relative or globally qualified:

• Cell-relative qualified names begin with the special token “/.:”. The
common name of descendant nodes are listed in order (from left to right)
and each common name is separated from its parent with a forward slash
(/). The following example illustrates a cell-relative qualified name:

/.:/eng/license_data

• Globally qualified names begin with the special token “/...”. Following
“/...” is a Domain Name Services (DNS) name for the DCE cell. The rest
of the name consists of the descendant nodes from the cell root, in left-to-
right order and separated by slashes. The following example illustrates a
globally qualified name. In this example, “sales.fictional.com” identifies
the cell that contains the entry:

/.../sales.fictional.com/dataservers/license_data

Directory service
provider Fully qualified name example

OSF DCE Cell
Directory Services
(DCE CDS)

/.:/dataservers/sybase/license_data
 (cell-relative)

/.../sales.fictional.com/dataservers/sybase/license_data
(global)

Windows Registry SOFTWARE\SYBASE\SERVER\the_server

LDAP directory
services

ldap://host:port/ditbase??scope??
bindname=username?password

Note The LDAP URL must be on a single line.

Sybase interfaces file my_server

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 109

Name syntax for Windows Registry

The Windows Registry comprises a hierarchical structure in which nodes are
called “keys.” The common name of descendant nodes are listed in order (from
left to right) and each common name is separated from its parent by a backslash
(“\”). Registry storage is local to each machine, but entries may be read from
another machine’s Registry by including the machine name in the fully
qualified name.

The following example shows a fully qualified name for an entry in the local
Registry:

SOFTWARE\SYBASE\SERVER\the_server

The example below names an entry in the machine queenbee’s Registry:

queenbee:SOFTWARE\SYBASE\SERVER\the_server

All entry names for Sybase directory entries are located relative to the key
“\HKEY_LOCAL_MACHINE\”.

Registry entries are not case sensitive.

Name syntax for LDAP directory services

The libtcl.cfg and the libtcl64.cfg files (collectively libtcl*.cfg files) determine
whether the interfaces file or LDAP directory services should be used. If
LDAP is specified in the libtcl*.cfg file, the interfaces file is ignored unless the
application specifically overrides the libtcl*.cfg file by passing the -I parameter
while connecting to a server.

You use the libtcl*.cfg to specify the LDAP server name, port number, DIT
base, user name, and password to authenticate the connection to an LDAP
server. In the libtcl*.cfg file, LDAP directory services are specified with a URL
in the DIRECTORY section.

For example:

[DIRECTORY]
ldap=libsybdldap.so
ldap://huey:11389/dc=sybase,dc=com??
 one????bindname=cn=Manager,dc=sybase,dc=com secret

Table 2-22 defines the keywords for the ldapurl variables.

Directory services

110 Open Client

Table 2-22: ldapurl variables

You can find a complete list of Sybase’s LDAP directory schema in:

• UNIX – $SYBASE/$SYBASE_OCS/config

• Windows – %SYBASE%\%SYBASE_OCS%\ini
In the same directory, there is also a file called sybase-schema.conf, which
contains the same schema but in a Netscape-specific syntax.

To create an encrypted connection with the LDAP server using LDAPS, use:

ldap=libsybdldap.so
ldaps://huey:636/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret

If no port number is specified using ldaps://, port 636 will be used by default.

To create an encrypted connection by using and upgrading the standard LDAP
listener, use:

ldap=libsybdldap.so starttls
ldap://huey:389/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret

If no port number is specified using ldap://, port 389 will be used by default.

Keyword Description Default CS_* property

host
(required)

The host name or IP address of
the machine running the LDAP
server

None

port The port number on which the
LDAP server is listening

389

ditbase
(required)

The default DIT base None CS_DS_DITBASE

username Distinguished name (DN) of the
user to authenticate

NULL
(anonymous
authentication)

CS_DS_PRINCIPAL

password Password of the user to be
authenticated

NULL
(anonymous
authentication)

CS_DS_PASSWORD

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 111

Schema and name syntax for Microsoft Active Directory

The directory schema for use with Microsoft Active Directory is sybase.ldf.
You can import sybase.ldf into the Active Directory (AD) or into an Active
Directory Application Mode (ADAM) instance using the ldifde.exe command
provided in the ADAM installation. To import the directory schema, execute
the ldifde.exe command from the ADAM installation using this syntax:

ldifde -i -u -f sybase.ldf -s server:port -b username
domain password -j . -c "cn=Configuration,dc=X"
#configurationNamingContext

After the schema has been successfully imported into the Active Directory, you
can create a container for the Sybase server entries and set appropriate read and
write permissions for the container and its child objects.

For example, a container with a relative distinguished name (RDN)
“CN=SybaseServers” is created in the root of the Active Directory for domain
“mycompany.com” to store and retrieve Sybase server entries. The root
distinguished name (rootDN) for this container is reflected in the libtcl.cfg file
as:

ldap=libsybdldap.dll ldap://localhost:389/
cn=SybaseServers,dc=mycompany,dc=com??...

If you create a dedicated user account name “Manager” with password “secret”
in the Active Directory to add and modify Sybase server entries, the complete
entry in the libtcl.cfg file is:

• For Windows:

ldap=libsybdldap.dll
ldap://localhost:389/cn=SybaseServers,dc=mycompany,
dc=com????bindname=cn=Manager,cn=Users,dc=mycompay,
dc=com?secret

• For UNIX:

ldap=libsybdldap.so
ldap://myADhost:389/cn=SybaseServers,dc=mycompany,
dc=com????bindname=cn=Manager,cn=Users,dc=mycompay,
dc=com?secret

After setting the appropriate read and write permissions, you will be able to use
the Sybase utility programs such as dscp or dsedit to store, view, and modify
Sybase server entries in the Active Directory.

Directory services

112 Open Client

Name syntax for the Interfaces file

The interfaces file is a flat directory. The fully qualified name for an interfaces
file entry is the same as the common name. See “Interfaces file” on page 140.

Locating entries with a DIT base

A Directory Information Tree base, or DIT base, is an intermediate node in a
directory tree used to qualify partial entry names. An application’s DIT base
setting is similar in concept to an application’s current working directory in a
hierarchical file system.

For any directory source other than the interfaces file, an application can
specify a DIT base by setting the CS_DS_DITBASE connection property (see
“Base for directory searches” on page 115).

ct_connect uses the DIT base to resolve partial server names. An application
specifies a server name for ct_connect in one of two ways:

• By specifying the fully qualified name, or

• By setting the CS_DS_DITBASE connection property and specifying a
name relative to the CS_DS_DITBASE node.

Some directory service providers provide a special name syntax to indicate that
an entry is fully qualified. When using these directory providers, the
application overrides the current DIT base.

The sections below give examples of how the DIT base is combined with
partial names. The rules vary by directory service provider. If your directory
service provider is not listed, see the Open Client and Open Server
Configuration Guide for your platform.

DIT base for DCE CDS

With DCE CDS as the directory provider, the DIT base may be a cell-relative
name or a global name. If a global name is used, it must contain enough
information to completely identify a cell.

The following two examples illustrate DIT-base settings for DCE CDS. The
first example identifies a DIT base within the current DCE cell:

/.:/dataservers

The second example identifies a DIT base in the cell sales.fictional.com
by specifying a global name:

/.../sales.fictional.com/dataservers

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 113

The following example shows a partial name that is passed to ct_connect (as
the server_name parameter):

sybase/test_server

ct_connect combines the DIT base and the value of the server_name as follows:

dit_base_value/server_name

For example:

/.:/dataservers/sybase/test_server

or

/.../sales.fictional.com/dataservers/sybase/test_server

Client-Library appends a slash (/) and the server_name value to the DIT base.
The DIT base cannot end with a slash, and the server_name value cannot begin
with a slash.

Client-Library ignores the DIT base when server_name contains special syntax
that indicates a fully qualified name. This syntax is:

• A cell-relative qualified name (server_name begins with “/.:”), or

• A globally qualified name (server_name begins with “/...”).

In either of these cases, server_name is considered to be a fully qualified name,
and ct_connect ignores the DIT base.

The default DIT base for the DCE CDS directory driver is:

/.:/subsys/sybase/dataservers

This default may be overridden by the directory driver configuration. To
override the configured default, call ct_con_props to set the CS_DS_DITBASE
property.

DIT base for Windows Registry

With the Registry as the connection’s directory service provider, ct_connect
appends a backslash “\” and the server_name value to the DIT base value. The
DIT base cannot end with a backslash, and a server_name value that represents
a partial name cannot begin with a backslash.

This is an example of a DIT base for the Windows Registry:

SOFTWARE\SYBASE\SERVER

This an example of a partial name that is given to ct_connect:

dataserver\fin_data

Directory services

114 Open Client

These are combined to yield:

SOFTWARE\SYBASE\SERVER\dataserver\fin_data

The default DIT base for the Registry directory driver is

SOFTWARE\SYBASE\SERVER

This default may be overridden by the directory driver configuration. To
override the configured default, call ct_con_props to set the CS_DS_DITBASE
property.

Names are considered fully qualified when they begin with the DIT base value.
For example, if the DIT base is “SOFTWARE\SYBASE\SERVER”, then the
following is a fully qualified name:

SOFTWARE\SYBASE\SERVER\debug\fin_data

All DIT base nodes are located relative to the “\HKEY_LOCAL_MACHINE\”
key.

To specify a DIT base node from another machine’s Registry, include the
machine name and a colon (:) in the DIT base value. For example, the
following DIT base value refers to the machine queenbee’s registry:

queenbee:SOFTWARE\SYBASE\SERVER

DIT base for the Interfaces file

The CS_DS_DITBASE property is not supported when the connection’s
directory source is the interfaces file.

Viewing directory entries

Using Client-Library, you may view directory entries by coding an application
that installs a directory callback routine, then calls ct_ds_lookup and
ct_ds_objinfo. See Chapter 9, “Using Directory Services,” in the Open Client
Client-Library/C Programmers Guide for details.

Directory objects

The attributes of a directory object are determined by what kind of directory
object it is. Sybase directory object is Server and the OID is
CS_OID_OBJSERVER. See “Server directory object” on page 287.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 115

Properties for directory services

The following properties control an application’s use of directory services:

Directory service cache use

CS_DS_COPY determines whether the connection’s directory service
provider is allowed to use cached information to satisfy requests for
information in the directory. For directory drivers that support the property, the
default is CS_TRUE, which allows the use of cached information.

Not all directory service providers support caching. An application calls
ct_con_props(CS_SUPPORTED) to determine if the current directory driver
supports caching.

Note CS_DS_COPY cannot be set, cleared, or retrieved unless Client-Library
is using a directory service provider that supports caching.

Some directory service providers support a distributed model with directory
server agents (DSAs) and directory user agents (DUAs). Directory server
agents are programs that manage the directory and respond to requests from the
directory user agents. The DUAs run on each machine and transmit application
requests to directory server agents and forward the responses to the application.

Directory caching allows the directory user agent to provide a cached copy of
recently read information rather than sending the request to the directory server
agent. This can speed up directory request handling.

Using the local copy may be faster, but querying the actual directory ensures
that the application receives the most recent changes to directory entries.

Base for directory searches

CS_DS_DITBASE specifies a directory node where directory searches start.
This node is called the DIT base.

Note CS_DS_DITBASE cannot be set, cleared, or retrieved unless Client-
Library is using a network-based directory service rather than the interfaces
file.

The default DIT base value is specified as follows:

• In the configuration of the directory driver, or

Directory services

116 Open Client

• By the driver-specific default, if the configuration specifies no default DIT
base value.

Directory driver configuration is described in the Open Client and Open Server
Configuration Guide for your platform.

DIT base values must be fully qualified names in the name syntax of the
directory service that Client-Library is using. In addition, each driver/provider
combination has different rules for combining fully and partially qualified
names. See “Directory entry name formats” on page 107 for details.

Directory service expansion of aliases

CS_DS_EXPANDALIAS determines whether the connection’s directory
service provider expands alias entries when searching the directory. For
directory drivers that support this property, the default is CS_TRUE, which
means alias entries are expanded.

Not all directory service providers support aliases. An application calls
ct_con_props(CS_SUPPORTED) to determine if the current directory driver
supports this property.

Note CS_DS_EXPANDALIAS cannot be set, cleared, or retrieved unless
Client-Library is using a directory driver that supports alias entries.

Some directory service providers allow directory alias entries to be created. An
alias entry contains a link to a primary entry. Aliases allow the primary entry
to appear as one or more entries in different locations.

If CS_DS_EXPANDALIAS is CS_TRUE, the directory service provider is
permitted to follow alias links when searching the directory. If the value is
CS_FALSE, the links in alias entries are not followed.

 Warning! Directories that contain alias entries may contain cyclic search paths
as a result of the alias links. If CS_DS_EXPANDALIAS is enabled, it is
possible for searches begun by ct_ds_lookup to go on indefinitely if the
directory tree contains a cyclic search path.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 117

Directory service failover

CS_DS_FAILOVER determines whether Client-Library fails over to the next
directory driver entry in libtcl.cfg file and eventually to the interfaces file when
the current directory driver does not load or when the current directory server
is not available. The default CS_DS_FAILOVER value is CS_TRUE, which
means Client-Library silently fails over when the current directory driver
cannot be loaded.

Client-Library requires a directory for (among other things) mapping logical
server names to network addresses. The directory can either be the Sybase
interfaces file or a network-based directory service such as DCE Cell Directory
Services (CDS).

To use a directory source other than the interfaces file, Client-Library requires
a directory driver.

Failover occurs when an application requests (or defaults) to use a network-
based directory service rather than the interfaces file. If Client-Library cannot
load the directory driver, by default, failover occurs to the next directory driver
entry in the libtcl.cfg file and, eventually, to the interfaces file. An application
may set CS_DS_FAILOVER to CS_FALSE to prevent failover.

If directory service failover is not permitted, and Client-Library loads a
specified directory driver, then the connection’s directory source is undefined.
In this case, any subsequent action that requires directory access fails. These
actions are:

• A call to ct_con_props to get, set, or clear any CS_DS_ property besides
CS_DS_FAILOVER or CS_DS_PROVIDER

• A call to ct_con_props to get or clear the CS_DS_PROVIDER property

• A call to ct_connect or ct_ds_lookup

For a description of when Client-Library loads a directory driver, see
“Directory service provider” on page 119.

For information about Sybase failover options see “High-availability failover”
on page 137.

Directory service password

CS_DS_PASSWORD specifies a directory service password to go with the
principal (user) name specified as CS_DS_PRINCIPAL. Some directory
providers require an authenticated principal (user) name to control the
application’s access to directory entries.

Directory services

118 Open Client

For details on CS_DS_PRINCIPAL, see “Directory service principal name”
on page 118.

Not all directory service providers support passwords. An application calls
ct_con_props(CS_SUPPORTED) to determine if the current directory driver
supports this property.

Note CS_DS_PASSWORD cannot be set, cleared, or retrieved unless Client-
Library is using a directory service provider that supports the property.

Directory service principal name

CS_DS_PRINCIPAL specifies a directory service principal (user) name to go
with the password specified as CS_DS_PASSWORD. Some directory
providers require an authenticated principal (user) ID to control the
application’s access to directory entries. For drivers that support the property,
the default is NULL.

For details on CS_DS_PASSWORD, see “Directory service password” on
page 117.

Not all directory service providers support CS_DS_PRINCIPAL. An
application calls ct_con_props(CS_SUPPORTED) to determine if the current
directory driver supports this property.

Note CS_DS_PRINCIPAL cannot be set, cleared, or retrieved unless Client-
Library is using a directory service provider that supports the property.

Directory service random offset

By default, CS_DS_RAND_OFFSET is set to true to avoid disrupting current
installations. When set to true, CS_DS_RAND_OFFSET starts from a random
offset and scans the network address list until a successful connect occurs. The
random offset is determined when the network address list is retrieved from the
directory service.

If CS_DS_RAND_OFFSET is set to false, connection attempts start from the
initial entry in the network address list.

CS_DS_RAND_OFFSET can be set via ct_con_props, ct_config or ocs.cfg.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 119

Directory service provider

CS_DS_PROVIDER contains the name of the current directory service
provider as a null-terminated string.

Client-Library uses a driver configuration file to map directory service
provider names to directory driver file names. On most platforms, this file is
named libtcl.cfg. See the Open Client and Open Server Configuration Guide
for your platform to view a full description of this file.

Loading the default
directory driver

The default provider name corresponds to the first entry in the [DIRECTORY]
section of the libtcl.cfg driver configuration file. This section has entries of the
form:

[DIRECTORY]
 provider_name = driver_file_name init_string
 provider_name = driver_file_name init_string

where:

• provider_name specifies a possible value for the CS_DS_PROVIDER
property

• driver_name is a file name for the driver

• init_string specifies start-up settings for the driver.

If no driver configuration file is present on the system, or the file lacks a
[DIRECTORY] section, then the default provider name is “InterfacesDriver”
to indicate that Client-Library uses the interfaces file as the directory source.

See the Open Client and Open Server Configuration Guide for your platform.
to view a detailed description of driver configuration on your platform.

For each connection structure, Client-Library loads the default directory driver
in any of the following circumstances:

• A call to ct_con_props to get, set, or clear any CS_DS_ property besides
CS_DS_FAILOVER or CS_DS_PROVIDER loads the default directory
driver if a driver is not already loaded.

• A call to ct_con_props to get the CS_DS_PROVIDER property loads the
default directory driver if a driver is not already loaded. A call to clear
CS_DS_PROVIDER always unloads the existing driver and reloads the
default driver.

• A call to ct_connect or ct_ds_lookup loads the default directory driver if a
driver is not already loaded.

Directory services

120 Open Client

When Client-Library cannot load a directory driver, Client-Library silently
fails over to the interfaces file by default. An application may change this
behavior by setting the CS_DS_FAILOVER property before performing any of
the actions listed above. For details, see “Directory service failover” on page
117.

Changing to a
different directory
service provider

Applications change a connection’s directory service provider by calling
ct_con_props(CS_SET, CS_DS_PROVIDER).

When setting CS_DS_PROVIDER, the new property value must be mapped to
a valid directory driver. If this is the case, then Client-Library loads the new
driver and initializes it.

If Client-Library cannot load the requested driver, then the connection’s state
depends on the value of the CS_DS_FAILOVER property and whether a driver
was loaded before.

• CS_DS_FAILOVER determines whether Client-Library fails over to the
next directory driver entry in libtcl.cfg when a driver does not load or when
the current directory server is not available. Client-Library fails over to the
interfaces file when the last entry of libtcl.cfg is reached. For details, see
“Directory service failover” on page 117.

• A connection will have a previously loaded driver if the application
previously set the CS_DS_PROVIDER property or if the application
previously issued one of the calls that requires a driver. See “Loading the
default directory driver” on page 119 for a list of calls that load the default
directory driver.

The following table describes the directory source after a call to
ct_con_props(CS_SET, CS_DS_PROVIDER) fails.

Directory driver
initialization

When a directory driver is loaded, Client-Library assigns a default value for the
DIT-base property based on the associated configuration file entry.

For driver configuration instructions, see the Open Client and Open Server
Configuration Guide for your platform.

Driver previously
loaded

Value of
CS_DS_FAILOVER New directory provider

Yes CS_TRUE Next libtcl.cfg entry or
interfaces file

Yes CS_FALSE Revert to previous driver

No CS_TRUE Next libtcl.cfg entry or
interfaces file

No CS_FALSE Undefined

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 121

Directory service search depth

CS_DS_SEARCH restricts the depth to which a directory search descends
from the starting point.

Note CS_DS_SEARCH cannot be set, cleared, or retrieved unless Client-
Library is using a directory driver that supports the property.

The following values are legal for CS_DS_SEARCH:

Not all directory service providers support the search-depth property. An
application calls ct_con_props(CS_SUPPORTED) to determine if the current
directory driver supports this property.

Note The DCE directory driver does not allow CS_DS_SEARCH to be set to
a value other than the default, CS_SEARCH_ONE_LEVEL.

Searches start at the directory node indicated by the value of the
CS_DS_DITBASE property (see “Base for directory searches” on page 115).

Directory search size limit

CS_DS_SIZELIMIT limits the number of entries returned by a directory
search started with ct_ds_lookup. The default is 0, which indicates there is no
size limit.

Not all directory service providers support search-results size limits. An
application calls ct_con_props(CS_SUPPORTED) to determine if the current
directory driver supports this property.

Note CS_DS_SIZELIMIT cannot be set, cleared, or retrieved unless Client-
Library is using a directory driver that supports the property.

Value Meaning

CS_SEARCH_ONE_LEVEL
(default)

Search includes only the leaf entries that are
immediately descendants of the node specified
by CS_DS_DITBASE.

CS_SEARCH_SUBTREE Search the entire subtree whose root is specified
by CS_DS_DITBASE.

Error handling

122 Open Client

Directory search time limit

CS_DS_TIMELIMIT specifies an absolute time limit for completion of a
directory search, expressed in seconds. The default is 0, which indicates there
is no time limit.

Not all directory service providers support search time limits. An application
calls ct_con_props(CS_SUPPORTED) to determine if the current directory
driver supports this property.

Note CS_DS_TIMELIMIT cannot be set, cleared, or retrieved unless Client-
Library is using a directory driver that supports the property.

Error handling
All Client-Library routines return success or failure indications. Sybase
recommends that applications check these return codes.

Error reporting during initialization
This section describes how error information is returned during the
initialization of a Client-Library application.

cs_ctx_alloc and cs_ctx_global

When an application call to either cs_ctx_alloc or cs_ctx_global returns
CS_FAIL, extended error information is sent to standard error (STDERR) and
to the file sybinit.err. The sybinit.err file is created in the current working
directory.

ct_init

When an application call to ct_init returns CS_FAIL due to a Net-Library error,
extended error information is sent to standard error (STDERR) and to the file
sybinit.err. The sybinit.err file is created in the current working directory.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 123

Error and message handling
After initialization, Client-Library applications must handle two types of error
and informational messages:

• Client-Library messages, or client messages, are generated by Client-
Library. They range in severity from informational messages to fatal
errors.

• Server messages are generated by the server. They range in severity from
informational messages to fatal errors.

Adaptive Server Enterprise stores the text of its messages in the sysmessages
system table. See the Adaptive Server Enterprise Reference Manual for a
description of this table.

See the Open Server Server-Library/C Reference Manual for a list of Open
Server messages.

Note Do not confuse Client-Library and server messages with a result set of
type CS_MSG_RESULT. Client-Library and server messages are the means
through which Client-Library and the server communicate error and
informational conditions to an application. An application accesses Client-
Library and server messages either through message callback routines or
inline, using ct_diag. A message result set, on the other hand, is one of several
types of result sets that a server may return to an application. An application
processes a result set of type CS_MSG_RESULT by calling ct_res_info to get
the message’s ID.

Two methods of handling messages

An application handles Client-Library and server messages in one of two ways:

• By installing callback routines to handle messages

• Inline, using the Client-Library routine ct_diag

The callback method has the advantages of:

• Centralizing message handling code.

• Providing a method to gracefully handle unexpected errors. Client-Library
automatically calls the appropriate message callback whenever a message
is generated, so an application will not fail to trap unexpected errors. An
application using only mainline error-handling logic may not successfully
trap errors that have not been anticipated.

Error handling

124 Open Client

Inline message handling has the advantage of allowing an application to check
for messages at particular times. For example, an application that is creating a
connection might choose to wait until all connection-related commands are
issued before checking for messages.

Most applications use the callback method to handle messages. However, an
application that is running on a platform and language combination that does
not support callbacks must use the inline method.

An application indicates which method it will use by calling ct_callback to
install message callbacks or by calling ct_diag to initialize inline message
handling.

An application uses different methods on different connections. For example,
an application installs message callbacks at the context level, allocates two
connections, and then calls ct_diag to initialize inline message handling for one
of the connections. The other connection will use the default message callbacks
that it picked up from its parent context.

An application may switch back and forth between the inline and callback
methods:

• Installing either a client message callback or a server message callback
turns off inline message handling. Any saved messages are discarded.

• Likewise, calling ct_diag to initialize inline message handling de-installs a
connection’s message callbacks. If this occurs, the connection’s first
CS_GET call to ct_diag will retrieve a warning message to this effect.

If a callback of the proper type is not installed and inline message handling is
not enabled, Client-Library discards message information.

Using callbacks to handle messages

An application calls ct_callback to install message callbacks.

Client-Library stores callbacks in the CS_CONNECTION and
CS_CONTEXT structures. Because of this, when a Client-Library error occurs
that makes a CS_CONNECTION or CS_CONTEXT structure unusable,
Client-Library cannot call the client message callback. However, the routine
that caused the error still returns CS_FAIL.

See “Callbacks” on page 22 and the ct_callback on page 350 reference page.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 125

Inline message handling

An application calls ct_diag to initialize inline message handling for a
connection. A typical application calls ct_diag immediately after calling
ct_con_alloc to allocate the connection structure.

An application cannot use ct_diag at the context level. That is, an application
cannot use ct_diag to retrieve messages generated by routines that take a
CS_CONTEXT (and no CS_CONNECTION) as a parameter. These messages
are unavailable to an application that is using inline error handling.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE should set the Client-Library property CS_EXTRA_INF to
CS_TRUE. See “The CS_EXTRA_INF property” on page 126.

The CS_DIAG_TIMEOUT property controls whether Client-Library fails or
retries when a Client-Library routine generates a timeout error.

If a Client-Library error occurs that makes a CS_CONNECTION structure
unusable, ct_diag returns CS_FAIL when called to retrieve information about
the original error.

See ct_diag on page 464.

Client-Library message structures

Client-Library uses the following structures to return message information:

• CS_CLIENTMSG – described in the section, “Client-Library and SQL
Structures” on page 72.

• CS_SERVERMSG – described in the section, “Client-Library and SQL
Structures” on page 72.

• SQLCA – described in the section, “Client-Library and SQL Structures”
on page 72.

• SQLCODE – described in the section, “Client-Library and SQL
Structures” on page 72.

• SQLSTATE – described in the section, “Client-Library and SQL
Structures” on page 72 .

Error handling

126 Open Client

The CS_EXTRA_INF property
The CS_EXTRA_INF property determines whether or not Client-Library
returns certain kinds of informational messages.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE should set the Client-Library property CS_EXTRA_INF to
CS_TRUE. This is because the SQL structures require information that Client-
Library does not customarily return. If CS_EXTRA_INF is not set, you may
lose information.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is returned
as standard Client-Library messages.

The additional information returned includes the number of rows affected by
the most recent command.

Sequencing long messages
Message callback routines and ct_diag return Client-Library and server
messages in CS_CLIENTMSG and CS_SERVERMSG structures. In the
CS_CLIENTMSG structure, the message text is stored in the msgstring field.
In the CS_SERVERMSG structure, the message text is stored in the text field.
Both msgstring and text are CS_MAX_MSG bytes long.

If a message longer than CS_MAX_MSG, minus 1 bytes is generated, Client-
Library’s default behavior is to truncate the message. However, an application
can use the CS_NO_TRUNCATE property to tell Client-Library to sequence
long messages instead of truncating them.

When Client-Library is sequencing long messages, it uses as many
CS_CLIENTMSG or CS_SERVERMSG structures as necessary to return the
full text of a message. The message’s first CS_MAX_MSG bytes are returned
in one structure, its second CS_MAX_MSG bytes are returned in a second
structure, and so forth.

Client-Library null-terminates only the last chunk of a message. If a message
is exactly CS_MAX_MSG bytes long, the message is returned in two chunks:
The first contains CS_MAX_MSG bytes of the message, and the second
contains a null terminator.

If an application is using callback routines to handle messages, Client-Library
calls the callback routine once for each message chunk.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 127

If an application is using ct_diag to handle messages, it must call ct_diag once
for each message chunk.

Note The SQLCA, SQLCODE, and SQLSTATE structures do not support
sequenced messages. An application cannot use these structures to retrieve
sequenced messages. Messages that are too long for these structures are
truncated.

Operating system messages are reported through the osstring field of the
CS_CLIENTMSG structure. Client-Library does not sequence operating
system messages.

Message structure fields for sequenced messages

The status field in the CS_CLIENTMSG and CS_SERVERMSG structures
indicates whether the structure contains a whole message or a chunk of a
message.

• The following status values are related to sequenced messages:

• If CS_FIRST_CHUNK and CS_LAST_CHUNK are both on, then
the message text in the structure is the entire message.

• If neither CS_FIRST_CHUNK nor CS_LAST_CHUNK is on, then
the message text in the structure is a middle chunk.

• The msgstringlen field in the CS_CLIENTMSG structure and the textlen
field in the CS_SERVERMSG structure reflect the length of the current
message chunk.

• All other fields in the CS_CLIENTMSG and CS_SERVERMSG are
repeated with each message chunk.

Sequenced messages and extended error data

If a sequenced server message has extended error data associated with it, an
application can retrieve the extended error data while processing any single
chunk of the sequenced message. Once the application has retrieved the
extended error data, however, it is no longer available. See “Extended error
data” on page 128.

Symbolic value Meaning

CS_FIRST_CHUNK The message text is the first chunk of the message.

CS_LAST_CHUNK The message text is the last chunk of the message.

Error handling

128 Open Client

Sequenced messages and ct_diag

If an application is using sequenced error messages, ct_diag acts on message
chunks instead of messages. This has the following effects:

• A ct_diag(CS_GET, index) call returns the message chunk that has number
index.

• A ct_diag(CS_MSGLIMIT) call limits the number of chunks, not the
number of messages, that Client-Library will store.

• A ct_diag(CS_STATUS) call returns the number of currently stored
chunks, not the number of currently stored messages.

Extended error data
Some server messages have extended error data associated with them.
Extended error data is simply additional information about the error.

For Adaptive Server Enterprise messages, the additional information is usually
which column or columns provoked the error.

Client-Library makes extended error data available to an application in the
form of a parameter result set, where each result item is a piece of extended
error data. A piece of extended error data may be named and can be of any
datatype.

An application can retrieve extended error data but is not required to do so.

Uses for extended error data

Applications that allow end users to enter or edit data often need to report errors
to their users at the column level. The standard server message mechanism,
however, makes column-level information available only within the text of the
server message. Extended error data provides a means for applications to
conveniently access column-level information.

For example, imagine an application that allows end users to enter and edit data
in the titleauthor table in the pubs2 database. titleauthor uses a key composed
of two columns, au_id and title_id. Any attempt to enter a row with an au_id
and title_id that match an existing row will cause a “duplicate key” message to
be sent to the application.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 129

On receiving this message, the application needs to identify the problem
column or columns to the end user, so that the user can correct them. This
information is not available in the duplicate key message, except in the
message text. The information is available, however, as extended error data.

Retrieving extended error data

Not all server messages provide extended error data. When Client-Library
returns standard server message information to an application in a
CS_SERVERMSG structure, it sets the CS_HASEED bit of the status field of
the CS_SERVERMSG structure if extended error data is available for the
message.

Extended error data is returned to an application in the form of a parameter
result set that is available on a special CS_COMMAND structure that Client-
Library provides.

To retrieve extended error data, an application processes the parameter result
set.

Server message callbacks and extended error data

Within a server message callback routine, an application retrieves the
CS_COMMAND with the extended error data by calling ct_con_props with
property as CS_EED_CMD:

CS_RETCODE ret;
 CS_COMMAND *eed_cmd;
 CS_INT outlen;

ret = ct_con_props(connection, CS_GET, CS_EED_CMD,
 &eed_cmd, CS_UNUSED, &outlen);

ct_con_props sets eed_cmd to point to the CS_COMMAND on which the
extended error data is available.

After it has the CS_COMMAND, the callback routine processes the extended
error data as a normal parameter result set, calling ct_res_info,ct_describe,
ct_bind, ct_fetch, and ct_get_data to describe, bind, and fetch the parameters. It
is not necessary for the callback routine to call ct_results.

Error handling

130 Open Client

Inline error handling and extended error data

An application that is handling server messages inline retrieves the
CS_COMMAND with the extended error data by calling ct_diag with
operation as CS_EED_CMD:

CS_RETCODE ret;
 CS_COMMAND *eed_cmd;
 CS_INT index;

ret = ct_diag (connection, CS_EED_CMD,
 CS_SERVERMSG_TYPE, index, &eed_cmd);

In this call, type must be CS_SERVERMSG_TYPE and index must be the
index of the message for which extended error data is available. ct_diag sets
eed_cmd to point to the CS_COMMAND on which the extended error data is
available.

After it has the CS_COMMAND, the application processes the extended error
data as a normal parameter result set, calling ct_res_info,ct_describe, ct_bind,
ct_fetch, and ct_get_data to describe, bind, and fetch the parameters. It is not
necessary for the application to call ct_results.

Server transaction states
Server transaction state information is useful when an application needs to
determine the outcome of a transaction.

The following table lists the symbolic values that represent transaction states:

Table 2-23: Transaction states

Retrieving transaction states in mainline code

In mainline code, an application retrieves a transaction state by calling
ct_res_info with type as CS_TRANS_STATE:

Symbolic value Meaning

CS_TRAN_IN_PROGRESS A transaction is in progress.

CS_TRAN_COMPLETED The most recent transaction completed successfully.

CS_TRAN_STMT_FAIL The most recently executed statement in the current
transaction failed.

CS_TRAN_FAIL The most recent transaction failed.

CS_TRAN_UNDEFINED A transaction state is not currently defined.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 131

CS_RETCODE ret;
 CS_INT outlen;
 CS_INT trans_state;

ret = ct_res_info (cmd, CS_TRANS_STATE,
 &trans_state, CS_UNUSED, &outlen)

ct_res_info sets trans_state to one of the symbolic values listed in Table 2-23
on page 130.

Transaction state information is available only for CS_COMMAND structures
with pending results or an open cursor. That is, transaction state information is
available if an application’s last call to ct_results returned CS_SUCCEED.

Transaction state information is guaranteed to be correct only after ct_results
sets *result_type to CS_CMD_DONE, CS_CMD_SUCCEED, or
CS_CMD_FAIL.

Retrieving transaction states in a server message callback

An application retrieves transaction states inside a server message callback
only if extended error data is available.

Within a server message callback, Client-Library indicates that extended error
data is available by setting the CS_HASEED bit of the status field of the
CS_SERVERMSG structure describing the message.

If extended error data is available, the application retrieves the current
transaction state as follows:

1 Retrieves the CS_COMMAND with the extended error data by calling
ct_con_props with property as CS_EED_CMD.

2 Calls ct_res_info with type as CS_TRANS_STATE. ct_res_info sets its
*buffer parameter to one of the symbolic values listed in Table 2-23 on
page 130.

Sample programs
The following sample programs and header files are installed with Client-
Library. Each file contains a header describing the file’s contents and purpose.
See the readme file for a complete description of each sample program.

Sample programs

132 Open Client

Sample
program Description

arraybind.c Demonstrates use of array binding in conjunction with a
CS_LANG_CMD initiated by ct_command.

blktxt.c Uses the bulk copy routines to copy static data to a table.

compute.c Shows how to send a Transact-SQL command and process
compute and regular results.

csr_disp.c Demonstrates the use of a read-only cursor.

csr_disp_
implicit.c

Uses a scrollable cursor to retrieve data from the author table in
pubs2 database. Also uses a single pre-fetch buffer and regular
program variables.

csr_disp_
scrollcurs.c

Uses a scrollable cursor to retrieve data from the author table in
pubs2 database. Also uses a single pre-fetch buffer and regular
program variables.

csr_disp_
scrollcurs2.c

Uses a scrollable cursor with arrays as program variables; array
binding is used. A single ct_scroll_fetch call displays results in an
array.

ctexact.c A two-phase commit sample program.

ctpr.c Provides maximum printing lengths for fixed-length data.

ex_alib.c
ex_amain.c

A collection of routines that form an example of how to write an
asynchronous layer on top of Client-Library.

example.h A header file for the Client-Library sample programs.

exasync.h Sends a language command and processes the results
asynchronously. A header file for the constants and data structures
in ex_alib.c and ex_amain.c.

exconfig.c Shows how to set CS_SERVERNAME property value through the
default external configuration file:
$SYBASE/$SYBASE_OCS/config/ocs.cfg.

exutils.c Contains utility routines used by all of the other sample programs,
and demonstrates how an application can hide some of the
implementation details of Client-Library from higher-level
programs.

exutils2.c Contains utility routines used by scrollable cursor sample
programs. Used with the csr_disp_scrollable and
csr_disp_scrollable2 examples.

exutils.h A header file for the utility functions in exutils.c and exutils2.c.

firstapp.c Connects to a server, sends a select query, and prints the rows.

getsend.c Shows how to retrieve and update text data.

id_update.c Demonstrates use of identity_update option.

i18n.c Demonstrates some of the international features available in
Client-Library.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 133

multithrd.c With thrdfunc.c, demonstrates techniques for coding a
multithreaded client application with Client-Library.

Note This sample is coded for use with Solaris native threads
package, and DCE pthread APIs.

rpc.c Illustrates sending an RPC command to a server and then
processing the row, parameter, and status results returned from the
remote procedure.

secct.c Demonstrates how to use network-based security features in a
Client-Library application. To use the program, DCE or
CyberSafe Kerberos must be installed and running, and you must
connect to a server that supports network-based security.

secct_dec
secct_krb

Demonstrates how to use networked-based security with DCE or
CyberSafe Kerberos.

thrdfunc.c With multithrd.c, demonstrates techniques for coding a
multithreaded client application with Client-Library.

thrdutil.c Contains utility routines used by multithreaded sample programs.
Demonstrates how applications can hide implementation details of
Client-Library from higher level programs.

twophase.c A two-phase commit sample program that performs a simple
update on two different servers. Once you run the example, use isql
on each server to determine whether the update took place.

uni_blktxt.c Uses the bulk-copy routines to copy static data to a server table.

uni_compute.c Demonstrates processing compute results. It is a modification of
compute.c.

uni_csr_disp.c Demonstrates using a read-only cursor. It is a modification of
uni_csr_disp.c and requires the unipubs database.

uni_firstapp.c Modification of firstapp.c for use with unichar and univarchar
datatypes, and is an introductory example that connects to the
server, sends a select query, and prints the rows.

uni_rpc.c Sends an RPC command to a server and processes the results. This
is a modification of rpc.c for use with unichar and univarchar
datatypes, and requires the unipubs database.

usedir.c Illustrates searching for servers that are available to connect to.

wide_compute.
c

Demonstrates processing compute results with wide tables and
larger column sizes.

wide_curupd.c,

wide_
dynamic.c

Uses a cursor to retrieve data from the publishers table in the
pubs2 database.

Sample
program Description

Sample programs

134 Open Client

Before building and running an example, you must make sure the server and
the client application environment are set up properly. In addition, you may
want to change the user name with which the example is connecting to the
server. For instructions, see the Open Client and Open Server Configuration
Guide for your platform.

Client-Library routines in sample programs
The table below lists Client-Library and CS-Library routines along with
sample programs that demonstrate their use:

wide_rpc.c Sends an RPC command to a server and processes the results.
Same as wide_rpc.c, but uses wide tables and larger column sizes.

wide_util.c Contains generic routines used by the wide_* sample programs.
They include init_db, cleanup_db, connect_db, handle_returns and
fetch_n_print.

Sample
program Description

Routine Sample program(s)

blk_alloc blktxt.c, uni_blktxt.c

blk_bind blktxt.c, uni_blktxt.c, wide_compute.c

blk_done blktxt.c, uni_blktxt.c

blk_drop blktxt.c, uni_blktxt.c

blk_init blktxt.c, uni_blktxt.c, uni_compute.c

blk_props blktxt.c

blk_rowxfer blktxt.c, uni_blktxt.c

blk_textxfer blktxt.c, uni_blktxt.c

cs_config i18n.c, firstapp.c, thrdutil.c, uni_compute.c

cs_convert exutils.c, i18n.c, rpc.c, thrdutil.c, uni_rpc.c, wide_rpc.c

cs_ctx_alloc ex_amain.c, exutils.c, firstapp.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

cs_ctx_drop ex_amain.c, exutils.c, firstapp.c, secct.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c

cs_loc_alloc i18n.c

cs_loc_drop i18n.c

cs_locale i18n.c

cs_set_convert i18n.c

cs_setnull i18n.c, rpc.c

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 135

cs_will_convert exutils.c, thrdutil.c

ct_bind compute.c, ex_alib.c, exutils.c, firstapp.c, getsend.c, i18n.c,
thrdutil.c, csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c,
uni_compute.c, uni_csr_disp.c, uni_rpc.c, wide_rpc.c

ct_callback ex_alib.c, ex_amain.c, exutils.c, firstapp.c, thrdutil.c,
usedir.c, csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c,
uni_compute.c, uni_csr_disp.c, wide_compute.c

ct_cancel ex_alib.c, ex_amain.c, exutils.c, getsend.c, thrdutil.c

ct_close ex_amain.c, exutils.c, firstapp.c, secct.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_cmd_alloc compute.c, csr_disp.c, ex_alib.c, exutils.c, firstapp.c,
getsend.c, i18n.c, multthrd.c, rpc.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, uni_compute.c, uni_csr_disp.c,
wide_compute.c

ct_cmd_drop compute.c, csr_disp.c, ex_alib.c, exutils.c, firstapp.c, i18n.c,
multthrd.c, thrdutil.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, uni_compute.c, uni_csr_disp.c,
wide_compute.c

ct_cmd_props ex_alib.c, rpc.c, thrdutil.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c

ct_command compute.c, ex_alib.c, exutils.c, firstapp.c, getsend.c, i18n.c,
multthrd.c, rpc.c, thrdutil.c, arraybind.c, uni_rpc.c,
wide_rpc.c

ct_compute_info compute.c, uni_compute.c, wide_compute.c

ct_con_alloc blktxt.c, ex_amain.c, exconfig.c, exutils.c, firstapp.c, secct.c,
thrdutil.c, usedir.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, uni_compute.c, uni_csr_disp.c,
wide_compute.c

ct_con_drop blktxt.c, ex_amain.c, exutils.c, firstapp.c, secct.c, thrdutil.c,
usedir.c, csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c,
uni_compute.c, uni_csr_disp.c, wide_compute.c

ct_con_props blktxt.c, ex_alib.c, ex_amain.c, exconfig.c, exutils.c,
firstapp.c, rpc.c, secct.c, thrdutil.c, usedir.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_config exutils.c, thrdutil.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, uni_csr_disp.c, wide_compute.c

ct_connect blktxt.c, ex_amain.c, exconfig.c, exutils.c, firstapp.c, secct.c.
thrdutil.c, csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c,
uni_compute.c, uni_csr_disp.c, wide_compute.c

ct_ctx_drop uni_compute.c, uni_csr_disp.c, wide_compute.c

Routine Sample program(s)

Sample programs

136 Open Client

ct_cursor csr_disp.c, multithrd.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, uni_csr_disp.c

ct_data_info getsend.c

ct_debug ex_alib.c, ex_amain.c, exutils.c, thrdutil.c

ct_describe compute.c, ex_alib.c, exutils.c, getsend.c, i18n.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_ds_dropobj usedir.c

ct_ds_lookup usedir.c

ct_ds_objinfo usedir.c

ct_exit ex_amain.c, exutils.c, firstapp.c, secct.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_fetch compute.c, ex_alib.c, exutils.c, firstapp.c, getsend.c, i18n.c,
thrdutil.c, arraybind.c, uni_compute.c, uni_csr_disp.c,
wide_compute.c

ct_get_data getsend.c

ct_init ex_amain.c, exutils.c, firstapp.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_csr_disp.c,
wide_compute.c

ct_param rpc.c, uni_rpc.c, wide_rpc.c

ct_poll ex_amain.c

ct_res_info compute.c, ex_alib.c, exutils.c, i18n.c, rpc.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, uni_rpc.c, wide_compute.c, wide_rpc.c

ct_results compute.c, csr_disp.c, ex_alib.c, exutils.c, getsend.c, i18n.c,
multthrd.c, rpc.c, thrdutil.c, csr_disp_scrollcurs.c,
csr_disp_scrollcurs2.c, arraybind.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_send compute.c, csr_disp.c, ex_alib.c, exutils.c, firstapp.c,
getsend.c, i18n.c, multthrd.c, rpc.c, thrdutil.c,
csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, uni_compute.c,
uni_csr_disp.c, wide_compute.c

ct_scroll_fetch csr_disp_scrollcurs.c, csr_disp_scrollcurs2.c, ex_utils2.c

ct_send_data getsend.c

ct_wakeup ex_alib.c

Routine Sample program(s)

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 137

Header files
The header file ctpublic.h is required in all application source files that contain
calls to Client-Library.

ctpublic.h includes:

• Definitions of symbolic constants used by Client-Library routines

• Declarations for Client-Library routines

• cspublic.h, the CS-Library header file

cspublic.h includes:

• Definitions of common client/server symbolic constants

• Type declarations for common client/server structures

• Declarations for CS-Library routines

• cstypes.h, which contains type declarations for Client-Library datatypes

• sqlca.h, which contains a type declarations for the SQLCA structure

• csconfig.h, which contains platform-dependent datatypes and definitions

High-availability failover
A high availability cluster includes two machines that are configured so that, if
one machine (or application) is brought down, the second machine assumes the
workload of both machines. Each of these machines is called a node of the
high-availability cluster. A high-availability cluster is typically used in an
environment that must always be continuously available.

Sybase’s Failover feature is documented in the Adaptive Server Enterprise
Using Sybase Failover in a High Availability System manual. This section
contains information necessary to configure your Open Client applications to
connect to the secondary companion during failover.

High-availability failover

138 Open Client

Add hafailover line to interfaces file
Clients with the failover property automatically reconnect to the secondary
companion when the primary companion crashes or you issue shutdown or
shutdown with nowait, triggering failover. To give a client the failover property,
you must add a line labeled “hafailover” to the interfaces file to provide the
information necessary for the client to connect to the secondary companion.
You can add this line using either a file editor or the dsedit utility.

UNIX platforms The following UNIX interfaces file entry is for an asymmetric configuration
between the primary companion PERSONNEL1 and its secondary companion
MONEY1. It includes an hafailover entry that enables clients connected to
PERSONNEL1 to reconnect to MONEY1 during failover:

MONEY1
master tcp ether FN1 9835
query tcp ether FN1 9835
hafailover PERSONNEL1

PERSONNEL1
master tcp ether HUM1 7856
query tcp ether HUM1 7856
hafailover MONEY1

Windows The following is a Windows sql.ini entry for a symmetric configuration
between the MONEY1 and PERSONNEL1 companions:

[MONEY1]
 query=TCP,FN1,9835
 master=TCP,FN1,9835
 hafailover=PERSONNEL1
[PERSONNEL1]
 query=TCP,HUM1,7586
 master=TCP,HUM1,7586
 hafailover=MONEY1

See the Open Client and Open Server Configuration Guide for your platform.

Note Client applications must resend any queries that were interrupted by
failover. Other information specific to the connection, such as cursor
declarations, will also need to be restored.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 139

Client-Library application changes

Note An application installed in a cluster must be able to run on both the
primary and secondary companions. If you install an application that requires
a parallel configuration, the secondary companion must also be configured for
parallel processing so it can run the application during failover.

You must modify any application written with Client-Library calls before it can
work with Sybase’s Failover software. The following steps describe the
modifications:

1 Set the CS_HAFAILOVER property using the ct_config and ct_con_props
Client-Library API calls. Legal values for the property are CS_TRUE and
CS_FALSE. The default value is CS_FALSE. You can set this property at
either the context or the connection level using code similar to:

CS_INT TRUE = CS_TRUE;
CS_INT FALSE = CS_FALSE;
retcode = ct_config(context, CS_SET, CS_HAFAILOVER,
&true, CS_UNUSED, NULL);
retcode = ct_con_props(connection, CS_SET,
CS_HAFAILOVER, &false, CS_UNUSED, NULL);

2 Handle failover messages. As soon as the companion begins to go down,
clients receive an informational message that failover is about to occur.
Treat this as an informational message in the client error handlers.

3 Confirm failover configuration. Once you have set the failover property
and the interfaces file has a valid entry for the secondary companion
server, the connection becomes a failover connection, and the client
reconnects appropriately.

However, if the failover property is set but the interfaces file does not have
an entry for the hafailover server (or vice-versa), it does not become a
failover connection. Instead, it is a normal non-high availability
connection with the failover property turned off. You must check the
failover property to know whether or not the connection is a failover
connection. You can do this by calling ct_con_props with an action of
CS_GET.

4 Check return codes. When a successful failover occurs, calls to ct_results
and ct_send return CS_RET_HAFAILOVER.

Interfaces file

140 Open Client

On a synchronous connection, the API call returns
CS_RET_HAFAILOVER directly. On an asynchronous connection, the
API returns CS_PENDING and the callback function returns
CS_RET_HAFAILOVER. Depending on the return code, the application
can do the required processing, such as sending the next command to be
executed.

5 Restore option values. Any set options that you have configured for this
client connection (for example, set role) were lost when the client
disconnected from the primary companion. Reset these options in the
failed over connection.

6 Rebuild your applications, linking them with the libraries included with
the failover software.

Note You cannot connect clients with the failover property (for example,
isql -Q) until you issue sp_companion resume. If you do try to reconnect
them after issuing sp_companion prepare_failback, the client hangs until
you issue sp_companion resume.

Using isql with Sybase Failover
To use isql to connect to a primary server with failover capability, you must:

• Choose a primary server that has a secondary companion server specified
in its interfaces file entry.

• Use the -Q command-line option.

If your interfaces_file_name file contained the example entry given in “Add
hafailover line to interfaces file,” you could use isql with Failover by entering
isql -S PERSONNEL1 -Q.

Interfaces file
The interfaces file is a dictionary of connection information for Adaptive
Server Enterprises and Open Server applications. For every server to which a
client might connect, the interfaces file contains an entry that includes the
server name and the necessary information to connect to that server.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 141

The interfaces file is the default directory for Client-Library. However,
applications may be configured to use a Sybase directory driver so that Client-
Library uses a network-based directory service provider. For information on
configuring Sybase directory drivers, see the Open Client and Open Server
Configuration Guide for your platform. For information on network-based
directory services, see “Directory services” on page 103.

For an Open Server or Open Client application that uses an interfaces file, a
linked list containing all the interfaces file entries is loaded into memory when
the application builds an outgoing connection. This linked list is then
referenced by subsequent outgoing connections. If the application uses more
than one interfaces file, linked lists for all of these files are loaded into memory.
If an interfaces file is updated while the application is running, a linked list
corresponding to the updated interfaces file is loaded into memory when a new
connection is built. The linked list corresponding to the old, unupdated copy of
the interfaces file is not released from memory until all connections built on the
old interfaces file have been closed. Consequently, there may be more than one
linked list for a given interfaces file in memory simultaneously.

On most platforms, the interfaces file is an operating system file in text format.
On these systems, the default name, default location, and internal format of the
interfaces file differs by platform. Other platforms use an alternate form of
storage. Table 2-24 summarizes interfaces files for some common platforms.

Table 2-24: Name of the interfaces file by platform

Applications can set the CS_IFILE context property to specify a file name and
location that are different from the defaults. (See “Location of the interfaces
file” on page 225). An alternate default file name and path for the interfaces
file can be specified by the CS_DEFAULT_IFILE property. For detailed
information about the CS_DEFAULT_IFILE property, see the Open Client and
Open Server Common Libraries Reference Manual.

Platform or platform family File name

UNIX (all) interfaces

Path is specified by the setting of the
SYBASE environment variable.

Windows sql.ini

Path is specified by the setting of the
SYBASE environment variable.

Interfaces file

142 Open Client

Overview of Interfaces file entries
The interfaces file format varies by platform. To edit your interfaces file, see
the Open Client and Open Server Configuration Guide for your platform. The
guides have a complete description of the interfaces file and how it is used by
ct_connect and ct_ds_lookup on your platform.

The discussion here is a platform-independent overview of interfaces file
entries and how they are used by Client-Library.

Table 2-25 summarizes the common components of an interfaces file entry.

Table 2-25: Components of an Interfaces file entry

Server objects from the Interfaces file
ct_ds_lookup searches for server directory objects in the interfaces file when
either of the following occurs:

• The application chooses or defaults to use the interfaces file as the
directory source for a CS_CONNECTION structure. A connection’s
directory source is specified with the CS_DS_PROVIDER connection
property (see “Directory service provider” on page 119).

Component Description

Transport Address
Values

One or more addresses associated with the server name, in
a platform-specific format.

Retry Count Value UNIX platforms provide this component as an alternative
to setting the CS_RETRY_COUNT connection property.

Note Use of CS_RETRY_COUNT is recommended
instead.

Loop Delay Value UNIX platforms provide this component as an alterative to
setting the CS_LOOP_DELAY connection property.

Note Use of CS_LOOP_DELAY is recommended
instead.

Security Mechanisms A list of object identifier strings, each of which represents
the global name of a security mechanism supported by the
server.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 143

• Client-Library could not load the directory driver specified by the driver
configuration, and failover to the interfaces file occurred. Directory
service failover occurs only when it has been enabled with the
CS_DS_FAILOVER connection property (see “Directory service
failover” on page 117).

In these situations, Client-Library maps the contents of each interfaces file
entry onto an instance of the server directory object that may be viewed with
ct_ds_objinfo. Table 2-26 describes the mapping.

Interfaces file

144 Open Client

Table 2-26: Mapping of server directory object attributes to interfaces
file entries

Attribute Corresponding interfaces file component

Server Entry Version None. This value is always 1 when the interfaces
file is searched.

Server Name Attribute The server’s name in the interfaces file. When the
interfaces file is searched, the value of the name
attribute and the directory entry name are the same.

Service Type None. This value is always “Adaptive Server
Enterprise” when the interfaces file is searched.

Server Status None. The status is always
CS_STATUS_UNKNOWN when the interfaces
file is searched.

Transport Address The contents of each “query” line in the interfaces
file entry, returned to the application within a
CS_TRANADDR structure.

If multiple “query” lines are present in the
interfaces file, then the CS_ATTRVALUE array
which contains the values for this attribute has the
same order as the interfaces file.

“Master” lines are ignored. Clients use only
“query” lines when establishing a connection;
therefore, “master” lines are ignored when
ct_ds_lookup reads the interfaces file.

For information about the format of transport
addresses, see “Transport address values” on page
485.

Security Mechanisms The OIDs listed on the “secmech” line of the entry,
each within a CS_OID structure.

Retry Count The “retry_count” option can be included in
interfaces file entries for some platforms. It
controls the number of times Client-Library
attempts to connect each server address.
Applications may set the CS_RETRY_COUNT
property for the connection to get equivalent
behavior—see “Retry count” on page 237.

If present in the entry, this value is returned as an
attribute with OID string
CS_OID_ATTRRETRYCOUNT and integer
syntax.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 145

International Support
Client-Library provides support for international applications through
localization. Typically, an application that is localized:

• Uses a native language for Client-Library and Adaptive Server Enterprise
messages

• Uses localized datetime formats

• Uses a specific character set and collating sequence (also called sort
order) when converting or comparing strings

On most platforms, Client-Library uses environment variables to determine the
default localization values that an application will use. If these default values
meet an application’s needs, the application does not have to localize further.

If the default values do not meet an application’s needs, the application may
use a CS_LOCALE structure to set custom localization values at the context,
connection, or data-element levels. For information about using a
CS_LOCALE structure, see “Using a CS_LOCALE structure” on page 146.

The Open Client and Open Server International Developers Guide contains
detailed guidelines for coding international Open Client and Open Server
applications. This topics page summarizes the information that is specific to
Client-Library application development.

Loop Delay The “loop_delay” option can be specified in the
interfaces file for some platforms. Applications can
set the CS_LOOP_DELAY connection property to
get equivalent behavior—see “Loop delay” on
page 227.

If present in the entry, this value is returned as an
attribute with OID string
CS_OID_ATTRLOOPDELAY and integer syntax.

Attribute Corresponding interfaces file component

International Support

146 Open Client

When an application needs to use a CS_LOCALE structure

 Warning! Platform-specific mechanisms for determining a default locale are
discussed in the localization chapter of the Open Client and Open Server
Configuration Guide for your platform. Client-Library’s localization
mechanism is platform-specific, and you must read that chapter to understand
how the default locale is determined on your platform.

Typically, an application’s default locale reflects the language or character set
of the local environment. The default locale is determined by the value of the
CS_LOC_PROP CS-Library context property. A typical application uses a
CS_LOCALE structure only if it is working in a language or character set that
is different from the context structure’s locale.

For example:

• A German application might need to associate a CS_LOCALE structure
with a connection structure to receive Client-Library error messages in
French.

• An application that performs its own character set conversion must
initialize a CS_LOCALE structure for use with cs_convert.

Using a CS_LOCALE structure
A CS_LOCALE structure defines localization values. An application uses the
CS_LOCALE structure to define custom localization values at the context,
connection, and data element levels.

To do this, an application:

1 Calls cs_loc_alloc to allocate a CS_LOCALE structure.

2 Calls cs_locale to load the CS_LOCALE with custom localization values.
Depending on what parameters it is called with, cs_locale may search for
the LC_ALL, LC_CTYPE, LC_COLLATE, LC_MESSAGE, LC_TIME
or LANG environment variables.

3 Uses the CS_LOCALE. An application:

• Calls cs_config with property as CS_LOC_PROP to copy the custom
localization values into a context structure.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 147

• Calls ct_con_props with property as CS_LOC_PROP to copy the
custom localization values into a connection structure. Note that
because CS_LOC_PROP is a login property, an application cannot
change its value after a connection is open.

• Supplies the CS_LOCALE as a parameter to a routine that accepts
custom localization values (cs_strcmp, cs_time).

• Includes the CS_LOCALE in a CS_DATAFMT structure describing
a destination program variable (cs_convert, ct_bind).

4 Calls cs_loc_drop to deallocate the CS_LOCALE.

Context-level localization

Context-level localization values define the localization for an Open Client
context.

When an application allocates a CS_CONTEXT structure, CS-Library assigns
default localization values to the new context. On most platforms, environment
variables determine the default values. For specific information about how
default localization values are assigned on your platform, see the Open Client
and Open Server Configuration Guide.

Because default localization values are always defined, an application needs to
define new context-level localization values only if the default values are not
acceptable.

Connection-level localization

Connection-level localization values define the localization for a specific
client-server connection.

A new connection inherits default localization values from its parent context,
so an application needs to define new localization values for a connection only
if the parent context’s values are not acceptable.

When an application calls ct_connect to open a connection, the server
determines whether or not it can support the connection’s language and
character set. If it cannot, the connection attempt fails.

Note This functionality is different from that of DB-Library, where a
connection uses the Server default native language unless the application calls
DBSETLNATLANG to set the native language name.

International Support

148 Open Client

Data-element level localization

At the data element level, CS_LOCALE defines localization values for a
specific data element, for example, a bind variable.

An application needs to define localization values at the data element level
only if the existing connection’s values are not acceptable.

For example, suppose a connection is using a U.S. English locale (U.S. English
language, iso_1 character set, and appropriate datetime formats), but the
connection needs to display a datetime result column using French day and
month names.

The application:

• Calls cs_loc_alloc to allocate a CS_LOCALE structure.

• Calls cs_locale to load the CS_LOCALE structure with French datetime
formats.

• Calls cs_dt_info to customize the CS_LOCALE structure’s datetime
conversion format.

• Calls ct_bind to bind the result column to a character variable. The
CS_DATAFMT structure that describes the bind variable must reference
the French CS_LOCALE.

When the application calls ct_fetch, the datetime value in the result column is
automatically converted to a character string containing French days and
months and copied into the bound variable.

Locating localization information
When determining which localization values to use, Client-Library starts at the
data-element level and proceeds upward. The order of precedence is:

1 Data element localization values:

• The CS_LOCALE associated with the CS_DATAFMT structure that
describes a data element, or

• The CS_LOCALE passed to a routine as a parameter.

2 Connection structure localization values.

3 Context structure localization values.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 149

Context-level localization values are always defined because when an
application allocates a context structure, CS-Library provides the new context
with default localization values.

After allocating a context, an application may change its localization values by
calling cs_loc_alloc, cs_locale, and cs_config.

The locales file
The Sybase locales file associates locale names with languages, character sets,
and sort orders. Open Client and Open Server products use the locales file
when loading localization information.

The locales file directs Open Client and Open Server products to language,
character set, and sort order names, but does not contain actual localized
messages or character set information.

See the Open Client and Open Server Configuration Guide.

Locales file entries

The locales file has platform-specific sections, each of which contains entries
of the form:

locale = locale_name, language, charset, sortorder

sortorder is an optional field. If not specified, the sort order for the specified
locale defaults to binary.

Each entry defines a locale name by associating it with a language, character
set, and sort order.

For example, a section of the locales file might contain the following entries:

locale = default, us_english, iso_1, dictionary
 locale = fr, french, iso_1, noaccents
 locale = japanese.sjis, japanese, sjis

These entries indicate that:

• When a locale name of “default” is specified, a language of “us_english,”
a character set of “iso_1,” and a sort order of “dictionary” should be used.

• When a locale name of “fr” is specified, a language of “french,” a
character set of “iso_1,” and a sort order of “noaccents” should be used.

Large objects as stored procedure parameters

150 Open Client

• When a locale name of “japanese.sjis” is specified, a language of
“japanese,” a character set of “sjis,” and a sort order of “binary” (the
default sort order) should be used.

Note Sybase predefines some locale names by including entries for them in the
locales file. If these entries do not meet your needs, you may either modify
them or add entries that define new locale names.

cs_locale and the locales file

Before using a CS_LOCALE structure to set custom localization values for a
context, connection, or data element, a Client-Library application must call
cs_locale to load the CS_LOCALE with the desired localization values.

In loading the CS_LOCALE structure, cs_locale:

1 Determines what to use as a locale name:

• If cs_locale’s buffer parameter is supplied, this is the locale name.

• If cs_locale’s buffer parameter is NULL, cs_locale performs a
platform-specific operating system search for a locale name. For
information about this search, see the Open Client and Open Server
Configuration Guide for your platform.

2 Looks up the locale name in the locales file to determine which language,
character set, and sort order are associated with it.

3 Loads the type of information specified by the type parameter into
CS_LOCALE. For example, if type is CS_LC_CTYPE, cs_locale loads
character set information. If type is CS_LC_MESSAGE, cs_locale loads
message information.

Large objects as stored procedure parameters
Client applications supports text, unitext, and image datatypes as input
parameters to stored procedures and as parameters to dynamic SQL statements.

These connection capabilities facilitate login negotiation for use of large object
(LOB) datatypes as parameters:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 151

• CS_RPCPARAM_LOB – client applications send this request capability
to the server to determine whether LOB datatypes can be used as
parameters. The server clears this capability bit in the initial login
negotiation when it cannot support the feature, and an error occurs when
you attempt to send LOB datatypes as parameters to such a server.

• CS_RPCPARAM_NOLOB – client applications send this response
capability to request the server to withhold sending LOB datatypes as
parameters. This capability is turned on by default.

Sending small amounts of LOB data as parameters
The process involved in sending a small amount of LOB data as an input
parameter to stored procedures or as a parameter to a prepared SQL statement
is the same as when sending non-LOB parameters.

To send a small amount of LOB data, allocate memory for the command and
data and use ct_param() or ct_setparam() to send these directly to the server.

You must set the maxlength field for the CS_DATAFMT structure when using
text, unitext, or image datatypes as parameters. The maxlength value indicates
whether all of the LOB data is sent at once or streamed to the server. When
maxlength is greater than zero, the LOB data is sent in one chunk. When
maxlength is set to CS_UNUSED, the LOB data is sent in a stream, using a
loop of ct_send_data() calls to send the data in chunks. A chunk length of zero
indicates the end of the data stream.

Example 1 Sends a small amount of LOB data as an input parameter to a
stored procedure:

CS_TEXT textvar[50];
CS_DATAFMT paramfmt;
CS_INT datalen;
CS_SMALLINT ind;

...
ct_command(cmd, CS_RPC_CMD, ...)

/*
** Clear and setup the CS_DATAFMT structure, then pass
** each of the parameters for the RPC.
*/
memset(¶mfmt, 0, sizeof(paramfmt));

/*

Large objects as stored procedure parameters

152 Open Client

** First parameter, an integer.
*/
strcpy(paramfmt.name, "@intparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_INT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;
ct_param(cmd, ¶mfmt, (CS_VOID *)&intvar,

sizeof(CS_INT), ind))

/*
** Second parameter, a (small) text parameter.
*/

strcpy((CS_CHAR *)textvar, “The Open Client and Open
Server products both include Bulk-Library and
CS-Library. ”);

datalen = sizeof(textvar);
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_TEXT_TYPE;
paramfmt.maxlength = EX_MYMAXTEXTLEN;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;
ct_setparam(cmd, ¶mfmt, (CS_VOID *)&textvar,

&datalen, &ind);

ct_send(cmd);
ct_results(cmd, &res_type);

...

Example 2 Sends a small amount of LOB data using a prepared statement:

/*
** Prepare the sql statement.
*/
sprintf(statement, "select title_id from mybooks where

title like (?) ");

/*
** Send the prepared statement to the server
*/
ct_dynamic(cmd, CS_PREPARE, "my_dyn_stmt", CS_NULLTERM,

statement, CS_NULLTERM);

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 153

ct_send(cmd);
handle_results(cmd);

/*
** Prompt user to provide a value for title
*/
printf("Enter title id value - enter an X if you wish

to stop: \n");

while (toupper(title[0]) != 'X')
{

printf("Retrieve detail record for title: ?");
fgets(mytexttitle, 50, stdin);

/*
** Execute the dynamic statement.
*/

ct_dynamic(cmd, CS_EXECUTE, "my_dyn_stmt",
CS_NULLTERM, NULL, CS_UNUSED);

 /*
** Define the input parameter
*/

memset(&data_format, 0, sizeof(data_format));
data_format.status = CS_INPUTVALUE;
data_format.namelen = CS_NULLTERM ;
data_format.datatype = CS_TEXT_TYPE;
data_format.format = CS_FMT_NULLTERM;
data_format.maxlength = EX_MYMAXTEXTLEN;
ct_setparam(cmd, &data_format,

(CS_VOID *)mytexttitle, &datalen, &ind);

ct_send(cmd);
handle_results(cmd);
...
}

Sending large amounts of LOB data as parameters
Large amounts of LOB data is sent in streams to the server to better manage
resources. Use ct_send_data() in a loop to send data to the server in chunks.

To send a LOB data parameter in chunks:

Large objects as stored procedure parameters

154 Open Client

• Set the datatype field of the CS_DATAFMT structure to
CS_TEXT_TYPE, CS_UNITEXT_TYPE, or CS_IMAGE_TYPE.

• Set the maxlength field of the CS_DATAFMT structure to CS_UNUSED.

• Set the *data pointer argument of the ct_param() function to NULL.

• Set the datalen argument of the ct_param() function to 0.

Example 1 Sends a large LOB data parameter in chunks:

#define BUFSIZE 2048

int fp;
char sendbuf[BUFSIZE]

/*
** Clear and setup the CS_DATAFMT structure, then pass
** each of the parameters for the RPC.
*/
memset(¶mfmt, 0, sizeof(paramfmt));
strcpy(paramfmt.name, "@intparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_INT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

ct_param(cmd, ¶mfmt, (CS_VOID *)&intvar,
sizeof(CS_INT), 0))

/*
** Text parameter, sent as a BLOB.
*/
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_TEXT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

/*
** Although the actual data will not be sent here, we
** must invoke ct_setparam() for this parameter to send
** the parameter format (paramfmt) information to the
** server, prior to sending all parameter data.
** Set *data to NULL and datalen = 0, to indicate that
** the length of text data is unknown and we want to

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 155

** send it in chunks to the server with ct_send_data().
*/
ct_setparam(cmd, ¶mfmt, NULL, 0, 0);

/*
** Another LOB parameter (image), sent in chunks with
** ct_send_data()
*/
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_IMAGE_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

/*
** Just like the previous parameter, invoke
** ct_setparam() for this parameter to send the
** parameter format.
*/
ct_setparam(cmd, ¶mfmt, NULL, 0, 0);

/*
** Repeat this sequence of filling paramfmt and calling
** ct_param() for any subsequent parameter that needs
** to be sent before finally sending the data chunks for
** the LOB type parameters.
*/
strcpy(paramfmt.name, "@any_otherparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_MONEY_TYPE;
...

/*
** Send the first LOB (text) parameter in chunks of
** ‘BUFSIZE’ to the server. We must end with a 0 bytes
** write to indicate the end of the current parameter.
*/
fp = open(“huge_text_file”, O_RDWR, 0666);

do
{

num_read = read(fp, sendbuf, BUFSIZE);
ct_send_data(cmd, (CS_VOID *)sendbuf, num_read);

} while (num_read != 0);

Large objects as stored procedure parameters

156 Open Client

/*
** Repeat the ct_send_data() loop for the next LOB
** parameter.
** Send the image parameter in chunks of ‘BUFSIZE’
** to the server as well and end with a 0 bytes write
** to indicate the end of the current parameter.
*/
fp = open(“large_image_file”, O_RDWR, 0666);
do
{

num_read = read(fp, sendbuf, BUFSIZE);
ct_send_data(cmd, (CS_VOID *)sendbuf, num_read);

} while (num_read != 0);

/*
** Ensure that all the data is flushed to the server
*/
ct_send(cmd);

Example 2 Sends LOB data as a stream using a prepared SQL statement:

/*
** Prepare the sql statement.
*/
sprintf(statement, "select title_id from mybooks

where title like (?) ");

/*
** Send the prepared statement to the server
*/
ct_dynamic(cmd, CS_PREPARE, "mydyn_stmt", CS_NULLTERM,

statement, CS_NULLTERM);

ct_send(cmd);
handle_results();

/*
** Promt user to provide a value for title
*/
printf("Enter title id value - enter an X if you wish

to stop: \n");

while (toupper(myblobtitle[0]) != 'X')
{

printf("Retrieve detail record for title: ?");
fgets(myblobtitle, 50, stdin);

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 157

/*
** Execute the dynamic statement.
*/
ct_dynamic(cmd, CS_PREPARE, "my_dyn_stmt",
CS_NULLTERM, statement, CS_NULLTERM);

/*
** Define the input parameter, a TEXT type that we
want to send in chunks to the server.
*/
memset(&data_format, 0, sizeof(data_format)) ;
data_format.namelen = CS_NULLTERM ;
data_format.datatype = CS_TEXT_TYPE;
data_format.maxlength = CS_UNUSED;
data_format.status = CS_INPUTVALUE;
ct_setparam(cmd, &data_format, NULL, 0, 0);

/*
** Send the ‘myblobtitle’ data in chunks of
** ‘CHUNKSIZE’ to the server with ct_send_data() and
** end with 0 bytes to indicate the end of data for
** this parameter. This is just an example to show
** how chunks can be sent. (myblobtitle[] is used as
** a simple example. This could also be replaced by
** large file which would be read in chunks from disk
** for example).
*/
bytesleft = strlen(myblobtitle);
bufp = myblobtitle;

do
{

sendbytes = min(bytesleft, CHUNKSIZE);
ct_send_data(cmd, (CS_VOID *)bufp, sendbytes);
bufp += bufp + sendbytes;
bytesleft -= sendbytes;

} while (bytesleft > 0)

/*
** End with 0 bytes to indicate the end of current
data.
*/
ct_send_data(cmd, (CS_VOID *)bufp, 0);

/*
** Insure that all the data is sent to the server.

Macros

158 Open Client

*/
ct_send(cmd);
handle_results(cmd)
...

}

/*
** Deallocate the prepared statement and finish up.
*/

ct_dynamic(cmd, CS_DEALLOC, "my_dyn_stmt", CS_NULLTERM,
NULL, CS_UNUSED);

ct_send(cmd);
handle_results(cmd);

Macros
Macros are C language definitions that typically take one or more arguments
and expand into inline C code when the source file is preprocessed. The
following sections introduce the Open Client macros by presenting them in
their functional contexts.

Decoding a message number
Client-Library and CS-Library message numbers are CS_INT sized integers
that consist of four components: layer, origin, severity, and number. The
macros CS_LAYER, CS_ORIGIN, CS_SEVERITY, and CS_NUMBER
unpack the components from a message number. See “Client-Library message
numbers” on page 79.

Manipulating bits in a CS_CAP_TYPE structure
Capabilities describe features that a client/server connection supports. Each
connection’s capability information is stored in a CS_CAP_TYPE structure.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 159

The macros CS_CLR_CAPMASK, CS_SET_CAPMASK, and
CS_TST_CAPMASK manipulate the bits in a CS_CAP_TYPE structure. See
“Setting and retrieving multiple capabilities” on page 71 for descriptions of
these macros.

Using the sizeof operator
The C sizeof operator returns the size of a specified item in bytes. Because the
datatype of its return value varies from platform to platform, specifying sizeof
in place of a CS_INT argument to a Client-Library routine may result in a
compiler error or warning if the type returned is not the same base type as
CS_INT.

Client-Library provides the following macro to enable an application to use the
sizeof function when calling Client-Library routines

CS_SIZEOF(variable) – casts a sizeof return value to CS_INT.

This macro is defined in the header file cstypes.h.

Prototyping functions
Some C compilers require each function to be declared with an ANSI-style
prototype that indicates the placement and datatype of each argument received
by the function. Other compilers do not recognize ANSI-style prototypes.

The PROTOTYPE macro allows forward declarations that are agreeable to both
ANSI and non-ANSI compilers. This macro is used in forward declarations of
C functions as:

PROTOTYPE ((argument_list));

where argument_list is the ANSI-style argument list. PROTOTYPE is
conditionally defined. If the compiler supports ANSI-style prototypes, then
PROTOTYPE echos the argument list into the compiled code. Otherwise,
PROTOTYPE echos nothing.

The following example illustrates the use of PROTOTYPE:

extern CS_RETCODE CS_PUBLIC ex_clientmsg_cb PROTOTYPE((
 CS_CONTEXT *context,
 CS_CONNECTION *connection,
 CS_CLIENTMSG *errmsg
));

Multithreaded applications: signal handling

160 Open Client

CS_RETCODE CS_PUBLIC
 ex_clientmsg_cb(context, connection, errmsg)
 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_CLIENTMSG *errmsg;
 {
 ... function body goes here ...
 }

CS_PUBLIC is used in callback function prototypes to make sure that
machine-specific declaration requirements are satisfied. See “Declaring
callbacks with CS_PUBLIC” on page 29.

Multithreaded applications: signal handling
This section provides information about signal handling for multithreaded
applications on UNIX platforms. It supplements the Open Client and Open
Server documentation that explains how to use the reentrant versions of the
Sybase libraries to build multithreaded applications.

Basic concepts
UNIX operating systems use a signal to report an exceptional situation to a
process. Some signals report synchronous events, such as references to an
invalid address. Other signals report asynchronous events, such as the
disconnection of a phone line.

You can install a handler function to specify an action to be taken when a signal
occurs. When the signal occurs, the operating system executes the handler
function.

Use Sybase-provided calls to install signal handlers. If you use operating
system calls to install signal handlers, this interferes with the internal workings
of the Sybase libraries.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 161

Signal handling in nonthreaded environments
Signal handling is straightforward in a traditional, nonthreaded UNIX
environment that uses pre-12.0 or version 12.0 and later nonthreaded Sybase
libraries. Each process has a single thread of control. You register a handler for
a given signal with Open Client and Open Server library calls. Use ct_callback
in Client-Library and srv_signal in Server-Library.

When a signal occurs, the Sybase library traps the signal and calls the
designated signal handler. To mask a signal, blocking it from delivery to a
process, use the sigprocmask UNIX system call.

Types of signals
Signals fall into two categories that correspond to the events by which they are
generated.

Exceptions and
synchronous signals

Synchronous signals are generated by exceptions, or errors, which are caused
by invalid operations in a program. Examples of exceptions include attempts
to access invalid memory addresses and attempts to divide by zero.

Examples of synchronous signals include SIGILL, SIGFPE, SIGBUS,
SIGSEGV, SIGSYS, and SIGPIPE.

External events and
asynchronous signals

Asynchronous signals are generated by events outside the control of the
process that receives them, and arrive at unpredictable times. Asynchronous
signals are delivered to the process without regard to the instruction that is
executing.

Typically, the asynchronous signals are SIGHUP, SIGINT, SIGQUIT,
SIGALRM, SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGPWR,
SIGVTALRM, SIGPROF, SIGIO, SIGWINCH, SIGTSTP, SIGCONT,
SIGTTIN, SIGTTOU, and SIGURG.

The Sybase libraries treat the asynchronous signal SIGTRAP as a synchronous
signal. See “SIGTRAP signal” on page 164.

Type of event Type of signal

Exception Synchronous signal

External event Asynchronous signal

Multithreaded applications: signal handling

162 Open Client

Signal handlers
For all UNIX platforms, signal handlers are installed on a per-process basis. In
a multithreaded environment, there is only one signal handler for each signal
in a process. The last signal handler installed for any thread is valid for all
threads in the process. The handler is called when the signal is delivered.

Signal masking
Signal masking lets you specify that a signal will not be delivered until some
condition is met.

Nonthreaded environments have only one thread of control. Each signal is
masked or unmasked for the entire process.

In multithreaded environments, signal masking is handled differently on
different platforms:

• On platforms that do not support native threads, signals are masked on a
per-process basis. Changing the signal mask on one thread affects the
entire process.

• On platforms that support native threads, signals are masked on a per-
thread basis. Masking a signal on one thread affects that thread only. To
mask a signal for the entire process, you must mask the signal for each of
its threads.

Threads spawned by a parent thread inherit the signal mask of the parent
thread. You can build applications to take advantage of signal-mask
inheritance. If a signal must be masked for an entire process, mask it for
the main or initial thread. Any thread created thereafter inherits this
thread’s signal mask. See the Open Client and Open Server Programmers
Supplement for your platform for information on native thread support.

Signal delivery
A nonthreaded environment has only one thread of control. Synchronous and
asynchronous signals are delivered to the process.

In a multithreaded environment, multiple threads represent multiple threads of
control. A synchronous signal is always delivered for the thread that caused the
exception. An asynchronous signal is delivered for the first executing thread
for which delivery of the signal is enabled.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 163

You can specify that an asynchronous signal will be delivered for a thread or
set of threads. Unmask the signal for a set of threads to enable signal delivery
for these threads. Mask the signal for all other threads to disable signal
delivery. The kernel holds a signal until it executes a thread for which delivery
of the signal is enabled.

Using sigwait to handle asynchronous signals
Client-Library and Server-Library support the installation of signal handlers
using the ct_callback and srv_signal routines. To allow the use of functions that
are not asynchronous-signal-safe, multithreaded applications should, instead
of installing a regular signal handler, install a thread that calls sigwait to obtain
any pending signals. To allow the ct_callback and srv_signal routines to
correctly install signal handler functions this way, the first call to cs_ctx_alloc
or cs_ctx_global blocks the signals in all but one thread. This thread can be
instructed to start or stop blocking any thread signal and is known as the catcher
thread. When a signal handler is installed using the ct_callback or srv_signal
routines, the catcher thread blocks the corresponding signal. A separate thread
is then spawned to invoke sigwait for this signal and to execute the appropriate
user-provided signal handler function when the signal is received.

Note This functionality is possible only for applications that invoke the
cs_ctx_alloc and cs_ctx_global routines before creating any threads and that
install signal handlers only with ct_callback or srv_signal.

You may not want Open Client/Open Server libraries to intervene and handle
thread signals. To override the Open Client/Open Server thread-handling and
allow your application to handle signals itself, use the following procedure.

❖ Allowing your application to handle a thread signal by itself

1 In the main process thread, block the signal you wish to handle before your
first call to cs_ctx_alloc or cs_ctx_global.

2 Install a dummy signal handler to avoid the signal handler being set to
SIG_IGN.

3 To create the process threads, including the catcher thread, invoke
cs_ctx_global. The catcher thread will have the signal blocked.

4 Do one of the following:

• Install your own thread, calling sigwait, or

Multithreaded applications: signal handling

164 Open Client

• Unblock the signal, and install a regular signal handler (using, for
example, sigaction). Make sure that the signal handler is
asynchronous-signal-safe.

5 From the main process thread, unblock the signal that was blocked in step
1. Now all Open Client/Open Server threads will have the signal blocked.
The main process thread will not have the signal blocked, nor will any
threads created directly in the main thread. Do not install a signal handler
with ct_callback or srv_signal.

Special Sybase signal handlers
In nonthreaded environments, you can mask or unmask signals using UNIX
system calls.

In multithreaded environments, using versions of Open Client and Open Server
earlier than 12.0, you could not change masking for threads used internally by
Sybase libraries. Using version 12.0 or later of the Sybase libraries, however,
two special signal handlers are available for masking or unmasking signals:

• CS_SIGNAL_BLOCK – to mask a signal, install this signal handler using
the Sybase-provided signal installation routine. When the signal occurs, it
is held until you unmask it.

• CS_SIGNAL_UNBLOCK – to unmask a signal, install this signal handler
using the Sybase-provided signal installation routine.

Other special signal handlers for multithreaded environments include:

• CS_SIGNAL_IGNORE – this signal handler ignores a signal.
CS_SIGNAL_IGNORE works the same way as the UNIX special signal
handler SIG_IGN.

• CS_SIGNAL_DEFAULT – this signal handler takes a default action when
a signal occurs. CS_SIGNAL_DEFAULT works the same way as the
UNIX special signal handler SIG_DFL.

SIGTRAP signal
Sybase libraries treat the asynchronous signal SIGTRAP as a synchronous
signal.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 165

If it were treated as an asynchronous signal, the signal would be masked on the
calling thread when an application called srv_init or ct_init. That would disable
debugging, because many debuggers use SIGTRAP to communicate with the
application being debugged. To avoid interfering with debugging, SIGTRAP is
treated as a synchronous signal.

Note UNIX does not allow asynchronous signals to be handled like
synchronous signals. You cannot install signal handlers for SIGTRAP using
Sybase-provided calls.

Using Sun’s ALARM and SETITIMER routines
If you use the Sun routines ALARM or SETITIMER on Solaris 2.8, review the
bug that is documented in each routine’s man page.

To work around the bug, use alarm and link in pthread ahead of thread, as
shown.

-lpthread -lthread

Multithreaded programming
This version of Client-Library supports multithreaded programming.
Multithreaded applications need to be linked with the multithreaded libraries
included with Client-Library.

Not all operating systems provide threads, and Client-Library may not support
every thread interface available on a system. For a list of thread interfaces that
Client-Library supports, see the Open Client and Open Server Configuration
Guide for your platform.

On platforms where no thread support is available, the application may be able
to use Client-Library’s asynchronous interface to achieve the same effect. See
“Asynchronous programming”.

Multithreaded programming

166 Open Client

What is a thread
A path of execution through a program in memory. With traditional systems,
each process on the system has only one thread of execution. On a
multithreaded system, several threads can be started within one process.
Threads within a process share the same access to the process resources such
as memory and open file descriptors.

Multithreaded systems typically provide the following features:

• Thread-management routines to create and destroy threads.

• A thread scheduler that manages the simultaneous execution of multiple
threads within the same process.

• Thread serialization primitives for ensuring that access to shared resources
from different threads is mutually exclusive. That is, if one thread has
begun to access a shared resource, then no other thread must access the
resource until the first one is finished.

For example, if a linked list is shared by multiple threads, then each
traversal, insertion, and deletion operation is a critical section that must be
serialized with other traversals, insertions, or deletions. All such critical
sections must be serialized so that the execution a critical section in one
thread is not interleaved with the execution of a related critical section in
another thread.

A serialization primitive consists of a lockable object (for instance, a
mutex) and routines to lock and unlock the object.

• Thread synchronization primitives for synchronizing dependent actions
performed by different threads. A synchronization primitive consists of a
synchronization object (for instance, a condition variable), a routine to
wait on the condition, and a routine to signal that the condition is satisfied.

Benefits of multiple threads
As an application designer, you can use multiple threads to allow different parts
of a program to execute concurrently.

For example, an interactive Client-Library application can use one thread to
query a server and another thread to manage the user interface. Such an
application seems more responsive to the user because the user-interface thread
is able to respond to user actions while the query thread is waiting for results.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 167

As another example, consider an application that uses several connections to
one or more servers. In this situation, each connection can be run within a
dedicated thread. Then, while one thread is waiting for command results, the
other threads can be processing received results or sending new commands.
Such an approach may increase throughput because the application spends less
idle time while waiting for results.

Another reason to use multiple threads is that on a multiple-processor system,
the system’s thread library may schedule an application’s threads to run on
different processors.

Threads provide one method of achieving concurrency in a Client-Library
program. The other method is to use Client-Library’s asynchronous
programming interface. Asynchronous programming allows limited
concurrency. See “Asynchronous programming” on page 10.

Types of threads
As an application designer, you can use multiple threads to allow different parts
of a program to execute concurrently.

• A native thread is a thread that the application creates via direct calls to
operating system routines and is scheduled by the operating system.

• An Open Server thread is a thread that is created and scheduled by
Server-Library. Gateway applications use Open Server threads.

In some cases, Open Server threads may actually be implemented using native
threads. However, an Open Server application always manages thread
operations by calling Server-Library routines, even when Open Server is using
a native-thread implementation. In this document, the term native thread
always refers to a thread created directly by an application call to a system
routine.

Note that native threads are not available on all platforms. In addition, some
platforms may be able to use the DCE pthread library even though the
operating system does not supply system-level threads. For these platforms, a
version of Client-Library library files may be provided for use with DCE
threads. See the Open Client and Open Server Programmers Supplement for
your platform .

The Open Client and Open Server Programmers Supplement for your platform
contains important platform-specific information on using Client-Library with
the thread interface available on your system.

Multithreaded programming

168 Open Client

Write thread-safe code
While threads allow an application to execute different tasks concurrently, they
can also complicate the program logic. You must code you multithreaded
programs so that they are thread-safe. A thread-safe program satisfies the
following conditions:

1 Access to shared data (such as global variables) must be serialized so that
data reads and writes are consistent and atomic. See “Serializing access to
shared data and shared resources.”

2 Access to shared resources (such as file descriptors) must be serialized so
that the resource maintains a consistent state. See “Serializing access to
shared data and shared resources.”

3 Dependent actions in different threads must be synchronized so that they
are performed in the required order. See “Synchronizing dependent
actions.”

4 Calls to thread-unsafe system routines must be serialized so that only one
call is active at one time. See “Calling thread-unsafe system routines.”

5 Thread serialization primitives must be used in a way that avoids
deadlock. See “Avoiding deadlock.”

6 Calls to CS-Library, Client-Library, and Bulk-Library routines must
satisfy the restrictions explained in “Client-Library restrictions for
multithreaded programs.”

Program code that does not meet these restrictions is thread-unsafe. In general,
thread-unsafe code does not yield predictable behavior when executed in a
multithreaded program. Restrictions 1-5 are the general rules for making any
application thread safe. Restriction 6 is specific to Client-Library applications.
The following sections explain each restriction in more detail.

Note This explanation is not intended to replace the documentation for your
system’s thread interface. Please read and understand your system
documentation before attempting to use Client-Library in a multithreaded
environment.

Note When using multithreaded libraries included with Client-Library, fork()
without exec() is not supported. This is because Net Library threads required for
I/O operations, are not duplicated in the child by the fork() system call.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 169

Serializing access to shared data and shared resources
Because all threads share the same memory and other process resources, data
or resources modified by different threads can become inconsistent. This
problem is avoided by proper use of serialization primitives to guarantee that
data access is atomic.

For example, if multiple threads read and increment a global counter variable,
then you must design the application to serialize access to the counter. You can
associate a mutex with the counter, and add code that locks the mutex before
reading or incrementing the counter to guarantee that each data access is
atomic.

As a general rule, avoid resource sharing except when absolutely necessary.
The use of serialization primitives can complicate your program, and an
overabundance of locking calls can adversely affect performance on some
systems.

Read your thread system documentation to understand what serialization
primitives are provided and how they are used.

Synchronizing dependent actions
Because threads run concurrently, dependent actions that execute in different
threads require synchronization to ensure that they execute in the correct,
intended order. You must design the application to use synchronization
primitives such as condition variables to ensure the desired order of execution.

For example, when several threads share a queue, some threads may read from
the queue (the consumer threads) while others write to the same queue (the
producer threads). In this case, access to the queue must be both serialized (to
keep the queue data consistent) and synchronized (so that consumers do not
read from an empty queue and producers do not write to a full queue).

Both conditions can be satisfied by associating a mutex queue_mutex and
condition variables queue_notempty and queue_notfull with the queue. If the
POSIX pthread interface is used, then each producer thread performs the steps
below to insert to the queue:

pthread_mutex_lock(queue_mutex)
while queue is full
pthread_cond_wait(queue_notfull, queue_mutex)
end while
insert an item
pthread_cond_signal(queue_notempty, queue_mutex)

Multithreaded programming

170 Open Client

pthread_mutex_unlock(queue_mutex)

Meanwhile, the consumer thread performs the steps below to read from the
queue:

pthread_mutex_lock(queue_mutex)
while queue is empty
pthread_cond_wait(queue_notempty, queue_mutex)
end while
remove an item
pthread_cond_signal(queue_notfull, queue_mutex)
pthread_mutex_unlock(queue_mutex)

If the consumer thread finds the queue empty, it calls the pthread_cond_wait
routine on the queue_notempty condition. This call will not return until a
producer thread calls pthread_cond_signal with queue_notempty. When a
producer thread inserts an item, it calls pthread_cond_signal to signal that the
queue_notempty condition is satisfied.

Read your thread system documentation to understand what synchronization
primitives are provided and how they are used.

Calling thread-unsafe system routines
If any thread-unsafe routines are called from multithreaded code, then each call
must be serialized so that calls to the unsafe routines are not simultaneously
active. You can use a serialization primitive such as a global lock for this
purpose.

In some systems, some of the C standard library routines are not thread-safe.
If a routine is to be called in multithreaded code, then consult the
documentation for that routine to find out whether it is thread-safe and what
the routine's thread-safe usage requirements are.

For Client-Library routines, the section “Client-Library restrictions for
multithreaded programs” summarizes thread-safe usage.

Avoiding deadlock
In multithreaded code, deadlock can occur when two threads each request a
lock held by the other. For example, suppose that there are two threads (thread
1 and thread 2) and two mutexes (A and B). The following scenario is a
deadlock:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 171

thread 1 locks B
thread 2 locks A
thread 2 requests a lock on B
thread 1 requests a lock on A

In this situation, both thread 1 and thread 2 wait forever for the requested locks.

You can typically avoid deadlock by designing locking protocols for the
application. These specify the order in which simultaneously held locks must
be requested. In the scenario above, such a protocol might be stated: “If both
mutex A and mutex B are taken, then A must be acquired first.”

On some systems, a thread can deadlock with itself by requesting a lock that it
already holds. Read your thread system documentation for the recommended
practices to avoid deadlock.

Client-Library restrictions for multithreaded programs
Client-Library applications must satisfy the general restrictions listed above
and the specific Client-Library usage restrictions listed here to be thread-safe.

Client-Library's restrictions on thread-safe usage are categorized as follows:

• Context-Level - Thread-safe restrictions on accessing a CS_CONTEXT
structure. For details, see “Calling context-level routines.”

• Connection-Level - Thread-safe restrictions on using a
CS_CONNECTION structure or subordinate structures
(CS_COMMAND, CS_BLKDESC). For details, see “Calling connection-
level routines.”

• CS_LOCALE Usage - Thread-safe restrictions on using CS_LOCALE
structures. For details, see “Using CS_LOCALE structures.”

• Context-Level - Thread-safe restrictions on accessing a CS_CONTEXT
structure. For details, see “Calling context-level routines.”

Calling context-level routines
Client-Library and CS-Library context-level routines are listed in Table 2-27.

Thread-safe calls to context-level routines abide by the following restrictions:

• Calls to cs_ctx_alloc and cs_ctx_drop must not occur simultaneously with
any other call to cs_ctx_alloc or cs_ctx_drop.

Multithreaded programming

172 Open Client

• Calls to ct_init and ct_exit must not occur simultaneously with any other
call to ct_init or ct_exit.

• If a CS_CONTEXT structure is shared by different threads, and thread-
unsafe calls are made on that CS_CONTEXT structure, then all calls to
context-level routines for that CS_CONTEXT must be serialized. The
thread-unsafe context-level calls are indicated in Table 2-27.

Table 2-27: Thread-safe use of CS-Library and Client-Library
context-level routines

Routine name
Thread-safe
calls

Thread-unsafe
calls Notes

cs_calc All.

cs_cmp All.

cs_config When action is
CS_GET.

When action is
CS_SET or
CS_XCLEAR.

cs_convert All. If CS_LOCALE pointers are used
within srcfmt or destfmt, access
to the CS_LOCALE structures
must be thread-safe.

cs_ctx_alloc All Thread-unsafe for any context.
See “Context initialization and
cleanup.”

cs_ctx_drop All, for any context. Thread-unsafe for any context.
See “Context initialization and
cleanup.”

cs_ctx_global All calls after the
first call has
completed.

First executed call
only.

cs_dt_crack All.

cs_dt_info All. Access to the CS_LOCALE
structure must be thread-safe.

cs_diag When action is not
CS_INIT.

When action is
CS_INIT.

Only messages generated by the
calling thread are visible. See
“CS-Library error handling.”

cs_loc_alloc All. Access to the CS_LOCALE
structure must be thread-safe. See
“Using CS_LOCALE
structures.”

cs_loc_drop All calls.

cs_locale All calls.

cs_objects All calls.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 173

Context initialization and cleanup

The routines cs_ctx_alloc, cs_ctx_drop, ct_init, and ct_exit are thread-unsafe and
must be serialized as follows:

• Any call to cs_ctx_alloc or cs_ctx_drop must be serialized with other calls
to cs_ctx_alloc or cs_ctx_drop.

• Additionally, any call to ct_init or ct_exit must be serialized with other calls
to ct_init or ct_exit.

cs_set_convert When action
CS_GET.

When action is
CS_SET or
CS_CLEAR.

cs_setnull All calls that share
the same context.

cs_strbuild All calls.

cs_strcmp All calls.

cs_time All calls.

cs_will_convert All calls.

ct_callback When context is
not NULL.

Thread-unsafe at the connection
level (all calls where context is
NULL). See “Calling
connection-level routines.”

ct_con_alloc All calls.

ct_con_drop All calls.

ct_config When action is
CS_GET.

When action is
CS_SET or
CS_CLEAR.

ct_debug When context is not
NULL.

See “Calling connection-level
routines” for the case when
context is NULL.

ct_exit All calls, for any
context.

Thread-unsafe for any context.
See “Context initialization and
cleanup.”

ct_init All calls, for any
context.

Thread-unsafe for any context.
See “Context initialization and
cleanup.”.

ct_poll Only when context
is not NULL.

Routine name
Thread-safe
calls

Thread-unsafe
calls Notes

Multithreaded programming

174 Open Client

You need not worry about this issue if your program allocates and initializes all
necessary CS_CONTEXT structures in single-threaded initialization code and
performs all context-level cleanup operations in single-threaded cleanup code.
An alternative strategy limits the use of a given context structure to a single
thread to eliminate the need for serialization.

CS-Library error handling

If multiple threads share a context, all of them must use the same error handling
method: all threads sharing the context must use the inline (cs_diag) method or
all threads must use the callback method.

If errors are handled inline with cs_diag, then each thread must call cs_diag to
retrieve its own CS-Library error messages. cs_diag only shows messages
generated by the calling thread.

Calling connection-level routines
Connection-level routines are routines in Client-Library and Bulk-Library that
take a pointer to any of the following structures as an argument:

• A connection structure (CS_CONNECTION *)

• A command structure (CS_COMMAND *)

• A directory object structure (CS_DS_OBJECT *)

• A Bulk-Library bulk descriptor structure (CS_BLKDESC *)

The following routines are also considered connection-level routines:

• ct_callback (only with a non-NULL connection argument).

• ct_debug (only with a NULL context argument). Note that
ct_debug(CS_DBG_ALL) and other calls that require a non-NULL
context are considered thread-unsafe context-level calls.

• ct_poll (only with a non-NULL connection argument).

Calls to routines using a command structure, a directory object structure, or a
bulk descriptor structure should be treated as connection-level calls on the
parent connection. Thread-safe calls to connection-level routines abide by the
following restrictions:

• Threads that share the same connection must synchronize connection-
level calls so that:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 175

• Calls are not simultaneously active, and

• Calls occur in the intended order.

• Calls that reference a given connection structure cannot be simultaneously
active with any thread-unsafe context-level call that access the
connection's parent context. The thread-unsafe context-level calls are
listed in Table 2-27.

Using CS_LOCALE structures
Client-Library, CS-Library, and Bulk-Library routines can receive a pointer to
a CS_LOCALE structure directly or indirectly within an exposed structure.
The exposed structures CS_DATAFMT and CS_IODESC each contain a locale
field that can hold a CS_LOCALE pointer.

Any call to a Client-Library, CS-Library, or Bulk-Library routine that receives
a non-NULL CS_LOCALE pointer is thread safe as long as:

• The routine does not modify the CS_LOCALE structure. The table below
lists the routines that modify a CS_LOCALE structure.

• No call listed below is simultaneously active with any other call that
references the same CS_LOCALE structure:

• cs_dt_info(CS_SET)

• cs_loc_drop

• cs_locale(CS_SET)

Coding thread-safe callback routines
If a callback function can be called from multiple threads, then the callback
must be thread-safe. Generally, callbacks are called from the thread that
provoked the callback event, but some callbacks can be invoked by an internal
Client-Library worker thread and execute in the context of the worker thread.
Table 2-28 on page 177 summarizes which thread invokes each callback type.

Callbacks for use in a multithreaded environment should be coded according
to the following rules:

• Callbacks should follow the general implementation rules described in the
“Callbacks” topics page.

Multithreaded programming

176 Open Client

• Callback code must be thread-safe and follow the restrictions noted under
“Write thread-safe code.”

• Callbacks that can be invoked by a Client-Library worker thread require
an appropriate design. The callback can run concurrently with mainline
code, and access to any data structures shared between the callback and
mainline code (including data stored as a CS_USERDATA property) must
be thread-safe.

Threads and fully asynchronous mode
On some platforms such as Windows, Client-Library implements fully
asynchronous network I/O by spawning internal worker threads to handle
network I/O. When a fully asynchronous I/O is in effect on these platforms, an
internal Client-Library thread waits for the completion of each I/O request, and
invokes the application's completion callback. Before the operation completes,
the thread may call other application callbacks. For example, if the server sends
server messages, the internal Client-Library thread reads the messages and
calls the application's server-message callback.

In these situations, the callback code and the application's mainline code run in
different threads. When coding a fully asynchronous application on a platform
where Client-Library uses thread-driven I/O, you must make sure that the
callbacks communicate properly with the mainline code. Table 2-28
summarizes which thread invokes each callback type.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 177

Table 2-28: Callback types and the thread they are invoked from

Callback type Invocation thread

CS-Library error handler The thread that provoked the error event.

Client message When the CS_NETIO connection
property is CS_DEFER_IO or
CS_SYNC_IO, the callback is invoked
from the thread that provoked the error.

On thread-driven I/O platforms, when the
CS_NETIO connection property is
CS_ASYNC_IO, the callback can be
invoked from a Client-Library worker
thread or the thread that provoked the
error event, depending on when the error
is discovered.

Completion When the CS_NETIO connection
property is CS_DEFER_IO, the callback
is invoked from the thread that calls
ct_poll.

On thread-driven I/O platforms, when the
CS_NETIO connection property is
CS_ASYNC_IO, the callback is invoked
from a Client-Library worker thread.

Directory When the CS_NETIO connection
property is CS_SYNC_IO or
CS_DEFER_IO, the callback is invoked
from the thread that called ct_ds_lookup.

On thread-driven I/O platforms, when the
CS_NETIO connection property is
CS_ASYNC_IO, the callback is invoked
from an internal Client-Library thread.

Encryption, negotiation, or security
session

When the CS_NETIO connection
property is CS_SYNC_IO or
CS_DEFER_IO, the callback is invoked
from the thread that called ct_connect.

On thread-driven I/O platforms, when the
CS_NETIO connection property is
CS_ASYNC_IO, the callback is invoked
from an internal Client-Library thread.

Multithreaded programming

178 Open Client

Multithreaded programming models for Client-Library
This section outlines some programming strategies that can simplify the design
of multithreaded applications.

One-thread, one-connection model

In this model, your program:

• Performs all needed library initialization and cleanup in single-threaded
initialization and cleanup code.

• Creates a dedicated thread for each connection and limits all use of a
particular connection to its dedicated thread.

Notification When the CS_ASYNC_NOTIFS
property is CS_FALSE (the default), the
callback is invoked from the thread that
was reading from the network at the time
the notification arrived.

On thread-driven I/O platforms, when the
CS_ASYNC_NOTIFS property is
CS_TRUE, the callback is invoked from
an internal Client-Library thread.

Server message When the CS_NETIO connection
property is CS_DEFER_IO or
CS_SYNC_IO, the callback is invoked
from the thread that is processing results
or sending commands on the connection
when the message arrives.

On thread-driven I/O platforms, when the
CS_NETIO connection property is
CS_ASYNC_IO, the callback is invoked
by an internal Client-Library thread.

Signal On platforms that support signals and
where Client-Library uses thread-driven
I/O, signal callbacks must be installed
with ct_callback. The signal callback is
invoked by an internal Client-Library
thread, and not at interrupt level.

Callback type Invocation thread

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 179

The one-thread, one-connection model is the simplest and requires the least
amount of inter-thread synchronization. It is also the most natural model for an
Open Server gateway.

The basic steps are as follows:

• Initialization - Any thread-unsafe context-level calls (listed in Table 2-27
on page 172) are called in single-threaded initialization code. If the
application is a multithreaded library that calls Client-Library routines, the
library's public initialization routine can call the POSIX pthread_once()
routine (or your system's equivalent) to safely invoke an internal, single-
threaded routine that initializes Client-Library. Typically, the start-up
thread will wait for some event that indicates the program (or library)
should terminate.

• Processing - After all initialization has been performed, the application
spawns one thread for each connection to be created. The thread then
allocates its own connection with ct_con_alloc, connects to a server, and
performs the processing for that connection.

• Shutdown - When the program or library determines that it should
terminate, each thread that is bound to a connection closes its connection
(and terminates itself if necessary). The application then performs any
cleanup (such as calling ct_exit and cs_ctx_drop) in single-threaded code.

Worker-thread model

In this model, you design the application to maintain a pool of available
Client-Library connection structures. Connections can be shared by multiple
threads, but a given connection is used in only one thread at any given time.
When a thread needs to perform a Client-Library operation, it takes an
available connection and marks it “unavailable,” then performs
connection-level operations. When the connection-level operations are
complete, the thread marks the connection as “available.” The application
design can use the CS_USERDATA connection property to associate state
information (such as availability) with a connection structure.

This model is similar to the one-thread, one-connection model, except that the
binding between connections and threads is dynamic rather than static. The
application code and data structures used to manage the connection pool must
be thread-safe.

Options

180 Open Client

Other thread models

Using other programming models, shared connections may be active on
different threads, or thread-unsafe context-level calls may be made in
multithreaded code. In these situations, synchronization is more complex. The
program must follow all restrictions described in this“Multithreaded
programming” section.

Options
Options affect how Sybase Servers respond to commands.

An application sets options to customize a server’s query-processing behavior.
For example, an application sets the CS_OPT_FIPSFLAG option to tell a
server to flag any nonstandard SQL commands that it receives.

A Client-Library application sets and clears Adaptive Server Enterprise query-
processing options in one of two ways:

• By using a Transact-SQL language command (set)

• By calling ct_options

An application may use only one of these methods; otherwise, Client-
Library/server communications may become confused.

The ct_options method is recommended because it allows an application to
check the status of an option, which is not allowed by the Transact-SQL set
command.

See the set command in the Adaptive Server Enterprise Reference Manual.

Setting options externally
The Client-Library routine ct_connect optionally reads a section from the
Open Client and Open Server runtime configuration file to set server options
for a newly-opened connection.

For a description of this feature, see “Using the runtime configuration file” on
page 318.

Table 2-29 lists the symbolic constants used with ct_options:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 181

Table 2-29: Symbolic constants for server options

Symbolic constant Meaning Default value

CS_OPT_ANSINULL Determines whether evaluation of NULL-valued
operands in SQL equality (=) or inequality (!=)
comparisons is ANSI-compliant.

If CS_TRUE, Adaptive Server Enterprise enforces the
ANSI behavior that “= NULL” and “is NULL” are not
equivalent. In standard Transact SQL, “= NULL” and “is
NULL” are considered to be equivalent.

This option affects “<> NULL” and “is not NULL”
behavior in a similar fashion.

CS_FALSE.

CS_OPT_ANSIPERM Determines whether Adaptive Server Enterprise is
ANSI-compliant with respect to permissions checks on
update and delete statements.

If CS_TRUE, Adaptive Server Enterprise is ANSI-
compliant.

CS_FALSE.

CS_OPT_ARITHABORT Determines how Adaptive Server Enterprise behaves
when an arithmetic error occurs.

If CS_TRUE, both the arith_overflow and
numeric_truncation options are set to on. An entire
transaction or batch in which an error occurred is rolled
back when a divide-by-zero error or a loss of precision
occurs during either an explicit or implicit datatype
conversion. If a loss of scale by an exact numeric type
occurs during an implicit datatype conversion, the
statement that caused the error is aborted, but the other
statements in the transaction or batch continue to be
processed.

If CS_FALSE, both the arith_overflow and
numeric_truncation options are set to off. The statement
that caused a divide-by-zero error or a loss of precision
during either an explicit or implicit datatype conversion
is aborted, but the other statements in the transaction or
batch continue to be processed. If a loss of scale by an
exact numeric type during an implicit datatype
conversion occurs, the query results are truncated and
other statements in the transaction or batch continue to
be processed.

CS_FALSE.

Options

182 Open Client

CS_OPT_ARITHIGNORE Determines whether Adaptive Server Enterprise returns
a message after a divide-by-zero error or a loss of
precision.

If CS_TRUE, warning messages are suppressed after
these errors. If CS_FALSE, warning messages are
displayed after these errors.

CS_FALSE.

CS_OPT_AUTHOFF Turns the specified authorization level off for the current
server session. When a user logs in, all authorizations
granted to that user are automatically turned off.

Not applicable.

CS_OPT_AUTHON Turns the specified authorization level on for the current
server session. When a user logs in, all authorizations
granted to that user are automatically turned on.

Not applicable.

CS_OPT_CHAINXACTS If CS_TRUE, Adaptive Server Enterprise uses chained
transaction behavior. Chained transaction behavior
means that each server command is considered to be a
distinct transaction. Adaptive Server Enterprise
implicitly executes a begin transaction before any of the
following statements: delete, fetch, insert, open, select,
and update.

If CS_FALSE, an application must specify an explicit
commit transaction statement to end a transaction and
begin a new one.

CS_FALSE.

CS_OPT_
CURCLOSEONXACT

If CS_TRUE, all cursors opened within a transaction are
closed when the transaction completes.

CS_FALSE.

CS_OPT_DATEFIRST Sets the first day of the week. For us_english, the
default is
CS_OPT_SUNDAY.

CS_OPT_
DATEFORMAT

Sets the order of the date parts month/day/year for
entering date, datetime or smalldatetime data.

For us_english, the
default is
CS_OPT_FMTMDY.

CS_OPT_FIPSFLAG Determines whether Adaptive Server Enterprise displays
a warning message when SQL extensions are used.

If CS_TRUE, Adaptive Server Enterprise flags any non-
standard SQL commands that are sent.

If CS_FALSE, Adaptive Server Enterprise does not flag
non-ANSI SQL.

CS_FALSE.

CS_OPT_FORCEPLAN If CS_TRUE, Adaptive Server Enterprise joins tables in
the order in which the tables are listed in the from clause
of the query.

CS_FALSE.

Symbolic constant Meaning Default value

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 183

CS_OPT_
FORMATONLY

If CS_TRUE, Adaptive Server Enterprise sends back a
description of the data, rather than the data itself, in
response to a select query.

If CS_FALSE, Adaptive Server Enterprise sends back
data in response to a select query.

CS_FALSE.

CS_OPT_HIDE_VCC When set to CS_TRUE, CS_OPT_HIDE_VCC hides
Virtual Computed Columns (VCC) in tables. Column
numbers passed to, for example, blk_bind would
therefore not include VCC columns.

When set to CS_FALSE, VCC’s are included in tables.

CS_FALSE.

CS_OPT_IDENTITYOFF Disables inserts into a table’s IDENTITY column.

See the set command (identity_insert option) in the
Adaptive Server Enterprise documentation.

Not applicable.

CS_OPT_IDENTITYON Enables inserts into a table’s IDENTITY column.

See the set command (identity_insert option) in the
Adaptive Server Enterprise documentation.

Not applicable.

CS_OPT_IDENTITYUPD_O
FF

Disables the identity update option. Null

CS_OPT_IDENTITYUPD_O
N

Enables the identity update option. This option allows
you to update the “high”, out-of-range identity column
values by writing a single SQL update statement that
specifies the required range of rows and replaces them
with the correct values.

Null

CS_OPT_ISOLATION Specifies a transaction isolation level. Possible levels are
CS_OPT_LEVEL0, CS_OPT_LEVEL1, and
CS_OPT_LEVEL3.

These correspond to the three levels for Adaptive Server
Enterprise’s set transaction isolation level command.
CS_OPT_LEVEL0 requires Adaptive Server Enterprise.

CS_OPT_LEVEL1.

CS_OPT_NOCOUNT Turns off the return of the number of rows affected by
each SQL statement. An application obtains this
information by calling ct_res_info.

CS_FALSE.

CS_OPT_NOEXEC If CS_TRUE, Adaptive Server Enterprise compiles each
query but does not execute it.

Use this option in conjunction with
CS_OPT_SHOWPLAN.

CS_FALSE.

CS_OPT_PARSEONLY If CS_TRUE, Adaptive Server Enterprise checks the
syntax of each query and returns any error messages as
necessary, but does not execute the query.

CS_FALSE.

CS_OPT_QUOTED_
IDENT

If CS_TRUE, Adaptive Server Enterprise treats all
strings enclosed in double quotes (“) as identifiers.

CS_FALSE.

Symbolic constant Meaning Default value

Options

184 Open Client

CS_OPT_RESTREES If CS_TRUE, Adaptive Server Enterprise checks the
syntax of each query and returns parse resolution trees
(in the form of image columns in a regular row result set)
and error messages as necessary, but does not execute the
query.

CS_FALSE.

CS_OPT_ROWCOUNT Sets a limit for the number of rows that are affected by a
query: limits the number of regular rows returned by a
select statement and the number of rows affected by an
update or delete statement.

If set to 0, the number of rows returned or affected by a
command is not limited.

If set to a value greater than 0, Adaptive Server
Enterprise stops processing a command when the
specified number of rows has been affected.

This option does not limit the number of compute rows
returned.

0

CS_OPT_SHOW_FI When set to CS_TRUE, CS_OPT_SHOW_FI adds a
column to the table for each Functional Index (FI).

Correspondingly, when CS_OPT_SHOW_FI is set to
CS_FALSE, FI’s are hidden.

CS_FALSE.

CS_OPT_SHOWPLAN Determines whether a description of each query’s
processing plan is returned between its compilation and
execution.

If CS_TRUE, Adaptive Server Enterprise compiles a
query, generates a description of its processing plan, and
then executes the query.

Client-Library receives the description as a sequence of
informational server messages. Application programs
access them through the user-supplied server message
handler.

CS_FALSE.

CS_OPT_SORTMERGE Determines whether the use of sort-merge joins during a
session are enabled or disabled.

See the Adaptive Server Enterprise Performance and
Tuning Guide.

CS_FALSE.

Symbolic constant Meaning Default value

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 185

CS_OPT_STATS_IO Determines whether Adaptive Server Enterprise internal
I/O statistics (the number of scans, logical reads,
physical reads, and pages written) are returned for each
query.

If CS_TRUE, statistics are returned.

Client-Library receives these statistics as informational
server messages. Application programs access them
through the user-supplied server message handler.

CS_FALSE.

CS_OPT_STATS_TIME Determines whether Adaptive Server Enterprise parsing,
compilation, and execution time statistics are returned
for each query.

If CS_TRUE, statistics are returned.

Client-Library receives these statistics as informational
server messages. Application programs access them
through the user-supplied server message handler.

CS_FALSE.

CS_OPT_STR_
RTRUNC

Determines whether Adaptive Server Enterprise is
ANSI-compliant with respect to right truncation of
character data.

When this option is set to CS_TRUE, Adaptive Server
Enterprise raises an error when an insert or an update
operation truncates a char or varchar column value and
the truncated characters are not all blank. This behavior
is ANSI- compliant.

When this option is set to CS_FALSE, the Adaptive
Server Enterprise silently truncates char or varchar
values that are too long for the column definition.

CS_FALSE.

Symbolic constant Meaning Default value

Parameters

186 Open Client

Parameters

Batched parameters
The ct_set_params() CT-Library routine allows multiple sets of command
parameters to be sent without ending the command itself. Use this routine
repeatedly to transfer parameters without needing to process the results of the
previous command and without needing to resend the command itself. See
“ct_send_params” on page 604.

CS_OPT_TEXTSIZE Specifies the value of the Adaptive Server Enterprise
global variable @@textsize, which limits the size of text
or image values that Adaptive Server Enterprise returns.

When setting this option, supply a parameter that
specifies length, in bytes, of the longest text or image
value that Adaptive Server Enterprise should return.

The Client-Library property CS_TEXTLIMIT has a
similar effect. The CS_TEXTLIMIT property sets the
size of the largest text/image value that Client-Library
returns to the application. CS_TEXTLIMIT does not
affect server processing: Client-Library truncates
text/image values as they are read from the network. On
the other hand, CS_OPT_TEXTSIZE causes the server
to truncate values before sending them.

In programs that allow application users to run ad hoc
queries, the user may override the CS_OPT_TEXTSIZE
option with the Transact-SQL set textsize command. To
set a text limit that the user cannot override, use the
CS_TEXTLIMIT property instead.

32,768 bytes.

CS_OPT_
TRUNCIGNORE

If CS_TRUE, Adaptive Server Enterprise ignores
truncation errors. This is standard ANSI behavior.

If CS_FALSE, Adaptive Server Enterprise raises an
error when conversion results in truncation.

CS_FALSE.

Symbolic constant Meaning Default value

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 187

Rebinding using ct_setparam

When sending multiple sets of parameters, an application may need to point
CT-Library to other locations in memory than for the previous set of
parameters. To rebind the parameters, use ct_setparam() to provide a different
location for the data. Here is the existing ct_setparam() declaration:

ct_setparam(cmd, datafmt, data, datalenp, indp)

CS_COMMAND *cmd;
CS_DATAFMT *datafmt;
CS_VOID *data;
CS_INT *datalenp;
CS_SMALLINT *indp;

Provide new values for data, datalenp and indp parameters in ct_setparam()
call to bind to different memory locations.

After a ct_send_params() call, the format of the parameters cannot be changed.
Any calls to ct_setparam() made after a call to ct_send_params() must therefore
pass a NULL value for datafmt.

Only parameters initially bound with ct_setparam() can be rebound.

Properties
Properties are named values that are stored in a CS_CONTEXT,
CS_CONNECTION, or CS_COMMAND hidden structure.

Properties define aspects of Client-Library behavior. For example, a
connection structure’s CS_NETIO property determines whether the
connection is synchronous or asynchronous, and a command structure’s
CS_HIDDEN_KEYS property determines whether or not hidden keys returned
as part of a result set are exposed.

Comparing properties, options, and capabilities
Do not confuse properties with server options or a connection’s capabilities.
Server options control the server’s behavior while executing commands sent to
a client. A connection’s capabilities determine which types of client requests or
server responses can be sent over a connection.

Properties

188 Open Client

In general, properties control Client-Library’s behavior, while server options
control the server’s response to commands. At a lower level, capabilities
constrain the protocol that the client and the server use to communicate.

For example, consider the problem of limiting the size of a text or image
datatype value that is selected by an application. To solve this problem, a
programmer might code the application to do any of the following:

• Set the CS_OPT_TEXTSIZE option to limit how much of a large
text/image value the server sends over the network (the best solution).

• Set the CS_TEXTLIMIT connection property so that Client-Library
truncates CS_TEXT or CS_IMAGE data values that are retrieved from the
server. An inefficient solution, since the entire value must be sent over the
network before truncation.

• Before opening the connection, call ct_capability to inhibit the connection’s
CS_DATA_TEXT and CS_DATA_IMAGE response capabilities. A poor
solution, since no text or image values are sent by the server in this case.

See “Options” on page 180 and “Capabilities” on page 58.

Login properties
Login properties define values used when logging in to a server. Login
properties include CS_USERNAME, CS_PASSWORD, and
CS_PACKETSIZE.

A server changes the values of some login properties during the login process.
For example, if an application sets CS_PACKETSIZE to 2048 bytes and then
logs in, the server will use the specified packet size or can choose a smaller or
larger packet size.

Setting and retrieving properties
An application calls ct_config, ct_con_props, and ct_cmd_props to set and
retrieve Client-Library properties at the context, connection, and command
structure levels, respectively. An application calls cs_config to set and retrieve
CS-Library context properties.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 189

When a connection structure is allocated, it picks up default property values
from its parent context. For example, if CS_TEXTLIMIT is set to 16,000 at the
context level, then any connection created within this context will have a
default text limit value of 16,000. Likewise, when a command structure is
allocated, it picks up default property values from its parent connection.

An application overrides a default property value by calling cs_config,
ct_config, ct_con_props, or ct_cmd_props to change the value of the property.

Most properties’ values are set or retrieved by an application, but some
properties are “retrieve only.”

Three kinds of context properties
There are three kinds of context properties:

• Context properties specific to CS-Library

• Context properties specific to Client-Library

• Context properties specific to Server-Library

cs_config sets and retrieves the values of CS-Library-specific context
properties. With the exception of CS_LOC_PROP, properties set through
cs_config affect only CS-Library. CS-Library-specific context properties are
listed on the reference page for cs_config in the Open Client and Open Server
Common Libraries Reference Manual.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set through ct_config affect only Client-Library. Client-
Library-specific context properties are listed in Table 2-30 on page 192.

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set through srv_props affect only Server-Library.

Checking whether a property is supported
Properties are not always supported. A property may be unsupported in the
following instances.

• The property is associated with external directory provider software.

Properties

190 Open Client

Some of the CS_DS properties control the behavior of external directory
provider software (indicated by the connection’s CS_DS_PROVIDER
property). Sybase’s directory driver maps the Client-Library property to an
equivalent service-provider setting. However, if the provider has no
equivalent setting, the property is not supported. Applications cannot call
ct_con_props to get, set, or clear the value of unsupported directory
properties.

• The property is associated with external security provider software.

Some of the CS_SEC properties enable security services, such as data
encryption, that are performed by external security software (indicated by
the CS_SEC_MECHANISM property). Sybase’s security driver maps the
Client-Library property to an equivalent service-provider setting.
However, a security mechanism may not support every service.
Applications cannot call ct_con_props or ct_config to enable a security
service that is not supported by the current security mechanism for the
connection or context.

Applications check to determine whether a property is supported by calling
ct_config or ct_con_props with the action parameter as CS_SUPPORTED and
the buffer parameter as the address of a CS_BOOL variable.

For example, the following code checks to see if the CS_DS_SEARCH
property is supported. You can use this sample code to check support for other
properties by replacing the CS_DS_SEARCH parameter with the parameter
you are interested in.

/* Is CS_DS_SEARCH supported? */
 ret = ct_con_props(conn, CS_SUPPORTED,
 CS_DS_SEARCH, &boolval,
 CS_UNUSED,NULL);
 if (ret != CS_SUCCEED)
 ... handle the error ...
 printf("CS_DS_SEARCH %s supported",
 boolval == CS_TRUE ? "is" : "is not");

Note The CS_SUPPORTED action is allowed only for properties associated
with a directory or security driver.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 191

Copying login properties
A login property is a connection property that specifies a value needed to
connect to a server. For example, CS_USERNAME and CS_PASSWORD are
login properties.

An application copies login properties from an established connection to a new
connection structure. To do this, an application:

1 Allocates a connection structure (ct_con_alloc).

2 Customizes the connection (ct_con_props).

3 Opens the connection (ct_connect).

4 Calls ct_getloginfo to allocate a CS_LOGINFO structure and copy the
connection‘s login properties into it.

5 Allocates a second connection structure (ct_con_alloc).

6 Calls ct_setloginfo to copy login properties from the CS_LOGINFO
structure to the second connection structure. After copying the properties,
ct_setloginfo deallocates the CS_LOGINFO structure.

7 Customizes any properties which should be different in the second
connection (ct_con_props).

8 Opens the second connection (ct_connect).

Setting properties externally
The Client-Library routines ct_init and ct_connect optionally read a section
from the Open Client and Open Server runtime configuration file to set
property values for a context or connection. For a description of this feature,
see “Using the runtime configuration file” on page 318.

Properties quick reference table
Table 2-30 lists Client-Library properties. The context properties in this table
are set through ct_config. For a list of context properties set through cs_config,
see the reference page for cs_config in the Open Client and Open Server
Common Libraries Reference Manual.

Properties

192 Open Client

Table 2-30: Client-Library properties

Property name Meaning Possible values
Applicable
level Notes

CS_ANSI_BINDS Whether or not to use
ANSI-style binds.

See “ANSI-style
binds” on page 211.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

CS_APPNAME At the context level,
the name the
application calls itself.
At the connection
level, the application
name used when
logging into the server.

See “Application
name” on page 212.

A character string.

The default is
NULL.

Connection.

To set at the
context level,
call
cs_config.

Login property.

At connection level,
cannot be set after
connection is
established.

CS_ASYNC_ NOTIFS Whether or not a
connection receives
registered procedure
notifications
asynchronously.

See “Asynchronous
notifications” on page
213.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Must be set to
CS_TRUE to receive
notifications on an idle
connection.

CS_BULK_LOGIN Whether or not a
connection is enabled
to perform bulk-copy-
in operations.

See “Bulk copy
operations” on page
215

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Login property.

Cannot be set after
connection is
established.

CS_CHARSETCNV Whether or not
character set
conversion is taking
place.

See “Character set
conversion” on page
215.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Connection. Retrieve only, after
connection is
established.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 193

CS_COMMBLOCK A pointer to a
communication
sessions block.

This property is
specific to IBM-370
systems and is ignored
by all other platforms.

See “Communications
session block” on page
215.

A pointer value.

The default is
NULL.

Connection. Cannot be set after
connection is
established.

CS_CONNECTED_
ADDR

The transport address
of the server to which
the current connection
is established.

A valid transport
address.

Connection. This property cannot be
set. It requires a pointer
to a CS_
TRANADDR structure
that will be filled in with
the server's address.

CS_CON_
KEEPALIVE

Whether for use the
KEEPALIVE option.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE

Context or
connection

Some Net-Library
protocol drivers do not
support this property.
See “Checking whether
a property is supported”
on page 189.

CS_CON_STATUS The connection’s
status.

See “Connection
status” on page 215.

A CS_INT-sized
bitmask.

Connection. Retrieve only.

CS_CON_TCP_
NODELAY

Whether to use the
TCP_NODELAY
property.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context or
connection

Some Net-Library
protocol drivers do not
support this property.
See “Checking whether
a property is supported”
on page 189.

Property name Meaning Possible values
Applicable
level Notes

Properties

194 Open Client

CS_CONFIG_
BY_SERVERNAME

Whether ct_connect
uses its server_name
parameter or the value
of the CS_APPNAME
property as the section
name to read external
configuration data
from.

See “Using the
runtime configuration
file” on page 318.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Meaningful only when
external configuration
has been enabled by
setting
CS_EXTERNAL_CON
FIG.

Requires initialization
with
CS_VERSION_110 or
later.

CS_CONFIG_FILE The name and location
of the Open Client/
 Server runtime
configuration file.

See “Using the
runtime configuration
file” on page 318.

A character string.

The default is
NULL, which
means a platform-
specific default is
used.

Connection. Meaningful only when
external configuration
has been enabled by
setting
CS_EXTERNAL_CON
FIG.

Requires initialization
with
CS_VERSION_110 or
later.

CS_CUR_ID The cursor’s
identification number.

See “Cursor ID” on
page 216.

An integer value.

A default is not
applicable.

Command. Retrieve only, after
CS_CUR_
STATUS indicates an
existing cursor.

CS_CUR_NAME The cursor’s name, as
defined in an
application’s
ct_cursor(CS_CURSO
R_
DECLARE) call.

See “Cursor name” on
page 217.

A character string.

A default is not
applicable.

Command. Retrieve only, after
ct_cursor
(CS_CURSOR_
DECLARE) returns
CS_SUCCEED.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 195

CS_CUR_
ROWCOUNT

The current value of
cursor rows. Cursor
rows is the number of
rows returned to
Client-Library per
internal fetch request.

See “Cursor
rowcount” on page
217.

An integer value.

A default is not
applicable.

Command. Retrieve only, after
CS_CUR_
STATUS indicates an
existing cursor.

CS_CUR_STATUS The cursor’s status.

See “Cursor status” on
page 218.

A CS_INT-sized
value.

Command. Retrieve only.

CS_DIAG_TIMEOUT Whether Client-
Library should fail or
retry on timeout errors
when inline error
handling is in effect.

See “Diagnostic
timeout fail” on page
220.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means Client-
Library should
retry.

Connection.

CS_DISABLE_POLL Whether or not to
disable polling. If
polling is disabled,
ct_poll does not report
asynchronous
operation completions.

See “Disable poll” on
page 220.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that polling
is not disabled.

Context,
connection.

Useful in layered
asynchronous
applications.

CS_DS_COPY Whether the directory
service is allowed to
satisfy an application’s
request with cached
copies of directory
entries.

See “Directory service
cache use” on page
115.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE, which
allows cache use.

Connection. Not supported by all
directory providers.

Property name Meaning Possible values
Applicable
level Notes

Properties

196 Open Client

CS_DS_DITBASE Fully qualified name
of directory node
where directory
searches begin.

See “Base for
directory searches” on
page 115.

A character string.

The default is
directory-provider
specific.

Connection. Not supported by all
directory providers.

CS_DS_EXPAND
ALIAS

Whether the directory
service expands
directory alias entries.

See “Directory service
expansion of aliases”
on page 116.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE, which
allows alias
expansion.

Connection. Not supported by all
directory providers.

CS_DS_FAILOVER Whether to allow
failover to the next
libtcl.cfg entry or the
interfaces file when a
directory service
driver cannot be
initialized.

See “Directory service
failover” on page 117.

CS_TRUE or
CS_FALSE

The default is
CS_TRUE.

Connection.

CS_DS_PASSWORD Password to go with
the directory user ID
specified as
CS_DS_PRINCIPAL.

See “Directory service
password” on page
117.

A character string.

The default is
NULL.

Connection. Not supported by all
directory providers.

The user name and
password that are passed
to the LDAP server for
user authentication
purposes are distinct and
different from those used
to access Adaptive
Server Enterprise.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 197

CS_DS_PRINCIPAL A directory user id for
use of the directory
service to go with the
password specified as
CS_DS_PASSWORD.

See “Directory service
principal name” on
page 118.

A character string.

The default is
NULL.

Connection. Not supported by all
directory providers.

The user name and
password that are passed
to the LDAP server for
user authentication
purposes are distinct and
different from those used
to access Adaptive
Server Enterprise.

CS_DS_PROVIDER The name of the
directory provider for
the connection.

See “Directory service
provider” on page 119.

A character string.

The default
depends on
directory driver
configuration.

Connection.

CS_DS_RAND_
OFFSET

Enables or disables
random offset in
connection lists.

See “Directory service
random offset” on
page 118.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Determined when the
network address list is
retrieved from the
directory service.

CS_DS_SEARCH Restricts the depth of a
directory search.

See “Directory service
search depth” on page
121.

A CS_INT sized
symbolic value.

For a list of
possible values,
see “Directory
service search
depth” on page
121.

Connection. Not supported by all
directory providers.

CS_DS_SIZELIMIT Restricts the number
of directory entries
that are returned by a
search started with
ct_ds_lookup.

See “Directory search
size limit” on page
121.

A CS_INT value
greater than or
equal to 0.

The default is 0,
which indicates
there is no size
limit.

Connection. Not supported by all
directory providers.

Property name Meaning Possible values
Applicable
level Notes

Properties

198 Open Client

CS_DS_TIMELIMIT Sets an absolute time
limit, in seconds, for
completion of
directory searches
begun with
ct_ds_lookup.

See “Directory search
time limit” on page
122.

A CS_INT value
greater than or
equal to 0.

The default is 0,
which indicates
there is no time
limit.

Connection. Not supported by all
directory providers.

CS_EED_CMD A pointer to a
command structure
containing extended
error data.

See “Extended error
data command
structure” on page
220.

A pointer value.

A default is not
applicable.

Connection. Retrieve only.

CS_ENDPOINT The file descriptor for
a connection.

See “Endpoint
polling” on page 221.

An integer value.

A default is not
applicable.

Value is -1 on
platforms that do
not support
endpoint handles.

Connection. Retrieve only, after
connection is
established.

CS_EXPOSE_FMTS Whether to expose
results of type
CS_ROWFMT_
 RESULT and
CS_COM

PUTEFMT_RESULT.

See “Expose formats”
on page 221.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 199

CS_EXTERNAL_
 CONFIG

Whether ct_init or
ct_connect reads the
Open Client and Open
Server runtime
configuration file to
set properties and
options for the
connection to be
opened.

See “Using the
runtime configuration
file” on page 318.

CS_TRUE or
CS_FALSE.

The default is
inherited from the
CS-Library context
property of the
same name.

Context,
connection.

Requires initialization
with
CS_VERSION_110 or
later.

CS_EXTRA_INF Whether to return the
extra information
that’s required when
processing Client-
Library messages
inline using a SQLCA,
SQLCODE, or
SQLSTATE.

See “Extra
information” on page
222.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

CS_HAFAILOVER See “High-availability
failover” on page 137.

CS_TRUE or
CS_FALSE.

Context,
connection.

Requires initialization
with
CS_VERSION_120 or
later.

CS_HAVE_BINDS Whether any saved
result bindings are
present for the current
result set.

See “Have bindings”
on page 222.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Command. Retrieve only.

CS_HAVE_CMD Whether a resendable
command exists for
the command
structure.

See “Have resendable
command” on page
223.

CS_TRUE or
CS_FALSE.

Command. Retrieve only.

Property name Meaning Possible values
Applicable
level Notes

Properties

200 Open Client

CS_HAVE_CUROPE
N

Whether a restorable
cursor-open command
exists for the
command structure.

See “Have restorable
cursor-open
command” on page
224.

CS_TRUE or
CS_FALSE.

Command. Retrieve only.

CS_HIDDEN_KEYS Whether to expose
hidden keys.

See “Hidden keys” on
page 224.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection,
command.

Cannot be set at the
command level if results
are pending or a cursor is
open.

CS_HOSTNAME The host machine
name.

See “Host name” on
page 225.

A character string.

The default is
NULL.

Connection. Login property.

Cannot be set after
connection is
established.

CS_IFILE The path and name of
the interfaces file.

See “Location of the
interfaces file” on
page 225.

A character string. Context.

CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information.

See “Locale
information” on page
226.

A CS_LOCALE
structure.

A connection picks
up default
localization
information from
its parent context.

Connection.

To set
CS_LOC_
PROP at the
context level,
call
cs_config.

Login property.

Cannot be set after
connection is
established.

CS_LOGIN_STATUS Whether the
connection is open.

See “Login status” on
page 226.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Connection. Retrieve only.

CS_LOGIN_
TIMEOUT

The login timeout
value.

See “Login timeout”
on page 226.

An integer value.

The default is 60
seconds. A value
of CS_NO_LIMIT
represents an
infinite timeout
period.

Context,
connection.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 201

CS_LOOP_DELAY The delay, in seconds,
that ct_connect waits
before retrying the
sequence of addresses
associated with a
server name.

See “Loop delay” on
page 227.

A CS_INT >= 0.

The default is 0.

Connection. CS_RETRY_
 COUNT specifies the
number of times to retry.

CS_MAX_CONNECT The maximum number
of connections for this
context.

See “Maximum
number of
connections” on page
228.

An integer value.

The default is 25.

Context.

CS_MEM_POOL A memory pool that
Client-Library will use
to satisfy interrupt-
level memory
requirements.

See “Memory pool”
on page 228.

A pointer value.

The default is
NULL (no user-
supplied memory
pool).

Context. Useful in asynchronous
applications.

Cannot be set or cleared
when context has
connections.

CS_NETIO Whether network I/O
is synchronous, fully
asynchronous, or
deferred-
asynchronous.

See “Network I/O” on
page 229.

CS_SYNC_IO,
CS_ASYNC_IO,
or
CS_DEFER_IO.

The default is
CS_SYNC_IO.

Context,
connection.

Cannot be set for a
context with open
connections.

CS_DEFER_IO is legal
only at the context level.

CS_ASYNC_IO cannot
be used in an Open
Server gateway.

CS_NO_TRUNCATE Whether Client-
Library should
truncate or sequence
messages that are
longer than
CS_MAX_MSG.

See “No truncate” on
page 231.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that Client-
Library truncates
long messages.

Context.

Property name Meaning Possible values
Applicable
level Notes

Properties

202 Open Client

CS_NOAPI_CHK Whether Client-
Library performs
argument and state
checking when the
application calls a
Client-Library routine.

See “No API
checking” on page
231.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that Client-
Library performs
API checking.

Context.

CS_NOCHARSETCN
_
REQD

Whether the server
performs character set
conversion if the
server’s character set is
different from the
client’s.

See “No character
conversion required”
on page 232.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means conversion
occurs when
necessary.

Connection. Cannot be set after
connection is
established.

CS_NOINTERRUPT Whether the
application can be
interrupted by certain
callback events.

See “No interrupt” on
page 232.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means the
application can be
interrupted.

Context.

CS_NOTIF_CMD A pointer to a
command structure
containing registered
procedure notification
parameters.

A pointer value.

A default is not
applicable.

Connection. Retrieve only.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 203

CS_PACKETSIZE The TDS packet size in
bytes.

See “Packet size” on
page 233.

The default is 512
bytes. A server that
supports Server
Specified
Packetsize, for
example, Adaptive
Server Enterprise
15.0, may choose
any packet size
between 512 and
65535 bytes.
Unless
CS_NO_SRVPKT
SIZE is set, the
packetsize cannot
be larger than the
value provided
here.

Connection. Negotiated login
property.

Cannot be set after
connection is
established.

CS_PARENT_HAND
LE

The address of a
command or
connection structure’s
parent structure.

See “Parent structure”
on page 233.

A pointer value. Connection,
 command.

Retrieve only.

CS_PARTIAL_TEXT Indicates whether or
not the client
application should
perform a partial
update.

See “Partial updates to
text and image data”
on page 233.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

This property must be set
before a connection to
the server is established.
If the server does not
support partial updates,
this property will be
reset to CS_FALSE.

CS_PASSWORD The password used to
log in to the server.

See “Password” on
page 233.

A character string.

The default is
NULL.

Connection. Login property.

Property name Meaning Possible values
Applicable
level Notes

Properties

204 Open Client

CS_PROP_
APPLICATION_SPID

The Adaptive Server
Enterprise SPID is
saved during login and
is available as the
property.

See “Extended
failover” on page 221.

A CS_INT value
corresponding to
the server process
ID (spid) on the
server.

Connection. Login property.

CS_PROP_EXTENDE
DFAILOVER

Enables or disables
server-provided
failover targets.

See “Extended
failover” on page 221.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

CS_PROP_
MIGRATABLE

Enables or disables
connection migration.

See “Connection
migration” on page
216.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

CS_PROP_
REDIRECT

Enables or disables
login redirection
support.

See “Login
redirection” on page
227.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

CS_PROP_SSL_
PROTOVERSION

The version of
supported SSL/TLS
protocols.

CS_INT Context,
connection

Must be one of the
following values.

CS_SSLVER_20

CS_SSLVER_30

CS_SSLVER_TLS1

CS_PROP_SSL_
CIPHER

Comma-separated list
of CipherSuite names.

CS_CHAR Context,
connection

CS_PROP_SSL_
LOCALID

Property used to
specify the path to the
Local ID (certificates)
file.

Character string Context
connection

A structure containing a
file name and a password
used to decrypt the
information in the file.

CS_PROP_SSL_CA Specify the path to the
file containing trusted
CA certificates.

CS_CHAR Context,
connection

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 205

CS_RETRY_COUNT The number of times to
retry a connection to a
server’s address.

See “Retry count” on
page 237.

A CS_INT >= 0.

The default is 0.

Connection. Affects only the
establishment of a login
dialog. Failed logins are
not retried.

CS_RPCPARAM_
LOB

Whether large object
(LOB) datatypes can
be used as input
parameters to stored
procedures.

See “Large objects as
stored procedure
parameters” on page
150.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_RPCPARAM_
NOLOB

Requests the server
to withhold sending
LOB data as
parameters.

See “Large objects as
stored procedure
parameters” on page
150.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Connection. Cannot be set after
connection is
established.

CS_SEC_
 APPDEFINED

Whether the
connection will use
application-defined
challenge/response
security handshaking.

See “Security
handshaking:
Challenge/Response”
on page 284.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_CHALLEN
GE

Whether the
connection will use
Sybase-defined
challenge/response
security handshaking.

See “Security
handshaking:
Challenge/Response”
on page 284.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set after
connection is
established.

Property name Meaning Possible values
Applicable
level Notes

Properties

206 Open Client

CS_SEC_CHANBIND Whether the
connection’s security
mechanism will
perform channel
binding.

See “Requesting login
authentication
services” on page 266.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
CONFIDENTIALITY

Whether data
encryption service will
be performed on the
connection.

See “Requesting per-
packet security
services” on page 270.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
CREDENTIALS

Used by gateway
applications to forward
a delegated user
credential.

See “Requesting login
authentication
services” on page 266.

A CS_VOID *
pointer.

Context,
connection.

Cannot be read.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
CREDTIMEOUT

Whether the user’s
credentials have
expired.

See “Requesting login
authentication
services” on page 266.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DATAORIGIN

Whether the
connection’s security
mechanism will
perform data origin
verification.

See “Requesting per-
packet security
services” on page 270.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 207

CS_SEC_
DELEGATION

Whether to allow the
server to connect to a
second server with the
user’s delegated
credentials.

See “Requesting login
authentication
services” on page 266.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DETECTREPLAY

Whether the
connection’s security
mechanism will detect
replayed
transmissions.

See “Requesting per-
packet security
services” on page 270.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DETECTSEQ

Whether the
connection’s security
mechanism will detect
transmissions that
arrive out of sequence.

See “Requesting per-
packet security
services” on page 270.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
ENCRYPTION

Whether the
connection will use
encrypted password
security handshaking.

See “Security
handshaking:
encrypted password”
on page 284.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_INTEGRIT
Y

Whether the
connection’s security
mechanism will
perform data integrity
checking.

See “Requesting per-
packet security
services” on page 270.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

Property name Meaning Possible values
Applicable
level Notes

Properties

208 Open Client

CS_SEC_KEYTAB The name and path to
the file from which a
connection’s security
mechanism reads the
security key to go with
the CS_USERNAME
property.

See “Requesting login
authentication
services” on page 266.

A character string.

The default is
NULL, which
means the user
must have
established
credentials before
the application
calls ct_connect.

Connection. Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
MECHANISM

The name of the
network security
mechanism that
performs security
services for the
connection.

See “Choosing a
network security
mechanism” on page
263.

A string value.

The default
depends on
security driver
configuration.

Context,
connection.

Cannot be set after
connection is
established.

CS_SEC_
MUTUALAUTH

Whether the server is
required to
authenticate itself to
the client.

See “Requesting login
authentication
services” on page 266.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_NEGOTIAT
E

Whether or not the
connection will use
trusted-user security
handshaking to pass
security labels to the
server.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_
NETWORKAUTH

Whether the
connection’s security
mechanism will
perform network-
based user
authentication.

See “Requesting login
authentication
services” on page 266.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism and a
preestablished credential
that matches
CS_USERNAME.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 209

CS_SEC_
SERVERPRINCIPAL

The network security
principal name for the
server to which a
connection will be
opened.

See “Requesting login
authentication
services” on page 266.

A string value.

The default is
NULL, which
means that
ct_connect
assumes the server
principal name is
the same as its
server_name
parameter.

Connection. Cannot be set after
connection is
established.

Meaningful only for
connections that use
network-based user
authentication.

CS_SEC_
SESSTIMEOUT

Whether the
connection’s security
session has expired.

See “Requesting login
authentication
services” on page 266.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SENDDATA_
NOCMD

Whether a sp_mda
procedure will be run
on the server when
ct_connect is called.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. CS_SENDDATA_
NOCMD must be set
before ct_connect is
called. If the server does
not support the
ct_send_data routine
sending only text or
image data without a
SQL command, the
property is reset.

CS_SERVERADDR The address of the
server to which you are
connected to.

The format
“hostname
portnumber
[filter], where filter
is optional.

Connection Using this property
causes ctlib to bypass the
host name of the server
and the port number of
the interfaces.

CS_SERVERNAME The name of the server
to which you are
connected.

See “Server name” on
page 237.

A string value.

A default is not
applicable.

Connection. Retrieve only, after
connection is
established.

Property name Meaning Possible values
Applicable
level Notes

Properties

210 Open Client

CS_STICKY_BINDS Whether or not
bindings between
result items and
program variables
persist when a server
command is executed
repeatedly.

See “Persistent result
bindings” on page
234.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Command.

CS_TDS_VERSION The version of the
TDS protocol that the
connection is using.

See “TDS version” on
page 238.

A symbolic
version level.

Defaults to a value
based on
CS_VERSION.

Connection. Negotiated login
property.

Cannot be set after
connection is
established.

CS_TEXTLIMIT The largest text or
image value to be
returned on this
connection.

See “Text and image
limit” on page 239.

An integer value.

The default is
CS_NO_LIMIT.

Context,
connection.

CS_TIMEOUT The timeout value for
reading results from
the server.

See “Timeout” on
page 240.

An integer value.

The default is
CS_NO_LIMIT.

Context,
connection.

CS_TRANSACTION_
NAME

A transaction name to
be used over a
connection to Open
Server for CICS.

See “Transaction
name” on page 243.

A string value.

The default is
NULL.

Connection.

CS_USER_ALLOC A user-defined
memory allocation
routine.

See “User allocation
function” on page 243.

A pointer to a user-
defined function.

A default is not
applicable.

Context. Useful in asynchronous
application.

Property name Meaning Possible values
Applicable
level Notes

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 211

About the properties
This section provides a detailed description of each Client-Library property.

ANSI-style binds

CS_ANSI_BINDS determines whether or not Client-Library will use ANSI-
style binds and ANSI-style cursor end-data processing.

CS_USER_FREE A user-defined
memory free routine.

See “User free
function” on page 245.

A pointer to a user-
defined function.

A default is not
applicable.

Context. Useful in asynchronous
application.

CS_USERDATA User-allocated data.

See “User data” on
page 245.

User-allocated
data.

Connection,
command.

To set
CS_USER
 DATA at the
context level,
call
cs_config.

CS_USERNAME The name used to log
in to the server.

See “User name” on
page 247.

A character string.

The default is
NULL.

Connection. Login property.

Cannot be set after
connection is
established.

CS_VER_STRING Client-Library’s true
version string.

See “Version string for
Client-Library” on
page 247.

A character string.

A default is not
applicable.

Context. Retrieve only.

CS_VERSION The version of Client-
Library in use by this
context.

See “Version of
Client-Library” on
page 247.

A symbolic
version level.

CS_VERSION
gets its value from
a context’s ct_init
call.

See the detailed
description for
possible values.

Context. Retrieve only.

Property name Meaning Possible values
Applicable
level Notes

Properties

212 Open Client

When ANSI-style binds are in effect, ct_fetch raises an error in the following
situations:

• It is considered an error to bind only some of the items in a result set. An
application must bind either none of the items or all of the items.

• ct_fetch raises an error when copying a NULL or truncated character string
value into a variable which does not have an associated indicator.

In both of these cases, ct_fetch returns CS_ROW_FAIL.

When ANSI-style cursor end-data processing is in effect, ct_fetch does not
raise an error when cursor results are being processed, ct_fetch has returned
CS_END_DATA, and the following calls are made:

• ct_bind

• ct_fetch

If the CS_ANSI_BINDS property is not CS_TRUE, ct_fetch raises an error and
fails when these calls are made in this situation.

Application name

CS_APPNAME specifies an application name, which is used as follows:

• At the context level, CS_APPNAME specifies a configuration file section
from which ct_init reads default Client-Library context properties. See
“Using the runtime configuration file” on page 318 for a description of
this feature. CS_APPNAME is set at the context level by calling the CS-
Library routine cs_config.

• At the connection level, CS_APPNAME defines the application name that
a connection will use when connecting to a server. If external
configuration is enabled for the connection, CS_APPNAME may also
identify a configuration file section from which ct_connect reads default
properties, server options, and capabilities for the connection. See “Using
the runtime configuration file” on page 318 for a description of this
feature.

Adaptive Server Enterprise uses application names to identify connection
processes in the sysprocesses table of the master database.

When a connection structure is allocated, it inherits the CS_APPNAME setting
from the parent context structure. If the inherited value is not changed, it
becomes the application name when the connection is opened. Applications
change the application name for a connection by calling ct_con_props before
the connection is opened.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 213

Asynchronous notifications

The CS_ASYNC_NOTIFS connection property controls how a Client-Library
application receives registered procedure notifications from an Open Server
application. CS_ASYNC_NOTIFS determines whether a connection will
receive registered procedure notifications asynchronously.

The Open Server application sends a notification to the client as one or more
TDS packets. The client application does not learn of the notification until
Client-Library reads the notification packets from the connection and invokes
the application’s notification callback.

Registered procedure notifications allow clients to watch for execution of one
or more registered procedures on an Open Server. When a watched procedure
is executed by any client, Open Server sends a notification to each client that
is watching that particular registered procedure.

The server sends the notification as one or more Tabular Data Stream packets.
For the application to learn about notifications, Client-Library must read these
packets and trigger the application’s notification callback. The
CS_ASYNC_NOTIFS property determines how the application learns about
notifications:

• An otherwise synchronous connection receives asynchronous
notifications by setting CS_ASYNC_NOTIFS to CS_TRUE.

• An asynchronous connection does not receive notifications
asynchronously unless it sets CS_ASYNC_NOTIFS to CS_TRUE.

• On a connection that is used only to receive notifications, ct_poll does not
look for notifications unless CS_ASYNC_NOTIFS is CS_TRUE.

When CS_ASYNC_NOTIFS is CS_TRUE

When CS_ASYNC_NOTIFS is set to CS_TRUE, Client-Library interrupts the
application to report an arriving registered procedure notification.

On platforms that support interrupt- or thread-driven I/O, Client-Library
automatically reads the notification information and invokes the connection’s
notification callback when a notification arrives on the connection.

On other platforms, if the connection is not otherwise active, it must be polled
with ct_poll to trigger the notification callback. CS_ASYNC_NOTIFS must be
CS_TRUE for ct_poll to trigger the notification callback on an otherwise idle
connection.

Properties

214 Open Client

When CS_ASYNC_NOTIFS is CS_FALSE

When CS_ASYNC_NOTIFS is CS_FALSE (the default), the application must
be reading from the network for Client-Library to report a registered procedure
notification. When the server sends a notification, Client-Library reads the
notification data and triggers the application’s notification callback the next
time it interacts with the server.

Likewise, if CS_ASYNC_NOTIFS is CS_FALSE, ct_poll does not read
notification data from the network and trigger the application’s notification
callback. This means that an application must be reading results for ct_poll to
report a registered procedure notification. When ct_poll reports the
notification, the application’s notification callback is automatically called.

Note If a connection is used only for receiving registered procedure
notifications, CS_ASYNC_NOTIFS must be set to CS_TRUE to receive the
notification. Asynchronous notifications must be enabled even if the
connection is polled with ct_poll.

Setting CS_ASYNC_NOTIFS

The following fragment enables asynchronous notifications.

/* Turn on read-ahead notifications. */
 boolval = CS_TRUE;
 if (ct_con_props(conn, CS_SET, CS_ASYNC_NOTIFS, &boolval,
 CS_UNUSED, (CS_INT *)NULL)! CS_SUCCEED)
 {
 fprintf(stderr,
 "Error: ct_con_props(SET, CS_ASYNC_NOTIFS) failed\n");
 (CS_VOID)ct_close(conn, CS_UNUSED);
 (CS_VOID)ct_con_drop(conn);
 }

Setting CS_ASYNC_NOTIFS to CS_FALSE does not immediately turn off
asynchronous notifications. To turn off asynchronous notifications, an
application must send a command to the server after setting
CS_ASYNC_NOTIFS to CS_FALSE.

CS_ASYNC_NOTIFS is the only property that determines whether
notifications are received asynchronously:

• An otherwise synchronous connection receives asynchronous
notifications.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 215

• An asynchronous connection does not receive notifications
asynchronously unless it sets CS_ASYNC_NOTIFS to CS_TRUE.

For information about registered procedure notifications, see “Registered
procedures” on page 248.

Bulk copy operations

CS_BULK_LOGIN describes whether or not a connection can perform bulk
copy operations into a database. The default of CS_FALSE prohibits bulk copy
operations.

Applications that perform bulk copy operations on a connection must set the
CS_BULK_LOGIN connection property to CS_TRUE before calling
ct_connect to open the connection.

Applications that allow users to make ad hoc queries may want to avoid setting
this property to CS_TRUE, to keep users from initiating a bulk copy sequence
through SQL commands. Once a bulk copy sequence has been started, it cannot
be stopped with an ordinary SQL command. Applications perform bulk copy
operations using Bulk-Library calls. Bulk-Library is described in the Open
Client and Open Server Common Libraries Reference Manual.

Character set conversion

CS_CHARSETCNV describes whether or not the server is converting between
the client and server character sets. This property is retrieve-only, after a
connection is established.

A value of CS_TRUE indicates that the server is converting between the client
and server character sets; CS_FALSE indicates that no conversion is taking
place.

Communications session block

The CS_COMMBLOCK property defines a pointer to a communications
block. This property is specific to IBM370 systems and is ignored by all other
platforms.

Connection status

CS_CON_STATUS is a CS_INT-sized bitmask that reflects a connection’s
current status.

Properties

216 Open Client

The following table lists the symbolic values that make up
CS_CON_STATUS:

Client-Library marks a connection as dead if errors have made it unusable or if
an application’s client message callback routine returns CS_FAIL. An
application must call ct_close and ct_con_drop to close and drop connections
that have been marked as “dead,” or unusable. An exception to this rule occurs
for certain types of results-processing errors. If a connection is marked dead
while processing results, the application can try reviving the connection by
calling ct_cancel with type as CS_CANCEL_ALL or CS_CANCEL_ATTN. If
this fails, the application must close and drop the connection.

Configure by server name

CS_CONFIG_BY_SERVERNAME determines whether ct_connect uses its
server_name parameter or the value of the CS_APPNAME property as the
section name to read external configuration data from. For a description this
feature, see “Using the runtime configuration file” on page 318.

Configuration file name

CS_CONFIG_FILE specifies the name and location of the Open Client and
Open Server runtime configuration file that Client-Library reads to set default
values for properties, server options, and capabilities. For a description this
feature, see “Using the runtime configuration file” on page 318.

Connection migration

When CS_PROP_MIGRATABLE is CS_TRUE (the default), a connection can
be migrated by a server that understands the connection migration protocol and
can move a client connection to another server after login has completed.

The CS_PROP_MIGRATABLE property can be set using ct_config and
ct_con_props.

Cursor ID

CS_CUR_ID is the server identification number assigned to a cursor.

Symbolic value Meaning

CS_CONSTAT_CONNECTED The connection is open.

CS_CONSTAT_DEAD The connection has been marked as “dead.”

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 217

An application retrieves a cursor’s identification number after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists in the
command space of interest.

CS_CUR_ID is a command structure property and cannot be retrieved at the
connection or context levels.

Cursor properties are useful to gateway applications that send cursor
information to clients.

For an example fragment that retrieves the cursor ID, see “Example for Cursor
Status” on page 320.

Cursor name

CS_CUR_NAME is the name with which a cursor was declared. An
application declares a cursor by calling ct_cursor(CS_CURSOR_DECLARE).

An application retrieves a cursor’s name any time after its
ct_cursor(CS_CURSOR_DECLARE) call returns CS_SUCCEED.

CS_CUR_NAME is a command structure property and cannot be retrieved at
the connection or context levels.

Cursor properties are useful to gateway applications that send cursor
information to clients.

For an example fragment that retrieves the cursor name, see “Example for
Cursor Status” on page 320.

Cursor rowcount

CS_CUR_ROWCOUNT is the current value of cursor rows for a cursor.

Cursor rows is the number of rows returned to Client-Library for each internal
fetch request. This is not the number of rows returned to an application for each
ct_fetch call. (The latter number is specified by the bindings in place on the
command structure. For details, see “Array binding” on page 346.

Cursor rows defaults to one. This implies that for every ct_fetch call made by
the application, Client-Library issues one internal cursor fetch command for
every row required by the ct_fetch call.

Properties

218 Open Client

Each internal cursor fetch command requires interaction between the client and
the server. Therefore, a larger cursor rows value reduces the number of network
round-trips required to fetch from the cursor. However, if the application sends
nested cursor commands or sends commands on a different command structure
while fetching from the cursor, Client-Library must buffer rows that have not
been fetched with ct_fetch to send the new command. Therefore, larger cursor
rows values may require increased memory usage by Client-Library.

The application calls ct_cursor to increase the value of cursor rows before a
cursor is opened. For details, see “Cursor-Rows commands” on page 442.

An application retrieves CS_CUR_ROWCOUNT after calling
ct_cmd_props(CS_CUR_STATUS) to confirm that a cursor exists in the
command space of interest.

CS_CUR_ROWCOUNT is a command structure property and cannot be
retrieved at the connection or context levels.

Cursor properties are useful to gateway applications that send cursor
information to clients.

Cursor status

CS_CUR_STATUS is a CS_INT-sized quantity that reflects a cursor’s current
status.

The status may be either CS_CURSTAT_NONE to indicate no cursor exists for
the command structure or a status value with bits set to indicate the status.

If CS_CURSTATUS is not CS_CURSTAT_NONE, the application determines
the cursor status by applying the bitmask values listed in the table below. For
example, to see if a cursor is updatable, apply the following test:

if ((cur_status & CS_CURSTAT_UPDATABLE)
 == CS_CURSTAT_UPDATABLE)

Table 2-31 lists the symbolic bitmask values for testing a CS_CUR_STATUS
value:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 219

Table 2-31: Cursor status bitmask values

The cursor status is reported by the server. An application must send a ct_cursor
command and begin processing the results before it will see a change to the
CS_CUR_STATUS property value. Cursor status is guaranteed to be accurate:

• After ct_results returns CS_SUCCEED with a *result_type parameter of
CS_CMD_SUCCEED, CS_CMD_FAIL, or CS_CURSOR_RESULT

• After ct_cancel(CS_CANCEL_ALL) returns CS_SUCCEED

• After any Client-Library or CS-Library routine returns CS_CANCELED

Calling ct_cancel may cause a connection’s cursors to enter an undefined state.
An application uses the cursor status property to determine how a cancel
operation has affected a cursor.

CS_CUR_STATUS is a command structure property and cannot be retrieved at
the connection or context levels.

Cursor properties are useful to gateway applications that send cursor
information to clients.

Bitmask value Tests for

CS_CURSTAT_CLOSED A closed cursor exists in the command space.
An application can open or deallocate a closed
cursor.

CS_CURSTAT_DECLARED A cursor is currently declared in this command
space. An application can open or deallocate a
declared cursor.

CS_CURSTAT_ROWCOUNT The application has sent a cursor-rows
command to the server, but the cursor has not
been opened yet.

CS_CURSTAT_OPEN An open cursor is open in the command space.
An application can close an open cursor.

CS_CURSTAT_RDONLY The cursor is read-only and cannot be used to
perform updates.

CS_CURSTAT_UPDATABLE The cursor can be used to perform updates.

CS_SCROLL_INSENSITIVE Declares a scrollable, insensitive cursor.

CS_SCROLL_SEMISENSITIVE Declares a scrollable, semi sensitive cursor.

CS_SCROLL_CURSOR Declares a scrollable cursor that is insensitive
(default).

CS_NOSCROLL_INSENSITIVE Declares a cursor insensitive and non-
scrollable.

Properties

220 Open Client

For an example fragment that retrieves this property and checks the cursor
status, see Example for Cursor Status on page 320.

Diagnostic timeout fail

When inline error handling is in effect, the CS_DIAG_TIMEOUT property
determines whether Client-Library fails or retries on Client-Library timeout
errors.

If CS_DIAG_TIMEOUT is CS_TRUE, Client-Library marks a connection as
dead when a Client-Library routine generates a timeout error.

If CS_DIAG_TIMEOUT is CS_FALSE, Client-Library retries indefinitely
when a Client-Library routine generates a timeout error.

Disable poll

The CS_DISABLE_POLL property determines whether or not ct_poll reports
asynchronous operation completions.

Layered asynchronous applications use CS_DISABLE_POLL to prevent
ct_poll from reporting low-level asynchronous completions.

An application cannot call ct_wakeup if the CS_DISABLE_POLL property is
set to CS_TRUE.

See “Layered applications” on page 17.

Directory service properties

See “Properties for directory services” on page 115 for detailed descriptions of
properties related to directory services.

Extended error data command structure

The CS_EED_CMD property defines a pointer to a CS_COMMAND structure
containing extended error data.

Within a server message callback, Client-Library indicates that extended error
data is available by setting the CS_HASEED bit of the status field of the
CS_SERVERMSG structure describing the message.

It is an error to retrieve CS_EED_CMD if no extended error data is available.

See “Extended error data” on page 128.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 221

Extended failover

CS_PROP_EXTENDEDFAILOVER is set to TRUE by default, and is only
used if CS_HAFAILOVER is also TRUE. If so, HA Aware sends a list of
network addresses to be used in place of the information initially retrieved
from the directory service. If CS_PROP_EXTENDED FAILOVER is set to
FALSE, the failover information is obtained from the directory service layer.

Endpoint polling

CS_ENDPOINT allows an application to get a file descriptor, the number
associated with a connection to a remote server. This may be useful to a
gateway application that contains both Client-Library and Server-Library calls:
After establishing a connection to a remote server with Client-Library, the file
descriptor associated with that connection is used by the srv_poll Server-
Library routine. A call to srv_poll causes the current thread to be rescheduled
until there are results available on the connection.

Use of the CS_ENDPOINT property is discouraged, since it is currently
specific only to UNIX platforms.

Expose formats

CS_EXPOSE_FMTS determines whether or not Client-Library exposes
format result sets.

A format result set contains format information for the result set with which it
is associated. Format information includes the number of items in the result set
and a description of each item. There are two types of format result sets:

• CS_ROWFMT_RESULT – contains format information for a regular row
result set.

• CS_COMPUTEFMT_RESULT – contains format information for a
compute row result set.

All format result sets generated by a command precede the regular row and
compute row result sets generated by the command.

If format result sets are not exposed, an application only retrieves format
information while it is processing a result set. For example, after ct_results
returns with a result_type of CS_ROW_RESULT, the application calls
ct_res_info to determine the number of columns in the result set, ct_describe
to get a description of each column, and so on.

Properties

222 Open Client

Exposing format result sets allows an application to retrieve format
information before processing a result set.

Exposing format result sets is useful in gateway applications that need to
repackage Adaptive Server Enterprise results before sending them on to a
foreign client.

An application exposes format result sets by setting the CS_EXPOSE_FMTS
property to CS_TRUE.

See “Format results” on page 254.

External configuration

CS_EXTERNAL_CONFIG specifies whether Client-Library configures
default property, server option, and capability values by reading a
configuration file. For a description of this feature, see “Using the runtime
configuration file” on page 318.

Extra information

CS_EXTRA_INF determines whether or not Client-Library returns the extra
information that ct_diag requires to fill in a SQLCA, SQLCODE, or
SQLSTATE structure.

This extra information includes the number of rows affected by the most recent
command. Applications also retrieve this information by calling
ct_res_info(CS_ROW_COUNT).

If an application is not retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE, the extra information is returned as ordinary Client-Library
messages.

Have bindings

CS_HAVE_BINDS tells whether any saved result bindings are present for the
current result set. This property is retrieved with ct_cmd_props.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 223

CS_HAVE_BINDS is always used with the CS_STICKY_BINDS property.
Some batch-processing applications that repeatedly execute the same
command on a CS_COMMAND structure may set the CS_STICKY_BINDS
command property so that Client-Library saves result bindings in between
executions of the same command. These applications check the
CS_HAVE_BINDS property to see whether saved bindings are in place for the
current result set. A value of CS_ TRUE indicates that one or more program
variables are bound to one or more items in the current result set.

See “Persistent result bindings” on page 234 for a description of the
CS_STICKY_BINDS property.

CS_HAVE_BINDS is guaranteed to be accurate after ct_results indicates the
presence of fetchable data on a command structure.

Have resendable command

CS_HAVE_CMD determines whether an application can resend a previously
executed server command. The property is read-only, and CS_TRUE indicates
the presence of a resendable command.

Client-Library allows applications to resend some types of commands
immediately after the results of the previous execution have been processed.

To resend a command, the application:

1 Updates values in the command’s parameter source variables (if any). The
address of the parameter source variables must have been specified with
ct_setparam after the command was initiated with ct_command,
ct_cursors, or ct_dynamic.

2 Calls ct_send to resend the command. ct_send reads the updated parameter
values.

Not all command types can be resent. See “Resending commands” on page
594.

Applications that resend commands may benefit from setting the
CS_STICKY_BINDS property to reuse the bindings that were established
while processing the results from the original execution of the command. See
“Persistent result bindings” on page 234 for a description of this property.

Properties

224 Open Client

Have restorable cursor-open command

CS_HAVE_CUROPEN determines whether an application may restore a
previously executed ct_cursor cursor-open command batch. The property is
read-only, and CS_TRUE indicates the presence of a restorable cursor-open
command batch.

An application restores a cursor-open command by calling ct_cursor. See
“Restoring a cursor-open command” on page 445 for an explanation of this
feature.

An open cursor must be closed before the cursor-open command can be
restored. CS_HAVE_CUROPEN indicates that Client-Library saved the
command information for the original cursor-open command. It does not
indicate that the application can legally reopen the cursor while the cursor is in
its current state.

The CS_CUR_STATUS property tells an application the current state (if any)
of the cursor declared on a command structure. See “Cursor status” on page
218 for a description of this property.

Applications that restore cursor-open commands may benefit from setting the
CS_STICKY_BINDS property to reuse the bindings that were established
while processing the results from the original execution of the command. See
“Persistent result bindings” on page 234 for a description of this property.

Hidden keys

CS_HIDDEN_KEYS determines whether or not Client-Library exposes any
“hidden keys” that are part of a result set. Hidden keys are columns that are not
explicitly selected in a query, but which are returned to a client because they
make up part or all of a table’s key.

Ordinarily, the presence of these columns is suppressed. The client is not aware
that they are a part of the result set.

A client exposes hidden keys by setting the CS_HIDDEN_KEYS property to
CS_TRUE.

Once hidden keys are exposed, they are returned as ordinary columns. If an
application calls ct_res_info to retrieve the number of columns in a result set,
for example, the number will include exposed columns. An application binds
and fetches the row values of exposed columns.

If a column is an exposed hidden key, ct_describe includes CS_HIDDEN in the
status field bitmask describing the column.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 225

An application uses ct_keydata with a table’s keys to change a cursor’s
position. For information about how to do this, see ct_keydata on page 532.

An application cannot set the CS_HIDDEN_KEYS property at the command
level if results are pending or a cursor is open.

Host name

CS_HOSTNAME is the name of the host machine, used when logging into a
server.

Adaptive Server Enterprise lists a process’s host name in the sysprocesses table
of the master database.

Location of the interfaces file

CS_IFILE defines the name and location of the interfaces file.

The interfaces file contains the name and network address of every server
available on the network. It establishes communication between clients and
servers. For every server to which a client might connect, the interfaces file
contains an entry which includes the server name, the machine name, and the
address of that server. For Client-Library applications, the interfaces file is
searched during every call to ct_connect.

On most platforms, if a particular interfaces file has not been specified through
ct_config, ct_connect attempts to use a file named interfaces in the directory
named by the SYBASE environment variable or logical name (Windows
platforms use the sql.ini file). If SYBASE has not been set, ct_connect attempts
to use a file named interfaces in the home directory of the user named “sybase.”

See “Interfaces file” on page 140.

Note Not all platforms use an interfaces file. If you do not know whether your
platform uses an interfaces file, consult your System Administrator or see the
Open Client and Open Server Configuration Guide for your platform.

An alternate default file name and path for the interfaces file can be specified
by the CS_DEFAULT_IFILE property. For detailed information about the
CS_DEFAULT_IFILE property, see the Open Client and Open Server
Common Libraries Reference Manual.

Properties

226 Open Client

Locale information

CS_LOC_PROP defines a CS_LOCALE structure that contains localization
values. Localization values include a language, a character set, datetime
formats, and a collating sequence.

An application calls ct_con_props to set or retrieve CS_LOC_PROP at the
connection level.

• When setting CS_LOC_PROP, an application passes ct_con_props a
CS_LOCALE structure. ct_con_props copies information from the
CS_LOCALE and stores it internally. After calling ct_con_props, the
application deallocates the CS_LOCALE.

• When retrieving CS_LOC_PROP, an application passes ct_con_props a
CS_LOCALE structure. ct_con_props copies current localization
information into this CS_LOCALE.

An application calls cs_loc_alloc to allocate a CS_LOCALE structure.

An application calls cs_config to set or retrieve CS_LOC_PROP at the context
level.

If an application does not call cs_config to define localization information for
a context, the context uses default localization values that are assigned at
allocation time. On most platforms, environment variables determine the
default values. For specific information about how default localization values
are assigned on your platform, see the Open Client and Open Server
Configuration Guide for your platform.

Login status

CS_LOGIN_STATUS is CS_TRUE if a connection is open, CS_FALSE if it is
not. This property can only be retrieved.

ct_connect is used to open a connection.

ct_close is used to close a connection.

Login timeout

CS_LOGIN_TIMEOUT defines the length of time, in seconds, that Client-
Library waits for a login response when making a connection attempt. A
Client-Library application makes a connection attempt by calling ct_connect.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 227

This timeout specifies the allowable round-trip delay between a client request
and the receipt of the server response. Multiple round trips between the client
and the server may occur before ct_connect returns. CS_LOGIN_TIMEOUT
applies to each round trip.

The default timeout value is 60 seconds. A timeout value of CS_NO_LIMIT
represents an infinite timeout period.

Note CS_LOGIN_TIMEOUT applies only to synchronous connections.

You can specify CS_LOGIN_TIMEOUT values on an individual connection
basis with ct_con_props.

See “Handling timeout errors” on page 240.

Loop delay

CS_LOOP_DELAY specifies the delay, in seconds, that ct_connect waits
before retrying the sequence of network addresses associated with a server
name. The default is 0.

The CS_RETRY_COUNT property specifies how many times Client-Library
retries each address in the sequence. See “Retry count” on page 237.

CS_LOOP_DELAY and CS_RETRY_COUNT affect only the establishment
of a login dialog. Once Client-Library has found an address where a server
responds, the login dialog between Client-Library and the server begins.
Client-Library does not retry any other addresses if the login attempt fails.

Addresses are associated with server names either in a network-based directory
or the Sybase interfaces file.

On UNIX platforms, a server’s interfaces file entry can be configured to
override application-specified settings for CS_RETRY_COUNT and
CS_LOOP_DELAY.

See the Open Client and Open Server Configuration Guide for your platform.

Login redirection

CS_PROP_REDIRECT is set to TRUE by default, regardless of the library
version in operation. When CS_PROP_REDIRECT is set to TRUE, ct_connect
initiates a server login attempt with login redirection enabled. When
CS_PROP_REDIRECT is set to FALSE, ct_connect initiates a server login
attempt with login redirection disabled.

Properties

228 Open Client

Should a login redirection occur, the amount of time required to log in may
increase as additional data is sent to clients; also, redirected clients may need
to restart the login process.

Maximum number of connections

CS_MAX_CONNECT defines the maximum number of simultaneously open
connections that a context may have. CS_MAX_CONNECT has a default
value of 25. Negative and zero values are not allowed for
CS_MAX_CONNECT.

If ct_config is called to set a value for CS_MAX_CONNECT that is less than
the number of currently open connections, ct_config raises a Client-Library
error and returns CS_FAIL without altering the value of
CS_MAX_CONNECT.

Memory pool

CS_MEM_POOL identifies a pool of memory that Client-Library uses to
satisfy its memory requirements.

Ordinarily, Client-Library routines satisfy their memory requirements by
calling malloc. However, not all implementations of malloc are reentrant, so it
is not safe to use malloc in Client-Library routines that are called at the system
interrupt level. For this reason, on systems where Client-Library uses signal-
driven network I/O, such as UNIX systems, fully asynchronous applications
are required to provide an alternate way for Client-Library to satisfy its
memory needs. This is not a requirement on platforms that use thread-driven
network I/O or for applications that do not use fully asynchronous connections.
For a description of the network I/O method used on your platform, see the
Open Client and Open Server Programmers Supplement for your platform.

Client-Library provides two mechanisms by which an asynchronous
application satisfy Client-Library’s memory needs:

• The application uses the CS_MEM_POOL property to provide Client-
Library with a memory pool.

• The application uses the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation routines that Client-Library safely
calls at the operating system interrupt level.

If a fully asynchronous application fails to provide Client-Library with a safe
way to satisfy memory needs, Client-Library’s behavior is undefined.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 229

ct_config returns CS_FAIL if an application attempts to set a memory pool that
does not meet Client-Library’s minimum pool size requirements.

On UNIX systems, a memory pool should include approximately 6K for each
connection.

Client-Library attempts to satisfy memory requirements from the following
sources, in the following order:

1 Memory pool

2 User-supplied allocation and free routines

3 System routines

If a connection cannot get the memory it needs, Client-Library marks the
connection dead.

An application is responsible for allocating and freeing the memory identified
by CS_MEM_POOL.

An application can replace a memory pool by calling ct_config with action as
CS_SET and buffer as the address of the new pool.

An application clears a memory pool in two ways:

• By calling ct_config with action as CS_SET and buffer as NULL

• By calling ct_config with action as CS_CLEAR

An application cannot set or clear a memory pool for a context in which
CS_CONNECTION structures currently exist. A context must drop all
CS_CONNECTION structures before clearing a memory pool.

Network I/O

CS_NETIO determines whether a connection is synchronous, fully
asynchronous, or deferred-asynchronous:

• On a synchronous connection, a routine that requires a server response
blocks until the response is received.

• On a fully asynchronous connection, a routine that requires a server
response returns CS_PENDING immediately. When the response arrives
and the routine completes its work, Client-Library automatically calls the
connection’s completion callback.

Properties

230 Open Client

Depending on the host platform, the completion callback is invoked either
at the system interrupt level (on platforms that use signal-driven network
I/O) or from a Client-Library runtime thread (on platforms that use thread-
driven network I/O). For a description of the network I/O method used for
your platform, see the Open Client and Open Server Programmers
Supplement for your platform.

• On a deferred-asynchronous connection, a routine that requires a server
response returns CS_PENDING immediately. The connection must call
ct_poll to find out if the routine has completed. If the application has
installed a completion callback and a routine has completed, ct_poll
invokes the completion callback before returning.

On platforms that do not support multithreading or signal-driven network I/O,
connections can only be synchronous or deferred-asynchronous. Even if the
CS_NETIO property is set to CS_ASYNC_IO, the connection is deferred-
asynchronous, and the application must poll for completions with ct_poll.

 Warning! In an Open Sever gateway application, the CS_NETIO property
cannot be set to CS_ASYNC_IO. The Open Server thread scheduler provides
multitasking in an Open Server application.

An application can set up deferred asynchronous connections only at the
context level, by calling ct_config with *buffer as CS_DEFER_IO.
CS_DEFER_IO is not a legal value at the connection level.

Asynchronous connections use the type of asynchronous I/O that matches their
parent context. For example, suppose an application sets up deferred-
asynchronous connections at the context level and then creates a synchronous
connection within the context. If the application later calls ct_con_props with
*buffer as CS_ASYNC_IO to make this connection asynchronous, the
connection will be deferred-asynchronous, not fully asynchronous.

A context can include both synchronous and asynchronous connections, but the
asynchronous connections within a context must all be fully asynchronous or
must all be deferred-asynchronous.

The following restrictions apply to an application’s use of CS_NETIO:

• An application cannot set CS_NETIO for a context if the context has open
connections.

• An application cannot set CS_NETIO for a connection if the connection
has any active commands or pending results.

See “Asynchronous programming” on page 10.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 231

No truncate

CS_NO_TRUNCATE determines whether Client-Library truncates or
sequences Client-Library and server messages that are longer than
CS_MAX_MSG - 1 bytes.

Client-Library’s default behavior is to truncate messages that are longer than
CS_MAX_MSG - 1 bytes. When Client-Library is sequencing messages,
however, it uses as many CS_CLIENTMSG or CS_SERVERMSG structures
as necessary to return the full text of a message. The message’s first
CS_MAX_MSG bytes are returned in one structure, its second
CS_MAX_MSG bytes in a second structure, and so forth.

Client-Library null terminates only the last chunk of a message. If a message
is exactly CS_MAX_MSG bytes long, the message is returned in two chunks:
the first containing CS_MAX_MSG bytes of the message and the second
containing a null terminator.

See “Sequencing long messages” on page 126.

No API checking

CS_NOAPI_CHK determines whether Client-Library performs argument and
state checking when the application calls a Client-Library routine.

When CS_NOAPI_CHK is CS_FALSE (the default value), Client-Library
performs checking. With this setting, Client-Library performs the following
error checking each time you call a Client-Library routine:

• Validates parameter values

• Checks field values in visible structures for illegal combinations

• Verifies that the application is in a correct state for execution of that
function

If a problem is discovered, the routine fails and an error message is generated.

When CS_NOAPI_CHK is CS_TRUE, Client-Library’s usual checking is
disabled. The effect of this is as follows:

• If the application passes an invalid argument or calls a routine at the wrong
time, the application experiences memory corruption, memory access
violations, or incorrect results.

Properties

232 Open Client

• With API checking disabled, Client-Library does not check for usage
errors. Some usage errors are not trapped with API checking disabled.
With API checking enabled, these errors generate error messages; with
API checking disabled, they cause incorrect application behavior.

 Warning! Do not disable API checking until after you have completely
debugged the application.

No character conversion required

CS_NOCHARSETCNV_REQD determines whether the server converts
character data to and from its own character set.

When CS_NOCHARSETCNV_REQD is CS_FALSE (the default), and the
connection’s character set does not match the server’s, the server will convert
characters to and from its character set when communicating with the client.

When CS_NOCHARSETCNV_REQD is set to CS_TRUE, the server does not
perform character set conversion, regardless of the connection’s character
set.This is useful when the server will be passing data to another server without
interpreting it, for example, when the server is a Open Server gateway.

CS_NOCHARSETCNV_REQD cannot be set after a connection is open.

The connection’s character set is defined within the connection’s
CS_LOCALE structure. See “Locale information” on page 226.

No interrupt

CS_NOINTERRUPT determines whether an application can be interrupted by
Client-Library completion event.

When CS_NOINTERRUPT is CS_TRUE, completion events are deferred
until CS_NOINTERRUPT is reset to CS_FALSE.

An application uses the CS_NOINTERRUPT property to protect critical
sections of code.

Note Client-Library’s CS_NOINTERRUPT property has no effect on
operating system interrupt handling. CS_NOINTERRUPT affects completion
events only, not notification events.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 233

Packet size

CS_PACKETSIZE determines the packet size that Client-Library uses when
sending Tabular Data Stream (TDS) packets.

If an application needs to send or receive large amounts of data, a larger packet
size may improve efficiency.

In Open Client, two capabilities are included: CS_REQ_SRVPKTSIZE and
CS_NO_SRVPKTSIZE.

• CS_REQ_SRVPKTSIZE is always set by this version of CT-Library and
can be retrieved with ct_capability.

• CS_NO_SRVPKTSIZE is used when clients cannot work with a packet
size larger than that requested, and is set and retrieved with ct_capability.

Parent structure

CS_PARENT_HANDLE defines a pointer to a command or connection
structure’s parent structure.

• If retrieved at the command structure level, CS_PARENT_HANDLE is a
pointer to the command structure’s parent connection structure.

• If retrieved at the connection structure level, CS_PARENT_HANDLE is
a pointer to the connection structure’s parent context structure.

Partial updates to text and image data

Open Client supports the partial update of text and image columns.
CS_PARTIAL_TEXT indicates whether or not the client needs to perform a
partial update. You can set this property in the connection or context level using
ct_con_props() or ct_config(), respectively. The possible values of
CS_PARTIAL_TEXT are CS_TRUE and CS_FALSE.

The CS_PARTIAL_TEXT property must be set before a connection to the
server is established. If the server does not support partial updates,
CS_PARTIAL_TEXT will be reset to CS_FALSE, which is the default value.

Password

CS_PASSWORD defines the password that a connection uses when logging in
to a server.

Properties

234 Open Client

The password is ignored if network-based authentication is requested for the
connection. Applications request network-based authentication by setting the
CS_SEC_NETWORKAUTH property. See “Requesting login authentication
services” on page 266.

Applications that do not use network authentication can set the
CS_SEC_ENCRYPT property so that Client-Library sends the password to the
server in encrypted form. See “Using password encryption in Client-Library
applications” on page 285.

Persistent result bindings

Typically, Client-Library removes the binding between the application’s
destination variables and a command after the application has processed the
results of the command.

CS_STICKY_BINDS, however, determines whether bindings established by
ct_bind persist across repeated executions of a command. If
CS_STICKY_BINDS is enabled (CS-TRUE), Client-Library does not remove
binds until the application initiates a new command with ct_command,
ct_cursor, ct_dynamic, or ct_sendpassthru.

CS_STICKY_BINDS must be set to CS_TRUE before ct_send is called to
execute the command whose result bindings will be saved. Once set, the
property affects all future command processing on the command structure.

CS_STICKY_BINDS should be set only by applications that repeatedly
execute the same command, and only if the result formats returned by the
command cannot vary. A command’s result format information consists of a
sequence of the following result-set characteristics:

• The result type (indicated to the application by the ct_results result_type
parameter)

• The number of columns available to the application using ct_res_info;
applies to fetchable results only.

• The format of each column available to the application using ct_describe
for each column; applies to fetchable results only.

If a server command contains conditional logic, it is possible that the format of
the results returned by the second and later command executions will not match
that of the first execution. In this case, the bindings established in the first
execution are cleared automatically by Client-Library. ct_results raises an
informational error (and returns CS_SUCCEED) when Client-Library detects
a mismatch in the results format.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 235

Program structure for persistent binds

Applications can reuse binds by setting the CS_STICKY_BINDS command
property to CS_TRUE before the command is sent to the server. Applications
check the CS_HAVE_BINDS command property to see whether binds have
been established for a result set.

For example, suppose an application repeatedly executes the same RPC
command to run a stored procedure containing a single select statement. Such
an application could use the program logic shown below to re-execute the
command and reuse the result bindings:

/*
 ** Enable persistent result bindings.
 */
 ct_cmd_props to set CS_STICKY_BINDS to CS_TRUE

 /*
 ** Initiate the RPC command.
 */
 ct_command(CS_RPC_COMMAND, proc_name)
 ct_setparam for each parameter
 set values in parameter source variables
 ct_send
 loop while ct_results returns CS_SUCCEED
 switch(result_type)
 case CS_ROW_RESULT:
 ct_bind for each column
 loop on ct_fetch
 ... process row data ...
 end loop
 case CS_STATUS_RESULT:
 ct_bind for the procedure’s return status
 loop on ct_fetch
 ... process the return status value ...
 end loop
 ... other cases...
 end switch
 end loop

/*
 ** Change the input parameter values and resend the command.
 */
 set values in parameter source variables
 ct_send
 loop while ct_results returns CS_SUCCEED
 switch(result_type)
 case CS_ROW_RESULT:

Properties

236 Open Client

 (optional) ct_cmd_props to check CS_HAVE_BINDS
 loop on ct_fetch
 ... process row data ...
 end loop
 case CS_STATUS_RESULT:
 (optional) ct_cmd_props to check CS_HAVE_BINDS
 loop on ct_fetch
 ... process the return status value ...
 end loop
 ... other cases...
 end switch
 end loop

 /*
 ** Execute a new command. A call to ct_command, ct_cursor, or
 ** ct_dynamic clears the previous initiated command from the
 ** command structure.
 */
 ct_command
 ... and so forth ...

Note If a command returns multiple result sets (for example, if the stored
procedure in the example above contained multiple select statements), then the
results loop logic above would use calls to ct_res_info(CS_CMD_NUMBER)
to distinguish between the different result sets.

When CS_STICKY_BINDS is set to CS_TRUE, there is some internal
overhead caused by Client-Library’s need to save and compare result-set
formats. Applications that do not repeatedly execute the same command and
reuse the result bindings should leave the property at its default setting,
FALSE.

CS_STICKY_BINDS does not affect binds established on command structures
that control extended error data or notification parameter values. Applications
access these command structure as the CS_EED_CMD and CS_NOTIF_CMD
connection properties, respectively. Applications must always rebind when
fetching from these command structures.

For detailed usage information on the routines mentioned above, see the
reference page for each routine in Chapter 3, “Routines”

Applications check the CS_HAVE_BINDS command property to see if any
saved binds are established for the current result set. See “Have bindings” on
page 222, “Resending commands” on page 594, and “Restoring a cursor-open
command” on page 445.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 237

Retry count

CS_RETRY_COUNT specifies the number of times that ct_connect retries the
sequence of network addresses associated with a server name. The default is 0.

The CS_LOOP_DELAY specifies the delay, in seconds, that ct_connect waits
before retrying the entire sequence of addresses. See “Loop delay” on page
227.

CS_LOOP_DELAY and CS_RETRY_COUNT affect only the establishment
of a login dialog. Once Client-Library has found an address where a server
responds, the login dialog between Client-Library and the server begins.
Client-Library does not retry any other addresses if the login attempt fails.

Addresses are associated with server names either in a network-based directory
or the Sybase interfaces file. See the Open Client and Open Server
Configuration Guide for your platform.

On UNIX platforms, a server’s interfaces file entry can be configured to
override application-specified settings for CS_RETRY_COUNT and
CS_LOOP_DELAY.

Security properties

See “Security features” on page 261 for a description of all the CS_SEC
properties.

Server name

CS_SERVERNAME gives the name of the server to which a connection is
made.

CS_SERVERNAME is a read-only property, and an application can only
retrieve its value after a connection is opened with ct_connect.

Note If external configuration is enabled for the connection, you can change
the server name by modifying the CS_SERVERNAME definition in the
configuration file. See “Enabling external configuration” on page 319.

To specify the name of a server to connect to, pass the server name to
ct_connect.

Properties

238 Open Client

TCP socket buffer size configuration

Use CS_TCP_RCVBUF and CS_TCP_SNDBUF context/connection
properties to set the size of TCP socket input and output buffers on the client
side. Open Client applications use these property settings to set buffer sizes
with the operating system setsockopt command. Because setsockopt must be
invoked before the TCP connect and accept commands, set these properties
before attempting to create a connection.

Set these properties as appropriate for your application. For example, if the
client is expected to be sending a large amount of data to the server, set
CS_TCP_SNDBUF to a large value to increase the corresponding buffer sizes.

Note Use the SRV_S_TCP_RCVBUF and SRV_S_TCP_SNDBUF server
properties to set TCP socket input and output buffer sizes on the server side.
See the Open Server Server-Library/C Reference Manual.

Context example ct_config(*context, CS_SET, CS_TCP_RCVBUF, &bufsize,
CS_UNUSED, NULL);

Connection example ct_con_props(*connection, CS_SET, CS_TCP_RCVBUF,
&bufsize, CS_UNUSED, NULL);

TDS version

CS_TDS_VERSION defines the version of the Tabular Data Stream (TDS)
protocol that the connection is using.

Because CS_TDS_VERSION is a negotiated login property, its value may
change during the login process. An application sets CS_TDS_VERSION to
request a TDS level before calling ct_connect. When ct_connect creates the
connection, if the server cannot provide the requested TDS version, a new
(lower) TDS version is negotiated. An application retrieves the value of
CS_TDS_VERSION after a connection is established to determine the actual
version of TDS in use.

Table 2-32 lists the symbolic values of CS_TDS_VERSION. The supported
features for the earlier versions have been carried forward for the later
versions:

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 239

Table 2-32: Values for CS_TDS_VERSION

If not otherwise set, CS_TDS_VERSION defaults to a value based on the
CS_VERSION level that an application requested through ct_init.

A connection’s CS_TDS_VERSION level will never be higher than the default
TDS level associated with its parent context’s CS_VERSION level.

For example, 5.0 is the default TDS level associated with a version level of
CS_VERSION_110 and later. If an application calls ct_init with version as
CS_VERSION_110 for a context, all connections created within that context
are restricted to CS_TDS_VERSION levels of 5.0 or lower.

If an application sets the CS_TDS_VERSION property, Client-Library
overwrites existing capability values with default capability values
corresponding to the new TDS version. For this reason, an application should
set CS_TDS_VERSION before setting any capabilities for a connection.

Text and image limit

CS_TEXTLIMIT indicates the length, in bytes, of the longest text or image
value that an application wants to receive. Client-Library will read but ignore
any part of a text or image value that goes over this limit.

The default value of CS_TEXTLIMIT is CS_NO_LIMIT. This means that
Client-Library reads and returns all data sent by the server.

In case of huge text values, it takes some time for an entire text value to be
returned over the network. To keep an Adaptive Server Enterprise from
sending this extra text in the first place, use the ct_options
CS_TEXTSIZE_OPT option to set the server global variable @@textsize.

Symbolic value Meaning Added supported features

CS_TDS_40 4.0 TDS Browse mode, text and image
handling, remote procedure calls, bulk
copy

CS_TDS_42 4.2 TDS Internationalization.

CS_TDS_46 4.6 TDS Registered procedures, TDS
passthrough, negotiable TDS packet
size, multibyte character sets

CS_TDS_50 5.0 TDS Cursors

Properties

240 Open Client

Timeout

CS_TIMEOUT specifies the length of time, in seconds, that Client-Library
waits for a server response to a command.

The default timeout value is CS_NO_LIMIT, which represents an infinite
timeout period. Negative and zero values are not allowed for CS_TIMEOUT.

Setting timeout values

ct_config is called to set the timeout value before or after a call to ct_connect
creates an open connection. It takes effect for all open connections immediately
upon being called.

The following code fragment sets a 60-second timeout limit:

CS_INT timeval;
 timeval = 60;
 if (ct_config(ctx, CS_SET, CS_TIMEOUT,
 (CS_VOID *)&timeval,
 CS_UNUSED, NULL)
 != CS_SUCCEED)
 {
 fprintf(stdout,“Can't config timeout. Exiting.“);
 (void)ct_exit(ctx, CS_FORCE_EXIT);
 (void)cs_ctx_drop(ctx);
 exit(1);
 }

Handling timeout errors

Timeout errors occur in synchronous applications that have set either or both
of the CS_TIMEOUT or CS_LOGIN_TIMEOUT properties to values other
than CS_NO_LIMIT. CS_LOGIN_TIMEOUT sets the timeout period for
reading the server’s response to a login attempt, while CS_TIMEOUT sets the
timeout period for reading the results of a server command. The application
receives the same Client-Library message for timeouts in both cases. (See
“Login timeout” on page 226 for a description of the CS_LOGIN_TIMEOUT
property).

Note You can specify CS_TIMEOUT or CS_LOGIN_TIMEOUT values on
on a per-connection basis with ct_con_props.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 241

Applications that use inline error handling must set the CS_DIAG_TIMEOUT
property to specify whether Client-Library should abort or retry when a
timeout occurs. See “Diagnostic timeout fail” on page 220.

Applications that handle Client-Library messages with a callback can identify
the timeout error and either cancel the operation or retry for another timeout
period. A client message callback has the following options for handling a
timeout message:

• Return CS_FAIL to cancel the operation and mark the connection as dead.
This is the only way to abort a login attempt that has timed out.

• (Non-login timeouts only.) Call ct_cancel(CS_CANCEL_ATTN) to
cancel the command that is being processed, then return CS_SUCCEED.

• Return CS_SUCCEED to retry for another timeout period.

A timeout error is identified by breaking the error number (identified by the
number field of the CS_CLIENTMSG structure) into its four components and
checking whether the error number matches the following characteristics:

• Severity – CS_SV_RETRY_FAIL

• Number – 63

• Origin – 2

• Layer – 1

An application breaks an error number into components with the
CS_SEVERITY, CS_NUMBER, CS_ORIGIN, and CS_LAYER macros. See
“Client-Library message numbers” on page 79 for a description of these
macros. An example of testing for timeout errors is provided below.

The callback checks the value of the CS_LOGIN_STATUS connection
property to see whether the timeout is happening during connection
establishment or during command processing. If the property is CS_TRUE, the
connection is already established and the server has timed out during command
processing.

The following code fragment defines a client message callback that handles
timeout errors:

/*
 ** ERROR_SNOL(error_numb, severity, number, origin, layer)
 **
 ** Error comparison for Client-Library or CS-Library errors.
 ** Breaks down a message number and compares it to the given
 ** constants for severity, number, origin, and layer.
 ** Returns non-zero if the error number matches the 4

Properties

242 Open Client

 ** constants.
 */
 #define ERROR_SNOL(e, s, n, o, l) \
 ((CS_SEVERITY(e) == s) && (CS_NUMBER(e) == n) \
 && (CS_ORIGIN(e) == o) && (CS_LAYER(e) == l))

CS_RETCODE client_msg_handler(cp, conn, emsgp)
 CS_CONTEXT *cp;
 CS_CONNECTION *conn;
 CS_CLIENTMSG *emsgp;
 {
 CS_RETCODE ret;
 CS_INT status;

 ... code to print message details and handle any other
 errors besides timeout ...

 /*
 ** Is this a timeout error?
 */
 if (ERROR_SNOL(emsgp->msgnumber, CS_SV_RETRY_FAIL, 63, 2, 1))
 {
 /*
 ** Read from server timed out. Timeouts happen on synchronous
 ** connections only, and you must have set one or both of the
 ** following context properties to see them:
 ** CS_TIMEOUT for results timeouts
 ** CS_LOGIN_TIMEOUT for login-attempt timeouts
 **
 ** If we return CS_FAIL, the connection is marked as dead and
 ** unrecoverable. If we return CS_SUCCEED, the timeout
 ** continues for another quantum.
 **
 ** We kill the connection for login timeouts, and send a
 ** cancel for results timeouts. We determine which case we
 ** have through the CS_LOGIN_STATUS property.
 */
 status = 0;
 if (ct_con_props(conn, CS_GET, CS_LOGIN_STATUS,
 (CS_VOID *)&status,
 CS_UNUSED, NULL) != CS_SUCCEED)
 {
 fprintf(stdout, "ct_con_props() failed in error handler.");
 return CS_FAIL;
 }

 if (status)
 {

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 243

 /* Results timeout */
 fprintf(stdout, "Issuing a cancel on the query...\n");
 (CS_VOID)ct_cancel(conn, (CS_COMMAND *)NULL,
 CS_CANCEL_ATTN);
 }

 else
 {
 /* Login timeout */
 fprintf(stdout, "Aborting connection attempt...\n");
 return CS_FAIL;
 }
 }
 return (CS_SUCCEED);
}

Transaction name

CS_TRANSACTION_NAME defines a transaction name to be used over a
connection to Open Server for CICS.

Open Server for CICS uses transaction names to identify executables running
under CICS. See the Open Server for CICS documentation.

Transaction names for Sybase Server applications are determined by the
Transact-SQL begin tran statement that marks the transaction’s beginning, not
by CS_TRANSACTION_NAME. See the Adaptive Server Enterprise
Reference Manual.

All Client-Library applications can set CS_TRANSACTION_NAME. If a
transaction name is not required, CS_TRANSACTION_NAME is ignored.

User allocation function

CS_USER_ALLOC identifies a user-supplied memory allocation routine that
Client-Library uses for memory management while operating at the system
interrupt level.

Together, CS_USER_ALLOC and CS_USER_FREE allow an asynchronous
application to perform its own memory management.

A user-supplied memory allocation routine must be defined as:

void *user_alloc(size)
size_t size;

Properties

244 Open Client

Ordinarily, Client-Library routines satisfy their memory requirements by
calling malloc. However, not all implementations of malloc are reentrant, so it
is not safe to use malloc in Client-Library routines that are called at the system
interrupt level. For this reason, on systems where Client-Library uses signal-
driven network I/O, such as UNIX systems, fully asynchronous applications
are required to provide an alternate way for Client-Library to satisfy its
memory needs.

This is not a requirement on platforms that use thread-driven network I/O or
for applications that do not use fully asynchronous connections. For a
description of the network I/O method used on your platform, see the Open
Client and Open Server Programmers Supplement for your platform.

Client-Library provides two mechanisms by which an asynchronous
application can satisfy Client-Library’s memory requirements:

• The application uses the CS_MEM_POOL property to provide Client-
Library with a memory pool.

• The application uses the CS_USER_ALLOC and CS_USER_FREE
properties to install memory allocation and free routines that Client-
Library safely calls at the interrupt level.

If a fully asynchronous application fails to provide Client-Library with a safe
way to satisfy memory requirements, Client-Library’s behavior is undefined.

Client-Library attempts to satisfy memory requirements from the following
sources, in the following order:

1 Memory pool

2 User-supplied allocation and free routines

3 System routines

If a connection cannot get the memory it needs, Client-Library marks the
connection dead.

An application may replace a user-defined memory routine by calling ct_config
with action as CS_SET and buffer as the address of the new routine.

An application clears a memory routine in two ways:

• By calling ct_config with action as CS_SET and buffer as NULL, or

• By calling ct_config with action as CS_CLEAR.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 245

User free function

CS_USER_FREE identifies a user-supplied memory deallocation routine that
Client-Library will use for system interrupt-level memory management.

Together, CS_USER_ALLOC and CS_USER_FREE allow an asynchronous
application to perform its own interrupt-level memory management.

A user-supplied memory deallocation routine must be defined as:

void user_free(ptr)
void *ptr;

See “User allocation function” on page 243.

User data

The CS_USERDATA property defines user-allocated data. This property
allows an application to associate user data with a particular connection or
command structure.

There is no default value for CS_USERDATA. If an application retrieves the
property when no value is set, then ct_con_props or ct_cmd_props returns with
outlen set to 0.

CS_USERDATA is useful when a callback routine and the main-line
application need to share information without using global variables.

When an application stores data with CS_USERDATA, Client-Library copies
the actual data pointed to by the buffer parameter of ct_con_props or
ct_cmd_props; not a pointer to the data, into internal data space.

CS_USERDATA takes as its value any piece of application-defined data.
When setting the property, the application passes a pointer to the data (cast to
CS_VOID *) and specifies the exact length of the data in bytes. Most
applications actually install the address of an application-allocated data
structure as CS_USERDATA. This allows the application to retrieve, as
CS_USERDATA, a pointer to the data. The application changes the data
through the pointer, and does not need to reinstall the data in the context,
connection, or command structure after changing it.

To associate user data with a context structure, an application calls cs_config.
CS_USERDATA property values are not inherited at the connection or
command levels.

The following code fragment demonstrates the CS_USERDATA property:

 CS_CHAR set_charbuf[32];
 CS_CHAR get_charbuf[32];

Properties

246 Open Client

 CS_CONNECTION *con;
 CS_RETCODE ret;
 CS_INT outlen;
 CS_COMMAND *set_cmd;
 CS_COMMAND *get_cmd;

 /*
 ** Store a character string in the userdata field.
 ** Set the length field to one greater than the length
 ** of the string so that the null terminator will be
 ** stored as part of the user data. If the null
 ** terminator is not explicitly stored as part of the
 ** userdata, then the string will not be null-
 ** terminated when it is retrieved.
 */
 strcpy(set_charbuf, "some userdata");
 ret = ct_con_props(con, CS_SET, CS_USERDATA,
 set_charbuf, strlen(set_charbuf) + 1, NULL);
 if (ret != CS_SUCCEED)
 {
 error("ct_con_props() failed");
 }

 ret = ct_con_props(con, CS_GET, CS_USERDATA,
 get_charbuf, sizeof(get_charbuf), &outlen);
 if (ret != CS_SUCCEED)
 {
 error("ct_con_props() failed");
 }

 /*
 ** The next example stores a pointer to a CS_COMMAND
 ** structure in the connection’s user data field.
 */
 ret = ct_con_props(con, CS_SET, CS_USERDATA,
 &set_cmd, sizeof(set_cmd), NULL);
 if (ret != CS_SUCCEED)
 {
 error("ct_con_props() failed");
 }

 ret = ct_con_props(con, CS_GET, CS_USERDATA,
 &get_cmd, sizeof(get_cmd), &outlen);
 if (ret != CS_SUCCEED)
 {
 error("ct_con_props() failed");
 }

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 247

User name

CS_USERNAME defines the user login name that the connection will use to
log in to a server.

If the application has not requested network-based user authentication, then the
application must set the value of CS_PASSWORD connection property to
match the user’s password. See “Password” on page 233.

If the application has requested network-based authentication with the
CS_SEC_NETWORKAUTH property, then the user must already be logged
into the connection’s network security mechanism under the same name as
CS_USERNAME. In this case, the CS_PASSWORD property is ignored.

Applications request network-based authentication by setting the
CS_SEC_NETWORKAUTH property. See “Requesting login authentication
services” on page 266.

Version string for Client-Library

CS_VER_STRING defines a character string that represents the actual version
of Client-Library that an application is using. This property may only be
retrieved.

CS_VER_STRING and CS_VERSION indicate different version levels
because later versions of Client-Library emulate the behavior of earlier
versions.

CS_VER_STRING represents the actual version of Client-Library that is in
use. CS_VERSION represents the version of Client-Library behavior that an
application has requested with ct_init.

Version of Client-Library

The CS_VERSION property represents the version of Client-Library behavior
than an application has requested through ct_init. The value of this property
may only be retrieved.

Possible values for CS_VERSION include the following:

• CS_VERSION_100 indicates version 10.0

• CS_VERSION_110 indicates version 11.0

• CS_VERSION_120 indicates version 12.0.

• CS_VERSION_125 indicates version 12.5.

Registered procedures

248 Open Client

• CS_VERSION_150 indicates version 15.0.

• CS_VERSION_155 indicates version 15.5.

• CS_VERSION_157 indicates version 15.7.

Connections allocated within a context use default CS_TDS_VERSION values
that are based on their parent context’s CS_VERSION level. See “TDS
version” on page 238.

Both Client-Library and CS-Library have CS_VERSION properties. ct_config
returns the value of the Client-Library CS_VERSION. cs_config returns the
value of the CS-Library CS_VERSION.

Registered procedures
A registered procedure is a procedure that is defined and installed in a running
Open Server application, and extends the functionality of Adaptive Server
Enterprise.

For Client-Library applications, registered procedures provide a means for
inter-application communication and synchronization. This is because Client-
Library applications connected to an Open Server watches for a registered
procedure to execute. When the registered procedure executes, applications
watching for it receive a notification that includes the procedure’s name and the
arguments it was called with.

For example, suppose that:

• stockprice is a real-time Client-Library application monitoring stock
prices.

• price_change is a registered procedure created in Open Server by
stockprice, and that price_change takes as parameters a stock name and a
price differential.

• sellstock, an application that puts stock up for sale, has requested that it be
notified when price_change executes.

When stockprice, the monitoring application, becomes aware that the price of
Extravagant Auto Parts stock has risen $1.10, it executes price_change with the
parameters “Extravagant Auto Parts” and “+1.10”.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 249

When price_change executes, Open Server sends sellstock a notification
containing the name of the procedure (price_change) and the arguments passed
to it (“Extravagant Auto Parts” and “+1.10”). sellstock uses the information
contained in the notification to decide whether or not to sell Extravagant Auto
Parts stock.

price_change is the means through which the stockprice and sellstock
applications communicate.

Registered procedures as a means of communication have the following
advantages:

• A single call to execute a registered procedure results in many client
applications being notified that the procedure has executed. The
application executing the procedure does not need to know how many, or
which, clients have requested information.

• The registered procedure communication mechanism is server-based.
Open Server acts as a central repository for connection addresses. Because
of this, client applications communicate without having to connect
directly to each other. Instead, each client simply connects to the Open
Server.

A Client-Library application makes remote procedure calls to Open Server
system registered procedures to:

• Create a registered procedure in Open Server.

Note A Client-Library application creates only registered procedures that
contain no executable statements. These bodiless procedures are primarily
useful for communication and synchronization purposes.

• Drop a registered procedure.

• List all registered procedures defined in Open Server.

• Request to be notified when a particular registered procedure is executed.

• List all registered procedure notifications that the client connection is
waiting for.

• Execute a registered procedure.

See the Open Server Server-Library/C Reference Manual.

An application calls Client-Library routines to:

• Install a user-supplied notification callback routine to be called when the
application receives notification that a registered procedure has executed

Registered procedures

250 Open Client

• Poll the network (if necessary) to see if any registered procedure
notifications are waiting

When Client-Library receives a notification
When Client-Library receives a registered procedure notification, it calls an
application’s notification callback routine. Depending on the host client
platform, the application may have to poll the network (with ct_poll) for
Client-Library to invoke the notification callback. See “Receiving
notifications asynchronously” on page 250.

The registered procedure’s name is available as the second parameter to the
notification callback routine.

The arguments with which the registered procedure was called are available
inside the notification callback as a parameter result set. To retrieve these
arguments, an application:

• Calls ct_con_props(CS_NOTIF_CMD) to retrieve a pointer to the
command structure containing the parameter result set

• Calls ct_res_info(CS_NUMDATA), ct_describe, ct_bind, ct_fetch, and
ct_get_data to describe, bind, and fetch the parameters

See “Notification callbacks” on page 46.

Receiving notifications asynchronously
The application’s receipt of notification events depends on the
CS_ASYNC_NOTIFS property and the network I/O methods supported by the
client platform.

The CS_ASYNC_NOTIFS property determines whether a connection receives
notifications asynchronously. See “Asynchronous notifications” on page 213.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 251

When the connection to the Open Server has little or no activity other than
notifications, asynchronous notifications should be enabled by setting the
CS_ASYNC_NOTIFS property to CS_TRUE. This property defaults to
CS_FALSE, which means that the application must be interacting with the
server over the connection (to cause Client-Library to read from the network)
to receive a registered procedure notification.

Note If a connection is used only to receive registered procedure notifications,
asynchronous notifications must be enabled for a connection even if the
connection is polled. On an otherwise idle connection, ct_poll does not trigger
the notification callback unless the CS_ASYNC_NOTIFS property is
CS_TRUE. The default setting is CS_FALSE.

Finding out about notifications

If asynchronous notifications are enabled on platforms that support signal- or
thread-driven I/O, then Client-Library automatically invokes a connection’s
notification callback when a notification arrives on the connection.

On other platforms, the application must poll the connection with ct_poll if the
connection is not otherwise active. CS_ASYNC_NOTIFS must be set to
CS_TRUE for ct_poll to report notifications.

Results
When a Client-Library command executes on a server, it generates various
types of results, which are returned to the application that sent the command.
The result types are as follows:

• Regular row results

• Cursor row results

• Parameter results

• Stored procedure return status results

• Compute row results

• Message results

• Describe results

Results

252 Open Client

• Format results

Results are returned to an application in the form of result sets. A result set
contains only a single type of result data. Regular row and cursor row result
sets contain multiple rows of data, but other types of result sets contain at most
a single row of data.

An application processes results by calling ct_results, which indicates the type
of result available by setting *result_type.

ct_results sets *result_type to CS_CMD_DONE to indicate that the results of a
“logical command” have been completely processed. A logical command is
generally considered to be any Client-Library command defined through
ct_command, ct_dynamic, or ct_cursor. Exceptions to this rule are documented
in “ct_results and logical commands” on page 577.

Some commands, for example a language command containing a Transact-
SQL update statement, do not generate results. ct_results sets *result_type to
CS_CMD_SUCCEED or CS_CMD_FAIL to indicate the status of a command
that does not return results.

Regular row results
A regular row result set is generated by the execution of a Transact-SQL select
statement on a server.

A regular row result set contains zero or more rows of tabular data.

Cursor row results
A cursor row result set is generated when an application executes a Client-
Library cursor open command.

Note A cursor row result set is not generated when an application executes
language command containing a Transact-SQL fetch statement. Cursor rows
from a fetch language statement are returned as CS_ROW_RESULT result set.

A cursor row result set contains zero or more rows of tabular data.

A cursor row result set differs from a regular row result set in that an
application uses ct_cursor to update underlying tables while fetching cursor
rows. This is not possible with regular rows.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 253

Parameter results
A parameter result set contains a single “row” of parameters. Several types of
data are returned as a parameter result set, including:

• Message parameters – a message result set (CS_MSG_RESULT) has
parameters associated with it. Message parameters arrive as a
CS_PARAM_RESULT result set immediately following the
CS_MSG_RESULT result type.

• RPC return parameters – an Adaptive Server Enterprise stored procedure
or an Open Server registered procedure returns output parameter data.
This is a CS_PARAM_RESULT result set that contains new values for the
procedure’s parameters, as set by the procedure code.

Extended error data and registered procedure notification parameters are also
returned as parameter result sets, but since an application does not call
ct_results to process these types of data, the application never sees a result type
of CS_PARAM_RESULT. Instead, the row of parameters is simply available
to be fetched after the application retrieves the CS_COMMAND structure
containing the data.

For information about extended error data, see “Extended error data” on page
128. For information about registered procedure notification parameters, see
“Registered procedures” on page 248.

Stored procedure return status results
A status result set consists of a single row which contains a single value—a
return status.

All stored procedures that run on a Adaptive Server Enterprise return a status
number. Stored procedures usually return 0 to indicate normal completion. For
a list of Adaptive Server Enterprise default return status numbers, see the return
reference page in the Adaptive Server Enterprise Reference Manual.

Because return status numbers are a feature of stored procedures, only an RPC
command or a language command containing an execute statement generates
a return status.

Results

254 Open Client

Compute row results
A compute row result set contains a single row of tabular data with a number
of columns equal to the number of columns listed in the compute clause that
generated the compute row.

See the compute clause in the Adaptive Server Enterprise Reference Manual.

Message results
A message result set does not actually contain any data. Instead, a message has
an ID. To get a message’s ID, an application calls ct_res_info after ct_results
returns with a result_type of CS_MSG_RESULT.

If parameters are associated with a message, they are returned as a separate
parameter result set, immediately following the message result set.

Describe results
A describe result set does not contain fetchable data; instead, it indicates the
existence of descriptive information returned as the result of a dynamic SQL
describe input or describe output command.

An application retrieves this descriptive information with any of the methods
below:

• Call ct_res_info to get the number of items and ct_describe to get a
description of each item.

• Call ct_dyndesc several times to get the number of items and a description
of each.

• Call ct_res_info to get the number of items, and call ct_dynsqlda once to
get item descriptions.

See Chapter 8, “Using Dynamic SQL Commands,” in the Open Client Client-
Library/C Programmers Guide.

Format results
There are two types of format results: regular row format results and compute
row format results.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 255

Format result sets do not contain fetchable data, but rather indicate the
availability of format information for the regular row and compute row result
sets with which they are associated.

All format information for a command is returned before any data. That is, the
row format and compute format result sets for a command precede the regular
row and compute row result sets that the command generates.

Format information is primarily of use in gateway applications, which need to
repackage Adaptive Server Enterprise results before sending them on to a
foreign client.

A gateway application typically processes a format result set one column at a
time, retrieving format information for the column by calling ct_describe and
ct_compute_info and sending the format information through Server-Library
routines.

A connection receives format results only if its CS_EXPOSE_FMTS property
is set to CS_TRUE.

Program structure for processing results
The following pseudocode demonstrates how a typical application might
process the various types of result data:

 while ct_results returns CS_SUCCEED
 case CS_ROW_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a description of the
 column
 ct_bind to bind the column to a program
 variable
 end for
 while ct_fetch returns CS_SUCCEED or
 CS_ROW_FAIL
 if CS_SUCCEED
 process the row
 else if CS_ROW_FAIL
 handle the row failure;
 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...

Results

256 Open Client

 case CS_FAIL...
 end switch
 end case
 case CS_CURSOR_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a description of the
 column
 ct_bind to bind the column to a program
 variable
 end for
 while ct_fetch returns CS_SUCCEED or
 CS_ROW_FAIL
 (while ct_scroll_fetch returns CS_SUCCEED or

CS_CURSOR_BEFORE_FIRST or CS_CURSOR_AFTER_LAST
for scrollable cursors)

 process the row
 /*
 ** Nested cursor commands are legal
 ** here.
 */
 else if CS_ROW_FAIL
 handle the row failure
 end if

 end while

 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case
 case CS_PARAM_RESULT
 ct_res_info to get the number of parameters
 for each parameter:
 ct_describe to get a description of the
 parameter
 ct_bind to bind the parameter to a
 variable
 end for
 while ct_fetch returns CS_SUCCEED or
 CS_ROW_FAIL
 if CS_SUCCEED
 process the row of parameters
 else if CS_ROW_FAIL
 handle the failure

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 257

 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case
 case CS_STATUS_RESULT
 ct_bind to bind the status to a program
 variable
 while ct_fetch returns CS_SUCCEED or
 CS_ROW_FAIL
 if CS_SUCCEED
 process the return status
 else if CS_ROW_FAIL
 handle the failure
 end if
 end while
 switch on ct_fetch’s final return code
 case CS_END_DATA...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case
 case CS_COMPUTE_RESULT
 (optional: ct_compute_info to get bylist
 length, bylist, or compute row id)
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a description of the
 column
 ct_bind to bind the column to a program
 variable
 (optional: ct_compute_info to get the
 compute column id or the aggregate
 operator for the compute column)
 end for
 while ct_fetch returns CS_SUCCEED or
 CS_ROW_FAIL
 if CS_SUCCEED
 process the compute row
 else if CS_ROW_FAIL
 handle the failure
 end if
 end while

Results

258 Open Client

 switch on ct_fetch’s (or ct_scroll_fetch for scrollable cursors)
 final return code
 case CS_END_DATA (or CS_SCROLL_CURSOR_ENDS for scrollable
 cursors)...
 case CS_CANCELED...
 case CS_FAIL...
 end switch
 end case
 case CS_MSG_RESULT
 ct_res_info to get the message id
 code to handle the message
 end case
 case CS_DESCRIBE_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a
 description
 end for
 end case
 case CS_ROWFMT_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a column description
 send the information on to the gateway
 client
 end for
 end case
 case CS_COMPUTEFMT_RESULT
 ct_res_info to get the number of columns
 for each column:
 ct_describe to get a column description
 (if required:
 ct_compute_info for compute
 information
 end if required)
 send the information on to the gateway
 client
 end for
 end case
 case CS_CMD_DONE
 indicates a command’s results are completely
 processed
 end case
 case CS_CMD_SUCCEED
 indicates the success of a command that
 returns no results

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 259

 end case
 case CS_CMD_FAIL
 indicates a command failed
 end case
 end while
 switch on ct_results’ final return code
 case CS_END_RESULTS
 indicates no more results
 end case
 case CS_CANCELED
 indicates results were canceled
 end case
 case CS_FAIL
 indicates ct_results failed
 end case
 end switch

Retrieving an item’s value
When processing a result set, there are four ways for an application to retrieve
a result item’s value:

• It calls ct_bind to associate a result item with a program variable. When the
program calls ct_fetch to fetch a result row, the item’s value is
automatically converted to the destination variable’s format and the result
is placed into the bound destination variable. Most applications use this
method for all result items except large text or image values. See “text and
image data handling” on page 295.

• It calls ct_get_data to retrieve a result item’s value in chunks. After calling
ct_fetch to fetch the row, the application calls ct_get_data in a loop. Each
ct_get_data call retrieves a chunk of the result item’s value. Most
applications use ct_get_data only to retrieve large text or image values.

• It calls ct_dyndesc(CS_USE_DESC) to associate a dynamic descriptor
with the result set. After a dynamic descriptor is associated with a result
set, an application repeatedly calls ct_fetch to fetch each row, and for each
row, calls ct_dyndesc once for each result item. Typical applications do not
use ct_dyndesc, which is intended for precompiler support.

Results

260 Open Client

• It calls ct_dynsqlda(CS_USE_DESC) to associate an application-managed
SQLDA structure with the result columns. An application calls
ct_dynsqlda once to bind all result columns to the value buffers pointed at
by the SQLDA structure. Subsequent calls to ct_fetch place column values
in the value buffers. Typical applications do not use ct_dynsqlda, which is
intended for precompiler support.

Keeping result bindings for batch processing
Batch processing applications resends the same server command over and over
again. Applications resend a command by calling ct_send immediately after
the results of the previous execution have been processed. See “Resending
commands” on page 594.

Batch processing applications that resend commands may benefit from setting
the CS_STICKY_BINDS command property. When this property is set to
CS_TRUE (the default is CS_FALSE), Client-Library reuses result bindings
when a command is resent. This eliminates redundant ct_bind calls in the
application.

See:

• “Persistent result bindings” on page 234 for a description of the
CS_STICKY_BINDS property, and

• The reference page for ct_bind on page 335.

 Selecting multiple rows of variable length data into an array
When multiple rows of a variable length data (VARCHAR or VARBINARY) are
selected into a buffer, each new item begins at an index that is a multiple of
datafmt->maxlength, even if the preceding item is less than
datafmt->maxlength bytes long. This is illustrated in the code fragment below.

/* This example demonstrates selecting multiple rows of
variable-length data into a buffer. In this case, the
first row to be returned will have one column with the
value "first string" and a second row with a column with
the value "second string". */
datafmt.count = 2;
datafmt.maxlength = 25;
retcode = ct_results(cmd, &restype);
if (retcode != CS_SUCCEED)

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 261

{
/* error handling code deleted */
. . .

}
if (restype == CS_ROW_RESULT)
{

retcode = ct_bind(cmd, 1, datafmt, buffer,
CS_NULL, CS_NULL);

if (retcode != CS_SUCCEED)
{

/* error handling code deleted */
. . .

}
retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,

&nrows);
if (retcode != CS_SUCCEED)
{

/* error handling code deleted */
. . .

}

/* At this point, the string "first string" begins at
buffer[0] and the string "second string" begins at
buffer[25], even though the first data item was less
than 25 characters long.*/
}

Security features
Client-Library provides three categories of security features:

• Network-based security – Client-Library and Server-Library applications
may be integrated with the security services provided by network system
software such as DCE, or Microsoft LAN Manager. Among other services,
this feature provides unified login (users connect to a Sybase server using
their network user name and password), and per-packet security services
(such as encrypting all communications between the client and the server).

This feature requires separate Sybase-supported network security software
and a Sybase-supplied security driver for that software.

Security features

262 Open Client

• Secure Sockets Layer (SSL) network-based security – From version 12.5,
Client-Library and Server-Library applications include a network-library
driver to enable SSL, session-based security.

SSL is an industry standard for sending wire- or socket-level encrypted
data over client-to-server and server-to server connections. A client sends
a connection request to the server along with its supported SSL options.
The server responds with a server certificate that proves that the server is
what it claims to be, along with a list of its supported CipherSuites. An
SSL-enabled session begins when the client and the server agree upon a
CipherSuite, and all transmitted data is protected by session-based
encryption.

• Sybase security features – these features include password encryption and
challenge/response security handshakes.

Client-Library encrypts user passwords if an application requests it.
Passwords are encrypted with a handshaking protocol where the server
sends an encryption key and the client uses the key to encrypt the user’s
passwords.

Challenge/response handshaking allows applications to implement a
security strategy where the server challenges clients at connect time. In
this strategy, the server refuses connections from clients who cannot
provide the expected response to the challenge.

These features are part of the TDS protocol and require no external
software. Adaptive Server Enterprise and Open Server support these
features.

Network-based security
A distributed client/server computing environment introduces security
concerns that go beyond those of a local system. Because users are out of sight
and data is moving from system to system, even across public data networks,
intruders may view or tamper with confidential data. Security services allow
client/server applications to create secure connections.

Network-based security takes advantage of third-party distributed security
software to authenticate network users and to protect data transmitted over the
network.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 263

Security mechanisms and security drivers

Sybase defines a security mechanism as external software that provides
security services for a connection. For example, these are some security
mechanisms that can be used on a Client-Library connection:

• DCE security servers and security clients provide security services for
clients and servers within a DCE cell.

• CyberSafe Kerberos provides security services for clients on Windows
and UNIX and servers on UNIX.

• Windows NT LAN Manager Security Services Provider Interface (SSPI)
provides security services for servers and clients on Windows.

Sybase provides security drivers that allow Client-Library and Server-Library
applications to take advantage of an installed network security system. By
using security drivers, Client-Library and Server-Library provide a portable
interface for implementing secure applications that work with several different
network security systems.

To use a security mechanism on a connection, each item below must be true:

• The client and server must be configured to use compatible security
drivers. For example, if the server runs on a Windows NT machine and
uses the Microsoft SSPI driver for NT, then a Windows 95 client
application must use the Microsoft SSPI driver for Windows 95.

• The client must request services by setting connection properties before
connecting to the server.

• The underlying security mechanism must support the requested services.

Choosing a network security mechanism

The value of the CS_SEC_MECHANISM connection property determines the
name of the security mechanism to be used to establish a connection. The
default depends on the Sybase security driver configuration for your system.

Client-Library uses a driver configuration file to map security mechanism
names to security driver file names. On most platforms, this file is named
libtcl.cfg. For a full description of the driver configuration file, see the Open
Client and Open Server Configuration Guide for your platform.

Security features

264 Open Client

Determining the default security mechanism

The default security mechanism name corresponds to the first entry in the
[SECURITY] section of the libtcl.cfg driver configuration file. This section has
entries of the form:

[SECURITY]
 mechanism_name = driver_file_name init_string
 mechanism_name = driver_file_name init_string

where mechanism_name specifies a possible value for the
CS_SEC_MECHANISM property, driver_file_name is a file name for the
driver, and init_string specifies start-up settings for the driver.

If no driver configuration file is present on the system, or the file lacks a
[SECURITY] section, the CS_SEC_MECH property defaults to NULL.

For a full description of the driver configuration on your system, see the Open
Client and Open Server Configuration Guide for your platform.

Loading the default security driver

If an application does not request a driver by name, Client-Library loads the
default security driver (if any) when needed. If a security driver is not loaded,
ct_con_props or ct_config load the default driver when called with action as
CS_SET or CS_SUPPORTED and any of the following values for property:

• CS_SEC_CHANBIND (only when setting to CS_TRUE)

• CS_SEC_CONFIDENTIALITY (only when setting to CS_TRUE)

• CS_SEC_CREDTIMEOUT

• CS_SEC_DATAORIGIN (only when setting to CS_TRUE)

• CS_SEC_DELEGATION (only when setting to CS_TRUE)

• CS_SEC_DETECTREPLAY (only when setting to CS_TRUE)

• CS_SEC_DETECTSEQ (only when setting to CS_TRUE)

• CS_SEC_INTEGRITY (only when setting to CS_TRUE)

• CS_SEC_KEYTAB

• CS_SEC_MECHANISM (CS_CLEAR always loads the default driver.
CS_GET loads the default driver if no driver is loaded yet. CS_SET loads
the requested driver.

• CS_SEC_MUTUALAUTH (only when setting to CS_TRUE)

• CS_SEC_NETWORKAUTH (only when setting to CS_TRUE)

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 265

• CS_SEC_SESSTIMEOUT

Global mechanism names

The security mechanism names in the driver configuration file are local names
that may vary from system to system. For the client and the server to both
determine the identity of the connection’s security mechanism, they require
invariant global names for security mechanisms.

When setting the CS_SEC_MECHANISM property or when loading the
default security driver, Client-Library reads a configuration file, the global
object identifiers file, to map local security mechanism names to object
identifier (OID) strings. On most platforms, this file is called objectid.dat.
Client-Library looks for security mechanism OIDs in the section [SECMECH].
The entries in this section have the form:

[SECMECH]
 mechanism_oid = local_name1, local_name2, ...

where mechanism_oid is the OID string that globally identifies the security
mechanism and local_name1, local_name2, and so forth are local security
provider names from the libtcl.cfg file. See the Open Client and Open Server
Configuration Guide for your platform.

Requesting network security services

Each security mechanism provides a set of security services. Each security
service addresses some security concern. In a Client-Library application, the
requested services correspond to context or connection properties.

Not all of the security services are supported by all security mechanisms. To
find out whether a given service is supported by the current security
mechanism, the application calls ct_config or ct_con_props with action as
CS_SUPPORTED, buffer as the address of a CS_BOOL variable, and property
as the symbolic property constant that represents the security service. *buffer
is set to CS_TRUE if the service is supported. ct_config and ct_con_props both
fail when the application requests a service that is not supported by the current
security mechanism.

Network security services are split into two categories:

• Login authentication services allow an application to establish a secure
connection.

• Per-packet security services protect data transmitted over an established
connection.

Security features

266 Open Client

Requesting login authentication services

The fundamental security service is login authentication, or confirming that
users are who they say they are. Login authentication involves user names and
passwords. Users identify themselves by their user name, then supply their
password as proof of their identity.

In Sybase applications, each connection between a client and a server has one
user name associated with it. If the application uses a security mechanism, then
Sybase uses the mechanism to authenticate this user name when the connection
is established. The advantage of this service is that the user name/password
pairs are managed in a central repository, and not in the system catalogs of
individual servers.

When an application requests to connect to a server using network-based
authentication, Client-Library queries the connection’s security mechanism to
confirm that the given user name represents the authenticated user that is
running the application. This means that users do not have to supply a
password to connect to the server. Instead, users prove their identity to the
network security system before the connection attempt is made. When
connecting, Client-Library obtains a credential token from the security
mechanism and sends it to the server in lieu of a password. The server then
passes the token to the security mechanism again to confirm that the user name
has been authenticated.

The following connection properties are related to login authentication. To take
effect, these properties must be set before a connection is established. At the
connection level, all the following properties are retrieve-only when the
connection is open:

• CS_USERNAME specifies the name of the user to connect with. If the
application requests network-based authentication, then the user must be
logged in to the network security system. Otherwise, the CS_PASSWORD
property must be set to the user’s server password.

• CS_SEC_NETWORKAUTH enables network-based authentication. The
default is CS_FALSE, which means network-based authentication is
disabled.

• CS_SEC_CREDTIMEOUT and CS_SEC_SESSTIMEOUT allow
applications to specify or check whether the user’s network credentials or
security session have expired. Both apply only when network-based
authentication is enabled on the connection.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 267

The credential timeout period begins when the user obtains the credentials
(that is, when the user logs in to the network). Some network security
systems allow an administrator to specify a timeout value for user
credentials. If the credentials expire, they are no longer valid. In addition,
some systems allow applications to set credential timeout values.

The session timeout period begins when the connection is opened. Some
network security systems allow an administrator to specify a timeout value
for all security sessions. In addition, some systems allow applications to
set session timeout values.

Table 2-33 lists the possible values for the credential and session timeout
properties:

Table 2-33: Values for CS_SEC_SESSTIMEOUT and
CS_SEC_CREDTIMEOUT

Some security mechanisms do not support credential or session timeouts.
If either type is not supported, the retrieved timeout value is always
CS_NO_LIMIT. Some security mechanisms support timeouts, but do not
report timeout values to applications. With these mechanisms, the
retrieved timeout value is always either CS_UNEXPIRED or 0.

Applications can request a different credential or session timeout value by
setting the corresponding property to a positive integer or
CS_NO_LIMIT. However, the security system’s administrative settings
restrict application-requested values. For example, if the system is
configured so that all sessions timeout after 10 minutes, then an
application’s request for a 20-minute (1200-second) session timeout has
no effect.

No error is raised if an application’s request for a specific credential or
session timeout value cannot be granted. If a connection’s security
mechanism does not support credential or session timeouts, then calls to
set the CS_SEC_CREDTIMEOUT or CS_SEC_SESSTIMEOUT
properties have no effect.

When the user’s credential or session expires, the connection is closed
either by Client-Library or the server, as follows:

Value Meaning

A positive integer The number of seconds remaining before the
credential expires.

0 The credential has expired.

CS_UNEXPIRED The credential is valid. Remaining time is unknown.

CS_NO_LIMIT The credential will not expire.

Security features

268 Open Client

• Client-Library checks for credential or session expiration prior to
writing to the network, and closes the connection if the session has
expired.

• The server checks for credential or session expiration before sending
data to the client, and closes the connection if the session has expired.
When the server closes the connection because of an expired session,
the server does not send a warning message to the client.

• CS_SEC_MUTUALAUTH requests that the connection’s security
mechanism perform mutual authentication. For mutual authentication, the
server is required to provide proof of its identity to the client before a
connection is opened. The default is CS_FALSE, which means mutual
authentication is not performed.

When mutual authentication is requested, the server provides proof of its
identity to the client when a connection is established. This proof consists
of a credential token sent by the server to Client-Library. The token is an
opaque chunk of data that encodes the server principal name and proof that
the name is authentic. Client-Library queries the security mechanism to
verify that the received token is genuine. If it is not, Client-Library aborts
the connection attempt.

• CS_SEC_SERVERPRINCIPAL specifies the network security principal
name for the server to which a connection will be opened. The default is
NULL, which means ct_connect assumes that the server principal name
matches the server’s directory entry name.
CS_SEC_SERVERPRINCIPAL is meaningful only when network-based
authentication is requested.

• CS_SEC_DELEGATION determines whether the server is allowed to
connect to a remote server using delegated credentials. The default is
CS_FALSE, which means the credential delegation is not allowed.

Delegation applies only to applications that use network-based user
authentication to connect to an Open Server gateway.

When a client connects to a gateway server, the gateway may establish a
connection to a second, remote server that supports network-based
authentication with an identical security mechanism. Credential
delegation allows the gateway to connect to the remote server using the
client’s delegated credential.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 269

• CS_SEC_CREDENTIALS allows a gateway application to forward user
credentials to a remote server. The client application must have permitted
credential delegation by setting the CS_SEC_DELEGATION connection
property to CS_TRUE.

Gateways support delegation by retrieving the value of the
SRV_T_SEC_DELEGCRED Open Server thread property and setting the
CS_SEC_CREDENTIALS Client-Library connection property to the
retrieved value. The gateway’s client, the gateway, and the gateway’s
remote server must use an identical security mechanism for delegation to
work.

The CS_SEC_CREDENTIALS property can only be set or cleared.

• CS_SEC_CHANBIND determines whether the connection’s security
mechanism performs channel binding. The default is CS_FALSE, which
means channel binding is not performed.

When channel binding is enabled, Client-Library and the server both
provide a network channel identifier (consisting of the network addresses
of the client and the server) to the connection’s security mechanism.

• CS_SEC_KEYTAB specifies the name and path to an operating system
file (called a keytab file) from which a connection’s security mechanism
reads the security key to go with the user name that is specified by the
CS_USERNAME property.

Note Only the DCE security driver supports keytab files.

CS_SEC_KEYTAB is meaningful only for connections that use DCE as
their security mechanism and that have requested network-based
authentication. An application specifies a keytab file to connect to a server
under a different user name than the DCE user that is running the
application. The application sets the CS_USERNAME property to the
new user name and sets CS_SEC_KEYTAB to indicate the keytab file that
specifies the security key for the user. The default for CS_SEC_KEYTAB
is NULL, which means that no keytab file is read, that CS_USERNAME
must represent the DCE name of the application user, and that the user
must already be logged into DCE.

A keytab file is created with the DCE dcecp utility (see your DCE
documentation). The keytab file must be readable by the user who is
running the Client-Library application.

Security features

270 Open Client

FIPS 140-2 compliance of login password encryption

Encryption of login and remote passwords in Open Client and Open Server is
accomplished with the Sybase Common Security Infrastructure (CSI). CSI 2.6
complies with the Federal Information Processing Standard (FIPS) 140-2.

To support FIPS encryption, a Certicom Security Builder shared library named
libsbgse2.so (UNIX and Linux platforms) or libsbgse2.dll (Microsoft
Windows platforms) is installed on platforms that do not already use the
Certicom Security Builder. Also, the sybcsi subdirectory found in
$SYBASE/$SYBASE_OCS/lib3p or $SYBASE/$SYBASE_OCS/lib3p64 has
been removed.

Requesting per-packet security services

In some environments, distributed application designers have to deal with the
fact that the network is not physically secure. For example, unauthorized
parties may listen to a dialog by attaching analyzers to a physical line or
capturing wireless transmissions.

In these environments, applications require protection of transmitted data to
assure a secure dialog. Per-packet security services protect transmitted data.

All per-packet services require that one or both of the following operations be
performed for each TDS packet to be sent over a connection:

• Encryption of the packet’s contents

• Computation of a digital signature that encodes the packet contents as well
as other needed information

Note Applications that use the services described in this section incur a
per-packet overhead on all communication between the client and the
server. Do not use per-packet security services unless application security
is more important than application performance.

If an application selects multiple per-packet services, each operation is
performed only once per packet. For example, if the application selects the data
confidentiality, sequence verification, data integrity, and channel binding
services, then each packet is encrypted and accompanied by a digital signature
that encodes the packet contents, packet sequence information, and a network
channel identifier.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 271

All per-packet services, except data confidentiality, require the connection’s
security mechanism to compute a digital signature for each packet that is sent
over the connection. The signature encodes information about the packet’s
contents, and may encode other information as well. The client and the server
both compute packet signatures and send them with each TDS packet. When
the packet and signature are received, the security mechanism verifies the
received signature. If packet signature is rejected, the connection is closed as
follows:

• If the error occurs when Client-Library is reading results from the
network, Client-Library raises an error and closes the connection.

• If the error occurs when the server is reading packets sent by the client, the
server closes the connection. In this case, the client application will not
discover the error until it tries to read from the network.

The following connection properties control the use of the per-packet services.
To take effect, these properties must be set before a connection is established.
At the connection level, all of the following properties are retrieve-only when
the connection is open. All of the following properties take CS_BOOL *buffer
values, and all are CS_FALSE by default:

• CS_SEC_CONFIDENTIALITY requests encryption of all transmitted
data. All commands sent to the server and all results returned by the server
are encrypted.

Data confidentiality protects data that is sent over public networks where
the transmission medium is not physically secure. For example, strangers
may attach analyzers to a physical line or capture wireless transmissions.

• CS_SEC_INTEGRITY requests that integrity checking be performed on
all data transmitted over the connection. This service checks all TDS
packets sent to the server and all sent from the server to assure that the
contents were not modified.

Data integrity checking is used only when the connection is also using
network-based user authentication.

• CS_SEC_DATAORIGIN determines whether the connection’s security
mechanism performs data origin stamping. This service stamps each TDS
packet transmitted over the connection with a digital signature that
encodes information about the packet’s sender and contents.

• CS_SEC_DETECTREPLAY determines whether the connection’s
security mechanism detects invalid repetition of transmitted TDS packets.

Security features

272 Open Client

Replay detection assures that attempts to capture packets and replay them
are detected. For example, a stranger could capture the packets that
represent a command sent to the server and replay them in an attempt to
cause an unauthorized repeat of the command.

• CS_SEC_DETECTSEQ determines whether the connection’s security
mechanism detects transmitted TDS packets that arrive in a different order
than the order in which they were sent.

The replay detection and the sequence verification services are similar.
However, they are distinct services. For example, consider the case where
packets sent by the client are numbered in the sending order as P1, P2, P3,
and so forth. If the server receives the packets in the order P1, P2, P2, then
this is a replay error but not an out-of-sequence error. If the server receives
the packets in the order P1, P3, P2, this is an out-of-sequence error but not
a replay error.

Secure Sockets Layer in Open Client and Open Server
SSL, a session-based communications protocol, is the standard for securing the
transmission of sensitive information, such as credit card numbers, stock
trades, and banking transactions, over the Internet.

While a comprehensive discussion on public-key cryptography is beyond the
scope of this document, the fundamentals are worth describing so that you have
an understanding of how SSL secures Internet communication channels. This
document should not be considered comprehensive or complete.

The implementation of Open Client and Open Server SSL functionality
assumes that there is a knowledgeable System Security Officer who is familiar
with the security policies and needs of your site, and who has a general
understanding of SSL and public-key cryptography.

Internet communications overview
TCP/IP is the primary transport protocol used in client/server computing and
governs the transmission of data over the Internet. TCP/IP uses intermediate
computers to transport communications from sender to recipient. The
intermediate computers introduce weak links to the communication system
where data may be subjected to tampering, theft, eavesdropping, and
impersonation.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 273

An SSL-enabled client application uses standard techniques of public-key
cryptography to authenticate a server’s certificate, and verify that the server
certificate was issued by a trusted CA before sending private information, such
as a credit card number, over the connection.

Public-key cryptography

To secure Internet communications, several mechanisms, known collectively
as public-key cryptography, have been developed and implemented to protect
sensitive data during transmission over the Internet. Public-key cryptography
consists of data encryption, key exchange, digital signatures, and digital
certificates.

Encryption

Encryption is a process wherein a cryptographic algorithm is used to encode
information to safeguard it from anyone except the intended recipient. There
are two types of keys used for encryption:

• Symmetric-key encryption is where the same algorithm (key) is used to
encrypt and decrypt the message. This form of encryption provides
minimal security because the key is simple, and therefore easy to decipher.
However, transfer of data that is encrypted with a symmetric key is fast
because the computation required to encrypt and decrypt the message are
minimal.

• Public/private keys, also known as asymmetric keys, are a pair of keys that
are made up of public and private components to encrypt and decrypt
messages. Typically, the message is encrypted by the sender with a private
key, and decrypted by the recipient with the sender’s public key, although
this may vary. It is quite possible to use a recipient’s public key to encrypt
a message, who then uses his private key to decrypt the message.

The algorithms used to create public and private keys are more complex,
and therefore harder to decipher. However, public/private key encryption
requires more computation, sends more data over the connection, and
noticeably slows the transfer of data.

Key exchange

The solution for reducing computation overhead and speeding transactions
without sacrificing security is to use a combination of both symmetric key and
public/private key encryption in what is known as a key exchange.

Security features

274 Open Client

For large amounts of data, a symmetric key is used to encrypt the original
message. The sender then uses either his private key or the recipient’s public
key to encrypt the symmetric key. Both the encrypted message and the
encrypted symmetric key are sent to the recipient. Depending on what key was
used to encrypt the message (public or private) the recipient uses the opposite
to decrypt the symmetric key. Once the key has been exchanged, the recipient
uses the symmetric key to decrypt the message.

Digital signatures

Digital signatures are used for tamper detection and non-repudiation. Digital
signatures are created with a mathematical algorithm that generates a unique,
fixed-length string of numbers from a text message; the result is called a hash
or message digest.

To ensure message integrity, the message digest is encrypted by the signer’s
private key, then sent to the recipient along with information about the hashing
algorithm. The recipient decrypts the message with the signer’s public key.
This process also regenerates the original message digest. If the digests match,
the message proves to be intact and tamper free. If they do not match, the data
has either been modified in transit or the data was signed by an imposter.

Further, the digital signature provides non-repudiation—senders are prevented
from denying, or repudiating, that they sent the message, because the sender’s
private key encrypted the message. Obviously, if the private key has been
compromised (stolen or deciphered), the digital signature is worthless for non-
repudiation.

Certificates

Certificates are like passports: once you have been assigned one, the authorities
have all your identification information in the system. Immigration control can
access your information as you travel from country to country. Like a passport,
the certificate is used to verify the identity of one entity (server, router, Web
site, and so on) to another.

There are two types of certificates:

• Server certificates – A server certificate authenticates the server that holds
it. Certificates are issued by a trusted third-party Certificate Authority
(CA), much like the U.S. Department of State issues passports. The CA
validates the holder’s identity, and embeds the holder’s public key and
other identification information into the digital certificate. Certificates
also contain the digital signature of the issuing CA, verifying the integrity
of the data contained therein and validating its use.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 275

• CA certificates – Also known as trusted root certificates, CA certificates
are used by servers when they function as a client, such as during remote
procedure calls (RPCs). When connecting to a remote server for RPCs,
Adaptive Server Enterprise verifies that the CA that signed the remote
server’s certificate is a “trusted” CA listed in its own CA trusted roots file.
If it is not, the connection fails.

The combination of these mechanisms protect data transmitted over the
Internet from eavesdropping and tampering. These mechanisms also protect
users from impersonation, where one entity pretends to be another (spoofing),
or where a person or an organization says it is set up for a specific purpose
when the real intent is to capture private information (misrepresentation).

SSL overview
SSL is an industry standard for sending wire- or socket-level encrypted data
over client-to-server and server-to-server connections. Before the SSL
connection is established, the server and the client exchange a series of I/O
round trips to negotiate and agree upon a secure encrypted session. This is
called the SSL handshake.

SSL handshake

When a client application requests a connection, the SSL-enabled server
presents its certificate to prove its identity before data is transmitted.
Essentially, the SSL handshake consists of the following steps:

• The client sends a connection request to the server. The request includes
the SSL (or Transport Layer Security, TLS) options that the client
supports.

• The server returns its certificate and a list of supported CipherSuites,
which includes SSL/TLS support options, the algorithms used for key
exchange, and digital signatures.

• A secure, encrypted session is established when both client and server
have agreed upon a CipherSuite.

For more specific information about the SSL handshake and the SSL/TLS
protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org.

Security features

276 Open Client

Performance

There is additional overhead required to establish a secure session, because
data increases in size when it is encrypted, and it requires additional
computation to encrypt or decrypt information. Typically, the additional I/O
accrued during the SSL handshake may make user login 10-20-times slower.

CipherSuites

During the SSL handshake, the client and server negotiate a common security
protocol through a CipherSuite. CipherSuites are preferential lists of key-
exchange algorithms, hashing methods, and encryption methods used by the
SSL protocol. For a complete description of CipherSuites, go to the IETF
organization Web site at http://www.ietf.org/rfc/rfc2246.txt.

By default, the strongest CipherSuite supported by both the client and the
server is the CipherSuite that is used for the SSL-based session.

Server connection attributes are specified with directory services, such as
LDAP or DCE, or with the traditional Sybase interfaces file.

Note The CipherSuites listed below conform to the TLS specification. TLS, or
Transport Layer Security, is an enhanced version of SSL 5.0, and is an alias for
the SSL version 5.0 CipherSuites.

Open Client and Open Server and Adaptive Server Enterprise support the
CipherSuites that are available with the SSL Plus library API and the
cryptographic engine, Security Builder, both from Certicom Corp.

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_NULL_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA
TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA
TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA
TLS_DHE_DSS_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 277

TLS_RSA_WITH_AES_128_CBC_SHA

SSL in Open Client and Open Server

SSL provides several levels of security:

• When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• Once the SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

• A comparison of the server certificate’s digital signature can determine if
any information received from the server was modified in transit.

SSL filter

When establishing a connection to an SSL-enabled Adaptive Server
Enterprise, the SSL security mechanism is specified as a filter on the master
and query lines in the interfaces file (sql.ini on Windows). SSL is used as an
Open Client and Open Server protocol layer that sits on top of the TCP/IP
connection.

The SSL filter is different from other security mechanisms, such as DCE and
Kerberos, which are defined with SECMECH (security mechanism) lines in
the interfaces file (sql.ini on Windows). The master and query lines determine
the security protocols that are enforced for the connection.

For example, a typical interfaces file on a UNIX machine using SSL looks like
the following:

[SERVER]
query tcp /dev/tcp add1 ssl
master tcp /dev/tcp add1 ssl

A typical sql.ini file on Windows using SSL looks like the following:

[SERVER]

query=TCP,hostname,address1, ssl
master=TCP,hostname,address1, ssl

Security features

278 Open Client

where hostname is the name of the server to which the client is connecting and
address1 is the port number of the host machine. All connection attempts to a
master or query entry in the interfaces file with an SSL filter must support the
SSL protocol. A server can be configured to accept SSL connections and have
other connections that accept plain text (unencrypted data), or use other
security mechanisms.

For example, an Adaptive Server Enterprise interfaces file on UNIX that
supports both SSL-based connections and plain-text connections looks like:

SYBSRV1
 master tcp /dev/tcp \x00020abc123456780000000000000000 ssl
 query tcp /dev/tcp \x00020abc123456780000000000000000 ssl
 master tcp /dev/tcp \x00020abd123456780000000000000000

Or, the same entry with the new style of Sybase interfaces file on UNIX looks
like the following:

SYBSRV1
 master tcp hostname 2748 ssl
 query tcp hostname 2748 ssl
 master tcp hostname 2749

An example of a socket-style interfaces file looks like the following:

SYBSRV1
 master tcp ether hostname 2748 ssl
 query tcp ether hostname 2748 ssl
 master tcp ether hostname 2749

In these examples, the SSL security service is specified on port number
2748(0x0abc). On SYBSRV1, Adaptive Server Enterprise listens for clear text
on port number 2749(0x0abd), which has no security mechanism or security
filter.

Validating the server by its certificate

Any Open Client/ Open Server connection to an SSL-enabled server requires
that the server have a certificate file, which consists of the server’s certificate
and an encrypted private key. The certificate must also be digitally signed by a
CA.

Open Client applications establish a socket connection to Adaptive Server
Enterprise similarly to the way that existing client connections are established.
Before any user data is transmitted, an SSL handshake occurs on the socket
when the network transport-level connect call completes on the client side and
the accept call completes on the server side.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 279

To make a successful connection to an SSL-enabled server:

• The SSL-enabled server must present its certificate when the client
application makes a connection request.

• The client application must recognize the CA that signed the certificate. A
list of all “trusted” CAs is in the trusted roots file. See “The trusted roots
file” on page 281.

• For connections to SSL-enabled servers, the common name in the server’s
certificate must match the server name in the interfaces file as well.

Note You may choose to install SSL validation callback, which intercepts SSL
handshakes and overrides SSL validation checks. SSL validation callback is
installed with ct_callback using CS_SSLVALIDATE_CB.

When establishing a connection to an SSL-enabled Adaptive Server
Enterprise, Adaptive Server Enterprise loads its own encoded certificates file
at start-up from:

UNIX – $SYBASE/$SYBASE_ASE/certificates/servername.crt

Windows – %SYBASE%\%SYBASE_ASE%\certificates\servername.crt

where servername is the name of the Adaptive Server Enterprise as specified
on the command line when starting the server with the -S flag or from the
server’s environment variable $DSLISTEN.

Other types of servers may store their certificate in a different location. See the
vendor-supplied documentation for the location of your server’s certificate.

Validation in an SDC environment

The default behavior for SSL validation in Open Client and Open Server is to
compare the common name in the server certificate with the server name
specified by ct_connect. However, in a Shared Disk Cluster (SDC)
environment, a client may specify the SSL certificate common name
independent of the server name or the SDC instance name. A client may
connect to an SDC by its cluster name, which represents multiple server
instances, or to a specific server instance.

Security features

280 Open Client

Open Client and Open Server support common name validation in an SDC
environment by allowing the client to use a transport address to specify the
common name used in certificate validation. The Adaptive Server Enterprise
SSL certificate common name can therefore be different from the server or
cluster name. The transport address can be specified in one of the directory
services like the interfaces file, an LDAP or NT registry, or through the
connection property CS_SERVERADDR.

The following is an example of an interfaces file for an SSL-enabled Adaptive
Server Enterprise and cluster for UNIX:

CLUSTERSSL
query tcp ether hostname1 5000 ssl="CN=name1"
query tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname3 5000 ssl="CN=name3"

ASESSL1
master tcp ether hostname1 5000 ssl="CN=name1"
query tcp ether hostname1 5000 ssl="CN=name1"

ASESSL2
master tcp ether hostname2 5000 ssl="CN=name2"
query tcp ether hostname2 5000 ssl="CN=name2"

ASESSL3
master tcp ether hostname3 5000 ssl="CN=name3"
query tcp ether hostname3 5000 ssl="CN=name3"

The following is an example of an interfaces file for an SSL-enabled Adaptive
Server Enterprise and cluster for Windows:

[CLUSTERSSL]
query=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname3,5000, ssl="CN=name3"

[ASESSL1]
master=tcp,hostname1,5000, ssl="CN=name1"
query=tcp,hostname1,5000, ssl="CN=name1"

[ASESSL2]
master=tcp,hostname2,5000, ssl="CN=name2"
query=tcp,hostname2,5000, ssl="CN=name2"

[ASESSL3]
master=tcp,hostname3,5000, ssl="CN=name3"

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 281

query=tcp,hostname3,5000, ssl"CN=name3"

The trusted roots file

The list of known and trusted CAs is maintained in the trusted roots file. The
trusted roots file is similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (client applications, servers, network
resources, and so on). The System Security Officer adds and deletes CAs using
a standard ASCII-text editor.

The trusted roots file for Open Client and Open Server is as follows:

• For UNIX – $SYBASE/config/trusted.txt

• For Windows – %SYBASE%\ini\trusted.txt

Currently, the recognized CAs are Thawte, Entrust, Baltimore, VeriSign and
RSA.

By default, Adaptive Server Enterprise stores its own trusted roots file in:

• UNIX – $SYBASE/$SYBASE_ASE/certificates/servername.txt

• Windows – %SYBASE%\%SYBASE_ASE%\certificates\servername.txt

Both Open Client and Open Server allow you to specify an alternate location
for the trusted roots file:

• Open Client:

ct_con_props (connection, CS_SET, CS_PROP_SSL_CA,
“$SYBASE/config/trusted.txt”, CS_NULLTERM, NULL);

where $SYBASE is the installation directory. CS_PROP_SSL_CA can be
set at the context level using ct_config, or at the connection level using
ct_con_props.

• Open Server:

srv_props (context, CS_SET, SRV_S_CERT_AUTH,
“$SYBASE/config/trusted.txt”, CS_NULLTERM, NULL);

where $SYBASE is the installation directory.

bcp and isql utilities also allow you to specify an alternative location for the
trusted roots file.The parameter -x is included in the syntax, allowing you to
specify an alternative location for the trusted.txt file.

Security features

282 Open Client

Obtaining a certificate

The System Security Officer installs signed server certificates and private keys
in the server. You can get a server certificate by:

• Using third-party tools provided with existing public-key infrastructure
already deployed in the customer environment.

• Using the Sybase certificate request tool in conjunction with a trusted
third-party CA.

To obtain a certificate, you must request a certificate from a CA. If you request
a certificate from a third-party and that certificate is in PKCS #12 format, use
the certpk12 utility to convert the certificate into a format that is understood by
Open Client and Open Server.

To test the certificate request tool and to verify that the authentication methods
are working on your server, Open Client and Open Server provides a certreq
and certauth tool, for testing purposes, that allows you to function as a CA and
issue a CA-signed certificate to yourself.

Following are the main steps to creating a certificate for use with a server:

1 Generate the certificate request.

2 Generate the public and private key pair.

3 Securely store the private key.

4 Send the certificate request to the CA.

5 After the CA signs and returns the certificate, append the private key to the
certificate.

6 Store the certificate in the server’s installation directory.

Third-party tools to request certificates

Most third-party PKI vendors and some browsers have utilities to generate
certificates and private keys. These utilities are typically graphical wizards that
prompt you through a series of questions to define a distinguished name and a
common name for the certificate.

Follow the instructions provided by the wizard to create certificate requests.
Once you receive the signed PKCS #12-format certificate, use certpk12 to
generate a certificate file and a private key file. Concatenate the two files into
a servername.crt file, where servername is the name of the server, and place it
in the server’s installation directory. By default, the certificates for Adaptive
Server Enterprise are stored in $SYBASE/$SYBASE_ASE/certificates.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 283

Using Sybase tools to request and authorize certificates

Sybase provides tools for requesting and authorizing certificates. certreq
generates public and private key pairs and certificate requests. certauth
converts a server certificate request to a CA-signed certificate.

• UNIX – $SYBASE/$SYBASE_OCS/bin

• Windows – %SYBASE%\%SYBASE_OCS%\bin

 Warning! Use certauth only for testing purposes. Sybase recommends that you
use the services of a commercial CA because it provides protection for the
integrity of the root certificate, and because a certificate that is signed by a
widely accepted CA facilitates the migration to the use of client certificates for
authentication.

Preparing a server’s trusted root certificate is a five-step process. Perform all
five steps to create a test trusted root certificate so you can verify that you are
able to create server certificates. Once you have a test CA certificate (trusted
roots certificate) repeat steps 3 through 5 to sign server certificates.

1 Use certreq to request a certificate.

2 Use certauth to convert the certificate request to a CA self-signed
certificate (trusted root certificate).

3 Use certreq to request a server certificate and private key.

4 Use certauth to convert the certificate request to a CA-signed server
certificate.

5 Append the private key text to the server certificate and store the
certificate in the server’s installation directory.

Note certauth and certreq are dependent on RSA and DSA algorithms. These
tools only work with vendor-supplied crypto modules that use RSA and DSA
algorithms to construct the certificate request.

For information on adding, deleting, or viewing server certificates on Adaptive
Server Enterprise, see the Adaptive Server Enterprise System Administration
Guide.

Security features

284 Open Client

Adaptive Server Enterprise security features
Client applications that connect to Adaptive Server Enterprise or Open Server
version 10.0 or later can take advantage of password encryption and
challenge/response security handshakes.

Security handshaking: Challenge/Response

Servers use challenge/response security handshaking to provide an additional
level of login security checking.

To provide the response that this handshake method requires, an application
must be coded as follows:

• Before calling ct_connect, the application must call ct_con_props to set one
of the following properties:

• CS_SEC_CHALLENGE to request Sybase-defined
challenge/response security handshaking.

• CS_SEC_APPDEFINED to request Open Server application-defined
challenge/response security handshaking.

If either or both of these properties is CS_TRUE, ct_connect invokes the
application’s negotiation callback in response to server challenges.

• The application must contain a negotiation callback that is coded to return
the required response.

• The application calls ct_callback to install the callback either at the context
level or for a specific connection.

See “Defining a negotiation callback” on page 44.

Security handshaking: encrypted password

Sybase Servers use encrypted password handshakes if the client requests
password encryption. Encrypted password security handshaking occurs while
the connection to the server is being established.

Note Applications must request password encryption by setting the
CS_SEC_EXTENDED_ENCRYPTION or CS_SEC_ENCRYPTION
connection property to CS_TRUE (the default is CS_FALSE). Otherwise, the
password is sent to the server as plain text.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 285

The password encryption process

When password encryption is enabled, the server receives the user passwords
and remote-server passwords as follows:

1 Client-Library initially sends a dummy password to the server consisting
of a zero-length string.

2 The server responds by asking the client for the encrypted passwords and
sending an encryption key to the client.

• If the client program has installed an encryption callback, Client-
Library invokes the callback once for the local password and once for
each remote-server password. Each time Client-Library invokes the
encryption callback, it supplies the password to be encrypted and the
encryption key as arguments.

• If the client program has not installed an encryption callback, Client-
Library performs the default encryption for all passwords.

Using password encryption in Client-Library applications

Password encryption is disabled by default, so applications that need password
encryption must set the CS_SEC_EXTENDED_ENCRYPTION or
CS_SEC_ENCRYPTION property to CS_TRUE before calling ct_connect.
Below are sample codes you can use to enable password encryption.

Enabling normal
password encryption

CS_BOOL boolval;
/* Enable password encryption for the connection attempt. */
boolval = CS_TRUE;

if (ct_con_props(conn, CS_SET, CS_SEC_ENCRYPTION, (CS_VOID *)&boolval,
CS_UNUSED,(CS_INT *)NULL) != CS_SUCCEED)

{
fprintf(stdout,"ct_con_props(SEC_ENCRYPTION) failed. Exiting\n");
(CS_VOID)ct_con_drop(conn);
(CS_VOID)ct_exit(ctx, CS_FORCE_EXIT);
(CS_VOID)cs_ctx_drop(ctx);
exit(1);

}

Enabling extended
password encryption

...
CS_INT Ex_encryption = CS_TRUE;
CS_INT Ex_nonencryptionretry = CS_FALSE;

Security features

286 Open Client

...
main()
{

...
/*
** This needs to be called before calling ct_connect()
*/
ret = ct_con_props(connection, CS_SET, CS_SEC_EXTENDED_ENCRYPTION,

&Ex_encryption, CS_UNUSED, NULL);
EXIT_ON_FAIL(context, ret, "Could not set extended encryption");

ret = ct_con_props(connection, CS_SET, CS_SEC_NON_ENCRYPTION_RETRY,
&Ex_nonencryptionretry, CS_UNUSED, NULL);

EXIT_ON_FAIL(context, ret, "Could not set non encryption retry");

....
}

Password encryption is performed either by Client-Library’s default
encryption handler or by an application handler installed with ct_callback.

The default encryption handler performs the encryption expected by Adaptive
Server Enterprise. Applications that connect to Adaptive Server Enterprise or
an Open Server gateway to Adaptive Server Enterprise should rely on the
default encryption. Most applications fall into this category.

Applications that require an encryption handler include the following:

• Open Server gateways that connect to an Adaptive Server Enterprise must
support password encryption with an encryption callback that obtains
encrypted passwords from the gateway’s client (through srv_negotiate)
and forwards each password to the remote server (through the callback’s
output parameters).

• Client applications that require a custom password encryption technique
(for example, applications that connect to a custom Open Server) must
install a custom encryption callback that performs the encryption expected
by the server.

For information about defining a password encryption callback, see “Defining
an encryption callback” on page 40.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 287

Server directory object
The server directory object is a generalized description of the logical content
of directory entries that describe Sybase servers.

See the “Directory services” on page 103.

Use of the server directory object
Server directory objects are implicitly accessed when connecting to a server
with ct_connect. An application can also search for server entries in a directory
using ct_ds_lookup and a directory callback.

Client-Library applications inspect the contents of a directory object using
ct_ds_objinfo.

Contents of the server directory object
Client-Library maps server entries in the directory onto the server directory
object described here. The server directory object provides a view of directory
entries that is independent of their actual storage format. The object is defined
as a set of attributes for which a server entry can contain values.

The actual storage format of directory entries varies depending on the directory
service being used. Each directory driver converts entries from their native
storage format into the Server Directory Object format. The object format
provides a generic view of directory entries to Client-Library applications.

Format of object attributes

Each directory object specifies the set of attributes that are stored in a directory
entry of that type. Attributes have metadata and one or more values. An
attribute’s metadata is represented by a CS_ATTRIBUTE structure, and
consists of:

• A name that identifies the attribute

Because attribute-naming schemes can vary among directory providers,
Client-Library uses an object identifier (or OID) to identify each attribute.
Client-Library provides a predefined OID-string macro for each attribute.

• A value syntax specifier

Server directory object

288 Open Client

This is an integer code that identifies which C datatype holds the
attribute’s values.

• The number of values in this instance of the attribute

Values are retrieved with a CS_ATTRVALUE union. Applications use the
syntax specifier to know which member of the union holds the value.

See “Retrieving object attributes and attribute values” on page 483 for a
description of the CS_ATTRIBUTE and CS_ATTRVALUE structures.

List of attributes

Table 2-34 summarizes the attributes of the server directory object and gives
the syntax and OID string for each. Detailed descriptions follow the table.

Note Applications that inspect server directory objects with ct_ds_objinfo
should be coded to accept unexpected attributes. Sybase may add attributes to
the server directory object that are not listed here.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 289

Table 2-34: Attributes of the server directory object

Server entry version

The server entry version holds a symbolic integer code for the server’s software
version. The version attribute is provided for the convenience of directory
users

The version attribute is for administrative use only; the value of the attribute
does not affect any capabilities of a connection to the server.

Attribute and
corresponding OID string

Value
syntax Description

Server entry version

CS_OID_ATTRVERSION

Integer The server’s version level.

Server name attribute

CS_OID_ATTRSERVNAME

String The server’s name.

The value of the name attribute can
differ from the fully qualified name
for the server’s directory entry.

Service description

CS_OID_ATTRSERVICE

String A description of the service provided
by the server.

The value may be any meaningful
description.

Server status

CS_OID_ATTRSTATUS

Integer The operating status of the server.

See “Server status” on page 290 for
possible values and their meanings.

Note Adaptive Server Enterprise
always has an unknown status.

Transport address

CS_OID_ATTRADDRESS

Transport
Address

One or more transport addresses for
the server.

The transport address attribute has
three elements:

• Transport type

• Access type

• Transport address

Security mechanisms

CS_OID_ATTRSECHMECH

OID The security mechanisms supported
by the server or servers. This attribute
is optional.

Server directory object

290 Open Client

Server name attribute

The server name attribute provides a server name that will be visible to
applications that search the directory with ct_ds_lookup.

The name can be any string that is CS_MAX_DS_STRING or fewer bytes
long. By convention, the name attribute should match the name the server uses
for itself (for Adaptive Server Enterprises, the local server name is given by
sp_addname).

Do not confuse a server’s name attribute with the name used to locate the
directory entry. The latter is the fully qualified name for the directory entry,
expressed in the name syntax of the directory provider. ct_connect uses the
fully qualified name to find the directory entry. The name attribute is an
arbitrary string value provided for the convenience of directory users. To avoid
confusion, the directory administrator should ensure that the name attribute at
least partially matches the server’s fully qualified name (for example, the
attribute value could be the entry’s common name).

Note When the directory provider is the interfaces file, the value of the name
attribute is the same as the entry’s name.

Service description

The service description attribute describes the service that the server provides.
The service type value can be any string that is CS_MAX_DS_STRING or
fewer bytes long.

When the Sybase interfaces file is the directory source, this value is always
“Adaptive Server Enterprise”.

Server status

The server status is a symbolic integer code which describes the operating
status of the server. Possible values are listed in Table 2-35.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 291

Table 2-35: Status attribute values (server directory object)

Unknown status values

The value of the status attribute may be unknown for the following reasons:

• The server is an Adaptive Server Enterprise – Adaptive Server Enterprise
does not register its status with the directory service. The status attribute
for Adaptive Server Enterprise directory entries is always
CS_STATUS_UNKNOWN.

• Use of the interfaces file in directory lookups – if the directory object
being inspected came from the interfaces file, the status attribute is always
unknown. The interfaces file does not support status attributes, so the
status attribute defaults to CS_STATUS_UNKNOWN when ct_ds_lookup
retrieves file entries and converts them to directory objects.

• Unregistered Open Server Applications – an Open Server application
registers itself to use the directory service as part of its initialization.

If an Open Server registers itself, then Server-Library automatically sets
the status attribute value to reflect the current operating condition of the
server. If the application does not register itself, its status attribute value
will always be CS_STATUS_UNKNOWN.

See the Open Server Server Library/C Reference Manual.

Status value Meaning

CS_STATUS_ACTIVE Server is up and running.

CS_STATUS_STOPPED Server has been taken offline and has not
been restarted.

CS_STATUS_FAILED Server is offline because of an error.

CS_STATUS_UNKNOWN Status of the server is unknown. See
“Unknown status values” on page 291 for an
explanation.

Server directory object

292 Open Client

Transport address

The transport address attribute is used by ct_connect to establish a connection
to the server. The transport address attribute may have multiple transport
address values.

Note In an SDC environment in which the client specifies the SSL certificate
common name independent of the server name or the SDC instance name, the
client uses the transport address to specify the common name used in the
certificate validation.

Client-Library applications view the transport address value as a
CS_TRANADDR structure. For details on the format of the structure, see
“Transport address values” on page 485.

Multiple transport address types

The server may allow connecting over multiple network transport types. Your
network installation and the Sybase network driver configuration determines
which transport types are used by Client-Library on your system. See the Open
Client and Open Server Configuration Guide for your platform.

Standby server addressing

The server entry may contain multiple address values for use with your
network configuration. In this case, ct_connect tries to connect to each eligible
address in turn, repeating if necessary, until one of the following conditions are
satisfied:

• A connection dialog is accepted at a given address.

• Each address has been tried retry_count times, where retry_count is the
value of the CS_RETRY_COUNT connection property.

The CS_LOOP_DELAY connection property sets a time in seconds for Client-
Library to wait before beginning the sequence again. Client-Library does not
wait between trying individual addresses in the sequence.

See “Retry count” on page 237 and “Loop delay” on page 227 for a description
of the CS_RETRY_COUNT and CS_LOOP_DELAY properties.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 293

Security mechanisms

The security mechanism attribute is an optional, multivalued attribute that
contains one or more OID strings for Sybase security mechanisms supported
by the server.

Client applications specify a connection’s security mechanism by setting the
CS_SEC_MECHANISM connection property (or accepting the default). See
“Choosing a network security mechanism” on page 263.

Security mechanism OIDs are mapped to local security mechanism names by
the Sybase global objects file. See “Global mechanism names” on page 265.

If the security mechanism attribute is present in a server’s directory entry, then
clients connect to the indicated server using only the listed services. If no
security mechanism attribute is present, then clients connect using any
mechanism that the server is configured to support.

Server objects from the interfaces file
An application that is not configured to read from a network-based directory
will read server directory objects from the Sybase interfaces file.

See “Server objects from the Interfaces file” on page 142 for a description of
how Client-Library maps interfaces file entries to the server directory object.

See the “Interfaces file” on page 140 for general information about the Sybase
interfaces file.

Server restrictions
Client-Library is a generic programming interface. This means that it is
functionally independent of the servers to which it connects. Such
independence allows Open Client applications to communicate with not only
Adaptive Server Enterprise, and Open Server applications, but also with non-
Sybase servers if the Open Server application is a gateway.

Being functionally independent means that Open Client has no knowledge of
the way in which a server may choose to implement certain functionality. It is
possible that the same feature, implemented by multiple servers, will exhibit
various different behaviors. The behavior of a server feature is specific to the
server currently being accessed.

Server restrictions

294 Open Client

As an Open Client application developer, you should have a thorough
understanding of the behavior of the server(s) for which you are writing an
application. This includes knowing what functionality is supported and what
restrictions are enforced.

Open Server restrictions
Open Client and Open Server do not inherit Adaptive Server Enterprise
restrictions. This means that communication between Open Client applications
and Open Server applications is not constrained by rules that govern Sybase
server behavior.

Communication is constrained, however, by the implementation of the Open
Server application. For example, an Open Server application developer may
decide not to support remote procedure calls (RPCs) by not installing a
SRV_RPC event handler. This is a constraint of which an Open Client
application developer must be aware.

Open Client and Open Server are mirror images of each other. Open Server can
receive anything that Open Client sends, and vice versa. Restrictions arise not
only when implementation-specific limitations are imposed on an Open Server
application, but when functionality available in Open Server is not enabled.

Adaptive Server Enterprise restrictions
It is only when an Open Client application accesses Adaptive Server Enterprise
that the application must be aware of Adaptive Server Enterprise restrictions.
For example, Adaptive Server Enterprise has login name requirements: the
login name must follow the rules for Adaptive Server Enterprise identifiers and
it must be unique. When an Open Client application accesses an Adaptive
Server Enterprise, it must adhere to such requirements.

Following are some important Adaptive Server Enterprise restrictions:

• Dynamic SQL is implemented using temporary stored procedures, and
therefore inherits the restrictions of stored procedures.

• Long variable-length binary datatypes and long variable-length character
datatypes are not supported.

• By definition, a cursor is associated with only one select statement. This
means that a stored procedure on which a Client-Library cursor is declared
contains only a single statement: a select statement.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 295

• Stored procedures may not support parameters of certain datatypes. See
the documentation for Adaptive Server Enterprise for information about
restrictions on stored procedure parameters.

• Event notifications are not supported.

• Message commands are not supported.

• The POSIX locale method of localization is not supported.

Supported client/server features
To ascertain some of the client and server features supported by a particular
connection, an application calls ct_capability. The ct_capability value parameter
returns information about whether the capability is enabled.

This retrieves, among other things:

• What datatypes are supported

• What types of requests are valid

See the ct_capability reference page.

text and image data handling
text and image are Adaptive Server Enterprise datatypes that hold large text or
image values. The text datatype holds up to 2,147,483,647 bytes of printable
characters. The image datatype holds up to 2,147,483,647 bytes of binary data.

Because they can be so large, text and image values are not actually stored in
database tables. Instead, a text pointer to the text or image value is stored in
the table.

To ensure that competing applications do not wipe out one another’s
modifications to the database, a timestamp is associated with each text or image
column. This timestamp is called a text timestamp.

Client-Library stores the text pointer and text timestamp for a text or image
column in an I/O descriptor structure, the CS_IODESC. The I/O descriptor for
a column also contains other information about the column, including its name
and datatype.

text and image data handling

296 Open Client

For detailed information about the CS_IODESC structure, see “CS_IODESC
structure” on page 88.

Retrieving a text or image column
An application retrieves text and image columns in two ways:

• It selects the columns, binds the columns, and fetches rows. In other
words, an application retrieves and process text and image columns in the
same way it retrieves and processes any other type of column.

• It selects the columns, uses ct_fetch to loop through result rows, and uses
ct_get_data to retrieve data in the text and image columns. An application
uses this method when processing text or image values that are too large
for convenient binding.

Using ct_get_data to fetch text and image values

Only columns that follow the last column bound with ct_bind are available for
use with ct_get_data.

For example, if an application selects four columns, all of which are text, and
binds the first and third columns to program variables, then the application
cannot use ct_get_data to retrieve the text contained in the second column.
However, it can use ct_get_data to retrieve the text in the fourth column.
Applications that control the select statement can reorder the select list so that
the text and image columns come at the end.

To retrieve a text or image value using ct_get_data, an application follows these
steps:

1 Executes a command that generates a result set that contains text or image
columns.

An application uses a language command, RPC command, or dynamic
SQL command to generate a result set containing text or image columns.

For example, the pic column in the au_pix table of the pubs2 database
contains authors’ pictures. To retrieve them, an application might execute
the following language command:

ct_command(cmd, CS_LANG_CMD,
 "select pic from au_pix”,
 CS_NULLTERM, CS_UNUSED);
 ct_send(cmd);

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 297

2 Processes the result set containing the text or image column.

An application uses ct_fetch to loop through the rows contained in the
result set. Inside the loop, for each unbound text or image column:

• The application calls ct_get_data in a loop to retrieve the text or image
data for the column.

• The application calls ct_get_info to get an I/O descriptor that updates
the column at a later time.

Most applications use a program structure similar to the following:

while ct_fetch is returning rows
 process any bound columns
 for each unbound text or image column
 while ct_get_data is returning data
 process the data
 end while
 ct_data_info to get the column’s CS_IODESC
 end for
 end while

Alternatively, for each unbound text or image column, an application:

• Calls ct_get_data with the parameter buflen as 0, so that it returns no
data but does refresh the I/O descriptor for the column.

• Calls ct_get_data to get the I/O descriptor for the column. The
total_txtlen field in this structure represents the total length of the text
or image value.

• Calls ct_get_data as many times as necessary to retrieve the value.

This method has the advantage of allowing an application to determine the
total length of a text or image value before retrieving it.

Updating a text or image column
Text or image columns are updated three ways:

text and image data handling

298 Open Client

• Embed the new value in the text of an update language command. The
advantage of this method is simplicity. The disadvantage is that the
application must send the entire value at once. This method may not be
appropriate for very large columns (that is, larger than the program can
allocate space for). Adaptive Server Enterprise requires the value to be
embedded in the command text, and not passed as a command parameter.
Adaptive Server Enterprise does not allow parameters of type text or
image.

• Initiate a send-data command (with ct_command) and send the value in
chunks with ct_send_data). This method handles values that are larger
than the program’s buffer space, but it is more complicated. This method
may be more natural than the embedded method for applications that read
the value in chunks from an external source such as an operating system
file.

• Initiate the send-data command by calling the ct_command routine with
the type parameter set to CS_SEND_DATA_NOCMD. The client
application can then use send-data commands to send only text or image
data to the server bulk handler. When a bulk event occurs at the server, a
4-byte field is sent indicating the total number of bytes to be sent, followed
by the text or image data. The bulk handler reads the total number of bytes
expected using srv_text_info and the data using srv_get_data.

Note To update a text or image column in this way, the
CS_SENDDATA_NOCMD connection property—not to be confused
with the CS_SEND_DATA_NOCMD setting of ct_command type
parameter—must be set before the ct_connect routine is called.

An application only updates a text or image column using ct_send_data if it has
defined (using ct_data_info) current I/O descriptor settings for the column that
it intends to update. The I/O descriptor settings are contained in a CS_IODESC
structure. (See “CS_IODESC structure” on page 88.) Adaptive Server
Enterprise requires a correctly initialized I/O descriptor to perform the update,
and the client application must retrieve the required I/O descriptor settings
from the server.

Retrieving the I/O descriptor settings

An application retrieves the I/O descriptor settings by calling ct_data_info. If
the Adaptive Server Enterprise is version 11.0 or later, select the I/O descriptor
directly using the server global variables.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 299

To retrieve the current I/O descriptor with ct_data_info, an application must
first select the column of interest in the row of interest. While processing the
row results returned from the select, the application gets the I/O descriptor as
follows:

1 Calls ct_fetch to fetch the row of interest.

2 Calls ct_get_data to retrieve the column’s value and refresh the I/O
descriptor for the column. To refresh the I/O descriptor without retrieving
any data for the column, call ct_get_data with buflen as 0.

3 Calls ct_data_info to retrieve the I/O descriptor.

Beginning with version 11.0, Adaptive Server Enterprise, provides an
alternative method for setting the I/O descriptor fields. This method is used by
applications that only update one text or image column at a time. See “Using
global variables to update a text or image column” on page 304.

Sending the new column value

Once it has the current I/O descriptor for a column value, the application
performs the update:

1 Calls ct_command to initiate a send-data command.

2 Modifies the I/O descriptor, if necessary. Most applications change only
the values of the locale, total_txtlen, or log_on_update fields.

3 Calls ct_get_data to set the I/O descriptor for the column value. The textptr
field of the I/O descriptor structure identifies the target column of the
send-data operation.

4 Calls ct_send_data in a loop to write the entire text or image value. Each
call to ct_send_data writes a portion of the text or image value.

5 Calls ct_send to send the command.

6 Calls ct_results to process the results of the command. An update of a text
or image column generates a a parameter result set containing a single
parameter, the new text timestamp for the value. If the application plans to
update this column value again, it must save the new timestamp and copy
it into the CS_IODESC for the column value before calling ct_data_info
(step 3, above) to set the I/O descriptor for the new update.

Most applications use a program structure similar to the following to update
text or image columns:

ct_con_alloc to allocate connection1 and connection2

text and image data handling

300 Open Client

ct_cmd_alloc to allocate cmd1 and cmd2

ct_command(cmd1) to select columns
 (including text) from table
ct_send to send the command
while ct_results returns CS_SUCCEED
 (optional) ct_res_info to get description of result set
 (optional) ct_describe to get descriptons of columns
 (optional) ct_bind if binding any columns

 while ct_fetch(cmd1) returns rows
 for each text column
 /* Retrieve the current CS_IODESC for the column */
 if you want the column’s data, loop on ct_get_data
 while there’s data to retrieve
 if you don’t want the column’s data, call
 ct_get_data once with buflen of 0 to
 refresh the CS_IODESC
 ct_data_info(cmd1, CS_GET) to get the CS_IODESC

 /* Update the column */
 ct_command(cmd2) to initiate a send-data command
 if necessary, modify fields in the CS_IODESC
 ct_data_info(cmd2, CS_SET) to set the CS_IODESC for
 the column
 while there is data to send
 ct_send_data(cmd2) to send a chunk of data
 end while
 ct_send(cmd2) to send the send-data command
 ct_results(cmd2) to process the send-data results
 end for
 end while
end while

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 301

Partial updates to text and image data

Open Client supports the partial update of text and image columns. A partial
update allows you to specify the part of the text or image field that you want to
replace, delete, or insert, and to update that part only instead of modifying the
entire field.

Note Currently, Adaptive Server Enterprise does not support partial updates of
text or image data. However, Open Server does support partial updates of text
or image data. See Chapter 2, “Topics“ in the Open Server Server-Library/C
Reference Manual.

To perform a partial update, use ct_data_info to set iotype, delete_length, and
offset. The values of delete_length and of the data passed to the server through
ct_send_data determine the behavior of the partial update:

Sending partial updates with ct_send_data

The ct_send_data routine can be used to send partially updated data. For
partially updated data, the ct_send_data constructs a Transact-SQL updatetext
statement, and the data is sent in chunks using multiple ct_send_data calls. The
updatetext syntax is:

updatetext table_name.column_name text_pointer
{NULL | offset} {NULL | delete_length} [with_log]

Note The updatetext statement is created only if the iotype value of the
CS_IODESC structure is set to is set to CS_IOPARTIAL.

delete_length Text data Server action

0 Provided Insert the text data at offset.

!= 0 Provided Starting from offset, overwrite delete_length
bytes of data with text data.

!= 0 Not provided Starting at offset, delete delete_length bytes of
data.

NULL Provided / Not
provided

Delete data starting from offset to the end of
the text or image column.

text and image data handling

302 Open Client

Handling of unitext data

If your client application performs partial updates on 2-byte Unicode datatypes,
the application must make sure that it sends an even number of bytes to avoid
a character split. You can use the buflen parameter of ct_send_data and the
total_txtlen field of CS_IODESC to specify the length, in bytes, of the Unicode
data. For Unitext, the offset and delete_length values must be specified as a
character count while total_txtlen must be specified in bytes. For other
datatypes, the offset, delete_length, and total_txtlen must be in bytes.

Populating a table containing text or image columns
An application’s method of populating a table containing text or image columns
depends on the size of the data values to be inserted.

Smaller text and image values

Most applications embed text or image values of less than 100K in an insert
statement:

insert blurbs values (“486-29-1786”, “If Chastity
 Locksley didn’t exist, this troubled...")
insert au_pix values ("486-29-1786", 0x67f44c...,
 "ICT", "30220", "626", "635")

Larger text and image values

The following method is recommended for populating an Adaptive Server
Enterprise table with text or image values larger than 100K:

1 insert all data into the row except the text or image values.

2 update the row, setting the value of the text or image columns to NULL.
This step is necessary because a text or image column row that contains a
null value will have a valid text pointer only if the null value was explicitly
entered with the update statement.

3 Retrieve I/O descriptor settings for the column. This is done two ways:

• Select the text or image column of interest, then call ct_data_info after
the column’s value has been retrieved. For a description of this
method, see “Retrieving the I/O descriptor settings” on page 298.
This method works with all Sybase Servers that support the text and
image datatypes.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 303

• Use the text and image global variables provided by Adaptive Server
Enterprise. For a description of this method, see “Using global
variables to update a text or image column” on page 304. This
method requires Adaptive Server Enterprise version 11.0 or later.

4 Update the columns as described in “Sending the new column value” on
page 299.

Server global variables for text and image updates
Adaptive Server Enterprise version 11.0 and later have global variables
specifically for text and image support. These variables are:

Each connection to Adaptive Server Enterprise has its own instance of these
variables. The variables are set at 0 at the beginning of a session. Adaptive
Server Enterprise updates the variables:

• When the application updates a text or image data column during the
session. If multiple text or image columns in the same row are updated at
the same time, the variables describe the last text/image column in the row
that was updated.

• When the application inserts a row containing a non-NULL text or image
value. If multiple non-NULL text or image columns are inserted in the
same row, the variables describe the last non-NULL text or /. column in the
row.

Variable Explanation Datatype

@@textptr The text pointer of the last text or image column
inserted or updated by a process.

binary(16)

@@textts Text timestamp of the column referenced by
@@textptr.

varbinary(8)

@@textcolid ID of the column referenced by @@textptr. tinyint

@@textdbid ID of the database containing the object with the
column referenced by @@textptr.

smallint

@@textobjid ID of the object containing the column referenced
by @@textptr.

int

text and image data handling

304 Open Client

Using global variables to update a text or image column

In applications that only insert or update one text or image column at a time, the
text/image global variables provide an alternative way to fill in the I/O
descriptor fields required for updating a text or image column with
ct_send_data.

As mentioned in “Updating a text or image column” on page 297, ct_data_info
cannot be called to set an I/O descriptor’s fields until after the application has
selected and retrieved the text or image column of interest. Instead of calling
ct_data_info, the application retrieves the text and image global variables and
uses their values to fill in the I/O descriptor. To do this, the application must:

• Issue a language command to update the column or to insert a new row.

• In the same language batch, select the current values of the text and image
global variables.

• Process the results and retrieve the values into the I/O descriptor fields.

Most applications follow the steps below to perform a text/image update using
the Server text and image global variables:

1 Call ct_command to initiate a language command containing an update or
insert statement that causes Adaptive Server Enterprise to place the desired
I/O descriptor values in the text and image global variables. This is done
by sending a language command that updates the column to a dummy
value. The command must also select Transact-SQL expressions that are
appropriate for the textptr, timestamp, and the name fields of the
CS_IODESC structure. For example, if the key of the my_table table is the
int_col column, an appropriate language command batch is:

update my_table set text_col = NULL
 where int_col = 23
 if @@rowcount != 0
 select @@textptr,
 @@textts,
 colname = object_name(@@textobjid) +
 '.' + col_name(@@textobjid,
 @@textcolid,
 @@textdbid)

For inserts of a new row, the update is preceded or replaced by an insert
command in the same batch. If the insert command specifies NULL for the
text or image column, it must be followed by an update that updates the
column to NULL. Otherwise, the server does not update the @@text
variables to describe the column. An insert that specifies a non-NULL
value for the text or image column need not be followed by an update.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 305

If the update in the example command above succeeds, the required
information for the I/O descriptor is selected and returned as three
columns. The first column is the text pointer value, the second is the new
timestamp, and the third is a string of the form table_name.column.

2 Process the results in a ct_results loop.

The selected expressions are returned as regular result rows (result type
CS_ROW_RESULT). The application calls ct_bind to bind the values to
the fields of a CS_IODESC structure and retrieve the values with ct_fetch.
The application binds the structure fields according to the following table:

3 Set all remaining I/O descriptor fields to appropriate values:

iodesc->iotype = CS_IODATA;
 iodesc->usertype = 0;
 iodesc->offset = 0;
 iodesc->locale = (CS_LOCALE *) NULL;
 iodesc->total_txtlen = length_of_new_value;
 iodesc->log_on_update = CS_TRUE; /* or CS_FALSE */

After following these steps, the application is ready to send the new text or
image value as described under “Sending the new column value” on page 299.

Datatypes support
Client-Library supports a wide range of datatypes. These datatypes are shared
with Open Client CS-Library and Server-Library. In most cases, they
correspond directly to Adaptive Server Enterprise datatypes.

CS_IODESC field Column value

timestamp,
timestamplen

Call ct_bind to bind timestamp to @@textts and pass the
address of timestamplen as ct_bind’s copied parameter.

textptr, textptrlen Call ct_bind to bind to@@textptr and pass the address of
textptrlen as ct_bind’s copied parameter.

name, namelen Call ct_bind to bind name to the value returned for:
object_name(@@textobjid) +
 "." + col_name(@@textobjid,
 @@textcolid,
 @@textdbid)

In the ct_bind call, pass the address of namelen as the
ct_bind’s copied parameter when binding to the name field.

Datatypes support

306 Open Client

Table 2-36 lists Open Client and Open Server type constants, their
corresponding C datatypes, and their corresponding Adaptive Server
Enterprise, if any.

Following Table 2-36 is a list of Open Client routines that are useful in
manipulating datatypes and more detailed information about each datatype.

For additional information about datatypes, see Chapter 3, “Using Open Client
and Open Server Datatypes,” in the Open Client Client-Library/C
Programmers Guide.

Datatype summary
Table 2-36 lists Open Client and Open Server type constants, their
corresponding C datatypes, and their corresponding Adaptive Server
Enterprise datatypes, if any:

Table 2-36: Datatype summary

Type
category

Open Client and Open
Server type constant Description

Corresponding C
datatype

Corresponding
server
datatype

Binary types CS_BINARY_TYPE Binary type CS_BINARY binary,
varbinary

CS_LONGBINARY_TYPE Long binary type CS_LONGBINARY None

CS_VARBINARY_TYPE Variable-length
binary type

CS_VARBINARY None

Bit types CS_BIT_TYPE Bit type CS_BIT bit

Character
 types

CS_CHAR_TYPE Character type CS_CHAR char,
varchar

CS_LONGCHAR_TYPE Long character
type

CS_LONGCHAR None

CS_VARCHAR_TYPE Variable-length
 character type

CS_VARCHAR None

CS_UNICHAR_TYPE Fixed-length or
variable-length
character type

CS_UNICHAR unichar

univarchar

XML type CS_XML_TYPE Variable-length
character type

CS_XML xml

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 307

Datetime types CS_DATE_TYPE 4-byte date type CS_DATE date

CS_TIME_TYPE 4-byte time type CS_TIME time

CS_DATETIME_TYPE 8-byte datetime
type

CS_DATETIME datetime

CS_DATETIME4_TYPE 4-byte datetime
type

CS_DATETIME4 smalldatetime

CS_BIGDATETIME_TYPE 8-byte binary type CS_BIGDATETIME bigdatetime

CS_BIGTIME_TYPE 8-byte binary type CS_BIGTIME bigtime

Numeric types CS_TINYINT_TYPE 1-byte unsigned
integer type

CS_TINYINT tinyint

CS_SMALLINT_TYPE 2-byte integer type CS_SMALLINT smallint

CS_INT_TYPE 4-byte integer type CS_INT int

CS_BIGINT_TYPE 8-byte integer type CS_BIGINT bigint

CS_USMALLINT_TYPE 2-byte unsigned
integer type

CS_USMALLINT usmallint

CS_UINT_TYPE 4-byte unsigned
integer type

CS_UINT uint

CS_UBIGINT_TYPE 8-byte unsigned
integer type

CS_UBIGINT ubigint

CS_DECIMAL_TYPE Decimal type CS_DECIMAL decimal

CS_NUMERIC_TYPE Numeric type CS_NUMERIC numeric

CS_FLOAT_TYPE 8-byte float type CS_FLOAT float

CS_REAL_TYPE 4-byte float type CS_REAL real

Money types CS_MONEY_TYPE 8-byte money type CS_MONEY money

CS_MONEY4_TYPE 4-byte money type CS_MONEY4 smallmoney

Large object
(LOB) locator
types

CS_TEXTLOCATOR_TYPE Locator type CS_LOCATOR text_locator

CS_IMAGELOCATOR_
TYPE

Locator type CS_LOCATOR image_locator

CS_UNITEXTLOCATOR_
TYPE

Locator type CS_LOCATOR unitext_locator

Text and image
types

CS_TEXT_TYPE Text type CS_TEXT text

CS_UNITEXT_TYPE Variable-length
character type

CS_UNITEXT unitext

CS_IMAGE_TYPE Image type CS_IMAGE image

Type
category

Open Client and Open
Server type constant Description

Corresponding C
datatype

Corresponding
server
datatype

Datatypes support

308 Open Client

Routines that manipulate datatypes
Open Client CS-Library provides several routines that are useful for
manipulating datatypes. They include:

• cs_calc, which performs arithmetic operations on decimal, money, and
numeric datatypes

• cs_cmp, which compares datetime, decimal, money, and numeric
datatypes

• cs_convert, which converts a data value from one datatype to another

• cs_dt_crack, which converts a machine readable datetime value into a
user-accessible format

• cs_dt_info, which sets or retrieves language-specific datetime information

• cs_strcmp, which compares two strings

These routines are documented in the Open Client and Open Server Common
Libraries Reference Manual.

Open Client datatypes
This section describes the datatypes in Open Client, and provides definitions
for the datatypes.

Binary types

Open Client has three binary types, CS_BINARY, CS_LONGBINARY, and
CS_VARBINARY.

• CS_BINARY corresponds to the Adaptive Server Enterprise types binary
and varbinary. That is, Client-Library interprets both the server binary and
varbinary types as CS_BINARY. For example, ct_describe returns
CS_BINARY_TYPE when describing a result column that has the server
datatype varbinary.

CS_BINARY is defined as:

typedef unsigned char CS_BINARY;

 Warning! CS_LONGBINARY and CS_VARBINARY do not correspond
to any Adaptive Server Enterprise datatypes.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 309

• Some Open Server applications may support CS_LONGBINARY. An
application uses the CS_DATA_LBIN capability to determine whether an
Open Server connection supports CS_LONGBINARY. If it does, then
ct_describe returns CS_LONGBINARY when describing a result data
item.

A CS_LONGBINARY value has a maximum length of 2,147,483,647
bytes. CS_LONGBINARY is defined as:

typedef unsigned char CS_LONGBINARY;

• CS_VARBINARY does not correspond to any Adaptive Server Enterprise
type. For this reason, Open Client routines do not return
CS_VARBINARY_TYPE. CS_VARBINARY is provided to enable non-
C programming language veneers to be written for Open Client. Typical
client applications will not use CS_VARBINARY.

CS_VARBINARY is defined as:

typedef struct _cs_varybin
 {
 CS_SMALLINT len;
 CS_BYTE array[CS_MAX_CHAR];
 } CS_VARBINARY;

where:

• len is the length of the binary array.

• array is the array itself.

Although CS_VARBINARY variables are used to store variable-
length values, CS_VARBINARY is considered to be a fixed-length
type. This means that an application does not typically need to
provide Client-Library with the length of a CS_VARBINARY
variable. For example, ct_bind ignores the value of datafmt
maxlength when binding to a CS_VARBINARY variable.

Bit types

Open Client supports a single bit type, CS_BIT. This type is intended to hold
server bit (or boolean) values of 0 or 1. When converting other types to bit, all
non-zero values are converted to 1:

typedef unsigned char CS_BIT;

Datatypes support

310 Open Client

Character types

Open Client has four character types, CS_CHAR, CS_LONGCHAR,
CS_VARCHAR, and CS_UNICHAR:

• CS_CHAR corresponds to the Adaptive Server Enterprise types char and
varchar. That is, Client-Library interprets both the server char and
varchar types as CS_CHAR. For example, ct_describe returns
CS_CHAR_TYPE when describing a result column that has the server
datatype varchar.

CS_CHAR is defined as:

typedef char CS_CHAR;

 Warning! CS_LONGCHAR and CS_VARCHAR do not correspond to
any Adaptive Server Enterprise datatypes. Specifically, CS_VARCHAR
does not correspond to the Adaptive Server Enterprise datatype varchar.

• CS_LONGCHAR does not correspond to any Adaptive Server Enterprise
type, but some Open Server applications support CS_LONGCHAR. An
application uses the CS_DATA_LCHAR capability to determine whether
an Open Server connection supports CS_LONGCHAR. If it does, then
ct_describe returns CS_LONGCHAR when describing a result data item.

A CS_LONGCHAR value has a maximum length of 2,147,483,647 bytes.
CS_LONGCHAR is defined as:

typedef unsigned char CS_LONGCHAR;

• CS_VARCHAR does not correspond to any Adaptive Server Enterprise
type. For this reason, Open Client routines do not return
CS_VARCHAR_TYPE. CS_VARCHAR is provided to enable non-C
programming language veneers to be written for Open Client. Typical
client applications will not use CS_VARCHAR.

CS_VARCHAR is defined as:

typedef struct _cs_varchar
 {
 CS_SMALLINT len;
 CS_CHAR str[CS_MAX_CHAR];
 } CS_VARCHAR;

where:

• len is the length of the string.

• str is the string itself. Note that str is not null-terminated.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 311

Although CS_VARCHAR variables are used to store variable-length
values, CS_VARCHAR is considered to be a fixed-length type. This
means that an application does not typically need to provide Client-
Library with the length of a CS_VARCHAR variable. For example,
ct_bind ignores the value of datafmtmaxlength when binding to a
CS_VARCHAR variable.

• CS_UNICHAR corresponds to the Adaptive Server Enterprise
unichar fixed-width and univarchar variable-width datatypes.
CS_UNICHAR is a shared, C-programming datatype that can be used
anywhere the CS_CHAR datatype is used. The CS_UNICHAR
datatype stores character data in the two-byte Unicode UTF-16
format.

CS_UNICHAR is defined as follows:

typedef unsigned char CS_UNICHAR;

XML type

CS_XML corresponds directly to Adaptive Server Enterprise xml variable-
length datatype. CS_XML can be used anywhere CS_TEXT and CS_IMAGE
are used to represent XML documents and contents.

CS_XML is defined as follows:

typedef unsigned char CS_XML

Datetime types

Open Client supports six datetime types, CS_DATE, CS_TIME,
CS_DATETIME, CS_DATETIME4, CS_BIGDATETIME, and
CS_BIGTIME. These datatypes are intended to hold 4-byte and 8-byte
datetime values.

The CS_BIGDATETIME and CS_BIGTIME datatypes provide microsecond-
level precision for time data. These datatypes are intended to hold 8-byte
binary values. These datatypes function similarly to the respective
CS_DATETIME and CS_TIME datatypes: The CS_BIGDATETIME datatype
can be used anywhere that the CS_DATETIME datatype can be used, and the
CS_BIGTIME datatype can be used anywhere that the CS_TIME datatype can
be used. All Open Client and Open Server routines that can be applied to the
CS_DATETIME and CS_TIME datatypes can also be applied to the
CS_BIGDATETIME and CS_BIGTIME datatypes.

Datatypes support

312 Open Client

An Open Client application uses the CS-Library routine cs_dt_crack to extract
date parts (year, month, day, etc.) from a datetime structure.

• CS_DATE corresponds to the Adaptive Server Enterprise date datatype.
The range of legal CS_DATE values is from January 1, 0001 to December
31, 9999. The definition of CS_DATE is:

typedef CS_INT CS_DATE; /* 4-byte date type*/

• CS_TIME corresponds to the Adaptive Server Enterprise time datatype.
The range of legal CS_TIME values is from 12:00:00.000 to 11:59:59:999
with a precision of 1/300th of a second (3.33 ms.). The definition of
CS_TIME is:

typedef CS_INT CS_TIME; /* 4-byte time type*/

• CS_DATETIME corresponds to the Adaptive Server Enterprise datetime
datatype. The range of legal CS_DATETIME values is from January 1,
1753 to December 31, 9999, with a precision of 1/300th of a second (3.33
ms.). The definition of CS_DATETIME is:

typedef struct _cs_datetime
 {
 CS_INT dtdays;
 CS_INT dttime;
 } CS_DATETIME;

where:

• dtdays is the number of days since 1/1/1900.

• dttime is the number of 300ths of a second since midnight.

• CS_DATETIME4 corresponds to the Adaptive Server Enterprise
smalldatetime datatype. The range of legal CS_DATETIME4 values is
from January 1, 1900 to June 6, 2079, with a precision of 1 minute. The
definition of CS_DATETIME is:

typedef struct _cs_datetime4
 {
 CS_USHORT days;
 CS_USHORT minutes;
 } CS_DATETIME4;

where:

• days is the number of days since 1/1/1900.

• minutes is the number of minutes since midnight.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 313

• CS_BIGDATETIME corresponds to the Adaptive Server Enterprise
bigdatetime datatype and contains the number of microseconds that have
passed since January 1, 0000 00:00:00.000000. The range of legal
CS_BIGDATETIME values is from January 1, 0001 00:00:00.000000 to
December 31, 9999 23:59:59.999999.

Note January 1, 0000 00:00:00.000000 is the base starting value from
which microseconds are counted. Any value earlier than January 1, 0001
00:00:00.000000 is invalid.

The definition of CS_BIGDATETIME can be found in cstypes.h:

typedef CS_UBIGINT CS_BIGDATETIME;

• CS_BIGTIME corresponds to the Adaptive Server Enterprise bigtime
datatype and indicates the number of microseconds that have passed since
the beginning of the day. The range of legal CS_BIGTIME values is from
00:00:00.000000 to 23:59:59.999999. The definition of CS_BIGTIME
can be found in cstypes.h:

typedef CS_UBIGINT CS_BIGTIME;

• CS_BIGDATETIME and CS_BIGTIME data is presented to the client in
the native-byte order (endianness) of the underlying client platform. Any
necessary byte-swapping is performed at the server before the data is sent
to the client, or after the data is received from the client.

Integer types

Open Client supports seven integer types: CS_TINYINT, CS_SMALLINT,
CS_INT, CS_BIGINT, CS_USMALLINT, CS_UINT, and CS_UBIGINT.

Integer types include CS_TINYINT, a 1-byte integer; CS_SMALLINT, a 2-
byte integer, CS_INT, a 4-byte integer, CS_BIGINT, an 8-byte integer,
CS_USMALLINT, an unsigned 2-byte integer, CS_UINT, an unsigned 4-byte
integer and CS_UBIGINT, an unsigned 8-byte integer:

typedef unsigned char CS_TINYINT;
typedef short CS_SMALLINT;
typedef int CS_INT;
typedef long long CS_BIGINT;
typedef unsigned char CS_USMALLINT;
typedef unsigned int CS_UINT;
typedef unsigned long long CS_UBIGINT;

Datatypes support

314 Open Client

Real, float, numeric, and decimal types

• CS_REAL corresponds to the Adaptive Server Enterprise datatype real. It
is implemented as a C-language float type:

typedef float CS_REAL;

Note When converting 6-digit precision bigint or ubigint datatypes to real
datatypes, note the following maximum and minimum values:

• -9223370000000000000.0 < bigint < 9223370000000000000.0

• 0 < ubigint < 18446700000000000000.0

Values outside of these ranges cause overflow errors.

• CS_FLOAT corresponds to the Adaptive Server Enterprise datatype float.
It is implemented as a C-language double type:

typedef double CS_FLOAT;

Note When converting 15-digit precision bigint or ubigint datatypes to
float datatypes, note the following maximum and minimum values:

• -9223372036854770000.0 < bigint < 9223372036854770000.0

• 0 < ubigint < 18446744073709500000.0

Values outside of these ranges cause overflow errors.

• CS_NUMERIC and CS_DECIMAL correspond to the Adaptive Server
Enterprise datatypes numeric and decimal. These types provide platform-
independent support for numbers with precision and scale.

 Warning! For output parameters CS_DECIMAL and CS_NUMERIC in
Client-Library and ESQL/C programs, the precision and scale must be
defined before making a call to ct_param. This is required because the
output parameters have no values associated with them at definition time
and have an invalid precision and scale associated with them. Failure to
initialize the values will result in an invalid precision or scale message.

The Adaptive Server Enterprise datatypes numeric and decimal are
equivalent; and CS_DECIMAL is defined as CS_NUMERIC:

typedef struct_cs_numeric
 {
 CS_BYTE precision;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 315

 CS_BYTE scale;
 CS_BYTE array[CS_MAX_NUMLEN];
 } CS_NUMERIC;

 typedef CS_NUMERIC CS_DECIMAL;

where:

• precision is the maximum number of decimal digits that can be
represented by the corresponding number of digits in base-256
numbering. For example, four digits of decimal precision (0-9999)
can be represented by two base-256 digits. At the current time, legal
values for precision are from 1 to 77. The default precision is 18.
CS_MIN_PREC, CS_MAX_PREC, and CS_DEF_PREC define the
minimum, maximum, and default precision values, respectively.

• array is a base-256 representation of the numeric value. The byte at
index 0 denotes the sign, where 0 (or a byte value of 00000000)
represents a positive number, and 1 (or a byte value of 0000001)
represents a negative number. The remaining bytes, 1-n, represent the
base-256 number in little-endian order, with the byte at index 1 being
the most significant byte.

The number of bytes used in array is based on the selected precision
of the numeric. Mapping is performed based on the precision of the
numeric to the length of array that is used.

• scale is the maximum number of digits to the right of the decimal
point. At the current time, legal values for scale are from 0 to 77. The
default scale is 0. CS_MIN_SCALE, CS_MAX_SCALE, and
CS_DEF_SCALE define the minimum, maximum, and default scale
values, respectively.

• scale must be less than or equal to precision.

CS_DECIMAL types use the same default values for precision and
scale as CS_NUMERIC types.

Money types

Open Client supports two money types, CS_MONEY and CS_MONEY4.
These datatypes are intended to hold 8-byte and 4-byte money values,
respectively.

• CS_MONEY corresponds to the Adaptive Server Enterprise money
datatype. The range of legal CS_MONEY values is between
+$922,337,203,685,477.5807 and -$922,337,203,685,477.5807:

Datatypes support

316 Open Client

typedef struct _cs_money
 {
 CS_INT mnyhigh;
 CS_UINT mnylow;
 } CS_MONEY;

• CS_MONEY4 corresponds to the Adaptive Server Enterprise smallmoney
datatype. The range of legal CS_MONEY4 values is between -
$214,748.3648 and +$214,748.3647:

typedef struct _cs_money4
 {
 CS_INT mny4;
 } CS_MONEY4;

Text and image types

Open Client supports text datatypes, CS_TEXT and CS_UNITEXT, as well as
an image datatype, CS_IMAGE.

• CS_TEXT corresponds to the Adaptive Server Enterprise datatype text,
which describes a variable-length column containing up to 2,147,483,647
bytes of printable character data. CS_TEXT is defined as unsigned
character:

typedef unsigned char CS_TEXT;

• CS_UNITEXT corresponds to the Adaptive Server Enterprise unitext
variable-length datatype. CS_UNITEXT exhibits identical syntax and
semantics to CS_TEXT. The difference is that CS_UNITEXT encodes
character data in the 2-byte Unicode UTF-16 format. CS_UNITEXT can
be used anywhere CS_TEXT is used. The maximum length of the
CS_UNITEXT string parameter is half of the maximum length of
CS_TEXT.

CS_UNITEXT is defined as follows:

typedef unsigned short CS_UNITEXT;

• CS_IMAGE corresponds to the Adaptive Server Enterprise datatype
image, which describes a variable-length column containing up to
2,147,483,647 bytes of binary data. CS_IMAGE is defined as unsigned
character:

typedef unsigned char CS_IMAGE;

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 317

LOB locator datatypes

CS_LOCATOR is an opaque datatype, that is, there is no public typedef of the
internal data structure available.

Use the CS-Library routine cs_locator_alloc to allocate a CS_LOCATOR
datatype structure.

Use the CS-Library routine cs_locator to retrieve information from a
CS_LOCATOR datatype structure, such as prefetched data, the total length of
the LOB in the server, or the character representation of the locator pointer.

Use the CS-Library routine cs_locator_drop to deallocate a CS_LOCATOR
datatype structure.

See the locator.c sample for using this datatype.

Open Client user-defined datatypes
An application that needs to use a datatype that is not included in the standard
Open Client type set may create a user-defined datatype.

A Client-Library application creates a user-defined type by declaring it:

typedef char CODE_NAME;

The Open Client routines ct_bind and cs_set_convert use integer symbolic
constants to identify datatypes, so it is often convenient for an application to
declare a type constant for a user-defined type. User-defined types must be
defined as greater than or equal to CS_USERTYPE:

#define CODE_NAME_TYPE (CS_USERTYPE + 2)

Once a user-defined type has been created, an application:

• Calls cs_set_convert to install custom conversion routines to convert
between standard Open Client types and the user-defined type

• Calls cs_setnull to define a null substitution value for the user-defined
type.

After conversion routines are installed, an application binds server results to a
user-defined type:

mydatafmt.datatype = CODE_NAME_TYPE;
 ct_bind(cmd, 1, &mydatafmt, mycodename, NULL, NULL);

Using the runtime configuration file

318 Open Client

Custom conversion routines are called transparently, whenever required, by
ct_fetch (following a call to ct_bind specifying the conversion) and cs_convert.

Note Do not confuse Open Client user-defined types with Adaptive Server
Enterprise user-defined types. Open Client user-defined types are C-language
types, declared within an application. Adaptive Server Enterprise user-defined
types are database column datatypes, created using the system stored procedure
sp_addtype.

Using the runtime configuration file
By default, Client-Library reads the Open Client and Open Server runtime
configuration file to set runtime values for the following:

• Property values (normally set with ct_config or ct_con_props calls)

• Server option values (normally set with ct_options calls after a connection
is opened)

• Server capabilities (normally set with ct_capability calls before a
connection is opened)

• Properties that can be set only in the runtime configuration file and cannot
be set with ct_config or ct_con_props calls

• Debugging options (normally set with ct_debug calls)

Applications that read the configuration file to apply these settings eliminate
several calls to ct_con_props or the other routines mentioned above. Another
benefit is that the application’s runtime settings are changed without
recompiling code.

The environment variable, SYBOCS_DBVERSION, allows you to externally
configure the DB-Library version level at runtime. It does this by calling
dbsetversion, thereby changing the application code.

Note If there is an external Sybase configuration file, add these sections to
enable bcp and isql:

[BCP]

[isql]

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 319

Enabling external configuration
The following properties control the use of the Open Client and Open Server
runtime configuration file:

• CS_EXTERNAL_CONFIG – when this property is CS_TRUE at the
context level, ct_init reads default Client-Library context property values
from the Open Client and Open Server runtime configuration file.

At the context level, CS_EXTERNAL_CONFIG defaults to CS_TRUE if
the default Open Client and Open Server runtime configuration file exists,
and to CS_FALSE otherwise. The name of the external configuration file
is determined by the CS_CONFIG_FILE property. Applications can
override the context-level default by calling cs_config.

At the connection level, allocated connection structures inherit
CS_EXTERNAL_CONFIG from the parent context. If
CS_EXTERNAL_CONFIG is CS_TRUE at the connection level,
ct_connect reads default connection properties, capabilities, server
options, and debugging options from the Open Client and Open Server
runtime configuration file.

• CS_CONFIG_FILE – specifies the name and location of the Open Client
and Open Server runtime configuration file. CS_CONFIG_FILE is set at
the context level with cs_config or at the connection level with
ct_con_props. The default value is NULL, which means that a platform-
specific default file will be used:

• On UNIX platforms, the default configuration file is
$SYBASE/$SYBASE_OCS/config/ocs.cfg.

$SYBASE is the path to the Sybase installation directory, specified in
the SYBASE environment variable. $SYBASE_OCS is the Open
Client and Open Server subdirectory, specified in the SYBASE_OCS
environment variable.

• On Windows platforms, the default configuration file is
%SYBASE%\%SYBASE_OCS%\ini\ocs.cfg.

%SYBASE% is the path to the Sybase installation directory, specified
in the SYBASE environment variable. %SYBASE_OCS% is the Open
Client and Open Server subdirectory, specified in the SYBASE_OCS
environment variable.

For other platforms, see the Open Client and Open Server Configuration
Guide for the name of the default Open Client and Open Server runtime
configuration file.

Using the runtime configuration file

320 Open Client

• CS_CONFIG_BY_SERVERNAME – controls whether ct_connect uses the
value of the connection’s CS_APPNAME property or the server name as
the file section name. By default, the value of CS_APPNAME is used.
CS_CONFIG_BY_SERVERNAME is set at the connection level with
ct_con_props.

For example, if external configuration is enabled for the connection, the
application name is “Monthly Report,” and the value of server_name is
“FinancialDB,” then:

• If CS_CONFIG_BY_SERVERNAME is CS_FALSE, ct_connect
looks for a section labeled [Monthly Report].

• If CS_CONFIG_BY_SERVERNAME is CS_TRUE, ct_connect
looks for a section name labeled [FinancialDB].

Note CS_SERVERNAME cannot be changed in the external
configuration file unless CS_CONFIG_BY_SERVERNAME is set to
CS_TRUE.

The server and application names are changed by the configuration
section. This allows an administrator to override a server or application
name that is hard-coded in the application. For example, if the application
is set up to read the section name FinancialDB, the section could contain
the following:

[FinancialDB]
 CS_APPNAME = "Monthly Financial Report"
 CS_SERVERNAME = "Dev_FinancialDB" ; redirect to
 ; development
 ; server

• SYBOCS_CFG – specifies the configuration file to be used, overriding the
default ocs.cfg file located as follows:

• In UNIX: $SYBASE/$SYBASE_OCS/config/ocs.cfg

• In Windows: %SYBASE%\%SYBASE_OCS%\ini\ocs.cfg

• CS_APPNAME – at the context level, specifies from which section of the
file to read values. Applications call cs_config to set CS_APPNAME at the
context level. If the application does not set CS_APPNAME for the
context structure, ct_init looks for a section labeled [DEFAULT]. At the
connection level, ct_connect reads the file section indicated by
CS_APPNAME when external configuration is enabled and the
CS_CONFIG_BY_SERVERNAME property has its default value of
CS_FALSE.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 321

Open Client and Open Server runtime configuration file syntax
The Open Client and Open Server runtime configuration file is a text file. The
file is separated into sections, each of which begins with a section name
enclosed in square brackets ([]) and ends with the next section name or the end
of the file, whichever appears first.

Each section contains one or more settings, as illustrated below:

[section name]
 keyword = value ; comment
 keyword = value
; more comments
[next section name]
... and so forth ...

In general, all supported keywords in the file match the names of the symbolic
constants that would identify the property, option, or capability in a Client-
Library/C program. However, not all properties can be set in the configuration
file. If a keyword is not supported, the setting is ignored.

The syntax is as follows:

• ; – Signifies a comment line.

• [section_name] – Section names are wrapped in square brackets. The Open
Client/Server configuration file comes with a section named DEFAULT.
The application name will be used as the section name for an application
that has been compiled with the -x option. For an application that has been
compiled with the -e option, the server name will be used for the section
name. Any name can be used as a section name for the sections that
contain settings that will be used in multiple sections. The following
example shows a section arbitrarily named “GENERIC,” and how that
section is included in other sections:

[GENERIC]
 CS_OPT_ANSINULL=CS_TRUE
[APP_PAYROLL]
 include=GENERIC
 CS_CAP_RESPONSE=CS_RES_NOSTRIPBLANKS
[APP_HR]
 include=GENERIC
 CS_OPT_QUOTED_IDENT=CS_TRUE

• entry_name=entry_value

• Entry values can be anything: integers, strings and so on. If an entry
value line ends with '\'<newline>, the entry value continues to the next
line.

Using the runtime configuration file

322 Open Client

• White spaces are trimmed from the beginning and end of entry values.

• If white spaces are required at the beginning or end of an entry value,
wrap them in double quotes.

• An entry that begins with a double quote must end with a double
quote. Two double quote characters in a row within a quoted string
represent a single double quote in the value string. If a newline is
encountered within double quotes, it is considered to be literally part
of the value.

• Entry names and section names can consist of alphabetic characters
(both upper and lower case), the digits 0-9, and any of the following
punctuation characters:

! " # $ % & ' () * + , - . / : ; < > ? @ \ ^ _ ` { | } ~

Square brackets, spaces, and the equal symbol (=) are not supported.
The first letter MUST be alphabetic.

• Entry and section names are case sensitive.

• Include=earlier_section

If a section contains the entry include, then the entire contents of that
previously defined section are considered to be replicated within this
section. In other words, the properties defined in the previous section
are inherited by this section.

Note The included section must have been defined prior to it being
included in another section. This allows the configuration file parsing
to happen in a single pass and eliminates the need to detect recursive
included directives.

If an included section in turn includes another section, the order of
entry values is defined by a “depthfirst” search of the included
sections.

Sections cannot include a reference to themselves. In other words,
recursion is not possible because you must include a previously
defined section—you cannot include the section being defined.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 323

All direct entry values defined in a given section supersede any values
which may have been included from another section. In the following
example, CS_OPT_ANSINULL will be set to false in the
APP.PAYROLL application.

Note The position of the include statement does not affect this rule.

[GENERIC]
 CS_OPT_ANSINULL=CS_TRUE
[APP_PAYROLL]
 CS_OPT_ANSINULL=CS_FALSE
 include=GENERIC

• If an entry’s value in a C program takes symbolic constants, then the
legal values are the names of these constants. For example:

CS_NETIO = CS_SYNC_IO

• If an entry’s value in a C program takes integer values, then legal
values match the legal range of integer values. For example:

CS_TIMEOUT = 60

• If an entry’s value in a C program takes boolean values, then legal
values are CS_TRUE and CS_FALSE. For example:

CS_DIAG_TIMEOUT = CS_TRUE

• If an entry’s value in a C program takes character strings, then the
string is typed directly into the file. For example:

CS_USERNAME = winnie

Some string values must be quoted. If a string contains leading white
space, trailing white space, or the semicolon (;) comment character,
then the value must be quoted. Also, null string values must be
indicated by consecutive quotes. For example:

CS_APPNAME = " Monthly report; Financials "
 CS_PASSWORD = ""

Long string values are continued on a subsequent line by escaping the
end-of-line with a backslash (\). If an unescaped end-of-line occurs in
a quoted string, it is read as part of the value. Finally, literal
backslashes in a string value must be doubled.

Using the runtime configuration file

324 Open Client

• If a property’s value in a C program takes pointers to a datatype other
than CS_CHAR, the property cannot be set through external
configuration. The sole exception is the CS_LOCALE keyword,
which has the same effect as configuring a CS_LOCALE structure
and installing it as a context or connection’s CS_LOC_PROP
property. For example, this line would assign the French locale to the
context or connection:

CS_LOCALE = french

• If a keyword occurs twice in a section, only the first definition is used.

• A section can include the keywords in another section using this
syntax:

[section name]
 include = previous section name
... more settings ...

All settings defined under an included section name are defined in a
section that includes that section. An included setting is always
replaced by an explicit setting in the including section. For example,
the Finance section, below, defines CS_TIMEOUT as 30. The
included setting from the DEFAULT section is replaced by an explicit
setting:

[DEFAULT]
 CS_TIMEOUT = 45

 [Finance]
 include = DEFAULT
 CS_TIMEOUT = 30

Runtime configuration file keywords
The tables below contain the legal keywords for configuring Client-Library’s
runtime behavior and the recognized values for each.

Keywords for localization

The following table describes the keywords for configuring a context or a
connection’s locale. These settings replace calls necessary to set the
CS_LOC_PROP property for a context or connection.

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 325

Keywords for context or connection properties

When the application calls them, ct_init and ct_connect each read a section of
the configuration file if the application has requested external configuration.

If a context property is set when ct_init reads a section, then any calls to
ct_con_props to set the same property override the configured setting.

If a property is set when ct_connect reads a section, then calls to ct_con_props
to set the same property either:

• Get replaced by the file’s value if the ct_con_props call occurs before
ct_connect, or

• Replace the file’s value if the ct_con_props call occurs after ct_connect.

For example, values for CS_USERNAME and CS_PASSWORD that are set in
a configuration section always override hard-coded values in the application
code. This is true because the application must set these properties before
ct_connect is called.

Table 2-37 lists the keywords that set context or connection properties. For
descriptions of what each property controls, see “Properties” on page 187.

Keyword Legal value

CS_LOCALE Any locale name defined in the locales file for
the host platform.

Using the runtime configuration file

326 Open Client

Table 2-37: Configuration file keywords to set properties

Keyword Read by Legal value

CS_ANSI_BINDS ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_APPNAME ct_connect A character string

CS_ASYNC_ NOTIFS ct_connect CS_TRUE or CS_FALSE

CS_BULK_LOGIN ct_connect CS_TRUE or CS_FALSE

CS_CON_KEEPALIVE ct_connect CS_TRUE or CS_FALSE

CS_CON_TCP_NODELAY ct_connect CS_TRUE or CS_FALSE

CS_DIAG_TIMEOUT ct_connect CS_TRUE or CS_FALSE

CS_DISABLE_POLL ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_DS_COPY ct_connect CS_TRUE or CS_FALSE

CS_DS_DITBASE ct_connect A character string

CS_DS_FAILOVER ct_connect CS_TRUE or CS_FALSE

CS_DS_PASSWORD ct_connect A character string

CS_DS_PRINCIPAL ct_connect A character string

CS_DS_PROVIDER ct_connect A character string

CS_DS_RAND_OFFSET ct_config,
ct_con_props

CS_TRUE or CS_FALSE

CS_EXPOSE_FMTS ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_EXTENDED_ENCRYPT_CB ct_connect CS_TRUE or CS_FALSE

CS_EXTRA_INF ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_HAFAILOVER ct_config,
ct_con_props

CS_TRUE or CS_FALSE

CS_HIDDEN_KEYS ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_HOSTNAME ct_connect A character string

CS_IFILE ct_init A character string

CS_LOGIN_TIMEOUT ct_init An integer value

CS_LOOP_DELAY ct_connect An integer value

CS_MAX_CONNECT ct_init An integer value

CS_NETIO ct_init,
ct_connect

CS_SYNC_IO,
CS_ASYNC_IO, or
CS_DEFER_IO

CS_NOAPI_CHK ct_init CS_TRUE or CS_FALSE

CS_NO_TRUNCATE ct_init CS_TRUE or CS_FALSE

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 327

CS_NOINTERRUPT ct_init CS_TRUE or CS_FALSE

CS_PACKETSIZE ct_connect An integer value

CS_PASSWORD ct_connect A character string

CS_PROP_EXTENDEDFAILOV
ER

ct_config,
ct_con_props

CS_TRUE or CS_FALSE

CS_PROP_REDIRECT ct_config,
ct_con_props

CS_TRUE or CS_FALSE

CS_RETRY_COUNT ct_connect An integer value

CS_SEC_APPDEFINED ct_connect CS_TRUE or CS_FALSE

CS_SEC_CHALLENGE ct_connect CS_TRUE or CS_FALSE

CS_SEC_CHANBIND ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_CONFIDENTIALITY ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_CREDTIMEOUT ct_init,
ct_connect

A positive integer or
CS_NO_LIMIT

CS_SEC_DATAORIGIN ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_DELEGATION ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_DETECTREPLAY ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_DETECTSEQ ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_ENCRYPTION ct_connect CS_TRUE or CS_FALSE

CS_SEC_EXTENDED_ENCRYP
TION

ct_connect CS_TRUE or CS_FALSE

CS_SEC_INTEGRITY ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_KEYTAB ct_connect A character string

CS_SEC_MECHANISM ct_init,
ct_connect

A character string

CS_SEC_MUTUALAUTH ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_NETWORKAUTH ct_init,
ct_connect

CS_TRUE or CS_FALSE

CS_SEC_NON_ENCRYPTION_R
ETRY

ct_connect CS_TRUE or CS_FALSE

CS_SEC_SERVERPRINCIPAL ct_connect A character string

Keyword Read by Legal value

Using the runtime configuration file

328 Open Client

Keywords for server options

Table 2-38 lists the keywords for configuring the server options for a
connection.

Application calls to ct_options always override equivalent settings in the
configuration file.

The keywords for setting server options are listed in Table 2-38. For
descriptions of what each option controls, see “Options” on page 180.

CS_SEC_SESSTIMEOUT ct_init,
ct_connect

A positive integer or
CS_NO_LIMIT.

CS_TDS_VERSION ct_connect CS_TDS_40, CS_TDS_42,
CS_TDS_46, or CS_TDS_50

CS_TEXTLIMIT ct_init,
ct_connect

An integer value or
CS_NO_LIMIT

CS_TIMEOUT ct_init An integer value

CS_USERNAME ct_connect A string value

Keyword Read by Legal value

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 329

Table 2-38: Configuration file keywords for server options

Keyword Legal value

CS_OPT_ANSINULL CS_TRUE or CS_FALSE

CS_OPT_ANSIPERM CS_TRUE or CS_FALSE

CS_OPT_ARITHABORT CS_TRUE or CS_FALSE

CS_OPT_ARITHIGNORE CS_TRUE or CS_FALSE

CS_OPT_AUTHOFF A string value

CS_OPT_AUTHON A string value

CS_OPT_CHAINXACTS CS_TRUE or CS_FALSE

CS_OPT_CURCLOSEONXACT CS_TRUE or CS_FALSE

CS_OPT_CURREAD A string value.

CS_OPT_CURWRITE A string value

CS_OPT_DATEFIRST CS_OPT_SUNDAY,
CS_OPT_MONDAY,
CS_OPT_TUESDAY,
CS_OPT_WEDNESDAY,
CS_OPT_THURSDAY,
CS_OPT_FRIDAY, or
CS_OPT_SATURDAY

CS_OPT_DATEFORMAT CS_OPT_FMTMDY,
CS_OPT_FMTDMY,
CS_OPT_FMTYMD,
CS_OPT_FMTYDM,
CS_OPT_FMTMYD, or
CS_OPT_FMTDYM

CS_OPT_FIPSFLAG CS_TRUE or CS_FALSE

CS_OPT_FORCEPLAN CS_TRUE or CS_FALSE

CS_OPT_FORMATONLY CS_TRUE or CS_FALSE

CS_OPT_GETDATA CS_TRUE or CS_FALSE

CS_OPT_IDENTITYOFF A string value

CS_OPT_IDENTITYON A string value

CS_OPT_ISOLATION CS_OPT_LEVEL0,
CS_OPT_LEVEL1, or
CS_OPT_LEVEL3

CS_OPT_NOCOUNT CS_TRUE or CS_FALSE

CS_OPT_NOEXEC CS_TRUE or CS_FALSE

CS_OPT_PARSEONLY CS_TRUE or CS_FALSE

CS_OPT_QUOTED_IDENT CS_TRUE or CS_FALSE

CS_OPT_RESTREES CS_TRUE or CS_FALSE

CS_OPT_ROWCOUNT An integer value

Using the runtime configuration file

330 Open Client

Keywords for server capabilities

Only response capabilities are configured externally. If response capabilities
are read from the file, they replace any response capabilities set by application
calls to ct_capability for the connection.

The following table lists the keywords for configuring the server capabilities
for a connection. For descriptions of what each capability controls, see the
reference page for ct_capability.

Keywords that set properties exclusively

These keywords set properties that can be specified only in the runtime
configuration file and cannot be set using cs_config or ct_con_props:

Table 2-39: Keywords that set properties exclusively

CS_OPT_SHOWPLAN CS_TRUE or CS_FALSE

CS_OPT_SORTMERGE CS_TRUE or CS_FALSE

CS_OPT_STATS_IO CS_TRUE or CS_FALSE

CS_OPT_STATS_TIME CS_TRUE or CS_FALSE

CS_OPT_TEXTSIZE An integer value

CS_OPT_TRUNCIGNORE CS_TRUE or CS_FALSE

Keyword Legal value

Keyword Legal value

CS_CAP_RESPONSE A comma-separated list of capabilities the client does
not want to receive. List values include any symbolic
constant listed in Table 3-6 on page 365.

Keyword Description. Allowed in

CS_SANITIZE_DISC_
APPNAME

Specifies whether the discovered application name (executable
name obtained from the operating system) for a nameless
application (CS_APPNAME is not explicitly set by the
application) is used as is, after converting to uppercase, or after
converting to lowercase.

Legal values:

• CS_CNVRT_UPPERCASE – convert discovered name to
uppercase before use.

• CS_CNVRT_LOWERCASE – convert discovered name to
lowercase before use.

• CS_CNVRT_NOTHING (default) – use the discovered name
as is.

[DEFAULT]
section only

CHAPTER 2 Client-Library Topics

Client-Library/C Reference Manual 331

Keywords for ct_debug options

The following table lists the keywords for configuring the debugging options
for a connection.

The CS_DBG_FILE keyword specifies the name of the file to which Client-
Library writes text-format debug information. Client-Library only records the
debug information that is requested.

Debug information is requested with the other keywords. These correspond to
the bitmasks for the ct_debug flag parameter. For meanings of these debug
flags, see the reference page for ct_debug.

Table 2-40: Configuration file keywords for debugging options

CS_DEBUG specifies the data to be written to the file CS_DBG_FILE. Its
value can be a list of flags that correspond to the bitmasks for ct_debug’s flag
parameter. For meanings of these debug flags, see the reference page for
ct_debug in the Open Client Client-Library/C Reference Manual.

The possible flags are:

• CS_DBG_ALL

CS_USE_DISCOVERED
_APPNAME

Specifies whether the runtime configuration file is parsed for
application-specific settings for nameless applications
(CS_APPNAME is not explicitly set by the application) and any
settings found are applied to the application. The executable
name obtained from the operating system is set as
CS_APPNAME and is used to parse the runtime configuration
file.

Legal values:

• CS_TRUE – parse for and apply any application-specific
settings from the configuration file.

• CS_FALSE (default) – do not parse the configuration file for
application-specific settings.

[DEFAULT]
section only

Keyword Description. Allowed in

Keyword Legal value

CS_DBG_FILE A character string specifying the file name
for text-format debugging information

CS_DEBUG A character string giving a comma-
delimited list of debug flags

CS_PROTOCOL_FILE A character string specifying the
destination file name for binary-format
debugging information

Using the runtime configuration file

332 Open Client

• CS_DBG_API_LOGCALL

• CS_DBG_API_STATES

• CS_DBG_ASYNC

• CS_DBG_DIAG

• CS_DBG_ERROR

• CS_DBG_MEM

• CS_DBG_NETWORK

• CS_DBG_PROTOCOL

• CS_DBG_PROTOCOL_FILE

• CS_DBG_PROTOCOL_STATES

• CS_DBG_SSL

Client-Library/C Reference Manual 333

C H A P T E R 3 Routines

This chapter contains a reference page for each Client-Library routine.

Routine Description Page
ct_bind Bind server results to program

variables.
335

ct_br_column Retrieve information about a column
generated by a browse mode select.

347

ct_br_table Return information about browse mode
tables.

348

ct_callback Install or retrieve a Client-Library
callback routine.

350

ct_cancel Cancel a command or the results of a
command.

355

ct_capability Set or retrieve a client/server capability. 360

ct_close Close a server connection. 369

ct_cmd_alloc Allocate a CS_COMMAND structure. 372

ct_cmd_drop Deallocate a CS_COMMAND
structure.

373

ct_cmd_props Set or retrieve command structure
properties. For use by applications that
resend commands.

374

ct_command Initiate a language, package, RPC,
message, or send-data command.

381

ct_compute_info Retrieve compute result information. 390

ct_con_alloc Allocate a CS_CONNECTION
structure.

393

ct_con_drop Deallocate a CS_CONNECTION
structure.

395

ct_con_props Set or retrieve connection structure
properties.

397

ct_config Set or retrieve context properties. 412

ct_connect Connect to a server. 420

ct_cursor Initiate a Client-Library cursor
command.

425

334 Open Client

ct_data_info Define or retrieve a data I/O descriptor
structure.

449

ct_debug Manage debug library operations. 453

ct_describe Return a description of result data. 458

ct_diag Manage inline error handling. 464

ct_ds_dropobj Release the memory associated with a
directory object.

471

ct_ds_lookup Initiate or cancel a directory lookup
operation.

472

ct_ds_objinfo Retrieve information associated with a
directory object.

479

ct_dynamic Initiate a dynamic SQL command. 485

ct_dyndesc Perform operations on a dynamic SQL
descriptor area.

492

ct_dynsqlda Operate on a SQLDA structure. 502

ct_exit Exit Client-Library. 509

ct_fetch Fetch result data. 512

ct_get_data Read a chunk of data from the server. 519

ct_getformat Return the server user-defined format
string associated with a result column.

524

ct_getloginfo Transfer TDS login response
information from a
CS_CONNECTION structure to a
newly allocated CS_LOGINFO
structure.

525

ct_init Initialize Client-Library for an
application context.

527

ct_keydata Specify or extract the contents of a key
column.

532

ct_labels Define a security label or clear security
labels for a connection.

534

ct_options Set, retrieve, or clear the values of
server query-processing options.

536

ct_param Supply values for a server command’s
input parameters.

542

ct_poll Poll connections for asynchronous
operation completions and registered
procedure notifications.

552

ct_recvpassthru Receive a TDS (Tabular Data Stream)
packet from a server.

559

Routine Description Page

CHAPTER 3 Routines

Client-Library/C Reference Manual 335

ct_bind
Description Bind server results to program variables.

Syntax CS_RETCODE ct_bind(cmd, item, datafmt, buffer, copied, indicator)

 CS_COMMAND cmd;
 CS_INT item;
 CS_DATAFMT *datafmt;
 CS_VOID *buffer;
 CS_INT *copied;
 CS_SMALLINT *indicator;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

ct_remote_pwd Define or clear passwords to be used for
server-to-server connections.

561

ct_res_info Retrieve current result set or command
information.

564

ct_results Set up result data to be processed. 570

ct_scroll_fetch Scrollable fetching function. 581

ct_send Send a command to the server. 590

ct_send_data Send a chunk of text or image data to
the server.

595

ct_sendpassthru Send a Tabular Data Stream (TDS)
packet to a server.

606

ct_setloginfo Transfer TDS login response
information from a CS_LOGINFO
structure to a CS_CONNECTION
structure.

608

ct_setparam Specify source variables from which
ct_send reads input parameter values
for a server command.

609

ct_wakeup Call a connection’s completion
callback.

622

Routine Description Page

ct_bind

336 Open Client

item
An integer representing the number of the column, parameter, or status to
bind.

When binding a column, item is the column’s column number. The first
column in a select statement’s select list is column number 1, the second
number 2, and so forth.

When binding a compute column, item is the column number of the compute
column. Compute columns are returned in the order in which they are listed
in the compute clause. The first column returned is number 1.

When binding a return parameter, item is the parameter number. The first
parameter returned by a stored procedure is number 1. Stored procedure
return parameters are returned in the same order as the parameters were
originally specified in the stored procedure’s create procedure statement.
This is not necessarily the same order as specified in the RPC command that
invoked the stored procedure. In determining what number to pass as item,
do not count non-return parameters. For example, if the second parameter in
a stored procedure is the only return parameter, pass item as 1.

When binding a stored procedure return status, item must be 1, as there can
be only a single status in a return status result set.

To clear all bindings, pass item as CS_UNUSED, with datafmt, buffer,
copied, and indicator as NULL.

datafmt
The address of a CS_DATAFMT structure that describes the destination
variable or array. ct_bind copies the contents of *datafmt before returning.
Client-Library does not reference the address in datafmt after ct_bind
returns.

The chart below lists the fields in *datafmt that are used by ct_bind and
contains general information about the fields. ct_bind ignores fields that it
does not use.

CHAPTER 3 Routines

Client-Library/C Reference Manual 337

Table 3-1: CS_DATAFMT field settings for ct_bind

Field
name

When
used Set to

name Not used. Not applicable.

namelen Not used. Not applicable.

datatype When
binding all
types of
results.

A type constant (CS_xxx_TYPE) representing the
datatype of the destination variable.

For valid type constants, see “Datatypes support” on
page 305. Open Client user-defined types are valid,
provided that user-supplied conversion routines have
been installed using cs_set_convert. If datatype is an
Open Client user-defined type, ct_bind does not validate
any CS_DATAFMT fields except count.

ct_bind supports a wide range of type conversions, so
datatype can be different from the type returned by the
server. For instance, by specifying a destination type of
CS_FLOAT_TYPE, a CS_MONEY result can be bound
to a CS_FLOAT program variable. The appropriate data
conversion happens automatically. ct_bind can perform
any conversion supported by cs_convert. For a list of the
supported conversions, see the cs_convert reference
page in the Open Client and Open Server.

If datatype is CS_BOUNDARY_TYPE or
CS_SENSITIVITY_TYPE, the *buffer program
variable must be of type CS_CHAR.

format When
binding
result items
to character,
binary, text,
or image
destination
variables;
otherwise
CS_FMT_U
NUSED.

A bitmask of the following symbols:

For character and text destinations only:
 CS_FMT_NULLTERM to null-terminate the data, or
 CS_FMT_PADBLANK to pad to the full length of the
variable with spaces.

For character, binary, text, and image destinations:
 CS_FMT_PADNULL to pad to the full length of the
variable with nulls.

For any type of destination:
 CS_FMT_UNUSED if no format information is being
provided.

ct_bind

338 Open Client

maxlength When
binding all
types of
results to
non-fixed-
length types.

When
binding to
fixed-length
types,
maxlength is
ignored.

The length of the *buffer destination variable. If buffer
points to an array, set maxlength to the length of a single
element of the array.

When binding to character or binary destinations,
maxlength must describe the total length of the
destination variable, including any space required for
special terminating bytes, such as a null terminator.

If maxlength indicates that *buffer is not large enough to
hold a result data item, then at fetch time ct_fetch
discards the result item that is too large, fetches any
remaining items in the row, and returns
CS_ROW_FAIL. If this occurs, the contents of *buffer
are undefined.

scale When
binding to
numeric or
decimal
destinations.

The maximum number of digits to the right of the
decimal point in the destination variable.

If the source data is the same type as the destination, then
scale can be set to CS_SRC_VALUE to indicate that the
destination should pick up its value for scale from the
source data.

scale must be less than or equal to precision.

precision When
binding to
numeric or
decimal
destinations.

The maximum number of decimal digits that can be
represented in the destination variable.

If the source data is the same type as the destination, then
precision can be set to CS_SRC_VALUE to indicate that
the destination should pick up its value for precision
from the source data.

precision must be greater than or equal to scale.

status Not used. Not applicable.

Field
name

When
used Set to

CHAPTER 3 Routines

Client-Library/C Reference Manual 339

 buffer
The address of an array of datafmtcount variables, each of which is of size
datafmtmaxlength.

*buffer is the program variable or variables to which ct_bind binds the server
results. When the application calls ct_fetch to fetch the result data, it is
copied into this space.

If buffer is NULL, ct_bind clears the binding for this result item. Note that if
buffer is NULL, datafmt, copied, and indicator must also be NULL.

Note The buffer address must remain valid as long as binds are active on the
command structure.

copied
The address of an array of datafmtcount integer variables. At fetch time,
ct_fetch fills this array with the lengths of the copied data. copied is an
optional parameter and can be passed as NULL.

count When
binding all
types of
results.

The number of result rows to be copied to program
variables per ct_fetch or ct_scroll_fetch call.

If count is larger than the number of available rows, only
the available rows are copied. (Note that only regular
row and cursor row result sets contain multiple rows.

count must have the same value for all columns in a
result set, with one exception: an application can
intermix counts of 0 and 1.

If count is 0, 1 row is fetched.

For ct_scroll_fetch calls, the count value must be equal or
greater than CS_CURSOR_ROWS. The count value
cannot be less than CS_CURSOR_ROWS, as
unpredictable results may occur.

usertype Not used. Not applicable.

locale When
binding all
types of
results.

A pointer to a CS_LOCALE structure containing locale
information for the *buffer destination variable.

If custom locale information is not required for the
variable, pass locale as NULL.

Field
name

When
used Set to

ct_bind

340 Open Client

indicator
The address of an array of datafmtcount CS_SMALLINT variables. At
fetch time, each variable is used to indicate certain conditions about the
fetched data. indicator is an optional parameter and can be passed as NULL.

The following table lists the values that an indicator variable can have:

Return value ct_bind returns the following values:

Common reasons for a ct_bind failure include:

• An illegal datatype specified using datafmtdatatype.

• A bad datafmtlocale pointer. Initialize datafmtlocale to NULL if it is
not used.

• Requested conversion is not available.

Examples

CS_RETCODE retcode;
 CS_INT num_cols;
 CS_INT i;
 CS_INT j;
 CS_INT row_count = 0;
 CS_INT rows_read;
 CS_INT disp_len;
 CS_DATAFMT *datafmt;
 EX_COLUMN_DATA *coldata;
/* Determine the number of columns in this result set */
 ct_res_info code deleted
/*
 ** Our program variable, called 'coldata', is an array of
 ** EX_COLUMN_DATA structures. Each array element represents

Indicator value Meaning

-1 The fetched data was NULL. In this case, no data is copied
to *buffer.

0 The fetch was successful.

integer value > 0 The actual length of the server data, if the fetch resulted in
truncation.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 341

 ** one column. Each array element will be re-used for each
 ** row.
 **
 ** First, allocate memory for the data element to process.
 */
 coldata = (EX_COLUMN_DATA *)malloc(num_cols *
 sizeof (EX_COLUMN_DATA));

if (coldata == NULL)
 {
 ex_error("ex_fetch_data: malloc() failed");
 return CS_MEM_ERROR;
 }
 datafmt = (CS_DATAFMT *)malloc(num_cols *
 sizeof (CS_DATAFMT));
 if (datafmt == NULL)
 {
 ex_error("ex_fetch_data: malloc() failed");
 free(coldata);
 return CS_MEM_ERROR;
 }

/*
 ** Loop through the columns, getting a description of each
 ** one and binding each one to a program variable.
 **
 ** We're going to bind each column to a character string;
 ** this will show how conversions from server native
 ** datatypes to strings can occur using bind.
 **
 ** We're going to use the same datafmt structure for both
 ** the describe and the subsequent bind.
 **
 ** If an error occurs within the for loop, a break is used
 ** to get out of the loop and the data that was allocated
 ** is freed before returning.
 */

for (i = 0; i < num_cols; i++)
 {
 /*
 ** Get the column description. ct_describe() fills
 ** the datafmt parameter with a description of the
 ** column.
 */
 retcode = ct_describe(cmd, (i + 1), &datafmt[i]);
 if (retcode != CS_SUCCEED)
 {

ct_bind

342 Open Client

 ex_error("ex_fetch_data: ct_describe() failed");
 break;
 }

 /*
 ** Update the datafmt structure to indicate that we
 ** want the results in a null terminated character
 ** string.
 **

 ** First, update datafmt.maxlength to contain the
 ** maximum possible length of the column. To do this,
 ** call ex_display_len() to determine the number of
 ** bytes needed for the character string
 ** representation, given the datatype described
 ** above. Add one for the null termination character.
 */

 datafmt[i].maxlength
 = ex_display_dlen(&datafmt[i]) + 1;

 /*
 ** Set datatype and format to tell bind we want things
 ** converted to null terminated strings.
 */
 datafmt[i].datatype = CS_CHAR_TYPE;
 datafmt[i].format = CS_FMT_NULLTERM;

 /*
 ** Allocate memory for the column string
 */
 coldata[i].value = (CS_CHAR *)malloc
 (datafmt[i].maxlength);
 if (coldata[i].value == NULL)
 {
 ex_error("ex_fetch_data: malloc() failed");
 retcode = CS_MEM_ERROR;
 break;
 }

 /* Now bind. */
 retcode = ct_bind(cmd, (i + 1), &datafmt[i],
 coldata[i].value, &coldata[i].valuelen,
 &coldata[i].indicator);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_fetch_data: ct_bind() failed");
 break;

CHAPTER 3 Routines

Client-Library/C Reference Manual 343

 }
}

This code excerpt is from the function ex_fetch_data() routine in the exutils.c
sample program. For further examples of using ct_bind, see the compute.c,
ex_alib.c, getsend.c, and i18n.c sample programs.

Usage • ct_bind can be used to bind a regular or cursor result column, a compute
column, a return parameter, or a stored procedure status number. When
binding a regular or cursor column, multiple rows of the column can be
bound with a single call to ct_bind.

Note Message, describe, row format, and compute format results are not
bound. This is because result sets of type CS_MSG_RESULT,
CS_DESCRIBE_RESULT, CS_ROWFMT_RESULT, and
CS_COMPUTEFMT_RESULT contain no fetchable data. Instead, these
result sets indicate that certain types of information are available. An
application can retrieve the information by calling other Client-Library
routines, such as ct_res_info. See “Results” on page 251.

• Binding associates a result data item with a program variable. At fetch
time, each ct_fetch call copies a row instance of the data item into the
variable with which the item is associated.

If a result data item is very large (for example, a large text or image
column), it is often more convenient for an application to use ct_get_data
to retrieve the data item’s value in chunks, rather than copying the entire
value to a bound variable. See the ct_get_data reference page, and “text
and image data handling” on page 295.

• ct_bind binds only the current result type. ct_results indicates the current
result type through its result_type parameter. For example, if ct_results sets
*result_type to CS_STATUS_RESULT, a return status is available for
binding.

• An application can call ct_res_info to determine the number of items in the
current result set and ct_describe to get a description of each item.

• An application can only bind a result item to a single program variable. If
an application binds a result item to multiple variables, only the last
binding has any effect.

• An application can use ct_bind to bind to Open Client user-defined
datatypes for which conversion routines have been installed. To install a
conversion routine for a user-defined datatype, an application calls
cs_set_convert. See “Open Client user-defined datatypes” on page 317.

ct_bind

344 Open Client

Replacing existing binds

• An application can rebind while actively fetching rows. That is, an
application can call ct_bind inside a ct_fetch loop if it needs to change a
result item’s binding.

• Applications do not have to rebind interspersed regular row results and
compute row results that are generated by the same command. If not
changed, binding for a particular type of result remains in effect until
ct_results returns CS_CMD_DONE to indicate that the results of a logical
command are completely processed.

For example, a language command containing a select statement with
compute and order by clauses can generate multiple regular row result sets
intermixed with compute row result sets. Because they are generated by
the same command, each regular row result set and each compute row
result set will contain identical columns. An application need only bind
each one time (before fetching the first result set of each type). These
bindings will remain in effect until both result sets are completely
processed (that is, until ct_results returns a result_type of
CS_CMD_DONE).

This behavior is independent of the CS_STICKY_BINDS property value.

Clearing bindings

• To clear the binding for a result item, call ct_bind with buffer, datafmt,
copied, and indicator as NULL. If the CS_STICKY_BINDS property is
enabled (CS_TRUE) for the command structure, then the result-item
binding is cleared for all subsequent executions of the command.

• To clear all bindings, call ct_bind with item as CS_UNUSED and buffer,
datafmt, copied, and indicator as NULL. If the CS_STICKY_BINDS
property is enabled (CS_TRUE) for the command structure, then the
result-item bindings are cleared only until ct_results returns
CS_CMD_DONE (in other words, only for the current execution of the
command). If the same command is executed again, the command
structure reverts to the previous bindings.

• It is not an error to clear a non-existent binding.

Duration of bindings

• By default, the binding between a result item and a program variable
remains active until:

• ct_results returns CS_CMD_DONE,

• The application rebinds the result item, or

CHAPTER 3 Routines

Client-Library/C Reference Manual 345

• The application clears the binding.

• The application can change the default duration of bindings by setting the
CS_STICKY_BINDS command property. When this property is set to
CS_TRUE, then result item bindings remain active across executions of
the same server command. Specifically, the binding between a result item
and a program variable remains active until:

• The application initiates a new server on the same command structure
with ct_command, ct_cursor, ct_dynamic, or ct_sendpassthru (but
nested cursor-close, cursor-update, or cursor-delete commands do not
clear bindings),

• The application rebinds the result item,

• The application clears the binding, or

• The application calls ct_results and it finds a format mismatch
between the result set format when the binds were established and the
current result set.

The CS_STICKY_BINDS property is useful in batch-processing
applications that repeatedly execute the same command.

• Commands can return multiple result sets. When the
CS_STICKY_BINDS property is CS_TRUE, then Client-Library
preserves all bindings for all result sets returned by the first execution of a
command for use with later executions of the same command. During
first-time command execution, Client-Library also saves information
about the formats and sequencing of the returned result sets. After
subsequent executions of the same command, each call to ct_results
compares the current result formats to the saved result formats. If
ct_results finds a mismatch, then it clears all bindings, raises an
informational error, and returns CS_SUCCEED.

The result formats from repeated execution of the same command can only
vary if the command contains conditional server-side logic (for example,
an Adaptive Server Enterprise stored procedure that contains an if or a
while statement).

• Applications can check the value of the CS_HAVE_BINDS command
property to see if binds were saved from a previous execution of the
current command. A value of CS_TRUE indicates one or more binds is
active for the current result set. For example, a batch processing
application might use the following logic to retrieve result rows:

retrieve CS_HAVE_BINDS property with ct_cmd_props
 if CS_HAVE_BINDS is CS_FALSE

ct_bind

346 Open Client

 bind variables with ct_bind
 end if
 while ct_fetch returns CS_SUCCEED or CS_ROW_FAIL
 process row data
 end while

Calling ct_bind does not change the value of CS_HAVE_BINDS. The
property reflects whether binds established during a previous execution of
the command are still in effect.

• As long as a result item binding remains active, the memory addresses
given as ct_bind’s buffer parameter must remain valid. Each call to ct_fetch
writes data to the buffer address. If the address is invalid, the application
will experience memory corruption or a memory access violation. For
example, if an application’s C routine binds the address of an automatic
variable, and the routine returns before the application calls ct_fetch, then
the bound address will be invalid.

Array binding

• Array binding is the process of binding a result column to an array of
program variables. At fetch time, multiple rows are copied to an array of
variables with a single ct_fetch or ct_scroll_fetch call. An application
indicates array binding by setting datafmtcount to a value greater than
1.

• Array binding is only practical for regular row and cursor results. This is
because other types of results are considered to be the equivalent of a
single row.

• When binding columns to arrays, all ct_bind calls in the sequence of calls
binding the columns must use the same value for datafmtcount. For
example, when binding three columns to arrays, it is an error to use a count
of five in the first two ct_bind calls and a count of three in the last.

However, an application can intermix counts of 0 and 1. counts of 0 and 1
are considered to be equivalent because they both cause ct_fetch to fetch a
single row.

• If the CS_CURSOR_ROWS value is greater than 1, and you are using a
scrollable client cursor, array binding must be used. Failure to use array
binding may result in lost efficiency and undefined behavior.

For non-scrollable cursors, either arrays or regular program variables can
be used.

LOB locator datatype binding

When working with LOB locator datatypes:

CHAPTER 3 Routines

Client-Library/C Reference Manual 347

• ct_bind ignores the maxlength value of CS_DATAFMT because Client-
Library considers the length of LOB locator datatypes as fixed. Memory
required for any optional prefetched data that is sent with the LOB locator
is allocated internally for its entire length. The maxlength value does not
influence the length of the prefetched data.

• You can bind an incoming LOB locator to CS_CHAR_TYPE. However,
binding an incoming LOB locator value to a CS_TEXT_TYPE,
CS_IMAGE_TYPE, or CS_UNITEXT_TYPE datatype is not allowed.
The LOB locator must be bound to a LOB locator datatype and fetched
before it can be explicitly converted using cs_convert, to a text, image, or
unitext datatype to get the prefetched data.

See also ct_describe, ct_fetch, ct_res_info, ct_results, Datatypes support

ct_br_column
Description Retrieve information about a column generated by a browse-mode select.

Syntax CS_RETCODE ct_br_column(cmd, colnum, browsedesc)

 CS_COMMAND *cmd;
 CS_INT colnum;
 CS_BROWSEDESC *browsedesc;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

colnum
The number of the column to describe. The first column in a select
statement’s select-list is column number 1, the second is number 2, and so
forth.

browsedesc
A pointer to a CS_BROWSEDESC structure. ct_br_column fills this
structure with information about the column specified by colnum.

For information about the CS_BROWSEDESC structure, see
“CS_BROWSEDESC structure” on page 74.

Return value ct_br_column returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

ct_br_table

348 Open Client

ct_br_column fails if the current result set was not generated by a select...for
browse language command.

Usage • ct_br_column fills *browsedesc with information about the column
specified by colnum.

• A column can be updated through browse mode only if it:

• Belongs to a browsable table,

• Is the result of a select...for browse, and

• Is not the result of a SQL expression, such as max(colname).

• Is an error to call ct_br_column if browse-mode information is not
available. Generally, browse mode information is available if the current
result set is a CS_ROW_RESULT result set that was generated by a
select...for browse.

Before calling ct_br_column, an application can call ct_res_info with type
as CS_BROWSE_INFO to check whether browse mode information is
available.

See also “Browse mode” on page 19, ct_br_table

ct_br_table
Description Return information about browse mode tables.

Syntax CS_RETCODE ct_br_table(cmd, tabnum, type, buffer, buflen, outlen)

 CS_COMMAND *cmd;
 CS_INT tabnum;
 CS_INT type;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Return value Meaning

CHAPTER 3 Routines

Client-Library/C Reference Manual 349

tabnum
The number of the table of interest. The first table in a select statement’s
from list is table number 1, the second number is 2, and so forth.

type
The type of information to return. The following table lists the symbolic
values for type:

buffer
A pointer to the space in which ct_br_table will place the requested
information.

buflen
The length, in bytes, of the *buffer data space.

If type is CS_ISBROWSE or CS_TABNUM, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

If supplied, ct_br_table sets *outlen to the length, in bytes, of the requested
information.

If the requested information is larger than buflen bytes, the call fails. The
application can use the value of *outlen to determine how many bytes are
needed to hold the information.

Return value ct_br_table returns the following values:

Value of type ct_br_table return value *buffer set to

CS_ISBROWSE Whether or not the table is browsable.
A table is browsable if it has a unique
index and a timestamp column.

CS_TRUE or
CS_FALSE

CS_TABNAME The name of the table whose number is
tabnum.

A string value

CS_TABNUM The number of tables named in the
browse-mode select.

If type is CS_TABNUM, pass tabnum
as CS_UNUSED.

An integer value.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_callback

350 Open Client

ct_br_table fails if the current result set was not generated by a select...for
browse language command.

Usage • ct_br_table returns either the number of tables named in the select
statement or information about a particular table.

• A table is browsable if it has a unique index and a timestamp column.

• It is an error to call ct_br_table if browse-mode information is not
available. Generally, browse mode information is available if the current
result set is a CS_ROW_RESULT result set that was generated by a
select...for browse.

• Before calling ct_br_table, an application can call ct_res_info with type as
CS_BROWSE_INFO to check whether browse mode information is
available.

See also “Browse mode” on page 19, ct_br_column

ct_callback
Description Install or retrieve a Client-Library callback routine.

Syntax CS_RETCODE ct_callback(context, connection, action, type, func)

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_INT action;
 CS_INT type;
 CS_VOID *func;

Parameters context
A pointer to a CS_CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

Either context or connection must be NULL:

• If context is supplied, the callback is installed as a “default” callback for
the specified context. Once installed, a default callback is inherited by
all connections subsequently allocated within the context.

• If context is NULL, the callback is installed for the individual
connection specified by connection.

CHAPTER 3 Routines

Client-Library/C Reference Manual 351

connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

Either context or connection must be NULL:

• If connection is supplied, the callback is installed for the specified
connection.

• If connection is NULL, the callback is installed for the application
context specified by context.

action
One of the following symbolic values:

type
The type of callback routine of interest. The following table lists the
symbolic values for type:

Value of action Meaning

CS_SET Installs a callback

CS_GET Retrieves the currently installed callback of this type

ct_callback

352 Open Client

Table 3-2: Values for ct_callback type parameter

func
A pointer variable.

If a callback routine is being installed, func is the address of the callback
routine to install.

If a callback routine is being retrieved, ct_callback sets *func to the address
of the currently installed callback routine.

Return value ct_callback returns the following values:

Value of type Meaning

CS_CLIENTMSG_CB A client message callback, as described in “Client
message callbacks” on page 29.

CS_COMPLETION_CB A completion callback, as described in “Completion
callbacks” on page 32.

CS_DS_LOOKUP_CB A directory callback, as described in “Directory
callbacks” on page 37.

CS_ENCRYPT_CB An encryption callback, as described in “Encryption
callbacks” on page 39.

CS_EXTENDED_ENCRY
PT_CB

An encryption callback, as described in “Encryption
callbacks” on page 39.

CS_CHALLENGE_CB A negotiation callback, as described in “Negotiation
callbacks” on page 43.

CS_NOTIF_CB A registered procedure notification callback, as
described in “Notification callbacks” on page 46.

CS_SECSESSION_CB A security session callback, as described in “Security
session callbacks” on page 48.

CS_SERVERMSG_CB A server message callback, as described in “Server
message callbacks” on page 51.

CS_SIGNAL_CB +
signal_number

A signal callback, as described in “Signal callbacks”
on page 55.

Signal callbacks are identified by adding the signal
number of interest to the manifest constant
CS_SIGNAL_CB. For example, to install a signal
callback for a SIGALRM signal, pass type as
CS_SIGNAL_CB + SIGALRM.

CS_SSLVALIDATE_CB An SSL validation callback, as described in “SSL
validation callbacks” on page 57.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 353

Examples

 /*
 ** Install message and completion handlers.
 */
 retstat = ct_callback(Ex_context, NULL, CS_SET,
 CS_CLIENTMSG_CB,(CS_VOID *)ex_clientmsg_cb);
 if (retstat != CS_SUCCEED)
 {
 ex_panic("ct_callback failed");
 }
 retstat = ct_callback(Ex_context, NULL, CS_SET,
 CS_SERVERMSG_CB,(CS_VOID *)ex_servermsg_cb);
 if (retstat != CS_SUCCEED)
 {
 ex_panic("ct_callback failed");
 }

 retstat = ct_callback(Ex_context, NULL, CS_SET,
 CS_COMPLETION_CB,(CS_VOID *)CompletionCB);
 if (retstat != CS_SUCCEED)
 {
 ex_panic("ct_callback failed");
 }

This code excerpt is from the ex_amain.c sample program. For additional
examples of using ct_callback, see the ex_alib.c and exutils.c sample programs.

Usage • A typical application will use ct_callback only to install callback routines.
However, some applications may need to retrieve previously installed
callbacks.

• To install a callback routine, an application calls ct_callback with action as
CS_SET and func as the address of the callback to install.

• To retrieve the address of a previously installed callback, an application
calls ct_callback with action as CS_GET and func as a pointer to a pointer.
In this case, ct_callback sets *func to the address of the current callback of
the specified type. An application can save this address for use again at a
later time. Note that retrieving the address of a callback does not de-install
it.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Return value Meaning

ct_callback

354 Open Client

• ct_callback can be used to install a callback routine either for a context or
for a particular connection. To install a callback for a context, pass
connection as NULL. To install a callback for a connection, pass context
as NULL.

• When a context is allocated, it has no callback routines installed. An
application must specifically install any callbacks that are required.

• When a connection is allocated, it picks up default callback routines from
its parent context. An application can override these default callbacks by
calling ct_callback to install new callbacks at the connection level.

• To deinstall an existing callback routine, an application can call ct_callback
with func as NULL. An application can also install a new callback routine
at any time. The new callback automatically replaces any existing
callback.

• For most types of callbacks, if no callback of a particular type is installed
for a connection, Client-Library discards callback information of that type.

The client message callback is an exception to this rule. When an error or
informational message is generated for a connection that has no client
message callback installed, Client-Library calls the connection’s parent
context’s client message callback (if any) rather than discarding the
message. If the context has no client message callback installed, then the
message is discarded.

• A connection picks up its parent context’s callback routines only once,
when it is allocated. This has two important implications:

• Existing connections are not affected by changes to their parent
context’s callback routines.

• If a callback routine of a particular type is de-installed for a
connection, the connection does not pick up its parent context’s
callback routine. Instead, the connection is considered to have no
callback routine of this type installed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 355

• An application can use the CS_USERDATA property to transfer
information between a callback routine and the program code that
triggered it. The CS_USERDATA property allows an application to save
user data in internal Client-Library space and retrieve it later.

Note On Digital UNIX, Client-Library uses interrupt-driven I/O for all
network I/O modes, including synchronous mode. This affects the coding
of some applications.

On Digital UNIX, Client-Library applications that require their own signal
handler must install any needed signal handlers with ct_callback. Programs
that make UNIX system calls should check for system-call failure caused
by system interrupts, and reissue any interrupted system calls.

See also “Callbacks” on page 22, ct_capability, ct_config, ct_con_props, ct_connect

ct_cancel
Description Cancel a command or the results of a command.

Syntax CS_RETCODE ct_cancel(connection, cmd, type)

 CS_CONNECTION *connection;
 CS_COMMAND *cmd;
 CS_INT type;

Parameters connection
 A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

For CS_CANCEL_CURRENT cancels, connection must be NULL.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, one of
connection or cmd must be NULL. If connection is supplied and cmd is
NULL, the cancel operation applies to all commands pending for this
connection.

ct_cancel

356 Open Client

cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

For CS_CANCEL_CURRENT cancels, cmd must be supplied. The cancel
operation applies only to the results pending for this command structure.

For CS_CANCEL_ATTN and CS_CANCEL_ALL cancels, if cmd is
supplied and connection is NULL, the cancel operation applies only to the
command pending for this command structure. If cmd is NULL and
connection is supplied, the cancel operation applies to all commands
pending for this connection.

type
The type of cancel. The following table lists the symbolic values that are
legal for type

Table 3-3: Values for ct_cancel type parameter

Return value ct_cancel returns the following values:

Value of type Result Notes

CS_CANCEL_ALL ct_cancel sends an attention to the server,
instructing it to cancel the current
command.

Client-Library immediately discards all
results generated by the command.

Causes this connection’s cursors to
enter an undefined state.

To determine the state of a cursor, an
application can call ct_cmd_props
with property as
CS_CUR_STATUS.

CS_CANCEL_ATTN ct_cancel sends an attention to the server,
instructing it to cancel the current
command.

The next time the application reads from
the server, Client-Library discards all
results generated by the canceled
command.

Causes this connection’s cursors to
enter an undefined state.

To determine the state of a cursor, an
application can call ct_cmd_props
with property as
CS_CUR_STATUS.

CS_CANCEL_CURRENT ct_cancel discards the current result set. Safe to use on connections with
open cursors.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_CANCELED The cancel operation was canceled. Only a
CS_CANCEL_CURRENT type of cancel can be canceled.

CHAPTER 3 Routines

Client-Library/C Reference Manual 357

Examples

 if (query_code == CS_FAIL)
 {
 /*
 ** Terminate results processing and break out of
 ** the results loop.
 */
 retcode = ct_cancel(NULL, cmd, CS_CANCEL_ALL);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_cancel() failed");
 }
 break;
 }

This code excerpt is from the exutils.c sample program.

Usage • Canceling a command is equivalent to sending an attention to the server,
instructing it to halt execution of the current command. When a command
is canceled, any results generated by it are no longer available to an
application.

• Canceling results is equivalent to fetching and then discarding a result
set.Once results are canceled, they are no longer available to an
application. If the result set has not been completely processed, subsequent
results remain available.

Canceling a command

• To cancel the current command and all results generated by it, an
application calls ct_cancel with type as CS_CANCEL_ATTN or
CS_CANCEL_ALL. Both of these calls tell Client-Library to:

• Send an attention to the server, instructing it to halt execution of the
current command.

• Discard any results already generated by the command.

• Both types of cancels return CS_SUCCEED immediately, without sending
an attention to the server, if no command is in progress.

• If an application has not yet called ct_send to send an initiated command
or command batch:

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CS_TRYING A cancel operation is already pending for this connection.

Return value Meaning

ct_cancel

358 Open Client

• A CS_CANCEL_ALL cancel discards the initiated command or
command batch without sending an attention to the server. A
CS_CANCEL_ATTN cancel has no effect.

• A connection can become unusable due to error. If this occurs, Client-
Library marks the connection as “dead.” An application can use the
CS_CON_STATUS property to determine if a connection has been
marked “dead.”

If a connection has been marked “dead” because of a results-processing
error, an application can try calling ct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to revive the connection. If this fails, the
application must close the connection and drop its CS_CONNECTION
structure.

• The difference between CS_CANCEL_ALL and CS_CANCEL_ATTN
is:

• CS_CANCEL_ALL causes Client-Library to discard the canceled
command’s results immediately.

• CS_CANCEL_ATTN causes Client-Library to wait until the
application attempts to read from the server before discarding the
results.

• This difference is important because Client-Library must read from the
result stream to discard results, and it is not always safe to read from the
result stream.

It is not safe to read from the result stream from within callbacks or
interrupt handlers, or when an asynchronous routine is pending. It is safe
to read from the result stream anytime an application is running in its
mainline code, except when an asynchronous operation is pending.

Use CS_CANCEL_ATTN from within callbacks or interrupt handlers or
when an asynchronous operation is pending.

Use CS_CANCEL_ALL in mainline code, except when an asynchronous
operation is pending.

• CS_CANCEL_ALL leaves the command structure in a “clean” state,
available for use in another operation. When a command is canceled with
CS_CANCEL_ATTN, however, the command structure cannot be reused
until a Client-Library routine returns CS_CANCELED.

The Client-Library routines that can return CS_CANCELED are:

• ct_cancel(CS_CANCEL_CURRENT)

CHAPTER 3 Routines

Client-Library/C Reference Manual 359

• ct_fetch

• ct_get_data

• ct_options

• ct_recvpassthru

• ct_results

• ct_send

• ct_sendpassthru

• CS_CANCEL_ATTN has two primary uses:

• To cancel commands from within an application’s interrupt handlers
or callback routines.

• In asynchronous applications, to cancel pending calls to the result-
processing routines ct_results and ct_fetch.

• If a command has been sent and ct_results has not been called, a
ct_cancel(CS_CANCEL_ATTN) call has no effect.

• Canceling commands on a connection that has an open cursor may affect
the state of the cursor in unexpected ways. For this reason, it is
recommended that the CS_CANCEL_ALL and CS_CANCEL_ATTN
types of cancels not be used on connections with open cursors. Instead of
canceling a cursor command, an application can simply close the cursor.

Canceling current results

• To cancel current results, an application calls ct_cancel with type as
CS_CANCEL_CURRENT. This tells Client-Library to discard the
current results; it is equivalent to calling ct_fetch until it returns
CS_END_DATA.

• The next buffer’s worth of results, if any, remains available to the
application, and the current command is not affected.

• Canceling results clears the bindings between the result items and program
variables.

• A CS_CANCEL_CURRENT type of cancel is legal for all types of result
sets, even those that contain no fetchable results. If a result set contains no
fetchable results, a cancel has no effect.

See also ct_fetch, ct_results

ct_capability

360 Open Client

ct_capability
Description Set or retrieve a client/server capability.

Syntax CS_RETCODE ct_capability(connection, action, type, capability, value)

 CS_CONNECTION *connection;
 CS_INT action;
 CS_INT type;
 CS_INT capability;
 CS_VOID *value;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

action
One of the following symbolic values:

type
The type category of the capability. The following table lists the symbolic
values for type:

Value of action Meaning

CS_SET Sets a capability

CS_GET Retrieves a capability

CHAPTER 3 Routines

Client-Library/C Reference Manual 361

Table 3-4: Values for ct_capability type parameter

capability
The capability of interest. The following two tables list the symbolic values
that are legal for capability:

Note In addition to the values listed in the tables, capability can have the
special value CS_ALL_CAPS, to indicate that an application is setting or
retrieving all response or request capabilities simultaneously. CS_ALL_CAPS
is primarily of use in gateway applications. A typical Client-Library
application needs to set or retrieve only a small number of capabilities.

Table 3-5 summarizes the CS_CAP_REQUEST capabilities.

Value of type Meaning

CS_CAP_REQUEST Request capabilities.

These capabilities describe the types of requests that a
connection can support.

Request capabilities are retrieve-only.

CS_CAP_RESPONSE Response capabilities.

These capabilities describe the types of responses that a
server can send to a connection.

An application can set response capabilities before a
connection is open and can retrieve response
capabilities at any time.

ct_capability

362 Open Client

Table 3-5: Request capabilities

CS_CAP_REQUEST
capability Meaning

Capability
 relates to

CS_CON_INBAND In-band (non-expedited)
attentions.

Connections

CS_CON_LOGICAL Logical mapping. Connections

CS_CON_OOB Out-of-band (expedited)
attentions.

Connections

CS_CSR_ABS Fetch of specified absolute cursor
row.

Cursors

CS_CSR_FIRST Fetch of first cursor row. Cursors

CS_CSR_LAST Fetch of last cursor row. Cursors

CS_CSR_MULTI Multi-row cursor fetch. Cursors

CS_CSR_PREV Fetch previous cursor row. Cursors

CS_CSR_REL Fetch specified relative cursor
row.

Cursors

CS_CUR_IMPLICIT TDS optimized read-only cursor. Cursors

CS_DATA_BIGDATETIME Bigdatetime datatype. Datatypes

CS_DATA_BIGTIME Bigtime datatype. Datatypes

CS_DATA_BIN Binary datatype. Datatypes

CS_DATA_VBIN Variable-length binary type. Datatypes

CS_DATA_LBIN Long binary datatype. Datatypes

CS_DATA_BIT Bit datatype. Datatypes

CS_DATA_BITN Nullable bit values. Datatypes

CS_DATA_BOUNDARY Boundary datatype. Datatype

CS_DATA_CHAR Character datatype. Datatypes

CS_DATA_VCHAR Variable-length character
datatype.

Datatypes

CS_DATA_LCHAR Long character datatype. Datatypes

CS_DATA_DATE Date datatype. Datatypes

CS_DATA_DATE4 Short datetime datatype. Datatypes

CS_DATA_DATE8 Datetime datatype. Datatypes

CS_DATA_DATETIMEN NULL datetime values. Datatypes

CS_DATA_DEC Decimal datatype. Datatypes

CS_DATA_FLT4 4-byte float datatype. Datatypes

CS_DATA_FLT8 8-byte float datatype. Datatypes

CS_DATA_FLTN Nullable float values. Datatypes

CS_DATA_IMAGE Image datatype. Datatypes

CS_DATA_INT1 Tiny integer datatype. Datatypes

CHAPTER 3 Routines

Client-Library/C Reference Manual 363

CS_DATA_INT2 Small integer datatype. Datatypes

CS_DATA_INT4 Integer datatype. Datatypes

CS_DATA_INTN NULL integers. Datatypes

CS_DATA_INT8 8-integer datatype Datatypes

CS_DATA_LBIN Long binary datatype Datatypes

CS_DATA_LCHAR Long character datatype Datatypes

CS_DATA_UINT2 Unsigned 2-byte integer datatype Datatypes

CS_DATA_UINT4 Unsigned 4-byte integer datatype Datatypes

CS_DATA_UINT8 Unsigned 8-byte integer datatype Datatypes

CS_DATA_UINTN Unsigned datatype Datatypes

CS_DATA_UCHAR unsigned character. Datatypes

CS_DATA_UNITEXT unsigned character. Datatypes

CS_DATA_MNY4 Short money datatype. Datatypes

CS_DATA_MNY8 Money datatype. Datatypes

CS_DATA_MONEYN NULL money values. Datatypes

CS_DATA_NUM Numeric datatype. Datatypes

CS_DATA_SENSITIVITY Secure Server sensitivity
datatypes.

Datatypes

CS_DATA_TEXT Text datatype. Datatypes

CS_DATA_TIME Time datatype. Datatypes

CS_DATA_XML Variable-width character datatype. Datatypes

CS_DOL_BULK Token for bulk copy on DOL table. Bulk copy

CS_OBJECT_CHAR Specifies whether the server can
send/recieve streaming character
data.

Java objects.

CS_OBJECT_BINARY Specifies whether the server can
send/receive streaming binary
data.

Streaming
data.

CS_OBJECT_JAVA1 Specifies whether Java object
serializations can be sent/received
by the server.

Streaming
data.

CS_OPTION_GET Whether the client can get current
option values from the server.

Options

CS_PROTO_BULK Tokenized bulk copy. Bulk copy

CS_PROTO_DYNAMIC Descriptions for prepared
statements come back at prepare
time.

Dynamic SQL

CS_CAP_REQUEST
capability Meaning

Capability
 relates to

ct_capability

364 Open Client

Table 3-6 summarizes the CS_CAP_RESPONSE capabilities.

CS_PROTO_DYNPROC Client-Library prepends “create
proc” to a Dynamic SQL prepare
statement.

Dynamic SQL

CS_REQ_BCP Bulk copy requests. Commands

CS_REQ_CURSOR Cursor requests. Commands

CS_REQ_DBRPC2 Large RPC name requests. Commands

CS_REQ_DYN Dynamic SQL requests. Commands

CS_REQ_LANG Language requests. Commands

CS_REQ_MSG Message commands. Commands

CS_REQ_MSTMT Multiple server commands per
Client-Library language
command.

Commands

CS_REQ_NOTIF Registered procedure
notifications.

Commands

CS_REQ_PARAM Use PARAM/PARAMFMT TDS
streams for requests.

Commands

CS_REQ_RESERVED1 Reserved for future use. Commands

CS_REQ_RESERVED2 Reserved for future use. Commands

CS_REQ_URGNOTIF Send notifications with the
“urgent” bit set in the TDS packet
header.

Registered
procedures

CS_REQ_RPC Remote procedure requests. Commands

CS_WIDETABLES Wide table support. Connection

CS_CAP_REQUEST
capability Meaning

Capability
 relates to

CHAPTER 3 Routines

Client-Library/C Reference Manual 365

Table 3-6: Response capabilities

CS_CAP_RESPONSE
capability Meaning

Capability
 relates to

CS_CON_NOINBAND No in-band (non-expedited)
attentions.

Connections

CS_CON_NOOOB No out-of-band (expedited)
attentions.

Connections

CS_DATA_NOBIGDATETIME No bigdatetime datatype. Datatypes

CS_DATA_NOBIGTIME No bigtime datatype. Datatypes

CS_DATA_NOBIN No binary datatype. Datatypes

CS_DATA_NOBOUNDARY No security boundary datatype. Datatypes

CS_DATA_NOVBIN No variable-length binary type. Datatypes

CS_DATA_NOLBIN No long binary datatype. Datatypes

CS_DATA_NOBIT No bit datatype. Datatypes

CS_DATA_NOCHAR No character datatype. Datatypes

CS_DATA_NOVCHAR No variable-length character
datatype.

Datatypes

CS_DATA_NOLCHAR No long character datatype. Datatypes

CS_DATA_NODATE No date datatype. Datatypes

CS_DATA_NODATE4 No short datetime datatype. Datatypes

CS_DATA_NODATE8 No datetime datatype. Datatypes

CS_DATA_NODATETIMEN No NULL datetime values. Datatypes

CS_DATA_NODEC No decimal datatype. Datatypes

CS_DATA_NOFLT4 No 4-byte float datatype. Datatypes

CS_DATA_NOFLT8 No 8-byte float datatype. Datatypes

CS_DATA_NOIMAGE No image datatype. Datatypes

CS_DATA_NOINT1 No tiny integer datatype. Datatypes

CS_DATA_NOINT2 No small integer datatype. Datatypes

CS_DATA_NOINT4 No integer datatype. Datatypes

CS_DATA_NOINT8 No 8-byte integer datatype. Datatypes

CS_DATA_NOINTN No NULL integers. Datatypes

CS_DATA_NOLBIN No long binary Datatypes

CS_DATA_NOLCHAR No long character Datatypes

CS_DATA_NOMNY4 No short money datatype. Datatypes

CS_DATA_NOMNY8 No money datatype. Datatypes

CS_DATA_NOMONEYN No NULL money values. Datatypes

CS_DATA_NONUM No numeric datatype. Datatypes

CS_DATA_NOSENSITIVITY No Secure Server sensitivity
datatypes.

Datatypes

ct_capability

366 Open Client

CS_DATA_NOTEXT No text datatype. Datatypes

CS_DATA_NOTIME No time datatype. Datatypes

CS_DATA_NOUCHAR No unsigned character. Datatypes

CS_DATA_NOUINT2 No unsigned 2-byte integer
datatype.

Datatypes

CS_DATA_NOUINT4 No unsigned 4-byte integer
datatype.

Datatypes

CS_DATA_NOUINT8 No unsigned 8-byte integer
datatype.

Datatypes

CS_DATA_NOUINTN No unsigned integer datatype. Datatypes

CS_DATA_NOUNITEXT No unsigned short datatype. Datatypes

CS_DATA_NOXML No variable-width character
datatype.

Datatypes

CS_DATA_NOZEROLEN No zero length datatype. Datatypes

CS_NOWIDETABLES No wide tables. Connection

CS_RES_NOEED No extended error results. Results

CS_RES_NOMSG No message results. Results

CS_RES_NOPARAM Do not use PARAM/PARAMFMT
TDS streams for RPC results.

Results

CS_RES_NOSTRIPBLANKS The server should not strip blanks
when returning data from nullable
fixed-length character columns.

Results

CS_RES_NOTDSDEBUG No TDS debug token in response
to certain dbcc commands.

Results

CS_RES_NOXNLMETADATA No table metadata. Results

CS_RES_RESERVED Reserved for future use Future

CS_RES_SUPPRESS_FMT The server is capable of supporting
row format caching.

Result

CS_CAP_RESPONSE
capability Meaning

Capability
 relates to

CHAPTER 3 Routines

Client-Library/C Reference Manual 367

value
If a capability is being set, value points to a CS_BOOL variable that has the
value CS_TRUE or CS_FALSE.

If a capability is being retrieved, value points to a CS_BOOL-sized variable,
which ct_capability sets to CS_TRUE or CS_FALSE.

CS_TRUE indicates that a capability is enabled. For example, if the
CS_RES_NOEED capability is set to CS_TRUE, no extended error data
will be returned on the connection.

Note If capability is CS_ALL_CAPS, the value must point to a
CS_CAP_TYPE structure.

Return value ct_capability returns the following values:

Usage • Capabilities describe client/server features that a connection supports.

• There are two types of capabilities: CS_CAP_RESPONSE capabilities,
also called response capabilities, and CS_CAP_REQUEST capabilities,
also called request capabilities.

• An application uses request capabilities to determine what kinds of
requests a server connection supports. For example, an application
can retrieve the CS_REQ_CURSOR capability to find out whether a
connection supports cursor requests.

• An application uses response capabilities to prevent the server from
sending a type of response that the application cannot process. For
example, an application can prevent a server from sending NULL
money values by setting the CS_DATA_NOMONEYN response
capability to CS_TRUE.

• Before a connection is open, an application can:

• Retrieve request or response capabilities, to determine what request
and response features are normally supported at the application’s
current TDS (Tabular Data Stream) version level. An application’s
TDS level defaults to a value based on the CS_VERSION level that
the application requested in its call to ct_init.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_capability

368 Open Client

• Set response capabilities, to indicate that a connection does not wish
to receive particular types of server responses. An application cannot
set request capabilities, which are retrieve-only.

• After a connection is open, an application can:

• Retrieve request capabilities to find out what types of requests the
connection supports.

• Retrieve response capabilities to find out whether the server has
agreed to withhold the previously indicated response types from the
connection.

• Capabilities are determined by a connection’s TDS version level. Not all
TDS versions support the same capabilities. For example, 4.0 TDS does
not support registered procedure notifications or cursor requests.
However, 4.0 TDS does support bulk copy requests, remote procedure call
requests, row results, and compute row results. A connection’s TDS
version level is negotiated during the connection process.

• If an application sets the CS_TDS_VERSION property, Client-Library
overwrites existing capability values with default capability values
corresponding to the new TDS version. For this reason, an application
should set CS_TDS_VERSION before setting any capabilities for a
connection.

Because CS_TDS_VERSION is a negotiated login property, the server
can change its value at connection time. If this occurs, Client-Library
overwrites existing capability values with default capability values
corresponding to the new TDS version.

• Because capability values can change at connection time, an application
must call ct_capability after a connection is open to determine what
capability values are in effect for the connection.

• When a connection is closed, Client-Library resets its capability values to
values corresponding to the application’s default TDS version.

Setting and retrieving multiple capabilities

• Gateway applications often need to set or retrieve all capabilities of a type
category with a single call to ct_capability. To do this, an application calls
ct_capability with:

• type as the type category of interest

• capability as CS_ALL_CAPS

• value as a pointer to a CS_CAP_TYPE structure

CHAPTER 3 Routines

Client-Library/C Reference Manual 369

• Client-Library provides the following macros to enable an application to
set, clear, and test bits in a CS_CAP_TYPE structure:

• CS_SET_CAPMASK(mask, capability)

• CS_CLR_CAPMASK(mask, capability)

• CS_TST_CAPMASK(mask, capability)

where mask is a pointer to a CS_CAP_TYPE structure and capability is
the capability of interest.

Configuring capabilities externally

• ct_connect optionally reads a section from the Open Client and Open
Server runtime configuration file to set server capabilities for a
connection.

For a description of this feature, see “Using the runtime configuration
file” on page 318.

See also “Capabilities” on page 58, ct_con_props, ct_connect, ct_options, “Properties”
on page 187

ct_close
Description Close a server connection.

Syntax CS_RETCODE ct_close(connection, option)

 CS_CONNECTION *connection;
 CS_INT option;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

ct_close

370 Open Client

option
The option to use for the close. The following table lists the symbolic values
for option:

Return value ct_close returns the following values:

The most common reason for a ct_close(CS_UNUSED) failure is pending
results on the connection.

Examples CS_RETCODE retcode;
CS_INT close_option;
close_option = (status != CS_SUCCEED)? CS_FORCE_CLOSE :

CS_UNUSED;

retcode = ct_close(connection, close_option);
if (retcode != CS_SUCCEED)
{

Value of option Meaning

CS_UNUSED

(10.0+ servers only)

Default behavior.

ct_close sends a logout message to the server and reads the
response to this message before closing the connection.

If the connection has results pending, ct_close returns
CS_FAIL.

CS_FORCE_CLOSE The connection is closed whether or not results are pending,
and without notifying the server.

This option is primarily for use when an application is hung
waiting for a server response. It is also useful if ct_results,
ct_fetch, or ct_cancel returns CS_FAIL.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

If asynchronous network I/O is in effect and ct_close is
called with option as CS_FORCE_CLOSE, it returns
CS_SUCCEED or CS_FAIL immediately to indicate the
network response. In this case, no completion callback event
occurs.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Note that ct_close does not return CS_BUSY when called
with option as CS_FORCE_CLOSE.

CHAPTER 3 Routines

Client-Library/C Reference Manual 371

ex_error("ex_con_cleanup: ct_close() failed");
return retcode;

}

This code excerpt is from the exutils.c sample program.

Usage • To deallocate a CS_CONNECTION, an application can call ct_con_drop
after the connection has been successfully closed.

• A connection can become unusable due to error. If this occurs, Client-
Library marks the connection as “dead.” An application can use the
CS_CON_STATUS property to determine if a connection has been
marked “dead.”

If a connection has been marked dead, an application must call
ct_close(CS_FORCE_CLOSE) to close the connection and ct_con_drop to
drop its CS_CONNECTION structure.

An exception to this rule occurs for certain types of results-processing
errors. If a connection is marked “dead” while processing results, the
application can try calling ct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to revive the connection. If this fails, the
application must close the connection and drop its CS_CONNECTION
structure.

• When a connection is closed, all open cursors on that connection are
automatically closed.

• If the connection is using asynchronous network I/O, ct_close returns
CS_PENDING. When the server response arrives, Client-Library closes
the connection and then calls the completion callback installed for the
connection.

• The behavior of ct_close depends on the value of option, which determines
the type of close. Each section below contains information about a specific
type of close.

Default close behavior

• If the connection has any pending results, ct_close returns CS_FAIL. If the
connection has any open cursor(s), the server closes the cursor(s) when
Client-Library closes the connection.

• When connected to a 10.0+ server, ct_close sends a logout message to the
server and reads the response to this message before terminating the
connection. The contents of this message do not affect ct_close’s behavior.

• An application cannot call ct_close(CS_UNUSED) when an asynchronous
operation is pending.

ct_cmd_alloc

372 Open Client

CS_FORCE_CLOSE behavior

• The connection is closed whether or not it has an open cursor or pending
results.

• ct_close does not behave asynchronously when called with the
CS_FORCE_CLOSE option. When ct_close(CS_FORCE_CLOSE) is
called to close an asynchronous connection, it returns CS_SUCCEED or
CS_FAIL immediately, to indicate the network response. In this case, no
completion callback event occurs.

• CS_FORCE_CLOSE is useful when:

• A connection has been marked as dead.

• An application is hung, waiting for a server response.

• An application cannot call ct_close(CS_UNUSED) because results
are pending.

• Because no logout message is sent to the server, the server cannot tell
whether the close is intentional or whether it is the result of a lost
connection or crashed client.

• An application can call ct_close(CS_FORCE_CLOSE) when an
asynchronous operation is pending.

See also ct_callback, ct_con_drop, ct_connect, ct_con_props

ct_cmd_alloc
Description Allocate a CS_COMMAND structure.

Syntax CS_RETCODE ct_cmd_alloc(connection, cmd_pointer)

 CS_CONNECTION *connection;
 CS_COMMAND **cmd_pointer;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

cmd_pointer
The address of a pointer variable. ct_cmd_alloc sets *cmd_pointer to the
address of a newly allocated CS_COMMAND structure.

Return value ct_cmd_alloc returns the following values:

CHAPTER 3 Routines

Client-Library/C Reference Manual 373

The most common reason for a ct_cmd_alloc failure is a lack of memory.

Examples

 /* Allocate a command handle to send the text with */
 if ((retcode = ct_cmd_alloc(connection, &cmd)) !=
 CS_SUCCEED)
 {
 ex_error("UpdateTextData: ct_cmd_alloc() failed");
 return retcode;
 }

This code excerpt is from the getsend.c sample program.

Usage • A CS_COMMAND structure, also called a command structure, is a
control structure that a Client-Library application uses to send commands
to a server and process the results of those commands.

• An application must call ct_con_alloc to allocate a connection structure
before calling ct_cmd_alloc to allocate command structures for the
connection.

However, it is not necessary that the connection structure represent an
open connection. (An application opens a connection by calling ct_connect
to connect to a server.)

See also ct_command, ct_cmd_drop, ct_cmd_props, ct_con_alloc, ct_cursor,
ct_dynamic

ct_cmd_drop
Description Deallocate a CS_COMMAND structure.

Syntax CS_RETCODE ct_cmd_drop(cmd)

 CS_COMMAND *cmd;

Parameters cmd
A pointer to a CS_COMMAND structure.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_cmd_props

374 Open Client

Return value ct_cmd_drop returns the following values:

ct_cmd_drop returns CS_FAIL if:

• *cmd has an active command. A command that has been initialized but not
yet sent is considered to be active.

• *cmd has an open cursor.

• *cmd has pending results.

Examples

 if ((retcode = ct_cmd_drop(cmd)) != CS_SUCCEED)
 {
 ex_error("DoCompute: ct_cmd_drop() failed");
 return retcode;
 }

This code excerpt is from the compute.c sample program.

Usage • A CS_COMMAND structure is a control structure that a Client-Library
application uses to send commands to a server and process the results of
those commands.

• Once a command structure has been deallocated, it cannot be reused. To
allocate a new CS_COMMAND structure, an application can call
ct_cmd_alloc.

• Before deallocating a command structure, an application should cancel
any active commands, process or cancel any pending results, and close and
deallocate any open cursors on the command structure.

See also ct_command, ct_cmd_alloc

ct_cmd_props
Description Set or retrieve command structure properties. For use by applications that

resend commands.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 375

Syntax CS_RETCODE ct_cmd_props(cmd, action, property, buffer,
 buflen, outlen)

 CS_COMMAND *cmd;
 CS_INT action;
 CS_INT property;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

action
One of the following symbolic values:

property
The symbolic name of the property whose value is being set or retrieved.
The Properties lists all Client-Library properties. For a summary of the
properties that are legal with ct_cmd_props, see Table 3-7 on page 379.

buffer
If a property value is being set, buffer points to the value to use in setting the
property.

If a property value is being retrieved, buffer points to the space in which
ct_cmd_props will place the requested information.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If a property value is being set and the value in *buffer is a null-terminated
string, pass buflen as CS_NULLTERM.

If *buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

Value of action Meaning

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to its
Client-Library default value.

ct_cmd_props

376 Open Client

outlen
A pointer to an integer variable.

If a property value is being set, outlen is not used and should be passed as
NULL.

If a property value is being retrieved and outlen is supplied, ct_cmd_props
sets *outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, the call fails. The application
can use the value of *outlen to determine how many bytes are needed to hold
the information.

Return value ct_cmd_props returns the following values:

Examples Example for Command-Level User Data

• The following code fragment retrieves the CS_USERDATA property
value. This code excerpt is from the ex_alib.c sample program. For
another example using ct_cmd_props, see the rpc.c sample program.

 /*
 ** Extract the user area out of the command handle.
 */
 retstat = ct_cmd_props(cmd, CS_GET, CS_USERDATA,
 &ex_async, CS_SIZEOF(ex_async), NULL);
 if (retstat != CS_SUCCEED)
 {
 return retstat;

 }

Example for Cursor Status

• This code fragment shows a function cursor_status that calls
ct_cmd_props to retrieve status information about a Client-Library cursor.

#define RETURN_IF(a,b) if (a != CS_SUCCEED)\
 { fprintf(stderr, "Error in: %s line %d\n", \
 b, __LINE__); return a ;}

 /*
 ** cursor_status() -- Print status information about the

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 377

 ** Client-Library cursor (if any) declared on a CS_COMMAND
 ** structure.
 **
 ** PARAMETERS:
 ** cmd -- an allocated CS_COMMAND structure.
 **
 **
 ** RETURNS
 ** CS_FAIL if an error occurred.
 ** CS_SUCCEED if everything went ok.
 */

 CS_RETCODE
 cursor_status(cmd)
 CS_COMMAND *cmd;
 {
 CS_RETCODE ret;
 CS_INT cur_status;
 CS_INT cur_id;
 CS_CHAR cur_name[CS_MAX_NAME];
 CS_CHAR updatability[CS_MAX_NAME];
 CS_CHAR status_str[CS_MAX_NAME];
 CS_INT outlen;

 /*
 ** Get the cursor status property.
 */
 ret = ct_cmd_props(cmd, CS_GET, CS_CUR_STATUS, &cur_status,
 CS_UNUSED, (CS_INT *) NULL);
 RETURN_IF(ret, "cursor_status: ct_cmd_props(CUR_STATUS)");

 /*
 ** Is there a cursor?
 ** Note that CS_CURSTAT_NONE is not a bitmask, but the
 ** other values are.
 */
 if (cur_status == CS_CURSTAT_NONE)
 fprintf(stdout,
 "cursor_status: no cursor on this command structure\n");
 else
 {
 /*
 ** A cursor exists, so check its state. Is it
 ** declared, opened, or closed?
 */
 if ((cur_status & CS_CURSTAT_DECLARED)

ct_cmd_props

378 Open Client

 == CS_CURSTAT_DECLARED)
 strcpy(status_str, "declared");
 if ((cur_status & CS_CURSTAT_OPEN) == CS_CURSTAT_OPEN)
 strcpy(status_str, "open");
 if ((cur_status & CS_CURSTAT_CLOSED) == CS_CURSTAT_CLOSED)
 strcpy(status_str, "closed");

 /*
 ** Is the cursor updatable or read only?
 */
 if ((cur_status & CS_CURSTAT_RDONLY) == CS_CURSTAT_RDONLY)
 strcpy(updatability, "read only");
 else if ((cur_status & CS_CURSTAT_UPDATABLE)
 == CS_CURSTAT_UPDATABLE)
 strcpy(updatability, "updatable");
 else
 updatability[0] = '\0';

 /*
 ** Get the cursor id.
 */
 ret = ct_cmd_props(cmd, CS_GET, CS_CUR_ID, &cur_id,
 CS_UNUSED, (CS_INT *) NULL);
 RETURN_IF(ret, "cursor_status: ct_cmd_props(CUR_ID)");

 /*
 ** Get the cursor name.
 */
 ret = ct_cmd_props(cmd, CS_GET, CS_CUR_NAME, cur_name,
 CS_MAX_NAME, &outlen);
 RETURN_IF(ret, "cursor_status: ct_cmd_props(CUR_NAME)");

 /*
 ** Null terminate the name.
 */
 if (outlen < CS_MAX_NAME)
 cur_name[outlen] = '\0';
 else
 RETURN_IF(CS_FAIL, "cursor_status: name too long");

 /* Print it all out */
 fprintf(stdout, "Cursor '%s' (id %d) is %s and %s.\n",
 cur_name, cur_id, updatability, status_str);
 }
 return CS_SUCCEED;
 } /* cursor_status */

CHAPTER 3 Routines

Client-Library/C Reference Manual 379

Example for Scrollable Cursor Status

• The code fragment for scrollable cursors is identical to the previous
example, with the exception of the following extract:

 /*
 ** Is the cursor scrollable or read-only?
 */
 if ((cur_status & CS_CURSTAT_SCROLLABLE == CS_CURSTAT_SCROLLABLE)
 strcpy(updatability, "scrollable")
 else if ((cur_status & CS_CURSTAT_RDONLY) == CS_CURSTAT_RDONLY)
 strcpy(updatability, "read-only")
 else
 updatability[0] = '\0';

Usage For information about action, buffer, buflen, and outlen, see Chapter 2,
“Understanding Structures, Constants, and Conventions,” in the Open Client
Client-Library/C Programmers Guide.

• Command structure properties affect the behavior of an application at the
command structure level.

• All command structures allocated for a connection pick up default
property values from the parent connection. An application can override
these default values by calling ct_cmd_props.

If an application changes connection property values after allocating
command structures for the connection, the existing command structures
will not pick up the new property values. New command structures
allocated for the connection will use the new property values as defaults.

• See “Properties” on page 187.

• An application can use ct_cmd_props to set or retrieve the properties listed
in Table 3-7:

Table 3-7: Command structure properties

Property Meaning *buffer value Level Notes

CS_CMD_
SUPPRESS_FMT

Whether row format
caching is enabled or
disabled. With row
format caching, the data
server does not send
the row format
information each time
a dynamic SQL
statement is invoked.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Command,
connection

ct_cmd_props

380 Open Client

CS_CUR_ID The cursor’s
identification number.

Set to an integer
value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an existing
cursor.

CS_CUR_NAME The cursor’s name, as
defined in an
application’s
ct_cursor(CS_CUR
 SOR_DECLARE) call.

Set to a null-
terminated
character string.

Command. Retrieve only, after
ct_cursor(CS_CURSO
R_DECLARE) returns
CS_SUCCEED.

CS_CUR_
ROWCOUNT

The current value of
cursor rows. Cursor rows
is the number of rows
returned to Client-
Library per internal fetch
request.

Set to an integer
value.

Command. Retrieve only, after
CS_CUR_STATUS
indicates an existing
cursor.

CS_CUR_STATUS The cursor’s status. A CS_INT value.

See “Cursor
status” on page
218 for possible
values.

Command. Retrieve only.

CS_HAVE_BINDS Whether any saved result
bindings are present for
the current result set.

CS_TRUE or
CS_FALSE.

A default is not
applicable.

Command. Retrieve only.

CS_HAVE_CMD Whether a resendable
command exists for the
command structure.

CS_TRUE or
CS_FALSE

Command. Retrieve only.

CS_HAVE_
CUROPEN

Whether or not a
restorable cursor-open
command exists for the
command structure.

CS_TRUE or
CS_FALSE

Command. Retrieve only.

CS_HIDDEN_KEYS Whether or not to expose
hidden keys.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection,
or command.

Cannot be set at the
command level if results
are pending or a cursor
is open.

CS_PARENT_
HANDLE

The address of the
command structure’s
parent connection.

Set to an address. Connection
or command.

Retrieve only.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 381

See also ct_config, ct_cmd_alloc, ct_con_props, ct_res_info

ct_command
Description Initiate a language, package, RPC, message, or send-data command.

Syntax CS_RETCODE ct_command(cmd, type, buffer, buflen,
 option)

 CS_COMMAND *cmd;
 CS_INT type;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT option;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

type
The type of command to initiate. Table 3-9 lists the symbolic values for type.

buffer
A pointer to data space. Table 3-9 lists the datatypes and meanings for
*buffer values.

buflen
The length, in bytes, of the *buffer data, or CS_UNUSED if *buffer
represents a fixed-length or symbolic value.

CS_STICKY_BINDS Whether or not bindings
between result items and
program variables persist
when a command is
executed repeatedly.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Command.

CS_USERDATA User-allocated data. User-allocated
data.

Connection
or command.

To set CS_
USERDATA
at the
context
level, call
cs_config.

None.

Property Meaning *buffer value Level Notes

ct_command

382 Open Client

option
The option associated with this command.

Language, RPC (remote procedure call), send-data, and send-bulk-data
commands take options. For all other types of commands, pass option as
CS_UNUSED.

The following table lists the symbolic values for option:

Table 3-8: Values for ct_command option parameter

Return value ct_command returns the following values:

type is Value of option Meaning

CS_LANG_CMD CS_MORE The text in buffer is only
part of the language
command to be executed.

CS_END The text in buffer is the last
part of the language
command to be executed.

CS_UNUSED Equivalent to CS_END.

CS_RPC_CMD CS_RECOMPILE Recompile the stored
procedure before executing
it.

CS_NO_RECOMPILE Do not recompile the stored
procedure before executing
it.

CS_UNUSED Equivalent to
CS_NO_RECOMPILE.

CS_SEND_DATA_CMD CS_COLUMN_DATA The data will be used for a
text or image column
update.

CS_BULK_DATA For internal Sybase use
only. The data will be used
for a bulk copy operation.

CS_SEND_BULK_CMD CS_BULK_INIT For internal Sybase use
only. Initialize a bulk copy
operation.

CS_BULK_CONT For internal Sybase use
only. Continue a bulk copy
operation.

Returns Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 383

Examples

/*
 ** ex_execute_cmd()
 **
 ** Type of function:
 ** example program utility api
 **
 ** Purpose:
 ** Sends a language command to the server.
 */
 CS_RETCODE CS_PUBLIC
 ex_execute_cmd(connection, cmdbuf)
 CS_CONNECTION *connection;
 CS_CHAR *cmdbuf;
 {
 CS_RETCODE retcode;
 CS_INT restype;
 CS_COMMAND *cmd;
 CS_RETCODE query_code;

 /*
 ** Get a command structure,store the command string in it,
 ** and send it to the server.
 */
 if ((retcode = ct_cmd_alloc(connection, &cmd)) !=
 CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_cmd_alloc() failed");
 return retcode;
 }

 if ((retcode = ct_command(cmd, CS_LANG_CMD, cmdbuf,
 CS_NULLTERM, CS_UNUSED)) != CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_command() failed");
 (void)ct_cmd_drop(cmd);
 return retcode;
 }
 /* Now send the command and process the results */
 ... ct_send, ct_results, and so forth deleted ...
 return CS_SUCCEED;
 }

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Returns Meaning

ct_command

384 Open Client

This code excerpt is from the exutils.c sample program.

Usage Table 3-9 summarizes ct_command usage.

Table 3-9: Summary of ct_command parameters

• ct_command initiates several types of server commands.

For an overview of Client-Library command types, see Chapter 5,
“Choosing Command Types,” in the Open Client Client-Library/C
Programmers Guide.

• Initiating a command is the first step in sending it to a server. For a client
application to execute a server command, Client-Library must convert the
command to a symbolic command stream that can be sent to the server.
The command stream contains information about the type of the command
and the data needed for execution. For example, an RPC command
requires a procedure name, the number of parameters, and (if needed)
parameter values.

Value of type
Command
initiated buffer is buflen is

CS_LANG_CMD A language
command

A pointer to a CS_CHAR array that
contains all or part of the language
command text.

Use the CS_MORE and CS_END
options to build the command text in
pieces. See Table 3-8 for details.

The length of the
*buffer data or
CS_NULLTERM.

CS_MSG_CMD A message
command

A pointer to a CS_INT variable that
contains the message ID.

CS_UNUSED

CS_PACKAGE_CMD A package
command

A pointer to a CS_CHAR array that
contains the name of the package.

The length of the
*buffer data or
CS_NULLTERM.

CS_RPC_CMD A remote
procedure call
command

A pointer to a CS_CHAR array that
contains the name of the remote
procedure.

The length of the
*buffer data or
CS_NULLTERM.

CS_SEND_DATA_CMD A send-data
command

NULL. CS_UNUSED.

CS_SEND_DATA_NOCMD A send-data
command

NULL. CS_UNUSED.

CS_SEND_BULK_CMD A Sybase
internal send-
bulk-data
command

A pointer to a CS_CHAR array that
contains the database table name.

The length of the
*buffer data or
CS_NULLTERM.

CHAPTER 3 Routines

Client-Library/C Reference Manual 385

The steps for executing a server command with ct_command are as
follows:

a Initiate the command by calling ct_command. This step sets up
internal structures that are used in building a command stream to send
to the server.

b Pass parameters for the command (if required) by calling ct_param or
ct_setparam once for each parameter that the command requires.

Not all commands require parameters. For example, a remote
procedure call command may or may not require parameters,
depending on the stored procedure being called.

c Send the command to the server by calling ct_send. ct_send writes the
symbolic command stream onto the command structure’s parent
connection.

d Handle the results of the command by calling ct_results repeatedly
until it no longer returns CS_SUCCEED. See Chapter 6, “Writing
Results-Handling Code,” in the Open Client Client-Library/C
Programmers Guide for a discussion of processing results.

• ct_command command types other than send-data commands or send-bulk
commands can be resent by calling ct_send immediately after the
application has processed the results of the previous execution. Client-
Library saves the initiated command information in the command
structure until the application initiates a new command with ct_command,
ct_cursor, ct_dynamic, or ct_sendpassthru. If parameter source variables
for the command were specified with ct_setparam, then the application
can change the parameter values without calling ct_setparam again. See
“Resending commands” on page 594.

• An application can call ct_cancel with type as CS_CANCEL_ALL to clear
a command that has been initiated but not yet sent.

• The following rules apply to the use of ct_command:

• When a command structure is initiated, an application must either
send the initiated command or clear it before a new command can be
initiated with ct_command, ct_cursor, ct_dynamic, or ct_sendpassthru.

• After sending a command, an application must completely process or
cancel all results returned by the command’s execution before
initiating a new command on the same command structure.

ct_command

386 Open Client

• An application cannot call ct_command to initiate a command on a
command structure that is managing a cursor. The application must
deallocate the cursor first (or use a different command structure).

• Each section below contains information about one of the types of
commands that ct_command can initiate.

Language commands

• A language command contains a character string that represents one or
more command in a server’s own language. For example, the following
language command contains a Transact-SQL command:

ct_command(cmd, CS_LANG_CMD,
 "select * from pubs2..authors",
 CS_NULLTERM,
 CS_UNUSED);

• ct_command’s CS_MORE and CS_END option values allow the
application to append text to the language buffer. Language command text
can be assembled in pieces with consecutive calls.

• The language buffer can represent more than one server commands. For
example, the following sequence builds a language command containing
three Transact-SQL statements:

ct_command(cmd, CS_LANG_CMD,
 “select * from pubs2..titles ”,
 CS_NULLTERM, CS_MORE);
 ct_command(cmd, CS_LANG_CMD,
 “select * from pubs2..authors ”,
 CS_NULLTERM, CS_MORE);
 ct_command(cmd, CS_LANG_CMD,
 “select * from pubs2..publishers ”,
 CS_NULLTERM, CS_END);

ct_command does not add white space when appending to the command
buffer and the space must therefore be specified by the user.

• When the CS_UNUSED option is specified, Client-Library requires the
application to pass the entire language text in one call to ct_command.

• A language command can be in any language, as long as the server to
which it is directed can understand it. Adaptive Server Enterprise
understands Transact-SQL, but an Open Server application constructed
with Server-Library can be written to understand any language.

CHAPTER 3 Routines

Client-Library/C Reference Manual 387

• If the language command string contains host variables, an application can
pass values for these variable by calling ct_param or ct_setparam once for
each variable that the language string contains. Use ct_setparam if the
command will be sent to the server more than once. See “Resending
commands” on page 594.

• Transact-SQL variables must begin with an @ sign.

• An Adaptive Server Enterprise language cursor generates a regular row
result set when an application calls ct_command to execute a fetch
language command against the cursor. The Transact-SQL fetch command
generates regular row results containing a number of rows equal to the
current “cursor rows” setting for the language cursor.

Message commands

• Message commands and results provide a way for clients and servers to
communicate specialized information to one another. A message
command is similar to an RPC command, but the command is identified
by a number (called the message ID) rather than by an RPC name.

• A message command has an ID, which an application provides in a
CS_INT variable. The application passes the address of the CS_INT as
ct_command’s buffer parameter.

• A custom Open Server application can be programmed with an event
handler that responds to user-defined messages. IDs for user-defined
messages must be greater than or equal to CS_USER_MSGID and less
than or equal to CS_USER_MAX_MSGID.

• If a message requires parameters, the application calls ct_param or
ct_setparam once for each parameter that the message requires. Use
ct_setparam if the RPC command will be sent to the server more than once.
See “Resending commands” on page 594 .

Package commands

• A package command instructs an IBM DB/2 database server to execute a
package. A package is similar to a remote procedure. It contains
precompiled SQL statements that are executed as a unit when the package
is invoked.

• If the package requires parameters, the application calls ct_param or
ct_setparam once for each parameter that the package requires. Use
ct_setparam if the package command will be sent to the server more than
once. See “Resending commands” on page 594.

ct_command

388 Open Client

RPC commands

• An RPC (remote procedure call) command instructs a server to execute a
stored procedure either on this server or a remote server.

• An application initiates an RPC command by calling ct_command with
*buffer as the name of the stored procedure to execute.

• If an application is using an RPC command to execute a stored procedure
that requires parameters, the application must call ct_param or ct_setparam
once for each parameter required by the stored procedure. Use ct_setparam
if the RPC command will be sent to the server more than once. See
“Resending commands” on page 594.

• After sending an RPC command with ct_send, an application processes
the stored procedure’s results with ct_results and ct_fetch. ct_results and
ct_fetch are used to process both the result rows generated by the stored
procedure and the return parameters and status from the procedure, if any.

• An alternative way to call a stored procedure is by executing a language
command containing a Transact-SQL execute statement. When a stored
procedure is executed through a language command, parameter values
may be converted to character format (if necessary) and passed as part of
the language command text, or they may be included in the command as
host variables. With an RPC command, parameters can be passed in their
declared datatypes with ct_param or ct_setparam.

Send-data commands

• An application uses a send-data command to write large amounts of text
or image data to a server.

• An application typically calls:

• ct_command to initiate the send-data command.

• ct_data_info to set the I/O descriptor for the operation.

• ct_send_data to write the value, in chunks, to the data stream.

• ct_send to send the command to the server.

• Send-data commands cannot be re-sent.

• See “text and image data handling” on page 295.

Send-bulk-data commands

• Internally, Sybase uses send-bulk-data commands as part of its
implementation of the Bulk-Library routines.

• Send-bulk-data commands cannot be re-sent.

CHAPTER 3 Routines

Client-Library/C Reference Manual 389

Suppressing commands

To update a text or image column, a client application typically calls the
ct_command routine to initiate a send-data command. The client then calls the
ct_data_info command to retrieve the CS_IODESC and determine the
appropriate SQL command to generate (update or writetext) in a subsequent call
to the ct_send_data routine.

To simplify this process and potentially improve performance, a client can
suppress the generation of the SQL command (update or writetext) and send
data directly to the server bulk handler. The client must initiate the send-data
command by calling the ct_command routine with the type parameter set to
CS_SEND_DATA_NOCMD. The client application can then use send-data
commands to send only text or image data to the server bulk handler. When a
bulk event occurs at the server, a 4-byte field is sent indicating the total number
of bytes to be sent, followed by the text or image data. The bulk handler reads
the total number of bytes expected using srv_text_info and the data using
srv_get_data.

The server must define a stored procedure, sp_mda, to indicate whether or not
it supports the ct_send_data routine sending only text or image data without a
SQL command. The server sp_mda procedure is called only if the client
application sets certain properties—for example,
ct_con_props(CS_SENDDATA_NOCMD)—before the ct_connect routine is
called. If any of these properties (such as CS_PARTIAL_TEXT or the
CS_SENDDATA_NOCMD connection property) is set, the server sp_mda
procedure is called during execution of ct_connect. If sp_mda indicates that the
server does not support the ct_send_data routine sending only text or image
data without a SQL command, any calls to the ct_command routine with the
type parameter set to CS_SEND_DATA_NOCMD fail.

If the server can receive text or image data without a SQL command, sp_mda
returns the following:

Note Adaptive Server cannot receive image or text data without a SQL
command.

See also ct_cmd_alloc, ct_cursor, ct_dynamic, ct_param, ct_send, ct_setparam

Parameter Value

mdinfo “SENDDATA_NOCMD”

querytype 2

query senddata no cmd

ct_compute_info

390 Open Client

ct_compute_info
Description Retrieve compute result information.

Syntax CS_RETCODE ct_compute_info(cmd, type, colnum, buffer,
 buflen, outlen)
 CS_COMMAND *cmd;
 CS_INT type;
 CS_INT colnum;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
command.

type
The type of information to return. For a list of the symbolic values for type,
see Table 3-10 on page 392.

colnum
The number of the compute column of interest, as it appears in the compute
row result set. Compute columns appear in the order in which they are listed
in the compute clause of a select statement. The first column is number 1, the
second is number 2, and so forth.

buffer
A pointer to the space in which ct_compute_info will place the requested
information.

If buflen indicates that *buffer is not large enough to hold the requested
information, ct_compute_info returns CS_FAIL.

buflen
The length, in bytes, of the *buffer data space or CS_UNUSED if *buffer
represents a fixed-length or symbolic value.

outlen
A pointer to an integer variable.

Return value ct_compute_info returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 391

Examples Assume that the following command has been executed:

select dept, name, year, sales from employee
 order by dept, name, year
 compute count(name) by dept, name

1 The call:

CS_INT mybuffer;
ct_compute_info(cmd, CS_BYLIST_LEN, CS_UNUSED,
 &mybuffer, CS_UNUSED, CS_UNUSED);

sets mybuffer to 2, because there are two items in the bylist.

2 The call:

CS_SMALLINT mybuffer[2];
 CS_INT outlength;
ct_compute_info(cmd, CS_COMP_BYLIST, CS_UNUSED,
 mybuffer, sizeof(mybuffer), &outlength)

copies the CS_SMALLINT values 1 and 2 into mybuffer[0] and
mybuffer[1] to indicate that the bylist is composed of columns 1 and 2
from the select list.

3 The call:

CS_INT mybuffer;
ct_compute_info(cmd, CS_COMP_COLID, 1, &mybuffer,
 CS_UNUSED,NULL);

sets mybuffer to 2, since name is the second column in the select list.

4 The call:

CS_INT mybuffer;
ct_compute_info(cmd, CS_COMP_ID, CS_UNUSED,
 &mybuffer, CS_UNUSED, NULL);

sets mybuffer to 1 because there is only a single compute clause in the
select statement.

5 The call:

CS_INT mybuffer;
ct_compute_info(cmd, CS_COMP_OP, 1, &mybuffer,
 CS_UNUSED, NULL);

sets mybuffer to the symbolic value CS_OP_COUNT, since the aggregate
operator for the first compute column is a count.

Usage Table 3-10 summarizes ct_compute_info usage.

ct_compute_info

392 Open Client

Table 3-10: Summary of ct_compute_info parameters

• Compute rows result from the compute clause of a select statement. A
compute clause generates a compute row every time the value of its by
column-list changes. A compute row contains one column for each
aggregate operator in the compute clause. If a select statement contains
multiple compute clauses, separate compute rows are generated by each
clause.

Each compute row returned by the server is considered to be a distinct
result set. That is, each result set of type CS_COMPUTE_RESULT will
contain exactly one row.

• It is only legal to call ct_compute_info when compute information is
available; that is, after ct_results returns CS_COMPUTE_RESULT or
CS_COMPUTEFMT.

• Each section below contains information about a particular type of
compute result information.

Value of type Value of colnum
Information
retrieved *buffer is set to

*outlen is set
to

CS_BYLIST_LEN CS_UNUSED The number of
elements in the bylist
array

An integer valu. sizeof(CS_INT)

CS_COMP_BYLIST CS_UNUSED An array containing
the bylist that
produced this compute
row

An array of
CS_SMALLINT
values

The length of the
array, in bytes

CS_COMP_COLID The column number
of the compute
column

The select-list column
ID of the column from
which the compute
column derives

An integer value sizeof(CS_INT)

CS_COMP_ID CS_UNUSED The compute ID for the
current compute row

An integer value sizeof(CS_INT)

CS_COMP_OP The column number
of the compute
column

The aggregate operator
type for the compute
column

One of the following
symbolic values:

CS_OP_SUM
CS_OP_AVG
CS_OP_COUNT
CS_OP_MIN
CS_OP_MAX

sizeof(CS_INT)

CHAPTER 3 Routines

Client-Library/C Reference Manual 393

The bylist for a compute row

• A select statement’s compute clause may contain the keyword by, followed
by a list of columns. This list, known as the bylist, divides the results into
subgroups, based on changing values in the specified columns. The
compute clause’s aggregate operators are applied to each subgroup,
generating a compute row for each subgroup.

The select-list column ID for a compute column

• The select-list column ID for a compute column is the position within the
select-list of the column from which the compute column derives.

The compute ID for a compute row

• A SQL select statement can have multiple compute clauses, each of which
returns a separate compute row. The compute ID corresponding to the first
compute clause in a select statement is 1.

The aggregate operator for a particular compute row column

• When called with type as CS_COMP_OP,ct_compute_info sets *buffer to
one of the following aggregate operator types:

Table 3-11: Aggregate operator types

See also ct_bind, ct_describe, ct_res_info, ct_results

ct_con_alloc
Description Allocate a CS_CONNECTION structure.

Syntax CS_RETCODE ct_con_alloc(context, con_pointer)

 CS_CONTEXT *context;
 CS_CONNECTION **con_pointer;

Parameters context
A pointer to a CS_CONTEXT structure.

*buffer setting Meaning

CS_OP_AVG Average aggregate operator

CS_OP_COUNT Count aggregate operator

CS_OP_MAX Maximum aggregate operator

CS_OP_MIN Minimum aggregate operator

CS_OP_SUM Sum aggregate operator.

ct_con_alloc

394 Open Client

con_pointer
The address of a pointer variable. ct_con_alloc sets *con_pointer to the
address of a newly allocated CS_CONNECTION structure.

Return value ct_con_alloc returns the following values:

The most common reason for a ct_con_alloc failure is a lack of adequate
memory.

Examples

 /*
 ** DoConnect()
 **
 ** Type of function:
 ** async example program api
 */
 CS_STATIC CS_CONNECTION CS_INTERNAL *
 DoConnect(argc, argv)
 int argc;
 char **argv;
 {
 CS_CONNECTION *connection;
 CS_INT netio_type = CS_ASYNC_IO;
 CS_RETCODE retcode;
 /* Open a connection to the server */
 retcode = ct_con_alloc(Ex_context, &connection);
 if (retcode != CS_SUCCEED)
 {
 ex_panic("ct_con_alloc failed");
 }
 /* Set properties for the connection */
 ...ct_con_props calls deleted ...
 /* Open the connection */
 ...ct_connect call deleted.....
 }

Usage • A CS_CONNECTION structure, also called a connection structure,
contains information about a particular client/server connection.

• Before calling ct_con_alloc, an application must allocate a context
structure by calling the CS-Library routine cs_ctx_alloc, and must
initialize Client-Library by calling ct_init.

Return value Meaning

CS_SUCCEED The routine completed successfully

CS_FAIL The routine failed

CHAPTER 3 Routines

Client-Library/C Reference Manual 395

• Connecting to a server is a three-step process. To connect to a server, an
application:

a Calls ct_con_alloc to allocate a CS_CONNECTION structure.

b Calls ct_con_props to set the values of connection-specific properties,
if desired.

c Calls ct_connect to create the connection and log in to the server.

• An application can have multiple open connections to one or more servers
at the same time.

For example, an application can simultaneously have two connections to
the server MARS, one connection to VENUS, and one connection to
PLUTO. The context property CS_MAX_CONNECT, set by ct_config,
determines the maximum number of open connections allowed per
context.

Each server connection requires a separate CS_CONNECTION structure.

• To send commands to a server, one or more command structures must be
allocated for a connection. ct_cmd_alloc allocates a command structure.

See also cs_ctx_alloc, ct_cmd_alloc, ct_close, ct_connect, ct_con_props

ct_con_drop
Description Deallocate a CS_CONNECTION structure.

Syntax CS_RETCODE ct_con_drop(connection)

CS_CONNECTION *connection;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

Return value ct_con_drop returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

ct_con_drop

396 Open Client

The most common reason for a ct_con_drop failure is that the connection is still
open.

Examples

 /* ex_con_cleanup() */
 CS_RETCODE CS_PUBLIC
 ex_con_cleanup(connection, status)
 CS_CONNECTION *connection;
 CS_RETCODE status;
 {
 CS_RETCODE retcode;
 CS_INT close_option;
 /* Close connection */
 ...CODE DELETED.....
 retcode = ct_con_drop(connection);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_con_cleanup: ct_con_drop()
 failed");
 return retcode;
 }
 return retcode;
 }

This code excerpt is from the exutils.c sample program.

Usage • When a CS_CONNECTION structure is deallocated, all
CS_COMMAND structures associated with it are deallocated.

• A CS_CONNECTION structure contains information about a particular
client/server connection.

• Once a CS_CONNECTION has been deallocated, it cannot be reused. To
allocate a new CS_CONNECTION, an application can call ct_con_alloc.

• An application cannot deallocate a CS_CONNECTION structure until the
connection it represents is closed. To close a connection, an application
can call ct_close.

• A connection can become unusable due to error. If this occurs, Client-
Library marks the connection as “dead.” An application can use the
CS_CON_STATUS property to determine if a connection has been
marked dead.

If a connection has been marked dead, an application must call
ct_close(CS_FORCE_CLOSE) to close the connection and ct_con_drop to
drop its CS_CONNECTION structure.

CHAPTER 3 Routines

Client-Library/C Reference Manual 397

An exception to this rule occurs for certain types of results-processing
errors. If a connection is marked dead while processing results, the
application can try calling ct_cancel(CS_CANCEL_ALL or
CS_CANCEL_ATTN) to revive the connection. If this fails, the
application must close the connection and drop its CS_CONNECTION
structure.

See also ct_con_alloc, ct_close, ct_connect, ct_con_props

ct_con_props
Description Set or retrieve connection structure properties.

Syntax CS_RETCODE ct_con_props(connection, action, property,
 buffer, buflen, outlen)

 CS_CONNECTION *connection;
 CS_INT action;
 CS_INT property;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

action
One of the following symbolic values:

property
The symbolic name of the property whose value is being set or retrieved.
Table 3-12 on page 401 lists the properties that can be set with
ct_con_props. “Properties” on page 187 lists all Client-Library properties.

Value of action Result

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Resets the property to its default value.

CS_SUPPORTED Checks whether a distributed-service driver supports the
property. Use only with properties that affect the behavior
of a directory or security driver. See “Checking whether
a property is supported” on page 189.

ct_con_props

398 Open Client

buffer
If a property value is being set, buffer points to the value to use in setting the
property.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If *buffer is a fixed-length or symbolic value, pass buflen as CS_UNUSED.

outlen
A pointer to an integer variable.

outlen is not used if a property value is being set and should be passed as
NULL.

If a property value is being retrieved and outlen is supplied, ct_con_props
sets *outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Return value ct_con_props returns the following values:

Examples Example 1 This code excerpt is from the blktxt.c sample program.

 /*

 ** EstablishConnection()
 **
 ** Purpose:
 ** This routine establishes a connection to the server
 ** identified in example.h and sets the CS_USER,
 ** CS_PASSWORD, and CS_APPNAME properties for the
 ** connection.
 **
 ** NOTE: The user name, password, and server are defined
 ** in the example header file.
 */
 CS_STATIC CS_RETCODE
 EstablishConnection(context, connection)

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 399

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 {
 CS_INT len;
 CS_RETCODE retcode;
 CS_BOOL bool;

 /* Allocate a connection structure */
 ...CODE DELETED.....

 /*
 ** If a user name is defined in example.h, set the
 ** CS_USERNAME property.
 */
 if (retcode == CS_SUCCEED && Ex_username != NULL)
 {
 if ((retcode = ct_con_props(*connection, CS_SET,
 CS_USERNAME, Ex_username, CS_NULLTERM, NULL))
 != CS_SUCCEED)
 {
 ex_error("ct_con_props(username) failed");
 }
 }

 /*
 ** If a password is defined in example.h, set the
 ** CS_PASSWORD property.
 */
 if (retcode == CS_SUCCEED && Ex_password != NULL)
 {
 if ((retcode = ct_con_props(*connection, CS_SET,
 CS_PASSWORD, Ex_password, CS_NULLTERM, NULL))
 != CS_SUCCEED)
 {
 ex_error("ct_con_props(passwd) failed");
 }
 }

 /* Set the CS_APPNAME property */
 ...CODE DELETED.....

 /* Enable the bulk login property */
 if (retcode == CS_SUCCEED)
 {
 bool = CS_TRUE;
 retcode = ct_con_props(*connection, CS_SET,
 CS_BULK_LOGIN, &bool, CS_UNUSED, NULL);
 if (retcode != CS_SUCCEED)
 {

ct_con_props

400 Open Client

 ex_error("ct_con_props(bulk_login) failed");
 }
 }

 /* Open a server connection */
 ...CODE DELETED.....

 }

Example 2 In the following example,
CS_SEC_EXTENDED_ENCRYPTION is disabled:

...
CS_INT Ex_encryption = CS_FALSE;
CS_INT Ex_nonencryptionretry = CS_FALSE;
...
main()
{

...
/*

** This needs to be called before calling ct_connect()
*/
 ret = ct_con_props(connection, CS_SET, CS_SEC_EXTENDED_ENCRYPTION,

&Ex_encryption, CS_UNUSED, NULL);
EXIT_ON_FAIL(context, ret, "Could not set extended encryption");
ret = ct_con_props(connection, CS_SET, CS_SEC_NON_ENCRYPTION_RETRY,

&Ex_nonencryptionretry, CS_UNUSED, NULL);
EXIT_ON_FAIL(context, ret, "Could not set non encryption retry");
...

}

Usage For information about action, buffer, buflen, and outlen, see Chapter 2,
“Understanding Structures, Constants, and Conventions,” in the Open Client
Client-Library/C Programmers Guide.

• Connection properties define aspects of Client-Library behavior at the
connection level. To determine whether a property is supported, an
application can call ct_con_props on an established connection. The call
must use the CS_SUPPORTED action parameter and must use the buffer
parameter as the address of a CS_BOOL variable.

• All connections created within a context pick up default property values
from the parent context. An application can override these default values
by calling ct_con_props.

CHAPTER 3 Routines

Client-Library/C Reference Manual 401

If an application changes context property values after allocating
connections for the context, existing connections will not pick up the new
property values. New connections allocated within the context will use the
new property values as defaults.

• All command structures allocated for a connection pick up default
property values from the parent connection. An application can override
these default values by calling ct_cmd_props to set property values at the
command structure level.

If an application changes connection property values after allocating
command structures for the connection, the existing command structures
will not pick up the new property values. New command structures
allocated for the connection will use the new property values as defaults.

• Some connection properties only take effect if they are set before an
application calls ct_connect to establish the connection. These are
indicated the “Notes” column in Table 3-12.

• See “Properties” on page 187.

• An application can use ct_con_props to set or retrieve the following
properties:

Table 3-12: Connection structure properties

Property Meaning *buffer value Level Notes

CS_ANSI_BINDS Whether to use ANSI-
style binds.

CS_TRUE or
CS_FALSE

Context,
connection.

CS_APPNAME The application name
used when logging
into the server.

A character string Context,
connection.

To set at the
context level,
call
cs_config.

Login property.

Cannot be set after
connection is
established.

CS_ASYNC_
NOTIFS

Whether a connection
will receive registered
procedure
notifications
asynchronously.

CS_TRUE or
CS_FALSE.

Connection.

CS_BULK_LOGIN Whether a connection
is enabled to perform
bulk copy “in”
operation.

CS_TRUE or
CS_FALSE.

Connection. Login property.

Cannot be set after
connection is
established.

ct_con_props

402 Open Client

CS_CHARSETCNV Whether character set
conversion is taking
place.

CS_TRUE or
CS_FALSE.

Connection. Retrieve only, after
connection is
established.

CS_COMMBLOCK A pointer to a
communication
sessions block.

This property is
specific to IBM370
systems and is ignored
on all other platforms.

A pointer value. Connection. Cannot be set after
connection is
established.

CS_CONNECTED_
ADDR

The transport address
of the server to which
the current connection
is established.

A valid transport
address.

Connection. This property cannot be
set. It requires a pointer
to a CS_TRANADDR
structure that will be
filled in with the server's
address.

CS_CON_
KEEPALIVE

Whether to use the
KEEPALIVE option.

CS_TRUE
(default) or
CS_FALSE

Context or
connection

Some Net-Library
protocol drivers do not
support this property.
After completing a
connection on such a
protocol driver, calling
ct_con_props with
CS_GET or CS_SET
returns CS_FAIL.

CS_CON_STATUS The connection’s
status.

A CS_INT-sized
bit-mask.

Connection. Retrieve only.

CS_CON_TCP_
NODELAY

Whether to use the
TCP_NODELAY
option.

CS_TRUE
(default) or
CS_FALSE

Context or
connection

Some Net-Library
protocol drivers do not
support this property.
After completing a
connection on such a
protocol driver, calling
ct_con_props with
CS_GET or CS_SET
returns CS_FAIL.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 403

CS_CONFIG_
BY_SERVERNAME

Whether ct_connect
uses its server_name
parameter or the value
of the CS_APPNAME
property as the section
name to read external
configuration data
from.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that
CS_APPNAME is
used.

Connection. Requires initialization
with
CS_VERSION_110 or
later.

CS_CONFIG_FILE The name and path of
the Open Client and
Open Server runtime
configuration file.

See “Using the
runtime configuration
file” on page 318.

A character string.

The default is
NULL, which
means a platform-
specific default is
used.

Connection. Requires initialization
with
CS_VERSION_110 or
later.

CS_DIAG_TIMEOUT When inline error
handling is in effect,
whether Client-
Library should fail or
retry on timeout errors.

CS_TRUE or
CS_FALSE.

Connection.

CS_DISABLE_POLL Whether to disable
polling. If polling is
disabled, ct_poll does
not report
asynchronous
operation completions.
Registered procedure
notification will still
be reported.

CS_TRUE or
CS_FALSE.

Context,
connection.

Useful in layered
asynchronous
applications.

CS_DS_COPY Whether the directory
service is allowed to
satisfy an applications
request with cached
copies of directory
entries.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE, which
allows cache use.

Connection. Not supported by all
directory providers.

CS_DS_DITBASE Fully qualified name
of directory node
where directory
searches begin.

A character string.

The default is
directory-provider
specific.

Connection. Not supported by all
directory providers.

Property Meaning *buffer value Level Notes

ct_con_props

404 Open Client

CS_DS_EXPAND
ALIAS

Whether the directory
service expands
directory alias entries.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE, which
allows alias
expansion.

Connection. Not supported by all
directory providers.

CS_DS_FAILOVER Whether to allow
failover to the next
libtcl.cfg entry or the
interfaces file when a
directory service
driver can not be
initialized.

CS_TRUE or
CS_FALSE

The default is
CS_TRUE.

Connection.

CS_DS_PASSWORD Password to go with
the directory user ID
specified as
CS_DS_PRINCIPAL.

A character string.

The default is
NULL.

Connection. Not supported by all
directory providers.

CS_DS_PRINCIPAL A directory user ID for
use of the directory
service to go with the
password specified as
CS_DS_PASSWORD.

A character string.

The default is
NULL.

Connection. Not supported by all
directory providers.

CS_DS_PROVIDER The name of the
directory provider for
the connection.

A character string.

The default
depends on
directory driver
configuration.

Connection.

CS_DS_RAND_
OFFSET

Enables or disables
random offset in
connection lists.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Determined when the
network address list is
retrieved from the
directory service.

CS_DS_SEARCH Restricts the depth of a
directory search.

A CS_INT sized
symbolic value.

For a list of
possible values,
see “Directory
service search
depth” on page
121.

Connection. Not supported by all
directory providers.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 405

CS_DS_SIZELIMIT Restricts the number
of directory entries
that can be returned by
a search started with
ct_ds_lookup.

A CS_INT value
greater than or
equal to 0.

A value of 0
indicates there is
no size limit.

Connection.

CS_DS_TIMELIMIT Sets an absolute time
limit, in seconds, for
completion of
directory searches.

A CS_INT value
greater than or
equal to 0.

A value of 0
indicates there is
no time limit.

Connection. Not supported by all
directory providers.

CS_EED_CMD A pointer to a
command structure
containing extended
error data.

A pointer value. Connection. Retrieve only.

CS_ENDPOINT The file descriptor for
a connection.

An integer value,
or -1 if the platform
does not support
CS_END
 POINT

Connection. Retrieve only, after
connection is
established.

CS_EXPOSE_FMTS Whether to expose
results of type
CS_ROWFMT_RES
ULT and
CS_COMPUTEFMT_
 RESULT.

CS_TRUE or
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

CS_EXTENDED_
ENCRYPT_CB

Whether the
connection will set the
asymmetrical
password encryption
using the non-default
public key encryption
handler.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_EXTERNAL_
CONFIG

Whether ct_connect
reads an external
configuration file to
set properties and
options for the
connection to be
opened.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Requires initialization
with
CS_VERSION_110 or
later.

Property Meaning *buffer value Level Notes

ct_con_props

406 Open Client

CS_EXTRA_INF Whether to return the
extra information
that’s required when
processing Client-
Library messages
inline using SQLCA,
SQLCODE, and
SQLSTATE structures.

CS_TRUE or
CS_FALSE.

Context,
connection.

CS_HIDDEN_KEYS Whether to expose
hidden keys.

CS_TRUE or
CS_FALSE.

Context,
connection,
command.

CS_HOSTNAME The host name of the
client machine.

A character string. Connection. Login property.

Cannot be set after
connection is
established.

CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information.

A CS_LOCALE
structure
previously
allocated by the
application.

Connection. Login property.

Cannot be set after
connection is
established.

CS_LOGIN_STATUS Whether the
connection is open.

CS_TRUE or
CS_FALSE.

Connection. Retrieve only.

CS_LOOP_DELAY The delay, in seconds,
that ct_connect waits
before retrying the
sequence of addresses
associated with a
server name.

A CS_INT >= 0.

The default is 0.

Connection. CS_RETRY_
 COUNT specifies the
number of times to retry.

CS_NETIO Whether network I/O
is synchronous, fully
asynchronous, or
deferred-
asynchronous

CS_SYNC_IO,
CS_ASYNC_IO,
CS_DEFER_IO.

Context,
connection.

Asynchronous
connections are either
fully or deferred
asynchronous, to match
their parent context.

CS_
NOCHARSETCNV_
REQD

Whether the server
performs character set
conversion if the
server’s character set is
different from the
client’s.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 407

CS_NOTIF_CMD A pointer to a
command structure
containing registered
procedure notification
parameters.

A pointer value. Connection. Retrieve only.

CS_PACKETSIZE The TDS packet size. An integer value. Connection. Negotiated login
property.

Cannot be set after
connection is
established.

CS_PARENT_
 HANDLE

The address of the
connection structure’s
parent context.

Set to an address. Connection,
command.

Retrieve only.

CS_PARTIAL_TEXT Indicates whether or
not the client
application should
perform a partial
update.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

This property must be set
before a connection to
the server is established.
If the server does not
support partial updates,
this property will be
reset to CS_FALSE.

CS_PASSWORD The password used to
log in to the server.

A character string. Connection. Login property.

CS_PROP_
APPLICATION_SPID

The Adaptive Server
Enterprise SPID is
saved during login and
is available as the
property.

See “Extended
failover” on page 221.

A CS_INT value
corresponding to
the server process
ID (spid) on the
server.

Connection. Login property.

CS_PROP_
EXTENDED
FAILOVER

Enables or disables
server-provided
failover targets.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

CS_PROP_
MIGRATABLE

Enables or disables
connection migration.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

CS_PROP_
REDIRECT

Enables or disables
login redirection
support.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection.

Login property.

Property Meaning *buffer value Level Notes

ct_con_props

408 Open Client

CS_PROP_SSL_
PROTOVERSION

The version of
supported SSL/TLS
protocols.

CS_INT Context,
connection

Must be one of the
following values.

• CS_SSLVER_20

• CS_SSLVER_30

• CS_SSLVER_TLS1

CS_PROP_SSL_
CIPHER

Comma-separated list
of CipherSuite names.

CS_CHAR Context,
connection

CS_PROP_SSL_
LOCALID

Property used to
specify the path to the
Local ID (certificates)
file.

Character string Context
connection

A structure containing a
file name and a password
used to decrypt the
information in the file.

CS_PROP_SSL_CA Specify the path to the
file containing trusted
CA certificates.

CS_CHAR Context,
connection

CS_RETRY_COUNT The number of times to
retry a connection to a
server’s address.

A CS_INT >= 0.

The default is 0.

Connection. Affects only the
establishment of a login
dialog. Failed logins are
not retried.

CS_SEC_
APPDEFINED

Whether the
connection will use
application-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_
CHALLENGE

Whether the
connection will use
Sybase-defined
challenge/response
security handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_
CHANBIND

Whether the
connection’s security
mechanism will
perform channel
binding.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
CONFIDENTIALITY

Whether data
encryption service will
be performed on the
connection.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 409

CS_SEC_
CREDENTIALS

Used by gateway
applications to forward
a delegated user
credential.

A CS_VOID *
pointer.

Context,
connection.

Cannot be read.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
CREDTIMEOUT

Whether the user’s
credentials have
expired.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DATAORIGIN

Whether the
connection’s security
mechanism will
perform data origin
verification.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DELEGATION

Whether to allow the
server to connect to a
second server with the
user’s delegated
credentials.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DETECTREPLAY

Whether the
connection’s security
mechanism will detect
replayed
transmissions.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
 connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
DETECTSEQ

Whether the
connection’s security
mechanism will detect
transmissions that
arrive out of sequence.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
 connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
ENCRYPTION

Whether the
connection will use
symmetrical password
encryption.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

Property Meaning *buffer value Level Notes

ct_con_props

410 Open Client

CS_SEC_
EXTENDED_
ENCRYPTION

Whether the
connection will use
asymmetrical
password encryption.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_NON_
ENCRYPTION_
RETRY

Whether the
connection will use
plain text password
retries when the server
cannot use
symmetrical or
asymmetrical
password encryption.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

CS_SEC_
INTEGRITY

Whether the
connection’s security
mechanism will
perform data integrity
checking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
 connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
KEYTAB

The name and path to
the file from which a
connection’s security
mechanism reads the
security key to go with
the CS_USERNAME
property.

A character string.

The default is
NULL, which
means the user
must have
established
credentials before
the application
calls ct_connect.

Connection. Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
MECHANISM

The name of the
network security
mechanism that
performs security
services for the
connection.

A string value.

The default
depends on
security driver
configuration.

Context,
 connection.

Cannot be set after
connection is
established.

CS_SEC_
MUTUALAUTH

Whether the server is
required to
authenticate itself to
the client.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
 connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SEC_
NEGOTIATE

Whether the
connection will use
trusted-user security
handshaking.

CS_TRUE or
CS_FALSE.

Connection. Cannot be set after
connection is
established.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 411

CS_SEC_
NETWORKAUTH

Whether the
connection’s security
mechanism will
perform network-
based user
authentication.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
 connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism and a
preexisting credential
that matches
CS_USERNAME.

CS_SEC_
SERVERPRINCIPAL

The network security
principal name for the
server to which a
connection will be
opened.

A string value.

The default is
NULL, which
means that
ct_connect
assumes the server
principal name is
the same as its
server_name
parameter.

Connection. Cannot be set after
connection is
established.

Meaningful only for
connections that use
network-based user
authentication.

CS_SEC_
SESSTIMEOUT

Whether the
connection’s security
session has expired.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection.

Cannot be set after
connection is
established.

Requires a supporting
network security
mechanism.

CS_SENDDATA_
NOCMD

Whether a sp_mda
procedure will be run
on the server when
ct_connect is called.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Connection. CS_SENDDATA_
NOCMD must be set
before ct_connect is
called. If the server does
not support the
ct_send_data routine
sending only text or
image data without a
SQL command, the
property is reset.

CS_SERVERADDR The address of the
server to which you are
connected to.

The format
“hostname
portnumber
[filter], where filter
is optional.

Connection Using this property
causes ctlib to bypass the
host name of the server
and the port number of
the interfaces.

CS_SERVERNAME The name of the server
to which you are
connected.

A string value. Connection. Retrieve only, after
connection is
established.

Property Meaning *buffer value Level Notes

ct_config

412 Open Client

See also ct_capability, ct_cmd_props, ct_connect, ct_config, ct_init, “Properties” on
page 187

ct_config
Description Set or retrieve context properties.

Syntax CS_RETCODE ct_config(context, action, property,
 buffer, buflen, outlen)

 CS_CONTEXT *context;
 CS_INT action;
 CS_INT property;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

CS_TDS_VERSION The version of the
TDS protocol that the
connection is using.

A symbolic
version level.

Connection. Negotiated login
property.

Cannot be set after
connection is
established.

CS_TEXTLIMIT The largest text or
image value to be
returned on this
connection.

An integer value. Context,
connection.

CS_TRANSACTION_
NAME

A transaction name to
be used over a
connection to Open
Server for CICS.

A string value. Connection.

CS_USERDATA User-allocated data. User-allocated
data.

Connection,
command.

CS_USERNAME The name used to log
in to the server.

A character string. Connection. Login property.

Cannot be set after
connection is
established.

CS_VALIDATE_CB A Client-Library
routine, registered
through ct_callback

An integer value Connection,
command

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 413

Parameters context
A pointer to a CS_CONTEXT structure.

action
One of the following symbolic values:

property
The symbolic name of the property whose value is being set or retrieved.
Table 3-13 on page 415 lists the Client-Library context properties.
“Properties” on page 187 lists all Client-Library properties.

buffer
If a property value is being set, buffer points to the value to use in setting the
property.

If a property value is being retrieved, buffer points to the space in which
ct_config will place the requested information.

buflen
Generally, buflen is the length, in bytes, of *buffer.

If a property value is being set and the value in *buffer is null-terminated,
pass buflen as CS_NULLTERM.

If *buffer is a fixed-length value, symbolic value, or function, pass buflen as
CS_UNUSED.

Value of action Result

CS_SET Sets the value of the property.

CS_GET Retrieves the value of the property.

CS_CLEAR Clears the value of the property by resetting it to its
Client-Library default value.

CS_SUPPORTED Checks whether a distributed-service driver supports the
property. Use only with properties that affect the
behavior of a security or directory driver. See “Checking
whether a property is supported” on page 189.

ct_config

414 Open Client

outlen
A pointer to an integer variable.

If a property value is being set, outlen is not used and should be passed as
NULL.

If a property value is being retrieved and outlen is supplied, ct_config sets
*outlen to the length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Return value ct_config returns the following values:

Examples

 /* Set the input/output type to asynchronous */
 CS_INT propvalue;
 if (retcode == CS_SUCCEED)
 {
 propvalue = CS_ASYNC_IO;
 retcode = ct_config(*context, CS_SET, CS_NETIO,
 (CS_VOID *)&propvalue, CS_UNUSED, NULL);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_init: ct_config(netio) failed");
 }
 }

This code excerpt is based on code in the exutils.c sample program.

Usage For information about action, buffer, buflen, and outlen, see Chapter 2,
“Understanding Structures, Constants, and Conventions,” in the Open Client
Client-Library/C Programmers Guide.

• Context properties define aspects of Client-Library behavior at the context
level.

• ct_config takes precedence over the libtcl*.cfg file for all connections
established within the CS_CONTEXT

• ct_config controls connection properties and the use of external files that
configure context. See “Using the runtime configuration file” on page
318.

Return value Meaning

CS_SUCCEED The routine completed successfully

CS_FAIL The routine failed

CHAPTER 3 Routines

Client-Library/C Reference Manual 415

• All connections created within a context pick up default property values
from the parent context. An application can override these default values
by calling ct_con_props to set property values at the connection level.

If an application changes context property values after allocating
connections for the context, existing connections will not pick up the new
property values. New connections allocated within the context will use the
new property values as defaults.

• There are three kinds of context properties:

• Context properties specific to CS-Library.

• Context properties specific to Client-Library.

• Context properties specific to Server-Library.

cs_config sets and retrieves the values of CS-Library-specific context
properties. Properties set through cs_config affect only CS-Library.

ct_config sets and retrieves the values of Client-Library-specific context
properties. Properties set through ct_config affect only Client-Library.

srv_props sets and retrieves the values of Server-Library-specific context
properties. Properties set through srv_props affect only Server-Library.

• See “Properties” on page 187.

• An application can use ct_config to set or retrieve the following properties:

Table 3-13: Client-Library context structure properties

Property Meaning *buffer value Level Notes

CS_ANSI_BINDS Whether to use ANSI-style
binds.

CS_TRUE or
CS_FALSE.

Context,
connection

CS_DISABLE_POLL Whether to disable polling.
If polling is disabled, ct_poll
does not report
asynchronous operation
completions.

CS_TRUE or
CS_FALSE.

Context,
connection

Useful in layered
asynchronous
applications.

CS_DS_RAND_
OFFSET

Enables or disables random
offset in connection lists.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Determined when
the network address
list is retrieved
from the directory
service.

ct_config

416 Open Client

CS_EXPOSE_FMTS Whether to expose results
of type
CS_ROWFMT_RESULT
and CS_COMPUTEFMT_
RESULT.

CS_TRUE or
CS_FALSE.

Context,
connection

Takes effect only if
set before
connection is
established.

CS_EXTERNAL_
CONFIG

Whether ct_connect reads
an external configuration
file to set properties and
options for the connection
to be opened.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection.

Requires
initialization with
CS_VERSION_11
0 or later.

CS_EXTRA_INF Whether to return the extra
information that’s required
when processing Client-
Library messages inline
using SQLCA, SQLCODE,
and SQLSTATE structures.

CS_TRUE or
CS_FALSE.

Context,
connection

CS_HIDDEN_KEYS Whether to expose hidden
keys.

CS_TRUE or
CS_FALSE.

Context,
 connection,
 command

CS_IFILE The path and name of the
interfaces file.

A character string. Context

CS_LOGIN_
TIMEOUT

The login timeout value. An integer value. Context

CS_MAX_CONNECT The maximum number of
connections for this
context.

An integer value. Context

CS_MEM_POOL A memory pool that Client-
Library will use to satisfy
interrupt-level memory
requirements.

If action is
CS_SET, *buffer is
a pool of bytes.

If action is
CS_GET, *buffer
is set to the address
of a pool of bytes.

Context Useful in
asynchronous
applications.

Cannot be set or
cleared when
context has
connections.

CS_NETIO Whether network I/O is
synchronous, fully
asynchronous, or deferred
asynchronous.

CS_SYNC_IO,
CS_ASYNC_IO,
or CS_DEFER_IO.

Context,
connection

Cannot be set for a
context with open
connections.

CS_NO_TRUNCATE Whether Client-Library
should truncate or sequence
messages that are longer
than CS_MAX_MSG.

CS_TRUE, which
means sequence or
CS_FALSE, which
means truncate.

Context

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 417

CS_NOAPI_CHK Whether Client-Library
performs argument and
state checking when the
application calls a Client-
Library routine.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE, which
means that Client-
Library performs
API checking.

Context

CS_NOINTERRUPT Whether the application can
be interrupted by certain
callback events.

CS_TRUE or
CS_FALSE.

Context Affects completion
events only, not
notification events.

CS_PARTIAL_TEXT Indicates whether or not the
client application should
perform a partial update.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

This property must
be set before a
connection to the
server is
established. If the
server does not
support partial
updates, this
property will be
reset to
CS_FALSE.

CS_PROP_EXTENDE
DFAILOVER

Enables or disables server-
provided failover targets.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection

Login property.

CS_PROP_
MIGRATABLE

Enables or disables
connection migration.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection

Login property.

CS_PROP_REDIRECT Enables or disables login
redirection support.

CS_TRUE or
CS_FALSE.

The default is
CS_TRUE.

Context,
connection

Login property.

CS_PROP_SSL_
PROTOVERSION

The version of supported
SSL/TLS protocols.

CS_INT Context,
connection

Must be one of the
following values:

• CS_SSLVER_20

• CS_SSLVER_30

• CS_SSLVER_TL
S1

CS_PROP_SSL_
CIPHER

Comma-separated list of
CipherSuite names.

CS_CHAR Context,
connection

Property Meaning *buffer value Level Notes

ct_config

418 Open Client

CS_PROP_SSL_
LOCALID

Property used to specify the
path to the Local ID
(certificates) file.

Character string Context,
connection

A structure
containing a file
name and a
password used to
decrypt the
information in the
file.

CS_PROP_SSL_CA Specify the path to the file
containing trusted CA
certificates.

CS_CHAR Context,
connection

CS_SEC_
CHANBIND

Whether the connection’s
security mechanism will
perform channel binding.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
CONFIDENTIALITY

Whether data encryption
service will be performed
on the connection.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
CREDENTIALS

Used by gateway
applications to forward a
delegated user credential.

A CS_VOID *
pointer.

Context,
connection

Cannot be read.

Requires a
supporting network
security
mechanism.

CS_SEC_
CREDTIMEOUT

Whether the user’s
credentials have expired.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
DATAORIGIN

Whether the connection’s
security mechanism will
perform data origin
verification.

CS_TRUE or

CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
DELEGATION

Whether to allow the server
to connect to a second
server with the user’s
delegated credentials.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
DETECTREPLAY

Whether the connection’s
security mechanism will
detect replayed
transmissions.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 419

CS_SEC_
DETECTSEQ

Whether the connection’s
security mechanism will
detect transmissions that
arrive out of sequence.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
INTEGRITY

Whether the connection’s
security mechanism will
perform data integrity
checking.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
MECHANISM

The name of the network
security mechanism that
performs security services
for the connection.

A string value.

The default
depends on security
driver
configuration.

Context,
connection

CS_SEC_
MUTUALAUTH

Whether the server is
required to authenticate
itself to the client.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
NETWORKAUTH

Whether the connection’s
security mechanism will
perform network-based
user authentication.

CS_TRUE or
CS_FALSE.

The default is
CS_FALSE.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_SEC_
SESSTIMEOUT

Whether the connection’s
security session has
expired.

A CS_INT. See
Table 2-33 on
page 267 for
possible values and
their meanings.

Context,
connection

Requires a
supporting network
security
mechanism.

CS_TCP_RCVBUF The size of the TCP socket
input buffer for the client
application.

A positive integer
value

Context,
connection

CS_TCP_SNDBUF The size of the TCP socket
output buffer for the client
application.

A positive integer
value

Context,
connection

CS_TEXTLIMIT The largest text or image
value to be returned on this
connection.

An integer value. Context,
connection

CS_TIMEOUT The timeout value. An integer value. Context

Property Meaning *buffer value Level Notes

ct_connect

420 Open Client

See also cs_config, ct_cmd_props, ct_capability, ct_con_props, ct_connect, ct_init,
“Properties” on page 187

ct_connect
Description Connect to a server.

Syntax CS_RETCODE ct_connect(connection, server_name,
 snamelen)

 CS_CONNECTION *connection;
 CS_CHAR *server_name;
 CS_INT snamelen;

CS_USER_ALLOC A user-defined memory
allocation routine.

If action is
CS_SET, *buffer is
the user-defined
function to install.

If action is
CS_GET, *buffer
is set to the address
of the user-defined
function that is
currently installed.

Context Useful in
asynchronous
application.

CS_USER_FREE A user-defined memory
free routine.

If action is
CS_SET, *buffer is
the user-defined
function to install.

If action is
CS_GET, *buffer
is set to the address
of the user-defined
function that is
currently installed.

Context Useful in
asynchronous
applications.

CS_VER_STRING Client-Library’s true
version string.

A character string. Context Retrieve only.

CS_VERSION The version of Client-
Library in use by this
context.

A symbolic version
level.

Context Retrieve only.

Property Meaning *buffer value Level Notes

CHAPTER 3 Routines

Client-Library/C Reference Manual 421

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

Use ct_con_alloc to allocate a CS_CONNECTION structure, and
ct_con_props to initialize that structure with login parameters.

server_name
A pointer to the name of the server to connect to. *server_name is the name
of the server’s entry in the connection’s directory source. ct_connect looks
up *server_name in the connection’s directory source to determine how to
connect to that server. A connection’s directory source is specified with the
CS_DS_PROVIDER property. See “Directory service provider” on page
119. This can be either the Sybase interfaces file or a network-based
directory service.

server_name must use the naming syntax recognized by the connection’s
directory provider. Most network-based directory providers allow a base
directory path (DIT base) to be specified with the CS_DS_DITBASE
connection property. If server_name is a partially qualified name, the
directory provider combines it with the DIT base to form a fully qualified
name.

If server_name is NULL, ct_connect uses a platform-specific default for the
server name. On platforms that support environment variables or logical
names, this is the value of the DSQUERY environment variable or logical
name. On these platforms, if DSQUERY has not been set, ct_connect looks
for a server with the name SYBASE.

snamelen
The length, in bytes, of *server_name. If *server_name is null-terminated,
pass snamelen as CS_NULLTERM. If server_name is NULL, pass
snamelen as 0 or CS_UNUSED.

Return value ct_connect returns the following values:

Common reason for a ct_connect failure include:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_connect

422 Open Client

• Unable to allocate sufficient memory.

• The maximum number of connections is already established. Use ct_config
to increase the maximum number of connections allowed per context.

• Unable to open socket.

• Server name not found in interfaces file.

• Unknown host machine name.

• Adaptive Server Enterprise is unavailable or does not exist.

• Login incorrect.

• Cannot open interfaces file or a directory service session.

• Cannot load requested directory driver.

When ct_connect returns CS_FAIL, it generates a Client-Library error
number that indicates the error.

Note If ct_connect is called in the entry functions of a DLL, a deadlock
may arise. This system creates OS threads and tries to synchronize them
using system utilities. This synchronization conflicts with the operating
system’s serialization process.

Examples

 /* ex_connect() */
 CS_RETCODE CS_PUBLIC
 ex_connect(context, connection, appname,username, password,
 server)
 CS_CONTEXT context;
 CS_CONNECTION *connection;
 CS_CHAR *appname;
 CS_CHAR *username;
 CS_CHAR *password;
 CS_CHAR *server;
 {
 CS_INT len;
 CS_RETCODE retcode;

 /* Allocate a connection structure */
 ...CODE DELETED.....

 /* Set properties for new connection */
 ...CODE DELETED.....

 /* Open the connection */

CHAPTER 3 Routines

Client-Library/C Reference Manual 423

 if (retcode == CS_SUCCEED)
 {
 len = (server == NULL) ? 0 : CS_NULLTERM;
 retcode = ct_connect(*connection, server, len);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ct_connect failed");
 }
 }

 if (retcode != CS_SUCCEED)
 {
 ct_con_drop(*connection);
 *connection = NULL;
 }

 return retcode;
 }

This code excerpt is from the exutils.c sample program.

Usage • Information about the connection is stored in a CS_CONNECTION
structure, which uniquely identifies the connection. In the process of
establishing a connection, ct_connect sets up communication with the
network, logs into the server, and communicates any connection-specific
property information to the server.

• Because creating a connection involves logging into a server, an
application must define login parameters (such as a server user name and
password) before calling ct_connect. An application can call ct_con_props
to define login parameters.

• A connection can be either synchronous or asynchronous. The Client-
Library property CS_NETIO determines whether a connection is
synchronous or asynchronous.

See “Asynchronous programming” on page 10.

• The maximum number of open connections per context is determined by
the CS_MAX_CONNECT property (set by ct_config). If not explicitly set,
the maximum number of connections defaults to a platform-specific value.
For information about platform-specific property values, see the Open
Client and Open Server Programmers Supplement for your platform.

• When a connection attempt is made between a client and a server, there are
two ways in which the process can fail (assuming that the system is
correctly configured):

ct_connect

424 Open Client

• The machine that the server is supposed to be on is running correctly
and the network is running correctly.

In this case, if no server is listening on the specified port, the machine
that the server is supposed to be on will inform the client, through a
network error, that the connection cannot be formed. Regardless of
the login timeout value, the connection fails.

• The machine that the server is on is down.

In this case, the machine that the server is supposed to be on will not
respond. Because “no response” is not considered to be an error, the
network will not inform the client that an error has occurred.
However, if a login timeout period has been set, a timeout error will
occur when the client fails to receive a response within the set period.

The CS_LOGIN_TIMEOUT property specifies a login timeout
period. See “Login timeout” on page 226.

• To close a connection, an application calls ct_close.

Server address information

• Client-Library requires a directory source that contains the network
addresses associated with a given server name. The directory source can
be either the Sybase interfaces file or a network-based directory service.

• The directory source used by ct_connect depends on the setting of the
CS_DS_PROVIDER connection property. See “Directory service
provider” on page 119 for a description of the CS_DS_PROVIDER
property.

• For information on network-based directory services, see “Directory
services” on page 103 and “Server directory object” on page 287.

• More than one address can be associated with a server name. ct_connect
begins a login dialog at the first address where a server responds.

• The CS_RETRY_COUNT property controls how many times
ct_connect retries each server address.

• The CS_LOOP_DELAY property controls how long ct_connect waits
before retrying the sequence again.

See “Retry count” on page 237 and “Loop delay” on page 227 for
descriptions of these properties.

CHAPTER 3 Routines

Client-Library/C Reference Manual 425

Configuring connection defaults externally

• ct_connect optionally reads the Open Client and Open Server runtime
configuration file to set connection properties, server options, and
debugging options for the connection. This feature allows a programmer
to externalize settings rather than hard-coding calls to ct_con_props,
ct_options, and ct_debug.

• By default, ct_connect does not read the configuration file. The application
must set the CS_EXTERNAL_CONFIG property to enable external
configuration. See “Using the runtime configuration file” on page 318.

See also ct_close, ct_con_alloc, ct_con_drop, ct_con_props, ct_remote_pwd,
“Directory services” on page 103, “Interfaces file” on page 140, “Properties”
on page 187, “Server directory object” on page 287

ct_cursor
Description Initiate a Client-Library cursor command.

Syntax CS_RETCODE ct_cursor(cmd, type, name, namelen, text,
 textlen, option)

CS_COMMAND *cmd;
 CS_INT type;
 CS_CHAR *name;
 CS_INT namelen;
 CS_CHAR *text;
 CS_INT textlen;
 CS_INT option;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

type
The type of cursor command to initiate. Table 3-14 lists the symbolic values
for type.

name
A pointer to the name associated with the cursor command, if any. Table 3-
14 on page 433 indicates which types of commands require names.

namelen
The length, in bytes, of *name. If *name is null-terminated, pass namelen as
CS_NULLTERM. If name is NULL pass namelen as CS_UNUSED.

ct_cursor

426 Open Client

text
A pointer to the text associated with the cursor command. Table 3-14
indicates which commands require text and what that text must be.

textlen
The length, in bytes, of *text. If *text is null-terminated, pass textlen as
CS_NULLTERM. If text is NULL, pass textlen as CS_UNUSED.

option
The option associated with this command. Table 3-14 indicates which
commands take an option and what that option can be.

Return value ct_cursor returns the following values:

Examples Example 1 The following code excerpt is from the csr_disp.c sample program
and describes the functionality of regular cursors:

 /* DoCursor(connection) */
 CS_STATIC CS_RETCODE
 DoCursor(connection)
 CS_CONNECTION *connection;

 {
 CS_RETCODE retcode;
 CS_COMMAND *cmd;
 CS_INT res_type;

 /* Use the pubs2 database */
 ...CODE DELETED.....

 /*
 ** Allocate a command handle to declare the
 ** cursor on.
 */
 retcode = ct_cmd_alloc(connection, &cmd)
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cmd_alloc() failed");
 return retcode;
 }

 /*
 ** Declare the cursor. SELECT is a select

Return value Meaning

CS_SUCCEED The routine completed successfully

CS_FAIL The routine failed

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 427

 ** statement defined in the header file.
 */
 retcode = ct_cursor(cmd, CS_CURSOR_DECLARE,
 "cursor_a", CS_NULLTERM, SELECT, CS_NULLTERM,
 CS_READ_ONLY);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cursor(declare)
 failed");
 return retcode;
 }

 /* Set cursor rows to 10*/
 retcode = ct_cursor(cmd, CS_CURSOR_ROWS, NULL,
 CS_UNUSED, NULL, CS_UNUSED, (CS_INT)10);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cursor(currows)
 failed");
 return retcode;
 }

 /* Open the cursor */
 retcode = ct_cursor(cmd, CS_CURSOR_OPEN, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cursor() failed");
 return retcode;
 }

 /*
 ** Send (batch) the last 3 cursor commands to
 ** the server
 */
 retcode = ct_send(cmd)
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_send() failed");
 return retcode;
 }

 /*
 ** Process the results. Loop while ct_results()
 ** returns CS_SUCCEED, and then check ct_result’s
 ** final return code to see if everything went ok.
 */
 ...CODE DELETED.....

ct_cursor

428 Open Client

 /*
 ** Close and deallocate the cursor. Note that we
 ** don’t have to do this, since it is done
 ** automatically when the connection is closed.
 */
 retcode = ct_cursor(cmd, CS_CURSOR_CLOSE, NULL,
 CS_UNUSED, NULL, CS_UNUSED, CS_DEALLOC);
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cursor(dealloc)
 failed");
 return retcode;
 }

 /* Send the cursor command to the server */
 retcode = ct_send(cmd)
 if (retcode != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_send() failed");
 return retcode;
 }

 /*
 ** Check its results. The command won't generate
 ** fetchable results.
 */
 ...CODE DELETED.....

 /* Drop the cursor's command structure */
 ...CODE DELETED.....

 return retcode;
 }

Example 2 The following code excerpt is from the csr_disp_scrollcurs.c
sample program and describes the functionality of scrollable cursors:

CS_STATIC CS_RETCODE
DoCursor(connection)
CS_CONNECTION*connection;
{

CS_RETCODEretcode;
CS_COMMAND*cmd;
CS_INT res_type;

 if ((retcode = ex_use_db(connection, Ex_dbname)) != CS_SUCCEED)
 {
 ex_error("DoCursor: ex_use_db(pubs2) failed");
 return retcode;

CHAPTER 3 Routines

Client-Library/C Reference Manual 429

 }

 if ((retcode = ct_cmd_alloc(connection, &cmd)) != CS_SUCCEED)
 {
 ex_error("DoCursor: ct_cmd_alloc() failed");
 return retcode;
 }

/*
** Declare an insensitive, scrollable cursor. The same result
** would be obtained by using CS_SCROLL_INSENSITIVE.
*/
retcode = ct_cursor(cmd, CS_CURSOR_DECLARE, "cursor_a", CS_NULLTERM,

SELECT, CS_NULLTERM, CS_SCROLL_CURSOR);

if (retcode != CS_SUCCEED)
{

 ex_error("DoCursor: ct_cursor(declare) failed");
return retcode;

}

/*
** This example relies on CS_CURSOR_ROWS set to 1, e.g. fetch a single
** row at any time for the server. No row buffering here.
*/
retcode = ct_cursor(cmd, CS_CURSOR_ROWS, NULL, CS_UNUSED, NULL,

CS_UNUSED, (CS_INT)1);
if (retcode != CS_SUCCEED)
{

 ex_error("DoCursor: ct_cursor(currows) failed");
return retcode;

}

retcode = ct_cursor(cmd, CS_CURSOR_OPEN, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_UNUSED);

if (retcode != CS_SUCCEED)
{

 ex_error("DoCursor: ct_cursor() failed");
return retcode;

}

if ((retcode = ct_send(cmd)) != CS_SUCCEED)
{

 ex_error("DoCursor: ct_send() failed");
return retcode;

}

ct_cursor

430 Open Client

while((retcode = ct_results(cmd, &res_type)) == CS_SUCCEED)
{

switch ((int)res_type)
{
case CS_CMD_SUCCEED:

break;

case CS_CMD_DONE:
 break;

case CS_CMD_FAIL:
ex_error("DoCursor: ct_results() returned CMD_FAIL");
break;

case CS_CURSOR_RESULT:
retcode = ex_scroll_fetch_1(cmd);
if (retcode != CS_SUCCEED)
{

if (retcode == CS_SCROLL_CURSOR_ENDS ||
retcode == CS_CURSOR_BEFORE_FIRST ||
retcode == CS_CURSOR_AFTER_LAST)

{
retcode = CS_SUCCEED;

}
}
else
{

ex_error("DoCursor: ex_scroll_fetch_1() failed on
CS_CURSOR_RESULT ");

 return retcode;
}
break;

default:

ex_error("DoCursor: ct_results() returned unexpected result
type");

return CS_FAIL;
}

}

switch ((int)retcode)
{

case CS_SUCCEED:
case CS_END_RESULTS:

break;

CHAPTER 3 Routines

Client-Library/C Reference Manual 431

case CS_FAIL:
ex_error("DoCursor: ct_results() failed");
return retcode;

default:
ex_error("DoCursor: ct_results() returned unexpected result

code");
return retcode;

}

/*
** cursor close only
*/
retcode = ct_cursor(cmd, CS_CURSOR_CLOSE, NULL, CS_UNUSED, NULL,

CS_UNUSED, CS_UNUSED);

if (retcode != CS_SUCCEED)
{

 ex_error("DoCursor: ct_cursor(close) failed");
return retcode;

}

if ((retcode = ct_send(cmd)) != CS_SUCCEED)
{

 ex_error("DoCursor: ct_send() for close failed");
return retcode;

}

while((retcode = ct_results(cmd, &res_type)) == CS_SUCCEED)
{

switch ((int)res_type)
{
 case CS_CMD_SUCCEED:
 case CS_CMD_DONE:

break;

case CS_CMD_FAIL:
ex_error("DoCursor: ct_results() close returned CMD_FAIL");
break;

default:
ex_error("DoCursor: ct_results() close returned unexpected result

type");
return CS_FAIL;

}

ct_cursor

432 Open Client

}

if (retcode != CS_END_RESULTS)
{

ex_error("DoCursor: close ENDRESULTS ct_results() failed");
return retcode;

}

/*
** cursor dealloc only, but this could be combined with the close.
*/

 retcode = ct_cursor(cmd, CS_CURSOR_DEALLOC, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_UNUSED);

if (retcode != CS_SUCCEED)
{

 ex_error("DoCursor: ct_cursor(cursor_dealloc) failed");
return retcode;

}

if ((retcode = ct_send(cmd)) != CS_SUCCEED)
{

 ex_error("DoCursor: ct_send() for dealloc failed");
return retcode;

}

while((retcode = ct_results(cmd, &res_type)) == CS_SUCCEED)
{

switch ((int)res_type)
{
 case CS_CMD_SUCCEED:
 case CS_CMD_DONE:

break;

case CS_CMD_FAIL:
ex_error("DoCursor: ct_results() returned CMD_FAIL");
break;

default:
ex_error("DoCursor: ct_results() returned unexpected result

type");
return CS_FAIL;

}
}

if (retcode != CS_END_RESULTS)
{

CHAPTER 3 Routines

Client-Library/C Reference Manual 433

ex_error("DoCursor: cursor_dealloc ENDRESULTS ct_results() failed");
return retcode;

}

if ((retcode = ct_cmd_drop(cmd)) != CS_SUCCEED)
{

 ex_error("DoCompute: ct_cmd_drop() failed");
 return retcode;

}

return retcode;
}

Usage Table 3-14: Summary of ct_cursor parameters

Value of type
Command
initiated

name
value text value option value

CS_CURSOR_
DECLARE

A cursor declare
command.

A pointer to
the cursor
name.

A pointer to
the SQL text
that is the
body of the
cursor.

CS_UNUSED, or a bitwise OR of
the values in Table 3-15 on
page 439.

CS_CURSOR_
OPTION

A cursor set options
command.

NULL NULL • CS_FOR_UPDATE to indicate
that the cursor is “for update.”

• CS_READ_ONLY to indicate
that the cursor is “read-only.”

• CS_UNUSED to indicate that
the server should decide
whether a cursor is updatable.

• CS_SCROLL_INSENSITIVE
to declare a scrollable cursor
insensitive.

• CS_SCROLL_SEMISENSITIVE
to declare a scrollable, semi
sensitive cursor.

• CS_SCROLL_CURSOR to
declare a scrollable cursor that is
insensitive (default).

• CS_NOSCROLL_INSENSITIVE
to declare a cursor insensitive
and non-scrollable.

ct_cursor

434 Open Client

CS_CURSOR_ROWS A cursor set rows
command.

NULL NULL An integer representing the number
of rows to be returned with a single
fetch request.

The default is 1 if not specified in
subsequent ct_cursor calls.

For multi-row returns from
ct_scroll_fetch, the
CS_CURSOR_ROWS value must
be greater than 1.

For best performance, set
CS_CURSOR_ROWS to the same
value as the count field in the
ct_bind call.

See “ct_bind” on page 335.

CS_CURSOR_OPEN A cursor open
command.

NULL NULL • CS_RESTORE_OPEN restores
parameter-binding information
for a previously sent cursor-
open command. See “Restoring
a cursor-open command” on
page 445 for an explanation.

• CS_UNUSED should be passed
the first time a cursor is opened.

CS_CURSOR_
UPDATE

A cursor update
command.

A pointer to
the name of
the table to
update.

A pointer to
the SQL
update
statement.

• CS_UNUSED if *text is the
entire update statement.

• CS_MORE if *text is part of the
update statement.

• CS_END if *text is the last piece
of the update statement.

CS_CURSOR_
DELETE

A cursor delete
command.

A pointer to
the name of
the table to
delete from.

NULL CS_UNUSED

CS_CURSOR_
CLOSE

A cursor close
command.

NULL NULL • CS_DEALLOC to close and
deallocate the cursor.

• CS_UNUSED to close the
cursor without deallocating it.

CS_CURSOR_
DEALLOC

A deallocate cursor
command.

NULL NULL CS_UNUSED

Value of type
Command
initiated

name
value text value option value

CHAPTER 3 Routines

Client-Library/C Reference Manual 435

• Initiating a command is the first step in sending it to a server. Client-
Library cursor commands include commands to declare, open, set cursor
rows, close, and deallocate a cursor as well as commands to update and
delete rows in an underlying table. Chapter 7, “Using Client-Library
Cursors,” in the Open Client Client-Library/C Programmers Guide
contains additional information on Client-Library cursors.

• To send a cursor command to a server, an application must:

a Initiate the command by calling ct_cursor. This sets up internal
structures that are used in building a command stream to send to the
server.

b Pass parameters for the command (if required) by calling ct_param or
ct_setparam once for each parameter that the command requires.

c Cursor-declare, cursor-open, and cursor-update commands may
require parameters. Other cursor commands do not.

d Send the command to the server by calling ct_send.

e Handle the results of the command by calling ct_results until it returns
CS_END_RESULTS, CS_CANCELED, or CS_FAIL. A cursor-open
command returns a CS_CURSOR_RESULT result type (and possibly
other result types indicating status information). Other cursor
commands do not return fetchable results, but they do return result
types that indicate command status. See “Results” on page 251 for a
discussion of processing results.

• Client-Library allows an application to resend commands by calling
ct_send immediately after the results of the previous execution have been
processed. An application can resend any command that was initiated with
ct_cursor. However, only cursor-update and cursor-delete commands can
be reexecuted successfully on the server. Other cursor commands must be
executed in a specific sequence and resending them can cause server
processing errors.

Sequencing cursor commands

• Servers require cursor commands to be executed in the sequence described
below. Each step is a separate server command that generates distinct
results:

ct_cursor

436 Open Client

a Declare the cursor. This step identifies the source query for the cursor
and optionally identifies which (if any) columns in the cursor’s result
set can be updated. Cursors can be declared with ct_cursor or
ct_dynamic. ct_cursor details for this step are under “Cursor-declare
commands” on page 436. For ct_dynamic cursor declarations, see
“Declaring a cursor on a prepared statement” on page 489.

b Specify cursor options (only for cursors declared with ct_dynamic).
For details, see “Dynamic SQL cursor option” on page 441.

c Specify the cursor rows setting. For details, see “Cursor-Rows
commands” on page 442.

d Open the cursor. The first time a cursor is opened, the commands in
steps 1–4 can be batched to reduce the number of network round-trips
to the server and back. For details, see “Cursor-open commands” on
page 444 and “Batching cursor-open commands” on page 445.

e Process the cursor-open results with ct_results and ct_fetch, or in the
case of a scrollable cursor, with ct_results and ct_scroll_fetch. Each
time ct_fetch returns CS_SUCCEED or CS_ROW_FAIL, the
application can issue nested cursor-update or cursor-delete commands
on the same CS_COMMAND structure. The application can also
send new commands (unrelated to the cursor), as long as the
application uses a different CS_COMMAND structure and processes
the results of the command before fetching from the cursor again.
Results processing is described in “Results” on page 251. For details
on nested cursor commands, see “Cursor-update commands” on page
446 and “Cursor-delete commands” on page 447.

f Close the cursor as described by “Cursor-close commands” on page
448. Closed cursors can be reopened: steps c through f can be repeated
indefinitely. A cursor can be reopened by initiating a new cursor-open
command or by restoring the previously initiated cursor-open
command. For details, see “Restoring a cursor-open command” on
page 445.

g Deallocate the cursor. For details, see “Cursor-deallocate commands”
on page 449.

Cursor-declare commands

• Declaring a Client-Library cursor is equivalent to associating the cursor
name with a select statement. This SQL statement is called the body of the
cursor.

• The following rules apply to ct_cursor cursor-declare commands:

CHAPTER 3 Routines

Client-Library/C Reference Manual 437

• Only one cursor may be declared for each CS_COMMAND structure.
However, another cursor can be declared on a separate
CS_COMMAND structure that shares the same connection.

• All operations on a Client-Library cursor, from its declaration to its
deallocation, must reference the command structure with which the
cursor was created.

• When a cursor is declared on a CS_COMMAND structure, the
structure can not be used to execute ct_command, ct_dynamic, or
ct_sendpassthru server commands until the cursor is deallocated.

• Cursors associated with a dynamic SQL statement are declared with
ct_dynamic, not with ct_cursor.

• The cursor body can either be specified directly as the *text parameter, or
indirectly as the text of a stored procedure. In the case of the stored
procedure, the *text parameter must be a command to execute the stored
procedure. A cursor declared with a stored procedure is called an execute
cursor.

• The following example declares a cursor named title_cursor on rows
from the titles table.

 ct_cursor (cmd, CS_CURSOR_DECLARE,
 "title_cursor",CS_NULLTERM,
 "select * from titles", CS_NULLTERM,
 CS_UNUSED);

 ct_send(cmd);

• The following example declares an execute cursor on the stored
procedure title_cursor_proc:

 ct_cursor (cmd, CS_CURSOR_DECLARE,
 "mycursor", CS_NULLTERM,
 "exec title_cursor_proc", CS_NULLTERM,
 CS_UNUSED);

 ct_send(cmd);

In this case, the body of the cursor is the text that makes up the stored
procedure. The stored procedure text must contain a single select
statement only. In the example above, title_cursor_proc could be
created as:

create proc title_cursor_proc as

ct_cursor

438 Open Client

 select * from titles for read only

Note A stored procedure used with an execute cursor must consist of
a single select statement. The stored procedure’s return status is not
available to the client program. Output parameter values are also not
available to the client program.

• A select statement associated with a cursor can contain host variables. If it
does, you must describe the format for each variable after declaring the
cursor. To describe the format of each host variable, first initialize a
CS_DATAFMT structure to describe the variable’s format; then call
ct_param with the CS_DATAFMT as a parameter.

At cursor-declare time, ct_param only provides format information for the
host-language variables. At cursor-open time, actual values are provided
by calling ct_param with parameter values or ct_setparam with pointers to
parameter source variables.

• An execute statement associated with a cursor should not contain host
language variables, and you do not need to specify variable formats with
ct_param at cursor-declare time. At cursor-open time, supply values for the
procedure’s parameters using ct_param or ct_setparam. For execute
cursors, the declaration of the stored procedure determines the formats of
the procedure’s parameters.

Option values for
ct_cursor(CS_
CURSOR_DECLARE)

• The following values can be passed for the ct_cursor option parameter
when initiating a cursor-declare command:

CHAPTER 3 Routines

Client-Library/C Reference Manual 439

Table 3-15: Option values for ct_cursor(CS_CURSOR_DECLARE)

• To build the cursor’s text value in pieces, use the CS_MORE and CS_END
option values. A sequence of one or more ct_cursor calls that use
CS_MORE must be ended with a call that specifies CS_END, as
demonstrated below:

ct_cursor(cmd, CS_CURSOR_DECLARE,

Value of option Meaning

CS_MORE Indicates that *text is only part of the cursor body, with the
rest to be supplied in subsequent calls.

If this bit is set, all other options are ignored. If this bit is
not set, then *text is taken to be the entire cursor body.

CS_END Indicates that *text is the last piece of the cursor body.

CS_FOR_UPDATE Indicates that the cursor is “for update.” Can be used with
CS_END or by itself. When this option appears by itself,
the entire cursor body must be specified with one call.

Note For Adaptive Server Enterprise connections, use the
for update of or for read only clauses in the cursor body to
specify whether the cursor rows can be updated. Adaptive
Server Enterprise does not recognize option values.

CS_READ_ONLY Indicates that the cursor is read-only.

CS_UNUSED Equivalent to setting the CS_END bit (only).

CS_IMPLICIT_
CURSOR

This is a TDS-based client cursor with optimizations to
potentially reduce the number of network round-trips. New
rows inserted after the last row fetch are not seen by
subsequent fetches.

CS_SCROLL_
INSENSITIVE

Declares insensitive scrollable cursors. At cursor open
time, the cursor result set is static and the number of rows
known. Changes to the base table are not visible.

CS_SCROLL_
SEMISENSITIVE

Declares semi-sensitive scrollable cursors. At cursor open
time, the number of rows in the cursor result set is not
known. The cursor result set changes when data in the base
table changes.

CS_SCROLL_
CURSOR

Maps to insensitive scrollable cursors.

CS_NOSCROLL_
INSENSITIVE

Declares insensitive, read-only cursors with forward
direction only. This option is only offered through ct_fetch
and cannot be used with ct_scroll_fetch.

CS_CUR_RELLOCK
S_ONCLOSE

Indicates that the server should release the shared locks
once the cursor is closed.

ct_cursor

440 Open Client

 “select title_id, contract ”, ..., CS_MORE);
 ct_cursor(cmd, CS_CURSOR_DECLARE,
 “from titles ”, ... , CS_MORE);
 ct_cursor(cmd, CS_CURSOR_DECLARE,
 “where contract=FALSE ”,, CS_MORE);
 ct_cursor(cmd, CS_CURSOR_DECLARE,
 “for update of contract”,, CS_END);

The last cursor-declare call must specify CS_END. Note that
CS_READ_ONLY and CS_FOR_UPDATE are illegal with CS_MORE.
If you need to set either of these option bits, set it in the last call (for
example, use CS_END | CS_READONLY).

Client-Library does not add white space when appending the *text values.

• The CS_FOR_UPDATE and CS_READ_ONLY options are passed to the
server. If neither option is set, then the server decides whether the cursor
is updatable based on the content of the cursor body specified by *text.

Specifying updatability • When declaring a Client-Library cursor, the application must specify
whether the cursor is updatable; that is, whether the application intends to
update the retrieved cursor rows using ct_cursor update commands.
Depending on the destination server, this is done either by the content of
the cursor’s body statement or with the ct_cursor option parameter.

If the server is a Adaptive Server Enterprise, the select statement
associated with the cursor defines whether the table rows can be updated.
Applications use the Transact-SQL clauses for update of or for read only to
specify whether the cursor is updatable. For example, the statement in the
call below specifies that the price column will be updated, and all other
columns will not:

#define TITLE_CUR \
 “select title_id, title, price from titles \
 for update of price”

ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 “titles_cursor”, CS_NULLTERM,
 TITLE_CUR, CS_NULLTERM, CS_END);

If the server is an Open Server application, it may require that the client
use the CS_READ_ONLY and CS_FOR_UPDATE options, or it may
parse the select statement. The choice depends on the design of the Open
Server application. If the server requires option to determine whether the
cursor is updatable, then the ct_cursor usage is as follows:

• To declare a cursor as “read-only,” an application specifies option as
CS_READ_ONLY.

CHAPTER 3 Routines

Client-Library/C Reference Manual 441

• To declare a cursor “for update,” an application specifies option as
CS_FOR_UPDATE.

If some of a cursor’s columns are “for update,” an application
indicates which columns are “for update” by calling ct_param once
for each update column. If all of a cursor’s columns are “for update,”
an application does not have to call ct_param to identify the update
columns.

For example, to indicate that the au_id and au_lname columns are
“for update”:

 ct_cursor(cmd, CS_CURSOR_DECLARE,
"au_cursor",
 CS_NULLTERM, "select * from authors"
 CS_NULLTERM, CS_FOR_UPDATE);
 format.status = CS_UPDATECOL;
 ct_param(cmd, &format, "au_id",
 CS_NULLTERM, 0);
 format.status = CS_UPDATECOL;
 ct_param(cmd, &format, "au_lname",
 CS_NULLTERM, 0);
 ct_send(cmd);

To indicate that all columns returned by a cursor are “for update”:

 ct_cursor(cmd, CS_CURSOR_DECLARE,
 "au_cursor",
 CS_NULLTERM, "select * from authors"
 CS_NULLTERM, CS_FOR_UPDATE);
 ct_send(cmd);

Dynamic SQL cursor option

• A dynamic SQL application can declare a cursor on a prepared statement.
To declare a cursor on a prepared statement, call
ct_dynamic(CS_CURSOR_DECLARE); from that point on, use ct_cursor
calls to manipulate the cursor.

• The dynamic SQL cursor declare command does not provide a way to
specify cursor options. To set options, call
ct_cursor(CS_CURSOR_OPTION) after calling ct_dynamic and before
calling ct_send.

• If the server is an Adaptive Server Enterprise, the CS_READ_ONLY and
CS_FOR_UPDATE options do not affect the underlying server tables. The
select statement associated with the cursor defines whether the table rows
can be updated.

ct_cursor

442 Open Client

• If the server is an Open Server application, the CS_READ_ONLY and
CS_FOR_UPDATE options may be used by the server.

In this case, if some but not all of a cursor’s columns are “for update,” an
application must indicate which columns are “for update” by calling
ct_param once for each update column. If all of a cursor’s columns are “for
update,” an application does not have to call ct_param to identify update
columns.

• Cursor options must be specified before the cursor-declare command is
sent.

Cursor-Rows commands

• A ct_cursor(CS_CURSOR_ROWS) command specifies the number of
rows that the server returns to Client-Library per internal fetch request.
Note that this is not the number of rows returned to an application per
ct_fetch call. The number of rows returned to an application per ct_fetch
call is determined by the value of the count field in the CS_DATAFMT
structures used in binding the cursor result columns.

• An application can set cursor rows only before opening a cursor.

• The cursor rows setting defaults to one row.

Using implicit cursors

You can use implicit cursors with Client-Library. Implicit cursors function in
the same way as read-only cursors during row-fetching, but they use system
resources more efficiently.

This example uses read-only cursors:

ct_cursor(cmd, CS_CURSOR_DECLARE, "cursor_a",
CS_NULLTERM, SELECT, CS_READ_ONLY)

ct_cursor(cmd, CS_CURSOR_ROWS, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_INT)5)

ct_cursor(cmd, CS_CURSOR_OPEN, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_UNUSED)

This example uses implicit cursors:

ct_cursor(cmd, CS_CURSOR_DECLARE, "cursor_a",
CS_NULLTERM, SELECT, CS_IMPLICIT CURSOR)

ct_cursor(cmd, CS_CURSOR_ROWS, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_INT)5)

ct_cursor(cmd, CS_CURSOR_OPEN, NULL, CS_UNUSED, NULL,
CS_UNUSED, CS_UNUSED)

CHAPTER 3 Routines

Client-Library/C Reference Manual 443

To use implicit cursors, you must set cs_ctx_alloc(CS_VERSION_xxx,
context) or ct_init(*context, CS_VERSION_xxx), where xxx is 125
(version 12.5) or later. You must set CS_CURSOR_ROWS to a minimum
value of 2 for single-row fetches, and a higher value if more rows are to be
retrieved.

 Warning! You can use implicit cursors only with Client-Library version 12.5
and later. If you use them with an earlier version of Client-Library, they are
converted to read-only cursors.

Releasing locks at cursor close

Use the CS_CUR_RELLOCKS_ONCLOSE option to request that Adaptive
Server Enterprise release the shared read-only locks once the cursor is closed.
To use with read-only cursors or scrollable cursors, use the bitwise OR
operator, “|” (pipe):

• CS_CUR_RELLOCKS_ONCLOSE

• CS_CUR_RELLOCKS_ONCLOSE | CS_READ_ONLY

• CS_CUR_RELLOCKS_ONCLOSE | CS_FOR_UPDATE

• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_CURSOR

• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_INSENSITIVE

• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_SEMISENSITIVE

• CS_CUR_RELLOCKS_ONCLOSE | CS_NOSCROLL_INSENSITIVE

Example 1 Declares a cursor that releases its shared locks when it closes:

ct_cursor(cmd, CS_CURSOR_DECLARE, cursor_name,
CS_NULLTERM, select_statement, CS_NULLTERM,
CS_CUR_RELOCKS_ONCLOSE);

Example 2 Declares an insensitive, scrollable cursor that releases its shared
locks when it closes:

ct_cursor(cmd, CS_CURSOR_DECLARE, cursor_name,
CS_NULLTERM, select_statement, CS_NULLTERM,
CS_CUR_RELOCKS_ONCLOSE | CS_SCROLL_INSENSITIVE);

For a sample Open Client program that illustrates this feature, see
csr_disp_scrollcurs3.c.

ct_cursor

444 Open Client

Cursor-open commands

• A ct_cursor(CS_CURSOR_OPEN) command executes the body of a
Client-Library cursor, generating a CS_CURSOR_RESULT result set.

• To access the cursor rows, an application processes the cursor result
set by calling ct_results, ct_bind, and ct_fetch.

• While fetching rows in a cursor result set, the application can send
nested cursor commands (cursor update, cursor delete, cursor close)
using the same CS_COMMAND structure.

• While fetching rows in a cursor result set, the application can also
send non-cursor commands to the server (or declare and open another
cursor) by using a separate CS_COMMAND structure.

• The cursor must have been declared with ct_cursor(CS_DECLARE) or
ct_dynamic(CS_CURSOR_DECLARE) before it can be opened. A closed
cursor can be reopened.

If the cursor is declared with ct_cursor, the declare and open commands
can be batched. See “Batching cursor-open commands” on page 445.

• Cursors may require parameter values at cursor-open time. An application
can pass input parameter values for a cursor-open command by calling
ct_param or ct_setparam after calling ct_cursor. A cursor-open command
requires parameters if any of the following conditions is true:

• The body of the cursor is a SQL statement that contains host variables.

• The body of the cursor is a stored procedure that requires input
parameter values.

• The body of the cursor is a dynamic SQL statement that contains
dynamic parameter markers.

• To open a cursor on a dynamic SQL prepared statement, specify the same
command structure used to dynamically declare the cursor
(ct_dynamic(CS_CURSOR_DECLARE)).

• The first time a cursor is opened, all the server commands to declare the
cursor, set cursor rows, and open the cursor can be sent with a single call
to ct_send. For subsequent cursor-open commands, the application can use
the CS_RESTORE_OPEN option to eliminate redundant
ct_cursor(CS_CURSOR_ROWS) and ct_param calls. For a description of
these features, see:

• “Batching cursor-open commands” on page 445, and

• “Restoring a cursor-open command” on page 445.

CHAPTER 3 Routines

Client-Library/C Reference Manual 445

• Text for cursor-open commands can be assembled in pieces with
multiple ct_cursor calls. To specify the open statement in pieces, use
the CS_MORE and CS_END values for the option parameter.

Batching cursor-open commands

• When opening a cursor, an application can batch ct_cursor commands to
reduce network traffic and improve application performance. All the
commands required to declare and open the cursor can be sent with one
call to ct_send.

To batch commands to declare, set rows for, and open a Client-Library
cursor, the application:

a Calls ct_cursor to declare the cursor

b If necessary, calls ct_param or ct_setparam to define the format(s) of
host variables.

c If desired, calls ct_cursor to set rows for the cursor.

d Calls ct_cursor to open the cursor.

e If necessary, calls ct_param or ct_setparam to supply value(s) for the
host variable(s). The application should use ct_setparam if it will
reopen the cursor using the CS_RESTORE_OPEN option.
ct_setparam binds program variables to input parameters, allowing
the application to change parameter values when resending a
command. If the application uses ct_param, the parameter values
cannot be changed when the cursor-open command is restored.

f Calls ct_send to send the command batch to the server.

The sequence of calls is:

 ct_cursor(CS_CURSOR_DECLARE)
 ct_param or ct_setparam for each parameter
 ct_cursor(CS_CURSOR_ROWS)
 ct_cursor(CS_CURSOR_OPEN)
 ct_param or ct_setparam for each parameter
 ct_send
 ct_results

Each of the batched commands generates separate results, and several
calls to ct_results are required.

Restoring a cursor-open command

• When reopening a cursor, an application can use the
CS_RESTORE_OPEN option to restore the most recently sent cursor-
open command.

ct_cursor

446 Open Client

• If the application used ct_param to supply parameter values for the
original cursor-open command, then the restored cursor-open command
will use the same parameter values. If the application used ct_setparam,
then the application can change the parameter values for the restored
cursor-open command.

• If the application batched a cursor-rows command with the previous
cursor-open command, then Client-Library resends the cursor-rows
command with the cursor-open command. The cursor is reopened with the
same cursor-rows setting.

• The sequence of calls for restoring a cursor-open command is:

/*
 ** Assign new variables in the program variables
 ** bound with ct_setparam.
 */
 ... assignment statement for each parameter
 source value ...
ct_cursor(CS_CURSOR_OPEN, CS_RESTORE_OPEN)
ct_send
... handle cursor results ...

• An application cannot restore a cursor that has been deallocated.

• An application can check the CS_HAVE_CUROPEN property to see
whether a restorable cursor-open command exists for a command
structure. See “Have restorable cursor-open command” on page 224 for a
description.

• Applications that restore cursor-open commands may benefit from setting
the CS_STICKY_BINDS command property. When CS_TRUE, this
property allows the application to reuse the original cursor result bindings
and eliminate redundant ct_bind calls. See “Persistent result bindings” on
page 234 for a description of this property.

Cursor-update commands

• A ct_cursor(CS_CURSOR_UPDATE) command defines new column
values for the current cursor row. These new values are used to update an
underlying table.

• A cursor update command is always “nested”; that is, the command is sent
from within the ct_results loop while the cursor’s rows are being processed
by ct_fetch.

CHAPTER 3 Routines

Client-Library/C Reference Manual 447

A nested cursor command can be sent after ct_results returns a result_type
value of CS_CURSOR_RESULT. At least one row must be fetched before
a cursor update command is allowed, and cursor update commands are not
allowed after ct_fetch returns CS_END_DATA.

• By default, the last-fetched row is updated. The application can redirect
the update to another row in the cursor result set. To redirect the update,
specify different key values with ct_keydata before sending the cursor
update command.

• When updating an Adaptive Server Enterprise table, an application must
specify the name of the table to update twice: once as the value of
ct_cursor’s *name parameter and a second time in the update statement
itself (update tablename).

• Text for cursor-open and cursor-update commands can be assembled in
pieces with multiple ct_cursor calls. To specify the update statement in
pieces, use the CS_MORE and CS_END values for the option parameter.
CS_MORE indicates that the application intends to append more text to
the update statement. To be specified in pieces, an update statement must
update only a single table.

• The text of the update statement can contain host-language variables. If it
does, the application must specify values for the variables with ct_param
or ct_setparam before calling ct_send. Use ct_setparam if the cursor-
update command requires parameters and will be sent to the server more
than once.

• A cursor-update command generates results like any other command. The
application must process the results before it can fetch from the cursor
again.

• Cursor-update commands can be resent by calling ct_send immediately
after the results of the previous execution have been handled. A cursor-
update command can be resent as long as

• The application has not initiated a new nested cursor command,

• The cursor is still open, and

• ct_fetch has not returned CS_END_DATA.

Cursor-delete commands

• A ct_cursor(CS_CURSOR_DELETE) command deletes a row from the
cursor result set. The delete is propagated back to the underlying server
tables.

ct_cursor

448 Open Client

• A cursor-delete command is always “nested”; that is, the command is sent
from within the ct_results loop while the cursor’s rows are being processed
by ct_fetch.

A nested cursor command can be sent after ct_results returns a result_type
value of CS_CURSOR_RESULT. At least one row must be fetched before
a cursor delete command is allowed, and cursor delete commands are not
allowed after ct_fetch returns CS_END_DATA.

• By default, the last-fetched row is deleted. The application can redirect the
deletion to another row in the cursor-result set. To redirect the deletion,
specify different key values with ct_keydata before sending the
cursor-delete command.

• A cursor-delete command generates results like any other command. The
application must process the results before it can fetch from the cursor
again.

• Cursor-delete commands can be resent, with the same restrictions as for
cursor-update commands.

Cursor-close commands

• A ct_cursor(CS_CURSOR_CLOSE) command abandons the cursor result
set that was generated when the cursor was opened. If all the cursor’s rows
have been fetched, a cursor-close command must be issued before the
application can reopen the cursor.

• An application can reopen a closed cursor.

• A cursor-close command can be “nested ”; that is, a cursor-close command
can be sent from within the ct_results loop while the cursor’s rows are
being processed by ct_fetch.

• A nested cursor-close command can be sent after ct_results returns a
result_type value of CS_CURSOR_RESULT and before ct_fetch
returns CS_END_DATA.

• After ct_fetch returns CS_END_DATA, the cursor-close command
can no longer be nested, and cannot be sent until ct_results has
returned CS_END_RESULTS or CS_CANCELED.

A nested cursor-close command is the preferred way to abandon rows returned
from a cursor-open command, since ct_cancel can put a connection’s cursors
into an undefined state.

• A non-nested cursor-close command must be sent when the
CS_COMMAND structure is idle, that is, after ct_results has returned
CS_END_RESULTS or CS_CANCELED.

CHAPTER 3 Routines

Client-Library/C Reference Manual 449

Cursor-deallocate commands

• A ct_cursor(CS_CURSOR_DEALLOC) command deallocates a Client-
Library cursor. If a cursor has been deallocated, it cannot be reopened.

• An application cannot deallocate an open cursor.

• To initiate a command to both close and deallocate a Client-Library cursor,
call ct_cursor with type as CS_CURSOR_CLOSE and option as
CS_DEALLOC.

See also “Commands” on page 97, ct_cmd_alloc, ct_keydata, ct_param, ct_results,
ct_send, ct_setparam, ct_scroll_fetch.

ct_data_info
Description Define or retrieve a data I/O descriptor structure.

Syntax CS_RETCODE ct_data_info(cmd, action, colnum, iodesc)

 CS_COMMAND *cmd;
 CS_INT action;
 CS_INT colnum;
 CS_IODESC *iodesc;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

action
One of the following symbolic values:

Value Meaning

CS_SET Define an I/O descriptor

CS_GET Retrieve an I/O descriptor

ct_data_info

450 Open Client

colnum
The number of the text or image column whose I/O descriptor is being
retrieved.

If action is CS_SET, pass colnum as CS_UNUSED.

If action is CS_GET, colnum refers to the select-list ID of the text or image
column. The first column is column number 1, the second is number 2, and
so forth. An application must select a text or image column before it can
update the column.

colnum must represent a text or image column.

iodesc
A pointer to a CS_IODESC structure. A CS_IODESC structure contains
information describing text or image data. See “CS_IODESC structure” on
page 88.

Return value ct_data_info returns the following values:

Examples

 /*
 ** FetchResults()
 **
 ** The result set contains four columns: integer, text,
 ** float, and integer.
 */

 CS_STATIC CS_RETCODE
 FetchResults(cmd, textdata)
 CS_COMMAND *cmd;
 TEXT_DATA *textdata;
 {
 CS_RETCOD retcode;
 CS_DATAFMT fmt;
 CS_INT firstcol;
 CS_TEXT *txtptr;
 CS_FLOAT floatitem;
 CS_INT count;
 CS_INT len;

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 451

 /*
 ** Before we call ct_get_data(), we can only bind
 ** columns that come before the column on which we
 ** perform the ct_get_data().
 ** To demonstrate this, bind the first column
 ** returned.
 */
 ...CODE DELETED.....

 /* Retrieve and display the result */
 while(((retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,
 CS_UNUSED,&count)) == CS_SUCCEED) ||
 (retcode == CS_ROW_FAIL))
 {
 /* Check for a recoverable error */
 ...CODE DELETED.....

 /* Get the text data item in the 2nd column */
 ...CODE DELETED.....

 /*
 ** Retrieve the descriptor of the text data. It
 ** is available while retrieving results of a select
 ** query. The information will be needed for later
 ** updates.
 */
 retcode = ct_data_info(cmd, CS_GET, 2,
 &textdata->iodesc);
 if (retcode != CS_SUCCEED)
 {
 ex_error("FetchResults: cs_data_info()
 failed");
 return retcode;
 }

 /* Get the float data item in the 3rd column */
 ...CODE DELETED.....

 /* Last column not retrieved */
 }

 /*
 ** We're done processing rows. Check the final return
 ** value of ct_fetch().
 */
 ...CODE DELETED.....

 return retcode;
 }

ct_data_info

452 Open Client

This code excerpt is from the getsend.c sample program.

Usage • ct_data_info defines or retrieves a CS_IODESC, also called an I/O
descriptor structure, for a text or image column.

• An application calls ct_data_info to retrieve an I/O descriptor after calling
ct_get_data to retrieve a text or image column value that it plans to update
at a later time. This I/O descriptor contains the text pointer and text
timestamp that the server uses to manage updates to text or image columns.

After retrieving an I/O descriptor, a typical application changes only the
values of the locale, total_txtlen, and log_on_update fields before using
the I/O descriptor in an update operation:

• The total_txtlen field of the CS_IODESC represents the total length,
in bytes, of the new text or image value.

• The 6log_on_update field in the CS_IODESC indicates whether or
not the server should log the update.

• The locale field of the CS_IODESC points to a CS_LOCALE
structure containing localization information for the value.

• An application calls ct_data_info to define an I/O descriptor before calling
ct_send_data to send a chunk or image data to the server. Both of these
calls occur during a text or image update operation.

• A successful text or image update generates a parameter result set that
contains the new text timestamp for the text or image value. If an
application plans to update the text or image value a second time, it must
save this new text timestamp and copy it into the CS_IODESC for the
value before calling ct_data_info to define the CS_IODESC for the update
operation.

• In most cases, an application must call ct_get_data for a column before
calling ct_data_info. However, when ct_get_data is used with the Open
Server srv_send_data routine to transfer text, image, and XML columns in
chunks in Gateway Open Server applications, the application must call
ct_data_info before calling ct_get_data. This allows Open Server to
retrieve fixed I/O fields, such as object names, before a column is read and
to send a row’s data format before the whole row is read. The changeable
fields in I/O descriptors, such as pointers to text data and the length of text
data, are still retrievable only after the column is read.

A call to ct_get_data does not have to retrieve any data: An application can
call ct_get_data with a buffer length of 0 and then call ct_data_info to
retrieve the descriptor. This technique is useful when an application needs
to determine the length of a text or image value before retrieving it.

CHAPTER 3 Routines

Client-Library/C Reference Manual 453

See the Open Server Server-Library/C Reference Manual.

• See the “CS_IODESC structure” on page 88.

See also ct_get_data, ct_send_data, “text and image data handling” on page 295

ct_debug
Description Manage debug library operations.

Syntax CS_RETCODE ct_debug(context, connection, operation,
 flag, filename, fnamelen)

 CS_CONTEXT *context;
 CS_CONNECTION *connection;
 CS_INT operation;
 CS_INT flag;
 CS_CHAR *filename;
 CS_INT fnamelen;

Parameters context
A pointer to a CS_CONTEXT structure. A CS_CONTEXT structure
defines a Client-Library application context.

When operation is CS_SET_DBG_FILE, context must be supplied and
connection must be NULL.

When setting or clearing flags, see Table 3-16 to determine whether or not
to supply context.

connection
A pointer to a CS_CONNECTION structure. connection must point to a
valid CS_CONNECTION structure, but no actual connection to a server is
necessary to enable debug operations.

When operation is CS_SET_PROTOCOL_FILE, connection must be
supplied and context must be NULL.

When setting or clearing flags, see Table 3-16 on page 455 to determine
whether or not to supply connection.

operation
The operation to perform. Table 3-17 on page 456 lists the symbolic values
for operation.

ct_debug

454 Open Client

flag
A bitmask representing debug subsystems. The following table lists the
symbolic values that can make up flag:

CHAPTER 3 Routines

Client-Library/C Reference Manual 455

Table 3-16: Values for ct_debug flag parameter

Value Required Resulting Client-Library behavior

CS_DBG_ALL context and
connection

Takes all possible debug actions.

CS_DBG_API_
 LOGCALL

context Prints out information each time the
application calls a Client-Library
routine, including the routine name and
the parameter values.

CS_DBG_API_STATES context Prints information relating to Client-
Library function-level state transitions.

CS_DBG_ASYNC context Prints function trace information each
time an asynchronous function starts or
completes.

CS_DBG_DIAG connection Prints message text whenever a Client-
Library or server message is generated.

CS_DBG_ERROR context Prints trace information whenever a
Client-Library error occurs. This allows
a programmer to determine exactly
where an error is occurring.

CS_DBG_MEM context Prints information relating to memory
management.

CS_DBG_NETWORK context Prints information relating to Client-
Library’s network interactions.

CS_DBG_PROTOCOL connection This ct_debug parameter may be set
without devlib libraries. The parameter
captures information exchanged with a
server in protocol-specific (for
example, TDS) format. This
information is not human-readable.

CS_DBG_PROTOCOL_
FILE

connection This ct_debug parameter may be set
without devlib libraries. If the
parameter is not set on connection,
mktemp is called, generating a unique
file name to dump the protocol packets
into. The prefix string passed to mktemp
is capture. The resulting protocol file is
decodable by Ribo.

CS_DBG_PROTOCOL_
STATES

connection Prints information relating to Client-
Library protocol-level state transitions.

ct_debug

456 Open Client

filename
The full path and name of the file to which ct_debug should write the
generated debug information.

fnamelen
The length, in bytes, of filename, or CS_NULLTERM if filename is a
null-terminated string.

Return value ct_debug returns the following values:

Examples

 ...CODE DELETED.....
 #ifdef EX_API_DEBUG
 /*
 ** Enable this function right before any call to
 ** Client-Library that is returning failure.
 */
 retcode = ct_debug(*context, NULL, CS_SET_FLAG,
 CS_DBG_API_STATES, NULL, CS_UNUSED);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_init: ct_debug() failed");
 }
 #endif
 ...CODE DELETED.....

This code excerpt is from the exutils.c sample program.

Usage Table 3-17: Summary of ct_debug parameters

CS_DBG_SSL connection Allows a CT-Library application to
write SSL-related diagnostics and error
codes to standard output (stdout) or to a
log file. This flag can be used in isql.
CS_DBG_SSL can also be used with
normal (non-debug) libraries.

Value Required Resulting Client-Library behavior

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Value of operation Flag is File name is Result

CS_SET_FLAG Supplied NULL Enables the subsystems specified by flag.

CHAPTER 3 Routines

Client-Library/C Reference Manual 457

• ct_debug manages debug library operations, allowing an application to
enable and disable specific diagnostic subsystems and send the resultant
trace information to files.

• ct_debug functionality is available only from within the debug version of
Client-Library. When called from within the standard Client-Library, it
returns CS_FAIL.

• Some debug flags can be enabled only at the connection level, while others
can be enabled only at the context level. Table 3-16 on page 455 indicates
the level at which each flag can be enabled.

• If an application does not call ct_debug to specify debug files, ct_debug
writes character-format debug information to stdout (where available) and
protocol-form debug information to:

• On Windows:
capXXXX.tmp
where XXXX is a unique code.

• On Unix:
captureXXXXXX
where XXXXXX is a unique code.

These files are found in the application’s working directory.

• When the debug version of Client-Library is linked in with an application,
the following behaviors automatically take place:

• Memory reference checks: Client-Library verifies that all memory
references, both internal and application-specific, are valid.

• Data structure validation: each time a Client-Library function
accesses a data structure, Client-Library first validates the structure.

• Special assertion checking: Client-Library checks that all array
references, including strings, are in bounds.

CS_CLEAR_FLAG Supplied NULL Disables the subsystems specified by flag.

CS_SET_DBG_FILE CS_UNUSED Supplied Records the name of the file to which it
will write character-format debug
information.

CS_SET_PROTOCOL_FILE CS_UNUSED Supplied Records the name of the file to which it
will write protocol-format debug
information.

Value of operation Flag is File name is Result

ct_describe

458 Open Client

• Because the debug version of Client-Library performs extensive internal
checking, application performance will decrease when the debug library is
in use. The level of performance decrease depends on the type and number
of tracing subsystems that are enabled. To minimize performance
decrease, an application programmer can selectively enable tracing
subsystems, limiting heavy tracing to problem areas of code.

• Use of the debug library will change the behavior of asynchronous
applications that are experiencing timing problems. In this case, the use of
external tracing tools (for example, a network protocol analyzer) is
recommended.

See also “Error handling” on page 122, “Enabling debugging” on page 102.

ct_describe
Description Return a description of result data.

Syntax CS_RETCODE ct_describe(cmd, item, datafmt)

 CS_COMMAND *cmd;
 CS_INT item;
 CS_DATAFMT *datafmt;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

CHAPTER 3 Routines

Client-Library/C Reference Manual 459

item
An integer representing the result item of interest.

When retrieving a column description, item is the column’s column number.
The first column in a select-list is column number 1, the second is number
2, and so forth.

When retrieving a compute column description, item is the column number
of the compute column. Compute columns are returned in the order in which
they are listed in the compute clause. The first column returned is number 1.

When retrieving a return parameter description, item is the parameter
number of the parameter. The first parameter returned by a stored procedure
is number 1. Stored procedure return parameters are returned in the same
order as the parameters were originally specified in the stored procedure’s
create procedure statement. This is not necessarily the same order as
specified in the RPC command that invoked the stored procedure. In
determining what number to pass as item do not count non-return
parameters. For example, if the second parameter in a stored procedure is the
only return parameter, pass item as 1.

When retrieving a stored procedure return status description, item must be
1, as there can be only a single status in a return status result set.

When retrieving format information, item takes a column or compute
column number.

Note An application cannot call ct_describe after ct_results indicates a result
set of type CS_MSG_RESULT. This is because a result type of
CS_MSG_RESULT has no data items associated with it. Parameters associated
with a message are returned as a CS_PARAM_RESULT result set. Likewise,
an application cannot call ct_describe after ct_results sets its *result_type
parameter to CS_CMD_DONE, CS_CMD_SUCCEED, or CS_CMD_FAIL to
indicate command status information.

datafmt
A pointer to a CS_DATAFMT structure. ct_describe fills *datafmt with a
description of the result data item referenced by item.

ct_describe fills in the following fields in the CS_DATAFMT:

ct_describe

460 Open Client

Table 3-18: Fields in the CS_DATAFMT structure as set by ct_describe

Field
name Types of result items Value of field after ct_describe call

name Regular columns, column
formats, and return
parameters.

The null-terminated name of the data
item, if any. A NULL name is indicated
by a namelen of 0.

namelen Regular columns, column
formats, and return
parameters.

The actual length of the name, not
including the null terminator.

0 to indicate a NULL name.

datatype Regular columns, column
formats, return parameters,
return status, compute
columns, and compute
column formats.

A type constant (CS_xxx_TYPE)
representing the datatype of the item.

All type constants listed in “Datatypes
support” on page 305 are valid, except
CS_VARCHAR_TYPE and
CS_VARBINARY_TYPE.

A return status has a datatype of
CS_INT_TYPE.

A compute column’s datatype depends
on the type of the underlying column and
the aggregate operator that created the
column.

format Not used.

maxlength Regular columns, column
formats, and return
parameters.

The maximum possible length (in bytes)
of the data for the column or parameter.

scale Regular columns, column
formats, return parameters,
compute columns, or
compute column formats of
type numeric or decimal.

The maximum number of digits to the
right of the decimal point in the result
data item.

precision Regular columns, column
formats, return parameters,
compute columns, or
compute column formats of
type numeric or decimal.

The maximum number of decimal digits
that can be represented in the result data
item.

CHAPTER 3 Routines

Client-Library/C Reference Manual 461

status Regular columns and
column formats.

A bitmask of the following values:

• CS_CANBENULL to indicate that
the column can contain NULL
values.

• CS_HIDDEN to indicate that the
column is a “hidden” column that has
been exposed. For information about
hidden columns, see “Hidden keys”
on page 224.

• CS_IDENTITY to indicate that the
column is an identity column.

• CS_KEY to indicate the column is
part of the key for a table.

• CS_VERSION_KEY to indicate the
column is part of the version key for
the row.

• CS_TIMESTAMP to indicate the
column is a timestamp column.

• CS_UPDATABLE to indicate that the
column is an updatable cursor
column.

• CS_UPDATECOL to indicate that
the column is in the update clause of
the cursor declare commandC.

• CS_RETURN to indicate that the
column is a return parameter of an
RPC command.

count Regular columns, column
formats, return parameters,
return status, compute
columns, and compute
column formats.

count represents the number of rows
copied to program variables per ct_fetch
call. ct_describe sets count to 1 to
provide a default value in case an
application uses ct_describe’s return
CS_DATAFMT as ct_bind’s input
CS_DATAFMT.

usertype Regular columns, column
formats, and return
parameters.

The Adaptive Server Enterprise user-
defined datatype of the column or
parameter, if any. usertype is set in
addition to (not instead of) datatype.

Field
name Types of result items Value of field after ct_describe call

ct_describe

462 Open Client

• When ct_describe is called, it fills *datafmt with information about the
column or parameter being described. The status field of *datafmt is a
bitmask of the following values:

• CS_CANBENULL to indicate that the column can contain NULL
values.

• CS_HIDDEN to indicate that the column is a “hidden” column that
has been exposed.

• CS_IDENTITY to indicate that the column is an identity column.

• CS_KEY to indicate that the column is part of the key for a table.

• CS_VERSION_KEY to indicate that the column is part of the
version key for the row.

• CS_TIMESTAMP to indicate that the column is a timestamp
column.

• CS_UPDATABLE to indicate that the column is an updatable
cursor column.

• CS_UPDATECOL to indicate that the column is in the update
clause of a cursor declare command.

• CS_RETURN to indicate that the column is a return parameter of
an RPC command.

Return value ct_describe returns the following values:

ct_describe returns CS_FAIL if item does not represent a valid result data item.

locale Regular columns, column
formats, return parameters,
return status, compute
columns, and compute
column formats.

A pointer to a CS_LOCALE structure
that contains locale information for the
data.

This pointer can be NULL.

Field
name Types of result items Value of field after ct_describe call

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 463

Examples

 /* ex_fetch_data()*/

 CS_RETCODE CS_PUBLIC
 ex_fetch_data(cmd)
 CS_COMMAND *cmd;
 {
 CS_RETCODE retcode;
 CS_INT num_cols;
 CS_INT i;
 CS_INT j;
 CS_INT row_count = 0;
 CS_DATAFMT *datafmt;
 EX_COLUMN_DATA *coldata;

 /*
 ** Determine the number of columns in this result
 ** set
 */
 ...CODE DELETED...

 for (i = 0; i < num_cols; i++)
 {
 /*
 ** Get the column description. ct_describe()
 ** fills the datafmt parameter with a
 ** description of the column.
 */
 retcode = ct_describe(cmd, (i + 1),
 &datafmt[i]);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_fetch_data: ct_describe()
 failed");
 break;
 }

 /* Now bind columns */
 ...CODE DELETED.....
 }

 /* Now fetch rows */
 ...CODE DELETED.....

 return retcode;
 }

This code excerpt is from the exutils.c sample program.

ct_diag

464 Open Client

Usage • An application can use ct_describe to retrieve a description of a regular
result column, a return parameter, a stored procedure return status number,
or a compute column.

An application can also use ct_describe to retrieve format information.
Client-Library indicates that format information is available by setting
ct_results’ *result_type to CS_ROWFMT_RESULT or
CS_COMPUTEFMT_RESULT.

• An application cannot call ct_describe after ct_results sets its *result_type
parameter to CS_MSG_RESULT, CS_CMD_SUCCEED,
CS_CMD_DONE, or CS_CMD_FAIL. This is because, in these cases,
there are no result items to describe.

• An application can call ct_res_info to find out how many result items are
present in the current result set.

• An application generally needs to call ct_describe to describe a result data
item before it binds the result item to a program variable using ct_bind.

• See “CS_DATAFMT structure” on page 83 for a description.

• See “Results” on page 251 for a description of result types.

See also ct_bind, ct_fetch, ct_res_info, ct_results, “Results” on page 251

ct_diag
Description Manage inline error handling.

Syntax CS_RETCODE ct_diag(connection, operation, type, index,
 buffer)

CS_CONNECTION *connection;
CS_INT operation;
CS_INT type;
CS_INT index;
CS_VOID *buffer;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

operation
The operation to perform. Table 3-20 lists the symbolic values for operation.

CHAPTER 3 Routines

Client-Library/C Reference Manual 465

type
Depending on the value of operation, type indicates either the type of
structure to receive message information, the type of message on which to
operate, or both. Table 3-19 lists the symbolic values for type:

Table 3-19: Values for ct_diag type parameter

index
The index of the message of interest. The first message has an index of 1,
the second an index of 2, and so forth.

If type is CS_CLIENTMSG_TYPE, then index refers to Client-Library
messages only. If type is CS_SERVERMSG_TYPE, then index refers to
server messages only. If type is CS_ALLMSG_TYPE, then index refers to
Client-Library and server messages combined.

buffer
A pointer to data space.

Depending on the value of operation, buffer can point to a structure or a
CS_INT.

Return value ct_diag returns the following values:

Value of type Meaning

SQLCA_TYPE A SQLCA structure.

SQLCODE_TYPE A SQLCODE structure, which is a long integer.

SQLSTATE_TYPE A SQLSTATE structure, which is a six-element
character array.

CS_CLIENTMSG_TYPE A CS_CLIENTMSG structure. Also used to indicate
Client-Library messages.

CS_SERVERMSG_TYPE A CS_SERVERMSG structure. Also used to indicate
server messages.

CS_ALLMSG_TYPE Client-Library and server messages.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_diag returns CS_FAIL if the original error has made the
connection unusable.

CS_NOMSG The application attempted to retrieve a message whose index
is higher than the highest valid index. For example, the
application attempted to retrieve message number 3, but only
2 messages are queued.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_diag

466 Open Client

Common reasons for a ct_diag failure include:

• Invalid connection

• Inability to allocate memory

• Invalid parameter combination

Usage Table 3-20: Summary of ct_diag parameters

Value of
operation Resulting action Type is Index is Buffer is

CS_INIT Initializes inline error
handling.

CS_UNUSED CS_UNUSED NULL

CS_MSGLIMIT Sets the maximum
number of messages to
store.

CS_CLIENTMSG_TYPE to
limit Client-Library messages
only.

CS_SERVERMSG_TYPE to
limit server messages only.

CS_ALLMSG_TYPE to limit
the total number of Client-
Library and server messages
combined.

CS_UNUSED A pointer to an
integer value.

CS_CLEAR Clears message
information for this
connection.

If buffer is not NULL
and type is not
CS_ALLMSG_TYPE,
ct_diag also clears the
*buffer structure by
initializing it with blanks
and/or NULLs, as
appropriate.

Any valid type value.

If type is
CS_CLIENTMSG_TYPE,
ct_diag clears Client-Library
messages only.

If type is
CS_SERVERMSG_TYPE,
ct_diag clears server messages
only.

If type has any other valid
value, ct_diag clears both
Client-Library and server
messages.

CS_UNUSED A pointer to a
structure
whose type is
defined by
type, or
NULL.

CHAPTER 3 Routines

Client-Library/C Reference Manual 467

• A Client-Library application can handle Client-Library and server
messages in two ways:

• The application can call ct_callback to install client message and
server message callbacks to handle Client-Library and server
messages.

CS_GET Retrieves a specific
message.

Any valid type value except
CS_ALLMSG_TYPE.

If type is
CS_CLIENTMSG_TYPE, a
Client-Library message is
retrieved into a
CS_CLIENTMSG structure.

If type is
CS_SERVERMSG_TYPE, a
server message is retrieved
into a CS_SERVERMSG
structure.

If type has any other valid
value, then either a Client-
Library or server message is
retrieved.

The one-based
index of the
message to
retrieve.

A pointer to a
structure
whose type is
defined by
type.

CS_STATUS Returns the current
number of stored
messages.

CS_CLIENTMSG_TYPE to
retrieve the number of
Client-Library messages.

CS_SERVERMSG_TYPE to
retrieve the number of server
messages.

CS_ALLMSG_TYPE to
retrieve the total number of
Client-Library and server
messages combined.

CS_UNUSED A pointer to an
integer
variable.

CS_EED_CMD Sets *buffer to the
address of the
CS_COMMAND
structure containing
extended error data.

CS_SERVERMSG_TYPE The one-based
index of the
message for
which
extended error
data is
available.

A pointer to a
pointer
variable.

Value of
operation Resulting action Type is Index is Buffer is

ct_diag

468 Open Client

• The application can handle Client-Library and server messages inline,
using ct_diag.

An application can switch back and forth between the two methods. For
information about how to do this, see “Error handling” on page 122.

• ct_diag manages inline message handling for a specific connection. If an
application has more than one connection, it must make separate ct_diag
calls for each connection.

• An application cannot use ct_diag at the context level. That is, an
application cannot use ct_diag to retrieve messages generated by routines
that take a CS_CONTEXT (and no CS_CONNECTION) as a parameter.
These messages are unavailable to an application that is using inline error
handling.

• An application can perform operations on either Client-Library messages,
server messages, or both.

For example, an application can clear Client-Library messages without
affecting server messages by using:

ct_diag(connection, CS_CLEAR, CS_CLIENTMSG,
 CS_UNUSED, NULL);

• ct_diag allows an application to retrieve message information into
standard Client-Library structures (CS_CLIENTMSG and
CS_SERVERMSG) or a SQLCA, SQLCODE, or SQLSTATE. When
retrieving messages, ct_diag assumes that buffer points to a structure of the
type indicated by type.

An application that is retrieving messages into a SQLCA, SQLCODE, or
SQLSTATE must set the Client-Library property CS_EXTRA_INF to
CS_TRUE. This is because the SQL structures require information that is
not ordinarily returned by Client-Library’s error handling mechanism.

An application that is not using the SQL structures can also set
CS_EXTRA_INF to CS_TRUE. In this case, the extra information is
returned as standard Client-Library messages.

• If ct_diag does not have sufficient internal storage space in which to save
a new message, it throws away all unread messages and stops saving
messages. The next time it is called with operation as CS_GET, it returns
a special message to indicate the space problem. After returning this
message, ct_diag starts saving messages again.

CHAPTER 3 Routines

Client-Library/C Reference Manual 469

Initializing inline error handling

• To initialize inline error handling, an application calls ct_diag with
operation as CS_INIT.

• Generally, if a connection will use inline error handling, the application
should call ct_diag to initialize inline error handling for a connection
immediately after allocating it.

Clearing messages

• To clear message information for a connection, an application calls ct_diag
with operation as CS_CLEAR.

• To clear Client-Library messages only, an application passes type as
CS_CLIENTMSG_TYPE.

• To clear server messages only, an application passes type as
CS_SERVERMSG.

• To clear both Client-Library and server messages, pass type as
SQLCA_TYPE, SQLCODE_TYPE, SQLSTATE_TYPE, or
CS_ALLMSG_TYPE.

• If type is not CS_ALLMSG_TYPE:

• ct_diag assumes that buffer points to a structure whose type
corresponds the value of type.

• ct_diag clears the *buffer structure by setting it to blanks and/or
NULLs, as appropriate.

• Message information is not cleared until an application explicitly calls
ct_diag with operation as CS_CLEAR. Retrieving a message does not
remove it from the message queue.

Retrieving messages

• To retrieve message information, an application calls ct_diag with
operation as CS_GET, type as the type of structure in which to retrieve the
message, index as the one-based index of the message of interest, and
*buffer as a structure of the appropriate type.

• If type is CS_CLIENTMSG_TYPE, then index refers only to Client-
Library messages. If type is CS_SERVERMSG_TYPE, index refers only
to server messages. If type has any other value, index refers to the
collective “queue” of both types of messages combined.

• ct_diag fills in the *buffer structure with the message information.

ct_diag

470 Open Client

• If an application attempts to retrieve a message whose index is higher than
the highest valid index, ct_diag returns CS_NOMSG to indicate that no
message is available.

• For information about these structure, see:

• “SQLCA structure” on page 94

• “SQLCODE structure” on page 96

• “SQLSTATE structure” on page 97

• “CS_CLIENTMSG structure” on page 76

• “CS_SERVERMSG structure” on page 92

Limiting messages

• Applications running on platforms with limited memory may want to limit
the number of messages that Client-Library saves.

• An application can limit the number of saved Client-Library messages, the
number of saved server messages, and the total number of saved messages.

• To limit the number of saved messages, an application calls ct_diag with
operation as CS_MSGLIMIT and type as CS_CLIENTMSG_TYPE,
CS_SERVERMSG_TYPE, or CS_ALLMSG_TYPE:

• If type is CS_CLIENTMSG_TYPE, then the number of Client-
Library messages is limited.

• If type is CS_SERVERMSG_TYPE, then the number of server
messages is limited.

• If type is CS_ALLMSG_TYPE, then the total number of Client-
Library and server messages combined is limited.

• When a specific message limit is reached, Client-Library discards any
new messages of that type. When a combined message limit is
reached, Client-Library discards any new messages. If Client-Library
discards messages, it saves a message to this effect.

• An application cannot set a message limit that is less than the number
of messages currently saved.

• Client-Library’s default behavior is to save an unlimited number of
messages. An application can restore this default behavior by setting
a message limit of CS_NO_LIMIT.

CHAPTER 3 Routines

Client-Library/C Reference Manual 471

Retrieving the number of messages

• To retrieve the number of current messages, an application calls ct_diag
with operation as CS_STATUS and type as the type of message of interest.

Getting the CS_COMMAND for extended error data

• To retrieve a pointer to the CS_COMMAND structure containing
extended error data (if any), call ct_diag with operation as CS_EED_CMD
and type as CS_SERVERMSG_TYPE. ct_diag sets *buffer to the address
of the CS_COMMAND structure containing the extended error data.

• When an application retrieves a server message into a CS_SERVERMSG
structure, Client-Library indicates that extended error data is available for
the message by setting the CS_HASEED bit in the status field in the
CS_SERVERMSG structure.

• It is an error to call ct_diag with operation as CS_EED_CMD when
extended error data is not available.

• See “Extended error data” on page 128.

Sequenced messages and ct_diag

• If an application is using sequenced error messages, ct_diag acts on
message chunks instead of messages. This has the following effects:

• A ct_diag(CS_GET, index) call returns the message chunk with
number index.

• A ct_diag(CS_MSGLIMIT) call limits the number of chunks, not the
number of messages, that Client-Library stores.

• A ct_diag(CS_STATUS) call returns the number of currently stored
chunks, not the number of currently stored messages.

• See “Sequencing long messages” on page 126.

See also “Error handling” on page 122 “CS_CLIENTMSG structure” on page 76,
“CS_SERVERMSG structure” on page 92, “SQLCA structure” on page 94,
“SQLCODE structure” on page 96, “SQLSTATE structure” on page 97,
ct_callback, ct_options

ct_ds_dropobj
Description Release the memory associated with a directory object.

ct_ds_lookup

472 Open Client

Syntax CS_RETCODE ct_ds_dropobj(connection, ds_object)

 CS_CONNECTION *connection;
 CS_DS_OBJECT *ds_object;

Parameters connection
A pointer to a CS_CONNECTION structure. ct_ds_lookup returns search
results to the application’s directory callback that has been installed in the
CS_CONNECTION structure.

ds_object
A pointer to the directory object being discarded.

Return value ct_ds_dropobj returns the following values:

Usage • ct_ds_dropobj discards a CS_DS_OBJECT hidden structure and frees the
memory associated with it. The directory entry associated with the object
is not affected in any way by ct_ds_dropobj.

• To keep the information associated with a directory object, copy it into
application memory before dropping the object.

• If an application does not explicitly drop directory objects with
ct_ds_dropobj, Client-Library drops them automatically when the
application calls ct_con_drop to drop the parent connection.

See also ct_ds_lookup, ct_ds_objinfo

ct_ds_lookup
Description Initiate or cancel a directory lookup operation.

Syntax CS_RETCODE ct_ds_lookup(connection,
 action, reqid, lookup_info,
 userdata)

 CS_CONNECTION connection;
 CS_INT action;
 CS_INT *reqid;
 CS_DS_LOOKUP_INFO *lookup_info;
 CS_VOID *userdata;

Return value Meaning

CS_SUCCEED The routine succeeded.

CS_FAIL The routine failed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 473

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular connection.

action
One of the following symbolic values:

reqid
A pointer to a CS_INT variable.

When action is CS_SET, Client- Library returns the request identifier in
*reqid.

When action is CS_CLEAR, *reqid specifies the request ID of the operation
to cancel.

lookup_info
The address of a CS_DS_LOOKUP_INFO structure.

A CS_DS_LOOKUP_INFO structure is defined as follows:

typedef struct _cs_ds_lookup_info
 {
 CS_OID *objclass;
 CS_CHAR *path;
 CS_INT pathlen;
 CS_DS_OBJECT *attrfilter;
 CS_DS_OBJECT *attrselect;
 } CS_DS_LOOKUP_INFO;

When action is CS_SET, set the fields of *lookup_info as follows:

Action Function performed

CS_CLEAR Cancel the directory lookup operation specified by reqid.
Supported for asynchronous connections only.

CS_SET Initiate a directory lookup operation.

ct_ds_lookup

474 Open Client

Table 3-21: Contents of *lookup_info for a ct_ds_lookup(CS_SET) call

Note In asynchronous mode, the contents of *lookup_info and the pointers
contained in it must remain valid until the connection’s completion callback or
ct_poll indicates that the request has completed or was canceled.

When action is CS_CLEAR, lookup_info must be passed as NULL.

userdata
The address of user-allocated data to pass into the directory callback.

When action is CS_SET, userdata is optional and can be passed as NULL.
If ct_ds_lookup finds matching directory entries, Client-Library invokes the
connection’s directory callback. The directory callback receives the address
specified as userdata. userdata provides a means for the callback to
communicate the search results back to the mainline code where
ct_ds_lookup was called.

When action is CS_CLEAR, userdata must be passed as (CS_VOID *)
NULL.

Return value ct_ds_lookup returns the following values:

Field Set to

objclass The address of a CS_OID structure that specifies the class of
directory objects to search for. objclass->oid_buffer contains the
OID string for the object class and objclass->oid_length
specifies the length of the OID string (not counting any null
terminator).

ct_ds_lookup finds only those directory entries whose class
matches the contents of lookup_info->objclass.

path Reserved. Set to NULL to ensure compatibility with future
versions of Client-Library.

pathlen Reserved. Set to 0 to ensure compatibility with future versions of
Client-Library.

attrfilter Reserved. Set to NULL to ensure compatibility with future
versions of Client-Library.

attrselect Reserved. Set to NULL to ensure compatibility with future
versions of Client-Library.

Return value Meaning

CS_SUCCEED The routine completed successfully

CS_FAIL The routine failed

CHAPTER 3 Routines

Client-Library/C Reference Manual 475

Examples For an explanation of the steps in this example, see Chapter 9, “Using
Directory Services,” in the Open Client Client-Library/C Programmers Guide.

Usage • ct_ds_lookup initiates or cancels a directory lookup request.

• ct_ds_lookup, ct_ds_objinfo, and the connection’s directory callback
routine provide a mechanism for Client-Library applications to view
directory entries. The typical process is outlined below.

a The application installs a directory callback to handle the search
results.

b (Network-based directories only.) The application sets the
CS_DS_DITBASE connection property to specify the subtree to be
searched.

c (Network-based directories only.) The application sets any other
necessary directory service properties to constrain the search.

d The application calls ct_ds_lookup to initiate the directory search.

e Client-Library calls the application’s directory callback once for each
directory entry found. Each invocation of the callback receives a
CS_DS_OBJECT pointer, that provides an abstract view of the
directory entry’s contents.

f The application examines each object by calling ct_ds_objinfo as
many times as necessary. This can be done in the callback or in the
mainline code.

g When the application is finished with the directory objects returned
by the search, it frees the memory associated with them by calling
ct_ds_dropobj.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

Note On platforms where Client-Library does not use
thread-driven I/O, applications must always poll for
ct_ds_lookup completions even when the connection’s
CS_NETIO setting is CS_ASYNC_IO.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CS_CANCELED The lookup request was canceled by the application. Lookup
requests can be canceled only on asynchronous connections.

Return value Meaning

ct_ds_lookup

476 Open Client

Directory callbacks

• The results of directory searches are returned to the connection’s directory
callback. Client-Library invokes the directory callback once for each entry
found in the search, and each invocation receives a pointer to a
CS_DS_OBJECT that describes the entry.

• Before beginning a search, the application must install a directory callback
with ct_callback(CS_DS_LOOKUP_CB) to receive the search results.
Otherwise, the results are discarded.

• See “Defining a directory callback” on page 37 for a description of
directory callbacks.

Initiating directory lookups

• ct_ds_lookup(CS_SET) passes a request to the directory driver specified
by the current setting of the CS_DS_PROVIDER connection property. See
“Directory service provider” on page 119.

• If the search uses a directory service rather than the interfaces file, then the
search finds all directory entries which match these criteria:

• The object class of the entry matches the OID specified by the
objclass field in ct_ds_lookup’s lookup_info parameter.

• The entry is under the directory node that is specified as the
CS_DS_DITBASE connection property. See “Base for directory
searches” on page 115.

• The entry is within the depth limit defined by the CS_DS_SEARCH
connection property. See “Directory service search depth” on page
121. By default, ct_ds_lookup returns only those entries that are
located directly beneath the DIT-base node.

• If the interfaces file is searched, the search must be for server
(CS_OID_SERVERCLASS) objects. A search returns a description of all
servers defined in the interfaces file.

• Some directory service providers may have access restrictions for
directory entries. In this case, the application must provide a value for the
CS_DS_PRINCIPAL connection property. See “Directory service
principal name” on page 118.

Synchronous vs. asynchronous directory lookups

• ct_ds_lookup(CS_SET) passes a lookup request to the underlying
directory service. The request returns the matching objects to Client-
Library. The processing cycle differs for asynchronous and synchronous
connections.

CHAPTER 3 Routines

Client-Library/C Reference Manual 477

• If the connection is synchronous, ct_ds_lookup blocks until the lookup
request has completed and the application has finished viewing returned
objects in the directory callback. Synchronous processing happens as
follows:

a The application’s main-line code calls ct_ds_lookup(CS_SET) to
initiate the lookup operation.

b When the search is complete, Client-Library begins invoking the
directory callback and passing the returned objects to the application.

If the search failed for any reason, then Client-Library passes
CS_FAIL as the value of the status callback argument.

The callback is invoked repeatedly, once for each object found or until
the directory callback returns CS_SUCCEED.

c ct_ds_lookup returns control to the mainline code.

Note To provide fully asynchronous support, ct_ds_lookup requires a
version of Client-Library that uses thread-driven I/O. With other
versions, ct_ds_lookup gives deferred-asynchronous behavior when
CS_NETIO is set to CS_ASYNC_IO or CS_DEFER_IO.

• If the connection is fully asynchronous or deferred asynchronous, then
ct_ds_lookup returns immediately. The detailed process is as follows:

a The application's mainline code calls ct_ds_lookup(CS_SET) to
initiate the lookup operation.

b Client-Library passes the request to the directory service driver.

If the directory driver accepts the request, ct_ds_lookup returns
CS_PENDING. On platforms where Client-Library uses threads,
Client-Library spawns an internal worker thread to handle the request
at this point.

If the request cannot be queued, ct_ds_lookup returns CS_FAIL.

c The connection's directory callback is invoked. On a fully
asynchronous connection, Client-Library invokes the callback
automatically. On a deferred-asynchronous connection, Client-
Library invokes the callback when the application calls ct_poll.

If the search returned objects, then the callback is called repeatedly to
pass objects to the application until the application has seen all the
objects or the callback returns CS_SUCCEED.

ct_ds_lookup

478 Open Client

If the lookup found no objects, then the callback is called once with
the numentries callback argument equal to 0.

If the search failed or was canceled, then the callback is called once
with CS_FAIL or CS_CANCELED as the status callback argument.

d The connection’s completion callback is invoked. On a fully
asynchronous connection, Client-Library invokes the completion
callback automatically. On a deferred-asynchronous connection, the
application must poll for request completion with ct_poll, and ct_poll
invokes the callback. The completion callback receives the final
return status for the lookup operation (CS_SUCCEED, CS_FAIL, or
CS_CANCELLED).

Note On fully asynchronous connections, the directory and
completion callbacks are invoked by an internal Client-Library
thread. Make sure that shared data is protected from simultaneous
access by mainline code, other application threads, and the callback
code executing in the Client-Library thread. The contents of
*userdata must also be protected from simultaneous access.

Canceling a directory lookup (asynchronous connections only)

• If the connection’s network I/O mode (CS_NETIO property) is fully
asynchronous or deferred asynchronous, then a lookup operation can be
canceled by calling ct_ds_lookup(CS_CLEAR, &reqid) before the search
completes.

• ct_ds_lookup(CS_CLEAR) returns immediately with a status of
CS_SUCCEED or CS_FAIL. However, the connection remains busy
until the directory provider acknowledges the request. At this point,
Client-Library invokes the directory callback and the completion
callback, in that order, with a status of CS_CANCELED.

• ct_ds_lookup(CS_CLEAR) cannot be called after the connection’s
completion callback or ct_poll has indicated that the search has
completed. At this point, the request has been fulfilled, and
ct_ds_lookup(CS_CLEAR) fails.

• Applications can also truncate the search results simply by returning
CS_SUCCEED rather than CS_CONTINUE from the directory callback.

• Lookup requests made on synchronous connections cannot be canceled.
However, a time limit for request completion can be set if the underlying
directory service provider supports it. See “Directory search time limit”
on page 122.

CHAPTER 3 Routines

Client-Library/C Reference Manual 479

See also ct_ds_objinfo, ct_ds_dropobj, “Directory services” on page 103, “Server
directory object” on page 287

ct_ds_objinfo
Description Retrieve information associated with a directory object.

Syntax CS_RETCODE ct_ds_objinfo(ds_object, action, infotype, number, buffer,
buflen, outlen)

CS_DS_OBJECT *ds_object;
CS_INT action;
CS_INT infotype;
CS_INT number;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters ds_object
A pointer to a CS_DS_OBJECT structure. An application receives a
directory object pointer as an input parameter to its directory callback.

action
Must be CS_GET.

infotype
The type of information to retrieve into *buffer. For a description of the
available types, see Table 3-22 on page 480.

number
When infotype is CS_DS_ATTRIBUTE or CS_DS_ATTRVALS, number
specifies the number of the attribute to retrieve. Attribute numbers start at 1.

For other values of infotype, pass number as CS_UNUSED.

buffer
The address of the buffer that holds the requested information. Table 3-22
on page 480 lists the *buffer datatypes for values of infotype.

buflen
The length of *buffer, in bytes.

outlen
If this argument is supplied, *outlen is set to the length of the value returned
in *buffer. This argument is optional and can be passed as NULL.

ct_ds_objinfo

480 Open Client

Return value ct_ds_objinfo returns the following values:

Examples For an explanation of the steps in this example, see Chapter 9, “Using
Directory Services,” in the Open Client Client-Library/C Programmers Guide.

Usage The following table summarizes ct_ds_objinfo call syntax when action is
CS_GET:

Table 3-22: Summary of ct_ds_objinfo parameters

• ct_ds_lookup, ct_ds_objinfo, and the connection’s directory callback
routine provide a mechanism for Client-Library applications to view
directory entries. The typical process is as follows:

Return value: Meaning

CS_SUCCEED The routine completed successfully

CS_FAIL The routine failed

infotype value number value *buffer datatype Value written to *buffer

CS_DS_CLASSOID CS_UNUSED CS_OID structure The OID of the directory object class.

CS_DS_DIST_NAME CS_UNUSED CS_CHAR array Fully qualified (distinguished)
directory name of the object, to 512
bytes.

The output name is null-terminated.

If outlen is not NULL, Client-Library
puts the number of bytes written to
*buffer (not including the null-
terminator) in *outlen.

CS_DS_NUMATTR CS_UNUSED CS_INT variable Number of attributes associated with
the object.

CS_DS_ATTRIBUTE A positive integer CS_ATTRIBUTE
structure.

A CS_ATTRIBUTE structure that
contains metadata for the attribute
specified by the value of number.

See “Retrieving object attributes and
attribute values” on page 483 for a
description of the CS_ATTRVALUE
and CS_ATTRIBUTE data structures.

CS_DS_ATTRVALS A positive integer An array of
CS_ATTRVALUE
unions. The array must
be long enough for the
number of values
indicated by the
CS_ATTRIBUTE
structure.

The values of the attribute specified by
the value of number.

See “Retrieving object attributes and
attribute values” on page 483 for a
description of the CS_ATTRVALUE
and CS_ATTRIBUTE data structures.

CHAPTER 3 Routines

Client-Library/C Reference Manual 481

a The application installs a directory callback to handle the search
results.

b (Network-based directories only.) The application sets the
CS_DS_DITBASE connection property to specify the subtree to be
searched.

c (Network-based directories only.) The application sets any other
necessary connection properties to constrain the search.

d The application calls ct_ds_lookup to initiate the directory search.

e Client-Library calls the application’s directory callback once for each
found directory entry. Each invocation of the callback receives a
CS_DS_OBJECT pointer, which provides an abstract view of the
directory entry’s contents.

f The application examines each object by calling ct_ds_objinfo as
many times as necessary. This can be done in the callback, in mainline
code, or both.

g When the application is finished with the directory objects returned
by the search, it frees the memory associated with them by calling
ct_ds_dropobj.

Structure of directory objects

• The physical structure of a directory varies between directory service
providers. Client-Library maps physical directory entries onto the contents
of the CS_DS_OBJECT hidden structure. This minimizes an application’s
dependencies on any particular physical directory structure.

• An application uses ct_ds_objinfo to inspect the contents of the
CS_DS_OBJECT hidden structure.

• A typical application calls ct_ds_objinfo several time to inspect the
contents of the object. The steps below show a typical call sequence:

a The application retrieves the OID that gives the object class of the
directory entry by calling ct_ds_objinfo with infotype as
CS_DS_CLASSOID and buffer as the address of a CS_OID structure.
This step is optional and can be skipped if the application already
knows the object class.

b The application retrieves the fully qualified name of the entry by
calling ct_ds_objinfo with infotype as CS_DS_DISTNAME and buffer
as the address of a character string.

ct_ds_objinfo

482 Open Client

c The application retrieves the number of attributes present in the object
by calling ct_ds_objinfo with infotype as CS_DS_NUMATTR and
buffer as the address of a CS_INT variable.

d The application retrieves the metadata for each attribute present in the
object by calling ct_ds_objinfo with infotype as CS_DS_NUMATTR
and buffer as the address of a CS_ATTRIBUTE structure.

e The application determines if it wants the attribute’s values by
checking the OID specified by the attribute.attr_type field of the
CS_ATTRIBUTE structure. If the application wants the values, it
allocates an array of CS_ATTRVALUE unions of size
attribute.attr_numvals. It then retrieves the values by calling
ct_ds_objinfo with infotype as CS_DS_ATTRVALS and buffer as the
address of the array.

f The application repeats steps d and e for each attribute.

Retrieving the object class

• To identify the directory object class being returned, call ct_ds_objinfo
with infotype as CS_DS_CLASSOID and buffer as the address of a
CS_OID structure.

• ct_ds_objinfo sets the fields of the CS_OID to specify the OID of the
directory entries object class.

In the returned CS_OID structure, the oidoid_buffer field contains
the OID string for the object class. The oidoid_length contains the
length of the string, not counting any null-terminator.

• The oid_buffer field can be compared to the OID string constant for
the expected object class.

Retrieving the fully qualified entry name

• To retrieve the fully qualified directory name of the object, call
ct_ds_objinfo with infotype as CS_DS_DIST_NAME and buffer as the
address of a CS_CHAR string.

• The name string is null-terminated.

• For server (CS_OID_OBJSERVER) class objects, the application can pass
the object’s fully qualified name to ct_connect to open a connection to the
server represented by the object.

CHAPTER 3 Routines

Client-Library/C Reference Manual 483

Retrieving object attributes and attribute values

• The attributes of a directory object are available as a numbered set.
However, the position of individual attributes within the set may vary
depending on the directory service provider, and some directory providers
do not guarantee that attribute orders are invariant. Also, Sybase may add
new attributes to a directory object class between versions.

For the above reasons, applications should be coded to work
independently of the number and order of object attributes.

• ct_ds_objinfo uses a CS_ATTRIBUTE structure to define the metadata for
attribute values, and returns the values themselves in an array of
CS_ATTRVALUE unions.

CS_ATTRIBUTE
structure

The CS_ATTRIBUTE structure is used with ct_ds_objinfo to describe the
attributes of a directory object.

typedef struct
 {
 CS_OID attr_type;
 CS_INT attr_syntax;
 CS_INT attr_numvals;
 } CS_ATTRIBUTE;

where:

attr_type is a CS_OID structure that uniquely describes the type of the
attribute. This field tells the application which of an object’s attributes it
has received.

The definition of the directory object class determines the attribute types
that an object can contain.
attr_syntax is a syntax specifier that tells how the attribute value is
expressed. Attribute values are passed within a CS_ATTRVALUE union,
and the syntax specifier tells which member of the union to use.
attr_numvals tells how many values the attribute contains. This
information can be used to size an array of CS_ATTRVALUE unions to
hold the attribute values.

CS_ATTRVALUE
union

Attribute values are returned to the application in a CS_ATTRVALUE union.
This union contains a members for each possible datatype needed to represent
attribute values. The declaration looks like this:

typedef union _cs_attrvalue
 {
 CS_STRING value_string;
 CS_BOOL value_boolean;
 CS_INT value_enumeration;

ct_ds_objinfo

484 Open Client

 CS_INT value_integer;
 CS_TRANADDR value_tranaddr;
 CS_OID value_oid;
 } CS_ATTRVALUE;

Attribute values are retrieved by ct_ds_objinfo into an array of
CS_ATTRVALUE unions. The array size should match the attr_numvals field
of the CS_ATTRIBUTE structure. The value should be taken as the union
member designated by the attr_syntax field of the CS_ATTRIBUTE structure.
Table 3-23 shows the correspondence between attribute syntax specifiers and
the members of CS_ATTRVALUE.

Table 3-23: Syntax specifiers for the CS_ATTRVALUE union

String values The CS_STRING structure is defined as follows:

typedef struct _cs_string
 {
 CS_INT str_length;
 CS_CHAR str_buffer[CS_MAX_DS_STRING];
 } CS_STRING;

Attribute syntax specifier Union member

CS_ATTR_SYNTAX_STRING value_string

String values are represented by a
CS_STRING structure, which is
described under String values below.

CS_ATTR_SYNTAX_BOOLEAN value_boolean

Boolean values are represented as
CS_BOOL.

CS_ATTR_SYNTAX_ENUMERATION value_enumeration

Enumerated values are represented as
CS_INT.

CS_ATTR_SYNTAX_INTEGER value_integer

Integer values are represented as
CS_INT.

CS_ATTR_SYNTAX_TRANADDR value_tranaddr

Transport addresses are represented as a
CS_TRANADDR structure, which is
described under Transport address
values below.

CS_ATTR_SYNTAX_OID value_oid

OID values are represented as CS_OID
structure, which is explained on page 90.

CHAPTER 3 Routines

Client-Library/C Reference Manual 485

The contents of str_buffer are null-terminated. str_length does not count the
null-terminator in the length.

Transport address
values

Transport addresses are encoded in a Sybase-specific format within the
CS_TRANADDR structure shown below.

typedef struct _cs_tranaddr
 {
 CS_INT addr_accesstype;
 CS_STRING addr_trantype;
 CS_STRING addr_tranaddress;
 } CS_TRANADDR;

See also ct_ds_lookup, ct_ds_dropobj, “Directory services” on page 103, “Server
directory object” on page 287

ct_dynamic
Description Initiate a dynamic SQL command.

Syntax CS_RETCODE ct_dynamic(cmd, type, id, idlen, buffer, buflen)

CS_COMMAND *cmd;
CS_INT type;
CS_CHAR *id;
CS_INT idlen;
CS_CHAR *buffer;
CS_INT buflen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

type
The type of dynamic SQL command to initiate.Table 3-24 lists the symbolic
values for type.

id
A pointer to the statement identifier. This identifier is defined by the
application and must conform to server standards.

idlen
The length, in bytes, of *id. If *id is null-terminated, pass idlen as
CS_NULLTERM. If id is NULL, pass idlen as CS_UNUSED.

ct_dynamic

486 Open Client

buffer
A pointer to data space.

buflen
The length, in bytes, of *buffer. If *buffer is null-terminated, pass buflen as
CS_NULLTERM. If buffer is NULL, pass buflen as CS_UNUSED.

Return value ct_dynamic returns the following values:

Usage Table 3-24 summarizes ct_dynamic usage.

Table 3-24: Summary of ct_dynamic parameters

Return value: Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Value of type Result *id is *buffer is

CS_CURSOR_DECLARE Declares a cursor on a previously prepared
SQL statement.

The prepared
statement identifier.

The cursor
name.

CS_DEALLOC Deallocates a prepared SQL statement. The prepared
statement identifier.

NULL

CS_DESCRIBE_INPUT Retrieves, from the server, a description of the
input parameters required to execute a
prepared statement. ct_results returns a
CS_DESCRIBE_RESULT result_type value
when the server has sent the description.

An application can access this information by
calling ct_res_info and ct_describe,
ct_dynsqlda, or ct_dyndesc.

The prepared
statement identifier.

NULL

CS_DESCRIBE_OUTPUT Retrieves, from the server, a description of the
row format of the result set that would be
returned if the prepared statement were
executed. ct_results returns a
CS_DESCRIBE_RESULT result_type value
when the server has sent the description.

An application can access this information by
calling ct_res_info and ct_describe,
ct_dynsqlda, or ct_dyndesc.

The prepared
statement identifier.

NULL

CS_EXECUTE Executes a prepared SQL statement that
requires zero or more parameters.

The prepared
statement identifier.

NULL

CS_EXEC_IMMEDIATE Executes a literal SQL statement. NULL The SQL
statement
to execute.

CHAPTER 3 Routines

Client-Library/C Reference Manual 487

• ct_dynamic initiates dynamic Adaptive Server Enterprise commands.

• For an overview of dynamic SQL commands, see Chapter 8, “Using
Dynamic SQL Commands,” in the Open Client Client-Library/C
Programmers Guide.

• Initiating a command is the first step in sending it to a server. For a client
application to execute a server command, Client-Library must convert the
command to a symbolic command stream that can be sent to the server.
The command stream contains information about the type of the command
and the data needed for execution. For example, a dynamic SQL prepare
command requires a statement identifier and the text of the statement to
prepare. The steps for executing a dynamic SQL command are as follows:

a Initiate the command by calling ct_dynamic. This routine sets up
internal structures that are used in building a command stream to send
to the server.

b Pass parameters for the command, if required. Most applications pass
parameters by calling ct_param or ct_setparam once for each
parameter that the command requires, but it is also possible to pass
parameters for a command by using ct_dyndesc or ct_dynsqlda.

c Send the command to the server by calling ct_send.

d Process the results of the command by calling ct_results.

A dynamic SQL command that executes a prepared statement returns
fetchable results. The other dynamic SQL command types do not return
fetchable results, but do return command status results. See “Results” on
page 251 for a discussion of processing results.

• The following rules apply to the use of ct_dynamic:

• When a command structure is initiated, an application must either
send the initiated command or clear it before a new command can be
initiated with ct_command, ct_cursor, ct_dynamic, or ct_sendpassthru.

• After sending a command, an application must completely process or
cancel all results returned by the command’s execution before
initiating a new command on the same command structure.

CS_PREPARE Prepares a SQL statement. The prepared
statement identifier.

The SQL
statement
to prepare.

Value of type Result *id is *buffer is

ct_dynamic

488 Open Client

• An application cannot call ct_dynamic to initiate a command on a
command structure that is managing a cursor. The application must
deallocate the cursor first or use a different command structure.

• Client-Library allows an application to resend a command by calling
ct_send immediately after the application has processed the results from
the previous execution. To resend a command, the application updates the
contents of any parameter source variables that were specified with
ct_setparam, then calls ct_send. The following dynamic SQL commands
can be resent successfully:

• Execute-immediate commands

• Execute commands on a prepared statement

• Describe-output or describe-input commands

If the application resends other dynamic SQL commands, they result in
server processing errors. Client-Library allows an application to resend a
command as long as a new command has not been initiated with
ct_command, ct_cursor, ct_dynamic, or ct_sendpassthru.

Preparing a statement

• To initiate a command to prepare a statement, an application calls
ct_dynamic with type as CS_PREPARE, id as a unique statement identifier,
and buffer as the statement text.

• A prepared SQL statement is a SQL statement that is compiled and stored
by a server. Each prepared statement is associated with a unique identifier.

• An application can prepare an unlimited number of statements, but
identifiers for prepared statements must be unique within a connection.

• Although the command structure used to prepare a statement can be
different from the one used to execute it, both of the command structures
must belong to the same connection.

• A prepared statement can be a Transact-SQL statement containing
placeholders for values. Placeholders act like variables in the prepared
statement. A placeholder is indicated by a question mark (?) in the
statement. A placeholder can occur in the following locations:

• In place of one or more values in an insert statement

• In the set clause of an update statement

• In the where clause of a select or update statement

CHAPTER 3 Routines

Client-Library/C Reference Manual 489

When building a command to execute the prepared statement, the
application substitutes a value for each dynamic parameter marker by
calling ct_param, ct_setparam, ct_dyndesc, or ct_dynsqlda.

Once a statement is prepared, an application can send a dynamic SQL
describe-input command to the server to get a description of the input
parameters required to execute the statement.

• To initiate a command to prepare a statement that executes a stored
procedure, specify “exec sp_name” as the SQL text, where “sp_name” is
the name of the stored procedure to be executed:

ct_dynamic(cmd, CS_PREPARE, “myid”, CS_NULLTERM,
 “exec sp_2”, CS_NULLTERM);

• Once a statement is successfully prepared, the application can execute it
repeatedly until it is deallocated.

Declaring a cursor on a prepared statement

• To initiate a command to declare a cursor on a prepared statement, an
application calls ct_dynamic with type as CS_CURSOR_DECLARE.

• After declaring a cursor on a prepared statement, an application can call
ct_cursor(CS_CURSOR_OPTION) to set an option (“readonly” or “‘for
update”) for the cursor-declaration command. This step is necessary only
if the select statement does not include a for read only or for update of clause
to specify which, if any, columns are to be updatable. The sequence of
calls is:

• ct_dynamic(CS_CURSOR_DECLARE)

• ct_cursor(CS_CURSOR_OPTION)

• ct_send

• ct_results, as many times as necessary

• A ct_dynamic cursor-declare command cannot be batched with subsequent
ct_cursor cursor-rows or cursor-open commands.

• After a cursor is declared on a prepared statement, use ct_cursor to initiate
additional commands on the cursor.

• An application must declare a cursor on a prepared statement prior to
executing the prepared statement.

Getting a description of prepared statement input

• An application typically retrieves a description of prepared statement
input parameters before executing the prepared statement for the first time.

ct_dynamic

490 Open Client

• To get a description of prepared statement input:

a Call ct_dynamic with type as CS_DESCRIBE_INPUT to initiate a
command to get the description.

b Call ct_send to send the command to the server.

c Call ct_results as necessary to process the results of the command. A
CS_DESCRIBE_INPUT command generates a result set of type
CS_DESCRIBE_RESULT. This result set contains no fetchable data
but does contain descriptive information for each of the input values.

d Call ct_res_info to retrieve the number of input values. This assumes
that CS_DESCRIBE_RESULT was returned, as does the following
step.

e For each input value, call ct_describe.

Alternately, an application can use ct_dyndesc or ct_dynsqlda to
retrieve the description. ct_dyndesc requires several calls to obtain the
number of inputs and the format of each. ct_dynsqlda can retrieve a
description with one call but requires an application-managed
SQLDA structure. These alternatives are described in the following
sections:

• For a description of the ct_dynsqlda method, see “Sybase
SQLDA: Retrieving input formats” on page 505.

• For a description of the ct_dyndesc method, see “Getting
descriptions of command inputs or outputs with ct_dyndesc” on
page 500.

Getting a description of prepared statement output

• An application typically retrieves a description of prepared statement
result columns before executing the prepared statement for the first time.

Note A single dynamic SQL batch may contain multiple SQL statements.
The description of the prepared statement output, however, only describes
the first resultset. You will receive full descriptions of each resultset only
when the dynamic SQL statement is executed.

• To get a description of prepared statement output columns:

a Call ct_dynamic with type as CS_DESCRIBE_OUTPUT to initiate a
command to get the description.

b Call ct_send to send the command to the server.

CHAPTER 3 Routines

Client-Library/C Reference Manual 491

c Call ct_results as necessary to process the results of the command. A
ct_dynamic(CS_DESCRIBE_OUTPUT) command generates a result
set of type CS_DESCRIBE_RESULT. This result set contains no
fetchable data but does contain descriptive information for each
output column.

d Call ct_res_info to retrieve the number of output columns. This
assumes that CS_DESCRIBE_RESULT was returned, as does the
following step.

e For each output column, call ct_describe.

Alternately, an application can use ct_dyndesc or ct_dynsqlda to
retrieve the description. ct_dyndesc requires several calls to obtain the
number of columns and the format of each. ct_dynsqlda can retrieve a
description with one call but requires an application-managed
SQLDA structure. These alternatives are described in the following
sections:

• For a description of the ct_dynsqlda method, see “Sybase
SQLDA: Retrieving output formats” on page 506.

• For a description of the ct_dyndesc method, see “Getting
descriptions of command inputs or outputs with ct_dyndesc” on
page 500.

Executing a prepared statement

• To execute a prepared statement:

a Call ct_dynamic with type as CS_EXECUTE to initiate a command to
execute the statement.

b Define the input values to the SQL statement. You can do this by:

• Calling ct_param once for each parameter. ct_param and
ct_setparam offer the best performance. ct_param does not allow
the application to change parameter values before resending the
command.

• Calling ct_setparam once for each parameter. ct_setparam takes
pointers to parameter source values. This method is the only one
that allows parameter values to be changed before resending the
command.

• Calling ct_dyndesc several times to allocate a dynamic descriptor
area, populate it with data values, and apply it to the command.
See “Passing parameter values with ct_dyndesc” on page 501.
ct_dyndesc(CS_USE_DESC) calls ct_param internally.

ct_dyndesc

492 Open Client

• By calling ct_dynsqlda to apply the contents of a user-allocated
SQLDA structure to the command. See “Sybase SQLDA:
Passing command input parameters” on page 507.
ct_dynsqlda(CS_SQLDA_PARAM) calls ct_param internally.

c Call ct_send to send the command to the server.

d Call ct_results as necessary to process the results of the command.

Executing a literal statement

• A dynamic SQL statement can be executed immediately if it meets the
following criteria:

• It does not return data (it is not a select statement).

• It does not contain placeholders for parameters, which are indicated
by a question mark (?) in the text of the statement.

• Dynamic parameter markers act as placeholders that allow users to
specify actual data to be substituted into a SQL statement at runtime.

• To execute a literal statement:

a Call ct_dynamic with type as CS_EXEC_IMMEDIATE, id as NULL,
and buffer as the statement to execute.

b Call ct_send to send the command to the server.

c Call ct_results as necessary to process the results of the command.

Deallocating a prepared statement

• To initiate a command to deallocate a prepared statement, an application
calls ct_dynamic with type as CS_DEALLOC and id as the statement
identifier.

See also ct_dyndesc, ct_dynsqlda, ct_param, ct_setparam, ct_send, ct_cursor

ct_dyndesc
Description Perform operations on a dynamic SQL descriptor area.

Syntax CS_RETCODE ct_dyndesc(cmd, descriptor, desclen, operation, index,
datafmt, buffer, buflen, copied, indicator)

CS_COMMAND *cmd;
CS_CHAR *descriptor;
CS_INT desclen;

CHAPTER 3 Routines

Client-Library/C Reference Manual 493

CS_INT operation;
CS_INT index;
CS_DATAFMT *datafmt;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *copied;
CS_SMALLINT *indicator;

Parameters cmd
A pointer to a CS_COMMAND structure. Any CS_COMMAND in the
same context in which a descriptor is allocated can be used to operate on the
descriptor.

descriptor
A pointer to the name of the descriptor. Descriptor names must be unique
within a context.

desclen
The length, in bytes, of *descriptor. If *descriptor is null-terminated, pass
desclen as CS_NULLTERM.

operation
The descriptor operation to initiate. The following table lists the values for
operation:

Table 3-25: Values for ct_dyndesc operation parameter

index
When used, an integer variable.

Depending on the value of operation, index can be either the 1-based index
of a descriptor item or the number of items associated with a descriptor.

datafmt
When used, a pointer to a CS_DATAFMT structure.

buffer
When used, a pointer to data space.

Value of operation Result

CS_ALLOC Allocates a descriptor.

CS_DEALLOC Deallocates a descriptor.

CS_GETATTR Retrieves a parameter or result item’s attributes.

CS_GETCNT Retrieves the number of parameters or columns.

CS_SETATTR Sets a parameter’s attributes.

CS_SETCNT Sets the number of parameters or columns.

CS_USE_DESC Associates a descriptor with a statement or a command
structure.

ct_dyndesc

494 Open Client

buflen
When used, buflen is the length, in bytes, of the *buffer data.

copied
When used, a pointer to an integer variable. ct_dyndesc sets *copied to the
length, in bytes, of the data placed in *buffer.

indicator
When used, a pointer to an indicator variable.

Table 3-26: Values for ct_dyndesc indicator parameter

Return value ct_dyndesc returns the following values:

Usage • A dynamic SQL descriptor area contains information about the input
parameters to a dynamic SQL statement or the result data items generated
by the execution of a dynamic SQL statement.

• Although ct_dyndesc takes a CS_COMMAND structure as a parameter,
the scope of a dynamic SQL descriptor area is a Client-Library context;
that is:

• Descriptor names must be unique within a context.

• An application can use any command structure within a context to
reference the context’s descriptor areas. For example, a descriptor
area allocated through one command structure can be deallocated by
another command structure within the same context.

Value of
operation

Value of
*indicator Meaning

CS_GETATTR -1 Truncation of a server value by Client-
Library.

0 No truncation.

integer value Truncation of an application value by the
server.

CS_SETATTR -1 The parameter has a null value.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_ROW_FAIL A recoverable error occurred. Recoverable errors include
conversion errors that occur while copying values to
program variables as well as memory allocation failures.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 495

• See Chapter 8, “Using Dynamic SQL Commands,” in the Open Client
Client-Library/C Programmers Guide.

Allocating a descriptor

• To allocate a descriptor, an application calls ct_dyndesc with operation as
CS_ALLOC.

• Table 3-27 lists parameter values for CS_ALLOC operations:

Table 3-27: Parameter values for ct_dyndesc(CS_ALLOC) operations

Deallocating a descriptor

• To deallocate a descriptor, an application calls ct_dyndesc with operation
as CS_DEALLOC.

• Table 3-28 lists parameter values for CS_DEALLOC operations:

Table 3-28: Parameter values for ct_dyndesc(CS_DEALLOC) operations

Retrieving a parameter or result item’s attributes

• To retrieve the attributes of a parameter or a result data item, an application
calls ct_dyndesc with operation as CS_GETATTR.

• Table 3-29 lists parameter values for CS_GETATTR operations:

descriptor, desclen index datafmt
buffer,
buflen copied indicator

The name of the descriptor
to allocate, the length of the
name or CS_NULLTERM.

The maximum number
of items that the
descriptor will
accommodate.

NULL NULL,
CS_UNUSED

NULL NULL

descriptor, desclen index datafmt
buffer,
buflen copied indicator

The name of the descriptor to
deallocate, the length of the
name or CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSED

NULL NULL

ct_dyndesc

496 Open Client

Table 3-29: Parameter values for ct_dyndesc(CS_GETATTR) operations

• If necessary, ct_dyndesc converts the column’s source data to the format
described by *datafmt and places the result in *buffer. If pointers are
supplied for *indicator and *copied, they are set accordingly.

• An application needs to set the *datafmt fields for a CS_GETATTR
operation exactly as they would be set for a ct_bind call, except that
datafmtcount must be 0 or 1 (only one column value at a time can be
retrieved). Table 3-30 lists the CS_DATAFMT fields that are used:

Table 3-30: CS_DATAFMT settings for ct_dyndesc(CS_GETATTR)
operations

• ct_dyndesc(CS_GETATTR) sets the *datafmt fields exactly as ct_describe
would set them. Table 3-31 lists the fields in *datafmt that ct_dyndesc sets:

descriptor,
desclen index datafmt buffer, buflen copied indicator

The name of the
descriptor of
interest,
 the length of the
name or
CS_NULLTERM.

The number of
the item whose
description is
being requested.

Index numbers
start with 1.

As an input
parameter,
*datafmt describes
*buffer.

ct_dyndesc
overwrites
*datafmt with a
description of the
item.

If supplied, *buffer is
set to the value of the
item.

If buffer is NULL,
only a description of
the item is returned.

buflen must be
 CS_UNUSED.

datafmt->maxlength
describes *buffer’s
length.

If
supplied,
*copied is
set to the
number of
bytes
placed in
*buffer.

Can be
NULL.

If supplied,
*indicator is
set to the
value of the
item’s
indicator.

Can be
NULL.

Field name Set field to

datatype The datatype of the buffer variable.

format A bitmask of format symbols.

maxlength The length of the buffer data space.

scale If buffer is a numeric or decimal variable, the maximum number
of digits that can be represented to the right of the decimal point;
scale is ignored for all other datatypes.

precision If buffer is a numeric or decimal variable, the maximum number
of decimal digits that can be represented; precision is ignored
for all other datatypes.

count 0 or 1.

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields are ignored.

CHAPTER 3 Routines

Client-Library/C Reference Manual 497

Table 3-31: CS_DATAFMT fields set by ct_dyndesc(CS_GETATTR)
operations

Field name ct_dyndesc sets field to

name The null-terminated name of the data item, if any. A NULL
name is indicated by a namelen of 0.

namelen The actual length of the name, not including the null terminator.

0 to indicate a NULL name.

datatype The datatype of the item. All datatypes listed in “Datatypes
support” on page 305 are valid, with the exceptions of
CS_VARCHAR and CS_VARBINARY.

maxlength The maximum possible length of the data for the column or
parameter.

scale The maximum number of digits to the right of the decimal point
in the result data item.

precision The maximum number of decimal digits that can be represented
in the result data item.

status A bitmask of the following values:

• CS_CANBENULL to indicate that the column can contain
NULL values.

• CS_HIDDEN to indicate that the column is a “hidden”
column that has been exposed. For information on hidden
columns, see “Hidden keys” on page 224.

• CS_IDENTITY to indicate that the column is an identity
column.

• CS_KEY to indicate the column is part of the key for a table.

• CS_VERSION_KEY to indicate the column is part of the
version key for the row.

• CS_TIMESTAMP to indicate the column is a timestamp
column.

• CS_UPDATABLE to indicate that the column is an updatable
cursor column.

• CS_UPDATECOL to indicate that the column is in the update
clause of a cursor declare command.

• CS_RETURN to indicate that the column is a return
parameter of an RPC command.

count ct_dyndesc sets count to 1.

usertype The Adaptive Server Enterprise user-defined datatype of the
column or parameter, if any. usertype is set in addition to (not
instead of) datatype.

ct_dyndesc

498 Open Client

Retrieving the number of parameters or columns

• To retrieve the number of parameters or result items a descriptor can
describe, an application calls ct_dyndesc with operation as CS_GETCNT.

• ct_dyndesc sets *buffer to the number of dynamic parameter specifications
or the number of columns in the dynamic SQL statement’s select list,
depending on whether input parameters or output columns are being
described.

• The following table lists parameter values for CS_GETCNT operations:

Table 3-32: Parameter values for ct_dyndesc(CS_GETCNT) operations

Setting a parameter’s attributes

• To set a parameter’s attributes, an application calls ct_dyndesc with
operation as CS_SETATTR.

• Table 3-33 lists parameter values for CS_SETATTR operations:

Table 3-33: Parameter values for ct_dyndesc(CS_SETATTR) operations

locale A pointer to a CS_LOCALE structure that contains locale
information for the data.

This pointer can be NULL.

Field name ct_dyndesc sets field to

descriptor, desclen index datafmt buffer, buflen copied indicator

The name of the
descriptor of interest, the
length of the name or
CS_NULLTERM.

CS_UNUSED NULL A pointer to a
CS_INT,
CS_UNUSED.

If supplied,
*copied is set to
the number of
bytes placed in
*buffer.

Can be NULL.

NULL

descriptor,
desclen index datafmt buffer, buflen copied indicator

The name of the
descriptor of interest,
 the length of the name
or CS_NULLTERM.

The number of
the item whose
description is
being set.

Index numbers
start with 1.

*datafmt
contains a
description
of the item.

A pointer to the
value of the item,
the length of the
value.

Pass buflen as
CS_UNUSED if
buffer points to a
fixed-length type.

NULL If supplied,
 *indicator is the
value of the item’s
indicator.

If *indicator is -1,
then buffer is ignored
and the value of the
item is set to NULL.

indicator can be
NULL.

CHAPTER 3 Routines

Client-Library/C Reference Manual 499

• An application needs to set the *datafmt fields for a CS_SETATTR
operation exactly as they would be set for a ct_param call. Table 3-34 lists
the fields that are used:

Table 3-34: CS_DATAFMT fields for ct_dyndesc(CS_SETATTR)
operations

Setting the number of parameters or columns

• To set the number of parameters or columns a descriptor can describe, an
application calls ct_dyndesc with operation as CS_SETCNT.

• Table 3-35 lists parameter values for CS_SETCNT operations:

Table 3-35: Parameter values for ct_dyndesc(CS_SETCNT) operations

Associating a descriptor with a statement or command structure

• To associate a descriptor with a prepared statement or command structure,
an application calls ct_dyndesc with operation as CS_USE_DESC.

• Table 3-36 lists parameter values for CS_USE_DESC operations:

Field name Set field to

name The name of the parameter.

namelen The length of the name or CS_NULLTERM.

datatype The datatype of the item being set.

maxlength For variable-length return parameters, maxlength is the
maximum number of bytes to be returned for this parameter.

maxlength is ignored if status is CS_INPUTVALUE or if
datatype represents a fixed-length type.

status CS_INPUTVALUE, CS_UPDATECOL, or CS_RETURN.

CS_UPDATECOL indicates an update column for a
cursor-declare command.

CS_RETURN indicates a return parameter.

locale A pointer to a valid CS_LOCALE structure or NULL.

All other fields are ignored.

descriptor, desclen index datafmt buffer, buflen copied indicator

The name of the descriptor of
interest, the length of the name
or CS_NULLTERM.

The new
descriptor count

NULL NULL,
CS_UNUSED

NULL NULL

ct_dyndesc

500 Open Client

Table 3-36: Parameter values for ct_dyndesc(CS_USE_DESC)
operations

• Descriptor areas are normally associated with a context structure. When a
descriptor area is used to describe input to or output from a cursor,
however, it must first be associated with the command structure which
opened the cursor.

• When using a descriptor to describe cursor input, a typical application’s
sequence of calls is:

ct_dyndesc(CS_ALLOC)
 ct_dyndesc(CS_SETCNT)
 for each input value:
 ct_dyndesc(CS_SETATTR)
 end for
 ct_cursor to open the cursor
 ct_dyndesc(CS_USE_DESC)
 ct_send

Getting descriptions of command inputs or outputs with ct_dyndesc

• The sequence of calls to retrieve a description of a prepared statement’s
input parameters or result columns with ct_dyndesc is described below.

a Call ct_dyndesc with operation as CS_ALLOC to allocate a
descriptor area.

b Call ct_dynamic to initiate the command to get the description. Pass
the ct_dynamic type argument as CS_DESCRIBE_INPUT for input
descriptions and as CS_DESCRIBE_OUTPUT for output
descriptions.

c Call ct_send to send the command to the server.

d Call ct_results as necessary to process the results of the command. A
describe command generates a result set of type
CS_DESCRIBE_RESULT. This result set contains no fetchable data
but does contain descriptive information for each of the input values.

e Call ct_dyndesc with operation as CS_USE_DESC to associate the
prepared statement with the descriptor area allocated in step 1. This
assumes that CS_DESCRIBE_RESULT was returned as ct_results’
current result_type value, as do the following two steps.

descriptor, desclen index datafmt buffer, buflen copied indicator

The name of the descriptor of interest,
the length of the name or
CS_NULLTERM.

CS_UNUSED NULL NULL,
CS_UNUSED

NULL NULL

CHAPTER 3 Routines

Client-Library/C Reference Manual 501

f Call ct_dyndesc with operation as CS_GETCNT to get the number of
parameters or columns.

g For each parameter or column, call ct_dyndesc with operation as
CS_GETATTR to get the value’s description.

Passing parameter values with ct_dyndesc

• When executing a prepared dynamic SQL statement, an application can
supply input parameter values with ct_dyndesc. The sequence of calls is as
follows:

a Call ct_dynamic(CS_EXECUTE) to initiate the command.

b For each required input parameter, call ct_dyndesc with operation as
CS_SETATTR to place a parameter value in the descriptor area. If
necessary, convert the value with cs_convert first. The CS_SETATTR
usage is summarized under “Setting a parameter’s attributes” on page
498.

c Call ct_dyndesc with operation as CS_USE_DESC to apply the
parameter values to the command.

d Call ct_send to send the command to the server.

e Process the results of the command. See “Results” on page 251 if you
are unfamiliar with Client-Library’s results model.

• Client-Library allows applications to resend a dynamic-SQL execute
command by calling ct_send immediately after the application has
processed the results of the previous execution. However, parameter
values are fixed for all executions of the command if ct_dyndesc is used to
supply parameter values. Applications that resend commands with
different parameter values should use ct_setparam instead. See
ct_setparam and “Resending commands” on page 594.

Retrieving result column values with ct_dyndesc

• When processing fetchable results, an application can retrieve result
column values with ct_dyndesc and ct_fetch. (Fetchable results are
indicated by the value of the ct_results result_type parameter).

• The sequence of calls is summarized below. This sequence assumes that
ct_results has returned a result_type value that indicates fetchable data:

a Call ct_dyndesc with operation as CS_USE_DESC to associate the
descriptor with the result rows.

b Call ct_fetch to fetch a result row. If ct_fetch returns CS_END_DATA,
then all the rows have been retrieved.

ct_dynsqlda

502 Open Client

c For each column in the result set, call ct_dyndesc with operation as
CS_GETATTR to get the column’s value. CS_GETATTR usage is
summarized under “Retrieving a parameter or result item’s
attributes” on page 495.

d Repeat steps 2–4 until ct_fetch returns CS_END_DATA.

See also ct_bind, ct_cursor, ct_describe, ct_dynamic, ct_dynsqlda, ct_fetch, ct_param

ct_dynsqlda
Description Operate on a SQLDA structure.

Syntax CS_RETCODE ct_dynsqlda(cmd, sqlda_type, dap, operation)

 CS_COMMAND *cmd;
 CS_INT sqlda_type;
 SQLDA *dap;
 CS_INT operation;

Parameters cmd
A pointer to a CS_COMMAND structure.

sqlda_type
Symbolic constant describing the type of SQLDA structure pointed at by
dap. In this version, sqlda_type must be CS_SQLDA_SYBASE to indicate
a Sybase-style SQLDA structure.

dap
The address of a SQLDA structure. The SQLDA structure is defined in the
Sybase sqlda.h header file. See “Sybase-style SQLDA structure” on page
503 for the definition of this structure.

operation
The operation to perform. Table 3-37 summarizes the use of ct_dynsqlda:

CHAPTER 3 Routines

Client-Library/C Reference Manual 503

Table 3-37: Values for ct_dynsqlda operation parameter

Return value ct_dynsqlda returns the following values:

Usage • A SQLDA structure is used with prepared dynamic SQL statements. It
contains format descriptions and (optionally) values for command input
parameters or result columns.

• See Chapter 8, “Using Dynamic SQL Commands,” in the Open Client
Client-Library/C Programmers Guide.

• ct_dynsqlda manages a SQLDA structure. A SQLDA structure contains
data areas for the descriptions and values of a command’s input parameters
or result values.

Sybase-style SQLDA structure

• The Sybase-style SQLDA is a self-describing, variable-length structure,
declared as follows:

typedef struct _sqlda
 {
 CS_SMALLINT sd_sqln; /* Actual length of column array */
 CS_SMALLINT sd_sqld; /* Current number of columns */
 /*

Value of
operation Function

CS_GET_IN Fills *dap with a description of the input parameters for a
prepared dynamic SQL statement.

CS_GET_OUT Fills *dap with a description of the columns returned by a
prepared dynamic SQL statement.

CS_SQLDA_
 PARAM

Uses a SQLDA structure to supply input parameters for the
execution of a prepared statement.

When executing a prepared dynamic SQL statement, this
operation applies the contents of *dap as input parameters.

CS_SQLDA_
 BIND

Uses a SQLDA structure to process results from the execution of
a prepared statement.

When processing the results returned by the execution of a
prepared dynamic SQL statement, this operation binds the
contents of *dap to the result columns.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is pending for this connection.
See “Asynchronous programming” on page 10.

ct_dynsqlda

504 Open Client

 ** The following array is treated as if it were the length
 ** indicated by sd_sqln.
 */
 struct _sd_column
 {
 CS_DATAFMT sd_datafmt; /* Format of column i. */
 CS_VOID *sd_sqldata; /* Value buffer for column i. */
 CS_INT sd_sqllen; /* Length of current value. */
 CS_SMALLINT sd_sqlind; /* Indicator for column i. */
 CS_VOID *sd_sqlmore; /* Reserved for future use. */
 } sd_column[1];
 } sqlda;

 #define SYB_SQLDA_SIZE(n) (sizeof(sqlda) \
 - sizeof(struct _sd_column) \
 + (n) * sizeof(struct _sd_column))

Allocating SQLDA structures

• The application is responsible for correctly allocating and initializing the
structure pointed to by dap. The actual size of the structure depends on the
number of columns that the structure is to describe. An application can use
the SYB_SQLDA_SIZE macro to allocate a SQLDA buffer of the
appropriate size. On a system that uses malloc to allocate memory, this can
be done as follows:

#define MAX_COLUMNS 16
 SQLDA *dap;

 dap = (SQLDA *) malloc(
 SYB_SQLDA_SIZE(MAX_COLUMNS));
 if (dap == (SQLDA *) NULL)
 ... out of memory ...

 memset((void *)dap, 0,
 SYB_SQLDA_SIZE(MAX_COLUMNS));
 dap->sd_sqln = MAX_COLUMNS;

An application can invoke the SQLDA_DECL macro to declare a static
SQLDA structure. The invocation:

SQLDA_DECL(name, size);

Is equivalent to the declaration:

struct {
 CS_SMALLINT sd_sqln;
 CS_SMALLINT sd_sqld;
 struct {

CHAPTER 3 Routines

Client-Library/C Reference Manual 505

 CS_DATAFMT sd_datafmt;
 CS_VOID *sd_sqldata;
 CS_SMALLINT sd_sqlind;
 CS_INT sd_sqllen;
 CS_VOID *sd_sqlmore;
 } sd_column[(size)];
 } name;

• If the structure will be used to pass input parameters or retrieve results, the
(using ct_dynsqlda’s CS_SQLDA_PARAM or CS_SQLDA_BIND
operations), then the application must also allocate buffers for item values
and set the buffer lengths in the structure.

• The use of the Sybase-style SQLDA is explained in the following sections.

Sybase SQLDA: Retrieving input formats

• ct_dynsqlda(cmd, CS_SQLDA_SYBASE, &sqlda, CS_GET_IN) fills the
fields of sqlda with a description of the input parameters required to
execute a prepared statement.

• A prepared dynamic SQL statement can contain parameter markers for
values to be supplied at execution time.

• A dynamic SQL statement can contain parameter markers for parameters
to be supplied at execution time. After a dynamic SQL statement is
prepared, the application can request a description of the format of the
statement’s parameter. The procedure is:

a Build and send a ct_dynamic(CS_DESCRIBE_INPUT) command to
the server.

b Handle the results of the command with ct_results. When ct_results
returns a result_type value of CS_DESCRIBE_RESULT, the
parameter formats are available.

c If necessary, call ct_res_info(CS_NUMDATA) to find out how many
parameters the statement requires. The SQLDA structure contains an
array of column descriptors. The array must contain at least one entry
for each required parameter.

d Call ct_dynsqlda to retrieve the parameter formats.

• The application is responsible for allocating the SQLDA structure and the
memory pointed to by its constituent pointers. The field settings for a
CS_GET_IN operation are as follows:

ct_dynsqlda

506 Open Client

Table 3-38: SQLDA fields for ct_dynsqlda(CS_GET_IN) calls

Sybase SQLDA: Retrieving output formats

• ct_dynsqlda(cmd, CS_SQLDA_SYBASE, &sqlda, CS_GET_OUT) fills
the fields of sqlda with a description of the results returned by the
execution of a prepared statement.

• A dynamic SQL statement can contain a server select command. After a
dynamic SQL statement is prepared, the application can request a
description of the format of the row data returned by the statement. The
procedure is:

a Build and send a ct_dynamic(CS_DESCRIBE_OUTPUT) command
to the server.

b Handle the results of the command with ct_results. When ct_results
returns a result_type value of CS_DESCRIBE_RESULT, the output
formats are available to the application.

c If necessary, call ct_res_info(CS_NUMDATA) to find out how many
columns the statement returns. The SQLDA structure contains the
address of an array of column descriptors. This array must contain at
least one entry per column.

d Call ct_dynsqlda to retrieve the column formats.

Field Description

sqlda->
 sd_sqln

On input, the number of elements in the array that starts at
sqlda->sd_column. The SQLDA must be sufficiently
large. See “Allocating SQLDA structures” on page 504.

sqlda->
 sd_sqld

On output, the actual number of items.

sqlda->
 sd_column[i].
 sd_sqldata

Unused (ignored).

sqlda->
 sd_column[i].
 sd_sqllen

Unused (ignored).

sqlda->
 sd_column[i].
 sd_datafmt

On output, the CS_DATAFMT fields for each parameter
are set exactly as ct_describe would set them (see Table 3-
18 on page 460).

sqlda->
 sd_column[i].
 sd_sqlind

Unused (ignored).

CHAPTER 3 Routines

Client-Library/C Reference Manual 507

• The application is responsible for allocating the SQLDA structure and the
memory pointed to by its constituent pointers. The field settings for a
CS_GET_OUT operation are as follows:

Table 3-39: SQLDA fields for ct_dynsqlda(CS_GET_OUT) calls

Sybase SQLDA: Passing command input parameters

• ct_dynsqlda(cmd, CS_SQLDA_SYBASE, &sqlda,
CS_SQLDA_PARAM) applies the contents of an SQLDA structure as
input parameter values for the execution of a prepared statement.

• The procedure for using ct_dynsqlda to pass parameters for the execution
of a prepared statement is as follows:

a (Optional) Get a description of the command inputs as described by
“Sybase SQLDA: Retrieving input formats” on page 505.

b Call ct_dynamic(CS_EXECUTE) to initiate the command.

c Fill in the fields of the SQLDA as described in the table below.

d Call ct_dynsqlda(CS_SQLDA_PARAM) to apply the SQLDA’s
contents as input parameter values.

e Send the command with ct_send.

f Handle the results of the command.

Field Description

sqlda->
sd_sqln

On input, the number of elements in the array that starts at
sqlda->sd_column. The SQLDA must be sufficiently
large. See “Allocating SQLDA structures” on page 504.

sqlda->
sd_sqld

On output, the actual number of items.

sqlda->
sd_column[i].
sd_sqldata

Unused (ignored).

sqlda->
sd_column[i].
sd_sqllen

Unused (ignored).

sqlda->
sd_column[i].
sd_datafmt

On output, the CS_DATAFMT fields for each column are
set exactly as ct_describe would set them (see Table 3-18
on page 460).

sqlda->
sd_column[i].
sd_sqlind

Unused (ignored).

ct_dynsqlda

508 Open Client

• The application is responsible for allocating the SQLDA structure and the
memory pointed to by its constituent pointers. The field settings for a
CS_SQLDA_PARAM operation are as follows:

Table 3-40: SQLDA fields for ct_dynsqlda(CS_SQLDA_PARAM) calls

Sybase SQLDA: Retrieving results

• ct_dynsqlda(cmd, CS_SQLDA_SYBASE, &sqlda, CS_SQLDA_BIND)
binds the contents of an SQLDA structure to columns in the results
returned by the execution of a prepared statement.

• The procedure for using ct_dynsqlda for results processing is as follows:

a (Optional) Get a description of the command outputs as described in
“Sybase SQLDA: Retrieving output formats” on page 506.

b Call ct_dynamic(CS_EXECUTE) to initiate the command.

c Supply any necessary parameter values for execution.

d Send the command with ct_send.

e Handle the results of the command. When ct_results returns a
result_type value of CS_ROW_RESULT, the SQLDA structure can
be bound to the result rows.

Field Description

sqlda->
sd_sqln

On input, the number of elements in the array that starts at sqlda-
>sd_column. The array must have as many entries as the number
of items requested by the sd_sqld field. See “Allocating SQLDA
structures” on page 504.

sqlda->
sd_sqld

On input, the number of items in the sqlda->sd_column array that
should be applied as parameter values.

sqlda->
sd_column[i].
sd_sqldata

When executing a command, contains the address of a buffer
containing a value for parameter i (with 0 being the first
parameter marker in the statement).

sqlda->
sd_column[i].
sd_sqllen

The length, in bytes, of the buffer pointed at by
sd_column[i].sd_sqldata.

sqlda->
sd_column[i].
sd_datafmt

The CS_DATAFMT fields for each column must be set exactly
as required by ct_param (see Table 3-49 on page 552).

sqlda->
sd_column[i]->
sd_sqlind

When executing a command, a value of -1 indicates that the value
for parameter i is NULL.

CHAPTER 3 Routines

Client-Library/C Reference Manual 509

f Fill in the fields of the SQLDA as described in the table below, then
call ct_dynsqlda(CS_SQLDA_BIND) to bind them to the column
values in the result rows.

g Process the rows with ct_fetch. Each call to ct_fetch places values,
converted if necessary, into the bound fields of the SQLDA.

• The application is responsible for allocating the SQLDA structure and the
memory pointed to by its constituent pointers. The field settings for a
CS_SQLDA_BIND operation are as follows:

Table 3-41: SQLDA fields for ct_dynsqlda(CS_SQLDA_BIND) calls

See also ct_bind, ct_cursor, ct_describe, ct_dynamic, ct_dyndesc, ct_fetch, ct_param,
ct_res_info

ct_exit
Description Exit Client-Library.

Field Description

sqlda->
sd_sqln

On input, the number of elements in the array that starts at sqlda-
>sd_column. The array must be at least as long as the number of
items requested by the sd_sqld field. See “Allocating SQLDA
structures” on page 504.

sqlda->
sd_sqld

On input, the number of items in the sqlda->sd_column array
that should be bound to result columns.

sqlda->
sd_column[i].
sd_sqldata

Contains the address of a buffer where ct_fetch will place values
for column i (with 0 being the first column).

sqlda->
sd_column[i].
sd_sqllen

The length, in bytes, of the buffer pointed at by sd_column[i]-
>sd_sqldata.

sqlda->
sd_column[i].
sd_datafmt

The CS_DATAFMT fields for each column must be set exactly
as required by ct_bind (see Table 3-1 on page 337).

sqlda->
sd_column[i].
sd_sqlind

Subsequent calls to ct_fetch will write indicator values for each
column. Indicator values are as follows:

• -1 indicates the column value is NULL.

• 0 indicates a successful fetch.

• Any positive integer indicates truncation. The value is the
actual length of the column value before truncation.

ct_exit

510 Open Client

Syntax CS_RETCODE ct_exit(context, option)

CS_CONTEXT *context;
CS_INT option;

Parameters context
A pointer to a CS_CONTEXT structure.

context identifies the Client-Library context being exited.

option
ct_exit can behave in different ways, depending on the value specified for
option. The following symbolic values are legal for option:

To properly exit Client-Library, wait until all asynchronous operations are
complete, then call ct_exit.

If an asynchronous operation is in progress when ct_exit is called, the routine
returns CS_FAIL and does not exit Client-Library properly, even when
CS_FORCE_EXIT is used.

Return value ct_exit returns the following values:

Examples

 /*
 ** ex_ctx_cleanup()
 **
 ** Parameters:
 ** context Pointer to context structure.
 ** status Status of last interaction with Client-
 ** Library.
 ** If not ok, this routine will perform a
 ** force exit.
 **

Value of option Result

CS_UNUSED ct_exit closes all open connections for which no results are
pending and terminates Client-Library for this context. If
results are pending on one or more connections, ct_exit
returns CS_FAIL and does not terminate Client-Library.

CS_FORCE_EXIT ct_exit closes all open connections for this context, whether
or not any results are pending, and terminates Client-Library
for this context.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 511

 ** Returns:
 ** Result of function calls from Client-Library.
 */

 CS_RETCODE CS_PUBLIC
 ex_ctx_cleanup(context, status)
 CS_CONTEXT* context;
 CS_RETCODE status;
 {
 CS_RETCODE retcode;
 CS_INT exit_option;

 exit_option = (status != CS_SUCCEED) ? CS_FORCE_EXIT :
 CS_UNUSED;
 retcode = ct_exit(context, exit_option);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_ctx_cleanup: ct_exit() failed");
 return retcode;
 }
 retcode = cs_ctx_drop(context);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_ctx_cleanup: cs_ctx_drop() failed");
 return retcode;
 }
 return retcode;
 }

This code excerpt is from the exutils.c sample program.

Usage • ct_exit terminates Client-Library for a specific context. It closes all open
connections, deallocates internal data space and cleans up any platform-
specific initialization.

• ct_exit must be the last Client-Library routine called within a Client-
Library context.

• If an application finds it needs to call Client-Library routines after it has
called ct_exit, it can reinitialize Client-Library by calling ct_init again.

• If results are pending on any of the context’s connections and option is not
passed as CS_FORCE_EXIT, ct_exit returns CS_FAIL. This means that
Client-Library is not correctly terminated and that the application must
call ct_exit again after handling the pending results.

• ct_exit always completes synchronously, even if asynchronous network
I/O has been specified for any of the context’s connections.

ct_fetch

512 Open Client

• An application can call ct_close to close a single connection.

• If ct_init is called for a context, it is an error to deallocate the context before
calling ct_exit.

See also ct_close, ct_init

ct_fetch
Description Fetch result data.

Syntax CS_RETCODE ct_fetch(cmd, type, offset, option,
 rows_read)

 CS_COMMAND *cmd;
 CS_INT type;
 CS_INT offset;
 CS_INT option;
 CS_INT *rows_read;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

type
This parameter is currently unused and must be passed as CS_UNUSED to
ensure compatibility with future versions of Client-Library.

offset
This parameter is currently unused and must be passed as CS_UNUSED to
ensure compatibility with future versions of Client-Library.

option
This parameter is currently unused and must be passed as CS_UNUSED to
ensure compatibility with future versions of Client-Library.

rows_read
A pointer to an integer variable. ct_fetch sets rows_read to the number of
rows read by the ct_fetch call.

rows_read is an optional parameter intended for use by applications using
array binding.

In asynchronous mode, *rows_read is not set until ct_fetch completes.

Return value ct_fetch returns the following values:

CHAPTER 3 Routines

Client-Library/C Reference Manual 513

Table 3-42: ct_fetch return values

Return value Meaning

CS_SUCCEED The routine completed successfully.

ct_fetch places the number of rows read in *rows_read.

The application must continue to call ct_fetch, as the result
data is not yet completely fetched.

CS_END_DATA All rows of the current result set have been fetched.

The application should call ct_results to get the next result
set.

Note that this return value does not apply to
“ct_scroll_fetch” on page 581.

ct_scroll_fetch returning CS_END_DATA is a fatal internal
error.

CS_ROW_FAIL A recoverable error occurred while fetching a row. The
application must continue calling ct_fetch to keep retrieving
rows, or can call ct_cancel to cancel the remaining results.

When using array binding, CS_ROW_FAIL indicates a
partial result is available in the bound arrays. ct_fetch sets
*row_count to indicate the number of rows transferred
(including the row containing the error) and transfers no
rows after that row. The next call to ct_fetch will read rows
starting with the row after the one where the error occurred.

Recoverable errors include memory allocation failures and
conversion errors (such as overflowing the destination
buffer) that occur while copying row values to program
variables. In the case of buffer-overflow errors, ct_fetch sets
the corresponding *indicator variable(s) to a value greater
than 0. Indicator variables must have been specified in the
application’s calls to ct_bind.

CS_FAIL The routine failed.

ct_fetch places the number of rows fetched in *rows_read.
This number includes the failed row.

Unless the routine failed due to application error (for
example, bad parameters), additional result rows are not
available.

If ct_fetch returns CS_FAIL, an application must call
ct_cancel with type as CS_CANCEL_ALL before using the
affected command structure to send another command.

If ct_cancel returns CS_FAIL, the application must call
ct_close(CS_FORCE_CLOSE) to force the connection
closed.

ct_fetch

514 Open Client

 A common reason for a ct_fetch failure is that a program variable specified
through ct_bind is not large enough for a fetched data item.

Examples

 /* ex_fetch_data()*/

 CS_RETCODE CS_PUBLIC
 ex_fetch_data(cmd)
 CS_COMMAND *cmd;
 {
 CS_RETCODE retcode;
 CS_INT num_cols;
 CS_INT i;
 CS_INT j;
 CS_INT row_count = 0;
 CS_INT rows_read;

 /*
 ** Determine the number of columns in this
 ** result set.
 */
 ...CODE DELETED.....

 /* Get column descriptions and bind columns */
 ...CODE DELETED.....

 /*
 ** Fetch the rows. Loop while ct_fetch() returns
 ** CS_SUCCEED or CS_ROW_FAIL
 */

while (((retcode = ct_fetch(cmd, CS_UNUSED,
 CS_UNUSED, CS_UNUSED,&rows_read)) ==
 CS_SUCCEED) || (retcode == CS_ROW_FAIL))

{
 /*
 ** Increment our row count by the number of
 ** rows just fetched.

CS_CANCELED The current result set and any additional result sets have been
canceled. Data is no longer available.

ct_fetch places the number of rows fetched before the cancel
occurred in *rows_read.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Return value Meaning

CHAPTER 3 Routines

Client-Library/C Reference Manual 515

 */
 row_count = row_count + rows_read;

 /* Check if we hit a recoverable error */
 if (retcode == CS_ROW_FAIL)
 {
 fprintf(stdout, "Error on row %d.\n",
 row_count);
 }

 /*
 ** We have a row. Loop through the columns
 ** displaying the column values.
 */
 for (i = 0; i < num_cols; i++)
 {
 ...CODE DELETED.....
 }
 fprintf(stdout, "\n");
 }

 /* Free allocated space */
 ...CODE DELETED.....

 /*
 ** We're done processing rows. Let's check the
 ** final return value of ct_fetch().
 */
 switch ((int)retcode)
 {
 case CS_END_DATA:
 /* Everything went fine */
 fprintf(stdout, "All done processing
 rows.\n");
 retcode = CS_SUCCEED;
 break;

 case CS_FAIL:
 /* Something terrible happened */
 ex_error("ex_fetch_data: ct_fetch()
 failed");
 return retcode;
 break;

 default:
 /* We got an unexpected return value */
 ex_error("ex_fetch_data: ct_fetch() \
 returned an unexpected retcode");
 return retcode;

ct_fetch

516 Open Client

 break;

 }

 return retcode;
 }

This code excerpt is from the exutils.c sample program.

Usage • Result data is an umbrella term for all the types of data that a server can
return to an application. The types of data include:

• Regular rows

• Cursor rows

• Return parameters, such as message parameters, stored procedure
return parameters, extended error data, and registered procedure
notification parameters.

• Stored procedure status values

• Compute rows

ct_fetch is used to fetch all of these types of data.

• Conceptually, result data is returned to an application in the form of one or
more rows that make up a result set.

Regular row and cursor row result sets can contain more than one row. For
example, a regular row result set might contain a hundred rows.

If array binding has been specified for the data items in a regular row or
cursor row result set, then multiple rows can be fetched with a single call
to ct_fetch.

Note Asynchronous applications should always specify array binding to
fetch multiple rows at a time. This ensures that the application has
sufficient time in which to accomplish something before Client-Library
calls the application’s completion callback routine.

Return parameter, status number, and compute-row result sets, however,
only contain a single “row.” For this reason, even if array binding is
specified, only a single row of data is fetched.

CHAPTER 3 Routines

Client-Library/C Reference Manual 517

• ct_results sets *result_type to indicate the type of result available.
ct_results must indicate a result type of CS_ROW_RESULT,
CS_CURSOR_RESULT, CS_PARAM_RESULT,
CS_STATUS_RESULT, or CS_COMPUTE_RESULT before an
application calls ct_fetch.

• After ct_results returns a result_type that indicates fetchable results, an
application can:

• Retrieve the result row(s) by binding the result items and fetching the
data. A typical application calls ct_res_info to get the number of data
items, ct_describe to get data descriptions, ct_bind to bind result
items, ct_fetch to fetch result rows, and ct_get_data, if the result set
contains large text or image values.

• Retrieve result rows using ct_dyndesc or ct_dynsqlda with ct_fetch.
Typically, only applications that execute dynamic SQL commands
use these routines, but ct_dyndesc or ct_dynsqlda can be used to
process fetchable data returned by any command type.

• Discard the result rows using ct_cancel for non-cursor results and
ct_cursor(CS_CURSOR_CLOSE) for cursor results.

• If an application does not cancel a result set, it must completely process
the result set by calling ct_fetch as long as ct_fetch continues to indicate
that rows are available.

The simplest way to do this is in a loop that terminates when ct_fetch fails
to return either CS_SUCCEED or CS_ROW_FAIL. After the loop
terminates, an application can use a switch-type statement against
ct_fetch’s final return code to find out what caused the termination.

If a result set contains zero rows, an application’s first ct_fetch call will
return CS_END_DATA.

Note An application must call ct_fetch in a loop even if a result set
contains only a single row. An application must call ct_fetch until it fails
to return either CS_SUCCEED or CS_ROW_FAIL.

• If a conversion error occurs when retrieving a result item, the rest of the
items in the row are retrieved. If truncation occurs, the indicator variable,
if any, provided in the application’s ct_bind call for this item is set to the
actual length of the result data.

ct_fetch returns CS_ROW_FAIL if a conversion or truncation error occurs.

ct_fetch

518 Open Client

Fetching regular rows and cursor rows

• Regular rows and cursor rows can be fetched one row at a time, or several
rows at once.

• An application indicates the number of rows to be fetched per ct_fetch call
using the datafmtcount field in its ct_bind calls that bind result columns
to program variables. If datafmtcount is 0 or 1, each call to ct_fetch
fetches one row. If datafmtcount is greater than one, then array binding
is considered to be in effect and each call to ct_fetch fetches datafmt
count rows. Note that datafmtcount must have the same value for all
ct_bind calls for a result set.

• When fetching multiple rows, if a conversion error occurs on one of the
rows, no more rows are retrieved by this ct_fetch call.

Fetching return parameters

• Several types of data can be returned to an application as a parameter result
set, including:

• Stored procedure return parameters

• Message parameters

• Extended error data and registered procedure notification parameters are
also returned as parameter result sets, but since an application does not call
ct_results to process these types of data, the application never sees a result
type of CS_PARAM_RESULT. Instead, the row of parameters is simply
available to be fetched after the application retrieves the CS_COMMAND
structure containing the data.

• A return parameter result set consists of a single row with a number of
columns equal to the number of return parameters.

Fetching a return status

• A stored procedure return status result set consists of a single row with a
single column, the status number.

Fetching compute rows

• Compute rows result from the compute clause of a select statement.

• A compute row result set consists of a single row with a number of
columns equal to the number of aggregate operators in the compute clause
that generated the row.

• Each compute row is considered to be a distinct result set.

See also ct_bind, ct_describe, ct_get_data, ct_results, “Results” on page 251,
ct_scroll_fetch

CHAPTER 3 Routines

Client-Library/C Reference Manual 519

ct_get_data
Description Read a chunk of data from the server.

Syntax CS_RETCODE ct_get_data(cmd, item, buffer, buflen, outlen)

CS_COMMAND *cmd;
CS_INT item;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

item
An integer representing the data item of interest. When using ct_get_data to
retrieve data for more than one item in a result set, item can only be
increased by; that is, an application cannot retrieve data for item number 3
after it has retrieved data for item number 4.

When retrieving a column, item is the column’s column number. The first
column in a select-list is column number 1, the second is number 2, and so
forth.

When retrieving a compute column, item is the column number of the
compute column. Compute columns are returned in the order in which they
are listed in the compute clause. The first column returned is number 1.

When retrieving a return parameter, item is the parameter number. The first
parameter returned by a stored procedure is number 1. Stored procedure
return parameters are returned in the same order as the parameters were
originally specified in the stored procedure’s create procedure statement.
This is not necessarily the same order as specified in the RPC command that
invoked the stored procedure. In determining what number to pass as item
do not count non-return parameters. For example, if the second parameter in
a stored procedure is the only return parameter, pass item as 1.

When retrieving a stored procedure return status, item must be 1, as there
can be only a single status in a return status result set.

buffer
A pointer to data space. ct_get_data fills *buffer with a buflen-sized chunk
of the column’s value.

buffer cannot be NULL.

ct_get_data

520 Open Client

buflen
The length, in bytes, of *buffer.

If buflen is 0, ct_get_data updates the I/O descriptor for the item without
retrieving any data.

buflen is required even for fixed-length buffers, and cannot be
CS_UNUSED.

outlen
A pointer to an integer variable.

If outlen is supplied, ct_get_data sets *outlen to the number of bytes placed
in *buffer.

Return value ct_get_data returns the following values:

Table 3-43: ct_get_data return values

Examples

/*
 ** FetchResults()
 **
 ** The result set contains four columns: integer, text,
 ** float, and integer.
 */

CS_STATIC CS_RETCODE
 FetchResults(cmd, textdata)

Return value Meaning

CS_SUCCEED ct_get_data successfully retrieved a chunk of data that is not
the last chunk of data for this column.

CS_FAIL The routine failed.

Unless the routine failed due to application error (for
example, bad parameters), additional result data is not
available.

CS_END_ITEM ct_get_data successfully retrieved the last chunk of data for
this column. This is not the last column in the row.

CS_END_DATA ct_get_data successfully retrieved the last chunk of data for
this column. This is the last column in the row.

CS_CANCELED The operation was canceled. Data for this result set is no
longer available.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 521

 CS_COMMAND *cmd;
 TEXT_DATA *textdata;
 {
 CS_RETCODE retcode;
 CS_DATAFMT fmt;
 CS_INT firstcol;
 CS_TEXT *txtptr;
 CS_FLOAT floatitem;
 CS_INT count;
 CS_INT len;

 /*
 ** All binds must be of columns prior to the columns
 ** to be retrieved by ct_get_data().
 ** To demonstrate this, bind the first column returned.
 */
 ...CODE DELETED.....

 /* Retrieve and display the results */
 while(((retcode = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,
 CS_UNUSED,&count)) == CS_SUCCEED) ||
 (retcode == CS_ROW_FAIL))
 {
 /* Check for a recoverable error */
 ...CODE DELETED.....

 /*
 ** Get the text data item in the second column.
 ** Loop until we have all the data for this item.
 ** The text used for this example could be
 ** retrieved in one ct_get_data call, but data
 ** could be too large for this to be the case.
 ** Instead, the data would have to be retrieved
 ** in chunks. This example will retrieve the text
 ** in 5 byte increments to demonstrate retrieving
 ** data items in chunks.
 */
 txtptr = textdata->textbuf;
 textdata->textlen = 0;
 do
 {
 retcode = ct_get_data(cmd, 2, txtptr, 5,
 &len);
 textdata->textlen += len;
 /*
 ** Protect against overflowing the string
 ** buffer.
 */

ct_get_data

522 Open Client

 if ((textdata->textlen + 5) > (EX_MAX_TEXT -
 1))
 {
 break;
 }
 txtptr += len;
 } while (retcode == CS_SUCCEED);

 if (retcode != CS_END_ITEM)
 {
 ex_error("FetchResults: ct_get_data()
 failed");
 return retcode;
 }

 /*
 ** Retrieve the descriptor of the text data. It is
 ** available while retrieving results of a select
 ** query. The information will be needed for
 ** later updates.
 */
 ...CODE DELETED....

 /* Get the float data item in the 3rd column */
 retcode = ct_get_data(cmd, 3, &floatitem,
 sizeof (floatitem), &len);
 if (retcode != CS_END_ITEM)
 {
 ex_error("FetchResults: ct_get_data()
 failed");
 return(retcode);
 }

 /*
 ** When using ct_get_data to process results,
 ** it is not required to get all the columns
 ** in the row. To illustrate this, the last
 ** column of the result set is not retrieved.
 */
 }

 /*
 ** We're done processing rows. Check the
 ** final return value of ct_fetch().
 */
 ...CODE DELETED.....

 return retcode;
 }

CHAPTER 3 Routines

Client-Library/C Reference Manual 523

This code excerpt is from the getsend.c sample program.

Usage • An application typically calls ct_get_data in a loop to retrieve large text or
image values, although it can be used on columns of any datatype. Each
call to ct_get_data retrieves a buflen-sized chunk of data.

• For information about the steps involved in using ct_get_data to retrieve a
text or image value, see “Using ct_get_data to fetch text and image
values” on page 296.

• ct_get_data retrieves data exactly as it is sent by the server. No conversion
is performed. For this reason, care must be taken when interpreting data
contained in *buffer. In particular, CS_CHAR data may not be null-
terminated and multibyte character strings may be broken within a byte
sequence defining a single character.

• An application calls ct_get_data after calling ct_fetch to fetch the row of
interest. If array binding was indicated in an earlier call to ct_bind, the
application cannot use ct_get_data.

• Only those columns following the last bound column are available to
ct_get_data. Data in unbound columns that precede bound columns is
discarded. For example, if an application selects column numbers 1–4 and
binds column numbers 1 and 3, the application cannot use ct_get_data to
retrieve the data for column 2, but can use ct_get_data to retrieve the data
for column 4.

• Once data has been retrieved for a column, it is no longer available.

• If an application reads a text or image column that it will need to update at
a later time, it needs to retrieve an I/O descriptor for the column. To do this,
an application can call ct_data_info after calling ct_get_data for the
column.

• If a column value is null, ct_get_data sets *outlen to 0 and returns
CS_END_ITEM or CS_END_DATA.

• An application cannot retrieve an I/O descriptor for a column before it has
called ct_get_data for the column. However, this ct_get_data call does not
have to actually retrieve any data. That is, an application can call
ct_get_data with a buflen of 0, and then call ct_data_info to retrieve the
descriptor. This technique is useful when an application needs to
determine the length of a text or image value before retrieving it.

See also ct_bind, ct_data_info, ct_fetch, ct_send_data, text and image data handling

ct_getformat

524 Open Client

ct_getformat
Description Return the server user-defined format string associated with a result column.

Syntax CS_RETCODE ct_getformat (cmd, colnum, buffer, buflen,
 outlen)

CS_COMMAND *cmd;
 CS_INT colnum;
 CS_VOID *buffer;
 CS_INT buflen;
 CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

colnum
The number of the column whose user-defined format is desired. The first
column in a select list is column number 1, the second is number 2, and so
forth.

buffer
A pointer to the space in which ct_getformat will place a null-terminated
format string.

buflen
The length, in bytes, of the *buffer data space.

outlen
A pointer to an integer variable.

If outlen is supplied, ct_getformat sets *outlen to the length, in bytes, of the
format string. This length includes the null terminator.

If the format string is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the string.

If no format string is associated with the column identified by colnum,
ct_getformat sets *outlen to 1 (for the null terminator).

Return value ct_getformat returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 525

Usage • An application can call ct_getformat after ct_results indicates results of
type CS_ROW_RESULT.

• If no format string is associated with the column identified by colnum,
ct_getformat sets *outlen to 1.

• Typical applications will not use ct_getformat, which is provided primarily
for gateway applications support.

See also ct_bind, ct_describe

ct_getloginfo
Description Transfer TDS login response information from a CS_CONNECTION structure

to a newly allocated CS_LOGINFO structure.

Syntax CS_RETCODE ct_getloginfo (connection, logptr)

 CS_CONNECTION *connection;
 CS_LOGINFO **logptr;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

logptr
A pointer to a program variable which ct_getloginfo sets to the address of a
newly allocated CS_LOGINFO structure.

Return value ct_getloginfo returns the following values:

Usage • TDS (Tabular Data Stream) is a communications protocol used for the
transfer of requests and request results between clients and servers.

• There are two reasons an application might call ct_getloginfo:

• If it is an Open Server gateway application using TDS passthrough.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_getloginfo

526 Open Client

• To copy login properties from an open connection to a newly
allocated connection structure.

Note Do not call ct_getloginfo from within a completion callback
routine. ct_getloginfo calls system-level memory functions that may
not be reentrant.

TDS passthrough

• When a client connects directly to a server, the two programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the gateway forwards TDS packets
between the client and a remote server without examining or processing
them. For this reason, the remote server and the client must agree on a TDS
format to use.

• ct_getloginfo is the third of four calls, two of them Server Library calls, that
allow a client and a remote server to negotiate a TDS format. The calls,
which can be made only in an Open Server SRV_CONNECT event
handler, are:

a srv_getloginfo to allocate a CS_LOGINFO structure and fill it with
TDS information from a client login request.

b ct_setloginfo to transfer the TDS information retrieved in step 1 from
the CS_LOGINFO structure to a Client-Library CS_CONNECTION
structure. The gateway uses this CS_CONNECTION structure in the
ct_connect call which establishes its connection with the remote
server.

c ct_getloginfo to transfer the remote server’s response to the client’s
TDS information from the CS_CONNECTION structure into a newly
allocated CS_LOGINFO structure.

d srv_setloginfo to send the remote server’s response, retrieved in step c,
to the client.

Copying login properties

For information about using ct_getloginfo to copy login properties from an open
connection to a newly allocated connection structure, see “Properties” on page
187.

See also ct_recvpassthru, ct_sendpassthru, ct_setloginfo

CHAPTER 3 Routines

Client-Library/C Reference Manual 527

ct_init
Description Initialize Client-Library for an application context.

Syntax CS_RETCODE ct_init(context, version)

 CS_CONTEXT *context;
 CS_INT version;

Parameters context
A pointer to a CS_CONTEXT structure. An application must have
previously allocated this context structure by calling the CS-Library routine
cs_ctx_alloc.

context identifies the Client-Library context being initialized.

version
The version of Client-Library behavior that the application expects. Table 3-
44 lists the symbolic values for version:

ct_init

528 Open Client

Table 3-44: Values for ct_init version parameter

Value of version Meaning Features supported

CS_VERSION_100 10.0 behavior. Cursors, registered procedures, remote
procedure calls.

This is the initial version of Client-
Library.

CS_VERSION_110 11.0 behavior. All 10.0 features plus these version
11.1 features:

• Network-based directory and
security services.

• External configuration of properties,
options, and capabilities.

CS_VERSION_120 12.0 behavior All previous features plus:

• High-availability failover

• Native thread support for Digital
UNIX platforms

• Bulk-row inserts

• A new property for
enabling/disabling sort-merge joins

CS_VERSION_125 12.5 behavior Added features for version 12.5
include:

• LDAP security features

• SSL security features

• Unichar-16 for 2-byte character
support

• support for wide columns and wide
tables.

CS_VERSION_150 15.0 behavior BCP partitions, BCP computed
columns, large identifiers, Unilib,
Adaptive Server Enterprise default
packet size, scrollable cursors, and
clusters support. Also support for
unitext, xml, bigint, usmallint, uint, and
ubigint datatypes. Note Sybase library
name change.

CHAPTER 3 Routines

Client-Library/C Reference Manual 529

Return value ct_init returns the following values:

ct_init returns CS_FAIL if Client-Library cannot provide version-level
behavior.

Note When ct_init returns CS_FAIL due to a Net-Library error, extended error
information is sent to standard error (STDERR) and to the sybinit.err file that
is created in the current working directory.

A ct_init failure does not typically make *context unusable. Instead of dropping
the context structure, an application can try calling ct_init again with the same
context pointer.

CS_VERSION_155 15.5 behavior CS_BIGDATETIME and
CS_BIGTIME datatypes and
microsecond granularity for time data,
ct_send_data enhancement, Open
Server dynamic listeners, Open Client
CS_RES_
NOXNLMETADATA response
capability,
FIPS-140-2-compliant password
encryption.

CS_VERSION_157 15.7 behavior Large object (LOB) locator support,
LOBs as stored procedure parameters,
In-row and off-row LOB support,
Bulk-Library and bcp handling of
nonmaterialized columns,
Support for preserving trailing zeros,
Nameless application configuration
settings handling,
TCP socket buffer size configuration,
Expanded variable-length rows,
Releasing locks at cursor close
Row format caching,

Value of version Meaning Features supported

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_MEM_ERROR The routine failed due to a memory allocation error.

CS_FAIL The routine failed for other reasons.

ct_init

530 Open Client

Examples

 /*
 ** ex_init() -- Allocate and initialize a CS_CONTEXT
 ** structure.
 **
 ** EX_CTLIB_VERSION is defined in the examples header file
 ** as CS_VERSION_110.
 */

 CS_RETCODE CS_PUBLIC
 ex_init(context)
 CS_CONTEXT **context;
 {
 CS_RETCODE retcode;

 /* Get a context handle to use */
 retcode = cs_ctx_alloc(EX_CTLIB_VERSION, context);
 ... error checking code deleted ...

 /* Initialize Open Client */
 retcode = ct_init(*context, EX_CTLIB_VERSION);
 if (retcode != CS_SUCCEED)
 {
 ex_error("ex_init: ct_init() failed");
 cs_ctx_drop(*context);
 *context = NULL;
 return retcode;
 }

 /* Install client and server message handlers */
 ... ct_callback calls deleted

 /* Call ct_config to set context properties */
 ... ct_config calls deleted ...

 /* Exit from Client-Library */
 retcode = ct_exit(context, CS_UNUSED);
 if (retcode != CS_SUCCEED)
 {
 ct_exit(*context, CS_FORCE_EXIT);
 cs_ctx_drop(*context);
 *context = NULL;
 }

 return retcode;
 }

This code excerpt is from the exutils.c sample program.

CHAPTER 3 Routines

Client-Library/C Reference Manual 531

Usage • ct_init sets up internal control structures and defines the version of Client-
Library behavior that the application expects.

• ct_init must be the first Client-Library routine called in a Client-Library
application context. Other Client-Library routines fail if they are called
before ct_init.

Note A Client-Library application can call CS-Library routines before
calling ct_init (and, in fact, must call the CS-Library routine cs_ctx_alloc
before calling ct_init).

• If ct_init returns CS_SUCCEED, Client-Library will provide the requested
behavior, regardless of the actual version of Client-Library in use. If
Client-Library cannot provide the requested behavior, ct_init returns
CS_FAIL. Generally speaking, higher-level versions of Client-Library can
provide lower-level behavior, but lower-level versions cannot provide
higher-level behavior.

• Because an application calls ct_init before it sets up error handling, an
application must check ct_init’s return code to detect failure.

• It is not an error for an application to call ct_init multiple times for the same
context. If this occurs, only the first call has any effect. Client-Library
provides this functionality because some applications cannot guarantee
which of several modules will execute first. In such a case, each module
needs to contain a call to ct_init.

• version is the version of Client-Library behavior that the application
expects. version determines the value of the context’s CS_VERSION
property. Connections allocated within a context use default
CS_TDS_VERSION values based on their parent context’s
CS_VERSION level.

Configuring context properties externally

• Client-Library reads the Open Client and Open Server configuration file
to get default context property values if the application requests external
configuration by calling cs_config to set the CS_CONFIG_FILE context
property before calling ct_init.

• External configuration can eliminate several ct_config calls in an
application. Also, if an application is coded to request external
configuration, it allows the application’s runtime property settings to be
changed without recompiling. See “Using the runtime configuration file”
on page 318.

ct_keydata

532 Open Client

See also cs_ctx_alloc, ct_exit, ct_config

ct_keydata
Description Specify or extract the contents of a key column.

Syntax CS_RETCODE ct_keydata (cmd, action, colnum, buffer,
 buflen, outlen)

CS_COMMAND *cmd;
CS_INT action;
CS_INT colnum;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server cursor
operation.

action
One of the following symbolic values:

colnum
The number of the column of interest. The first column in a result set is
column number 1, the second is 2, and so forth.

colnum must represent a CS_KEY or CS_VERSION_KEY column.
ct_describe sets its datafmtstatus field to indicate whether or not a column
is a CS_KEY or CS_VERSION_KEY column.

buffer
If a key column is being set, buffer points to the value to use in setting the
key column.

If a key column value is being retrieved, buffer points to the space in which
ct_keydata will place the requested information.

Value of action Result

CS_SET Sets the contents of the key column

CS_GET Retrieves the contents of the key column

CHAPTER 3 Routines

Client-Library/C Reference Manual 533

buflen
The length, in bytes, of *buffer.

If a key column value is being set and the value in *buffer is null-terminated,
pass buflen as CS_NULLTERM.

If a key column value is being retrieved and buflen indicates that *buffer is
not large enough to hold the requested information, ct_keydata sets *outlen
to the length of the requested information and returns CS_FAIL.

buflen is required even for fixed-length buffers, and cannot be passed as
CS_UNUSED.

outlen
A pointer to an integer variable.

If a key column value is being set, outlen is unused and must be passed as
NULL.

If a key column value is being retrieved, ct_keydata sets *outlen to the
length, in bytes, of the requested information.

If the information is larger than buflen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

If an application is setting a key column value or does not care about return
length information, it can pass outlen as NULL.

Return value ct_keydata returns the following values:

ct_keydata returns CS_FAIL if colnum does not represent a key column.

Usage • An application can use ct_keydata to redefine the current cursor position
before performing a cursor update or delete.

• ct_keydata has two primary uses:

• In gateway applications that buffer cursor rows between a client and
a server. In this case, the client’s notion of cursor position can differ
from the gateway’s. If the client sends a positioned update or delete
request, the gateway can use ct_keydata to correctly identify the target
row to the server.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_labels

534 Open Client

• In applications that allow users to browse through data rows, altering
or deleting them in random order. In this case, a user may ask the
application to alter or delete a row that is not the current cursor row.
The application can use ct_keydata to redefine the target row as the
current row.

• Because a key can span multiple columns, an application may need to call
ct_keydata multiple times to specify a row’s entire key.

• Calling ct_fetch wipes out any key column values that an application has
specified.

• An application can call ct_keydata only under the following
circumstances:

• The current result type is CS_CURSOR_RESULT.

• The command structure which is supporting the cursor has
CS_HIDDEN_KEYS property set to CS_TRUE.

• The cursor has been fetched at least once.

• When updating a key, all key columns must be updated. If a positioned
update or delete is attempted when the row’s entire key has not been
redefined, ct_cursor returns CS_FAIL.

• An application can set a key column’s value to NULL by calling
ct_keydata with buffer as NULL and buflen as 0 or CS_UNUSED. If the
column does not allow null values, ct_keydata returns CS_FAIL.

See also ct_cursor, ct_describe, ct_res_info, ct_results

ct_labels
Description Define a security label or clear security labels for a connection.

Syntax CS_RETCODE ct_labels(connection, action,
 labelname, namelen, labelvalue,
 valuelen, outlen)

 CS_CONNECTION *connection;
 CS_INT action;
 CS_CHAR *labelname;
 CS_INT namelen;
 CS_CHAR *labelvalue;

CHAPTER 3 Routines

Client-Library/C Reference Manual 535

 CS_INT valuelen;
 CS_INT *outlen;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

*connection must represent a closed connection.

action
One of the following symbolic values:

labelname
If action is CS_SET, labelname points to the name of the security label
being set.

If action is CS_CLEAR, labelname must be NULL.

namelen
The length, in bytes, of *labelname. If *labelname is null-terminated, pass
namelen as CS_NULLTERM.

Security label names must be at least 1 byte long and no more than
CS_MAX_NAME bytes long.

If action is CS_CLEAR, pass namelen as CS_UNUSED.

labelvalue
If action is CS_SET, labelvalue points to the value of the security label
being set.

If action is CS_CLEAR, labelvalue must be NULL.

valuelen
The length, in bytes, of *labelvalue. If *labelvalue is null-terminated, pass
valuelen as CS_NULLTERM.

Security label values must be at least 1-byte long.

If action is CS_CLEAR, pass valuelen as CS_UNUSED.

outlen
This parameter is currently unused and must be passed as NULL.

Return value ct_labels returns the following values:

Value of action Result

CS_SET Sets a security label

CS_CLEAR Clears all security labels previously specified for this
connection

ct_options

536 Open Client

Usage • An application needs to define security labels if it will be connecting to a
server that uses trusted-user security handshakes.

• There are two ways for an application to define security labels. An
application can use either, or both, of these methods:

• The application can call ct_labels one time for each label it wants to
define.

• The application can call ct_callback to install a user-supplied
negotiation callback to generate security labels. At connection time,
Client-Library automatically triggers the callback in response to a
request for security labels.

If an application uses both methods, the labels defined using ct_labels and
the labels generated by the negotiation callback are sent to the server at the
same time.

• A connection that will be participating in trusted-user security handshakes
must set the CS_SEC_NEGOTIATE property to CS_TRUE.

• There is no limit on the number of security labels that can be defined for a
connection.

• ct_labels does not perform any type of checking on security labels, but
simply passes the label name and label value combinations on to the
server.

For example, ct_labels does not raise an error if an application supplies two
label values for the same label name.

See also ct_callback, ct_con_props, ct_connect

ct_options
Description Set, retrieve, or clear the values of server query-processing options.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 537

Syntax CS_RETCODE ct_options(connection, action, option,
 param, paramlen, outlen)

 CS_CONNECTION *connection;
 CS_INT action;
 CS_INT option;
 CS_VOID *param;
 CS_INT paramlen;
 CS_INT *outlen;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

connection is the server connection for which the option is set, retrieved, or
cleared.

action
One of the following symbolic values:

option
The server option of interest. Table 3-45 on page 539 lists the symbolic
values for option. See “Options” on page 180.

param
All options take parameters.

When setting an option, param can point to a symbolic value, a Boolean
value, an integer value, or a character string.

For example:

• The CS_OPT_DATEFIRST option takes a symbolic value as a
parameter:

 CS_INT parmvalue;
 parmamvalue = CS_OPT_TUESDAY;
 ct_options(conn, CS_SET, CS_OPT_DATEFIRST,
 ¶mvalue, CS_UNUSED, NULL);

• The CS_OPT_CHAINXACTS option takes a Boolean value as a
parameter:

Value of action Result

CS_SET Sets the option.

CS_GET Retrieves the option.

CS_CLEAR Clears the option by resetting it to its default value.
Default values are determined by the server to which an
application is connected.

ct_options

538 Open Client

 CS_BOOL parmvalue;
 parmamvalue = CS_TRUE;
 ct_options(conn, CS_SET, CS_OPT_CHAINXACTS,
 ¶mvalue, CS_UNUSED, NULL);

• The CS_OPT_ROWCOUNT option takes an integer as a parameter:

 CS_INT parmvalue;
 paramvalue = 50;
 oc_options(conn, CS_SET, CS_OPT_ROWCOUNT,
 ¶mvalue, CS_UNUSED, NULL);

• The CS_OPT_IDENTITYOFF option takes a character string as a
parameter:

 ct_options(conn, CS_SET, CS_OPT_IDENTITYOFF,
 "authors", CS_NULLTERM, NULL);

When retrieving an option, param points to the space in which
ct_options places the value of the option.

If paramlen indicates that *param is not large enough to hold the
option’s value, ct_option sets *outlen to the length of the value and
returns CS_FAIL.

When clearing an option, param must be NULL.

paramlen
The length, in bytes, of *param.

When setting or retrieving an option that takes a fixed-length parameter,
pass paramlen as CS_UNUSED.

When setting an option that takes a character string parameter, if the value
in *param is null-terminated, pass paramlen as CS_NULLTERM.

When retrieving an option, if paramlen indicates that *param is not large
enough to hold the requested information, ct_options sets *outlen to the
length of the requested information and returns CS_FAIL.

When clearing an option, paramlen must be CS_UNUSED.

CHAPTER 3 Routines

Client-Library/C Reference Manual 539

outlen
A pointer to an integer variable.

If an option is being set or cleared, outlen is not used and must be passed as
NULL.

If an option is being retrieved, ct_options sets *outlen to the length, in bytes,
of the option’s value. This length includes a null terminator, if applicable.

If the option’s value is larger than paramlen bytes, an application can use the
value of *outlen to determine how many bytes are needed to hold the
information.

Return value ct_options returns the following values:

Usage Table 3-45: Summary of ct_options parameters

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed. If ct_options returns CS_FAIL, *param
remains untouched.

CS_CANCELED The operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Value of option Value of *param Legal Values for *param Default

CS_OPT_ANSINULL A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ANSIPERM A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHABORT A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ARITHIGNORE A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_AUTHOFF A string value representing an
authority level.

A string value.

Possible values include
“sa”, “sso”, and “oper.”

Not
applicable

CS_OPT_AUTHON A string value representing an
authority level.

A string value.

Possible values include
“sa”, “sso”, and “oper.”

Not
applicable

CS_OPT_CHAINXACTS A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_CHARSET The name of a language that
is supported and found on the
locale.dat file. Used to set the
language or character set on
an open connection.

A value representing a
language, for your platform,
on the locales.dat file.

NULL

CS_OPT_CURCLOSEONXACT A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

ct_options

540 Open Client

CS_OPT_DATEFIRST A symbolic value
representing the day to use as
the first day of the week.

CS_OPT_SUNDAY,
CS_OPT_MONDAY,
CS_OPT_TUESDAY,
CS_OPT_WEDNESDAY,
CS_OPT_THURSDAY,
CS_OPT_FRIDAY,
CS_OPT_SATURDAY

For
us_english,
the default is
CS_OPT_
SUNDAY.

CS_OPT_DATEFORMAT A symbolic value
representing the order of year,
month, and day to be used in
datetime values.

CS_OPT_FMTMDY,
CS_OPT_FMTDMY,
CS_OPT_FMTYMD,
CS_OPT_FMTYDM,
CS_OPT_FMTMYD,
CS_OPT_FMTDYM

For
us_english,
the default is
CS_OPT_
FMTMDY.

CS_OPT_FIPSFLAG A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORCEPLAN A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_FORMATONLY A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_GETDATA A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_HIDE_VCC A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_IDENTITYOFF A string value representing a
table name.

A string value. NULL

CS_OPT_IDENTITYON A string value representing a
table name.

A string value. NULL

CS_OPT_IDENTITYUPD_OFF Disable the identity update
option.

A string value. NULL

CS_OPT_IDENTITYUPD_ON Enable the identity update
option.

A string value. NULL

CS_OPT_ISOLATION A symbolic value
representing the transaction
isolation level.

CS_OPT_LEVEL1,
CS_OPT_LEVEL0,
CS_OPT_LEVEL3

CS_OPT_LEVEL0 requires
Adaptive Server Enterprise
version 11.0 or later.

CS_OPT_
LEVEL1

CS_OPT_LOBLOCATOR Enable sending of LOB
locators from the server.

CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_NATLANG The name of a language that
is supported and found on the
locale.dat file. Used to set the
language or character set on
an open connection.

A value representing a
language, for your platform,
on the locales.dat file.

NULL

CS_OPT_NOCOUNT A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_NOEXEC A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

Value of option Value of *param Legal Values for *param Default

CHAPTER 3 Routines

Client-Library/C Reference Manual 541

• Although query-processing options can be set and cleared through the
Transact-SQL set command, it is recommended that Client-Library
applications use ct_options instead. This is because ct_options allows an
application to check the status of an option, which cannot be done through
the set command.

• An application can use ct_options to change server options only for a
single connection at a time. The connection must be open and must have
no active commands or pending results, but can have an open cursor.

• The routine ct_connect optionally reads a section from the Open Client and
Open Server runtime configuration file to set server options for a newly
opened connection. For a description of this feature, see “Using the
runtime configuration file” on page 318.

See also ct_capability, ct_con_props, “Options” on page 180

CS_OPT_PARSEONLY A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_PREFETCHSIZE Defines how much data of the
actual LOB should be sent
along with the locator value to
the client (the “prefetch”
data).

An integer value >= 0 or -1.

A value of -1 means that the
entire LOB data is
prefetched.

0, no
“prefetch”
data is to be
sent

CS_OPT_QUOTED_ IDENT A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_RESTREES A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_ROWCOUNT The maximum number of
rows that can be affected by a
query. Limits the number of
regular rows returned by a
select or the number of rows
changed by an update or
delete.

An integer value.

0 means there is no limit.

0, no limit

CS_OPT_SHOW_FI A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_SHOWPLAN A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_IO A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STATS_TIME A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_STR_RTRUNC A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

CS_OPT_TEXTSIZE The length, in bytes, of the
longest text or image value
the server should return.

An integer value. 32,768 bytes

CS_OPT_TRUNCIGNORE A Boolean value. CS_TRUE, CS_FALSE CS_FALSE

Value of option Value of *param Legal Values for *param Default

ct_param

542 Open Client

ct_param
Description Supplies values for a server command’s input parameters.

Syntax CS_RETCODE ct_param(cmd, datafmt, data, datalen, indicator);

 CS_COMMAND *cmd;
 CS_DATAFMT *datafmt;
 CS_VOID *data;
 CS_INT datalen;
 CS_SMALLINT indicator;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

datafmt
A pointer to a CS_DATAFMT structure that describes the parameter.

For information about how to set these fields for specific uses of ct_param,
see “Usage” on page 476.

data
The address of the parameter data.

There are two ways to indicate a parameter with a null value:

• Pass indicator as -1. In this case, data and datalen are ignored.

• Pass data as NULL and datalen as 0 or CS_UNUSED.

datalen
The length, in bytes, of the parameter data.

If datafmtdatatype indicates that the parameter is a fixed-length type,
datalen is ignored. CS_VARBINARY and CS_VARCHAR are considered
to be fixed-length types.

indicator
An integer variable used to indicate a parameter with a null value. To
indicate a parameter with a null value, pass indicator as -1. If indicator is -
1, data and datalen are ignored.

Return value ct_param returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 543

Examples This code excerpt is from the rpc.c sample program.

 /*
 ** BuildRpcCommand()
 **
 ** Purpose:
 ** Builds an RPC command but does not send it.
 **
 */

 CS_STATIC CS_RETCODE
 BuildRpcCommand(cmd)
 CS_COMMAND *cmd;
 {
 CS_CONNECTION *connection;
 CS_CONTEXT *context;
 CS_RETCODE retcode;
 CS_DATAFMT datafmt;
 CS_DATAFMT srcfmt;
 CS_DATAFMT destfmt;
 CS_INT intvar;
 CS_SMALLINT smallintvar;
 CS_FLOAT floatvar;
 CS_MONEY moneyvar;
 CS_BINARY binaryvar;
 char moneystring[10];
 char rpc_name[15];
 CS_INT destlen;

 /*
 ** Assign values to the variables used for
 ** parameter passing.
 */
 intvar = 2;
 smallintvar = 234;
 floatvar = 0.12;
 binaryvar = (CS_BINARY)0xff;
 strcpy(rpc_name, "sample_rpc");
 strcpy(moneystring, "300.90");
 /*
 ** Clear and setup the CS_DATAFMT structures used
 ** to convert datatypes.
 */
 memset(&srcfmt, 0, sizeof (CS_DATAFMT));
 srcfmt.datatype = CS_CHAR_TYPE;
 srcfmt.maxlength = strlen(moneystring);
 srcfmt.precision = 5;
 srcfmt.scale = 2;

ct_param

544 Open Client

 srcfmt.locale = NULL;

 memset(&destfmt, 0, sizeof (CS_DATAFMT));
 destfmt.datatype = CS_MONEY_TYPE;
 destfmt.maxlength = sizeof(CS_MONEY);
 destfmt.precision = 5;
 destfmt.scale = 2;
 destfmt.locale = NULL;

 /*
 ** Convert the string representing the money value
 ** to a CS_MONEY variable. Since this routine
 ** does not have the context handle, we use the
 ** property functions to get it.
 */
 if ((retcode = ct_cmd_props(cmd, CS_GET,
 CS_PARENT_HANDLE, &connection, CS_UNUSED,
 NULL)) != CS_SUCCEED)
 ...error checking deleted ...
 if ((retcode = ct_con_props(connection, CS_GET,
 CS_PARENT_HANDLE, &context, CS_UNUSED,
 NULL)) != CS_SUCCEED)
 ...error checking deleted ...

 retcode = cs_convert(context, &srcfmt,
 (CS_VOID *)moneystring, &destfmt, &moneyvar,
 &destlen);
 if (retcode != CS_SUCCEED)
 ...error checking deleted ...
 /*
 ** Initiate the RPC command for our stored
 ** procedure.
 */
 if ((retcode = (cmd, CS_RPC_CMD,
 rpc_name, CS_NULLTERM, CS_NO_RECOMPILE)) !=
 CS_SUCCEED)
 ...error checking deleted ...

 /*
 ** Clear and set up the CS_DATAFMT structure, then
 ** pass each of the parameters for the RPC.
 */
 memset(&datafmt, 0, sizeof (datafmt));
 strcpy(datafmt.name, "@intparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_INT_TYPE;
 datafmt.maxlength = CS_UNUSED;
 datafmt.status = CS_INPUTVALUE;

CHAPTER 3 Routines

Client-Library/C Reference Manual 545

 datafmt.locale = NULL;

 if ((retcode = ct_param(cmd, &datafmt,
 (CS_VOID *)&intvar, sizeof(CS_INT),0))
 != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@sintparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_SMALLINT_TYPE;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 if ((retcode = ct_param(cmd, &datafmt,
 (CS_VOID *)&smallintvar,
 sizeof(CS_SMALLINT), 0))
 != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@floatparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_FLOAT_TYPE;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 if((retcode = ct_param(cmd, &datafmt,
 (CS_VOID *)&floatvar,sizeof(CS_FLOAT),0))
 != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@moneyparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_MONEY_TYPE;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 if((retcode = ct_param(cmd, &datafmt,
 (CS_VOID *)&moneyvar, sizeof(CS_MONEY),0))
 != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@dateparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_DATETIME4_TYPE;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 /*
 ** The datetime variable is filled in by the RPC
 ** so pass NULL for the data, 0 for data length,
 ** and -l for the indicator arguments.
 */

ct_param

546 Open Client

 if((retcode = ct_param(cmd, &datafmt, NULL, 0,
 -1)) != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@charparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_CHAR_TYPE;
 datafmt.maxlength = EX_MAXSTRINGLEN;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 /*
 ** The character string variable is filled in by
 ** the RPC so pass NULL for the data 0 for data
 ** length, and -l for the indicator arguments.
 */
 if((retcode = ct_param(cmd, &datafmt, NULL, 0,
 -1)) != CS_SUCCEED)
 ...error checking deleted ...

 strcpy(datafmt.name, "@binaryparam");
 datafmt.namelen = CS_NULLTERM;
 datafmt.datatype = CS_BINARY_TYPE;
 datafmt.maxlength = EX_MAXSTRINGLEN;
 datafmt.status = CS_RETURN;
 datafmt.locale = NULL;
 if((retcode = ct_param(cmd, &datafmt,
 (CS_VOID *)&binaryvar,
 sizeof(CS_BINARY), 0))
 != CS_SUCCEED)
 ...error checking deleted ...

 return retcode;
 }

Usage Table 3-46 summarizes ct_param usage.

CHAPTER 3 Routines

Client-Library/C Reference Manual 547

Table 3-46: Summary of ct_param parameters

• ct_param supplies parameter values for an initiated command.

• Initiating a command is the first step in executing it. Some commands
require the application to define input parameters with ct_param or
ct_setparam before calling ct_send to send the command to the server. For
a description of this feature, see “Resending commands” on page 594.

• ct_setparam and ct_param perform the same function, with the following
exceptions:

• ct_param copies the contents of program variables.

• ct_setparam copies the address of program variables, and subsequent
calls to ct_send read the contents of the variables. ct_setparam allows
the application to change parameter values when resending a
command.

Calls to ct_param and ct_setparam can be mixed.

• An application may need to call ct_param:

Type of
command

Purpose of
ct_param call datafmt->status is

*data, datalen
are

Cursor declare To identify
update columns

CS_UPDATECOL The name of the
update column and
the name’s length

Cursor declare To define host
variable formats

CS_INPUTVALUE NULL and
CS_UNUSED

Cursor open To pass
parameter values

CS_INPUTVALUE The parameter
value and length

Cursor update To pass
parameter values

CS_INPUTVALUE The parameter
value and length

Dynamic SQL
execute

To pass
parameter values

CS_INPUTVALUE The parameter
value and length

Language To pass
parameter values

CS_INPUTVALUE The parameter
value and length

Message To pass
parameter values

CS_INPUTVALUE The parameter
value and length

RPC To pass
parameter values

CS_RETURN to
pass a return
parameter;
CS_INPUTVALUE
to pass a non-return
parameter.

The parameter
value and length

ct_param

548 Open Client

• To identify update columns for a cursor declare command.

• To define host variable formats for a cursor declare command.

• To pass input parameter values for a cursor open, cursor update,
dynamic SQL execute, language, message, or RPC command.

An application calls ct_command to initiate a language, RPC or message
command, calls ct_cursor to initiate a cursor declare or cursor open
command, and calls ct_dynamic to initiate a Dynamic SQL execute
command.

For specific information about these uses, see the following sections:

• “Passing input parameter values” on page 550

• “Defining host variable formats” on page 549

• “Identifying update columns for a cursor declare command” on page
548

• Client-Library does not perform any conversion on parameters before
passing them to the server. The application must supply parameters in the
datatype required by the server. If necessary, the application can call
cs_convert to convert parameter values into the required datatype.

Identifying update columns for a cursor declare command

• Some servers require a client application to identify update columns for a
cursor declare command if the cursor is updatable, but not all of the
columns are “for update.” Update columns can be used to change values
in underlying database tables.

• Adaptive Server Enterprise does not require the application to specify
update columns with additional ct_param/ct_setparam calls as described in
this section. In fact, Adaptive Server Enterprise ignores requests to
identify update columns as described here. The application must use the
Transact-SQL for read only or for update of syntax in the select statement
to specify which columns are updatable (see the Adaptive Server
Enterprise for a description of this syntax). Depending on its design, an
Open Server application may require clients to specify a cursor’s update
columns as described in this section.

• If all of the cursor’s columns are “for update,” an application does not need
to call ct_param to specify them individually.

• To identify an update column for a cursor declare command, an
application calls ct_param with datafmtstatus as CS_UPDATECOL and
*data as the name of the column.

CHAPTER 3 Routines

Client-Library/C Reference Manual 549

• The following table lists the fields in *datafmt that are used when
identifying update columns for a cursor declare command:

Table 3-47: CS_DATAFMT fields for identifying update columns

Defining host variable formats

• An application needs to define host variable formats for cursor declare
commands when the text of the cursor being declared is a SQL string that
contains host variables.

• To define the format of a host variable, an application calls ct_param with
datafmtstatus as CS_INPUTVALUE, datafmtdatatype as the
datatype of the host variable, data as NULL and datalen as CS_UNUSED.

• An application defines host variable formats during a cursor declare
command but does not pass data values for the variables until cursor open
time.

• When defining host variable formats, the variables can either be named or
unnamed. If one variable is named, all variables must be named. If
variables are not named, they are interpreted positionally.

• The following table lists the fields in *datafmt that are used when defining
host variable formats:

Field name Set to

status CS_UPDATECOL

All other fields are ignored.

ct_param

550 Open Client

Table 3-48: CS_DATAFMT fields for defining host variable formats

Passing input parameter values

• An application may need to pass input parameter values for:

• Client-Library cursor open commands

• Client-Library cursor update commands

• Dynamic SQL execute commands

• Language commands

• Message commands

• Package commands

• RPC commands

• When passing input parameter values, parameters can either be named or
unnamed. If one parameter is named, all parameters must be named. If
parameters are not named, they are interpreted positionally.

• In some cases, an application may need to pass a parameter that has a null
value. For example, an application might pass parameters with null values
to a stored procedure that assigns default values to null input parameters.

There are two ways to indicate a parameter with a null value:

• Pass indicator as -1. ct_param ignores data and datalen.

• Pass data as NULL and datalen as 0 or CS_UNUSED.

Name Set To

name The name of the host variable.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

datatype The datatype of the host variable.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_UNITEXT_TYPE,
CS_IMAGE_TYPE, CS_XML_TYPE, and Client-Library
user-defined types.

If datatype is CS_VARCHAR_TYPE or
CS_VARBINARY_TYPE then data must point to a
CS_VARCHAR or CS_VARBINARY structure.

status CS_INPUTVALUE

All other fields are ignored.

CHAPTER 3 Routines

Client-Library/C Reference Manual 551

• Client-Library cursor open commands require input parameter values
when:

• The body of the cursor is a SQL text string containing host variables.

• The body of the cursor is a stored procedure that requires parameters.
In this case, datafmtstatus should be CS_INPUTVALUE.

• The cursor is declared on a prepared dynamic SQL statement that
contains placeholders (indicated by the ? character).

• Client-Library cursor update commands require input parameter values
when the SQL text representing the update command contains host
variables.

• Dynamic SQL execute commands require input parameter values when
the prepared statement being executed contains dynamic parameter
markers.

• Language commands require input parameter values when the text of the
language command contains host variables.

• Message commands require input parameters values when the message
takes parameters.

• RPC and package commands require input parameter values when the
stored procedure or package being executed takes parameters.

• Message, package, and RPC commands can take return parameters,
indicated by passing datafmtstatus as CS_RETURN.

• A command that takes return parameters may generate a parameter result
set that contains the return parameter values. See ct_results for a
description of how an application retrieves values from a parameter result
set.

• The following table lists the fields in *datafmt that are used when passing
input parameter values:

ct_poll

552 Open Client

Table 3-49: CS_DATAFMT fields for passing input parameter values

See also ct_command, ct_cursor, ct_dynamic, ct_send, ct_setparam

ct_poll
Description Poll connections for asynchronous operation completions and registered

procedure notifications.

Syntax CS_RETCODE ct_poll (context, connection, milliseconds, compconn,
compcmd, compid, compstatus)

CS_CONTEXT *context;
CS_CONNECTION *connection;
CS_INT milliseconds;
CS_CONNECTION **compconn;
CS_COMMAND **compcmd;

Name Set to

name The name of the parameter.

name is ignored for dynamic SQL execute commands.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

namelen is ignored for dynamic SQL execute commands.

datatype The datatype of the input parameter value.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_UNITEXT_TYPE,
CS_IMAGE_TYPE, CS_XML_TYPE, and Client-Library
user-defined types.

If datatype is CS_VARCHAR_TYPE or
CS_VARBINARY_TYPE then data must point to a
CS_VARCHAR or CS_VARBINARY structure.

maxlength When passing return parameters for RPC commands, maxlength
represents the maximum length, in bytes, of data to be returned
for this parameter.

maxlength is not used when passing input parameter values for
other types of commands.

status CS_RETURN when passing return parameters for RPC
commands; otherwise CS_INPUTVALUE.

All other fields are ignored.

CHAPTER 3 Routines

Client-Library/C Reference Manual 553

CS_INT *compid;
CS_RETCODE *compstatus;

Parameters context
A pointer to a CS_CONTEXT structure.

Either context or connection must be NULL. If context is NULL, ct_poll
checks only a single connection.

connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

Either context or connection must be NULL. If connection is NULL, ct_poll
checks all open connections within the context.

ct_poll

554 Open Client

milliseconds
The length of time, in milliseconds, to wait for pending operations to
complete.

If milliseconds is 0, ct_poll returns immediately. To check for operation
completions without blocking, pass milliseconds as 0.

If milliseconds is CS_NO_LIMIT, ct_poll does not return until any of the
following is true:

• A server response arrives. This can be a registered procedure
notification or the data needed to complete a call to an asynchronous
routine.

• No asynchronous-routine completions are pending. If no completions
are pending when ct_poll is called, then it returns CS_QUIET (see the
Return value section for more information).

• A system interrupt occurs.

Note ct_poll does not wait for the arrival of notification events.
However, ct_poll does trigger the notification callback for notification
events that are present when it is called or that arrive while ct_poll is
waiting for asynchronous routine completions.

compconn
The address of a pointer variable. If connection is NULL, all connections are
polled and ct_poll sets *compconn to point to the connection structure
owning the first completed operation it finds.

If no operation has completed by the time ct_poll returns, ct_poll sets
*compconn to NULL.

If connection is supplied, compconn must be NULL.

compcmd
The address of a pointer variable. ct_poll sets *compcmd to point to the
command structure owning the first completed operation it finds. If no
operation has completed by the time ct_poll returns, ct_poll sets *compcmd
to NULL.

compid
The address of an integer variable. ct_poll sets *compid to one of the
following symbolic values to indicate what has completed:

CHAPTER 3 Routines

Client-Library/C Reference Manual 555

Table 3-50: Values for ct_poll *compid parameter

compstatus
A pointer to a variable of type CS_RETCODE. ct_poll sets *compstatus to
indicate the final return code of the completed operation. This value
corresponds to the value that would be returned by a synchronous call to the
routine under the same conditions. This can be any of the return codes listed
for the routine, with the exception of CS_PENDING.

Return value ct_poll returns the following values:

Value of compid Meaning

BLK_DONE blk_done has completed.

BLK_INIT blk_init has completed.

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_DS_LOOKUP ct_ds_lookup has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_NOTIFICATION A notification has been received.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value. This
value must be greater than or
equal to CT_USER_FUNC.

A user-defined function has completed.

ct_poll

556 Open Client

Table 3-51: ct_poll return values

ct_poll returns CS_FAIL if it polls a connection that has died.

Examples

/*
 ** BusyWait()
 **
 ** Type of function:
 ** async example program api
 **
 ** Purpose:
 ** Silly routine that prints out dots while waiting
 ** for an async operation to complete. It demonstrates
 ** the ability to do other work while an async
 ** operation is pending.
 **
 ** Returns:
 ** completion status.
 **
 ** Side Effects:
 ** None
 */

 CS_STATIC CS_RETCODE CS_INTERNAL
 BusyWait(connection, where)
 CS_CONNECTION *connection;
 char *where;
 {
 CS_COMMAND *compcmd;
 CS_INT compid;
 CS_RETCODE compstat;

Return value Meaning

CS_SUCCEED An operation has completed.

CS_FAIL An error occurred.

CS_TIMED_OUT The timeout value specified by milliseconds elapsed before
any operation completed.

Asynchronous operations may be in progress.

CS_QUIET ct_poll was called with milliseconds as 0 (to indicate that it
should return immediately).

No asynchronous operations are in progress, and no
completed operations or registered procedure notifications
were found.

CS_INTERRUPT A system interrupt has occurred.

CHAPTER 3 Routines

Client-Library/C Reference Manual 557

 CS_RETCODE retstat;

 fprintf(stdout, "\nWaiting [%s]", where);
 fflush(stdout);
 do
 {
 fprintf(stdout, ".");
 fflush(stdout);
 retstat = ct_poll(NULL, connection, 100, NULL, &compcmd,
 &compid, &compstat);
 if (retstat != CS_SUCCEED
 && retstat != CS_TIMED_OUT
 && retstat != CS_INTERRUPT)
 {
 fprintf(stdout,
 "\nct_poll returned unexpected status of %d\n",
 retstat);
 fflush(stdout);
 break;
 }
 } while (retstat != CS_SUCCEED);

 if (retstat == CS_SUCCEED)
 {
 fprintf(stdout,
 "\nct_poll completed: compid = %ld, compstat = %ld\n",
 compid, compstat);
 fflush(stdout);
 }

 return compstat;
 }

This code excerpt is from the ex_amain.c sample program.

Usage Table 3-52 summarizes ct_poll usage.

ct_poll

558 Open Client

Table 3-52: Summary of ct_poll parameters

• ct_poll polls either a specific connection or all connections within a
specific context.

Note On platforms where Client-Library uses signals to implement
asynchronous network I/O, the application’s callback routines can execute
at the system interrupt level.

Do not call ct_poll from within any Client-Library callback function or
within any other function that can execute at the system interrupt level.

Calling ct_poll at the system-interrupt level can corrupt Open Client and
Open Server internal resources and cause recursion in the application.

• If a platform does not provide interrupt- or thread-driven I/O, then an
application must periodically read from the network to recognize
asynchronous operation completions and registered procedure
notifications.

All routines that can return CS_PENDING read from the network. If an
application is not actively using any of these routines, it must call ct_poll
to recognize asynchronous operation completions and registered
procedure notifications.

• ct_poll must be called periodically to recognize asynchronous
operation completions. ct_poll reports which routine has completed
and the completion status of the asynchronous operation. If a
completion callback is installed for the connection on which the
completion occurred, then the completion callback is invoked by
ct_poll.

context connection compconn Result

NULL Must have a
value.

Must be
NULL.

Checks the single connection
specified by connection.

Has a
value

Must be
NULL.

Must have a
value.

Checks all connections within this
context. Sets *compconn to point to
the connection owning the first
completed operation it finds.

CHAPTER 3 Routines

Client-Library/C Reference Manual 559

• For registered procedure notifications, the application can be reading
from the connection (as part of the normal process of sending
commands processing results) or call ct_poll to cause Client-Library
to recognize notification events. The notification callback can be
invoked by ct_poll or by any routine which is reading from the
connection. If the application is not actively sending commands and
processing results on the connection, it should poll the connection
with ct_poll to receive the notification event.

• If CS_ASYNC_NOTIFS is CS_FALSE, ct_poll does not read from the
network. This means that an application must be reading results for ct_poll
to report a registered procedure notification.

• If a platform allows the use of callback functions, ct_poll automatically
calls the proper callback routine, if one is installed, when it finds a
completed operation or a notification.

• ct_poll does not check for asynchronous operation completions if the
CS_DISABLE_POLL property is set to CS_TRUE.

• If there are no pending asynchronous operations, ct_poll returns
immediately, regardless of the value of milliseconds.

See also “Asynchronous programming” on page 10, “Callbacks” on page 22,
ct_callback, ct_wakeup

ct_recvpassthru
Description Receive a TDS (Tabular Data Stream) packet from a server.

Syntax CS_RETCODE ct_recvpassthru (cmd, recvptr)

 CS_COMMAND *cmd;
 CS_VOID **recvptr;

Parameters cmd
A pointer to a CS_COMMAND structure.

recvptr
The address of a pointer variable. ct_recvpassthru sets the variable to the
address of a buffer containing the most recently received TDS packet. The
application is not responsible for allocating this buffer.

Return value ct_recvpassthru returns the following values:

ct_recvpassthru

560 Open Client

Table 3-53: ct_recvpassthru return values

Usage • TDS is a communications protocol used for the transfer of requests and
request results between clients and servers. Under ordinary circumstances,
non-gateway applications do not usually have to deal with TDS, because
Client-Library manages the data stream.

• ct_recvpassthru and ct_sendpassthru are useful in gateway applications.
When an application serves as the intermediary between two parties (such
as a client and a remote server, or two servers), it can use these routines to
pass the TDS stream from one server to the other, eliminating the process
of interpreting the information and re-encoding it.

• ct_recvpassthru reads a packet of bytes from a server connection and sets
*recvptr to point to the buffer containing the bytes.

• Default packet sizes vary by platform. On most platforms, a packet has a
default size of 512 bytes. A connection can change its packet size through
ct_con_props.

• ct_recvpassthru returns CS_PASSTHRU_EOM if the TDS packet has
been marked by the server as EOM (End Of Message). If the TDS packet
is not marked EOM, ct_recvpassthru returns CS_PASSTHRU_MORE.

• A connection which is being used for a passthrough operation cannot be
used for any other Client-Library function until CS_PASSTHRU_EOM
has been received.

See also ct_getloginfo, ct_sendpassthru, ct_setloginfo

Return value Meaning

CS_PASSTHRU_MORE Packet received successfully; more packets are
available.

CS_PASSTHRU_EOM Packet received successfully; no more packets are
available.

CS_FAIL The routine failed.

CS_CANCELED The passthrough operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. See
“Asynchronous programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 561

ct_remote_pwd
Description Define or clear passwords to be used for server-to-server connections.

Syntax CS_RETCODE ct_remote_pwd(connection, action,
 server_name, snamelen, password,
 pwdlen)

CS_CONNECTION *connection;
CS_INT action;
CS_CHAR *server_name;
CS_INT snamelen;
CS_CHAR *password;
CS_INT pwdlen;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

It is illegal to define remote passwords for a connection that is open.

action
One of the following symbolic values:

server_name
A pointer to the name of the server for which the password is being defined.
*server_name is the name given to the server in an interfaces file.

If server_name is NULL, the specified password will be considered a
universal password, to be used with any server that does not have a password
explicitly specified.

If action is CS_CLEAR, server_name must be NULL.

snamelen
The length, in bytes, of *server_name. If *server_name is null-terminated,
pass snamelen as CS_NULLTERM.

If action is CS_SET and server_name is NULL, pass snamelen as 0 or
CS_UNUSED.

If action is CS_CLEAR, snamelen must be CS_UNUSED.

Value of action Result

CS_SET Sets the remote password

CS_CLEAR Clears all remote passwords specified for this connection
by setting them to NULL.

ct_remote_pwd

562 Open Client

password
A pointer to the password being installed for remote logins to the
*server_name server.

If action is CS_CLEAR, password must be NULL.

pwdlen
The length, in bytes, of *password. If *password is null-terminated, pass
pwdlen as CS_NULLTERM.

If action is CS_SET and password is NULL, pass pwdlen as 0 or
CS_UNUSED.

If action is CS_CLEAR, pwdlen must be CS_UNUSED.

Return value ct_remote_pwd returns the following values:

Usage • ct_remote_pwd defines the password that a server will use when logging
into another server.

• A Transact-SQL language command or stored procedure running on one
server can execute a stored procedure located on another server. To
accomplish this server-to-server communication, the first server, to which
an application has connected through ct_connect, actually logs into the
second, remote server, performing a server-to-server remote procedure
call.

ct_remote_pwd allows an application to specify the password to be used
when the first server logs into the remote server.

• Multiple passwords may be specified, one for each server that a server
might need to log in to. Each password must be defined with a separate call
to ct_remote_pwd.

• An application can specify a universal password for server-to-server
communication by calling ct_remote_pwd with a NULL server_name and
the password value. Once the connection is open, the connection’s server
uses this password to log in to any remote server for which a server-
name/password pair was not specified with ct_remote_pwd.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 563

If an application does not specify any remote server passwords, then
Client-Library sends the connection password as the default universal
password for server-to-server communication. The connection password
is set through ct_con_props(CS_PASSWORD) and defaults to NULL. So,
if an application user has the same password on different servers, the
application need not call ct_remote_pwd.

However, if the application specifies a password for any particular server,
then the application must explicitly define a universal password. For
example, the following code specifies “tigger2” as the password for the
“honey_tree” server and specifies “christopher” as the universal password
to be used with any other remote server:

/*
 ** User’s password is "tigger2" on the "honey_tree" server.
 */
 retcode = ct_remote_pwd(conn, CS_SET, "honey_tree", CS_NULLTERM,
 "tigger2", CS_NULLTERM);
 if (retcode != CS_SUCCEED)
 ... handle the error ...

 /*
 ** User’s password is "christopher" everywhere else.
 */
 retcode = ct_remote_pwd(conn, CS_SET, (CS_CHAR *) NULL, 0
 "christopher", CS_NULLTERM);
 if (retcode != CS_SUCCEED)
 ... handle the error ...

• Remote passwords are stored in an internal buffer which is only 255 bytes
long. Each password’s entry in the buffer consists of the password itself,
the associated server name, and two extra bytes. If the addition of a
password to this buffer would cause overflow, ct_remote_pwd returns
CS_FAIL and generates a Client-Library error message that indicates the
problem.

• It is an error to call ct_remote_pwd to define a remote password for a
connection that is already open. Define remote passwords before calling
ct_connect to create an active connection.

• An application can call ct_remote_pwd to clear remote passwords for a
connection at any time.

See also ct_con_props, ct_connect

ct_res_info

564 Open Client

ct_res_info
Description Retrieve current result set or command information.

Syntax CS_RETCODE ct_res_info(cmd, type, buffer, buflen,
 outlen)

CS_COMMAND *cmd;
CS_INT type;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
command.

type
The type of information to return. Table 3-54 lists the symbolic values for
type.

buffer
A pointer to the space in which ct_res_info will place the requested
information.

If buflen indicates that *buffer is not large enough to hold the requested
information, ct_res_info sets *outlen to the length of the requested
information and returns CS_FAIL.

buflen
The length, in bytes, of the *buffer data space, or CS_UNUSED if *buffer
represents a fixed-length or symbolic value.

outlen
A pointer to an integer variable.

ct_res_info sets *outlen to the length, in bytes, of the requested information.

If the requested information is larger than buflen bytes, an application can
use the value of *outlen to determine how many bytes are needed to hold the
information.

Return value ct_res_info returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 565

ct_res_info returns CS_FAIL if the requested information is larger than buflen
bytes, or if there is no current result set.

Examples This fragment from the rpc.c sample program retrieves the number of columns
in a fetchable result set:

 CS_INT num_cols;

 /*
 ** Determine the number of columns in this result
 ** set.
 */
 retcode = ct_res_info(cmd, CS_NUMDATA, #_cols,
 CS_UNUSED, NULL);
 if (retcode != CS_SUCCEED)
 {
 ...CODE DELETED...
 }

This fragment from the rpc.c sample program retrieves the message identifier
from a message result.

 CS_SMALLINT msg_id;

 ... ct_results has returned with a CS_MSG_RESULT
 result type ...

 case CS_MSG_RESULT:
 retcode = ct_res_info(cmd, CS_MSGTYPE,
 (CS_VOID *)&msg_id, CS_UNUSED, NULL);
 if (retcode != CS_SUCCEED)
 {
 ...CODE DELETED...
 }
 fprintf(stdout, "ct_result returned \
 CS_MSG_RESULT where msg id = %d.\n", msg_id);
 break;

Usage Table 3-54 summarizes ct_res_info usage.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

Return value Meaning

ct_res_info

566 Open Client

Table 3-54: Summary of ct_res_info parameters

• ct_res_info returns information about the current result set or the current
command. The current command is defined as the command that
generated the current result set.

Value of type

Returned by
ct_res_info into
*buffer

Information available after
ct_results sets its
*result_type parameter to

*buffer
Datatype

CS_BROWSE_INFO CS_TRUE if browse-
mode information is
available; CS_FALSE if
browse-mode information
is not available.

CS_ROW_RESULT CS_BOOL

CS_CMD_NUMBER The number of the
command that generated
the current result set.

Any value CS_INT

CS_MSGTYPE An integer representing
the ID of the message that
makes up the current result
set.

CS_MSG_RESULT CS_USHORT

CS_NUM_COMPUTES The number of compute
clauses in the current
command.

CS_COMPUTE_RESULT CS_INT

CS_NUMDATA The number of items in the
current result set.

CS_COMPUTE_RESULT,
CS_COMPUTEFMT_RESULT,
CS_CURSOR_RESULT,
CS_DESCRIBE_RESULT,
CS_PARAM_RESULT,
CS_ROW_RESULT,
CS_ROWFMT_RESULT,
CS_STATUS_RESULT

CS_INT

CS_NUMORDERCOLS The number of columns
specified in the order-by
clause of the current
command.

CS_ROW_RESULT CS_INT

CS_ORDERBY_COLS The select list ID numbers
of columns specified in a
the order by clause of the
current command.

CS_ROW_RESULT Array of
CS_INT

CS_ROW_COUNT The number of rows
affected by the current
command.

CS_CMD_DONE,
CS_CMD_FAIL
CS_CMD_SUCCEED

CS_INT

CS_TRANS_STATE The current server
transaction state.

Any value. CT_RESULTS must
have returned CS_SUCCEED.

CS_INT

CHAPTER 3 Routines

Client-Library/C Reference Manual 567

• A result set is a collection of a single type of result data. Result sets are
generated by commands. See the ct_results reference page and “Results”
on page 251.

• Most typically, an application calls ct_res_info with type as
CS_NUMDATA, to determine the number of items in a result set.

Determining whether Browse-mode information is available

• To determine whether browse-mode information is available, call
ct_res_info with type as CS_BROWSE_INFO.

• If browse-mode information is available, an application can call
ct_br_column and ct_br_table to retrieve the information. If browse-mode
information is not available, calling ct_br_column or ct_br_table will result
in a Client-Library error.

• See “Browse mode” on page 19.

Retrieving the command number for current results

• To determine the number of the command that generated the current
results, call ct_res_info with type as CS_CMD_NUMBER.

• Client-Library keeps track of the command number by counting the
number of times ct_results returns CS_CMD_DONE.

An application’s first call to ct_results following a ct_send call sets the
command number to 1. After that, the command number is incremented
each time ct_results is called after returning CS_CMD_DONE.

• CS_CMD_NUMBER is useful in the following cases:

• To find out which Transact-SQL command within a language
command generated the current result set

• To find out which cursor command, in a batch of cursor commands,
generated the current result set

• To find out which select command in a stored procedure generated the
current result set

• A language command contains a string of Transact-SQL text. This text
represents one or more Transact-SQL commands. When used with a
language command, “command number” refers to the number of the
Transact-SQL command in the language command.

For example, the string:

 select * from authors
 select * from titles

ct_res_info

568 Open Client

 insert newauthors
 select *
 from authors
 where city = "San Francisco"

represents three Transact-SQL commands, two of which can generate
result sets. In this case, the command number that ct_res_info returns can
be from 1 to 3, depending on when ct_res_info is called.

• Inside stored procedures, only select statements cause the command
number to be incremented. If a stored procedure contains seven Transact-
SQL commands, three of which are selects, the command number that
ct_res_info returns can be any integer from 1 to 3, depending on which
select generated the current result set.

• ct_cursor is used to initiate a cursor command. Several cursor commands
can be defined as a batch before they are sent to a server. When used with
a cursor command batch, “command number” refers to the number of the
cursor command in the command batch.

For example, an application can make the following calls:

 ct_cursor(...CS_CURSOR_DECLARE...);
 ct_cursor(...CS_CURSOR_ROWS...);
 ct_cursor(...CS_CURSOR_OPEN...);
 ct_send();

The command number that ct_res_info returns can be from 1 to 3
depending on which cursor command generated the current result type.

Retrieving a message ID

• To retrieve a message ID, call ct_res_info with type as CS_MSGTYPE.

• Servers can send messages to client applications. Messages are received in
the form of “message result sets.” Message result sets contain no fetchable
data, but rather have an ID number.

• Messages can also have parameters. Message parameters are returned to
an application as a parameter result set, immediately following the
message result set.

Retrieving the number of compute clauses

• To determine the number of compute clauses in the command that
generated the current result set, call ct_res_info with type as
CS_NUM_COMPUTES.

• A Transact-SQL select statement can contain compute clauses that
generate compute result sets.

CHAPTER 3 Routines

Client-Library/C Reference Manual 569

Retrieving the number of result data items

• To determine the number of result data items in the current result set, call
ct_res_info with type as CS_NUMDATA.

• Results sets contain result data items. Row, cursor, and compute result sets
contain columns, a parameter result set contains parameters, and a status
result set contains a status. The columns, parameters, and status are known
as result data items.

• A message result set does not contain any data items.

Retrieving the number of columns in an order by clause

• To determine the number of columns in a Transact-SQL select statement’s
order by clause, call ct_res_info with type as CS_NUMORDERCOLS.

• A Transact-SQL select statement can contain an order by clause, which
determines how the rows resulting from the select statement are ordered
on presentation.

Retrieving the column IDs of order-by columns

• To get the select list column IDs of order-by columns, call ct_res_info with
type as CS_ORDERBY_COLS.

• Columns named in an order by clause must also be named in the select list
of the select statement. Columns in a select list have a select list ID, which
is the number in which they appear in the list. For example, in the
following query, au_lname and au_fname have select list IDs of 1 and 2,
respectively:

 select au_lname, au_fname from authors
 order by au_fname, au_lname

• Given the preceding query, the call:

 ct_res_info(cmd, CS_ORDERBY_COLS, myspace, 8,
 outlength)

sets *myspace to an array of two CS_INT values containing the integers 2
and 1.

Retrieving the number of rows for the current command

• To determine the number of rows affected by or returned by the current
command, call ct_res_info with type as CS_ROW_COUNT.

• An application can retrieve a row count after ct_results sets its *result_type
parameter to CS_CMD_SUCCEED, CS_CMD_DONE, or
CS_CMD_FAIL. A row count is guaranteed to be accurate if ct_results has
just set *result_type to CS_CMD_DONE.

ct_results

570 Open Client

• Applications that allow ad-hoc query entry may need to print a
rows-affected message (as done by the isql client application) when
processing results. To do this, the application should do the following
when ct_results indicates a CS_CMD_DONE result_type value:

a Retrieve the row count with ct_res_info(CS_ROW_COUNT).

b If the count is not CS_NO_COUNT, print it.

If the application only needs row counts for commands that modify data
(such as insert or update statements), it performs the above steps when
ct_results indicates a CS_CMD_SUCCEED result_type value.

• If the command is one that executes a stored procedure, for example a
Transact-SQL exec language command or a remote procedure call
command, ct_res_info sets *buffer to the number of rows affected by the
last statement in the stored procedure that affects rows.

• ct_res_info sets *buffer to CS_NO_COUNT if any of the following are
true:

• The Transact-SQL command fails for any reason, such as a syntax
error.

• The command is one that never affects rows, such as a Transact-SQL
print command.

• The command executes a stored procedure that does not affect any
rows.

• The CS_OPT_NOCOUNT option is on.

Retrieving the current server transaction state

• To determine the current server transaction state, call ct_res_info with type
as CS_TRANS_STATE.

See also ct_cmd_props, ct_con_props, ct_results, “Options” on page 180, “Server
transaction states” on page 130

ct_results
Description Set up result data to be processed.

Syntax CS_RETCODE ct_results(cmd, result_type)

CHAPTER 3 Routines

Client-Library/C Reference Manual 571

 CS_COMMAND *cmd;
 CS_INT *result_type;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

result_type
A pointer to an integer variable which ct_results sets to indicate the current
type of result.

The following table lists the possible values of *result_type:

Table 3-55: Values for ct_results *result_type parameter

Result
category Value of *result_type Meaning Contents of result set

Values that
indicate
command status

CS_CMD_DONE The results of a logical
command have been
completely processed.

Not applicable.

CS_CMD_FAIL The server encountered an
error while executing a
command.

No results.

CS_CMD_SUCCEED The success of a command
that returns no data, such
as a language command
containing a Transact-SQL
insert statement.

No results.

Values that
indicate fetchable
results

CS_COMPUTE_RESULT Compute row results. A single row of compute results.

CS_CURSOR_RESULT Cursor row results from a
ct_cursor cursor-open
command.

Zero or more rows of tabular data.

CS_PARAM_RESULT Return parameter results. A single row of return parameters.

CS_ROW_RESULT Regular row results. Zero or more rows of tabular data.

CS_STATUS_RESULT Stored procedure return
status results.

A single row containing a single
status.

ct_results

572 Open Client

Return value ct_results returns the following values:

Values that
indicate
information is
available.

CS_COMPUTEFMT_
RESULT

Compute format
information.

No fetchable results. The
application can retrieve the format
of forthcoming compute results
for the current command. An
application can call ct_res_info,
ct_describe, and ct_compute_info
to retrieve compute format
information.

CS_ROWFMT_RESULT Row format information. No fetchable results. An
application can call ct_describe
and ct_res_info to retrieve row
format information.

CS_MSG_RESULT Message arrival. No fetchable results. An
application can call ct_res_info to
get the message’s ID. Parameters
associated with the message, if
any, are returned as a separate
parameter result set.

CS_DESCRIBE_RESULT Dynamic SQL descriptive
information from a
describe-input or describe-
output command.

No fetchable results, but the
description of command inputs or
outputs. The application can
retrieve the results by any of the
following methods:

• Call ct_res_info to get the
number of items and
ct_describe to get item
descriptions.

• Call ct_dyndesc several times
to get the number of items and
a description of each.

• Call ct_res_info to get the
number of items, and call
ct_dynsqlda once to get item
descriptions.

Result
category Value of *result_type Meaning Contents of result set

CHAPTER 3 Routines

Client-Library/C Reference Manual 573

Table 3-56: ct_results return values

Examples This code excerpt is from the compute.c sample program.

/*
** DoCompute(connection)
*/

CS_STATIC CS_RETCODE
DoCompute(connection)
CS_CONNECTION *connection;
{

CS_RETCODE retcode;
CS_COMMAND *cmd;
/* Result type from ct_results */
CS_INT res_type;

/* Use the pubs2 database */
...CODE DELETED.....

/*
** Allocate a command handle to send the compute
** query with.
*/

...CODE DELETED.....

/*
** Define a language command that contains a
** compute clause. SELECT is a select statment
** defined in the header file.

Return value Meaning

CS_SUCCEED A result set is available for processing.

CS_END_RESULTS All results have been completely processed.

CS_FAIL The routine failed; any remaining results are no longer
available.

If ct_results returns CS_FAIL, an application must call
ct_cancel with type as CS_CANCEL_ALL before using the
affected command structure to send another command.

If ct_cancel returns CS_FAIL, the application must call
ct_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED Results have been canceled.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_results

574 Open Client

*/
...CODE DELETED.....

/* Send the command to the server */
...CODE DELETED.....

/*
** Process the results.
** Loop while ct_results() returns CS_SUCCEED.
*/
while ((retcode = ct_results(cmd, &res_type)) == CS_SUCCEED)
{

switch ((int)res_type)
{

case CS_CMD_SUCCEED:
/*
** Command returning no rows completed successfully.
*/
break;

case CS_CMD_DONE:
/*
** This means we're done with one result set.
*/
break;

case CS_CMD_FAIL:
/*
** This means that the server encountered
** an error while processing our command.
*/
ex_error("DoCompute: ct_results() \ returned CMD_FAIL");
break;

case CS_ROW_RESULT:
retcode = ex_fetch_data(cmd);
if (retcode != CS_SUCCEED)
{

ex_error("DoCompute: ex_fetch_data()\ failed");
return retcode;

}
break;

case CS_COMPUTE_RESULT:
retcode = FetchComputeResults(cmd);
if (retcode != CS_SUCCEED)
{

ex_error("DoCompute: \ FetchComputeResults() failed");
return retcode;

CHAPTER 3 Routines

Client-Library/C Reference Manual 575

}
break;

default:
/* We got an unexpected result type */
ex_error("DoCompute: ct_results() \ returned unexpected

returned unexpected result type");
return CS_FAIL;

}
}

/*
** We've finished processing results. Let's check the return value
** of ct_results() to see if everything went ok.
*/
switch ((int)retcode)
{

case CS_END_RESULTS:
/* Everything went fine */
break;

case CS_FAIL:
/* Something went wrong */
ex_error("DoCompute: ct_results() \ failed”);
return retcode;

default:
/* We got an unexpected return value */
ex_error("DoCompute: ct_results() \

returned unexpected result code");
return retcode;

}

/* Drop our command structure */
...CODE DELETED.....

return retcode;
}

Usage • An application calls ct_results as many times as necessary after sending a
command to the server using ct_send.

• If a command returns fetchable result data, then ct_results prepares the
server connection so that the application can read the result data returned
by the command using ct_fetch or ct_res_info.

• Result data is an umbrella term for all the types of data that a server can
return to an application. The types of data include:

• Regular rows

ct_results

576 Open Client

• Cursor rows

• Return parameters

• Stored procedure return status numbers

• Compute rows

• Dynamic SQL descriptive information

• Regular row and compute row format information

• Messages

ct_results is used to set up all of these types of results for processing.

Note Don’t confuse message results with server error and informational
messages. See “Error handling” on page 122 for a discussion of error and
informational messages.

• Result data is returned to an application in the form of a result set. A result
set includes only a single type of result data. For example, a regular row
result set contains only regular rows, and a return parameter result set
contains only return parameters.

The ct_results loop

• Because a command can generate multiple result sets, an application must
call ct_results as long as it continues to return CS_SUCCEED, indicating
that results are available.

• The simplest way to read results is in a loop that terminates when ct_results
does not return CS_SUCCEED. After the loop, an application can use a
case-type statement to test ct_results’ final return code and determine why
the loop terminated. The following rules apply to the logic of a results
handling loop:

• ct_results returns CS_SUCCEED as long as results are still available
to the application.

• When ct_results sets result_type to a value that indicates fetchable
result data, the application must fetch or cancel the data before
continuing.

• ct_results sets the value of result_type to CS_CMD_DONE to indicate
that the results of a logical command have been completely processed.
Logical commands are explained in the following section titled
“ct_results and logical commands.”

CHAPTER 3 Routines

Client-Library/C Reference Manual 577

• ct_results returns CS_END_RESULTS when all results have been
processed successfully.

• ct_results returns CS_CANCELED if the application cancels the
results with ct_cancel(CS_CANCEL_ALL) or
ct_cancel(CS_CANCEL_ATTN).

• Results are returned to an application in the order in which they are
produced. However, this order is not always easy to predict. For example,
when an application calls a stored procedure that in turn calls another
stored procedure, the application might receive a number of regular row
and compute row result sets, as well as a return parameter and a return
status result set. The order in which these results are returned depends on
how the stored procedures are written.

For this reason, Sybase recommended that an application’s ct_results loop
be coded so that control drops into a case-type statement that handles all
types of results that can be received. The return parameter result_type
indicates symbolically what type of result data the result set contains.

• A connection has pending results if it has not processed all of the results
generated by a Client-Library command. Usually, an application cannot
send a new command on a connection with pending results. An exception
to this rule occurs for CS_CURSOR_RESULT results. See Chapter 7,
“Using Client-Library Cursors,” in the Open Client Client-Library/C
Programmers Guide.

ct_results and logical commands

• ct_results sets *result_type to CS_CMD_DONE to indicate that the results
of a “logical command” have been completely processed.

• A logical command is defined as any command defined through
ct_command, ct_dynamic, or ct_cursor, with the following exceptions:

• Each Transact-SQL select statement that returns columns inside a
stored procedure is a logical command. Other Transact-SQL
statements inside stored procedures do not count as logical commands
(including select statements that assign values to local variables).

• Each Transact-SQL statement executed by a dynamic SQL command
is a distinct logical command.

• Each Transact-SQL statement in a language command is a logical
command.

• A command sent by a client application can execute multiple logical
commands on the server.

ct_results

578 Open Client

• A logical command can generate one or more result sets.

• For example, suppose a Client-Library language command contains the
following Transact-SQL statements:

 select type, price
 from titles
 order by type, price
 compute sum(price) by type

 select type, price, advance
 from titles
 order by type, advance
 compute sum(price), max(advance) by type

ct_results*result_types
CS_ROW_RESULT Row and compute results from
 CS_COMPUTE_RESULT the first select,
 ... repeated as many times as the
 value of the type column
 changes.
 CS_CMD_DONE Indicates that the results
 of the first query have been
 processed.

CS_ROW_RESULT Row and compute results from
 CS_COMPUTE_RESULT the second select,
 ... repeated as many times as the
 value of the type column
 changes.
 CS_CMD_DONE Indicates that the results of
 the second query have been
 processed.

When calling to process the results of this language command, an
application would see the following :

• A *result_type of CS_CMD_SUCCEED or CS_CMD_FAIL is
immediately followed by a *result_type of CS_CMD_DONE.

Canceling results

• To cancel all remaining results from a command (and eliminate the need
to continue calling ct_results until it fails to return CS_SUCCEED), call
ct_cancel with type as CS_CANCEL_ALL.

• To cancel only the current results, call ct_cancel with type as
CS_CANCEL_CURRENT.

CHAPTER 3 Routines

Client-Library/C Reference Manual 579

• Unwanted cursor results from a ct_cursor cursor-open command should
not be canceled. Instead, close the cursor with a ct_cursor cursor-close
command.

Special kinds of result sets

• A message result set contains no actual result data. Rather, a message has
a ID. An application can call ct_res_info to retrieve a message ID. In
addition to an ID, messages can have parameters. Message parameters are
returned to an application as a parameter result set immediately following
the message result set.

• Row format and compute format result sets contains no actual result
data. Instead, format result sets contain formatting information for the
regular row or compute row result sets with which they are associated.

This type of format information is of use primarily in gateway
applications, which need to repackage Adaptive Server Enterprise format
information before sending it to a foreign client. After ct_results indicates
format results, a gateway application can retrieve format information by
calling:

• ct_res_info, for the number of columns;

• ct_describe, for a description of each column; and

• ct_compute_info, for information on the compute clause that generated
the compute rows.

All format information for a command is returned before any data. That is,
the row format and compute format result sets for a command precede the
regular row and compute row result sets generated by the command.

An application will not receive format results unless the Client-Library
CS_EXPOSE_FMTS property is set to CS_TRUE.

• A describe result set contains no actual result data. Instead, a describe
result set contains descriptive information generated by a dynamic SQL
describe input or describe output command. After ct_results indicates
describe results, an application can retrieve the description with any of
these techniques:

• Call ct_res_info to get the number of items and ct_describe to get a
description of each item.

• Call ct_dyndesc several times to get the number of items and a
description of each.

ct_results

580 Open Client

• Call ct_res_info to get the number of items, and call ct_dynsqlda once
to get item descriptions.

ct_results and stored procedures

• A runtime error on a language command containing an execute statement
generates a *result_type of CS_CMD_FAIL. For example, this occurs if
the procedure named in the execute statement cannot be found.

A runtime error on a statement inside a stored procedure will not generate
a CS_CMD_FAIL, however. For example, if the stored procedure contains
an insert statement and the user does not have insert permission on the
database table, the insert statement fails, but ct_results will still return
CS_SUCCEED. To check for runtime errors inside stored procedures,
examine the procedure’s return status number, which is returned as a return
status result set immediately following the row and parameter results, if
any, from the stored procedure. If the error generates a server message, it
is also available to the application.

ct_results and the CS_STICKY_BINDS property

• Applications that repeatedly execute the same command can set the
CS_STICKY_BINDS property to cause Client-Library to save result
bindings established during the original execution of the command. See
“Persistent result bindings” on page 234 for a description of this property.

• When CS_STICKY_BINDS is enabled, ct_results compares the format of
the current result set with the format that applied when the binds were
established. A command’s result format information consists of a
sequence of the following result set characteristics:

• The result type, indicated to the application by the ct_results
result_type parameter

• (For fetchable results only.) The number of columns, available to the
application through ct_res_info.

• (For fetchable results only.) The format of each column, available to
the application through ct_describe for each column

• If ct_results detects a format mismatch, it clears all saved bindings for all
result sets in the original result sequence. When this happens, ct_results
raises an informational error and returns CS_SUCCEED. Note that a
format mismatch can only occur when executing a command that contains
conditional logic (for example, a stored procedure containing an if or a
while clause).

See also ct_bind, ct_command, ct_cursor, ct_describe, ct_dynamic, ct_fetch, ct_send,
“Results” on page 251

CHAPTER 3 Routines

Client-Library/C Reference Manual 581

ct_scroll_fetch
Description Used for scrollable fetching after a supported scrollable cursor has been

declared and successfully opened.

The capability properties of ct_scroll_fetch detect if the corresponding
Adaptive Server Enterprise server supports scrollable cursors. If scrollable
cursors is not supported, a fatal error is generated and ct_scroll_fetch cannot be
used. If this happens, use ct_fetch instead.

Syntax CS_RETCODE ct_scroll_fetch(md, type, offset, option, rows_read)

CS_COMMAND *cmd;
 CS_INT type;
 CS_INT offset;
 CS_INT option;
 CS_INT *rows_read;

Parameters cmd
Command handle that holds the scrollable cursor definition.

type
Fetch orientation, with valid entries listed in Table 3-57:

ct_scroll_fetch

582 Open Client

Table 3-57: Values for ct_scroll_fetch type

Type Offset Value Meaning

CS_NEXT Ignored Returns CS_CURSOR_ROWS at each
call.

If the number of rows in
CS_CURSOR_ROWS is greater than
the number of rows in the cursor result
set, the array may have undefined
values. This also happens if the last
fetch produces fewer rows than
CS_CURSOR_ROWS.

To find the number of rows returned,
view rows_read. This allows you to
validate the application array entries.

A repeated sequence of CS_NEXT also
causes the cursor to move beyond the
last table row. If this occurs, zero rows
is returned and ct_scroll_fetch returns
CS_CURSOR_AFTER_LAST. A
warning message is also generated,
informing you that the scrollable cursor
has moved beyond the resultset
boundary. Please note that this is a
warning, and does not indicate that an
error has occurred.

Where the number of rows in
CS_CURSOR_ROWS is greater than
the number of rows in the cursor result
set, a subsequent call to CS_NEXT
positions the cursor beyond the last
row.

CS_FIRST Ignored Setting CS_FIRST returns
CS_CURSOR_ROWS, starting at the
first row. If followed by CS_PREV,
zero rows is returned and
ct_scroll_fetch returns
CS_CURSOR_BEFORE_FIRST.

CHAPTER 3 Routines

Client-Library/C Reference Manual 583

offset
Passed as a signed integer, and valid only if type is CS_RELATIVE or
CS_ABSOLUTE. In other cases, offset is CS_UNUSED.

option
Used to continue scrolling or to stop. If option is CS_TRUE, ct_scroll_fetch
continues, based on (new) values given to type and offset. If option is
CS_FALSE, the cursor stops scrolling and CS_SCROLL_CURSOR_ENDS
is returned.

rows_read
Returns the number of rows per ct_scroll_fetch call.

Return value ct_scroll_fetch returns the following values, in addition to those provided in
“ct_fetch return values” on page 513 (except CS_END_DATA):

CS_PREV Ignored CS_PREV positions the cursor to the
row before the current position.

If repeated, CS_PREV calls bring the
cursor back to the row 1, the next
CS_PREV call will return 0 rows, and
CS_CURSOR_BEFORE_FIRST is
returned. A warning message is also
generated, informing you that the
scrollable cursor has moved beyond the
resultset boundary. Please note that this
is a warning, and does not indicate that
an error has occurred.

CS_LAST Ignored Returns the last rows in
CS_CURSOR_ROWS. If CS_LAST is
followed by CS_NEXT, zero rows are
returned and ct_scroll_fetch returns
CS_CURSOR_AFTER_LAST.

CS_RELATIVE Positive or
negative (if zero,
client generates a
warning).

The offset value is treated as a signed
integer (CS_INT), and is either positive
or negative. This indicates a relative
jump from the current cursor position.

CS_ABSOLUTE Positive or
negative (if zero,
client generates a
warning).

The absolute row number must be
supplied. This is a signed integer
(CS_INT).

Type Offset Value Meaning

ct_scroll_fetch

584 Open Client

Table 3-58: ct_scroll_fetch return values

Examples The following fragment illustrates the call sequence to scroll fetch:

CS_RETCODE CS_PUBLIC
ex_scroll_fetch_1(CS_COMMAND *cmd)
{

CS_RETCODE retcode;
CS_INT num_cols;
CS_INT i;
CS_INT j;
CS_INT k;
CS_INT row_count = 0;
CS_INT rows_read;
CS_INT disp_len;
CS_INT sc_type;
CS_INT sc_offset;
CS_INT sc_option;
CS_DATAFMT *datafmt;
EX_COLUMN_DATA *coldata;

Return value Meaning

CS_SCROLL_
CURSOR_ENDS

CS_SCROLL_CURSOR_ENDS is returned when
ct_scroll_fetch receives a CS_FALSE value.

The return value may be used to signify that no more data is
to be fetched from Adaptive Server Enterprise.

Typically, ct_scroll_fetch runs under the control of ct_results.
Each call to ct_scroll_fetch returns the maximum number of
rows indicated in CS_CURSOR_ROW. The application
issues a new ct_scroll_fetch call or stops fetching.

If the application stops fetching,
CS_SCROLL_CURSOR_ENDS is returned by
ct_scroll_fetch, ct_results is processed and an internal
cleanup is performed.

CS_CURSOR_
BEFORE_FIRST

CS_CURSOR_BEFORE_FIRST is returned when a call to
ct_scroll_fetch causes the cursor to move before the first row
in the Adaptive Server Enterprise result-set. No rows are
returned, and rows_read is zero.
CS_CURSOR_BEFORE_FIRST may generate a warning if
an error handler is installed.

CS_CURSOR_
AFTER_LAST

CS_CURSOR_AFTER_LAST is returned when a call to
ct_scroll_fetch causes the cursor to move after the last row in
the Adaptive Server Enterprise result set. No rows are
returned, and rows_read is zero.
CS_CURSOR_BEFORE_FIRST may generate a warning if
an error handler is installed.

CHAPTER 3 Routines

Client-Library/C Reference Manual 585

/*
** Find out how many columns there are in this result set.
*/
retcode = ct_res_info(cmd, CS_NUMDATA, &num_cols, CS_UNUSED, NULL);
if (retcode != CS_SUCCEED)
{

ex_error("ex_scroll_fetch_data: ct_res_info() failed");
return retcode;

}

/*
** Make sure we have at least one column
*/
if (num_cols <= 0)
{

ex_error("ex_scroll_fetch_data: ct_res_info() returned zero columns");
return CS_FAIL;

}

/*
** Our program variable, called 'coldata', is an array of
** EX_COLUMN_DATA structures. Each array element represents
** one column. Each array element will re-used for each row.
**
** First, allocate memory for the data element to process.
*/
coldata = (EX_COLUMN_DATA *)malloc(num_cols * sizeof (EX_COLUMN_DATA));
if (coldata == NULL)
{

ex_error("ex_scroll_fetch_data: malloc() failed");
return CS_MEM_ERROR;

}

datafmt = (CS_DATAFMT *)malloc(num_cols * sizeof (CS_DATAFMT));
if (datafmt == NULL)
{

ex_error("ex_scroll_fetch_data: malloc() failed");
free(coldata);
return CS_MEM_ERROR;

}

/*
** Loop through the columns getting a description of each one
** and binding each one to a program variable.
**

ct_scroll_fetch

586 Open Client

** We're going to bind each column to a character string;
** this will show how conversions from server native datatypes
** to strings can occur via bind.
**
** We're going to use the same datafmt structure for both the describe
** and the subsequent bind.
**
** If an error occurs within the for loop, a break is used to get out
** of the loop and the data that was allocated is free'd before
** returning.
*/
for (i = 0; i < num_cols; i++)
{

/*
** Get the column description. ct_describe() fills the
** datafmt parameter with a description of the column.
*/
retcode = ct_describe(cmd, (i + 1), &datafmt[i]);
if (retcode != CS_SUCCEED)
{

ex_error("ex_scroll_fetch_data: ct_describe() failed");
break;

}

/*
** update the datafmt structure to indicate that we want the
** results in a null terminated character string.
**
** First, update datafmt.maxlength to contain the maximum
** possible length of the column. To do this, call
** ex_display_len() to determine the number of bytes needed
** for the character string representation, given the
** datatype described above. Add one for the null
** termination character.
*/
datafmt[i].maxlength = ex_display_dlen(&datafmt[i]) + 1;

/*
** Set datatype and format to tell bind we want things
** converted to null terminated strings
*/
datafmt[i].datatype = CS_CHAR_TYPE;
datafmt[i].format = CS_FMT_NULLTERM;

/*
** Allocate memory for the column string

CHAPTER 3 Routines

Client-Library/C Reference Manual 587

*/
coldata[i].value = (CS_CHAR *)malloc(datafmt[i].maxlength);
if (coldata[i].value == NULL)
{

ex_error("ex_scroll_fetch_data: malloc() failed");
retcode = CS_MEM_ERROR;
break;

}

/*
** Now bind.
*/
retcode = ct_bind(cmd, (i + 1), &datafmt[i],

coldata[i].value, &coldata[i].valuelen,
(CS_SMALLINT *)&coldata[i].indicator);

if (retcode != CS_SUCCEED)
{

ex_error("ex_scroll_fetch_data: ct_bind() failed");
break;

}
}
if (retcode != CS_SUCCEED)
{

for (j = 0; j < i; j++)
{

free(coldata[j].value);
}

free(coldata);
free(datafmt);
return retcode;

}

/*
** Display column header
*/
ex_display_header(num_cols, datafmt);

/*
** Fetch the rows. Call ct_scroll_fetch() as long as it returns
** CS_SUCCEED, CS_ROW_FAIL, CS_CURSOR_BEFORE_FIRST or
** CS_CURSOR_AFTER_LAST.
** These are recoverable or "row" producing conditions, e.g. non-fatal.
** All other terminate the loop, either by error or choice.
*/
for (i = 0; i < EX_MAX_ARR; i++)
{

ct_scroll_fetch

588 Open Client

sc_type = scroll_index(type_list0[i], scroll_arrmap);
sc_offset = offset_list0[i];

if (type_list0[i] != EX_BADVAL)
{

sc_option = CS_TRUE;
}
else
{

/*
** Since EX_BADVAL is not valid to pass into
** either sc_type or sc_offset we set these
** to CS_UNUSED respectively.
*/
sc_type = CS_UNUSED;
sc_offset = CS_UNUSED;
sc_option = CS_FALSE;

}

retcode = ct_scroll_fetch(cmd, sc_type, sc_offset, sc_option,
&rows_read);

switch ((int)retcode)
{

case CS_ROW_FAIL:

fprintf(stdout, "Error on row %d.\n", row_count);
fflush(stdout);
break;

case CS_CURSOR_BEFORE_FIRST:

fprintf(stdout, " Cursor before first row\n");
fflush(stdout);
break;

case CS_CURSOR_AFTER_LAST:

fprintf(stdout, " Cursor after last row\n");
fflush(stdout);
break;

case CS_SUCCEED:

/*
** Increment our row count by the number of
** rows just fetched.

CHAPTER 3 Routines

Client-Library/C Reference Manual 589

*/
row_count = row_count + rows_read;

/*
** Assume we have a row. Loop through the
** columns displaying the column values.
*/
for (k = 0; k < num_cols; k++)
{

/*
** Display the column value
*/
fprintf(stdout, "%s", coldata[k].value);
fflush(stdout);

/*
** If not last column, Print out spaces between
** this column and next one.
*/
if (k != num_cols - 1)
{

disp_len = ex_display_dlen(&datafmt[k]);
disp_len -= coldata[k].valuelen - 1;
for (j = 0; j < disp_len; j++)
{

fputc(' ', stdout);
}

}
}
fprintf(stdout, "\n");
fflush(stdout);
break;

case CS_FAIL:

/*
** Free allocated space.
*/
for (k = 0; k < num_cols; k++)
{

free(coldata[k].value);
}
free(coldata);
free(datafmt);
return retcode;

ct_send

590 Open Client

case CS_SCROLL_CURSOR_ENDS:

/*
** User signalled ct_scroll_fetch() to stop
** scrolling, we are done with this result set.
** Free allocated space.
*/
for (k = 0; k < num_cols; k++)
{

free(coldata[k].value);
}
free(coldata);
free(datafmt);
return retcode;

default:

fprintf(stdout, "Hit default, this should not happen.
Exiting program.\n");

fflush(stdout);
exit(0);

} /* end switch */
} /* end for */
return CS_SUCCEED;

}

Usage • The first row in the result set is numbered 1.

• rows_read returns the number of actual rows fetched in each call to
ct_scroll_fetch. Use rows_read to determine the real number of rows versus
potentially non-useful information in the application arrays.

See also ct_fetch.

ct_send
Description Send a command to the server.

Syntax CS_RETCODE ct_send(cmd)

 CS_COMMAND *cmd;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

CHAPTER 3 Routines

Client-Library/C Reference Manual 591

Return value ct_send returns the following values:

Common causes of ct_send failure include results-pending errors and attempts
to send a command that has not been initiated.

• Results-pending errors

ct_send raises results-pending errors if Client-Library is reading results
when ct_send is called. This can occur if the application is retrieving non-
cursor results associated with another command structure that belongs to
the same parent connection. Sometimes this problem can be solved by
rewriting the application to use Client-Library cursors (see ct_cursor for
details). If the application cannot use cursors, then separate connections
are necessary.

• Attempt to send a command that has not been initiated

ct_send fails if a command has not been defined with ct_command,
ct_cursor, or ct_dynamic.

Examples The following fragment declares a function that sends a language command
and processes the results. The code assumes that the command returns no
fetchable results.

 /*
 ** ex_execute_cmd()
 */

 CS_RETCODE CS_PUBLIC
 ex_execute_cmd(connection, cmdbuf)
 CS_CONNECTION *connection;
 CS_CHAR *cmdbuf;

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

For less serious failures, the application can call
ct_cancel(CS_CANCEL_ALL) to clean up the command
structure.

For more serious failures, the application must call
ct_close(CS_FORCE_CLOSE) to force the connection
closed.

CS_CANCELED The routine was canceled.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_send

592 Open Client

 {
 CS_RETCODE retcode;
 CS_INT restype;
 CS_COMMAND *cmd;
 CS_RETCODE query_code;

 /*
 ** Get a command handle, store the command string
 ** in it, and send it to the server.
 */
 if ((retcode = ct_cmd_alloc(connection, &cmd)) !=
 CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_cmd_alloc() \
 failed");
 return retcode;
 }

 if ((retcode = ct_command(cmd, CS_LANG_CMD,
 cmdbuf, CS_NULLTERM, CS_UNUSED)) !=
 CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_command() \
 failed");
 (void)ct_cmd_drop(cmd);
 return retcode;
 }

 if ((retcode = ct_send(cmd)) != CS_SUCCEED)
 {
 ex_error("ex_execute_cmd: ct_send() failed");
 (void)ct_cmd_drop(cmd);
 return retcode;
 }

 /*
 ** Examine the results coming back. If any errors
 ** are seen, the query result code (which we will
 ** return from this function) will be set to FAIL.
 */
 ...CODE DELETED.....

 /* Clean up the command handle used */
 if (retcode == CS_END_RESULTS)
 {
 retcode = ct_cmd_drop(cmd);
 if (retcode != CS_SUCCEED)
 {
 query_code = CS_FAIL;

CHAPTER 3 Routines

Client-Library/C Reference Manual 593

 }
 }

 else
 {
 (void)ct_cmd_drop(cmd);
 query_code = CS_FAIL;
 }

 return query_code;
 }

This code excerpt is from the exutils.c sample program.

Usage • ct_send sends a command over the network for the server to execute.

• Before calling ct_send, the application must specify the type of command
and the data needed for its execution. Once this step is done, the command
structure is said to be initiated. The routines ct_command, ct_cursor, or
ct_dynamic initiate a command.

See Chapter 5, “Choosing Command Types,” in the Open Client Client-
Library/C Programmers Guide for a description of the server commands
available to a Client-Library application.

• For most command types, ct_send can be called to resend a previously
executed command after all the results from the previous execution have
been handled. Exceptions are noted in the following section titled
“Resending commands.”

First-time sends

• Sending a command to a server for first-time execution is a multi-step
process:

a Initiate the command by calling ct_command, ct_cursor, or
ct_dynamic. These routines set up internal structures that are used in
building a symbolic command stream to send to the server.

b Pass parameters for the command (if required) by calling ct_param or
ct_setparam once for each parameter that the command requires.

Not all commands require parameters. For example, a remote
procedure call command may or may not require parameters,
depending on the stored procedure being called.

c Send the command to the server by calling ct_send. ct_send writes the
symbolic command stream onto the command structure’s parent
connection.

ct_send

594 Open Client

d Handle the results of command execution by calling ct_results
repeatedly until it no longer returns CS_SUCCEED. See “Results” on
page 251 for a discussion of processing results.

• An application can call ct_cancel(CS_CANCEL_ALL) to cancel a
command that has been initiated but not yet sent. But after an application
has sent a command, it must call ct_results before calling ct_cancel to
cancel the results of command execution.

• ct_send uses an asynchronous write and does not wait for a response from
the server. An application must call ct_results to verify the success of the
command and to set up the command results for processing.

Resending commands

• Most types of commands can be resent immediately after all the results of
the previous command have been handled. The exceptions are:

• Send-data commands initiated by
ct_command(CS_SEND_DATA_CMD).

• Send-bulk commands initiated by
ct_command(CS_SEND_BULK_CMD)

For all other types of commands, the application can resend the command
with ct_send immediately after the application has processed all the results
of the previous execution. Client-Library does not discard the initiated
command information until the application initiates a new command with
ct_command, ct_cursor, ct_dynamic, or ct_sendpassthru.

• In general, applications that resend commands should supply command
parameters with ct_setparam rather than ct_param.

• ct_setparam allows the application to change parameter values before
resending the command. ct_setparam accepts pointers to program
variables that contain parameter values. The variables’ contents are
read by subsequent calls to ct_send. The binding between command
parameters and program variables persists until the application
initiates a new command with ct_command, ct_cursor, ct_dynamic, or
ct_sendpassthru.

• ct_param copies data from program variables before it returns. If
ct_param is called to supply command parameters, the parameter
values cannot be changed when the command is resent.

If a parameter is effectively a literal value (that is, it will not change), then
it is appropriate for the application to define the parameter with ct_param
even if the command will be resent.

CHAPTER 3 Routines

Client-Library/C Reference Manual 595

• An application can check the CS_HAVE_CMD property to see if a
resendable command exists for the command structure. See “Have
resendable command” on page 223 for a description of this property.

• Applications which resend commands may be able to use the
CS_STICKY_BINDS property to eliminate redundant ct_bind calls. See
“Persistent result bindings” on page 234 for a description of this property.

See also ct_command, ct_cursor, ct_dynamic, ct_fetch, ct_param, ct_results,
ct_setparam

ct_send_data
Description Send a chunk of text or image data to the server.

Syntax CS_RETCODE ct_send_data(cmd, buffer, buflen)

 CS_COMMAND *cmd;
 CS_VOID *buffer;
 CS_INT buflen;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

buffer
A pointer to the value to write to the server.

buflen
The length, in bytes, of *buffer.

CS_NULLTERM is not a legal value for buflen.

Return value ct_send_data returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_CANCELED The send data operation was canceled.

CS_PENDING Asynchronous network I/O is in effect. See “Asynchronous
programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

ct_send_data

596 Open Client

Examples Example 1 The following fragment illustrates the call sequence to build and
send a send-data command:

 /*
 ** UpdateTextData()
 */

 CS_STATIC CS_RETCODE
 UpdateTextData(connection, textdata, newdata)
 CS_CONNECTION connection;
 TEXT_DATA textdata;
 char *newdata;
 {
 CS_RETCODE retcode;
 CS_INT res_type;
 CS_COMMAND *cmd;
 CS_INT i;
 CS_TEXT *txtptr;
 CS_INT txtlen;

 /*
 ** Allocate a command handle to send the text with
 */
 ...CODE DELETED.....

 /*
 ** Inform Client-Library the next data sent will
 ** be used for a text or image update.
 */
 if ((retcode = ct_command(cmd, CS_SEND_DATA_CMD,
 NULL, CS_UNUSED, CS_COLUMN_DATA)) !=
 CS_SUCCEED)
 {
 ex_error("UpdateTextData: ct_command() \
 failed");
 return retcode;
 }

 /*
 ** Fill in the description information for the
 ** update and send it to Client-Library.
 */
 txtptr = (CS_TEXT *)newdata;
 txtlen = strlen(newdata);
 textdata->iodesc.total_txtlen = txtlen;
 textdata->iodesc.log_on_update = CS_TRUE;
 retcode = ct_data_info(cmd, CS_SET, CS_UNUSED,
 &textdata->iodesc);
 if (retcode != CS_SUCCEED)

CHAPTER 3 Routines

Client-Library/C Reference Manual 597

 {
 ex_error("UpdateTextData: ct_data_info() \
 failed");
 return retcode;
 }

 /*
 ** Send the text one byte at a time. This is not
 ** the best thing to do for performance reasons,
 ** but does demonstrate that ct_send_data()
 ** can handle arbitrary amounts of data.
 */
 for (i = 0; i < txtlen; i++, txtptr++)
 {
 retcode = ct_send_data(cmd, txtptr,
 (CS_INT)1);
 if (retcode != CS_SUCCEED)
 {
 ex_error("UpdateTextData: ct_send_data() \
 failed");
 return retcode;
 }
 }

 /*
 ** ct_send_data() writes to internal network
 ** buffers. To insure that all the data is
 ** flushed to the server, a ct_send() is done.
 */
 if ((retcode = ct_send(cmd)) != CS_SUCCEED)
 {
 ex_error("UpdateTextData: ct_send() failed");
 return retcode;
 }

 /* Process the results of the command */
 while ((retcode = ct_results(cmd, &res_type)) ==
 CS_SUCCEED)
 {
 switch ((int)res_type)
 {
 case CS_PARAM_RESULT:
 /*
 ** Retrieve a description of the
 ** parameter data. Only timestamp data is
 ** expected in this example.
 */
 retcode = ProcessTimestamp(cmd, textdata);

ct_send_data

598 Open Client

 if (retcode != CS_SUCCEED)
 {
 ex_error("UpdateTextData: \
 ProcessTimestamp() failed");
 /*
 ** Something failed, so cancel all
 ** results.
 */
 ct_cancel(NULL, cmd, CS_CANCEL_ALL);
 return retcode;
 }
 break;

 case CS_CMD_SUCCEED:
 case CS_CMD_DONE:
 /*
 ** This means that the command succeeded
 ** or is finished.
 */
 break;

 case CS_CMD_FAIL:
 /*
 ** The server encountered an error while
 ** processing our command.
 */
 ex_error("UpdateTextData: ct_results() \
 returned CS_CMD_FAIL");
 break;

 default:
 /*
 ** We got something unexpected.
 */
 ex_error("UpdateTextData: ct_results() \
 returned unexpected result type”);
 /* Cancel all results */
 ct_cancel(NULL, cmd, CS_CANCEL_ALL);
 break;
 }
 }

 /*
 ** We're done processing results. Let's check the
 ** return value of ct_results() to see if
 ** everything went ok.
 */
 ...CODE DELETED.....

CHAPTER 3 Routines

Client-Library/C Reference Manual 599

 return retcode;
 }

This code excerpt is from the getsend.c sample program.

Example 2 The following fragment illustrates the call sequence to send partial
update data:

/*
** UpdateTextData()
*/
CS_STATIC CS_RETCODE
UpdateTextData(connection, textdata, newdata)
CS_CONNECTION connection;
TEXT_DATA textdata;
char *newdata;
{

CS_RETCODE retcode;
CS_INT res_type;
CS_COMMAND *cmd;
CS_INT i;
CS_TEXT *txtptr;
CS_INT txtlen;
/*
** Allocate a command handle to send the text with
*/
...CODE DELETED.....
/*
** Inform Client-Library the next data sent will
** be used for a text or image update.
*/
if ((retcode = ct_command(cmd, CS_SEND_DATA_CMD,
NULL, CS_UNUSED, CS_COLUMN_DATA)) != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_command() \
failed");

return retcode;
}
/*
** Fill in the description information for the
** update and send it to Client-Library.
*/
txtptr = (CS_TEXT *)newdata;
txtlen = strlen(newdata);
textdata->iodesc.total_txtlen = txtlen;
textdata->iodesc.log_on_update = CS_TRUE;
/*

ct_send_data

600 Open Client

** Insert newdata at offset 20.
*/
textdata->iodesc.iotype = CS_IOPARTIAL;
textdata->iodesc.offset = 20;
textdata->iodesc.delete_length = 0;
retcode = ct_data_info(cmd, CS_SET, CS_UNUSED,
&textdata->iodesc);
if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_data_info() \
failed");

return retcode;
}
/*
** Send the text one byte at a time. This is not
** the best thing to do for performance reasons,
** but does demonstrate that ct_send_data()
** can handle arbitrary amounts of data.
*/
for (i = 0; i < txtlen; i++, txtptr++)
{

retcode = ct_send_data(cmd, txtptr,(CS_INT)1);
if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_send_data() \
failed");

return retcode;
}

}
/*
** ct_send_data() writes to internal network
** buffers. To insure that all the data is
** flushed to the server, a ct_send() is done.
*/
if ((retcode = ct_send(cmd)) != CS_SUCCEED)
{

ex_error("UpdateTextData: ct_send() failed");
return retcode;

}
/* Process the results of the command */
while ((retcode = ct_results(cmd, &res_type)) ==

CS_SUCCEED)
{

switch ((int)res_type)
{

case CS_PARAM_RESULT:

CHAPTER 3 Routines

Client-Library/C Reference Manual 601

/*
** Retrieve a description of the
** parameter data. Only timestamp data is
** expected in this example.
*/
retcode = ProcessTimestamp(cmd, textdata);
if (retcode != CS_SUCCEED)
{

ex_error("UpdateTextData: \
ProcessTimestamp() failed");

/*
** Something failed, so cancel all
** results.
*/
ct_cancel(NULL, cmd, CS_CANCEL_ALL);
return retcode;

}
break;

case CS_CMD_SUCCEED:
case CS_CMD_DONE:

/*
** This means that the command succeeded
** or is finished.
*/
break;

case CS_CMD_FAIL:
/*
** The server encountered an error while
** processing our command.
*/
ex_error("UpdateTextData: ct_results() \

returned CS_CMD_FAIL");
break;

default:
/*
** We got something unexpected.
*/
ex_error("UpdateTextData: ct_results() \

returned unexpected result type”);
/* Cancel all results */
ct_cancel(NULL, cmd, CS_CANCEL_ALL);
break;

}
}
/*
** We're done processing results. Let's check the

ct_send_data

602 Open Client

** return value of ct_results() to see if
** everything went ok.
*/
...CODE DELETED.....
return retcode;

}

This code excerpt is from the uctext.c sample program.

Usage • An application can use ct_send_data to write a text or image value to a
database column providing the user has update privileges granted for the
underlying table, which may be in a different database and not in the view.
This writing operation is actually an update; that is, the column must have
a value when ct_send_data is called to write a new value.

This is because ct_send_data uses text timestamp information when
writing to the column, and a column does not have a valid text timestamp
until it contains a value. The value contained in the text or image column
can be NULL, but the NULL must be entered explicitly with the SQL
update statement.

• For information on the steps involved in using ct_send_data to update a
text or image column, see “Updating a text or image column” on page
297. For information about sending partial updates with ct_send_data, see
“Sending partial updates with ct_send_data” on page 301.

• To perform a send-data operation, an application must have a current I/O
descriptor, or CS_IODESC structure, describing the column value that
will be updated:

• The textptr field of the CS_IODESC identifies the target column.

• The timestamp field of the CS_IODESC is the text timestamp of the
column value. If timestamp does not match the current database text
timestamp for the value, the update operation fails.

• The total_txtlen field of the CS_IODESC indicates the total length, in
bytes, of the column’s new value. An application must call
ct_send_data in a loop to write exactly this number of bytes before
calling ct_send to indicate the end of the text or image update
operation.

• The log_on_update of the CS_IODESC tells the server whether or not
to log the update operation.

• The locale field of the CS_IODESC points to a CS_LOCALE
structure that contains localization information for the new value, if
any.

CHAPTER 3 Routines

Client-Library/C Reference Manual 603

A typical application will change only the values of the locale,
total_txtlen, and log_on_update fields before using an I/O descriptor in an
update operation, but an application that is updating the same column
value multiple times will need to change the value of the timestamp field
as well.

• A successful text or image update generates a parameter result set that
contains the new text timestamp for the text or image value. If an
application plans to update the text or image value a second time, it must
save this new text timestamp and copy it into the CS_IODESC for the
value before calling ct_data_info to define the CS_IODESC for the update
operation.

• A text or image update operation is equivalent to a language command
containing a Transact-SQL update statement.

• The command space identified by cmd must be idle before a text or image
update operation is initiated. A command space is idle if there are no active
commands, pending results, or open cursors in the space.

Suppressing commands

To update a text or image column, a client application typically calls the
ct_command routine to initiate a send-data command. The client then calls the
ct_data_info command to retrieve the CS_IODESC and determine the
appropriate SQL command to generate (update or writetext) in a subsequent call
to the ct_send_data routine.

To simplify this process and potentially improve performance, a client can
suppress the generation of the SQL command (update or writetext) and send
data directly to the server bulk handler. To do this, the client must initiate the
send-data command by calling the ct_command routine with the type parameter
set to CS_SEND_DATA_NOCMD. The client application can then use send-
data commands to send only text or image data to the server bulk handler.
When a bulk event occurs at the server, a 4-byte field is sent indicating the total
number of bytes to be sent, followed by the text or image data. The bulk
handler reads the total number of bytes expected using srv_text_info and the
data using srv_get_data.

ct_send_params

604 Open Client

The server must define a stored procedure, sp_mda, to indicate whether or not
it supports the ct_send_data routine sending only text or image data without a
SQL command. The server sp_mda procedure is called only if the client
application sets certain properties—for example,
ct_con_props(CS_SENDDATA_NOCMD)—before the ct_connect routine is
called. If any of these properties (such as CS_PARTIAL_TEXT or the
CS_SENDDATA_NOCMD connection property) is set, the server sp_mda
procedure is called during execution of ct_connect. If sp_mda indicates that the
server does not support the ct_send_data routine sending only text or image
data without a SQL command, any calls to the ct_command routine with the
type parameter set to CS_SEND_DATA_NOCMD fail.

If the server can receive text or image data without a SQL command, sp_mda
returns:

Note Adaptive Server cannot receive image or text data without a SQL
command.

See also ct_data_info, ct_get_data, “text and image data handling” on page 295

ct_send_params
Description Send command parameters in batches.

Syntax CS_RETCODE ct_send_params(
CS_COMMAND *cmd,
CS_INT reserved)

Parameters cmd
A pointer to the CS_COMMAND structure.

reserved
Set to CS_UNUSED. This is a placeholder reserved for possible future use.

Return value ct_send_params returns:

Parameter Value

mdinfo “SENDDATA_NOCMD”

querytype 2

query senddata no cmd

CHAPTER 3 Routines

Client-Library/C Reference Manual 605

Examples Example 1 Reusing the bound parameter buffer: No rebind.

CS_CHAR linedata[MAX_LINE];
CS_UINT linenum;
retcode = ct_command(cmd, CS_LANG_CMD, sqlcommand, CS_NULLTERM, CS_END);
...
retcode = ct_setparam(cmd, &datafmt2, &linedata, &linelen, &gooddata);
...
retcode = ct_setparam(cmd, &datafmt1, &linenum, &unused, &gooddata);
...
while (fgets(linedata, sizeof(linedata), file) != NULL)
{

linenum++;
/*
** Send the parameters. This also starts sending the command if
** it's the first set of parameters.
*/
retcode = ct_send_params(cmd, CS_UNUSED);
...

}
retcode = ct_send(cmd);
...
retcode = ex_handle_results(cmd);
...

Example 2 Rebinding the parameters with ct_setparam(cmd, NULL, ..)

typedef struct _my_data
{

CS_INT number;
CS_CHAR *string;

} MY_DATA;
MY_DATA da[];
...
retcode = ct_dynamic(cmd, CS_EXECUTE, dyn_id, CS_NULLTERM, NULL,

CS_UNUSED);
...
retcode = ct_setparam(cmd, &datafmt1, NULL, &unused, NULL);
retcode = ct_setparam(cmd, &datafmt2, NULL, NULL, NULL);
...
for (i = 0; i < count; i++)
{

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

ct_sendpassthru

606 Open Client

printf("Sending: %i, %s\n", da[i].number, da[i].string);
retcode = ct_setparam(cmd, NULL, &da[i].number, &unused, &gooddata);
...
retcode = ct_setparam(cmd, NULL, da[i].string, &nullterm, &gooddata);
...
retcode = ct_send_params(cmd, CS_UNUSED);
...

}
retcode = ct_send(cmd);
...
retcode = ex_handle_results(cmd);
...

Usage A call to this function sends the parameters indicated earlier using ct_param()
or ct_setparam(). To stop sending parameters, use a ct_send() call after the last
ct_send_params() call. This signals the end of the parameters and completes the
current command.

• The first ct_send_params() call sends the actual command, the parameter
formats for all parameters, and the first set of parameters to the server.
Subsequent calls only send more parameters without format.

• The network buffer containing the parameters gets flushed during every
call to ct_send_params() so that the server can start processing the
command.

• Unlike ct_send(), ct_send_params() does not end the current command.
You can call ct_send_params() repeatedly to send multiple sets of
parameters.

• The handling of the results starts only after a ct_send() call to complete the
command. If ct_results() is called before ct_send(), an error results.

ct_sendpassthru
Description Send a Tabular Data Stream (TDS) packet to a server.

Syntax CS_RETCODE ct_sendpassthru (cmd, sendptr)

CS_COMMAND *cmd;
CS_VOID *sendptr;

Parameters cmd
A pointer to a CS_COMMAND structure.

CHAPTER 3 Routines

Client-Library/C Reference Manual 607

sendptr
A pointer to a buffer containing the TDS packet to be sent to the server.

Return value ct_sendpassthru returns the following values:

Table 3-59: ct_sendpassthru return values

Usage • TDS is a communications protocol used for the transfer of requests and
request results between clients and servers. Under ordinary circumstances,
non-gateway applications do not have to deal with TDS, because Client-
Library manages the data stream.

• ct_recvpassthru and ct_sendpassthru are useful in gateway applications.
When an application serves as the intermediary between two parties (such
as a client and a remote server, or two servers), it can use these routines to
pass the TDS stream from one server to the other, eliminating the process
of interpreting the information and re-encoding it.

• ct_sendpassthru sends a packet of bytes from the *sendptr buffer. Most
commonly, sendptr will be *recvptr as returned by srv_recvpassthru.
sendptr can also be the address of a user-allocated buffer containing the
packet to send.

• Default packet sizes vary by platform. On most platforms, a packet has a
default size of 512 bytes. A connection can change its packet size through
ct_con_props.

• ct_sendpassthru returns CS_PASSTHRU_EOM if the TDS packet in the
buffer is marked EOM (End Of Message). If the TDS packet is not marked
EOM, ct_sendpassthru returns CS_PASSTHRU_MORE.

• A connection which is being used for a passthrough operation cannot be
used for any other Client-Library function until CS_PASSTHRU_EOM
has been received.

See also ct_getloginfo, ct_recvpassthru, ct_setloginfo

Return value Meaning

CS_PASSTHRU_MORE Packet sent successfully; more packets are available.

CS_PASSTHRU_EOM Packet sent successfully; no more packets are available.

CS_FAIL The routine failed.

CS_CANCELLED The routine was cancelled.

CS_PENDING Asynchronous network I/O is in effect.See
“Asynchronous programming” on page 10.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page
10.

ct_setloginfo

608 Open Client

ct_setloginfo
Description Transfer TDS login response information from a CS_LOGINFO structure to a

CS_CONNECTION structure.

Syntax CS_RETCODE ct_setloginfo (connection, loginfo)

 CS_CONNECTION *connection;
 CS_LOGINFO *loginfo;

Parameters connection
A pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection.

loginfo
A pointer to a CS_LOGINFO structure.

Return value ct_setloginfo returns the following values:

Usage • TDS (Tabular Data Stream) is a communications protocol used for the
transfer of requests and request results between Sybase clients and servers.

• Because ct_setloginfo frees the CS_LOGINFO structure after transferring
the TDS information, an application cannot use the CS_LOGINFO again.
An application can get a new CS_LOGINFO by calling ct_getloginfo.

• There are two reasons an application might call ct_setloginfo:

• If it is an Open Server gateway application using TDS passthrough.

• To copy login properties from an open connection to a newly
allocated connection structure.

Note Do not call ct_setloginfo from within a completion callback
routine. ct_setloginfo calls system-level memory functions which may
not be reentrant.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 609

TDS passthrough

• When a client connects directly to a server, the two programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the gateway forwards TDS packets
between the client and a remote server without examining or processing
them. For this reason, the remote server and the client must agree on a TDS
format to use.

• ct_setloginfo is the second of four calls, two of them Server Library calls,
that allow a client and a remote server to negotiate a TDS format. The
calls, which can be made only in an Open Server SRV_CONNECT event
handler, are:

a srv_getloginfo to allocate a CS_LOGINFO structure and fill it with
TDS information from a client login request.

b ct_setloginfo to transfer the TDS information retrieved in step 1 from
the CS_LOGINFO structure to a Client-Library CS_CONNECTION
structure. The gateway uses this CS_CONNECTION structure in the
ct_connect call which establishes its connection with the remote
server.

c ct_getloginfo to transfer the remote server’s response to the client’s
TDS information from the CS_CONNECTION structure into a newly
allocated CS_LOGINFO structure.

d srv_setloginfo to send the remote server’s response, retrieved in step 3,
to the client.

Copying login properties

For information on using ct_setloginfo to copy login properties from an open
connection to a newly allocated connection structure, see “Copying login
properties” on page 191.

See also ct_getloginfo, ct_recvpassthru, ct_sendpassthru

ct_setparam
Description Specify source variables from which ct_send reads input parameter values for

a server command.

Syntax CS_RETCODE ct_setparam(cmd, datafmt, data,
 datalenp, indp)

ct_setparam

610 Open Client

CS_COMMAND *cmd;
CS_DATAFMT *datafmt;
CS_VOID *data;
CS_INT *datalenp;
CS_SMALLINT *indp;

Parameters cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

datafmt
A pointer to a CS_DATAFMT structure that describes the parameter.
ct_setparam copies the contents of *datafmt before returning. Client-Library
does not reference datafmt afterwards.

data
The address of a value buffer. Client-Library reads the parameter’s current
value from *data during subsequent calls to ct_send.

There are three ways to indicate a parameter with a null value:

• Set * indp as -1 before calling ct_send. In this case, ct_send ignores
*data and .

• Set *datalenp to 0 before calling ct_send.

• Call ct_setparam with data, datalenp, and indp as NULL.

datalenp
The address of an integer variable that specifies the length, in bytes, of
parameter values in *data, or NULL if values for this parameter do not vary
in length.

If datalenp is not NULL, subsequent ct_send calls read the current value’s
length from *datalenp. A length of 0 indicates a null value.

If datalenp is NULL and data is not, datafmtmaxlength specifies the
length of all non-null values for this parameter. When datalenp is NULL, an
indicator variable must be used to indicate null parameter values for
subsequent calls to ct_send.

indp
The address of a CS_SMALLINT variable whose value indicates whether
the parameter’s current value is NULL. To indicate a parameter with a null
value, set *indp as -1. If *indp is -1, ct_send ignores *data and *datalenp.

Return value ct_setparam returns the following values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CHAPTER 3 Routines

Client-Library/C Reference Manual 611

Examples The example below shows ct_setparam being used in code that declares, opens,
and reopens a cursor that takes parameters.

Example: ct_setparam for reopening a cursor

/*
 ** Data structures to describe a parameter and a cursor.
 */
 typedef struct _langparam
 {
 CS_CHAR *name;
 CS_INT type;
 CS_INT len;
 CS_INT maxlen;
 CS_VOID *data;
 CS_SMALLINT indicator;
 } LANGPARAM;

typedef struct _cur_control
 {
 CS_CHAR *name;
 CS_CHAR *query;
 LANGPARAM *params;
 CS_INT numparams;
 } CUR_CONTROL;

/*
 ** Static data for a parameterized cursor body.
 */
 CS_STATIC CS_MONEY PriceVal;
 CS_STATIC CS_INT SalesVal;
 CS_STATIC LANGPARAM Params [] =
 {
 { "@price_val", CS_MONEY_TYPE,
 CS_SIZEOF(CS_MONEY), CS_SIZEOF(CS_MONEY),
 (CS_VOID *)&PriceVal, 0
 },
 { "@sales_val", CS_INT_TYPE,
 CS_SIZEOF(CS_INT), CS_SIZEOF(CS_INT),
 (CS_VOID *)&SalesVal, 0
 },
 };

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

Return value Meaning

ct_setparam

612 Open Client

 #define NUMPARAMS (CS_SIZEOF(Params) / CS_SIZEOF(LANGPARAM))

 #define QUERY \
 "select title_id, title, price, total_sales from titles \
 where price > @price_val and total_sales > @sales_val \
 for read only"

 CS_STATIC CUR_CONTROL Cursor_Control =
 { "curly", QUERY, Params, NUMPARAMS };

/*
 ** OpenCursor() -- Declare and open a new cursor or reopen
 ** an existing cursor (which must have been originally
 ** declared and opened using this function).
 **
 ** If the open is successful, this function processes the cursor
 ** results up to the CS_CURSOR_RESULT result type value. In
 ** other words, the command handle is ready for
 ** ct_bind/ct_fetch/etc.
 **
 ** Parameters
 ** cmd -- CS_COMMAND handle for the new cursor.
 ** cur_control -- address of a CUR_CONTROL structure that contains
 ** the cursor body statement plus parameter formats and value
 ** areas.
 **
 ** If a first-time open is successful, OpenCursor() can be used to
 ** reopen the cursor with new parameter values.
 **
 ** For later opens, the cursor must be closed.
 **
 ** Returns
 ** CS_SUCCEED or CS_FAIL
 */

CS_RETCODE
 OpenCursor(cmd, cur_control)
 CS_COMMAND *cmd;
 CUR_CONTROL *cur_control;
 {
 CS_RETCODE ret;
 CS_INT i;
 CS_DATAFMT dfmt;
 LANGPARAM *params;
 CS_BOOL have_restorable_cursor;

 /*
 ** Check whether a cursor-open command can be restored with this

CHAPTER 3 Routines

Client-Library/C Reference Manual 613

 ** command handle.
 */
 ret = ct_cmd_props(cmd, CS_GET, CS_HAVE_CUROPEN,
 &have_restorable_cursor, CS_UNUSED,
 (CS_INT *)NULL);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: ct_cmd_props() failed!”);
 return CS_FAIL;
 }

 /*
 ** If CS_HAVE_CUROPEN is CS_FALSE, then this is a first-time open. So,
 ** we initiate a new declare command and bind to the parameter source
 ** variables in the CUR_CONTROL structure.
 */
 if (have_restorable_cursor != CS_TRUE)
 {

 /*
 ** Initiate the declare command.
 */
 ret = ct_cursor(cmd, CS_CURSOR_DECLARE,
 cur_control->name, CS_NULLTERM,
 cur_control->query, CS_NULLTERM,
 CS_UNUSED);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: Initiate-declare failed”);
 return CS_FAIL;
 }

 /*
 ** Specify formats for the host language parameters in the cursor
 ** declare command.
 */
 params = cur_control->params;
 (CS_VOID *)memset(&dfmt, 0, sizeof(dfmt));
 dfmt.status = CS_INPUTVALUE;

 for (i = 0; i < cur_control->numparams; i++)
 {
 dfmt.datatype = params[i].type;
 dfmt.maxlength = params[i].maxlen;
 strcpy(dfmt.name, params[i].name);
 dfmt.namelen = strlen(dfmt.name);

 ret = ct_setparam(cmd, &dfmt,
 (CS_VOID *)NULL, (CS_INT *)NULL,

ct_setparam

614 Open Client

 (CS_SMALLINT *)NULL);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: ct_setparam() failed”);
 return CS_FAIL;
 }
 }
 }

 /*
 ** Initiate or restore the cursor-open command.
 **
 ** The first time we open the cursor, this call initiates an
 ** open-cursor command which gets batched with the declare command.
 ** Since there is no cursor to restore, ct_cursor ignores the
 ** CS_RESTORE_OPEN option.
 **
 ** The second (and later) times we open the cursor, this call
 ** restores the cursor-open command so that we can send it again.
 ** The declare-cursor command (originally batched with the open
 ** command) is not restored.
 */
 ret = ct_cursor(cmd, CS_CURSOR_OPEN,
 (CS_CHAR *)NULL, CS_UNUSED,
 (CS_CHAR *)NULL, CS_UNUSED,
 CS_RESTORE_OPEN);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: Initiate-open failed.”);
 return CS_FAIL;
 }

 /*
 ** For the first-time open, supply the address of variables that have
 ** values for the cursor parameters. These variables will be read by
 ** ct_send.
 **
 ** The second (and later) times we open the cursor, we don’t have to
 ** call ct_setparam here -- the parameter bindings were restored by
 ** ct_cursor(OPEN, RESTORE_OPEN).
 **
 ** In either case, we assume that our caller has already set the
 ** desired values, lengths, and indicators.
 */
 for (i = 0;
 ((have_restorable_cursor != CS_TRUE) &&
 (i < cur_control->numparams));

CHAPTER 3 Routines

Client-Library/C Reference Manual 615

 i++)
 {
 dfmt.datatype = params[i].type;
 dfmt.maxlength = params[i].maxlen;
 strcpy(dfmt.name, params[i].name);
 dfmt.namelen = strlen(dfmt.name);

 ret = ct_setparam(cmd, &dfmt,
 params[i].data, ¶ms[i].len,
 ¶ms[i].indicator);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: ct_setparam() failed”);
 return CS_FAIL;
 }
 }

 /*
 ** Send the command batch.
 */
 ret = ct_send(cmd);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: ct_send() failed.”);
 return CS_FAIL;
 }

 /*
 ** GetToCursorRows() calls ct_results() until cursor rows are
 ** fetchable on the command structure. GetToCursorRows() fails if
 ** the declare or open command fails on the server.
 */
 ret = GetToCursorRows(cmd);
 if (ret != CS_SUCCEED)
 {
 ex_error(“OpenCursor: Cursor could not be opened.”);
 return CS_FAIL;
 }

 return CS_SUCCEED;
 } /* OpenCursor() */

/*
 ** GetToCursorRows() -- Flush results from a cursor-open command
 ** batch until ct_results returns a CS_CURSOR_RESULT result type.
 **
 ** Parameters
 ** cmd -- The command handle to read results from.
 **

ct_setparam

616 Open Client

 ** Returns
 ** CS_SUCCEED -- Cursor rows are ready to be fetched.
 ** CS_FAIL -- Failure. Could be due to any of the following:
 ** - No cursor results in the results stream.
 ** - Other kinds of fetchable results in the results stream.
 ** - ct_results failure.
 */

CS_STATIC CS_RETCODE
 GetToCursorRows(cmd)
 CS_COMMAND *cmd;
 {
 CS_RETCODE results_ret;
 CS_RETCODE ret;
 CS_INT result_type = CS_END_RESULTS;
 CS_BOOL failing = CS_FALSE;
 CS_INT intval;
 CS_CHAR scratch[512];

 while (((results_ret = ct_results(cmd, &result_type)) == CS_SUCCEED)
 && (result_type != CS_CURSOR_RESULT))
 {
 switch ((int)result_type)
 {
 case CS_CMD_SUCCEED:
 case CS_CMD_DONE:
 break;

 case CS_CMD_FAIL:
 /*
 ** Declare or open failed on the server.
 */
 ret = ct_res_info(cmd, CS_CMD_NUMBER, (CS_VOID *)&intval,
 CS_UNUSED, (CS_INT *)NULL);
 if (ret == CS_SUCCEED)
 {
 sprintf(scratch, “Command %ld failed”, (long)intval);
 ex_error(scratch);
 }
 failing = CS_TRUE;
 break;

 default:
 /*
 ** Nothing else is expected. Just return fail and let the caller
 ** decide how to clean up.
 */
 ex_error(

CHAPTER 3 Routines

Client-Library/C Reference Manual 617

 “Unexpected result types received for cursor declare/open.”);
 return CS_FAIL;

 }
 }

 /*
 ** We are leaving the cursor results pending on the connection.
 */
 if (results_ret == CS_CANCELED)
 {

 /*
 ** Could happen if the connection has a timeout and the error
 ** handler did ct_cancel(CS_CANCEL_ATTN);
 */
 ex_error(“Cursor declare/open was canceled.”);
 failing = CS_TRUE;
 }
 else if (results_ret != CS_SUCCEED)
 {
 ex_error(“Cursor declare/open: ct_results failed.”);
 failing = CS_TRUE;
 }

 return (failing == CS_TRUE) ? CS_FAIL : CS_SUCCEED;
 } /* GetToCursorRows() */

Usage • ct_setparam specifies program source variables for a server command’s
input parameter values.

• Initiating a command is the first step in executing it. Some commands
require the application to define input parameters with ct_param or
ct_setparam before calling ct_send to send the command to the server.

• ct_setparam and ct_param perform the same function, except:

• ct_param copies the contents of program variables.

• ct_setparam copies the address of program variables, and subsequent
calls to ct_send read the contents of the variables. ct_setparam allows
the application to change parameter values when resending a
command. For a description of this feature, see “Resending
commands” on page 594.

Calls to ct_param and ct_setparam can be mixed.

• ct_setparam may be required:

ct_setparam

618 Open Client

• To supply input parameter values for a cursor-open or cursor-update
command that was initiated with ct_cursor, a language, message, or
RPC command that was initiated with ct_command, or a dynamic-
SQL execute command that was initiated with ct_dynamic. This use of
ct_setparam is described under “Using ct_setparam to define input
parameter sources” on page 618.

• To define the formats of host language variable formats for a cursor-
declare command that was initiated with ct_cursor or ct_dynamic. This
use of ct_setparam is described under “Using ct_setparam to define
cursor parameter formats” on page 620. Cursor-declare commands
cannot be resent, so there is no advantage to using ct_setparam rather
than ct_param to define parameter formats.

• To define update columns for a cursor-declare command (initiated
with ct_cursor or ct_dynamic). This use of ct_setparam is described
under “Using ct_setparam to identify updatable cursor columns” on
page 621. Note that cursor-declare commands can not be resent, so
there is no advantage to using ct_setparam rather than ct_param to
define update columns.

• Client-Library does not perform any conversion on parameters before
passing them to the server. The application must supply parameters in the
datatype required by the server. If necessary, the application can call
cs_convert to convert parameter values into the required datatype.

Using ct_setparam to define input parameter sources

• An application may need to supply input parameter values for:

• Client-Library cursor open commands

• Client-Library cursor update commands

• Dynamic SQL execute commands

• Language commands

• Message commands

• Package commands

• RPC commands

• ct_setparam creates a binding between the variables passed as *data,
*datalenp, and *indp and one command parameter. Subsequent calls to
ct_send read the contents of these variables to determine whether the
parameter value is null, and (if not null) the current value and length. A
value is considered null if

CHAPTER 3 Routines

Client-Library/C Reference Manual 619

• *datalen is 0,

• *indp is -1, or

• data, datalenp, and indp were all passed as NULL in the call to
ct_setparam.

• The command parameter associated with each ct_setparam call is
specified either by name or by position.

• To specify by name, set datafmtname to the name of the parameter
and datafmtnamelen to the length of the name.

• To specify by position, call ct_setparam in the order that the
parameters occur in the SQL statement or stored procedure definition,
with datafmtnamelen as 0 for each call.

All parameters must be specified by name, or all parameters must be
specified by position.

• Client-Library cursor open commands require input parameter values
when:

• The cursor is declared with a Transact-SQL select statement
containing host-language variables.

• The cursor is declared with a Transact-SQL execute statement, and
the called stored procedure requires parameters. In this case,
*datafmtstatus should be CS_INPUTVALUE to indicate an input
parameter.

• The cursor is declared on a prepared dynamic SQL statement that
contains placeholders (indicated by the ? character).

• Client-Library cursor-update commands require input parameter values
when the SQL text representing the update command contains host
variables.

• Dynamic SQL execute commands require input parameter values when
the prepared statement being executed contains dynamic parameter
markers (indicated by the ? character).

• Language commands require input parameter values when the text of the
language command contains host variables.

• Message commands require input parameters values when the message
takes parameters.

• RPC and package commands require input parameter values when the
stored procedure or package being executed takes parameters.

ct_setparam

620 Open Client

• Message, RPC, and package commands can take return parameters,
indicated by passing datafmtstatus as CS_RETURN.

• A command that takes return parameters may generate a parameter result
set that contains the return parameter values. See ct_results for a
description of how an application retrieves values from a parameter result
set.

• Table 3-60 lists the fields in *datafmt that are used when passing input
parameter values. A parameter’s format cannot be changed after
ct_setparam returns:

Table 3-60: CS_DATAFMT fields for passing input parameter values

Using ct_setparam to define cursor parameter formats

• An application needs to define host variable formats for cursor declare
commands when the cursor is declared with a select statement that
contains host-language variables.

Field Description

name The name of the parameter.

name is ignored for dynamic SQL execute commands.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

namelen is ignored for dynamic SQL execute commands.

datatype The datatype of the input parameter value.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_IMAGE_TYPE, and Client-Library
user-defined types.

If datatype is CS_VARCHAR_TYPE or
CS_VARBINARY_TYPE then data must point to a
CS_VARCHAR or CS_VARBINARY structure.

maxlength When passing return parameters for RPC commands, maxlength
represents the maximum length, in bytes, of data to be returned
for this parameter.

If the ct_setparam datalenp parameter is passed as NULL,
maxlength also specifies the length of all input values for the
parameter. In this case, the maximum length for the
corresponding return parameter data must agree with the length
of input values.

status Set to CS_RETURN when passing return parameters for RPC
commands; otherwise set to CS_INPUTVALUE.

All other fields are ignored.

CHAPTER 3 Routines

Client-Library/C Reference Manual 621

• Host variable formats are defined with ct_param or ct_setparam after
calling ct_cursor(CS_CURSOR_DECLARE) to initiate the cursor-declare
command. Cursor-declare commands cannot be resent, so ct_setparam
offers no advantage over ct_param in this situation.

• To define the format of a host variable with ct_setparam, an application
passes datafmtstatus as CS_INPUTVALUE, datafmtdatatype as the
datatype of the host variable, and data, datalenp, and indp as NULL.

• An application defines host variable formats as part of a cursor-declare
command but does not specify data values for the variables until after
initiating a cursor-open command for the cursor.

• When defining host variable formats, the host-language variables
associated with each ct_setparam call can be specified either by name
(with datafmtname and datafmtnamelen set accordingly) or by the
order of ct_setparam and ct_param calls (with datafmt-> namelen as 0). If
one variable is named, all variables must be named.

• The following table lists the fields in *datafmt that are used when defining
host variable formats:

Table 3-61: CS_DATAFMT fields for defining host variable formats

Using ct_setparam to identify updatable cursor columns

• Some servers require a client application to identify update columns for a
cursor-declare command if some, but not all, of the columns are updatable.
Update columns can be used to change values in underlying database
tables.

Field Description

name The name of the host variable.

namelen The length, in bytes, of name, or 0 to indicate an unnamed
parameter.

datatype The datatype of the host variable.

All standard Client-Library types are valid except for
CS_TEXT_TYPE, CS_IMAGE_TYPE, and Client-Library user-
defined types.

status CS_INPUTVALUE.

All other fields are ignored.

ct_wakeup

622 Open Client

• Adaptive Server Enterprise does not require the application to specify
update columns with additional ct_param/ct_setparam calls as described in
this section. In fact, Adaptive Server Enterprise ignores requests to
identify update columns as described here. The application must use the
Transact-SQL for read only or for update of syntax in the select statement
to specify which (if any) columns are updatable (see the Adaptive Server
Enterprise for a description of this syntax). Depending on its design, an
Open Server application may require clients to specify a cursor’s update
columns as described in this section.

• If all of the cursor’s columns are updatable, an application does not need
to call ct_param or ct_setparam to specify them individually.

• To identify an update column for a cursor declare command, an
application calls ct_param or ct_setparam with datafmtstatus as
CS_UPDATECOL and *data as the name of the column.

• The following table lists the fields in *datafmt that are used when
ct_setparam is called to identify update columns for a cursor-declare
command:

Table 3-62: CS_DATAFMT fields for identifying update columns

See also ct_command, ct_cursor, ct_dynamic, ct_param, ct_send

ct_wakeup
Description Call a connection’s completion callback.

Syntax CS_RETCODE ct_wakeup(connection, cmd, function,
 status)

CS_CONNECTION *connection;
CS_COMMAND *cmd;
CS_INT function;
CS_RETCODE status;

Field name Set to

status CS_UPDATECOL

All other fields are ignored.

CHAPTER 3 Routines

Client-Library/C Reference Manual 623

Parameters connection
A pointer to the CS_CONNECTION structure whose completion callback
will be called. A CS_CONNECTION structure contains information about
a particular client/server connection.

Either connection or cmd must be non-NULL.

If connection is supplied, its completion callback is called. If connection is
NULL, cmd’s parent connection’s completion callback is called.

If connection is supplied, it is passed as the connection parameter to the
completion callback. If connection is NULL, cmd’s parent connection is
passed as the connection parameter to the completion callback.

cmd
A pointer to the CS_COMMAND structure managing a client/server
operation.

Either connection or cmd must be non-NULL.

If connection is NULL, cmd’s parent connection’s completion callback is
called.

cmd is passed as the command parameter to the completion callback. If cmd
is NULL then NULL is passed for the command parameter.

function
A symbolic value indicating which routine has completed. function can be a
user-defined value. function is passed as the function parameter to the
completion callback. Table 3-63 lists the symbolic values that are legal for
function:

ct_wakeup

624 Open Client

Table 3-63: Values for ct_wakeup function parameter

status
The return status of the completed routine. This value is passed as the status
parameter to the completion callback.

Return value ct_wakeup returns the following values:

Examples

 ...CODE DELETED.....
 /* Force a wakeup on the connection handle */
 retstat = ct_wakeup(connection, NULL,
 EX_ASYNC_QUERY, status);
 if (retstat != CS_SUCCEED)
 {

Value of function Meaning

BLK_ROWXFER blk_rowxfer has completed.

BLK_SENDROW blk_sendrow has completed.

BLK_SENDTEXT blk_sendtext has completed.

BLK_TEXTXFER blk_textxfer has completed

CT_CANCEL ct_cancel has completed.

CT_CLOSE ct_close has completed.

CT_CONNECT ct_connect has completed.

CT_DS_LOOKUP ct_ds_lookup has completed.

CT_FETCH ct_fetch has completed.

CT_GET_DATA ct_get_data has completed.

CT_OPTIONS ct_options has completed.

CT_RECVPASSTHRU ct_recvpassthru has completed.

CT_RESULTS ct_results has completed.

CT_SEND ct_send has completed.

CT_SEND_DATA ct_send_data has completed.

CT_SENDPASSTHRU ct_sendpassthru has completed.

A user-defined value. This
value must be greater than or
equal to CT_USER_FUNC.

A user-defined function has completed.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_BUSY An asynchronous operation is already pending for this
connection. See “Asynchronous programming” on page 10.

CHAPTER 3 Routines

Client-Library/C Reference Manual 625

 return retstat;
 }

 ...CODE DELETED.....

This code excerpt is from the ex_alib.c sample program.

Usage • ct_wakeup is intended for use in applications that create an asynchronous
layer on top of Client-Library.

• An application cannot call ct_wakeup if the CS_DISABLE_POLL
property is set to CS_TRUE.

See also “Asynchronous programming” on page 10, “Callbacks” on page 22,
ct_callback, ct_poll

ct_wakeup

626 Open Client

Client-Library/C Reference Manual 627

A P P E N D I X A Internationalization Library
Messages

This appendix describes error messages for internationalization library.

INTE_NOVAL
Open Server/SDK
component affected

Both

Message text Syntax error: no value found.

Possible Cause • Can not find values for ‘firstday’, ‘dateformat’ or ‘timeformat’ in
section [datetime] in the common.loc file under $SYBASE/locales.

• Can not find values for ‘version’, list_seperator character or escape
character section [file format] in the locales.loc file under
$SYBASE/locales.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which This
Error is Raised

All

INTE_NOENTRY
Open Server/SDK
component affected

Both

Message text Syntax error: no entry found.

Possible Cause Can not get valid entry under a section in a locale file.

INTE_OFLOW

628 Open Client

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_OFLOW
Open Server/SDK
component affected

Both

Message text Copying string would result in overflow of buffer.

Possible Cause The buffer is not large enough to hold a string. An example of the string is the
path name of $SYBASE.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_ENTRYOF
Open Server/SDK
component affected

Both

Message text Entry too long.

Possible Cause An entry in a locale file is too long. The current maximum length of an entry is
64.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 629

INTE_ODDHEX
Open Server/SDK
component affected

Both

Message text Odd number of hex digits in localization file.

Possible Cause Expected two hex digits, but only got one. For example, money format in a
locale file are two hex digits. If only one hex digit can be read from a locale
file, this error will be reported.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADFILE
Open Server/SDK
component affected

Both

Message text Bad file pointer.

Possible Cause The file pointer to a locale file is invalid. The pointer is returned by system
routine open() in UNIX or _open() in Windows used to open a file.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADLOC
Open Server/SDK
component affected

Both

Message text Bad INTL_LOCFILE pointer.

Possible Cause The pointer to an INTL_LOCFILE structure is invalid. This error occurs when
there is no enough memory to run an application or when there is invalid
memory access.

INTE_NOCOM

630 Open Client

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_NOCOM
Open Server/SDK
component affected

Both

Message text Bad INTL_LOCFILE pointer.

Possible Cause Syntax error: unable to get comment character.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADFFMT
Open Server/SDK
component affected

Both

Message text Syntax error in file format section of locfile.

Possible Cause There is a format error in the localization file.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 631

INTE_BADVER
Open Server/SDK
component affected

Both

Message text Bad version number.

Possible Cause The version number in the localization file is incorrect.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADPH
Open Server/SDK
component affected

Both

Message text Unable to build string: illegal place holder found in
text string.

Possible Cause This error is reported by user API intl_strblist(). When building a printable
string from text that contains place holders for variables, an illegal place holder
is found.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADTYPE
Open Server/SDK
component affected

Both

Message text Unknown datatype token in intl_strbuild() or
intl_strblist().

Possible Cause When building a printable string from text that contains place holders for
variables, unknown datatype is found.

INTE_SPECOF

632 Open Client

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_SPECOF
Open Server/SDK
component affected

Both

Message text Custom format specifier too long.

Possible Cause When building a printable string from text that contains place holders for
variables, the length of a custom format specifier is larger than
INTL_MAXSPECLEN (20).

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_NOCUST
Open Server/SDK
component affected

Both

Message text No custom format specifier found to match specifier in
formats string.

Possible Cause When building a printable string from text that contains placeholders for
variables, a custom’s format specifier does not match any of the specifiers in
the formats list.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 633

INTE_BADFMTSTR
Open Server/SDK
component affected

Both

Message text Null format string parameter to intl_fmtinstall().

Possible Cause When building a printable string from text that contains place holders for
variables, a custom’s format specifier is empty.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_INVALBUF
Open Server/SDK
component affected

Both

Message text Null buffer.

Possible Cause The pointer to a buffer is null.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_NEGBUFLEN
Open Server/SDK
component affected

Both

Message text Negative buffer length.

Possible Cause The length of a buffer is negative.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

INTE_INVALCS

634 Open Client

Versions in Which
This Error is Raised

All

INTE_INVALCS
Open Server/SDK
component affected

Both

Message text Null charset directory.

Possible Cause The pointer of the value of a character set is NULL. The possible cause is that
the character set is not set correctly when running an application, such as bcp.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADLFNM
Open Server/SDK
component affected

Both

Message text Null localization file name.

Possible Cause The name of a localization file, error message file, or configuration file is
NULL.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_INVALTEXT
Open Server/SDK
component affected

Both

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 635

Message text Null text string.

Possible Cause Intllib has found the pointer to a text buffer is NULL, when it tries to build a
text string and put it in the buffer.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_INVALSRC
Open Server/SDK
component affected

Both

Message text intl_xlate(): Null source string.

Possible Cause When trying to translate a string from one character set to another, the source
string is found to be NULL.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_INVALPTR
Open Server/SDK
component affected

Both

Message text Null pointer.

Possible Cause When trying to translate a string from one character set to another, NULL
pointer, such as the pointer the variable used to save the status of the
translation, is detected.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADNSTARS

636 Open Client

INTE_BADNSTARS
Open Server/SDK
component affected

Both

Message text intl_strblist(): Only 0, 1, or 2 stars allowed in
format string.

Possible Cause A printable string is build from a format string that contains placeholders for
variable and an array of values to fill in those places. This error occurs when in
a format string, there are more than 2 stars.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_MONTHS
Open Server/SDK
component affected

Both

Message text Too few months in datetime section.

Possible Cause Found less than 12 months for item ‘months’ in section [datetime] in
common.loc file under $SYBASE/locales.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_SMONTHS
Open Server/SDK
component affected

Both

Message text Too few short months in datetime section.

Possible Cause Found less than 12 months for item ‘shortmonths’ in section [datetime] in
common.loc file under $SYBASE/locales.

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 637

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_DAYS
Open Server/SDK
component affected

Both

Message text Too few short days in datetime section.

Possible Cause Found less than 7 days for item ‘day’ in section [datetime] in common.loc file
under $SYBASE/locales.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_PATHOF
Open Server/SDK
component affected

Both

Message text Pathname too long.

Possible Cause Pathname, such as the one for Sybase home directory, is longer than
INTL_MAXPATHLEN (current value 512).

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_LTLONG

638 Open Client

INTE_LTLONG
Open Server/SDK
component affected

Both

Message text Line in localization file too long.

Possible Cause The length of a line in a localization file is longer than INTL_MAXLINE (current
value 1024).

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_DUPDF
Open Server/SDK
component affected

Both

Message text Duplicate dateformat value.

Possible Cause Found duplicate value when reading item ‘dateformat’ in section [datetime] in
common.loc file under $SYBASE/locales. The valid format string should be a 3
character string with only one ‘m’, ‘d’ and ‘y’. For example, “mdy” or “dmy”.
If more than one ‘m’, ‘d’ or ‘y’ is found in the format string, this error will be
reported.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_BADSECT
Open Server/SDK
component affected

Both

Message text Syntax error in section heading.

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 639

Possible Cause There is a syntax error in a section name, such as [datetime], in common.loc file
under $SYBASE/locales.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_FOPEN
Open Server/SDK
component affected

Both

Message text Unable to open file.

Possible Cause System error occurs when opening a file.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_FCLOSE
Open Server/SDK
component affected

Both

Message text Unable to close file.

Possible Cause System error occurs when closing a file.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_FREAD

640 Open Client

INTE_FREAD
Open Server/SDK
component affected

Both

Message text Unable to read file.

Possible Cause System error occurs when reading from a file.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_NOSYB
Open Server/SDK
component affected

Both

Message text Couldn't find the user 'sybase'.

Possible Cause Could not find $SYBASE directory.

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

Versions in Which
This Error is Raised

All

INTE_FINFO
Open Server/SDK
component affected

Both

Message text Unable to access file information.

Possible Cause System error occurs when try to obtain the information of a file by calling
system routine stat().

Action/Solution Above error message is displayed and the user API returns fatal error.

Additional Information

APPENDIX A Internationalization Library Messages

Client-Library/C Reference Manual 641

Versions in Which
This Error is Raised

All

INTE_NOMEM
Open Server/SDK
component affected

Both

Message text

Possible Cause Can not allocate memory.

Action/Solution Unexpected error in application. No error message is issued. Only fatal error is
returned.

Additional Information

Versions in Which
This Error is Raised

All

INTE_NOMEM

642 Open Client

Client-Library/C Reference Manual 643

A P P E N D I X B SSL Error Messages

This appendix describes error messages for SSL.

1: Vendor Call Fail
Open Server/SDK
component affected

Both

Message text Vendor call failed

Possible Cause Couldn’t successfully create CSI factory, or SYBCSI API function call
fails.

Action/Solution Make sure the correct OpenSSL third-party libraries are in the location
$SYBASE/$SYBASE_OCS/lib3p (32-bit) or
$SYBASE/$SYBASE_OCS/lib3p64 (64-bit)

Additional Information Applies only to platforms that use OpenSSL, such as IBM Power Linux
and Windows 64-bit.

Versions in Which This
Error is Raised

15.5

3: Memory Allocation Fail
Open Server/SDK
component affected

Both

Message text Memory allocation error

Possible Cause The memory allocation routine fails to allocate the required size of
memory.

Action/Solution Increase the available memory.

Additional Information

6: Bad Pointer

644 Open Client

Versions in Which
This Error is Raised

15.5

6: Bad Pointer
Open Server/SDK
component affected

Both

Message text Bad pointer

Possible Cause The SSL context pointer or the pointer to hold the certification is empty when
retrieving the SSL remote certification property.

Action/Solution Check the context pointer or pointer to hold the certification.

Additional Information

Versions in Which
This Error is Raised

15.5

60: SSL Master Context Initialization fail
Open Server/SDK
component affected

Both

Message text Could not initialize SSL/TLS Master Context

Possible Cause The SSL master context creation fails, SSLInitialize() returns fail.

Action/Solution Validate the arguments of SSLInitialize().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

61: Setting Partial I/O fails
Open Server/SDK
component affected

Both

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 645

Message text Could not initialize SSL/TLS Master Context

Possible Cause The SSL master context creation fails, SSLInitialize() returns fail.

Action/Solution Validate the arguments of SSLInitialize().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

62: Setting SSL protocol version fails
Open Server/SDK
component affected

Both

Message text Could not set SSL/TLS protocol version

Possible Cause Cannot set SSL protocol version, SSLSetProtocolVersion() returns fail.

Action/Solution Validate the correctness of the version number.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

63: Create random number generator fails
Open Server/SDK
component affected

Both

Message text Could not create PRNG object

Possible Cause Cannot create a random number generator, EZCreateObject() returns fail.

Action/Solution Validate the correctness of the version number.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

64: Initialize random number generator fails

646 Open Client

64: Initialize random number generator fails
Open Server/SDK
component affected

Both

Message text Could not initialize PRNG object

Possible Cause Cannot initialize a random number generator, EZInitObject() returns fail.

Action/Solution Validate the argument of EZCreateObject().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

65: Generate entropy for the random number generator
fails
Open Server/SDK
component affected

Both

Message text Could not seed PRNG

Possible Cause Generate entropy for the random number generator fails.

Action/Solution

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

69: Could not duplicate context
Open Server/SDK
component affected

Both

Message text Could not duplicate SSL/TLS context information

Possible Cause Cannot duplicate SSL context, SSLDuplicateContext() returns fail.

Action/Solution Validate the argument of SSLDuplicateContext().

Additional Information Applies for the platforms that do not use OpenSSL.

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 647

Versions in Which
This Error is Raised

15.5

70: Could not create child SSL/TLS context
Open Server/SDK
component affected

Both

Message text Could not create a child SSL/TLS context

Possible Cause Cannot duplicate new filter session, SSLDuplicateContext() returns fail.

Action/Solution Validate the argument of SSLDuplicateContext().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

71: Could not get protocol version
Open Server/SDK
component affected

Both

Message text Could not get SSL/TLS protocol version

Possible Cause Cannot get negotiated SSL/TLS protocol version, SSLGetProtocolVersion()
returns fail.

Action/Solution Validate the argument of SSLGetProtocolVersion().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

72: Unknown protocol version
Open Server/SDK
component affected

Both

73: Unknown cipher

648 Open Client

Message text Unknown SSL/TLS protocol version

Possible Cause The version number returned by SSLGetProtocolVersion() is invalid.

Action/Solution Check whether correct SSL driver is used.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

73: Unknown cipher
Open Server/SDK
component affected

Both

Message text Set cipher saw no recognized cipher suites

Possible Cause The installed cipher is not one of the supported cipher suites by SSL.

Action/Solution Check the validity of the installed cipher.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

74: Setting cipher suites fails
Open Server/SDK
component affected

Both

Message text Error setting cipher suites

Possible Cause Setting the cipher list fails, SSLSetCipherSuites() returns fail.

Action/Solution Validate the argument of SSLSetCipherSuites().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 649

75: Load local identity property fail
Open Server/SDK
component affected

Both

Message text Attempt to load local identity failed

Possible Cause Load local identity fails, SSLLoadLocalIdentity() returns fail.

Action/Solution Validate the argument of SSLLoadLocalIdentity().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

76: Load or read certification authority file fail
Open Server/SDK
component affected

Both

Message text Unable to open certificate authority file or read the
certificates in it

Possible Cause Loading or reading certificate authority file fails,
SSLLoadTrustedCertificateFile() returns fail.

Action/Solution Validate the argument of SSLLoadLocalIdentity() and validate the correctness of
the certificate authority file.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

77: Cannot get peer’s certificate information
Open Server/SDK
component affected

Both

Message text Could not get length of peer’s certificate

Possible Cause Fetching the length of peer’s certificate fails,
SSLGetPeerCertificateChainLength() returns fail.

78: Cannot get peer’s certificate

650 Open Client

Action/Solution Ensure that the remote connection is capable of establishing of SSL
connection.

Additional Information

Versions in Which
This Error is Raised

15.5

78: Cannot get peer’s certificate
Open Server/SDK
component affected

Both

Message text Could not get peer’s certificate

Possible Cause Fetching the peer’s certificate fails.

Action/Solution Ensure that the remote connection is capable of establishing of SSL
connection.

Additional Information Applies only to platforms that use OpenSSL, such as IBM Power Linux and
Windows 64-bit.

Versions in Which
This Error is Raised

15.5

81: Cannot set certificate reference
Open Server/SDK
component affected

Both

Message text Could not set TLS/SSL certificate reference

Possible Cause Setting the certificate reference pointer fails, SSLSetCheckCertificateRef()
returns fail.

Action/Solution Validate the arguments of SSLSetCheckCertificateRef() and make sure the
session pointer is correct.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 651

84: SSL handshake failed
Open Server/SDK
component affected

Both

Message text TLS/SSL handshake failed. Check certificate for
possible corruption.

Possible Cause SSL handshake fails, SSLHandshake() returns fail.

Action/Solution Check certificate for possible corruption and validate the argument of
SSLHandshake().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

85: Cannot set SSL to server side
Open Server/SDK
component affected

Both

Message text Could not set TLS/SSL to server side

Possible Cause Setting SSL to server side fails, SSLSetProtocolSide() returns fail.

Action/Solution Validate the argument of SSLSetProtocolSide().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

86: Cannot set SSL to client side
Open Server/SDK
component affected

Both

Message text Could not set TLS/SSL to client side

Possible Cause Setting SSL to client side fails, SSLSetProtocolSide() returns fail.

Action/Solution Validate the argument of SSLSetProtocolSide().

Additional Information Applies for the platforms that do not use OpenSSL.

87: Cannot get the SSL endpoint information

652 Open Client

Versions in Which
This Error is Raised

15.5

87: Cannot get the SSL endpoint information
Open Server/SDK
component affected

Both

Message text I/O attempted before TLS/SSL was set up

Possible Cause SSL endpoint information is null.

Action/Solution Check if network filter has been set up properly.

Additional Information

Versions in Which
This Error is Raised

15.5

88: Cannot get SSL context information
Open Server/SDK
component affected

Both

Message text I/O attempted before SSL Handshake

Possible Cause SSL context information is null.

Action/Solution Check if network filter has been set up properly.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

89: Read error
Open Server/SDK
component affected

Both

Message text Error during read

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 653

Possible Cause SSL read process error, SSLRead() returns fail.

Action/Solution Validate the arguments of SSLRead().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

90: Write error
Open Server/SDK
component affected

Both

Message text Error during write

Possible Cause SSL write process error, SSLWrite() returns fail.

Action/Solution Validate the arguments of SSLWrite().

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

91: Cannot get the count of remote certificate’s DN
fields
Open Server/SDK
component affected

Both

Message text Could not get count of remote certificate’s DN fields

Possible Cause Get remote certificate field count fails, SSLCountSubjectDNFields() or
sybcsi_x509_get_subjectname_count() returns fail.

Action/Solution Check the correctness of remote certificate.

Additional Information

Versions in Which
This Error is Raised

15.5

92: Cannot extract Distinguished Name information

654 Open Client

92: Cannot extract Distinguished Name information
Open Server/SDK
component affected

Both

Message text Could not extract Distinguished Name information from
remote certificate

Possible Cause Getting remote certificate distinguished name information fails,
SSLExtractSubjectDNFieldIndex() or sybcsi_x509_get_subjectname_by_index()
returns fail.

Action/Solution Check the correctness of remote certificate.

Additional Information

Versions in Which
This Error is Raised

15.5

93: Cannot get the count of remote certificate’s
extensions
Open Server/SDK
component affected

Both

Message text Could not count remote certificate’s extensions

Possible Cause Getting the count of remote certificate’s extensions fails,
SSLCountExtensions() or sybcsi_x509_get_extension_count() returns fail.

Action/Solution Check the correctness of remote certificate.

Additional Information

Versions in Which
This Error is Raised

15.5

94: Cannot extract extension information
Open Server/SDK
component affected

Both

Message text Could not extract extension information from remote
certificate

APPENDIX B SSL Error Messages

Client-Library/C Reference Manual 655

Possible Cause Getting the remote certificate’s extensions information fails,
SSLExtractExtensionIndex(), SSLGetPeerCertificateRef(),
sybcsi_x509_get_extension_by_index(), or sybcsi_x509_list_get_element()
returns fail.

Action/Solution Check the correctness of remote certificate.

Additional Information

Versions in Which
This Error is Raised

15.5

95: Cannot get client certificate
Open Server/SDK
component affected

Both

Message text Require client certificate call failed

Possible Cause Getting the client certificate fails, SSLSetRequestClientCert() returns fail.

Action/Solution Check the client certificate.

Additional Information Applies for the platforms that do not use OpenSSL.

Versions in Which
This Error is Raised

15.5

95: Cannot get client certificate

656 Open Client

Client-Library/C Reference Manual 657

Glossary

Adaptive Server
Enterprise

A server in Sybase’s client/server architecture. Adaptive Server Enterprise
manages multiple databases and multiple users, keeps track of the actual
location of data on disks, maintains mapping of logical data description to
physical data storage, and maintains data and procedure caches in
memory.

array A structure composed of multiple identical variables that can be
individually addressed.

array binding The process of binding a result column to an array variable. At fetch time,
multiple rows’ worth of the column are copied into the variable.

asynchronous Occurring at any time without regard to the main control flow of a
program. Compare to synchronous. Client-Library has two
asynchronous modes of operation, deferred-asynchronous and fully
asynchronous.

asynchronous routine In Client-Library, any routine that interacts with the network. The
asynchronous routines are those that can return CS_PENDING.

batch A group of commands or statements.

A Client-Library command batch is one or more Client-Library
commands terminated by an application’s call to ct_send. For example, an
application can batch together commands to declare, set rows for, and
open a cursor.

A Transact-SQL statement batch is one or more Transact-SQL statements
submitted to Adaptive Server Enterprise by means of a single Client-
Library command or Embedded SQL statement.

browse mode A method that DB-Library and Client-Library applications can use to
browse through database rows, updating their values one row at a time.
Cursors provide similar functionality and are generally more portable and
flexible.

 Glossary

658 Open Client

bulk copy A network interface provided by Adaptive Server Enterprise for high-speed
transfer of data into database tables. The bcp utility allows administrators to
copy data in and out of databases through the bulk copy interface. Client-
Library and Server-Library programmers can use Bulk-Library to access this
interface. (DB-Library programs must use the Bulk-Copy special library built
into DB-Library.

bulk descriptor
structure

A hidden control structure (CS_BLKDESC) used by Bulk-Library to manage
bulk copy operations. See also Bulk-Library, bulk copy.

Bulk-Library A collection of routines that allow Client-Library and Server-Library
applications to access the Adaptive Server Enterprise bulk copy interface. See
also bulk copy.

bylist A result set sorted into subgroups. A bylist is generated by using the compute
clause with the keyword by, followed by a list of columns.

callback A routine that Open Client or Open Server calls in response to a triggering
event, known as a callback event.

callback error
handling

In Client-Library applications, a method of handling errors where the program
installs callback functions to be called when Client-Library or CS-Library
detects an error or when the server has sent a server message. See also client
message callback, server message callback, CS-Library error
handler, inline error handling.

callback event In Open Client and Open Server, an occurrence that triggers a callback routine.

capabilities The set of features that are supported by the version of the TDS
communication protocol that is used for a client/server connection. Client-
Library applications can call ct_capability to check whether a connection
supports a particular type of client request or server response. A client
application can also prevent certain types of server responses by calling
ct_capability before a connection is opened. Capabilities are determined when
a connection is opened and cannot be changed afterwards. See also options,
properties.

character set A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII and ISO 8859-1 (Latin 1) are two
common character sets. See also character set conversion, client
character set.

 Glossary

Client-Library/C Reference Manual 659

character set
conversion

Changing the encoding scheme of a set of characters on the way into or out of
a server. Conversion is used when a server and a client communicating with it
use a different character set. For example, if a server uses ISO 8859-1 and a
client uses Code Page 850, character set conversion must be turned on so that
both server and client interpret the data passing back and forth in the same way.

client In client/server systems, the client is the part of the system that sends requests
to servers and processes the results of those requests.

client character set In a client/server system, the character set used by the client application.
The client character set can differ from the character set used by the server. See
also character set conversion.

Client-Library Part of Open Client, a collection of routines for use in writing client
applications. Client-Library is designed to accommodate cursors, distributed
network services, and other advanced features. See also CS-Library, Bulk-
Library.

client message An error or informational message generated by Client-Library to inform the
application of an error or exceptional condition. See also client message
callback, inline error handling, callback error handling.

client message
callback

An application routine that is called each time Client-Library generates a client
message to describe an error or unusual condition. See also callback error
handling.

code set See character set.

collating sequence See sort order.

command In Client-Library, a server request initiated by an application’s call to
ct_command, ct_dynamic, or ct_cursor and terminated by the application’s call
to ct_send.

command structure A hidden Client-Library control structure that Client-Library applications use
to send commands and process results.

common name A name that is unique only among entries that have the same parent node. See
fully qualified name.

completion callback In Client-Library applications, a type of application callback routine. On
fully asynchronous connections, Client-Library automatically invokes the
application’s completion callback to communicate the completion status of
each call to an asynchronous routine.

 Glossary

660 Open Client

completion status In Client-Library applications, the final return status of a call to an
asynchronous routine. On synchronous connections, asynchronous
routines block until all required network interaction is complete, then return the
completion status directly. On asynchronous connections, asynchronous
routines return CS_PENDING immediately, and the application must
determine the completion status by polling or through a completion
callback. See also synchronous, deferred-asynchronous, fully
asynchronous.

connection structure A hidden Client-Library control structure that defines a client/server
connection within a context. See also command structure.

context structure A CS-Library hidden structure that defines an application “context,” or
operating environment, within a Client-Library or Open Server application.
The CS-Library routines cs_ctx_alloc and cs_ctx_drop allocate and drop a
context structure.

conversion The act of converting a data value from one representation to another.
Conversion can yield a new value with a different datatype or, for character-to-
character conversions, a new value with a different format or in a different
character set. See also character set conversion.

credential token A network-based authentication, in which users prove their identity to the
network security system before the connection attempt is made. Client-Library
then obtains a credential token from the security mechanism and sends it to the
server in lieu of a password.

critical section In a multithreaded application, sections of code that cannot execute
simultaneously in multiple threads. Typically, a critical section is code that
accesses a resource shared by multiple threads. Critical sections that access the
same shared resource are said to be “related.” See also thread serialization,
thread-safe.

CS-Library Included with both the Open Client and Open Server products, a collection of
utility routines that are useful to both Client-Library and Server-Library
applications. See also context structure.

CS-Library error
handler

An application routine that is called each time CS-Library generates an error
message to describe a error or exceptional condition. A CS-Library error
handler is required in a Server-Library application and recommended in a
Client-Library application. See also callback error handling.

current row A row to which a cursor points. A fetch against a cursor retrieves the current
row. See also cursor.

 Glossary

Client-Library/C Reference Manual 661

cursor A symbolic name that is associated with a select statement. The cursor
associates a “row pointer” with the set of rows matching the select conditions.

In Transact-SQL, a language cursor is a cursor declared with a declare cursor
language command and scrolled with fetch language commands.

In Client-Library, a Client-Library cursor is a server object created with
ct_cursor(CS_CURSOR_DECLARE). An application scrolls a Client-Library
cursor with ct_fetch.

In Embedded SQL, a cursor is a data selector that passes multiple rows of data
to the host program, one row at a time.

See also scrollable cursor.

database A set of related data tables and other database objects that are organized to
serve a specific purpose.

datatype A defining attribute that describes the values and operations that are legal for a
variable.

DB-Library Part of Open Client, DB-Library is a self-contained collection of routines for
use in writing client applications. DB-Library provides source-code
compatibility for older Open Client applications that are written in DB-Library.

deadlock 1. In Adaptive Server Enterprise, a situation that arises when two users, each
having a lock on one piece of data, attempt to acquire a lock on the other’s piece
of data. Adaptive Server Enterprise detects deadlocks and resolves them by
killing one user’s process.

2. In a multithreaded application, a situation where two threads, each having
control of a serialization primitive, attempt to lock the serialization primitive
held by the other. Deadlock can freeze a multithreaded application.

default 1. In an Open Client or Open Server application, the value, option, or behavior
that Open Client and Open Server products use when none is specified.

2. In Transact-SQL, the value inserted for a column when an insert statement
does not specify a value.

default database The database that a user is in by default when he or she logs into a database
server.

default language 1. The language that Open Client and Open Server products use when an
application does no localization. The default language is determined by the
“default” entry in the locales file.

 Glossary

662 Open Client

2. The language that Adaptive Server Enterprise uses for messages and
prompts when a user has not chosen a language.

deferred-
asynchronous

An asynchronous mode of operation for Client-Library connections where an
application must poll for the completion status of each call to an asynchronous
routine. Compare to fully asynchronous.

descriptor area The area that a database management system (DBMS) uses to store
information about dynamic parameters in a dynamic SQL statement.

directory A dictionary that associates unique names with stored information about
network entities such as servers, printers, or users. Directory access requires a
directory service provider. See also interfaces file.

directory driver Converts directory entries from their native storage format into the Server
Directory Object format.

directory entry Contains stored information associated with a given fully qualified name.

directory object
class

A specification for the set of attributes (data) stored in a directory entry.

directory object
structure

In a Client-Library application, a hidden structure (datatype CS_DS_OBJECT)
that contains a copy of a directory entry that was read through a call to the
ct_ds_lookup routine.

directory service Sometimes called a naming service, manages creation, modification, and
retrieval of directory entries.

directory service
provider

System software that provides access to a directory for applications. For
some platforms such as Windows, a directory service provider is built into the
operating system. On other platforms, the system can be configured to use a
third-party provider such as DCE.

DIT base In directories that have an inverted-tree structure, the name of an interior node.
The DIT base name is combined with partially qualified names to create a fully
qualified name. See also directory, fully qualified name.

Dynamic SQL Allows an Embedded SQL or Client-Library application to associate a name
with a prepared SQL statement. Once prepared, the SQL statement can be
executed repeatedly by name and can contain variables whose values are
determined at execution time. In Adaptive Server Enterprise, prepared
dynamic SQL statements are dropped automatically when a user disconnects.
Compare to stored procedure.

error message A message that an Open Client and Open Server product issues when it detects
an error condition.

 Glossary

Client-Library/C Reference Manual 663

event An occurrence that prompts a Server-Library application to take certain
actions. Client commands and certain commands within Open Server
application code can trigger events. When an event occurs, Server-Library
calls either the appropriate event-handling routine in the application code or the
appropriate default event handler. See also event handler, event-driven
programming.

event-driven
programming

The programming style for Open Server applications. The application provides
event handlers for each class of event, and the Open Server thread scheduler
“dispatches” events by calling the application’s event handlers. See also
event, event handler, Open Server thread.

event handler In Open Server, a routine that processes an event. An Open Server application
can use the default handlers Open Server provides or can install custom event
handlers. See also event, event-driven programming.

execute cursor A cursor declared with a stored procedure.

exposed structure A structure whose internals are exposed to Open Client and Open Server
programmers. Open Client and Open Server programmers can declare,
manipulate, and deallocate exposed structures directly. The CS_DATAFMT
structure is an example of an exposed structure.

extended
transaction

In Embedded SQL, a transaction composed of multiple Embedded SQL
statements.

FIPS An acronym for Federal Information Processing Standards. If FIPS flagging is
enabled, Adaptive Server Enterprise or the Embedded SQL precompiler issues
warnings when a statement using a non-standard extension to SQL is
encountered.

fully asynchronous An asynchronous mode of operation for Client-Library connections where the
application is automatically notified when each call to an asynchronous
routine completes. See also deferred-asynchronous, signal-driven I/O,
thread-driven I/O.

fully qualified name A name that uniquely and unambiguously identifies a directory entry. An
entry’s fully qualified name provides all the information that a directory
service provider requires to find the entry.

gateway An application that acts as an intermediary for clients and servers that cannot
communicate directly. Acting as both client and server, a gateway application
passes requests from a client to a server and returns results from the server to
the client.

 Glossary

664 Open Client

global name An OID functions as a symbolic global name that means the same to all
applications in a distributed environment. See object identifier.

hidden structure A structure whose internals are hidden from Open Client and Open Server
programmers. Open Client and Open Server programmers must use Open
Client and Open Server routines to allocate, manipulate, and deallocate hidden
structures. The CS_CONTEXT structure is an example of a hidden structure.

host language The programming language in which an application is written.

host program In Embedded SQL, the application program that contains the Embedded SQL
code.

host variable In Embedded SQL, a variable that enables data transfer between Adaptive
Server Enterprise and the application program. See also indicator variable,
input variable, output variable, result variable, status variable.

indicator variable A variable whose value indicates special conditions about another variable’s
value or about fetched data.

When used with an Embedded SQL host variable, an indicator variable
indicates when a database value is null.

initiated command In Client-Library applications, a command initiated if the type of command has
been defined by ct_command, ct_cursor, or ct_dynamic, but the command has
not yet been sent to the server with ct_send. See also command.

inline error handling In Client-Library applications, a method of handling errors where the program
tests for the occurrence of client messages, CS-Library errors, or server
messages after each call to a CS-Library or Client-Library routine. Compare
to callback error handling.

input variable A variable that is used to pass information to a routine, a stored procedure, or
Adaptive Server Enterprise.

interfaces file A file that maps server names to transport addresses. When a client application
calls ct_connect or dbopen to connect to a server, Client-Library or DB-Library
searches the interfaces file for the server’s address. Client-Library can also use
a directory service for this purpose instead of the interfaces file. Some
platforms do not use the interfaces file. On these platforms, an alternate
mechanism directs clients to server addresses.

interrupt-driven I/O See signal-driven I/O.

isql script file In Embedded SQL, one of the three files the precompiler can generate. An isql
script file contains precompiler-generated stored procedures that are written in
Transact-SQL.

 Glossary

Client-Library/C Reference Manual 665

key A subset of row data that uniquely identifies a row. Key data uniquely describes
the current row in an open cursor.

keytab file The name and path to an operating system file.

keyword A word or phrase that is reserved for exclusive use in Transact-SQL or
Embedded SQL. Also called a “reserved word.”

listener In an Open Server application, the internal Server-Library system thread that
waits for client connection attempts and creates new threads to handle each
client connection. A call to srv_init starts the listener.

listing file In Embedded SQL, one of the three files the precompiler can generate. A
listing file contains the input file’s source statements and informational,
warning, and error messages.

locale name A character string that represents a language and character set pair. Locale
names are listed in the locales file. Sybase predefines some locale names and
the System Administrator can define additional locale names and add them
to the locales file.

locale structure A CS-Library hidden structure that defines custom localization values for a
Client-Library or Open Server application. An application can use a
CS_LOCALE structure to define the language, character set, datepart ordering,
and sort order it will use. The CS-Library routines cs_loc_alloc and cs_loc_drop
allocate and drop a locale structure.

locales file A file that maps locale names to language and character set pairs. Open Client
and Open Server products search the locales file when loading localization
information.

localization The process of setting up an application to run in a particular native language
environment. An application that is localized typically generates messages in a
local language and character set and uses local datetime formats.

logical command In a Client-Library application, defined as any command defined through
ct_command, ct_dynamic, or ct_cursor, with the following exceptions:

• Each Transact-SQL select statement inside a stored procedure is a logical
command. Other Transact-SQL statements inside stored procedures do not
count as logical commands.

• Each Transact-SQL statement executed by a dynamic SQL command is a
distinct logical command.

• Each Transact-SQL statement in a language command is a logical
command.

 Glossary

666 Open Client

login authentication A security service that confirms that users are who they say they are by use of
user names and passwords.

login name The name a user uses to log in to an Adaptive Server Enterprise. An Adaptive
Server Enterprise login name is valid if Adaptive Server Enterprise has an
entry for that user in the system table syslogins.

message number A number that uniquely identifies an error message.

message queue In Open Server, a linked list of message pointers through which threads
communicate. Threads can write messages into and read messages from the
queue.

multibyte character
set

A character set that includes characters encoded using more than one byte.
EUC JIS and Shift-JIS are examples of multibyte character sets.

multithreaded A property of program code. Multithreaded code can execute concurrently on
two or more threads and, therefore, must be thread-safe. See also thread.

mutex A mutual exclusion semaphore. A mutex is a serialization primitive
provided by Server-Library or an operating system thread interface. A mutex
provides a method for multithreaded applications to serialize access to a
resource shared by two or more threads. See also native thread, Open
Server thread.

naming service See directory service provider.

native thread A thread whose existence and scheduling are managed by the host operating
system. See also thread scheduling, Open Server thread.

negotiated
properties

Certain login properties that the server can change during the login process,
such as TDS version support properties.

null 1. With regard to data values, having no explicitly assigned value. NULL is not
equivalent to zero nor to blank. A value of NULL is not considered to be
greater than, less than, or equivalent to any other value, including another
NULL value.

2. With regard to C language pointers, the special NULL address value that
refers to no memory address.

object identifier A string of decimal digits that uniquely names an object in a multi-vendor,
multi-platform environment. OIDs provide a means to identify an item that
might have different names in different environments. For example, the same
character set can be named differently by different operating systems. See
global name.

 Glossary

Client-Library/C Reference Manual 667

Object identifiers are encoded according to the Basic Encoding Rules (BER)
defined by ISO 8825. All Sybase-defined OIDs begin with this prefix:

1.3.6.1.4.1.897

OID See object identifier.

OID string A character string that contains an object identifier. Client-Library and
Server-Library applications use OID strings to represent object identifiers. The
cspublic.h header file defines Sybase-specific OID strings.

Open Server A Sybase product that provides tools and interfaces for creating custom
servers. See also Server-Library.

Open Server
application

A custom server constructed with Open Server. See also Open Server
thread, event-driven programming.

Open Server thread A path of execution through an Open Server application and library code
and the path’s associated stack space, state information, and event handlers. An
Open Server thread is a thread whose existence and scheduling is managed by
Server-Library. See also thread, thread scheduling, native thread.

options Software that controls how Adaptive Server Enterprise processes commands.
Applications set, retrieve, or clear options by calling the ct_options Client-
Library routine after a connection to a server has been opened. See also
capabilities, properties.

output variable In Embedded SQL, a variable that passes data from a stored procedure to an
application program.

parameter 1. A variable that is used to pass data to and retrieve data from a routine.

2. An argument to a stored procedure.

passthrough mode A mode in which a gateway relays Tabular Data Stream (TDS) packets
between a client and a remote data source without unpacking the packets’
contents.

placeholder An indicator identified by a question mark (?), that acts like a variable in a
prepared statement.

properties Named values stored in a hidden structures. Context, connection, thread, and
command structures have properties. A structure’s properties determine how
CS-Library, Client-Library, or Server-Library responds to calls that pass a
pointer to the structure as a parameter. See also capabilities, options.

query 1. A data retrieval request; usually a select statement.

 Glossary

668 Open Client

2. Any SQL statement that manipulates data.

registered procedure In an Open Server application, an executable entity on the server that can be
remotely called by clients. A registered procedure can be a C function in the
Open Server application code, an internal Server-Library routine made
available as a system registered procedure, or a “bodiless” registered procedure
created by a client’s call to the sp_regcreate system registered procedure. See
also registered procedure notifications, system registered
procedure, remote procedure call.

registered procedure
notifications

An Open Server feature that allows a client to monitor the execution of a given
registered procedure. A client requests to “watch” a registered procedure
on the Open Server, and thereafter, the Open Server notifies the client when the
procedure executes. Registered procedure notifications allow synchronization
of clients in a distributed application. See also system registered
procedure.

remote procedure
call

1. One of two ways in which a client application can execute an Adaptive
Server Enterprise stored procedure. (The other is with a Transact-SQL execute
statement.) A Client-Library application initiates a remote procedure call
command by calling ct_command. A DB-Library application initiates a remote
procedure call command by calling dbrpcinit.

2. A type of request that a client can make of an Open Server application. In
response, Open Server either executes the corresponding registered procedure
or calls the Open Server application’s RPC event handler.

3. In Transact-SQL, a stored procedure that is executed on a different server
from the server to which the user is connected.

request capabilities Used by an application to determine what kinds of requests a server connection
supports.

reserved word See keyword.

response
capabilities

Used by an application to prevent the server from sending a type of response
that the application cannot process.

result data An umbrella term for all the types of data that a server can return to an
application.

result set The form in which results are returned to the application. A result set contains
only a single type of result data. Regular row and cursor-row result sets contain
multiple rows of data, but other types of result sets contain at most a single row
of data

 Glossary

Client-Library/C Reference Manual 669

result variable In Embedded SQL, a variable that receives the results of a select or fetch
statement.

security mechanism External software that provides security services for a connection.

select list The list of columns selected by a Transact-SQL select statement.

select-list id A numeric identifier for a column in the results of a Transact-SQL select
statement. The first column in the select list has id 1, the second has id 2, and
so forth. For example, in the query below, the select-list id of the title column
is 1 and the select-list id of the Units Sold column is 3:

select title, price, “Units Sold” = total_sales from titles

See also select list.

serialization
primitive

A logical object and associated routines that allow serialization of access to
shared resources. A mutex is an example of a serialization primitive. See also
native thread, Open Server thread.

server In client/server systems, the part of the system that processes client requests
and returns results to clients. A server can be an Adaptive Server
Enterprise or an Open Server application.

server directory
object

A generalized description of the logical content of directory entries that
describe Sybase servers.

Server-Library A collection of routines for use in writing an Open Server application.

server message An error or informational message sent by a server to the client. The server may
send server messages to the client to describe errors or unusual conditions that
occur when the server is processing a command sent from the client. See also
server message callback, callback error handling, inline error
handling.

server message
callback

In a Client-Library application, a callback function installed to receive each
server message sent by the server. See also callback error handling.

signal-driven I/O A platform specific method used by Client-Library to allow non-blocking
network reads and writes. Internally, Client-Library installs its own internal
system interrupt handler and interacts with the network using non-blocking
system calls. Compare thread-driven I/O.

sort order Used to determine the order in which character data is sorted. Also called
collating sequence.

 Glossary

670 Open Client

SQLCA 1. In an Embedded SQL application, a SQLCA structure provides a
communication path between Adaptive Server Enterprise and the application
program. After executing each SQL statement, the precompiler-generated
source code stores return codes in the SQLCA.

2. In a Client-Library application, a SQLCA structure can be used by an
application to retrieve Client-Library and server error and informational
messages.

SQLCODE 1. In an Embedded SQL application, a SQLCODE structure provides a
communication path between Adaptive Server Enterprise and the application
program. After executing each SQL statement, the precompiler-generated
source code stores return codes in the SQLCODE. A SQLCODE can exist
independently or as a variable within a SQLCA structure.

2. In a Client-Library application, a SQLCODE structure can be used by an
application to retrieve Client-Library and server error and informational
message codes.

scrollable cursor Allows a current cursor position to be set anywhere in a result set. See also
cursor.

statement In Transact-SQL or Embedded SQL, an instruction that begins with a keyword.
The keyword names the basic operation or command to be performed.

status variable In Embedded SQL, a variable that receives the return status value of a stored
procedure, thereby indicating the procedure’s success or failure.

stored procedure In Adaptive Server Enterprise, a collection of SQL statements and optional
control-of-flow statements stored under a name. Adaptive Server Enterprise-
supplied stored procedures are called system stored procedures.

synchronization
primitive

A logical object and associated routines that allow synchronization of
dependent actions performed by multiple threads. Synchronization primitives
for native threads are provided by the host operating system (for example, a
condition variable or barrier). Synchronization primitives for Open Server
threads are provided by Server-Library (for example, a message queue).
See also native thread, Open Server thread.

synchronous Occurring at a predictable point in time determined wholly by the logic of
main-line program code. Compare to asynchronous.

System
Administrator

The user in charge of server system administration, including creating user
accounts, assigning permissions, and creating new databases. In Adaptive
Server Enterprise, the System Administrator’s login name is “sa”.

 Glossary

Client-Library/C Reference Manual 671

system descriptor In Embedded SQL, an area of memory that holds a description of variables
used in Dynamic SQL statements.

system registered
procedure

An internal registered procedure that Open Server supplies for managing
registered procedure notifications and monitoring the server status. See also
Open Server.

system stored
procedures

Stored procedures that Adaptive Server Enterprise supplies for use in system
administration. These procedures are provided as shortcuts for retrieving
information from system tables or as mechanisms for accomplishing database
administration and other tasks that involve updating system tables.

target file In Embedded SQL, one of the three files the precompiler can generate. A target
file is similar to the original input file, except that all SQL statements are
converted to Client-Library function calls.

TDS (Tabular Data Stream) An application-level protocol that Sybase clients and
servers use to communicate. It allows the transfer of requests and results
between clients and servers. See also capabilities.

text pointer A pointer, stored in database tables, in lieu of large text and image values.

text timestamp A timestamp that is associated with each text or image column, to prevent
competing applications from overwriting one another’s modifications to the
database.

thread A path of execution through a program. See also thread scheduling,
multithreaded, native thread, Open Server thread.

thread-driven I/O A platform specific method used by Client-Library to allow non-blocking
network reads and writes. Internally, Client-Library creates worker threads that
interact with the network. The internal worker thread may block for reads or
writes, but the user-application thread does not. Compare to signal-driven
I/O.

thread-safe A property of a routine or collection of routines that allows them to be safely
executed by different threads in a multithreaded application. See also thread
serialization, thread synchronization, thread-unsafe.

thread scheduling The act of managing the concurrent execution of multiple threads. A thread
scheduler uses a well-defined algorithm to periodically suspend one thread,
save its state, and resume (or begin) execution of another thread. See also
native thread, Open Server thread.

 Glossary

672 Open Client

thread serialization The use of serialization primitives in multithreaded code to ensure that the
execution of related critical sections by different threads is mutually exclusive.
Serialization consists of using serialization primitives to “protect” critical
sections from simultaneous execution of related critical sections in different
threads. In other words, serialization guarantees that once a critical section
begins execution, its execution is not interleaved with the execution of a related
critical section in a different thread. Serialization is commonly used to make
code that accesses shared resources thread-safe. See also critical section,
serialization primitive.

thread
synchronization

The use of synchronization primitives to guarantee a specific order of
execution of code executed by two or more threads. Synchronization ensures
that dependent actions executed by separate threads are performed in the
correct order. See also synchronization primitive, native thread, Open
Server thread.

thread-unsafe Not thread-safe. Thread-unsafe describes a property of program code that
prohibits its execution by multiple threads. If thread-unsafe code executes
simultaneously from multiple threads, it yields unpredictable behavior.

Transact-SQL An enhanced version of the SQL database language. Applications can use
Transact-SQL to communicate with Adaptive Server Enterprise.

transaction One or more server commands that are treated as a single unit. Commands
within a transaction are committed as a group; that is, either all of them are
committed or all of them are rolled back.

transaction mode The manner in which Adaptive Server Enterprise manages transactions.
Adaptive Server Enterprise supports two transaction modes: Transact-SQL
mode (also called unchained transactions) and ANSI mode (also called
chained transactions).

throughput A measure of work done per unit of time. For example, the throughput of a
bulk copy operation might be measured as the number of rows transferred per
second.

updatable Description of a cursor that an application intends to update using ct_cursor
update commands.

user name See login name.

Client-Library/C Reference Manual 673

A
Adaptive Server

differences from Open Server 3
extended error data 128
handling server messages 122
listing messages 123
options, list of 180
options, two ways to set 180
restrictions 294
similarities to Open Server 2
specifying a server to connect to 225
transaction states 130
where a process’s host name is listed 225

aggregate operator
retrieving for a compute column 392

aggregate operator types
CS_OP_AVG 393
CS_OP_COUNT 393
CS_OP_MAX 393
CS_OP_MIN 393
CS_OP_SUM 393

allocating
a CS_COMMAND structure 372
a CS_CONNECTION structure 393

alternate servers
connecting to 292

ANSI-style binds 211
ANSI-style cursor end-data processing 211
applications

application developer responsibilities 294
application name property 212
layered 17
localized 145

array binding 346
assertion checking 457
asynchronous behavior

of Client-Library routines 11
CS_BUSY return 12
enabling using CS_NETIO property 11

asynchronous programming 10, 19
and ct_poll 552
and ct_wakeup 625
debugging affects behavior of timing problems

458
defining a completion callback 32
disabling polling 220
fetching rows 516
layered applications 17
learning of asynchronous routine completion 12
list of asynchronous routines 11
and memory pool property 17
memory requirements 16, 228, 243, 245
routines callable when operation pending 12
setting up deferred asynchronous connections 230
and user allocation function properties 17

asynchronous programming with layered applications
and ct_callback 18
and ct_wakeup 17
ct_poll 18
example 18
preventing reporting of asynchronous routine

completions 17
@@textcolid global variable 303
@@textdbid global variable 303
@@textobjid global variable 303
@@textptr global variable 303
@@texttts global variable 303

B
bcp

messages 627, 643
binary datatypes 308
binding

array binding 346
for batch processing 260
binding columns to arrays 346
binding large values 343

Index

Index

674 Open Client

binding results to program variables 335
binding to multiple variables not allowed 343
clearing bindings 336, 344
and ct_describe 343
and ct_res_info 343
defining a bind style 211
how long it remains in effect 234, 260, 344
persistence of 234, 344
purpose 343
rebinding 344
using ct_get_data instead 343

bit datatype 309
bits

CS_CANBENULL 87, 461
CS_HIDDEN 20, 87, 461
CS_IDENTITY 87, 461, 462
CS_INPUTVALUE 87
CS_KEY 87, 461
CS_RETURN 87, 461
CS_TIMESTAMP 20, 87, 461
CS_UPDATABLE 87, 461
CS_UPDATECOL 87, 461
CS_VERSION_KEY 87, 461

BLK_DONE completion ID 555
BLK_INIT completion ID 555
BLK_ROWXFER completion ID 555, 624
BLK_SENDROW completion ID 555, 624
BLK_SENDTEXT completion ID 555, 624
BLK_TEXTXFER completion ID 555, 624
blktxt.c sample program 132
browse mode 19, 22

ad hoc queries and ct_br_column 20
ad hoc queries and ct_br_table 20
browsable table attributes 350
conditions for updating a column 348
conditions for using 21
connection requirements 20
and CS_BROWSEDESC structure 74
and CS_HIDDEN_KEYS property 20
purpose 19
retrieving information about a browse-mode column

347
retrieving information about browse-mode tables 348
select...for browse command 20
steps to implement 20
when browse-mode information is available 348, 567

bulk copy
bulk copy operations property 215
and CS_IODESC structure 88
describing bulk copy data 88

bulk-library
definition of 8

C
callback events 22

information can be discarded 27
recognizing 22
when not reading from network 22

callback types
CS_CHALLENGE_CB 352
CS_CLIENTMSG_CB 352
CS_COMPLETION_CB 352
CS_DS_LOOKUP_CB 352
CS_ENCRYPT_CB 352
CS_NOTIF_CB 352
CS_SEC_SESSION_CB 352
CS_SERVERMSG_CB 352
CS_SIGNAL_CB 352
CS_SSLVALIDATE_CB 352

callbacks 22, 57
advantages over inline message handling 123
and asynchronous programming 14
Client-Library routines they can call 27
defining callback routines 27
de-installing 27, 354
description of when called 22
how triggered 23
implications of inheritance 354
information can be discarded 354
inheriting callback routines from the parent context

354
installing 26, 350, 354
not universally implemented 26
replacing callback routines 27
retrieving 350
retrieving a pointer to 27
security session 48, 50
see also client message callback 24
sharing information with mainline code 245
triggered on asynchronous routine completion 14

Index

Client-Library/C Reference Manual 675

types of 23, 351
using CS_USERDATA to transfer information

355
when called 23

cancel types
CS_CANCEL_ALL 356
CS_CANCEL_ATTN 356
CS_CANCEL_CURRENT 356

canceling
commands 355
current results 578
danger of discarding results 358
effect on binding 359
remaining results 578
results 355

capabilities 57, 72
and connections 367
CS_CAP_REQUEST capabilities 361
CS_CAP_RESPONSE capabilities 361
CS_CLR_CAPMASK macro 369
CS_SET_CAPMASK macro 369
CS_TDS_VERSION property 368
CS_TST_CAPMASK macro 369
and ct_capability 368
external configuration of 318
how capabilities are determined 368
setting and retrieving 71, 360
setting and retrieving multiple capabilities 368
storing in a CS_CAP_TYPE structure 158
TDS version level 368
types of 70, 360
uses of 58, 70, 367

certificate validation
in a Shared Disk Cluster environment 279

challenge/response security handshakes 284
negotiation callbacks 44

character datatypes 309
character set conversion (server)

disabling 232
character sets

character set conversion property 215
server character set conversion, disabling 232
specifying 145

chunked messages 126
client message callback 29

Client-Library routines it can call 31

defining 30
example 31
exceptional behavior 27, 354
how triggered 24
installing 352
valid return values 30
when called 24
when Client-Library fails to call 124

client messages 123
Client/server

advantages of architecture 1
architecture 1
diagram of interaction 1

Client-Library
backward compatibility of later releases 531
comparing to Embedded SQL 7
datatypes 305
definition of 7
exiting 509
generic interface 6
global properties 412
handling Client-Library errors 122
initializing 527
properties 187
re-initializing 511
sample programs 131
typedefs 308
user-defined datatypes 317
version 531
version property 247
version string property 247

Client-Library cursor commands
initiating 425
sending to a server 435

Client-Library messages 79, 83
explanation of severities 80
macros to decode message numbers 79
mapping to SQLCODE structure 96

clients
types of clients 2
what they do 1

closing a server connection 369
collating sequences

specifying 145
columns

binding to program variables 336

Index

676 Open Client

retrieving a column 519
retrieving descriptions of 459
retrieving information about a browse-mode column

347
retrieving the column IDs of order-by columns 569
retrieving the number of columns in an order-by clause

569
command options

CS_BULK_CONT 382
CS_BULK_DATA 382
CS_BULK_INIT 382
CS_COLUMN_DATA 382
CS_END 382
CS_MORE 382
CS_NO_RECOMPILE 382
CS_RECOMPILE 382
CS_UNUSED 382

command parameters, defining 542
command structure

allocating 372
dropping 373
properties 374
what to do before deallocating a command structure

374
command types

CS_LANG_CMD 384
CS_MSG_CMD 384
CS_PACKAGE_CMD 384
CS_RPC_CMD 384
CS_SEND_BULK_CMD 384
CS_SEND_DATA_CMD 384
CS_SEND_DATA_NOCMD 384

commands
canceling 355, 594
clearing an initiated command 385
and CS_HAVE_CMD property 223
current command information 564
defining parameters for 99
initiating 98, 381
initiating a prepared dynamic SQL statement command

485
language commands 386
message commands 387
package commands 387
resending 223
retrieving the command number for the current result set

567
RPC commands 387
rules for using ct_command 385
send-bulk-data commands 388
send-data commands 388
sending to a server 99, 385, 590
steps in sending a command to a server 593

communications sessions block property 215
completion

of asynchronous routine 13
completion callback 14, 32

calling 622
Client-Library routines that can be called 34
defining 33
example 35
how triggered 24
installing 352
purpose 33
valid return value 34
when called 24

completion callback event
when it occurs 22

completion callback server message callback 24
completion IDs

BLK_DONE 555
BLK_INIT 555
BLK_ROWXFER 555, 624
BLK_SENDROW 555, 624
BLK_SENDTEXT 555, 624
BLK_TEXTXFER 555, 624
CT_CANCEL 555, 624
CT_CLOSE 555, 624
CT_CONNECT 555, 624
CT_FETCH 555, 624
CT_GET_DATA 555, 624
CT_NOTIFICATION 555
CT_OPTIONS 555, 624
CT_RECVPASSTHRU 555, 624
CT_RESULTS 555, 624
CT_SEND 555, 624
CT_SEND_DATA 555, 624
CT_SENDPASSTHRU 555, 624
CT_USER_FUNC 555, 624

compute clause
bylist 392
retrieving the number of compute clauses 568

Index

Client-Library/C Reference Manual 677

compute columns
aggregate operator 393
binding to program variables 336, 459
retrieving a compute column 519
retrieving descriptions of 459
select-list ID 393

compute format results 579
compute ID

retrieving for a compute row 392
compute result information types

CS_BYLIST_LEN 392
CS_COMP_BYLIST 392
CS_COMP_COLID 392
CS_COMP_ID 392
CS_COMP_OP 392

compute results 253
fetching 518
information about 390
retrieving a bylist 392
retrieving a compute row’s ID 392
retrieving a select-list column ID 392
retrieving an aggregate operator 392
retrieving the number of bylist items 392

compute row
definition 392
ID 393
processing 576

compute.c sample program 132
configuration

by calling ct_cmd_props 374
by calling ct_con_props 397
by calling ct_config 412
and external configuration files 318

connecting to a server 394, 420
connection migration 101

enabling using CS_PROP_MIGRATABLE
property 101

connection status property 215
connection structure

dropping 395
connection structure properties

configuring externally 318
setting and retrieving 397

connection types
LDAP 104

connections

calling a completion callback 622
and capabilities 367
changing TDS version level 71
closing 369, 371, 511
configuring externally 318
and CS_CONNECTION structure 423
CS_FORCE_CLOSE behavior 371
CS_FORCE_CLOSE option 370
and CS_MAX_CONNECT property 395
dead (meaning of) 216
deallocating a connection 371
default close behavior 371
default TDS version level 71
defining behavior 400
defining login parameters with ct_con_props 423
determining if dead 215, 358, 371
determining status of 215
failure to connect 423
forcing a close 371
inheriting parent context’s callbacks 27
inheriting parent context’s property values 400
maximum number of connections 423
opening 420
pending results 577
polling for asynchronous operation completions and

registered procedure notifications 552
reviving a dead connection 371
setting maximum number of 227
synchronous or asynchronous 423
testing status of 215
using asynchronous network I/O 371
using ct_cancel to revive a dead connection 358

constants
CS_ALL_CAPS 71
CS_ASYNC_IO 11
CS_BUSY 11
CS_DEF_PREC 86
CS_DEFER_IO 11
CS_FAIL 30
CS_MAX_MSG 126
CS_MAX_PREC 86
CS_MAX_SCALE 86
CS_MIN_PREC 86
CS_MIN_SCALE 86
CS_MSG_GETLABELS 45
CS_MSG_LABELS 45

Index

678 Open Client

CS_NULLTERM 84
CS_SRC_VALUE 86
CS_SYNC_IO 11
CS_USER_MAX_MSGID 45
CS_USER_MSGID 45

context properties 412
configuring externally 318
and cs_config 189, 415
and ct_config 189, 415
and srv_props 189, 415
types of context properties 415

conversion
between client and server character sets 215

critical code
protecting with CS_NOINTERRUPT property 232

CS_ALL_CAPS constant 71, 361
CS_ALLMSG_TYPE message type 465
CS_ALLOC descriptor area operation 493
CS_ANSI_BINDS property 192, 326, 401, 415

detailed description of 211
CS_APPNAME property 192, 326, 401

detailed description of 212
CS_ASYNC_IO constant 11
CS_ASYNC_NOTIFS property 192, 326, 401

and ct_poll 559
detailed description of 212

CS_BIGDATETIME datatype 311, 313
CS_BIGINT datatype 313
CS_BIGTIME datatype 311, 313
CS_BINARY datatype 308
CS_BIT datatype 309
CS_BLKDESC structure 73
CS_BROWSE_INFO information type for ct_res_info

566
CS_BROWSEDESC structure 72, 74
CS_BULK_CONT command option 382
CS_BULK_DATA command option 382
CS_BULK_INIT command option 382
CS_BULK_LOGIN property 192, 326, 401

detailed description of 215
example of 215

CS_BUSY constant 11
meaning of 12

CS_BYLIST_LEN compute result information type 392
CS_CANBENULL bit 87, 461
CS_CANCEL_ALL cancel type 356

difference from CS_CANCEL_ATTN 358
when not to use 359
when to use 358

CS_CANCEL_ATTN cancel type 356
difference from CS_CANCEL_ALL 358
reusing a command structure 358
when not to use 359
when to use 358

CS_CANCEL_CURRENT cancel type 356
when to use 359

CS_CANCELED return 514, 520
CS_CAP_REQUEST capabilities 361

CS_CON_INBAND 362
CS_CON_OOB 362
CS_CSR_ABS 362
CS_CSR_FIRST 362
CS_CSR_LAST 362
CS_CSR_MULTI 362
CS_CSR_PREV 362
CS_CSR_REL 362
CS_DATA_BIGDATETIME 362
CS_DATA_BIGTIME 362
CS_DATA_BIN 362
CS_DATA_BIT 362
CS_DATA_BITN 362
CS_DATA_CHAR 362
CS_DATA_DATE 362
CS_DATA_DATE4 362
CS_DATA_DATE8 362
CS_DATA_DATETIMEN 362
CS_DATA_DEC 362
CS_DATA_FLT4 362
CS_DATA_FLT8 362
CS_DATA_FLTN 362
CS_DATA_IMAGE 362
CS_DATA_INT1 362
CS_DATA_INT2 363
CS_DATA_INT4 363
CS_DATA_INTN 363
CS_DATA_LBIN 362
CS_DATA_LCHAR 362
CS_DATA_MNY4 363
CS_DATA_MNY8 363
CS_DATA_MONEYN 363
CS_DATA_NUM 363
CS_DATA_SENSITIVITY 363

Index

Client-Library/C Reference Manual 679

CS_DATA_TEXT 363
CS_DATA_TIME 363
CS_DATA_VBIN 362
CS_DATA_VCHAR 362
CS_OPTION_GET 363
CS_PROTO_BULK 363
CS_PROTO_DYNAMIC 363
CS_PROTO_DYNPROC 364
CS_REQ_BCP 364
CS_REQ_CURSOR 364
CS_REQ_DYN 364
CS_REQ_LANG 364
CS_REQ_MSG 364
CS_REQ_MSTMT 364
CS_REQ_NOTIF 364
CS_REQ_PARAM 364
CS_REQ_RPC 364
CS_REQ_URGNOTIF 364
meaning of 70

CS_CAP_RESPONSE capabilities 361
CS_CON_NOINBAND 365
CS_CON_NOOOB 365
CS_DATA_NOBIGDATETIME 365
CS_DATA_NOBIGTIME 365
CS_DATA_NOBIN 365
CS_DATA_NOBIT 365
CS_DATA_NOBOUNDARY 365
CS_DATA_NOCHAR 365
CS_DATA_NODATE 365
CS_DATA_NODATE4 365
CS_DATA_NODATE8 365
CS_DATA_NODATETIMEN 365
CS_DATA_NODEC 365
CS_DATA_NOFLT4 365
CS_DATA_NOFLT8 365
CS_DATA_NOIMAGE 365
CS_DATA_NOINT1 365
CS_DATA_NOINT2 365
CS_DATA_NOINT4 365
CS_DATA_NOINT8 365
CS_DATA_NOINTN 365
CS_DATA_NOLBIN 365
CS_DATA_NOLCHAR 365
CS_DATA_NOMNY4 365
CS_DATA_NOMNY8 365
CS_DATA_NOMONEYN 365

CS_DATA_NONUM 365
CS_DATA_NOTEXT 366
CS_DATA_NOTIME 366
CS_DATA_NOVBIN 365
CS_DATA_NOVCHAR 365
CS_RES_NOEED 366
CS_RES_NOMSG 366
CS_RES_NOPARAM 366
CS_RES_NOSTRIPBLANKS 366
CS_RES_NOTDSDEBUG 366
CS_RES_NOXNLMETADATA 64, 366
meaning of 71

CS_CAP_TYPE structure 73
manipulating bits 158

CS_CHALLENGE_CB callback type 352
CS_CHAR datatype 310
CS_CHARSETCNV property 192, 402

detailed description of 215
CS_CLEAR action 375, 413
CS_CLEAR operation 466
CS_CLEAR_FLAG debug operation 457
CS_CLIENTMSG structure 72, 76
CS_CLIENTMSG_CB callback type 352
CS_CLIENTMSG_TYPE structure type 465
CS_CLR_CAPMASK macro 71, 72, 369
CS_CMD_DONE result type 571
CS_CMD_FAIL result type 571
CS_CMD_NUMBER information type

when useful 567
CS_CMD_NUMBER information type for ct_res_info

566
CS_CMD_SUCCEED result type 571
CS_CMD_SUPPRESS_FMT 379
CS_COLUMN_DATA command option 382
CS_COMMAND structure 73

allocating 372
deallocating 373
definition 373
dropping 373

CS_COMMBLOCK property 193, 402
detailed description of 215

CS_COMP_BYLIST compute result information type
392

CS_COMP_COLID compute result information type
392

CS_COMP_ID compute result information type 392

Index

680 Open Client

CS_COMP_OP compute result information type 392
CS_COMPLETION_CB callback type 352
CS_COMPUTE_RESULT result type 392, 517, 571
CS_COMPUTEFMT_RESULT format result set 221
CS_COMPUTEFMT_RESULT result type 572
CS_CON_INBAND capability 362
CS_CON_NOINBAND capability 365
CS_CON_NOOOB capability 365
CS_CON_OOB capability 362
CS_CON_STATUS property 193, 402

detailed description of 215
CS_CONFIG_BY_SERVERNAME property 194, 403
CS_CONFIG_FILE property 194, 403
CS_CONNECTED_ADDR property 193, 402
CS_CONNECTION structure 73

allocating 393
deallocating 395
dropping 395

CS_CONSTAT_CONNECTED symbol 216
CS_CONSTAT_DEAD symbol 216
CS_CONTEXT structure 73

properties 413
CS_CSR_ABS capability 362
CS_CSR_FIRST capability 362
CS_CSR_LAST capability 362
CS_CSR_MULTI capability 362
CS_CSR_PREV capability 362
CS_CSR_REL capability 362
CS_CUR_ID property 194, 380

detailed description of 216
CS_CUR_NAME property 194, 380

detailed description of 217
CS_CUR_ROWCOUNT property 195, 380

detailed description of 217
CS_CUR_STATUS property 195, 380

detailed description of 218
CS_CURSOR_CLOSE cursor command type 434
CS_CURSOR_DEALLOC cursor command type 434
CS_CURSOR_DECLARE cursor command type 433
CS_CURSOR_DECLARE dynamic SQL operation 486
CS_CURSOR_DELETE cursor command type 434
CS_CURSOR_OPEN cursor command type 434
CS_CURSOR_OPTION cursor command type 433
CS_CURSOR_RESULT result type 517, 571
CS_CURSOR_ROWS cursor command type 434
CS_CURSOR_UPDATE cursor command type 434

CS_CURSTAT_CLOSED symbol 219
CS_CURSTAT_DECLARED symbol 219
CS_CURSTAT_NONE symbol 218
CS_CURSTAT_OPEN symbol 219
CS_CURSTAT_RDONLY symbol 219
CS_CURSTAT_ROWCOUNT symbol 219
CS_CURSTAT_UPDATABLE symbol 219
CS_DATA_BIGDATETIME capability 362
CS_DATA_BIGTIME capability 362
CS_DATA_BIN capability 362
CS_DATA_BIT capability 362
CS_DATA_BITN capability 362
CS_DATA_CHAR capability 362
CS_DATA_DATE capability 362
CS_DATA_DATE4 capability 362
CS_DATA_DATE8 capability 362
CS_DATA_DATETIMEN capability 362
CS_DATA_DEC capability 362
CS_DATA_FLT4 capability 362
CS_DATA_FLT8 capability 362
CS_DATA_FLTN capability 362
CS_DATA_IMAGE capability 362
CS_DATA_INT1 capability 362
CS_DATA_INT2 capability 363
CS_DATA_INT4 capability 363
CS_DATA_INTN capability 363
CS_DATA_LBIN capability 362
CS_DATA_LCHAR capability 362
CS_DATA_MNY4 capability 363
CS_DATA_MNY8 capability 363
CS_DATA_MONEYN capability 363
CS_DATA_NOBIGDATETIME capability 365
CS_DATA_NOBIGTIME capability 365
CS_DATA_NOBIN capability 365
CS_DATA_NOBIT capability 365
CS_DATA_NOBOUNDARY capability 365
CS_DATA_NOCHAR capability 365
CS_DATA_NODATE capability 365
CS_DATA_NODATE4 capability 365
CS_DATA_NODATE8 capability 365
CS_DATA_NODATETIMEN capability 365
CS_DATA_NODEC capability 365
CS_DATA_NOFLT4 capability 365
CS_DATA_NOFLT8 capability 365
CS_DATA_NOIMAGE capability 365
CS_DATA_NOINT1 capability 365

Index

Client-Library/C Reference Manual 681

CS_DATA_NOINT2 capability 365
CS_DATA_NOINT4 capability 365
CS_DATA_NOINT8 capability 365
CS_DATA_NOINTN capability 365
CS_DATA_NOLBIN capability 365
CS_DATA_NOLCHAR capability 365
CS_DATA_NOMNY4 capability 365
CS_DATA_NOMNY8 capability 365
CS_DATA_NOMONEYN capability 365
CS_DATA_NONUM capability 365
CS_DATA_NOTEXT capability 366
CS_DATA_NOTIME capability 366
CS_DATA_NOVBIN capability 365
CS_DATA_NOVCHAR capability 365
CS_DATA_NUM capability 363
CS_DATA_SENSITIVITY capability 363
CS_DATA_TEXT capability 363
CS_DATA_TIME capability 363
CS_DATA_VBIN capability 362
CS_DATA_VCHAR capability 362
CS_DATAFMT structure 72, 83

and ct_bind 336
and ct_describe 459

CS_DATE datatype 311
CS_DATETIME datatype 311
CS_DATETIME4 datatype 311
CS_DBG_ALL debug flag 455
CS_DBG_API_LOGCALL debug flag 455
CS_DBG_API_STATES debug flag 455
CS_DBG_ASYNC debug flag 455
CS_DBG_DIAG debug flag 455
CS_DBG_ERROR debug flag 455
CS_DBG_MEM debug flag 455
CS_DBG_NETWORK debug flag 455
CS_DBG_PROTOCOL debug flag 455
CS_DBG_PROTOCOL_STATES debug flag 455
CS_DBG_SSL debug flag 456
CS_DEALLOC descriptor area operation 493
CS_DEALLOC dynamic SQL operation 486
CS_DECIMAL datatype 314
CS_DEF_PREC constant 86
CS_DESCRIBE_INPUT dynamic SQL operation

486
CS_DESCRIBE_OUTPUT dynamic SQL operation

486
CS_DESCRIBE_RESULT result type 572

CS_DIAG_TIMEOUT property 195, 326, 403
detailed description of 220
and inline message handling 125

CS_DISABLE_POLL property 195, 326, 403, 415
and ct_poll 559
and ct_wakeup 625
detailed description of 220
and layered asynchronous applications 17

CS_DS_COPY property 195, 326
CS_DS_DITBASE property 196, 326
CS_DS_EXPANDALIAS property 196
CS_DS_FAILOVER property 196, 326
CS_DS_LOOKUP_CB callback type 352
CS_DS_PASSWORD property 196, 326
CS_DS_PRINCIPAL property 197, 326
CS_DS_PROVIDER property 197, 326
CS_DS_SEARCH property 197
CS_DS_SIZELIMIT property 197
CS_DS_TIMELIMIT property 198
CS_EED_CMD operation 467
CS_EED_CMD property 198, 405

detailed description of 220
CS_ENCRYPT_CB callback type 352
CS_END

command option 382
CS_END_DATA return 513, 520, 584
CS_END_ITEM return 520
CS_ENDPOINT property 198, 405
CS_EXEC_IMMEDIATE dynamic SQL operation

486
CS_EXECUTE dynamic SQL operation 486
CS_EXPOSE_FMTS property 198, 326, 405, 416

detailed description of 221
must be enabled to receive format results 579

CS_EXTENDED_ENCRYPT_CB property 405
CS_EXTERNAL_CONFIG property 199, 405, 416
CS_EXTRA_INF property 199, 326, 327, 406, 416

detailed description of 222
and inline message handling 125

CS_FAIL constant 30
CS_FIRST_CHUNK symbol 78, 94

and sequenced messages 127
CS_FLOAT datatype 314
CS_FMT_NULLTERM symbol 85
CS_FMT_PADBLANK symbol 85
CS_FMT_PADNULL symbol 85

Index

682 Open Client

CS_FMT_UNUSED symbol 85
CS_FORCE_CLOSE option 370

when to use 372
CS_FORCE_EXIT option 510
CS_GET action 375, 413
CS_GET operation 467
CS_GETATTR descriptor area operation 493
CS_GETCNT descriptor area operation 493
CS_HASEED symbol 94
CS_HAVE_BINDS property 199, 222, 380
CS_HAVE_CMD property 199, 223, 380
CS_HAVE_CUROPEN property 200, 380
CS_HIDDEN bit 20, 87, 461
CS_HIDDEN_KEYS property 200, 326, 380, 406, 416

and browse mode 20
and ct_keydata 534
detailed description of 224
when not settable 225

CS_HOSTNAME property 200, 326, 406
detailed description of 225

CS_IDENTITY bit 87, 461
CS_IFILE property 200, 326, 416

detailed description of 225
CS_IMAGE datatype 316
CS_INIT operation 466
CS_INPUTVALUE bit 87
CS_INT datatype 313
CS_INTERRUPT return 556
CS_IODESC structure 72, 88, 452

and ct_send_data 602
CS_ISBROWSE information type 349
CS_KEY bit 87, 461, 462
CS_LANG_CMD command type 382, 384
CS_LAST_CHUNK symbol 78, 94

and sequenced messages 127
CS_LAYER macro 79
CS_LOC_PROP property 200, 406

detailed description of 226
CS_LOCALE structure 73

when to use 146
CS_LOGIN_STATUS property 200, 406

detailed description of 226
CS_LOGIN_TIMEOUT property 200, 326, 416

detailed description of 226
CS_LOGINFO structure 73

cannot be re-used 608

CS_LONGBINARY datatype 308
CS_LONGCHAR datatype 310
CS_LOOP_DELAY property 326
CS_MAX_CONNECT property 201, 326, 416, 423

default value 228
detailed description of 227

CS_MAX_MSG constant 126
CS_MAX_PREC constant 86
CS_MAX_SCALE constant 86
CS_MEM_ERROR return 529
CS_MEM_POOL property 201, 416

detailed description of 228
CS_MIN_PREC constant 86
CS_MIN_SCALE constant 86
CS_MONEY datatype 315
CS_MONEY4 datatype 315
CS_MORE command option 382
CS_MSG_CMD command type 384
CS_MSG_GETLABELS constant 45
CS_MSG_LABELS constant 45
CS_MSG_RESULT result type 572
CS_MSGLIMIT operation 466
CS_MSGTYPE information type for ct_res_info 566
CS_NETIO property 201, 326, 406, 416, 423

detailed description of 229
restrictions 230

CS_NO_LIMIT message limit 470
CS_NO_LIMIT timeout value 227
CS_NO_RECOMPILE command option 382
CS_NO_TRUNCATE property 201, 326, 416

detailed description of 230
and sequenced messages 126

CS_NOAPICHK property 202, 231, 326, 417
CS_NOCHARSETCNV_REQD property 202, 232,

406
CS_NOINTERRUPT property 202, 327, 417

detailed description of 232
CS_NOSCROLL_INSENSITIVE symbol 219
CS_NOTIF_CB callback type 352
CS_NOTIF_CMD property 202, 407
CS_NULLTERM constant 84
CS_NUM_COMPUTES information type for

ct_res_info 566
CS_NUMBER macro 79
CS_NUMDATA information type for ct_res_info 566
CS_NUMERIC datatype 314

Index

Client-Library/C Reference Manual 683

CS_NUMORDERCOLS information type for
ct_res_info 566

CS_OID Structure 90
CS_OP_AVG aggregate operator type 393
CS_OP_COUNT aggregate operator type 393
CS_OP_MAX aggregate operator type 393
CS_OP_MIN aggregate operator type 393
CS_OP_SUM aggregate operator type 393
CS_OPT_ANSINULL option 181, 329, 539
CS_OPT_ANSIPERM option 181, 329, 539
CS_OPT_ARITHABORT option 181, 329, 539
CS_OPT_ARITHIGNORE option 182, 329, 539
CS_OPT_AUTHOFF option 182, 329, 539
CS_OPT_AUTHON option 182, 329, 539
CS_OPT_CHAINXACTS option 182, 329, 539
CS_OPT_CURCLOSEONXACT option 182, 329,

539
CS_OPT_CURREAD option 329
CS_OPT_CURWRITE option 329
CS_OPT_DATEFIRST option 182, 329, 540
CS_OPT_DATEFORMAT option 182, 329, 540
CS_OPT_FIPSFLAG option 182, 329, 540
CS_OPT_FORCEPLAN option 182, 329, 540
CS_OPT_FORMATONLY option 183, 329, 540
CS_OPT_GETDATA option 329, 540
CS_OPT_HIDE_VCC option 183, 540
CS_OPT_IDENTITYOFF option 183, 329, 540
CS_OPT_IDENTITYON option 183, 329, 540
CS_OPT_ISOLATION option 183, 329, 540
CS_OPT_LOBLOCATOR 540
CS_OPT_NOCOUNT option 183, 329, 540
CS_OPT_NOEXEC option 183, 329, 540
CS_OPT_PARSEONLY option 183, 329, 541
CS_OPT_PREFETCHSIZE 541
CS_OPT_QUOTED_IDENT option 183, 329, 541
CS_OPT_RESTREES option 184, 329, 541
CS_OPT_ROWCOUNT option 184, 329, 541
CS_OPT_SHOW_FI option 541
CS_OPT_SHOW_VI option 184
CS_OPT_SHOWPLAN option 184, 330, 541
CS_OPT_STATS_IO option 185, 330, 541
CS_OPT_STATS_TIME option 185, 330, 541
CS_OPT_STR_RTRUNC option 185, 541
CS_OPT_TEXTSIZE option 186, 330, 541
CS_OPT_TRUNCIGNORE option 186, 330, 541
CS_OPTION_GET capability 363

CS_ORDERBY_COLS information type for ct_res_info
566

CS_ORIGIN macro 79
CS_PACKAGE_CMD command type 384
CS_PACKETSIZE property 203, 327, 407
CS_PARAM_RESULT result type 21, 517, 571
CS_PARENT_HANDLE property 203, 380, 407

detailed description of 233
CS_PARTIAL_TEXT property 203, 407, 417
CS_PASSTHRU_EOM return 560, 607
CS_PASSTHRU_MORE return 560, 607
CS_PASSWORD property 203, 204, 327, 407
CS_PENDING return 11, 33, 514, 520
CS_PREPARE dynamic SQL operation 487
CS_PROP_APPLICATION_SPID property 204, 407
CS_PROP_EXTENDEDFAILOVER property 204
CS_PROP_MIGRATABLE property 204, 407, 417
CS_PROTO_BULK capability 363
CS_PROTO_DYNAMIC capability 363
CS_PROTO_DYNPROC capability 364
CS_PUBLIC macro

callbacks and 29
explanation of 160

CS_QUIET return 556
CS_REAL datatype 313, 314
CS_RECOMPILE command option 382
CS_REQ_BCP capability 364
CS_REQ_CURSOR capability 364
CS_REQ_DYN capability 364
CS_REQ_LANG capability 364
CS_REQ_MSG capability 364
CS_REQ_MSTMT capability 364
CS_REQ_NOTIF capability 364
CS_REQ_PARAM capability 364
CS_REQ_RPC capability 364
CS_REQ_URGNOTIF capability 364
CS_RES_NOEED capability 366
CS_RES_NOMSG capability 366
CS_RES_NOPARAM capability 366
CS_RES_NOSTRIPBLANKS capability 366
CS_RES_NOTDSDEBUG capability 366
CS_RES_SUPPRESS_FMT 366
CS_RETRY_COUNT property 205, 327
CS_RETURN bit 87
CS_RETURN bits 461

Index

684 Open Client

CS_ROW_COUNT information type for ct_res_info 566
CS_ROW_FAIL return 513
CS_ROW_RESULT result type 517, 571
CS_ROWFMT_RESULT result type 221, 572
CS_RPC_CMD command type 382, 384
CS_SCROLL_CURSOR symbol 219
CS_SCROLL_INSENSITIVE symbol 219
CS_SCROLL_SEMISENSITIVE symbol 219
CS_SEC_APPDEFINED property 205, 327, 408
CS_SEC_CHALLENGE property 205, 327, 408
CS_SEC_CHANBIND property 327
CS_SEC_CONFIDENTIALITY property 327
CS_SEC_CREDTIMEOUT property 327
CS_SEC_DATAORIGIN property 327
CS_SEC_DELEGATION property 327
CS_SEC_DETECTREPLAY property 327
CS_SEC_DETECTSEQ property 327
CS_SEC_ENCRYPTION property 207, 327, 409
CS_SEC_EXTENDED_ENCRYPTION property 410
CS_SEC_INTEGRITY property 327
CS_SEC_KEYTAB property 327
CS_SEC_MECHANISM property 327
CS_SEC_MUTUALAUTH property 327
CS_SEC_NEGOTIATE property 208, 410

and trusted-user security handshakes 536
CS_SEC_NETWORKAUTH property 327
CS_SEC_NON_ENCRYPTION_RETRY property 410
CS_SEC_SERVERPRINCIPAL property 327
CS_SEC_SESSTIMEOUT property 328
CS_SECSESSION_CB callback type 352
CS_SEND_BULK_CMD command type 382, 384
CS_SEND_DATA_CMD command type 382, 384
CS_SEND_DATA_NOCMD command type 384
CS_SENDDATA_NOCMD property 209, 411
CS_SERVERADDR property 209, 411
CS_SERVERMSG structure 72, 91
CS_SERVERMSG_CB callback type 352
CS_SERVERMSG_TYPE structure type 465
CS_SERVERNAME property 209, 411

detailed description of 237
CS_SET action 375, 413
CS_SET_CAPMASK macro 72, 369
CS_SET_DBG_FILE debug operation 457
CS_SET_FLAG debug operation 456
CS_SET_PROTOCOL_FILE debug operation 457
CS_SETATTR descriptor area operation 493

CS_SETCNT descriptor area operation 493
CS_SEVERITY macro 79
CS_SIGNAL_CB callback type 56, 352
CS_SIZEOF macro 159
CS_SMALLINT datatype 313
CS_SRC_VALUE constant 86
CS_SSLVALIDATE_CB callback type 352
CS_STATUS operation 467
CS_STATUS_RESULT result type 517, 571
CS_STICKY_BINDS property 210, 381

and ct_results 580
detailed description of 234

CS_SUPPORTED action 397, 413
CS_SV_API_FAIL message severity 77, 81
CS_SV_COMM_FAIL message severity 77, 81
CS_SV_CONFIG_FAIL message severity 77, 80
CS_SV_FATAL message severity 77, 81
CS_SV_INFORM message severity 77, 80
CS_SV_INTERNAL_FAIL message severity 77, 81
CS_SV_RESOURCE_FAIL message severity 77, 81
CS_SV_RETRY_FAIL message severity 77, 81
CS_TABNAME information type 349
CS_TABNUM information type 349
CS_TCP_RCVBUF property 238, 419
CS_TCP_SND property 419
CS_TCP_SNDBUF property 238
CS_TDS_VERSION property 210, 328, 412

and capabilities 368
detailed description of 236

CS_TEXT datatype 316
CS_TEXTLIMIT property 210, 328, 412, 419

default value 239
detailed description of 239

CS_TIME datatype 311
CS_TIMED_OUT return 556
CS_TIMEOUT property 210, 328, 419

detailed description of 239
CS_TIMESTAMP bit 20, 87, 461
CS_TINYINT datatype 313
CS_TRAN_COMPLETED transaction state 130
CS_TRAN_FAIL transaction state 130
CS_TRAN_IN_PROGRESS transaction state 130
CS_TRAN_STMT_FAIL transaction state 130
CS_TRAN_UNDEFINED transaction state 130
CS_TRANS_STATE information type for ct_res_info

566

Index

Client-Library/C Reference Manual 685

CS_TRANSACTION_NAME property 210, 412
detailed description of 243

CS_TST_CAPMASK macro 72, 369
CS_UBIGINT datatype 313
CS_UINT datatype 313
CS_UNICHAR datatype 310, 311
CS_UNITEXT datatype 316
CS_UNUSED

command option 382
CS_UNUSED command option 382
CS_UNUSED option 510
CS_UPDATABLE bit 87, 461
CS_UPDATECOL bit 87
CS_USE_DESC descriptor area operation 493
CS_USER_ALLOC property 210, 420

detailed description of 243
CS_USER_FREE property 211, 420

detailed description of 245
CS_USER_MAX_MSGID constant 45
CS_USER_MSGID constant 45
CS_USERDATA property 211, 381, 412

detailed description of 245
using with callbacks 355

CS_USERNAME property 211, 328, 412
detailed description of 246

CS_VARBINARY datatype 308
CS_VARCHAR datatype 310
CS_VER_STRING property 211, 247, 420

detailed description of 247
CS_VERSION property 211, 247, 420

detailed description of 247
determining its value 531
legal values 247

CS_VERSION_100 version 528, 582
CS_VERSION_110 version 528
CS_VERSION_KEY bit 87, 461
csconfig.h header file 137
CS-Library

definition of 8
cspublic.h header file 137
csr_disp.c sample program 132
csr_disp_scrollcurs.c sample program 132
csr_disp_scrollcurs2.c sample program 132
cstypes.h header file 79, 137, 159
ct_bind 335, 347

and batch processing 260

and CS_HAVE_BINDS command property 222
code example 346
common reasons for failure 340
and CS_DATAFMT structure 336
effect of CS_STICKY_BINDS property 234

ct_br_column 347, 348
when to call 21

ct_br_table 348, 350
when to call 21

ct_callback 350, 355
and layered applications 18

ct_cancel 355, 359
asynchronous behavior 11
callable when asynchronous operation pending 12
code example 359

CT_CANCEL completion ID 555, 624
ct_capability 295, 360, 369
ct_close 369, 372

asynchronous behavior 11
code example 372
common reason for failure 370

CT_CLOSE completion ID 555, 624
ct_cmd_alloc 372, 373

code example 373
reason for failure 373

ct_cmd_drop 373, 374, 381
code example 374
reasons for failure 374

ct_cmd_props 374, 381
callable when asynchronous operation pending 12
code example 379
when to use 379

ct_command 99, 389
code example 388

ct_compute_info 390, 393
code examples 393
when to call 392

ct_con_alloc 393, 395
code example 395
common reason for failure 394
what to do before calling it 394
when to use 373

ct_con_drop 395, 397
code example 397
common reason for failure 395
and dead connections 396

Index

686 Open Client

what to do before calling it 396
ct_con_props 397, 412

callable when asynchronous operation pending 12
code example 401

ct_config 412, 420
code example 415

ct_connect 420, 425
asynchronous behavior 12
code example 425
and CS_MAX_CONNECT property 423
and CS_NETIO property 423
and directory services 106
reasons for failure 421
what to do before calling it 423

CT_CONNECT completion ID 555, 624
ct_cursor 99, 425

code example 449
and CS_HAVE_CUROPEN property 224

ct_data_info 449, 453
ct_debug 453, 458

code example 458
default behavior 457

ct_describe 458, 464
code example 464
and CS_DATAFMT structure 459
when not to call 459, 464
when to use 464

ct_diag 464, 471
connection-specific inline message handling 468
deinstalls message callbacks 29
extended error data 471
not for use at the context level 125, 468
reasons for failure 465
sequenced messages 127, 471

ct_ds_dropobj 471, 472
ct_ds_lookup 472, 479
CT_DS_LOOKUP completion ID 555
ct_ds_objinfo 479, 485
ct_dynamic 99, 485, 492
ct_dyndesc 492, 502
ct_dynsqlda 502, 509
ct_exit 509, 512

code example 512
reason for failure 511
when to use 511

ct_fetch 512, 518

asynchronous behavior 12
asynchronous programming 516
code example 518
reason for failure 514

CT_FETCH completion ID 555, 624
ct_get_data 519, 523

alternative to ct_bind 343
asynchronous behavior 12
data can be discarded 523
fetching text or image values 296
no conversion performed 523
when to use 523

CT_GET_DATA completion ID 555, 624
ct_getformat 524, 525

when to use 525
ct_getloginfo 525, 526

when not to use 526
when to use 525

ct_init 527, 532
calling multiple times 531
code example 531
what to do before calling it 531
when to call it 531

ct_keydata 532, 534
circumstances for calling it 534
identifying the current row to a server 533
primary uses 533

ct_labels 534, 536
CT_NOTIFICATION completion ID 555
ct_options 536, 541

asynchronous behavior 12
CT_OPTIONS completion ID 555, 624
ct_param 99, 542, 552

code example 552
differences from ct_setparam 547
when to use 547

ct_poll 552, 559
callable when asynchronous operation pending 12
callbacks 559
and CS_ASYNC_NOTIFS property 559
and CS_DISABLE_POLL property 559
and layered applications 18
preventing report of routine completions 18
using to check for asynchronous completions 13
when to use 558

ct_recvpassthru 559, 560

Index

Client-Library/C Reference Manual 687

asynchronous behavior 12
CT_RECVPASSTHRU completion ID 555, 624
ct_remote_pwd 561, 563

defining multiple passwords 562
when not to use 563

ct_res_info 564, 570
when to use 567

ct_results 570, 580
and the CS_STICKY_BINDS property 580
asynchronous behavior 12
code example 580
processing results in a loop 576
and stored procedures 580

CT_RESULTS completion ID 555, 624
ct_scroll_fetch 581
ct_send 99, 590, 595

asynchronous behavior 12
code example 595
and CS_HAVE_CMD property 223
does not wait for server response 594

CT_SEND completion ID 555, 624
ct_send_data 595, 604

asynchronous behavior 12
sending partial updates 301
when to use 602

CT_SEND_DATA completion ID 555, 624
ct_sendpassthru 606, 607

asynchronous behavior 12
CT_SENDPASSTHRU completion ID 555, 624
ct_setloginfo 608, 609

frees the CS_LOGINFO structure 608
when not to use 608
when to use 608

ct_setparam 99, 609, 622
differences from ct_param 617

CT_USER_FUNC completion ID 555, 624
ct_wakeup 622, 625

and layered asynchronous applications 17
and CS_DISABLE_POLL property 625

ctpublic.h header file 137
cursor command types

CS_CURSOR_CLOSE 434
CS_CURSOR_DEALLOC 434
CS_CURSOR_DECLARE 433
CS_CURSOR_DELETE 434
CS_CURSOR_OPEN 434

CS_CURSOR_OPTION 433
CS_CURSOR_ROWS 434
CS_CURSOR_UPDATE 434

cursor commands
initiating 99

cursor ID property 216
cursor name property 217
cursor row results 252

fetching 518
processing 575

cursor rowcount property 217
cursor status

guaranteed accuracy 219
cursor status property 218
cursors

batching Client-Library cursor commands 445
Client-Library cursor close command 448
Client-Library cursor deallocate command 448
Client-Library cursor declare command 436
Client-Library cursor delete command 447
Client-Library cursor open command 442
Client-Library cursor rows command 442
Client-Library cursor update command 446
Client-Library cursors’ use of command structures

437
cursor rows setting 442
Declaring on prepared dynamic SQL statement

441
defining host variable formats 548
identifying update columns 548, 621
initiating a Client-Library cursor command 425
ldquoread-onlyldquo Client-Library cursors 440
opening 224
options 441
passing input parameter values 444, 548
repositioning a cursor row 533
restoring a cursor-open command 224
sending a Client-Library cursor command to a server

435
update columns 441
updating 446

D
data

Index

688 Open Client

associating user-allocated data with a command structure
245

associating user-allocated data with a connection
structure 245

binding table columns to program variables 335
defining user-allocated data 245
fetching 516
reading data from a server via ct_get_data 519
reading directly from connection stream 519
retrieving fetchable result items 516
user-defined datatypes 317

data format structure 83
data structure validation 457
datatypes

binary 308
bit 309
character 309
CS_BIGDATETIME 311, 313
CS_BIGINT 313
CS_BIGTIME 311, 313
CS_BINARY 308
CS_BIT 309
and cs_calc 308
CS_CHAR 310
and cs_cmp 308
and cs_convert 308
CS_DATE 311
CS_DATETIME 311
CS_DATETIME4 311
CS_DECIMAL 314
and cs_dt_crack 308
and cs_dt_info 308
CS_FLOAT 314
CS_IMAGE 316
CS_INT 313
CS_LONGBINARY 308
CS_LONGCHAR 310
CS_MONEY 315
CS_MONEY4 315
CS_NUMERIC 314
CS_REAL 313, 314
CS_SMALLINT 313
and cs_strcmp 308
CS_TEXT 316
CS_TIME 311
CS_TINYINT 313

CS_UBIGINT 313
CS_UINT 313
CS_UNICHAR 310
CS_UNITEXT 316
CS_VARBINARY 308
CS_VARCHAR 310
datetime 311
integer 312
list of 306
money 315
routines that manipulate datatypes 308
security 316
structure for describing 83
user-defined types 317
XML 311

Datatypes support
Sybase client/server datatypes 305

datetime datatypes 311
datetime types

CS_DATE 311
CS_TIME 311

DB-Library
definition of 4

dead connection 215
definition 216

debug
managing debug library operations 453

debug flags
CS_DBG_ALL 455
CS_DBG_API_STATES 455
CS_DBG_APISTATES 455
CS_DBG_ASYNC 455
CS_DBG_DIAG 455
CS_DBG_ERROR 455
CS_DBG_MEM 455
CS_DBG_NETWORK 455
CS_DBG_PROTOCOL 455
CS_DBG_PROTOCOL_STATES 455, 456
external configuration of 318

debug operations
CS_CLEAR_FLAG 457
CS_SET_DBG_FILE 457
CS_SET_FLAG 456
CS_SET_PROTOCOL_FILE 457

debugging 101
affect on asynchronous programs 458

Index

Client-Library/C Reference Manual 689

assertion checking 457
data structure validation 457
enabling with environment variables 101
impact on performance 458
memory reference checking 457
specifying debug files 457

decoding a message number 158
defncopy

messages 627, 643
deleting

key columns 533
describe results 254, 579
descriptor area

allocating 495
associating with a statement or command structure

499
deallocating 495
definition of 494
name must be unique within a context 494
performing operations on 492
retrieving a parameter or result item attributes

495
retrieving the number of parameters or columns

498
scope is a Client-Library context 494
setting a parameter’s attributes 498
setting the number of parameters or columns 499
use of command structures within a context 494

descriptor area operations
CS_ALLOC 493
CS_DEALLOC 493
CS_GETATTR 493
CS_GETCNT 493
CS_SETATTR 493
CS_SETCNT 493
CS_USE_DESC 493

descriptor structure
defining and retrieving 449

diagnostic subsystems
enabling and disabling 457

directory callback
defining 37
description of 36
example of 39
how triggered 24
installing 352

invocation sequence for 38
when called 24

directory schema file
location of 110

directory services
choosing 119
and ct_connect 106, 421
DCE 108, 112
and the interfaces file 103
locating entries 112
naming syntaxes for 107
overview of 103
related properties 115
software for 103
Windows Registry 109, 113

discarding results 357
danger of discarding results 358

dynamic SQL 364
initiating a prepared dynamic SQL statement

command 485
performing operations on a descriptor area 492
processing descriptive information 576
sending a command to a server 487

dynamic SQL commands
initiating 99

dynamic SQL operations
CS_CURSOR_DECLARE 486
CS_DEALLOC 486
CS_DESCRIBE_INPUT 486
CS_DESCRIBE_OUTPUT 486
CS_EXEC_IMMEDIATE 486
CS_EXECUTE 486
CS_PREPARE 487

E
Embedded SQL

comparing to Client-Library 7
encrypted password security handshakes 42, 284
encrypted passwords 39
encryption callback 39

defining 40
how triggered 24
installing 352
valid return values 41, 42

Index

690 Open Client

when called 24
error and message handling 122, 131

See also Inline message handling 464
and CS_CLIENTMSG structure 76
and CS_SERVERMSG structure 92
discussion of callbacks vs. inline method 123
extended error data 130
handling Client-Library errors with a client message

callback 29
handling server errors with a server message callback

51
message structures 125
on different connections 124
operating system messages 127
preventing message truncation 126
preventing message truncation with

CS_NO_TRUNCATE property 230
sequenced messages 126
server message information can be discarded 52
switching between callback and inline methods 124
using callbacks to handle messages 124
using ct_diag to handle messages inline 124
when Client-Library discards message information

124
error handling

timeouts 240
errors

timeout 240
events, callback

see callback 22
ex_ routines

finding in the sample programs xvi
EX_ symbols and datatypes

finding in the sample programs xvi
ex_alib.c sample program 132
ex_amain.c sample program 132
example.h header file 132
exasync.h header file 132
exconfig

sample program 132
execute immediate operation

criteria 492
exiting

Client-Library 509
expose formats property 221
exposed structures 72

CS_BROWSEDESC structure 72
CS_CLIENTMSG structure 72
CS_DATAFMT structure 72
CS_IODESC structure 72
CS_SERVERMSG structure 72
SQLCA structure 72
SQLCODE structure 72
SQLSTATE structure 72

exposing hidden keys 224
extended error data 128

benefits of 128
how to tell if available 129
inline error handling 129
sequenced messages 127
and server message callbacks 129

extended error data property 220
external configuration files

default file name 319
related properties 319
section names in 320, 321
setting capabilities in 330
setting properties in 325
setting server options in 328
specifying locale in 324
syntax for 321

extra information property 222
extracting the contents of a key column 532
exutils.c sample program 132
exutils.h header file 132

F
fetching

compute rows 518
cursor rows 518
data, using ct_get_data 519
regular rows 517
result data 512
return parameters 518
return status 518

fetching, scrollable cursor 581
firstapp

sample program 132
format information

precedes actual data 579

Index

Client-Library/C Reference Manual 691

processing 576
retrieving 459

format result set
description of 221

format results 254
CS_EXPOSE_FMTS must be enabled 579
returning a column’s user-defined format string

524
formats

defining host variable formats 549
describing data formats 83
expose formats property 221
using native formats for datetime, money, and

numeric values 145

G
gateway applications

and cursor information 219
handling encrypted passwords 39, 284
positioned updates and ct_keydata 533
repackaging Adaptive Server results 222
retrieving format information 579
returning a column’s user-defined format string

525
and TDS passthrough 526, 560, 607

getsend.c sample program 132
global properties

retrieving 412
setting 412

H
handshakes

challenge/response security 284
encrypted password security 39, 42, 284
trusted-user security 43

header files 136
csconfig.h 137
cspublic.h 137
cstypes.h 79, 137, 159
ctpublic.h 137
example.h 132
exasync.h 132

exutils.h 132
sqlca.h 137

hidden keys
and ct_describe 224
and ct_res_info 224
definition of 224

hidden keys property 224
hidden structures

CS_BLKDESC structure 73
CS_CAP_TYPE structure 73
CS_COMMAND structure 73
CS_CONNECTION structure 73
CS_CONTEXT structure 73
CS_LOCALE structure 73
CS_LOGINFO structure 73
list of 72
related routines 73

host name property 225
host variable

defining formats 549

I
I/O descriptor structure 88

and ct_data_info 452
and ct_send_data 452
defining and retrieving 449
how to use 452

i18n.c sample program 132
information types

CS_BROWSE_INFO 566
CS_CMD_NUMBER 566
CS_ISBROWSE 349
CS_MSGTYPE 566
CS_NUM_COMPUTES 566
CS_NUMDATA 566
CS_NUMORDERCOLS 566
CS_ORDERBY_COLS 566
CS_ROW_COUNT 566
CS_TABNAME 349
CS_TABNUM 349
CS_TRANS_STATE 566

initializing Client-Library 527
initiating

commands 98

Index

692 Open Client

initiating a prepared dynamic SQL statement command
485

inline message handling
advantages over callback routines 123
clearing a connection’s messages 469
Client-Library timeout errors 220
and CS_EXTRA_INF property 468
and ct_diag 464
ct_diag can discard unread messages 468
extended error data 130, 471
initializing 469
limiting messages 470
limiting messages with CS_NO_LIMIT 470
managing 464
retrieving a pointer to the CS_COMMAND structure

471
retrieving messages 469
retrieving the number of messages 470
sequenced messages 471

inline message handling operations
CS_CLEAR 466
CS_EED_CMD 467
CS_GET 467
CS_INIT 466
CS_MSGLIMIT 466
CS_STATUS 467

input parameter values
passing 550

integer datatypes 312
interfaces file

and ct_connect 225, 421
default file name 141
definition of 140
and directory services 103
interfaces file property 225
order of precedence 109

international support 145, 150
default behavior 148

interrupt level
memory requirements 16

interrupt-driven I/O
and system call failure 15

interrupts
examples of interrupt situations 232
preventing with CS_NOINTERRUPT property 232

isql

messages 627, 643

K
key columns

ct_fetch deletes values previously specified 534
exposing hidden keys 224
extracting the contents of 532
setting a column’s value to NULL 534
specifying 532
when updating, all key columns must be updated

534

L
language commands

and host variables 387
initiating 98, 386

language cursors
when regular row result sets are generated 387

languages
setting native 145

layered applications
and ct_wakeup 17
asynchronous programming 17
example 18

layered applications for asynchronous programming
and ct_callback 18
and ct_poll 18
preventing report of routine completions 17, 220

LDAP
connection types 104
defined 104
directory schema 110
ldapurl defined 109
libtcl*.cfg file 109

ldapurl
example 109
keywords 109

libtcl*.cfg
overriding 109

libtcl*.cfg file 109
order of precedence 109

libtcl.cfg file

Index

Client-Library/C Reference Manual 693

and directory drivers 119
and security drivers 264

literal statements
executing a dynamic SQL literal statement 492

locale information 145
locale information property 226
locale name

predefined 150
locales file

entries 149
predefined locale names 150
what it does 149

localization
at the connection level 147
at the context level 147
and cs_config 226
and cs_locale 150
CS_LOCALE structure 145
and ct_con_props 226
at the data element level 148
default values 145
inheriting values from the parent context 147
setting custom values 145
where Client-Library looks for values 148

logging into a server 420
login name

defining 247
login properties 188

copying to new connection 191, 526, 609
login response information

transferring 525, 608
login status property 226
login timeout property 226

M
macros

CS_CLR_CAPMASK 72
CS_LAYER 79
CS_NUMBER 79
CS_ORIGIN 79
CS_SET_CAPMASK 72
CS_SEVERITY 79
CS_TST_CAPMASK 72
definition of 158

Open Client macros 150
SQLDA_DECL 504
SYB_SQLDA_SIZE 504

mainline code
retrieving transaction states 130
sharing information with callback routine 245

malloc
not safe at interrupt level 16

maximum number of connections property 227
memory allocation

installing custom memory allocation routines 17
memory allocation property 243
memory free property 245
memory pool

clearing with ct_config 229
replacing with ct_config 229

memory pool property 228
memory reference checking 457
memory requirements

for asynchronous programming 16
how Client-Library satisfies 17
on UNIX systems 229

message command identifiers 387
message commands

initiating 98, 387
purpose 387
valid range for user-defined messages 387

message ID
retrieving a message ID 568

message number
decoding 158

message parameters 252
fetching 518

message results 254, 579
processing 576

message severities
CS_SV_API_FAIL 77, 81
CS_SV_COMM_FAIL 77, 81
CS_SV_CONFIG_FAIL 77, 80
CS_SV_FATAL 77, 81
CS_SV_INFORM 77, 80
CS_SV_INTERNAL_FAIL 77, 81
CS_SV_RESOURCE_FAIL 77, 81
CS_SV_RETRY_FAIL 77, 81

messages
see also error and message handling 122

Index

694 Open Client

bcp 627, 643
chunked 126
defncopy 627, 643
isql 627, 643
sequenced 126

money datatypes 315
multithrd

sample program 133
multi-user updates

regulating in browse mode 20

N
native language support 145
negotiated properties 188
negotiation callback 43

challenge/response security handshakes 43
defining 44
how triggered 25
installing 352
trusted-user security handshakes 43
valid return values 46
when called 25

Net-Library 4
network I/O property 229

restrictions 230
no interrupt property 232
notification callback 46

Client-Library routines it can call 47
defining 47
how triggered 25
installing 352
valid return value 47
when called 25

notification callback event
when it occurs 23

O
objectid.dat file

and security drivers 265
Open Client

application developer responsibilities 294
connection migration 101

debugging 101
description of product 3
generic programming interface 293
independent of server behavior 293
library calls diagrammed 5
macros 158
network services 3
programming interfaces 3
servers it accesses 293

Open Server
description of 4
differences from Adaptive Server 3
library calls diagram 5
network services 4
programming interfaces 4
restrictions 294
similarities to Adaptive Server 2

operating system messages
not sequenced 127

operating-system signals
handling with a signal callback 55

operator
sizeof 159

options
Adaptive Server 180
checking the status of server options 541
CS_OPT_ANSINULL 181
CS_OPT_ANSIPERM 181
CS_OPT_ARITHABORT 181
CS_OPT_ARITHIGNORE 182
CS_OPT_AUTHOFF 182
CS_OPT_AUTHON 182
CS_OPT_CHAINXACTS 182
CS_OPT_CURCLOSEONXACT 182
CS_OPT_DATEFIRST 182
CS_OPT_DATEFORMAT 182
CS_OPT_FIPSFLAG 182
CS_OPT_FORCEPLAN 182
CS_OPT_FORMATONLY 183
CS_OPT_HIDE_VCC 183
CS_OPT_IDENTITYOFF 183
CS_OPT_IDENTITYON 183
CS_OPT_ISOLATION 183
CS_OPT_NOCOUNT 183
CS_OPT_NOEXEC 183
CS_OPT_PARSEONLY 183

Index

Client-Library/C Reference Manual 695

CS_OPT_QUOTED_IDENT 183
CS_OPT_RESTREES 184
CS_OPT_ROWCOUNT 184
CS_OPT_SHOW_VI 184
CS_OPT_SHOWPLAN 184
CS_OPT_STATS_IO 185
CS_OPT_STATS_TIME 185
CS_OPT_STR_RTRUNC 185
CS_OPT_TEXTSIZE 186
CS_OPT_TRUNCIGNORE 186
external configuration of 318
server options set per-connection 541
setting and retrieving server options 536

P
package commands

initiating 98, 387
purpose 387

packets
default packet sizes vary by platform 560
receiving TDS packets 559

parameter results 252
binding to program variables 336

parameters
conversion of datatypes 548, 618
defining 542
defining parameters for a command 99
passing input parameter values 550
passing NULL values 550

partial updates
ct_send_data 301
handling unitext data 302

partial updates to text and image data 301
password encryption handler

default 40
for custom encryption techniques 40
for gateway applications 40

passwords
default password for remote server 563
defining and clearing for remote servers 561
storing remote passwords 563

pending results 577
polling

connections 552

disabling 220
prepared statements

associated with unique identifiers 488
command structures must belong to same connection

488
deallocating 492
declaring a cursor on 489
definition 488
executing 491
getting a description of input parameters 489
getting a description of output from 490
how to specify host variables in Transact-SQL

commands 488
initiating a dynamic SQL statement command 485
preparing a statement 488

processing results 570
See also Results 570

programming
See Also Asynchronous programming 10
asynchronous 10, 19

programs
example 131

properties 187, 248
Client-Library-specific context properties 415
command structure properties 374
compared to server options 187
connection structure properties 397
context structure properties 412
copying login properties 191
CS_ANSI_BINDS 192, 326, 401, 415
CS_APPNAME 192, 326, 401
CS_ASYNC_NOTIFS 192, 326, 401
CS_BULK_LOGIN 192, 326, 401
CS_CHARSETCNV 192, 402
CS_COMMBLOCK 193, 402
CS_CON_KEEPALIVE 402
CS_CON_STATUS 193, 402
CS_CON_TCP_NODELAY 402
and cs_config 188
CS_CONFIG_BY_SERVERNAME 194, 403
CS_CONFIG_FILE 194, 403
CS_CONNECTED_ADDR 193, 402
CS_CUR_ID 194, 380
CS_CUR_NAME 194, 380
CS_CUR_ROWCOUNT 195, 380
CS_CUR_STATUS 195, 380

Index

696 Open Client

CS_DIAG_TIMEOUT 195, 326, 403
CS_DISABLE_POLL 195, 326, 403, 415
CS_DS_COPY 195, 326
CS_DS_DITBASE 196, 326
CS_DS_EXPANDALIAS 196
CS_DS_FAILOVER 196, 326
CS_DS_PASSWORD 196, 326
CS_DS_PRINCIPAL 197, 326
CS_DS_PROVIDER 197, 326
CS_DS_SEARCH 197
CS_DS_SIZELIMIT 197
CS_DS_TIMELIMIT 198
CS_EED_CMD 198, 405
CS_ENDPOINT 198, 405
CS_EXPOSE_FMTS 198, 326, 405, 416
CS_EXTENDED_ENCRYPT_CB 405
CS_EXTERNAL_CONFIG 199, 405, 416
CS_EXTRA_INF 199, 326, 327, 406, 416
CS_HAVE_BINDS 199, 380
CS_HAVE_BINDS (detailed description) 222
CS_HAVE_CMD 199, 223, 380
CS_HAVE_CUROPEN 200, 380
CS_HIDDEN_KEYS 200, 326, 380, 406, 416
CS_HOSTNAME 200, 326, 406
CS_IFILE 200, 326, 416
CS_LOC_PROP 200, 406
CS_LOGIN_STATUS 200, 406
CS_LOGIN_TIMEOUT 200, 326, 416
CS_LOOP_DELAY 326
CS_MAX_CONNECT 201, 326, 416
CS_MEM_POOL 201, 416
CS_NETIO 201, 326, 406, 416
CS_NO_TRUNCATE 201, 326, 416
CS_NOAPICHK 202, 326, 417
CS_NOCHARSETCNV_REQD 202, 406
CS_NOINTERRUPT 202, 327, 417
CS_NOTIF_CMD 202, 407
CS_PACKETSIZE 203, 327, 407
CS_PARENT_HANDLE 203, 380, 407
CS_PARTIAL_TEXT 203, 407, 417
CS_PASSWORD 203, 204, 327, 407
CS_PROP_APPLICATION_SPID 204, 407
CS_PROP_EXTENDEDFAILOVER 204
CS_PROP_MIGRATABLE 204, 407, 417
CS_RETRY_COUNT 205, 327
CS_SEC_APPDEFINED 205, 327, 408

CS_SEC_CHALLENGE 205, 327, 408
CS_SEC_CHANBIND 327
CS_SEC_CONFIDENTIALITY 327
CS_SEC_CREDTIMEOUT 327
CS_SEC_DATAORIGIN 327
CS_SEC_DELEGATION 327
CS_SEC_DETECTREPLAY 327
CS_SEC_DETECTSEQ 327
CS_SEC_ENCRYPTION 207, 327, 409
CS_SEC_EXTENDED_ENCRYPTION 410
CS_SEC_INTEGRITY 327
CS_SEC_KEYTAB 327
CS_SEC_MECHANISM 327
CS_SEC_MUTUALAUTH 327
CS_SEC_NEGOTIATE 208, 410
CS_SEC_NETWORKAUTH 327
CS_SEC_NON_ENCRYPTION_RETRY 410
CS_SEC_SERVERPRINCIPAL 327
CS_SEC_SESSTIMEOUT 328
CS_SENDDATA_NOCMD 209, 411
CS_SERVERADDR 209, 411
CS_SERVERNAME 209, 411
CS_STICKY_BINDS 210, 234, 381
CS_TCP_RCVBUF 419
CS_TCP_SND 419
CS_TDS_VERSION 210, 328, 412
CS_TEXTLIMIT 210, 328, 412, 419
CS_TIMEOUT 210, 328, 419
CS_TRANSACTION_NAME 210, 412
CS_USER_ALLOC 210, 420
CS_USER_FREE 211, 420
CS_USERDATA 211, 381, 412
CS_USERNAME 211, 328, 412
CS_VER_STRING 211, 247, 420
CS_VERSION 211, 247, 420
CS-Library-specific context properties 415
and ct_cmd_props 188
and ct_con_props 188
and ct_config 188
default values 189
external configuration of 318
list of 191
login properties 188
negotiated properties 188
Server-Library-specific context properties 415
setting and retrieving properties 188

Index

Client-Library/C Reference Manual 697

summary of 191
types of context properties 189, 415

PROTOTYPE macro
explanation of 159
using 159

R
reading data from server 519
registered procedures 248, 251

advantages of 249
asynchronous notifications property 212
and CS_ASYNC_NOTIFS property 250
explanation of 248
handling notifications 46
installing a notification callback 352
notification callbacks 46
polling for notifications 552
retrieving arguments 46
what happens when notification is received 250

regular row results 252
fetching 518
processing 575

remote procedure calls
initiating 388
processing results 388
purpose 388
server-to-server communication 562

request capabilities 361
requests

determining supported request types 70
response capabilities 361
responses

preventing server responses 70
restrictions

Adaptive Server 294
Open Server 294
server 293

result data
definition of 516, 575, 590
getting a description of 458
retrieving the number of result data items 569

result item
different ways to retrieve its value 256

result types

CS_CMD_DONE 571
CS_CMD_FAIL 571
CS_CMD_SUCCEED 571
CS_COMPUTE_RESULT 392, 571
CS_COMPUTEFMT_RESULT 572
CS_CURSOR_RESULT 571
CS_DESCRIBE_RESULT 572
CS_MSG_RESULT 572
CS_PARAM_RESULT 21, 571
CS_ROW_RESULT 571
CS_ROWFMT_RESULT 572
CS_STATUS_RESULT 571

results 251, 260
binding results to program variables 335
canceling results 355, 578
code fragment demonstrating how to process 255
completely processed 577
compute format results 579
compute row results 253
conversion error during retrieval 517
CS_COMPUTE_RESULT 517
CS_CURSOR_RESULT 517
CS_PARAM_RESULT 517
CS_ROW_RESULT 517
CS_STATUS_RESULT 517
ct_results loop 576
current result set information 564
cursor row results 252
dangers of discarding results 358
definition of 252, 516
describe results 254, 579
discarding 357
fetching 512
format results 254
list of result types 251
message results 254, 579
not generated by all commands 252
parameter results 252
pending results 577
processing 252, 570
processing with ct_fetch 517
regular row results 252
retrieving the command number for the current result

set 567
returning a column’s user-defined format string

524

Index

698 Open Client

row format results 579
row results 252
status results 253
types of 252, 517

retrieving
capabilities 71
column IDs of order-by columns 569
columns 519
command number for current result set 567
command structure information 374
compute columns 519
compute result information 390
current result set or command information 564
current server transaction state 570
data, using ct_get_data 519
description of result data 458
message ID 568
number of columns in an order-by clause 569
number of compute clauses 568
number of result data items 568
number of rows for current command 569
return parameters 519
server options 536
transaction states in a server message callback 131
transaction states in mainline code 130
user-defined formats of result columns 524

return parameters
fetching 518
processing 576
retrieving descriptions of 459
retrieving return parameters 519

return status
binding to a program variable 336
fetching 518
retrieving a stored procedure return status 519

row format results 579
row results 252
rows

number of rows affected by most recent command
222, 569

RPC command
initiating 98

rpc.c sample program 133

S
S_UPDATECOL bits 461
sample programs

exconfig 132
firstapp 132
multithrd 133
secct_dec 133
secct_krb 133

scrollable cursors, fetching 581
scrolling rows

browse mode method 19
SDC

see Shared Disk Cluster 279
secct_dec

sample program 133
secct_krb

sample program 133
secure Adaptive Server

challenge/response security handshakes 284
handling challenges 43
handling security labels 43
trusted-user security handshakes 536

security
CyberSafe 263
datatypes 316
DCE 263
drivers 263
mechanisms 263
network-based 262
overview 261

security labels
defining and clearing 534
unlimited number per connection 536

security session
direct 49
explanation of 49

security session callback
defining 50
explanation of 48
how triggered 25
installing 352
when called 25

select...for browse command 20
select-list column ID

retrieving for a compute column 392
send-bulk-data commands

Index

Client-Library/C Reference Manual 699

initiating 388
send-data commands

initiating 98, 388, 595
require a CS_IODESC structure 602

sending commands to a server 99
sequenced messages 126

and ct_diag 128
extended error data 127
message structure fields 127

server
behavior 293
connecting to a server 395
options, list of 180
options, setting and retrieving 536
restrictions 293

server message callback 51
Client-Library routines it can call 52
defining 52
example 53
extended error data 129, 220
how triggered 25
installing 352
retrieving transaction states 131
valid return value 52
when called 25

server messages 123
extended error data 128
mapping to SQLCODE structure 96

server options
configuring externally 318

servers
closing a server connection 369
connecting to 420
defining and clearing passwords 561
interfaces file 225
reading data from a server 519
transaction states 130
types of servers 2
what they do 1

server-to-server connections
default passwords 563
defining and clearing passwords 561
storing remote passwords 563

setting
capabilities 71
server options 536

Shared Disk Cluster
certificate validation 279

signal callback 55
defining 56
how triggered 26
installing 56, 352
when called 26

sizeof operator 159
SQLCA structure 72, 295

and CS_EXTRA_INF property 126
no support for sequenced messages 127

sqlca.h header file 137
SQLCA_TYPE structure type 465
SQLCODE structure 72, 96

and CS_EXTRA_INF property 126
mapping Client-Library messages to 96
mapping server messages to 96
no support for sequenced messages 127

SQLCODE_TYPE structure type 465
SQLDA structure 503

allocation of 504
definition of 503

SQLDA_DECL marker 504
SQLSTATE structure 73, 97

and CS_EXTRA_INF property 126
no support for sequenced messages 127

SQLSTATE_TYPE structure type 465
SSL validation callback

how triggered 26
installing 352
when called 26

SSL validation callbacks 57
defining 57
example 58

status result 253
stored procedure results

return parameter 252
return status 253

stored procedures
and ct_results 580
fetching return parameters 518
retrieving description of return status 459
retrieving return status 519
return status processing 576
run-time errors 580

structures 73, 97

Index

700 Open Client

CS_BROWSEDESC structure 74
CS_CAP_TYPE structure, manipulating bits 158
CS_CLIENTMSG structure 76
CS_DATAFMT structure 83
CS_IODESC structure 88
CS_SERVERMSG structure 91
hidden and exposed 72
parent structure property 233
SQLCA structure 94
SQLCODE structure 96
SQLDA 503
SQLSTATE structure 97

SYB_SQLDA _SIZE macro, defined 504
symbols

CS_CONSTAT_CONNECTED 216
CS_CONSTAT_DEAD 216
CS_CURSTAT_CLOSED 219
CS_CURSTAT_DECLARED 219
CS_CURSTAT_NONE 218
CS_CURSTAT_OPEN 219
CS_CURSTAT_RDONLY 219
CS_CURSTAT_ROWCOUNT 219
CS_CURSTAT_UPDATABLE 219
CS_FIRST_CHUNK 78, 94
CS_FMT_NULLTERM 85
CS_FMT_PADBLANK 85
CS_FMT_PADNULL 85
CS_FMT_UNUSED 85
CS_HASEED 94
CS_LAST_CHUNK 78, 94
CS_SCROLL_INSENSITIVE 219
NOSCROLL_INSENSITIVE 219
SCROLL_CURSOR 219
SCROLL_SEMISENSITIVE 219

system call failures due to interrupt-driven I/O 15

T
TDS (Tabular Data Stream)

changing a connection’s TDS version level 71
connection’s default version level 71
default packet sizes vary by platform 607
determining capabilities 368
negotiating a TDS format 526, 609
packet marked as End of Message (EOM) 560

packet size property 233
passthrough operation 526, 559, 609
receiving a TDS packet 559
sending a TDS packet to a server 606
TDS version property 236, 237
transferring login response information 525, 608

TDS version property
CS_TDS_40 value 239, 328
CS_TDS_42 value 239, 328
CS_TDS_46 value 239, 328
CS_TDS_50 value 239, 328

testing for 215
text and image 73, 305

and CS_TEXTSIZE_OPT option 239
and CS_IODESC structure 88, 452
describing text and image data 88
determining length of value before retrieving it

523
inserting text and image values 299
limiting text and image values 239
reading data for later update 523
retrieving a text or image column 296
retrieving large values with ct_get_data 523
send-data commands 388
sending chunks of data to the server 595
storing text and image data 295
text and image limit property 239
text timestamp 295
updating a text or image column 297, 603
using ct_get_data to fetch text or image values 296

text timestamp 295
@@textcolid global variable 303
@@textdbid global variable 303
@@textobjid global variable 303
@@textptr global variable 303
@@texttts global variable 303
timeout errors

handling 240
timeouts

and asynchronous connections 227
default value 240
login timeout property 226
timeout property 239

timestamp column
used for browse mode 19

tracing diagnostic information 457

Index

Client-Library/C Reference Manual 701

transaction name property 243
transaction states 130

CS_TRAN_COMPLETED 130
CS_TRAN_FAIL 130
CS_TRAN_IN_PROGRESS 130
CS_TRAN_STMT_FAIL 130
CS_TRAN_UNDEFINED 130
retrieving in a server message callback 131
retrieving in mainline code 130
retrieving the current server transaction state 570
when information is available 131

Transact-SQL commands 386
triggering callbacks 23
trusted-user security handshakes

and CS_SEC_NEGOTIATE property 536
security labels 536

typedefs
Open Client 308

types 305, 318
See also Datatypes 305

U
unichar datatype 64

capabilities 65
isql and bcp utilities 66
limitations 67

unitext data
handling in partial updates 302

unitext datatype 67
capabilities 67
isql and bcp utilities 68
limitations 68

update columns
identifying 548, 621

updating
key columns 533
text or image columns 297

usedir.c sample program 133, 134
user allocation function property 243
user data property 245
user free function property 245
user name property 246
user-allocated data

and cs_config 245

defining 245
user-defined datatypes 317
user-defined formats

retrieving 524
user-defined memory routine

clearing 244
replacing with ct_config 244

user-supplied memory free routine
identifying 245

V
variables

binding results to program variables 335
defining host variable formats 549

version
Client-Library 531
Client-Library version property 247
Client-Library version string property 247
determining the value of the CS_VERSION property

531
version numbers

setting 527

X
XML datatype 311
xml datatype 69

capabilities 69
isql and bcp utilities 69
limitations 69

Index

702 Open Client

	Client-Library/C Reference Manual
	About This Book
	CHAPTER 1 Introducing Client-Library
	Sybase client/server architecture
	Types of clients
	Types of servers

	Open Client and Open Server products
	Open Client
	Open Server
	Shared common libraries
	CS-Library
	Bulk-Library

	Client-Library is a generic interface
	Comparing the library approach to Embedded SQL

	What an application developer needs to know
	Programming interfaces
	Getting started

	CHAPTER 2 Client-Library Topics
	Asynchronous programming
	Asynchronous applications
	Asynchronous routines
	The CS_BUSY return code
	Completions
	Deferred asynchronous completions
	Fully asynchronous completions

	Client-Library’s interrupt-level memory requirements
	Layered applications
	Using ct_wakeup and CS_DISABLE_POLL
	An example

	Browse mode
	Using Browse mode
	The Browse mode where clause
	Browse mode conditions

	Callbacks
	Callback types
	Callbacks are not always supported
	Installing a callback routine
	When a callback event occurs
	Retrieving and replacing callback routines
	Restrictions on Client-Library calls in callbacks
	Declaring callbacks with CS_PUBLIC
	Client message callbacks
	Defining a client message callback
	Client message callback example

	Completion callbacks
	Defining a completion callback

	Directory callbacks
	Defining a directory callback
	Directory search results processing
	Callback invocation sequence
	Directory callback example

	Encryption callbacks
	Defining an encryption callback

	Negotiation callbacks
	Challenge/response security handshakes
	Defining a negotiation callback

	Notification callbacks
	Defining a notification callback
	Retrieving notification parameters

	Security session callbacks
	Establishing a direct security session
	Defining a security session callback

	Server message callbacks
	Defining a server message callback
	Server message callback example
	Handling specific messages

	Signal callbacks
	Defining a signal callback
	Installing a signal callback

	SSL validation callbacks
	Defining an SSL validation callback
	SSL validation callback example

	Capabilities
	Wide tables and larger page size
	Page size
	Wide tables

	unichar datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	unitext datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	xml datatype
	Datatypes and capabilities
	isql and bcp utilities
	Limitations

	Capabilities and the connection’s TDS level
	Setting and retrieving capabilities
	Setting and retrieving multiple capabilities

	Client-Library and SQL Structures
	Exposed and hidden structures
	Exposed structures
	Hidden structures

	CS_BROWSEDESC structure
	CS_CLIENTMSG structure
	Client-Library message numbers

	CS_DATAFMT structure
	CS_IODESC structure
	CS_OID structure
	Encoding of object identifiers
	Definition of the CS_OID structure
	Using predefined OID strings

	CS_SERVERMSG structure
	SQLCA structure
	SQLCODE structure
	Mapping server messages to SQLCODE
	Mapping Client-Library messages to SQLCODE

	SQLSTATE structure

	Commands
	Sending commands
	Initiating a command
	Defining parameters for a command
	Sending a command
	Resending a command

	Deciding which type of command to use

	Connection migration
	Debugging
	Enabling debugging

	Directory services
	Directory service providers and drivers
	Network-based directory services

	LDAP
	OpenLDAP
	SSL/TLS
	LDAP Directory Server lookup time limit
	LDAP for Microsoft Active Directory

	Use of the directory by applications
	Directory organization
	Directory entry name formats
	Name syntax for DCE CDS
	Name syntax for Windows Registry
	Name syntax for LDAP directory services
	Name syntax for the Interfaces file
	Locating entries with a DIT base
	Viewing directory entries
	Directory objects
	Properties for directory services

	Error handling
	Error reporting during initialization
	cs_ctx_alloc and cs_ctx_global
	ct_init

	Error and message handling
	Two methods of handling messages
	Using callbacks to handle messages
	Inline message handling
	Client-Library message structures

	The CS_EXTRA_INF property
	Sequencing long messages
	Message structure fields for sequenced messages
	Sequenced messages and extended error data
	Sequenced messages and ct_diag

	Extended error data
	Uses for extended error data
	Retrieving extended error data
	Server message callbacks and extended error data
	Inline error handling and extended error data

	Server transaction states
	Retrieving transaction states in mainline code
	Retrieving transaction states in a server message callback

	Sample programs
	Client-Library routines in sample programs

	Header files
	High-availability failover
	Add hafailover line to interfaces file
	Client-Library application changes
	Using isql with Sybase Failover

	Interfaces file
	Overview of Interfaces file entries
	Server objects from the Interfaces file

	International Support
	When an application needs to use a CS_LOCALE structure
	Using a CS_LOCALE structure
	Context-level localization
	Connection-level localization
	Data-element level localization

	Locating localization information
	The locales file
	Locales file entries
	cs_locale and the locales file

	Large objects as stored procedure parameters
	Sending small amounts of LOB data as parameters
	Sending large amounts of LOB data as parameters

	Macros
	Decoding a message number
	Manipulating bits in a CS_CAP_TYPE structure
	Using the sizeof operator
	Prototyping functions

	Multithreaded applications: signal handling
	Basic concepts
	Signal handling in nonthreaded environments
	Types of signals
	Signal handlers
	Signal masking
	Signal delivery
	Using sigwait to handle asynchronous signals
	Special Sybase signal handlers
	SIGTRAP signal
	Using Sun’s ALARM and SETITIMER routines

	Multithreaded programming
	What is a thread
	Benefits of multiple threads
	Types of threads
	Write thread-safe code
	Serializing access to shared data and shared resources
	Synchronizing dependent actions
	Calling thread-unsafe system routines
	Avoiding deadlock
	Client-Library restrictions for multithreaded programs
	Calling context-level routines
	Context initialization and cleanup
	CS-Library error handling

	Calling connection-level routines
	Using CS_LOCALE structures
	Coding thread-safe callback routines
	Threads and fully asynchronous mode
	Multithreaded programming models for Client-Library
	One-thread, one-connection model
	Worker-thread model
	Other thread models

	Options
	Setting options externally

	Parameters
	Batched parameters
	Rebinding using ct_setparam

	Properties
	Comparing properties, options, and capabilities
	Login properties
	Setting and retrieving properties
	Three kinds of context properties
	Checking whether a property is supported
	Copying login properties
	Setting properties externally
	Properties quick reference table
	About the properties
	ANSI-style binds
	Application name
	Asynchronous notifications
	Bulk copy operations
	Character set conversion
	Communications session block
	Connection status
	Configure by server name
	Configuration file name
	Connection migration
	Cursor ID
	Cursor name
	Cursor rowcount
	Cursor status
	Diagnostic timeout fail
	Disable poll
	Directory service properties
	Extended error data command structure
	Extended failover
	Endpoint polling
	Expose formats
	External configuration
	Extra information
	Have bindings
	Have resendable command
	Have restorable cursor-open command
	Hidden keys
	Host name
	Location of the interfaces file
	Locale information
	Login status
	Login timeout
	Loop delay
	Login redirection
	Maximum number of connections
	Memory pool
	Network I/O
	No truncate
	No API checking
	No character conversion required
	No interrupt
	Packet size
	Parent structure
	Partial updates to text and image data
	Password
	Persistent result bindings
	Retry count
	Security properties
	Server name
	TCP socket buffer size configuration
	TDS version
	Text and image limit
	Timeout
	Transaction name
	User allocation function
	User free function
	User data
	User name
	Version string for Client-Library
	Version of Client-Library

	Registered procedures
	When Client-Library receives a notification
	Receiving notifications asynchronously
	Finding out about notifications

	Results
	Regular row results
	Cursor row results
	Parameter results
	Stored procedure return status results
	Compute row results
	Message results
	Describe results
	Format results
	Program structure for processing results
	Retrieving an item’s value
	Keeping result bindings for batch processing
	Selecting multiple rows of variable length data into an array

	Security features
	Network-based security
	Security mechanisms and security drivers
	Choosing a network security mechanism
	Requesting network security services

	Secure Sockets Layer in Open Client and Open Server
	Internet communications overview
	Public-key cryptography

	SSL overview
	SSL handshake
	SSL in Open Client and Open Server
	SSL filter
	Validating the server by its certificate
	The trusted roots file
	Obtaining a certificate

	Adaptive Server Enterprise security features
	Security handshaking: Challenge/Response
	Security handshaking: encrypted password

	Server directory object
	Use of the server directory object
	Contents of the server directory object
	Format of object attributes
	List of attributes
	Server entry version
	Server name attribute
	Service description
	Server status
	Transport address
	Security mechanisms

	Server objects from the interfaces file

	Server restrictions
	Open Server restrictions
	Adaptive Server Enterprise restrictions
	Supported client/server features

	text and image data handling
	Retrieving a text or image column
	Using ct_get_data to fetch text and image values

	Updating a text or image column
	Retrieving the I/O descriptor settings
	Sending the new column value
	Partial updates to text and image data

	Populating a table containing text or image columns
	Smaller text and image values
	Larger text and image values

	Server global variables for text and image updates
	Using global variables to update a text or image column

	Datatypes support
	Datatype summary
	Routines that manipulate datatypes
	Open Client datatypes
	Binary types
	Bit types
	Character types
	XML type
	Datetime types
	Integer types
	Real, float, numeric, and decimal types
	Money types
	Text and image types
	LOB locator datatypes

	Open Client user-defined datatypes

	Using the runtime configuration file
	Enabling external configuration
	Open Client and Open Server runtime configuration file syntax
	Runtime configuration file keywords
	Keywords for localization
	Keywords for context or connection properties
	Keywords for server options
	Keywords for server capabilities
	Keywords that set properties exclusively
	Keywords for ct_debug options

	CHAPTER 3 Routines
	ct_bind
	ct_br_column
	ct_br_table
	ct_callback
	ct_cancel
	ct_capability
	ct_close
	ct_cmd_alloc
	ct_cmd_drop
	ct_cmd_props
	ct_command
	ct_compute_info
	ct_con_alloc
	ct_con_drop
	ct_con_props
	ct_config
	ct_connect
	ct_cursor
	ct_data_info
	ct_debug
	ct_describe
	ct_diag
	ct_ds_dropobj
	ct_ds_lookup
	ct_ds_objinfo
	ct_dynamic
	ct_dyndesc
	ct_dynsqlda
	ct_exit
	ct_fetch
	ct_get_data
	ct_getformat
	ct_getloginfo
	ct_init
	ct_keydata
	ct_labels
	ct_options
	ct_param
	ct_poll
	ct_recvpassthru
	ct_remote_pwd
	ct_res_info
	ct_results
	ct_scroll_fetch
	ct_send
	ct_send_data
	ct_send_params
	ct_sendpassthru
	ct_setloginfo
	ct_setparam
	ct_wakeup

	APPENDIX A Internationalization Library Messages
	INTE_NOVAL
	INTE_NOENTRY
	INTE_OFLOW
	INTE_ENTRYOF
	INTE_ODDHEX
	INTE_BADFILE
	INTE_BADLOC
	INTE_NOCOM
	INTE_BADFFMT
	INTE_BADVER
	INTE_BADPH
	INTE_BADTYPE
	INTE_SPECOF
	INTE_NOCUST
	INTE_BADFMTSTR
	INTE_INVALBUF
	INTE_NEGBUFLEN
	INTE_INVALCS
	INTE_BADLFNM
	INTE_INVALTEXT
	INTE_INVALSRC
	INTE_INVALPTR
	INTE_BADNSTARS
	INTE_MONTHS
	INTE_SMONTHS
	INTE_DAYS
	INTE_PATHOF
	INTE_LTLONG
	INTE_DUPDF
	INTE_BADSECT
	INTE_FOPEN
	INTE_FCLOSE
	INTE_FREAD
	INTE_NOSYB
	INTE_FINFO
	INTE_NOMEM

	APPENDIX B SSL Error Messages
	1: Vendor Call Fail
	3: Memory Allocation Fail
	6: Bad Pointer
	60: SSL Master Context Initialization fail
	61: Setting Partial I/O fails
	62: Setting SSL protocol version fails
	63: Create random number generator fails
	64: Initialize random number generator fails
	65: Generate entropy for the random number generator fails
	69: Could not duplicate context
	70: Could not create child SSL/TLS context
	71: Could not get protocol version
	72: Unknown protocol version
	73: Unknown cipher
	74: Setting cipher suites fails
	75: Load local identity property fail
	76: Load or read certification authority file fail
	77: Cannot get peer’s certificate information
	78: Cannot get peer’s certificate
	81: Cannot set certificate reference
	84: SSL handshake failed
	85: Cannot set SSL to server side
	86: Cannot set SSL to client side
	87: Cannot get the SSL endpoint information
	88: Cannot get SSL context information
	89: Read error
	90: Write error
	91: Cannot get the count of remote certificate’s DN fields
	92: Cannot extract Distinguished Name information
	93: Cannot get the count of remote certificate’s extensions
	94: Cannot extract extension information
	95: Cannot get client certificate

	Glossary
	Index

