SYBASE

Company

DB-Library™/C Reference Manual

Open Client™
15.7

DOCUMENT ID: DC32600-01-1570-01
LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http:/www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N o o 10 L A I g =T o Yo TR SRO XiX
CHAPTER 1 Introducing DB-Library ... 1
Client/server arChiteCturecceoeiiiiie it 1
TYPES Of CIENLS evvviiiiiieie e 2
TYPES Of SEIVEIS ...vvii ettt 2
The Open Client and Open Server products........ccccceeeviciivieeeeeeenns 3
(0] 01=] 0 1 @1 1= 0 | SRR 3
OPEN SEIVEN ... 4
Open Client HBraries i 4
What is in DB-Library/C?cccooviiiiiiiiiiiiiiiiiiee e 4
Comparing the library approach to Embedded SQL 5
Data structures for communicating with serversccocccvvveeeeennn. 6
DB-Library/C programmingcceeeeiriiiieiireeenniiieeeeee e esniiineeeeeens 6
DB-Library/C datatypesc.uuveeeeeiiiiiiiiiiee e eeeiiveeee e e 11
DB-Library/C rOULINEScciiiciiiiiiie et 12
INILALIZALION.....eii i 13
CommaNd PrOCESSING ...uvveeeeiiiiiiiieieeeeeeeiiirereeeeeesserreeeeeeeanns 15
RESUILS PrOCESSING ..oieeeiiiiiiiiiiie et 16
Message and error handling............ccccovvveeei i, 22
Information retrieval..........cccovviiiiiee i 24
BrowSe MOUEevviiiiiiie it 26
Text and image handling ..., 28
Datatype CONVEISION.......cciuvvviiiieeeeeeiiiiiieee e 29
Process control flOWccoveiiiiii i 30
Remote procedure call proCesSingceevvvrvireerieeesiiniiennen 30
Registered procedure call processingcccvvveerieeesiiivvnnenn. 31
Gateway passthrough routines............ccccvvveeeie e 33
Datetime and MONEYcccuvvviieeeeiiiiiiieee e e e esirere e e e e e e seenees 34
ClEANUP ...ttt e e e e e e e s annes 35
SECUMNE SUPPOI cceeeeeeeeeeeeeeee e 35
Miscellaneous FOULINESeeeiiuiiee e 35
Two-phase commit service special library............cccoecvvveeneenn. 36
MIT Kerberos on DB-Libraryccccccovviiiiiiieiiiiiiieeee e, 36
DB-Library/C Reference Manual iii

Contents

CHAPTER 2

SaAMPIE PrOGramMSccueviiiiiiieiiiiiieee e bbb 37
ROULINES ..ot 39
(o]0 3522 o Lo 11 | GO PPN 48
(o] 0T To =1 - O RPPURRRN 49
ADAAIEN Loeeee e 52
Lol 0= 111 o] Ta o ISR 54
ADAIDING_PS .. 59
ADAICONI ... 65
[0 [oT=1 11 <] o VO 66
[o] =1] (o] o TSP 67
Lol 0= 110 o= TS PRPR 68
ADAIULYPE. ..o 69
AbANUIIDINGceviii e 70
[o10] 0 12T ISR 72
ADDING_PS i 77
ADBUTSIZE ... e 82
Lo o] o)1/ =) S 83
ADCANCE ... e 84
ADCANGUETY ...t e e eane 85
ADCNANGE ..o 86
[0 |0 Yol g F= T 61] (o) 0 V2N 87
[0 |0 To3 [0 1< 88
[0 |0 Td [o1 | N 88
Fo] ool [(o] o AP PEPRR 89
[0 | oYo3 110 1o T 91
DBCMDROW ...ttt 92
ADCOIBIOWSEovviiii e eaaaes 93
(o o Yoo [T o SRS 94
ADCOINAME... ..ot aaaaa 95
ADCOISOUICEovviiee e e eaaaa 97
ADCOIYPE .o 98
ADCORYPEINTO ...t 99
(o] oTol0] 11117/ o 1= SRR 100
[0 oToT0) 0 1Z=T & AT 102
[o] oTel0] 01V /= Ty R o1 PSPPI 106
DBCOUNT . e e e e eabaes 112
DBCURCMD ...ouiiiii et eab s 113
DBCURROW.o 114
(0] o To1 U] ¢ | PO 115
(o] o To1U] 6] ¢ o 1 o IO 117
ADCUISOICIOSEvvviiei e 119
ADCUIrSOrCOINTO ...vvvieiiceceeee e 120
ADCUISOIEICN .ovvviiiei s 121

Open Client

Contents

ADCUISONINTO oo 123
ADCUISOIOPEN ..ttt e e e rre e e 124
(o] oo -1 - PR 128
ADAAtEACIIP e 129
ADAALEAZEIO ... 130
AbdateChar ... 131
ADAALECINP e 132
ADAALECTACK.cciiieiee it 133
dDAAENAME ... 135
ADAAEONAEN ... 138
ADAALEPAIT ...t 139
ADAALEZENO ... 140
ADAALIEN ..o ——————— 141
ADAAYNAME ... 142
DBDEAD ...ttt ettt ettt st anae e 143
dberrhandleovvvvi e 144
(o] 0= (| SRR 148
ADTCMA Lo 149
DBFIRSTROWcoiiiiiiiiiiitie ettt 152
(o] 011 E=T= T = | (=P PPPPPRNt 153
ADreEDUT ... 154
ADfrE@QUAL ... 155
ADTEESOIT ... 155
ADQEICNAN ... 157
AbQELChArSEL ... 157
Abgetloginfo......c..uviiiiie e 158
AbgetlUSEINAMEovviiie i 160
ADGEIMAXPIOCS. ... viiiiiee ettt e a e 161
AbgetnNatlangc.cvvieiiie e 162
ADQELOTT oo ———————— 162
ADQEPACKEL........eiiiiiiiee e 164
ADGEITOW et 165
DBGETTIME ..ottt 167
ADQEIUSEITALA .. .vvvviiiee ettt 167
ADNASTELSTALeeiiieiec i 168
ADINIE. e 170
DBIORDESCcoiiiiiieiiiieitie ettt 170
DBIOWDESCoiiiiieiiiieitie et e iee et e et e saeeesnneeens 172
DBISAVAILL ...ttt ettt ettt eeaee e 173
(o] o110 | SRR 173
DBLASTROW ...ttt ettt sre e st snnee e 174
AbloAd_XIAtE....ceeiiieiiiee e 175
ADI0AASOIT .o 176
ADIOGIN et 177

DB-Library/C Reference Manual %

Contents

Vi

ADIOGINTIEE oo 179
AbMNYZAdd ... 179
ADMNYACIIP .o 180
ADMNYACOPY ...ttt 181
AbMNYAAIVIAE ... 182
ADMNYAMINUS ..o 183
ADMNYAMULL....cice e 184
ADMNYASUD.....cce e 185
(o] 0100101 VZ 4= o PR 186
AbMNyadd ... 187
ADMINYCMP .o a e 188
(o] oTaa]0)V/elo] o VSRR 189
ADMNYAEC...... oot 190
ADMNYAIVIAE ... 191
ADMNYAOWN ... 192
ADMNYINC oottt 194
ADMINYINIT. e 194
ADMNYMAXNEG . ..ttveeiiiee it 196
ADMNYMAXPOS ..eviiiiiieee e e e e raaa e 197
ADMNYMINUS ... 198
ADMINYMULL...cc e 199
AbMNYNAIGIt.....cceiieieiee e 200
ADMNYSCAIE ... 206
ADMINYSUD ... 208
ADMNYZEIO oo 209
dbmMONthNaME ... 209
DBMORECMDScoiiiiiiiieiiiie ettt 210
ADMOTELEXLeeeeieie e 211
AbMShANdIe.......ouviiiiiii i 212
ABNAME ..o 216
(o] o] Lo a1 (o 1SRRI 217
(o] o] g] o1o1 {=T- L (= PP 219
AbNPAEfiNE ..o ————————— 222
ABNUIIDING ... 224
ADNUMAIES....cci e 225
ADNUMICOIS ... 225
ADNUMCOMPULE ...vviiiiieiiiciiieie e 227
DBNUMORDERS.......ccttiiiieiiieiiee ettt 227
ABNUMIELS .. 228
ADOPEN Lo 229
ADOrAErCOlcoiieiie e 233
ADPOIL . 234
ADPrNEAd ... 239
(o] o] o] (0] SRR 240

Open Client

Contents

(o] 0] o111/ o 1= PSSP 241
ADQUAL .. 242
DBRBUF ...ttt e e eaee e nnee e 246
ADrEadPAgE ... 247
(o] o] 1=T= 1o | (=)« SF SRR 248
(o] o] £ Tox (0 1SS 250
ADrEeCVPASSENIU.....viiiiiii i 251
(o]] =To o] {o] o FURR TP TOTPPPR 253
(o] o] £=To (= PP TOTTPPPRP 254
dbreghandle ... 256
ADIEGINIT Leeiiie e 260
ADIEGIIST..ceiiie et 262
AdbregnoWatCh.......ouviiii e 263
(ol o1 =To o= Ty Lo 1 ISR 265
AbregWatCh......c.eiiiee s 269
dbregWatChliStcooieiiiii e 274
ADIESUILS...ciie e e 275
(o] o110 F- L - SRR 278
ABFEHIEN ..o 282
ADretNAMEoii 283
ABFEtSTALUSoeeiiiieie e 285
ADIEEYPE oo 287
DBROWS ...ttt ettt 289
DBROWTYPEciiiiiiiiiiiiie ettt ettt 289
(o] o1 o Tox 1 1| F PR 290
(o] o] o o7 o T= 1 -1 1 o ISP 292
ADIPCSENA ... 294
(o] T 011X [PP 295
(o] o1 0111 T=. SRR 296
ADSAFESII ..oiiii i 297
dbsechandle............cooiiiii 299
AbSENAPASSENIU....uviiiiiiiiiiiiii e 303
ODSEIVCNAISEL. ...t 305
ADSEAVAIlooiiiieie e 306
ADSEEDUSY ..ot 306
ODSEICONNECT ... 309
dbsetdefCharSet.........cccvviiiiiii 310
dbsetdeflang.........ccevveeiiii 311
ADSELAIEiie e 312
ADSELfIE ..eviee e 313
ADSELINTEITUPL ... 314
DBSETLAPP ...ttt 317
DBSETLCHARSET ...ttt 318
DBSETLENCRYPT ..ottt 319

DB-Library/C Reference Manual Vii

Contents

viii

DBSETLHOST ...oiiiiiiiitite sttt 320
DBSETLMUTUALAUTH.......ooitiiiiiiiieriie et 321
DBSETLNATLANG ...ttt ettt 322
DBSETLNETWORKAUTH ...cctiiiiiiiiieeiie e 322
ADSEIOGINTO ... 323
ADSEtIOgINTIME .. 325
DBSETLPACKET ..ottt etee ettt seee 326
DBSETLPWD ...ttt ettt ettt saee 327
DBSETLSERVERPRINCIPALooiiiiiiiiieeeeeee e 328
DBSETLUSER ..ottt 329
(o] 0 17=] 10 =V d o] o o PR 329
ADSELNUIL....ccce e 330
ADSELOPL ..eeiieii it 332
ODSEIMOW ... 334
ADSEHIME.... e 336
ODSEUSErdataeveiiiviieeeee e 336
ODSEIVEISION ...t 339
ADSPIA. ..t 340
ADSPILIOW ooiiiieiiieeee ettt e s e e e e e e e e 341
ADSPrLIOWIEN. 343
AbSPrhEad ... 344
ADSPIIINE . 346
ADSOIEXEC ittt 347
(o] 0o | (0] PSSP 349
ADSAISENA ... 354
ADSIBUIT. ... 355
ADSEICIMP e 358
(o] 0151 (o]) V28 PR OTPPPRP 359
ABSEIIEN Lo 361
ABSIISOM .. 362
AbtabbroOWSe.oviiiieee e 363
dbtabCOUNt ... 364
dbtabname ... ———————— 365
AbtabSOUICE ... 366
(D] I 1S T RTSURTSRTRI 368
ADLEXESIZE .ovieee it 368
ADISNEWIEN ... 369
ADISNEWVAL ... 370
(010155 o 11| ST 371
(o] 14 o1 SR PP TOTPPPT 372
ADEXEMESTAMP ... 374
ADIXISNEWVAL ..o 375
(o] 0] 074] o 11 | SRR 375
(o] o 0T SRR 376

Open Client

Contents

ADVAIYIEN ..o e 377
ADVEISION. ... 378
ADWIlICONVEIT ... 379
Lo] 00y 1 1= 0= T - SRR 381
ADWIILEEEXE 382
ADXIALE ... 387
EITOTS e 389
OPLIONS ..t 407
L 1S PP P PP PPPPPPPPPPPPPPPPPPR 412
CHAPTER 3 BUIK COPY ROULINES ... 417
Introduction to BUIK COPYcevvviiiiieiiiiiiiiee e 417
Transferring data into the databaseccccoccevviniiiiiennnnnn, 417
Transferring data out of the database to a flat file.................. 419

List of bulk cOpy routingS...........cevvieeiiiiii e 420
bep _batCh. . 421
DCP_BINd...c 422
DCP_COIML.. e 426
DCP_COME_PS i 429
DCP_COIBN .. 434
DCP _COIPLI e 435
DCP_COIUMNS ..o 435
DCP_CONLIOL....ciiiiiiiiee e 436
DCP_dONE .. 439
DCP_BXEC ..o 439
DCP_Getl. 441
DD NIt 441
DCP_MOTEIEXL .. 444
DCP_OPLIONS ...t 447
DCp_readfMmtceviiii i 448
DCP_SENAIOWeviiiiee i 448
BCOP _SET L ittt s 450
DCP_SEXIALEvviiiiie e 450
DCP_WHEEIML ... 451
CHAPTER 4 Two-Phase COmMmMIit SErVIiCecceiiiiiiiiiiiiiieee e 453
Programming distributed transactions............cccoecvvvveeeeeininivineenn. 453
The commit service and the application programccccceeeenn. 454
The Probe ProCESScooviiiiiiiie e 456
Two-phase CoOmMMIt FOULINESoviiiiiiiiiee e 456
Specifying the COMMIL SEIVENueeviiiiiiiiiiiiee e 457
Two-phase commit sample program.........cccocccvvveereeeesiiciiineeeeeen, 458
Program NOES.......oooi i 464

DB-Library/C Reference Manual iX

Contents

APPENDIX A

APPENDIX B

Program note L........cccovveeiiiiiiiiiii 464
Program NOte 2.........ccovveiiiiiiiiiii 464
Program Note 3. 465
Program NOte 4. 465
Program Note 5. 466
Program NOte 6..........covveeiiiiiiiiiiii 466
Program NOte 7........coouvieeiiiii 467
Program nNote 8. 467

F= o 0] A - [0 SRR 468
BUIld_XACt _SIHNG .evveeeicieiie e 468
ClOSE_COMMILuiiiiiiii e 469
(o701 4] 101 S0 C: (o S SRR 470
[o] o= o0 101 1 11| SO PP PP 470
(L]0)Y - To! FR RPN 471
SCAN_ XACT ...t iiiiiiiiiiee e e e 472
LY =1 - T F PSSP 472
STAL XACT. ..t ieiiiieiie e e 473
CUTS OIS ettt e e e e e e e e e e e e s e nr e e 475
CUISOT OVEIVIEW ...ceeiiriieeiitee sttt et 475
DB-Library cursor capabilityccccveeeeeiiiiiiiiieece e 475

Differences between DB-Library cursors and browse mode. 476
Differences between DB-Library and Client-Library cursors. 476

Sensitivity t0 Changeeevveiiiiiiiieee e 477
SEALIC CUISON .oiiiiiiiiiiiiiie et e e e e e e e e e annes 478
KeYSEet-ariVEN CUISONvvviiieeiiiiiiiiee e e e e et e e e e e s earraee e e e 478
DYNAIMIC CUISON .ciiiiiiiiiiiiieiee ettt raee e 479
CONCUITENCY CONION ..evviiiiiiiiiiiiiii ettt e 479

DB-Library cursor funCtionS..........cccccvvviiiiiiiiieeniiiieeee e 480

HOIAING 1OCKScoiiiiii e 480

Stored procedures used by DB-Library cursors..........cccccceeeviians 481

DB-Library Error MESSAgESscuvvveiieeieeeeeeiiiiiiinenreeaeeessassnnnnns 483

20001 ...ttt 483

20002 ...ttt e et e nneeas 483

120001 J SRR 483

20004 ...t naeeas 484

20005 ...ttt e e nae e aneeas 484

20006 ...ttt nae e aneeas 484

20008 ...ttt ae e nae e nneeas 485

200009 ... 485

20010 ..ttt 485

20011 ..ot 486

Open Client

DB-Library/C Reference Manual

Xi

Xii

20061 501
20062.....c i 502
20063..... i 502
20064 ... 502
20065...... i 503
20066.......ccuiiiiiiiii 503
20067 ..ot 503
20068.......ccuiiiiiiii 504
20069......ccciiii i 504
200700000t 504
20071 it 505
20072 505
20073 505
20074 506
20075, 506
20076 506
20077 .. 507
20078....iiiiiiiiic i 507
20079..cciiiiiiiii 507
20080......cccciiiiiiiiii 508
20081t 508
20082, 508
20083, 509
20084....... i 509
20085..... 509
20086 510
20087 ... 510
20088........ i 510
20091 511
20092.....iiiiiiii 511
20093, 512
20094 512
20095......c i 512
20096......cccciiiiiiii 513
20097 ...iiiiiiiiii 513
20098......cc i 513
20099.... 514
20000... . 514
20000 514
20002 515
20003, 515
20004 515
200105, .0 516

Open Client

20007 .. 516
20008..... i 517
20009, 517
20020, 517
20100 518
200102 518
20113 518
200104 519
200115 i 519
20116 it 519
200107 i 520
20018 e 520
20019, 521
20020, e 521
20020 521
20022, 522
20023 522
200124 ..o 522
20025 . i 523
20126, 523
20027 i 523
20128, 524
20129 524
20030, 524
20030 525
20032, 525
20033 525
200134 526
20035, 526
20136, .ciiiiiiiii s 526
200137 i 527
20138 527
20139 527
20140 i 528
20141 528
200142 528
20043, 529
20144 529
20045, 529
20046, 530
20047 .o 530
20048..... 530
20149 531

DB-Library/C Reference Manual xiii

20050 531
20052, 532
20053 532
20054 ... 532
20055, 533
20156, .. 533
20057 i 533
20158, 534
20159 .. 534
20160......cciiiiiiiiii s 534
20 G 535
200162, 535
20083 535
200164 536
20185, 536
20166, 536
20067 ..o 537
201688t 537
20169 537
200170 0 538
20070 i 538
200172 it 538
200173 539
200174 ..o 539
20075, 539
20176 540
20077 e 540
20078 540
20079 541
20180....ccciiiiiiiiiii 541
20 541
20182...ciiiiiiiii s 542
20183 542
20184 542
20185, . 543
20186....ciiiiiiiiiiiii 543
20087 e 543
20188.... i 544
20189, 544
20090, 544
20090 545
20092, 545
200193 545

Xiv Open Client

DB-Library/C Reference Manual

XV

20239, 561
20240...... 561
20241 561
20242 562
20243 562
20244t 562
20245, 563
20246.......cciiiiiii 563
20247 ...ooiiiiiiiiiiii 564
20248......ciiiii 564
20249, 564
20250....cce e 565
20251 565
20252 565
20253 566
20254 566
20255 566
20256....ciciiiiii 567
20257 .oiiiiiiiiii 567
20258 567
20259 .. 568
20260.......c ittt 568
20261 568
20262 569
20263 569
20264 ... 569
20265 570
20266 570
20267 ... 571
20268t 571
20269.....cc i 571
2027000t 572
20271 it 572
20272 it 572
20273 573
20274 ... 573
20275, 573
20276 574
20277 e 574
20278 574
20279 575
20280.....cc i 575
20282....ciiiiiiii 575

XVi Open Client

{02 7 SRR 576
{0721 YU 576
2028B....ceeeeeeeeeee e e e e e e e e e e e e e aaanes 577
{072 3 U 577
{072 T U 577
20289 e e e r e e e e s aaare 578
2029011 a e e r e e e e e e aaane 578
20291, e e a e e e e aaare 578
20292 e e a e e e s e 579
20293 e e a e e e e s aaane 579
20294 e a e e e e 579
{07 1 YU 580
{072 L TR 580
{07 U 580
{07 1 TR 581
{072 1 U 581
{0101 U 581
24010) TPt 582
20302, e e e s a e e e e s aanre 582
INUBX ettt ettt ettt e aaaaaaaaaaaaaaans 583

DB-Library/C Reference Manual XVii

XVviii Open Client

About This Book

This book contains reference information for the C version of Open
Client™ DB-Library™.

Audience Thisbook isintended to serve asareference manual for programmerswho
arewriting DB-Library applications. It iswritten for application
programmers familiar with the C programming language.

How to use this book This book contains these chapters:

Chapter 1, “Introducing DB-Library,” containsabrief introductionto
DB-Library.

Chapter 2, “Routines,” contains specific information about each
DB-Library routine, such as what parameters the routine takes and
what it returns.

Chapter 3, “Bulk Copy Routines,” contains an introduction to bulk
copy and specific information about each bulk copy routine.

Chapter 4, “ Two-Phase Commit Service,” contains a brief
description of two-phase commit service and specific information
about each two-phase commit service routine.

Appendix A, “Cursors,” introduces DB-Library’s cursor routines.

Appendix B, “DB-Library Error Messages,” contains information
about DB-Library error messages.

Related documents You can see these books for more information:

DB-Library/C Reference Manual

The Open Server and SDK New Features for Windows, Linux, and
UNI X, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.

The Open Server Release Bulletin for your platform contains
important last-minute information about Open Server.

The Software Developer’s Kit Release Bulletin for your platform
contains important last-minute information about Open Client™ and
SDK.

XiX

XX

The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

e The sample programs that are included with Open Client and Open
Server

« Routinesthat have platform-specific behaviors

Thelnstallation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option containsinformation about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authenticationin
the Kerberos security mechanism.

The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

The Open Client Embedded SQL ™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

Open Client

About This Book

Other sources of
information

Sybasecertifications
on the Web

The jConnect for JIDBC Programmer s Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access datain Adaptive Server using any
language supported by .NET, such as C#, Visua Basic .NET, C++ with
managed extension, and J4.

The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNI X, providesinformation on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access datafrom
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide providesinformation for Perl developersto connect to an Adaptive
Server database and query or change information using a Perl script.

The Adaptive Server Enterprise extension module for PHP Programmers
Guide providesinformation for PHP devel opersto execute queries against
an Adaptive Server database.

The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Use the Sybase Product Documentation Web site to learn more about your
product:

The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFS/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Devel oper Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

DB-Library/C Reference Manual XXi

[IFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 InthePartner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click aPartner Certification Report title to display the report.

[IFinding the latest information on component certifications
1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.
Sybase EBFs and

software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.

XXii Open Client

About This Book

Conventions

Accessibility
features

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for valuesthat you fill in, are
initalics.
{1} Curly bracesindicate that you choose at |east one of the

enclosed options. Do not include the braces in the command.

[1 Brackets mean choosing one or more of theenclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

/ The comma means you can choose as many of the options
shown asyou like, separating your choices with commas to
be typed as part of the command.

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
ascreen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

DB-Library/C Reference Manual XXiii

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

XXiv Open Client

CHAPTER 1 Introducing DB-Library

This chapter gives an overview of DB-Library.

Topic Page
Client/server architecture 1
The Open Client and Open Server products 3
Data structures for communicating with servers 6
DB-Library/C programming 6
DB-Library/C routines 12
MIT Kerberos on DB-Library 36
Sample programs 37

Client/server architecture

Client/server architecture divides the work of computing between
“clients’ and “ servers.”

Clients make requests of servers and process the results of those requests.
For example, aclient application might request data from a database
server. Another client application might send a request to an
environmental control server to lower the temperature in aroom.

Servers respond to requests by returning data or other information to
clients, or by taking some action. For example, a database server returns
tabular data and information about that data to clients, and an electronic
mail server directs incoming mail toward its final destination.

Client/server architecture has several advantagesover traditional program
architectures:

« Application sizeand complexity can be significantly reduced because
common services are handled in asingle location, aserver. This
simplifies client applications, reduces duplicate code, and makes
application maintenance easier.

DB-Library/C Reference Manual 1

Client/server architecture

Types of clients

Types of servers

e Client/server architecture facilitates communication between varied
applications. Client applications that use dissimilar communications
protocols cannot communicate directly, but can communicate through a
server that “ speaks” both protocals.

e Client/server architecture allows applications to be developed with
distinct components, which can be modified or replaced without affecting
other parts of the application.

A client is any application that makes requests of a server. Clientsinclude;

e Stand-alone utilities provided with Adaptive Server Enterprise, such as
isql and bep

¢ Applications written using Open Client libraries
¢ Applications written using Open Client Embedded SQL ™

The Sybase product line includes servers and tools for building servers:

e Adaptive Server Enterprise is adatabase server. Adaptive Server
Enterprise manages information stored in one or more databases.

¢ Open Server provides the tools and interfaces needed to create a custom
server, also called an “ Open Server application.”

An Open Server application can be any type of server. For example, an Open
Server application can perform specialized calculations, provide accessto real
time data, or interface with services such as electronic mail. An Open Server
application is created individually, using the building blocks provided by the
Open Server Server-Library.

Adaptive Server Enterprise and Open Server applications are similar in some
ways:

e Adaptive Server Enterprise and Open Server applications are both servers,
responding to client requests.

¢ Clients communicate with both Adaptive Server Enterprise and Open
Server applications through Open Client products.

Open Client

CHAPTER 1 Introducing DB-Library

But they aso differ:

e Anapplication programmer must create an Open Server application using
Server-Library’s building blocks and supplying custom code. Adaptive
Server Enterprise is complete and does not require custom code.

« An Open Server application can be any kind of server, and can be written
to understand any language. Adaptive Server Enterprise is a database
server, and understands only Transact-SQL.

e AnOpen Server can communicate with “foreign” applicationsand servers
that are not based on the TDS protocol, aswell as Sybase applications and
servers. Adaptive Server Enterprise can communicate directly only with
Sybase applications and servers, although Adaptive Server Enterprise can
communicate with foreign applications and servers by using an Open
Server gateway application as an intermediary.

The Open Client and Open Server products

Open Client

DB-Library/C Reference Manual

Sybase providestwo families of productsto allow customersto writeclient and
server application programs.: Open Client and Open Server.

Open Client provides customer applications, third-party products, and other
Sybase products with the interfaces needed to communicate with Adaptive
Server Enterprise and Open Server.

Open Client can be thought of as having two components: programming
interfaces and network services.

The programming interfaces component of Open Client is made up of libraries
designed for useinwriting client applications: Client-Library, DB-Library, and
CS-Library. (Both Open Client and Open Server include CS-Library, which
contains utility routines that are useful to both client and server applications.

Open Client network servicesinclude Net-Library, which provides support for
specific network protocols, such as TCP/IP.

The Open Client and Open Server products

Open Server

Open Server provides the tools and interfaces needed to create custom server
applications. Like Open Client, Open Server has a programming interfaces
component and a network services component.

The programming interfaces component of Open Server contains Server-
Library and CS-Library. (Both Open Client and Open Server include CS-
Library, which contains utility routines that are useful to both client and server
applications.)

Open Server network services are generally transparent.

Open Client libraries
The libraries that make up Open Client are:

e DB-Library, acollection of routinesfor usein writing client applications.
DB-Library includesabulk copy library and the two-phase commit special
library. DB-Library provides source-code compatibility for older Sybase
applications.

¢ Client-Library, acollection of routines for use in writing client
applications. Client-Library isalibrary designed to accommodate cursors
and other advanced features.

e CS-Library, acollection of utility routinesthat are useful to both client and
server applications. All Client-Library applications will include at |east
one call to CS-Library, because Client-Library routines use a structure
which isallocated in CS-Library.

What is in DB-Library/C?

Note DB-Library provides source code compatibility for older Sybase
applications. Sybase encourages programmers to implement new applications
with Client-Library or Embedded SQL.

DB-Library/C includes C routines and macros that allow an application to
interact with Adaptive Server Enterprise and Open Server applications.

4 Open Client

CHAPTER 1 Introducing DB-Library

It includes routines that send commands to Adaptive Server Enterprise and
Open Server applications and others that process the results of those
commands. Other routines handle error conditions, perform data conversion,
and provide a variety of information about the application’s interaction with a
server.

DB-Library/C also contains several header files that define structures and
values used by the routines. Versions of DB-Library have been devel oped for
anumber of languages besides C, including COBOL, FORTRAN, Ada, and
Pascal.

Comparing the library approach to Embedded SQL

Either an Open Client library application or an Embedded SQL application can
be used to send SQL commands to Adaptive Server Enterprise.

Generally, Embedded SQL is asuperset of Transact-SQL. An Embedded SQL
application includes Embedded SQL commands intermixed with the
application’s host language statements. The host language precompiler
processes the Embedded SQL commands into callsto Client-Library routines
and leaves the existing host-language statements asis. All version 10.0 or later
precompilers use aruntime library composed solely of documented Client-
Library and CS-Library calls.

Inasense, then, the precompiler transformsan Embedded SQL applicationinto
aClient-Library application.

An Open Client library application sends SQL commands through library
routines, and does not require a precompiler.

Generally, an Embedded SQL application is easier to write and debug, but a
library application can take fuller advantage of the flexibility and power of
Open Client routines.

DB-Library/C Reference Manual 5

Data structures for communicating with servers

Data structures for communicating with servers

A DB-Library/C application communicates with a server through one or more
DBPROCESS structures. Through the DBPROCESS, commands are sent to
the server and query results are returned to the application. One of the first
routinesan applicationtypically callsisdbopen, which logsthe applicationinto
the server and allocates and initializes a DBPROCESS. This DBPROCESS
then serves as a connection between the application and the server. Most DB-
Library/C routines require a DBPROCESS as the first parameter.

An application can have multiple open DBPROCESSes, connected to one or
more servers. For instance, an application that hasto perform database updates
inthe midst of processing the results of aquery needs a separate DBPROCESS
for each task. As another exampl e, to select datafrom one server and update a
database on another server, an application needstwo DBPROCESSes—onefor
each server. Each DBPROCESS in an application functions independently of
any other DBPROCESS.

The DBPROCESS structure pointsto acommand buffer that containslanguage
commands for transmission to the server. It also pointsto result rows returned
from the server—either single rows or buffers of rows if buffering has been
specified. In addition, it points to a message buffer that contains error and
informational messages returned from the server.

The DBPROCESS al so contains awealth of information on various aspects of
server interaction. Many of the DB-Library/C routines deal with extracting
information from the DBPROCESS. Applications should access and

manipul ate components of the DBPROCESS structure only through DB-
Library/C routines, and not directly.

One other important structureis the LOGINREC. It containstypical login
information, such as the user name and password, which the doopen routine
uses when logging into a server. DB-Library/C routines can specify the
information in the LOGINREC.

DB-Library/C programming

An application programmer writes a DB-Library program, using calls to DB-
Library routines to set up DB-Library structures, connect to servers, send
commands, process results, and clean up. A DB-Library program is compiled
and run in the same way as any other C language program.

6 Open Client

CHAPTER 1 Introducing DB-Library

Programming with DB-Library/C typically involves afew basic steps:

1
2
3

4
5

Logging into a server.
Placing language commands into a buffer and sending them to the server.

Processing the results, if any, returned from the server, one command at a
time and one result row at atime. The results can be placed in program
variables, where they can be manipulated by the application.

Handling DB-Library/C errors and server messages.

Closing the connection with the server.

The example below shows the basic framework of many DB-Library/C
applications. The program opensaconnection to aAdaptive Server Enterprise,
sends a Transact-SQL select command to the server, and processes the set of
rowsresulting from the select. Note that this program does not includethe error

0
p

r message handling routines; those routines are illustrated in the sample
rograms included with DB-Library.

#include <sybfront.hs>
#include <sybdb.h>
#include <syberror.h>

/* Forward declarations of the error handler and message
** handler.

*/

interr handler () ;
intmsg_handler () ;

main ()
{
DBPROCESS *dbproc; /* The connection with */
/* Adaptive Server Enterprise */
LOGINREC *login; /* The login information */
DBCHAR name [40] ;
DBCHAR city[20];
RETCODE return_code;

/* Initialize DB-Library */

if

(dbinit () == FAIL)

exit (ERREXIT) ;

/*
* %

* %

* %

Install user-supplied error-handling and message-

handling routines. The code for these is omitted

from this example for conciseness.

DB-Library/C Reference Manual 7

DB-Library/C programming

*/
dberrhandle (err_handler) ;
dbmsghandle (msg_handler) ;

/* Get a LOGINREC */

login = dblogin() ;

DBSETLPWD (login, "server password") ;
DBSETLAPP (login, "example") ;

/* Get a DBPROCESS structure for communication */
/* with Adaptive Server Enterprise. */
dbproc = dbopen(login, NULL) ;

/*
** Retrieve some columns from the "authors" table
** in the "pubs2" database.

*/

/* First, put the command into the command buffer. */
dbcmd (dbproc, "select au lname, city from
pubs2. .authors") ;
dbcmd (dbproc, "
where state = 'CA’ ");

/*

** Send the command to Adaptive Server Enterprise and start
execution

*/

dbsglexec (dbproc) ;

/* Process the command */

while ((return code = dbresults(dbproc)) !=
NO_MORE_RESULTS)
{

{

if (return code == SUCCEED)

/* Bind results to program variables. */
dbbind (dbproc, 1, STRINGBIND, (DBINT)O0, name) ;
dbbind (dbproc, 2, STRINGBIND, (DBINT)O, city);

/* Retrieve and print the result rows. */

while (dbnextrow (dbproc) != NO _MORE ROWS)
{
printf ("%s: %s\n", name, city);

}

8 Open Client

CHAPTER 1 Introducing DB-Library

}

/* Close the connection to Adaptive Server Enterprise */
dbexit () ;

The example illustrates features common to most DB-Library/C applications:

» Header files— Two header files, sybfront.h and sybdb.h, arerequired in all
source files that contain calls to DB-Library/C routines. sybfront.h must
appear first in the file. Thisfile defines symbolic constants such as
function return values, described in the reference pages in Chapter 2,
“Routines’ and the exit values STDEXIT and ERREXIT. These exit
values can be used as the argument for the C standard library function exit.
Since they are defined appropriately for the operating system running the
program, their use provides a system-independent approach to exiting the
program. sybfront.h also includestype definitionsfor datatypesthat can be
used in program variable declarations. These datatypes are described | ater.

sybdb.h contains additional definitions, most of which are meant to be
used only by the DB-Library/C routines and should not be directly
accessed by the program. Of chief importancein sybdb.histhe definition
of the DBPROCESS structure. As discussed earlier, the DBPROCESS
structure should be manipul ated only through DB-Library/C routines; you
should not access its components directly. To ensure compatibility with
future releases of DB-Library/C, use the contents of sybdb.h only as
documented in the reference pagesin Chapter 2, “ Routines.”

The third header file in the example, syberror.h, contains error severity
values and should be included if the program refers to those values.

e dbinit— Thisroutineinitializes DB-Library/C. It must be the first DB-
Library/C routine in the program. Not all DB-Library/C environments
currently require the dbinit call. However, to ensure future compatibility
and portability, you should includethiscall at the start of all DB-Library/C
programs.

* dberrhandle and dbmsghandle —dberrhandle installs a user-supplied error-
handling routine, which gets called automatically whenever the
application encounters a DB-Library/C error. Similarly, dbmsghandle
installs a message-handling routine, which gets called in response to
informational or error messages returned from the server. The error and
message handling routines are user-supplied. Sample handlers have not
been supplied with this example, but are included with the sample
programs provided with DB-Library. See the Open Client and Open
Server Programmers Supplement for your platform.

DB-Library/C Reference Manual 9

DB-Library/C programming

10

dblogin — This routine allocates a LOGINREC structure, which DB-
Library/C will useto log in to the server. The two macros that follow set
certain components of the LOGINREC. DBSETLUSER and DBSETLPWD
set the user name and password that DB-Library/C will use when logging
in. DBSETLAPP sets the name of the application, which will appear in
Adaptive Server Enterprise’s sysprocesses table. Routines are available
for setting other aspects of the LOGINREC. However, in most
environments these routines are optional ; the LOGINREC contains
default values for each of the values they set.

dbopen — The dbopen routine opens a connection between the application
and a server. It uses the LOGINREC supplied by dblogin to log in to the
server. It returnsa DBPROCESS structure, which serves asthe conduit for
information between the application and the server. After this routine has
been called, the application is connected with Adaptive Server Enterprise
and can now send Transact-SQL commandsto Adaptive Server Enterprise
and process any results.

dbcmd — This routine fills the command buffer with Transact-SQL
commands, which can then be sent to Adaptive Server Enterprise. Each
succeeding call to docmd simply adds the supplied text to the end of any
text already in the buffer. It is the programmer’s responsibility to supply
necessary blanks between words, such asthe blank at the beginning of the
text in the second dbcmd call in the example. Multiple commands can be
included in the buffer. This example only shows how to send and process
asingle command, but DB-Library/C is designed to allow an application
to send multiple commandsto aserver and process each command’s set of
results separately.

dbsglexec — Thisroutine executes the command buffer; that is, it sendsthe
contents of the buffer to Adaptive Server Enterprise, which parses and
executes them.

dbresults — This routine gets the results of the current Transact-SQL
command ready for processing. In this case, the buffer containsasingle
command that returnsrows, so the programisrequired to call dbresults one
time. dbresults is called in aloop, however, because it is good
programming practiceto do so. It isrecommended that dbresults alwaysbe
caledinaloop, asitisin thisexample, even when it is not strictly
necessary.

Open Client

CHAPTER 1 Introducing DB-Library

e dbbind —dbbind bindsresult columnsto program variables. Intheexample,
thefirst call to dbbind bindsthefirst result column to the program variable
city. In other words, when the program reads a result row by calling
dbnextrow, the contents of the first result column (au_Iname) will get
placed in the program variable name. The second dbbind call binds the
second result column to the variable city.

The bind type of both bindingsis STRINGBIND, one of several binding
typesavailablefor character data. The binding type must correspond to the
datatype of the specified program variable. In this example, the variable
has a DBCHAR datatype, a DB-Library/C-defined datatype that accepts a
STRINGBIND result. By means of the binding type parameter, dbbind
supports awide variety of type conversions, allowing the datatype of the
receiving variable to differ from the datatype of the result column.

« dbnextrow — Thisroutine reads arow and places the resultsin the program
variables specified by the earlier dbbind calls. Each successive cal to
dbnextrow reads another result row, until the last row has been read and
NO_MORE_ROWSisreturned. Processing of the results must take place
inside the dbnextrow loop, because each call to dbnextrow overwrites the
earlier valuesinthe program variables. Thissample program merely prints
each row’s contents.

« dbexit — Thisroutine closes the server connection and deallocates the
DBPROCESS. It also cleans up any structuresinitialized by dbinit. It must
be the last DB-Library/C routinein the program.

Although DB-Library/C contains a great number of routines, much can be
accomplished with just the few routines shown in this example.

DB-Library/C datatypes

DB-Library/C defines datatypes for Adaptive Server Enterprise data. These
datatypes begin with “SYB” (for example, SYBINT4, SYBCHAR,
SYBMONEY). Various routines require these datatypes as parameters. DB-
Library/C and Server-Library/C also provide type definitions for usein
program variable declarations. These types begin with the prefix “DB” (for
example, DBINT, DBCHAR, DBMONEY, and so on) for DB-Library/C, and
“SRV_" for Server-Library/C (for example, SRV_INT4, SRV_CHAR,
SRV_MONEY). By using them, you ensure that your program variables will
be compatible.

DB-Library/C Reference Manual 11

DB-Library/C routines

See Types on page 412 for alist of Adaptive Server Enterprise datatypes and
corresponding DB-Library/C program variable types. See the Open Server
Server-Library/C Reference Manual for alist of Server-Library datatypes.

The dbconvert_ps routine provides away to convert data from one server
datatype to another. It supports conversion between most datatypes. Since
Adaptive Server Enterprise and Open Server datatypes correspond directly to
the DB-Library/C datatypes, you can use dbconvert_ps widely within your
application. The routines that bind server result columns to program
variables—dbbind and dbaltbind—al so provide type conversion.

DB-Library/C routines

12

The DB-Library/C routines and macros handle alarge variety of tasks, which
are divided in this section into a number of categories:

e Initidization

e Command processing

¢ Results processing

¢ Message and error handling

e Information retrieval

e Browsemode

e Text and image handling

e Datatype conversion

* Process control flow

« Remote procedure call processing
¢ Registered procedure call processing
e Gateway passthrough routines

e Datetime and money

e Cleanup

e Secure support

¢ Miscellaneous routines

Open Client

CHAPTER 1 Introducing DB-Library

Theroutinesand macros aredescribed inindividual reference pagesin Chapter
2, “Routines.” They all begin with the prefix “db.” The routines are named
with lowercase | etters; the macros are capitalized.

In addition, DB-Library/C includes two special libraries:
e Bulk Copy, described in Chapter 3, “Bulk Copy Routines’

e Two-Phase Commit Service, described in Chapter 4, “ Two-Phase Commit
Service”

The bulk copy routines begin with the prefix “bep.” The two-phase commit
routines have no standard prefix.

Initialization

These routines set up and define the connection between the application
program and a server. They handle such tasks as allocating and defining a
LOGINREC structure, opening a connection to a server, and allocating a
DBPROCESS structure. Only afew of the routines are absolutely necessary in
every DB-Library/C program; in particular, an application requires dbinit,
dblogin, and dbopen. The lists below specify the initialization routinesin the
approximate order in which aprogram is likely to call them.

Initializing DB-Library/C
These arethetop level routinesthat set up DB-Library’sinternal environment:
« dbinit —initializes underlying structures used by DB-Library/C.
* dbsetversion — specifiesaDB-Library version level.

e dbsetmaxprocs — sets the maximum number of simultaneously open
DBPROCESS structures.

* dbgetmaxprocs — indicates the current maximum number of
simultaneously open DBPROCESS structures.

Setting up the LOGINREC

Theseroutines place datain aLOGINREC. The LOGINREC contains the user
information that DB-Library sends to the server when the program calls
dbopen to open a connection.

e dblogin —allocates aLOGINREC structure for subsequent use by dbopen.

DB-Library/C Reference Manual 13

DB-Library/C routines

DBSETLUSER — sets the server user name in the LOGINREC.
DBSETLPWD — sets the server password in the LOGINREC.
DBSETLAPP — sets the application name in the LOGINREC.
DBSETLHOST — sets the host namein the LOGINREC.
DBSETLCHARSET — sets the character set in the LOGINREC.

DBSETLPACKET —setsthe Tabular Data Stream™ (TDS) packet sizefor
an application.

dbgetpacket — returns the current TDS packet size.

dbrpwset —adds aremote password to aL OGINREC structure. The server
will usethis password when it performsaremote procedure call on another
server.

dbrpwelr — clears al remote passwords from a LOGINREC structure.

dbloginfree — frees a LOGINREC structure.

Establishing a server connection

The application calls the following routinesto set up and open a connection to
aremote server:

14

dbsetifile — specifiesthe interfaces file that dbopen will use to connect to a
server.

dbsetlogintime — sets the number of seconds DB-Library/C will wait for a
server to respond to arequest by dbopen for a DBPROCESS connection.

dbopen —sets up communication with the network, logsinto aserver using
the LOGINREC, initializes any options specified in the LOGINREC, and
allocates a DBPROCESS. An application can open multiple connections
to aserver, each connection having itsown DBPROCESS. An application
can also open multiple connections to multiple servers.

dbuse — sets the current database. This routineis equivalent to the
Transact-SQL use command and can be called repeatedly in an
application, any time when the connection is open.

Open Client

CHAPTER 1 Introducing DB-Library

Command processing

An application can communicate with a server through language commands.
For Adaptive Server Enterprise, the language is Transact-SQL . For Open
Server, the language is whatever the Open Server has been programmed to
understand. The application enters the commands into a command buffer,
which the DBPROCESS points to. The application can place multiple
commands in the command buffer, and the set of commandsin the buffer is
known as the command batch. The application then sends the command batch
to the server, which executes the commands in the order entered in the buffer.

Building the command batch

These routines add commands to the buffer or clear the buffer:

dbcmd — adds text to the command buffer. It may be called repeatedly to
add multiple commands, or parts of commands. The text added with each
successive call is concatenated to the earlier text.

dbfcmd — adds text to the command buffer using sprintf-type formatting.
This routine is the same as docmd, except that it allows arguments to be
substituted into the text.

dbfreebuf — clears the command buffer. The command buffer is
automatically cleared before abatch of commandsisentered. Toclear it at
other times or when the DBNOAUTOFREE option has been set, use
dbfreebuf.

Accessing the command batch

These routines may be used to examine and copy parts of the command buffer:

dbgetchar — returns a pointer to a particular character in the command
buffer.

dbstrlen — returns the length of the command buffer.

dbstrcpy — copies a portion of the command buffer to a program variable.
Thisroutineis particularly valuable for debugging, becauseit can tell you
exactly what was sent to the server.

Executing the command batch

Once language commands have been entered in the buffer, they can be sent to
a server for execution.

DB-Library/C Reference Manual 15

DB-Library/C routines

Setting and clearing

* dbsglsend — sends the contents of the command buffer to a server for
execution. Unlike dbsglexec, thisroutine does not wait for aresponse from
the server. When dbsqlsend returns SUCCEED, dbsglok must be called to
verify the correctness of the command batch.

¢ dbpoll —when called between dbsglsend (or dbrpcsend) and dbsglok,
checksif a server response has arrived for a DBPROCESS.

¢ dbsqglok —waits for results from the server and verifies the correctness of
the instructions the server is responding to. Thisroutineis used in
conjunction with dbsglsend, dbrpcsend, and dbmoretext. After asuccessful
dbsglok call, the application must cal doresults to process the results.

¢ dbsglexec — sends the contents of the command buffer to a server for
execution. Once dbsglexec has returned SUCCEED, dbresults must be
called to process the results. Calling dbsglexec is equivalent to calling
dbsglsend followed by dbsglok.

command options

The application can set a number of Adaptive Server Enterprise and DB-
Library/C command options. Among them are DBPARSEONLY', which
causes Adaptive Server Enterpriseto parse but not execute the command batch,
and DBBUFFER, which provides buffering of result rows. For alist of all
available options and their significance, see Options on page 407.

e dbsetopt — sets an option
e dbclropt — clears an option

* dbisopt — determines whether a particular option is set

Results processing

16

Once acommand batch has been executed in the server, indicated by dbsglexec
or dbsglok returning SUCCEED, the application must process any results.
Results can include:

e Success or failure indications from the server
¢ Result rows

Result rowsare returned by select commands and execute commands on stored
procedures that contain select commands.

Open Client

CHAPTER 1 Introducing DB-Library

There are two types of result rows:. regular rows and compute rows. Regular
rows are generated from columnsin a select command’s select list; compute
rows are generated from columnsin aselect command’scompute clause. Since
these two types of rows contain very different data, the application must
process them separately.

The results for each Transact-SQL command in a batch are returned to the
application separately. Within each command’s set of results, the result rows
are processed one at atime.

If acommand batch contains only a single Transact-SQL command and that
command returns rows (for example, a select command), an application must
call dbresultsto process the results of the command.

If acommand batch contains only a single Transact-SQL command and that
command does not return rows (for example, a use database command or an
insert command), an application does not have to call dbresults to process the
results of the command. However, calling dbresults in these situations causes
no harm. It may result in easier code maintenanceif, after every command, you
consistently call dbresults until it returns NO_MORE_RESULTS.

If the command batch contains more than one Transact-SQL command, an
application must call dbresults once for every command in the batch, whether
or not the command returnsrows. For thisreason, it isrecommended that aDB-
Library/C application aways call dbresults in aloop after sending acommand
or commands to a server.

Table 1-1 lists Transact-SQL commands and the DB-Library/C functions
reguired to process the results that they return:

DB-Library/C Reference Manual 17

DB-Library/C routines

Table 1-1: DB-Library/C functions required to process Transact-SQL
commands

Transact-SQL

command Required DB-Library/C functions

All Transact-SQL dbresults. In some cases, for example dbcc, the command's

commands not listed normal output is considered by DB-Library/C to consist of

elsewherein thistable. errors and messages. The output is thus processed within a
DB-Library/C application’s error and message handlers
instead of in the main program using dbnextrow or other
DB-Library/C routines.

execute A DB-Library/C application must call dbresults once for
every set of results that the stored procedure returns. In
addition, if the stored procedure returns rows, the
application must call donextrow or other DB-Library/C
result-row routines.

select dbresults. In addition, aDB-Library/C application must call
dbnextrow or other DB-Library/C result-row routines.

Setting up the results

Getting result data

18

dbresults sets up the results of the next command in the batch. dbresults must
be called after dbsglexec or dbsglok has returned SUCCEED, but before calls
to dbbind or dbnextrow.

The simplest way to get result datais to bind result columns to program
variables, using dbbind and dbaltbind. Then, when the application calls
dbnextrow to read aresult row (see “Reading result rows’ on page 19), DB-
Library/C will automatically place copies of the columns' datainto the
program variables to which they are bound. The application must call dbbind
and dbaltbind after a dbresults call but before the first call to donextrow.

You can also access aresult column’s data directly with dbdata and dbadata,
which return pointers to the data. dbdata and dbadata have the advantage of
providing access to the actual data, not a copy of the data. These routines are
frequently used in conjunction with dbdatlen and dbadlen, which return the
length of the data and are described in the section “Information retrieval” on
page 24. When you are accessing data directly with these routines, you do not
perform any preliminary binding of result columnsto program variables.
Simply call dbdata or dbadata after a dbnextrow call.

The following routines are used to retrieve result columns:

Open Client

CHAPTER 1 Introducing DB-Library

Reading result rows

dbbind — binds aregular row result column to a program variable.

dbbind_ps — binds aregular row result column to a program variable, with
precision and scale support for numeric and decimal variables.

dbaltbind — binds a compute row result column to a program variable.

dbaltbind_ps — binds a compute row result column to a program variable,
with precision and scale support for numeric and decimal variables.

dbdata — returns a pointer to the data for aregular row result column.
dbadata — returns a pointer to the data for a compute row result column.

dbnullbind — associates an indicator variable with aregular row result
column.

dbanullbind — associates an indicator variable with a compute-row column.
dbsetnull — defines substitution valuesto be used when binding null values.

dbprtype — converts a server type token into a readable string. Tokens are
returned by various routines such as dbcoltype and dbaltop.

Once dbresults has returned SUCCEED and any binding of columnsto
variables has been specified, the applicationisready to processtheresults. The
first step isto make the result rows available to the application. The dbnextrow
routine accomplishes this. Each call to donextrow reads the next row returned
from the server. The row is read directly from the network.

Once arow has been read in by dbnextrow, the application can perform any
processing desired on the data in the row. If the result columns have been
bound to program variables, the datain the row will have been automatically
copiedinto thevariables. Alternatively, the dataisaccessibl e through dbdata or
dbadata.

DB-Library/C Reference Manual 19

DB-Library/C routines

Canceling results

20

Rows read in by dbnextrow may be automatically saved in arow buffer, if
desired. The application accomplishes this by setting the DBBUFFER option
with the dbsetopt routine. Row buffering is useful for applicationsthat need to
process result rows in a non-sequential manner. Without row buffering, the
application must process each row asit isread in by dbnextrow, because the
next call to donextrow will overwritetherow. If the application hasallowed row
buffering, the rows are added to arow buffer asthey are read in by dbonextrow.
The application can then use the dbgetrow routine to skip around in the buffer
and return to previously read rows. Since row buffering carries amemory and
performance penalty, use it with discretion. Note that row buffering has
nothing to do with network buffering and is a completely independent issue.

Routines are also availableto print result rowsin adefault format. Because the
format is predetermined, these routines are of limited usefulness and are
appropriate primarily for debugging.

Note that DB-Library/C processes results one command at atime. When the
application has read al the results for one command, it must call doresults
again to set up the results for the next command in the command buffer. To
ensure that all results are handled, Sybase strongly recommends that doresults
be called in aloop.

The following routines are used to process result rows:

* dbnextrow — reads in the next row. The return value from dbnextrow tells
the application whether therow isaregular row or acompute row, whether
the row buffer isfull, and whether the last result row has been read.

e DBCURROW —returns the number of the row currently being read.

¢ dbprhead — prints default column headings for result rows. Thisroutineis
used in conjunction with dbprrow.

¢ dbprrow — prints all the result rows in adefault format. When this routine
is used, the program does not need to bind results or call dbnextrow.

The following routines cancel results:

¢ dbcancel — cancels results from the current command batch. This routine
cancels all the commands in the current batch.

¢ dbcanquery — cancels any rows pending from the most recently executed
query.

Open Client

CHAPTER 1 Introducing DB-Library

As an example of the difference between these routines, consider an
application that is processing the results of the language batch:

select * from pubs.titles
select * from pubs.authors

If the application calls docanquery while processing the titles rows, then the
titles rows are discarded and the application must continueto call dbresults and
process the rows from the next statement. If the application calls dbcancel
while processing the titles rows, then DB-Library discards the titles rows and
the results of all remaining, unprocessed commands in the batch. The
application does not need to continue calling dbresults after calling dbcancel.

Handling stored procedure results

A call to a stored procedure is made through either a remote procedure call,
discussed in “Remote procedure call processing” on page 30, or a Transact-
SQL execute command. The call can generate several types of results. First of
all, astored procedure that contains select statementswill return result rowsin
the usual fashion. Each successive call to dbresults will access the set of rows
from the next select statement in the stored procedure. These rows can be
processed, as usual, with donextrow.

Second, stored procedures can contain “return parameters.” Return parameters,
also called output parameters, provide stored procedures with a“ call-by-
reference” capability. Any change that a stored procedure makesinternally to
thevalue of an output parameter isavailableto the calling program. Thecalling
program can retrieve output parameter values once it has processed al of the
stored procedure’sresult rows by calling dbresults and dbnextrow. A number of
routines, described below, process return parameter values.

Third, stored procedures can return a status number.

To access a stored procedure’s output parameters and return status through the
following routines:

* dbnumrets —returns the number of return parameter values generated by a
stored procedure. If donumrets returnslessthan or equal to zero, no return
parameter values are available.

» dbretdata — returns a pointer to a return parameter value.
» dbretlen —returns the length of areturn parameter value.

» dbrettype — returns the datatype of areturn parameter value.

DB-Library/C Reference Manual 21

DB-Library/C routines

Setting results timeouts

dbretname — returns the name of the return parameter associated with a
particular value.

dbretstatus — returns the stored procedure’s status number.

dbhasretstat — indicates whether the current command or remote
procedure call generated a stored procedure status number. If dbhasretstat
returns “FALSE,” then no stored procedure status number is available.

By default, DB-Library will wait indefinitely for the results of a server
command to arrive. Applications can use the routines bel ow to specify afinite
timeout period:

dbsettime — sets the number of seconds that DB-Library/C will wait for a
server response.

DBGETTIME —getsthe number of secondsthat DB-Library/C will wait for
aserver response.

Message and error handling
DB-Library/C applications must handle two types of messages and errors:

22

Server messages and errors, which range in severity from informational
messages to fatal errors. Server messages and errors are known to DB-
Library/C applications as“ messages.” To list all possible Adaptive Server
Enterprise messages, use the Transact-SQL command:

select * from sysmessages

For alist of Adaptive Server Enterprise messages, see the Adaptive Server
Enterprise System Administration Guide. For alist of Open Server
messages, see the Open Server Server-Library/C Reference Manual.

DB-Library/C warnings and errors, known to DB-Library/C applications
as“errors.” For alist of DB-Library/C errors, see Errors on page 389.

Also, success or failure indications are returned by most DB-Library/C

routines.

To handle server messages, DB-Library/C errors, and success or failure

indications, a DB-Library/C application can:

Open Client

CHAPTER 1 Introducing DB-Library

e Test DB-Library/C routine return codes in the mainline code, handling
failures on a case-by-case basis.

e Centralizemessageand error handling by installing amessage handler and
an error handler, which are then automatically called by DB-Library/C
when a message or error occurs.

Sybase strongly recommends that all DB-Library/C applications use
centralized message and error handling in addition to mainline error testing.
Centralized message and error handling has substantial benefits for large or
complex applications. For example:

e Centralized message and error handling reduces the need for mainline
error-handling logic. Thisis because DB-Library/C calls an application’s
message and error handlers automatically whenever a message or error
occurs.

Note, however, that even an application that uses centralized error and
message handling will need some mainline error logic, depending on the
nature of the application.

e Centralized message and error handling provides a mechanism for
gracefully handling unexpected errors. An application using only mainline
error-handling logic may not successfully trap errors which have not been
anticipated.

To provide a DB-Library/C application with centralized message and error
handling, the application programmer must write a message handler and an
error handler and install them using dbmsghandle and dberrhandle.

The DB-Library/C routines for message and error handling are:

* dbmsghandle —installs auser function to handle server informational and
€rror messages.

e dberrhandle —installs a user function to handle DB-Library/C error
messages.

e DBDEAD —determines whether a particular DBPROCESS is dead. When

a DBPROCESS is dead, the current DB-Library/C routine fails, causing
the error handler to be called.

DB-Library/C Reference Manual 23

DB-Library/C routines

Information retrieval

Information covering several areas, including regular result columns, compute
result columns, row buffers, and the command state, can be retrieved from the
DBPROCESS structure. As mentioned earlier, regular result columns
correspond to columnsin the select command’s select list and compute result
columns correspond to columns in the select command’s optional compute
clause.

Regular result column information

These routines can be called after dbsglexec returns SUCCEED:

¢ dbnumcols — determines the number of columnsin the current set of
results.

¢ dbcolname — returns the name of aregular result column.
¢ dbcollen — returns the maximum length for aregular column’s data.
¢ dbcoltype —returns the server datatype for aregular result column.

¢ dbdatlen —returnstheactual length of aregular column’sdata. Thisroutine
isoften used in conjunction with dbdata. The value returned by dbdatlen is
different for each regular row read by dbnextrow.

¢ dbvarylen —indicates whether the column’s data can vary in length.

Compute result column information

24

These routines can be called after dbsglexec returns SUCCEED:

e DBROWTYPE —indicates whether the current result row isaregular row
or a compute row.

¢ dbnumcompute — returns the number of compute clausesin the current set
of results.

e dbnumalts — returns the number of columnsin a compute row.

* dbbylist — returns the bylist for a compute row.

* dbaltop — returns the type of aggregate operator for a compute column.
e dbalttype — returns the datatype for a compute column.

e dbaltlen — returns the maximum length for a compute column’s data.

¢ dbaltcolid — returns the column ID for a compute column.

Open Client

CHAPTER 1 Introducing DB-Library

Row buffer information

dbadlen — returns the actual length of a compute column’s data. This
routine is often used in conjunction with dbadata. The value returned by
dbadlen is different for each compute row read by dbnextrow.

These macros return information that can be useful when manipulating result
rowsin buffers:

DBFIRSTROW - returns the number of the first row in the buffer.
DBLASTROW - returns the number of the last row in the buffer.

dbgetrow — reads the specified row in the row buffer. Thisroutine provides
the application with accessto buffered rowsthat have been previously read
by dbnextrow.

dbclrbuf — drops rows from the row buffer.

Command state information

These routines return information about the current state of the command
batch. Several of them return information about the “current” command, that
is, the command currently being processed by dbresults.

DBCURCMD - returns the number of the current command in a batch.

dbgetoff — checks for the existence of specified Transact-SQL constructs
in the command buffer. This routine is used in conjunction with the
DBOFFSET option.

DBMORECMDS — indicates whether there are more commands in the
batch.

DBCMDROW —indicates whether the current command is one that can
return rows (that is, a select or astored procedure containing a select).

DBROWS —indicates whether the current command actually did return
rows.

DBCOUNT - returns the number of rows affected by a command.

DBNUMORDERS - returns the number of columns specified in aselect
command’s order by clause.

dbordercol — returns the ID of a column appearing in aselect command’s
order by clause.

DB-Library/C Reference Manual 25

DB-Library/C routines

Browse mode

26

Browse mode provides a means for browsing through database rows and
updating their values arow at atime. From the standpoint of the program, the
process involves several steps, because each row must be transferred from the
database into program variables before it can be browsed and updated.

Since arow being browsed is not the actual row residing in the database, but is
instead a copy residing in program variables, the program must be able to
ensure that changesto the variables' values can be reliably used to update the
original database row. In particular, in multiuser situations, the program needs
to ensure that updates made to the database by one user do not unwittingly
overwrite updates recently made by another user. This can be a problem
because the application typically selectsanumber of rowsfrom the database at
one time, but the application’s users browse and update the database one row
at atime. A timestamp column in browsable database tables provides the
information necessary to regulate this type of multiuser updating.

Browse mode routines also allow an application to handle ad hoc queries.
Several routines return information that an application can use to examine the
structure of a complicated ad hoc query to update the underlying database
tables.

Conceptually, browse mode involves three steps:

1 Select result rows containing columns derived from one or more database
tables.

2 Where appropriate, change values in columns of the result rows (not the
actual database rows), onerow at atime.

3 Update the original database tables, one row at atime, using the new
valuesin theresult rows.

These steps are implemented in a program as follows:

1 Execute aselect command, generating result rows containing result
columns. The select command must include the for browse option.

2 Copy theresult column values into program variables, onerow at atime.

3 If appropriate, change the values of the variables (possibly in response to
user input).

4 If appropriate, execute an update command that updates the database row
corresponding to the current result row. To handle multiuser updates, the
where clause of the update command must reference the timestamp
column. Such awhere clause can be obtained through the dbqual function.

Open Client

CHAPTER 1 Introducing DB-Library

5 Repeat steps 2, 3, and 4 for each result row.

To use browse mode, the following conditions must be true:

The select command must end with the key words for browse.

The table(s) to be updated must be “ browsable” (that is, each must have a
unique index and atimestamp column). Note that because a browse mode
table has unique rows, the keyword distinct has no effect in aselect against
a browse-mode table.

The result columns to be used in the updates must be “ updatable’—they
must be derived from browsable tables and cannot be the result of SQL
expressions, such as max(colname). In other words, there must be avalid
correspondence between the result column and the database column to be
updated. In addition, browse mode usually requires two connections
(DBPROCESS pointers)—one for selecting the data and another for
performing updates based on the selected data.

For examples of browse-maode programming, see the sample programs,
exampleb.c and example7.c, included with DB-Library. See “Sample
programs’ on page 37.

The following constitute the browse-mode routines:

dbqual —returns a pointer to awhere clause suitablefor usein updating the
current row in abrowsable table.

dbfreequal — frees the memory allocated by dbqual.

dbtsnewval — returns the new value of the timestamp column after a
browse-mode update.

dbtsnewlen —returns the length of the new value of the timestamp column
after a browse-mode update.

dbtsput —putsthe new value of thetimestamp columnintothegiventable’'s
current row in the DBPROCESS.

dbcolbrowse —indicates whether the source of aresult columnisupdatable
through browse mode.

dbcolsource — returns a pointer to the name of the database column from
which the specified result column was derived.

dbtabbrowse — indicates whether a particular table is updatable using
browse mode.

dbtabcount — returns the number of tables involved in the current select
command.

DB-Library/C Reference Manual 27

DB-Library/C routines

* dbtabname — returns the name of atable based on its number.

* dbtabsource — returns the name and number of the table from which a
particular result column was derived.

Text and image handling

28

The text and image Adaptive Server Enterprise datatypes are designed to hold
large text or image values. The text datatype will hold up to 2,147,483,647
bytes of printable characters; theimage datatype will hold up to 2,147,483,647
bytes of binary data.

Because they can be so large, text and image values are not actually stored in
database tables. Instead, a pointer to the text or image valueis stored in the
table. This pointer is called a “text pointer.”

To ensure that competing applications do not wipe out one ancther’s
modificationsto the database, atimestamp isassociated with each text or image
column. Thistimestamp is called a “text timestamp.”

A DB-Library/C application that uses dbwritetext to insert text or image data
into a table must perform the following steps:

1 Usetheinsert command to insert al datainto the row except the text or
image value.

2 Usetheupdate command to update the row, setting the value of thetext or
image column to NULL. This step is necessary because atext or image
column row that containsanull value will have avalid text pointer only if
the null value was explicitly entered with the update statement.

3 Usetheselect command to select the row. You must specifically select the
column that isto contain the text or image value. This step is necessary to
provide the application’s DBPROCESS with correct text pointer and text
timestamp information. The application should throw away the data
returned by this select.

4 Cdl dbtxtptr to retrieve the text pointer from the DBPROCESS.
Call dbtxtimestamp to retrieve the text timestamp from the DBPROCESS.

6 Writethetext orimage valueto Adaptive Server Enterprise. An application
can either:

¢ Writethe value with asingle call to dowritetext, or

¢ Writethevalue in chunks, using dowritetext and dbmoretext.

Open Client

CHAPTER 1 Introducing DB-Library

7 If the application plans to make another update to thistext or image value,
it may want to save the new text timestamp that is returned by Adaptive
Server Enterprise at the conclusion of a successful dowritetext operation.
The new text timestamp may be accessed using dbtxtsnewval and stored for
later retrieval using dbtxtsput.

Several routines are available to facilitate the process of updating text and
image columns in database tables:

« dbreadtext — reads atext or an image value from Adaptive Server
Enterprise.

« dbwritetext — sends a text or an image value to Adaptive Server Enterprise.

« dbmoretext — sends part of atext or an image value to Adaptive Server
Enterprise.

« dbtxptr — returns the text pointer for a column in the current results row.

» dbtxtimestamp —returnsthevalue of thetext timestamp for acolumninthe
current results row.

« dbtxtsnewval — returns the new value of atext timestamp after acall to
dbwritetext.

« dbtxtsput — puts the new value of atext timestamp into the specified
column of the current row in the DBPROCESS.

Datatype conversion

DB-Library/C supports conversions between most server datatypes with the
dbconvert and dbconvert_ps routines. For information on server datatypes, see
Types on page 412.

The dbbind, dbbind_ps, dbaltbind, and dbaltbind_ps routines, which bind result
columns to program variables, can aso be used to perform type conversion.
Each of these routines contain a parameter that specifies the datatype of the
receiving program variable. If the data being returned from the server is of a
different datatype, DB-Library/C will usually convert it automatically to the
type specified by the parameter.

These routines are used to perform datatype conversion:

« dbconvert_ps — converts data from one server datatype to another, with
precision and scale support for numeric and decimal datatypes.

e dbconvert — converts data from one server datatype to another.

DB-Library/C Reference Manual 29

DB-Library/C routines

e dbwillconvert — indicates whether a specified datatype conversion is
supported.

Process control flow

These routines allow the application to schedule its actions around its
interaction with a server:

¢ dbsetbusy — calls a user-supplied function when DB-Library/C isreading
or waiting to read results from the server.

e dbsetidle — calls a user-supplied function when DB-Library/C isfinished
reading from the server.

e dbsetinterrupt — calls user-supplied functions to handle interrupts while
waiting on aread from the server.

e DBIORDESC (UNIX only) — provides access to the UNIX file descriptor
used to read data coming from the server, alowing the application to
respond to multiple input data streams.

e DBIOWDESC (UNIX only) — provides access to the UNIX file descriptor
used to write data to the server, allowing the application to effectively
utilize multiple input and output data streams.

e DBRBUF (UNIX only) — determines whether the DB-Library/C network
buffer contains any unread bytes.

Remote procedure call processing

A remote procedure call issimply acall to a stored procedure residing on a
remote server. Either an application or another server makesthecall. A remote
procedure call made by an application has the same effect as an execute
command: It executes the stored procedure, generating results accessible
through dbresults. However, a remote procedure call is often more efficient
than an execute command. Notethat if the procedure being executed resideson
aserver other than the one to which the application is directly connected,
commands executed within the procedure cannot be rolled back.

30 Open Client

CHAPTER 1 Introducing DB-Library

A server can make aremote procedure call to another server. Thisoccurswhen
astored procedure being executed on one server contains an execute command
for astored procedure on another server. The execute command causesthefirst
server to log in to the second server and perform aremote procedure call on the
procedure. This happens without any intervention from the application,
although the application can specify the remote password that the first server
usesto login.

The following routines are used to perform remote procedure calls:
e dbrpcinit —initializes aremote procedure call to a stored procedure.
e dbrpcparam — adds a parameter to aremote procedure call.

« dbrpcsend —signalsthe end of aremote procedure call, causing the server
to begin executing the specified procedure.

e dbpoll —when called between dbsglsend (or dbrpcsend) and dbsglok,
checks if a server response has arrived for a DBPROCESS.

* dbsqglok —waits for results from the server and verifies the correctness of
the instructions the server is responding to. Thisroutineis used in
conjunction with dbsglsend, dbrpcsend, and domoretext. After asuccessful
dbsglok call, the application must call doresults to process the results.

Registered procedure call processing

A registered procedureisa procedure that is defined and installed in arunning
Open Server. Registered procedures require Open Server version 2.0 or later.
At thistime, registered procedures are not supported by Adaptive Server
Enterprise.

For DB-Library/C applications, registered procedures provide away for inter-
application communication and synchronization. Thisis because DB-
Library/C applications connected to an Open Server can “watch” for a
registered procedure to execute. When the registered procedure executes,
applications watching for it receive anotification that includes the procedure’s
name and the argumentsit was called with.

Note DB-Library/C applications may create only a special type of registered
procedure, known as a“ notification procedure.” A notification procedure
differs from anormal Open Server registered procedurein that it contains no
executable statements.

DB-Library/C Reference Manual 31

DB-Library/C routines

32

For example, suppose the following:

e stockprice isareal-time DB-Library/C application monitoring stock
prices.

e price_change isanotification procedure created in Open Server by the
stockprice application. price_change takes as parameters a stock name and
aprice differential.

e sellstock, an application that puts stock up for sale, has requested to be
notified when price_change executes.

When stockprice, the monitoring application, becomes aware that the price of
Extravagant Auto Parts stock hasrisen $1.10, it executes price_change with the
parameters “ Extravagant Auto Parts’ and “+1.10".

When price_change executes, Open Server sends sellstock a notification
containing the name of the procedure (price_change) and the arguments passed
toit (“Extravagant Auto Parts’ and “+1.10"). sellstock uses the information
contained in the notification to decide to put 100 shares of Extravagant Auto
Parts stock up for sale.

price_change is the means through which the stockprice and sellstock
applications communicate.

Registered procedures as a means of communication have the following
advantages:

¢ A singlecall to execute aregistered procedure can result in many client
applications being notified that the procedure has executed. The
application executing the procedure does not need to know how many, or
which, clients have requested notifications.

e Theregistered procedure communication mechanism is server-based.
Open Server actsasacentral repository for connection addresses. Because
of this, client applications can communicate without having to connect
directly to each other. Instead, each client simply connects to the server.

A DB-Library/C application can:

¢ Create aregistered procedure in Open Server

e Drop aregistered procedure

e Listal registered procedures defined in Open Server

¢ Reguest to be notified when a particular registered procedure is executed

e Drop arequest to be notified when a particular registered procedure is
executed

Open Client

CHAPTER 1 Introducing DB-Library

List all registered procedure notifications
Execute aregistered procedure

Install a user-supplied handler to be called when an application receives
notification that a registered procedure has executed

Poll Open Server to seeif any registered procedure notifications are
pending

The following are registered procedure routines:

dbnpcreate — creates a notification procedure.
dbnpdefine — defines a notification procedure.
dbregdrop — drops a registered procedure.

dbreglist — returns alist of all registered procedures currently defined in
Open Server.

dbreghandle —installs a handler routine for aregistered procedure
notification.

dbreginit — initiates execution of aregistered procedure.

dbregnowatch — cancels a request to be notified when a registered
procedure executes.

dbregparam — defines a parameter for a registered procedure.
dbregexec — executes a registered procedure.
dbregwatch — requests to be notified when aregistered procedure executes.

dbregwatchlist —returnsalist of registered proceduresthat a DBPROCESS
iswatching for.

dbpoll —in an application that uses registered procedure naotifications, this
routine is used to check whether any notifications have arrived.

Gateway passthrough routines

Passthrough routines can be called in Open Server gateway applications. They
allow a DB-Library/C application to send and receive whole Tabular Data
Stream™ (TDS) packets and set TDS packet size.

TDS s an application protocol used for the transfer of requests and request
results between clients and servers. These routines are used with the
srvrecvpassthru and srvsendpassthru Open Server Server-Library routines:

DB-Library/C Reference Manual 33

DB-Library/C routines

dbrecvpassthru —receives a TDS packet from Open Server.

dbsendpassthru — sends a TDS packet to Open Server.

See the Open Server Server-Library/C Reference Manual for descriptions of
srvrecvpassthru and srvsendpassthru.

Datetime and money

These routines manipul ate datetime and money datatypes. datetime and money
datatypes comein long versions, DBDATETIME and DBMONEY/, and short
(4-byte) versions, DBDATETIME4 and DBMONEY 4. All of the
DBDATETIME4 routines listed below are also available for DBDATETIME,
and all DBMONEY 4 routines are available for DBMONEY . For example,
dbmny4add, listed below, is also available as dbmnyadd.

34

dbdate4cmp — compares two DATETIME4 values.

dbdatedzero —initializesa DBDATETIME4 va ue.

dbmny4add — adds two DBMONEY 4 values.

dbmny4cmp — compares two DBMONEY 4 values.

dbmny4copy — copiesa DBMONEY 4 value.

dbmny4divide — divides one DBMONEY 4 value by another.
dbmny4minus — negates a DBMONEY 4 value.

dbmny4mul — multipliesa DBMONEY 4 value.

dbmny4sub — subtractsa DBMONEY 4 value.

dbmny4zero —initializesaDBMONEY 4 value.

dbmnydec — decrements a DBMONEY value.

dbmnydown — dividesaDBMONEY value by a positive integer.
dbmnyinc —increments a DBMONEY value.

dbmnyinit — prepares a DBMONEY value for calls to domnyndigit.
dbmnymaxneg — returns the maximum negative DBMONEY value.
dbmnymaxpos — returns the maximum positive DBMONEY value.

dbmnyndigit — returns the rightmost digit of aDBMONEY value asa
DBCHAR.

Open Client

CHAPTER 1 Introducing DB-Library

Cleanup

Secure support

e dbmnyscale —multipliesaDBMONEY value and adds a specified amount.

These routines sever the connection between the application and a server:

* dbexit — closes and dedllocates all DBPROCESS structures. This routine
also cleans up any structuresinitialized by dbinit.

e dbclose — closes and deall ocates a single DBPROCESS structure.

These routines provide security for DB-Library applications running against
Adaptive Server Enterprise:

e DBSETLENCRYPT —specifieswhether or not password encryptionisto be
used when logging into Adaptive Server Enterprise.

* dbsechandle —installs user functions to handle secure logins.

* bcp_options — sets bulk copy options, including BCPLABELED, the
security label option.

Note Calling DBSETLENCRYPT causes an error unless you first set the DB-
Library versionto 10.0. Use dbsetversion to set the DB-Library versionto 10.0
before calling DBSETLENCRYPT.

Miscellaneous routines

These routines may be useful in some applications:
e dbsetavail — marks a DBPROCESS as being available for general use.

e DBISAVAIL —indicates whether a DBPROCESS is available for general
use.

* dbname — returns the name of the current database.

e dbchange — indicates whether a command batch has changed the current
database.

DB-Library/C Reference Manual 35

MIT Kerberos on DB-Library

¢ dbsetuserdata — uses a DBPROCESS structure to save a pointer to user-
allocated data. Thisroutine, along with dbgetuserdata, allows the
application to associate user data with a particular DBPROCESS. One
important use for these routinesisto transfer information between aserver
message handler and the program code that triggered it.

¢ dbgetuserdata — returns a pointer to user-allocated data from a
DBPROCESS structure.

e dbreadpage —readsin apage of binary datafrom Adaptive Server
Enterprise.

« dbwritepage — writes a page of binary datato Adaptive Server Enterprise.

* dbsetconnect — Sets server connection information in this routine.

Two-phase commit service special library

Theroutinesin thislibrary allow an application to coordinate updates among
two or more Adaptive Server Enterprises.

See Chapter 4, “ Two-Phase Commit Service.”

MIT Kerberos on DB-Library

DB-Library usesthe MIT Kerberos security mechanism to provide network
and mutual authentication services. This feature allows older Sybase
applications to use K erberos authentication services, with less need for
modification and recompilation.

These DB-Library macros enable Kerberos support:

¢ DBSETLNETWORKAUTH — enables or disables network base
authentication.

¢ DBSETLMUTUALAUTH — enables or disables mutual authentication of the
connection’s security mechanism.

36 Open Client

CHAPTER 1 Introducing DB-Library

e DBSETLSERVERPRINCIPAL — sets the server’s principal name, if
required.

Note DB-Library only supports network authentication and mutual
authentication services in the Kerberos security mechanism.

[dinstalling MIT-Kerberos on DB-Library

These steps provide basic information on installing MIT Kerberos on DB-
Library. For more detailed information, refer to Installation and Release
Bulletin for Sybase SDK DB-Lib Kerberos Authentication Option 15.5.

1 Purchase Sybase SDK DB-Lib Kerberos Authentication Option 15.5.

2 Instal Sybase SDK DB-Lib Kerberos Authentication Option 15.5 over
SDK 15.5.

In DB-Library, include sybdbn.h instead of sybdb.h.

4 Using dbsetversion, set the DB-Library version to DBVERSION_100 or
above.

5 Cadll oneor more of the following APIs:
DBSETLNETWORKAUTH(LOGINREC *loginrec, DBBOOL enable)
DBSETLMUTUALAUTH(LOGINREC *loginrec, DBBOOL enable)
DBSETLSERVERPRINCIPAL(LOGINREC *loginrec, char *name)

6 Recompile DB-Library.

Sample programs

Several sample programs are provided that demonstrate the use of DB-library
routines and their functionality. These samples are available in the following
directory:

e $SYBASE/$SYBASE_OCSYsample/dblibrary on UNIX
* %SYBASE%\%SYBASE_OCS¥o\sample\dblib on Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

DB-Library/C Reference Manual 37

Sample programs

38 Open Client

CHAPTER 2 Routines

This chapter contains a reference page for each DB-Library routine.

Routines Description Page

db12hour Determineswhether the specified language uses 12-hour or 48
24-hour time.

dbadata Returns a pointer to the data for a compute column. 49

dbadlen Returns the actual length of the datafor acompute column. 52

dbaltbind Binds a compute column to a program variable. 54

dbaltbind_ps Binds a compute column to a program variable, with 59
precision and scale support for numeric and decimal
datatypes.

dbaltcolid Returns the column ID for a compute column. 65

dbaltlen Returns the maximum length of the data for a particular 66
compute column.

dbaltop Returns the type of aggregate operator for a particular 67
compute column.

dbalttype Returns the datatype for a compute column. 68

dbaltutype Returns the user-defined datatype for a compute column. 69

dbanullbind Associates an indicator variable with a compute-row 70
column.

dbbind Binds aregular result column to a program variable. 72

dbbind_ps Binds aregular result column to a program variable, with 77
precision and scale support for numeric and decimal
datatypes.

dbbufsize Returns the size of a DBPROCESS row buffer. 82

dbbylist Returns the bylist for a compute row. 83

dbcancel Cancels the current command batch. 84

dbcanquery Cancels any rows pending from the most recently executed 85
query.

dbchange Determines whether a command batch has changed the 86
current database.

dbcharsetconv Indicates whether the server is performing character set 87
translation.

dbclose Closes and deallocate a single DBPROCESS structure. 88

dbclrbuf Drops rows from the row buffer. 88

DB-Library/C Reference Manual

39

40

Routines Description Page

dbclropt Clears an option set by dbsetopt. 89

dbcmd Adds text to the DBPROCESS command buffer. 91

DBCMDROW Determines whether the current command can return rows. 92

dbcolbrowse Determineswhether the source of aregular result columnis 93
updatable using the DB-Library browse-mode facilities.

dbcollen Returns the maximum length of the datain aregular result 94
column.

dbcolname Returns the name of aregular result column. 95

dbcolsource Returns a pointer to the name of the database column from 97
which the specified regular result column was derived.

dbcoltype Returns the datatype for aregular result column. 98

dbcoltypeinfo Returns precision and scaleinformation for aregular result 99
column of type numeric or decimal.

dbcolutype Returns the user-defined datatype for aregular result 100
column.

dbconvert Converts data from one datatype to another. 102

dbconvert_ps Converts data from one datatype to another, with precision 106
and scale support for numeric and decimal datatypes.

DBCOUNT Returns the number of rows affected by a Transact-SQL 112
command.

DBCURCMD Returns the number of the current command. 113

DBCURROW Returns the number of the row currently being read. 114

dbcursor Inserts, updates, deletes, locks, or refreshesaparticular row 115
in the fetch buffer.

dbcursorbind Registers the binding information on the cursor columns. 117

dbcursorclose Closes the cursor associated with the given handle and 119
release al the data belonging to it.

dbcursorcolinfo Returns column information for the specified column 120
number in the open cursor.

dbcursorfetch Fetchesablock of rowsintothe programvariablesdeclared 121
by the user in dbcursorbind.

dbcursorinfo Returns the number of columns and the number of rowsin 123
the keyset if the keyset hit the end of the result set.

dbcursoropen Opens a cursor and specify the scroll option, concurrency 124
option, and the size of the fetch buffer (the number of rows
retrieved with a single fetch).

dbdata Returns a pointer to the datain aregular result column. 128

dbdate4cmp Comparestwo DBDATETIMEA4 values. 129

Open Client

CHAPTER 2 Routines

Routines Description Page

dbdate4zero Initializesa DBDATETIME4 variable to Jan 1, 1900 130
12:00AM.

dbdatechar Converts an integer component of aDBDATETIME value 131
into character format.

dbdatecmp Comparestwo DBDATETIME values. 132

dbdatecrack Converts a machine-readable DBDATETIME value into 133
user-accessible format.

dbdatename Converts the specified component of a DBDATETIME 135
structure into its corresponding character string.

dbdateorder Returns the date component order for a given language. 138

dbdatepart Returns the specified part of aDBDATETIME valueasa 139
numeric value.

dbdatezero Initializesa DBDATETIME value to Jan 1, 1900 140
12:00:00:000AM.

dbdatlen Returns the length of the datain aregular result column. 141

dbdayname Determines the name of a specified weekday in aspecified 142
language.

DBDEAD Determines whether a particular DBPROCESS is dead. 143

dberrhandle Installs a user function to handle DB-Library errors. 144

dbexit Closes and deallocate all DBPROCESS structures, and 148
clean up any structures initialized by dbinit.

dbfcmd Adds text to the DBPROCESS command buffer using C 149
runtime library sprintf-type formatting.

DBFIRSTROW Returns the number of the first row in the row buffer. 152

dbfree_xlate Freesapair of character set translation tables. 153

dbfreebuf Clears the command buffer. 154

dbfreequal Frees the memory alocated by dbqual. 155

dbfreesort Frees a sort order structure alocated by dbloadsort. 155

dbgetchar Returns a pointer to a character in the command buffer. 157

dbgetcharset Gets the name of the client character set from the 157
DBPROCESS structure.

dbgetloginfo Transfers Tabular Data Stream (TDS) login response 158
information from a DBPROCESS structure to a newly
alocated DBLOGINFO structure.

dbgetlusername Returns the user name from a LOGINREC structure. 160

dbgetmaxprocs Determines the current maximum number of 161
simultaneously open DBPROCESSes.

dbgetnatlang Gets the national language from the DBPROCESS 162

DB-Library/C Reference Manual

structure.

41

42

Routines Description Page
dbgetoff Checksfor the existence of Transact-SQL constructsinthe 162
command buffer.
dbgetpacket Returns the TDS packet size currently in use. 164
dbgetrow Reads the specified row in the row buffer. 165
DBGETTIME Returns the number of seconds that DB-Library will wait 167
for a server response to a SQL command.
dbgetuserdata Returns a pointer to user-allocated datafrom a 167
DBPROCESS structure.
dbhasretstat Determines whether the current command or remote 168
procedure call generated a return status number.
dbinit Initialize DB-Library. 170
DBIORDESC (UNIX only) Provides program access to the UNIX file 170
descriptor used by a DBPROCESS to read data coming
from the server.
DBIOWDESC (UNIX only) Provides program access to the UNIX file 172
descriptor used by a DBPROCESS to write data to the
server.
DBISAVAIL Determines whether a DBPROCESS is available for 173
general use.
dbisopt Checks the status of a server or DB-Library option. 173
DBLASTROW Returns the number of the last row in the row buffer. 174
dbload_xlate Loads a pair of character set trandation tables. 175
dbloadsort Loads a server sort order. 176
dblogin Allocates alogin record for use in dbopen. 177
dbloginfree Frees alogin record. 179
dbmny4add Adds two DBMONEY 4 values. 179
dbmny4cmp Compares two DBMONEY 4 values. 180
dbmny4copy Copiesa DBMONEY 4 value. 181
dbmny4divide Divides one DBMONEY 4 value by another. 182
dbmny4minus Negates a DBMONEY 4 value. 183
dbmny4mul Multiplies two DBMONEY 4 values. 184
dbmny4sub Subtracts one DBMONEY 4 value from another. 185
dbmny4zero Initializesa DBMONEY 4 variable to $0.0000. 186
dbmnyadd Addstwo DBMONEY values. 187
dbmnycmp Comparestwo DBMONEY values. 188
dbmnycopy CopiesaDBMONEY value. 189
dbmnydec DecrementsaDBMONEY value by one ten-thousandth of 190

adollar.

Open Client

CHAPTER 2 Routines

Routines Description Page

dbmnydivide Dividesone DBMONEY value by another. 191

dbmnydown DividesaDBMONEY value by a positive integer. 192

dbmnyinc IncrementsaDBMONEY value by oneten-thousandthof a 194
dollar.

dbmnyinit Preparesa DBMONEY valuefor callsto dbmnyndigit. 194

dbmnymaxneg Returns the maximum negative DBMONEY value 196
supported.

dbmnymaxpos Returns the maximum positive DBMONEY vaue 197
supported.

dbmnyminus Negates a DBMONEY value. 198

dbmnymul Multipliestwo DBMONEY values. 199

dbmnyndigit Returns the rightmost digit of aDBMONEY value asa 200
DBCHAR.

dbmnyscale Multipliesa DBMONEY value by a positive integer and 206
add a specified amount.

dbmnysub Subtracts one DBMONEY value from another. 208

dbmnyzero Initializesa DBMONEY value to $0.0000. 209

dbmonthname Determines the name of a specified month in a specified 209
language.

DBMORECMDS Indicates whether there are more commands to be 210
processed.

dbmoretext Sends part of atext or image value to the server. 211

dbmsghandle Installs auser function to handle server messages. 212

dbname Returns the name of the current database. 216

dbnextrow Reads the next result row into the row buffer andintoany 217
program variables that are bound to column data.

dbnpcreate Creates a notification procedure. 219

dbnpdefine Defines a notification procedure. 222

dbnullbind Associates an indicator variable with aregular result row 224
column.

dbnumalts Returns the number of columnsin a compute row. 225

dbnumcols Determines the number of regular columnsfor the current 225
set of results.

dbnumcompute Returnsthe number of compute clausesinthe current setof 227
results.

DBNUMORDERS Returns the number of columns specified in a Transact- 227
SQL select statement’s order by clause.

dbnumrets Determines the number of return parameter values 228

DB-Library/C Reference Manual

generated by a stored procedure.

43

44

Routines Description Page

dbopen Creates and initialize a DBPROCESS structure. 229

dbordercol Returns the ID of a column appearing in the most recently 233
executed query’s order by clause.

dbpoll Checksif aserver response hasarrived for aDBPROCESS. 234

dbprhead Prints the column headings for rows returned from the 239
server.

dbprrow Prints all the rows returned from the server. 240

dbprtype Converts atoken value to areadable string. 241

dbqual Returns a pointer to awhere clause suitable for usein 242
updating the current row in a browsable table.

DBRBUF (UNIX only) Determineswhether the DB-Library network 246
buffer contains any unread bytes.

dbreadpage Reads a page of binary data from the server. 247

dbreadtext Reads part of atext or image value from the server. 248

dbrecftos Recordsall SQL commands sent fromtheapplicationtothe 250
server.

dbrecvpassthru Receives a TDS packet from a server. 251

dbregdrop Drops aregistered procedure. 253

dbregexec Executes a registered procedure. 254

dbreghandle Installs a handler routine for aregistered procedure 256
notification.

dbreginit Initiates execution of aregistered procedure. 260

dbreglist Returns alist of registered procedures currently definedin 262
Open Server.

dbregnowatch Cancels arequest to be notified when aregistered 263
procedure executes.

dbregparam Defines or describes aregistered procedure parameter. 265

dbregwatch Requests to be notified when a registered procedure 269
executes.

dbregwatchlist Returnsalist of registered proceduresthat aDBPROCESS 274
iswatching for.

dbresults Sets up the results of the next query. 275

dbretdata Returns a pointer to areturn parameter value generated by 278
astored procedure.

dbretlen Determines the length of areturn parameter value 282
generated by astored procedure.

dbretname Determines the name of the stored procedure parameter 283

associated with a particular return parameter value.

Open Client

CHAPTER 2 Routines

Routines Description Page

dbretstatus Determinesthe stored procedure status number returnedby 285
the current command or remote procedure call.

dbrettype Determines the datatype of areturn parameter value 287
generated by a stored procedure.

DBROWS Indicates whether the current command actually returned 289
rows.

DBROWTYPE Returns the type of the current row. 289

dbrpcinit Initializes a remote procedure call. 290

dbrpcparam Adds a parameter to a remote procedure call. 292

dbrpcsend Signals the end of aremote procedure call. 294

dbrpwclr Clears al remote passwords from the LOGINREC 295
structure.

dbrpwset Adds aremote password to the LOGINREC structure. 296

dbsafestr Doubles the quotesin a character string. 297

dbsechandle Installs user functions to handle secure logins. 299

dbsendpassthru Sends a TDS packet to a server. 303

dbservcharset Gets the name of the server character set. 305

dbsetavail Marks a DBPROCESS as being available for general use. 306

dbsetbusy Calls auser-supplied function when DB-Library isreading 306
from the server.

dbsetconnect Sets the server connection information. 309

dbsetdefcharset Sets the default character set for an application. 310

dbsetdeflang Sets the default language name for an application. 31

dbsetidle Callsauser-supplied function when DB-Library isfinished 312
reading from the server.

dbsetifile Specifies the name and location of the Sybase interfaces 313
file.

dbsetinterrupt Calls user-supplied functions to handle interrupts while 314
waiting on aread from the server.

DBSETLAPP Sets the application name in the LOGINREC structure. 317

DBSETLCHARSET Sets the character set in the LOGINREC structure. 318

DBSETLENCRYPT Specifieswhether or not network password encryptionisto 319
be used when logging into Adaptive Server Enterprise.

DBSETLHOST Sets the host name in the LOGINREC structure. 320

DBSETLMUTUALAU | Enables or disables mutual authentication of the 321

TH connection’s security mechanism.

DBSETLNATLANG Sets the national language name in the LOGINREC 322

DB-Library/C Reference Manual

structure.

45

46

Routines Description Page

DBSETLNETWORKA | Enables or disables network-based authentication. 322

UTH

dbsetloginfo Transfers TDS login information from a DBLOGINFO 323
structure to a LOGINREC structure.

dbsetlogintime Sets the number of seconds that DB-Library waitsfor a 325
server responseto arequest for aDBPROCESS connection.

DBSETLPACKET Setsthe TDS packet sizein an application'sLOGINREC 326
structure.

DBSETLPWD Sets the user server password in the LOGINREC structure. 327

DBSETLSERVERPRI | SSetsthe server’s principal hame. 328

NCIPAL

DBSETLUSER Sets the user namein the LOGINREC structure. 329

dbsetmaxprocs Sets the maximum number of simultaneously open 329
DBPROCESS structures.

dbsetnull Defines substitution values to be used when binding null 330
values.

dbsetopt Sets a server or DB-Library option. 332

dbsetrow Sets a buffered row to “current.” 334

dbsettime Setsthe number of secondsthat DB-Library will wait fora 336
server response to a SQL command.

dbsetuserdata Uses a DBPROCESS structure to save a pointer to user- 336
allocated data.

dbsetversion Specifiesa DB-Library version level. 339

dbspid Gets the server process ID for the specified DBPROCESS. 340

dbsprlrow Places one row of server query results into a buffer. 341

dbsprlrowlen Determineshow large abuffer to allocateto hold theresults 343
returned by dbsprhead, dbsprline, and dbsprirow.

dbsprhead Places the server query results header into a buffer. 344

dbsprline Gets aformatted string that contains underlining for the 346
column names produced by dbsprhead.

dbsglexec Sends a command batch to the server. 347

dbsqglok Waits for results from the server and verify the correctness 349
of the instructions the server is responding to.

dbsqlsend Sends acommand batch to the server and do not wait fora 354
response.

dbstrbuild Builds a printable string from text containing placeholders 355
for variables.

dbstrcmp Comparestwo character stringsusing aspecified sort order. 358

dbstrcpy Copiesall or aportion of the command buffer. 359

Open Client

CHAPTER 2 Routines

Routines Description Page

dbstrlen Returnsthe length, in characters, of the command buffer. 361

dbstrsort Determines which of two character strings should appear 362
firstin asorted list.

dbtabbrowse Determines whether the specified table is updatable using 363
the DB-Library browse-mode facilities.

dbtabcount Returns the number of tablesinvolved in the current select 364
query.

dbtabname Returns the name of atable based on its number. 365

dbtabsource Returns the name and number of the table from which a 366
particular result column was derived.

DBTDS Determineswhichversionof TDS (the Tebular DataStream 368
protocol) is being used.

dbtextsize Returns the number of bytes of text or image data that 368
remain to be read for the current row.

dbtsnewlen Returns the length of the new value of the timestamp 369
column after a browse-mode update.

dbtsnewval Returns the new value of the timestamp column after a 370
browse-mode update.

dbtsput Puts the new value of the timestamp columninto thegiven 371
table's current row in the DBPROCESS.

dbtxptr Returns the value of the text pointer for acolumnin the 372
current row.

dbtxtimestamp Returnsthe value of the text timestamp for acolumninthe 374
current row.

dbtxtsnewval Returns the new value of atext timestamp after acall to 375
dbwritetext.

dbtxtsput Puts the new value of atext timestamp into the specified 375
column of the current row in the DBPROCESS.

dbuse Uses a particular database. 376

dbvarylen Determines whether the specified regular result column’'s 377
data can vary in length.

dbversion Determines which version of DB-Library isin use. 378

dbwillconvert Determines whether a specific datatype conversion is 379
available within DB-Library.

dbwritepage Writes a page of binary datato the server. 381

dbwritetext Sends atext or image value to the server. 382

dbxlate Translates a character string from one character set to 387

DB-Library/C Reference Manual

another.

47

dbl12hour

Routines Description Page
Errors The complete collection of DB-Library errors and error 389
severities.
Options The complete list of DB-Library options. 407
Types Datatypes and symbolic constants for datatypes used by 412
DB-Library.
dbl12hour
Description Determine whether the specified language uses 12-hour or 24-hour time.
Syntax DBBOOL db12hour(dbproc, language)
DBPROCESS *dbproc;
char *language;
Parameters dbproc

Return value

Usage

48

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

language
The name of the language of interest.

“TRUE” if language uses 12-hour time, “FALSE” otherwise.

e dbi2hour returns“TRUE" if language uses 12-hour time, and “FALSE” if
it uses 24-hour time.

e Iflanguageis NULL, dbproc’s current language is signified. If both
language and dbproc are NUL L, then DB-Library’s default language (for
any future calls to doopen) is signified.

e dbi2hour isuseful when retrieving and manipulating DBDATETIME
values using dbsglexec. When converting DBDATETIME vauesto
character strings, doconvert and dbbind always return the month
component of the DBDATETIME value in the local language, but use the
U.S. English date and time order (month-day-year, 12-hour time).
db12hour’s return value informs the application that some further
manipulation is necessary if 24-hour rather than 12-hour time is desired.

¢ Thefollowing code fragment illustrates the use of db12hour:

DBBOOL time format;

Open Client

CHAPTER 2 Routines

DBCHAR s _date[40];

/*

** Find out whether 12-hour or 24-hour time is
** used.

*/

time format = dbl2hour (dbproc, "FRANCAIS") ;

/* Put a command into a command buffer */
dbcmd (dbproc, "select start date from info table");

/* Send the command to the Adaptive Server
Enterprise */
dbsglexec (dbproc) ;

/* Process the command results */
dbresults (dbproc) ;

/*

** Bind column data (start date) to the program
** variable (s_date)

*/

dbbind (dbproc, 1, NTBSTRINGBIND, 0, s _date);

while (dbnextrow(dbproc) != NO MORE ROWS)
{
/*
** If we want 24-hour time, re-format
** g date accordingly.
*/
if (time_ format == TRUE)
format 24 (s_date);

printf ("Next start date: %s\n", s_date);

}
See also dbdateorder, dbdayname, dbmonthname, dbsetopt
dbadata
Description Return a pointer to the data for a compute column.
Syntax BYTE *dbadata(dbproc, computeid, colnum)

DB-Library/C Reference Manual 49

dbadata

Parameters

Return value

Usage

50

DBPROCESS *dbproc;

int computeid;

int colnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
Server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

colnum
The number of the column of interest. The first column returned is number
1. Note that the order in which compute columns are returned is determined
by the order of the corresponding columnsin the select list, not by the order
inwhich the compute columnswere originally specified. For example, inthe
following query the result of “sum(price)” isreferenced by giving colnuma
valueof 1, not 2:

select price, advance from titles
compute sum(advance), sum(price)

The relative order of compute columnsin the select list, rather than their
absolute position, determines the value of colnum. For instance, given the
following variation of the previous select:

select title id, price, advance from titles
compute sum(advance), sum(price)

the colnum for “sum(price)” till hasavalue of 1 and not 2, because the
“title_id” column in the select list is not a compute column and thereforeis
ignored when determining the compute column’s number.

A BYTE pointer to the datafor aparticular columnin aparticular compute. Be
sure to cast this pointer into the proper type. A BY TE pointer to NULL is
returned if there is no such column or compute or if the data has a null value.

DB-Library allocates and frees the data space that the BY TE pointer pointsto.
Do not overwrite this space.

e After each call to dbnextrow, you can use this routine to return a pointer to
the data for a particular column in a compute row. The datais not null-
terminated. You can use dbadlen to get the length of the data.

Open Client

CHAPTER 2 Routines

e When acolumn of integer datais summed or averaged, the server always
returns a4-byteinteger, regardless of the size of the column. Therefore, be
sure that the variable that is to contain the result from such a compute is
declared as DBINT.

DB-Library/C Reference Manual

Here is a short program fragment which illustrates the use of dbadata:

DBPROCESS *dbproc;
int rowinfo;
DBINT sum;

/*

** First, put the commands into the command

** puffer

*/

dbcmd (dbproc, "select db name(dbid), dbid, size
from sysusages") ;

dbcmd (dbproc, " order by dbid");

dbcmd (dbproc, " compute sum(size) by dbid");

/*

** Send the commands to Adaptive Server Enterprise
and start

** execution

*/

dbsglexec (dbproc) ;

/* Process the command */
dbresults (dbproc) ;

/* Examine the results of the compute clause */

while ((rowinfo = dbnextrow (dbproc)) !=
NO_MORE_ROWS)

{

if (rowinfo == REG_ROW)

printf ("regular row returned.\n") ;
else
{

/-k

** This row is the result of a compute
** clause, and "rowinfo" is the computeid
** of this compute clause.

*/
sum = * (DBINT *) (dbadata (dbproc, rowinfo,

1));
printf ("sum = %1d\n", sum);

51

dbadlen

See also

dbadlen

Description

Syntax

Parameters

Return value

Usage

52

}

¢ Thefunction dbaltbind automatically binds compute data to your program
variables. It doesacopy of the data, but is often easier to use than dbadata.
Furthermore, it includes a convenient type conversion capability. By
means of this capability, the application can, among other things, easily
add anull terminator to aresult string or convert money and datetime data
to printable strings.

dbadlen, dbaltbind, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

Return the actua length of the data for a compute column.

DBINT dbadlen(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

The length, in bytes, of the datafor a particular compute column. If thereisno
such column or compute clause, dbadlen returns-1. If the datahasanull value,
dbadlen returns 0.

e Thisroutinereturns the actual length of the data for a particular compute
column.

Open Client

CHAPTER 2 Routines

« Usethedbaltlen routine to determine the maximum possible length for the
data. Use dbadata to get a pointer to the data.

e Hereisaprogram fragment that illustrates the use of dbadlen:

DB-Library/C Reference Manual

DBPROCESS *dbproc;
char biggest name [MAXNAME+1] ;
int namelen;
int rowinfo;

/* put the command into the command buffer */

dbcmd (dbproc, "select name from sysobjects");
dbcmd (dbproc, " order by name") ;

dbcmd (dbproc, " compute max (name) ") ;

/*

** Send the command to Adaptive Server Enterprise
and start

** execution.

*/

dbsglexec (dbproc) ;

/* process the command */
dbresults (dbproc) ;

/* examine each row returned by the command */
while ((rowinfo = dbnextrow (dbproc)) !=
NO_MORE_ROWS)

if (rowinfo == REG_ROW)

printf ("regular row returned.\n") ;
else
{

/*

** This row is the result of a compute
** clause, and "rowinfo" is the computeid
** of this compute clause.
*/
namelen = dbadlen (dbproc, rowinfo, 1);
strncpy (biggest name,
(char *)dbadata (dbproc, rowinfo, 1),
namelen) ;

/*
** Data pointed to by dbadata() is not
** null-terminated.

*/

53

dbaltbind

See also

dbaltbind

Description

Syntax

Parameters

54

biggest name [namelen] = ‘\0’;

printf ("biggest name = %s\n",
biggest name) ;

}
}
dbadata, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

Bind a compute column to a program variable.

RETCODE dbaltbind(dbproc, computeid, column, vartype,
varlen, varaddr)

DBPROCESS *dbproc;

int computeid;
int column;

int vartype;
DBINT varlen;
BYTE * varaddr;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselectis 1.

column
The column number of the row datathat is to be copied to a program
variable. Thefirst columniscolumn number 1. Note that the order in which
compute columns are returned is determined by the order of the
corresponding columns in the select list, not by the order in which the
compute columns were originally specified. For example, in the following
query the result of “sum(price)” is referenced by giving column avalue of
1, not 2:

select price, advance from titles

Open Client

CHAPTER 2 Routines

compute sum(advance), sum(price)

The relative order of compute columnsin the select list, rather than their
absolute position, determines the value of column. For instance, given the
following variation of the earlier select:

select title id, price, advance from titles
compute sum(advance), sum(price)

the column for “sum(price)” still has avalue of 1 and not 2, because the
“title_id” column in the select list is not a compute column and thereforeis
ignored when determining the compute column’s number.

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the datafrom
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbaltbind supports a wide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For alist of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

Note dbaltbind does not offer explicit precision and scale support for numeric
and decimal datatypes. When handling numeric or decimal data, dbaltbind uses
adefault precision and scale of 18 and O, respectively, unless the bind isto a
numeric or decimal column, in which case dbaltbind usesthe precision and scale
of the source data. Use dbaltbind_ps to explicitly specify precision and scale
values—calling dbaltbind is equivalent to calling dbaltbind_pswith aNULL
typeinfo value.

For alist of the type definitions used by DB-Library, see Types on page 412.

Table 2-1 lists the legal vartype values recognized by dbaltbind, along with
the server and program variable types that each one refers to:

DB-Library/C Reference Manual 55

dbaltbind

Table 2-1: Bind types (dbaltbind)
Program variable

Vartype type Server datatype
CHARBIND DBCHAR SYBCHAR
STRINGBIND DBCHAR SYBCHAR
NTBSTRINGBIND DBCHAR SYBCHAR
VARYCHARBIND DBVARYCHAR SYBCHAR
BINARYBIND DBBINARY SYBBINARY
VARYBINBIND DBVARYBIN SYBBINARY
TINYBIND DBTINYINT SYBINT1
SMALLBIND DBSMALLINT SYBINT2
INTBIND DBINT SYBINT4
FLT8BIND DBFLT8 SYBFLT8
REALBIND DBREAL SYBREAL
NUMERICBIND DBNUMERIC SYBNUMERIC
DECIMALBIND DBDECIMAL SYBDECIMAL
BITBIND DBBIT SYBBIT
DATETIMEBIND DBDATETIME SYBDATETIME
SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4
MONEYBIND DBMONEY SYBMONEY
SMALLMONEYBIND DBMONEY4 SYBMONEY4
BOUNDARYBIND DBCHAR SYBBOUNDARY
SENSITIVITYBIND DBCHAR SYBSENSITIVITY

Warning! It isan error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION_100 or
higher: BOUNDARY BIND, DECIMALBIND, NUMERICBIND, or
SENSITIVITYBIND.

Since SYBTEXT and SYBIMAGE data are never returned through a
compute row, those datatypes are not listed above.

Note that the server type in the table above is listed merely for your
information. The vartype you specify does not necessarily have to
correspond to a particular server type, because, as mentioned earlier,
dbaltbind will convert server datainto the specified vartype.

The available representations for character data are shown below. They
differ according to whether the datais blank-padded or null-terminated:

56 Open Client

CHAPTER 2 Routines

Vartype Program type Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0
VARYCHARBIND DBVARYCHAR none none
BOUNDARYBIND DBCHAR none \0
SENSITIVITYBIND DBCHAR none \0

Note that the “\0” in the table above is the null terminator character.

If overflow occurs when converting integer or float datato a character
binding type, thefirst character of theresulting valuewill contain an asterisk
(“*") to indicate the error.

Binary data may be stored in two different ways:

Vartype Program Type Padding
BINARYBIND DBBINARY nulls
VARYBINBIND DBVARBINARY none

When a column of integer datais summed or averaged, the server always
returns a 4-byte integer, regardless of the size of the column. Therefore, be
sure that the variable which is to contain the result from such a compute is
declared as DBINT and that the vartype of the binding is INTBIND.

varlen
The length of the program variable in bytes.

For vartype valuesthat represent fixed-length types, suchasMONEY BIND
or FLT8BIND, thislength isignored.

For character and binary types, varlen must describe the total length of the
available destination buffer space, including any space that may be required
for special terminating bytes, such asanull terminator. If varlenis 0, the
total number of bytes available will be copied into the program variable.
(For char and binary server data, thetotal number of bytes availableisequal
to the defined length of the database column, including any blank padding.
For varchar and varbinary data, the total number of bytes availableis equal
to the actual data contained in the column.) Therefore, if you are sure that
your program variable is large enough to handle the results, you can just set
varlento 0.

varaddr
The address of the program variable to which the data will be copied.

DB-Library/C Reference Manual 57

dbaltbind

Return value

Usage

58

SUCCEED or FAIL.

dbaltbind returns FAIL if the column number isnot valid, if the data conversion
specified by vartype isnot legal, or if varaddr isNULL.

Thisroutine directs DB-Library to copy compute column data returned by
the server into a program variable. (A compute column results from the
compute clause of a Transact-SQL select statement.) When each new row
containing compute datais read using dbnextrow or dbgetrow, the data
from the designated column in that compute row is copied into the
program variable with the address varaddr. There must be a separate
dbaltbind call for each compute column that isto be copied. It is not
necessary to bind every compute column to a program variable.

The server can return two typesof rows: regular rows containing datafrom
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. dbaltbind binds data from compute
rows. Use dbbind for binding data from regular rows.

You must make the callsto dbaltbind after acall to dbresults and before the
first call to dbnextrow.

The typical sequence of callsis:
DBCHAR name [20] ;
DBINT namecount;

/* read the query into the command buffer */
dbcmd (dbproc, "select name from emp compute
count (name) ") ;

/* send the query to Adaptive Server Enterprise */
dbsglexec (dbproc) ;

/* get ready to process the query results */
dbresults (dbproc) ;

/* bind the regular row data (name) */
dbbind (dbproc, 1, STRINGBIND, (DBINT) 0, name) ;

/* bind the compute column data (count of name) */
dbaltbind (dbproc, 1, 1, INTBIND, (DBINT) O,
(BYTE *) &namecount) ;

/* now process each row */
while (dbnextrow(dbproc) != NO MORE ROWS)

{

C-code to print or process row data

Open Client

CHAPTER 2 Routines

See also

dbaltbind_ps

Description

Syntax

}

« dbaltbind incurs alittle overhead because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbadata
routine to directly access the returned data.

e Youcanonly bindaresult columnto asingle program variable. If you bind
aresult column to multiple variables, only the last binding takes effect.

e The server can return null column values, and DB-Library provides the
following aids for handling null values:

e A pre-defined set of default values, one for each datatype, that DB-
Library automatically substitutes when a bound column contains a
null value. The dbsetnull function allows you to explicitly set your
own null substitution values. See the reference page for the dbsetnull
function for alist of the default substitution values.

e Theahility to bind an indicator variable to a column with dbnullbind
(or dbanullbind for compute rows). As rows are fetched, the value of
theindicator variablewill be set to indicate whether or not the column
value was null. Seethe reference page for the dbnullbind function for
indicator values and meanings.

dbadata, dbaltbind_ps, dbanullbind, dbbind, dbbind_ps, dbconvert,
dbconvert_ps, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on
page 412

Bind acompute column to aprogram variable, with precision and scale support
for numeric and decimal datatypes.

RETCODE dbaltbind_ps(dbproc, computeid, column,
vartype, varlen, varaddr,

typeinfo)
DBPROCESS *dbproc;
int computeid;
int column;
int vartype;
DBINT varlen;
BYTE *varaddr;

DBTYPEINFO *typeinfo;

DB-Library/C Reference Manual 59

dbaltbind_ps

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselectis 1.

column
The column number of the row data that is to be copied to a program
variable. Thefirst columniscolumn number 1. Note that the order in which
compute columns are returned is determined by the order of the
corresponding columns in the select list, not by the order in which the
compute columns were originally specified. For example, in the following
query the result of “sum(price)” is referenced by giving column avalue of
1, not 2:

select price, advance from titles
compute sum(advance), sum(price)

The relative order of compute columnsin the select list, rather than their
absolute position, determines the value of column. For instance, given the
following variation of the earlier select:

select title id, price, advance from titles
compute sum(advance), sum(price)

the column for “sum(price)” till hasavalue of 1 and not 2, because the
“title_id” column in the select list is not a compute column and thereforeis
ignored when determining the compute column’s number.

60 Open Client

CHAPTER 2 Routines

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the datafrom
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbaltbind_ps supports a wide range of type conversions, so the vartype can
be different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For alist of the data conversions provided by DB-Library, seethereference
page for dbwillconvert.

Note dbaltbind_ps'’s parameters are identical to dbaltbind’s, except that
dbaltbind_ps has the additional parameter typeinfo, which contains
information about precision and scale for DBNUMERIC or DBDECIMAL
variables.

For alist of the type definitions used by DB-Library, see Types on page 412.

Table 2-2 lists the legal vartype values recognized by dbaltbind_ps, along
with the server and program variable types that each one refers to:

DB-Library/C Reference Manual 61

dbaltbind_ps

Table 2-2: Bind types (dbaltbind_ps)

Program variable

Vartype type Server datatype
CHARBIND DBCHAR SYBCHAR
STRINGBIND DBCHAR SYBCHAR
NTBSTRINGBIND DBCHAR SYBCHAR
VARYCHARBIND DBVARYCHAR SYBCHAR
BINARYBIND DBBINARY SYBBINARY
VARYBINBIND DBVARYBIN SYBBINARY
TINYBIND DBTINYINT SYBINT1
SMALLBIND DBSMALLINT SYBINT2
INTBIND DBINT SYBINT4
FLT8BIND DBFLT8 SYBFLT8
REALBIND DBREAL SYBREAL
NUMERICBIND DBNUMERIC SYBNUMERIC
DECIMALBIND DBDECIMAL SYBDECIMAL
BITBIND DBBIT SYBBIT
DATETIMEBIND DBDATETIME SYBDATETIME
SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4
MONEYBIND DBMONEY SYBMONEY
SMALLMONEYBIND DBMONEY4 SYBMONEY4
BOUNDARYBIND DBCHAR SYBBOUNDARY
SENSITIVITYBIND DBCHAR SYBSENSITIVITY

Warning! It isan error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION_100 or
higher: BOUNDARY BIND, DECIMALBIND, NUMERICBIND, or
SENSITIVITYBIND.

Since SYBTEXT and SYBIMAGE data are never returned through a
compute row, those datatypes are not listed above.

Note that the server type in the table above is listed merely for your
information. The vartype you specify does not necessarily have to
correspond to a particular server type, because, as mentioned earlier,
dbaltbind_ps will convert server datainto the specified vartype.

The available representations for character data are shown below. They
differ according to whether the datais blank-padded or null-terminated:

62 Open Client

CHAPTER 2 Routines

Vartype Program type Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0
VARYCHARBIND DBVARYCHAR none none
BOUNDARYBIND DBCHAR none \0
SENSITIVITYBIND DBCHAR none \0

Note that the “\0” in the table above is the null terminator character.

If overflow occurs when converting integer or float datato a character
binding type, thefirst character of theresulting valuewill contain an asterisk
(“*") to indicate the error.

Binary data may be stored in two different ways:

Vartype Program type Padding
BINARYBIND DBBINARY nulls
VARYBINBIND DBVARBINARY none

When a column of integer datais summed or averaged, the server always
returns a 4-byte integer, regardless of the size of the column. Therefore, be
sure that the variable which is to contain the result from such a compute is
declared as DBINT and that the vartype of the binding is INTBIND.

varlen
The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, thislength isignored.

For character and binary types, varlen must describe the total length of the
available destination buffer space, including any space that may be required
for specia terminating bytes, such asanull terminator. If varlenis0, the
total number of bytes available will be copied into the program variable.
(For char and binary server data, thetotal number of bytes availableisequal
to the defined length of the database column, including any blank padding.
For varchar and varbinary data, the total number of bytes availableis equal
to the actual data contained in the column.) Therefore, if you are sure that
your program variable is large enough to handle the results, you can just set
varlento 0.

varaddr
The address of the program variable to which the data will be copied.

DB-Library/C Reference Manual 63

dbaltbind_ps

Return value

Usage

64

typeinfo

A pointer to aDBTY PEINFO structure containing information about the
precision and scale of decimal or numeric data. An application setsa
DBTY PEINFO structure with values for precision and scale before calling
dbaltbind_ps to bind columnsto DBDECIMAL or DBNUMERIC variables.

If typeinfois NULL:

e If theresult columnisof type numeric or decimal, dbaltbind_ps picks up
precision and scale values from the result column.

¢ If theresult column is not numeric or decimal, dbaltbind_ps uses a
default precision of 18 and a default scale of 0.

If vartypeis not DECIMALBIND or NUMERICBIND, typeinfo isignored.
A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo
DBINT precision;
DBINT scale;

} DBTYPEINFO;

Legal valuesfor precision arefrom 1 to 77. Legal valuesfor scaleare from
0to 77. scale must be less than or equal to precision.

SUCCEED or FAIL.

dbaltbind_ps returns FAIL if the column number is not valid, if the data
conversion specified by vartype is not legal, or if varaddr isNULL.

dbaltbind_ps is the equivalent of dbaltbind, except that dbaltbind_ps
provides precision and scale support for numeric and decimal datatypes,
which dbaltbind does not. Calling dbaltbind is equivalent to calling
dbaltbind_ps with typeinfo as NULL.

dbaltbind_ps directs DB-Library to copy compute column datareturned by
the server into a program variable. (A compute column results from the
compute clause of a Transact-SQL select statement.) When each new row
containing compute datais read using dbnextrow or dbgetrow, the data
from the designated column in that compute row is copied into the
program variable with the address varaddr. There must be a separate
dbaltbind_ps call for each compute column that isto be copied. It is not
necessary to bind every compute column to a program variable.

The server can return two types of rows: regular rows containing datafrom
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. dbaltbind_ps binds data from compute
rows. Use dbbind_ps for binding data from regular rows.

Open Client

CHAPTER 2 Routines

See also

dbaltcolid

Description

Syntax

Parameters

* Youmust makethe callsto dbaltbind_ps after acall to dbresults and before
thefirst call to dbnextrow.

« dbaltbind_ps incurs some overhead because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbadata
routine to directly access the returned data.

e Youcanonly bindaresult columnto asingle program variable. If you bind
aresult column to multiple variables, only the last binding takes effect.

e Sincethe server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. (See the reference page for the
dbsetnull function for alist of the default substitution values.)

dbaltbind, dbanullbind, dbbind, dbbind_ps, dbconvert, dbconvert_ps, dbdata,
dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on page 412

Return the column ID for a compute column.

int dbaltcolid(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the compute column of interest. The first column in a select
listis1.

DB-Library/C Reference Manual 65

dbaltlen

Return value

Usage

See also

dbaltlen

Description

Syntax

Parameters

Return value

Usage

66

The select list ID for the compute column. Thefirst columninaselect listis1.
If either the computeid or the column valueisinvalid, dbaltcolid returns - 1.

e Thisroutine returnsthe select list ID for acompute column. For example,
given the SQL statement:

select dept, name from employee
order by dept, name
compute count (name) by dept

the call dbaltcolid(dbproc, 1, 1) will return 2, since “name” is the second
column in the select list.

dbadata, dbadlen, dbaltlen, dbgetrow, dbnextrow, dbnumalts, dbprtype

Return the maximum length of the data for a particular compute column.

DBINT dbaltlen(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by donextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

The maximum length, in bytes, possible for the datain a particular compute
column. dbaltlen returns -1 if there is no such column or compute clause.

Thisroutine returns the maximum length for acolumn in acompute row. In the
case of variablelength data, thisis not necessarily the actual length of the data,
but rather the maximum length. For the actual datalength, use dbadlen.

Open Client

CHAPTER 2 Routines

See also

dbaltop

Description

Syntax

Parameters

Return value

Usage

For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count (name) by dept

the call dbaltlen(dbproc, 1, 1) returns 4 because counts are of SYBINTA4 type,
which is 4 byteslong.

dbadata, dbadlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

Return the type of aggregate operator for a particular compute column.

int dbaltop(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

A token valuefor the type of the compute column’s aggregate operator. In case
of error, dbaltop returns -1.

e Thisroutinereturnsthe type of aggregate operator for aparticular column
in a compute row. For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count (name) by dept

DB-Library/C Reference Manual 67

dbalttype

See also

dbalttype

Description

Syntax

Parameters

Return value

68

the call dbaltop(dbproc, 1, 1) will return the token value for count sincethe
first aggregate operator in the first compute clause is count.

¢ You can convert the token value to a readabl e token string with dbprtype.
See the dbprtype reference page for alist of all token values and their
equivalent token strings.

dbadata, dbadlen, dbaltlen, dbnextrow, dbnumalts, dbprtype

Return the datatype for a compute column.

int dbalttype(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by donextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

A token value for the datatype for a particular compute column.

In afew cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

e SYBVARCHARisreturned as SYBCHAR.

e SYBVARBINARY isreturned as SYBBINARY.
e SYBDATETIMN isreturned as SYBDATETIME.
¢ SYBMONEYN isreturned as SYBMONEY..

Open Client

CHAPTER 2 Routines

Usage

See also

dbaltutype

Description

Syntax

Parameters

e SYBFLTN isreturned as SYBFLTS.

e SYBINTN isreturned as SYBINT1, SYBINTZ2, or SYBINT4, depending
on the actual type of the SYBINTN.

dbalttype returns -1 if either the computeid or the column valueisinvalid.

e Thisroutinereturnsthe datatype for acompute column. For alist of server
datatypes, see Types on page 412.

« dbalttype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLTS, and so on). To convert the token value into a
readabl e token string, use dbprtype. See the dbprtype reference page for a
list of all token values and their equivalent token strings.

* For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count (name) by dept

the call dbalttype(dbproc, 1, 1) returnsthe token value SY BINT4, because
counts are of SYBINT4 type. dbprtype will convert SYBINT4 into the
readabl e token string “int”.

dbadata, dbadlen, dbaltlen, dbnextrow, dbnumalts, dbprtype, Types on page
412

Return the user-defined datatype for a compute column.

DBINT dbaltutype(dbproc, computeid, column)

DBPROCESS *dbproc;

int computeid;
int column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 69

dbanullbind

Return value

Usage

See also

dbanullbind

Description

Syntax

Parameters

70

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

The user-defined datatype of the specified compute column on success,; a
negative integer on error.

e dbaltutype returns the user-defined datatype for a compute column.

e For adescription of how to add user-defined datatypes to the server
databases or Server-Library programs, see the Adaptive Server Enterprise
Reference Manual or the Open Server Server-Library/C Reference
Manual.

¢ dbaltutype is defined as type DBINT, since both the DB-Library datatype
DBINT and user-defined datatypes are 32 bits long.

dbalttype, dbcolutype

Associate an indicator variable with a compute-row column.

RETCODE dbanullbind(dbproc, computeid, column,
indicator)

DBPROCESS *dbproc;

int computeid;
int column;
DBINT *indicator;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

computeid
The compute row of interest. A select statement may have multiple compute
clauses, each of which returns a separate compute row. The computeid
corresponding to the first compute clausein aselectis 1.

column
The number of the column that is to be associated with the indicator
variable.

indicator
A pointer to the indicator variable.

Note indicator isjust the pointer to the indicator variable. It isthe variable
itself that is set.

SUCCEED or FAIL.
dbanullbind returns FAIL if either computeid or column isinvalid.

* dbanullbind associates a compute-row column with an indicator variable.
Theindicator variableindicates whether a particular compute-row column
has been converted and copied to a program variable successfully or
unsuccessfully, or whether it isnull.

e Theindicator variable is set when compute rows are processed using
dbnextrow. The possible values are:

e -1ifthecolumnisNULL.

« Thefull length of the column’'s data, in bytesif the column was bound
to a program variable using dbaltbind, the binding did not specify any
data conversions, and the bound data was truncated because the
program variable was too small to hold the column’s data.

e 0if the column was bound and copied to a program variable
successfully.

Note Detection of character string truncation isimplemented only for
CHARBIND and VARY CHARBIND.

dbadata, dbadlen, dbaltbind, dbnextrow, dbnullbind

DB-Library/C Reference Manual 71

dbbind

dbbind

Description

Syntax

Parameters

72

Bind aregular result column to a program variable.

RETCODE dbbind(dbproc, column, vartype, varlen,
varaddr)

DBPROCESS *dbproc;

int column;
int vartype;
DBINT varlen;
BYTE *varaddr;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The column number of the row datathat is to be copied to a program
variable. The first column is column number 1.

Open Client

CHAPTER 2 Routines

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the datafrom
the DBPROCESS. The following table shows the correspondence between
vartype values and program variable types.

dbbind supports awide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For example, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For alist of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

Note Thedbbind routine does not offer explicit precision and scale support for
numeric and decimal datatypes. When handling numeric or decimal data, dbbind
uses a default precision and scale of 18 and 0, respectively, unlessthe bind is
to anumeric or decimal column, in which case dbbind uses the precision and
scale of the source data. Usedbbind_psto explicitly specify precision and scale
values—calling dbbind is equivalent to calling dbbind_pswith aNULL
typeinfo value.

For alist of thetype definitions used by DB-Library, see Typeson page 412.

Table 2-3liststhelegal vartype values recognized by dbbind, along with the
server and program variable types that each one refers to:

DB-Library/C Reference Manual 73

dbbind

74

Table 2-3: Bind types (dbbind)

Program
Vartype variable type Server datatype
CHARBIND DBCHAR SYBCHAR or SYBTEXT
STRINGBIND DBCHAR SYBCHAR or SYBTEXT
NTBSTRINGBIND DBCHAR SYBCHAR or SYBTEXT
VARYCHARBIND DBVARYCHAR SYBCHAR or SYBTEXT
BINARYBIND DBBINARY SYBBINARY or SYBIMAGE
VARYBINBIND DBVARYBIN SYBBINARY or SYBIMAGE
TINYBIND DBTINYINT SYBINT1
SMALLBIND DBSMALLINT SYBINT2
INTBIND DBINT SYBINT4
FLT8BIND DBFLT8 SYBFLT8
REALBIND DBREAL SYBREAL
NUMERICBIND DBNUMERIC SYBNUMERIC
DECIMALBIND DBDECIMAL SYBDECIMAL
BITBIND DBBIT SYBBIT
DATETIMEBIND DBDATETIME SYBDATETIME
SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4
MONEYBIND DBMONEY SYBMONEY
SMALLMONEYBIND DBMONEY 4 SYBMONEY4
BOUNDARYBIND DBCHAR SYBBOUNDARY
SENSITIVITYBIND DBCHAR SYBSENSITIVITY

Warning! An error occurs when you use any of the following values for
vartype if the library version has not been set (with dbsetversion) to
DBVERSION_100 or higher: BOUNDARYBIND, DECIMALBIND,
NUMERICBIND, or SENSITIVITYBIND.

The server typeinthetable aboveislisted merely for your information. The
vartype you specify does not necessarily have to correspond to a particular
server type, because, as mentioned earlier, dobind will convert server data

into the specified vartype.

Note The server typesnchar and nvarchar are converted internally to char and
varchar types, which correspond to the DB-Library type constant SYBCHAR.

The available representations for character and text data are shown below.

Open Client

CHAPTER 2 Routines

They differ according to whether the data is blank-padded or null-
terminated. Note that if varlenis 0, no padding takes place and that the “\0”
isthe null terminator character:

Vartype Program type Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0
VARYCHARBIND DBVARYCHAR none none
BOUNDARYBIND DBCHAR none \0
SENSITIVITYBIND DBCHAR none \0

If overflow occurs when converting integer or float datato a character/text
binding type, thefirst character of theresulting valuewill contain an asterisk
(“*") to indicate the error.

Binary and image data can be stored in two different ways:

Vartype Program type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none
varlen

The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, thislength isignored.

For char, text, binary, and image types, varlen must describe the total length
of the available destination buffer space, including any space that may be
reguired for special terminating bytes, such asanull terminator. If varlenis
0, the total number of bytes available will be copied into the program
variable. (For char and binary server data, the total number of bytesavailable
is equal to the defined length of the database column, including any blank
padding. For varchar, varbinary, text, and image data, the total number of
bytes available is equal to the actual data contained in the column.)
Therefore, if you are sure that your program variable is large enough to
handle the results, you can just set varlen to O.

Note that if varlenis 0, no padding takes place.

In some cases, DB-Library issues amessage indicating that data conversion
resulted in an overflow. This can be caused by avarlen specification that is
too small for the server data.

DB-Library/C Reference Manual 75

dbbind

varaddr
The address of the program variable to which the data will be copied.

Return value SUCCEED or FAIL.

dbbind returns FAIL if the column number is not valid, if the data conversion
specified by vartype isnot legal, or if varaddr isNULL.

Usage « Datacomes back from the server one row at atime. Thisroutine directs
DB-Library to copy the data for aregular column (designated in a select
statement’s select list) into a program variable. When each new row
containing regular (not compute) dataisread using dbnextrow or dbgetrow,
the datafrom the designated column in that row is copied into the program
variablewith the address varaddr. There must be a separate dbbind call for
each regular column that isto be copied. It is not necessary to bind every
column to a program variable.

e The server can return two types of rows: regular rows and compute rows
resulting from the compute clause of aselect statement. dbbind binds data
from regular rows. Use dbaltbind for binding data from compute rows.

¢ You must make the calls to dbbind after a call to dbresults and before the
first call to dbnextrow.

e Thetypical sequence of callsis:

DBINT xvariable;
DBCHAR yvariable [10];

/* read the query into the command buffer */
dbcmd (dbproc, "select x = 100, y = ’'hello’");

/* send the query to Adaptive Server Enterprise */
dbsglexec (dbproc) ;

/* get ready to process the query results */
dbresults (dbproc) ;

/* bind column data to program variables */
dbbind (dbproc, 1, INTBIND, (DBINT) O,
(BYTE *) &xvariable) ;
dbbind (dbproc, 2, STRINGBIND, (DBINT) O,
yvariable) ;

/* now process each row */
while (dbnextrow (dbproc) != NO_MORE ROWS)

{

C-code to print or process row data

76 Open Client

CHAPTER 2 Routines

See also

dbbind_ps

Description

Syntax

Parameters

}

« dbbind incursalittle overhead, because it causes the datato be copied into
aprogram variable. To avoid this copying, you can use the dbdata routine
to directly access the returned data.

e Youcanonly bindaresult columnto asingle program variable. If you bind
aresult column to multiple variables, only the last binding takes effect.

e Sincethe server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. (See the reference page for the
dbsetnull function for alist of the default substitution values.)

dbaltbind, dbaltbind_ps, dbnullbind, dbbind_ps, dbconvert, dbconvert_ps,
dbdata, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Typeson page 412

Bind aregular result column to a program variable, with precision and scale
support for numeric and decimal datatypes.

RETCODE dbbind_ps(dbproc, column, vartype, varlen,
varaddr, typeinfo)

DBPROCESS *dbproc;

int column;
int vartype;
DBINT varlen;
BYTE *varaddr;
DBTYPEINFO *typeinfo;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The column number of the row data that is to be copied to a program
variable. Thefirst column is column number 1.

DB-Library/C Reference Manual 77

dbbind_ps

78

vartype

This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the datafrom
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbbind_ps supports awide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For alist of the data conversions provided by DB-Library, seethereference
page for dowillconvert.

For alist of thetype definitionsused by DB-Library, see Typeson page 412.

Table 2-4 liststhe legal vartype val ues recognized by dbbind_ps, along with
the server and program variable types that each one refers to:

Open Client

CHAPTER 2 Routines

Table 2-4: Bind types (dbbind_ps)

Program
Vartype variable type Server type
CHARBIND DBCHAR SYBCHAR or SYBTEXT
STRINGBIND DBCHAR SYBCHAR or SYBTEXT
NTBSTRINGBIND DBCHAR SYBCHAR or SYBTEXT
VARYCHARBIND DBVARYCHAR SYBCHARor SYBTEXT
BINARYBIND DBBINARY SYBBINARY or SYBIMAGE
VARYBINBIND DBVARYBIN SYBBINARY or SYBIMAGE
TINYBIND DBTINYINT SYBINT1
SMALLBIND DBSMALLINT SYBINT2
INTBIND DBINT SYBINT4
FLT8BIND DBFLT8 SYBFLT8
REALBIND DBREAL SYBREAL
NUMERICBIND DBNUMERIC SYBNUMERIC
DECIMALBIND DBDECIMAL SYBDECIMAL
BITBIND DBBIT SYBBIT
DATETIMEBIND DBDATETIME SYBDATETIME
SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4
MONEYBIND DBMONEY SYBMONEY
SMALLMONEYBIND DBMONEY4 SYBMONEY4
BOUNDARYBIND DBCHAR SYBBOUNDARY
SENSITIVITYBIND DBCHAR SYBSENSITIVITY

Warning! It isan error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION 100 or
higher: BOUNDARYBIND, DECIMALBIND, NUMERICBIND, or

SENSITIVITYBIND.*

The server typein the table aboveislisted merely for your information. The
vartype you specify does not necessarily have to correspond to a particular
server type, because, as mentioned earlier, dbbind_ps will convert server

datainto the specified vartype.

Note The server typesnchar and nvarchar are converted internally to char and
varchar types, which correspond to the DB-Library type constant SYBCHAR.

The available representations for character and text data are shown below.

DB-Library/C Reference Manual

79

dbbind_ps

They differ according to whether the data is blank-padded or null-
terminated. Note that if varlen is 0, no padding takes place and that the “\0”
isthe null terminator character:

Vartype Program type Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0

VARY CHARBIND DBVARYCHAR none none
BOUNDARYBIND DBCHAR none \0
SENSITIVITYBIND DBCHAR none \0

If overflow occurs when converting integer or float data to a character/text
binding type, thefirst character of the resulting valuewill contain an asterisk
(“*") to indicate the error.

binary and image data may be stored in two different ways:

Vartype Program variable type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none
varlen

The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, thislength isignored.

For char, text, binary, and image types, varlen must describe the total length
of the available destination buffer space, including any space that may be
required for special terminating bytes, such asanull terminator. If varlenis
0, the total number of bytes available will be copied into the program
variable. (For char and binary server data, thetotal number of bytesavailable
isequal to the defined length of the database column, including any blank
padding. For varchar, varbinary, text, and image data, the total number of
bytes available is equal to the actual data contained in the column.)
Therefore, if you are sure that your program variable is large enough to
handl e the results, you can just set varlen to O.

Note If varlenisO, no padding takes place.

varaddr
The address of the program variable to which the data will be copied.

80 Open Client

CHAPTER 2 Routines

typeinfo
A pointer to aDBTY PEINFO structure containing information about the
precision and scale of decimal or numeric data. An application sets a
DBTY PEINFO structure with values for precision and scale before calling
dbbind_ps to bind columns to DBDECIMAL or DBNUMERIC variables.

If typeinfois NULL.:

e |f theresult column is of type numeric or decimal, dobind_ps picks up
precision and scale values from the result column.

» If theresult column is not numeric or decimal, dbbind_ps uses a default
precision of 18 and a default scale of 0.

If vartype isnot DECIMALBIND or NUMERICBIND, typeinfo isignored.
A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
DBINTprecision;
DBINTscale;

} DBTYPEINFO;

Legal valuesfor precision arefrom 1 to 77. Legal valuesfor scale are from
0to 77. scale must be less than or equal to precision.

Return value SUCCEED or FAIL.

dbbind_ps returns FAIL if the column number is not valid, if the data
conversion specified by vartypeis not legal, or if varaddr isNULL.

Usage e dbbind_ps parameters are identical to dbbind’s, except that dbbind_ps has
the additional parameter typeinfo, which contains information about
precision and scale for DBNUMERIC or DBDECIMAL variables.

« dbbind_ps isthe equivalent of dbbind, except that dbbind_ps providesscale
and precision support for numeric and decimal datatypes, which dbbind
does not. Calling dbbind isequivalent to calling dbbind_ps with typeinfo as
NULL.

» Data comes back from the server one row at atime. Thisroutine directs
DB-Library to copy the datafor aregular column (designated in aselect
statement’s select list) into a program variable. When each new row
containing regular (not compute) dataisread using dbnextrow or dbgetrow,
the datafrom the designated column in that row is copied into the program
variable with the address varaddr. There must be a separate dbbind or
dbbind_ps call for each regular column that is to be copied. It is not
necessary to bind every column to a program variable.

DB-Library/C Reference Manual 81

dbbufsize

See also

dbbufsize

Description

Syntax

Parameters

Return value

Usage

82

¢ The server can return two types of rows: regular rows and compute rows
resulting from the compute clause of a select statement. Use dbbind_ps to
bind data from regular rows, and dbaltbind_ps to bind data from compute
rows.

¢ You must make the calls to dbbind_ps after a call to dbresults and before
thefirst call to dbnextrow.

< dbbind_ps incurs some overhead, because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbdata
routine to directly access the returned data.

¢ Youcanbind aresult column only to asingle program variable. If you bind
aresult column to multiple variables, only the last binding takes effect.

e Sincethe server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. See the reference page for the
dbsetnull function for alist of the default substitution values.

dbaltbind, dbaltbind_ps, dbanullbind, dbbind, doconvert, dbconvert_ps,
dbdata, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Typeson page 412

Return the size of a DBPROCESS row buffer.
int dbbufsize(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

An integer representing the size, in rows, of the DBPROCESS row buffer.
If dbproc is NULL or if row buffering is not allowed, dbbufsize returns 0.
e dbbufsize returns the size of a DBPROCESS row buffer.

Open Client

CHAPTER 2 Routines

See also

dbbylist

Description

Syntax

Parameters

Return value

* Row buffering provides away for an application to keep a specified
number of server result rowsin program memory. To allow row buffering,
call dbsetopt(dbproc, DBBUFFER, n), where n is the number of rowsto
buffer. An application that is buffering result rows can access rows non-
sequentially, using dbgetrow. See the dbgetrow reference page for a
discussion of the benefits and penalties of row buffering.

dbclrbuf, dbgetrow, dbsetopt, Options on page 407

Return the bylist for a compute row.

BYTE *dbbylist(dbproc, computeid, size)

DBPROCESS *dbproc;

int computeid;
int *size;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.
size
A pointer to an integer, which dbbylist sets to the number of elementsin the
bylist.

A pointer to an array of bytes containing the numbers of the columns that
composethe bylist for the specified compute. Thearray of BY TEsispart of the
DBPROCESS, so you must not freeit. If the computeid is out of range, NULL
is returned.

Call dbcolname to derive the name of a column from its number.

Thesize of the array isreturned in the size parameter. A size of O indicatesthat
either there is no bylist for this particular compute or the computeid is out of
range.

DB-Library/C Reference Manual 83

dbcancel

Usage

See also

dbcancel

Description

Syntax

Parameters

Return value

84

« dbbylist returnsthe bylist for acompute row. (A select statement’s compute
clause may contain the keyword by, followed by alist of columns. This
list, known asthe “bylist,” divides the results into subgroups, based on
changing values in the specified columns. The compute clause's row
aggregate is applied to each subgroup, generating acompute row for each
subgroup.)

e dbresults must return SUCCEED before the application calls this routine.
¢ Assume the following command has been executed:

select dept, name, year, sales from employee
order by dept, name, year
compute count (name) by dept,name

The call dbbylist (dbproc, 1, & size) sets size to 2, because there are two
itemsin the bylist. It returns a pointer to an array of two BY TEs, which
contain the values 1 and 2, indicating that the bylist is composed of
columns 1 and 2 from the select list.

dbadata, dbadlen, dbaltlen, dbalttype, dbcolname, dbgetrow, dbnextrow

Cancel the current command batch.
RETCODE dbcancel(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL.

The most common reasons for failure are a dead DBPROCESS or a network
error. dbcancel will also return FAIL if the server is dead.

Open Client

CHAPTER 2 Routines

Usage

See also

dbcanquery
Description

Syntax

Parameters

Return value

« Thisroutine cancels execution of the current command batch on the server
and flushes any pending results. The application can call it after calling
dbsglexec, dbsglsend, dbsglok, dbresults, or donextrow.The dbcancel
routine sends an attention packet to the server which causes the server to
cease execution of the command batch. Any pending results are read and
discarded.

e dbcancel cancels all the commands in the current command batch. To
cancel only theresultsfrom the current command, call dbcanquery instead.

* Some applications may need the ability to cancel along-running query
while DB-Library isreading from the network. Inthis case, the application
should use one of these methods:

e Setatimelimit for server readswith dbsettime, and add a special case
to your error handler function to respond to SYBETIME errors. See
the reference pages for dberrhandle and dbsettime for details.

* Usedbsetinterrupt to install custom interrupt handling. See the
reference page for dbsetinterrupt for details.

« |If you have set your own interrupt handler using dbsetinterrupt, you cannot
call docancel in your interrupt handler. Thiswould cause output from the
server to DB-Library to become out of sync. See the reference page for
dbsetinterrupt for an explanation of how to cancel from an interrupt
handler.

dbcanquery, dbnextrow, dbresults, dbsetinterrupt, dbsglexec, dbsglok,
dbsglsend

Cancel any rows pending from the most recently executed query.

RETCODE dbcanquery(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL.

DB-Library/C Reference Manual 85

dbchange

The most common reasons for failure are a dead DBPROCESS or a network
error.

Usage e Thisroutineisan efficient way to throw away any unread rows that result
from the most recently executed SQL query. Calling dbcanquery is
equivalent to calling dbnextrow until it returns NO_MORE_ROWS, but
dbcanquery is faster because it allocates no memory and executes no
bindings to user data.

e If you have set your own interrupt handler using dbsetinterrupt, you cannot
call docanquery in your interrupt handler. Thiswould cause output from
the server to DB-Library to become out of sync. If you want to ignore any
unread rows from the current query, the interrupt handler should set aflag
that you can check before the next call to donextrow.

e dbresults must return SUCCEED before an application can call
dbcanquery.

e If youwant toignoreal of the results from all of the commandsin the
current command batch, call dbcancel instead.

See also dbcancel, dbnextrow, dbresults, dbsetinterrupt, dbsglexec

dbchange
Description Determine whether a command batch has changed the current database.
Syntax char *dbchange(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Return value A pointer to the null-terminated name of the new database, if any. If the
database has not changed, NULL will be returned.

Usage ¢ dbchange informsthe program of achangein the current database. It does
so by catching any instance of the Transact-SQL use command.

86 Open Client

CHAPTER 2 Routines

e Although ause command can appear anywhere in acommand batch, the
database change does not actually take effect until the end of the batch.
dbchange is therefore useful only in determining whether the current
command batch has changed the database for subsequent command
batches.

e Theinternal DBPROCESS flag that dochange monitors to determine
whether the database has changed is cleared when the program executes a
new command batch by calling either dbsglexec or dbsglsend. Therefore,
the simplest way to keep track of database changesisto call dbchange
when dbresults returns NO_MORE_RESULTS at the end of each
command batch.

e Alternatively, you can always get the name of the current database by
calling dbname.

See also dbname, dbresults, dbsglexec, dbsglsend, dbuse
dbcharsetconv
Description Indicate whether the server is performing character set translation.
Syntax DBBOOL dbcharsetconv(dbproc)

DBPROCESS *dbproc;
Parameters dbproc

Return value

Usage

See also

A pointer to the DBPROCESS structure that provides the connection for a

particular front-end/server process. It containsall the information that DB-
Library/C uses to manage communications and data between the front end

and the server.

“TRUE” if the server is performing character set trandations; “FALSE” if itis
not.

e If aclient and aserver are using the same character set, the server is not
performing translation. In this case, dbcharsetconv returns“FALSE”.

e To get the name of its own character set, aclient can call dbgetcharset.

e To get the name of the server’s character set, a client can call
dbservcharset.

dbservcharset, dbgetcharset, DBSETLCHARSET

DB-Library/C Reference Manual 87

dbclose

dbclose

Description

Syntax

Parameters

Return value

Usage

See also

dbclrbuf

Description

Syntax

Parameters

88

Close and deall ocate a single DBPROCESS structure.
void dbclose(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

None.

¢ dbclose istheinverse of dbopen. It cleans up any activity associated with
one DBPROCESS structure and deall ocates the space. It a so closes the
corresponding network connection.

e Toclose every open DBPROCESS structure, use dbexit instead.

« dbclose does not deallocate space associated with a LOGINREC. To
deallocate a LOGINREC, an application can call dbloginfree.

e Cdling dbclose with an argument not returned by dbopen is sure to cause
trouble.

dbexit, dbopen

Drop rows from the row buffer.
void dbclrbuf(dbproc, n)

DBPROCESS* dbproc;
DBINT n;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-

Library usesto manage communications and data between the front end and
server.

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

dbclropt

Description

Syntax

n

The number of rows you want cleared from the row buffer. If you maken
equal to or greater than the number of rows in the buffer, all but the newest
row will be removed. If nislessthan 1, the function call isignored.

None.

DB-Library provides a row-buffering service to application programs.
You can turn row buffering on by calling dbsetopt(dbproc, DBBUFFER,
n) where n is the number of rows you would like DB-Library to buffer. If
buffering is on, you can then randomly refer to rows that have been read
from the server, using dbgetrow. See the dbgetrow reference page for a
discussion of the benefits and penalties of row buffering.

The row buffer can become full for two reasons. Either the server has
returned more than the n rows you said you wanted buffered, or sufficient
space could not be alocated to save the row you wanted. When the row
buffer isfull, dbnextrow returnsBUF_FULL and refusesto read in the next
row from the server. Once the row buffer isfull, subsequent calls to
dbnextrow will continue to return BUF_FULL until at least onerow is
freed by calling dbclrbuf. dbclrbuf always freesthe ol dest rowsin the buffer
first.

Oncearesult row hasbeen cleared from the buffer, it isnolonger available
to the program.

For an example of row buffering, see the sample program example4.c.

dbgetrow, dbnextrow, dbsetopt, Options on page 407

Clear an option set by dbsetopt.

RETCODE dbclropt(dbproc, option, param)

DBPROCESS *dbproc;

int

option;

char* param;

DB-Library/C Reference Manual 89

dbclropt

Parameters

Return value

Usage

90

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server. If dbprocis NULL, the option will be cleared for all active
DBPROCESS structures.

option

The option that isto be turned off. See Options on page 407 for alist of
options.

param

Certain options take parameters. The DBOFFSET option, for example,
takes as a parameter the SQL construct for which offsets are to be returned.
Options on page 407 lists those options that take parameters. If an option
does not take a parameter, param must be NULL.

If the option you are clearing takes a parameter, but there can be only one
instance of the option, dbclropt ignores the param argument. For example,
dbclropt ignores the value of param when clearing the DBBUFFER option,
because row buffering can have only one setting at atime. On the other
hand, the DBOFFSET option can have several settings, each with adifferent
parameter. It may have been set twice—to look for offsets to select
statements and offsets to order by clauses. In that case, dbclropt heeds the
param argument to determine whether to clear the select offset or the order
by offset.

If aninvalid parameter is specified for one of the server options, thiswill be
discovered the next time a command buffer is sent to the server. The
dbsglexec or dbsglsend call fails, and DB-Library will invoke the user-
installed message handler. If aninvalid parameter is specified for one of the
DB-Library options (DBBUFFER or DBTEXTLIMIT), the dbclropt call
itself fails.

SUCCEED or FAIL.

This routine clears the server and DB-Library options that have been set
with dbsetopt. Although server options may be set and cleared directly
through SQL, the application should instead use dbsetopt and dbclropt to
set and clear options. This provides a uniform interface for setting both
server and DB-Library options. It also allows the application to use the
dbisopt function to check the status of an option.

dbclropt does not immediately clear the option. The option is cleared the
next time a command buffer is sent to the server (by invoking dbsglexec
or dbsglsend).

Open Client

CHAPTER 2 Routines

See also

dbcmd

Description

Syntax

Parameters

Return value

Usage

« For acompletelist of options, see Options on page 407.

dbisopt, dbsetopt, Options on page 407

Add text to the DBPROCESS command buffer.
RETCODE dbcmd(dbproc, cmdstring)

DBPROCESS *dbproc;
char *cmdstring;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

cmdstring
A null-terminated character string that docmd copies into the command
buffer.

SUCCEED or FAIL.

e Thisroutine adds text to the Transact-SQL command buffer in the
DBPROCESS structure. It adds to the existing command buffer—it does
not del ete or overwrite the current contents except after the buffer hasbeen
sent to the server (see “Clearing the command buffer” on page 92). A
single command buffer may contain multiple commands; in fact, this
represents an efficient use of the command buffer.

« dbfcmd isarelated function. dbfcmd interprets the cmdstring as a format
string that is passed to sprintf along with any additional arguments. The
application can intermingle calls to docmd and dbfcmd.

Consecutive calls to dbcmd

e Theapplication may call docmd repeatedly. The command stringsin
sequential calls are just concatenated together. It is the application’s
responsibility to ensure that any necessary blanks appear between the end
of one string and the beginning of the next.

DB-Library/C Reference Manual 91

DBCMDROW

See also

DBCMDROW

Description

Syntax

Parameters

Return value

92

¢ Hereisasmall example of using dbcmd to build up amultiline SQL

command:
DBPROCESS *dbproc;
dbcmd (dbproc, "select name from sysobjects") ;

dbcmd (dbproc, " where id < 5");
dbcmd (dbproc, " and type=’'S’'");

Note the required spaces at the start of the second and third command
strings.

« Atany time, the application can accessthe contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

« Available memory isthe only constraint on the size of the DBPROCESS
command buffer created by callsto dbcmd and dbfcmd.
Clearing the command buffer

* After acall to dbsglexec or dbsglsend, thefirst call to either dbcmd or
dbfcmd automatically clears the command buffer before the new text is
entered. If thissituation isundesirable, set the DBNOAUTOFREE option.
When DBNOAUTOFREE is set, the command buffer is cleared only by
an explicit call to dbfreebuf.

dbfcmd, dbfreebuf, dbgetchar, dbstrcpy, dbstrlen, Options on page 407

Determine whether the current command can return rows.
RETCODE DBCMDROW(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL, to indicate whether the command can return rows.

Open Client

CHAPTER 2 Routines

Usage

See also

dbcolbrowse

Description

Syntax

Parameters

Return value

Usage

e DBCMDROW determineswhether the command currently being processed
by dbresults is one that can return rows—that is, a Transact-SQL select
statement or an execute on a stored procedure containing a select. The
application can call it after dbresults returns SUCCEED.

* Evenif DBCMDROW macro returns SUCCEED, the command does not
return any rowsif none have qualified. To determine whether any rowsare
actually being returned, use DBROWS.

dbnextrow, dbresults, DBROWS, DBROWTY PE

Determine whether the source of aregular result column is updatabl e through
the DB-Library browse-mode facilities.

DBBOOL dbcolbrowse(dbproc, colnum)

DBPROCESS *dbproc;
int colnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

“TRUE” or “FALSE.”

e dbcolbrowse isone of the DB-Library browse mode routines. See Chapter
1, “Introducing DB-Library” for adetailed discussion of browse mode.

» dbcolbrowse provides away to determine whether the database column
that is the source of aregular (that is, non-compute) result columnin a
select list is updatable using the DB-Library browse-mode facilities. This
routine is useful in examining ad hoc queries. If the query has been hard-
coded into the program, dbcolbrowse obviously is unnecessary.

» Tobeupdatable, acolumn must be derived from abrowsabletable (that is,
the table must have a unique index and a timestamp column) and cannot
betheresult of aSQL expression. For example, inthefollowing select list:

select title, category=type,

DB-Library/C Reference Manual 93

dbcollen

See also

dbcollen

Description

Syntax

Parameters

Return value

Usage

94

wholesale=(price * 0.6) ... for browse

result columns 1 and 2 (“title” and “ category™) are updatable, but column
3 (“wholesal€”) is not, because it is the result of an expression.

e Theapplication can call docolbrowse anytime after dbresults.

¢ To determine the name of the source column given the name of the result
column, use dbcolsource.

¢ The sample program example7.c contains a call to dbcolbrowse.

dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

Return the maximum length of the datain aregular result column.
DBINT dbcollen(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

The maximum length, in bytes, of the data for the particular column. If the
column number is not in range, dbcollen returns -1.

« Thisroutine returns the maximum length of the datain aregular (that is,
non-compute) result column. In the case of variable length data, thisisnot
necessarily the actual length of the data, but rather the maximum length
that the data can be. For the actual datalength, use dbdatlen.

Open Client

CHAPTER 2 Routines

See also

dbcolname

Description

Syntax

DB-Library/C Reference Manual

The value that dbcollen returnsis not affected by Transact-SQL string
functions such as rtrim and Itrim. For examplg, if the column au_Iname has
amaximum length of 20 characters, and thefirst row instance of au_|name
is“Goodman " (avaue padded with 13 spaces), dbcollen returns
20 as the length of au_Iname, even though the Transact-SQL command
select rtrim(au_Iname) from authors returnsastring that is5 characterslong.

Hereisasmall program fragment that uses dbcollen:

DBPROCESS *dbproc;
int colnum;
DBINT column_length;

/* Put the command into the command buffer */
dbcmd (dbproc, "select name, id, type from
sysobjects") ;

/*

** Send the command to Adaptive Server Enterprise
and begin

** execution

*/

dbsglexec (dbproc) ;

/* process the command results */
dbresults (dbproc) ;

/* examine the column lengths */
for (colnum = 1; colnum < 4; colnum++)
{
column length = dbcollen(dbproc, colnum);
printf ("column %d, length is %1d.\n", colnum,
column_ length) ;

}

dbcolname, dbcoltype, dbdata, dbdatlen, dbnumcols

Return the name of aregular result column.

char *dbcolname(dbproc, column)

95

dbcolname

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value A CHAR pointer to the null-terminated name of the particular column. If the
column number is not in range, dbcolname returns NULL.

Usage ¢ Thisroutinereturnsapointer to the null-terminated name of aregular (that
is, non-compute) result column.

¢ Hereisasmall program fragment that uses dbcolname:

DBPROCESS *dbproc;

/* Put the command into the command buffer */
dbcmd (dbproc, "select name, id, type from
sysobjects") ;

/*

** Send the command to Adaptive Server Enterprise
and begin

** execution

*/

dbsglexec (dbproc) ;

/* Process the command results */
dbresults (dbproc) ;

/* Examine the column names */

printf ("first column name is %s\n",
dbcolname (dbproc, 1)) ;

printf ("second column name is %s\n",
dbcolname (dbproc, 2));

printf ("third column name is %s\n",
dbcolname (dbproc, 3));

See also dbcollen, dbcoltype, dbdata, dbdatlen, dbnumcols

96 Open Client

CHAPTER 2 Routines

dbcolsource

Description

Syntax

Parameters

Return value

Usage

Return a pointer to the name of the database column from which the specified
regular result column was derived.

char *dbcolsource(dbproc, colnum)

DBPROCESS *dbproc;
int colnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

A pointer to a null-terminated column name. This pointer will be NULL if the
column number is out of range or if the column isthe result of a SQL
expression, such as max(colname).

» dbcolsource isone of the DB-Library browse mode routines. It is usable
only with results from a browse-mode select (that is, aselect containing
the key words for browse). See Chapter 1, “ Introducing DB-Library” for a
detailed discussion of browse mode.

» dbcolsource provides an application with information it needsto update a
database column, based on an ad hoc query. select statements may
optionally specify header names for regular (that is, non-compute) result
columns:;

select author = au lname from authors for browse

When updating a table, you must use the database column name, not the
header name (in thisexample, “au_Iname”, not “author”). You can usethe
dbcolsource routine to get the underlying database column name:

dbcolsource (dbproc, 1)
This call returns a pointer to the string “au_Iname”.

« dbcolsource is useful for ad hoc queries. If the query has been hard-coded
into the program, this routine obviously is unnecessary.

e Theapplication can call dbcolsource anytime after dbresults.

e The sample program example7.c contains a call to dbcolsource.

DB-Library/C Reference Manual 97

dbcoltype

See also

dbcoltype

Description

Syntax

Parameters

Return value

Usage

98

dbcolbrowse, dbqual, dbtabbrowse, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

Return the datatype for a regular result column.

int dbcoltype(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

A token value for the datatype for a particular column.

In afew cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

* SYBVARCHAR sreturned as SYBCHAR.

* SYBVARBINARY isreturned as SYBBINARY.
* SYBDATETIMN isreturned as SYBDATETIME.
* SYBMONEYN isreturned as SYBMONEY .

e SYBFLTN isreturned as SYBFLTS.

e SYBINTN isreturned as SYBINT1, SYBINTZ2, or SYBINT4, depending
on the actual type of the SYBINTN.

If the column number is not in range, dbcoltype returns -1.

e Thisroutinereturnsthe datatype for aregular (that is, non-compute) result
column. For alist of server datatypes, see Types on page 412.

Open Client

CHAPTER 2 Routines

« dbcoltype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLTS, and so on). To convert the token value into a
readabl e token string, use dbprtype. See the dbprtype reference page for a
list of all token values and their equivalent token strings.

e You can use dbvarylen to determine whether a column’s datatypeis
variable length.

e Hereisaprogram fragment that uses dbcoltype:

DBPROCESS *dbproc;
int colnum;
int coltype;

/* Put the command into the command buffer */
dbcmd (dbproc, "select name, id, type from
sysobjects") ;

/* Send the command to Adaptive Server Enterprise
and begin

** execution.

*/

dbsglexec (dbproc) ;

/* Process the command results */
dbresults (dbproc) ;

/* Examine the column types */
for (colnum = 1; colnum < 4; colnum++)

{

coltype = dbcoltype (dbproc, colnum) ;
printf ("column %d, type is %s.\n", colnum,
dbprtype (coltype)) ;

}

See also dbcollen, dbcolname, dbdata, dbdatlen, dbnumcols, dbprtype, dbvarylen,
Types on page 412

dbcoltypeinfo

Description Return precision and scale information for a regular result column of type
numeric Or decimal.

DB-Library/C Reference Manual 99

dbcolutype

Syntax

Parameters

Return value

Usage

See also

dbcolutype

Description

Syntax

100

DBTYPEINFO * dbcoltypeinfo(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-

Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

A pointer toaDBTY PEINFO structure that contains precision and scale values
for aparticular numeric or decimal column, or NULL if the specified column
number is not in the result set.

A DBTY PEINFO structure is defined as follows:

typedef struct typeinfo {
DBINT precision;
DBINT scale;

} DBTYPEINFO;

If the datatype of the column is not numeric or decimal, the returned structure
will contain meaningless values. Check that dbcoltype returns SYBNUMERIC
or SYBDECIMAL before calling this function.

e Thisroutinereturns a pointer to a DBTY PEINFO structure that provides
precision and scale information for aregular (that is, non-compute) result
column of datatype numeric or decimal.

e Theprecision and scale values returned for columns with other datatypes
will be meaningless. Check that dbcoltype returns SYBNUMERIC or
SYBDECIMAL before calling dbcoltypeinfo.

dbcollen, dbcolname, dbcoltype, dbdata, dbdatlen, donumcols, dbprtype,
dbvarylen, Types on page 412

Return the user-defined datatype for aregular result column.
DBINT dbcolutype(dbproc, column)

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

DBPROCESS *dbproc;

int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
Server.

column
The number of the column of interest. The first column is number 1.

column’s user-defined datatype or a negative integer if column is not in range.

e dbcolutype returns the user-defined datatype for aregular result column.
For adescription of how to add user-defined datatypesto Adaptive Server
Enterprise databases, see sp_addtype in the Adaptive Server Enterprise
Reference Manual.

« dbcolutype isdefined as datatype DBINT to accommodate the size of user-
defined datatypes. Both DBINT and user-defined datatypes are 32 hits
long.

e Thefollowing code fragment illustrates the use of dbcolutype:

DBPROCESS *dbproc;
int colnum;
int numcols;

/* Put the command into the command buffer */
dbcmd (dbproc, "select * from mytable");

/*

** Send the command to the Adaptive Server
Enterprise and begin

** execution.

*/

dbsglexec (dbproc) ;

/* Process the command results */
dbresults (dbproc) ;

/* Examine the user-defined column types */
numcols = dbnumcols (dbproc) ;
for (colnum = 1; colnum < numcols; colnum++)

{

printf ("column %d, user-defined type is \

DB-Library/C Reference Manual 101

dbconvert

See also

dbconvert

Description

Syntax

Parameters

102

$1d.\n", colnum, dbcolutype (dbproc,
colnum)) ;

}

dbaltutype, dbcoltype

Convert datafrom one datatype to another.

DBINT dbconvert(dbproc, srctype, src, srclen,

desttype, dest, destlen)

DBPROCESS *dbproc;

int srctype;
BYTE *Src;
DBINT srclen;
int desttype;
BYTE *dest;
DBINT destlen;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server. In dbconvert, the DBPROCESS is used only to supply any custom
null values that the program may have specified using dbsetnull. If dbprocis
NULL, dbconvert uses the default values for null value data conversions.

srctype

The datatype of the datathat is to be converted. This parameter can be any
of the server datatypes, as listed below in Table 2-7 on page 110.

Src

A pointer to the data which is to be converted. If this pointer isNULL,
dbconvert will place an appropriate null valuein the destination variable.
You can use dbdata to get the server data.

srclen

Thelength, in bytes, of the datato be converted. If thesrclenisO, the source
datais assumed to be null and dbconvert will place an appropriate null value
inthe destination variable. Otherwise, thislength isignored for all datatypes
except char, text, binary, and image. For SYBCHAR, SYBBOUNDARY,
and SYBSENSITIVITY data, alength of -1 indicates that the string is null-
terminated. You can use dbdatlen to get the length of the server data.

Open Client

CHAPTER 2 Routines

Return value

Usage

desttype
The datatype that the source dataisto be converted into. This parameter can
be any of the server datatypes, as listed below in Table 2-7 on page 110.

dest
A pointer to the destination variable that will receive the converted data. If
this pointer isNULL, dbconvert will call the user-supplied error handler (if
any) and return -1.

destlen
Thelength, in bytes, of the destination variable. destlen isignored for fixed-
length datatypes. For a SYBCHAR, SYBBOUNDARY or
SYBSENSITIVITY destination, the value of destlen must bethetotal length
of the destination buffer space.

Table 2-5 describes special valuesfor destlen:

Table 2-5: Special values for destlen (dbconvert)

Value of
destlen Applicable to Meaning
-1 SYBCHAR, There is sufficient space available.
SYBBOUNDARY,
SBYSENSITIVITY Thestring will be trimmed of trailing
blanks and given aterminating null.
-2 SYBCHAR Thereis sufficient space available.

Thestring will not betrimmed of trailing
blanks, but will be given aterminating
null.

Thelength of the converted data, in bytes, if the datatype conversion succeeds.

If the conversion fails, dbconvert returns either -1 or FAIL, depending on the
cause of thefailure. dbconvert returns-1toindicateaNUL L destination pointer
or anillegal datatype. dbconvert returns FAIL to indicate other types of failures.

If dbconvert fails, it will first call auser-supplied error handler (if any) and set
the global DB-Library error value.

This routine may fail for several reasons: the requested conversion was not
available; the conversion resulted in truncation, overflow, or loss of precision
in the destination variable; or asyntax error occurred in converting a character
string to some numeric type.

e Thisroutinealowsthe program to convert datafrom one representation to
another. To determine whether a particular conversion is permitted, the
program can call dowillconvert before attempting a conversion.

DB-Library/C Reference Manual 103

dbconvert

104

dbconvert can convert data stored in any of the server datatypes (although,
of course, not all conversions are legal). See Table 2-7 on page 110 for a
list of type constants and corresponding program variable types.

Itisan error to use the following datatypes with dbconvert if the library
version has not been set (with dbsetversion) to DBVERSION_100 or
higher: SYBNUMERIC, SYBDECIMAL, SYBBOUNDARY, and
SYBSENSITIVITY.

Table 2-8 on page 111 lists the datatype conversions that doconvert
supports. The source datatypes are listed down the leftmost column and
the destination datatypes are listed along the top row of the table. (For
brevity, the prefix “SYB” has been eliminated from each datatype.) T
(“True”) indicates that the conversion is supported; F (“False”) indicates
that the conversion is not supported.

A conversion to or from the datatypes SYBBINARY and SYBIMAGE is
astraight bit-copy, except when the conversion involves SYBCHAR or
SYBTEXT. When converting SYBCHAR or SYBTEXT datato
SYBBINARY or SYBIMAGE, DBCONVERT interpretsthe SYBCHAR
or SYBTEXT string as hexadecimal, whether or not the string contains a
leading “0x”. When converting SYBBINARY or SYBIMAGE datato
SYBCHAR or SYBTEXT, dbconvert creates ahexadecimal string without
aleading “Ox".

Note that SYBINT2 and SYBINT4 are signed types. When converting
these types to character, conversion error can result if the quantity being
converted is unsigned and uses the high bit.

ConvertingaSYBMONEY, SYBCHAR, or SYBTEXT valueto
SYBFLT8 may result in some loss of precision. Converting a SYBFLT8
value to SYBCHAR or SYBTEXT may also result in some loss of
precision.

Converting a SYBFLT8 value to SYBMONEY can result in overflow,
because the maximum value for SYBMONEY is
$922,337,203,685,477.58.

If overflow occurs when converting integer or float datato SYBCHAR or
SYBTEXT, thefirst character of the resulting value will contain an
asterisk (*) to indicate the error.

A conversion to SYBBIT has the following effect: If the value being
converted isnot 0, the SYBBIT valuewill beset to 1; if thevaueisO, the
SYBBIT value will be set to 0.

Open Client

CHAPTER 2 Routines

« dbconvert does not offer precision and scale support for numeric and
decimal datatypes. When converting to SYBNUMERIC or
SYBDECIMAL, dbconvert uses a default precision and scale of 18 and O,
respectively. To specify adifferent precision and scale, an application can
use dbconvert_ps.

e« SYBBOUNDARY and SYBSENSITIVITY destinations are aways null-
terminated.

* Incertain cases, it can be useful to convert a datatype to itself. For
instance, a conversion of SYBCHAR to SYBCHAR with adestlen of -1
serves as a useful way to append anull terminator to a string, asthe
example below illustrates.

e Hereisashort examplethat illustrates how to convert server dataobtained

with dbdata:
DBCHAR title[81];
DBCHAR pricel[9];

/* Read the query into the command buffer */
dbcmd (dbproc, "select title, price, royalty from \
pubs2..titles") ;

/* Send the query to Adaptive Server Enterprise */
dbsglexec (dbproc) ;

/* Get ready to process the query results */
dbresults (dbproc) ;

/* Process each row */
while (dbnextrow (dbproc) != NO MORE ROWS)
{
/*
** The first dbconvert () adds a null
** terminator to the string.

*

/

dbconvert (dbproc, SYBCHAR, (dbdata (dbproc,1)),
(dbdatlen (dbproc,1)), SYBCHAR, title,
(DBINT) -1) ;

/*

** The second dbconvert () converts money to
** string.
*/
dbconvert (dbproc, SYBMONEY,
(dbdata (dbproc,2)), (DBINT)-1, SYBCHAR,
price, (DBINT)-1);

DB-Library/C Reference Manual 105

dbconvert_ps

if (dbdatlen (dbproc,3) != 0)
printf ("%$s\n $%s %$1d\n", title, price,
* ((DBINT *)dbdata (dbproc,3)));

}

In the dbconvert callsit was not necessary to cast the returns from dbdata,
because dbdata returnsaBY TE pointer—precisely the datatype dbconvert
expectsin the third parameter.

e If you are binding data to variables with dbbind rather than accessing the
data directly with dbdata, dbbind can perform the conversionsitself,
making dbconvert unnecessary.

e The sample program exampleb.c illustrates several more types of
conversions using doconvert.

e SeeTypeson page 412 for alist of DB-Library datatypes and the
corresponding Adaptive Server Enterprise datatypes. See the Adaptive
Server Enterprise Reference Manual.

See also dbaltbind, dbaltbind_ps, dbbind, dobind_ps, dbconvert_ps, dberrhandle,
dbsetnull, dbsetversion, dbwillconvert, Errorson page 389, Typeson page412

dbconvert_ps

Description Convert datafrom onedatatypeto another, with precision and scal e support for
numeric and decimal datatypes.

Syntax DBINT dbconvert_ps(dbproc, srctype, src, srclen,
desttype, dest, destlen, typeinfo)

DBPROCESS *dbproc;

int srctype;
BYTE *Src;
DBINT srclen;
int desttype;
BYTE *dest;
DBINT destlen;

DBTYPEINFO *typeinfo;

106 Open Client

CHAPTER 2 Routines

Parameters

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server. Indbconvert_ps, the DBPROCESS isused only to supply any custom
null valuesthat the program may have specified using dbsetnull. If dbprocis
NULL, dbconvert_ps usesthe default valuesfor null value data conversions.

srctype
Thedatatype of the datawhich isto be converted. This parameter can be any
of the server datatypes, as listed in Table 2-8 on page 111.

src
A pointer to the data that is to be converted. If this pointer isNULL,
dbconvert_ps will place an appropriate null valuein the destination variable.
You can use dbdata to get the server data.

srclen
Thelength, in bytes, of the datato be converted. If the srclenisO, the source
dataisassumed to be NULL and dbconvert_ps will place an appropriate null
value in the destination variable. Otherwise, this length isignored for all
datatypes except char, text, binary, and image. For SYBCHAR data, alength
of -1indicatesthat the string is null-terminated. You can use dbdatlen to get
the length of the server data.

desttype
The datatype that the source dataisto be converted into. This parameter can
be any of the server datatypes, aslisted in Table 2-8 on page 111.

dest
A pointer to the destination variable that will receive the converted data. If
this pointer isNULL, dbconvert_ps will call the user-supplied error handler
(if any) and return -1.

destlen
Thelength, in bytes, of the destination variable. destlen isignored for fixed-
length datatypes. For a SYBCHAR, SYBBOUNDARY, or
SYBSENSITIVITY destination, the value of destlen must bethetotal length
of the destination buffer space.

Table 2-6 describes special values for destlen:

DB-Library/C Reference Manual 107

dbconvert_ps

Return value

108

Table 2-6: Special values for destlen (dbconvert_ps)

Value of
destlen Applicable to Meaning
-1 SYBCHAR, Thereis sufficient space available.
SYBBOUNDARY,
SBYSENSITIVITY Thestring will be trimmed of trailing
blanks and given aterminating null.
-2 SYBCHAR Thereis sufficient space available.
The string will not be trimmed of trailing
blanks, but will be given aterminating
null.
typeinfo

A pointer to a DBTY PEINFO structure containing information about the
precision and scale of decimal or numeric values. An application setsa
DBTY PEINFO structure with values for precision and scale before calling
dbconvert_ps to convert datainto DBDECIMAL or DBNUMERIC
variables.

If typeinfois NULL:

e If the source valueis of type SYBNUMERIC or SYBDECIMAL,
dbconvert_ps picks up precision and scale values from the source. In
effect, the source datais copied to the destination space.

e If the source valueis not SYBNUMERIC or SYBDECIMAL,
dbconvert_ps uses a default precision of 18 and a default scale of 0.

If srctypeisnot SYBDECIMAL or SYBNUMERIC, typeinfo isignored.
A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo
DBINT precision;
DBINT scale;

} DBTYPEINFO;

Legal valuesfor precision arefrom 1 to 77. Legal valuesfor scaleare from
0to 77. scale must be less than or equal to precision.

The length of the converted data, in bytes, if the datatype conversion succeeds.

If the conversion fails, dbconvert_ps returns either -1 or FAIL, depending on
the cause of thefailure. doconvert_ps returns-1toindicateaNULL destination
pointer or anillegal datatype. dbconvert_ps returns FAIL toindicate other types
of failures.

Open Client

CHAPTER 2 Routines

If doconvert_ps fails, it will first call auser-supplied error handler (if any) and
set the global DB-Library error value.

This routine may fail for several reasons: the requested conversion was not
available; the conversion resulted in truncation, overflow, or loss of precision
in the destination variable; or asyntax error occurred in converting a character
string to some numeric type.

Usage » dbconvert_ps isthe equivalent of dbconvert, except that doconvert_ps
provides precision and scale support for numeric and decimal datatypes,
which dbconvert does not. Calling dbconvert is equivalent to calling
dbconvert_ps with typeinfo as NULL.

* dbconvert_ps allows aprogram to convert datafrom one representation to
another. To determine whether a particular conversion is permitted, the
program can call dowillconvert before attempting a conversion.

* dbconvert_ps can convert datastoredin any of the server datatypes (but not
all conversions are legal—see Table 2-8 on page 111).

Table 2-7 showstype constantsfor server datatypesand the corresponding
program variable types:

DB-Library/C Reference Manual 109

dbconvert_ps

110

Table 2-7: Type constants and program variable types

Server datatype constant

Program variable type

SYBCHAR DBCHAR
SYBTEXT DBCHAR
SYBBINARY DBBINARY
SYBIMAGE DBBINARY
SYBINT1 DBTINYINT
SYBINT2 DBSMALLINT
SYBINT4 DBINT
SYBFLTS8 DBFLT8
SYBREAL DBREAL
SYBNUMERIC DBNUMERIC
SYBDECIMAL DBDECIMAL
SYBBIT DBBIT
SYBMONEY DBMONEY
SYBMONEY 4 DBMONEY4
SYBDATETIME DBDATETIME
SYBDATETIMEA DBDATETIME4
SYBBOUNDARY DBCHAR
SYBSENSITIVITY DBCHAR

Warning! It isan error to use the following datatypes with dbconvert_ps
if the library version has not been set (with dbsetversion) to
DBVERSION_100 or higher: SYBNUMERIC, SYBDECIMAL,
SYBBOUNDARY, and SYBSENSITIVITY.

Table 2-8 shows the datatype conversions that dbconvert_ps supports.
Source datatypes are listed down the left side, and destination datatypes
are listed across the top. (For brevity, the “ SYB” datatype prefix is not

shown.)

Open Client

CHAPTER 2 Routines

Table 2-8: Supported datatype conversions

To:
>_
Qo - < g g E E
. £ B L0EEE5
SE2SCCEfB§30:-5858553¢
From: OFrm2Z2ZZoiaxzoom=>=0000
CHAR elo|oe|o|e|o|e oo |o|e oo le|e|e|e]|e
TEXT e|o|oe|loe|loe e |e|e|e|oe|o|o o o le|e]|e]|e
BINARY .)) .)) .)) .)) .)
IMAGE o | o | o | o | e |e| e e[|eo|e|e|e|e
INT1 oo oo eo|lo|o|o|e|oe|e|e]|e]e
INT2 el oo |o|lo|lo|o|e|e|e|e|e|e]e
INT4 el oo |o|lo|lo|o|e|e|e|e|e|e]e
FLTS e oo |e|e|leo|e|e|e|e|e|e|e]e
REAL oo oo oo o |o|e|oe|e|e]|e]e
NUMERIC
DECIMAL
BIT oo oo oo o |o|e|oe|e|e]|e]e
MONEY oo oo oo o |o|e|oe|e|e]|e]e
MONEY4 o o |o|oe|o|o|e|o|o|e|e|o|e]|e
DATETIME NN I I .|
DATETIME4 NRRE .|
BOUNDARY e .
SENSITIVITY o] .

* A conversion to or from the datatypes SY BBINARY and SYBIMAGE is
a straight bit-copy, except when the conversion involves SYBCHAR or
SYBTEXT. When converting SYBCHAR or SYBTEXT datato
SYBBINARY or SYBIMAGE, dbconvert_ps interpretsthe SY BCHAR or
SYBTEXT string as hexadecimal, whether or not the string contains a
leading “0x.” When converting SYBBINARY or SYBIMAGE datato
SYBCHAR or SYBTEXT, dbconvert_ps creates a hexadecimal string
without aleading “0x.”

* Notethat SYBINT2 and SYBINT4 are signed types. When converting
these types to character, conversion error can result if the quantity being
converted is unsigned and uses the high bit.

DB-Library/C Reference Manual 111

DBCOUNT

See also

DBCOUNT

Description

Syntax

112

ConvertingaSYBMONEY, SYBCHAR, or SYBTEXT vaueto
SYBFLT8 may result in some loss of precision. Converting a SYBFLT8
value to SYBCHAR or SYBTEXT may also result in some loss of
precision.

Converting a SYBFLT8 value to SYBMONEY can result in overflow,
because the maximum value for SYBMONEY is
$922,337,203,685,477.58.

If overflow occurs when converting integer or float datato SYBCHAR or
SYBTEXT, thefirst character of the resulting value will contain an
asterisk (*) to indicate the error.

A conversion to SYBBIT has the following effect: If the value being
converted isnot 0, the SYBBIT valuewill beset to 1; if thevaueisO, the
SYBBIT value will be set to 0.

SYBBOUNDARY and SYBSENSITIVITY destinations are always null-
terminated.

In certain cases, it can be useful to convert a datatype to itself. For
instance, a conversion of SYBCHAR to SYBCHAR with a destlen of -1
serves as a useful way to append anull terminator to a string.

If you are binding data to variables with dbbind or dbbind_ps rather than
accessing the data directly with dbdata, dbbind can perform the
conversions itself, making dbconvert_ps unnecessary.

The sample program example5.c illustrates several more types of
conversions using dbconvert_ps.

See Types on page 412 for alist of DB-Library datatypes and the
corresponding Adaptive Server Enterprise datatypes. See the Adaptive
Server Enterprise Reference Manual.

dbaltbind, dbaltbind_ps, dbbind, dbbind_ps, dbconvert, dberrhandle,
dbsetnull, dbsetversion, dbwillconvert, Errorson page 389, Typeson page 412

Returns the number of rows affected by a Transact-SQL command.
DBINT DBCOUNT(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

DBCURCMD

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of rows affected by the command, or -1. DBCOUNT will
return -1 if any of the following are true:

e The Transact-SQL command fails for any reason, such as a syntax error.
e Thecommand is one that never affects rows, such as a print command.

» Thecommand executesastored procedurethat does not execute any select
Statements.

e The DBNOCOUNT option ison.

e Oncethe results of acommand have been processed, you can call
DBCOUNT to find out how many rows were affected by the command. For
example, if aselect command was sent to the server and you have read all
the rows by calling dbnextrow until it returned NO_MORE_ROWS, you
can call this macro to find out how many rows were retrieved.

e |f the current command is one that does not return rows, (for example, a
delete), you can call DBCOUNT immediately after dbresuilts.

e |f the command is one that executes a stored procedure, for example an
exec or remote procedure call, DBCOUNT returns the number of rows
returned by thelatest select statement executed by the stored procedure, or
-1if the stored procedure does not execute any select statements. Notethat
astored procedure that contains no select statements may execute aselect
by calling another stored procedure that does contain a select.

dbnextrow, dbresults, Options on page 407

Return the number of the current command.
int DBCURCMD(dbproc)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 113

DBCURROW

Parameters

Return value

Usage

See also

DBCURROW

Description

Syntax

Parameters

Return value

Usage

114

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of the current command.

¢ Thismacro returns the number of the command whose results are
currently being processed.

e Thefirst command in abatch is number 1. The command number is
incremented every time dbresults returns SUCCEED or FAIL.
(Unsuccessful commands are counted.) The command number is reset by
each call to dbsglexec or dbsglsend.

DBCMDROW, DBMORECMDS, DBROWS

Return the number of the row currently being read.
DBINT DBCURROW(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of the current row. This routine returns O if no rows have been
processed yet.

e Thismacro returns the number of the row currently being read. Rows are
counted from the first row returned from the server, whose number is 1.
DBCURROW counts both regular and compute rows.

e Therow number isreset to 0 by each new call to dbresults.

e Therow number grows by one every time dbnextrow returns REG_ROW
or acomputeid.

Open Client

CHAPTER 2 Routines

See also

dbcursor

Description

Syntax

Parameters

e When row buffering is used, the row number does not represent the
position in the row buffer. Rather, it represents the current row’s position
in the rows returned by the server. See the reference pages for dbgetrow
and dbsetrow.

dbclrbuf, DBFIRSTROW, dbgetrow, DBLASTROW, dbnextrow, dbsetopt,
Options on page 407

Insert, update, delete, lock, or refresh a particular row in the fetch buffer.
RETCODE dbcursor(hc, optype, bufno, table, values)

DBCURSOR *hc;

DBINT optype;
DBINT bufno;
BYTE *table;
BYTE *values
hc
Cursor handle previously returned by dbcursoropen.
optype

Type of operation to perform. Table 2-9 lists the operation types.
Table 2-9: Values for optype (dbcursor)

Symbolic value Operation

CRS UPDATE Updates data.

CRS DELETE Deletes data.

CRS_INSERT Inserts data.

CRS REFRESH Fetches another row in the buffer.

CRS LOCKCC Fetches another row and locksit. The row is actually locked

only if inside atransaction block. The lock is released when
the application commits or ends the transaction.

bufno
Row number in thefetch buffer to which the operation applies. The specified
buffer must contain avalid row. If thevalue of bufnois0,aCRS REFRESH
operation appliesto al rowsin the buffer. In an insert or update operation
where no values parameter is given, the values are read from the bound
variables array in the corresponding bufno value. The number of the first
row in the buffer is 1.

DB-Library/C Reference Manual 115

dbcursor

Return value

Usage

See also

116

table

Thetableto beinserted, updated, deleted, or locked if the cursor declaration
contains more than onetable. If thereisonly onetable, this parameter is not
required.

values

String values to be updated and/or inserted. Use this parameter only with
update and insert to specify the new column values (that is, Quantity =
Quantity + 1). In most cases, you can set this parameter to NULL and the
new values for each column are taken from the fetch buffer (the program
variable specified by dbcursorbind). If the select statement includes a
computation (that is, select 5*5...) and a function (for example, select
getdate(), convert(), and so on), then updating through the buffer array will
surely not work.

Therearefour possible formatsfor this parameter: two for updating and two
for inserting. The chosen format must match the optype (update or insert).
Both contain afull and an abbreviated format. Thefull format isacomplete
SQL statement (update or insert) without awhere clause. The abbreviated
format isjust the set clause (update) or just the values clause (insert). When
the full format is used, the value specified for tablename overridesthe table
parameter of dbcursor. Because awhere clause is added automatically, do
not include one.

SUCCEED or FAIL.

This function can fail for the following reasons:

Cursor is opened as read only, no updates allowed.

Server or connection failure or timeout.

No permission to update or change the database.

A trigger in the database caused the lock or update/insert operation to fail.
Optimistic concurrency control.

If a column used as a unique index column is updated or changed, the
corresponding row appears to be missing the next time it is fetched.

See Appendix A, “Cursors’.

dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

Open Client

CHAPTER 2

Routines

dbcursorbind

Description

Syntax

Parameters

Register the binding information on the cursor columns.

RETCODE dbcursorbind(hc, col, vartype, varlen,
poutlen, pvaraddr, typeinfo)

DBCURSOR *hc;

int col;

int vartype;
DBINT varlen;
DBINT *poutlen;
BYTE *pvaraddr;
DBTYPEINFO *typeinfo;
hc

Cursor handle created by dbcursoropen.

col
Number of the column to be bound to a program variable.

vartype

Binding type, which uses the same datatypes as the vartype parameter for
dbbind and is bound by the same conversion rules. If thisvalueis set to
NOBIND for any column, thedatais not bound. Instead, apointer to thedata
isreturned to the addressin the corresponding pvaraddr entry for every row,
and thelength of thedataisreturned to the corresponding varlen array entry.
Thisfeature letsthe application access the cursor dataasit does with dbdata

and dbdatalen.

varlen

Maximum length of variable-length datatype, such as CHARBIND,

VARY CHARBIND, BINARYBIND, STRINGBIND, NTBSTRINGBIND,
and VARY BINBIND. This parameter isignored for fixed-length datatypes,
suchasINTBIND, FLT8BIND, MONEYBIND, BITBIND, SMALLBIND,

and so on. Itisalsoignored if the vartypeis NOBIND.

DB-Library/C Reference Manual

117

dbcursorbind

118

poutlen

Pointer to an array of DBINT integers where the actual length of the
column’sdataisreturned for each row. If poutlenisset to NULL, thelengths
are not returned. The array size must be large enough to hold one DBINT
variable for every row to be fetched at atime (asindicated by the nrows
parameter in dbcursoropen).

When using dbcursor to update or insert with values from bound program
variables, you can specify anull value by setting the corresponding poutlen
to zero before calling dbcursor. Nonzero values are ignored except when
NOBIND or one of the variable-length datatypes such as

VARY CHARBIND or VARYBINBIND has been specified. In that case
poutlen must contain the actual item length. If STRINGBIND or
NTBSTRINGBIND has been specified, any non-zero value for poutlen is
ignored, and the length of the string is determined by scanning for the null
terminator.

pvaraddr

Pointer to the program variable to which the datais copied. If vartypeis
NOBIND, pvaraddr is assumed to point to an array of pointers—to the
address of the actual datafetched by dbcursorfetch. Thisarray’slength must
equal the value of nrows in dbcursoropen. If the cursor was opened with
nrows > 1, pvaraddr is assumed to point to an array of nrows elements.
Calling dbcursorbind with pvaraddr set to NULL breaks the existing
binding.

typeinfo

A pointer to aDBTY PEINFO structure containing information about the
precision and scale of decimal or numeric values. If vartype is not
DECIMALBIND or NUMERICBIND, typeinfo isignored.

To bind to DBNUMERIC or DBDECIMAL variables, an application
initializesa DBTY PEINFO structure with values for precision and scale,
then calls dbcursorbind with vartype as DECIMALBIND or
NUMERICBIND.

If typeinfo is NULL and vartypeis DECIMALBIND or NUMERICBIND:

e Iftheresult columnisof type numeric or decimal, dbcursorbind picksup
precision and scale values from the result column.

¢ If theresult column is not numeric or decimal, dbcursorbind uses a
default precision of 18 and a default scale of 0.

A DBTY PEINFO structure is defined as follows:

typedef struct typeinfo {

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

DBINTprecision;
DBINTscale;
} DBTYPEINFO;

Legal valuesfor precision arefrom 1to 77. Legal valuesfor scale are from
0to 77. scale must be less than or equal to precision.

SUCCEED or FAIL.

e |If dbcursorbind is called more than once for any column, only thelast call
is effective.

* Thisfunction works amost the same as dbbind without cursors.
e SeeAppendix A, “Cursors’.

dbcursor, dbcursorclose, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

dbcursorclose

Description

Syntax

Parameters

Return value

Usage

See also

Close the cursor associated with the given handle and release all the data
belonging to it.

void dbcursorclose(hc)

DBCURSOR *hc;

hc
Cursor handle created by dbcursoropen.

None.

e Closing a DBPROCESS connection with dbcursorclose automatically
closes all the cursors associated with it. After issuing dbcursorclose, the
cursor handle should not be used.

e SeeAppendix A, “Cursors’.

dbcursor, dbcursorbind, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

DB-Library/C Reference Manual 119

dbcursorcolinfo

dbcursorcolinfo

Description

Syntax

Parameters

Return value

Usage

See also

120

Return column information for the specified column number in the open
CUrsor.

RETCODE dbcursorcolinfo(hcursor, column, colname,
coltype, collen, usertype)

DBCURSOR *hcursor

DBINT column;
DBCHAR *colname;
DBINT *coltype;
DBINT *collen;
DBINT *usertype;
hcursor

Cursor handle created by dbcursoropen.

column
Column number for which information is to be returned.

colname
Location wherethe name of the columnisreturned. The user should allocate
space large enough to accommodate the column name.

coltype
L ocation where the column’s datatype is returned.

collen
L ocation where the column’s maximum length is returned.

usertype
L ocation where the column’s user-defined datatype is returned.

SUCCEED or FAIL.
¢ Any of the parameters

colname, coltype, collen, or usertype can be set to NULL, in which case
the information for that variable is not returned.

e SeeAppendix A, “Cursors’

dbcursor, dbcursorbind, dbcursorclose, dbcursorfetch, dbcursorinfo,
dbcursoropen

Open Client

CHAPTER 2 Routines

dbcursorfetch
Description Fetch ablock of rowsinto the program variables declared by the user in
dbcursorbind.
Syntax RETCODE dbcursorfetch(hc, fetchtype, rownum)
DBCURSOR *hc;
DBINT fetchtype;
DBINT rownum;
Parameters hc

Cursor handle created by dbcursoropen.

fetchtype
Type of fetch chosen. The scroll option in dbcursoropen determines which
of these values are legal. Table 2-10 lists the various fetch types.

DB-Library/C Reference Manual 121

dbcursorfetch

Return value

122

Table 2-10: Values for fetchtype (dbcursorfetch)

Symbolic value Meaning Comment

FETCH_FIRST Fetch the first Although available for all cursor types,
block of rows. this option is especially useful for

returning to the beginning of a keyset
when you have selected aforward-only
scrolling cursor.

FETCH_NEXT Fetch the next If the result set exceeds the specified
block of rows. keyset size and if FETCH_RANDOM

and/or FETCH_RELATIVE have been
issued, a FETCH_NEXT can spana
keyset boundary. In this case, the fetch
that spans a keyset boundary returns a
partial buffer, and the next fetch shifts
down the keyset and returns the next full
set of rows.

FETCH_PREV Fetch the This option is unavailable with forward-
previous block only scrolling cursors. If rownumfalls
of rows. within the keyset, the range of rows must

stay within the keyset because only the
rowswithin the keyset arereturned. This
option does not change the keyset to the
previous rownum rows in the result set.

FETCH_RANDOM Fetch ablock of Thisoptionisvalid only within the
rows, starting keyset. The buffer isonly partialy filled
from the when the range spans the keyset
specified row boundary.
number within
the keyset.

FETCH_RELATIVE Fetchablock of Thisoptionjumpsrownumrowsfromthe

rows, relative to
the number of
rowsindicatedin

first row of the last fetch and starts
fetching from there. The rows must
remain within the keyset. The buffer is

the last fetch. only partialy filled when the range spans
the keyset boundary.
FETCH_LAST Fetch the last Thisvaueisavailable only with totally
block of rows. keyset-driven cursors.
rownum

The specified row for the buffer to start filling. Use this parameter only with
afetchtype of FETCH_RANDOM or -FETCH_RELATIVE.

SUCCEED or FAIL.

Open Client

CHAPTER 2 Routines

Usage

See also

dbcursorinfo

Description

Syntax

If the status array contains a status row for every row fetched, SUCCEED is
returned. FAIL isreturned if at least one of the following is true.

e FETCH_RANDOM and FETCH_RELATIVE require akeyset driven
cursor.

e Forward-only scrolling can useonly FETCH_FIRST and FETCH_NEXT.
* Theserver or aconnection fails or takes atimeout.

e Theclient isout of memory.

e TheFETCH_LAST option requires afully keyset-driven cursor.

» Specify the size of the fetch buffer in dbcursoropen. dbcursorfetch fillsthe
array passed as dbcursoropen’s pstatus parameter with status codes for the
fetched rows. See the reference page for dbcursoropen for these codes.

* Program variables must first be registered, using dbcursorbind. Then the
data can be transferred into the DB-Library buffers. The bound variables
must, therefore, be arrays large enough to hold the specified number of
rows. The status array contains status code for every row and contains
flags for missing rows.

e When the range of rows specified by FETCH_NEXT,
FETCH_RANDOM, or FETCH_RELATIVE spans akeyset boundary,
only the rows remaining in the keyset are returned. In this case, the buffer
isonly partialy filled, and the FETCH_ENDOFKEY SET flagisset asthe
status of the last row. The following FETCH_NEXT shifts the keyset
down.

e SeeAppendix A, “Cursors’

dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorinfo,
dbcursoropen

Return the number of columns and the number of rowsin the keyset if the
keyset hit the end of the result set.

RETCODE dbcursorinfo(hcursor, ncols, nrows);

DBCURSOR *hcursor;
DBINT *ncols
DBINT *Nrows;

DB-Library/C Reference Manual 123

dbcursoropen

Parameters hcursor
Cursor handle created by dbcursoropen.

ncols
Location where the number of columnsin the cursor is returned.

nrows
L ocation where the number of rows in the keyset is returned.
Return value SUCCEED or FAIL.
Usage e For fully keyset-driven cursors, the nrows parameter contains the number

of rows in the keyset. For mixed or dynamic cursors, nrows is always set
to -1, unless the keyset is the last one in the result set. In that case, the
number of rows in the keyset is returned. This helps the programmer find
out when the keyset has hit the end of the result set.

e SeeAppendix A, “Cursors’

See also dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch,
dbcursoropen

dbcursoropen

Description Open a cursor and specify the scroll option, concurrency option, and the size

of the fetch buffer (the number of rows retrieved with a single fetch).

Syntax DBCURSOR *dbcursoropen(dbproc, stmt, scrollopt,
concuropt, nrows, pstatus)

DBPROCESS *dbproc;

BYTE *stmt;

SHORT scrollopt;

SHORT concuropt;

USHORT Nnrows;

DBINT *pstatus
Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

stmt
The select statement that defines a cursor.

124 Open Client

CHAPTER 2 Routines

scrollopt
Indicator of the desired scrolling technique.

Keyset driven fixes membership in the result set and order at cursor open
time.

Dynamic determines membership in the result set and order at fetch time.
Table 2-11 lists the possible values for scrollopt.

Table 2-11: Values for scrollopt (dbcursoropen)
Symbolic value Meaning
CUR_FORWARD Forward scrolling only.

CUR_KEYSET Keyset driven. A copy of the keyset for the result table is kept
locally. Number of rows in result table must be less than or

equal to 1000.
CUR_DYNAMIC Fully dynamic.
intn Keyset-driven cursor within (n* nrows) blocks, but fully

dynamic outside the keyset.

concuropt
Definition of concurrency control. Table 2-12 lists the possible values for
concuropt:

DB-Library/C Reference Manual 125

dbcursoropen

126

Table 2-12: Values for concuropt (dbcursoropen)

Symbolic value Meaning Explanation

CUR_READONLY Read-only cursor. The data cannot be modified.

CUR_LOCKCC Intent to update locking. All data, if insideatransaction
block, islocked out asitis
fetched through
dbcursorfetch.

CUR_OPTCC Optimistic concurrency In agiven row, modifications

control, based ontimestamp

values.

to the data succeed only if the
row has not been updated
since the last fetch. Changes
are detected through
timestamps or by comparing
al non-text, non-image values

in a selected table row.
CUR_OPTCCVAL Optimistic concurrency SameasCUR_OPTCC except
based on values. changes are detected by

comparing the valuesin all
selected columns.

nrows

Number of rows in the fetch buffer (the width of the cursor). For mixed
cursorsthe keyset capacity in rowsis determined by this number multiplied

by the value of the scrollopt parameter.

pstatus

Pointer to the array of row statusindicators. The status of every row copied
into the fetch buffer isreturned to this array. The array must be large enough
to hold one DBINT integer for every row in the buffer to be fetched. During
the dbcursorfetch call, asthe rows arefilled into the bound variable, the
corresponding statusis filled with status information. dbcursorfetch fillsin
the status by setting bitsin the status value. The application can use the
bitmask values shown in Table 2-13 to inspect the status value:

Open Client

CHAPTER 2 Routines

Table 2-13: Bitmask values for pstatus (dbcursoropen)

Symbolic value Meaning

FTC_SUCCEED Therow was successfully copied. If thisflagisnot set,
the row was not fetched.

FTC_MISSING The row ismissing.

FTC_ENDOFKEY SET The end of the keyset. Theremaining rowsin thebind
arrays are not used.

FTC_ENDOFRESULTS The end of the result set. The remaining rows are not
used.

Return value If dbcursoropen succeeds, a handleto the cursor is returned. The cursor handle
isrequired in callsto subsequent cursor functions.

If dbcursoropen fails, NULL isreturned. Several errors, such asthe following,
can cause the cursor open to fail:

Usage .

Not enough memory in the system. Reduce the number of rowsin the
keyset, use dynamic scrolling, or reduce the number of rowsto be fetched
at atime.

The CUR_KEY SET option is used for the scrollopt parameter, and there
are more than 1000 rows in the result set. Use dynamic scrolling if the
select statement can return more than 1000 rows.

A unique row identifier could not be found.

This function preparesinternal DB-Library data structures based on the
contents of the select statement and the val ues of scrollopt, concuropt, and
nrows. dbcursoropen queries the server for information on unique
qualifiers (row keys) for the rowsin the cursor result set. If the cursor is
keyset-driven, dbcursoropen queries the server and fetches row keysto
build a keyset for the cursor’s rows.

The cursor definition cannot contain stored procedures or multiple
Transact-SQL statements.

For dbcursor to succeed, every table in the select statement must have a
unique index. The Transact-SQL statements for browse, select into,
compute, union, or compute by are not allowed in the cursor statement.
Only fully keyset-driven cursors can have order, having, or group by
phrases.

When the select statement given as stmt refers to temporary tables, the
current database must be tempdb. This restriction applies even if the
temporary table was created in another database.

DB-Library/C Reference Manual 127

dbdata

See also

dbdata

Description

Syntax

Parameters

Return value

Usage

128

e Multiple cursors (as many asthe system’s memory allows) can be opened
within the same dbproc connection. There should be no commands
waiting to be executed or results pending in the DBPROCESS connection
when cursor functions are called.

e SeeAppendix A, “Cursors’

dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch,
dbcursorinfo, dbcursoropen

Return a pointer to the datain aregular result column.
BYTE *dbdata(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

A BY TE pointer to the datafor the particular column of interest. Be sureto cast
this pointer into the proper type. A NULL BY TE pointer isreturned if thereis
no such column or if the data has a null value. To make sure that the datais
really anull value, you should always check for areturn of O from dbdatlen.

e Thisroutinereturnsapointer to thedatain aregular (that is, non-compute)
result column. Thedatais not null-terminated. You can use dbdatlen to get
the length of the data.

¢ Hereisasmall program fragment that uses dbdata:

DBPROCESS *dbproc;
DBINT row_number = 0;
DBINT object id;

/* Put the command into the command buffer */
dbcmd (dbproc, "select id from sysobjects");

/*

Open Client

CHAPTER 2 Routines

See also

dbdate4cmp

Description

Syntax

** Send the command to Adaptive Server Enterprise
and begin

** execution

*/

dbsglexec (dbproc) ;

/* Process the command results */

dbresults (dbproc) ;

/* Examine the data in each row */

while (dbnextrow (dbproc) != NO MORE ROWS)

{

row_number++;
object id = * ((DBINT *)dbdata (dbproc, 1)) ;
printf ("row %1d, object id is %1d.\n",

row number, object id);

}

Do not add a null terminator to string data until you have copied it from
the DBPROCESS with aroutine such as strncpy. For example:

char objname [40] ;

strncpy (objname, (char *)dbdata (dbproc,?2),
(int)dbdatlen (dbproc,2)) ;
objname [dbdatlen (dbproc,2)] = "\0’;

The function dbbind will automatically bind result datato your program
variables. It does acopy of the data, but is often easier to use than dbdata.
Furthermore, it includes a convenient type-conversion capability. By
means of this capability, the application can, among other things, easily
add anull terminator to aresult string or convert money and datetime data
to printable strings.

dbbind, dbcollen, dbcolname, dbcoltype, dbdatlen, dbnumcols

Compare two DBDATETIME4 values.
int dbdate4cmp(dbproc, d1, d2)

DBPROCESS *dbproc;
DBDATETIME4 *d1;
DBDATETIME4 *d2;

DB-Library/C Reference Manual 129

dbdate4zero

Parameters

Return value

Usage

See also

dbdate4dzero

Description

Syntax

Parameters

Return value

130

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL.

di
A pointer to a DBDATETIMEA4 value.

d2
A pointer to a DBDATETIMEA4 value.

If d1 =d2, dbdatedcmp returns 0.
If d1 < d2, dbdate4cmp returns -1.
If d1 > d2, dbdate4cmp returns 1.
¢ dbdate4cmp compares two DBDATETIME4 values.

e Therangeof legal DBDATETIME4 valuesisfrom January 1, 1900 to June
6, 2079. DBDATETIME4 values have a precision of one minute.

dbdatecmp, domnycmp, domny4cmp

Initialize aDBDATETIME4 variable to Jan 1, 1900 12:00AM.
RETCODE dbdate4zero(dbproc, dateptr)

DBPROCESS *dbproc;
DBDATETIME4 *dateptr;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL.

dateptr
A pointer to the DBDATETIME4 variable to initialize.

SUCCEED or FAIL.

Open Client

CHAPTER 2 Routines

Usage

See also

dbdatechar

Description

Syntax

Parameters

dbdate4zero returns FAIL if dateptr isNULL.

e dbdatedzero initializesa DBDATETIME4 variable to Jan 1, 1900
12:00AM.

e Therangeof legal DBDATETIME4 valuesisfrom January 1, 1900 to June
6, 2079. DBDATETIME4 vaues have a precision of one minute.

dbdatezero

Convert an integer component of a DBDATETIME value into character
format.

RETCODE dbdatechar(dbproc, charbuf, datepart, value)

DBPROCESS *dbproc;

char *charbuf;
int datepart;
int value;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

charbuf
A pointer to the character buffer that will contain the null-terminated
character representation of value.

datepart
A symbolic constant describing value'stype. Table 2-14 liststhe date parts,
the date part symbols recognized by DB-Library, and the expected values.
Note that the names of the months and the days in this table are those for
English.

DB-Library/C Reference Manual 131

dbdatecmp

Return value

Usage

See also

dbdatecmp

Description

Syntax

132

Table 2-14: Date parts and their character representations (dbdatechar)

Date part Symbol Character representation of value
year DBDATE_YY 1753 -9999

quarter DBDATE_QQ 1-4

month DBDATE_MM January — December
day of year DBDATE_DY 1-366

day DBDATE_DD 1-31

week DBDATE_WK 1 —54 (for leap years)
weekday DBDATE_DW Monday — Sunday
hour DBDATE_HH 0-23

minute DBDATE_MI 0-59

second DBDATE_SS 0-59

millisecond DBDATE_MS 0-999
value
The numeric value to be converted.
SUCCEED or FAIL.

* dbdatechar convertsinteger datetime componentsto character format. For
example, dbdatechar associates the month component “3” with its
associated character string: “March” if English isused, “mars’ if French
is used, and so on.

e Thelanguage of the associated character string is determined by the
dbproc.

¢ dbdatechar is often useful in conjunction with dbdatecrack.
dbconvert, dbdata, dbdatename, dbdatecrack

Compare two DBDATETIME values.

int dbdatecmp(dbproc, d1, d2)
DBPROCESS *dbproc;

DBDATETIME *d1;
DBDATETIME *d2;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbdatecrack

Description

Syntax

Parameters

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL.

di
A pointer to a DBDATETIME value.

d2
A pointer to a DBDATETIME value.

If d1 = d2, dbdatecmp returns 0.
If d1 < d2, dbdatecmp returns-1.
If d1 > d2, dbdatecmp returns 1.
e dbdatecmp compares two DBDATETIME values.

e Therangeof legal DBDATETIME valuesisfrom January 1, 1753 to
December 31, 9999. DBDATETIME values have aprecision of 1/300th of
a second (3.33 milliseconds).

dbdatedcmp, domnycmp, domny4cmp

Convert amachine-readable DBDATETIME valueinto user-accessibleformat.
RETCODE dbdatecrack(dbproc, dateinfo, datetime)

DBPROCESS *dbproc;
DBDATEREC *dateinfo;
DBDATETIME *datetime;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dateinfo
A pointer to a DBDATEREC structure to contain the parts of datetime.
DBDATEREC is defined as follows:

DB-Library/C Reference Manual 133

dbdatecrack

Return value

Usage

134

typedef struct dbdaterec

{

long dateyear; /* 1900 to the future */
long datemonth; /* 0 - 11 */

long datedmonth; /* 1 - 31 */

long datedyear; /* 1 - 366 */

long datedweek; /* 0 - 6 */

long datehour; /* 0 - 23 */

long dateminute; /* 0 - 59 */

long datesecond; /* 0 - 59 */

long datemsecond; /* 0 - 997 */

long datetzone; /* 0 - 127 */

} DBDATEREC;

Month and day names depend on the national language of the
DBPROCESS. To retrieve these, use dbdatename or dbdayname plus
dbmonthname.

Note The dateinfo->datetzone field is not set by dbdatecrack.

datetime

A pointer to the DBDATETIME value of interest.

SUCCEED or FAIL.

dbdatecrack convertsa DBDATETIME value into itsinteger components
and places those components into a DBDATEREC structure.

DBDATETIME structures store date and time valuesin an internal format.
For example, atime value is stored as the number of 300th’s of a second
since midnight, and a date value is stored as the number of days since
January 1, 1900. dbdatecrack converts the internal value to something
more usable by an application program.

Theinteger date parts placed in the DBDATEREC structure may be
converted to character strings using dbdatechar.

Calling dbdatecrack to convert an internal format datetime value is
equivalent to calling dbdatepart many times.

The following code fragment illustrates the use of dodatecrack:

dbcmd (dbproc, "select name, crdate from \
master. .sysdatabases") ;

dbsglexec (dbproc) ;

dbresults (dbproc) ;

while (dbnextrow(dbproc) != NO MORE ROWS)

Open Client

CHAPTER 2 Routines

/-k

** Print the database name and its date info

*/

dbconvert (dbproc, dbcoltype (dbproc, 2),
dbdata (dbproc, 2), dbdatlen (dbproc, 2),
SYBCHAR, datestring, -1);

printf ("%$s: %$s\n", (char *)
(dbdata (dbproc, 1)), datestring);
/-k

** Break up the creation date into its

** constituent parts.

*/

dbdatecrack (dbproc, &dateinfo,
(DBDATETIME *) (dbdata (dbproc, 2)));

/* Print the parts of the creation date */
printf ("\tYear = &d.\n", dateinfo.dateyear) ;
printf ("\tMonth = &d.\n",dateinfo.datemonth) ;
printf ("\tDay of month = &d.\n",

dateinfo.datedmonth) ;
printf ("\tDay of year = &d.\n",
dateinfo.datedyear) ;
printf ("\tDay of week = &d.\n",
dateinfo.datedweek) ;
printf ("\tHour = &d.\n", dateinfo.datehour) ;
printf ("\tMinute = &d.\n",
dateinfo.dateminute) ;
printf ("\tSecond = &d.\n",
dateinfo.datesecond) ;
printf ("\tMillisecond = &d.\n",
dateinfo.datemsecond) ;

}

See also dbconvert, dbdata, dbdatechar, dbdatename, dbdatepart
dbdatename
Description Convert the specified component of a DBDATETIME structure into its

corresponding character string.

Syntax int dbdatename(dbproc, charbuf, datepart, datetime)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 135

dbdatename

Parameters

Return value

Usage

136

char *charbuf;
int datepart;
DBDATETIME *datetime;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

charbuf
A pointer to acharacter buffer that will contain the null-terminated character
representation of the datetime component of interest. If datetimeis NULL,
charbuf will contain a zero-length string.

datepart
The date component of interest. Table 2-15 lists the date parts, the date part
symbols recognized by DB-Library and the expected values. Note that the
names of the months and the daysin this table are those for English.

Table 2-15: Date parts and their character representations
(dbdatename)

Date part Symbol Character representation of value
year DBDATE_YY 1753 -9999
quarter DBDATE_QQ 1-4
month DBDATE_MM January — December
day of year DBDATE_DY 1-366
day DBDATE_DD 1-31
week DBDATE_WK 154 (for leap years)
weekday DBDATE_DW Monday — Sunday
hour DBDATE_HH 0-23
minute DBDATE_MI 0-59
second DBDATE_SS 0-59
millisecond DBDATE_MS 0-999

datetime

A pointer to the DBDATETIME value of interest.

The number of bytes placed into * charbuf.

In case of error, dbdatename returns -1.

dbdatename converts the specified component of a DBDATETIME

structure into a character string.

Open Client

CHAPTER 2 Routines

e The names of the months and weekdays are in the language of the
specified DBPROCESS. If dbprocis NULL, these names will be in DB-
Library’s default language.

e Thisfunction isvery similar to the Transact-SQL datename function.
e Thefollowing code fragment illustrates the use of dodatename:

dbcmd (dbproc, "select name, crdate from \
master. .sysdatabases") ;

dbsglexec (dbproc) ;

dbresults (dbproc) ;

while (dbnextrow (dbproc) != NO MORE ROWS)
{
/*
** Print the database name and its date info
*/

dbconvert (dbproc, dbcoltype (dbproc, 2),
dbdata (dbproc, 2), dbdatlen (dbproc, 2),
SYBCHAR, datestring, -1);

printf ("%$s: %$s\n", (char *) (dbdata
(dbproc, 1)), datestring);

/* Print the parts of the creation date */

dbdatename (dbproc, datestring, DBDATE YY,
(DBDATETIME *) (dbdata (dbproc, 2)));

printf ("\tYear = %s.\n", datestring);

dbdatename (dbproc, datestring, DBDATE_ QQ,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tQuarter = %s.\n", datestring);

dbdatename (dbproc, datestring, DBDATE MM,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tMonth = %s.\n", datestring) ;
dbdatename (dbproc, datestring, DBDATE DW,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tDay of week = %s.\n", datestring);
dbdatename (dbproc, datestring, DBDATE DD,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tDay of month = %s.\n", datestring) ;
dbdatename (dbproc, datestring, DBDATE DY,

(DBDATETIME *) (dbdata (dbproc, 2)));

DB-Library/C Reference Manual 137

dbdateorder

See also

dbdateorder

Description

Syntax

Parameters

138

printf ("\tDay of year = %s.\n", datestring) ;

dbdatename (dbproc, datestring, DBDATE HH,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tHour = %s.\n", datestring);

dbdatename (dbproc, datestring, DBDATE MI,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tMinute = %s.\n", datestring) ;

dbdatename (dbproc, datestring, DBDATE_SS,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tSecond = %s.\n", datestring);

dbdatename (dbproc, datestring, DBDATE MS,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tMillisecond = %s.\n", datestring);

dbdatename (dbproc, datestring, DBDATE WK,
(DBDATETIME *) (dbdata (dbproc, 2)));
printf ("\tWeek = %s.\n", datestring) ;

dbconvert, dbdata, dbdatechar, dbdatecrack

Return the date component order for a given language.

char *dbdateorder(dbproc, language)

DBPROCESS *dbproc;

char *language;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
Server.

language
The name of the language of interest.

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

dbdatepart

Description

Syntax

Parameters

A pointer to anull-terminated, 3-character string containing the characters

m,” “d,” and “y,” representing the month, day, and year date components,

respectively. The order of the characters in the dbdateorder string corresponds
to their order in language's default datetime format.

dbdateorder returns aNULL pointer on failure.

dbdateorder returns a character string that describes the order in which the
month, day, and year date components appear in the specified language. If
language isNULL, the current language of the specified DBPROCESS is
used. If both language and dbproc are NULL, DB-Library’s default
language is used.

Warning! The date order string returned by dbdateorder is a pointer to
DB-Library’'sinternal data structures. Application programs should
neither modify this string, nor freeit.

The following code fragment illustrates the use of dbdateorder:

/* Retrieve the date order from Adaptive Server
Enterprise */
printf ("date-order: %s\n",

(dbdateorder (DBPROCESS *)NULL, (char *)NULL)) ;

dbconvert, dodata, dbdatechar, dbdatecrack

Return the specified part of a DBDATETIME value as a numeric value.

DBINT dbdatepart(dbproc, datepart, datetime)

DBPROCESS *dbproc;

int

datepart;

DBDATETIME *datetime;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 139

dbdatezero

Return value

Usage

See also

dbdatezero

Description

Syntax

140

datepart
The date component of interest. Table 2-16 lists the date parts, the date part
symbols recognized by DB-Library and the expected values. Note that the
names of the months and the daysin this table are those for English.

Table 2-16: Date parts and their character representations (dbdatepart)

Date part Symbol Character representation of value
year DBDATE_YY 1753 -9999

quarter DBDATE_QQ 1-4

month DBDATE_MM January — December
day of year DBDATE_DY 1-366

day DBDATE_DD 1-31

week DBDATE_WK 1-54 (for leap years)
weekday DBDATE_DW Monday — Sunday
hour DBDATE_HH 0-23

minute DBDATE_MI 0-59

second DBDATE_SS 0-59

millisecond DBDATE_MS 0-999

datetime
A pointer to the DBDATETIME value of interest.

The value of the specified date part.

¢ dbdatepart returns the specified part of aDBDATETIME value asa
numeric value.

¢ dbdatepart issimilar to the Transact-SQL datepart function.
dbconvert, dbdata, dbdatechar, dbdatecrack, dbdatename

Initialize a DBDATETIME vaue to Jan 1, 1900 12:00:00:000AM.
RETCODE dbdatezero(dbproc, dateptr)

DBPROCESS *dbproc;
DBDATETIME *dateptr;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbdatlen

Description

Syntax

Parameters

Return value

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL.

dateptr
A pointer to the DBDATETIME variable to initialize.

SUCCEED or FAIL.
dbdatezero returns FAIL if dateptr isNULL.

e dbdatezero initidizesaDBDATETIME vaueto Jan 1, 1900
12:00:00:000AM.

e Therangeof legal DBDATETIME valuesisfrom January 1, 1753 to
December 31, 9999. DBDATETIME values have aprecision of 1/300th of
a second (3.33 milliseconds).

dbdatedzero

Return the length of the datain aregular result column.
DBINT dbdatlen(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

The length, in bytes, of the data that would be returned for the particular
column. If the data has a null value, dbdatlen returns 0. If the column number
isnot in range, dbdatlen returns -1.

DB-Library/C Reference Manual 141

dbdayname

Usage

See also

dbdayname

Description

142

e Thisroutine returnsthe length, in bytes, of datathat would be returned by

aselect againgt aregular (that is, non-compute) result column. In most
cases, thisisthe actual length of data for the column. For text and image
columns, however, the integer returned by dbdatlen can be less than the
actual length of data for the column. Thisis because the server global
variable @@textsize limits the amount of text or image data returned by a
select.

¢ Usethedbcollen routineto determine the maximum possible length for the

data. Use dbdata to get a pointer to the dataitself.

e Hereisasmall program fragment that uses dbdatlen:

DBPROCESS *dbproc;

DBINT row_number = 0;

DBINT data_length;

* Put the command into the command buffer */
dbcmd (dbproc, "select name from sysobjects") ;
/*

** Send the command to Adaptive Server Enterprise
and begin

** execution

*/

dbsglexec (dbproc) ;

/* Process the command results */
dbresults (dbproc) ;

/* Examine the data lengths of each row */
while (dbnextrow(dbproc) != NO MORE ROWS)

{

row_number++;

data_length = dbdatlen(dbproc, 1);

printf ("row %$1d, data length is %1d.\n",
row number, data_ length);

}
dbcollen, dbcolname, dbcoltype, dbdata, donumcols

Determine the name of a specified weekday in a specified language.

Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

DBDEAD

Description

Syntax

char *dbdayname(dbproc, language, daynum)

DBPROCESS *dbproc;

char *language;
int daynum;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

language
The name of the desired language.
daynum

The number of the desired day. Day numbers range from 1 (Monday) to 7
(Sunday).

The name of the specified day on success; aNULL pointer on error.

« dbdayname returnsthe name of the specified day in the specified language.
If languageisNULL, dbproc’'s current language is used. If both language
and dbproc are NULL, then U.S. English is used.

e Thefollowing code fragment illustrates the use of dbdayname:
/*

** Retrieve the name of each day of the week in

** U.S. English.

*/

for (daynum = 1; daynum <= 7; daynum++)
printf ("Day %d: %s\n", daynum,
dbdayname ((DBPROCESS *)NULL, (char *)NULL,
daynum)) ;

db12hour, dbdateorder, dbmonthname, DBSETLNATLANG

Determine whether a particular DBPROCESS is dead.
DBBOOL DBDEAD(dbproc)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 143

dberrhandle

Parameters

Return value

Usage

See also

dberrhandle

Description

Syntax

Parameters

144

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

“TRUE” or “FALSE.”

¢ Thismacro indicates whether or not the specified DBPROCESS has been
marked dead. It is particularly useful in user-supplied error handlers.

e |f aDBPROCESS isdead, then amost every DB-Library routine that
receivesit as a parameter will immediately fail, calling the user-supplied
error handler.

Note If thereisno user-supplied error handler, a dead DBPROCESS will
cause the affected DB-Library routines not to fail, but to abort.

¢ Notethat DBDEAD does not communicate with the server, but only checks
the current status of a DBPROCESS. If apreviously called DB-Library
routine has not marked a DBPROCESS as dead, DBDEAD reports the
DBPROCESS as hedlthy.

dberrhandle, Errors on page 389

Install auser function to handle DB-Library errors.
int (*dberrhandle(handler))()

int (*handler)();

handler
A pointer to the user function that will be called whenever DB-Library
determines that an error has occurred. DB-Library calls this function with
six parameters shown in Table 2-17.

Open Client

CHAPTER 2 Routines

Table 2-17: Error handler parameters

Parameter

Meaning

dbproc

The affected DBPROCESS. If there is no DBPROCESS associated
with this error, this parameter will be NULL.

severity

The severity of the error (datatypeint). Error severitiesare definedin
syberror.h.

dberr

Theidentifying number of theerror (datatypeint). Error numbersare
defined in sybdb.h.

oserr

The operating-system-specific error number that describes the cause
of the error (datatype int). If there is no relevant operating system
error, the value of this parameter will be DBNOERR.

dberrstr

A printable description of dberr (datatype char *).

oserrstr

A printable description of oserr (datatype char *).

The error handler must return one of the four values listed in Table 2-18,
directing DB-Library to perform particular actions:

Table 2-18: Error handler returns

Return

Action

INT_EXIT

Print an error message and abort the program. DB-Library will
also return an error indication to the operating system. (Noteto
UNIX programmers: DB-Library will not leave a corefile.

INT_CANCEL

Return FAIL fromthe DB-Library routinethat caused the error.
Returning INT_CANCEL on timeout errors will kill the
dbproc.

INT_TIMEOUT Cancel the operation that caused the error but leave the dbproc

in working condition. This return value is meaningful only for
timeout errors (SYBETIME). In any other case, thisvauewill
be considered an error, and will be treated asan INT_EXIT.

INT_CONTINUE Continueto wait for one additional timeout period. At the end

of that period, call the error handler again. Thisreturn valueis
meaningful only for timeout errors (SYBETIME). In any other
case, this value will be considered an error, and will be treated
asan INT_EXIT.

If the error handler returns any value besides these four, the program will

abort.

Error handlers on the Windows platform must be declared with
CS PUBLIC, as shown in the example below. For portability, callback
handlers on other platforms should be declared CS _PUBLIC aswell.

The following example shows atypical error handler routine;

#include

DB-Library/C Reference Manual

<sybfront.h>

145

dberrhandle

Return value

Usage

146

#include <sybdb.h>
#include <syberror.h>

int CS_PUBLIC err handler (dbproc, severity, dberr,
oserr, dberrstr, oserrstr)

DBPROCESS *dbproc;
int severity;
int dberr;
int oserr;
char *dberrstr;
char *oserrstr;
{
if ((dbproc == NULL) || (DBDEAD (dbproc)))

return (INT_EXIT) ;
else
{
printf ("DB-Library error:\n\t%s\n",
dberrstr) ;
if (oserr != DBNOERR)
printf ("Operating-system \
error:\n\t%s\n", oserrstr) ;
return (INT CANCEL) ;

}

A pointer to the previoudly installed error handler. This pointer isNULL if no
error handler was installed before.

dberrhandle installs an error-handler function that you supply. When a
DB-Library error occurs, DB-Library will call this error handler
immediately. You must install an error handler to handle DB-Library
errors properly.

If an application does not call doerrhandle to install an error-handler
function, DB-Library ignores error messages. The messages are not
printed.

The user-supplied error handler will completely determinethe response of
DB-Library to any error that occurs. It must tell DB-Library whether to:

e Abort the program, or

e Return an error code and mark the DBPROCESS as “dead” (making
it unusable), or

e Cancel the operation that caused the error, or

e Keeptrying (in the case of atimeout error).

Open Client

CHAPTER 2 Routines

e |f the user does not supply an error handler (or passesa NULL pointer to
dberrhandle), DB-Library will exhibit its default error-handling behavior:
It will abort the program if the error has made the affected DBPROCESS
unusable (the user can call DBDEAD to determine whether or not a
DBPROCESS has become unusable). If the error has not made the
DBPROCESS unusable, DB-Library will simply return an error codeto its
caler.

e Youcan“de-install” an existing error handler by calling dberrhandle with
aNULL parameter. You can also, at any time, install anew error handler.
The new handler will automatically replace any existing handler.

e |f the program refers to error severity values, its source file must include
the header file called syberror.h.

e SeeErrorson page 389 for alist of DB-Library errors.

e Another routine, domsghandle, installsamessage handler that DB-Library
callsin response to the server error messages.

« |f the application provokes messages from DB-Library and the server
simultaneously, DB-Library calls the server message handler before it
callsthe DB-Library error handler.

e TheDB-Library/C error value SY BESMSG is generated in response to a
server error message, but not in response to a server informational
message. This means that when a server error occurs, both the server
message handler and the DB-Library/C error handler are called, but when
the server generates an informational message, only the server message
handler is called.

If you have installed a server message handler, you may want to write your
DB-Library error handler so as to suppress the printing of any
SYBESMSG error, to avoid notifying the user about the same error twice.

Table 2-19 provides information on when DB-Library/C calls an
application’s message and error handlers:

Table 2-19: Common errors

Error or message Message handler called? Error handler called?

SQL syntax error. Yes. Yes (SYBESMSG).
(Code your handler to ignore the
message.)

SQL print statement. Yes. No.

SQL raiserror. Yes. No.

DB-Library/C Reference Manual 147

dbexit

Error or message

Message handler called?

Error handler called?

Server dies.

No.

Yes (SY BESEOF).

(Code your handler to exit the
application.)

Timeout from the server. No. Yes (SYBETIME).
- — (To wait for another timeout
Note The default tlmeout perlpd is infinite. period, codeyour handler to return
Thg error handler will .not receive ti meout -INT_CONTINUE.)
notifications unless atimeout period is
specified with dbsettime.
Deadlock on query. Yes. Yes (SYBESMSG).

(Code your handler to test for

(Code your handler to ignore the

deadlock. Seethe message.)
dbsetuserdataon page 336 for
an example.)
Timeout on login. No. Yes (SYBEFCON, SYBECONN).
Login fals (dbopen). Yes. Yes (SYBEPWD).
(Code your handler to exit the
application.)
Use database message. Yes. No.

(Code your handler to ignore
the message.)

Incorrect use of DB-Library/C calls, suchas No. Yes (SYBERPND, ...)
not calling dbresults when required. Yes (SYBERPND, .)
Fatal Server error (severity greater than 16). Yes. Yes (SYBESMSG).

See also

dbexit

Description

(Codeyour handler to exit the
application.)

DBDEAD, dbmsghandle, Errors on page 389

initialized by dbinit.

Syntax void dbexit()
Return value None.

148

Close and deallocate all DBPROCESS structures, and clean up any structures

Open Client

CHAPTER 2 Routines

Usage .

dbexit calls dbclose repeatedly for all allocated DBPROCESS structures.
dbclose cleans up any activity associated with asingle DBPROCESS
structure and deallocates the space.

You can use dbclose directly to close just asingle DBPROCESS structure.

dbexit also cleans up any structuresinitialized by dbinit, releasing the
memory associated with those structures. It must be the last DB-Library
call in any application that calls dbinit.

To ensure future compatibility and portability, Sybase strongly
recommendsthat all applicationscall dbinit and dbexit, no matter what their
environment.

For environments requiring dbinit, the appli cation must not make any other
DB-Library call after calling dbexit.

See also dbclose, dbinit, dbopen

dbfcmd

Description Add
type

text to the DBPROCESS command buffer using C runtime library sprintf-
formatting.

Syntax RETCODE dbfcmd(dbproc, cmdstring, args...)

DBP

char
?7?7?

ROCESS *dbproc;
*cmdstring;
args...;

Parameters dbproc

A

pointer to the DBPROCESS structure that provides the connection for a

particular front end/server process. It contains all the information that DB-

Li

brary usesto manage communications and data between the front end and

server.

cmdstring

A

format string of the form used by the sprintf routine.

Thereisan optional and variable number of arguments to dbfcmd. The
number and type of arguments required depends on the format specifiers
included in the cmdstring argument. The arguments are passed directly to
the C-library sprintf function. Neither dbfcmd nor the C compiler can type
check these arguments. As with using sprintf, the programmer must ensure
that each argument type matches the corresponding format specifier.

DB-Library/C Reference Manual

149

dbfcmd

Return value

Usage

150

SUCCEED or FAIL.

This routine adds text to the Transact-SQL command buffer in the
DBPROCESS structure. dbfcmd works just like the sprintf function in the
C language standard 1/O library, using % conversion specifiers. If you do
not need any of the formatting capability of sprintf, you can use dbcmd
instead.

Table 2-20 lists the conversions supported by dbfcmd:

Table 2-20: dbfcmd conversions

Co

nversion Program variable type

%s

char*, null-terminated

%d

int, decimal representation

%f

double

%g

double

%e

double

%% None, the “ %" character is written into the command buffer

Thedatatype SYBDATETIME must be converted to acharacter string and
passed using %s. The datatype SYBMONEY may be converted to a
character string and passed using %s, or converted to float and passed
using %f.

Note Currently, only eight arguments may be handled in each call to
dbfcmd. To format commands that require more than eight arguments, call
dbfcmd repeatedly.

dbfcmd manages the space allocation for the command buffer. It addsto
the existing command buffer—it does not delete or overwrite the current
contents except after the buffer has been sent to the server (see “Clearing
the command buffer” on page 151). A single command buffer may contain
multiple commands; in fact, this represents an efficient use of the
command buffer.

The application may call dbfcmd repeatedly. The command stringsin
sequential calls are just concatenated together. It isthe program’s
responsibility to ensure that any necessary blanks appear between the end
of one string and the beginning of the next.

Hereisasmall program fragment that uses dbfcmd to build up amultiline
SQL command:

char *column_name;
DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

int low id;

char *object type;

char *tablename;

dbfcmd (dbproc, "select %s from %s", column name,
tablename) ;

dbfcmd (dbproc, " where id > %d", low_id);

dbfcmd (dbproc, " and type=’'%s’", object type);

Note the required spaces at the start of the second and third command
strings.

e When passing character or string variables to dbfcmd, beware of variables
that contain quotes (single or double) or null characters (ASCII 0).

e Improperly placed quotesin the SQL command can cause SQL syntax
errors or, worse yet, unanticipated query results.

e NULL characters (ASCII 0) should never be inserted into the
command buffer. They can confuse DB-Library and the server,
causing SQL syntax errors or unanticipated query results.

e Sincedbfcmd calls sprintf, you must remember that % (percentage sign)
has a specia meaning as the beginning of aformat command. If you want
to include % in the command string, you must precede it with another %.

e Besureto guard against passing a null pointer as a string parameter to
dbfemd. If anull valueisapossibility, you should check for it before using
the variable in adbfcmd call.

e Theapplication can intermingle callsto dbcmd and dbfcmd.

e Atanytime, theapplication can accessthe contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

« Available memory isthe only constraint on the size of the DBPROCESS
command buffer created by callsto dbcmd and dbfcmd.

Clearing the command buffer

After acall to dbsglexec or dbsglsend, the first call to either dbcmd or dbfcmd
automatically clearsthe command buffer before the new text is entered. If this
situation is undesirable, set the DBNOAUTOFREE option. When
DBNOAUTOFREE is set, the command buffer is cleared only by an explicit
call to dbfreebuf.

DB-Library/C Reference Manual 151

DBFIRSTROW

Limitations

Currently, only eight args may be handled in each call to dbfcmd. To format
commands that require more than eight args, call dbfcmd repeatedly. On some
platforms, dbfcmd may allow more than eight args per call. For portable code,
do not pass more than eight arguments.

Because it makes text substitutions, dbfcmd uses aworking buffer in addition
to the DBPROCESS command buffer. dbfcmd all ocates this working buffer
dynamically. The size of the space it allocatesis equal to the maximum of a
defined constant (1024) or the string length of cmdstring *2 . For example, if
the length of cmdstring is 600 bytes, dbfcmd allocates a working buffer 1200
byteslong. If the length of cmdstring is 34 bytes, dbfcmd allocates a working
buffer 1024 byteslong. To work around this limitation:

sprintf (buffer, “%s”, SQL commmand”) ;
dbcmd (dbproc, buffer)

If the args are very big in comparison to the size of cmdstring, the working
buffer may not be large enough to hold the string after substitutions are made.
In this situation, break cmdstring up and use multiple callsto dbfcmd.

Note that the working buffer is not the same as the DBPROCESS command
buffer. The working buffer is atemporary buffer used only by dbfcmd when
making text substitutions. The DBPROCESS command buffer holds the text
after substitutions have been made. Thereis no constraint, other than available
memory, on the size of the DBPROCESS command buffer.

See also dbcmd, dbfreebuf, dbgetchar, dbstrcpy, dbstrlen, Options on page 407
DBFIRSTROW

Description Return the number of the first row in the row buffer.

Syntax DBINT DBFIRSTROW(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

152 Open Client

CHAPTER 2 Routines

Return value

Usage

See also

dbfree xlate

Description

Syntax

Parameters

The number of the first row in the row buffer. Rows are counted from the first
row returned from the server, whose number is 1. Thisroutinereturns O if there
is an error.

¢ Thismacro returns the number of the first row in the row buffer.

e If you are not buffering rows, DBFIRSTROW, DBCURROW, and
DBLASTROW aways have the same value. If you have allowed
buffering by setting the DBBUFFER option, DBFIRSTROW returns the
number of the first row in the row buffer.

* Notethat the first row returned from the server (whose valueis 1) is not
necessarily the first row in the row buffer. The rowsin the row buffer are
dependent on manipulation by the application program. See the dbclrbuf
reference page for detalls.

dbclrbuf, DBCURROW, dbgetrow, DBLASTROW, dbnextrow, dbsetopt,
Options on page 407

Free a pair of character set translation tables.
RETCODE *dbfree_xlate(dbproc, xlt_tosrv, xIt_todisp)

DBPROCESS *dbproc;

DBXLATE *XIt_tosrv;
DBXLATE *xIt_todisp;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that
DB-Library usesto manage communications and data between the front end
and server.

xIt_tosrv
A pointer to atrandation table used to tranglate display-specific character
stringsto the server character strings. Thetrandationtableisallocated using
dbload_xlate.

xlIt_todisp
A pointer to atrandation table used to translate server character stringsto
display-specific character strings. The trandlation tableis allocated using
dbload_xlate.

DB-Library/C Reference Manual 153

dbfreebuf

Return value

Usage

See also

dbfreebuf

Description

Syntax

Parameters

Return value

Usage

154

SUCCEED or FAIL.

e Thisroutine frees apair of character set translation tables allocated by
dbload_xlate.

¢ Character set trandlation tables trand ate characters between the server’'s
standard character set and the display device's character set.

¢ Thefollowing code fragment illustrates the use of dbfree_xlate

char destbuf [128] ;
int srcbytes_used;
DBXLATE *x1lt todisp; DBXLATE *x1t tosrv;

dbload xlate ((DBPROCESS *)NULL, " iso_l ",

"trans.xlt", &xlt tosrv, &xlt todisp);

printf ("Original string: \n\t%s\n\n",
TEST_STRING) ;

dbxlate ((DBPROCESS *)NULL, TEST STRING,
strlen(TEST STRING), destbuf, -1, xlt todisp,
&srcbytes used) ;

printf ("Translated to display character set: \
\n\t%s\n\n", destbuf) ;

dbfree xlate((DBPROCESS *)NULL, xlt tosrv,

xlt todisp) ;

dbload xlate, dbxlate

Clear the command buffer.
void dbfreebuf(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

None.

e Thisroutine clearsa DBPROCESS command buffer by freeing any space
alocated to it. It then sets the command buffer to NULL. Commands are
added to the command buffer with the dbemd or dbfemd routine.

Open Client

CHAPTER 2 Routines

See also

dbfreequal

Description

Syntax

Parameters

Return value

Usage

See also

dbfreesort

Description

Syntax

o After acall to dbsglexec or dbsglsend, the first call to either dbcmd or
dbfcmd automatically calls dbfreebuf to clear the command buffer before
the new text is entered. If this situation is undesirable, set the
DBNOAUTOFREE option. When DBNOAUTOFREE is set, the
command buffer is cleared only by an explicit call to dbfreebuf.

e Atanytime, theapplication can accessthe contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

dbemd, dbfemd, dbgetchar, dbsglexec, dbsglsend, dbstrepy, dbstrlen, Options
on page 407

Free the memory allocated by dbqual.
void dbfreequal(qualptr)

char *qualptr;

qualptr
A pointer to the memory allocated by dbqual.

None.

» dbfreequal isoneof the DB-Library browse mode routines. See Chapter 1,
“Introducing DB-Library” for a detailed discussion of browse mode.

« dbqual provides awhere clause that the application can use to update a
single row in a browsable table. In doing so, it dynamically allocates a
buffer to contain the where clause. When the where clauseis no longer
needed, the application can use dbfreequal to deallocate the buffer.

dbqual

Free a sort order structure allocated by dbloadsort.

RETCODE dbfreesort(dbproc, sortorder)

DBPROCESS *dbproc;
DBSORTORDER *sortorder;

DB-Library/C Reference Manual 155

dbfreesort

Parameters

Return value

Usage

See also

156

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

sortorder

A pointer to a DBSORTORDER structure alocated through dbloadsort.

SUCCEED or FAIL.

dbfreesort frees a sort order structure that was allocated using dbloadsort.
DB-Library routines such as dbstrcmp and dbstrsort use sort orders to
determine how character data must be sorted.

When an application program does sorting or comparing, it automatically
sorts character datathe sameway the server does. If no sort order hasbeen
loaded, routines such as dbstrcmp and dbstrsort sort characters by their
binary values.

Warning! Application programsmust not attempt to use operating-system
facilitiesto free the * sortorder structure directly, asit may have been
allocated using some mechanism other than malloc (on operating systems
where malloc is not supported), and it may consist of multiple parts, some
of which must be freed separately.

The following code fragment illustrates the use of dbfreesort:

sortorder = dbloadsort (dbproc) ;

retval = dbstrcmp (dbproc, "ABC", 3, "abc", 3,

sortorder) ;
printf ("ABC dbstrcmp’ed with abc yields %d.\n",
retval) ;

retval = dbstrcmp (dbproc, "abc", 3, "ABC", 3,
sortorder) ;

printf ("abc dbstrcmp’ed with ABC yields %d.\n",
retval) ;

dbfreesort (dbproc, sortorder) ;

dbloadsort, dbstrcmp, dbstrsort

Open Client

CHAPTER 2 Routines

dbgetchar

Description

Syntax

Parameters

Return value

Usage

See also

dbgetcharset

Description

Syntax

Return a pointer to a character in the command buffer.

char *dbgetchar(dbproc, n)

DBPROCESS *dbproc;

int n;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The position of the desired character in the command buffer. The first
character position isO.

dbgetchar returns a pointer to the nth character in the command buffer. If nis
not in range, dbgetchar returns NULL.

e You can use dbgetchar to retrieve apointer to a particular character in the
command buffer. dbgetchar returns a pointer to a character in the
command buffer whose position isindicated by n. Thefirst character has
position 0.

* Internaly, the command buffer isalinked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide away to locate
and copy parts of the command buffer.

» Since the command buffer is not just one large text string, but rather a
linked list of text strings, you must use dbgetchar to index through the
buffer. If you just get a pointer using dbgetchar and then increment it
yourself, it will probably fall off the end of astring and cause a
segmentation fault.

dbemd, dbfemd, dbfreebuf, dbstrcpy, dbstrlen

Get the name of the client character set from the DBPROCESS structure.
char *dbgetcharset(dbproc)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 157

dbgetloginfo

Parameters

Return value

Usage

See also

dbgetloginfo
Description

Syntax

Parameters

158

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library/C uses to manage communications and data between the front end
and server.

A pointer to the null-terminated name of the client character set, or NULL in
case of error.

¢ dbgetcharset returns the name of the client’s character set.

e DB-Library/C clients can use a different character set than the server or
serversto which they are connected. If aclient and server are using
different character sets, and the server supports character translation for
the client’s character set, it will perform all conversionsto and from its
own character set when communicating with the client.

¢ Anapplication caninform the server what character set it isusing through
DBSETLCHARSET.

e Todetermineif the server is performing character set translations, an
application can call docharsetconv.

¢ To get the name of the server character set, an application can call
dbservcharset.

dbcharsetconv, dblogin, dbopen, dbservcharset, DBSETLCHARSET

Transfer Tabular Data Stream (TDS) login response information from a
DBPROCESS structure to a newly allocated DBLOGINFO structure.

RETCODE dbgetloginfo(dbproc, loginfo)

DBPROCESS *dbproc;
DBLOGINFO **|oginfo;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-

Library/C uses to manage communications and data between the front end
and the server.

Open Client

CHAPTER 2 Routines

loginfo

The address of a DBLOGINFO pointer variable. dbgetloginfo sets the
DBLOGINFO pointer to the address of a newly-allocated DBLOGINFO
structure.

Return value SUCCEED or FAIL.

Usage .

dbgetloginfo transfers TDS login response information from a
DBPROCESS structure to a newly allocated DBLOGINFO structure.

An application needsto call dbgetloginfo only if 1) it is an Open Server
gateway application, and 2) it isusing TDS passthrough.

TDSisan application protocol used for thetransfer of requests and request
results between clients and servers.

When aclient connectsdirectly to aserver, the two programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the application forwards TDS packets
between the client and a remote server without examining or processing
them. For thisreason, theremote server and theclient must agreeonaTDS
format to use.

dbgetloginfo is the second of four calls, two of them Server Library calls,
that allow aclient and remote server to negotiate a TDS format. The calls,
which can be made only in a SRV_CONNECT event handler, are:

e srv_getloginfo - allocateaDBLOGINFO structureandfill it with TDS
information from aclient SRV_PROC.

e dbsetloginfo - transfer the TDS information retrieved in step 1 from
the DBLOGINFO structuretoaDB-Library/C LOGINREC structure,
and then free the DBLOGINFO structure. After the information is
transferred, the application can use this LOGINREC structure in the
dbopen call which establishes its connection with the remote server.

» dbgetloginfo - transfer the remote server’s response to the client’s
TDS information from a DBPROCESS structure into a newly-
allocated DBLOGINFO structure.

* srv_setloginfo - send the remote server’s response, retrieved in the
previous step, to the client, and then free the DBL OGINFO structure.

Thisis an example of a SRV_CONNECT handler preparing aremote
connection for TDS passthrough:

RETCODE connect handler (srvproc)
SRVPROC *Srvproc;

{

DB-Library/C Reference Manual 159

dbgetlusername

DBLOGINFO *loginfo;
LOGINREC *loginrec;
DBPROCESS *dbproc;
/*

** Get the TDS login information from the client
** SRV_PROC.

*/

srv_getloginfo(srvproc, &loginfo) ;
/* Get a LOGINREC structure */

loginrec = dblogin() ;
/*

** Tnitialize the LOGINREC with the login info
** from the SRV_PROC.

*/

dbsetloginfo(loginrec, loginfo) ;
/* Connect to the remote server */

dbproc = dbopen(loginrec, REMOTE_ SERVER NAME) ;
/*

** Get the TDS login response information from
** the remote connection.

*/

dbgetloginfo (dbproc, &loginfo) ;
/*

** Return the login response information to the
** SRV_PROC.

*/

srv_setloginfo (srvproc, loginfo) ;
/* Accept the connection and return */
srv_senddone (srvproc, 0, 0, 0);

return (SRV_CONTINUE) ;

}
See also dbrecvpassthru, dbsendpassthru, dbsetloginfo

dbgetlusername
Description Return the user name from a LOGINREC structure.

Syntax int dbgetlusername(login, name_buffer, buffer_len)

LOGINREC *login;
BYTE *name_bulffer;
int buffer_len;

160 Open Client

CHAPTER 2 Routines

Parameters

Return value

login
A pointer to aL OGINREC structure, which can be passed as an argument to
dbopen. You can get a LOGINREC structure by calling dblogin.

name_buffer
A pointer to a buffer. The user name will be copied from the LOGINREC
structure to this buffer.

buffer len
The length, in bytes, of the destination buffer.

The number of bytes copied into the destination buffer, not including the null-
terminator.

If the user name is more than buffer_len -1 byteslong, dbgetlusername copies
buffer_len -1 bytesinto the destination buffer and returns DBTRUNCATED.

dbgetlusername returns FAIL if loginisNULL, name_buffer isNULL, or
buffer_lenislessthan 0.

Usage e dbgetlusername copies the user name from LOGINREC structure into the
name_buffer buffer.
e Toset the user namein a LOGINREC structure, use DBSETLUSER.
* dbgetlusername copies a maximum of buffer_len -1 bytes, and null-
terminates the user name string. Since the longest user namein a
LOGINREC structureis DBMAXNAME bytes, an application will never
need a destination buffer longer than DBMAXNAME +1 bytes.
e |f theuser nameisin the LOGINREC islonger than buffer_len -1 bytes,
dbgetlusername truncates the name and returns DBTRUNCATED.
See also dblogin, DBSETLUSER
dbgetmaxprocs
Description Determine the current maximum number of simultaneously open
DBPROCESSes.
Syntax int dbgetmaxprocs()
Parameters None.

Return value

Aninteger representing the current limit onthe number of simultaneously open
DBPROCESSes.

DB-Library/C Reference Manual 161

dbgetnatlang

Usage

See also

dbgetnatlang

Description

Syntax

Parameters

Return value

Usage

See also

dbgetoff

Description

Syntax

162

A DB-Library program has a maximum number of simultaneously open
DBPROCESSes. By default, this number is 25. The application program may
change this limit by calling dbsetmaxprocs.

dbopen, dbsetmaxprocs

Get the national language from the DBPROCESS structure.
char* dbgetnatlang(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

A pointer to acharacter string representing the national language that the client
DBPROCESS is using.

« dbgetnatlang returns a pointer to the name of the national language that a
clientisusing.

e DB-Library/C clientsmay use adifferent national language than the server
or servers to which they are connected. An application can inform the
server what national language it wishes to use through
DBSETLNATLANG.

dblogin, dbopen, DBSETLNATLANG

Check for the existence of Transact-SQL constructs in the command buffer.

int dbgetoff(dbproc, offtype, startfrom)
DBPROCESS *dbproc;

DBUSMALLINT offtype;
int startfrom;

Open Client

CHAPTER 2 Routines

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

offtype
The type of offset you want to find. The types, which are defined in the
header file sybdb.h, are:

OFF_SELECT
OFF_FROM
OFF_ORDER
OFF_COMPUTE
OFF_TABLE
OFF_PROCEDURE
OFF_STATEMENT

OFF_PARAM
OFF_EXEC
See Options on page 407 for details.
startfrom
Thepoint inthe buffer at which to start looking. The command buffer begins
a 0.
Return value The character offset into the command buffer for the specified offset. If the
offset is not found, -1 is returned.
Usage e |f the DBOFFSET option has been set (see Options on page 407), this

routine can check for the location of certain Transact-SQL constructsin
the command buffer. As asimple example, assume the program does not
know the contents of the command buffer but needs to know where the
SQL keyword select appears.

int select offset[10];
int last offset;
int i;

/* Set the offset option */
dbsetopt (dbproc, DBOFFSET, "select");

/*

** Agsume the command buffer contains the

** following selects.

*/

dbcmd (dbproc, "select x = 100 select y = 5");

/* Send the query to Adaptive Server Enterprise */

DB-Library/C Reference Manual 163

dbgetpacket

See also

dbgetpacket
Description

Syntax

Parameters

Return value

Usage

164

dbsglexec (dbproc) ;

/* Get all the offsets to the select keyword */
for (i = 0, last offset = 0; last offset != -1;
i++)
if ((last_offset = dbgetoff (dbproc,
OFF SELECT, last offset) != -1)
select offset[i] = last offset++;

In this example, select_offset[0] = 0 and select_offset[1] = 15.

« dbgetoff does not recognize select statements in a subquery. Thus, if the
command buffer contained:

select pub_ name
from publishers
where pub id not in
(select pub_ id
from titles
where type = "business")

the second “select” would not be recognized.
dbcmd, dbgetchar, dbsetopt, dbstrcpy, dbstrlen, Options on page 407

Return the TDS packet size currently in use.
int dbgetpacket(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

The TDS packet size currently in use.
e dbgetpacket returns the TDS packet size currently in use.

e TDS(Tabular Data Stream) isan application protocol used for the transfer
of requests and request results between clients and servers.

Open Client

CHAPTER 2 Routines

See also

dbgetrow

Description

Syntax

Parameters

Return value

e TDSdataissentinfixed-size chunks, called “packets’. TDS packets have
adefault size of 512 bytes.

e An application may change the TDS packet size using DBSETLPACKET,
which sets the packet size field in the LOGINREC structure. When the
application logsin to the server or Open Server, the server setsthe TDS
packet size for the created DBPROCESS connection to be equal to or less
than the value of thisfield. The packet size is set to a value less than the
value of the field if the server is experiencing space constraints.
Otherwise, the packet size will be equal to the value of the field.

e |f an application sends or receives large amounts of text or image data, a
packet sizelarger than the default 512 bytes may improve efficiency, since
it results in fewer network reads and writes.

DBSETLPACKET

Read the specified row in the row buffer.
STATUS dbgetrow(dbproc, row)

DBPROCESS *dbproc;
DBINT row;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

row
The number of the row to read. Rows are counted from thefirst row returned
from the server, whose number is 1. Note that the first row in the row buffer
is not necessarily the first row returned from the server.

dbgetrow can return four different types of values:
e |If thecurrent row isaregular row, REG_ROW is returned.

« |If the current row isacompute row, the computeid of the row is returned.
(See the dbaltbind reference page for information on the computeid.

DB-Library/C Reference Manual 165

dbgetrow

e Iftherowisnotintherow buffer, NO_MORE_ROWSisreturned, and the
current row is left unchanged.

* [the routine was unsuccessful, FAIL is returned.

Usage ¢ dbgetrow setsthe current row in the row buffer to a specific row and reads
it. Thisroutine works only if the DBBUFFER option is on, enabling row
buffering. When dbgetrow is called, any binding of row datato program
variables (as specified with dbbind or dbaltbind) takes effect.

* Row buffering provides away to keep a specified number of server result
rowsin program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Row buffering is therefore useful for programs that need to look at
result rowsin a non-sequential manner. It does, however, carry amemory
and performance penalty because each row in the buffer must be allocated
and freed individually. Therefore, useit only if you need to. Specifically,
the application should only turn the DBBUFFER option on if it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue.

e When row buffering is not allowed, the application processes each row as
it is read from the server, by calling dbnextrow repeatedly until it returns
NO_MORE_ROWS. When row buffering is enabled, the application can
use dbgetrow to jump to any row that has already been read from the server
with dbnextrow. Subsequent callsto dbnextrow cause the application to
read successive rowsin the buffer. When dbnextrow reachesthelast row in
the buffer, it reads rows from the server again, if there are any. Once the
buffer isfull, donextrow does not read any more rows from the server until
some of the rows have been cleared from the buffer with dbclirbuf.

* The macros DBFIRSTROW, DBLASTROW, and DBCURROW are
useful in conjunction with dbgetrow calls. DBFIRSTROW, for instance,
gets the number of the first row in the buffer. Thus, the cal:

dbgetrow (dbproc, DBFIRSTROW (dbproc))
sets the current row to the first row in the buffer.

* Theroutinedbsetrow setsabuffered row to “ current” but does not read the
row.

e For an example of row buffering, see the sample program example4.c.

See also dbaltbind, dbbind, dbclrbuf, DBCURROW, DBFIRSTROW, DBLASTROW,
dbnextrow, dbsetrow, Options on page 407

166 Open Client

CHAPTER 2 Routines

DBGETTIME

Description

Syntax

Return value

Return the number of secondsthat DB-Library will wait for a server response
to a SQL command.

int DBGETTIME()

The timeout value—the number of secondsthat DB-Library waitsfor a server
response before timing out. A timeout value of 0 represents an infinite timeout
period.

Usage » Thisroutine returns the length of time in seconds that DB-Library will
walit for aserver response during callsto dbsglexec, dbsglok, dbresults, and
dbnextrow. The default timeout value is 0, which represents an infinite
timeout period.

* The program can call dbsettime to change the timeout value.

See also dbsettime

dbgetuserdata

Description Return a pointer to user-allocated data from a DBPROCESS structure.

Syntax BYTE *dbgetuserdata(dbproc)

DBPROCESS *dbproc;

Parameters dbproc

Return value

Usage

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

A generic BY TE pointer to the user’s private data space. This pointer must
have been previously saved with the dbsetuserdata routine.

e Thisroutine returns, from a DBPROCESS structure, a pointer to user-
allocated data. The application must have previously saved this pointer
with the dbsetuserdata routine.

DB-Library/C Reference Manual 167

dbhasretstat

See also

dbhasretstat

Description

Syntax

Parameters

Return value

Usage

168

¢ dbgetuserdata and dbsetuserdata allow the application to associate user
data with a particular DBPROCESS. This avoids the necessity of using
global variables for this purpose. One use for these routinesisto handle
deadlock, as shown in the example on the dbsetuserdata reference page.
That example reruns the transaction when the application’s message
handler detects deadlock.

e Thisroutineis particularly useful when the application has multiple
DBPROCESSes.

dbsetuserdata

Determine whether the current command or remote procedure call generated a
return status number.

DBBOOL dbhasretstat(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

“TRUE” or “FALSE”".

¢ Thisroutine determines whether the current Transact-SQL command or
remote procedure call generated a return status number. Status numbers
are returned by all stored procedures running on Adaptive Server
Enterprise. Since status numbers are afeature of stored procedures, only a
remote procedure call or an execute command can generate a status
number.

¢ Thedbretstatus routine actually gets the status number. Stored procedures
that complete normally return a status number of 0. For alist of return
status numbers, see the Adaptive Server Enterprise Reference Manual.

Open Client

CHAPTER 2 Routines

« When executing a stored procedure, the server returns the status number
immediately after returning all other results. Therefore, the application can
call dbhasretstat only after processing the stored procedure’s results by
calling dbresults, as well as donextrow if appropriate. (Note that a stored
procedure can generate several sets of results—one for each select it
contains.) Before the application can call dbhasretstat or dbretstatus, it
must call dbresults and dbnextrow as many times as necessary to process
all the results.

e Theorder in which the application processes the status number and any
return parameter values is unimportant.

e When astored procedure has been executed as an RPC command using
dbrpcinit, dbrpcparam, and dbrpcsend, then the return status can be
retrieved after all other results have been processed. For an example of this
usage, see the sample program exampl es.c.

« When astored procedure has been executed from abatch of Transact-SQL
commands (with dbsglexec or dbsglsend), then other commands might
execute after the stored procedure. This situation makes return-status
retrieval alittle more complicated.

e If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return status after the
dbresults loop, as shown in the sample program example8.c.

e | the batch can contain multiple commands, then the return status
should be retrieved inside the dbresults |oop, after all rows have been
fetched with dbnextrow. The code below shows the program logic to
retrieve the return status value in this situation.

while ((result code = dbresults (dbproc)
!= NO_MORE_RESULTS)
{

if (result code == SUCCEED)

{
. bind rows here ...
while ((row code = dbnextrow (dbproc))
!= NO_MORE_ROWS)
{

}

/* Now check for a return status */
if (dbhasretstat (dbproc) == TRUE)
{
printf (“ (return status %d)\n”,
dbretstatus (dbproc)) ;

. process rows here ...

DB-Library/C Reference Manual 169

dbinit

See also

dbinit
Description

Syntax

Return value

Usage

See also

DBIORDESC

Description

Syntax

170

}

if (dbnumrets (dbproc) > 0)

{
}

} /* if result code */
else

{
}

} /* while dbresults */

dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dorpcparam,
dbrpcsend

. get output parameters here ...

printf (“Query failed.\n”);

Initialize DB-Library.
RETCODE dbinit()
SUCCEED or FAIL.

e Thisroutineinitializes certain private DB-Library structures. For
environmentsthat requireit, the application must call dbinit before calling
any other DB-Library routine. Most DB-Library routines will cause the
application to exit if they are called before dbinit.

e To ensure future compatibility and portability, Sybase strongly
recommendsthat all applicationscall dbinit, no matter what their operating
environment.

dbexit

(UNIX only) Provide program access to the UNIX file descriptor used by a
DBPROCESS to read data coming from the server.

int DBIORDESC(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

An integer file descriptor used by the specified DBPROCESS to read data
coming from the server.

This routine provides away for an application to respond effectively to
multiple input streams. Depending on the nature of your application, the
time between a request for information from the server (usually made
using acall to dbsglsend) and the server’s response (read by calling
dbsglok, dbresults, or dbnextrow) may besignificant. You may usethistime
to service other parts of your application. The DBIORDESC routine
provides away to obtain the 1/0O descriptor that a DBPROCESS uses to
read the data stream from the server. This information may then be used
with various operating system facilities (such asthe UNIX select call) to
allow the application to respond effectively to multiple input streams.

dbpoll checks if a server response has arrived for any of an application’s
server connections (represented by DBPROCESS pointers). dbpoll is
generally simpler to use than DBIORDESC. For this reason, and because
DBIORDESC is non-portable, it is generally preferable to use dbpoll.

The file descriptor returned by DBIORDESC may only be used with
operating system facilities that do not read data from the incoming data
stream. If dataisread from this stream by any means other than through a
DB-Library routine, communications between the front end and the server
will become hopelessly scrambled.

An application can use the DB-Library DBRBUF routine, in addition to
the UNIX select function, to help determine whether any more data from
the server is available for reading.

A companion routine, DBIOWDESC, provides access to thefile
descriptor used to write data to the server.

dbcmd, DBIOWDESC, dbnextrow, dbpoll, DBRBUF, dbresults, dbsglok,
dbsglsend

DB-Library/C Reference Manual 171

DBIOWDESC

DBIOWDESC

Description
Syntax

Parameters

Return value

Usage

See also

172

(UNIX only) Provide program access to the UNIX file descriptor used by a
DBPROCESS to write data to the server.

int DBIOWDESC(dbproc)

DBPROCESS *dbproc;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

An integer file descriptor used by the specified DBPROCESS to write data to
the server.

This routine provides away for an application to effectively utilize
multiple input and output streams. Depending on the nature of your
application, the time interval between the initiation of an attempt to write
information to the server (usually made using acall to dbsglsend) and the
completion of that attempt may be significant. You may use thistime to
service other parts of your application. The DBIOWDESC routine
provides away to obtain the I/O descriptor that a DBPROCESS uses to
writethe datastream to the server. Thisinformation may then be used with
various operating system facilities (such as the UNIX select function) to
allow the application to effectively utilize multiple input and output
streams.

The file descriptor returned by this routine may only be used with
operating system facilities that do not write data to the outgoing data
stream. If dataiswritten to this stream by any means other than through a
DB-Library routine, communications between the front-end and the server
will become hopelessly scrambled.

A companion routine, DBIORDESC, providesaccessto thefile descriptor
used to read data coming from the server. For some applications, another
routine, dbpoll may be preferable to DBIORDESC.

dbcmd, DBIORDESC, dbnextrow, dbpoll, dbresults, dbsglok, dbsglsend

Open Client

CHAPTER 2 Routines

DBISAVAIL

Description

Syntax

Parameters

Return value

Usage

See also

dbisopt
Description

Syntax

Parameters

Determine whether a DBPROCESS is available for general use.
DBBOOL DBISAVAIL(dbproc)

DBPROCESS

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

“TRUE" if the DBPROCESS isavailablefor general use, otherwise“FALSE”.

This routine indicates whether the specified DBPROCESS is available for
general use. When a DBPROCESS isfirst opened, it is marked as being
available, until some use is made of it. Many DB-Library routines will
automatically set the DBPROCESSto “ not available,” but only dbsetavail will
reset it to “available.” Thisfacility is useful when several parts of aprogram
are attempting to share a single DBPROCESS.

dbsetavail

*dbproc;

Check the status of a server or DB-Library option.
DBBOOL dbisopt(dbproc, option, param)

DBPROCESS *dbproc;

int option;
char *param;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server. Unlike in the functions dbsetopt and dbclropt, dbproc cannot be
NULL here.

option
The option to be checked. See Options on page 407 for the list of options.

DB-Library/C Reference Manual 173

DBLASTROW

param

Certain options take parameters. The DBOFFSET option, for example,
takes as a parameter the SQL construct for which offsets are to be returned.
Options lists those options that take parameters. If an option does not take a
parameter, param must be NULL.

If the option you are checking takes a parameter but there can be only one
instance of the option, dbisopt ignores the param argument. For example,
dbisopt ignores the value of paramwhen checking the DBBUFFER option,
because row buffering can have only one setting at atime. On the other
hand, the DBOFFSET option can have several settings, each with adifferent
parameter. It may have been set twice—to look for offsets to select
statements and for offsets to order by clauses. In that case, dbisopt needsthe
param argument to determine whether to check the select offset or the order
by offset.

Return value “TRUE” or “FALSE”".

Usage .

This routine checks the status of the server and DB-Library options.
Although server options may be set and cleared directly through SQL, the
application should instead use dbsetopt and dbclropt to set and clear
options. This provides a uniform interface for setting both server and
DB-Library options. It also allows the application to use the dbisopt
function to check the status of an option.

For alist of each option and its default status, see Options on page 407.

See also dbclropt, dbsetopt, Options on page 407
DBLASTROW

Description Return the number of the last row in the row buffer.
Syntax DBINT DBLASTROW(dbproc)

DBPROCESS *dbproc;
Parameters dbproc

174

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

dbload_xlate

Description

Syntax

Parameters

The number of the last row in the row buffer. This routine returns O if thereis
an error.

* Thismacro returns the number of thelast row in the row buffer. Rows are
counted from the first row returned from the server, whose number is 1,
and not from the top of the row buffer.

* If you are not buffering rows, DBFIRSTROW, DBCURROW, and
DBLASTROW will aways have the same value. If you have enabled
buffering by setting the DBBUFFER option, DBLASTROW will return
the number of the row that is the last row in the row buffer.

dbclrbuf, DBCURROW, DBFIRSTROW, dbgetrow, dbnextrow, dbsetopt,
Options on page 407

Load a pair of character set translation tables.

RETCODE dbload_xlate(dbproc, srv_charset, xlate_name,
xlt_tosrv, xlIt_todisp)

DBPROCESS *dbproc;

char *srv_charset;
char *xIt_name;
DBXLATE **xlt_tosrv;
DBXLATE **xIt_todisp;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

srv_charset
A pointer to the name of the server’s character set. dbload_xlate looks for a
directory of thisnamein the charsets directory under the main Sybase
installation directory. For example, if the server isusing theiso_1 character
set, dbload_xlate looks for $SYBASE/charsets/iso_1.

xIt_name
A pointer to the name of the file containing the display-specific character
set. dbload_xlate looks for thisfile in the server character set directory.

DB-Library/C Reference Manual 175

dbloadsort

xlIt_tosrv
A pointer to a pointer to a character set trandation table used to translate
display-specific character strings to the server character strings. The
translation table is allocated through dbload_xlate.

xlIt_todisp
A pointer to apointer to a character set trandation table used to translate
server character strings to display-specific character strings. Thetranslation
table is alocated using dbload_xlate.

Return value SUCCEED or FAIL.

Usage e dbload_xlate reads a display-specific localization file and allocates two
character set translation tables: one for translations from the server’s
character set to the display-specific character set, and another for
tranglations from the display-specific character set to the server’s
character set.

* Thefollowing code fragment illustrates the use of dbload_xlate:

char destbuf [128] ;
int srcbytes_used;
DBXLATE* xlt todisp;
DBXLATE *x1t tosrv;

dbload_xlate((DBPROCESS *)NULL, “iSO_l",
"trans.xlt", &xlt-tosrv, &xlt-todisp);
printf ("Original string: \n\t%s\n\n",
TEST_ STRING) ;
dbxlate ((DBPROCESS *)NULL, TEST STRING,
strlen(TEST STRING), destbuf, -1, xlt todisp,
&srcbytes used) ;
printf ("Translated to display character set: \
\n\t%s\n\n", destbuf) ;
dbfree xlate ((DBPROCESS *)NULL, xlt tosrv,
xlt todisp) ;

See also dbfree xlate, dbxlate
dbloadsort
Description Load a server sort order.

176 Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

dblogin
Description

Syntax

Return value

Usage

DBSORTORDER *dbloadsort(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

A pointer to a DBSORTORDER structure on success, NULL on error.

« dbloadsort providesinformation about the sort order of the server’s
character set. Thisinformation can be used by dbstrcmp or dbstrsort to
compare two character strings.

* dbloadsort alocates a DBSORTORDER structure to contain the server
character set sort order information. The structureisfreed using dbfreesort.

e Thefollowing code fragment illustrates the use of dbloadsort:

sortorder = dbloadsort (dbproc) ;

retval = dbstrcmp (dbproc, "ABC", 3, "abc", 3,
sortorder) ;

printf ("ABC dbstrcmp’ed with abc yields %d.\n",
retval) ;

retval = dbstrcmp (dbproc, "abc", 3, "ABC", 3,
sortorder) ;

printf ("abc dbstrcmp’ed with ABC yields %d4.\n",
retval) ;

dbfreesort (dbproc, sortorder) ;

dbfreesort, dbstrcmp, dbstrsort

Allocates alogin record for use in dbopen.
LOGINREC *dblogin()

A pointer to a LOGINREC structure. dblogin returns NULL if the structure
could not be allocated.

e Thisroutine allocates a LOGINREC structure for use with dbopen.

DB-Library/C Reference Manual 177

dblogin

178

There are various routines available to supply components of the
LOGINREC. The program may supply the host name, user name, user
password, and application name—via DBSETLHOST, DBSETLUSER,
DBSETLPWD, and DBSETAPP, respectively. It isgenerally only necessary
for the program to supply the user password (and even this can be
eliminated if the password is a null value). The other variablesin the
LOGINREC structure will be set to default values.

Other components of the LOGINREC may also be changed:

¢ The national language name can be set in a LOGINREC structure
using DBSETLNATLANG. Call DBSETLNATLANG only if you do not
wish to use the server’s default national language.

e The TDS packet size can be set in aLOGINREC using
DBSETLPACKET. If not explicitly set, the TDS packet size defaultsto
512 bytes. TDS is an application protocol used for the exchange of
information between clients and servers.

e The character set can be set in a LOGINREC using
DBSETLCHARSET. An application needs to call DBSETLCHARSET
only if it is not using 1SO-8859-1 (known to the server as“iso_1").

When aconnection attempt is made between aclient and aserver, there are
two ways in which the connection can fail (assuming that the systemis
correctly configured):

¢ The machinethat the server is supposed to be on is running correctly
and the network is running correctly.

In this case, if there is no server listening on the specified port, the
machine the server is supposed to be on will signal the client, using a
network error, that the connection cannot be formed. Regardless of
dbsetlogintime, the connection fails.

¢ The machine that the server isonis down.

In this case, the machine that the server is supposed to be on will not
respond. Because “no response” is not considered to be an error, the
network will not signal the client that an error has occurred. However,
if dbsetlogintime has been called to set a timeout period, atimeout
error will occur when the client failsto receive a response within the
set period.

Here is a program fragment that uses dblogin:

DBPROCESS *dbproc;
LOGINREC *loginrec;

Open Client

CHAPTER 2 Routines

See also

dbloginfree

Description

Syntax

Parameters

Return value

Usage

See also

dbmny4add

Description

Syntax

loginrec = dblogin() ;

DBSETLPWD (loginrec, "server password") ;
DBSETLAPP (loginrec, "my program") ;
dbproc = dbopen(loginrec, "my server");

» Oncethe application has made al its dbopen calls, the LOGINREC
structure is no longer necessary. The program can then call dbloginfree to
free the LOGINREC structure.

dbloginfree, dbopen, dbrpweclr, dbrpwset, DBSETLAPP,
DBSETLCHARSET, DBSETLHOST, DBSETLNATLANG,
DBSETLPACKET, DBSETLPWD, DBSETLUSER

Free alogin record.

void dbloginfree(loginptr)

LOGINREC *loginptr;
loginptr

A pointer to a LOGINREC structure.
None.

dblogin provides aLOGINREC structure for use with doopen. Once the
application hasmadeall itsdbopen calls, the LOGINREC structureisno longer
necessary. dbloginfree frees the memory associated with the specified
LOGINREC structure.

dblogin, dbopen

Add two DBMONEY 4 values.
RETCODE dbmny4add(dbproc, m1, m2, sum)

DBPROCESS *dbproc;
DBMONEY4 *mi1;
DBMONEY4 *m2;
DBMONEY4 *sum;

DB-Library/C Reference Manual 179

dbmny4cmp

Parameters

Return value

Usage

See also

dbmny4cmp

Description

Syntax

180

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer toaDBMONEY 4 value.

m2
A pointer toaDBMONEY 4 value.

sum
A pointer to a DBMONEY 4 variable to hold the result of the addition.

SUCCEED or FAIL.
dbmny4add returns FAIL in case of overflow, or if m1, m2, or sumis NULL.

¢ dbmny4add addsthe m1 and m2 DBMONEY 4 values and placesthe result
in*sum.

¢ Incase of overflow, dbomny4add returns FAIL and sets * sum to $0.00.

* Therange of legal DBMONEY 4 vauesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of oneten-
thousandth of a dollar.

domny4sub, dbomny4mul, domny4divide, domny4minus, domny4add,
domny4sub, domnymul, dbmnydivide, domnyminus

Compare two DBMONEY 4 values.

int domny4cmp(dbproc, m1, m2)
DBPROCESS *dbproc;

DBMONEY4 *mi,
DBMONEY4 *m2;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbmny4copy

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to aDBMONEY 4 value.

m2
A pointer to aDBMONEY 4 value.

If m1l=m2, domny4cmp returns 0.
If ml < m2, domny4cmp returns -1.
If m1>m2, domny4cmp returns 1.
e dbmny4cmp compares two DBMONEY 4 values.

e Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of one ten-
thousandth of a dollar.

dbmnycmp

Copy aDBMONEY 4 value.
RETCODE dbmny4copy(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY4 *Src;
DBMONEY4 *dest;

DB-Library/C Reference Manual 181

dbmny4divide

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to the source DBMONEY 4 value.

dest
A pointer to the destination DBMONEY 4 variable.

Return value SUCCEED or FAIL.
dbmny4copy returns FAIL if either src or dest is NULL.

Usage ¢ dbmny4copy copiesthe src DBMONEY 4 value to the dest DBMONEY 4
variable.

¢ Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of oneten-
thousandth of a dollar.

See also domnycopy, domnyminus, domny4minus

dbmny4divide

Description Divide one DBMONEY 4 value by another.
Syntax RETCODE dbmny4divide(dbproc, m1, m2, quotient)

DBPROCESS *dbproc;
DBMONEY4 *mi;
DBMONEY4 *m2;
DBMONEY4 *quotient;

182 Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbmny4minus

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to the DBMONEY 4 value serving as dividend.

m2
A pointer to the DBMONEY 4 value serving as divisor.

guotient
A pointer to aDBMONEY 4 variable to hold the result of the division.

SUCCEED or FAIL.

dbmny4divide returns FAIL in case of overflow or division by zero, or if mi,
m2, or quotient isNULL.

« dbmny4divide dividesthem1 DBMONEY 4 vaue by them2 DBMONEY 4
value and places the result in * quotient.

« Incaseof overflow or division by zero, dbmny4divide returns FAIL and
sets * quotient to $0.0000.

e Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of one ten-
thousandth of a dollar.

dbmny4add, dbmny4sub, domny4mul, dbmny4minus, dbomnyadd, dbmnysub,
dbmnymul, domnydivide, domnyminus

Negate a DBMONEY 4 value.
RETCODE dbmny4minus(dbproc, src, dest)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 183

dbmny4mul

Parameters

Return value

Usage

See also

dbmny4mul

Description

Syntax

184

DBMONEY4 *Src;

DBMONEY4 *dest;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to aDBMONEY 4 value.

dest
A pointer to a DBMONEY 4 variable to hold the result of the negation.

SUCCEED or FAIL.
dbmny4minus returns FAIL in case of overflow, or if src or dest isNULL.

¢ dbmny4minus negatesthe src DBMONEY 4 value and placestheresult into
*dest.

¢ Incaseof overflow, domny4minus returns FAIL. *dest isundefined in this
case. An attempt to negate the maximum negative DBMONEY 4 value
will result in overflow.

* Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of oneten-
thousandth of a dollar.

dbmnyminus, domnycopy, dbomny4copy

Multiply two DBMONEY 4 values.
RETCODE dbmny4mul(dbproc, m1, m2, product)

DBPROCESS *dbproc;
DBMONEY4 *ml,;
DBMONEY4 *m2;
DBMONEY4 *product;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbmny4sub

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to aDBMONEY 4 value.

m2
A pointer to aDBMONEY 4 value.

product
A pointer to aDBMONEY 4 variable to hold the result of the multiplication.

SUCCEED or FAIL.
dbmny4mul returns FAIL in case of overflow, or if m1, m2, or productisNULL.

e dbmny4mul multipliesthem1 DBMONEY 4 valueby them2 DBMONEY 4
value and places the result in * product.

e Incase of overflow, domny4mul returns FAIL and sets * product to
$0.0000.

e Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of one ten-
thousandth of a dollar.

dbmny4add, dbmny4sub, domny4divide, domny4minus, domnyadd,
dbmnysub, domnymul, domnydivide, domnyminus

Subtract one DBMONEY 4 value from another.
RETCODE dbmny4sub(dbproc, m1, m2, difference)

DBPROCESS *dbproc;
DBMONEY4 *mi;

DB-Library/C Reference Manual 185

dbmny4zero

DBMONEY4 *m2;
DBMONEY4 *difference;
Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to the DBMONEY 4 value to be subtracted from.

m2
A pointer to the DBMONEY 4 value to subtract.

difference
A pointer to a DBMONEY 4 variable to hold the result of the subtraction.

Return value SUCCEED or FAIL.

dbmny4sub returns FAIL in case of overflow, or if ml, m2, or differenceis
NULL.

Usage ¢ dbmny4sub subtracts the m2 DBMONEY 4 value from the ml
DBMONEY 4 value and places the result in *difference.

¢ Incase of overflow, dbmny4sub returns FAIL and sets * difference to
$0.0000.

* Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of oneten-
thousandth of a dollar.

See also dbomny4sub, dbomny4mul, domny4divide, domny4minus, domny4add,
dbmnysub, domnymul, dbmnydivide, dbmnyminus

dbmny4zero
Description Initialize a DBMONEY 4 variable to $0.0000.

186 Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

dbmnyadd

Description

Syntax

RETCODE dbmny4zero(dbproc, mny4ptr)

DBPROCESS *dbproc;

DBMONEY4 *mny4ptr;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If aDBPROCESS is not supplied, the default
national language is used.

mny4ptr
A pointer to the DBMONEY 4 valuetoinitialize.

SUCCEED or FAIL.
dbmny4zero returns FAIL if mny4ptr isNULL.
» dbmny4zero initializesa DBMONEY 4 value to $0.0000.

e Therange of legal DBMONEY 4 valuesis from -$214,748.3648 to
$214,748.3647. DBMONEY 4 values have a precision of one ten-
thousandth of a dollar.

dbmnyzero

Add two DBMONEY values.
RETCODE dbmnyadd(dbproc, m1, m2, sum)

DBPROCESS *dbproc;
DBMONEY *ml,
DBMONEY *m2;
DBMONEY *sum;

DB-Library/C Reference Manual 187

dbmnycmp

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer toaDBMONEY value.

m2
A pointer toaDBMONEY value.

sum
A pointer to aDBMONEY variable to hold the result of the addition.
Return value SUCCEED or FAIL.
Usage ¢ dbmnyadd addsthe m1and m2 DBMONEY valuesand placestheresultin
*sum.

¢ Incase of overflow, dbmnyadd returns FAIL and sets * sum to $0.0000.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

¢ dbmnyadd returns FAIL in case of overflow, or if m1, m2, or sumisNULL.

See also domnysub, domnymul, domnydivide, domnyminus, domny4add, domny4sub,
domny4mul, domny4divide, domny4minus

dbmnycmp
Description Compare two DBMONEY values.
Syntax int domnycmp(dbproc, m1, m2)

DBPROCESS *dbproc;
DBMONEY *mi;
DBMONEY *m2;

188 Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbmnycopy

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to aDBMONEY value.

m2
A pointer to aDBMONEY value.

If m1=m2 dbmnycmp returns 0.
If m1l < m2 dbmnycmp returns -1.
If m1>m2 dbmnycmp returns 1.
e dbmnycmp compares two DBMONEY values.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmny4cmp

Copy aDBMONEY value.
RETCODE dbmnycopy(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY *src;
DBMONEY *dest;

DB-Library/C Reference Manual 189

dbmnydec

Parameters

Return value

Usage

See also

dbmnydec

Description

Syntax

190

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to the source DBMONEY value.

dest
A pointer to the destination DBMONEY variable.

SUCCEED or FAIL.
dbmnycopy returns FAIL if either src or dest isNULL.

¢ dbmnycopy copies the src DBMONEY value to the dest DBMONEY
value.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

domnycopy, domnyminus, domny4minus

Decrement aDBMONEY value by one ten-thousandth of a dollar.
RETCODE dbmnydec(dbproc, mnyptr)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbmnydivide
Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to decrement.

SUCCEED or FAIL.
dbmnydec returns FAIL in case of overflow or if mnyptr isNULL.

e dbmnydec decrementsaDBMONEY value by one ten-thousandth of a
dollar.

e An attempt to decrement the maximum negative DBMONEY value will
result in overflow. In case of overflow, domnydec returns FAIL. In this
case, the contents of * mnyptr are undefined.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmnyinc, domnymaxneg

Divide one DBMONEY value by another.
RETCODE dbmnydivide(dbproc, m1, m2, quotient)

DBPROCESS *dbproc;
DBMONEY *mi;
DBMONEY *m2;
DBMONEY *quotient;

DB-Library/C Reference Manual 191

dbmnydown

Parameters

Return value

Usage

See also

dbmnydown

Description

Syntax

192

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to the DBMONEY value serving as dividend.

m2
A pointer to the DBMONEY value serving as divisor.

quotient
A pointer to aDBMONEY variable to hold the result of the division.

SUCCEED or FAIL.

dbmnydivide returns FAIL in case of overflow or division by zero, or if m1, m2,
or quotient isSNULL.

e dbmnydivide dividesthe m1 DBMONEY value by the m2 DBMONEY
value and places the result in *quotient.

¢ Incaseof overflow or division by zero, dbmnydivide returns FAIL and sets
*quotient to $0.0000.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

domnyadd, domnysub, domnymul, dbmnyminus, domny4add, domny4sub,
domny4mul, domny4divide, domny4minus

Divide aDBMONEY value by a positive integer.
RETCODE dbmnydown(dbproc, mnyptr, divisor, remainder)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

int divisor;
int *remainder;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY valueto divide. *mnyptr will also contain the
result of the division.

divisor
Theinteger by which * mnyptr will be divided. divisor must be positive, and
must be less than or equal to 65535.

remainder
A pointer to an integer variable to hold the remainder from the division, in
ten-thousandths of a dollar. If remainder is passed as NULL, no remainder
is returned.

SUCCEED or FAIL.

dbmnydown returns FAIL if mnyptr isSNULL, or if divisor isnot between 1 and
65535.

e dbmnydown dividesaDBMONEY value by ashort integer and placesthe
result back in the original DBMONEY variable.

e dbmnydown placesthe remainder of the division into *remainder.
*remainder isan integer representing the number of ten-thousandths of a
dollar |eft after the division.

« divisor must be greater than or equal to one and less than or equal to
65535.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmnyscale, domnydivide, domny4divide

DB-Library/C Reference Manual 193

dbmnyinc

dbmnyinc
Description

Syntax

Parameters

Return value

Usage

See also

dbmnyinit
Description

Syntax

194

Increment aDBMONEY value by one ten-thousandth of a dollar.
RETCODE dbmnyinc(dbproc, mnyptr)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It also containsinformation on what language
to print error messagesin. If aDBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to increment.

SUCCEED or FAIL.
dbmnyinc returns FAIL in case of overflow or if mnyptr isNULL.

¢ dbmnyinc increments aDBMONEY value by one ten-thousandth of a
dollar.

e An attempt to increment the maximum positive DBMONEY vaue will
result in overflow. In case of overflow domnyinc returns FAIL. * mnyptr is
undefined in this case.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

domnydec, domnymaxpos

Prepare aDBMONEY value for callsto domnyndigit.
RETCODE dbmnyinit(dbproc, mnyptr, trim, negative)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

DBMONEY *mnyptr;

int trim;
DBBOOL *negative;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to be initialized. dbomnyinit changes the
value of *mnyptr.

trim
The number of digits to trim from *mnyptr. domnyinit removes digits from
*mnyptr by dividing it by a power of 10. The value of trim determines what
power of 10 is used. trim cannot be less than O.

negative
A pointer toaDBBOOL variable. If *mnyptr is negative, domnyinit makesit
positive and sets * negative to “true”.

SUCCEED or FAIL.

dbmnyinit returns FAIL if mnyptr iSNULL, negativeisNULL, or trimisless
than 0.

* dbmnyinit initializesa DBMONEY value for conversion to character. It
eliminates unwanted precision and converts negative values to positive.

e dbmnyinit eliminates digits from aDBMONEY value by dividing by a
power of 10. The integer trim determines what power of 10 is used.
dbmnyinit modifies* mnyptr, replacing the original value with the trimmed
value. If *mnyptr is negative, dbmnyinit makes it positive and sets
*negative to “true’.

e dbmnyinit and domnyndigit are useful for writing acustom DBMONEY -to-
DBCHAR conversion routine. Such a custom routine might be useful if
the accuracy provided by dbconvert’s DBMONEY -to-DBCHAR
conversion (hundredths of a dollar) is not adequate. Also, doconvert does
not build a character string containing commas.

DB-Library/C Reference Manual 195

dbmnymaxneg

e dbmnyndigit returns the rightmost digit of aDBMONEY value asa
DBCHAR. To get al the digits of a DBMONEY value, call dbmnyndigit
repeatedly. See the dbmnyndigit reference page for more details.

e dbmnyinit is almost always used in conjunction with domnyndigit. Used
alone, domnyinit can force negative DBMONEY values positive and
divide DBMONEY values by a power of 10, but the real purpose of
dbmnyinit is to prepare aDBMONEY value for calls to domnyndigit.

e Therange of legadl DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

e The dbmnyndigit reference page contains an example that demonstrates
the use of dbmnyinit.

See also dbconvert, domnyndigit
dbmnymaxneg
Description Return the maximum negative DBMONEY value supported.
Syntax RETCODE dbmnymaxneg(dbproc,dest)
DBPROCESS *dbproc;
DBMONEY *dest;
Parameters dbproc

Return value

196

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

dest
A pointer to aDBMONEY variable.

SUCCEED or FAIL.
dbmnymaxneg returns FAIL if destisNULL.

Open Client

CHAPTER 2 Routines

Usage e dbmnymaxneg fills*dest with the maximum negative DBMONEY value
supported.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnymaxpos
dbmnymaxpos
Description Return the maximum positive DBMONEY value supported.
Syntax RETCODE dbmnymaxpos(dbproc, dest)
DBPROCESS *dbproc;
DBMONEY *dest;
Parameters dbproc

Return value

Usage

See also

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

dest
A pointer to aDBMONEY variable.

SUCCEED or FAIL.
dbmnymaxpos returns FAIL if dest isNULL.

e dbmnymaxpos fills*dest with the maximum positive DBMONEY value
supported.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmnymaxneg

DB-Library/C Reference Manual 197

dbmnyminus

dbmnyminus

Description

Syntax

Parameters

Return value

Usage

See also

198

Negate aDBMONEY value.
RETCODE dbmnyminus(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY *Src;
DBMONEY *dest;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

Src

A pointer toaDBMONEY value.

dest

A pointer to aDBMONEY variable to hold the result of the negation.

SUCCEED or FAIL.

dbmnyminus returns FAIL in case of overflow, or if src or dest isNULL.

dbmnyminus negates the ssc DBMONEY value and places the result into
*dest.

In case of overflow, domnyminus returns FAIL. *dest is undefined in this
case. An attempt to negate the maximum negative DBMONEY value will
result in overflow.

Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmny4minus, dbmnycopy, domny4copy

Open Client

CHAPTER 2 Routines

dbmnymul

Description

Syntax

Parameters

Return value

Usage

See also

Multiply two DBMONEY values.
RETCODE dbmnymul(dbproc, m1, m2, product)

DBPROCESS *dbproc;

DBMONEY *ml;

DBMONEY *m2;

DBMONEY *product;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to aDBMONEY value.

m2
A pointer to aDBMONEY value.

product
A pointer to aDBMONEY variable to hold the result of the multiplication.

SUCCEED or FAIL.
dbmnymul returns FAIL in case of overflow, or if m1, m2, or product isSNULL.

e dbmnymul multipliesthe m1 DBMONEY value by the m2 DBMONEY
value and places the result in * product.

* Incaseof overflow, domnymul returns FAIL and sets* product to $0.0000.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmnyadd, dbmnysub, dbmnydivide, domnyminus, domny4add, domny4sub,
dbmny4mul, domny4divide, domny4minus

DB-Library/C Reference Manual 199

dbmnyndigit

dbmnyndigit
Description

Syntax

Parameters

Return value

Usage

200

Return the rightmost digit of a DBMONEY value asa DBCHAR.
RETCODE dbmnyndigit(dbproc, mnyptr, value, zero)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

DBCHAR *value;
DBBOOL *zero;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer toaDBMONEY value. Each call to dbmnyndigit dividesthisvalue
by 10 and places the result back into * mnyptr.

value
A pointer to aDBCHAR variableto fill with the character representation of
the rightmost digit of the DBMONEY value.

zero
A pointer to aDBBOOL variable. Each call to dbmnyndigit divides * mnyptr
by 10 and puts the character representation of the remainder of the division
in*value. If the result of the division is $0.0000, dbmnyndigit sets * zero to
“true’. Otherwise, *zerois set to “false”. If zero is passed as NULL, this
information is not returned.

SUCCEED or FAIL.
dbmnyndigit returns FAIL if mnyptr or valueis NULL.

e dbmnyndigit returns the rightmost digit of aDBMONEY value asa
DBCHAR.

¢ dbmnyndigit dividesaDBMONEY value by 10. It places the character
representation of the remainder of the division in *value, and replaces
*mnyptr with the result of the division. If the result of the divisionis
$0.0000, dbmnyndigit sets * zero to “true”.

Open Client

CHAPTER 2 Routines

e Togetal thedigitsof aDBMONEY value, call dbmnydigit repeatedly,
until *zerois“true’.

e dbmnyinit and domnyndigit are useful for writing acustom DBMONEY -to-
DBCHAR conversion routine. Such a custom routine might be useful if
the accuracy provided by dbconvert’s DBMONEY -to-DBCHAR
conversion (hundredths of a dollar) is not adequate. Also dbconvert does
not build a character string containing commas.

* dbmnyinit initializesa DBMONEY value for conversion to character. It
eliminates unwanted precision and converts negative values to positive.
See the dbmnyinit reference page.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

e Thiscode fragment demonstrates the use of dbmnyndigit and dbmnyinit:

/*
** This example demonstrates dbmnyinit () and
** dbmnyndigit (). It is a conversion routine which
** converts a DBMONEY value to a character string.
** The conversion provided by this routine is unlike
**x the conversion provided by dbconvert () in that the
** resulting character string includes commas. This
** conversion provides precision of two digits after
** the decimal point.
* %
** For simplicity, the example assumes that all
** routines succeed and all parameters passed to it
** gre valid.
*/
#define PRECISION 2
RETCODE new mnytochar (mnyptr, buf ptr)
DBMONEY *mnyptr;
char *buf ptr;
{
DBMONEY local mny;
DBBOOL negative;
int bytes written;
DBCHAR value;
DBBOOL Zero;
int ret;

DB-Library/C Reference Manual 201

dbmnyndigit

202

char temp buf [32];

/*
** Since dbmnyinit () and dbmnyndigit () modify the
** DBMONEY value passed to it, and since we do
** not want to modify the DBMONEY value passed
** to us by the user we need to make a local copy.
*/
ret = dbmnycopy ((DBPROCESS *)NULL, mnyptr,
&local mny) ;
/* The value of ’'ret’ should be checked */

/*
** Next we need to call dbmnyinit ().
* %
** dbmnyinit () eliminates any unwanted precision
** from the DBMONEY value. DBMONEY values are
** stored with accuracy to four digits after the
** decimal point. For this conversion routine we
** only want accuracy to two digits after the
** decimal.
* %
** Passing a value of 2 for the second parameter
** eliminates those two digits of precision we do
** not care about.
* %
** dbmnyinit () also turns negative DBMONEY values
** into positive DBMONEY values. The value of
** negative is set to TRUE if dbmnyinit () turns a
** negative DBMONEY value into a positive DBMONEY
** value.
* %
** NOTE: dbmnyinit () eliminates unwanted by
** precision by dividing DBMONEY values by a
**x power of ten. In this conversion routine it
**x divides by 100. If we pass dbmnyinit() a
** DBMONEY value of $1534.1277 the resulting
** DBMONEY value is $15.3413.
*/
negative = FALSE;
ret = dbmnyinit ((DBPROCESS *)NULL, &local mny,
4 - PRECISION, &negative) ;
/* The value of ’'ret’ should be checked */

/*
** dbmnyndigit () extracts the rightmost digit out

Open Client

CHAPTER 2 Routines

** of the DBMONEY value, converts it to a
** character, places the character into the
** variable “wvalue”, and then divides the DBMONEY
** yvalue by 10. dbmnyndigit () sets ’‘zero’ to TRUE
** if the result of the division is $0.0000.
* %
** By calling dbmnyndigit () until ’zero’ is set to
** TRUE we will be returned all the digits (from
** right to left) of the DBMONEY value.
*/
zero = FALSE;
bytes written = 0;
while(zero == FALSE)
{
ret = dbmnyndigit ((DBPROCESS *)NULL,
&local mny, &value, &zero);
/* The value of ’‘ret’ should be checked. */

/*

** As we are getting the digits, we want to
** place the decimal point and commas in the
** proper positions

*/

temp buf [bytes written++] = value;

/*

** Tf zero == TRUE we got all the digits. We
** do not want to call

** check comma_and decimal () since we might
** put a comma before the leftmost digit.

*/

if (zero == FALSE)

{
/*
** As we are getting the digits, we want
** to place the decimal point and commas
** in the proper positions
*/
check comma and decimal (temp buf,
&bytes written) ;

}
/*

** Tf we haven’t written PRECISION bytes into the
** puffer yet, pad with zeros, write the decimal

DB-Library/C Reference Manual 203

dbmnyndigit

** point to the buffer, and write a zero after
** the decimal point.

*/

pad with zeros(temp buf, &bytes written);

/*

** We’ve written the money value into the buffer

** backwards. Now we have to write it the right

** way.

*/

reverse_money (buf ptr, temp buf, bytes written,
negative) ;

return (SUCCEED) ;

void check comma and decimal (temp buf,
bytes written)

char *temp_ buf;

int *bytes written;

{

static int comma = 0;
static DBBOOL after decimal = FALSE;

if (after decimal)
/*
** When comma is 3 it is time to write a
** comma. We do not care about commas until
** after we’ve written the decimal point.
*/

comma-++ ;

/*
** After we’ve written PRECISION bytes into the
** puffer, it’s time to write the decimal point.
*/
if (*bytes written == PRECISION)
{

temp buf [(*bytes written)++] = ’.’;

after decimal = TRUE;

}

204 Open Client

CHAPTER 2

Routines

/*
** When (comma == 3) that means we’ve written three
** digits and it’s time to put a comma into the
** buffer.
*/
if(comma == 3)
{
temp buf [(*bytes written)++] = ’,’;
comma = 0; /* clear comma */

}
}

void pad with zeros(temp buf, bytes written)
char *temp buf;
int *bytes written;

{

/* If we haven’t written PRECISION bytes into the
** puffer yet, pad with zeros, write the decimal
** point to the buffer, and write a zero after the
** decimal point.

*/

while(*bytes written < PRECISION)

{
}

if (*bytes written == PRECISION)

{

temp buf [(*bytes written)++] = ’0’;

temp buf [(*bytes written)++] = ’.’;
temp buf [(*bytes written) ++]

I
o

}

void reverse money (char buf, temp buf,
bytes written, negative)

char *char buf;

char *temp buf;

int bytes written;

DBBOOL negative;

{

int i;

DB-Library/C Reference Manual

205

dbmnyscale

/*
* %
* %
* %
* %

* %

We’ve written the money value into the buffer
backwards. Now we have to write it the right
way. First check to see if we need to write a
negative sign, then write the dollar sign,
finally write the money value.

*/
i = 0;
if (negative == TRUE)
{
char buf[i++] = '-';
}
char buf[i++] = '$';

while(bytes written--)

{
}

char buf[i++] = temp_ buf [bytes written];

/* Append null-terminator: */
char buf[i] = "\0’;

See also dbconvert, domnyinit
dbmnyscale
Description Multiply aDBMONEY value by apositive integer and add a specified amount.
Syntax RETCODE dbmnyscale(dbproc, mnyptr, multiplier, addend)
DBPROCESS *dbproc;
DBMONEY *mnyptr;
int multiplier;
int addend;
206 Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer tothe DBMONEY valueto multiply. * mnyptr will also containthe
result of the domnyscale operation.

multiplier
The integer by which * mnyptr will be multiplied. multiplier must be
positive, and must be greater than or equal to 1, and less than or equal to
65535.

addend
An integer representing the number of ten-thousandths of a dollar to add to
*mnyptr after the multiplication.

SUCCEED or FAIL.

dbmnyscale returns FAIL if mnyptr is NULL, if overflow occurs, or if
multiplier is not between 1 and 65535.

e dbmnyscale multipliesa DBMONEY value by a short integer, adds
addend ten-thousandths of adollar, and places the result back in the
original DBMONEY variable.

e multiplier must be greater than or equal to 1, and less than or equal to
65535.

* Incaseof overflow, domnyscale returns FAIL . * mnyptr isundefinedinthis
case.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

dbmnydown, domnymul, domny4mul

DB-Library/C Reference Manual 207

dbmnysub

dbmnysub

Description

Syntax

Parameters

Return value

Usage

See also

208

Subtract one DBMONEY value from another.
RETCODE dbmnysub(dbproc, m1, m2, difference)

DBPROCESS *dbproc;

DBMONEY *mi;
DBMONEY *m2;
DBMONEY *difference;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It al so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

ml
A pointer to the DBMONEY value to be subtracted from.

m2
A pointer to the DBMONEY value to subtract.

difference
A pointer to aDBMONEY variable to hold the result of the subtraction.

SUCCEED or FAIL.

dbmnysub returns FAIL in case of overflow, or if ml, m2, or differenceis
NULL.

¢ dbmnysub subtracts the m2 DBMONEY value from the m1 DBMONEY
value and places the result in *difference.

¢ Incaseof overflow, domnysub returns FAIL and sets differenceto $0.0000.

e Therange of legadl DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

domnyadd, domnymul, dbmnydivide, dbmnyminus, domny4add, domny4sub,
domny4mul, domny4divide, domny4minus

Open Client

CHAPTER 2 Routines

dbmnyzero

Description

Syntax

Parameters

Return value

Initialize aDBMONEY value to $0.0000.
RETCODE dbmnyzero(dbproc, mnyptr)

DBPROCESS *dbproc;

DBMONEY *mnyptr;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’serror handler. It a so containsinformation on what language
to print error messagesin. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY valueto initiaize.

SUCCEED or FAIL.
dbmnyzero returns FAIL if mnyptr isNULL.

Usage » dbmnyzero initializesa DBMONEY value to $0.0000.

e Therange of legal DBMONEY valuesis between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmny4zero

dbmonthname

Description Determine the name of a specified month in a specified language.
Syntax char *dbmonthname(dbproc, language, monthnum,

shortform)

DBPROCESS *dbproc;

char *language;
int monthnum;
DBBOOL shortform;

DB-Library/C Reference Manual 209

DBMORECMDS

Parameters

Return value

Usage

See also

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

language
The name of the desired language.

monthnum
The number of the desired month. Month numbers range from 1 (January)
to 12 (December).

shortform
A Boolean value indicating whether the long or short form of the month
nameisdesired. If shortformis*“true”, domonthname returns the short form
of the month name; if shortformis“false”, domonthname returns the full
month name. For example, if the month name desired isthe U.S. English
short form for January, “Jan” is returned.

Short forms of month names are defined in localization files on a per-
localization-file basis.

The name of the specified month on success; aNULL pointer on error.

¢ dbmonthname returns the name of the specified month in the specified
language. If no language is specified (language isNULL), dbproc’s
current language is used. If both language and dbproc are NULL, DB-
Library’s default language (if any) is used.

e Thefollowing code fragment illustrates the use of domonthname:

for (monthnum = 1; monthnum <= 12; monthnum++)
printf ("Month %d: %s\n", monthnum,
dbmonthname ((DBPROCESS *)NULL,

char *)NULL, monthnum, TRUE),
dbmonthname ((DBPROCESS *)NULL,

(char *)NULL, monthnum, FALSE)) ;

db12hour, dbdateorder, dbdayname, DBSETLNATLANG, dbsetopt

DBMORECMDS

Description

210

Indicate whether there are more commands to be processed.

Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

dbmoretext

Description

Syntax

Parameters

RETCODE DBMORECMDS(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL, indicating whether there are more results from the
command batch.

e The application can use this macro to determine whether there are more
results to process.

* DBMORECMDS can be called after dbnextrow returns
NO_MORE_ROWS. If you know that the current command is returning
no rows, you can call DBMORECMDS immediately after dbresults.

e Applicationsrarely need this routine, because they can ssmply call
dbresults until it returns NO_MORE_RESULTS.

DBCMDROW, dbresults, DBROWS, DBROWTY PE

Send part of atext or image value to the server.
RETCODE dbmoretext(dbproc, size, text)

DBPROCESS *dbproc;

DBINT size;
BYTE *text;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.
size

Thesize, in bytes, of thisparticular part of thetext or image value being sent
tothe server. It isan error to send more text or image bytesto the server than
were specified in the call to dbwritetext.

DB-Library/C Reference Manual 211

dbmsghandle

text
A pointer to the text or image portion to be written.
Return value SUCCEED or FAIL.
Usage e Thisroutineis used in conjunction with dbwritetext to send alarge

SYBTEXT or SYBIMAGE valueto the server in the form of anumber of
smaller chunks. Thisis particularly useful with operating systemsthat are
unable to allocate extremely long data buffers.

« dbmoretext and dbwritetext are used in updates only, and serve to replace
the Transact-SQL update statement.

¢ dbsglok and dbresults must be called before the first call to dbmoretext and
after the last call to domoretext.

« Seethe dbwritetext reference page.

e TheDB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restrictsthe size of text or image values
that the server returns. @@textsize hasadefault value of 32,768 bytes. An
application that retrievestext or image valueslarger than 32,768 byteswill
need to call dbsetopt to make @@textsize larger.

The DB-Library/C option DBTEXTLIMIT limitsthe size of text or image
values that DB-Library/C will read.

See also dbtxptr, dbtxtimestamp, dbwritetext

dbmsghandle

Description Install auser function to handle server messages.
Syntax int (*dbmsghandle(handler))()

int (*handler)();
Parameters handler

A pointer to the user function that will be called whenever DB-Library
receivesan error or informational message fromtheserver. DB-Library calls
this function with eight parameterslisted in Table 2-21.

212 Open Client

CHAPTER 2 Routines

Table 2-21: Message handler parameters

Parameter

Meaning

dbproc

The affected DBPROCESS.

msgno

The current message’s number (datatype DBINT). These numbersare
documented in the sysmessages table.

msgstate

The current message's error state number (datatype int). These
numbers provide Sybase Technical Support with information about
the context of the error.

severity

The current message'sinformation class or error severity (datatype
int). These numbers are documented in the Adaptive Server
Enterprise documentation.

msgtext

The null-terminated text of the current message (datatype char *).

Srvname

The null-terminated name of the server that generated the message
(datatypechar *). A server’snameisstored in the srvname column of
its sysservers system table. It is used in server-to-server
communication; in particular, it is used when one server logsinto
another server to perform aremote procedure call. If the server hasno
name, srvname will be alength of 0.

prochame

The null-terminated name of the stored procedure that generated the
message (datatype char *). If the message was not generated by a
stored procedure, procname will be alength of 0.

line

The number of the command batch or stored procedure line that
generated the message (datatypeint). Linenumbersstart at 1. Theline
number pertains to the nesting level at which the message was
generated. For instance, if acommand batch executes stored
procedure A, which then calls stored procedure B, and amessageis
generated at line 3 of B, then the value of lineis 3.

linewill be 0 if thereisno line number associated with the message.
Circumstances that could generate messages without line numbers
include alogin error or aremote procedure call (performed using
dbrpcsend) to a stored procedure that does not exist.

The message handler must return avalue of 0 to DB-Library.

Message handlers on Windows must be declared with CS_PUBLIC, as
shown in the following example. For portability, callback handlers on other
platforms should be declared CS_PUBLIC aswell.

The following example shows a typical message handler routine:

#include
#include

<sybfront.h>
<sybdb.h>

int CS_PUBLIC msg_handler (dbproc, msgno, msgstate,
severity, msgtext, srvname, procname, line)

DB-Library/C Reference Manual

213

dbmsghandle

Return value

Usage

214

DBPROCESS *dbproc;
DBINT msgno;

int msgstate;
int severity;
char *msgtext;
char *srvname;
char *procname;
int line;

printf ("Msg %1d, Level %d, State %d\n",
msgno, severity, msgstate);
if (strlen(srvname) > 0)

printf ("Server ’'%s’, ", srvname);
if (strlen(procname) > 0)
printf ("Procedure ’'%s’, ", procname) ;

if (line > 0)
printf ("Line %d", line);

printf ("\n\t%s\n", msgtext);

return(0) ;

}

A pointer to the previoudly installed message handler or NULL if no message
handler was installed before.

dbmsghandle installs a message-handler function that you supply. When
DB-Library receives a server error or informational message, it will call
this message handler immediately. You must install a message handler to
handl e server messages properly.

If an application does not call domsghandle to install a message-handler
function, DB-Library ignores server messages. The messages are not
printed.

If the command buffer containsjust a single command and that command
provokes a server message, DB-Library will call the message handler
during dbsglexec.f the command buffer contains multiple commands (and
the first command in the buffer is ok), aruntime error will not cause
dbsglexec to fail. Instead, failure will occur with the dbresults call that
processes the command causing the runtime error.

You can “de-install” an existing message handler by calling dbmsghandle
withaNULL parameter. You can also, at any time, install a new message
handler. The new handler will automatically replace any existing handler.

Open Client

CHAPTER 2 Routines

« Refer to the sysmessages table for alist of server messages. In addition,
the Transact-SQL print and raiserror commands generate server messages
that dbmsghandle will catch.

e Theroutines dbsetuserdata and dbgetuserdata can be particularly useful
when you need to transfer information between the message handler and
the program code that triggered it. See the dbsetuserdata reference page
for an example of how to handle deadlock in this way.

« Another routine, dberrhandle, installs an error handler that DB-Library
callsin response to DB-Library errors.

e | the application provokes messages from DB-Library and the server
simultaneously, DB-Library calls the server message handler before it
callsthe DB-Library error handler.

e TheDB-Library/C error value SY BESMSG is generated in response to a
server error message, but not in response to a server informational
message. This means that when a server error occurs, both the server
message handler and the DB-Library/C error handler are called, but when
the server generates an informational message, only the server message
handler is called.

If you have installed a server message handler, you may want to write your
DB-Library error handler so as to suppress the printing of any
SYBESMSG error, to avoid notifying the user about the same error twice.

e Table 2-22 providesinformation on when DB-Library/C calls an
application’s message and error handlers.

DB-Library/C Reference Manual 215

dbname

Table 2-22: When DB-Library calls message and error handlers

Message
Error or message handler called? Error handler called?
SQL syntax error Yes Yes (SYBESMSG).
(Code the handler to
ignore the message.)
SQL print statement Yes No.
SQL raiserror Yes No.
Server dies No Yes (SY BESEOF).

(Code your handler to

exit the application.)
Timeout from the server No Yes (SYBETIME).

(To wait for another

timeout period, codeyour

handler to return -

INT_CONTINUE.)

Deadlock on query Yes No.
(Codeyour handler totest
for deadlock.)
Timeout on login No Yes (SYBEFCON).
Login fails (dbopen) Yes Yes (SYBEPWD).

(Code your handler to
exit the application.)

Use database message Yes No.
(Code the handler
toignorethe
message.)
Incorrect use of DB-Library/C No Yes (SYBERPND).
calls, such as not calling dbresuits
when required
Fatal Server error (severity greater Yes Yes (SYBESMSG).
than 16)
See also dberrhandle, dbgetuserdata, dbsetuserdata
dbname
Description Return the name of the current database.

216 Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

dbnextrow

Description

Syntax

Parameters

Return value

char *dbname(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

A pointer to the null-terminated name of the current database.

* dbname returns the name of the current database.

« |f you need to keep track of when the database changes, use dbchange.
dbchange, dbuse

Read the next result row into the row buffer and into any program variablesthat
are bound to column data.

STATUS dbnextrow(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dbnextrow returns:

« REG_ROW if aregular row has been read. A regular row is any row that
matches the query’s where clause.

e A computeid if acompute row wasread. A compute row isarow that is
generated by acompute clause. The computeid matches the number of the
compute row that wasread; the first computerow is 1, the second is 2, and
so forth. A computeid cannot match any other of the return types for this
function.

DB-Library/C Reference Manual 217

dbnextrow

Usage

218

BUF_FULL isreturned if buffering isturned on and reading the next row
would cause the buffer to be exceeded. In this case, no row will have been
read. To read any more rows, at least one row must first be pruned from
the top of the row buffer by calling dbclrbuf.

NO_MORE_ROWSif thelast row in the result set has been read. If the
query did not generate rows (for example, an update or insert, Or a select
with no match), then the first call to dbnextrow will return
NO_MORE_ROWS. Also, dbnextrow returnsthisvalueif the query failed
or if there are no pending results.

FAIL if an abnormal event, such as a network or out-of-memory error,
prevented the routine from compl eting successfully.

dbnextrow reads the next row of result data, starting with the first row
returned from the server. Ordinarily, the next result row is read directly
fromthe server. If the DBBUFFER option isturned on and rowshave been
read out of order by calling dbgetrow, the next row is read instead from a
linked list of buffered rows. When dbnextrow is called, any binding of row
data to program variables (as specified with dbbind or dbaltbind) takes
effect.

If program variables are bound to columns, then new valueswill bewritten
into the bound variables before dbnextrow returns.

In regular rows, column values can be retrieved with dbdata or bound to
program variables with dbbind. In compute rows, column values can be
retrieved with dbadata or bound to program variables with dbaltbind.

dbresults must return SUCCEED before an application can call donextrow.
To determine whether a particular command is one that returns rows and
needs results processing with dbnextrow, call DBROWS after dbresults.

After calling doresults, an application can either call dbcanquery or
dbcancel to cancel the current set of results, or call dbnextrow in aloop to
process the results row-by-row.

If it chooses to process the results, an application can either:

e Processall result rows by calling dbnextrow in aloop until it returns
NO_MORE_ROWS. After NO_MORE_ROWS is returned, the
application can call dbresults again to set up the next result set (if any)
for processing.

e Process some result rows by calling donextrow, and then cancel the
remaining result rows by calling dbcancel (to cancel all results from
the command batch or RPC call) or dbcanquery (to cancel only the
results associated with the last dbresults call).

Open Client

CHAPTER 2 Routines

An application must either cancel or process all result rows.
e Thetypica sequenceof calsis:

DBINT xvariable;
DBCHAR yvariable[10] ;

/* Read the query into the command buffer */
dbcmd (dbproc, "select x = 100, y = 'hello’");

/* Send the query to Adaptive Server Enterprise */
dbsglexec (dbproc) ;

/* Get ready to process the query results */
dbresults (dbproc) ;

/* Bind column data to program variables */
dbbind (dbproc, 1, INTBIND, (DBINT) O,
(BYTE *) &xvariable) ;
dbbind (dbproc, 2, STRINGBIND, (DBINT) O,
yvariable) ;

/* Now process each row */
while (dbnextrow (dbproc) != NO MORE ROWS)

{
}

e Theserver canreturntwo typesof rows: regular rows containing datafrom
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. To facilitate the processing of result
rows from the server, dbnextrow returns different values according to the
type of row. See the “Returns’ section in this reference page for details.

C-code to print or process row data

» Todisplay server result data on the default output device, you can use
dbprrow instead of dbnextrow.

See also dbaltbind, dbbind, dbcanquery, dbclrbuf, dbgetrow, dbprrow, dbsetrow,
Options on page 407

dbnpcreate

Description Create a notification procedure.

DB-Library/C Reference Manual 219

dbnpcreate

Syntax

Parameters

Return value

Usage

220

RETCODE dbnpcreate(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

SUCCEED or FAIL.

¢ dbnpcreate creates a notification procedure. A notification procedureisa
special typeof Open Server registered procedure. A notification procedure
differsfrom anormal Open Server registered procedurein that it contains
no executable statements. Notification procedures are the only type of
Open Server registered procedure that a DB-Library/C application can
create.

¢ The natification procedure name and its parameters must have been
previously defined using dbnpdefine and dbregparam.

e Tocreate anatification procedure, a DB-Library/C application must:
e Define the procedure using dbnpdefine
e Describe the procedure’'s parameters, if any, using dbregparam
e Create the procedure using donpcreate

< All DB-Library/C routines that apply to registered procedures apply to
notification procedures as well. For example, dbregexec executes a
registered procedure, which may or may not be a notification procedure.
Likewise, dbreglist lists all registered procedures currently defined in
Open Server, some of which may be notification procedures.

e Like other registered procedures, notification procedures are useful for
inter-application communication and synchronization, because
applications can request to be advised when a natification procedure
executes.

« Notification procedures may be created only in Open Server. At thistime,
Adaptive Server Enterprise does not support notification procedures.

« A DB-Library/C application requests to be notified of aregistered
procedure’s execution using dbregwatch. The application may regquest to
be notified either synchronously or asynchronously.

e Thisisan example of creating a notification procedure:

Open Client

CHAPTER 2 Routines

DBPROCESS *dbproc;
DBINT status;

/*
** Let’s create a notification procedure called
** “message” which has two parameters:

*x msg varchar (255)
* ok user idint

*/

/*

** Define the name of the notification procedure
** '"message"

*/

dbnpdefine (dbproc, "message", DBNULLTERM) ;

/*

** The notification procedure has two parameters:
*k msg varchar (255)

**k user idint

** So, define these parameters. Note that

** neither of the parameters is defined with a

** default value.

*/

dbregparam (dbproc, "msg", SYBVARCHAR,
DBNODEFAULT, NULL) ;

dbregparam (dbproc, "userid", SYBINT4,
DBNODEFAULT, 4);

/* Create the notification procedure: */

status = dbnpcreate (dbproc) ;

if (status == FAIL)

{
fprintf (stderr, "ERROR: Failed to create \
message!\n") ;

}

else

{
fprintf (stdout, "Success in creating \
message!\n") ;

}

See also dbreginit, dbregparam, dbregwatch, dbregnowatch

DB-Library/C Reference Manual

221

dbnpdefine

dbnpdefine

Description Define a notification procedure.

Syntax RETCODE dbnpdefine(dbproc, procedure_name, namelen)
DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the notification procedure being defined.

namelen
The length of procedure_name, in bytes. If procedure_nameis null-
terminated, pass namelen as DBNULLTERM.

Return value SUCCEED or FAIL.

Usage « dbnpdefine defines a natification procedure. Defining a notification
procedureisthefirst step in creating it.

« A notification procedureis a specia type of Open Server registered
procedure. A notification procedure differs from a normal Open Server
registered procedure in that it contains no executable statements.
Notification procedures are the only type of Open Server registered
procedure that a DB-Library/C application can create.

e Tocreate anatification procedure, a DB-Library/C application must:
¢ Define the procedure using dbnpdefine
e Describe the procedure’'s parameters, if any, using dbregparam
e Create the procedure using donpcreate

« All DB-Library/C routines that apply to registered procedures apply to
notification procedures as well. For example, dbregexec executes a
registered procedure, which may or may not be a notification procedure.
Likewise, dbreglist lists all registered procedures currently defined in
Open Server, some of which may be notification procedures.

e Thisisan example of defining a notification procedure:

DBPROCESS *dbproc;

222 Open Client

CHAPTER 2 Routines

DBINT status;

/*
** Let’s create a notification procedure called
** "message" which has two parameters:

*x msg varchar (255)
* % userid int

*/

/*

** Define the name of the notification procedure
** '"message"

*/

dbnpdefine (dbproc, "message", DBNULLTERM) ;

/* The notification procedure has two parameters:

*x msg varchar (255)

* % userid int

** So, define these parameters. Note that

** neither of the parameters is defined with a

** default value.

*/

dbregparam (dbproc, "msg", SYBVARCHAR,
DBNODEFAULT, NULL) ;

dbregparam (dbproc, "userid", SYBINT4,
DBNODEFAULT, 4);

/* Create the notification procedure: */
status = dbnpcreate (dbproc);
if (status == FAIL)
fprintf (stderr, "ERROR: Failed to create \
message!\n") ;

fprintf (stdout, "Success in creating \
message!\n") ;

}
See also dbregparam, dbnpcreate, dbreglist

DB-Library/C Reference Manual 223

dbnullbind

dbnullbind

Description

Syntax

Parameters

Return value

Usage

See also

224

Associate an indicator variable with aregular result row column.

RETCODE dbnullbind(dbproc, column, indicator)

DBPROCESS *dbproc;

int column;
DBINT *indicator;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the column that is to be associated with the indicator
variable.

indicator
A pointer to the indicator variable.

SUCCEED or FAIL.
dbnullbind returns FAIL if columnisinvalid.

¢ dbnullbind associates aregular result row column with an indicator
variable. The indicator variable indicates whether a particular regular
result row’s column has been converted and copied to a program variable
successfully or unsuccessfully, or whether itisnull.

e Theindicator variableis set when regular result rows are processed using
dbnextrow. The possible values are;

e -1if thecolumnisNULL.

e Thefull length of column’s data, in bytes, if column was bound to a
program variable using dbbind, the binding did not specify any data
conversions, and the bound data was truncated because the program
variable was too small to hold column’s data.

e 0if columnwas bound and copied successfully to aprogram variable.

Note Detection of character string truncation isimplemented only for
CHARBIND and VARY CHARBIND.

dbanullbind, dbbind, dbdata, dbdatlen, dbnextrow

Open Client

CHAPTER 2 Routines

dbnumalts

Description

Syntax

Parameters

Return value

Usage

See also

dbnumcols

Description

Syntax

Return the number of columnsin a compute row.

int dbnumalts(dbproc, computeid)

DBPROCESS *dbproc;

int computeid;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clausein aselect is 1. The computeid is returned by dbnextrow or dbgetrow.

The number of columns for the particular computeid. donumalts returns -1 if
computeid isinvalid.

dbnumalts returns the number of columnsin a compute row. The application
can call this routine after dbresults returns SUCCEED. For example, in the
following SQL statement the call donumalts(dbproc, 1) returns 3:

select dept, year, sales from employee
order by dept, year

compute avg(sales), min(sales),

max (sales) by dept

dbadata, dbadlen, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumcols

Determine the number of regular columns for the current set of results.

int dbnumcols(dbproc)

DBPROCESS *dbproc;

DB-Library/C Reference Manual 225

dbnumcols

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

Return value The number of columns in the current set of results. If there are no columns,
dbnumcols returns 0.

Usage ¢ dbnumcols returns the number of regular (that is, non-compute) columns
in the current set of results.

e Hereisaprogram fragment that illustrates the use of donumcols:

int column_count;
DBPROCESS *dbproc;

/* Put the commands into the command buffer */

dbcmd (dbproc, "select name, id, type from \
sysobjects") ;

dbcmd (dbproc, " select name from sysobjects");

/*

** Send the commands to Adaptive Server Enterprise
and start

** execution

*/

dbsglexec (dbproc) ;

/* Process each command until there are no more */
while (dbresults(dbproc) != NO MORE RESULTS)
{
column_count = dbnumcols (dbproc) ;
printf ("$d columns in this Adaptive Server
Enterprise \
result.\n", column_ count) ;
while (dbnextrow(dbproc) != NO MORE ROWS)
printf ("row received.\n") ;

}

See also dbcollen, dbcolname, dbnumalts

226 Open Client

CHAPTER 2 Routines

dbnumcompute

Description

Syntax

Parameters

Return value

Usage

See also

Return the number of compute clausesin the current set of results.

int dbnumcompute(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of compute clausesin the current set of results.

Thisroutine returnsthe number of compute clausesin the current set of results.
The application can call it after dbresults returns SUCCEED. For example, in
the SQL statement, the call dbnumcompute(dbproc) will return 2 sincethere are
two compute clausesin the select statement:

select dept, name from employee
order by dept, name

compute count (name) by dept
compute count (name)

dbnumalts, dbresults

DBNUMORDERS

Description

Syntax

Parameters

Return value

Return the number of columns specified in a Transact-SQL select statement’s
order by clause.

int DBNUMORDERS(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of order by columns. If there is no order by clause, this routine
returns 0. If thereis an error, it returns -1.

DB-Library/C Reference Manual 227

dbnumrets

Usage

See also

dbnumrets

Description

Syntax

Parameters

Return value

Usage

228

Once a select statement has been executed and dbresults has been called to
process it, the application can call DBNUMORDERS to find out how many
columns were specified in the statement’s order by clause.

dbordercol

Determine the number of return parameter values generated by a stored
procedure.

int dbnumrets(dbproc)

DBPROCESS *dbproc;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of return parameter values associated with the most recently-
executed stored procedure.

dbnumrets provides the number of return parameter valuesreturned by the
most recent execute statement or remote procedure call on a stored
procedure. If the number returned by dbnumrets isless than or equal to O,
then no return parameters are available.

Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of areturn parameter inside the
stored procedure are then available to the program that called the
procedure. Thisis analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as areturn parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of aremote
procedure call, it isthe dbrpcparam routine that specifies whether a
parameter is areturn parameter.

Open Client

CHAPTER 2 Routines

See also

dbopen

Description

Syntax

When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call donumrets only after processing the stored procedure’s
results by calling doresults, aswell as donextrow if appropriate. (Note that
astored procedure can generate several setsof results—one for each select
it contains. Before the application can call dbnumrets or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.

If the stored procedureisinvoked with aremote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure isinvoked with an execute statement, the
return parameter values are available only if the command batch
containing theexecute statement useslocal variables, not constants, for the
return parameters. For more details on return parameters from stored
procedures, see the Adaptive Server Enterprise Reference Manual.

Other routines are used to retrieve return parameter values:

« dbretdata returns a pointer to a parameter value.

« dbretlen returns the length of a parameter value.

e dbretname returns the name of a parameter value.

« dbrettype returns the datatype of a parameter value.

« dbconvert can be called to convert the value, if necessary.

For an exampl e of how these routines can be used together with donumrets,
see the reference page for doretdata.

dbnextrow, dbresults, dbretdata, dbretlen, dbretname, dbrettype, dbrpcinit,
dbrpcparam

Create and initialize a DBPROCESS structure.
DBPROCESS *dbopen(login, server)

LOGINREC *login;

*server;

DB-Library/C Reference Manual 229

dbopen

Parameters

Return value

Usage

230

login
A pointer to a LOGINREC structure. This pointer will be passed as an
argument to dbopen. You can get one by calling dblogin.

Oncetheapplication hasmadeall itsdbopen calls, the LOGINREC structure
isno longer necessary. The program can then call dbloginfree to free the
LOGINREC structure.

server
The server that you want to connect to. server isthe alias given to the server
in the interfacesfile. dbopen looks up server in the interfaces file to get
information for connecting to a server.

If server isNULL dbopen looks up the interfaces entry that corresponds to
the value of the DSQUERY environment variable or logical name. If
DSQUERY has not been explicitly set, it has avalue of “SYBASE”". (For
information on designating an interfaces file, see the reference page for
dbsetifile. See the Open Client and Open Server Configuration Guide.

Note On non-UNIX platforms, client applications may use a method to find
server address information that is different than the UNIX interfacesfile.
Consult your Open Client and Open Server Configuration Guide for detailed
information on how clients connect to servers.

A DBPROCESS pointer if everything went well. Ordinarily, dbopen returns
NULL if aDBPROCESS structure could not be created or initialized, or if your
login to the server failed. When dbopen returns NULL, it generates a DB-
Library error number that indicates the error. The application can access this
error number through an error handler. However, if thereis an unexpected
communications failure during the server login process and an error handler
has not been installed, the program will be aborted.

e Thisroutine allocates and initializes a DBPROCESS structure. This
structure is the basic data structure that DB-Library usesto communicate
with aserver. It isthe first argument in almost every DB-Library call.
Besides allocating the DBPROCESS structure, this routine sets up
communication with the network, logs into the server, and initializes any
default options.

e Hereisaprogram fragment that uses dbopen:

DBPROCESS *dbproc;
LOGINREC *loginrec;

loginrec = dblogin() ;

Open Client

CHAPTER 2 Routines

DBSETLPWD (loginrec, "server password") ;
DBSETLAPP (loginrec, "my program") ;
dbproc = dbopen(loginrec, "my server");

« Oncethe application has logged into a server, it can change databases by
calling the dbuse routine.

Multiple query entries in an interfaces file

e ltispossibleto set up aninterfacesfile so that if dbopen failsto establish
a connection with a server, it attempts to establish a connection with an
alternate server.

e An application can use the dbopen call to connect to the server MARS:
dbopen (loginrec, MARS) ;

An interfaces file containing an entry for MARS might look like this:

#

MARS
query tcp hp-ether violet 1025
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

#

VENUS
query tcp hp-ether plum 1050
master tcp hp-ether plum 1050
console tcp hp-ether plum 1051

#

NEPTUNE

query tcp hp-ether mauve 1060
master tcp hp-ether mauve 1060
console tcp hp-ether mauve 1061

* Theapplication is directed to port number 1025 on the machine “violet”.
If MARS s not available, the dbopen call fails. If the interfacesfile has
multiple query entriesin it for MARS, however, and the first connection
attempt fails, dbopen will automatically attempt to connect to the next
server listed. Such an interfaces file might ook like this:

#

MARS
query tcp hp-ether violet 1025
query tcp hp-ether plum 1050
query tcp hp-ether mauve 1060
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

DB-Library/C Reference Manual 231

dbopen

232

#

VENUS
query tcp hp-ether plum 1050
master tcp hp-ether plum 1050
console tcp hp-ether plum 1051

#

NEPTUNE
query tcp hp-ether mauve 1060
master tcp hp-ether mauve 1060
console tcp hp-ether mauve 1061

Note that the second query entry under MARS isidentical to the query
entry under VENUS, and that the third query entry isidentical to the query
entry under NEPTUNE. If thisinterfacesfile is used and the application
failsto connect with MARS, it will automatically attempt to connect with
VENUS. If it fails to connect with VENUS, it will automatically attempt
to connect with NEPTUNE. There is no limit on the number of alternate
servers that may be listed under a server’sinterfaces file entry, but each
alternate server must be listed in the sameinterfacesfile. You can add two
numbers after the server’'s namein the interfacesfile:

#

MARS retries seconds
query tcp hp-ether violet 1025
query tcp hp-ether plum 1050
query tcp hp-ether mauve 1060
master tcp hp-ether violet 1025
console tcp hp-ether violet 1026

retries representsthe number of additional timesto loop through thelist of
query entriesif no connection is achieved during the first pass. seconds
represents the amount of time, in seconds, that dbopen will wait at the top
of the loop before going through the list again. These numbers are
optional. If they are not included, dbopen will try to connect to each query
entry only once. Looping through the list and pausing between loopsis
useful in case any of the candidate serversisin the process of booting.
Multiple query lines can be particularly useful when alternate servers
contain mirrored copies of the primary server’s databases.

Errors
The dbopen call will return NULL if any of the following errors occur. These

errors can be trapped in the application’s error handler (installed with
dberrhandle.)

Open Client

CHAPTER 2 Routines

See also

dbordercol

Description

Syntax

Parameters

If dbopeniscalledintheentry functionsof aDL L, adeadlock can arise. dbopen
creates operating system threads and tries to synchronize them using system
utilities. This synchronization conflicts with the operating system’s
serialization process.

Note Theuse of SSIGALARM inaDB-Library application can cause doopen
to fail.

SYBEMEM Unable to alocate sufficient memory.
SYBEDBPS Maximum number of DBPROCESSes already allocated.

Note that an application can set or retrieve the maximum number
of DBPROCESS structures with dbsetmaxprocs and

dbgetmaxprocs.
SYBESOCK Unable to open socket.
SYBEINTF Server name not found in interfacesfile.

SYBEUHST Unknown host machine name.

SYBECONN Unable to connect: Adaptive Server Enterpriseis unavailable or
does not exist.

SYBEPWD Login incorrect.
SYBEOPIN Could not open interfaces file.

dbclose, dbexit, dbinit, dblogin, dbloginfree, dbsetifile, douse

Return theid of acolumn appearing in the most recently executed query’sorder
by clause.

int dbordercol(dbproc, order)

DBPROCESS *dbproc;
int order;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 233

dbpoll

Return value

Usage

See also

dbpoll

Description

Syntax

Parameters

234

order
Theid that identifies the particular order by column of interest. The first
column named within the order by clause is number 1.

The column id (based on the column’s position in the select list) for the column
in the specified place in the order by clause. If the order isinvalid, dbordercol
returns -1.

This routine returns the id of the column that appearsin a specified location
within the order by clause of a SQL select command.

For example, in given the SQL statement, the call dbordercol(dbproc, 1) will
return 3 since the first column named in the order by clause refersto the third
column in the query’s select list:

select dept, name, salary from employee
order by salary, name

DBNUMORDERS

Verifiesthat a server response has arrived for a DBPROCESS.

RETCODE dbpoll(dbproc, milliseconds, ready_dbproc,
return_reason)

DBPROCESS *dbproc;

long milliseconds;
DBPROCESS **ready_dbproc;
int *return_reason;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

dbproc represents the DBPROCESS connection that dbpoll will check.

If dbproc is passed as NULL, dbpoll will check all open DBPROCESS
connections to seeif aresponse has arrived for any of them.

Open Client

CHAPTER 2 Routines

Return value

milliseconds
The maximum number of millisecondsthat dbpoll should wait for aresponse
before returning.

If milliseconds is passed as 0, dbpoll returnsimmediately.

If milliseconds is passed as -1, dbpoll will not return until either a server
response arrives or a system interrupt occurs.

ready_dbproc
A pointer to apointer to a DBPROCESS structure. dbpoll sets
*ready_dbproc to point to the DBPROCESS for which the server response
has arrived. If no response has arrived, dbpoll sets*ready dbproc to NULL.

Note ready dbproc is not aDBPROCESS pointer. It isa pointer to a
DBPROCESS poainter.

return_reason
A pointer to an integer representing the reason dbpoll has returned. The
integer will be one of the following symbolic values:

DBRESULT A responseto aserver command hasarrived. Theapplication
may call dbsglok (assuming that dbsglsend has been called)
to examine the server’s response.

DBNOTIFICATION A registered procedure notification has arrived. If ahandler
for this registered procedure has been installed using
dbreghandle, dbpoll invokes this handler beforeit returns, If
ahandler for the registered procedure has not been installed
and thereis no default handler installed for this
DBPROCESS, DB-Library raises an error when it readsthe

notification.

DBTIMEOUT The time indicated by the milliseconds parameter elapsed
before any server response arrived.

DBINTERRUPT An operating-system interrupt occurred before any server

response arrived and before the timeout period elapsed.

Note Thislist may expand in the future, as more kinds of server responses are
recognized by DB-Library/C. It is recommended that application programs be
coded to handle unexpected valuesin return_reason without error.

SUCCEED or FAIL.

DB-Library/C Reference Manual 235

dbpoll

dbpoll returns FAIL if any of the server connectionsit checks hasdied. If dbpoll
returns FAIL, ready dbproc and return_reason are undefined.

Usage .

dbpoll checks the TDS (Tabular Data Stream) buffer to seeif it contains
any server response not yet read by an application.

dbproc represents the DBPROCESS connection that dbpoll will check. If
dbproc is passed asNULL, dbpoll examines all open connections and
returns as soon asit finds one that has an unread server response.

If there is an unread response, dbpoll sets *ready_dbproc and
return_reason to reflect which DBPROCESS connection the response is
for and what the response is.

Note that ready_dbproc is not a pointer to a DBPROCESS structure. It is
apointer to the address of a DBPROCESS. dbpoll sets *ready_dbproc to
point to the DBPROCESS for which the server response has arrived. If no
server response has arrived, dopoll sets *ready dbproc to NULL.

dbpoll can be used for two purposes:

e Toallow an application to implement non-blocking reads (calls to
dbsglok) from the server

e Tocheck if aregistered procedure notification has arrived for a
DBPROCESS

Using dbpoll for non-blocking reads

236

dbpoll can be used to check whether bytes are available for dbsglok to read.

Depending on the nature of an application, the time between the moment
when a command is sent to the server (made using dbsglsend or
dbrpcsend) and the server’s response (initially read with dbsglok) may be
significant.

Open Client

CHAPTER 2 Routines

e During thistime, the server is processing the command and building the
result data. An application may use thistime to perform other duties.
When ready, the application can call dbpoll to check if a server response
arrived whileit was busy elsewhere. For an example of this usage, seethe
reference page for dbsglok.

Note On occasion dbpoll may report that datais ready for dbsglok to read
when only the first bytes of the server response are present. When this
occurs, dbsglok waitsfor therest of theresponse or until thetimeout period
has elapsed, just like dbsglexec. In practice, however, the entire response
isusually available at one time.

* dbpoll should not be used with dbresults or dbnextrow. dbpoll cannot
determineif callsto theseroutineswill block. Thisisbecause dbpoll works
by checking whether or not bytes are available on a DBPROCESS
connection, and these two routines do not always read from the network.

» If al of theresults from a command have been read, dbresults returns
NO_MORE_RESULTS. In this case, dbresults does not block even if
no bytes are available to be read.

e If all of therowsfor aresult set have been read, dbnextrow returns
NO_MORE_ROWS. Inthiscase, dbnextrow doesnot block evenif no
bytes are available to be read.

« For non-blocking reads, aternatives to dbpoll are DBRBUF and
DBIORDESC. These routines are specific to the UNIX-specific platform.
They are not portable, so their use should be avoided whenever possible.
They do, however, provide away for application programs to integrate
handling of DB-Library/C sockets with other sockets being used by an
application.

e DBRBUFisaUNIX-specificroutine. It checksaninternal DB-Library
network buffer to seeif aserver response has already been read. dbpoll
checks one or al connections used by an application’s
DBPROCESSEs, to see if aresponseis ready to be read.

e DBIORDESC, another UNIX-specific routine, issimilar in function to
dbpoll. DBIORDESC provides the socket handle used for network
reads by the DBPROCESS. The socket handle can be used with the
UNIX select function.

Using dbpoll for registered procedure notifications

DB-Library/C Reference Manual 237

dbpoll

238

An application may have one or more DBPROCESS connections waiting
for registered procedure notifications. A DBPROCESS connection will
not be aware that a registered procedure notification has arrived unless it
reads results from the server. If aconnection is not reading results, it can
use dbpoll to check if aregistered procedure notification has arrived. If so,
dbpoll reads the registered procedure notification stream and calls the
handler for that registered procedure.

Here is a code fragment that uses dbpoll to poll for a registered procedure
notification:

/*
** This code fragment illustrates the use of
** dbpoll () to processan event notification.

* %

** The code fragment will ask the Server to

** notify the Client when the event "shutdown"

** occurs. When the event notification is

** received from the Server, DB-Library will call
** the handler installed for that event. This

** event handler routine can then access the

** event’s parameters, and take any appropriate
** action.

*/

DBINT handlerfunc () ;
DBINT ret;

/* First install the handler for this event */
dbreghandle (dbproc, "shutdown", handlerfunc) ;

/*
** Now make the asynchronous notification
** request.

*/

ret = dbregwatch (dbproc, "shutdown", DBNULLTERM,
DBNOWAITONE) ;

if (ret == FAIL)

{
fprintf (stderr, "ERROR: dbregwatch() \

failed!!\n") ;
}
else if (ret == DBNOPROC)

{

fprintf (stderr, "ERROR: procedure shutdown \
not defined!\n");

Open Client

CHAPTER 2 Routines

}
/*

** Since we are making use of the asynchronous
** event notification mechanism, the application
** can continue doing other work. All we have to

** do is call dbpoll() once in a while, to deal
** with the event notification when it arrives.
*/

while (1)

{
/* Have dbpoll () block for one second */
dbpoll (NULL, 1000, NULL, &ret);

/*
** Tf we got the event, then get out of this
** loop.
*/
if (ret == DBNOTIFICATION)

break;

/* Deal with our other tasks here */

}
See also DBIORDESC, DBRBUF, dbresults, doreghandle, dbsglok

dbprhead

Description Print the column headings for rows returned from the server.
Syntax void dbprhead(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and

Server.
Return value None.
Usage « Thisroutine displays, on the default output device and in adefault format,

the column headings for a set of query results. The format is compatible
with the format used by dbprrow.

DB-Library/C Reference Manual 239

dbprrow

See also

dbprrow
Description

Syntax

Parameters

Return value

Usage

240

e Theapplication can call doprhead once dbresults returns SUCCEED.

¢ You can specify the maximum number of characters to be placed on one
line through the DB-Library option DBPRLINELEN.

e Thisroutineis useful for debugging.

¢ Theroutinesdbsprhead, dbsprline, and dbsprirow provide an alternative to
dbprhead and dbprrow. These routines print the formatted row resultsinto
a caller-supplied character buffer.

dbbind, dbnextrow, dbprrow, dbresults, dbsprirow, dbsprhead, dbsprline

Print all the rows returned from the server.

RETCODE dbprrow(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL.

e Thisroutinedisplays, on the default output device and in adefault format,
the rows for a set of query results. Thisroutine reads and prints al the
rows. It savesthetrouble of calling routines such as dbbind and dbnextrow,
but it prints only in asingle, predetermined format.

e Theapplication can call doprrow once dbresults returns SUCCEED.

¢ Whenusingthisroutine, you do not need to call donextrow to loop through
the rows.

¢ You can specify the maximum number of characters to be placed on one
line through the DB-Library option DBPRLINELEN.

e dbprrow is useful primarily for debugging.

e If row buffering isturned on, doprrow buffers rowsin addition to printing
them out. If the buffer isfull, the oldest rows are removed as necessary.

Open Client

CHAPTER 2 Routines

See also

dbprtype
Description

Syntax

Parameters

Return value

Usage

e Theroutinesdbsprhead, dbsprline, and dbsprirow provide an aternativeto
dbprhead and dbprrow. These routines print the formatted row resultsinto
a caller-supplied character buffer.

dbbind, dbnextrow, dbprhead, dbresults, dbsprirow, dbsprhead, dbsprline

Convert atoken value to a readable string.

char *dbprtype(token)

int token;

token
The server token value (SYBCHAR, SYBFLT8, and so on) returned by
dbcoltype, dbalttype, dbrettype, Or dbaltop.

A pointer to anull-terminated string that is the readabl e transl ation of the token
value. The pointer pointsto space that is never overwritten, so it is safeto call
this routine more than once in the same statement. If the token valueis
unknown, the routine returns a pointer to an empty string.

e Certain routines—dbcoltype, dbalttype, dbrettype, and dbaltop—return
token values representing server datatypes or aggregate operators.
dbprtype provides areadable string version of a token value.

* For example, doprtype will take a dbcoltype token value representing the
server binary datatype (SYBBINARY) and return the string “ binary.”

e Table2-23 providesalist of thetoken stringsthat dbprtype can return and
their token value equivalents.

DB-Library/C Reference Manual 241

dbqual

See also

dbqual

Description

Syntax

242

Table 2-23: Token values and their string equivalents

Token string Token value Description

char SYBCHAR char datatype

text SYBTEXT text datatype

binary SYBBINARY binary datatype

image SYBIMAGE image datatype

tinyint SYBINT1 1-byte integer datatype
smalint SYBINT2 2-byte integer datatype

int SYBINT4 4-byteinteger datatype
float SYBFLTS8 8-bytefloat datatype

real SYBREAL 4-bytefloat datatype
numeric SYBNUMERIC numeric type

decimal SYBDECIMAL decimal type

bit SYBBIT bit datatype

money SYBMONEY money datatype
smallmoney SYBMONEY4 4-byte money datatype
datetime SYBDATETIME datetime datatype
smalldatetime SYBDATETIME4 4-byte datetime datatype
boundary SYBBOUNDARY boundary type

sensitivity SYBSENSITIVITY sensitivity type

sum SYBAOPSUM sum aggregate operator
avg SYBAOPAVG average aggregate operator
count SYBAOPCNT count aggregate operator
min SYBAOPMIN minimum aggregate operator
max SYBAOPMAX maximum aggregate operator

dbaltop, dbalttype, dbcoltype, dbrettype, Types on page 412

Return a pointer to awhere clause suitable for use in updating the current row

in abrowsable table.

char *dbqual(dbproc, tabnum, tabname)

DBPROCESS *dbproc;
int tabnum;
char *tabname;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

tabnum
Thenumber of thetable of interest, as specified in the select statement’sfrom
clause. Table numbersstart at 1. If tabnumis-1, the tabname parameter will
be used to identify the table.

tabname
A pointer to the null-terminated name of atable specified in the select
statement’s from clause. tabname isignored unless tabnumis passed as -1.

A pointer to anull-terminated where clause for the current row in the specified
table. This buffer is dynamically allocated, and it is the application’s
responsibility to freeit using dbfreequal.

dbqual will returnaNULL pointer if the specified tableisnot browsable. For a
table to be “browsable,” it must have a unique index and a timestamp column.

dbqual will also return aNULL pointer if the preceding select did not include
the for browse option.

e dbqual isone of the DB-Library browse mode routines. See “ Browse
mode” on page 26 for a detailed discussion of browse mode.

» dbqual provides awhere clause that the application can use to update a
single row in a browsable table. Columns from this row must have
previously been retrieved into the application through a browse-mode
select query (that is, aselect that ends with the key words for browse).

The where clause produced by dbqual begins with the keyword where and
contains references to the row’s unique index and timestamp column. The
application simply appends the where clause to an update or delete
statement; it does not need to examine it or manipulateit in any way.

The timestamp column indicates the time that the particular row was last
updated. An update on abrowsabletable failsif the timestamp columnin
the dbqual-generated where clauseis different from the timestamp column
in thetable. Such a condition, which provokes Adaptive Server Enterprise
error message 532, indi catesthat another user updated therow between the
timethis application selected it for browsing and the timeit tried to update
it. The application itself must provide the logic for handling the update
failure. The following program fragment illustrates one approach:

/* This code fragment illustrates a technique for

DB-Library/C Reference Manual 243

dbqual

** handling the case where a browse-mode update fails

** because the row has already been updated

** by another user. In this example, we simply retrieve
** the entire row again, allow the user to examine and

** modify it, and try the update again.

* %

** Note that "g dbproc" is the DBPROCESS used to query

** the database, and "u dbproc" is the DBPROCESS used

** to update the database.

*/

/* First, find out which employee record the user
** wants to update.
*/

employee id = which employee() ;

while (1)
{

/* Retrieve that employee record from the database.
** We’ll assume that "empid" is a unique index,
** gso this query will return only one row.
*/

dbfcmd (g _dbproc, "select * from employees where \

empid = %d for browse", employee id);

dbsglexec (q_dbproc) ;
dbresults (q_dbproc) ;
dbnextrow (q_dbproc) ;

/* Now, let the user examine or edit the employee’s
** data, first placing the data into program
** variables.
*/
extract employee data(g dbproc, employee struct) ;
examine and edit (employee struct, &edit flag);

if (edit_flag == FALSE)

{

/* The user didn’t edit this record,

** go we’re done.
*/
break;

}

else

{

/* The user edited this record, so we’ll use
**x the edited data to update the
** corresponding row in the database.

244 Open Client

CHAPTER 2 Routines

*/
qualptr = dbqual (g dbproc, -1, "employees");
dbcmd (u_dbproc, "update employees") ;
dbfcmd (u_dbproc, " set address = ’'%s’, \
salary = %d %s",
employee struct->address,
employee struct->salary, qualptr);
dbfreequal (qualptr) ;
if ((dbsglexec (u_dbproc)
(dbresults (u_dbproc)

FAIL) ||
FAIL))

/* Our update failed. In a real program,
** it would be necessary to examine the
** messages returned from the Adaptive
Server Enterprise
** to determine why it failed. 1In this
** example, we’ll assume that the update
** failed because someone else has already
** updated this row, thereby changing
** the timestamp.
* %

** To cope with this situation, we’ll just
** repeat the loop, retrieving the changed
** row for our user to examine and edit.
** This will give our user the opportunity
** to decide whether to overwrite the
** change made by the other user.

*/
continue;

}

else

{

/* The update succeeded, so we’re done. */
break;

}

e dbqual can only construct where clausesfor browsable tables. You can use
dbtabbrowse to determine whether atable is browsable.

e dbqual isusually called after dbnextrow.

« For acomplete example that uses dbqual to perform a browse mode
update, see the sample programs included with DB-Library.

See also dbcolbrowse, dbcolsource, dbfreequal, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsnewval, dbtsput

DB-Library/C Reference Manual 245

DBRBUF

DBRBUF

Description
Syntax

Parameters

Return value

Usage

See also

246

(UNIX only) Determine whether the DB-Library network buffer contains any
unread bytes.

DBBOOL DBRBUF(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

“TRUE” (bytesremain in buffer) or “FALSE” (no bytesin buffer).

Note that DBRBUF actually returns “TRUE" both when there are bytes
available in the read buffer, and when no more results are available to be
processed.

Thisisbecausethe purpose of DBRBUF istotell an application whenit can read
and be assured that it will not hang. If DBRBUF did not return “TRUE” in the
case of no more results, then applications that loop while DBRBUF returns
“FALSE" could loop indefinitely, if al results had already been processed.

e Thisroutine lets the application know if the DB-Library network buffer
contains any bytes yet unread.

« DBRBUFisordinarily used in conjunction with dbsglok and
DBIORDESC.

e dbpoll, a DB-Library/C routine which checksif a server response has
arrived for any DBPROCESS, may replace DBRBUF. Since the UNIX-
specific routines DBRBUF and DBIORDESC are non-portable, their use
should be avoided whenever possible. They do, however, provide away
for application programs to integrate handling of DB-Library/C sockets
with other sockets being used by an application.

« Anapplication uses these routines to manage multiple input data streams.
To manage these streams efficiently, an application that uses dbsglok
should check whether any bytes remain either in the network buffer or in
the network itself before calling dbresults.

¢ Totest whether bytesremain in the network buffer, the application can call
DBRBUF. To test whether bytes remain in the network itself, the
application can either call the UNIX select and DBIORDESC, or call dbpoll.

DBIORDESC, dbpoll, dbsqglok, dbresults

Open Client

CHAPTER 2 Routines

dbreadpage

Description

Syntax

Parameters

Return value

Usage

See also

Read a page of binary data from the server.
DBINT dbreadpage(dbproc, dbname, pageno, buf)

DBPROCESS *dbproc;

char *dbname;
DBINT pageno;
BYTE buf[];
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dbname
The name of the database of interest.

pageno
The number of the database page to be read.

buf
A pointer to abuffer to hold the received page data. Adaptive Server
Enterprise pages are currently 2048 bytes long.

The number of bytes read from the server. If the operation was unsuccessful,
dbreadpage returns -1.

» dbreadpage reads a page of binary datafrom the server. Thisroutineis
primarily useful for examining and repairing damaged database pages.
After calling dbreadpage, the DBPROCESS may contain some error or
informational messages from the server. These messages may be accessed
through a user-supplied message handler.

« dbreadpage alters the contents of the DBPROCESS command buffer.

Warning! Usethisroutine only if you are absol utely sure you know what you
are doing!

dbmsghandle, dbwritepage

DB-Library/C Reference Manual 247

dbreadtext

dbreadtext

Description Read part of atext or image value from the server.
Syntax STATUS dbreadtext(dbproc, buf, bufsize)

DBPROCESS *dbproc;

void *buf;

DBINT bufsize;

Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
Server.

buf
A pointer to a caler-allocated buffer that will contain the chunk of text or
image data.

bufsize
The size of the caller’s buffer, in bytes.

Return value The following table lists the return values for dbreadtext:

dbreadtext
returns To indicate

>0 The number of bytes placed into the caller’s buffer

0 The end of arow

-1 An error occurred, such as anetwork or out of memory error

NO_MORE_ROWS All rowsread

Usage e dbreadtext readsalarge SYBTEXT or SY BIMAGE value from the server
intheform of anumber of smaller chunks. Thisis particularly useful with
operating systems that are unable to allocate extremely long data buffers.

¢ Toread successive chunks of the same SYBTEXT or SYBIMAGE value,
call dbreadtext until it returns O (end of row).

e Usedbreadtext in place of donextrow to read SYBTEXT and SYBIMAGE
values.

¢ dbreadtext can processthe results of Transact-SQL queriesif those queries
return only one column and that column contains either text or image data.
The Transact-SQL readtext command returns results of this type.

248 Open Client

CHAPTER 2 Routines

DB-Library/C Reference Manual

The DB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restrictsthe size of text or image val ues
that the server returns. @@textsize hasadefault value of 32,768 bytes. An
application that retrievestext or image valueslarger than 32,768 byteswill
need to call dbsetopt to make @@textsize larger.

TheDB-Library/C option DBTEXTLIMIT limitsthe size of text or image
values that DB-Library/C will read. DB-Library/C will throw away any
text that exceeds the limit.

This code fragment demonstrates the use of dbreadtext:

DBPROCESS *dbproc;

long bytes;

RETCODE ret;

char buf [BUFSIZE + 1];
/*

** Tnstall message and error handlers...

** L,og in to server...

** Send a "use database" command...

*/
/* Select a text column: */

dbfcmd (dbproc, "select textcolumn from bigtable") ;
dbsglexec (dbproc) ;

/* Process the results: */
while((ret = dbresults (dbproc)) !=
NO_MORE_RESULTS)
{

if (ret == FAIL)

{
}

while((bytes =
dbreadtext (dbproc,
(void *)buf, BUFSIZE)) != NO_MORE ROWS)
{

/* dbresults () failed */

if (bytes == -1)

{
}

else if(bytes == 0)

{

/* dbreadtext () failed */

/* We’ve reached the end of a row*/
printf ("End of Row!\n\n") ;

else

249

dbrecftos

See also

dbrecftos

Description

Syntax

Parameters

Return value

Usage

See also

250

/*

** 'bytes’ bytes have been placed
** into our buffer.

% Print them:

*/

buf [bytes] = "\0’;

printf ("$s\n", buf);

dbmoretext, dbnextrow, dbwritetext

Record all SQL commands sent from the application to the server.

void dbrecftos(filename)

char *filename;

filename
A pointer to anull-terminated character string to be used as the basis for
naming SQL session files.

None.

e dbrecftos causes all SQL commands sent from the front-end application
program to the server to be recorded in a human-readable file. This SQL
session information is useful for debugging purposes.

e DB-Library creates one SQL session file for each call to dbopen that
occursafter dorecftos iscalled. Filesare named filename.n, wherefilename
is the name specified in the call to dbrecftos and n is an integer, starting
with 0.

For example, if filenameis“foo,” thefirst file created is named foo.0, the
next foo.1, and so forth.

dbopen

Open Client

CHAPTER 2 Routines

dbrecvpassthru

Description

Syntax

Parameters

Return value

Usage

Receive a TDS packet from a server.

RETCODE dbrecvpassthru(dbproc, recv_bufp)

DBPROCESS *dbproc;
DBVOIDPTR *recv_bufp;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

recv_bufp

A pointer to avariable that dbrecvpassthru fills with the address of a buffer
containing the TDS packet most recently received by this DBPROCESS
connection. The application is not responsible for allocating this buffer.

DB_PASSTHRU_MORE, DB_PASSTHRU_EOM, or FAIL.

dbrecvpassthru receives a TDS (Tabular Data Stream) packet from a
server.

TDSisan application protocol used for thetransfer of requests and request
results between clients and servers. Under ordinary circumstances, a DB-
Library/C application does not have to deal directly with TDS, because
DB-Library/C manages the data stream.

dbrecvpassthru and dbsendpassthru are useful in gateway applications.
When an application servesastheintermediary between two servers, it can
use these routines to pass the TDS stream from one server to the other,
eliminating the process of interpreting the information and re-encoding it.

dbrecvpassthru reads a packet of bytes from the server connection
identified by dbproc and sets *recv_bufp to point to the buffer containing
the bytes.

A packet has a default size of 512 bytes. An application can change its
packet size using DBSETLPACKET. See the dbgetpacket and
DBSETLPACKET reference pages.

dbrecvpassthru returns DB_PASSTHRU_EOM if the TDS packet has
been marked by the server as EOM (End Of Message). If the TDS packet
is not the last in the stream, dbrecvpassthru returns
DB_PASSTHRU_MORE.

DB-Library/C Reference Manual 251

dbrecvpassthru

¢ A DBPROCESS connection which is used for adbrecvpassthru operation
cannot be used for any other DB-Library/C function until
DB_PASSTHRU_EOM has been received.

e Thisisacode fragment using dbrecvpassthru:
/*

** The following code fragment illustrates the
** yse of dbrecvpassthru() in an Open Server
** gateway application. It will continually get
** packets from a remote server, and pass them
** through to the client.

* %

** The routine srv_sendpassthru() is the Open

* Server counterpart required to complete

** this passthru operation.

*/

DBPROCESS *dbproc;
SRV_PROC *sSrvproc;
int ret;

BYTE *packet;
while (1)

{

/* Get a TDS packet from the remote server */
ret = dbrecvpassthru(dbproc, &packet) ;

if (ret == FAIL)
{
fprintf (stderr, "ERROR - dbrecvpassthru)
failed in handle results.\n");
exit () ;
}
/* Now send the packet to the client */
if (srv_sendpassthru(srvproc, packet,
(int *)NULL) == FAIL)
{

fprintf (stderr, "ERROR - srv_sendpassthru \
failed in handle results.\n");
exit () ;
}
/*
** We’ve sent the packet, so let’s see if
** there’s any more.

*/

if (ret == DB _PASSTHRU_MORE)
continue;

else

252 Open Client

CHAPTER 2 Routines

See also

dbregdrop

Description

Syntax

Parameters

Return value

Usage

break;

dbsendpassthru

Drop aregistered procedure.
RETCODE dbregdrop(dbproc, procedure_name, namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure that the DBPROCESS
connection wishes to drop.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

SUCCEED, DBNOPROC, or FAIL.

» dbregdrop drops aregistered procedure from Open Server. Because a
notification procedure is simply a special type of registered procedure, a
notification procedure may also be dropped using dbregdrop.

« A DBPROCESS connection can drop any registered procedure defined in
Open Server, including procedures created by other DBPROCESS
connections and procedures created by other applications. Any
mechanism to protect registered procedures must be embodied in the
server application.

« | the procedure referenced by procedure_name is not defined in Open
Server, dbregdrop returns DBNOPROC. An application can use dbreglist
to obtain alist of registered procedures currently defined in Open Server.

e Thisisacode fragment that uses dbregdrop:

DB-Library/C Reference Manual 253

dbregexec

/*

** The following code fragment illustrates
** dropping a registered procedure.
*/

DBPROCESS *dbproc;

RETCODE ret;

char *procname;

procname = "some_event";
ret = dbregdrop (dbproc, procname, DBNULLTERM) ;
if (ret == FAIL)

{

fprintf (stderr, "ERROR: dbregdrop () \
failed!!\n") ;

}

else if (ret == DBNOPROC)

fprintf (stderr, "ERROR: procedure %$s was not)\
registered!\n", procname) ;

}
See also dbnpcreate, dbreglist

dbregexec

Description Execute aregistered procedure.
Syntax RETCODE dbregexec(dbproc, options)

DBPROCESS *dbproc;
DBUSMALLINT options;
Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

254 Open Client

CHAPTER 2 Routines

options

A 2-byte bitmask, either DBNOTIFYALL or DBNOTIFYNEXT.

If options is DBNOTIFYALL, Open Server will notify all DBPROCESSes
watching for the execution of this registered procedure.

If options is DBNOTIFYNEXT, Open Server will natify only the
DBPROCESS that has been watching the longest.

Return value SUCCEED or FAIL.

Usage .

dbregexec completes the process of executing aregistered procedure.
Because a notification procedure is simply a special type of registered
procedure, anotification procedure may also be executed using dbregexec.

The procedure name and its parameters must have been previously defined
using dbreginit and dbregparam.

To execute a registered procedure, a DB-Library/C application must:
e Initiate the call using dbreginit.

» Describe the procedure’'s parameters, if any, using dbregparam.
» Execute the procedure using dbregexec.

An application cannot execute aregistered procedure that isnot defined in
Open Server. dbreglist returns a list of registered procedures that are
currently defined.

Registered procedures are useful for inter-application communication and
synchronization, because applications can request to be advised when a
registered procedure executes.

Registered procedures may be created only in Open Server. At thistime,
Adaptive Server Enterprise does not support registered procedures. An
application can use dbnpcreate, dbregparam, and dbnpcreate to create a
registered procedure.

A DB-Library/C application requests to be notified of aregistered
procedure’s execution using dbregwatch. The application may regquest to
be notified either synchronously or asynchronously.

Thisis an example of executing a registered procedure:

DBPROCESS *dbproc;

DBINT newprice = 55;
DBINT status;
/*

** Tnitiate execution of the registered procedure
** "price change"

DB-Library/C Reference Manual 255

dbreghandle

*/

dbreginit (dbproc, "price change", DBNULLTERM) ;
/*

** The registered procedure has two parameters:
*x name varchar (255)

* % newprice int

** So pass these parameters to the registered
** procedure.

*/
dbregparam (dbproc, "name", SYBVARCHAR, NULL,
"sybase") ;
dbregparam (dbproc, "newprice", SYBINT4, 4,
&newprice) ;

/* Execute the registered procedure: */
status = dbregexec (dbproc, DBNOTIFYALL) ;
if (status == FAIL)
fprintf (stderr, "ERROR: Failed to execute \
price change!\n");

}

else 1if (status == DBNOPROC)

{

fprintf (stderr, "ERROR: Price change does \
not exist!\n");

}

else

{

fprintf (stdout, "Success in executing \
price change!\n");

}
See also dbreginit, dbregparam, dbregwatch, dbregnowatch
dbreghandle
Description Install a handler routine for a registered procedure notification.
Syntax RETCODE dbreghandle(dbproc, procedure_name, namelen,

handler)

DBPROCESS *dbproc;
DBCHAR *procedure_name;

256 Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

DBSMALLINT namelen;
INTFUNCPTR handler;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure for which the handler is
being installed.

If procedure_nameis passed as NULL, the handler isinstalled as a default
handler. The default handler will be called for all registered procedure
notifications read by this DBPROCESS connection for which no other
handler has been installed.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

handler
A pointer to the function to be called by DB-Library/C when the registered
procedure notification is read.

If handler ispassed as NULL, any handler previoudly installed for the
registered procedure is uninstalled.

SUCCEED or FAIL.

» dbreghandle installs a user-supplied handler routine to be called by DB-
Library/C when a DBPROCESS connection reads an asynchronous
notification that a registered procedure has been executed.

Because a notification procedure is simply a special type of registered
procedure, a handler for a notification procedure may also be installed
using dbreghandle.

« An application receives an asynchronous notification only if it has
previously called dbregwatch with options passed as DBNOWAITONE or
DBNOWAITALL. Thiscall tells Open Server that the application is
interested in the execution of the registered procedure, that it will receive
the notification asynchronously, and that it will read the notification
through a particular DBPROCESS connection.

e If nohandler isinstalled for anotification, DB-Library/C will raise an
error when the DBPROCESS connection reads the notification.

DB-Library/C Reference Manual 257

dbreghandle

258

Either procedure_name or handler may be NULL:

e If both procedure_name and handler are supplied, dbreghandle
installs the handler specified by handler for the registered procedure
specified by procedure_name.

e If procedure nameisNULL and handler isNULL, dbreghandle
uninstalls all handlers for this DBPROCESS connection.

e If procedure_nameisNULL but handler is supplied, doreghandle
installsthe handler specified by handler asa“ default” handler for this
DBPROCESS connection. This default handler will be called
whenever the DBPROCESS connection reads a registered procedure
notification for which no other handler has been installed.

e If procedure_nameis supplied but handler isNULL, dbreghandle
uninstalls any handler previously installed for this registered
procedure. If adefault handler has been installed for this
DBPROCESS connection, it remainsin effect and will be called if a
procedure_name natification is read.

The same handler may be used by severa DBPROCESS connections, but
it must beinstalled for each one by aseparate call to dbreghandle. Because
of the possihility of asingle notification handler being called when
different DBPROCESSesread notifications, all handlers should bewritten
to be re-entrant.

A single DBPROCESS connection may bewatching for several registered
procedures to execute. This connection may have different handlers
installed to process the various notifications it may read. Each handler
must be installed by a separate call to dbreghandle.

A DBPROCESS connection may be idle, sending commands, reading
results, or idle with results pending when a registered procedure
notification arrives.

e |f the DBPROCESS connectionisidle, it is necessary for the
application to call dbpoll to allow the connection to read the
notification. If ahandler for the notification has been installed, it will
be called before dbpoll returns.

e |f the DBPROCESS connection is sending commands, the
notification is read and the notification handler called during
dbsglexec or dbsglok. After the notification handler returns, flow of
control continues normally.

Open Client

CHAPTER 2 Routines

e |f the DBPROCESS connection is reading results, the notification is
read and the notification handler called either in dbresults or
dbnextrow. After the notification handler returns, flow of control
continues normally.

e |f the DBPROCESS connection isidle with results pending, the
notification is not read until al resultsin the stream up to the
notification have been read and processed by the connection.

« Becauseanotification may beread whileaDBPROCESS connectionisin
any of several different states, the actions that a notification handler may
take are restricted. A notification handler may not use an existing
DBPROCESS to send a query to the server, process the results of a query,
or call dbcancel or dbcanquery. A notification handler may, however, open
anew DBPROCESS and use this new DBPROCESS to send queries and
process results within the handler.

e A notification handler can read the arguments passed to the registered
procedure upon execution. To do this, the handler can use the DB-
Library/C routines donumrets, dbrettype, dbretlen, dbretname, and
dbretdata.

e All natification handlers are called by DB-Library/C with the following
parameters:

« dbproc, apointer to the DBPROCESS connection that has been
watching for the notification

e procedure_name, a pointer to the name of the registered procedure
that has been executed

e reservedl, aDBUSMALLINT parameter reserved for future use
e reserved2, aDBUSMALLINT parameter reserved for future use

e A notification handler must return INT_CONTINUE to indicate normal
completion, or INT_EXIT to instruct DB-Library/C to abort the
application and return control to the operating system.

« Notification handlers on the Windows platform must be declared with
CS PUBLIC, as shown in the example below. For portability, callback
handlers on other platforms should be declared CS _PUBLIC aswell.

e Thisisan example of anatification handler:

DBINT CS_PUBLIC my procedure_handler (dbproc,
procedure name, reservedl, reserved2)

/* The client connection */

DBPROCESS *dbproc;

DB-Library/C Reference Manual 259

dbreginit

See also

dbreginit

Description

260

/* A null-terminated string */

DBCHAR *procedure_name;
/* Reserved for future use */
DBUSMALLINT reservedl;
/* Reserved for future use */
DBUSMALLINT reserved2;
{

int i, type;

DBINT len;

char *name;

BYTE *data;

int params;

/*

** Find out how many parameters this
** procedure received.

*/

params = dbnumrets (dbproc) ;

i=0; /* Initialize counter */

/* Now process each parameter in turn */

while (i++ < params)

{

/* Get the parameter’s datatype
type = dbrettype (dbproc, 1i);

/* Get the parameter’s length */
len = dbretlen(dbproc, 1i);

/* Get the parameter’s name */
name = dbretname (dbproc, 1i);

/* Get a pointer to the parameter
data = dbretdata (dbproc, 1i);

/* Process the parameter here */

}

return (INT CONTINUE) ;

}
dbregwatch, dbregnowatch, dbregparam, dbregexec

Initiate execution of aregistered procedure.

*/

*/

Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

RETCODE dbreginit(dbproc, procedure_name, namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

procedure_name
A pointer to the name of the registered procedure being executed.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

SUCCEED or FAIL.

« dbreginit initiates the execution of aregistered procedure. Because a
notification procedure is simply a special type of registered procedure,
execution of a notification procedure may also be initiated using dbreginit.

« To execute aregistered procedure, a DB-Library/C application must:
e Initiate the call using dbreginit
e Passthe procedure's parameters, if any, using dbregparam
« Execute the procedure using dbregexec

e Thisisan example of executing aregistered procedure:

DBPROCESS *dbproc;

DBINT newprice = 55;
DBINT status;
/*

** Tnitiate execution of the registered procedure
** "price change".

*/

dbreginit (dbproc, "price change", DBNULLTERM) ;
/*

** The registered procedure has two parameters:
*x name varchar (255)

* % newprice int

** So pass these parameters to the registered
** procedure.

DB-Library/C Reference Manual 261

dbreglist

See also

dbreglist

Description

Syntax

Parameters

Return value

262

*/
dbregparam (dbproc, "name", SYBVARCHAR, NULL,
"sybase") ;
dbregparam (dbproc, "newprice", SYBINT4, 4, 4,
&newprice) ;

/* Execute the registered procedure: */
status = dbregexec (dbproc, DBNOTIFYALL) ;
if (status == FAIL)

{

fprintf (stderr, "ERROR: Failed to execute \
price change!\n");

}

else if (status == DBNOPROC)

{

fprintf (stderr, "ERROR: Price change does \
not exist!\n");

fprintf (stdout, "Success in executing \
price change!\n") ;

}
dbregparam, dbregexec, dbregwatch, dbreglist, dbregwatchlist

Return alist of registered procedures currently defined in Open Server.
RETCODE dbreglist(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

SUCCEED or FAIL.

Open Client

CHAPTER 2 Routines

Usage « dbreglist returns alist of registered procedures currently defined in Open
Server. Because a notification procedure is simply a special type of
registered procedure, notification procedureswill beincluded inthelist of
registered procedures.

» Thelist of registered proceduresis returned as rows that an application
must explicitly process after calling dbreglist. Each row represents the
name of a single registered procedure defined in Open Server. A row
contains a single column of type SYBVARCHAR.

« Thefollowing code fragment illustrates how dbreglist might be used in an

application:
DBPROCESS *dbproc;
DBCHAR *procedurename;
DBINT ret;

/* request the list of procedures */
if ((ret = dbreglist (dbproc)) == FAIL)

{
}

dbresults (dbproc) ;

/* Handle failure here */

while (dbnextrow (dbproc) != NO MORE ROWS)

{
procedurename = (DBCHAR *)dbdata (dbproc, 1);
procedurename [dbdatlen (dbproc, 1)1 = ’'\0’;

)

fprintf (stdout, "The procedure ’'%s’ is \
defined.\n", procedurename) ;

}

/* All done */

See also dbregwatchlist, doregwatch
dbregnowatch
Description Cancel arequest to be notified when aregistered procedure executes.
Syntax RETCODE dbregnowatch(dbproc, procedure_name,
namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

DB-Library/C Reference Manual 263

dbregnowatch

Parameters

Return value

Usage

264

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure that the DBPROCESS
connection is no longer interested in.

namelen
The length of procedure_name, in bytes. If procedure_nameis null-
terminated, pass namelen as DBNULLTERM.

SUCCEED, DBNOPROC, or FAIL.

¢ dbregnowatch cancels a DBPROCESS connection’s request to be notified
when aregistered procedure executes. Because a natification procedureis
simply aspecial type of registered procedure, dbregnowatch also cancelsa
DBPROCESS connection’s request to be notified when a notification
procedure executes.

e Itismeaningful to call doregnowatch only if the DBPROCESS connection
has previously requested an asynchronous notification using dbregwatch.

e If the procedure referenced by procedure_nameis not defined in Open
Server, dbregnowatch returns DBNOPROC. An application can obtain a
list of procedures currently registered in Open Server using dbreglist.

« Anapplication can obtain alist of registered proceduresit iswatching for
through dbregwatchlist.

e Thisisan example of canceling arequest to be notified:

DBPROCESS *dbproc;

DBINT ret;

/*
** Inform the server that we no longer wish to
** be notified when "price change" executes:

*/

ret = dbregnowatch (dbproc, "price change",
DBNULLTERM) ;

if (ret == DBNOPROC)

{

/* The registered procedure must not exist */
fprintf (stderr, "ERROR: price change \
doesn’t exist!\n");

Open Client

CHAPTER 2 Routines

See also

dbregparam

Description

Syntax

Parameters

dbregwatch, dbregwatchlist, dbreghandle, dbregexec

Define or describe a registered procedure parameter.

RETCODE dbregparam(dbproc,param_name, type, datalen,

data)
DBPROCESS *dbproc;
char *param_name;
int type;
DBINT datalen;
BYTE *data;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end

and the server.

param_name
A pointer to the parameter name.

When creating aregistered procedure, param_name is required.

When executing aregistered procedure, param_namemay be NULL. Inthis
case, the registered procedure will expect to receive its parametersin the

order in which they were originally defined.
type

A symbolic valueindicating the datatype of the parameter. Legal datatypes
are: SYBINT1, SYBINT2, SYBINT4, SYBREAL, SYBFLT8, SYBCHAR,
SYBBINARY, SYBVARCHAR, SYBDATETIME4, SYBDATETIME,

SYBMONEY4, and SYBMONEY .

Note that SYBTEXT and SYBIMAGE are not legal datatypes for

parameters.

DB-Library/C Reference Manual

265

dbregparam

datalen
The length of the parameter.

When creating aregistered procedure:

e datalen can be used to indicate that no default value is being supplied
for this parameter. To indicate no default, pass datalen as
DBNODEFAULT.

e datalen can be used to indicate that the default value for aparameter is
NULL. Thisisdifferent from having no default. To indicate aNULL
default, pass datalen as 0.

When executing a registered procedure:

e datalen may be 0. In this case, data isignored and NULL is passed to
the registered procedure for this parameter.

data
A pointer to the parameter.

When creating aregistered procedure, data can be used to provide adefault
value for the parameter. Pass data as pointing to the default value. If no
default value is desired, pass datalen as DBNODEFAULT.

When executing aregistered procedure, data may be passed as NULL.
Return value SUCCEED or FAIL.

Usage « dbregparam defines aregistered procedure parameter. Because a
notification procedureis simply a special type of registered procedure,
dbregparam also defines a notification procedure parameter.

« dbregparam is called to define registered procedure parameters when a
registered procedure is created and to describe the parameters when a
registered procedure is executed.

Note DB-Library/C applications can create only a special type of
registered procedure, known as a notification procedure. A notification
procedure differs from anormal Open Server registered procedure in that
it contains no executable statements. See the dbnpdefine and dbnpcreate
reference pages.

e Either dbnpdefine, which initiates the process of creating a notification
procedure, or dbreginit, which initiates the process of executing a
registered procedure, must be called before an application calls
dbregparam.

266 Open Client

CHAPTER 2 Routines

e When creating aregistered procedure:

To indicate that no default value is being supplied, pass datalen as
DBNODEFAULT. dataisignored in this case.

To supply adefault value of NULL, passdatalen as 0. data isignored
in this case.

To supply adefault value that isnot NULL pass datalen asthe length
of thevalue (or -1if it isafixed-length type), and data as pointing to
the value.

» When executing aregistered procedure:

To passNULL asthe value of the parameter, passdatalen as0. In this
case, data isignored.

To pass avalue for this parameter, pass datalen as the length of the
value (or -1 if it is afixed-length type), and data as pointing to the
value.

« To create a natification procedure, a DB-Library/C application must:

Define the procedure using dbnpdefine
Describe the procedure’s parameters, if any, using dbregparam

Create the procedure using dbnpcreate

e Thisisan example of creating a notification procedure:

DB-Library/C Reference Manual

DBPROCESS *dbproc;

DBINT status;

/-k
** Let’s create a notification procedure called
** "message" which has two parameters:

*x msg varchar (255)
* % userid int
*/

/-k

** Define the name of the notification procedure
* % llmessagevl

*/

dbnpdefine (dbproc, "message", DBNULLTERM) ;
/* The notification procedure has two parameters:
* % msg varchar (255)

* % userid int

** So, define these parameters. Note that both
** of these parameters are defined with a default

267

dbregparam

** yvalue of NULL. Passing datalen as 0
** gccomplishes this.

*/

dbregparam (dbproc, "msg", SYBVARCHAR, 0, NULL) ;
dbregparam (dbproc, "userid", SYBINT4, 0, NULL);

/* Create the notification procedure: */
status = dbnpcreate (dbproc);
if (status == FAIL)

{

fprintf (stderr, "ERROR: Failed to create \
message!\n") ;

fprintf (stdout, "Success in creating \
message!\n") ;

}
e To execute aregistered procedure, a DB-Library/C application must:

e Initiate the call using dbreginit
e Passthe procedure’s parameters, if any, using dbregparam
« Execute the procedure through dbregexec

e Thisisan example of executing aregistered procedure:

DBPROCESS *dbproc;

DBINT newprice = 55;
DBINT status;
/*

** Tnitiate execution of the registered procedure
** "price change".

*/

dbreginit (dbproc, "price change", DBNULLTERM) ;
/*

** The registered procedure has two parameters:
* ok name varchar (255)

* % newprice int

** So pass these parameters to the registered

** procedure.

*/

dbregparam (dbproc, "name", SYBVARCHAR, 6,
"sybase") ;

dbregparam (dbproc, "newprice", SYBINT4, -1,

268 Open Client

CHAPTER 2 Routines

See also

dbregwatch

Description

Syntax

Parameters

&newprice) ;

/* Execute the registered procedure: */
status = dbregexec (dbproc, DBNOTIFYALL) ;
if (status == FAIL)

{

fprintf (stderr, "ERROR: Failed to execute \
price change!\n");

}

else 1if (status == DBNOPROC)

{

fprintf (stderr, "ERROR: Price change does \
not exist!\n");

fprintf (stdout, "Success in executing \
price change!\n");

}
dbreginit, dbregexec, dbnpdefine, dbnpcreate, dbregwatch

Request to be notified when a registered procedure executes.

RETCODE dbregwatch(dbproc, procedure_name,namelen,
options)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;
DBUSMALLINT options;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of aregistered procedure. The registered procedure
must be defined in Open Server.

DB-Library/C Reference Manual 269

dbregwatch

Return value

Usage

270

namelen

The length of procedure_name, in bytes. If procedure_nameis null-
terminated, pass namelen as DBNULLTERM.

options

A two-byte bitmask: DBWAIT, DBNOWAITONE, or DBNOWAITALL.

If options is passed as DBWAIT, dbregwatch will not return until the
DBPROCESS connection reads a synchronous notification that the
registered procedure has executed.

If options is passed as DBNOWAITONE, dbregwatch returns -immediately.
The DBPROCESS connection will receive an asynchronous notification

when the registered procedure executes. The connection will receive only a
single natification, even if the registered procedure executes multiple times.

If options is passed as DBNOWAITALL, dbregwatch returnsimmediately.
The DBPROCESS connection will receive an asynchronous notification
when the registered procedure executes. The connection will continue to
receive natifications, one for each execution of the registered procedure,
until it informs Open Server that it no longer wishes to receive them.

SUCCEED, DBNOPROC, or FAIL.

dbregwatch returns FAIL if no handler isinstalled for the registered procedure.

dbregwatch informs Open Server that a DBPROCESS connection should
be notified when a particul ar registered procedure executes. Because a
notification procedureis simply a special type of registered procedure,
dbregwatch aso informs Open Server that a DBPROCESS connection
should be notified when a particular notification procedure executes.

The connection can request to be notified synchronously or
asynchronously:

* Toreguest synchronous notification, an application passes options as
DBWAIT initscall to doregwatch. In this case, doregwatch will not
return until the DBPROCESS connection reads the notification that
the registered procedure has executed.

Open Server will send only a single notification as the result of a
synchronous notification request. If theregistered procedure executes
a second time, after the synchronous reguest has been satisfied, the
client will not receive a second notification, unless another
notification request is made.

Open Client

CHAPTER 2 Routines

« Torequest asynchronous notification, an application passesoptionsas
DBNOWAITONE or DBNOWAITALL initscall to dbregwatch. In
this case, dbregwatch returns immediately. A return code of
SUCCEED indicates that Open Server has accepted the request.

If optionsis DBNOWAITONE, Open Server will send only asingle
notification, even if the registered procedure executes multiple times.

If optionsis DBNOWAITALL, Open Server will continueto send a
notification every time the registered procedure executes, until it is
informed, using dbregnowatch, that the client no longer wishesto
receive them.

« A DBPROCESS connection may be idle, sending commands, reading
results, or idle with results pending when an asynchronous registered
procedure notification arrives.

e |f the DBPROCESS connectionisidle, it is necessary for the
application to call dbpoll to allow the connection to read the
notification. If ahandler for the notification has been installed, it will
be called before dbpoll returns.

e |f the DBPROCESS connection is sending commands, the
notification is read and the notification handler called during
dbsglexec or dbsglok. After the notification handler returns, flow of
control continues normally.

e |f the DBPROCESS connection is reading results, the notification is
read and the notification handler called either in dbresults or
dbnextrow. After the notification handler returns, flow of control
continues normally.

« |f the DBPROCESS connection isidle with results pending, the
notification is not read until al resultsin the stream up to the
notification have been read and processed by the connection.

e An application must install a handler to process the registered procedure
notification before calling doregwatch. If no handler isinstalled,
dbregwatch returns FAIL. An application can install anotification handler
using dbreghandle.

If the handler is uninstalled after the application calls doregwatch but
before the registered procedure notification is received, DB-Library/C
raises an error when the notification is received.

DB-Library/C Reference Manual 271

dbregwatch

272

If the procedure referenced by procedure name is not defined in Open
Server, dbregwatch returns DBNOPROC. An application can obtain alist

of procedures currently registered in Open Server using dbreglist.

An application can obtain alist of registered proceduresit iswatching for

using dbregwatchlist.

Thisis an example of making a synchronous notification request:

DBPROCESS *dbproc;

DBINT handlerfunc;
DBINT ret;
/*

** The registered procedure is defined in Open
** Server as:
*x shutdown msg_param varchar (255)

*/
/*

** First install the handler for this registered

** procedure:

*/

dbreghandle (dbproc, "shutdown", DBNULLTERM,
handlerfunc) ;

/* Make the notification request and wait: */
ret = dbregwatch (dbproc, "shutdown", DBNULLTERM,
DBWAIT) ;

if (ret == FAIL)
{
fprintf (stderr, "ERROR: dbregwatch() \
failed!\n") ;
}
else if (ret == DBNOPROC)
{
fprintf (stderr, "ERROR: procedure shutdown \
not defined.\n");

else

/*

** The registered procedure notification has
** been returned, and our registered

** procedure handler has already been called.

*/

Open Client

CHAPTER 2 Routines

e Thisisan example of making an asynchronous notification request:

DB-Library/C Reference Manual

DBPROCESS *dbproc;

DBINT handlerfunc;
DBINT ret;
/*

** The registered procedure is defined in Open
** Server as:
*x shutdown msg_param varchar (255)

*/
/*

** First install the handler for this registered

** procedure:

*/

dbreghandle (dbproc, "shutdown", DBNULLTERM,
handlerfunc) ;

/* Make the asynchronous notification request: */
ret = dbregwatch (dbproc, "shutdown", DBNULLTERM,
DBNOWAITALL) ;

if (ret == FAIL)
{
fprintf (stderr, "ERROR: dbregwatch() \
failed!\n") ;
}
else if (ret == DBNOPROC)
{
fprintf (stderr, "ERROR: procedure shutdown \
not defined.\n");

}
/*

** Since we are making use of the asychronous

** registered procedure notification mechanism,
** the application can continue doing other work
** while waiting for the notification. All we

** have to do is call dbpoll() once in a while to
** read the registered procedure notification

** when it arrives.

*/
while (1)

{

/* Have dbpoll () block for one second */
dbpoll (NULL, 1000, NULL, &ret);

/*

273

dbregwatchlist

See also

dbregwatchlist

Description

Syntax

Parameters

Return value

Usage

274

**x Tf we got the notification, then exit
** the loop
*/
if (ret == DBNOTIFICATION)
break;
/* Handle other program tasks here */

}

dbpoll, dbregexec, dbregparam, dbreglist, doregwatchlist, dbregnowatch

Return alist of registered procedures that a DBPROCESS is watching for.
RETCODE dbregwatchlist(dbproc)

DBPROCESS *dbproc;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL.

dbregwatchlist returns a list of registered procedures that a DBPROCESS
connection is watching for. Because a notification procedureis smply a
special typeof registered procedure, thelist returned by doregwatchlist will
include notification procedures.

Thelist of registered proceduresis returned as rows that an application
must explicitly process after calling doregwatchlist. Each row represents
the name of asingle registered procedure for which the DBPROCESS has
requested notification. A row contains a single column of type
SYBVARCHAR.

Thefollowing code fragment illustrates how dbregwatchlist might be used
in an application:

DBPROCESS *dbproc;
DBCHAR *procedurename;
DBINT ret;

/* Request the list of procedures */
if ((ret = dbregwatchlist (dbproc)) == FAIL)

Open Client

CHAPTER 2 Routines

See also

dbresults
Description

Syntax

Parameters

Return value

{
}

dbresults (dbproc) ;

/* Handle failure here */

while (dbnextrow (dbproc) != NO _MORE ROWS)

{
procedurename = (DBCHAR *)dbdata (dbproc, 1);
procedurename [dbdatlen (dbproc, 1)] = ’\0’;

fprintf (stdout, "we’'re waiting for \

)

procedure ’‘%s’.\n", procedurename) ;

}

/* All done */

dbregwatch, dbresults, dbnextrow

Set up the results of the next query.
RETCODE dbresults(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED, FAIL or NO_MORE_RESULTS.

dbresults returns NO_MORE_RESULTS if all commands in the buffer have
already been processed. The most common reason for failing isaruntimeerror,
such as a database permission violation.

The number of commands in the command buffer determines whether
dbsglexec or dbresults traps aruntime error. If the buffer containsonly asingle
command, aruntime error will cause dbsglexec to fail. If the command buffer
contains multiple commands, a runtime error will not cause dbsglexec to fail.
Instead, the dbresults call that processes the command causing the runtime
error fails.

DB-Library/C Reference Manual 275

dbresults

Usage

276

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbresults to
fail, in accordance with the rule given in the previous paragraph. A runtime
error on a statement inside a stored procedure will not cause dbresults to fail,
however. For example, if the stored procedure contains an insert statement and
the user does not have insert permission on the database table, the insert
statement fails, but dbresults will still return SUCCEED. To check for runtime
errorsinside stored procedures, use the dbretstatus routine to look at the
procedure’s return status, and trap relevant server messages inside your
message handler.

This routine sets up the next command in the command batch for
processing. The application program callsit after dosglexec or dbsglok
returns SUCCEED. The first call to dbresults will always return either
SUCCEED or NO_MORE_RESULTS f the call to dbsglexec or dbsglok
has returned SUCCEED. Once dbresults returns SUCCEED, the
application typically processes any result rows with dbnextrow.

If a command batch contains only a single command, and that command
does not return rows, for example a* use database” command, a DB-
Library/C application does not haveto call dbresults to processthe results
of the command. However, if the command batch contains more than one
command, a DB-Library/C application must call dbresults once for every
command in the batch, whether or not the command returns rows.

dbresults must also be called at |east once for any stored procedure
executed in acommand batch, whether or not the stored procedure returns
rows. If the stored procedure contains more than one Transact-SQL select,
then dbresults must be called once for each select.

To ensure that dbresults is called the correct number of times, Sybase
strongly recommends that dbresults always be called in aloop that
terminates when dbresults returns NO_ MORE_RESULTS.

Note All Transact-SQL commands are considered commands by
dbresults. For alist of Transact-SQL commands, see the Adaptive Server
Enterprise Reference Manual.

To cancel the remaining results from the command batch (and eliminate
the need to continue calling dbresults until it returns
NO_MORE_RESULTS), call docancel.

To determine whether a particular command is one that returns rows and
needs results processing with dbnextrow, call DBROWS after the dbresults
call.

Open Client

CHAPTER 2 Routines

e Thetypica sequence of callsfor using dbresults with dbsglexec is:

DBINT xvariable;
DBCHAR yvariable[10];
RETCODE return code;

/* Read the query into the command buffer */
dbcmd (dbproc, "select x = 100, y = 'hello’");

/* Send the query to Adaptive Server Enterprise */
dbsglexec (dbproc) ;

/*

** Get ready to process the results of the query.
** Note that dbresults is called in a loop even

** though only a single set of results is expected.
** This is simply because it is good programming
** practice to always code dbresults calls in loop.

*/

while ((return code
=dbresults (dbproc) ! =NO_MORE_RESULTS)
{
if ((return code == SUCCEED)
& & (DBROWS (dbproc) == SUCCEED))

/* Bind column data to program variables */

dbbind (dbproc, 1, INTBIND, (DBINT) O,
(BYTE *) &xvariable) ;

dbbind (dbproc, 2, STRINGBIND, (DBINT) O,
yvariable) ;

/* Now process each row */
while (dbnextrow (dbproc) != NO MORE ROWS)

{
}

C-code to print or process row data

}

The sample program examplel.c shows how to use dbresults to process a
multiquery command batch.

e To manage multiple input data streams efficiently, an application can
confirm that unread bytes are available, either in the DB-Library network
buffer or in the network itself. The application can either:

e (For UNIX only) call DBRBUF to test whether bytes remain in the
network buffer, and call DBIORDESC and the UNIX select to test
whether bytes remain in the network itself, or

DB-Library/C Reference Manual 277

dbretdata

See also

dbretdata

Description

Syntax

Parameters

Return value

Usage

278

e (For dl systems) call dbpoll.

e Another use for dbresults isto process the results of aremote procedure
call made with dbrpcsend. See the dbrpcsend reference page for details.

dbbind, dbcancel, donextrow, dbpoll, DBRBUF, dbretstatus, DBROWS,
dbrpcsend, dbsglexec, dbsglok

Return a pointer to areturn parameter value generated by a stored procedure.
BYTE *dbretdata(dbproc, rethum)

DBPROCESS *dbproc;
int retnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is1. Values arereturned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
thisis not necessarily the same order as specified in the remote procedure
call.) When specifying rethum, non-return parameters do not count. For
example, if the second parameter in a stored procedureis the only return
parameter, its retnumis 1, not 2.

A pointer to the specified return value. If retnumis out of range, dbretdata
returns NUL L. To determine whether the datareally has a null value (and
retnum is not merely out of range), check for areturn of 0 from dbretlen.

e dbretdata returns a pointer to a return parameter value generated by a
stored procedure. It isuseful in conjunction with remote procedure cals
and execute statements on stored procedures.

Open Client

CHAPTER 2 Routines

e Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of areturn parameter inside the
stored procedure are then available to the program that called the
procedure. Thisis analogous to the “ pass by reference” facility available
in some programming languages.

For a parameter to function as areturn parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as areturn parameter. In the case of aremote
procedure cal, it isthe dbrpcparam routine that specifies whether a
parameter is areturn parameter.

« When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbretdata only after processing the stored procedure’s
results by calling doresults, aswell as donextrow if appropriate. (Note that
astored procedure can generate several setsof results—one for each select
it contains. Before the application can call dbretdata or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

e |f astored procedure isinvoked with aremote procedure call, the return
parameter val ues are automatically available to the application. If, on the
other hand, the stored procedure isinvoked with an execute statement, the
return parameter values are available only if the command batch
containing theexecute statement useslocal variables, not constants, for the
return parameters.

e Theroutine dbnumrets indicates how many return parameter values are
available. If donumrets returns less than or equal to 0, no return parameter
values are available.

e When astored procedure isinvoked with an RPC command (using
dbrpcinit, dorpcparam, and dbrpcsend), then the return parameter values
can beretrieved after al other results have been processed. For an example
of this usage, see the sample program example8.c.

« When astored procedure has been executed from abatch of Transact-SQL
commands (with dbsglexec or dbsglsend), then other commands might
execute after the stored procedure. This situation makesretrieval of return
parameter values alittle more complicated.

DB-Library/C Reference Manual 279

dbretdata

280

If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return parameter
values after the dbresults loop, as shown in the sample program
examples.c.

If the batch can contain multi ple commands, then the return parameter
values should be retrieved inside the dbresults loop, after al rows
have been fetched with dbnextrow. The code below shows where the
return parameters should be retrieved in this situation.

while ((result code = dbresults (dbproc)
!= NO_MORE_RESULTS)
{

if (result code == SUCCEED)

{
. bind rows here
while ((row _code = dbnextrow (dbproc))
I= NO_MORE_ROWS)
{

}

/* Now check for a return status */
if (dbhasretstat (dbproc) == TRUE
{
printf (* (return status %d)\n”,
dbretstatus (dbproc)) ;

. process rows here

/* Now check for return parameter values */
if (dbnumrets (dbproc) > 0)

retrieve output parameters here

} /* if result code */
else

{
}

} /* while dbresults */

printf (“Query failed.\n”);

The routines below are used to retrieve return parameter values:

dbnumrets returns the total number of return parameter values.
dbretlen returns the length of a parameter value.
dbretname returns the name of a parameter value.

dbrettype returns the datatype of a parameter value.

Open Client

CHAPTER 2 Routines

« dbconvert converts the value to another datatype, if necessary.

The code fragment bel ow shows how these routines are used together:

char dataval [512] ;
char *dataname;
DBINT datalen;

int i, numrets;

numrets = dbnumrets (dbproc) ;

for (i = 1; i <= numrets; i++)
{
dataname = dbretname (dbproc, 1i);
datalen = dbretlen (dbproc, 1i);
if (datalen == 0)
{
/* The parameter's value is NULL */
strcpy (dataval, "NULL") ;

}

else
{
/*
** Convert to char. dbconvert appends a null
** terminator because we pass the last
** parameter, destlen, as -1.
*/
result = dbconvert (dbproc,
dbrettype (dbproc, i),
dbretdata (dbproc, i), datalen,
SYBCHAR, (BYTE *)dataval, -1);
} /* else */
/* Now print out the converted value */
if (dataname == NULL || *dataname == '\0')
printf ("\t%s\n", dataval);
else
printf ("\t%s: %$s\n", dataname, dataval) ;
}

See also dbnextrow, dbnumrets, dbresults, dbretlen, dbretname, dbrettype, dbrpcinit,
dbrpcparam

DB-Library/C Reference Manual 281

dbretlen

dbretlen

Description

Syntax

Parameters

Return value

Usage

282

Determine the length of areturn parameter value generated by a stored
procedure.

DBINT dbretlen(dbproc, rethum)

DBPROCESS *dbproc;
int retnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is1. Values arereturned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
thisis not necessarily the same order as specified in the remote procedure
call.) When specifying rethum, non-return parameters do not count. For
example, if the second parameter in a stored procedureis the only return
parameter, its rethumis 1, not 2.

The length of the specified return parameter value. If rethumis out of range,
dbretlen returns -1. If the return value is null, dobretlen returns O.

« dbretlen returnsthelength of aparticular return parameter value generated
by a stored procedure. It is useful in conjunction with remote procedure
calls and execute statements on stored procedures.

e Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of areturn parameter inside the
stored procedure are then available to the program that called the
procedure. Thisis analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as areturn parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as areturn parameter. In the case of aremote
procedure call, it isthe dbrpcparam routine that specifies whether a
parameter is areturn parameter.

Open Client

CHAPTER 2 Routines

See also

dbretname

Description

Syntax

When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call doretlen only after processing the stored procedure’s
results by calling doresults, aswell as donextrow if appropriate. (Note that
astored procedure can generate several setsof results—one for each select
it contains. Before the application can call dbretlen or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

If the stored procedureisinvoked with aremote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure isinvoked with an execute statement, the
return parameter values are available only if the command batch
containing theexecute statement useslocal variables, not constants, for the
return parameters.

Other routines return additional information about return parameter
values:

e dbnumrets returns the total number of return parameter values.
« dbretdata returns a pointer to a parameter value.

e dbretname returns the name of a parameter value.

« dbrettype returns the datatype of a parameter value.

« dbconvert converts the value to another datatype, if necessary.

For an example of this routine, see the dbretdata reference page.

dbnextrow, dbnumrets, dbresults, dbretdata, dbretname, dbrettype, dbrpcinit,
dbrpcparam

Determine the name of the stored procedure parameter associated with a
particular return parameter value.

char *dbretname(dbproc, retnum)

DBPROCESS *dbproc;

int

retnum;

DB-Library/C Reference Manual 283

dbretname

Parameters

Return value

Usage

284

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

rethum

The number of the return parameter value of interest. The first return value
is1. Values arereturned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
thisis not necessarily the same order as specified in the remote procedure
call.) When specifying rethum, non-return parameters do not count. For
example, if the second parameter in a stored procedureis the only return
parameter, its retnumis 1, not 2.

A pointer to the null-terminated parameter name for the specified return value.
If rethumis out of range, dbretname returns NULL.

dbretname returns a pointer to the null-terminated parameter name
associated with areturn parameter value from a stored procedure. It is
useful in conjunction with remote procedure calls and execute statements
on stored procedures.

Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of areturn parameter inside the
stored procedure are then available to the program that called the
procedure. Thisis analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as areturn parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as areturn parameter. In the case of aremote
procedure call, it isthe dbrpcparam routine that specifies whether a
parameter is areturn parameter.

When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbretname only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
astored procedure can generate several setsof results—onefor each select
it contains. Before the application can call doretname or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process al the results.)

Open Client

CHAPTER 2 Routines

See also

dbretstatus

Description

Syntax

Parameters

Return value

« |f thestored procedure isinvoked with aremote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure isinvoked with an execute statement, the
return parameter values are available only if the command batch
containing theexecute statement useslocal variables, not constants, for the
return parameters.

e Other routines return additional information about return parameter
values:

e dbnumrets returns the total number of return parameter values.

» dbretdata returns a pointer to a parameter value.

« dbretlen returns the length of a parameter value.

« dbrettype returns the datatype of a parameter value.

« dbconvert converts the value to another datatype, if necessary.
« For an example of this routine, see the dbretdata reference page.

dbnextrow, dbnumrets, dbresults, dbretdata, dbretlen, dbrettype, dbrpcinit,
dbrpcparam

Determine the stored procedure status number returned by the current
command or remote procedure call.

DBINT dbretstatus(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The return status number for the current command.

DB-Library/C Reference Manual 285

dbretstatus

Usage

See also

286

dbretstatus fetches a stored procedure’s status number. All stored
procedures that are run on Adaptive Server Enterprise return a status
number. Stored procedures that complete normally return a status number
of 0. For alist of return status numbers, see the Adaptive Server Enterprise
Reference Manual.

The dbhasretstat routine determines whether the current Transact-SQL
command or remote procedure call actually generated a return status
number. Since status numbers are a feature of stored procedures, only a
remote procedure call or a Transact-SQL command that executes a stored
procedure can generate a status number.

When executing a stored procedure, the server returns the status number
immediately after returning all other results. Therefore, the application can
call dbretstatus only after processing the stored procedure’s results by
calling dbresults, as well as dbnextrow if appropriate. (Note that a stored
procedure can generate several sets of results—one for each select it
contains. Before the application can call dbretstatus or dbhasretstat, it must
call dbresults and dbnextrow as many times as necessary to process al the
results.)

The order in which the application processes the status number and any
return parameter values is unimportant.

When astored procedure has been executed from abatch of Transact-SQL
commands (with dbsglexec or dbsglsend), then other commands might
execute after the stored procedure. This situation makes return-status
retrieval alittle more complicated.

e If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return status after the
dbresults loop, as shown in the sample program example8.c.

e If the batch can contain multiple commands, then the return status
should be retrieved inside the dbresults loop, after all rows have been
fetched with dbnextrow. For an example of how return statuses are
retrieved in this situation, see the dbhasretstat reference page.

For an example of this routine, see the dbhasretstat reference page.

dbhasretstat, donextrow, dbresults, dbretdata, dbrpcinit, dorpcparam,
dbrpcsend

Open Client

CHAPTER 2 Routines

dbrettype

Description

Syntax

Parameters

Return value

Usage

Determine the datatype of areturn parameter value generated by a stored
procedure.

int dbrettype(dbproc, retnum)

DBPROCESS *dbproc;
int retnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. Thefirst return value
is1. Values arereturned in the same order asthe parameterswere originally
specified in the stored procedure’s create procedure statement. (Note that
thisis not necessarily the same order as specified in the remote procedure
call.) When specifying retnum, non-return parameters do not count. For
example, if the second parameter in a stored procedure is the only return
parameter, its rethumis 1, not 2.

A token value for the datatype of the specified return value.

In afew cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

e SYBVARCHAR sreturned as SYBCHAR.

* SYBVARBINARY isreturned as SYBBINARY.
e SYBDATETIMN isreturned as SYBDATETIME.
e SYBMONEYN isreturned as SYBMONEY.

* SYBFLTN isreturned as SYBFLTS.

e SYBINTN isreturned as SYBINT1, SYBINTZ2, or SYBINT4, depending
on the actual type of the SYBINTN.

If retnumis out of range, -1 is returned.

» dbrettype returns the datatype of areturn parameter value generated by a
stored procedure. It is useful in conjunction with remote procedure calls
and execute statements on stored procedures.

DB-Library/C Reference Manual 287

dbrettype

288

Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of areturn parameter inside the
stored procedure are then available to the program that called the
procedure. Thisis analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as areturn parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as areturn parameter. In the case of aremote
procedure call, it isthe dbrpcparam routine that specifies whether a
parameter is areturn parameter.

When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbrettype only after processing the stored procedure’'s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
astored procedure can generate several setsof results—onefor each select
it contains. Before the application can call dbrettype or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process al the results.)

If the stored procedure isinvoked with aremote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure isinvoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement useslocal variables, not constants, for the
return parameters.

dbrettype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLTS, and so on). To convert the token value into a
readabl e token string, use dbprtype. See the dbprtype reference page for a
list of al token values and their equivalent token strings.

For alist of server datatypes, see Types on page 412.

The routines return additional information about return parameter values:
¢ dbnumrets returns the total number of return parameter values.

e dbretdata returns a pointer to a parameter value.

e dboretlen returns the length of a parameter value.

¢ dbretname returns the name of a parameter value.

¢ dbconvert converts the value to another datatype, if necessary.

Open Client

CHAPTER 2 Routines

« For an example of this routine, see the dbretdata reference page.

See also dbnextrow, dbnumrets, dbprtype, dbresults, dbretdata, dbretlen, dbretname,
dbrpcinit, dbrpcparam

Description Indicate whether the current command actually returned rows.
Syntax RETCODE DBROWS(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and

server.

Return value SUCCEED or FAIL, indicating whether the current command returned rows.

Usage e Thismacro determines whether the command currently being processed
by dbresults returned any rows. The application can call it after dbresults
returns SUCCEED.

e Theapplication must not call DBROWS after dbnextrow. The macro may
return the wrong result at that time.

e The application can use DBROWS to determine whether it needs to call
dbnextrow to process result rows. If DBROWS returns FAIL, the
application can skip the donextrow calls.

e The DBCMDROW macro determines whether the current command is one
that can returnrows (that is, a Transact-SQL select statement or an execute
on a stored procedure containing a select).

See also DBCMDROW, dbnextrow, dbresults, DBROWTY PE
DBROWTYPE
Description Return the type of the current row.

DB-Library/C Reference Manual 289

dbrpcinit

Syntax

Parameters

Return value

Usage

See also

dbrpcinit
Description

Syntax

Parameters

290

STATUS DBROWTYPE(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

Three different types of values can be returned:
e If the current row isaregular row, REG_ROW isreturned.

e If the current row isacompute row, the computeid of the row is returned.
(See the dbaltbind reference page for information on the computeid.)

« If norows have been read, or if the routine failed for any reason,
NO_MORE_ROWS s returned.

e Thismacro tells you the type (regular or compute) of the current row.
Usually you already know this, since dbnextrow also returns the row type.

dbnextrow

Initialize a remote procedure call.

RETCODE dbrpcinit(dbproc, rpcname, options)

DBPROCESS *dbproc;

char *rpcname;
DBSMALLINT options;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

rpcname
A pointer to the name of the stored procedure to be invoked.

Open Client

CHAPTER 2 Routines

options
A 2-byte bitmask of RPC options. So far, the only option availableis
DBRPCRECOMPILE, which causes the stored procedure to be recompiled
before it is executed.

Return value SUCCEED or FAIL.

Usage e An application can call astored procedure in two ways: by executing a
command buffer containing a Transact-SQL execute statement or by
making a remote procedure call (RPC).

* Remote procedure calls have afew advantages over execute statements:

e An RPC passes the stored procedure’s parametersin their native
datatypes, in contrast to the execute statement, which passes
parameters as ASCII characters. Therefore, the RPC method is faster
and usually more compact than the execute statement, because it does
not require either the application program or the server to convert
between native datatypes and their ASCII equivalents.

e Itissimpler and faster to accommodate stored procedure return
parameters with an RPC, instead of an execute statement. With an
RPC, the return parameters are automatically available to the
application. (Note, however, that areturn parameter must be specified
assuchwhenitisoriginaly added to the RPC through the dbrpcparam
routine.) If, on the other hand, a stored procedure is called with an
execute statement, the return parameter values are available only if
the command batch containing the execute statement uses local
variables, not constants, as the return parameters. Thisinvolves
additional parsing each time the command batch is executed.

» To make aremote procedure call, first call dbrpcinit to specify the stored
procedure that isto be invoked. Then call dbrpcparam once for each of the
stored procedure’s parameters. Finally, call dbrpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsglok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dobresults
multiple timesif the stored procedure contains more than one select
statement.) After al of the stored procedure’sresults have been processed,
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

« |If the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

DB-Library/C Reference Manual 291

dbrpcparam

See also

dbrpcparam

Description

Syntax

Parameters

292

e For an example of aremote procedure call, see the sample program
examples.c.

dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcparam, dbrpcsend, dbsglok

Add a parameter to a remote procedure call.

RETCODE dbrpcparam(dbproc, paramname, status, type,
maxlen, datalen, value)

DBPROCESS *dbproc;

char *paramname;
BYTE status;

int type;

DBINT maxlen;
DBINT datalen;
BYTE *value;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

paramname
A pointer to the name of the parameter to be invoked. This name must begin
with the“ @" character, which prefixes all stored procedure parameter
names. Asin the Transact-SQL execute statement, the nameisoptional. If it
isnot used, it should be specified as NULL. In that case, the order of the
dbrpcparam calls determines the parameter to which each refers.

status
A 1-byte bitmask of RPC-parameter options. So far, the only option
availableis DBRPCRETURN, which signifiesthat the application program
would like this parameter used as a return parameter.

Open Client

CHAPTER 2 Routines

type
A symbolic constant indicating the datatype of the parameter (for example,
SYBINT1, SYBCHAR, and so on). Parameter values should be sent to the
server in adatatype that matches the Adaptive Server Enterprise datatype
with which the corresponding stored procedure parameter was defined—see
Types on page 412 for alist of type constants and the corresponding
Adaptive Server Enterprise datatypes.

maxlen

For return parameters, thisisthe maximum desired byte length for the RPC
parameter val ue returned from the stored procedure. maxien isrelevant only
for valueswhose datatypes are not fixed in length—that is, char, text, binary,
and image values. If this parameter does not apply (that is, if thetypeisa
fixed length datatype such as SYBINT?2) or if you do not care about
restricting the lengths of return parameters, set maxlen to -1. maxien should
also be set to -1 for parameters not designated as return parameters.

datalen
The length, in bytes, of the RPC parameter to pass to the stored procedure.
This length should not count any null terminator.

If typeisSYBCHAR, SYBVARCHAR, SYBBINARY, SYBVARBINARY,
SYBBOUNDARY, or SYBSENSITIVITY, datalen must be specified.
Passing datalen as-1 for any of these datatypes resultsin the DBPROCESS
referenced by dbproc being marked as “ dead,” or unusable.

If type isafixed length datatype, for example, SYBINTZ2, passdatalen as-1.

If the value of the RPC parameter isNULL, pass datalen as O, even if type
is afixed-length datatype.

value
A pointer to the RPC parameter itself. If datalen is 0O, this pointer will be
ignored and treated as NUL L. Note that DB-Library does not copy *value
into itsinternal buffer space until the application calls dbrpcsend. An
application must not write over *value until after it has called dbrpcsend.

The value of type indicates the datatype of *value. See Types on page 412.
For types that have no C equivalent, such as SYBDATETIME,
SYBMONEY, SYBNUMERIC, or SYBDECIMAL, use dbconvert_psto
initialize *value.

Note An application must not write over *value until after it has called
dbrpcsend to send the remote procedure call to the server. Thisisafunctional
change from previous versions of DB-Library.

DB-Library/C Reference Manual 293

dbrpcsend

Return value

Usage

See also

dbrpcsend

Description

Syntax

294

SUCCEED or FAIL.

An application can call a stored procedure in two ways: by executing a
command buffer containing a Transact-SQL execute statement or by
making a remote procedure call (RPC). See the reference page for
dbrpcinit for a discussion of the differences between these techniques.

To make aremote procedure call, first call dbrpcinit to specify the stored
procedurethat isto beinvoked. Then call dbrpcparam oncefor each of the
stored procedure’s parameters. Finally, call dorpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsglok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dbresults
multiple timesif the stored procedure contains more than one select
statement.) After al of the stored procedure’sresults have been processed,
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

If typeis SYBCHAR, SYBVARCHAR, SYBBINARY,
SYBVARBINARY, SYBBOUNDARY, and SYBSENSITIVITY, datalen
must be specified. Passing datalen as-1 for any of these datatypes results
in the DBPROCESS referenced by dbproc being marked as “dead,” or
unusable.

If typeis SYBNUMERIC or SYBDECIMAL, use dbconvert_psto
initializethe DBNUMERIC or DBDECIMAL valuein *value and specify
its precision and scale.

If the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

For an example of aremote procedure cal, see the sample program
example8.c.

dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dorpcsend, dbsglok

Signal the end of aremote procedure call.
RETCODE dbrpcsend(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbrpweclr

Description

Syntax

Parameters

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

SUCCEED or FAIL.

e Anapplication can call astored procedurein two ways:. by executing a
command buffer containing a Transact-SQL execute statement or by
making aremote procedure call (RPC). See the reference page for
dbrpcinit for adiscussion of the differences between these techniques.

e To make aremote procedure call, first call dbrpcinit to specify the stored
procedure that isto beinvoked. Then call dbrpcparam once for each of the
stored procedure’s parameters. Finally, call dbrpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsglok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dbresults
multiple timesif the stored procedure contains more than one select
statement.) After all of the stored procedure’sresults have been processed
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

« |f the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

» For an example of aremote procedure call, see the sample program
examples.c.

dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dbrpcparam, dbsglok

Clear al remote passwords from the LOGINREC structure.

void dbrpwclr(loginrec)

LOGINREC *loginrec;

loginrec
A pointer to aL OGINREC structure. This pointer will serve as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

DB-Library/C Reference Manual 295

dbrpwset

Return value

Usage

See also

dbrpwset

Description

Syntax

Parameters

296

None.

e A Transact-SQL command batch or stored procedure running on one
server may call a stored procedure located on another server. To
accomplish this server-to-server communication, the first server,
connected to the application through dbopen, actually logsinto the second,
remote server.

dbrpwset allows the application to specify the password to be used when
the first server attempts to call the stored procedure on the remote server.
Multiple passwords may be specified, one for each server that the first
server might need to log in to.

¢ A single LOGINREC can be used repeatedly, in successive dbopen calls
to different servers. dorpwclr allows the application to remove any remote
password information currently in the LOGINREC, so that successive
callsto dbopen can contain different remote password information
(specified with dbrpwset).

dblogin, dbopen, dorpwset, DBSETLAPP, DBSETLHOST, DBSETLPWD,
DBSETLUSER

Add aremote password to the LOGINREC structure.

RETCODE dbrpwset(loginrec, srvname, password, pwlen)

LOGINREC *loginrec;

char *srvname;
char *password;
int pwlen;
loginrec

A pointer to aLOGINREC structure. This pointer will serve as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

srvname
The name of a server. A server’s nameis stored in the srvname column of
its sysservers system table. When thefirst server calls a stored procedure
located on the server designated by srvname, it will use the specified
password to log in. If srynameis NULL, the specified password will be
considered a“ universal” password, to be used with any server that does not
have a password explicitly specified for it.

Open Client

CHAPTER 2 Routines

Return value

Usage

See also

dbsafestr

Description

Syntax

password
The password that the first server will use to log in to the specified server.

pwlen
The length of the password in bytes.

SUCCEED or FAIL.

Thisroutine may fail if the addition of the specified password would overflow
the LOGINREC' sremote password buffer. (Theremote password buffer is 255
byteslong. Each password’s entry in the buffer consists of the password itself,
the associated server name, and 2 extra bytes.)

e A Transact-SQL command batch or stored procedure running on one
server may call a stored procedure located on another server. To
accomplish this server-to-server communication, the first server,
connected to the application through dbopen, actually logsinto the second,
remote server and performs a remote procedure call.

dbrpwset allows the application to specify the password to be used when
the first server attempts to call the stored procedure on the remote server.
Multiple passwords may be specified, one for each server that the first
server might need to log in to.

« |If the application has not specified a remote password for a particular
server the password defaults to the one set with DBSETLPWD (or anull
value, if DBSETLPWD has not been called). This behavior may be fine if
the application’s user has the same password on multiple servers.

* dbrpwclr clears all remote passwords from the LOGINREC.

dblogin, dbopen, dbrpwclr, DBSETLAPP, DBSETLHOST, DBSETLPWD,
DBSETLUSER

Double the quotesin a character string.
RETCODE dbsafestr(dbproc, src, srclen, dest, destlen,

guotetype)
DBPROCESS *dbproc;
char *src;
DBINT srclen;
char *dest;

DB-Library/C Reference Manual 297

dbsafestr

Parameters

Return value

Usage

See also

298

DBINT destlen;
int quotetype;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

src
A pointer to the origina string.

srclen
Thelength of src, in bytes. If srclenis-1, src is assumed to be null-
terminated.

dest
A pointer to a programmer-supplied buffer to contain the resulting string.
dest must be large enough for the resulting string plus a null terminator.

destlen
Thelength of the programmer-supplied buffer to contain the resulting string.
If destlen is-1, dest is assumed to be large enough to hold the resulting
string.

quotetype
The type of quotes to double. Table 2-24 lists the possible values for
quotetype.

Table 2-24: Values for quotetype

Value of

guotetype dbsafestr

DBSINGLE Doublesall single quotes (*) in src
DBDOUBLE Doubles all double quotes (*) in src
DBBOTH Doubles all single and double quotesin src

SUCCEED or FAIL.

dbsafestr failsif the resulting string istoo large for dest, or if an invalid
quotetype is specified.

« dbsafestr doublesthe single and/or double quotes found in a character
string. Thisis useful when specifying literal quotes within a character
string.

dbcmd, dbfecmd

Open Client

CHAPTER 2 Routines

dbsechandle

Description

Syntax

Parameters

Return value

Usage

Install user functions to handle secure logins.
RETCODE *dbsechandle(type, handler)

DBINT type;
INTFUNCPTR (*handler)();
type

An integer variable with one of the symbolic values shown in Table 2-25.
Table 2-25: Values for type (dbsechandle)

Value of type dbsechandle

DBENCRYPT Installs a function to handle password encryption

DBLABELS Installs afunction to handle login security labels
handler

A pointer to the user function that DB-Library will call whenever the
corresponding type of secure login needs to be handled.

If handler isNULL and typeis DBENCRY PT, DB-Library will use its
default encryption handler.

If handler isNULL and typeis DBLABELS, dbsechandle uninstalls any
current label handler.

SUCCEED or FAIL.
e dbsechandle installs user functions to handle secure logins.

e An application can use dbsechandle to install functions to handle two
types of secure logins:

e Encrypted password secure logins

In thistype of securelogin, the server provides the client with a key.
Theclient usesthe key to encrypt apassword, which it then returnsto
the server.

e Security label securelogins

In this type of secure login, the server asks the client for identifying
security labels, which the client then provides.
Encrypted password secure logins

e |ftypeisDBENCRY PT, dbsechandle installsthefunction that DB-Library
will call when encrypting user passwords.

DB-Library/C Reference Manual 299

dbsechandle

300

DB-Library will perform password encryption only if DBSETLENCRYPT
has been called prior to calling doopen.

DB-Library will call its default encryption handler if auser function has
not been installed.

Typically, a user function does not need to be installed for password
encryption. Thisis because DB-Library’s default encryption handler
allowsan application to perform password encryption when connecting to
an Adaptive Server Enterprise.

A user-defined encryption handler should be installed by applicationsthat
are gateways. The encryption handler will be responsible for taking the
encryption key returned by the remote server, passing it back to the client,
reading the encrypted password from the client, and returning the
encrypted password to DB-Library so that DB-Library can passit ontothe
remote server.

An encryption handler should be declared as shown in the example bel ow.
Encryption handlers on the Windows platform must be declared with

CS PUBLIC. For portability, callback handlers on other platforms should
be declared CS PUBLIC aswell. Hereis a sample declaration:

RETCODE CS_PUBLIC encryption handler (dbproc, pwd,
pwdlen, enc_key, keylen, outbuf, buflen, outlen)
DBPROCESS *dbproc;

BYTE *pwd;
DBINT pwdlen;
BYTE *enc_key;
DBINT keylen;
BYTE *outbuf;
DBINT buflen;
DBINT *outlen;
where;

e dbprocisthe DBPROCESS.

¢ pwd isthe user password to be encrypted.

¢ pwdlenisthe length of the user’s password.

« enc_key isthe key to be used during encryption.
« keylen isthe length of the encryption key.

e outbuf isabuffer in which the callback can place the encrypted
password. This buffer will be allocated and freed by DB-Library.

« hbuflenisthe length of the output buffer.

Open Client

CHAPTER 2 Routines

e outlenisapointer to aDBINT. The encryption handler should set
*outlen to the length of the encrypted password.

An encryption handler should return SUCCEED to indicate that the
password was encrypted successfully. If the encryption handler returns a
value other than SUCCEED, DB-Library will abort the connection
attempt.

Security label secure logins

If typeis DBLABELS, dbsechandle installs a function that DB-Library
will call to get login security labels.

DB-Library will send login security labels only if DBSETLABELLED has
been called prior to calling dbopen.

There are two ways for an application to define security labels:

» Theapplication can call dbsetsecurity onetime for each label it wants
to define. Most applications will use this method.

» Theapplication can call dbsechandle to install a user-supplied
function to generate security labels. Typicaly, only gateway
applications will use this method.

If an application uses both methods, the labels defined through
dbsetsecurity and the label s generated by the user-supplied function are
sent to the server at the same time.

DB-Library calls an application’s label handler during the connection
process, in responseto aserver request for login security labels. Each time
itiscalled, thelabel handler returnsasinglelabel. DB-Library sendsthese
labels, together with any labels previoudly defined using dbsetsecurity, to
the server.

DB-Library does not have a default l1abel handler.

A user-defined label handler should be installed by applications that are
gateways. The label handler will be responsible for reading the client’s
login security labels and passing them on to DB-Library so that DB-
Library can pass them on to the remote server.

A label handler should be declared as shown in the example bel ow. Label
handlers on the Windows platform must be declared with CS_PUBLIC.
For portability, callback handlers on other platforms should be declared
CS PUBLIC aswell. Hereis a sample declaration:

RETCODE CS_PUBLIC label handler (dbproc, namebuf,
nbuflen, valuebuf, vbuflen, namelen, valuelen)

DB-Library/C Reference Manual 301

dbsechandle

DBPROCESS *dbproc;

DBCHAR *namebuf ;

DBINT nbuflen;

DBCHAR *valuebuf;

DBINT vbuflen;

DBINT *namelen;

DBINT *valuelen;
where;

e dbproc isthe DBPROCESS.

¢ namebuf is abuffer in which the handler can place the name of the
login security label. This buffer is allocated and freed by DB-Library.

< nbuflen isthe length of the namebuf buffer.

e valuebuf is abuffer in which the handler can place the value of the
login security label. This buffer is allocated and freed by DB-Library.

e vhuflenisthe length of the valuebuf buffer.

¢ namelenisapointer to aDBINT. The label handler should set
*namelen to the length of the label name placed in hamebuf.

e valuelenisapointer to aDBINT. The label handler should set
*valuelen to the length of the label value placed in valuebuf.

e Table2-26 liststhereturn valuesthat arelegal for asecurity label handler.
A security label handler must return one of these values.

Table 2-26: Return values for security label handlers

Label handler

return value Indicates

DBMORELABEL Thelabel handler has set the nameand val ue of alogin security
label.
DB-Library should call the label handler again to get an
additional label.

DBENDLABEL Thelabel handler has set the name and value of alogin security
label.
DB-Library should not call the label handler again.

DBERRLABEL A label handler error has occurred. DB-Library should abort
the connection attempt.

See also DBSETLENCRY PT, dbopen.

302 Open Client

CHAPTER 2 Routines

dbsendpassthru
Description Send a TDS packet to a server.
Syntax RETCODE dbsendpassthru(dbproc, send_bufp)

Parameters

Return value

Usage

DBPROCESS *dbproc;
DBVOIDPTR send_bufp;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

send_bufp

A pointer to abuffer containing the TDS packet to be sent to the server. A
packet has a default size of 512 bytes. This size may be changed using
DBSETLPACKET.

DB_PASSTHRU_MORE, DB_PASSTHRU_EOM, or FAIL.

dbsendpassthru sends a TDS (Tabular Data Stream) packet to a server.

TDSisan application protocol used for thetransfer of requests and request
results between clients and servers. Under ordinary circumstances, a DB-
Library/C application does not have to deal directly with TDS, because
DB-Library/C manages the data stream.

dbrecvpassthru and dbsendpassthru are useful in gateway applications.
When an application servesastheintermediary between two servers, it can
use these routines to pass the TDS stream from one server to the other,
eliminating the process of interpreting the information and re-encoding it.

dbsendpassthru sendsapacket of bytesfrom the buffer to which send_bufp
points. Most commonly, send_bufp will be *recv_bufp as returned by
dbrecvpassthru. send_bufp may also be the address of a user-allocated
buffer containing the packet to be sent.

A packet has a default size of 512 bytes. An application can changeits
packet size using DBSETLPACKET. See the dbgetpacket and
DBSETLPACKET reference pages.

dbsendpassthru returns DB_PASSTHRU_EOM (if the TDS packet in the
buffer is marked as EOM (End Of Message). If the TDS packet is not the
last in the stream, dbsendpassthru returns DB_ PASSTHRU_MORE.

DB-Library/C Reference Manual 303

dbsendpassthru

« A DBPROCESS connection that is used for a dbsendpassthru operation
cannot be used for any other DB-Library/C function until
DB_PASSTHRU_EOM isreceived.

e Thisisacode fragment using dbsendpassthru:
/*

** The following code fragment illustrates the
** yse of dbsendpassthru() in an Open Server

** gateway application. It will continually get
** packets from a client, and pass them through
** to the remote server.

* %

** The routine srv recvpassthru() is the Open
** Server counterpart required to complete this
** passthru operation.

*/
DBPROCESS *dbproc;
SRV_PROC *Srvproc;
int ret;
BYTE *packet;
while (1)
ret = srv_recvpassthru(srvproc, &packet,
(int *)NULL) ;
if (ret == SRV_S PASSTHRU FAIL)

{
fprintf (stderr, "ERROR - \
srv_recvpassthru failed in \
lang execute.\n") ;

exit () ;
}
/*
** Now send the packet to the remote server
*/
if (dbsendpassthru(dbproc, packet) == FAIL)
{ fprintf (stderr, "ERROR - dbsendpassthru)
failed in lang_execute.\n");
exit () ;
}
/*

** We’ve sent the packet, so let’s see if
** there’s any more.

*/

if (ret == SRV_S PASSTHRU MORE)

304 Open Client

CHAPTER 2 Routines

See also

continue;
else
break;

}

dbrecvpassthru

dbservcharset

Description

Syntax

Parameters

Return value

Usage

See also

Get the name of the server character set.

char *dbservcharset(dbproc)

DBPROCESS *dbproc;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

A pointer to the null-terminated name of the server’s character set, or NULL in
case of error.

dbservcharset returns the name of the server’s character set.

DB-Library/C clients can use a different character set than the server or
serversto which they are connected. If aclient and server are using
different character sets, and the server supports character trandation for
the client’s character set, it will perform all conversionsto and from its
own character set when communicating with the client.

An application can inform the server what character set it isusing
DBSETLCHARSET.

To determine if the server is performing character set trandations, an
application can call dbcharsetconv.

To get the name of the client character set, an application can call
dbgetcharset.

dbcharsetconv, dbgetcharset, DBSETLCHARSET

DB-Library/C Reference Manual 305

dbsetavalil

dbsetavail

Description

Syntax

Parameters

Return value

Usage

See also

dbsetbusy

Description

Syntax

Parameters

306

Marks a DBPROCESS as being available for general use.

void dbsetavail(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

None.

This routine marks the DBPROCESS as being available for general use. Any
subsequent calls to DBISAVAIL will return “TRUE”, until some use is made of
the DBPROCESS. Many DB-Library routines automatically set the
DBPROCESSto “not available.” Thisisuseful when many different parts of a
program are attempting to share a single DBPROCESS.

DBISAVAIL

Call auser-supplied function when DB-Library is reading from the server.

void dbsetbusy(dbproc, busyfunc)

DBPROCESS *dbproc;
int *(*busyfunc)())();

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

busyfunc
The user-supplied function that DB-Library will call whenever it accesses
the server. DB-Library calls busyfunc() with a single parameter—a pointer
to the DBPROCESS from the dbsetbusy call.

busyfunc() returns a pointer to afunction that returns an integer.

Open Client

CHAPTER 2 Routines

Return value None.

Usage » Thisroutine associates a user-supplied function with the specified dbproc.
The user-supplied function will be automatically called whenever DB-
Library isreading or waiting to read output from the server. For example,
an application may want to print a message whenever the server is
accessed. dbsetbusy will cause the user-supplied function busyfunc() to be
caledin this case.

e Similarly, dbsetidle may also be used to associate a user-supplied function,
idlefunc(), with adbproc. idlefunc() will be automatically called whenever
DB-Library has finished reading output from the server.

* Theserver sendsresult datato the applicationin packets of 512 bytes. (The
final packet in a set of results may be less than 512 bytes.) DB-Library
calls busyfunc() at the beginning of each packet and idlefunc() at the end
of each packet. If the output from the server spans multiple packets,
busyfunc() and idlefunc() will be called multiple times.

» Hereisan example of defining and installing busyfunc() and idlefunc():

Note The application functions busyfunc() and idlefunc() are callback
event handlers and must be declared as CS PUBLIC for the Windows
platform. For portability, callback handlers on other platforms should be
declared CS PUBLIC aswell.

/*
** busyfunc returns a pointer to a function that
** returns an integer.

*/

int (*busyfunc ()) () ;
void idlefunc () ;
int counterfunc () ;
main ()

{

DBPROCESS *dbproc;

dbproc = dbopen(login, NULL) ;

/*

** Now that we have a DBPROCESS, install the
** pbusy-function and the idle-function.

*/

dbsetbusy (dbproc, busyfunc) ;

DB-Library/C Reference Manual 307

dbsetbusy

dbsetidle (dbproc, idlefunc) ;

dbcmd (dbproc, "select * from sysdatabases");
dbcmd (dbproc, " select * from sysobjects");
dbsglexec (dbproc) ;
/*
**x DB-Library calls busyfunc() for the first time
** during dbsglexec (). Depending on the size of the

** results, it may call busyfunc() again during
** processing of the results.
*/

while (dbresults (dbproc) != NO MORE RESULTS)

dbprrow (dbproc) ;

/*
** DB-Library calls idlefunc() each time a packet
** of results has been received. Depending on the

** gsize of the results, it may call idlefunc()
** multiple times during processing of the results.

*/
}

int CS_PUBLIC (*busyfunc (dbproc)) ()
DBPROCESS dbproc;

{

printf ("Waiting for data...\n");

return (counterfunc) ;

}

void CS PUBLIC idlefunc (procptr, dbproc)
/-k
** jdlefunc’s first parameter is a pointer to a

** routine that returns an integer. This is the same
** pointer that busyfunc returns.

*/
int (*procptr) () ;
DBPROCESS *dbproc;

{

int count;

printf ("Data is ready.\n");

count = (*procptr) () ;
printf ("Counterfunc has been called %d %s.\n",
count, (count == 1 ? "time" : "times"));

308 Open Client

CHAPTER 2 Routines

}

int counterfunc/()

{

static int counter = 0;

return (++counter) ;

}

See also dbsetidle
dbsetconnect
Description Specify server connection information to use instead of directory services.
Syntax RETCODE dbsetconnect(service_type, net_type, net_name, machine_name,
port)
char *service_type;
char *net_type;
char *net_name;
char *machine_name;
char *port;
Parameters service type

The type of connection. Default values are;

e “master” specifiesamaster line, which isused by server applicationsto
listen for client queries.

e “guery” specifiesaquery line, whichis used by client applications to
find servers.

net_type
The name of the network protocol. Valid values are;

e “tcp” for TCP/IP—all UNIX platforms
e “decnet” for DECnet

net_name
Descriptor of the network. Open Client and Open Server do not currently
use net_name; it is a placeholder should Sybase need to define this
information in the future. For TCP/IP networks, the net_nameis set to
“ether.”

DB-Library/C Reference Manual 309

dbsetdefcharset

Return value

Usage

See also

machine_name

The network name of the node, or machine, that the server isrunning on. The
maximum number of charactersfor machine_name depends on the protocol
specified in the entry:

¢ For TCP/IP, the maximum is 32.
¢ For DECnet, the maximum is 6.

Use the /bin/hostname command on UNIX platformsto determine the
network name of the machine you are logged in to.

port

Port used by the server to receive queries. The TCP/IP and DECnet
protocols specify this element differently:

e TCP/IP: Registered port numbers range from 1024 to 49151. Sybase
recommends to use a port number from this range.

e DECnet: Valid object numbersrangefrom 128 to 253. Object namesare
asovalid.

Use the netstat command to check which port numbers are in use.

SUCCEED or FAIL.

This routine lets the application specify connection information such as
service type, network protocol type, network name of the server, server
name, and port number required to connect to the server. This connection
information is used for every subsequent call to dbopen.

If dbsetconnect is used, DSQUERY and normal directory serviceslookup
for aserver entry is bypassed.

If dbsetconnect has not been called, the connection information is found
using directory services. The default directory serviceistheinterfacesfile
for UNIX and the sql.ini file for Windows. Other directory services may
be specified using the configuration file, libtcl.cfg.

See the Open Client and Open Server Configuration Guide.

dbopen

dbsetdefcharset
Set the default character set for an application.

Description

310

Open Client

CHAPTER 2 Routines

Syntax

Parameters

Return value

Usage

See also

dbsetdeflang

Description

Syntax

Parameters

Return value

Usage

RETCODE dbsetdefcharset(charset)

char *charset;

charset
The name of the character set to use. charset must be a null-terminated
character string.

SUCCEED or FAIL.
» dbsetdefcharset sets an application’s default character set.

e DB-Library uses a default character set when no DBPROCESS structure
is available or when localization information for a DBPROCESS
structure’'s character set cannot be found.

e |f an application does not call dosetdefcharset, its default character set is
the character set of the first DBPROCESS connection opened, or iso_1 if
no DBPROCESS is open.

e |f an application plansto call both dbsetdefcharset and dbsetdeflang, it
must call dbsetdefcharset first.

dbsetdeflang, dbsetdefcharset, dblogin, dbopen

Set the default language name for an application.
RETCODE dbsetdeflang(language)

char *language;

language
The name of the national language to use. language must be a null-
terminated character string.

SUCCEED or FAIL.

» dbsetdeflang sets an application’s default national language.

e DB-Library uses a default language when no DBPROCESS structure is
available or when localization information for a DBPROCESS structure's
language cannot be found.

DB-Library/C Reference Manual 311

dbsetidle

See also

dbsetidle

Description

Syntax

Parameters

Return value

Usage

312

e If an application does not call dbsetdeflang, its default language is the
language of thefirst DBPROCESS connection opened, or us_englishif no
DBPROCESS is open.

DBSETLNATLANG

Call a user-supplied function when DB-Library is finished reading from the
server.

void dbsetidle(dbproc, idlefunc)

DBPROCESS *dbproc;

void (*idlefunc)();

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
Server.

idlefunc
The user-supplied function that will be called by DB-Library whenever the
server hasfinished sending datato the host. DB-Library callsidlefunc() with
two parameters—the return value from busyfunc() (a pointer to afunction
that returns an integer) and a pointer to the DBPROCESS from the dbsetidle
call.

idlefunc() returns void.
None.

e Thisroutine associates a user-supplied function with the specified dbproc.
The user-supplied function will be automatically called when DB-Library
is finished reading or waiting to read a packet of output from the server.
For example, an application may want to print a message whenever the
server has finished sending datato the host. dbsetidle will cause the user-
supplied function idlefunc() to be called in this case.

e Similarly, dbsetbusy may also be used to associate a user-supplied
function, busyfunc(), with a dbproc. busyfunc() will be automatically
called whenever DB-Library isreading or waiting to read a packet of
output from the server.

Open Client

CHAPTER 2 Routines

See also

dbsetifile

Description

Syntax

Parameters

Return value

Usage

e Theserver sendsresult datato the applicationin packets of 512 bytes. (The
final packet in a set of results may be less than 512 bytes.) DB-Library
calls busyfunc() at the beginning of each packet and idlefunc() at the end
of each packet. If the output from the server spans multiple packets,
busyfunc() and idlefunc() will be called multiple times.

» Seethedbsetbusy reference pagefor an example of defining and installing
busyfunc() and idlefunc().

dbsetbusy

Specify the name and location of the Sybase interfacesfile.

void dbsetifile(filename)

char *filename;

filename
The name of the interfacesfile that gets searched during every subsequent
call to dbopen. If this parameter is NULL, DB-Library will revert to the
default file name.

None.

e Thisroutine lets the application specify the name and location of the
interfaces file that will be searched during every subsequent call to
dbopen. The interfaces file contains the name and network address of
every server available on the network.

« |f dbsetifile has not been called, acall to doopen initiates the following
default behavior: DB-Library attemptsto use afile namedinterfacesinthe
directory named by the SY BA SE environment variable or logical name. If
SYBASE has not been set, DB-Library attemptsto use afile called
interfaces in the home directory of the user named “ sybase.”

e Seethe Open Client and Open Server Configuration Guide.

Note On non-UNIX platforms, client applications may use a method to find
server address information that is different from the UNIX interfacesfile. See
the Open Client and Open Server Configuration Guidefor detailed information
on how clients connect to servers.

DB-Library/C Reference Manual 313

dbsetinterrupt

See also

dbopen

dbsetinterrupt

Description

Syntax

Parameters

Return value

314

Calls user-supplied functionsto handle interrupts while waiting on aread from
the server.

void dbsetinterrupt(dbproc, chkintr, hndlintr)

DBPROCESS *dbproc;

int (*chkintr)();
int (*hndlintr)();
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

chkintr
A pointer to the user function that DB-Library callsto check whether an
interrupt ispending. DB-Library callsit periodically whilewaiting on aread
from the server. DB-Library cals chkintr() with a single parameter—a
pointer to the DBPROCESS from the dbsetinterrupt call.

chkintr() must return “TRUE” or “FALSE”.

hndlintr
A pointer to the user function that DB-Library callsif aninterrupt is
returned. DB-Library calls hndlintr() with a single parameter—a pointer to
the DBPROCESS from the dbsetinterrupt call.

Table 2-27 lists the legal return values of hndlintr:

Table 2-27: Return values for the hndlintr() function

Return value To indicate

INT_EXIT Abort the program. (Noteto UNIX programmers. DB-Library
will not leave a corefile.

INT_CANCEL Abort the current command batch. Resultsare not flushed from
the DBPROCESS connection.

INT_CONTINUE Continueto wait for the server response.

None.

Open Client

CHAPTER 2 Routines

Usage

DB-Library does non-blocking reads from the server. While waiting for a
read from the server, it calls the chkintr() function to seeif an interrupt is
pending. If chkintr() returns“ TRUE” and a handler has been installed as
the hndlintr() for dbsetinterrupt, hndlintr() is called. dbsetinterrupt is
provided so that the programmer can substitute alternative interrupt
handling for the time that the host program is waiting on reads from the
server.

Depending on the return value from hndlintr(), DB-Library performs one
the following actions:

e Sends an attention to the server, causing the server to discontinue
processing (INT_CANCEL). For details, see “Canceling from the
interrupt handler” on page 315.

» Continues reading from the server (INT_CONTINUE).
» Exitsthe program (INT_EXIT).

Canceling from the interrupt handler

If hndlintr() returns INT_CANCEL, DB-Library sends an attention token
to the server. This causes the server to discontinue command processing.
The server may send additional results that have already been computed.
When control returns to the mainline code, the mainline code should do
one of the following:

e Flush the results using dbcancel
e Processthe results normally

You cannot call dbcancel in your interrupt handler, because thiswill cause
output from the server to DB-Library to become out of sync. The steps
below describe a correct method to cancel from the interrupt handler.

e Associateanint_canceed flag with the DBPROCESS structure. Use
dbsetuserdata to install apointer to the flag in the DBPROCESS, and
dbgetuserdata to get the address of the flag.

e Code hndlintr() to set the int_canceled flag to indicate whether or not
itisreturning INT_CANCEL.

« Inthe mainline code, check the flag before each call to dbresults or
dbnextrow. When the int_canceled flag indicates that hndlintr() has
aborted the server command, the mainline code should call dbcancel
and clear the flag.

DB-Library/C Reference Manual 315

dbsetinterrupt

316

Example

Here are example chkintr() and hndlintr() routines:

Note The applications chkintr() and hndlintr() routines are callback
functionsand must be declared asCS_PUBL IC for the Windows platform.
For portability, callback handlers on other platforms should be declared
CS PUBLIC aswell.

int CS_PUBLIC chkintr (dbproc)
DBPROCESS *dbproc;

{

/*
** This routine assumes that the application
** gsets the global variable
*% "OS interrupt happened" upon catching
** an interrupt using some operating system
** facility.
*/
if (OS_interrupt happened)
{
/*
** Clear the interrupt flag, for
** future use.
*/
OS_interrupt happened = FALSE;
return (TRUE) ;
}
else
return (FALSE) ;

int CS_PUBLIC hndlintr (dbproc)

DBPROCESS *dbproc;
char response [10] ;
DBBOOL *int canceled;
/*

** We assume that a DBBOOL flag has been

** attached to dbproc with dbsetuserdata.

*/

int canceled = (DBBOOL *) dbgetuserdata (dbproc) ;

Open Client

CHAPTER 2 Routines

See also

DBSETLAPP

Description

Syntax

if (int canceled == (DBBOOL *)NULL)
{
printf (“Fatal Error: no int cancel flag \
in the DBPROCESS\n”) ;
return (INT_EXIT) ;
}
*int canceled = FALSE;
printf ("\nAn interrupt has occurred. Do you \
want to:\n\n");
printf ("\tl) Abort the program\n") ;
printf ("\t2) Cancel the current query\n");
printf ("\t3) Continue processing the current)\
query’s results\n\n");
printf ("Press 1, 2, or 3, followed by the \
return key: ");
gets (response) ;
switch (response [0])
{
case '1’:
return (INT EXIT) ;
break;
case '2':
*int canceled = TRUE;
return (INT CANCEL) ;
break;
case '3’:
return (INT CONTINUE) ;
break;
default:
printf ("Response not understood. \
Aborting program.\n") ;
return (INT EXIT) ;
break;

}
}

dbcancel, dbgetuserdata, dbsetuserdata, dbsetbusy, dbsetidle

Set the application name in the LOGINREC structure.
RETCODE DBSETLAPP(loginrec, application)

DB-Library/C Reference Manual 317

DBSETLCHARSET

Parameters

Return value

Usage

See also

LOGINREC *loginrec;

char *application;

loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

application
The application name that will be sent to the server. It must be anull-
terminated character string. The maximum length of the string, not including
the null terminator, is 30 characters.

SUCCEED or FAIL.

e Thismacro setsthe application field in the LOGINREC structure. For it to
have any effect, it must be called before dbopen.

¢ [tisnot necessary to cal thisroutine. By default, the application namewill
be anull value.

e The server uses the application namein its sysprocesses table to help
identify your process. If you set the application name, you will seeitif you
query the sysprocesses table in the master database.

dblogin, dbopen, DBSETLHOST, DBSETLPWD, DBSETLUSER

DBSETLCHARSET

Description

Syntax

Parameters

318

Set the character set in the LOGINREC structure.
RETCODE DBSETLCHARSET(loginrec, char_set)

LOGINREC *loginrec;
DBCHAR *char_set;

loginrec
A pointer to aL OGINREC structure to be passed as an argument to dbopen.
LOGINREC structures are obtained using dblogin.

Open Client

CHAPTER 2 Routines

Return value

char_set
The name of the character set the client will use. char_set must be anull-
terminated string. Default values for char_set include “iso_1" for
I SO-8859-1 (most platforms), “cp850” for Code Page 850 (IBM RS/6000),
and “roman8” for the Roman8 character set (HP platforms).

To indicate that no character set conversion is desired, pass char_set as
NULL.

SUCCEED or FAIL.

Usage e DBSETLCHARSET setsthe client character set in aLOGINREC structure.

e DB-Library/C clients may use a different character set than the server or
serversto which they are connected. DBSETLCHARSET isused to inform
the server what character set a client isusing.

» Becausethe LOGINREC is passed as a parameter in the dbopen call that
establishes the client’s connection with a server, DBSETLCHARSET must
be called before dbopen to have any effect.

* Theserver will perform all conversionsto and from its own character set
when communicating with a client using a different character set.

« If no conversionisdesired, call DBSETLCHARSET with char_set as
NULL.

See also dbgetcharset, dblogin, dbopen

Description Specify whether or not network password encryption is to be used when
logging into Adaptive Server Enterprise.

Syntax RETCODE DBSETLENCRYPT(loginrec, enable)
LOGINREC *loginrec;
DBBOOL enable;

Parameters loginrec

A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should request an encrypted password at login time.

DB-Library/C Reference Manual 319

DBSETLHOST

Return value SUCCEED or FAIL.

Usage e DBSETLENCRYPT specifies whether or not network password encryption
isto be used when logging into Adaptive Server Enterprise. If an
application does not call DBSETLENCRYPT, password encryption is not
used.

¢ Network password encryption provides a protected mechanism for
authenticating a user’s identity.

e If an application specifiesthat network password encryptionisto be used,
then when the application attempts to open a connection:

¢ No password is sent with theinitial connection request. At thistime,
the client indicates to the server that encryption is desired.

e The server replies to the connection request with an encryption key.

e DB-Library usesthe key to encrypt the user’s password and remote
passwords, if any, and sends the encrypted passwords back to the
server.

e Theserver usesthekey to decrypt the encrypted passwords and either
accepts or rgjects the login attempt.

e If password encryption is not specified, then when an application attempts
to open a connection:

e A password isincluded with the connection request.

e The server either accepts or rejects the login attempt.

See also dbsechandle
Description Set the host name in the LOGINREC structure.
Syntax RETCODE DBSETLHOST(loginrec, hostname)
LOGINREC *loginrec;
char *hostname;
Parameters loginrec

A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

320 Open Client

CHAPTER 2 Routines

Return value

Usage

See also

hostname
The host name that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters.

SUCCEED or FAIL.

¢ Thismacro setsthe host namein the LOGINREC structure. For it to have
any effect, it must be called before dbopen.

e The host name will show up in the sysprocesses table in the master
database.

e Itisnot necessary to call thisroutine. If it isnot called, DB-Library will
set the default value for the host name. Thisdefault valuewill generally be
aversion of the host machine's name provided by the operating system.

dblogin, dbopen, DBSETLAPP, DBSETLPWD, DBSETLUSER

DBSETLMUTUALAUTH

Description

Syntax

Parameters

Return value

Usage

See also

Enables or disables mutual authentication of the connection’s security
mechanism.

RETCODE DBSETLMUTUALAUTH(loginrec, enable)

LOGINREC *loginrec;
DBBOOL *enable;

loginrec
A pointer to a LOGINREC structure, which is passed as an argument to
dbopen. You can alocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should enable mutual authentication.

SUCCEED or FAIL.

« For DBSETLMUTUALAUTH to take effect, it must be called before
dbopen() and DBSETLNETWORKAUTH must be enabled.

« |f DBSETLMUTUALAUTH isnot called, mutual authentication is
disabled by defauilt.

dblogin, DBSETLNETWORKAUTH, DBSETLSERVERPRINCIPAL

DB-Library/C Reference Manual 321

DBSETLNATLANG

Description Set the national language namein the LOGINREC structure.
Syntax RETCODE DBSETLNATLANG(loginrec, language)
LOGINREC *loginrec;
char *language;
Parameters loginrec

Return value

A pointer to aLOGINREC structure to be passed as an argument to dbopen.
LOGINREC structures are obtained using dblogin.

language
The name of the national language to use. language must be a null-
terminated character string.

SUCCEED or FAIL.

Usage e Thismacro sets the user language in the LOGINREC structure. If you
wish to set a particular user language, call DBSETLNATLANG before
dbopen.

e Call DBSETLNATLANG only if you do not wish to use the server’s default
national language.

See also dblogin, dbopen, dbsetdeflang

DBSETLNETWORKAUTH

Description Enables or disables network-based authentication.

Syntax RETCODE DBSETLNETWORKAUTH(loginrec, enable)

LOGINREC *loginrec;
DBBOOL *enable;
Parameters loginrec

Return value

322

A pointer to a LOGINREC structure, is passed as an argument to dbopen.
You can allocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should enable network authentication.

SUCCEED or FAIL.

Open Client

CHAPTER 2 Routines

Usage

See also

dbsetloginfo

Description

Syntax

Parameters

Return value

Usage

If DBSETLNETWORKAUTH is not called, network authentication is
disabled by defauilt.

dblogin, DBSETLMUTUALAUTH, DBSETLSERVERPRINCIPAL

Transfer TDS login information from a DBLOGINFO structureto a
LOGINREC structure.

RETCODE dbsetloginfo(loginrec, loginfo)

LOGINREC *login;

DBLOGINFO *loginfo;

login
A pointer to a LOGINREC structure. This pointer will be passed as an
argument to dbopen. You can alocate a LOGINREC structure by calling
dblogin.

loginfo
A pointer to a DBLOGINFO structure that contains login parameter
information.

SUCCEED or FAIL.

e dbsetloginfo transfers TDS login information from a DBLOGINFO
structure to a LOGINREC structure. After the information is transferred,
dbsetloginfo frees the DBLOGINFO structure.

e An application needsto call dbsetloginfo only if (1) it is an Open Server
gateway application and (2) it isusing TDS passthrough.

e TDS(Tabular Data Stream) isan application protocol used for the transfer
of requests and request results between clients and servers.

« Whenaclient connectsdirectly to aserver, thetwo programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the application forwards TDS packets
between the client and a remote server without examining or processing
them. For thisreason, theremote server and theclient must agreeonaTDS
format to use.

DB-Library/C Reference Manual 323

dbsetloginfo

324

dbsetloginfo isthe second of four calls, two of them Server Library cals,
that allow aclient and remote server to negotiate aTDS format. The calls,
which can only be madein a SRV_CONNECT event handler, are
described here:

srv_getloginfo allocatesaDBL OGINFO structureand fillsitwithTDS
information from aclient SRV_PROC.

dbsetloginfo transfersthe TDS information retrieved by srv_getloginfo
from the DBLOGINFO structure to a DB-Library/C LOGINREC
structure, and then frees the DBLOGINFO structure. After the
information is transferred, the application can use this LOGINREC
structure in the dbopen call that establishes its connection with the
remote server.

dbgetloginfo transfers the remote server’sresponseto theclient’'sTDS
information from a DBPROCESS structure into a newly-allocated
DBLOGINFO structure.

srv_setloginfo sends the remote server’s response, retrieved by
dbgetloginfo, to the client, and then frees the DBLOGINFO structure.

Thisisan example of a SRV_CONNECT handler preparing a remote
connection for TDS passthrough:

RETCODE connect handler (srvproc)
SRVPROC *sSrvproc;
{
SYBLOGINFO *loginfo;
LOGINREC *loginrec;
DBPROCESS *dbproc;

/*
** Get the TDS login information from the
** client SRV_PROC.
*/
srv_getloginfo (srvproc, &loginfo) ;
/* Get a LOGINREC structure */
loginrec = dblogin() ;
/-k
** ITnitialize the LOGINREC with the logininfo
** from the SRV_PROC.
*/

dbsetloginfo (loginrec, loginfo) ;

/* Connect to the remote server */
dbproc = dbopen(loginrec, REMOTE_ SERVER NAME)

Open Client

CHAPTER 2 Routines

See also

dbsetlogintime

Description

Syntax

Parameters

Return value

Usage

DB-Library/C Reference Manual

/*
** Get the TDS login response informationfrom
** the remote connection.
*/
dbgetloginfo (dbproc, &loginfo) ;
/*
** Return the login response information to
** the SRV_PROC.
*/
srv_setloginfo (srvproc, loginfo) ;
/* Accept the connection and return */

srv_senddone (srvproc, 0, 0, 0);
return (SRV_CONTINUE) ;

dbgetloginfo, dbrecvpassthru, dbsendpassthru

Set the number of seconds that DB-Library waits for a server responseto a
reguest for a DBPROCESS connection.

RETCODE dbsetlogintime(seconds)

int

seconds
The timeout value—the number of seconds that DB-Library waits for a
login response before timing out. A timeout value of 0 representsan infinite
timeout period.

seconds;

SUCCEED or FAIL.

This routine sets the length of time in seconds that DB-Library will wait
for alogin response after calling dbopen. The default timeout value is 60

When aconnection attempt ismade between aclient and aserver, thereare
two ways in which the connection can fail (assuming that the systemis
correctly configured):

The machine that the server is supposed to be on is running correctly
and the network is running correctly.

325

DBSETLPACKET

In this case, if thereis no server listening on the specified port, the
machine the server is supposed to be on will signal the client, through
anetwork error, that the connection cannot be formed. Regardless of
dbsetlogintime, the connection fails.

¢ The machine that the server isonis down.

In this case, the machine that the server is supposed to be on will not
respond. Because “no response” is not considered to be an error, the
network will not signal the client that an error has occurred. However,
if dbsetlogintime has been called to set a timeout period, atimeout
error will occur when the client failsto receive a response within the
set period.

See also dberrhandle, dbsettime
DBSETLPACKET
Description Set the TDS packet size in an application’s LOGINREC structure.
Syntax RETCODE DBSETLPACKET(login, packet_size)
LOGINREC *login;
short packet_size;
Parameters login

Return value

Usage

326

A pointer to the LOGINREC structure to be passed as an argument to
dbopen when logging in to the server. An application can obtain a
LOGINREC structure using dblogin.

packet_size
The packet size being requested, in bytes. The server will set the actual
packet size to a value less than or equal to this requested size.

SUCCEED or FAIL.

e DBSETLPACKET setsthe packet sizefield in an application’s LOGINREC
structure. When the application logs into the server, the server setsthe
TDS packet size for that DBPROCESS connection to be equal to or less
than the value of thisfield. The packet sizeis set to avalue less than the
value of the packet size field if the server is experiencing space
constraints. Otherwise, the packet size will be equal to the value of the
field.

Open Client

CHAPTER 2 Routines

See also

DBSETLPWD

Description

Syntax

Parameters

If an application sends or receives large amounts of text or image data, a
packet size larger than the default 512 bytes may improve efficiency, since
it results in fewer network reads and writes.

To determine the packet size that the server has set, an application can call
dbgetpacket.

TDS (Tabular Data Stream) isan application protocol used for the transfer
of requests and request results between clients and servers.

TDSdatais sent in fixed-size chunks, called packets. TDS packets have a
default size of 512 bytes. The only way an application can changethe TDS
packet sizeisthrough DBSETLPACKET. If DBSETLPACKET isnot called,
all DBPROCESS connections in an application will use the default size.

Different DBPROCESS connections in an application may use different
packet sizes. To set different packet sizes for DBPROCESS connections,
an application can either:

e Changethe packet sizein asingle LOGINREC between the dbopen
calls that create the DBPROCESS connections, or

e Setdifferent packet sizesin multiple LOGINREC structures, and use
these different LOGINREC structures when creating the
DBPROCESS connections.

Because the actual packet size for a DBPROCESS connectionis set when
the DBPROCESS s created, callsto DBSETLPACKET will have no effect
on the packet sizes of DBPROCESSes already allocated using dbopen.

dblogin, dbopen, dbgetpacket

Set the user server password in the LOGINREC structure.
RETCODE DBSETLPWD(loginrec, password)

LOGINREC *loginrec;
char *password,;

loginrec

A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

DB-Library/C Reference Manual 327

DBSETLSERVERPRINCIPAL

Return value

Usage

See also

password
The password that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters.

SUCCEED or FAIL.

e Thismacro setsthe user server password in the LOGINREC structure. For
it to have any effect, it must be called before dbopen.

e By default, the password field of the LOGINREC has a null value.
Therefore, you do not need to call this routine if the password is anull
value.

e DB-Library does not automatically blank out the password in loginrec
after acall todbopen. Therefore, if you want to minimizetherisk of having
areadable password in your DB-Library program, you should set
password to something else after you call dblogin.

dblogin, dbopen, DBSETLAPP, DBSETLHOST, DBSETLUSER

DBSETLSERVERPRINCIPAL

Description

Syntax

Parameters

Return value

Usage

See also

328

Setsthe server’s principal name in the LOGINREC structure, if required.
DBSETLSERVERPRINCIPAL(loginrec, name)

LOGINREC *loginrec;
char *name;
loginrec

A pointer to a LOGINREC structure, which is passed as an argument to
dbopen. You can alocate a LOGINREC structure by calling dblogin.

name
The server’s principal name. The maximum length of the string, not
including the null terminator, is 255 characters.

SUCCEED or FAIL.

« For DBSETLSERVERPRINCIPAL totake effect, it must be called before
dbopen() and DBSETLNETWORKAUTH must be enabled.

* |f DBSETLSERVERPRINCIPAL isnot called, the server nameis set as
the principal name.

dblogin, DBSETLMUTUALAUTH, DBSETLNETWORKAUTH

Open Client

CHAPTER 2 Routines

Description Set the user name in the LOGINREC structure.
Syntax RETCODE DBSETLUSER(loginrec, username)
LOGINREC *loginrec;
char *username;
Parameters loginrec

A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

username
The user name that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters. The server will use username to determine who
is attempting the connection. The server usernames are defined in the
syslogins table in the master database.

Return value SUCCEED or FAIL.

Usage e Thismacro setsthe user namein the LOGINREC structure. For it to have
any effect, it must be called before dbopen.

* Inmost environments, this macro is optional. If it is not called, DB-
Library will generally set the default value for the user name.

Note On UNIX: the user name defaults to the UNIX login name.

On MPE/XL: The user name defaults to the value of the system environment

variable HPUSER.
See also dblogin, dbopen, DBSETLHOST, DBSETLPWD, DBSETLAPP
dbsetmaxprocs
Description Set the maximum number of simultaneously open DBPROCESS structures.
Syntax RETCODE dbsetmaxprocs(maxprocs)

int maxprocs;

DB-Library/C Reference Manual 329

dbsetnull

Parameters

Return value

Usage

See also

dbsetnull

Description

Syntax

Parameters

330

maxprocs
The new limit on simultaneously open DBPROCESS structures for this
particular program.

SUCCEED or FAIL.

e A DB-Library program has a maximum number of simultaneously open
DBPROCESS structures. By default, thisnumber is 25. The program may
change this limit by calling dbsetmaxprocs.

e The program may find out what the current limit is by calling
dbgetmaxprocs.

dbgetmaxprocs, dbopen

Define substitution values to be used when binding null values.
RETCODE dbsetnull(dbproc, bindtype, bindlen, bindval)

DBPROCESS *dbproc;

int bindtype;
int bindlen;
BYTE *pindval;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

bindtype
A symbolic value specifying the type of variable binding to which the
substitute value will apply. (See the reference page for dbbind.)

bindlen
Thelength in bytes of the substitute value you are supplying. DB-Library
ignoresitinall casesexcept CHARBIND and BINARY BIND. All the other
types are either fixed length or have a special terminator or embedded byte-
count that provides the length of the data.

Open Client

CHAPTER 2 Routines

bindval
A generic BY TE pointer to the value you want to use as a null substitution
value. dbsetnull makes a copy of the value, so you can free this pointer
anytime after this call.

Return value SUCCEED or FAIL.

dbsetnull returns FAIL if you giveit an unknown bindtype. It will alsofail if the
specified DBPROCESS is dead.

Usage * Thedbbind and dbaltbind routines bind result column values to program
variables. After the application callsthem, callsto dbnextrow and dbgetrow
automatically copy result values into the variables to which they are
bound. If the server returns anull value for one of the result columns, DB-
Library automatically places a substitute value into the result variable.

» Each DBPROCESS has alist of substitute values for each of the binding
types. Table 2-28 lists the default substitution values:

DB-Library/C Reference Manual 331

dbsetopt

See also

dbsetopt

Description

332

Table 2-28: Default null substitution values

Binding type Null substitution value

TINYBIND 0

SMALLBIND 0

INTBIND 0

CHARBIND Empty string (padded with blanks)

STRINGBIND Empty string (padded with blanks, null-terminated)
NTBSTRINGBIND Empty string (null-terminated)

VARY CHARBIND Empty string

BINARYBIND Empty array (padded with zeros)

VARYBINBIND Empty array

DATETIMEBIND

8 bytes of zeros

SMALLDATETIMEBIND

8 bytes of zeros

MONEY BIND $0.00

SMALLMONEYBIND $0.00

FLT8BIND 0.0

REALBIND 0.0

DECIMALBIND 0.0 (with default scale and precision)
NUMERICBIND 0.0 (with default scale and precision)

BOUNDARYBIND

Empty string (null-terminated)

SENSITIVITYBIND

Empty string (null-terminated)

e dbsetnull lets you provide your own null substitution values. When you
call dbsetnull to change a particular null substitution value, the new value
will remain in force for the specified DBPROCESS until you change it
with another call to dbsetnull.

¢ Thedbconvert routine also uses the current null substitution values when
it needs to set a destination variable to null.

¢ Thedbnullbind routine allows you to associate an indicator variable with a
bound column. DB-Library will set theindicator valuetoindicate null data
values or conversion errors.

dbaltbind, dbbind, dbconvert, dbnullbind, Types on page 412

Set a server or DB-Library option.

Open Client

CHAPTER 2 Routines

Syntax RETCODE dbsetopt(dbproc, option, char_param,
int_param)

DBPROCESS *dbproc;

int option;

char *char_param;

int int_param;
Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server. If dbprocisNULL, the option will be set for all active DBPROCESS
structures.

option
The option that isto be turned on. See Options on page 407 for thelist of
options.

char_param
Certain optionstake parameters. For example, the DBOFFSET option takes
asits parameter the construct for which offsets are to be returned:

dbsetopt (dbproc, DBOFFSET, "compute", -1)
The DBBUFFER option takes as its parameter the number of rowsto be
buffered:

dbsetopt (dbproc, DBBUFFER, "500", -1)

char_param must always be a character string enclosed in quotes, even in
the case of anumeric value, asin the DBBUFFER example. If aninvalid
parameter is specified for one of the server options, thiswill be discovered
the next time a command buffer is sent to the server. The dbsglexec or
dbsglsend call fails, and DB-Library will invoke the user-installed message
handler. If an invalid parameter is specified for one of the DB-Library
options (DBBUFFER or DBTEXTLIMIT), the dbsetopt call itself fails.

If the option takes no parameters, char_param must be NULL.

int_param
Some options require an additional parameter, int_param, which isthe
length of the character string passed as char_param. Currently, only
DBPRCOL SEP, DBPRLINESEP, and DBPRPAD require this parameter.

If int_paramis not required, passit as-1.
Return value SUCCEED or FAIL.

DB-Library/C Reference Manual 333

dbsetrow

Usage

See also

dbsetrow

Description

Syntax

Parameters

Return value

334

dbsetopt failsif char_paramisinvalid for one of the DB-Library options.
However, aninvalid char_paramfor a server option will not cause dbsetopt to
fail, because such a parameter does not get validated until the command buffer
is sent to the server.

e Thisroutine sets server and DB-Library options. Although server options
may be set and cleared directly through SQL, the application should
instead use dbsetopt and dbclropt to set and clear options. This provides a
uniform interface for setting both server and DB-Library options. It also
allows the application to use the dbisopt function to check the status of an
option.

* dbsetopt does not immediately set the option. The option is set the next
time a command buffer is sent to the server (by invoking dbsglexec or
dbsglsend).

« For alist of each option and its default status, see Options on page 407.
dbclropt, dbisopt, Options on page 407

Set abuffered row to “current.”

STATUS dbsetrow(dbproc, row)

DBPROCESS *dbproc;

DBINT row;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

row
An integer representing the row number of the row to make current. Row
number 1 isthefirst row returned from the server. Thisisnot necessarily the
first row in the row buffer.

MORE_ROWS, NO_MORE_ROWS, or FAIL.
dbsetrow returns:

¢ MORE_ROWSIf it found row in the row buffer, or

Open Client

CHAPTER 2 Routines

e NO_MORE_ROWSif it did not find row in the row buffer or if row
buffering is not enabled, or

e FAIL if the dbproc DBPROCESS is dead or not enabled.

Usage * dbsetrow sets abuffered row to “current.” After dbsetrow is called, the
application’s next call to donextrow will read this row.

» dbgetrow, another DB-Library/C routine, also sets a specific row in the
row buffer to “current.” However, unlike dbsetrow, dbgetrow reads the
row. Any binding of row data to program variables (as specified with
dbbind and dbaltbind) takes effect.

» dbsetrow hasno effect unlessthe DB-Library/C option DBBUFFER ison.

* Row buffering provides away to keep a specified number of server result
rowsin program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Row buffering is therefore useful for programs that need to look at
result rowsin anon-segquential manner. It does, however, carry amemory
and performance penalty because each row in the buffer must be all ocated
and freed individually. Therefore, useit only if you need to. Specifically,
the application should only turn the DBBUFFER option oniif it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue.

* When row buffering is not enabled, the application processes each row as
it readsit from the server by calling dbnextrow repeatedly until it returns
NO_MORE_ROWS. When row buffering is enabled, the application can
use dbsetrow to jump to any row that has already been read from the server
with dbnextrow. Subsequent calls to dbnextrow will cause the application
to read successive rowsin the buffer, starting with the row specified by the
row parameter. When dbnextrow reaches thelast row in the buffer, it reads
rows from the server again, if there are any. Once the buffer isfull,
dbnextrow does not read any more rows from the server until some of the
rows have been cleared from the buffer with dbclrbuf.

¢ Themacro DBFIRSTROW, which returnsthe number of thefirst row inthe
row buffer, is useful in conjunction with dbsetrow. Thus, the call:

dbsetrow (dbproc, DBFIRSTROW (dbproc))

setsthe current row so that the next call to dbnextrow will read thefirst row
in the buffer.

See also dbclrbuf, DBCURROW, DBFIRSTROW, dbgetrow, DBLASTROW,
dbnextrow, Options on page 407

DB-Library/C Reference Manual 335

dbsettime

dbsettime

Description

Syntax

Parameters

Return value

Set the number of secondsthat DB-Library will wait for aserver responseto a
SQL command.

RETCODE dbsettime(seconds)

int seconds;

seconds
The timeout value—the number of seconds that DB-Library waits for a
server response beforetiming out. A timeout val ue of O representsaninfinite
timeout period.

SUCCEED or FAIL.

Usage ¢ Thisroutine sets the length of time in seconds that DB-Library will wait
for aserver response during calls to dbsglexec, dbsglok, dbresults, and
dbnextrow. The default timeout value is 0, which represents an infinite
timeout period.

« dbsettime can be called at any time during the application—before or after
acall to dbopen. It takes effect immediately upon being called.

¢ Toset atimeout value for callsto dbopen, use dbsetlogintime.

« Notethat, after sending a query to the server, dbsglexec waits until a
responseis received or until the timeout period has elapsed. To minimize
the time spent in DB-Library waiting for a response from the server, an
application can instead call dbsglsend, followed by dbsglok.

e The program can call DBGETTIME to learn the current timeout value.

e A timeout generates the DB-Library error “SYBETIME.”

See also dberrhandle, DBGETTIME, dbsetlogintime, dbsglexec, dbsglok, dbsglsend

dbsetuserdata

Description Use a DBPROCESS structure to save a pointer to user-allocated data.

Syntax void dbsetuserdata(dbproc, ptr)

DBPROCESS *dbproc;

BYTE *ptr;

336 Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

/*
* %
* %
* %
* %
* %

* %

*/

/*

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

ptr

A generic BY TE pointer to the user’s private data space.

None.

Thisroutine saves, ina DBPROCESS structure, apointer to user-allocated
data. The application can access the data later with the dbgetuserdata
routine.

dbsetuserdata allows the application to associate user datawith a
particular DBPROCESS. This avoids the necessity of using global
variables for this purpose. One use for this routine is to handle deadl ock,
as shown in the example below. This routineis particularly useful when
the application has multiple DBPROCESS structures.

The application must allocate the datathat ptr pointsto. DB-Library never
mani pulates this data; it merely saves the pointer to it for later use by the
application.

Here is an example of using this routine to handle deadlock, a situation
which occurs occasionally in high-volume applications. See the Adaptive
Server Enterprise System Administration Guide. This program fragment
sends updates to the server. It reruns the transaction when its message
handler detects deadlock.

Deadlock detection:

In the DBPROCESS structure, we save a pointer to
a DBBOOL variable. The message handler sets the
variable when deadlock occurs. The result
processing logic checks the variable and resends
the transaction in case of deadlock.

** Allocate the space for the DBBOOL variable
** and save it in the DBPROCESS structure.

*/

dbsetuserdata (dbproc, malloc(sizeof (DBBOOL))) ;

/* Initialize the variable to FALSE */

DB-Library/C Reference Manual 337

dbsetuserdata

* ((DBBOOL *) dbgetuserdata (dbproc)) = FALSE;

/* Run queries and check for deadlock */

deadlock:

338

/*
** Did we get here using deadlock?
** Tf so, the server has already aborted the
** transaction. We’ll just start it again. 1In a
** real application, the deadlock handling may need
** to be somewhat more sophisticated. For
** ingstance, you may want to keep a counter and
** retry the transaction just a fixed number
** of times.
*/
if (*((DBBOOL *) dbgetuserdata (dbproc)) == TRUE)
{
/* Reset the variable to FALSE */
* ((DBBOOL *) dbgetuserdata (dbproc)) = FALSE;
}
/* Start the transaction */
dbcmd (dbproc, "begin transaction ") ;
/* Run the first update command */
dbcmd (dbproc, "update ") ;
dbsglexec (dbproc) ;
while (dbresults (dbproc) != NO MORE RESULTS)

{
}

/* Did we deadlock? */

if (*((DBBOOL *) dbgetuserdata (dbproc)) == TRUE)
goto deadlock;

/* Run the second update command. */

dbcmd (dbproc, "update " ;

dbsglexec (dbproc) ;

while (dbresults (dbproc) != NO MORE RESULTS)

{
}

/* Did we deadlock? */

/* application code */

/* application code */

if (* ((DBBOOL *) dbgetuserdata (dbproc)) == TRUE)
goto deadlock;
/* No deadlock -- Commit the transaction */

dbcmd (dbproc, "commit transaction") ;
dbsglexec (dbproc) ;
dbresults (dbproc) ;

Open Client

CHAPTER 2

Routines

/-k
** SE
** Th
** th
** th
*/

serve

RVERMSGS
is is the server message handler. Assume that
e dbmsghandle () routine installed it earlier in

e program.

rmsgs (dbproc, msgno, msgstate, severity, msgtext,

srvname, procname, line)

DBPRO
DBINT
int
int
char
char
char

CESS *dbproc;
msgno;
msgstate;
severity;
*msgtext;
*srvname;
*procname;

DBUSMALLINT 1line;

{

See also

/* 1Is this a deadlock message? */

if (msgno == 1205)

{
/* Set the deadlock indicator */
* ((DBBOOL *) dbgetuserdata (dbproc)) = TRUE;
return (0) ;

}

/* Normal message handling code here */

dbgetuserdata

dbsetversion

Description

Syntax

Parameters

Specify a DB-Library version level.
RETCODE dbsetversion(version)

DBINT version;
version

Theversion of DB-Library behavior that the application expects. Table 2-29

lists the symbolic values that are legal for version:

DB-Library/C Reference Manual

339

dbspid

Return value

Usage

See also

dbspid

Description

Syntax

340

Table 2-29: Values for version (dbsetversion)

Value of version Indicates Features supported

DBVERSION_46 4.6 behavior RPCs, registered procedures, remote
procedure calls, text and image datatypes.

Thisisthe default version of DB-Library.

DBVERSION_100 10.0 behavior numeric and decimal datatypes.

SUCCEED or FAIL.

* dbsetversion sets the version of DB-Library behavior that an application
expects. DB-Library will providethe behavior requested, regardless of the
actua version of DB-Library in use.

e Anapplication is not required to call dbsetversion. However, if
dbsetversion isnot called, DB-Library providesversion 4.6-level behavior.

e If an application calls dbsetversion, it must do so before calling any other
DB-Library routine, with the exception of dbinit.

e If you call dbsetversion more than once, an error occurs.

Note

¢ You can set the DB-Library version level at runtime using the
SYBOCS DBVERSION environment variable. When set, this variable
changes the application code to use the DB-Library value stored in this
variable asthe version level.

e If thisenvironment variable is not defined, DB-Library provides 4.6-level
behavior or uses the version level requested by an explicit dbsetversion
call. If the environment variableis defined and dbsetversion isalso called,
the dbsetversion overrides the environment variable.

dbinit

Get the server process ID for the specified DBPROCESS.
int dbspid(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbsprlrow

Description

Syntax

Parameters

Return value

Usage

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dbproc’s server process I1D.

« dbspid yields the server process ID of the specified DBPROCESS. The
process |D appearsin the server’s sysprocesses table.

e You can usethe server process ID to make queries against the
sysprocesses table.

dbopen

Place one row of server query resultsinto a buffer.
RETCODE dbsprlrow(dbproc, buffer, buf_len)

DBPROCESS *dbproc;

char *puffer;
DBINT buf_len;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the dbsprlrow results.

buf_len
The length of buffer, including its null terminator.

SUCCEED or FAIL.

Note If an error occurs, the contents of *buffer are undefined.

e dbsprirow fills a programmer-supplied buffer with a null-terminated
character string containing one server query results row.

DB-Library/C Reference Manual 341

dbsprlrow

342

dbsprirow is useful when displaying data for debugging and writing
applications that scroll data displays.

dbsprirow gives programmers greater control over data display than
dbprrow. dbprrow always writes its output to the display device, while
dbsprirow writes its output to a buffer, which the programmer may then
display at whatever time or location is desired.

To pad results data to its maximum converted length, specify a pad
character through the DB-Library option DBPRPAD. The pad character
will be appended to each column’s data. The maximum converted column
length is equal to the longest possible string that could be the column’s
displayable data, or the length of the column’s name, whichever isgreater.
See Options on page 407 for more details on the DBPRPAD option.

You can specify the column separator string using the DB-Library option
DBPRCOL SEP. The column separator will be added to the end of each
converted column’s dataexcept the last. The default separator isan ASCI|
0x20 (space). See Options on page 407 for more details on the
DBPRCOL SEP option.

You can specify the maximum number of charactersto be placed on one
line using the DB-Library option DBPRLINELEN.

You can specify the line separator string using the DB-Library option
DBPRLINESEP. The default line separator is anew line (ASCII 0xOa or
0x0d, depending on the host system). See Options on page 407 for more
details on the DBPRLINELEN and DBPRLINESEP options.

The length of the buffer required by dbsprirow can be determined by
calling dbsprirowlen.

The format of results rows returned by dbsprirow is determined by the
SQL query. dbsprirow makes no attempt to format the data beyond
converting it to printable characters, padding the columns as necessary,
and adding the column and line separators.

To make the best use of dbsprirow, application programs should call it
once for every successful call to donextrow.

The following code fragment illustrates the use of dbsprirow:
char mybuffer [2000] ;

while (dbnextrow (dbproc) != NO MORE ROWS)

{

dbsprlrow (dbproc, mybuffer, sizeof (mybuffer)) ;
fprintf (stdout, "\n%s", mybuffer);

}

Open Client

CHAPTER 2 Routines

« Thefollowing code fragment shows the use of the DBPRPAD and

DBPRCOL SEP options:
char mybuffer[2000] ;
/*

** Specify the pad and column separator
** characters */

/* Pad = O0x2A */

dbsetopt (dbproc, DBPRPAD, "*", DBPADON) ;
/* Col. sep. = 0x2C20 */

dbsetopt (dbproc, DBPRCOLSEP, ", ", 2);

while (dbnextrow (dbproc) != NO MORE ROWS)

{

dbsprlrow (dbproc, mybuffer,
sizeof (mybuffer));
fprintf (stdout, "\n%s", mybuffer) ;

}

/* Turn padding off */

dbsetopt (dbproc, DBPRPAD, SS, DBPADOFF) ;
/* Revert to default */

dbsetopt (dbproc, DBPRCOLSEP, RS, -1);

See also dbclropt, dbisopt, dbprhead, dbprrow, dbsprirowlen, dbsprhead, dbsprline,
Options on page 407

dbsprlrowlen

Description Determine how large a buffer to allocate to hold the results returned by
dbsprhead, dbsprline, and dbsprlrow.

Syntax DBINT dbsprlrowlen(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 343

dbsprhead

Return value

Usage

See also

dbsprhead

Description

Syntax

Parameters

344

Thesize of the buffer, in bytes, required by dbsprhead, dbsprline, and dbsprlrow
0N success; a negative integer on error.

e dbsprirowlen determines the size of the buffer (in bytes) required by
dbsprhead, dbsprline, and dbsprlrow, including the null terminator.

e dbsprirowlen is useful when printing data for debugging and when
scrolling data displays.

¢ Tomakethe best use of dbsprirowlen, application programs should call it
once for every successful call to dbresuilts.

* Thefollowing code fragment illustrates the use of dbsprirowlen:

dbcmd (dbproc, "select * from sysdatabases");
dbcmd (dbproc, " order by name") ;
dbcmd (dbproc, " compute max(crdate) by name") ;

dbsglexec (dbproc) ;

dbresults (dbproc) ;

printf ("Maximum row length will be %1d \
characters.\n", dbsprlrowlen (dbproc)) ;

dbprhead, dbprrow, dbsprlrow, dbsprhead, dbsprline, Options on page 407

Place the server query results header into a buffer.

RETCODE dbsprhead(dbproc, buffer, buf_len)

DBPROCESS *dbproc;

char *buffer;
DBINT buf_len;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the query results header.

buf len
The length of buffer, including its null terminator.

Open Client

CHAPTER 2 Routines

Return value

Usage

SUCCEED or FAIL.

Note If an error occurs, the contents of *buffer are undefined.

dbsprhead fills a programmer-supplied buffer with a null-terminated
character string containing the header for the current set of query results.
The header consists of the column names. The sequence of the column
names matches that of the output of dbsprirow.

dbsprhead is useful when printing datafor debugging, and when scrolling
data displays.

To pad each column name to its maximum converted length, specify apad
character using the DB-Library option DBPRPAD. The pad character will
be appended to each column’s name. The maximum converted column
length is equal to the longest possible string that could be the column’s
displayable data, or thelength of the column’s name, whichever isgreater.
See Options on page 407 for more details on the DBPRPAD option.

You can specify the column separator string using the DB-Library option
DBPRCOL SEP. The column separator will be added to the end of each
column name except the last. The default separator is an ASCIl 0x20
(space). See Options on page 407 for more details on the DBPRCOL SEP
option.

You can specify the maximum number of charactersto be placed on one
line using the DB-Library option DBPRLINELEN.

You can specify the line separator string using the DB-Library option
DBPRLINESEP. The default line separator is a newline (ASCII 0x0a or
0x0d, depending on the host system). See Options on page 407 for more
details on the DBPRLINELEN and DBPRLINESEP options.

The length of the buffer required by dbsprhead can be determined by
calling dbsprlrowlen.

To make the best use of dbsprhead, application programs should call it
once for every successful call to dbresuilts.

The following code fragment illustrates the use of dbsprhead:

dbcmd (dbproc, "select * from sysdatabases");
dbcmd (dbproc, " order by name") ;
dbcmd (dbproc, " compute max(crdate) by name") ;

dbsglexec (dbproc) ;
dbresults (dbproc) ;

DB-Library/C Reference Manual 345

dbsprline

See also

dbsprline

Description

Syntax

Parameters

Return value

Usage

346

dbsprhead (dbproc, buffer, sizeof (buffer));
printf ("$s\n", buffer) ;

dbprhead, dbprrow, dbsetopt, dbsprlrow, dosprlrowlen, dbsprline, Options
on page 407

Get aformatted string that contains underlining for the column names
produced by dbsprhead.

RETCODE dbsprline(dbproc, buffer, buf_len, linechar)

DBPROCESS *dbproc;

char *buffer;
DBINT buf_len;
DBCHAR linechatr;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the dbsprline results.

buf len
The length of buffer, including its null terminator.

linechar
The character with which to “underline” column names produced by
dbsprhead.

SUCCEED or FAIL.

Note If an error occurs, the contents of * buffer are undefined.

¢ dbsprline isusedto “underling” the column names produced by dbsprhead.

dbsprline fills a programmer-supplied buffer with a null-terminated
character string containing one group of the character specified by
linechar for each column in the current set of query results. The format of
this line matches the format of the output of dbsprhead.

Open Client

CHAPTER 2 Routines

See also

dbsqglexec

Description

Syntax

Parameters

e You can determine the length of the buffer required by dbsprline using
dbsprlrowlen.

« To make the best use of dbsprhead, application programs should call it
once for every successful call to dbresuilts.

« dbsprline is useful when printing data for debugging, and when scrolling
data displays.

e Thefollowing code fragment illustrates the use of dbsprline:

dbcmd (dbproc, "select * from sysdatabases");
dbcmd (dbproc, " order by name") ;
dbcmd (dbproc, " compute max(crdate) by name") ;

dbsglexec (dbproc) ;
dbresults (dbproc) ;

/*

** Digsplay the column headings, underline them
*% with "*x"

*/

dbsprhead (dbproc, buffer, sizeof (buffer));
printf ("$s\n", buffer);

dbsprline (dbproc, buffer, sizeof (buffer), '*’);
printf ("$s\n", buffer);

/* Process returned rows as usual */

dbprhead, dbprrow, dbsprlrow, dbsprlrowlen, dbsprhead, Options on page
407

Send acommand batch to the server.
RETCODE dbsglexec(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 347

dbsglexec

Return value

Usage

348

SUCCEED or FAIL.

The most common reason for failingisa SQL syntax error. dbsglexec will also
fail if there are semantic errors, such asincorrect column or table names.
Failure occursif any of the commands in the batch contains a semantic or
syntax error. dbsglexec also failsif previous results had not been processed, or
if the command buffer was empty.

In addition, a runtime error, such as a database protection violation, can cause
dbsglexec to fail. A runtime error will cause dbsglexec to fail:

e If the command causing the error is the only command in the command
buffer

e If the command causing the error is the first command in a multiple-
command buffer

If the command buffer contai ns multiple commands (and the first command in
thebuffer isok), aruntime error will not cause dbsglexec tofail. Instead, failure
will occur with the dbresults call that processes the command causing the
runtime error.

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbsglexec to
fail, in accordance with the rule given in the previous paragraphs. A runtime
error on a statement inside a stored procedure will not cause dbsglexec to fail,
however. For example, if the stored procedure contains an insert statement and
the user does not have insert permission on the database table, the insert
statement fails, but dbsglexec will still return SUCCEED. To check for runtime
errorsinside stored procedures, use the dbretstatus routine to look at the
procedure’s return status, and trap relevant server messages inside your
message handler.

¢ Thisroutine sends SQL commands, stored in the command buffer of the
DBPROCESS, to the server. Commands may be added to the
DBPROCESS structure by calling docmd or dbfcmd.

¢ Once dbsglexec returns SUCCEED, the application must call dbresults to
process the results.

e Thetypical sequence of callsis:

DBINT xvariable;
DBCHAR yvariable [10];

/* Read the query into the command buffer */
dbcmd (dbproc, "select x = 100, y = 'hello’");

/* Send the query to Adaptive Server Enterprise */

Open Client

CHAPTER 2 Routines

See also

dbsqglok

Description

Syntax

Parameters

dbsglexec (dbproc) ;

/* Get ready to process the query results */
dbresults (dbproc) ;

/* Bind column data to program variables */

dbbind (dbproc, 1, INTBIND, (DBINT) O,
(BYTE *) &xvariable) ;

dbbind (dbproc, 2, STRINGBIND, (DBINT) O,
yvariable) ;

/* Now process each row */
while (dbnextrow(dbproc) != NO MORE ROWS)

{

}

« dbsglexec is equivalent to dbsglsend followed by dbsglok. However, after
sending aquery to the server, dbsglexec waits until aresponseis received
or until the timeout period has elapsed. By substituting dbsglsend and
dbsglok for dbsglexec, you can sometimes provide away for the
application to respond more effectively to multiple input and output
streams. See the reference pages for dbsglsend and dbsglok.

C-code to print or process row data

e Multiple commands may exist in the command buffer when an application
calls dbsglexec. These commands are sent to the server asa unit and are
considered to be a single command batch.

dbemd, dbfemd, dbnextrow, dbresults, dbretstatus, dbsettime, dbsglok,
dbsglsend

Wait for results from the server and verify the correctness of the instructions
the server isresponding to.

RETCODE dbsqglok(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 349

dbsqlok

Return value

Usage

350

SUCCEED or FAIL.

The most common reason for failing isa SQL syntax error. dbsglok will also
fail if there are semantic errors, such asincorrect column or table names.
Failure occursif any of the commands in the batch contains a semantic or
syntax error.

In addition, aruntime error, such as a database protection violation, will cause
dbsglok to fail if the command buffer contains only a single command. If the
command buffer contains multiple commands, a runtime error will not cause
dbsqlok to fail. Instead, failure will occur with the dbresults call that processes
the command causing the runtime error.

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbsglok tofail,
in accordance with therule givenin the previous paragraph. A runtime error on
a statement inside a stored procedure will not cause dbsglok to fail, however.
For example, if the stored procedure contains an insert statement and the user
does not haveinsert permission on the database table, theinsert statement fails,
but dbsglok will still return SUCCEED. To check for runtime errorsinside
stored procedures, use the dbretstatus routine to look at the procedure’s return
status and trap relevant server messages inside your message handler.

« dbsglok reports the success or failure of a server command and initiates
results processing for successful commands.

e A successful dbsglok call must aways be followed by acall to dbresults to
process the results.

e dbsglok isuseful in the following situations:
e After adbsqglsend call

dbsglok must be called after a batch of Transact-SQL commandsis
sent to the server with dbsglsend.

e After adbrpcsend call

dbsglok must be called after an RPC command is sent with dbrpcinit,
dbrpcparam, and dbrpcsend.

* After callsto dbwritetext or dbmoretext

dbsglok must be called after atext update command is sent to the
server by a call to dbwritetext or domoretext.

Using dbsglok with dbsglsend

Open Client

CHAPTER 2 Routines

« dbsglok initiates results processing after a call to dbsqlsend.

» dbsglok and dbsglsend provide an alternative to dbsglexec. dbsglexec
sends a command batch and waits for initial results from the server. The
application is blocked from doing anything else until results arrive. When
dbsglsend and dbsglok are used with dbpoll, the application has a non-
blocking alternative. The typical control sequenceis as follows:

* A call to dbsglsend sends the command to the server.

e The program calls dbpoll in aloop to check for the arrival of server
results. Non-related work can be performed during each loop
iteration. The loop terminates when dbpoll indicates results have
arrived.

e A cdl to dbsglok reports success or failure and initiates results
processing if successful.

Note On occasion, dbpoll may report that datais ready for dbsglok to read
when only the first bytes of the server response are present. When this
occurs, dbsglok waitsfor therest of theresponse or until thetimeout period
has elapsed, just like dbsglexec. In practice, however, the entire response
isusually available at one time.

e Theexample below illustrates the use of dbsglok and dbpoll. The example
calls an application function, busy_wait, to execute a dbpoll loop. Hereis
the mainline code that calls busy_wait:

/-k

** This is a query that will take some time.

*/

dbcmd (dbproc, "waitfor delay '00:00:05' select its = 'over'");
/*

** Send the query with dbsglsend. dbsglsend does not
** wait for a server response.

*/
retcode = dbsglsend (dbproc) ;
if (retcode != SUCCEED)

{

fprintf (stdout, "dbsglsend failed. Exiting.\n");
dbexit () ;
exit (ERREXIT) ;

}
/*

DB-Library/C Reference Manual 351

dbsglok

352

*x Tf we call dbsqglok() now, it might block. But, we can use

** 3 dbpoll() loop to get some other work done while
** we are waiting for the results.
*/

busy wait (dbproc) ;

/*
** Now there should be some results waiting to be read, so
** call dbsglok() .

*/
retcode = dbsglok (dbproc) ;
if (retcode != SUCCEED)

{

fprintf (stdout, "Query failed.\n");

}

else

{
}

dbresults () loop goes here

busy_wait executes a dbpoll loop. During each iteration of the loop, acall
to dbpoll determines whether results have arrived. If results have arrived,
busy_wait returns. Otherwise, the function wait_work is called. wait_work
performs a piece of non-related work, then returns. The functions
wait_work_init and wait_work_cleanup perform initialization and cleanup
for wait_work. Here is the code for these functions:

void busy wait (dbproc)
DBPROCESS *dbproc;

{

RETCODE retcode;
DBPROCESS *ready dbproc;
int poll ret_reason;

wait work init();
while (1)
{
retcode = dbpoll (dbproc, 0, &ready dbproc, &poll ret reason) ;
if (retcode != SUCCEED)
{
fprintf (stdout, "dbpoll() failed! Exiting.\n");
dbexit () ;
exit (ERREXIT) ;
}
if (poll ret reason == DBRESULT)
{
/*

Open Client

CHAPTER 2 Routines

}

** Query results have arrived. Now we break out of

** the loop and return. Our caller can then call dbsglok() .
*/

break; /* while */

else

{

}

/*

** Here's where we can do some non-related work while we
** are waiting.

*/

wait work () ;

} /* while =*/
wait work cleanup () ;
} /* busy wait */

/* These globals are used by the wait functions. */
static int wait pos;

static char wait_ char;

void wait_ work ()

{
/*

* %
* %
* %

* %

*/

"work", as defined here, consists of drawing a 'w' or 'W' to
the terminal. We output one character each time we are called.
When we reach the 65th character position, we switch from

'w'! to 'W' (or vice-versa) and start over.

fputc(wait char, stdout) ;
++wait pos;

if

{

}
}

(wait pos >= 65)

/-k
** Go back to the beginning of the line, then switch from
** 'W' to 'w' or vice versa.

*/

fputc ('\r', stdout) ;

wait pos = 0;

wait char = (wait char == 'w' ? 'W' : 'w');

void wait_work init ()
wait pos = 0;
wait char = 'w';

DB-Library/C Reference Manual 353

dbsglsend

}

void wait_ work cleanup ()

{

fputc('\n', stdout) ;

}

See also

dbsqlsend

Description

Syntax

354

Using dbsglok with dbrpcsend

« dbsglok initiates results processing after an RPC command. RPC
commands are constructed and sent with dbrpcinit, dbrpcparam, and
dbrpcsend. After dbrpcsend, the program must call dbsglok.

« dbpoll can be called in aloop to poll for a server response between
dbrpcsend and dbsglok.

« Seethereference pages for dbrpcinit, dbrpcparam, and dbrpcsend. The
sample program example8.c demonstrates an RPC command.

Using dbsglok with dbwritetext and dbmoretext

« dbsglok initiates results processing after atext update command. For text
updates, chunks of text can be sent to the server with dbwritetext and
dbmoretext. After both of these calls, dbsglok must be called.

e Seethereference pagesfor dbwritetext and dbmoretext. dbwritetext hasan
example.

dbcmd, dbfecmd, DBIORDESC, DBIOWDESC, dbmoretext, dbnextrow,
dbpoll, DBRBUF, dbresults, dbretstatus, dbrpcsend, dbsettime, dbsglexec,
dbsglsend, dbwritetext

Send a command batch to the server and do not wait for aresponse.
RETCODE dbsqglsend(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbstrbuild

Description

Syntax

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

SUCCEED or FAIL.

dbsglsend may fail if previous results had not been processed, or if the
command buffer was empty.

* Thisroutine sends SQL commands, stored in the command buffer, to the
server. The application can add commands to the command buffer by
calling dbcmd or dbfcmd.

e Once dbsglsend returns SUCCEED, the application must call dbsglok to
verify the accuracy of the command batch. The application can then call
dbresults to process the results.

» dbsglexec is equivalent to dbsglsend followed by dbsglok.

e The use of dbsglsend with dbsglok is of particular valuein UNIX
applications. After sending a query to the server, dbsglexec waits until a
responseis received or until the timeout period has elapsed. By
substituting dbsglsend, dbpoll and dbsglok for dbsglexec, you can
sometimes provide away for an application to respond more effectively to
multiple input and output streams. See the dbsglok reference page.

dbcmd, dbfcmd, DBIORDESC, DBIOWDESC, dbnextrow, dbpoll, doresullts,
dbsettime, dbsglexec, dbsglok

Build a printable string from text containing placeholders for variables.

int dbstrbuild(dbproc, charbuf, bufsize,
text [, formats [, arg] ...])

DBPROCESS *dbproc;

char *charbuf;
int bufsize;
char *text;
char *formats;
?7?77? args...;

DB-Library/C Reference Manual 355

dbstrbuild

Parameters

Return value

Usage

356

dbproc
A pointer to the DBPROCESS that provides the connection for a particular
front-end/server process. It contains al the information that DB-Library
uses to manage communications and data between the front end and the
server. dbstrbuild usesit only as a parameter to the programmer-installed
error handler (if one exists) when an error occurs.

charbuf
A pointer to the destination buffer that will contain the message built by
dbstrbuild.

bufsize
The size of the destination buffer, in bytes. This size must include asingle
byte for the results string’s null terminator.

text
A pointer to a null-terminated character string that contains message text
and placeholders for variables. Placeholders consist of a percent sign, an
integer, and an exclamation point. The integer indicates which argument to
substitute for a particular placeholder. Arguments and format strings are
numbered from left to right. Argument 1 is substituted for placehol der
“%1!", and so on.

formats
A pointer to a null-terminated string containing one sprintf-style format
specifier for each place holder in the text string.

args
The values that will be converted according to the contents of the formats
string. There must be one argument for each format in the formats string.
Thefirst value will correspond to the “%1!” parameter, the second the
“9%2!”, and so forth. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are simply ignored.

On success, the length of the resulting message string, not including the null
terminator; on failure, a negative integer.

e Parametersin error messages can occur in different ordersin different
languages. dbstrbuild allows construction of error messages in a manner
similar to the C standard-library sprintf routine. Use of dbstrbuild ensures
easy trangdlation of error messages from one language to another.

e dbstrbuild builds a printable string from an error text that contains
placeholders for variables, aformat string containing information about
the types and appearances of those variables, and a variable number of
arguments that provide actual values for those variables.

Open Client

CHAPTER 2 Routines

» Placeholders for variables consist of a percent sign, an integer, and an
exclamation point. Theinteger indicates which argument to substitute for
aparticular placeholder. Arguments and format strings are numbered from
left to right. Argument 1 is substituted for placeholder “%1!”, and so on.

For example, consider an error message that complains about a misused
keyword in astored procedure. The message requiresthree arguments: the
misused keyword, the line in which the keyword occurs, and the name of
the stored procedure in which the misuse occurs. In the English
localization file, the message text might appear as.

The keyword ’%$1!’ is misused in line %2! of stored
procedure ’'%3!’

In the localization file, the same message might appear as.

In line ’'%2!’ of stored procedure '%3!’, the keyword
'%$1!’ misused is.

The dbstrbuild line for either of the above messages would be:

dbstrbuild (dbproc, charbuf, BUFSIZE, <get the
message somehows>, "%s %d %s", keyword,
linenum, sp_ name)

keyword is substituted for placeholder “%1!”, linenum is substituted for
placeholder “%2!", and sp_name is substituted for placeholder “%3!”.

« Thefollowing code fragment illustrates the use of dbstrbuild to build
messages. For simplicity, the text of the message is hard-coded. In
practice, dbstrbuild message texts come from alocalization file.

char charbuf [BUFSIZE] ;

int linenum = 15;

char *filename = "myfile";
char *dirname = "mydir";

dbstrbuild (dbproc, charbuf, BUFSIZE,
"Unable to read line %1! of file %2! in \
directory %3!.", "%d %s %s", linenum,
filename, dirname) ;

printf (charbuf) ;

» dbstrbuild format specifiers may be separated by any other characters, or
they may be adjacent to each other. This allows pre-existing English-
language message strings to be used as dbstrbuild format parameters. The
first format specifier describesthe“%1!” parameter, the second the “ %2!”
parameter, and so forth.

See also dbconvert, dbdatename, dbdatepart

DB-Library/C Reference Manual 357

dbstrcmp

dbstrcmp

Description

Syntax

Parameters

Return value

Usage

358

Compares two character strings using a specified sort order.

int dbstrcmp(dbproc, strl, lenl, str2, len2,
sortorder)

DBPROCESS *dbproc;

char *strl;
int lenl;
char *str2;
int len2;

DBSORTORDER *sortorder;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

strl
A pointer to the first character string to compare. str1 may be NULL.

lenl
Thelength, in bytes, of strl. If lenlis-1, strl isassumed to be null-
terminated.

str2
A pointer to the second character string to compare. str2 may be NULL.

len2
Thelength, in bytes, of str2. If len2 is-1, str2 is assumed to be null-
terminated.

sortorder
A pointer to a DBSORTORDER structure allocated using dbloadsort. |f
sortorder is NULL, dbstrcmp compares str1 and str2 using their binary
values, just as strcmp does.

e 1if gtrlislexicographically greater than str2.
e Oif gtrlislexicographically equal to str2.
e -lif strlislexicographically lessthan str2.

e dbstrcmp compares str1 and str2 and returns an integer greater than, equal
to, or less than 0, according to whether strl is lexicographically greater
than, equal to, or less than str2.

Open Client

CHAPTER 2 Routines

See also

dbstrcpy

Description

Syntax

Parameters

e dbstrcmp uses a sort order that was retrieved from the server using
dbloadsort. This allows DB-Library application programs to compare
strings using the same sort order as the server.

« Notethat some languages contain strings that are lexicographically equal
according to some specified sort order, but contain different characters.
Even though they are“equal,” thereisastandard order that should be used
when placing theminto an ordered list. When given two stringslikethisto
compare, dostrcmp returns O (indicating the two strings are equal), but
dbstrsort returns some non-zero value indicating that one of these strings
should appear before the other in a sorted list.

Below isan example of thisbehavior. Thetwo English-language character
strings are used with a case-insensitive sort order that specifies that
uppercase letters should appear before lowercase:

/* This call returns 0: */
dbstrcmp (dbproc, "ABC", 3, "abc", 3, mysort);

/* This call returns a negative value: */
dbstrsort (dbproc, "ABC", 3, "abc", 3, mysort) ;

dbfreesort, dbloadsort, dbstrsort

Copy all or a portion of the command buffer.

RETCODE dbstrcpy(dbproc, start, numbytes, dest)

DBPROCESS *dbproc;

int start;

int numbytes;
char *dest;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Start
Character position in the command buffer to start copying from. The first
character has position 0. If start is greater than the length of the command
buffer, dbstrcpy inserts anull terminator at dest[0].

DB-Library/C Reference Manual 359

dbstrcpy

Return value

Usage

360

FILE

numbytes
The number of characters to copy. If numbytesis -1, dbstrcpy will copy the
entire command buffer, whether or not dest points to adequate space. Itis
legal to copy 0 bytes, in which case dbstrcpy inserts a null terminator at
dest[0]. If there are not numbytes available to copy, dbstrcpy copies the
number of bytes available and returns SUCCEED.

dest
A pointer to the destination buffer to copy the source string into. Before
calling dbstrcpy, the caller must verify that the destination buffer islarge
enough to hold the copied characters. The function dbstrlen returnsthe size
of the entire command buffer.

SUCCEED or FAIL.
dbstrcpy returns FAIL if start is negative.

« dbstrcpy copiesaportion of the command buffer to astring buffer supplied
by the application. The copy is null-terminated.

« Internally, the command buffer isalinked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide away to locate
and copy parts of the command buffer.

* dbstrcpy assumes that the destination islarge enough to receive the source
string. If not, a segmentation fault is likely.

e When numbytesis passed as -1, dbstrcpy copies the entire command
buffer. Do not pass numbytes as-1 unless you are certain that dest points
to adequate space for this string. The function dbstrlen returns the length
of the current command string.

* Thefollowing fragment shows how to print the entire command buffer to
afile

*outfile;

DBPROCESS *dbproc;

char

prbuf; / buffer for collecting the command buffer
** contents as a null-terminated string

*/

RETCODE return code;

/*
* %
* %
* %
* %

* %

**/

Allocate sufficient space. dbstrlen() returns the number of
characters currently in the command buffer. We need one
more byte because dbstrcpy will append a null terminator.
NOTE that memory allocation and disposal may be done
differently on your platform.

Open Client

CHAPTER 2 Routines

prbuf = (char *) malloc(dbstrlen(dbproc) + 1);
if (prbuf == NULL)
{
fprintf (stderr, "Out of memory.");
dbexit () ;
exit (ERREXIT); /* ERREXIT is defined in the DB-1lib headers */
}
/* Copy the command buffer into the allocated space: */
return code = dbstrcpy (dbproc, 0, -1, prbuf);
assert (return code == SUCCEED) ;

/* Print the contents: */
fprintf (outfile, "%s", prbuf);

/* Free the buffer: */

free (prbuf) ;

See also dbemd, dbfemd, dbfreebuf, dbgetchar, dbstrien

dbstrien

Description Return the length, in characters, of the command buffer.

Syntax int dbstrlen(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Return value The length, in characters, of the command buffer.

Usage « dbstrlen returnsthe length, in characters, of the SQL command text in the

command buffer.

* Internaly, the command buffer isalinked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide away to locate
and copy parts of the command buffer.

» Beforeyou copy the command buffer with dbstrcpy, use dbstrlen to make
sure that the destination buffer is large enough.

* Thecount returned by dbstrlen does not include space for anull terminator.

DB-Library/C Reference Manual 361

dbstrsort

See also

dbstrsort

Description

Syntax

Parameters

Return value

362

dbcmd, dbfemd, dbfreebuf, dbgetchar, dbstrcpy

Determine which of two character strings should appear first in asorted list.

int dbstrsort(dbproc, strl, lenl, str2, len2,
sortorder)

DBPROCESS *dbproc;

char *strl;

int lenl;

char *str2;

int len2;
DBSORTORDER *sortorder;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

strl
A pointer to the first character string to compare. str1 may be NULL.

lenl
Thelength, in bytes, of strl. If lenlis-1, strl isassumed to be null-
terminated.

str2
A pointer to the second character string to compare. str2 may be NULL.

len2
Thelength, in bytes, of str2. If len2 is-1, str2 is assumed to be null-
terminated.

sortorder
A pointer to a DBSORTORDER structure allocated using dbloadsort. If
sortorder is NULL, dbstrsort compares str1 and str2 using their binary
values, just as strcmp does.

e 1if strl should appear after str2.
e Qif grlisidentical tostr2.
e -1if strl should appear before str2.

Open Client

CHAPTER 2 Routines

Usage » dbstrsort compares str1 and str2 and returns an integer greater than, equal
to, or lessthan O, according to whether str1 should appear after, at the same
place (the strings are identical), or before str2 in a sorted list.

» dbstrsort uses a sort order that was retrieved from the server using
dbloadsort. This allows DB-Library application programs to compare
strings using the same sort order as the server.

* Notethat some languages contain strings that are lexicographically equal
according to some specified sort order, but contain different characters.
Even though they are“equal,” thereisastandard order that should be used
when placing them into an ordered list. When given two stringslikethisto
compare, dostrcmp returns O (indicating the two strings are equal), but
dbstrsort returns some non-zero value indicating that one of these strings
should appear before the other in a sorted list.

Below isan example of thisbehavior. Thetwo English-language character
strings are used with a case-insensitive sort order that specifies that
uppercase characters should appear before lowercase:
/* This call returns 0: */
dbstrcmp (dbproc, "ABC", 3, "abc", 3, mysort);

/* This call returns a negative value: */
dbstrsort (dbproc, "ABC", 3, "abc", 3, mysort);

« dbstrsort can only be used to examine two character strings that have
already been identified as equal using dbstrcmp. If dbstrcmp has not
identified these strings as being equal to each other, dbstrsort’s behavior is

undefined.
See also dbfreesort, dbloadsort, dbstrcmp
dbtabbrowse
Description Determine whether the specified table is updatable through the DB-Library
browse-mode facilities.
Syntax DBBOOL dbtabbrowse(dbproc, tabnum)

DBPROCESS *dbproc;
int tabnum;

DB-Library/C Reference Manual 363

dbtabcount

Parameters

Return value

Usage

See also

dbtabcount

Description

Syntax

Parameters

Return value

364

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

tabnum
The number of thetable of interest, as specified inthe select statement’sfrom
clause. Table numbers start at 1.

“TRUE” or “FALSE”.

¢ dbtabbrowse isone of the DB-Library browse-mode routines. See
“Browse mode” on page 26 for a detailed discussion of browse mode.

« dbtabbrowse providesaway to identify browsabletables. It isuseful when
examining ad hoc queries prior to performing browse mode updates based
on them. If the query has been hard-coded into the program, thisroutineis
obviously unnecessary.

e For atableto be considered “browsable,” it must have a unique index and
atimestamp column.

e Theapplication can call dotabbrowse anytime after doresuilts.
e The sample program example7.c contains a call to dbtabbrowse.

dbcolbrowse, dbcolsource, dbqual, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

Return the number of tablesinvolved in the current select query.
int dbtabcount(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The number of tables, including server work tables, involved in the current set
of row results.

Open Client

CHAPTER 2 Routines

dbtabcount will return -1 in case of error.

Usage .

dbtabcount is one of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, aselect containing
the key words for browse). See “Browse mode” on page 26 for a detailed
discussion of browse mode.

A select query can generate aset of result rowswhose columns are derived
from several database tables. To perform browse-mode updates of
columnsin aquery’s select list, the application must know how many
tables were involved in the query, because each table requires a separate
update statement. dbtabcount can provide this information for ad hoc
queries. If the query has been hard-coded into the program, thisroutine is
obvioudly unnecessary.

The count returned by this routine includes any server “work tables’” used
in processing the query. The server sometimes creates temporary, internal
work tablesto process a query. It deletes these work tables by the time it
finishes processing the statement. Work tables are not updatable and are
not available to the application. Therefore, before using a table number,
the application must make sure that it does not belong to awork table.
dbtabname can be used to determine whether a particular table number
refers to awork table.

The application can call dbtabcount anytime after dbresuilts.

The sample program example7.c contains a call to dbtabcount.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbtabname
Description Return the name of a table based on its number.
Syntax char *dbtabname(dbproc, tabnum)

DBPROCESS *dbproc;

int

tabnum;

DB-Library/C Reference Manual 365

dbtabsource

Parameters

Return value

Usage

See also

dbtabsource

Description

Syntax

366

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains al the information that DB-
Library usesto manage communications and data between the front end and
server.

tabnum
The number of the table of interest. Table numbers start with 1. Use
dbtabcount to find out the total number of tablesinvolved in a particular
query.
A pointer to the null-terminated name of the specified table. This pointer will
be NULL if the table number is out of range or if the specified tableisa server
work table. See the dbtabcount reference page for a description of work tables.

¢ dbtabname isone of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, a select containing
the key words for browse). See “ Browse mode” on page 26 for a detailed
discussion of browse mode.

¢ Aselect query can generate aset of result rowswhose columnsare derived
from several databasetables. dbtabname providesaway for an application
to determine the name of each table involved in an ad hoc query. If the
query has been hard-coded into the program, this routine obviously is
unnecessary.

e Theapplication can call dotabname anytime after dbresults.
¢ The sample program example7.c contains a call to dotabname.

dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

Return the name and number of the table from which aparticular result column
was derived.

char *dbtabsource(dbproc, colnum, tabnum)
DBPROCESS *dbproc;

int colnum;
int *tabnum;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

tabnum
A pointer to aninteger, which will befilled in with the table’s number. Many
DB-Library routinesthat deal with browse mode accept either atable name
or atable number. If dbtabsource returns NULL (seethe “Returns’ section
below), *tabnumwill be set to -1.

A pointer to the name of the table from which this result column was derived.
A NULL return value can mean afew different things:

» The DBPROCESS isdead or not enabled. Thisis an error that will cause
an application’s error handler to be invoked.

e The column number is out of range.
e The column isthe result of an expression, such as max(colname).

» dbtabsource is one of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, aselect containing
the key words for browse). See “Browse mode” on page 26 for a detailed
discussion of browse mode.

« dbtabsource allows an application to determine which tables provided the
columnsin the current set of result rows. Thisinformation is valuable
when using dbqual to construct where clauses for update and delete
statements based on ad hoc queries. If the query has been hard-coded into
the program, this routine obvioudly is unnecessary.

e Theapplication can call dbtabsource anytime after dobresults.
e The sample program example7.c contains a call to dbtabsource.

dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtsnewlen, dbtsnewval

DB-Library/C Reference Manual 367

DBTDS

DBTDS

Description

Syntax

Parameters

Return value

Usage

See also

dbtextsize

Description

Syntax

368

Determine which version of TDS (the Tabular Data Stream protocol) is being
used.

int DBTDS(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

Theversion of TDS used by dbproc to communicate with the server. Currently,
the possible versions are:

« DBTDS 20

« DBTDS 3 4

« DBTDS 40

« DBTDS 4 2

« DBTDS 4 6

« DBTDS 495

« DBTDS 50

DBTDS returns a negative integer on error.

« DBTDSreturnsthe version of TDS (Tabular Data Stream protocol) being
used by dbproc to communicate with the server.

dbversion

Returns the number of bytes of text or image datathat remain to be read for the
current row.

DBINT dbtextsize(dbproc)

DBPROCESS *dbproc;

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbtsnewlen

Description

Syntax

Parameters

Return value

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The following table lists the return values for dbtextsize:

dbtextsize returns To indicate

>=0 The number of bytesthat remain to be read. Zero
indicatesNO_MORE_ROWS.

-1 An error has occurred.

-2 dbtextsize has been called for RPC data.

» dbtextsize assumesthat thereis only one column and that this column s of
datatype text or image.

» dbtextsize isuseful when an application does not know how large atext or
image valueis.

* dbtextsize does not work with RPC text data.
dbreadtext

Return the length of the new value of the timestamp column after a browse-
mode update.

int dbtsnewlen(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

The length (in bytes) of the updated row’s new timestamp value. If no
timestamp was returned to the application (possibly because the update was
unsuccessful, or because the update statement did not contain the tsequal built-
in function), dotsnewlen will return -1.

DB-Library/C Reference Manual 369

dbtsnewval

Usage

See also

dbtsnewval

Description

Syntax

Parameters

Return value

Usage

370

¢ dbtsnewlen isone of the DB-Library browse-mode routines. See “ Browse
mode” on page 26 for a detailed discussion of browse mode.

¢ dbtsnewlen providesinformation about the timestamp column. The where
clause returned by dbqual contains a call to the tsequal built-in function.
When such awhere clause is used in an update statement, the tsequal
function places a new value in the updated row’s timestamp column and
returns the new timestamp val ue to the application (if the updateis
successful). The dbtsnewlen function allows the application to save the
length of the new timestamp value, possibly for use with dbtsput.

dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewval, dbtsput

Return the new value of the timestamp column after a browse-mode update.

DBBINARY *dbtsnewval(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

A pointer to the updated row’s new timestamp value. If no timestamp was
returned to the application (possibly because the update was unsuccessful, or
because the update statement did not contain the tsequal built-in function), the
pointer will be NULL.

¢ dbtsnewval isone of the DB-Library browse-mode routines. See“ Browse
mode” on page 26 for a detailed discussion of browse mode.

« dbtsnewval provides information about the timestamp column. The where
clause returned by dbqual contains a call to the tsequal built-in function.
When such awhere clause is used in an update statement, the tsequal
function places a new value in the updated row’s timestamp column and
returns the new timestamp val ue to the application (if the updateis
successful). Thisroutine allowsthe application to save the new timestamp
value, possibly for use with dbtsput.

Open Client

CHAPTER 2 Routines

See also

dbtsput

Description

Syntax

Parameters

Return value

dbtabbrowse, dbtabsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsput

Put the new value of the timestamp column into the given table's current row
in the DBPROCESS.

RETCODE dbtsput(dbproc, newts, newtslen, tabnum,
tabname)

DBPROCESS *dbproc;
DBBINARY *newts;

int newtslen;
int tabnum;
char *tabname;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

This must be the DBPROCESS used to perform the original select query.

newts
A pointer to the new timestamp value. It isreturned by dbtsnewval.

newtslen
The length of the new timestamp value. It isreturned by dbtsnewlen.

tabnum
The number of the updated table. Table numbers start at 1. tabnum must
refer to a browsable table. Use dbtabbrowse to determine whether atableis
browsable.

If thisvalueis-1, the tabname parameter will be used to identify the table.

tabname
A pointer to anull-terminated table name. tabname must refer to a
browsabletable. If this pointer isNULL, the tabnum parameter will be used
to identify the table.

SUCCEED or FAIL.

The following situations will cause this routine to return FAIL:

DB-Library/C Reference Manual 371

dbtxptr

Usage

See also

dbtxptr

Description

Syntax

Parameters

372

e The application tries to update the timestamp of a non-existent row.

e The application tries to update the timestamp using NULL as the
timestamp value (newts).

e The specified table is non-browsable.

e dbtsput is one of the DB-Library browse-mode routines. See “Browse
mode” on page 26 for a detailed discussion of browse mode.

e dbtsput manipulates the timestamp column. The where clause returned by
dbqual contains a call to the tsequal built-in function. When such awhere
clauseisused in an update statement, the tsequal function places a new
value in the updated row’s timestamp column and returns the new
timestamp valueto the application (if the updateis successful). If the same
row is updated a second time, the update statement’s where clause must
use the latest timestamp value.

This routine updates the timestamp in the DBPROCESS for the row
currently being browsed. Then, if the application needs to update the row
asecond time, it can call doqual to formulate a new where clause that uses
the new timestamp.

dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsnewval

Return the value of the text pointer for a column in the current row.

DBBINARY *dbtxptr(dbproc, column)

DBPROCESS *dbproc;

int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
Server.

column
The number of the select list column of interest. Column numbers start at 1.

Open Client

CHAPTER 2 Routines

Return value A DBBINARY pointer to the text pointer for the column of interest. This
pointer may be NULL.
Usage » Every database column row of type SYBTEXT or SYBIMAGE has an

associated text pointer, which uniquely identifies the text or image value.
This text pointer is used by the dbwritetext function to update text and
image values.

e Itisimportant that all the rows of the specified text or image column have
valid text pointers. A text or image column row will have avalid text
pointer if it contains data. However, if the text or image column row
containsanull value, itstext pointer will bevalid only if thenull valuewas
explicitly entered with the update statement.

Assume atable textnull with columns key and x, where x is atext column
that permits nulls. The following statement assigns valid text pointers to
the text column’s rows:

update textnull
set x = null

On the other hand, the insert of anull value into a text column does not
provide avalid text pointer. Thisistrue for aninsert of an explicit null or
an insert of an implicit null, such as the following:

insert textnull (key)
values (2)

When dealing with anull text or image value, be sure to use update to get
avalid text pointer.

e An application must select arow containing atext or image value before
calling dbtxptr to return the associated text pointer. The select causes a
copy of the text pointer to be placed in the application’s DBPROCESS.
The application can then retrieve thistext pointer from the DBPROCESS
using dbtxptr.

If no select is performed prior to the call to dbtxptr, the call will resultina
DB-Library error message.

« For an example that uses dbtxptr, see the dbwritetext reference page.
See also dbtxtimestamp, dbwritetext

DB-Library/C Reference Manual 373

dbtxtimestamp

dbtxtimestamp

Description

Syntax

Parameters

Return value

Usage

See also

374

Return the value of the text timestamp for a column in the current row.
DBBINARY *dbtxtimestamp(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

column
The number of the select list column of interest. Column numbers start at 1.

A DBBINARY pointer to the text timestamp for the column of interest. This
pointer may be NULL.

e Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which marks the time of the column’s last
modification. The text timestamp is useful in conjunction with the
dbwritetext function, to ensure that two competing application users do not
inadvertently wipe out each other’s modifications to the same valuein the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on a SYBTEXT or SYBIMAGE column.

e Thelength of anon-NULL text timestamp is always DBTXTSLEN
(currently defined as 8 bytes).

e An application must select arow containing atext or image value before
calling dbtxtimestamp to return the associated text timestamp. The select
causes a copy of the text timestamp to be placed in the application’s
DBPROCESS. The application can then retrieve this text timestamp from
the DBPROCESS using dbtxtimestamp.

If no select is performed prior to the call to dbtxtimestamp, the call will
result in aDB-Library error message.

¢ For an example that uses dbtxtimestamp, see the dbwritetext reference
page.

dbtxptr, dbwritetext

Open Client

CHAPTER 2 Routines

dbtxtsnewval
Description

Syntax

Parameters

Return value

Usage

See also

dbtxtsput

Description

Return the new value of atext timestamp after acall to dowritetext.
DBBINARY *dbtxtsnewval(dbproc)

DBPROCESS *dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

A pointer to the new text timestamp value for the SYBTEXT or SYBIMAGE
value modified by a dbwritetext operation. This pointer may be NULL.

e Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which is updated whenever the column’svalue
ischanged. Thetext timestamp isuseful in conjunction with the dbwritetext
function to ensure that two competing application users do not
inadvertently wipe out each other’s modificationsto the samevaluein the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on a SYBTEXT or SYBIMAGE column and may be
examined by calling dbtxtimestamp.

» After each successful dbwritetext operation (which may include a number
of callsto dbmoretext), the server will send the updated text timestamp
value back to DB-Library. dbtxtsnewval provides away for the application
to get this new timestamp value.

e The application can use dbtxtsnewval in two ways. First, the return from
dbtxtsnewval can be used as the timestamp parameter of a dbwritetext call.
Second, dbtxtsnewval and dbtxtsput can be used together to put the new
timestamp value into the DBPROCESS row buffer, for future accessusing
dbtxtimestamp. Thisisparticularly useful when the applicationisbuffering
result rows and does not need the new timestamp immediately.

dbmoretext, dbtxtimestamp, dbtxtsput, dowritetext

Put the new value of atext timestamp into the specified column of the current
row in the DBPROCESS.

DB-Library/C Reference Manual 375

dbuse

Syntax

Parameters

Return value

Usage

See also

dbuse

Description

Syntax

376

RETCODE dbtxtsput(dbproc, newtxts, colnum)

DBPROCESS *dbproc;
DBBINARY *newtxts;
int colnum;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

newtxts
A pointer to the new text timestamp value. It is returned by dbtxtsnewval.

colnum
The number of the select list column of interest. Column numbers start at 1.

SUCCEED or FAIL.

e Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which is updated whenever the column’svalue
ischanged. Thetext timestamp isuseful in conjunction with the dowritetext
function, to ensure that two competing application users do not
inadvertently wipe out each other’s modifications to the same value in the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on aSYBTEXT or SYBIMAGE column and may be
examined by calling dbtxtimestamp.

e After each successful dbwritetext operation (which may include a number
of callsto dbmoretext), the server will send the updated text timestamp
value back to DB-Library. dbtxtsnewval alows the application to get this
new timestamp value. The application can then use dbtxtsput to put the
new timestamp value into the DBPROCESS row buffer, for future access
using dbtxtimestamp. Thisis particularly useful when the applicationis
buffering result rows and does not need the new timestamp immediately.

dbmoretext, dbtxtimestamp, dbtxtsnewval, dbwritetext

Use a particular database.

RETCODE dbuse(dbproc, dbname)

Open Client

CHAPTER 2 Routines

Parameters

Return value

Usage

See also

dbvarylen

Description

Syntax

Parameters

DBPROCESS *dbproc;
char *dbname;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dbname
The name of the database to use.

SUCCEED or FAIL.

e Thisroutineissues a Transact-SQL use command for the specified
database for a particular DBPROCESS. It sets up the command and calls
dbsglexec and dbresults.

e |f theuse command fails because the requested database has not yet
completed arecovery process, dbuse will continue to send use commands
at one second intervals until it either succeeds or encounters some other
error.

e Theroutine uses the dbproc provided by the cdler. It also uses the
command buffer of that dbproc. douse overwrites any existing commands
in the buffer and clears the buffer when it is finished.

dbchange, dbname

Determine whether the specified regular result column’s data can vary in
length.

DBBOOL dbvarylen(dbproc, column)

DBPROCESS *dbproc;
int column;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

DB-Library/C Reference Manual 377

dbversion

column
The number of the regular result column of interest. The first columnis
number 1.
Return value “TRUE” or “FALSE”", indicating whether or not the column’s datacan vary in

length. dbvarylen also returns “FALSE” if the column number is out of range.

Usage e Thisroutine indicates whether a particul ar regular (that is, non-compute)
result column’sdata can vary in length. It will return“ TRUE” if the result
column is derived from a database column of type varchar, varbinary, text,
image, boundary, or sensitivity. It will also return “TRUE”" if the source
database column is defined as NULL, meaning that it may contain anull
value.

e Thisroutineis useful with programs that handle ad hoc queries, if the
program needs to be alerted to the possibility of null or variable length
data.

¢ You can use dbcoltype to determine a column’s datatype. See Types on
page 412 for alist of datatypes.

See also dbcollen, dbcolname, dbcoltype, dbdata, dbdatlen, dbnumcols, dbprtype

dbversion

Description Determine which version of DB-Library isin use.

Syntax char *dbversion()

Parameters None.

Return value A pointer to a character string containing the version of DB-Library in use.

Usage dbversion returns a pointer to a character string that contains the version
number for the DB-Library that is currently in use.

See also DBTDS

378 Open Client

CHAPTER 2 Routines

dbwillconvert

Description

Syntax

Parameters

Return value

Usage

Determine whether a specific datatype conversion is available within DB-
Library.

DBBOOL dbwillconvert(srctype, desttype)

int srctype;

int desttype;

srctype
The datatype of the data that is to be converted. This parameter can be any
of the server datatypes, aslisted in Table 2-30.

desttype
The datatype that the source dataisto be converted into. This parameter can
be any of the server datatypes, aslisted in Table 2-30.

“TRUE" if the datatype conversion is supported, “FALSE” if the conversionis
not supported.

e Thisroutine allowsthe program to determinewhether dbconvert is capable
of performing a specific datatype conversion. When dbconvert is asked to
perform a conversion that it does not support, it calls a user-supplied error
handler (if any), sets aglobal error number, and returns FAIL.

» dbconvert can convert data stored in any of the server datatypes (although,
of course, not all conversions are legal). Table 2-30 lists the Server and
DB-Library datatypes.

DB-Library/C Reference Manual 379

dbwillconvert

See also

380

Table 2-30: Server and DB-Library datatypes

Server type

Program variable type

SYBCHAR DBCHAR
SYBTEXT DBCHAR
SYBBINARY DBBINARY
SYBIMAGE DBBINARY
SYBINT1 DBTINYINT
SYBINT2 DBSMALLINT
SYBINT4 DBINT
SYBFLTS8 DBFLT8
SYBREAL DBREAL
SYBNUMERIC DBNUMERIC
SYBDECIMAL DBDECIMAL
SYBBIT DBBIT
SYBMONEY DBMONEY
SYBMONEY 4 DBMONEY 4
SYBDATETIME DBDATETIME
SYBDATETIME4A DBDATETIMEA
SYBBOUNDARY DBCHAR
SYBSENSITIVITY DBCHAR

Table 2-8 on page 111 lists the datatype conversions that dbconvert and
dbconvert_ps support. The source datatypes are listed down the leftmost
column and the destination datatypes are listed along the top row of the
table. (For brevity, the prefix “SYB” has been eliminated from each
datatype.) If dbwillconvert returns “TRUE” (T), the conversion is
supported; if it returns“FALSE” (F), the conversion is not supported.

See the reference pages for dbconvert or dbconvert_ps.

dbaltbind, dbbind, dbconvert, dbconvert _ps, Types on page 412

Open Client

CHAPTER 2 Routines

dbwritepage

Description

Syntax

Parameters

Return value

Usage

See also

Write a page of binary data to the server.

Warning! Usethisroutine only if you are absol utely sure you know what you
are doing!

RETCODE dbwritepage(dbproc, dbname, pageno, size, buf)

DBPROCESS *dbproc;

char *dbname;
DBINT pageno;
DBINT size;
BYTE buf[];
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

dbname
The name of the database of interest.

pageno
The number of the database page to be written.

size
The number of bytesto be written to the server. Currently, Adaptive Server
Enterprise database pages are 2048 bytes long.

buf
A pointer to a buffer that holds the data to be written.

SUCCEED or FAIL.

dbwritepage writes a page of binary datato the server. Thisroutine is useful
primarily for examining and repairing damaged database pages. After calling
dbwritepage, the DBPROCESS may contain some error or informational

messages from the server. These messages may be accessed through a user-
supplied message handler.

dbmsghandle, dbreadpage

DB-Library/C Reference Manual 381

dbwritetext

dbwritetext

Description

Syntax

Parameters

382

Send atext or image value to the server.

RETCODE dbwritetext(dbproc, objname, textptr,
textptrlen, timestamp, log,
size, text)

DBPROCESS *dbproc;
char *objname;
DBBINARY *textptr;
DBTINYINT textptrlen;
DBBINARY *timestamp;

DBBOOL log;

DBINT size;
BYTE *text;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
server.

objname
The database table and column name that is separated by a period.

textptr
A pointer to the text pointer of the text or image value to be modified. This
can be obtained by calling dbtxptr. The text pointer must be avalid one, as
described on the dbtxptr reference page.

textptrien
This parameter isincluded for future compatibility. For now, its value must
be the defined constant DBTXPLEN.

timestamp
A pointer to the text timestamp of the text or image value to be modified.
This can be obtained using dbtxtimestamp or dbtxtsnewval. Thisvalue
changes whenever the text or image value itself is changed. This parameter
is optional and may be passed as NULL.

log
A boolean value specifying whether this dbwritetext operation should be
recorded in the transaction log.

size
Thetota size, in bytes, of the text or image value to be written. Since
dbwritetext uses this parameter as its only guide to determining how many
bytes to send, size must not exceed the actual size of the value.

Open Client

CHAPTER 2 Routines

text
The address of abuffer containing the text or image value to be written. If
thispointerisNULL, the application must subsequently call domoretext one
or more times, until al size bytes of data have been sent to the server.

Return value SUCCEED or FAIL.

A common cause for failureis aninvalid timestamp parameter. This occursif,
between the time the application retrieves the text column and the time the
application calls dowritetext to update it, a second application intervenes with
its own update.

Usage e dbwritetext updates SYBTEXT and SYBIMAGE values. It allows the
application to send long values to the server without having to copy them
into a Transact-SQL update statement. In addition, dbwritetext gives
applications access to the text timestamp mechanism, which can be used
to ensure that two competing application users do not inadvertently wipe
out each other’s modifications to the same value in the database.

e Thetimestamp parameter is optional.

If the timestamp parameter is supplied, dbwritetext succeeds only if the
value of the timestamp parameter matches the text column’stimestamp in
the database. If amatch occurs, dbwritetext updates the text column and at
the same time updates the column’s timestamp with the current time. This
has the effect of governing updates by competing applications—an
application’s dowritetext call failsif a second application updated the text
column between the time the first application retrieved the column and the
time it made its dbwritetext call.

If the timestamp parameter is not supplied, dbwritetext updates the text
column regardless of the value of the column’s timestamp.

* Thevalue to use as the timestamp parameter is placed in an application’s
DBPROCESS when the application performs a select on atext or image
value. It can be retrieved from the DBPROCESS using dbtxtimestamp.

In addition, after each successful dbwritetext operation, which may include
anumber of callsto domoretext, Adaptive Server Enterprise sends a new
text timestamp value back to DB-Library. dbtxtsnewval providesaway for
an application to retrieve this new value.

DB-Library/C Reference Manual 383

dbwritetext

384

LOGINREC
DBPROCESS
DBPROCESS
DBCHAR

dbwritetext is similar in function to the Transact-SQL writetext command.
Itis usually more efficient to call dowritetext than to send a writetext
command through the command buffer. In addition, dbwritetext can handle
columns up to 2GB in length, while writetext datais limited to
approximately 120K . See the Adaptive Server Enterprise Reference
Manual.

dbwritetext can be invoked with or without logging, according to the value
of the log parameter.

Whilelogging aids mediarecovery, logging text dataquickly increasesthe
size of the transaction log. If you are logging dbwritetext operations, make
sure that the transaction log resides on a separate database device. For
details, see the Adaptive Server Enterprise System Administration Guide,
the create database reference page, and the sp_logdevice reference pagein
the Adaptive Server Enterprise Reference Manual for details.

To use dbwritetext with logging turned off, the database option select
into/bulkcopy must be set to “true”. The following SQL command will do
this:

sp_dboption ‘mydb’, ‘select into/bulkcopy’, ‘true’

See the Adaptive Server Enterprise Reference Manual for further details
on sp_dboption.

The application can send atext or image value to the server all at once or
achunk at atime. dbwritetext by itself handles sending an entire text or
image value. The use of dbwritetext with dbmoretext allows the application
to send alarge text or image value to the server in the form of anumber of
smaller chunks. Thisis particularly useful with operating systems unable
to allocate extremely long data buffers.

Sending an entiretext or image valuerequiresanon-NUL L text parameter.
Then, dbwritetext will execute the data transfer from start to finish,
including any necessary callsto dbsglok and dbresults. Here is a code
fragment that illustrates this use of dbwritetext:

*login;

*g_dbproc;
*u_dbproc;
abstract var[512];

/* Initialize DB-Library. */

if

/*

(dbinit ()

== FAIL)

exit (ERREXIT) ;

Open Client

CHAPTER 2 Routines

** Open separate DBPROCESSes for querying and updating.

** This is not strictly necessary in this example,

** which retrieves only one row. However, this

** gpproach becomes essential when performing updates
** on multiple rows of retrieved data.

*/

login = dblogin() ;

g_dbproc = dbopen(login, NULL) ;

u_dbproc = dbopen(login, NULL) ;

/* The database column "abstract" is a text column.
** Retrieve the value of one of its rows.

*/

dbcmd (g _dbproc, "select abstract from articles where \
article id = 10");

dbsglexec (g_dbproc) ;

dbresults (q_dbproc) ;

dbbind(q_dbproc, 1, STRINGBIND, (DBINT) O,
abstract var) ;

/*

** For simplicity, we’ll assume that just one row is
** returned.

*/

dbnextrow (q_dbproc) ;

/* Here we can change the value of "abstract var" */
/* For instance ... */
strcpy (abstract var, "A brand new value.");

/* Update the text column */

dbwritetext (u dbproc, "articles.abstract",
dbtxptr (gq_dbproc, 1), DBTXPLEN,
dbtxtimestamp (g_dbproc, 1), TRUE,
(DBINT) strlen(abstract var), abstract var);

/* We're all done */

dbexit () ;

LOGINREC
DBPROCESS

* To send chunks of text or image, rather than the whole value at once, set
the text parameter to NULL. Then, dbwritetext will return control to the
application immediately after notifying the server that atext transfer is
about to begin. The actual text will be sent to the server with dbmoretext,
which can be called multiple times, once for each chunk. Hereis acode
fragment that illustrates the use of dbwritetext with domoretext:

*login;
*q_dbproc;

DB-Library/C Reference Manual 385

dbwritetext

DBPROCESS *u_dbproc;
DBCHAR partl[512];
static DBCHAR part2[512] = " This adds another \

sentence to the text.";

if (dbinit() == FAIL)
exit (ERREXIT) ;

login = dblogin() ;
g_dbproc = dbopen(login, NULL) ;
u_dbproc = dbopen(login, NULL) ;

dbcmd (g _dbproc, "select abstract from articles where \
article id = 10");

dbsglexec (q_dbproc) ;

dbresults (q_dbproc) ;

dbbind (g _dbproc, 1, STRINGBIND, (DBINT) 0, partl);

/*

** For simplicity, we’ll assume that just one row is
** returned.

*/

dbnextrow (q_dbproc) ;

/*

** Here we can change the value of part of the text
*% column. In this example, we will merely add a

** gsentence to the end of the existing text.

*/
/* Update the text column */

dbwritetext (u dbproc, "articles.abstract",

dbtxptr (gq_dbproc, 1), DBTXPLEN,

dbtxtimestamp (g_dbproc, 1), TRUE,

(DBINT) (strlen(partl) + strlen(part2)), NULL);

dbsglok (u_dbproc) ;
dbresults (u_dbproc) ;

/* Send the update value in chunks */
dbmoretext (u_dbproc, (DBINT)strlen(partl), partl);
dbmoretext (u_dbproc, (DBINT)strlen(part2), part2);

dbsglok (u_dbproc) ;
dbresults (u_dbproc) ;
dbexit () ;

Note the required calls to dbsglok and dbresults between the call to
dbwritetext and the first call to dbmoretext, and after the final call to
dbmoretext.

386 Open Client

CHAPTER 2 Routines

See also

dbxlate

Description

Syntax

Parameters

* When dbwritetext is used with domoretext, it locks the specified database
text column. The lock is not released until thefinal dbmoretext has sent its
data. Thisensuresthat asecond application does not read or update thetext
column in the midst of the first application’s update.

* You cannot use dbwritetext 0N text or image columnsin views.

e TheDB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restrictsthe size of text or image val ues
that Adaptive Server Enterprise returns. @@textsi ze has adefault val ue of
32,768 bytes. An application that retrievestext or image values larger than
32,768 bytes will need to call dbsetopt to make @@textsize larger.

e TheDB-Library/C option DBTEXTLIMIT limitsthe size of text or image
values that DB-Library/C will read.

dbmoretext, dbtxptr, dbtxtimestamp, dbwritetext, dbtxtsput

Trandlate a character string from one character set to another.

int dbxlate(dbproc, src, srclen, dest, destlen, xit,
srcbytes_used, srcend, status)

DBPROCESS dbproc;

char *Src;

int srclen;

char *dest;

int destlen;
DBXLATE *xlt;

int *srcbytes_used;
DBBOOL srcend;

int *status;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library usesto manage communications and data between the front end and
the server.

src
A pointer to the string to be translated.

DB-Library/C Reference Manual 387

dbxlate

Return value

Usage

388

srclen
Thelength, in bytes, of src. If srclenis-1, srcisassumed to be null-
terminated.

dest
A pointer to the buffer to contain the translated string, including a null
terminator.

destlen
The size, in bytes, of the buffer to contain the trandated string. If destlenis
-1, dest is assumed to be large enough to hold the translated string and its
null terminator.

xlt
A pointer to atranslation structure used to translate character strings from
one character set to another. The translation structure is allocated using
dbload_xlate.

srchytes used
The number of bytes actually translated. If the fully translated string would
overflow dest, doxlate translates only as much of src aswill fit. If destlenis
-1, srchytes used is srclen.

srcend
A boolean valueindicating whether or not more dataisarriving. If srcendis
“true”’, no more dataisarriving. If srcend is“false”, srcis part of alarger
string of data to be trandated, and it is not the end of the string.

status
A pointer to a code indicating the status of the translated character string.
Table 2-31 lists the possible values for status.

Table 2-31: Values for status

Value of status To indicate
DBXLATE_XOF The trandated string overflowed dest.
DBXLATE_XOK The trandation succeeded.

DBXLATE_XPAT Thelast bytes of src are the beginning of a pattern for which
there is atrandlation. These bytes were not trand ated.

The number of bytes actually placed in dest on success; a negative integer on
error.

* dbxlate trandates a character string from one character set to another. It is
useful when the server character set differs from the display device's
character set.

« Thefollowing code fragment illustrates the use of dbxlate:

Open Client

CHAPTER 2 Routines

See also

Errors

Description

Syntax

Usage

char destbuf [128] ;
int srcbytes used;
DBXLATE *x1lt todisp;
DBXLATE *x1lt _tosrv;

dbload xlate((DBPROCESS *)NULL, " iso_l ",
"trans.xlt", &xlt tosrv, &xlt todisp) ;

printf ("Original string: \n\t%s\n\n",
TEST_STRING) ;

dbxlate ((DBPROCESS *)NULL, TEST_STRING,
strlen(TEST STRING), destbuf, -1, xlt todisp,
&srcbytes used) ;

printf ("Translated to display character set: \
\n\t%s\n\n", destbuf) ;

dbfree xlate((DBPROCESS *)NULL, xlt tosrv,
xlt todisp);

dbload xlate, dbfree xlate

The complete collection of DB-Library errors and error severities.

#include <sybfront.h>

#include <sybdb.h>

#include <syberror.h>

Thisisthe completelist of possible DB-Library errorsand error severities.

The error values are listed alphabetically in Table 2-32 on page 391. The
second column of this table givesthe error severity for each error asa
symbolic value. The third column contains the text associated with the
error.

Table 2-33 on page 406 providesalist of all possibleerror severities, with
their numerical equivalents and an explanation of the type of error.

When an error or informational event occurs, these numbers are passed to
the application’s current error handler (if any). An application calls
dberrhandle to install an error handler.

Error values are defined in the header file sybdb.h. Error severity values
are defined in the header file syberror.h. Your program needs to include
syberror.h only if it refers to the symbolic error severities.

DB-Library/C Reference Manual 389

Errors

Errors
Table 2-32 lists all the DB-Library errors.

390 Open Client

CHAPTER 2 Routines

Table 2-32: Errors

Error name

Error severity

Error text

SYBEAAMT

EXPROGRAM

User attempted a dbaltbind with
mismatched column and variable

types.

SYBEABMT

EXPROGRAM

User attempted a dbbind with
mismatched column and variable

types.

SYBEABNC

EXPROGRAM

Attempt to bind to a non-existent
column.

SYBEABNP

EXPROGRAM

Attempt to bind using NULL
pointers.

SYBEABNV

EXPROGRAM

Attempt to bind to aNULL
program variable.

SYBEACNV

EXCONVERSION

Attempt to do data-conversionwith
NULL destination variable.

SYBEADST

EXCONSISTENCY

International Release: Error in
attempting to determine the size of
apair of translation tables.

SYBEAICF

EXCONSISTENCY

International Release: Error in
attempting to install custom
format.

SYBEALTT

EXCONSISTENCY

International Release: Error in
attempting to load a pair of
trandlation tables.

SYBEAOLF

EXRESOURCE

International Release: Error in
attempting to open alocalization
file.

SYBEAPCT

EXCONSISTENCY

International Release: Error in
attempting to perform a character
set trandation.

SYBEAPUT

EXPROGRAM

Attempt to print unknown token.

SYBEARDI

EXRESOURCE

International Release: Error in
attempting to read datetime
information from alocalization
file.

SYBEARDL

EXRESOURCE

International Release: Error in
attempting to read the dblib.loc
localization file.

SYBEASEC

DB-Library/C Reference Manual

EXPROGRAM

Attempt to send an empty
command buffer to the server.

391

Errors

392

Error name

Error severity

Error text

SYBEASNL

EXPROGRAM

Attempt to set fieldsin anull
LOGINREC.

SYBEASTL

EXPROGRAM

Synchronous|/O attempted at AST
level.

SYBEASUL

EXPROGRAM

Attempt to set unknown
LOGINREC field.

SYBEAUTN

EXPROGRAM

Attempt to update thetimestamp of
atable that has no timestamp
column.

SYBEBADPK

EXINFO

Packet size of %1 not supported-
size of %2 used instead!

SYBEBBCI

EXINFO

Batch successfully bulk copied to
the server.

SYBEBBL

EXPROGRAM

Bad bindlen parameter passed to
dbsetnull.

SYBEBCBC

EXPROGRAM

bcp_columns must be called before
bcp_colfmt and bep_colfmt_ps.

SYBEBCBNPR

EXPROGRAM

bcp_bind: if varaddr isNULL,
prefixien must be 0 and no
terminator should be specified.

SYBEBCBNTYP

EXPROGRAM

bep_bind: if varaddr isNULL and
varlen greater than 0, the table
columntypemust be SYBTEXT or
SYBIMAGE and the program
variable type must be SYBTEXT,
SYBCHAR, SYBIMAGE or
SYBBINARY.

SYBEBCBPREF

EXPROGRAM

Illegal prefix length. Legal values
are0, 1, 2or 4.

SYBEBCFO

EXUSER

bep host files must contain at least
one column.

SYBEBCHLEN

EXPROGRAM

host_collen should be greater than
or equal to -1.

SYBEBCIS

EXCONSISTENCY

Attempt to bulk copy anillegally-
sized column value to the server.

SYBEBCIT

EXPROGRAM

Itisillegal to use BCP terminators
with program variables other than
SYBCHAR, SYBBINARY,
SYBTEXT, or SYBIMAGE.

SYBEBCITBLEN

EXPROGRAM

bep_init: thlname parameter is too
long.

Open Client

CHAPTER 2 Routines

Error name

Error severity

Error text

SYBEBCITBNM

EXPROGRAM

bep_init: thiname parameter cannot
be NULL.

SYBEBCMTXT

EXPROGRAM

bcp_moretext may be used only
when there is at |east one text or
image column in the Server table.

SYBEBCNL

EXNONFATAL

Negative length-prefix found in
BCP datefile.

SYBEBCNN

EXUSER

Attempt to bulk copy aNULL
vaue into a Server column which
does not accept null values.

SYBEBCNT

EXUSER

Attempt to use Bulk Copy with a
non-existent Server table.

SYBEBCOR

EXCONSISTENCY

Attempt to bulk copy an oversized
row to the server.

SYBEBCPB

EXPROGRAM

bcp_bind, bep_moretext and
bcp_sendrow may not be used after
bep_init has been passed a non-
NULL input file name.

SYBEBCPCTYP

EXPROGRAM

bep_colfmt: If table_colnumis O,
host_type cannot be 0.

SYBEBCPI

EXPROGRAM

bep_init must be called before any
other bep routines.

SYBEBCPN

EXPROGRAM

bcp_bind, bep_collen, bep_colptr,
bcp_moretext and bep_sendrow
may be used only after bep_init has
been called with the copy direction
setto DB_IN.

SYBEBCPREC

EXNONFATAL

Column %!1!: lllegal precision
value encountered.

SYBEBCPREF

EXPROGRAM

Illegal prefix length. Legal values
ae-1,0,1,20r4.

SYBEBCRE

EXNONFATAL

1/0O error while reading bcp
datefile.

SYBEBCRO

EXINFO

The BCP hostfile ‘%1!" contains
only %2! rows. It was impossible
to read the requested %3! rows.

SYBEBCSA

EXUSER

The BCP hostfile ‘%1!" contains
only %2! rows. Skipping all of
these rows is not allowed.

SYBEBCSET

DB-Library/C Reference Manual

EXCONSISTENCY

Unknown character set
encountered.

393

Errors

394

Error name

Error severity

Error text

SYBEBCS

EXPROGRAM

Host-file columns may be skipped
only when copying into the Server.

SYBEBCSNDROW

EXPROGRAM

bcp_sendrow may not be called
unless dl text datafor the previous
row has been sent using
bcp_moretext.

SYBEBCSNTYP

EXPROGRAM

column number %1!: If varaddr is
NULL and varlen greater than 0O,
the table column type must be
SYBTEXT or SYBIMAGE andthe
program variable type must be
SYBTEXT, SYBCHAR,
SYBIMAGE or SYBBINARY.

SYBEBCUC

EXRESOURCE

bep: Unable to close host datafile.

SYBEBCUO

EXRESOURCE

bep: Unable to open host datafile.

SYBEBCVH

EXPROGRAM

bep_exec may be called only after
bep_init has been passed avalid
host file.

SYBEBCVLEN

EXPROGRAM

varlen should be greater than or
equal to-1.

SYBEBCWE

EXNONFATAL

1/O error while writing bcp
datefile.

SYBEBDIO

EXPROGRAM

Bad bulk copy direction. Must be
either IN or OUT.

SYBEBEOF

EXNONFATAL

Unexpected EOF encountered in
bcp datefile.

SYBEBIHC

EXPROGRAM

Incorrect host-column number
found in bep format file.

SYBEBIVI

EXPROGRAM

bep_columns, bep_colfmt and
bcp_colfmt_ps may be used only
after bep_init has been passed a
valid input file.

SYBEBNCR

EXPROGRAM

Attempt to bind user variable to a
non-existent compute row.

SYBEBNUM

EXPROGRAM

Bad numbytes parameter passed to
dbstrcpy.

SYBEBPKS

EXPROGRAM

In DBSETLPACKET, the packet
size parameter must be between 0
and 999999.

SYBEBPREC

EXPROGRAM

Illegal precision specified.

Open Client

CHAPTER 2 Routines

Error name Error severity Error text

SYBEBPROBADDEF EXCONSISTENCY bcp protocol error: Illegal default
column ID received.

SYBEBPROCOL EXCONSISTENCY bcp protocol error: Returned
column count differs from the
actual number of columns
received.

SYBEBPRODEF EXCONSISTENCY bcp protocol error: Expected
default information and got none.

SYBEBPRODEFID EXCONSISTENCY bcp protocol error: Default column
ID and actua column ID are not
same.

SYBEBPRODEFTYP EXCONSISTENCY bcp protocol error: Default value
datatype differs from column
datatype.

SYBEBPROEXTDEF EXCONSISTENCY bcp protocol error: More than one
row of default information
received.

SYBEBPROEXTRES EXCONSISTENCY bcp protocol error: Unexpected set
of results received.

SYBEBPRONODEF EXCONSISTENCY bcp protocol error: Default value
received for column that does not
have default.

SYBEBPRONUMDEF EXCONSISTENCY bcp protocol error: Expected
number of defaults differsfrom the
actual number of defaultsreceived.

SYBEBRFF EXRESOURCE 1/0 error while reading bep format
file.

SYBEBSCALE EXPROGRAM Illegal scale specified.

SYBEBTMT EXPROGRAM Attempt to send too much text data
using the bcp_moretext call.

SYBEBTOK EXCOMM Bad token from the server:
Datastream processing out of sync.

SYBEBTYP EXPROGRAM Unknown bind type passed to DB-
Library function.

SYBEBTY PSRV EXPROGRAM Datatype is hot supported by the
server.

SYBEBUCE EXRESOURCE bep: Unableto close error file.

SYBEBUCF EXPROGRAM bep: Unableto close format file.

SYBEBUDF EXPROGRAM bep: Unrecognized datatype found
in format file.

SYBEBUFF EXPROGRAM bep: Unableto create format file.

DB-Library/C Reference Manual 395

Errors

396

Error name Error severity Error text

SYBEBUFL EXCONSISTENCY DB-Library internal error-send
buffer length corrupted.

SYBEBUOE EXRESOURCE bep: Unable to open error file.

SYBEBUOF EXPROGRAM bep: Unable to open format file.

SYBEBWEF EXNONFATAL 1/O error while writing bcp error
file.

SYBEBWFF EXRESOURCE 1/O error while writing bcp format
file.

SYBECAP EXCOMM DB-Library capabilities not
accepted by the Server.

SYBECAPTYP EXCOMM Unexpected capability typein
CAPABILITY datastream.

SYBECDNS EXCONSISTENCY Datastream indicates that a
compute column is derived from a
non-existent select list member.

SYBECDOMAIN EXCONVERSION Sourcefield valueisnot within the
domain of legal values.

SYBECINTERNAL EXCONVERSION Internal Conversion error.

SYBECLOS EXCOMM Error in closing network
connection.

SYBECLPR EXCONVERSION Dataconversion resulted in loss of
precision.

SYBECNOR EXPROGRAM Column number out of range.

SYBECNOV EXCONVERSION Attempt to set variable to NULL
resulted in overflow.

SYBECOFL EXCONVERSION Dataconversion resulted in
overflow.

SYBECONN EXCOMM Unable to connect: Adaptive
Server Enterpriseis unavailable or
does not exist.

SYBECRNC EXPROGRAM The current row is not aresult of
compute clause %1!, soitisillega
to attempt to extract that datafrom
this row.

SYBECRSAGR EXPROGRAM Aggregate functions are not
allowed in acursor statement.

SYBECRSBROL EXPROGRAM Backward scrolling cannot be used

in aforward scrolling cursor.

Open Client

CHAPTER 2 Routines

Error name Error severity Error text

SYBECRSBSKEY EXPROGRAM Keyset cannot be scrolled
backward in mixed cursors with a
previous fetch type.

SYBECRSBUFR EXPROGRAM Row buffering should not beturned
on when using cursor APIs.

SYBECRSDIS EXPROGRAM Cursor statement contains one of
the disallowed phrases compute,
union, for browse, or select into.

SYBECRSFLAST EXPROGRAM Fetch type LAST requires fully
keyset driven cursors.

SYBECRSFRAND EXPROGRAM Fetch types RANDOM and
RELATIVE can only be used
within the keyset of keyset driven
Cursors.

SYBECRSFROWN EXPROGRAM Row number to be fetched is
outside valid range.

SYBECRSFTYPE EXRESOURCE Unknown fetch type.

SYBECRSINV EXPROGRAM Invalid cursor statement.

SYBECRSINVALID EXRESOURCE The cursor handleisinvalid.

SYBECRSMROWS EXRESOURCE Multiple rows are returned, only
oneis expected while retrieving
dbname.

SYBECRSNOBIND EXPROGRAM Cursor bind must be called prior to
dbcursor invocation.

SYBECRSNOCOUNT EXPROGRAM The DBNOCOUNT option should
not be turned on when doing
updates or deletes with dbcursor.

SYBECRSNOFREE EXPROGRAM The DBNOAUTOFREE option
should not beturned on when using
cursor APIs.

SYBECRSNOIND EXPROGRAM One of thetablesinvolved in the
cursor statement does not have a
unique index.

SYBECRSNOKEYS EXRESOURCE The entire keyset must be defined
for KEY SET type cursors.

SYBECRSNOLEN EXRESOURCE No unique index found.

SYBECRSNOPTCC EXRESOURCE No OPTCC was found.

SYBECRSNORDER EXRESOURCE The order of clauses must be from,
where, and order by.

SYBECRSNORES EXPROGRAM Cursor statement generated no

DB-Library/C Reference Manual

results.

397

Errors

398

Error name

Error severity

Error text

SYBECRSNROWS

EXRESOURCE

No rows returned, at least oneis
expected.

SYBECRSNOTABLE

EXRESOURCE

Table nameis NULL.

SYBECRSNOUPD

EXPROGRAM

Update or delete operation did not
affect any rows.

SYBECRSNOWHERE

EXPROGRAM

A where clauseisnot allowedina
CUrsor update or insert.

SYBECRSNUNIQUE

EXRESOURCE

No unique keys associated with
this view.

SYBECRSORD

EXPROGRAM

Only fully keyset driven cursors
can have order by, group by, or
having phrases.

SYBECRSRO

EXPROGRAM

Data locking or modifications
cannot be made in aread-only
Ccursor.

SYBECRSSET

EXPROGRAM

A set clauseisrequired for acursor
update Or insert.

SYBECRSTAB

EXPROGRAM

Table name must be determined in
operations involving datalocking
or modifications.

SYBECRSVAR

EXRESOURCE

Thereisno valid address
associated with this bind.

SYBECRSVIEW

EXPROGRAM

A view cannot be joined with
another table or aview in acursor
statement.

SYBECRSVIIND

EXPROGRAM

The view used in the cursor
statement does not include all the
unigue index columns of the
underlying tables.

SYBECRSUPDNB

EXPROGRAM

Update or insert operations cannot
use bind variables when binding
typeis NOBIND.

SYBECRSUPDTAB

EXPROGRAM

Update oOr insert operations using
bind variables require single table
Cursors.

SYBECSYN

EXCONVERSION

Attempt to convert data stopped by
syntax error in source field.

SYBECUFL

EXCONVERSION

Data conversion resulted in
underflow.

SYBEDBPS

EXRESOURCE

Maximum number of
DBPROCESSes aready allocated.

Open Client

CHAPTER 2 Routines

Error name Error severity Error text

SYBEDDNE EXINFO DBPROCESS is dead or not
enabled.

SYBEDIVZ EXUSER Attempt to divide by $0.00 in
function %1!.

SYBEDNTI EXPROGRAM Attempt to use dbtxtsput to put a
new text timestamp into a column
whose datatype is neither
SYBTEXT nor SYBIMAGE.

SYBEDPOR EXPROGRAM Out-of-range datepart constant.

SYBEDVOR EXPROGRAM Day values must be between 1 and
7.

SYBEECAN EXINFO Attempted to cancel unregquested
event notification.

SYBEEINI EXINFO Must call dbreginit before
dbregexec.

SYBEETD EXPROGRAM Failure to send the expected
amount of text or image data using
dbmoretext.

SYBEEUNR EXCOMM Unsolicited event notification
received.

SYBEEVOP EXINFO Called dbregwatch with a bad
options parameter.

SYBEEVST EXINFO Must initiate a transaction before
calling dbregparam.

SYBEFCON EXCOMM Adaptive Server Enterprise
connection failed.

SYBEFRES EXFATAL Challenge-Response function
failed.

SYBEFSHD EXRESOURCE Error in attempting to find the
Sybase home directory.

SYBEFUNC EXPROGRAM Functionality not supported at the
specified version level.

SYBEICN EXPROGRAM Invalid computeid or compute
column number.

SYBEIDCL EXCONSISTENCY lllega datetime column length
returned by Adaptive Server
Enterprise. Legal datetime lengths
are 4 and 8 bytes.

SYBEIDECCL EXCONSISTENCY Invalid decimal column length

DB-Library/C Reference Manual

returned by the server.

399

Errors

400

Error name Error severity Error text

SYBEIFCL EXCONSISTENCY lllegal floating-point column
length returned by Adaptive Server
Enterprise. Legd floating-point
lengths are 4 and 8 bytes.

SYBEIFNB EXPROGRAM Illegal field number passed to
bcp_control.

SYBEIICL EXCONSISTENCY lllegal integer column length
returned by Adaptive Server
Enterprise. Lega integer lengths
arel, 2, and 4 bytes.

SYBEIMCL EXCONSISTENCY lIllegal money column length
returned by Adaptive Server
Enterprise. Legal money lengths
are 4 and 8 bytes.

SYBEINLN EXUSER Interface file: unexpected end-of-
line.

SYBEINTF EXUSER Server name not found in interface
file.

SYBEINUMCL EXCONSISTENCY Invalid numeric column length
returned by the server.

SYBEIPV EXINFO %1! isanillegal value for the %2!
parameter of %3!.

SYBEISOI EXCONSISTENCY International Release: Invalid sort-
order information found.

SYBEISRVPREC EXCONSISTENCY lllega precision value returned by
the server.

SYBEISRVSCL EXCONSISTENCY lllegd scale vaue returned by the
server.

SYBEITIM EXPROGRAM Illegal timeout value specified.

SYBEIVERS EXPROGRAM Illegal version level specified.

SYBEKBCI EXINFO 1000 rows sent to the server.

SYBEKBCO EXINFO 1000 rows successfully bulk
copied to host file.

SYBEMEM EXRESOURCE Unable to alocate sufficient
memory.

SYBEMOV EXUSER Money arithmetic resulted in
overflow in function %1!.

SYBEMPLL EXUSER Attempt to set maximum number
of DBPROCESSes lower than 1.

SYBEMVOR EXPROGRAM Month values must be between 1

and 12.

Open Client

CHAPTER 2 Routines

Error name Error severity Error text

SYBENBUF EXINFO Called dbsendpassthru with a
NULL buf parameter.

SYBENBVP EXPROGRAM Cannot pass dbsetnull a NULL
bindval pointer.

SYBENDC EXPROGRAM Cannot have negative component
in date in numeric form.

SYBENDTP EXPROGRAM Called dbdatecrack with NULL
datetime parameter.

SYBENEG EXCOMM Negotiated login attempt failed.

SYBENHAN EXINFO Called dbrecvpassthru with a
NULL handle parameter.

SYBENMOB EXPROGRAM No such member of order by
clause.

SYBENOEV EXINFO DBPOLL can not be called when
registered procedure notifications
have been disabled.

SYBENPRM EXPROGRAM NULL parameter not allowed for
this dboption.

SYBENSIP EXPROGRAM Negative starting index passed to
dbstrcpy.

SYBENTLL EXUSER Name too long for LOGINREC
field.

SYBENTTN EXPROGRAM Attempt to use dbtxtsput to put a
new text timestamp into anon-
existent data row.

SYBENULL EXINFO NULL DBPROCESS pointer
passed to DB-Library.

SYBENULP EXPROGRAM Called %swith aNULL %s
parameter.

SYBENXID EXNONFATAL The Server did not grant us a
distributed-transaction ID.

SYBEONCE EXPROGRAM Function can be called only once.

SYBEOOB EXCOMM Error in sending out-of-band data
to the server.

SYBEOPIN EXNONFATAL Could not open interfacefile.

SYBEOPNA EXNONFATAL Optionisnot availablewith current

DB-Library/C Reference Manual

server.

401

Errors

402

Error name

Error severity

Error text

SYBEOREN

EXINFO

International Release: Warning: an
out-of-range error-number was
encountered in dblib.loc. The
maximum permissible error-
number is defined as
DBERRCOUNT in sybdb.h.

SYBEORPF

EXUSER

Attempt to set remote password
would overflow the login record’'s
remote password field.

SYBEPOLL

EXINFO

Thereis aready an active dbpoll.

SYBEPRTF

EXINFO

dbtracestring may only be called
from a printfunc.

SYBEPWD

EXUSER

Login incorrect.

SYBERDCN

EXCONVERSION

Requested data conversion does
not exist.

SYBERDNR

EXPROGRAM

Attempt to retrieve datafrom a
non-existent row.

SYBEREAD

EXCOMM

Read from the server failed.

SYBERESP

EXPROGRAM

Response function address passed
to dbresponse must be non-NULL.

SYBERPCS

EXINFO

Must call dbrpcinit before
dbrpcparam or dbrpcsend.

SYBERPIL

EXPROGRAM

Itisillegal topass-1todbrpcparam
for thedatalen of parameterswhich
are of type SYBCHAR,
SYBVARCHAR, SYBBINARY,
or SYBVARBINARY.

SYBERPNA

EXNONFATAL

The RPC facility is available only
when using aserver whose version
number is 4.0 or later.

SYBERPND

EXPROGRAM

Attempt to initiate anew Adaptive
Server Enterprise operation with
results pending.

SYBERPNULL

EXPROGRAM

value parameter for dbrpcparam
can be NULL, only if the datalen
parameter is 0.

SYBERPTXTIM

EXPROGRAM

RPC parameters cannot be of type
text or image.

Open Client

CHAPTER 2 Routines

Error name

Error severity

Error text

SYBERPUL

EXPROGRAM

When passing aSYBINTN,
SYBDATETIMN,
SYBMONEYN, or SYBFLTN
parameter using dbrpcparam, itis
necessary to specify the
parameter’s maximum or actual
length so that DB-Library can
recognizeit asaSYINTL,
SYBINT2, SYBINT4,
SYBMONEY, SYBMONEY 4,
and so on.

SYBERTCC

EXPROGRAM

dbreadtext may not be used to
receive the results of a query that
containsa COMPUTE clause.

SYBERTSC

EXPROGRAM

dbreadtext may be used only to
receive the results of a query that
contains asingle result column.

SYBERXID

EXNONFATAL

The Server did not recognize our
distributed-transaction ID.

SYBESECURE

EXPROGRAM

Secure Adaptive Server Enterprise
function not supported in this
version.

SYBESEFA

EXPROGRAM

DBSETNOTIFS cannot be called
if connections are present.

SYBESEOF

EXCOMM

Unexpected EOF from the server.

SYBESFOV

EXPROGRAM

International Release: dbsafestr
overflowed its destination buffer.

SYBESMSG

EXSERVER

Genera Adaptive Server
Enterprise error: Check messages
from the server.

SYBESOCK

EXCOMM

Unable to open socket.

SYBESPID

EXPROGRAM

Called dbspid withaNULL
dbproc.

SYBESYNC

EXCOMM

Read attempted while out of
synchronization with Adaptive
Server Enterprise.

SYBETEXS

EXINFO

Called dbmoretext with abad size
parameter.

SYBETIME

EXTIME

Adaptive Server Enterprise
connection timed out.

SYBETMCF

DB-Library/C Reference Manual

EXPROGRAM

Attempt toinstall too many custom
formats using dbfmtinstall.

403

Errors

404

Error name Error severity Error text

SYBETMTD EXPROGRAM Attempt to send too much TEXT
data using the domoretext call.

SYBETPAR EXPROGRAM No SYBTEXT or SYBIMAGE
parameters were defined.

SYBETPTN EXUSER Syntax error: Only two periods are
permitted in table names.

SYBETRAC EXINFO Attempted to turn off atrace flag
that was not on.

SYBETRAN EXINFO DBPROCESS s being used for
another transaction.

SYBETRAS EXINFO DB-Library internal error: Trace
structure not found.

SYBETRSN EXINFO Bad numbytes parameter passed to
dbtracestring.

SYBETSIT EXINFO Attempt to call dbtsput with an
invalid timestamp.

SYBETTS EXUSER The table which bulk copy is
attempting to copy to ahost fileis
shorter than the number of rows
which bulk copy was instructed to
skip.

SYBETYPE EXINFO Invalid argument type given to
Hyper/DB-Library.

SYBEUCPT EXUSER Unrecognized custom-format
parameter-type encountered in
dbstrbuild.

SYBEUCRR EXCONSISTENCY Internal software error: Unknown
connection result reported by
dbpasswad.

SYBEUDTY EXCONSISTENCY Unknown datatype encountered.

SYBEUFDS EXUSER Unrecognized format encountered
in dbstrbuild.

SYBEUFDT EXCONSISTENCY Unknown fixed-length datatype
encountered.

SYBEUHST EXUSER Unknown host machine name.

SYBEUMSG EXCOMM Unknown message-id in MSG
datastream.

SYBEUNAM EXFATAL Unable to get current user name
from operating system.

SYBEUNOP EXNONFATAL Unknown option passed to
dbsetopt.

Open Client

CHAPTER 2 Routines

Error name

Error severity

Error text

SYBEUNT

EXUSER

Unknown network type found in
interface file.

SYBEURCI

EXRESOURCE

International Release: Unable to
read copyright information from
the DB-Library localization file.

SYBEUREI

EXRESOURCE

International Release: Unable to
read error information from the
DB-Library localization file.

SYBEUREM

EXRESOURCE

International Release: Unable to
read error mnemonic from the DB-
Library localization file.

SYBEURES

EXRESOURCE

International Release: Unable to
read error string from the DB-
Library localization file.

SYBEURMI

EXRESOURCE

International Release: Unable to
read money-format information
from the DB-Library localization
file.

SYBEUSCT

EXCOMM

Unable to set communications
timer.

SYBEUTDS

EXCOMM

Unrecognized TDS version
received from the server.

SYBEUVBF

EXPROGRAM

Attempt to read an unknown
version of bep format file.

SYBEUVDT

EXCONSISTENCY

Unknown variable-length datatype
encountered.

SYBEVDPT

EXUSER

For bulk copy, all variable-length
data must have either alength-
prefix or aterminator specified.

SYBEWAID

EXCONSISTENCY

DB-Library interna error:
ALTFMT following ALTNAME
haswrong id.

SYBEWRIT

EXCOMM

Write to the server failed.

SYBEXOCI

EXNONFATAL

International Release: A character-
set tranglation overflowed its
destination buffer while using bcp
to copy data from a host-file to the
server.

SYBEXTDN

DB-Library/C Reference Manual

EXPROGRAM

Warning: Thexlt_todisp parameter
to dbfree_xlate was NULL. The
space associated with the xit_tosrv
parameter has been freed.

405

Errors

See also

406

Error name

Error severity

Error text

SYBEXTN

EXPROGRAM

The xIt_tosrv and xIt_todisp
parameters to dbfree_xlate were
NULL.

SYBEXTSN

EXPROGRAM

Warning: The XIt_tosrv parameter
to dbfree_xlate was NULL. The
space associated with the
xlt_todisp parameter has been
freed.

SYBEZTXT

EXINFO

Attempt to send zero length text or
image to dataserver using
dbwritetext.

UNUSED

EXINFO

This error number is unused.

Error severities

Table 2-33 lists the meanings for each symbolic error severity value.

Table 2-33: Error severities

Numerical
Error severity equivalent Explanation
EXINFO 1 Informational, non-error.
EXUSER 2 User error.
EXNONFATAL 3 Non-fatal error.
EXCONVERSION 4 Error in DB-Library data conversion.
EXSERVER 5 The Server has returned an error flag.
EXTIME 6 We have exceeded our timeout period while
waiting for aresponse from the Server—the
DBPROCESS s till dlive.
EXPROGRAM 7 Coding error in user program.

EXRESOURCE 8

Running out of resources—the DBPROCESS
may be dead.

EXCOMM 9 Failure in communication with Server—the
DBPROCESS is dead.
EXFATAL 10 Fatal error—the DBPROCESS is dead.

EXCONSISTENCY 11

Internal software error—notify Sybase
Technical Support.

DBDEAD, dberrhandle

Open Client

CHAPTER 2 Routines

Options
Description The complete list of DB-Library options.
Syntax #include <sybfront.h>
#include <sybdb.h>
Usage » dbsetopt and dbclropt use the following constants, defined in sybdb.h, for

setting and clearing options. All options are off by default. These options
are available:

DBARITHABORT - If this option is set, the server will abort a query
when an arithmetic exception occurs during its execution.

DBARITHIGNORE - If this option is set, the server will substitute null
valuesfor selected or updated values when an arithmetic exception occurs
during query execution. The Adaptive Server Enterprise will not return a
warning message. If neither DBARITHABORT nor DBARITHIGNORE
is set, Adaptive Server Enterprise will substitute null values and print a
warning message after the query has been executed.

DBAUTH — This option sets system administration authorization levels.
Possiblelevelsare: “sa’, “sso”, “oper”, and “dbcc_edit”. For information
on these levels, see the Adaptive Server Enterprise Reference Manual.

DBBUFFER — This option allows the application to buffer result rows, so
that it can access them non-sequentially using the dbgetrow function. This
option is handled locally by DB-Library and is not a server option. When
the option is set, you supply a parameter that is the number of rows you
want buffered. If you use 0 as the number of rowsto buffer, the buffer will
be set to a default size (currently 1000 rows).

When an application calls dbclropt to clear the DBBUFFER option, DB-
Library frees the memory associated with the row buffer.

DBCHAINXACTS— Thisoptionis used to select chained or unchained
transaction behavior.

Chained behavior means that each SQL statement that modifies or
retrieves data implicitly begins a multi-statement transaction. Any delete,
insert, open, fetch, select, or update statement implicitly begins a
transaction. An explicit commit or rollback statement isrequired to end the
transaction. Chained mode provides compatibility with ANSI SQL.

DB-Library/C Reference Manual 407

Options

408

Unchained behavior means that each SQL statement that modifies or
retrieves dataisimplicitly adistinct transaction. Explicit begin transaction
and commit or rollback statements are required to define a multi-statement
transaction.

Thisoptionisoff (indicating unchained behavior) by default. Applications
that operate in chained mode should turn on the option right after a
connection has been opened, since this option affects the behavior of all
queries.

DBDATEFIRST — Sets the first weekday to a number from 1to 7. The
us_english default is 1 (Sunday).

DBDATEFORMAT — Sets the order of the date parts month/day/year for
entering datetime or smalldatetime data. Valid arguments are “ mdy,”
“dmy,” “ymd,” “ydm,” “myd,” or “dym”. Theus_english defaultis*mdy.”

Row buffering provides away to keep a specified number of server result
rowsin program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Therefore, row buffering is useful for programs that need to look at
result rows in anon-sequential manner. However, it does carry a memory
and performance penalty because each row in the buffer must be allocated
and freed individually. Therefore, useit only if you need to. Specifically,
the application should only turn the DBBUFFER option on if it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue. (See the
dbgetrow, dbnextrow, and dbclrbuf reference pages.)

DBFIPSFLAG — Setting this option causesthe server to flag non-standard
SQL commands. This option is off by default.

DBISOLATION — This option is used to specify the transaction isolation
level. Possible levelsare 1 and 3. The default level is 1. Setting the level
to 3 causes all pages of tables specified in aselect query inside a
transaction to be locked for the duration of the transaction.

DBNATLANG — Thisisa DB-Library Internationalization option.
Associate the specified DBPROCESS (or all open DBPROCESSes, if a
DBPROCESS is not specified) with anational language. If the national
languageis not set for a particular DBPROCESS, U.S. English is used by
default.

Open Client

CHAPTER 2 Routines

In programs that allow application users to make ad hoc queries, the user
may override DBNATLANG with the Transact-SQL set language
command.

Note All DBPROCESSes opened using aparticular LOGINREC will also
use that LOGINREC's associated national language. Use the
DBSETLNATLANG macro to associate a national language with a
LOGINREC.

« DBNOAUTOFREE — This option causes the command buffer to be
cleared only by an explicit call to dbfreebuf. When DBNOAUTOFREE is
not set, after acall to dbsglexec or dbsglsend thefirst call to either docmd
or dbfcmd automatically clears the command buffer before the new text is
entered.

« DBNOCOUNT — This option causes the server to stop sending back
information about the number of rows affected by each SQL statement.
The application can otherwise obtain this information by calling
DBCOUNT.

« DBNOEXEC - If this option is set, the server will process the query
through the compile step but the query will not be executed. This can be
used in conjunction with DBSHOWPLAN.

« DBOFFSET — Thisoption indicates that the server should return offsets
for certain constructs in the query. DBOFFSET takes a parameter that
specifies the particular construct. The valid parameters for this option are
“select,” “from,” “table,” “order,” “compute,” “statement,” “procedure,
“execute,” or “param.” (Note that “ param” refers to parameters of stored
procedures.) Calls to routines such as dbsetopt can specify these option
parameters in either lowercase or uppercase. Offsets are returned only if
the batch contains no syntax errors.

« DBPARSEONLY - If thisoptionis set, the server only checks the syntax
of the query and returns error messages to the host. Offsets are returned if
the DBOFFSET option is set and there are no errors.

e DBPRCOL SEP- Specify the column separator character(s). Query results
rows formatted using dbprhead, dbprrow, dbsprhead, dbsprline, and
dbsprirow will have columns separated by the specified string. The default
separator is an ASCII 0x20 (space). The third parameter, a string, is not
necessarily null-terminated. The length of the string used is given as the
fourth parameter in the call to dbsetopt. To revert to using the default
separator, specify alength of -1. In this case, the third parameter is
ignored.

DB-Library/C Reference Manual 409

Options

410

DBPRLINELEN — Specify the maximum number of charactersto be
placed on oneline. Thisvalue is used by dbprhead, dbprrow, dbsprhead,
dbsprline, and dbsprirow. The default line length is 80 characters.

DBPRLINESEP — Specify the row separator character to be used by
dbprhead, dbprrow, dbsprhead, dbsprline, and dosprirow. The default
separator isanewline (ASCII 0xOD or 0xOA, depending on the host
system). The third parameter, a string, is not necessarily null-terminated.
The length of the string is given as the fourth parameter in the call to
dbsetopt. To revert to the default terminator, specify alength of -1; in this
case, the third parameter isignored.

DBPRPAD — Specify the pad character used when printing results using
dbprhead, dbprrow, dbsprhead, dbsprline, and dbsprirow. To activate
padding, specify DBPADON as the fourth parameter in the dbsetopt call.
The pad character may be specified as the third parameter in the dbsetopt
call. If the character is not specified, the ASCII character 0x20 (space) is
used. To turn off padding, call dbsetopt with DBPADOFF as the fourth
parameter; the third parameter is ignored when turning padding off.

DBROWCOUNT - If thisoptionis set to avalue greater than 0, the server
limits the number of regular rows returned for select statements and the

number of table rows affected by update or delete statements. This option
does not limit the number of compute rows returned by a select statement.

DBROWCOUNT works somewhat differently from most options. It is
always set on, never off. Setting DBROWCOUNT to 0 setsit back to the
default —that is, to return dl the rows generated by aselect statement.
Therefore, the way to turn DBROWCOUNT off isto set it on with acount
of 0.

DBSHOWPLAN — If thisoption is set, the server generates a description
of the processing plan after compilation and continue executing the query.

DBSTAT — This option determines when performance statistics (CPU
time, elapsed time, 1/0, and so on) will be returned to the host after each
query. DBSTAT takes one of two parameters: “io”, for statistics about
Adaptive Server Enterpriseinternal 1/O; and “time”, for information about
Adaptive Server Enterprise’s parsing, compilation, and execution times.
These statistics are received by DB-Library in the form of informational
messages, and application programs can access them through the user-
supplied message handler.

DBSTORPROCID - If this option is set, the server will send the stored
procedure ID to the host before sending rows generated by the stored
procedure.

Open Client

CHAPTER 2 Routines

e DBTEXTLIMIT — This option causes DB-Library to limit the size of
returned text or image values. When setting this option, you supply a
parameter that isthelength, in bytes, of thelongest text or image valuethat
your program can handle. DB-Library will read but ignore any part of a
text or image valuethat goesover thislimit. DB-Library’sdefault behavior
isto read and return all the data sent by the server. To restore this default
behavior, set DBTEXTLIMIT to avalue lessthan 1. In the case of huge
text values, it may take some time for the entire text value to be returned
over thenetwork. To keep the server from sending thisextratextin thefirst
place, use the DBTEXTSIZE option instead.

« DBTEXTSIZE - This option changes the value of the server global
variable @@textsize, which limits the size of text or image valuesthat the
server returns. When setting this option, you supply aparameter that isthe
length, in bytes, of the longest text or image value that the server should
return. @@textsize has a default value of 32,768 bytes. Note that, in
programsthat all ow application usersto make ad hoc queries, the user may
override this option with the Transact-SQL set textsize command. To set a
text limit that the user cannot override, use the DBTEXTLIMIT option
instead.

+ DBBUFFER, DBNOAUTOFREE, and DBTEXTLIMIT are DB-Library
options. That is, they affect DB-Library but are not sent to the server. The
other options are Adaptive Server Enterprise options—they are sent to the
server. Adaptive Server Enterprise options can also be set through
Transact-SQL commands.

< Asmentioned in the preceding descriptions, certain options take
parameters as shown in Table 2-34.

DB-Library/C Reference Manual 411

Types

See also

Types
Description

Syntax

Usage

412

Table 2-34: Parameter values for options

Option Possible parameter values

DBTEXTSIZE “0" to “2,147,483,647"

DBOFFSET “select”, “from”, “table”, “order”, “compute”, “ statement”,
“procedure”, “execute”, or “param”

DBSTAT “io” or “time”

DBROWCOUNT “0” to “2,147,483,647"

DBBUFFER “0" to either “32,767” or “2,147,483,647", depending on

whether your int datatype is 2 or 4 byteslong

DBTEXTLIMIT “0” to “2,147,483,647"

dbsetopt requires that an option parameter be specified when setting any
option on the preceding list. dbclropt and dbisopt require that the parameter
be specified only for DBOFFSET and DBSTAT. Thisis because
DBOFFSET and DBSTAT are the only options that can have multiple
settings at atime, and thus they require further definition before being
cleared or checked.

Notethat parametersspecified in callsto dbsetopt, dbclropt, and dbisopt are
always passed as character strings and must be quoted, even if they are
numeric values. See the dbsetopt reference page.

dbclropt, dbisopt, dbsetopt

Datatypes and symbolic constants for datatypes used by DB-Library.
#include <sybfront.h>

#include <sybdb.h>

e Table2-35liststhe symbolic constantsfor server datatypes. doconvert and
dbwillconvert use these constants. In addition, the routines dbcoltype,
dbalttype, and dbrettype will return one of these types.

Open Client

CHAPTER 2 Routines

Table 2-35: Symbolic constants for server datatypes

Symbolic constant

Represents

SYBDATETIME

datetime type.

SYBDATETIME4

4-byte datetime type.

SYBMONEY 4 4-byte money type.
SYBMONEY money type.
SYBFLT8 8-hytefloat type.
SYBDECIMAL decimal type.
SYBNUMERIC numeric type.
SYBREAL 4-byte float type.
SYBINT4 4-byteinteger.
SYBINT2 2-byteinteger.
SYBINT1 1-byte integer.
SYBIMAGE image type.
SYBTEXT text type.
SYBCHAR char type.
SYBBIT bit type.
SYBBINARY binary type.
SYBBOUNDARY Security sensitivity_boundary type.

Note Use DBCHAR as the type for program variables.

SYBSENSITIVITY

Security sensitivity type.

Note Use DBCHAR as the type for program variables.

See the Adaptive Server Enterprise Transact-SQL Users Guide.

e Hereisalist of C datatypesused by DB-Library functions. Thesetypesare
useful for defining program variables, particularly variables used with
dbbind, dbaltbind, dbconvert, and dbdatecrack.

/* char,

text,
typedef char

boundary, and sensitivity types */

DBCHAR;

/* binary and image type */

typedef unsigned char

DBBINARY;

/* 1l-byte integer */

typedef unsigned char

DBTINYINT;

/* 2-byte integer */

typedef short

DB-Library/C Reference Manual

DBSMALLINT;

413

Types

/ unsigned 2-byte integer */
typedef unsigned short DBUSMALLINT;

/* 4-byte integer */
typedef long DBINT;

/* 4-byte float type */

typedef float DBREAL;

typedef struct dbnumeric
char precision;
char scale;
unsigned char val [MAXNUMLEN] ;

} DBNUMERIC;
typedef DBNUMERIC DBDECIMAL;

/* 8-byte float type */
typedef double DBFLTS;

/* bit type */
typedef unsigned char DBBIT;

/* SUCCEED or FAIL */
typedef int RETCODE ;

/* datetime type */
typedef struct datetime
{
/* number of days since 1/1/1900 */
long dtdays;
/* 300ths of a second since midnight */
unsigned long dttime;
} DBDATETIME;

/* 4-byte datetime type */

typedef struct datetime4

{
/* number of days since 1/1/1900 */
unsigned short numdays;
/* number of minutes since midnight */
unsigned short nummins;

} DBDATETIME4 ;

typedef struct dbdaterec

414 Open Client

CHAPTER 2 Routines

DB-Library/C Reference Manual

{

/* 1900 to the future */

long dateyear;
/* 0 - 11 */

long datemonth;
/* 1 - 31 %/

long datedmonth;

/* 1 - 366 */
long datedyear;

/* 0 - 6 (day names depend on language */
long datedweek;

/* 0 - 23 */

long datehour;

/* 0 - 59 */

long dateminute;

/* 0 - 59 %/

long datesecond;

/* 0 - 997 */

long datemsecond;

/* 0 - 127 -- NOTE: Currently unused.*/
long datetzone;

} DBDATEREC;

/* money type */

typedef struct money
{
long mnyhigh;
unsigned long mnylow;
} DBMONEY;

/* 4-byte money type */
typedef signed long DBMONEY4 ;

/* Pascal-type string */
typedef struct dbvarychar

{

/* character count */

DBSMALLINT len;
/* non-terminated string */
DBCHAR str [DBMAXCHAR] ;

} DBVARYCHAR;

/* Pascal-type binary array */
typedef struct dbvarybin

{

/* byte count */

415

Types

DBSMALLINT len;
/* non-terminated array */
BYTE array [DBMAXCHAR] ;

} DBVARYBIN;

/* Used by DB-Library for indicator variables */
typedef DBSMALLINT DBINDICATOR;

Note The SYBBOUNDARY and SYBSENSITIVITY symbolic constants
correspond to the program variable type DBCHAR.

See also dbaltbind, dbalttype, dbbind, dbcoltype, dbconvert, dbprtype, dbrettype,
dbwillconvert, Options

416 Open Client

CHAPTER 3

Bulk Copy Routines

This chapter describes the DB-Library bulk copy routines.

Topic Page
Introduction to bulk copy 417
List of bulk copy routines 420

Introduction to bulk copy

Bulk copy isatool for high-speed transfer of databetween adatabasetable
and program variables or ahost file. It provides an aternative to SQL
insert and select commands.

The DB-Library/C bulk copy special library isacollection of routinesthat
provide bulk copy functionality to a DB-Library/C application. A DB-
Library/C application may find bulk copy useful if it needs to exchange
data with a non-database application, load data into a new database, or
move data from one database to another.

Transferring data into the database

Data can be copied into a database from program variables or from a flat
file on the client’s host machine.

When you are copying data into a database table, the chief advantage of

bulk copy over the alternative SQL insert command is speed. Also, SQL

insert requires that the data be in character string format, while bulk copy
can transfer native datatypes.

DB-Library/C Reference Manual 417

Introduction to bulk copy

418

When copying datainto a non-indexed table, the “high speed” version of bulk
copy is used, which means that no data logging is performed during the
transfer. If the system fails before the transfer is complete, no new data will
remain in the database. Because high-speed transfer affects the recoverability
of the database, it is only enabled if the Adaptive Server Enterprise option
select into/bulkcopy has been turned on. If the option is not enabled, and a user
tries to copy datainto atable that has no indexes, Adaptive Server Enterprise
generates an error message.

After the bulk copy is complete, the System Administrator should dump the
database to ensure its future recoverability.

When you copy datainto an indexed table, a slower version of bep is
automatically used, and row inserts are logged.

To copy datainto a database, a DB-Library/C application must perform the
following introductory steps:

e Cdl dblogin to acquire a LOGINREC structure for later use with dbopen.

e CdlBCP_SETL toset upthe LOGINREC for bulk copy operationsinto the
database.

e Cadl dbopen to establish a connection with Adaptive Server Enterprise.

e Cdl bep_init to initialize the bulk copy operation and inform Adaptive
Server Enterprise whether the copy will be performed from program
variables or from a host file. To copy datainto the database, the bep_init
direction parameter must be passed as DB_IN.

At this point, an application copying data from program variables will need to
perform different steps than an application copying data from a host file.

To copy datafrom program variables, a DB-Library/C application must
perform the following steps in addition to the introductory ones listed
previously:

e Cadl bcp_bind once for each program variable that is to be bound to a
database column.

e Transfer abatch of datain aloop:
e Assign program variables the data values to transfer.
e Call bcp_sendrow to send the row of data.

* After abatch of rows has been sent, call bcp_batch to save the rowsin
Adaptive Server Enterprise.

Open Client

CHAPTER 3 Bulk Copy Routines

After all the data has been sent, call bcp_done to end the bulk copy
operation.

To copy datafrom ahost file, aDB-Library/C application needsto perform the
following stepsin addition to the introductory ones listed previously:

Call bep_control to set the batch size and change control parameter default
settings.

Call bep_columns to set the total number of columns found in the host file.

Call bep_colfmt once for each column in the host file. If the host file
matches the database table exactly, an application does not have to call
bcp_colfmt.

Call bcp_exec to start the copy in.

Transferring data out of the database to a flat file

Data can be copied out from a database only into an operating system (host)
file. Bulk copy doesnot allow thetransfer of datafrom adatabaseinto program
variables.

When transferring data out to a host file from a database table, the chief
advantage of bulk copy over SQL select is that it allows very specific output
file formats to be specified. Bulk copy is not significantly faster than SQL
select.

To copy data out from a database, a DB-Library/C application must perform
the following steps:

1
2
3

Call dblogin to acquire a LOGINREC structure for later use with dbopen.
Call dbopen to establish a connection with Adaptive Server Enterprise.

Call bep_init to initialize the bulk copy operation. To copy data out from
the database, direction must be passed as DB_OUT.

Call bep_control to set the batch size and change control parameter default
settings.

Call bep_columns to set the total number of columns found in the host file.

Call bep_colfmt once for each column in the host file. If the host file
matches the database table exactly, an application does not have to call
bcp_colfmt.

Call bcp_exec to start the copy out.

DB-Library/C Reference Manual 419

List of bulk copy routines

List of bulk copy routines

420

Routine Description

bcp_batch Save any preceding rows in Adaptive Server Enterprise.

bep_bind Bind data from a program variable to a Adaptive Server
Enterprise table.

bep_colfmt Specify the format of a host file for bulk copy purposes.

bcp_colfmt_ps Specify the format of ahost file for bulk copy purposes,
with precision and scale support for numeric and decimal
columns.

bep_collen Set the program variable data length for the current bulk
copy into the database.

bcp_colptr Set the program variable data address for the current bulk
copy into the database.

bcp_columns Set the total number of columns found in the host file.

bcp_control Change various control parameter default settings.

bcp_done End a bulk copy from program variables into Adaptive
Server Enterprise.

bcp_exec Execute a bulk copy of data between a database table and
ahost file.

bep_getl Determineif the LOGINREC has been set for bulk copy
operations.

bep_init Initialize bulk copy.

bcp_moretext Send part of atext or image value to Adaptive Server
Enterprise.

bcp_options Set bulk copy options.

bep_readfmt Read a datafile format definition from a host file.

bep_sendrow Send arow of datafrom program variables to Adaptive
Server Enterprise.

BCP_SETL Set the LOGINREC for bulk copy operations into the
database.

bcp_setxlate Specify the character set trandations to use when
retrieving data from or inserting datainto a Adaptive
Server Enterprise.

bep_writefmt Write a datafile format definition to a host file.

Open Client

CHAPTER 3 Bulk Copy Routines

bcp_batch

Description

Syntax

Parameters

Return value

Usage

See also

Save any preceding rows in Adaptive Server Enterprise.

DBINT bcp_batch(dbproc)

DBPROCESS *dbproc;

dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

The number of rows saved sincethelast call to bep_batch, or -1 in case of error.

When an application uses bep_bind and bep_sendrow to bulk-copy rows
from program variablesto Adaptive Server Enterprise tables, therows are
permanently saved in Adaptive Server Enterprise only when the program
calls bep_batch or bep_done.

You may call bcp_batch once every n rowsor when thereisalull between
periods of incoming data (asin atelemetry application). Of course, you
may choose some other criteria, or may decide not to call bep_batch at all.
If bcp_batch is not called, the rows are permanently saved in Adaptive
Server Enterprise when bcp_done is called.

By default, Adaptive Server Enterprise copiesall therows specifiedinone
batch. Adaptive Server Enterprise considers each batch to be a separate
bcp operation. Each batchiscopiedin asingleinsert transaction, and if any
row in the batch is rejected, the entire insert is rolled back. bcp then
continues to the next batch. You can use bep_batch to break large input
filesinto smaller units of recoverability. For example, if 300,000 rows are
bulk copied and bcp_batch iscalled every 100,000 rows, if thereisafatal
error after row 200,000, the first two batches—200,000 rows—will have
been successfully copied into Adaptive Server Enterprise.

bcp_batch actually sends two commands to the server. The first command
tells the server to permanently save the rows. The second tells the server
to begin anew transaction. It ispossiblethat the command to savetherows
completes successfully but the command to start a new transaction does
not. In this case, bcp_batch’s error return of -1 does not indicate that the
rows have not been successfully saved. To find out whether this has
happened, an application can refer to the messages generated by Adaptive
Server Enterprise or DB-Library/C.

bcp_bind, bcp_done, bep_sendrow

DB-Library/C Reference Manual 421

bcp_bind

bcp_bind

Description

Syntax

Parameters

422

Bind data from a program variable to an Adaptive Server Enterprise table.

RETCODE bcp_bind (dbproc, varaddr, prefixlen, varlen,
terminator, termlen, type,
table_column)

DBPROCESS *dbproc;

BYTE *varaddr;

int prefixlen;
DBINT varlen;

BYTE *terminator;

int termlen;

int type;

int table_column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

varaddr
The address of the program variable from which the data will be copied. If
typeis SYBTEXT or SYBIMAGE, varaddr can be NULL. A NULL
varaddr indicates that text and image valueswill be sent to Adaptive Server
Enterprise in chunks by bcp_moretext, rather than all at once by
bcp_sendrow.

prefixlen
Thelength, in bytes, of any length prefix this column may have. For
example, strings in some non-C programming languages are made up of a
one-bytelength prefix, followed by the string dataitself. If the data does not
have alength prefix, set prefixiento 0.

Open Client

CHAPTER 3 Bulk Copy Routines

varlen
The length of the datain the program variable, not including the length of
any length prefix and/or terminator. Setting varlento O signifiesthat the data
isnull. Setting varlen to -1 indicates that the system should ignore this
parameter.

For fixed-length datatypes, such asinteger, the datatype itself indicates to
the system the length of the data. Therefore, for fixed-length datatypes,
varlen must aways be-1, except when thedataisnull, inwhich case varlen
must be 0.

For char, text, binary, and image datatypes, varlen can be -1, 0, or some
positive value. If varlenis-1, the system will use either alength prefix or a
terminator sequence to determine the length. (If both are supplied, the
system will use the one that results in the shortest amount of data being
copied.) If varlenis-1 and neither aprefix length nor aterminator sequence
is specified, the system will return an error message. If varlenis O, the
system assumesthe datais null. If varlen is some positive value, the system
uses varlen as the data length. However, if, in addition to a positive varlen,
aprefix length and/or terminator sequence is provided, the system
determines the data length by using the method that results in the shortest
amount of data being copied.

terminator
A pointer to the byte pattern, if any, that marks the end of this program
variable. For example, C strings usually have a 1-byte terminator whose
valueisO. If thereis no terminator for the variable, set terminator to NULL.

If you want to designate the C null terminator as the program variable
terminator, the simplest way isto use an empty string (") asterminator and
set termlen to 1, since the null terminator constitutes a single byte. For
instance, the second bep_bind call inthe* Example” section below usestwo
tabs asthe program variable terminator. It could be rewritten to usea C null
terminator instead, as follows:

bcp bind (dbproc, co name, 0, -1, "", 1, 0, 2)

termlen
The length of this program variable's terminator, if any. If thereisno
terminator for the variable, set termlen to O.

DB-Library/C Reference Manual 423

bcp_bind

Return value SUCCEED or FAIL.
Examples e Thefollowing program fragment illustrates bcp_bind:
LOGINREC *login;
DBPROCESS *dbproc;
char co_name [MAXNAME] ;
DBINT co_id;
DBINT rows_sent;
DBBOOL more_ data;
char *terminator = "\t\t";

424

type

The datatype of your program variable, expressed as an Adaptive Server
Enterprise datatype. The datain the program variable will be automatically
converted to the type of the database column. If this parameter is 0, no
conversion will be performed. See the dbconvert reference page for alist of
supported conversions. That reference page also contains alist of Adaptive

Server Enterprise datatypes.

table_column

The column in the database table to which the data will be copied. Column

numbers start at 1.

/* Initialize DB-Library. */
if (dbinit () == FAIL)
exit (ERREXIT) ;

/* Install error-handler and message-handler. */
dberrhandle (err handler) ;
dbmsghandle (msg handler) ;

/* Open a DBPROCESS. */

login = dblogin() ;
BCP_SETL(login, TRUE) ;

dbproc = dbopen(login, NULL) ;

/* Initialize bcp. */

if (bcp_init (dbproc, "comdb..accounts info",
NULL, NULL, DB IN) == FAIL)
exit (ERREXIT) ;

/* Bind program variables to table columns. */
if (bcp_bind(dbproc, &co_id, 0, -1,
(BYTE *)NULL, O, 0, 1) == FAIL)

fprintf (stderr, "bcp bind, column 1, failed.\n");

Open Client

CHAPTER 3 Bulk Copy Routines

exit (ERREXIT) ;

if (bcp_bind

(dbproc, co _name, 0, -1, (BYTE *)terminator,
strlen(terminator), 0, 2)
== FAIL)

fprintf (stderr, "bcp bind, column 2, failed.\n");
exit (ERREXIT) ;

}

while (TRUE)

{

/* Process/retrieve program data. */
more data = getdata(&co id, co name) ;

if (more data == FALSE)
break;

/* Send the data. */
if (bcp_ sendrow (dbproc) == FAIL)
exit (ERREXIT) ;

}

/* Terminate the bulk copy operation. */
if ((rows_sent = bcp done(dbproc)) == -1)
printf ("Bulk-copy unsuccessful.\n") ;
else
printf ("$1d rows copied.\n", rows_ sent);

Usage * There may be times when you want to copy data directly from a program
variableinto atablein Adaptive Server Enterprise, without having to first
place the datain a host file or use the SQL insert command. The bcp_bind
function isafast and efficient way to do this.

e Youmust cal bep_init before calling this or any other bulk copy functions.

* There must be a separate bep_bind call for every column in the Adaptive
Server Enterprise table into which you want to copy. After the necessary
bep_bind calls have been made, you then call bcp_sendrow to send arow
of datafrom your program variables to Adaptive Server Enterprise. The
table to be copied into is set by calling bep_init.

* You canoverridethe program variable datalength (varlen) for aparticular
column on the current copy in by calling bcp_collen.

DB-Library/C Reference Manual 425

bcp_colfmt

See also

bcp_colfmt

Description

Syntax

426

Whenever you want Adaptive Server Enterprise to checkpoint the rows
already received, call bcp_batch. For example, you may want to call
bep_batch once for every 1000 rows inserted, or at any other interval.

When there are no more rows to be inserted, call bcp_done. Failureto do
so will result in an error.

When using bcp_bind, the host file name parameter used in the call to
bep_init, hfile, must be set to NULL, and the direction parameter, direction,
must be set to DB_IN.

Prefix lengths should not be used with fixed-length datatypes, such as
integer or float. For fixed-length datatypes, since bulk copy can figure out
the length of the data from the datatype, pass prefixlen as 0 and varlen as
-1, except when the datais NULL, in which case varlen must be 0.

Control parameter settings, specified with bcp_control, have no effect on
bcp_bind row transfers.

Itisan error to call bep_columns when using bep_bind.

bcp_batch, bep_colfmt, bep_collen, bep_colptr, bep_columns, bep_controal,
bcp_done, bep_exec, bep_init, becp_moretext, bep_sendrow

Specify the format of ahost file for bulk copy purposes.

RETCODE bcp_colfmt (dbproc, host_colnum, host_type,

host_prefixlen, host_collen,
host_term, host_termlen,
table_colnum)

DBPROCESS *dbproc;

int host_colnum;
int host_type;

int host_prefixlen;
DBINT host_collen;
BYTE *host_term;

int host_termlen;
int table_colnum;

Open Client

CHAPTER 3 Bulk Copy Routines

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colnum
The column in the host file whose format is being specified. The first
column is number 1.

host_type
Thedatatype of thiscolumnin the host file, expressed asan Adaptive Server
Enterprise datatype. If it is different from the datatype of the corresponding
column in the database table (table_colnum), the conversion will be
performed automatically. See the dbconvert reference page for atable of
allowable data conversions. That reference page also contains alist of
Adaptive Server Enterprise datatypes.

If you want to specify the same datatype asin the corresponding column of
the database table (table_colnum), this parameter should be set to O.

Note bcp_colfmt does not offer precision and scale support for numeric and
decimal types. When setting the format of a numeric or decimal host column,
bep_colfmt uses a default precision and scale of 18 and O, respectively. To
specify adifferent precision and scale, an application can call bep_colfmt_ps.

host_prefixlen
Thelength of the length prefix for this column in the host file. Legal prefix
lengths are 1, 2, and 4 bytes. To avoid using a length prefix, this parameter
should be set to 0. To let bep decide whether to use alength prefix, this
parameter should be set to -1. In such acase, bep will use alength prefix (of
whatever length is necessary) if the database column length is variable.

If more than one means of specifying ahost file column length isused (such
as alength prefix and a maximum column length, or alength prefix and a
terminator sequence), bep will ook at all of them and use the onethat results
in the smallest amount of data being copied.

Onevaluableusefor length prefixesisto simplify the specifying of null data
valuesin ahost file. For instance, assume you have a 1-byte length prefix
for a4-byteinteger column. Ordinarily, thelength prefix will contain avalue
of 4, to indicate that a 4-byte value follows. However, if the value of the
columnis NULL, the length prefix can be set to 0 to indicate that O bytes
follow for the column.

DB-Library/C Reference Manual 427

bcp_colfmt

428

host_collen

The maximum length of this column’sdatain the host file, not including the
length of any length prefix and/or terminator. Setting host_collen to O
signifies that the datais NULL. Setting host_collen to -1 indicates that the
system should ignore this parameter (that is, there is no default maximum
length).

For fixed-length datatypes, such asinteger, thelength of the datais constant,
except for the special case of null values. Therefore, for fixed-length
datatypes, host_collen must always be -1, except when the datais null, in
which case host_collen must be 0.

For char, text, binary, and image datatypes, host_collen can be-1, 0, or some
positivevalue. If host_collenis-1, the system will use either alength prefix
or aterminator sequence to determine the length of the data. (If both are
supplied, the system will use the one that results in the shortest amount of
data being copied.) If host_collen is-1 and neither a prefix length nor a
terminator sequenceis specified, the system will return an error message. If
host_collenis 0, the system assumes the datais NULL. If host_collenis
some positive value, the system uses host_collen as the maximum data
length. However, if, in addition to a positive host_collen, a prefix length
and/or terminator sequence is provided, the system determines the data
length by using the method that results in the shortest amount of databeing
copied.

host_term

The terminator sequence to be used for this column. This parameter is
mainly useful for char, text, binary, and image datatypes, because all other
datatypes are of fixed length. To avoid using aterminator, set this parameter
toNULL. To set theterminator tothe NULL character, set host_termto“\0”.
To make the tab character the terminator, set host_termto “\t”. To make the
newline character the terminator, set host_termto “\n”.

If more than one means of specifying ahost file column lengthis used (such
asaterminator and alength prefix, or aterminator and a maximum column
length), bcp will look at al of them and use the one that results in the
smallest amount of data being copied.

host_termlen

The length, in bytes, of the terminator sequence to be used for this column.
To avoid using aterminator, set thisvalueto -1.

table_colnum

The corresponding column in the database table. If thisvalueis O, this
column will not be copied. Thefirst column is column 1.

Open Client

CHAPTER 3 Bulk Copy Routines

Return value SUCCEED or FAIL.

Usage * bcp_colfmt alows you to specify the host file format for bulk copies. For
bulk copy purposes, aformat contains the following parts:

e A mapping from host file columns to database columns
* The datatype of each host file column

* Thelength of the optional length prefix of each column
e The maximum length of the host file column’s data

» Theoptiona terminating byte sequence for each column
» Thelength of this optional terminating byte sequence

» Each call to bep_colfmt specifies the format for one host file column. For
example, if you have atable with five columns and want to change the
default settings for three of those columns, you should first call
bep_columns(dbproc, 5), and then call bep_colfmt five times, with three of
those calls setting your custom format. The remaining two calls should
have their host_type set to 0, and their host_prefixlen, host_collen, and
host_termlen parameters set to -1. The result of this would be to copy all
five columns—threewith your customized format and two with the default
format.

e bcp_columns must be called before any callsto bep_colfmt.

e Youmust cal bcp_colfmt for every column in the host file, regardless of
whether some of those columns use the default format or are skipped.

e Toskip acolumn, set the table_column parameter to O.

See also bcp_batch, bep_bind, bep _colfmt_ps, bep_collen, bep_colptr, bep_columns,
bcp_control, bep_done, bep_exec, bep_init, bcp_sendrow

bcp_colfmt_ps

Description Specify the format of ahost file for bulk copy purposes, with precision and
scale support for numeric and decimal columns.

Syntax RETCODE bcp_colfmt_ps (dbproc, host_colnum, host_type,
host_prefixlen, host_collen,
host_term, host_termlen,
table_colnum, typeinfo)

DB-Library/C Reference Manual 429

bcp_colfmt_ps

DBPROCESS *dbproc;

int host_colnum;
int host_type;

int host_prefixlen;
DBINT host_collen;
BYTE *host_term;

int host_termlen;
int table_colnum;

DBTYPEINFO *typeinfo;

Note bcp_colfmt_ps’s parameters are identical to bep_colfmt's, except that
bep_colfmt_ps has the additional parameter typeinfo, which contains
information about precision and scale for numeric or decimal columns.

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colnum
The column in the host file whose format is being specified. The first
column is number 1.

host_type
The datatype of thiscolumninthe host file, expressed asan Adaptive Server
Enterprise datatype. If it is different from the datatype of the corresponding
column in the database table (table_colnum), the conversion will be
performed automatically. See the dbconvert reference page for a table of
allowable data conversions. That reference page also contains alist of
Adaptive Server Enterprise datatypes.

If you want to specify the same datatype asin the corresponding column of
the database table (table_colnum), this parameter should be set to 0.

430 Open Client

CHAPTER 3 Bulk Copy Routines

host_prefixlen
Thelength of the length prefix for this column in the host file. Legal prefix
lengths are 1, 2, and 4 bytes. To avoid using alength prefix, this parameter
should be set to 0. To let bep decide whether to use alength prefix, this
parameter should be set to -1. In such acase, bep will use alength prefix (of
whatever length is necessary) if the database column length is variable.

If more than one means of specifying ahost file column length isused (such
as alength prefix and a maximum column length, or alength prefix and a
terminator sequence), bep will look at all of them and use the onethat results
in the shortest amount of data being copied.

Onevaluableusefor length prefixesisto simplify the specifying of null data
valuesin ahost file. For instance, assume you have a 1-byte length prefix
for a4-byteinteger column. Ordinarily, thelength prefix will containavalue
of 4, to indicate that a 4-byte value follows. However, if the value of the
column is null, the length prefix can be set to 0, to indicate that O bytes
follow for the column.

host_collen
The maximum length of this column’sdatain the host file, not including the
length of any length prefix and/or terminator. Setting host_collento 0
signifiesthat the datais NULL. Setting host_collen to -1 indicates that the
system should ignore this parameter (that is, there is no default maximum
length).

For fixed-length datatypes, such asinteger, the length of the datais constant,
except for the special case of null values. Therefore, for fixed-length
datatypes, host_collen must always be -1, except when thedataisNULL, in
which case host_collen must be 0.

For char, text, binary, and image datatypes, host_collen can be-1, 0, or some
positivevalue. If host_collenis-1, the system will use either alength prefix
or aterminator sequence to determine the length of the data. (If both are
supplied, the system will use the one that results in the smallest amount of
data being copied.) If host_collenis-1 and neither a prefix length nor a
terminator sequenceis specified, the system will return an error message. If
host_collenis O, the system assumes the datais NULL. If host_collenis
some positive value, the system uses host_collen as the maximum data
length. However, if, in addition to a positive host_collen, a prefix length
and/or terminator sequence is provided, the system determines the data
length by using the method that resultsin the smallest amount of data being
copied.

DB-Library/C Reference Manual 431

bcp_colfmt_ps

432

host_term

The terminator sequence to be used for this column. This parameter is
mainly useful for char, text, binary, and image datatypes, because all other
types are of fixed length. To avoid using a terminator, set this parameter to
NULL. To set the terminator to the null character, set host_termto “\0”. To
make the tab character the terminator, set host_termto “\t”. To make the
newline character the terminator, set host_termto “\n”.

If more than one means of specifying ahost file column lengthis used (such
asaterminator and alength prefix, or aterminator and a maximum column
length), bcp will look at al of them and use the one that results in the
smallest amount of data being copied.

host_termlen

The length, in bytes, of the terminator sequence to be used for this column.
To avoid using aterminator, set thisvalueto -1.

table_colnum

The corresponding column in the database table. If thisvalueis O, this
column will not be copied. Thefirst column is column 1.

typeinfo

A pointer to aDBTY PEINFO structure containing information about the
precision and scale of decimal or numeric host file columns. An application
setsa DBTY PEINFO structure with values for precision and scale before
calling bcp_colfmt_ps to specify the host file format of decimal or numeric
columns.

If typeinfois NULL, bcp_colfmt_ps is the equivalent of bep_colfmt. That is:

e If the server column is of type numeric or decimal, bep_colfmt_ps picks
up precision and scale values from the column.

¢ If the server column is not numeric or decimal, bcp_colfmt_ps uses a
default precision of 18 and a default scale of 0.

If host_typeisnot 0, SYBDECIMAL or SYBNUMERIC, typeinfo is
ignored.

If host_typeis 0 and the corresponding server column is not numeric or
decimal, typeinfo isignored.

A DBTY PEINFO structure is defined as follows:

typedef struct typeinfo {
DBINT precision;
DBINT scale;

Open Client

CHAPTER 3 Bulk Copy Routines

Return value

Usage

See also

} DBTYPEINFO;

Legal valuesfor precision arefrom 1to 77. Legal valuesfor scale are from
0to 77. scale must be less than or equal to precision.

SUCCEED or FAIL.

bep_colfmt_ps isthe equivalent of bep_colfmt, except that bep_colfmt_ps
provides precision and scale support for numeric and decimal datatypes,
which bep_colfmt does not. Calling bep_colfmt is equivalent to calling
bcp_colfmt_ps with typeinfo as NULL.

bep_colfmt_ps allows you to specify the host file format for bulk copies.
For bulk copy purposes, aformat contains the following parts:

* A mapping from host file columns to database columns
e The datatype of each host file column

» Thelength of the optional length prefix of each column
e The maximum length of the host file column’s data

* Theoptiona terminating byte sequence for each column
* Thelength of this optional terminating byte sequence

Each cdll to bep_colfmt_ps specifies the format for one host file column.
For example, if you have atable with five columns, and want to changethe
default settings for three of those columns, you should first call
bep_columns(dbproc, 5), and then call bep_colfmt_ps fivetimes, with three
of those calls setting your custom format. The remaining two calls should
have their host_type set to 0, and their host_prefixlen, host_collen, and
host_termlen parameters set to -1. The result of this would be to copy all
five columns—threewith your customized format and two with the default
format.

bep_columns must be called before any callsto bep_colfmt_ps.

You must call bep_colfmt_ps for every column in the host file, regardless
of whether some of those columns use the default format or are skipped.

To skip a column, set the table_column parameter to O.

bep_batch, bep_bind, bep_colfmt, bep_collen, bep_colptr, bep_columns,
bcp_control, bep_done, bep_exec, bep_init, bep_sendrow

DB-Library/C Reference Manual 433

bcp_collen

bcp_collen

Description

Syntax

Parameters

Return value

Usage

See also

434

Set the program variable datalength for the current bulk copy into the database.
RETCODE bcp_collen(dbproc, varlen, table_column)

DBPROCESS *dbproc;

DBINT varlen;
int table_column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

varlen
Thelength of the program variable, which does not include the length of the
length prefix or terminator. Setting varlen to O signifiesthat the datais
NULL. Setting it to -1 signifies that the datais variable-length and that the
length will be determined by the length prefix or terminator. If both alength
prefix and aterminator exist, bep will usethe onethat resultsin the smallest
amount of data being copied.

table_column
The column in the Adaptive Server Enterprise table to which the data will
be copied. Column numbers start at 1.

SUCCEED or FAIL.

e Thebcp_collen function alows you to change the program variable data
length for a particular column while running a copy in through callsto
bcp_bind.

e Initially, the program variable datalength is determined when bcp_bind is
called. If the program variable data length changes between callsto
bcp_sendrow, and no length prefix or terminator is being used, you may
call bep_collen to reset the length. The next call to bep_sendrow will use
the length you just set.

e There must be a separate bcp_collen call for every columnin the table
whose data length you want to modify.

bcp_bind, bep_colptr, bep_sendrow

Open Client

CHAPTER 3 Bulk Copy Routines

bcp_colptr

Description

Syntax

Parameters

Return value

Usage

See also

bcp_columns

Description

Syntax

Set the program variable data address for the current bulk copy into the
database.

RETCODE bcp_colptr(dbproc, colptr, table_column)

DBPROCESS *dbproc;

BYTE *colptr;
int table_column;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

colptr
The address of the program variable.

table_column
The column in the Adaptive Server Enterprise table to which the data will
be copied. Column numbers start at 1.

SUCCEED or FAIL.

e Thebcp_colptr function allows you to change the program variable data
address for a particular column while running a copy in through callsto
bcp_bind.

e Initially, the program variable data address is determined when bcp_bind
iscalled. If the program variable data address changes between calls to
bcp_sendrow, you may call bep_colptr to reset the address of the data. The
next call to bcp_sendrow will use the data at the address you just set.

e There must be a separate bcp_colptr call for every column in the table
whose data address you want to modify.

bep_bind, bep_collen, bep_sendrow

Set the total number of columns found in the host file.

RETCODE bcp_columns(dbproc, host_colcount)

DB-Library/C Reference Manual 435

bcp_control

Parameters

Return value

Usage

See also

bcp_control

Description

Syntax

Parameters

436

DBPROCESS *dbproc;

int host_colcount;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colcount
The total number of columnsin the host file. Even if you are preparing to
bulk copy datafrom the host file to an Adaptive Server Enterprise table and
do not intend to copy all columns in the host file, you must still set
host_colcount to the total number of host file columns.

SUCCEED or FAIL.

¢ Thisfunction sets the total number of columns found in a host file for use
with bulk copy. This routine may be called only after bcp_init has been
called with avalid file name.

¢ Youshould call thisroutine only if you intend to use a host file format that
differs from the default. The default host file format is described on the
bcp_init reference page.

e After calling bcp_columns, you must call bep_colfmt host_colcount times,
because you are defining a completely custom file format.

bcp_colfmt, bep_init

Change various control parameter default settings.
RETCODE bcp_control(dbproc, field, value)

DBPROCESS *dbproc;

int field;
DBINT value;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

Open Client

CHAPTER 3 Bulk Copy Routines

field

A control-parameter identifier consisting of one of the following symbolic
values:

Field Description

BCPMAXERRS The number of errors allowed before giving up. The default is 10.

BCPFIRST Thefirst row to copy. Thedefaultis 1. A value of lessthan 1 resets

thisfield to its default value of 1.
BCPLAST The last row to copy. The default isto copy al rows. A value of

lessthan 1 resets thisfield to its default value.

BCPBATCH The number of rows per batch. The default is 0, which meansthat
the entire bulk copy will be donein one batch. Thisfield isonly
meaningful when copying from a host file into Adaptive Server

Enterprise.
value
The value to change the corresponding control parameter to.
Return value SUCCEED or FAIL.
Usage e Thisfunction sets various control parameters for bulk copy operations,

including the number of errors allowed before aborting a bulk copy, the
numbers of the first and last rowsto copy, and the batch size.

e Thesecontrol parametersare only meaningful when the application copies
between a host file and an Adaptive Server Enterprise table. Control
parameter settings have no effect on bep_bind row transfers.

« By default, Adaptive Server Enterprise copiesall therows specifiedin one
batch. Adaptive Server Enterprise considers each batch to be a separate
bcp operation. Each batchiscopiedin asingleinsert transaction, and if any
row in the batch is rejected, the entire insert is rolled back. bcp then
continues to the next batch. You can use bep_batch to break large input
filesinto smaller units of recoverability. For example, if 300,000 rows are
bulk copied in with a batch size of 100,000 rows, and there isafatal error
after row 200,000, the first two batches—200,000 rows—will have been
successfully copied into Adaptive Server Enterprise. If batching had not
been used, no rows would have been copied into Adaptive Server
Enterprise.

e Thefollowing program fragment illustrates bcp_control:

LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

DB-Library/C Reference Manual 437

bcp_control

438

/* Initialize DB-Library. */
if (dbinit() == FAIL)
exit (ERREXIT) ;

/* Install error-handler and message-handler. */
dberrhandle (err handler) ;
dbmsghandle (msg handler) ;

/* Open a DBPROCESS. */
login = dblogin() ;
BCP_SETL(login, TRUE) ;

dbproc = dbopen(login, NULL) ;

/* Initialize bcp. */

if (bcp_init (dbproc, "comdb..address", "address.add",
"addr.error", DB _IN) == FAIL)
exit (ERREXIT) ;

/* Set the number of rows per batch. */
if (bcp_control (dbproc, BCPBATCH, 1000) == FAIL)

printf ("bcp control failed to set batching behavior.\n");
exit (ERREXIT) ;

/* Set host column count. */

if (bcp_columns (dbproc, 1) == FAIL)
printf ("bcp columns failed.\n");
exit (ERREXIT) ;

/* Set the host-file format. */

if (bcp_colfmt (dbproc, 1, 0, 0, -1, (BYTE *) ("\n"), 1, 1) == FAIL)
printf ("bcp colformat failed.\n");
exit (ERREXIT) ;

/* Now, execute the bulk copy. */

if (bcp_exec (dbproc, &rowsread) == FAIL)

printf ("Incomplete bulk copy. Only %1d row%c copied.\n",
rowsread, (rowsread == 1) ? ' ': ’'s’);

exit (ERREXIT) ;

Open Client

CHAPTER 3 Bulk Copy Routines

See also

bcp_done

Description

Syntax

Parameters

Return value

Usage

See also

bcp_exec

Description

Syntax

bep_batch, bep_bind, bep _colfmt, bep_collen, bep_colptr, bep_columns,
bcp_done, bep_exec, bep_init

End abulk copy from program variables into Adaptive Server Enterprise.
DBINT bcp_done(dbproc)

DBPROCESS*dbproc;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

The number of rows permanently saved since the last call to bep_batch, or -1
in case of error.

bcp_done ends a bulk copy performed with bep_bind and bep_sendrow. It
should be called after the last call to bcp_sendrow or bep_moretext. Failure to
call bcp_done after you have completed copying in al your datawill result in
unpredictable errors.

bcp_batch, bep_bind, bep_moretext, bep_sendrow

Execute abulk copy of data between a database table and a host file.
RETCODE bcp_exec(dbproc, rows_copied)

DBPROCESS *dbproc;
DBINT *rows_copied;

DB-Library/C Reference Manual 439

bcp_exec

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

rows_copied

A pointer to a DBINT. bcp_exec will fill this DBINT with the number of
rows successfully copied. If set to NULL, this parameter will not befilledin

by bcp_exec.

Return value SUCCEED or FAIL.

Usage

440

bep_exec returns SUCCEED if all rows are copied. If apartial or complete
failure occurs, bep_exec returns FAIL. Check the rows_copied parameter for

the number of rows successfully copied.

e Thisroutine copies datafrom a host file to adatabase table or vice-versa,
depending on the value of the direction parameter in bep_init.
e Before caling this function you must call bep_init with avalid host file
name. Failureto do so will result in an error.
e Thefollowing program fragment illustrates bcp_exec:
LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

/* Initialize DB-Library. */
if (dbinit() == FAIL)
exit (ERREXIT) ;

/* Install error-handler and message-handler.

dberrhandle (err handler) ;
dbmsghandle (msg _handler) ;

/* Open a DBPROCESS. */
login = dblogin() ;

BCP_SETL (login, TRUE) ;

dbproc = dbopen(login, NULL) ;

/* Initialize bcp. */

*/

if (bcp_init (dbproc, "pubs2..authors", "authors.save",

(BYTE *)NULL, DB _OUT) == FAIL)
exit (ERREXIT) ;

/* Now, execute the bulk copy. */

Open Client

CHAPTER 3 Bulk Copy Routines

if (bcp_exec(dbproc, &rowsread) == FAIL)

See also

bcp_getl
Description

Syntax

Parameters

Return value

Usage

See also

bcp_init

Description

printf ("Incomplete bulk copy. Only %1d row%c copied.\n",

rowsread, (rowsread == 1) ? ' ': ’'s’);

bep_batch, bep_bind, bep _colfmt, bep_collen, bep_colptr, bep_columns,
bcp_control, bep_done, bep _init, bcp_sendrow

Determine if the LOGINREC has been set for bulk copy operations.
DBBOOL bcp_getl(loginrec)

LOGINREC *loginrec;

loginrec
A pointer to a LOGINREC structure that will be passed as an argument to
dbopen. You can get a LOGINREC structure by calling dblogin.

“TRUE” or “FALSE.”

* bcp_getl returns“ TRUE” if *loginrec is enabled for bulk copy operations,
and “FALSE” if it is not.

« A DBPROCESS connection cannot be used for bulk copy in operations
unless the LOGINREC used to open the connection has been set to allow
bulk copy. The macro BCP_SETL setsa LOGINREC to allow bulk copy.
By default, DBPROCESSes are not enabled for bulk copy operations.

e Applicationsthat allow usersto make ad hoc queries may want to avoid
calling BCP_SETL (or call it with avalue of “false” for the enable
parameter) to prevent users from initiating a bulk copy sequence through
SQL commands. Once a bulk copy sequence has begun, it cannot be
stopped by an ordinary SQL command.

e If LOGINRECisNULL, bcp_getl returns“FALSE.”
bep_init, BCP_SETL, dblogin, dbopen

Initialize bulk copy.

DB-Library/C Reference Manual 441

bep_init

Syntax

Parameters

Return value

442

RETCODE bcp_init(dbproc, tbiname, hfile, errfile,

direction)

DBPROCESS *dbproc;

char *tbiname;
char *hfile;
char *errfile;

int direction;
dbproc

thl

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

name

The name of the database table to be copied in or out. This name may also
include the database name or the owner name. For example,
pubs2.gracie.titles, pubs2.titles, gracie.titles, and titles are all legal table
names.

hfile

The name of the host file to be copied in or out. If no host fileisinvolved
(the situation when datais being copied directly from variables), hfileshould
be NULL.

errfile

The name of the error file to be used. This error file will be filled with
progress messages, error messages, and copies of any rows that, for any
reason, could not be copied from ahost fileto an Adaptive Server Enterprise
table.

If errfileisNULL, no error fileis used.

If hfileisNULL, errfileisignored. Thisis because an error fileis not
necessary when bulk-copying from program variables.

direction

The direction of the copy. It must be one of two values—DB_IN or
DB_OUT. DB_IN indicates a copy from the host into the database table,
while DB_OUT indicates a copy from the database table into the host file.

Itisillegal to request a bulk copy from the database table (DB_OUT)
without supplying a host file name.

SUCCEED or FAIL.

Open Client

CHAPTER 3 Bulk Copy Routines

Usage

bep_init performs the necessary initialization for abulk copy of data
between the front-end and an Adaptive Server Enterprise. It setsthe
default host file data formats and examines the structure of the database
table.

bep_init must be called before any other bulk copy functions. Failureto do
so will result in an error.

If ahost fileis being used (see the description of hfilein the “ Parameters”
section above), the default data formats are as follows:

e Theorder, type, length, and number of the columnsinthehost file are
assumed to beidentical to the order, type, and number of the columns
in the database table.

« |If agiven database column’s data s fixed-length, then the host file's
data column will also be fixed-length. If a given database column’s
datais variable-length or may contain null values, the host file's data
column will be prefixed by a 4-byte length value for SYBTEXT and
SYBIMAGE datatypes, and a 1-byte length value for all other types.

e Thereare no terminators of any kind between host file columns.

Any of these defaults can be overridden by calling bcp_columns and
bcp_colfmt.

Using the bulk copy routines to copy datato a database table requiresthe
following:

* The DBPROCESS structure must be usable for bulk copy purposes.
Thisis accomplished by calling BCP_SETL:

login = dblogin() ;
BCP_SETL (login, TRUE) ;

« |f thetable has no indexes, the database option select into/bulkcopy
must be set to “true.” The following SQL command will do this:

sp_dboption ‘mydb’, ‘select into/bulkcopy’,
"true’

See the Adaptive Server Enterprise Reference Manual for further details
on sp_dboption.

If no host fileisbeing used, it is necessary to call bcp_bind to specify the
format and location in memory of each column’s data value.

DB-Library/C Reference Manual 443

bcp_moretext

« Ifnohostfileisbeing used, errfileisignored. Anerror fileisnot necessary
when bulk-copying from program variables because bcp_sendrow returns
FAIL if an error occurs. In this case, the application can examine the bulk
copy program variables to determine which row values caused the error.

See also bep_batch, bep_bind, bep_colfmt, bep_collen, bep_colptr, bep_columns,
bcp_control, bep_done, bep_exec, bep_sendrow

bcp_moretext

Description Send part of atext or image value to Adaptive Server Enterprise.
Syntax RETCODE bcp_moretext(dbproc, size, text)

DBPROCESS *dbproc;

DBINT size;

BYTE *text;
Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

size
The size of this particular part of the text or image value being sent to
Adaptive Server Enterprise. It isan error to send more text or image bytesto
Adaptive Server Enterprise than were specified in the call to bep_bind or

bcp_collen.
text
A pointer to the text or image portion to be written.
Return value SUCCEED or FAIL.
Usage ¢ Thisroutineisused in conjunction with bcp_bind and bep_sendrow to send

alarge SYBTEXT or SY BIMAGE vaueto Adaptive Server Enterprisein
the form of a number of smaller chunks. Thisis particularly useful with
operating systems unable to allocate extremely long data buffers.

444 Open Client

CHAPTER 3 Bulk Copy Routines

If bep_bind is called with atype parameter of SYBTEXT or SYBIMAGE
and anon-NULL varaddr parameter, bcp_sendrow will send the entiretext
or image datavalue, just asit does for al other datatypes. If, however,
bcp_bind hasaNULL varaddr parameter, bcp_sendrow will return control
to the application immediately after all non-text or image columns are sent
to Adaptive Server Enterprise. The application can then call bcp_moretext
repeatedly to send the text and image columns to Adaptive Server
Enterprise, achunk at atime.

Hereisan examplethat illustrates how to use bcp_moretext with bep_bind
and bcp_sendrow:

LOGINREC *login;

DBPROCESS *dbproc;

DBINT id = 5;

char *partl = "This text value isn’t very long,";
char *part2 = " but it’s broken up into three parts";
char *part3 = " anyhow.";

/* Initialize DB-Library. */
if (dbinit() == FAIL)
exit (ERREXIT) ;

/* Install error handler and message handler.
dberrhandle (err handler) ;
dbmsghandle (msg_handler) ;

/* Open a DBPROCESS */

login = dblogin() ;
BCP_SETL(login, TRUE) ;

dbproc = dbopen(login, NULL) ;

/* Initialize bcp. */

*/

if (bcp_init (dbproc, "comdb..articles", (BYTE *)NULL,

(BYTE *)NULL, DB _IN) == FAIL)
exit (ERREXIT) ;

/* Bind program variables to table columns. */

if (bcp_bind(dbproc, (BYTE *)&id, 0, (DBINT)-1,

(BYTE *)NULL, O, SYBINT4, 1) == FAIL)

fprintf (stderr, "bcp bind, column 1, failed.\n");

exit (ERREXIT) ;

DB-Library/C Reference Manual

445

bcp_moretext

446

if (bcp_bind

(dbproc,

DBINT)

(BYTE *)NULL, O,
(strlen(partl) + strlen(part2) + strlen(part3l’)),

(
(BYTE *)NULL, 0, SYBTEXT, 2)

= FAIL)

fprintf (stderr, "bcp bind, column 2, failed.\n");
exit (ERREXIT) ;

/*

** Now send this row, with the text value broken into
** three chunks.

*/

if (bcp_ sendrow(dbproc) == FAIL)
exit (ERREXIT) ;

if (bcp _moretext (dbproc, (DBINT)strlen(partl), partl) == FAIL)
exit (ERREXIT) ;

if (bcp_moretext (dbproc, (DBINT)strlen(part2), part2) == FAIL)
exit (ERREXIT) ;

if (bcp moretext (dbproc, (DBINT)strlen(part3), part3) == FAIL)

exit (ERREXIT) ;

/* We’'re all done. */
bcp done (dbproc) ;
dbclose (dbproc) ;

If you use bcp_moretext to send one text or image column in the row, you
must also use it to send all other text and image columnsin the row.

If the row contains more than onetext or image column, bep_moretext will
first send its data to the lowest-numbered (that is, leftmost) text or image
column, followed by the next lowest-numbered column, and so on.

An application will normally call bcp_sendrow and bep_moretext within
loops, to send a number of rows of data. Here is an outline of how to do
this for atable containing two text columns:

while (there are still rows to send)

{

bcp sendrow(...);

for (all the data in the first text column)
bcp moretext(...);

for (all the data in the second text column)
bcp moretext (...);

Open Client

CHAPTER 3 Bulk Copy Routines

See also

bcp_options
Description

Syntax

Parameters

Return value

Usage

See also

}
bcp_bind, bcp_sendrow, dbmoretext, dowritetext

Set bulk copy options.
RETCODE bcp_options (dbproc, option, value, valuelen)

DBPROCESS *dbproc;

BYTE *value;
int valuelen;
dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

value
A generic BY TE pointer to the value of the specified option. Asthe
following table describes, what value should point to depends on option:

Table 3-1: Values for value (bcp_options)

If option Is *value should be
BCPLABELED A DBBOOL value. Set *valueto “true” to allow a bulk

copy with sensitivity labels. Set *value to “false” for a
normal bulk copy operation.

valuelen
Thelength of the datato which value points. If value pointsto afixed-length
item (for example aDBBOOL, DBINT, and so on), pass valuelen as-1.

SUCCEED or FAIL.
* bcp_options sets bulk copy options.
e Currently the only bulk copy option availableis BCPLABELED.

bep_init, bep_control

DB-Library/C Reference Manual 447

bcp_readfmt

bcp_readfmt

Description Read a datafile format definition from a host file.
Syntax RETCODE bcp_readfmt(dbproc, filename)
DBPROCESS *dbproc;
char *filename;
Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

filename
Thefull directory specification of the file containing the format definitions.
Return value SUCCEED or FAIL.
Usage ¢ bcp_readfmt reads a datafile format definition from a host file, then makes

the appropriate callsto becp_columns and bep_colfmt. This automates the
bulk copy of multiple files that share acommon data format.

e bep, the bulk copy utility, copies a database table to or from a host filein
auser-specified format. User-specified formats may be saved through bcp
in datafile format definition files, which can later be used to automate the
bulk copy of files that share a common format. See the Open Client and
Open Server Programmers Supplement.

* Application programs can call bcp_writefmt to create files with datafile
format definitions.

« Thefollowing code fragment illustrates the use of bcp_readfmt:

bcp init (dbproc, "mytable", "bcpdata", "bcperrs", DB _IN) ;
becp readfmt (dbproc, "my fmtfile");
becp exec (dbproc, &rows copied) ;

See also bcp_colfmt, bep_columns, bep_writefmt

bcp_sendrow

Description Send arow of data from program variables to Adaptive Server Enterprise.

448 Open Client

CHAPTER 3 Bulk Copy Routines

Syntax RETCODE bcp_sendrow(dbproc)

DBPROCESS *dbproc;

Parameters dbproc

A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

Return value SUCCEED or FAIL.

Usage .

bcp_sendrow buildsarow from program variablesand sendsit to Adaptive
Server Enterprise.

Before calling bep_sendrow, you must make callsto bep_bind to specify
the program variables to be used.

If bep_bind is called with atype parameter of SYBTEXT or SYBIMAGE
and anon-null varaddr parameter, bcp_sendrow will send the entiretext or
image datavalue, just asit doesfor all other datatypes. If, however,
bep_bind hasanull varaddr parameter, bcp_sendrow will return control to
the application immediately after all non-text or image columns are sent to
Adaptive Server Enterprise. The application can then call bcp_moretext
repeatedly to send the text and image columns to Adaptive Server
Enterprise, a chunk at atime. For an example, see the bcp_moretext
reference page.

After thelast call tobcp_sendrow, you must call bcp_done to ensure proper
internal cleanup.

When bep_sendrow is used to bulk copy rows from program variablesinto
Adaptive Server Enterprise tables, rows are permanently saved in
Adaptive Server Enterprise only when the user calls bcp_batch or
bcp_done.

The user may choose to call bcp_batch once every nrows, or when there
isalull between periods of incoming data (asin atelemetry application).
Of course, the user may choose some other criteria or may decide not to
call bep_batch at al. If bep_batch isnever called, the rows are permanently
saved in Adaptive Server Enterprise when bep_done is called.

See also bep_batch, bep_bind, bep _colfmt, bep_collen, bep_colptr, bep_columns,
bcp_control, bep_done, bep_exec, bep_init, bcp_moretext

DB-Library/C Reference Manual 449

BCP_SETL

BCP_SETL

Description

Syntax

Parameters

Return value

Usage

See also

bcp_setxlate

Description

Syntax

450

Set the LOGINREC for bulk copy operations into the database.
RETCODE BCP_SETL(loginrec, enable)

LOGINREC *loginrec;

DBBOOL enable;

loginrec
Thisisapointer to aLOGINREC structure, which will be passed as an
argument to dbopen. You can get aL OGINREC structure by calling dblogin.

enable
ThisisaBoolean value (“true”’ or “false”) that specifies whether or not to
enable bulk copy operations for the resulting DBPROCESS. By default,
DBPROCESSes are not enabled for bulk copy operations.

SUCCEED or FAIL.

e Thismacro setsafield in the LOGINREC structure that tells Adaptive
Server Enterprise that the DBPROCESS connection may be used for bulk
copy operations. To have any effect, it must be called before dbopen, the
routine that actually allocates the DBPROCESS structure.

e Applications that allow users to make ad hoc queries may want to avoid
calling BCP_SETL (or call it with avalue of “false” for the enable
parameter) to prevent users from initiating a bulk copy sequence through
SQL commands. Once a bulk copy sequence has begun, it cannot be
stopped through an ordinary SQL command.

e BCP_SETL appliesto “copy in” operations only.

bep _init, bep_getl, dblogin, dbopen, DBSETLAPP, DBSETLHOST,
DBSETLPWD, DBSETLUSER

Specify the character set trandlations to use when retrieving data from or
inserting data into an Adaptive Server Enterprise.

RETCODE bcp_setxlate(dbproc, xlt_tosrv, xIt_todisp)
DBPROCESS *dbproc;

DBXLATE *XIt_tosrv;
DBXLATE *xIt_todisp;

Open Client

CHAPTER 3 Bulk Copy Routines

Parameters

Return value

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

xlt_tosrv
A pointer to atrandation structure. The trandation structure is allocated
using dbload_xlate. xIt_tosrv indicates the character set tranglation to use
when moving data from the application program to the Adaptive Server
Enterprise (the copy in, or DB_IN, direction).

xlIt_todisp
A pointer to atrandation structure. The trandation structure is allocated
using dbload_xlate. xIt_todisp indicates the character set trandation to use
when moving data from Adaptive Server Enterprise to the application
program (the copy out, or DB_OUT, direction).

SUCCEED or FAIL.

Usage e bcp_setxlate specifies the character set trandlations to use when
transferring character data between the Adaptive Server Enterprise and a
front-end application program using bcp.

« Thespecified character set trand ations need not be the same asthose being
used to display or input data on the user’s terminal. The translations may
be used to read or write adata file in a completely different character set
that is not intended for immediate display.

« Thefollowing code fragment illustrates the use of bcp_setxlate:

bcp _init (dbproc, "mytable", "bcpdata", "bcperrs", DB_OUT) ;
bcp setxlate(dbproc, xlt tosrv, xlt todisp);
bep columns (dbproc, 3);
becp colfmt (dbproc, 1, SYBCHAR, 0, -1, "\t", 1, 1);
becp colfmt (dbproc, 2, SYBCHAR, 0, -1, "\t", 1, 2);
bcp colfmt (dbproc, 3, SYBCHAR, 0, -1, "\n", 1, 3);
bcp exec (dbproc) ;
See also dbfree xlate, dbload xlate, dbxlate

bcp_writefmt
Description Write a datafile format definition to ahost file.

DB-Library/C Reference Manual

451

bcp_writefmt

Syntax

Parameters

Return value

RETCODE bcp_writefmt(dbproc, filename)

DBPROCESS *dbproc;
char *filename;

dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

filename
The full directory specification of the file that contains the format
definitions.

SUCCEED or FAIL.

Usage ¢ bep_writefmt writes a datafile format definition to a host file. The format
reflects previous calls to bep_columns and bep_colfmt.

e bep, the bulk copy utility, copies a database table to or from a host filein
auser-specified format. User-specified formats may be saved through bcp
in “datefile format definition files,” which can later be used to automate
the bulk copy of filesthat shareacommon format. Seethe Open Client and
Open Server Programmers Supplement.

* Format definition files are read using bcp_readfmt.

« Thefollowing code fragment illustrates the use of bcp_writefmt:

becp init (dbproc, "mytable", "bcpdata", "bcperrs", DB OUT) ;

bep columns (dbproc, 3);

bcp colfmt (dbproc, 1, SYBCHAR, 0, -1, "\t", 1, 1);
bcp colfmt (dbproc, 2, SYBCHAR, 0, -1, "\t", 1, 2);
bcp colfmt (dbproc, 3, SYBCHAR, 0, -1, "\n", 1, 3);

bep writefmt (dbproc, "my fmtfile");
becp exec (dbproc, &rows copied) ;

See also

452

bcp_colfmt, bep_columns, bep_readfmt

Open Client

CHAPTER 4

Two-Phase Commit Service

Adaptive Server Enterprise provides a two-phase commit service that
allows a client application to coordinate transactions that are distributed
on two or more Adaptive Server Enterprises.

This chapter describes the two-phase commit process and the DB-Library
routines that are involved.

Topic Page
Programming distributed transactions 453
The commit service and the application program 454
The probe process 456
Two-phase commit routines 456
Specifying the commit server 457
Two-phase commit sample program 458
Program notes 464

Programming distributed transactions

The two-phase commit service alows an application to coordinate
updates among two or more Adaptive Server Enterprises. Thisinitial
implementation of distributed transactions treats separate transactions
(which may be on separate Adaptive Server Enterprises) asif they werea
single transaction. The commit service uses one Adaptive Server
Enterprise, the “commit server,” as a central record-keeper that hel ps the
application determine whether to commit, or whether to roll back
transactionsin case of failure. Thus, the two-phase commit guaranteesthat
either all or none of the databases on the participating servers are updated.

A distributed transaction is performed by submitting Transact-SQL
statements to the Adaptive Server Enterprises through DB-Library
routines. An application program opens a session with each server, issues
the update commands, and then prepares to commit the transaction.
Through DB-Library, the application issues the following to each
participating server:

DB-Library/C Reference Manual 453

The commit service and the application program

¢ A begin transaction with identifying information on the application, the
transaction, and the commit server

e The Transact-SQL update statements

* A prepare transaction statement that indicates that the updates have been
performed and that the server is prepared to commit

After the updates have been performed on all the servers participating in the
distributed transaction, the two-phase commit begins. In the first phase, all
servers agree that they are ready to commit. In the second phase, the
application informsthe commit servicethat the transaction iscomplete (that is,
the commit will take place), and a commit transaction isthen issued to all of the
servers, causing them to commit.

If an error occurs between phase one and phase two, all servers coordinate with
the commit service to determine whether the transaction should be committed
or aborted.

Note If certain types of errorsoccur during atwo-phase transaction, Adaptive
Server Enterprise may need to mark a two-phase process as “infected.”
Marking theprocessasinfected rather thankilling it aidsinlater error recovery.
Toensurethat Adaptive Server Enterpriseisableto mark processesasinfected,
boot Adaptive Server Enterprise with the flag -T3620 passed on the command
line.

The commit service and the application program

454

The role of the commit serviceisto be asingle place of record that helpsthe
application decide whether the transaction should be committed or aborted.

If the Adaptive Server Enterprises are all prepared to commit, the application
notifies the commit service to mark the transaction as committed. Once this
happens, the transaction is committed despite any failures that might
subsequently happen.

If any Adaptive Server Enterprise or the application program fails before the
prepare transaction statement, the Adaptive Server Enterprise will rollback the
transaction.

Open Client

CHAPTER 4 Two-Phase Commit Service

If any Adaptive Server Enterprise or the application program fails after the
prepare but before the commit, the Adaptive Server Enterprise will
communicate with the server functioning as the commit service and ask it
whether to rollback or commit.

If the Adaptive Server Enterprise cannot communicate with the server
functioning asthe commit service, it will mark the user task processasinfected
in Adaptive Server Enterprise. At this point, the System Administrator can
either kill theinfected processimmediately, or wait until communication to the
commit service is restored to kill the infected process.

e |f the System Administrator kills the infected process immediately, two-
phase commit protocol is violated and the integrity of the two-phase
transaction is not guaranteed. Servers participating in the transaction may
bein inconsistent states.

e |ftheSystem Administrator killstheinfected process after communication
with the commit service has been restored, the Adaptive Server Enterprise
will communicate with the commit service to determine whether or not to
commit the transaction locally. The integrity of the two-phase transaction
is guaranteed.

To decide whether or not to kill the infected process immediately, the System
Administrator must consider the estimated downtime of the commit service,
the number and importance of locks held by the infected process, and the
complexity of the transaction in progress.

Therole of the application program isto deliver the Transact-SQL statements
to the Adaptive Server Enterprisesin the proper order, using the proper DB-
Library routines. The role of the commit serviceisto provide asingle place
where the commit/rollback status is maintained. The Adaptive Server
Enterprises communicate with the commit service only if afailure happens
during the two-phase commit.

The commit service needs its own DBPROCESS, separate from the
DBPROCESSes used for the distributed transaction, to perform its record-
keeping. Note, however, that the server handling the commit service can also
be one of the servers participating in the transaction, as long as the commit
service has its own DBPROCESS. In fact, all the serversinvolved in the
transaction can be one and the same.

DB-Library/C Reference Manual 455

The probe process

The probe process

If any server must recover the transaction, it initiates a process, probe, that
determinesthe last known status of thetransaction. After it returnsthe status of
that transaction to the commit service, the probe process dies. The probe
process makes use of stat_xact, the same status-checking routine that the
commit service uses to check the progress of a distributed transaction.

Two-phase commit routines

The following routines make up the two-phase commit service:

Routine Description
abort_xact Tells the commit service to abort the transaction.
build_xact_string Builds a name string for use by each participating

Adaptive Server Enterprise for its begin transaction and
prepare transaction statements. This string encodes the
application’s transaction name, the commit service name,

and the commid.
close_commit Closes the connection with the commit service.
commit_xact Tells the commit service to commit the transaction.
open_commit Opens a connection with the commit service. The routine

isgiven thelogin ID of the user initiating the session and
the name of the commit service. It returns a pointer to a
DBPROCESS structure used in subsequent commit

service calls.

remove_xact Decrements the count of servers still participating in the
transaction.

start_xact Records the start of a distributed transaction and stores

initial information about the transaction (DBPROCESS
id, application name, transaction name, and number of
sites participating) in alookup table on the commit server.
It returns the commid identifying number for the
transaction.

Two additional routines are used for ongoing status reports:

Routine Description

scan_xact Returnsthe status of asingle transaction or al distributed
transactions.

stat_xact Returns the compl etion status of a distributed transaction.

456 Open Client

CHAPTER 4 Two-Phase Commit Service

During the course of asession, the diagnostic routines scan_xact and stat_xact
are used to check that the commit service carried out the request.

The scan_xact routine uses the commit service lookup table, spt_committab,
which holds the following values:

* Transaction ID

* Time the transaction started

e Last timethe row was updated

e Number of serversinitialy involved in the transaction
e Number of serversthat have not yet completed

e Status: “a’ (abort), “c” (commit), “b”" (begin)

e Application name

+ Transaction name

The two-phase commit routines call internal stored procedures (for example,
sp_start_xact) that are created in each server’'s master database. The
installmaster script creates the commit service lookup table and stored
procedures in each server’s master database, for use whenever that server
becomes a commit server.

Specifying the commit server

The commit server must have an entry in the interfaces file on each machine
participating in the distributed transaction. On the machine on which the
commit server is actually running, the commit server entry must specify the
usual ports described in the Open Client and Open Server Configuration
Guide, including a query port. For example:

SERVICE
master tcp sun-ether rose 2001
query tcp sun-ether rose 2001

On any additional machines containing other servers participating in the
distributed transaction, the commit server entry need to specify only the query
port:

SERVICE
query tcp sun-ether rose 2001

DB-Library/C Reference Manual 457

Two-phase commit sample program

SITEA
master tcp sun-ether gaia 2011
query tcp sun-ether gaia 2011

The name of the commit server (in these examples, “SERVICE”) isused asa
parameter in calls to the open_commit and build_xact_string routines. The
commit server name must be the same on all machines participating in the
transaction. The name cannot contain a period (.) or acolon (:).

Two-phase commit sample program

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

An sample program illustrating the two-phase commit serviceisincluded with
DB-Library’s sample programs. This same example is duplicated below, but
with comments added to document how recovery occursfor the different types
of failure that may occur at various points in the transaction.

twophase.c
Demo of Two-Phase Commit Service

This example uses the two-phase commit service

to perform a simultaneous update on two servers.
In this example, one of the servers participating
in the distributed transaction also functions as
the commit service.

In this particular example, the same update is
performed on both servers. You can, however, use
the commit server to perform completely different
updates on each server.

#include <stdio.h>
#include <sybfront.hs>
#include <sybdb.h>
#include "sybdbex.h"

int err_handler();
int msg_handler() ;

char

458

cmdbuf [256] ;

Open Client

CHAPTER 4 Two-Phase Commit Service

char xact _string[128];
main ()

DBPROCESS *dbproc_serverl;
DBPROCESS *dbproc_server2;
DBPROCESS *dbproc_commit;
LOGINREC *login;

int commid;

RETCODE ret_serverl;
RETCODE ret_server2;

/* Initialize DB-Library. */
if (dbinit() == FAIL)
exit (ERREXIT) ;

dberrhandle (err_handler) ;
dbmsghandle (msg_handler) ;

printf ("Demo of Two Phase Commit\n") ;

/* Open connections with the servers and the
** commit service. */

login = dblogin() ;

DBSETLPWD (login, "server password") ;
DBSETLAPP (login, "twophase");

dbproc_serverl = dbopen (login, "SERVICE") ;
dbproc_server2 = dbopen (login, "PRACTICE");
dbproc_commit = open commit (login, "SERVICE");

if (dbproc_serverl == NULL ||
dbproc_server2 == NULL | |
dbproc_commit == NULL)

{
printf (" Connections failed!\n");

exit (ERREXIT) ;

}

/* Use the "pubs2" database. */
sprintf (cmdbuf, "use pubs2");
dbcmd (dbproc_serverl, cmdbuf) ;
dbsglexec (dbproc_serverl) ;

DB-Library/C Reference Manual 459

Two-phase commit sample program

460

dbcmd (dbproc_server2, cmdbuf) ;
dbsglexec (dbproc_server2) ;

/-k

** Start the distributed transaction on the
% commit service.

*/

commid = start xact (dbproc_commit, "demo", "test", 2);

Note The application is now in the begin phase of the two-phase commit

transaction.

/* Build the transaction name. */
build xact string ("test", "SERVICE", commid, xact string);

/* Build the first command buffer. */
sprintf (cmdbuf, "begin transaction %s", xact string);

/* Begin the transactions on the different servers. */
dbcmd (dbproc_serverl, cmdbuf) ;

dbsglexec (dbproc_serverl) ;

dbcmd (dbproc_server2, cmdbuf) ;

dbsglexec (dbproc_server2) ;

/* Do various updates. */

sprintf (cmdbuf, " update titles set price = $1.50 where");

strcat (cmdbuf, " title id = ’'BU1032'");

dbcmd (dbproc_serverl, cmdbuf) ;

ret serverl = dbsglexec (dbproc_ serverl) ;
dbcmd (dbproc_server2, cmdbuf) ;

ret server2 = dbsglexec (dbproc_ server2) ;

Note See“Program note 1” on page 464.

if (ret_serverl == FAIL || ret server2 == FAIL)

{

/* Some part of the transaction failed. */

printf (" Transaction aborted -- dbsglexec failed\n") ;

abortall (dbproc_serverl, dbproc server2,
dbproc_commit, commid) ;

}

/* Find out if all servers can commit the transaction. */
sprintf (cmdbuf, "prepare transaction") ;

Open Client

CHAPTER 4 Two-Phase Commit Service

dbcmd (dbproc_serverl, cmdbuf) ;
dbcmd (dbproc_server2, cmdbuf) ;
ret serverl = dbsglexec (dbproc_serverl) ;

Note See*Program note 2" on page 464.

ret server2 = dbsqglexec(dbproc_server2) ;

Note See*Program note 3" on page 465.

if (ret_serverl == FAIL || ret_server2 == FAIL)
/* One or both of the servers failed to prepare. */
printf (" Transaction aborted -- prepare failed\n");
abortall (dbproc_serverl, dbproc server2,
dbproc_commit, commid) ;

Note See*Program note 4” on page 465.

/* Commit the transaction. */

if (commit xact (dbproc_commit, commid) == FAIL)

{
/* The commit server failed to record the commit. */
printf(" Transaction aborted -- commit xact failed\n");
abortall (dbproc_serverl, dbproc_server2,

dbproc_commit, commid) ;

exit (ERREXIT) ;

Note See*Program note 5" on page 466.

/* The transaction has successfully committed.
** Inform the servers.

*/

sprintf (cmdbuf, "commit transaction") ;
dbcmd (dbproc_serverl, cmdbuf) ;

if (dbsglexec (dbproc_serverl) != FAIL)

remove xact (dbproc _commit, commid, 1) ;

Note See*Program note 6" on page 466.

DB-Library/C Reference Manual 461

Two-phase commit sample program

dbcmd (dbproc_server2, cmdbuf) ;
if (dbsglexec(dbproc_server2) != FAIL)
remove xact (dbproc_commit, commid, 1);

Note See“Program note 7" on page 467.

/* Close the connection to the commit server. */
close commit (dbproc_commit) ;

Note See“Program note 8” on page 467.

printf ("We made it!\n");
dbexit () ;
exit (STDEXIT) ;

}

/* Function to abort the distributed transaction. */

abortall (dbproc_serverl, dbproc_server2, dbproc commit, commid)
DBPROCESS *dbproc_serverl;

DBPROCESS *dbproc_server2;
DBPROCESS *dbproc_commit;
int commid;

{

/* Some part of the transaction failed. */

/* Inform the commit server of the failure. */
abort xact (dbproc _commit, commid) ;

/* Roll back the transactions on the different servers. */

sprintf (cmdbuf, "rollback transaction");
dbcmd (dbproc_serverl, cmdbuf) ;
if (dbsglexec(dbproc_serverl) != FAIL)

remove xact (dbproc commit, commid, 1);
dbcmd (dbproc_server2, cmdbuf) ;
if (dbsglexec (dbproc_server2) != FAIL)
remove xact (dbproc commit, commid, 1);

dbexit () ;
exit (ERREXIT) ;

}

/* Message and error handling functions. */

462 Open Client

CHAPTER 4 Two-Phase Commit Service

int msg_handler (dbproc, msgno, msgstate, severity, msgtext,
servername, procname, line)

DBPROCESS *dbproc;
DBINT msgno;

int msgstate;
int severity;
char *msgtext;
char *gervername;
char *procname;
DBUSMALLINT line;

/* Msg 5701 is just a use database message, so skip it. */
if (msgno == 5701)
return (0) ;

/* Print any severity 0 message as is, without extra stuff. */
if (severity == 0)

{
(void) fprintf (ERR_CH, "%s\n",msgtext);
return (0) ;

(void) fprintf (ERR _CH, "Msg %1ld, Level %d, State %d\n",
msgno, severity, msgstate);

if (strlen(servername) > 0)

(void) fprintf (ERR_CH, "Server ‘%s’, ", servername) ;
if (strlen(procname) > 0)
(void) fprintf (ERR_CH, "Procedure ’'%s’, ", procname) ;

if (line > 0)
(void) fprintf (ERR_CH, "Line %d4d", line);

(void) fprintf (ERR_CH, "\n\t%s\n", msgtext);
if (severity >= 16)

{

(void) fprintf (ERR_CH, "Program Terminated! Fatal\
Adaptive Server Enterprise error.\n") ;
exit (ERREXIT) ;

return (0) ;

DB-Library/C Reference Manual 463

Program notes

int err handler (dbproc, severity, dberr, oserr, dberrstr, oserrstr)

DBPROCESS *dbproc;
int severity;
int dberr;
int oserr;
char *dberrstr;
char *oserrstr;
{
if ((dbproc == NULL) || (DBDEAD (dbproc)))
return (INT_EXIT);
else

{

(void) fprintf (ERR_CH, "DB-Library error: \
\n\t %s\n", dberrstr);
if (oserr != DBNOERR)
(void) fprintf (ERR_CH, "Operating system error:\
\n\t%s\n", oserrstr);

}

return (INT CANCEL) ;

Program notes

This section contains the notes referenced in the sample code.

Program note 1

If any type of failure occursat thispoint, it isthe application’sresponsibility to
roll back the transactions using abort_xact.

Program note 2

464

The application has entered the prepare stage of the two-phase commit
transaction. Asfar as the commit server is aware, however, the applicationis
still in the begin phase.

Open Client

CHAPTER 4 Two-Phase Commit Service

Program note 3

If any type of failure occursat thispoint, it isthe application’sresponsibility to
roll back the transactions using abort_xact.

Program note 4

At this point, the following failures are possible;

The application’s link to the commit server, or the commit server itself,
may go down.

In this case, the following call to commit_xact fails, and the application
must roll back the transactions using abort_xact.

The application’s link to a participating server may go down.

Inthis case, the following call to commit_xact will succeed, but the
application’s commit transaction command to the participating server will
not. However, the server will be aware that its connection with the
application has died. It will communicate with the commit server, using
probe, to determine whether to commit the transaction locally.

A participating server may go down.

Inthis case, the following call to commit_xact will succeed, but the
application’s commit transaction to the participating server will not. When
the participating server comes back up, it will use probe to determine
whether to commit the transaction locally.

Both the application’s link to the commit server and the application’s link
to the participating server may go down.

In this case, the following call to commit_xact fails. The application must
roll back the transactions with abort_xact, but will not be able to
communicate with the participating server. The participating server will
use probe to communicate with the commit server. It will learn that the
transaction has not been committed in the commit service, and will roll
back the transaction locally.

Both the application’slink to the participating server and the participating
server’slink to the commit server may go down.

DB-Library/C Reference Manual 465

Program notes

Program note 5

Program note 6

466

In this case, the following call to commit_xact will succeed, but the
application will not be ableto communicate thisto the participating server.
When its connection to the application dies, the participating server will
attempt to communicate with the commit server using probe to determine
whether or not to commit the transaction locally. Because its link to the
commit server is down, however, it will not be able to.

Because it cannot resolve the transaction, the participating server marks
the user task process as infected.

If the System Administrator kills the infected process while the commit
server is still down, two-phase commit protocol is violated and the
integrity of the transaction is not guaranteed.

If the System Administrator waitsuntil commit server isback up tokill the
infected process, probe executes automatically when the System
Administrator attempts to kill the process. probe communicates with the
commit server and determines whether the participating server should
commit the transaction locally. The integrity of the transaction is
guaranteed.

The application has entered the committed phase of the two-phase commit
transaction. Thismeansthat any probe process querying the commit server will
be told to commit the transaction locally. After this point, the application does
not need to concern itself with aborting the transaction.

If the above dbsglexec to Serverl fails because the application’s link to the
server hasgone down, Serverl will use probe to communicate with the commit
server. probe will find that the transaction is committed in the commit server
and will tell Serverl to commit locally.

If probe cannot communicate with the commit server, Serverl will infect the
user task process in Adaptive Server Enterprise. If the System Administrator
kills the infected process before communication with the commit server is
reestablished, the transaction will be rolled back, thus violating two-phase
protocol and leaving the database in an inconsistent state. If possible, the
System Administrator should always wait until communication with the
commit server is reestablished before killing the infected process.

Open Client

CHAPTER 4 Two-Phase Commit Service

Program note 7

Program note 8

If the dbsglexec to Serverl fails because Serverl has gone down, the local
transaction will remain in a suspended state until Serverlisrestored. As part
of the recovery process, Serverl will use probe to communicate with the
commit server. probe will find that the transaction is committed in the commit
server and will tell Serverl to commit locally.

If probe cannot communicate with the commit server, Serverl will mark the
database as suspect. After communication with the commit sever is
reestablished, the suspect database should be re-recovered.

If the above dbsglexec to Server2 fails because the application’s link to the
server hasgone down, Server2 will use probe to communicate with the commit
server. probe will find that the transaction is committed in the commit server
and will tell Server2 to commit locally.

If probe cannot communicate with the commit server, Server2 will infect the
user task processin Adaptive Server Enterprise. If the System Administrator
kills the infected process before communication with the commit server is
reestablished, the transaction will be rolled back, thus violating two-phase
protocol and leaving the database in an inconsistent state. If possible, the
System Administrator should always wait until communication with the
commit server is reestablished before killing the infected process.

If the dbsglexec to Server2 fails because Server2 has gone down, the local
transaction will remain in a suspended state until Server2 is restored. As part
of the recovery process, Server2 will use probe to communicate with the
commit server. probe will find that the transaction is committed in the commit
server and will tell Server2 to commit locally.

If probe cannot communicate with the commit server, Server2 will mark the
database as suspect. After communication with the commit sever is
reestablished, the suspect database should be re-recovered.

close_commit marks the transaction as complete in the spt_committab table on
the commit server. If close_commit fails, the transaction is not marked as
complete. No actual harm is done by this, but the System Administrator may
choose to manually update spt_committab in this case.

DB-Library/C Reference Manual 467

abort_xact

abort_xact

Description

Syntax

Parameters

Return value

Usage

See also

Mark adistributed transaction as being aborted.

RETCODE abort_xact(connect, commid)

DBPROCESS *connect;
DBINT commid;

connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service.

SUCCEED or FAIL.

This routine informs the commit service that the status of a distributed
transaction should be changed from “begin” to “abort.”

commit_xact, remove_xact, scan_xact, start_xact, stat_xact

build_xact_string

Description

Syntax

Parameters

468

Build aname for adistributed transaction.

void build_xact_string(xact_name, service_name,
commid, result)

char *xact_name;
char *service_name;
DBINT commid;

char * result;

xact_name
The application or user name for the transaction. This name gets encoded in
the name string but is not used by the commit service or Adaptive Server
Enterprise. It servesto identify the transaction for debugging purposes.

Open Client

CHAPTER 4 Two-Phase Commit Service

Return value

Usage

See also

close_commit

Description

Syntax

Parameters

service_name
The name that will be used by Adaptive Server Enterprise to contact the
commit service, should it be necessary to recover the transaction. If
service_nameis NULL, the name DSCOMMIT is used.

service_name must correspond to name of the interfacesfile entry for the
commit service. If service_ nameis NULL, the interfaces file must contain
an entry for DSCOMMIT.

commid
The number used by the commit serviceto identify the transaction. commid
is the number returned by the call to start_xact.

result
Address of buffer where the string should be built. The space must be
allocated by the caller.

None.

« Thisroutine builds a name string for use in the SQL begin transaction and
prepare transaction of an Adaptive Server Enterprise transaction. If
Adaptive Server Enterprise has to recover the transaction, it uses
information encoded in the name to determine which commit service to
contact and which transaction in that service to inquire about. The
application should issue a SQL begin transaction using the string built by
build_xact_string.

e Thestring built by build_xact_string must be large enough to hold the
ASCII representation of commid, xact_name, service_name, two
additional characters, and a null terminator.

commit_xact, start_xact

End a connection with the commit service.

void close_commit(connect)

DBPROCESS *connect;

connect
A pointer to the DBPROCESS structure that was originally returned by
open_commit.

DB-Library/C Reference Manual 469

commit_xact

Return value None.

Usage This routine calls dbclose to end a connection with the commit service. A call
to close_commit should be made when the application is through with the
commit service, to free resources.

See also dbclose

commit_xact

Description Mark adistributed transaction as being committed.

Syntax RETCODE commit_xact(connect, commid)

DBPROCESS *connect;

DBINT commid;
Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.
commid
The commid used to identify the transaction to the commit service.
Return value SUCCEED or FAIL.

If commit_xact fails, you must roll back the transaction.

Usage This routine informs the commit service that the status of a distributed
transaction should be changed from “begin” to “commit.”

See also abort_xact, remove_xact, scan_xact, start_xact, stat_xact

open_commit
Description Establish a connection with the commit service.

Syntax DBPROCESS *open_commit(login, servername)

LOGINREC *login;
char *servername;

470 Open Client

CHAPTER 4 Two-Phase Commit Service

Parameters

Return value

Usage

See also

remove_xact

Description

Syntax

Parameters

login
ThisisaLOGINREC containing information about the user initiating the
session, such as login name, password, and options desired. The
LOGINREC must have been obtained from a prior call to the DB-Library
routine dblogin. The caller may wish to initialize fields in the LOGINREC.
See the reference page for dblogin for more details.

servername
The name of the commit service; for example, DSCOMMIT_SALESNET.
If servernameis NULL, the name DSCOMMIT is used. The name cannot
contain aperiod (.) or acolon (:).

A pointer to a DBPROCESS structure to be used in subsequent commit service

calls, or NULL if the open failed.

* Thisroutine calls dbopen to establish a connection with the commit
service. A call to open_commit must precede any calls to other commit
serviceroutines, such as start_xact, commit_xact, abort_xact, remove_xact,
and scan_xact. A session with the commit serviceis closed by calling
close_commit.

e Thisroutine returns a DBPROCESS structure, which is used to
communicate with the commit service. The DBPROCESS must be
dedicated to its role with the commit service and should not be used
otherwise in the distributed transaction.

dblogin, dbopen

Decrement the count of sites still active in the distributed transaction.

RETCODE remove_xact(connect, commid, n)

DBPROCESS *connect;

DBINT commid;
int n;
connect

A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service.

DB-Library/C Reference Manual 471

scan_xact

Return value

Usage

See also

scan_xact

Description

Syntax

Parameters

Return value

Usage

See also

start_xact

Description

472

n
The number of sites to remove from the transaction.

SUCCEED or FAIL.

¢ The commit service keeps acount of the number of sites participatingin a
distributed transaction. This routine informs the commit service that one
or more sites has done alocal commit or abort on the transaction and is
hence no longer participating. The commit service removesthe sitesfrom
the transaction by decrementing the count of sites.

e Thetransaction record is deleted entirely if the count dropsto O.

abort_xact, commit_xact, scan_xact, start_xact, stat_xact

Print commit service record for distributed transactions.

RETCODE scan_xact(connect, commid)

DBPROCESS *connect;
DBINT commid;

connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service. If
commid is -1, all commit service records are displayed.

SUCCEED or FAIL.

This routine displays the commit service record for a specific distributed
transaction, or for all distributed transactions known to the commit service.

abort_xact, commit_xact, remove Xact, start_xact, stat_xact

Start a distributed transaction using the commit service.

Open Client

CHAPTER 4 Two-Phase Commit Service

Syntax

Parameters

Return value

Usage

See also

stat_xact

Description

Syntax

DBINT start_xact(connect, application_name, xact_name,
site_count)

DBPROCESS *connect;

char *application_name;
char *xact_name;

int site_count;
connect

A pointer to the DBPROCESS used to communicate with the commit
service.

application_name
The name of the application. The application developer can choose any
name for the application. It will appear in the table maintained by the
commit service but isnot used by the commit service or the Adaptive Server
Enterprise recovery system.

xact_name
The name of the transaction. This name will appear in the table maintained
by the commit service and must be supplied as part of the transaction name
string built by build_xact_string. The name cannot contain a period (.) or a
colon (2).

site_count
The number of sites participating in the transaction.

An integer called the commid. This number is used to identify the transaction
in subsequent calls to the commit service. In case of error, this routine will
return O.

This routine records the start of a distributed transaction with the commit
service. A recordisplaced in the commit service containing the commid, which
isanumber that caller subsequently uses to identify the transaction to the
commit service.

abort_xact, build_xact_string, commit_xact, remove_xact, scan_xact,
stat_xact

Return the current status of a distributed transaction.

int stat_xact(connect, commid)

DB-Library/C Reference Manual 473

stat_xact

Parameters

Return value

Usage

See also

474

DBPROCESS *connect;

DBINT commid;

connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid

The commid is used to identify the transaction to the commit service. If

commid is-1, all commit service records are displayed.

A character code; “a’ (abort), “b” (begin), “c” (commit), “u” (unknown), or -1

(request failed).

This routine returns the transaction status for the specified distributed

transaction.

abort_xact, commit_xact, remove Xact, scan_xact, start_xact

Open Client

APPENDIX A

Cursor overview

cursors

This appendix introduces the DB-Library cursor.

Topic Page
Cursor overview 475
Sensitivity to change 477
DB-Library cursor functions 480
Holding locks 480
Stored procedures used by DB-Library cursors 481

Because relational databases are oriented toward sets, no concept of next
row exists, meaning that you cannot operate on an individual row in a set.
Cursor functionality solves this problem by letting a result set be
processed one row at atime, similar to the way you read and update afile
on adisk. A DB-Library cursor indicates the current position in aresult
set, just asthe cursor on your screen indicates the current position in a
block of text.

DB-Library cursors are client-side cursors. This means that they do not
correspond to an Adaptive Server Enterprise cursor, but emulate a cursor
that appears to the user to be in the server. The DB-Library cursor
transparently does keyset management, row positioning, and concurrency
control entirely on the client side.

DB-Library cursor capability

The DB-Library cursor routines offer the following capabilities, with
certain limitations:

» Forward and backward scrolling (depending on how the keyset is
defined during dbcursoropen)

DB-Library/C Reference Manual 475

Cursor overview

e Direct access by position in the result set
« Positioned updates (even if the result set was defined with order by)
e Sensitivity adjustments to changes made by other users

e Concurrency control through several options

Differences between DB-Library cursors and browse mode

Cursorsl et the user scroll through and update aresult set with fewer restrictions
than browse mode. Although cursors require a unique index, they do not
require atimestamp nor a second connection to a database for updates. Also,
they do not create a copy of the entire result set. The following table
summarizes these differences:

Table A-1: Cursors and browse mode

Iltem Cursors Browse mode
Row timestamps Not required Required

Multiple connections for updates Unnecessary Necessary

Table usage Use original tables Uses a copy of tables

Differences between DB-Library and Client-Library cursors

476

A DB-Library cursor does not correspond to an actual Adaptive Server
Enterprise cursor. Instead, at the timethe cursor isdeclared with dbcursoropen,
DB-Library fetches keysets from Adaptive Server Enterprise “under the
covers.” It then builds qualifiers based on the keys for the current row and
sends them to Adaptive Server Enterprise. The server parses the query and
returns aresult set. When dbcursorfetch is called to retrieve more data, the DB-
Library cursor may haveto do additional selects. In addition, Adaptive Server
Enterprise may have to parse the query each time dbcursorfetch is called.

A Client-Library cursor corresponds to an actual cursor in Adaptive Server
Enterprise. It issometimesreferred to, therefore, asanative cursor. A new TDS
protocol alows Client-Library to interact with the server to manage the cursor.

A Client-Library cursor isfaster than a DB-Library cursor because it does not
haveto send SQL commandsto the server, which causes multiple re-parsing of
the query. But because the result set remains on the server side, it cannot offer
the same options for concurrency control as a DB-Library cursor.

Open Client

APPENDIX A Cursors

The following table summarizes these and additional differences between the
two cursors:

Table A-2: Differences between DB-Library cursors and Client-Library

cursors

DB-Library cursor

Client-Library cursor

Cursor row position is defined by the
client.

Cursor row position is defined by the
server.

Can define optimistic concurrency control
(alows dirty reads).

Cannot define optimistic concurrency
control (does not allow dirty reads).

Canfetch backward (if CUR_KEY SET or
CUR_DYNAMIC is specified for
scrollopt during dbcursoropen).

Can only fetch forward.

More memory may be required if you
query very large row sizes, unlessyou
specify a smaller number of rowsin the
fetch buffer during dbcursoropen.

More memory isnot required, regardless
of how large the row sizes are.

You cannot access an Open Server
application unless the application installs
the required DB-Library stored
procedures.

You can access aversion 10.0 (or later)
Open Server application that is coded to
support cursors.

Slower performance.

Faster performance.

Sensitivity to change

Threebroad categoriesidentify cursorsaccording to their sensitivity to change:

Satic—values, order, and membership in theresult set do not changewhile

the cursor is open.

Keyset-driven —values can change, but order and membership intheresult
set remain fixed at open time (the moment the cursor is opened).

Dynamic — values, order, and membership in the result set can all change.

DB-Library/C Reference Manual

477

Sensitivity to change

Static cursor

In a static cursor, neither the cursor owner nor any other user can change the
result set whilethe cursor is open. Values, membership, and order remain fixed
until the cursor isclosed. You can either take a snapshot of theresult set (which
begins to diverge from the snapshot as updates are made), or you can lock the
entire result set to prevent updates.

It isnot necessary for cursor routinesto support static cursorsdirectly. You can
achieve static behavior through one of the following methods:

e Takeasnapshot copy of the result set (with select...into), and then call
dbcursoropen against the snapshot (temporary table).

¢ Lock theresult set by calling dbcursoropen with the holdlock keyword in a
select statement. However, this method significantly reduces concurrency.

Keyset-driven cursor

478

In akeyset-driven cursor, the order and the membership of rows in the result
set are fixed at open time, but changes to values may be made by the cursor
owner. Committed changes made by other usersarevisible. If achange affects
arow’'sorder, or resultsin arow no longer qualifying for membership, the row
does not disappear or move unless the cursor is closed and reopened. If the
cursor remains open, deleted rows, when accessed, return a special error code
that says they are missing. Updating the key also causes the rows to be
“missing.”

Inserted data does not appear, but changes to existing data do appear when the
buffer isrefreshed. With or without order by, the user can accessrows by either
relative or absolute position.

To access arow by relative position, move the cursor relative to its current
position. For example, if the cursor ison row three and you want to access row
eight, tell the cursor to jump five rows relative to its current position. The
cursor jumps five rowsto row eight.

To access arow by absolute position, tell the cursor the number of the row you
want to access. For example, if the cursor ison row three and you want to
access row eight, tell the cursor to jump to row eight.

Open Client

APPENDIX A Cursors

Dynamic cursor

In adynamic cursor, uncommitted changes made by the cursor owner and
committed changes made by anyone become visible the next time the user
scrolls. Changesinclude inserts and deletes as well as changesin order and
membership. (Deleted rows do not leave holes.) The user can access rows by
relative (but not absolute) position in the result set. Dynamic cursors cannot use
an order by clause.

Concurrency control

Cursors control—through several options—concurrent access, which occurs
when more than one user accesses and updates the same data at the sametime.
During concurrent access, data can become unreliable without some kind of
control. To activate the particular concurrency control desired, specify one of
the following options when you open a cursor:

Table A-3: Concurrency control options

Option Result
CUR_READONLY Updates are not permitted.
CUR_LOCKCC The set of rowscurrently in the client buffer islocked when

they arefetched inside auser-initiated transaction. No other
user can update or read these rows. Updates issued by the
cursor owner are guaranteed to succeed.

No locks are held unless the application first issues begin
transaction. Locks are held until the application issues a
commit transaction. Locks are not automatically released
when the next fetch is executed.

CUR_OPTCC and Rows currently inthe buffer are not locked, and other users
CUR_OPTCCVAL- can update or read them freely.

To detect collisions between updates issued by the cursor owner and those
issued by other users, cursors save and compare timestamps or column values.
Therefore, if you specify either of the optimistic concurrency control options
(CUR_OPTCC or CUR_OPTCCVAL) your updates can fail because of
collisionswith other updates. You may want to design the application to refresh
the buffer and then retry updates that fail.

The two optimistic concurrency control options differ in the way they detect
collisions:

DB-Library/C Reference Manual 479

DB-Library cursor functions

Table A-4: Detecting concurrency collisions

Option Method of Detection

CUR_OPTCC Optimistic concurrency control based on timestamp values.
Compares timestamps if available; otherwise, saves and
compares the value of all non-text, non-image columnsin the
table with their previous values.

CUR_OPTCCVAL Optimistic concurrency control based on values. Compares
selected values whether or not atimestamp is available.

DB-Library cursor functions

Holding locks

480

The following list summarizes the DB-Library cursor routines:

Routine Description

dbcursoropen Declares and opens the cursor, specifies the size of the
fetch buffer and defines the keyset, and sets the
concurrency control option.

dbcursorinfo Returnsthe number of columns and the number of rowsin
the open cursor.

dbcursorcolinfo Returns column information for the specified column
number in the open cursor.

dbcursorbind Associates program variables with columns.

dbcursorfetch Scrolls the fetch buffer.

dbcursor Updates, deletes, inserts, and refreshes the rows in the
fetch buffer.

dbcursorclose Closes the cursor.

For details about an individual routine, see its reference page.

To retain the flexibility of the Adaptive Server Enterprise transaction model,
cursors do not automatically issue begin transaction or commit transaction. The
duration of locks acquired during cursor operationsisentirely under the control
of the application. In other words, an application that usess CUR_LOCKCC on
either the dbcursoropen or dbcursor routine must al so i ssue begin transaction for
the locking to have any effect.

Open Client

APPENDIX A Cursors

To hold the lock on the currently buffered rows when CUR_LOCKCC is used
on dbcursoropen, the application must issue commit transaction and begin
transaction before each dbcursorfetch that scrollsthelocal buffer (except for the
very first dbcursorfetch, which should be preceded only by begin transaction).

To usethe short-duration locking feature, issue begin transaction beforelocking
the row to be updated with the CUR_LOCKCC option of dbcursor. If each
update is independent, issue commit transaction after each update. If multiple
updates to the same screen of data depend on each other, issue commit
transaction when the screen is scrolled.

For repeatable-read consistency, specify holdlock in the select statement in
dbcursoropen, and issue begin transaction before the first dbcursorfetch. Locks
are obtained as the datais fetched and are retained until the application issues
commit transaction Or rollback transaction.

Although you can close and reopen a repeatable-read cursor, you can get the
same effect with FETCH_FIRST.

Other combinations are possible as well. The important thing to remember is
that locks are not held unless begin transaction is in effect. Locks acquired
while begin transaction isin effect are held until acommit transaction or rollback
transaction is issued.

Stored procedures used by DB-Library cursors

DB-Library’s cursor routines call the Adaptive Server Enterprise’s catalog
stored procedures to find out table formats and identify key columns.

See the Adaptive Server Enterprise Reference Manual.

DB-Library/C Reference Manual 481

Stored procedures used by DB-Library cursors

482 Open Client

APPENDIX B DB-Library Error Messages

20001

Symbolic constant SYBESYNC
Message text Read attempted while out of synchronization with the
server.

Possible Cause

Action/solution Contact Sybase Technical Support
Additional information Obsolete
Versions None

20002

Symbolic constant SYBEFCON

Message text Server connection failed.
Possible Cause Internal 1/O error

Action/solution Contact Sybase Technical Support.

Additional information

Versions Earlier than 15.7 ESD #3.

20003

Symbolic constant SYBETIME
Message text Server connection timed out.
Possible Cause Network /O operation timed out.

DB-Library/C Reference Manual 483

20004

Action/solution

Additional information

Versions

20004

Symbolic constant
Message text
Possible cause
Action/solution
Additional information

Versions

20005

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20006

Symbolic constant

Message text

484

Contact Sybase Technical Support.

An application can increase the amount of time to wait for a server response
using dbsettime().

All

SYBEREAD

Read from the server failed.
Internal 1/0O error
Contact Sybase Technical Support.

All

SYBEUFL

DB-LIBRARY internal error - send buffer length
corrupted.

Internal memory error

Contact Sybase Technical Support.

All

SYBEWRIT

Write to the server failed.

Open Client

APPENDIX B DB-Library Error Messages

Possible Cause
Action/solution
Additional information

Versions

20008

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20009

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20010

Symbolic constant

Connection is no longer usable. Server may have stopped responding.
Close and reestablish connection.

All

SYBESOCK

Unable to open socket.
Internal 1/0 error

Contact Sybase Technical Support.

Earlier than 15.7 ESD #3.

SYBECONN

Unable to connect socket -- server is unavailable or
does not exist.

Internal 1/O error

Contact Sybase Technical Support.

All

SYBEMEM

DB-Library/C Reference Manual 485

20011

Message text
Possible Cause
Action/solution
Additional information

Versions

20011

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20012

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20013

Symbolic constant

486

Unable to allocate sufficient memory.
Cannot get heap memory.
Look at system configuration for heap memaory.

All

SYBEDBPS
Maximum number of DBPROCESSes already allocated.
The configured maximum number of DBPROCESSes have been exceeded.
Use dbsetmaxprocs() to increase the limit.
The default valueis 25.
All

SYBEINTF

Server name not found in interfaces file.
DSQUERY isset incorrectly.

Make sure the server name isincluded in the interfaces file.

All

SYBEUHST

Open Client

APPENDIX B

DB-Library Error Messages

Message text
Possible Cause
Action/solution
Additional information

Versions

20014

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20015

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20016

Symbolic constant

Unknown host machine name.
Unknown machine name in the interfacesfile.

Correct interfacesfile.

All

SYBEPWD

Login incorrect.
Incorrect username/ password.

Correct username/ password.

All

SYBEOPIN
Could not open interfaces file.

Cannot open interfacesfile.

Check existence/permissions of the interfacesfile.

All

SYBEINLN

DB-Library/C Reference Manual

487

20017

Message text
Possible Cause
Action/solution
Additional information

Versions

20017

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20018

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20019

Symbolic constant

488

interfaces file: unexpected end-of-line.

Unexpected end-of-line (EOL) in the interfacesfile.

Ensure that the format of interfacesfile is correct.

All

SYBESEOF

Unexpected EOF from the server.

Server has been shut down.

Verify server status.

Earlier than 15.7 ESD #3.

SYBESMSG

General server error:
An error occurred on the server.

Correct application coding.

All

SYBERPND

Check messages from the server.

Open Client

APPENDIX B DB-Library Error Messages

Message Text

Possible Cause
Action/solution
Additional information

Versions

20020

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20021

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

Attempt to initiate a new server operation with results
pending.

dbsglexec() has been called before all previous results have been processed.

Process all results with dbresults() before issuing new queries.

All

SYBEDBPS

Bad token from server: Data-stream processing out of
sync.

Internal client/server communication problem.

Contact Sybase Technical Support.

All

SYBEITIM

Illegal timeout value specified.
The value passed to dbsettime() or dbsetlogintime() isinvalid.

Make sure the seconds parameter is a positive integer value.

All

DB-Library/C Reference Manual 489

20022

20022

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20023

Symbolic constant

Message text

Possible Cause

Action/solution

Additional information

Versions

20024

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

490

SYBEOOB

Error in sending out-of-band data to the server.
Out-of-band data sent by the network failed.
Close and then reopen DBPROCESS.
Out-of-band data might have been sent as aresult of calling dbcancel().
All

SYBEBTYP
Unknown bind type passed to DB-LIBRARY function.
dbbind() (or other bind function) has passed an unknown value for vartype.

Check function documentation for valid bind types and correct application
coding.

All

SYBEBNCR

Attempt to bind user variable to a non-existent compute
row.

The result set does not contain a compute row.

Make sure the query returns compute rows if it calls dbaltbind().

All

Open Client

APPENDIX B DB-Library Error Messages

20025

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20026

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20027

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEIICL

Illegal integer column length returned by the server.
Anillegal integer length (other than 1, 2, or 4) was received.
Unlikely to occur; if from an Open Server, check Open Server coding.

All

SYBECNOR
Column number out of range.
The column number specified to dbdata() is not part of the result set.

Correct code to reference an available column.

All

SYBENPRM
NULL parameter not allowed for this dboption.
A NULL parameter has been specified to dbsetopty().

Correct code to specify valid parameter.

All

DB-Library/C Reference Manual 491

20028

20028

Symbolic constant

Message text
Possible Cause

Action/solution

Additional information

Versions

20029

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20030

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

492

SYBEUVDT
Unknown variable-length datatype encountered.
An unknown variable-length datatype has been received from the server.

Unlikely to happen; if the server is an Open Server, verify coding of Open
Server.

All

SYBEUFDT
Unknown fixed-length datatype encountered.
An unknown fixed-length datetype has been received from the server.

Unlikely to happen; if server isan open server, verify coding of the open server.

All

SYBEWAID
DB-LIBRARY internal error: ALTFMT following ALTNAME has
wrong id.

Server has sent the wrong ID for a compute row.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20031

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20033

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20034

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBECDNS

Datastream indicates that a compute column is derived
from a non-existent select-list member.

Compute column is derived from a nonexistent select-list member.

Contact Sybase Technical Support.

All

SYBEABMT

User attempted a dbbind() with mismatched column and
variable types.

dbbind() (or other bind function) has been called with incompatible column and
vartype val ues.

Correct application coding.

All

SYBEABNP

Attempt to bind using NULL pointers.
Bad varaddr argument to dbbind().
Correct application coding.

All

DB-Library/C Reference Manual 493

20035

20035

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20036

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20037

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

494

SYBEAAMT

User attempted a dbbind() with mismatched column and
variable types.

Program datetype does not match column datetype.
Correct application coding.

All

SYBENXID

The server did not grant us a distributed-transaction
ID.

A problem arose during initialization of the commit service.

Verify that the interfaces file has correct entries.

All

SYBERXID

The server did not recognize our distributed-
transaction ID.

Programming error.

Validate commid parameter specified to stat_xact().

All

Open Client

APPENDIX B DB-Library Error Messages

20038

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20039

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20040

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEICN

Invalid computeid or compute column number.
Invalid computeid or compute column number passed to a dbalt*() routine.

Correct application coding.

All

SYBENMOB

No such member of 'order by' clause.
Invalid column ID passed to dbordercol().
Correct application coding.

All

SYBEAPUT

Attempt to print unknown token.
Unknown type parameter passed to dbprtype().
Correct application coding.

All

DB-Library/C Reference Manual 495

20041

20041

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20042

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20043

loginrec==>loginrec
Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

496

SYBEASNL

Attempt to set fields in a null loginrec.
LOGINREC pointer isNULL.
Call dblogin() to allocate login record.
dblogin() may return aNULL pointer if memory cannot be all ocated.
All

SYBENTLL

Name too long for loginrec field.
name parameter to DBSETL* routine is longer than DBMAXNAME.

Use a shorter name.

All

SYBEASUL

Attempt to set unknown loginrec field.
Internal function dbsetiname attempted to set a nonexistent loingrec field.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20044

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20045

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20046

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBERDNR
Attempt to retrieve data from a non-existent row.

dbdata() has been called when there is no data available.
Correct application coding

All

SYBENS

Negative starting index passed to dbstrcpy() .
start parameter to dbstrcpy() is less than zero.

Correct value.

All

SYBEABNV
Attempt to bind to a NULL program variable.
destvar parameter to dbbind isNULL.

Provide a pointer to memory for the program variable.

All

DB-Library/C Reference Manual 497

20047

20047

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20048

Symbolic constant
Message text
Possible Cause
Action/solution

Additional information

Versions

20049

Symbolic constant
Message text
Possible Cause
Action/solution

Additional information

Versions

498

SYBEDDNE

DBPROCESS is dead or not enabled.
An error occurred on the DBPROCESS, making it unusable.
Contact Sybase Technical Support.

All

SYBECUFL

Data-conversion resulted in underflow.
dbconvert() resulted in underflow.
Correct application coding.

The conversion resulted in aloss of precision. If thisis unacceptable, rework
the application so that the destination variable can fully represent the source
value.

All

SYBECOFL

Data-conversion resulted in overflow.
dbconvert() resulted in overflow.
Correct application coding.

The destination buffer is not large enough to accommodate the converted
value.

All

Open Client

APPENDIX B DB-Library Error Messages

20050

Symbolic constant

Message text

Possible Cause

Action/solution

Additional information

Versions

20051

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20052

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBECSYN

Attempt to convert data stopped by syntax error in
source field.

There has been a conversion error.

Verify that the arguments to dbconvert() are correct. Consult the function
documentation to ensure that the source type can be converted to the
destination type.

All

SYBECLPR

Data-conversion resulted in loss of precision.
dbconvert() call resulted in precision loss.

Correct application coding.

All

SYBECNOV

Attempt to set variable to NULL resulted in overflow.
dbconvert() src parameter should not be NULL.
Correct application coding.

All

DB-Library/C Reference Manual 499

20053

20053

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20054

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20055

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

500

SYBERDCN

Requested data-conversion does not exist.
dbconvert() is unable to convert from srctype to desttype.

Check the datatype conversion table for valid type pairs.

All

SYBESFOV

dbsafestr () overflowed its destination buffer.
Destination buffer is not large enough.

Correct application coding.

All

SYBEUNT

Unknown network type found in interfaces file.

Interfaces file has an erroneous server entry.

Correct interfacesfile.

Earlier than 15.7 ESD #3.

Open Client

APPENDIX B DB-Library Error Messages

20056

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20060

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20061

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBECLOS

Error in closing network connection.
There was an error closing the network endpoint.

Contact Sybase Technical Support.

All

SYBECSYN

Unknown datatype encountered.
A DB-Library routine has been called to pass an unknown datatype.
Correct application coding.

All

SYBETSIT

Attempt to call dbtsput() with an invalid timestamp.
Adaptive Server column has no timestamp.
Correct application coding.

All

DB-Library/C Reference Manual 501

20062

20062

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20063

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20064

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

502

SYBECSYN

Attempt to update the timestamp of a table which has no

timestamp column.
dbtsput() has been called on arow that cannot be browsed.
Correct application coding.

All

SYBEBDIO

Bad bulk-copy direction. Must be either IN or OUT.
bep_init() called with invalid direction parameter.
Correct application coding.

All

SYBEBCNT

Attempt to use Bulk Copy with a non-existent server
table.

table parameter to bep_init() isinvalid for server.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20065

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20066

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20067

Symbolic constant
Message text
Possible Cause
Action/solution

Additional information

Versions

SYBEIFNB
Illegal field number passed to bcp control().
field parameter to bcp_control() is incorrect.

Correct application coding.

All

SYBETTS

The table which bulk-copy is attempting to copy to a
host-file is shorter than the number of rows which bulk-
copy was instructed to skip.

dbcontrol() was called with aBCPFIRST value greater than the number of rows
in the table.

Correct application coding.

All

SYBEKBCO

1000 rows successfully bulk-copied to host-file.
1000 rows copied.
No action required.

Thisisan informational message informing the user of the progressin copying
rowsto the host file.

All

DB-Library/C Reference Manual 503

20068

20068

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20069

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20070

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

504

SYBEBBCI
Batch successfully bulk-copied to the server.
A batch has been successfully copied.
No action required.
Thisisaninformational message informing the user of the progressin copying.
All

SYBEKBCI
Bcp:1000 rows sent to the server.
Rows have been sent to the server.
No action required.
Thisisaninformational message informing the user of the progressin copying.
All

SYBEBCRE

I/0 error while reading bcp data-file.
System 1/O routing failed.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20071

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20072

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20073

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

SYBETPTN

Syntax error:only two periods are permitted in table
names.

Table reference syntax isincorrect.

Correct query.

All

SYBEBCWE

I1/0 error while writing bcp data-file.
System 1/O routing failed.
Contact Sybase Technical Support.

All

SYBEBCNN

Attempt to bulk-copy a NULL value into server column
<colname>, which does not accept NULL values.

Incorrect insert/update query.

Correct query.

All

DB-Library/C Reference Manual 505

20074

20074

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20075

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20076

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

506

SYBEBCOR

Attempt to bulk-copy an oversized row to the server.

Datato be copied istoo large for the server column.

Reconcile bep file/server schema.

All

SYBEBCIS

Attempt to bulk-copy an illegally-sized column value to

the server.

Datato be copied istoo large for the server column.

Reconcile bep file/server schema.

All

SYBEBCPI

bep init () must be called before any other bcp routines.

bep_init() not called.
Call bep_init().

All

Open Client

APPENDIX B DB-Library Error Messages

20077

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20078

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20079

Symbolic constant

Message text

Possible Cause
Action/solution

Additional information

SYBEBCOR

bep bind(), bep collen() and becp colptr() may be used
only after bcp init() has been called with the copy
direction set to DB _IN.

Above functions called before bep_init().
Correct application coding.

All

SYBEBCPB

bcep bind() may NOT be used after bcp init () has been
passed a non-NULL input file name.

Attempting to copy from a program variable when an input file has been
specified.

Correct application coding.

All

SYBEVDPT

For bulk copy, all variable-length data must have either
a length-prefix or a terminator specified.

Missing length-prefix or terminator.

Correct parametersto bep_colfmt().

DB-Library/C Reference Manual 507

20080

Versions

20080

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20081

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20082

Symbolic constant
Message text
Possible Cause

Action/solution

508

All

SYBEBIVI

bcp columns () and bcp colfmt () may be used only after
bcp init () has been passed a valid input file.

bep_init() has been called with an invalid hfile parameter.

Correct application coding.

All

SYBEBCBC

bep columns () must be called before bcp colfmt ().
bep_colfmt() has been called before calling bep_columnsg).
Correct application coding.

All

SYBEBCFO

Bcp host-files must contain at least one column.
bep_columns() has been called with an invalid host_colcount parameter.

Correct application coding.

Open Client

APPENDIX B DB-Library Error Messages

Additional information

Versions

20083

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20084

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20085

Symbolic constant
Message text

Possible Cause

All

SYBEBCVH

bcp exec() may be called only after bcp init () has been

passed a valid host file.
bep_init() has been called with an invalid hfile parameter.

Correct application coding.

All

SYBEBCUO

Bcp: Unable to open host data-file.
bep_init() has been called with an invalid hfile parameter.

Correct application coding.

All

SYBEBCUC

Bcp: Unable to close host data-file.

System close routine failed.

DB-Library/C Reference Manual

20086

Action/solution
Additional information

Versions

20086

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20087

open==>close
Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20088

Symbolic constant

Message text

510

Contact Sybase Technical Support.

All

SYBEBUOE

Bcp: Unable to open error-file.
bep_init() has been called with an invalid errfile parameter.

Correct application coding.

All

SYBEBUCE
Bcp: Unable to open error-file.
System close routine failed.

Contact Sybase Technical Support.

All

SYBEBWEF

I/0 error while writing bcp error-file.

Open Client

APPENDIX B DB-Library Error Messages

Possible Cause
Action/solution
Additional information

Versions

20091

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20092

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

System 1/O routine failed.
Contact Sybase Technical Support.

All

SYBEASEC

Attempt to send an empty command buffer to the server.
dbcmd() has not been called or has been called with an empty string.
Correct application coding.

All

SYBETMTD

Attempt to send too much TEXT data via the dbmoretext ()
call.

dbwritetext() specifiesthetotal text length to be set. Thiserror indicatesthat the
cumulative total sent by dbmoretext() calls exceed the value specified in the
dbwritetext() call.

Correct application coding.

All

DB-Library/C Reference Manual 511

20093

20093

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20094

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20095

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

512

SYBENTTN

Attempt to use dbtxtsput() to put a new text-timestamp
into a non-existent data row.

dbtxtsput() called incorrectly.
Correct application coding.

All

SYBEDNTI

Attempt to use dbtxtsput() to put a new text-timestamp
into a column whose datatype is neither SYBTEXT nor
SYBIMAGE.

dbtxtsput() called incorrectly.
Correct application coding.

All

SYBEBTMT

Attempt to send too much TEXT data via the
bcp moretext () call.

The size of the text sent by bcp_moretext() calls exceeds the column size.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20096

Symbolic constant

Message text

Possible Cause
Action/solution

Additional information

Versions

20097

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20098

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEORPF

Attempt to set remote password would overflow the login-
record's remote-password field.

Remote password is too long.
Correct application coding.

The remote password buffer is 255 bytes long. Each password's entry in the
buffer consists of the password itself, the associated server name, and 2 extra
bytes.

All

SYBEUVBF

Attempt to read an unknown version of BCP format-file.
Format file has been corrupted.

Contact Sybase Technical Support.

All

SYBEBUOF

Bcp: Unable to open format-file.
Incorrect filename parameter passed to bcp_readfmt().

Correct application coding.

All

DB-Library/C Reference Manual 513

20099

20099

Symbolic constant SYBEBUCF

Message text Bcp: Unable to close format-file.
Possible Cause System close routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20100

Symbolic constant SYBEBRFF

Message text I/0 error while reading bcp format-file.
Possible Cause System I/O routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20101

Symbolic constant SYBEBWFF

Message text I/0 error while writing bcp format-file.
Possible Cause System |/O routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

514 OpenClient

APPENDIX B DB-Library Error Messages

20102

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20103

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20104

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEBUDF

Bcp: Unrecognized datatype found in format-file.

Corrupted input file.

Contact Sybase Technical Support.

All

SYBEBIHC

Incorrect host-column number found in bcp format-file.

Corrupted input file.

Contact Sybase Technical Support.

All

SYBEBEOF

Unexpected EOF encountered in BCP data-file.

Corrupted input file.

Contact Sybase Technical Support.

All

DB-Library/C Reference Manual

515

20105

20105

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20106

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20107

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

516

SYBEBCNL

Negative length-prefix found in BCP data-file.
Corrupted input file.
Contact Sybase Technical Support.

All

SYBEBCS

Host-file columns may be skipped only when copying Into
the server.

Programming error.

Correct application coding.

All

SYBEBCIT

It's illegal to use BCP terminators with program
variables other than SYBCHAR, SYBBINARY, SYBTEXT, or
SYBIMAGE.

bep_bind() called incorrectly.
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20108

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20109

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20110

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEBCSA

The BCP hostfile <filename> contains only <n> rows.
Skipping all of these rows is not allowed.

bep_control() has set BCPFIRST to avalue greater than the number of rowsin
theinput file.

Correct application coding.

All

SYBENULL

NULL DBPROCESS pointer passed to DB-Library.
A DB-Library routine passed a NULL DBPROCESS pointer.
Correct application coding.

All

SYBEUNAM

Unable to get current username from operating system.
getpwuid() system call failed.
Contact your system administrator.

All

DB-Library/C Reference Manual 517

20111

20111

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20112

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20113

Symbolic constant

Message text

Possible Cause
Action/solution

Additional information

518

SYBEBCRO

The BCP hostfile <filename> contains only <n> rows. It
was impossible to read the requested <m> rows.

bep_control() has set BCPLAST to avalue greater than the number of rowsin
theinput file.

Correct application coding.

All

SYBEMPLL

Attempt to set maximum number of DBPROCESSes lower than
1.

dbsetmaxprocs() called with avalue less than 1.

Correct application coding.

All

SYBERPIL

It is illegal to pass -1 to dbrpcparam() for the datalen
of parameters which are of type SYBCHAR, SYBVARCHAR,
SYBBINARY, or SYBVARBINARY.

Incorrect data length supplied for variable length datetype.
Correct application coding.

Open Client

APPENDIX B DB-Library Error Messages

Versions

20114

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20115

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20116

Symbolic constant

Message text

DB-Library/C Reference Manual

All

SYBERPUL

When passing a SYBINTN, SYBDATETIMN, SYBMONEYN, or

SYBFLTN parameter via rpcparam(), it's necessary to
specify the parameter's maximum or actual length, so
that DB-Library can recognize it as a SYBINT1, SYBINT2,
SYBINT4, SYBMONEY, SYBMONEY4, etc.

dbrpcparam() called with incorrect datlen value.

Correct application coding.

All

SYBEUNOP

Unknown option passed to dbsetopt ().
dbsetopt() called incorrectly.
Correct application coding.

All

SYBECRNC

The current row is not a result of compute clause

<computeids>, so it is illegal to attempt to extract that

519

20117

Possible Cause
Action/solution
Additional information

Versions

20117

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20118

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

520

data from this row.
dbadata() has been called on arow that is not the result of an alter row clause.

Correct application coding.

All

SYBERTCC

dbreadtext () may not be used to receive the results of
a query which contains a COMPUTE clause.

doreadtext() has been called to retrieve text from the result of an alter row
clause.

Correct application coding.

All

SYBERTSC

dbreadtext () may only be used to receive the results of
a query which contains a single result column.

dbreadtext() has been called on aresult set containing more than one column.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20119

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20120

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20121

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

SYBEUCRR

Internal software error: Unknown connection result
reported by dbpasswd() .

There is aproblem connecting to the server.

Contact Sybase Technical Support.

All

SYBERPNA

The RPC facility is available only when using a server
whose version number is 4.0 or greater.

This version of Adaptive Server does not support RPCs.
Upgrade Adaptive Server.

All

SYBEOPNA

The text/image facility is available only when using a
server whose version number is 4.0 or greater.

This version of Adaptive Server does not support text/image.

Upgrade Adaptive Server.

All

DB-Library/C Reference Manual 521

20122

20122

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20123

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20124

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

522

SYBEFGTL

Bcp: Row number of the first row to be copied cannot be
greater than the row number for the last row to be
copied.

bep_control() has been called with inconsistent BCPFIRST and BCPLAST.
Correct application coding.

All

SYBECWLL

Attempt to set column width less than 1.

Contact Sybase Technical Support.
Obsolete

None

SYBEUFDS

Unrecognized format encountered in dbstrbuild() .

A format specifier that does not match any custom-installed via obsol ete
function dbfmtinstall() specified in the format string.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20125

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20126

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20127

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEUCPT

Unrecognized custom-format parameter-type encountered
in dbstrbuild() .

dbstrbuild() called with invalid parameter type in format string.
Correct application coding.

All

SYBETMCF

Attempt to install too many custom formats via (obsolete
function) dbfmtinstall().

dbfmtinstall() called with more than MAXFMTS (20) formats.
Correct application coding.

All

SYBEAICF

Error in attempting to install custom format.
dbfmtinstall() generic failure.

Examine application code.

All

DB-Library/C Reference Manual 523

20128

20128

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20129

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20130

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

524

SYBEADST

Error in attempting to determine the size of a pair of

translation tables.
dbload_xlate() called with invalid srv_charset.
Correct application coding.
Make sure specified character set exists in $SYBASE/charsets.
All

SYBEALTT

Error in attempting to load a pair of translation
tables.

Internal error loading translation tables.

Contact tech support.

All

SYBEAPCT

Error in attempting to perform a character-set
translation.

dbxlate() has failed.

Check parameters to dbxlate().

All

Open Client

APPENDIX B DB-Library Error Messages

20131

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20132

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20133

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEXOCI

A character-set translation overflowed its destination
buffer while using bcp to copy data from a host-file to
the server.

Internal conversion error.

Contact Sybase Technical Support.

All

SYBEFSHD

Error in attempting to find the Sybase home directory.
$SYBASE environment variable isincorrect.

Correct setting.

All

Error in attempting to open a localization file.
Unable to open alocalization file.
Make sure $SYBASE is correct.

All

DB-Library/C Reference Manual 525

20134

20134

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20135

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20136

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

526

SYBEARDI

Error in attempting to read datetime information from a
localization file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

SYBEURCI

Unable to read copyright information\from the dblib
localization file.

Corrupt localesfile.
Contact Sybase Technical Support.

All

SYBEARDL

Error in attempting to read the dblib.loc localization
file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20137

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20138

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20139

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBEURMI

Unable to read money-format information from the dblib
localization file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

SYBEUREM

Unable to read error mnemonic from the dblib
localization file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

SYBEURES

Unable to read error string from the dblib localization
file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

527

20140

20140

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20141

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20142

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

528

SYBEUREI

Unable to read error information from the dblib
localization file.

Corrupt localesfile.

Contact Sybase Technical Support.

All

SYBEOREN

Warning: an out-of-range error-number was encountered
in dblib.loc. The maximum permissible error-number is
defined as DBERRCOUNT in sybdb.h.

Corrupt localesfile.
Contact Sybase Technical Support.

All

SYBEISOI

Invalid sort-order information found.
Corrupt localesfile.

Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20143

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20144

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20145

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBEIDCL

Illegal datetime column length returned by the server.
Legal datetime lengths are 4 and 8 bytes.

Internal Adaptive Server error.
Contact Sybase Technical Support.

All

SYBEIMCL

Illegal money column length returned by the server.
Legal money lengths are 4 and 8 bytes.

Internal Adaptive Server error.
Contact Sybase Technical Support.

All

SYBEIFCL

Illegal floating-point column length returned by the
server. Legal floating-point lengths are 4 and 8 bytes.

Internal Adaptive Server error.
Contact Sybase Technical Support.

All

529

20146

20146

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20147

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20148

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

530

SYBEUTDS

Unrecognized TDS version received from the server.
Internal error.
Contact Sybase Technical Support.

All

SYBEBUCF
Bcp: Unable to create format-file.
Insufficient access rights.
Check accessrights.
This error israised for both create and close failures.

All

SYBEACNV

Attempt to do data-conversion with NULL destination
variable.

Null pointer passed to dbconvert() or dbdatechar().
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20149

Symbolic constant SYBEDPOR

Message text Out-of-range datepart constant.
Possible Cause Invalid datepart passed to dbdatechar().
Action/solution Correct application coding.

Additional information

Versions All

20150

Symbolic constant SYBENDC

Message text Cannot have negative component in the date in numeric
form.

Possible Cause Invalid value passed to dbdatechary().

Action/solution Correct application coding.

Additional information

Versions All

20151

Symbolic constant SYBEMVOR

Message text Month values must be between 1 and 12.
Possible Cause Invalid month value passed to dbdatechar().
Action/solution Correct application coding.

Additional information

Versions All

DB-Library/C Reference Manual 531

20152

20152

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20153

Symbolic constant
Message text
Possible Cause
Action/solution

Additional information

Versions

20154

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

532

SYBEDVOR

Day values must be between 1 and 7.

Invalid day value passed to dbdatechary().

Correct application coding.

All

SYBENBVP

Cannot pass dbsetnull ()a NULL bindval pointer.

Null pointer passed as bindval.

Correct application coding.

When anull value is encountered, bindval isthe valueto useinstead. NULL is
inappropriate here.

All

SYBESPID

Called dbspid()

Incorrect coding.

with a NULL dbproc.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20155

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20156

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20157

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

SYBENDTP
Called dbdatecrack() with NULL datetime parameter.
Incorrect coding.

Correct application coding.

All

SYBEXTN

The xlt tosrv and xlt todisp parameters to
dbfree xlate() were NULL.

Invalid null parameters passed.
Correct application coding.

All

SYBEXTDN

Warning: the xlt todisp parameter to dbfree xlate() was
NULL. The space associated with the xlt tosrv parameter
has been freed.

Null xIt_todisp parameter passed to dbfree_xlate().

Do not free xIt_tosrv.

All

DB-Library/C Reference Manual 533

20158

20158

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20159

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20160

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

534

SYBEXTSN

Warning: the xlt tosrv parameter to dbfree xlate() was
NULL. The space associated with the x1t todisp parameter
has been freed.

Null xIt_tosrv parameter passed to dbfree_xlate().
Do not free xIt_todisp.

All

SYBENUM

Incorrect number of arguments given to DB-Library.
Wrong number of arguments passed to a DB-Library routine.

Correct application coding.

All

SYBETYPE

Invalid argument type given to Hyper/DB-Library.
dbregparam() called with an invalid type.
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20161

Symbolic constant SYBEGENOS

Message text General operating system error.
Possible Cause Creating an internal condition variable failed.
Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20162

Symbolic constant SYBEPAGE
Message text Wrong resource type or length given for dbpage?? ()
operation.

Possible Cause

Action/solution Contact Sybase Technical Support.
Additional information Obsolete.
Versions None

20163

Symbolic constant SYBEOPTNO

Message text Option not allowed.
Possible Cause Internal failure to set security option.
Action/solution Contact Sybase Technical Support.

Additional information

Versions All

DB-Library/C Reference Manual 535

20164

20164

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20165

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20166

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

536

SYBEETD

Failure to send the expected amount of TEXT or IMAGE
data via dbmoretext ().

Application attempted to read results from server before completely sending
text data.

Correct application coding.

All

SYBERTYPE

Invalid resource type given to Hyper/DB-Library.

Contact Sybase Technical Support.
Obsolete

None

SYBERFILE

Cannot open resource file.

Contact Sybase Technical Support.
Obsolete

None

Open Client

APPENDIX B DB-Library Error Messages

20167

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20168

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20169

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBEFMODE

Read/Write/Append mode denied on file.
dbstrbuild() called with invalid parameter type in format string.
Correct application coding.
Obsolete

None

SYBESLCT

Could not select or copy field specified.

Contact Sybase Technical Support.
Obsolete

None

SYBEZTXT

Attempt to send zero length TEXT or IMAGE to dataserver
via dbwritetext ().

Invalid arguments in dowritetext() call.

Correct application coding.

All

537

20170

20170

Message type
Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20171

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20172

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

538

Error
SYBENTST

VMS: The file being opened must be a stream 1f.

Contact Sybase Technical Support.
Obsolete

None

SYBEOSSL

Login incorrect: operating system login security level
is not within the range of the secure server.

Contact Sybase Technical Support.
Obsolete

None

SYBEESSL

Login incorrect: login security level as entered does
not agree with your operating system level.

Contact Sybase Technical Support.

Obsolete

None

Open Client

APPENDIX B DB-Library Error Messages

20173

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20174

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20175

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBENLNL

Program not linked with specified network library.

Contact Sybase Technical Support.
Obsolete

None

SYBENHAN

Called dbrecvpassthru() with a NULL handle parameter.
dbrecvpassthru() called with invalid parameter.
Correct application coding.

All

SYBENBUF

Called dbsendpassthru() with a NULL buf parameter.
dbsendpassthru() called with invalid parameter.
Correct application coding.

All

DB-Library/C Reference Manual 539

20176

20176

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20177

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20178

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

540

SYBENULP

Called <routine> with a NULL <paramname> parameter.
A DB-Library routine has been called with aninvalid NULL parameter.
Correct application coding.

All

SYBENOTI

An event handler must be installed before a notification
request can be made.

Contact Sybase Technical Support.
Obsolete

None

SYBEEVOP

Called dbregwatch() with a bad options parameter.
Incorrect options value passed to dbregwatch().
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20179

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20180

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20181

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBENEHA

Called dbreghandle() with a NULL handler parameter.

Contact Sybase Technical Support.
Obsolete

None

SYBETRAN

DBPROCESS is being used for another transaction.
Processing of the previous command on this DBPROCESS is not completed.
Correct application coding.

All

SYBEEVST

Must initiate a transaction before calling
dbregparam() .

dbreginit() or dbregparam() has not been called before the invocation of
dbregparam().

Correct application coding.

All

541

20182

20182

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20183

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20184

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

542

SYBEEINI

Must call dbreginit() before dbregexec() .
dbreginit() has not been called before the invocation of dbregexec().

Correct application coding.

All

SYBEECRT

Must call dbnpdefine() before dbnpcreate().

Contact Sybase Technical Support.
Obsolete

None

SYBEECAN

Attempted to cancel unrequested event notification.
dbregnowatch() has been called with no prior doregwatch().

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20185

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

20186

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20187

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

SYBEEUNR

Unsolicited event notification received.

dbreghandle() has been called to uninstall an event handler, but the notification
reguest has not been cancelled by calling dbregnowatch(). When the event is
raised, thereis no handler installed.

Correct application coding.

All

SYBERPCS

Must call dbrpcinit () before dbrpcparam() or
dbrpcsend () .

dbrpcinit() has not been called prior to this call to dbrpcparam() or dbrpcsend().
Correct application coding.

All

SYBETPAR
No SYBTEXT or SYBIMAGE parameters were defined.

dbwritetext() or dbmoretext() called during an RPC with no text/image
parameters defined.

Correct application coding.

All

DB-Library/C Reference Manual 543

20188

20188

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20189

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20190

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

544

SYBETEXS
Called dbmoretext () with a bad size parameter.
dbmoretext() or doreadtext() called with a negative bufsize paramet

Correct application coding.

All

SYBETRAC

er.

Attempted to turn off a trace flag that was not on.

dbtraceoff() called with an invalid flag parameter.
Correct application coding.

All

SYBETRAS

DB-Library internal error - trace structure not found.

Thereis no trace record in the DBPROCESS structure.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20191

Symbolic constant SYBEPRTF

Message text dbtracestring() may only be called from a printfunc().
Possible Cause dbtracestring() called directly instead of from printfunc() set with dbtraceon().
Action/solution Correct application coding.

Additional information

Versions All

20192

Symbolic constant SYBETRSN

Message text Bad numbytes parameter passed to dbtracestring() .
Possible Cause The num parameter passed to dbtracestring() iS negative.
Action/solution Correct application coding.

Additional information

Versions All

20193

Symbolic constant SYBEBPKS

Message text In DBSETLPACKET (), the packet size parameter must be
between 256 and 9999.

Possible Cause Invalid size passed to DBSETLPACKET)().

Action/solution Correct application coding.

Additional information

Versions All

DB-Library/C Reference Manual 545

20194

20194

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20195

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20196

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

546

SYBEIPV

<value> is an illegal value for the <paramnames>
parameter of <routines.

Parameter value is outside the domain of the parameter.

Correct application coding.

All

SYBEMOV

Money arithmetic resulted in overflow in function
<routines.

Invalid parameter passed to a dbmny*() function.
Correct application coding.

All

SYBEDIVZ

Attempt to divide by $0.00 in function <routines.
Invalid value passed to dbmydiv() or dbmny4div().
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20197

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20198

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20199

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBEASTL

Synchronous I/0 attempted at AST level.

Contact Sybase Technical Support.
Obsolete VM S-specific error message

None

SYBESEFA

DB _SETEVENT VMS cannot be called if connections are

present.

Contact Sybase Technical Support.
Obsolete VM S-specific error message

None

SYBEPOLL

There is already an active dbpoll ().

Contact Sybase Technical Support.
Obsolete VM S-specific error message

None

547

20200

20200

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20201

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20202

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

548

SYBENOEV

DBPOLL cannot be called when registered procedure
notifications have been disabled.

Contact Sybase Technical Support.
Obsolete VM S-specific error message

None

SYBEBADPK

Packet size of <requested size> not supported -- size
of <other size> used instead.

DB-Library is cannot accommodate requested packet size.

Correct application coding.

All

SYBESECURE

Secure server function not supported in this version.
Obsolete routine DBSETLHIER() has been called.
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20203

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20204

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20205

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

SYBECAP

DB-Library capabilities not accepted by the server.
Invalid TDS received from server.

Contact Sybase Technical Support.

All

SYBEFUNC

Functionality not supported at the specified version
level.

A DB-Library routine that is not supported in this version has been called.
Correct application coding.

All

SYBERESP

Response function address passed to dbresponse() must
be non-NULL.

The response_func parameter passed to undocumented function dbresponse()
isSNULL.

Correct application coding.

All

DB-Library/C Reference Manual 549

20206

20206

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20207

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20208

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

550

SYBEIVERS

Illegal version level specified.

Invalid version parameter passed to dbsetversion().

Correct application coding.

All

SYBEONCE
Function can be called only once.
dbsetversion() has been called more than once.

Correct application coding.

All

SYBERPNULL

value parameter for dbprcparam()
the datalen parameter is 0.

Parameters to dbrpcparam() are not in agreement.

Correct application coding.

All

can be NULL,

only if

Open Client

APPENDIX B DB-Library Error Messages

20209

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

20210

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20211

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

SYBERPTXTIM
RPC parameters cannot be of type Text/Image.

The type parameter passed to dbrpcparam() cannot be be SYBTEXT or
SYBIMAGE.

Correct application coding.

All

SYBENEG
Negotiated login attempt failed.
Failure to perform a secure login to the server.

Check security credentials and security settings provided by the application.

All

SYBELBLEN

Security labels should be less than 256 characters long.

Label values passed to undocumented routine dbsetsecurity() exceed
DB_MAX LABELLEN.

Correct application coding.

All

DB-Library/C Reference Manual 551

20212

20212

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20213

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20214

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

552

SYBEUMSG

Unknown message-id in MSG datastream.
Internal TDS error.
Contact Sybase Technical Support.

All

SYBECAPTYP

Unexpected capability type in CAPABILITY datastream.
Internal TDS error.
Contact Sybase Technical Support.

All

SYBEBNUM

Bad numbytes parameter passed to dbstrcpy() .

Aninvalid value for the numbytes parameter has been passed to the dbstrcpy()
routine.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20215

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

20216

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20217

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

SYBEBBL

Bad bindlen parameter passed to dbsetnull ().

A negative value has been passed in bindlen parameter of the DB-Library
routine dbsetnull().

Correct application coding.

All

SYBEBPREC
Illegal precision specified.

The precision specified in the DBTY PEINFO structure for a numeric or
decimal columnisinvalid.

Correct application coding.

All

SYBEBSCALE
Illegal scale specified.

The scale specified in the DBTY PEINFO structure for a numeric or decimal
columnisinvalid.

Correct application coding.

All

DB-Library/C Reference Manual 553

20218

20218

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20219

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20220

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

554

SYBECDOMAIN

Source field value is not within the domain of legal
values.

The source value for a conversion using the dbconvert() DB-Library routineis
invalid.

Correct application coding.

All

SYBECINTERNAL

Internal Conversion error.

Contact Sybase Technical Support.

All

SYBEBTY PSRV
Datatype is not supported by the server.
Server does not recognize this datatype for this version of TDS.

Upgrade server.

All

Open Client

APPENDIX B DB-Library Error Messages

20221

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20222

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20223

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

SYBEBCSET
Unknown character-set encountered.
Server specified an unrecognized character set.

Contact Sybase Technical Support.

All

SYBEFENC
Password Encryption failed.

Either the encryption handler installed by dbsechandle() or the default
encryption handler failed.

Correct application coding or Contact Sybase Technical Support.

All

SYBEFRES

Challenge-Response function failed.

Either the login response handler installed by undocumented function
dbresponse() or the default login response handler failed.

Correct application coding or Contact Sybase Technical Support.

All

DB-Library/C Reference Manual

20224

20224

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

20225

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20226

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

556

SYBEISRVPREC

Illegal precision returned by the server.

The precision value of adecimal or numeric column falls outside the domain
of legal precision values.

Contact Sybase Technical Support.

All

SYBEISRVSCL
Illegal scale returned by the server.

The scale value of adecimal or numeric column falls outside the domain of
legal scale values.

Contact Sybase Technical Support.

All

SYBEINUMCL

Invalid numeric column length returned by the server.
[llegal value sent by the server.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20227

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20228

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20229

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBEIDECCL

Invalid decimal column length returned by the server.
Illegal value sent by the server.
Contact Sybase Technical Support.

All

SYBEBCMTXT

bcp moretext () may be used only when there is at least
one text or image column in the server table.

bep_moretext() has been called incorrectly.

Correct application coding.

All

SYBEBCPREC

Column <column>: Illegal precision value encountered.
Invalid precision value found in the host file.

Contact Sybase Technical Support.

All

DB-Library/C Reference Manual 557

20230

20230

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20231

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20232

Symbolic constant

Message text

Possible Cause

Action/solution

558

SYBEBCBNPR

becp bind () : if varaddr is NULL, prefixlen must be 0 and
no terminator should be specified.

bep_bind() called incorrectly.
Correct application coding.

All

SYBEBCBNTYP

bep bind () : if varaddr is NULL and varlen greater than
0, the table column type must be SYBTEXT or SYBIMAGE and
the program variable type must be SYBTEXT, SYBCHAR,
SYBIMAGE or SYBBINARY.

bep_bind() called incorrectly.
Correct application coding.

All

SYBEBCSNTYP

column number <colnums>: if varaddr is NULL and varlen
greater than 0, the table column type must be SYBTEXT
or SYBIMAGE and the program variable type must be
SYBTEXT, SYBCHAR, SYBIMAGE or SYBBINARY.

bep_bind() called incorrectly.
Correct application coding.

Open Client

APPENDIX B DB-Library Error Messages

Additional information

Versions

20233

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20234

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20235

Symbolic constant
Message text

Possible Cause

All

SYBEBCPCTYP
bcp colfmt () : If table colnum is 0, host type cannot be
0.

bep_colfmt() called incorrectly. A table_colnum value of 0 means the column
will not be copied.

Correct application coding.

All

SYBEBCVLEN

varlen should be greater than or equal to -1.
bep_bind() or bep_collen() has been called with avarlen value of lessthan -1.

Correct application coding.

All

SYBEBCHLEN

host collen should be greater than or equal to -1.

Invalid value for host_collen passed to bcp_colfmt_ps().

DB-Library/C Reference Manual 559

20236

Action/solution
Additional information

Versions

20236

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20237

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20238

Symbolic constant
Message text

Possible Cause

560

Correct application coding.

All

SYBEBCBPREF

Illegal prefix length. Legal values are 0, 1,
Invalid value for prefixlen passed to bep_bind().
Correct application coding.

All

SYBEBCBPREF

Illegal prefix length. Legal values are 1, O,
Invalid value for host_prefixlen passed to bep_colfmt_ps().
Correct application coding.

All

SYBEBCITBNM

bep init () : tblname parameter cannot be NULL.

bep_init() called incorrectly.

2 or 4.

1, 2 or 4.

Open Client

APPENDIX B DB-Library Error Messages

Action/solution
Additional information

Versions

20239

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20240

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20241

Symbolic constant

Message text

Correct application coding.

All

SYBEBCITBLEN
bcp init () : tblname parameter is too long.
bep_init() called incorrectly.

Correct application coding.

All

SYBEBCSNDROW

bcp sendrow () may NOT be called unless all text data for
the previous row has been sent using bcp moretext ().

Not all text/image data has been sent.
Correct application coding.

All

SYBEBPROCOL

bcp protocol error: returned column count differs from
the actual number of columns received.

DB-Library/C Reference Manual 561

20242

Possible Cause
Action/solution
Additional information

Versions

20242

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20243

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20244

Symbolic constant

562

Internal column mismatch.
Contact Sybase Technical Support.

All

SYBEBPRODEF

bcp protocol error: expected default information and got
none.

Internal column mismatch.

Contact Sybase Technical Support.

All

SYBEBPRONUMDEF

bcp protocol error: expected number of defaults differs
from the actual number of defaults received.

Internal column default mismatch.
Contact Sybase Technical Support.

All

SYBEBPRODEFID

Open Client

APPENDIX B DB-Library Error Messages

Message text

Possible Cause
Action/solution
Additional information

Versions

20245

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20246

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

bcp protocol error: default column id and actual column
id are not same.

Internal column default mismatch.

Contact Sybase Technical Support.

All

SYBEBPRONODEF

bcp protocol error: default value received for column
that does not have default.

Internal column default mismatch.

Contact Sybase Technical Support.

All

SYBEBPRODEFTYP

bcp protocol error: default value datatype differs from
column datatype.

Internal column default mismatch.

Contact Sybase Technical Support.

All

DB-Library/C Reference Manual 563

20247

20247

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20248

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20249

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

564

SYBEBPROEXTDEF

bcp protocol error: more than one row of default
information received.

Internal column default mismatch.

Contact Sybase Technical Support.

All

SYBEBPROEXTRES

bcp protocol error: unexpected set of results received.
Extra results sent from server.

Contact Sybase Technical Support.

All

SYBEBPROBADDEF

bcp protocol error: illegal default column id received.
Internal column default mismatch.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20250

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20251

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20252

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

DB-Library/C Reference Manual

SYBEBPROBADTYP

bcp protocol error: unknown column datatype.
Unknown datetype from server.

Contact Sybase Technical Support.

All

SYBEBPROBADLEN
bcp protocol error: illegal datatype length received.
Illegal length received from the server.

Contact Sybase Technical Support.

All

SYBEBPROBADPREC

bcp protocol error: illegal precision value received.
Illegal precision received from server.

Contact Sybase Technical Support.

All

565

20253

20253

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20254

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20255

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

566

SYBEBPROBADSCL

bcp protocol error: illegal scale value received.
[llegal scale received from the server.
Contact Sybase Technical Support.

All

SYBEBADTYPE

Illegal value for type parameter given to <routines.
Invalid type passed to dbsechandle().
Correct application coding.

All

SYBECRSNORES

Cursor statement generated no results.
Cursor statement returned no results.

No action necessary.

All

Open Client

APPENDIX B DB-Library Error Messages

20256

Message type
Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20257

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20258

Symbolic constant

Message text

Possible Cause
Action/solution

Additional information

Error
SYBECRSNOIND

One of the tables involved in the cursor statement does
not have a unique index.

Inappropriate schema.

Correct database schema.

All

SYBECRSVIEW

A view cannot be joined with another table or a view in
a cursor statement.

Cursor statement performs ajoin involving a view.

Correct application coding.

All

SYBECRSVIIND

The view used in the cursor statement does not include
all the unique index columns of the underlying tables.

Incorrect cursor statement.

Correct application coding.

DB-Library/C Reference Manual 567

20259

Versions

20259

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20260

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20261

Symbolic constant

Message text

Possible Cause

568

All

SYBECRSORD

Only fully keyset driven cursors can have 'order by',
'group by', or 'having' phrases.

Incorrect cursor statement.

Correct application coding.

All

SYBECRSBUFR

Row buffering should not be turned on when using cursor
APIs.

Row buffering has been turned on with dbsetopt(...DBBUFFER...).
Correct application coding.

Row buffering is incompatible with cursors.

All

SYBECRSNOFREE

The DBNOAUTOFREE option should not be turned on when
using cursor APIs.

dbsetopt has been turned on with dbsetopt(... DBNOAUTOFREE...).

Open Client

APPENDIX B DB-Library Error Messages

Action/solution
Additional information

Versions

20262

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20263

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20264

Symbolic constant

Message text

Correct application coding.

All

SYBECRSDIS

Cursor statement contains one of the disallowed phrases
'compute', 'union', 'for browse', or 'select into'.

Invalid cursor statement.

Correct application coding.

All

SYBECRSAGR

Aggregate functions are not allowed in a cursor
statement.

Invalid cursor statement.

Correct application coding.

All

SYBECRSFRAND

Fetch types RANDOM and RELATIVE can only be used within

DB-Library/C Reference Manual 569

20265

Possible Cause
Action/solution
Additional information

Versions

20265

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20266

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

570

the keyset of keyset driven cursors.

dbcursorfetch() called incorrectly.
Correct application coding.

All

SYBECRSFLAST

Fetch type LAST requires fully keyset driven cursors.
dbcursoropen() called with scrollopt other than CUR_KEY SET.
Correct application coding.

All

SYBECRSBROL

Backward scrolling cannot be used in a forward scrolling
cursor.

Attempt to FETCH_PREYV on a cursor opened with scrollopt
CUR_FORWARD.

Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20267

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20268

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20269

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

SYBECRSFROWN
Row number to be fetched is outside the valid range.
Attempt to fetch arow before firstrow or after lastrow.

Correct application coding.

All

SYBECRSBSKEY

Keyset cannot be scrolled backward in mixed cursors with
a previous fetch type.

Attempt to fetch arow before firstrow in a keyset-driven cursor.

Correct application coding.

All

SYBECRSRO

Data locking or modifications cannot be made in a
READONLY cursor.

dbcursor() called with optype other than CRS_REFRESH on aread-only
cursor.

Correct application coding.

All

DB-Library/C Reference Manual 571

20270

20270

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20271

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20272

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

572

SYBECRSNOCOUNT

The DBNOCOUNT option should not be turned on when doing
updates or deletes with dbcursor().

DBNOCOUNT option has been previoudly set with dbsetopt(). Thisis
incompatible with cursor update/del ete operations.

Correct application coding.

All

SYBECRSTAB

Table name must be determined in operations involving
data locking or modifications.

dbcursor() is called with an invalid table value.

Correct application coding.

All

SYBECRSUPDNB

Update or insert operations cannot use bind variables
when binding type is NOBIND.

dbcursorfetch() has previously been called with vartype NOBIND.
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20273

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20274

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20275

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

SYBECRSNOWHERE

A WHERE clause is not allowed in a cursor update or
insert.

dbcursor() called with inappropriate val ues argument.
Correct application coding.

All

SYBECRSSET
A SET clause is required for a cursor update or insert.
dbcursor() argument values must contain a SET clause.

Correct application coding.

All

SYBECRSUPDTAB

Update or insert operations using bind variables require
single table cursors.

dbcursoropenl() stmt argument affects multiple tables.

Correct application coding.

All

DB-Library/C Reference Manual 573

20276

20276

Symbolic constant
Message text

Possible Cause

Action/solution
Additional information

Versions

20277

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20278

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

574

SYBECRSNOUPD
Update or delete operation did not affect any rows.

dbcursor() with CRS_UPDATE or CRS DELETE optype argument affected O
rows.

Correct application coding.

All

SYBECRSINV

Invalid cursor statement.
dbcursoropen() stmt does not contain a select clause.

Correct application coding.

All

SYBECRSNOKEY S

The entire keyset must be defined for KEYSET type
cursors.

Tablesinvolved in aKEY SET cursor must have keys.
Correct application coding or database schema.

All

Open Client

APPENDIX B DB-Library Error Messages

20279

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20280

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20282

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

SYBECRSNOBIND

Cursor bind must be called prior to dbcursor invocation.
dbcursor() called with NULL values argument.
Correct application coding

All

SYBECRSFTYPE
Unknown fetch type.
dbcursorfetch() has been called with an unknown value for fetchtype.

Correct application coding.

All

SYBECRSMROWS

Multiple rows are returned, only one is expected while
retrieving dbname.

Internal cursor initidization error.

Contact Sybase Technical Support.

All

DB-Library/C Reference Manual 575

20283

20283

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20284

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20285

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

576

SYBECRSNROWS

No rows returned,

at least one is expected.

Contact Sybase Technical Support.

Unexpected internal error.

All

SYBECRSNOLEN

No unique index found.

No unique index exists for the table.

Correct database schema.

All

SYBECRSNOPTCC

All

No OPTCC was found.
Could not find columns with CUR_OPTCC st.
Contact Sybase Technical Support.

Open Client

APPENDIX B DB-Library Error Messages

20286

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20287

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20288

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

SYBECRSNORDER

The order of clauses must be ‘from’, ‘where’, and ‘order
by’ .

Clausesin stmt passed to dbcursoropen() are out of order.

Correct application coding.

All

SYBECRSNOTABLE

Table name is NULL.
table passed to dbcursor() isinvalid.
Correct application coding.

All

SYBECRSNUNIQUE

No unique keys associated with this view.
No keys associated with tables underlying this view.
Correct database schema.

All

DB-Library/C Reference Manual 577

20289

20289

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20290

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20291

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

578

SYBECRSVAR

There is no valid address associated with this bind.
dbcursorbind() called with vartype NOBIND and invalid pvaraddr.
Correct application coding.

All

SYBENOVALUE

Security labels require both a name and a value.
Security label handler has set either a namelen or valuelen to avalue <= 0.
Correct application coding.

All

SYBEVOIDRET

Return parameter cannot be of the type SYBVOID.
dbrpcparam() attempted to define a return parameter as SYBVOID.
Correct application coding.

All

Open Client

APPENDIX B DB-Library Error Messages

20292

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20293

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20294

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

SYBECLOSEIN

Unable to close interfaces file.
Internal close failure.

Contact Sybase Technical Support.

All

SYBEBOOL

Value of a boolean parameter should be either TRUE or
FALSE.

bcp_options() has been called with option BCPLABELED and *valueis not set
to either TRUE or FALSE.

Correct application coding.

All

SYBEBCPOPT

The <option> option cannot be called while a bulk copy
operation is in progress.

bcp_options() with option BCPLABELED has been called when a bulk-copy
operation is progress.

Correct application coding.

All

DB-Library/C Reference Manual 579

20295

20295

Symbolic constant

Message text

Possible Cause

Action/solution
Additional information

Versions

20296

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

20297

Symbolic constant
Message text
Possible Cause
Action/solution
Additional information

Versions

580

SYBEERRLABEL

An illegal value was returned from the security label
handler.

Security label handler returned a value other than DMORELABEL,
DBENDLABLE, or DBERRLABEL.

Correct application coding.

All

SYBEATTNACK

Timed out waiting for server to ackowledge attention.
The server has not responded to a dbcancel() request.
Contact Sybase Technical Support.

All

SYBEBBFL

Batch failed in bulk-copy to the server.
Server reported an error in bulk-copy.
Contact Sybase Technical Support.

All

Open Client

APPENDIX B DB-Library Error Messages

20298

Symbolic constant SYBEDCL

Message text A directory control layer (DCL) error occurred.
Possible Cause Error reading directory service.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20299

Symbolic constant SYBECS

Message text A CS Context error occurred.
Possible Cause Obsolete

Action/solution Contact Sybase Technical Support.

Additional information

Versions None.

20300

Symbolic constant SYBEVERENV

Message text An invalid value was used for SYBOCS_ DBVERSION.
Possible Cause dbsetversion() has been called with aninvalid version.
Action/solution Correct application coding.

Additional information

Versions All

DB-Library/C Reference Manual 581

20301

20301

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

20302

Symbolic constant

Message text

Possible Cause
Action/solution
Additional information

Versions

582

SYBCOPNOV

dbcursoropen() :

The multiplication of scrollopt and

nrows results in overflow.

Contact Sybase Technical Support.

Internal cursor error.

15.7 and later

SYBEINTOVFL

DB-LIBRARY internal error: The arithmetic operation
results in integer overflow.

A buffer is not large enough for character set trandation.

Contact Sybase Technical Support.

15.7 and later

Open Client

Index

A

abort_xact 468
Adaptive Server
updating among multiple 453
aggregate operators
returning for acompute column 67
application names
setting in LOGINREC 317
applications
DB-Library/C 6,7, 12
gateway 251, 303
arithmetic exceptions 407

B

batches
command. See Command batches 84
bep
BCPLABELED option 447
binding data 422
changing allowable number of errors 437
changing default dataformats 436
changing first row to copy 437
changing last row tocopy 437
changing number of rowsto copy 437
changing program variable data address 435
changing program variable datalength 434
character set trandationsfor 450
copying multiplefiles 448, 451
default dataformats 443
enabling 450
ending bulk copy from program variables 439
executing 439
host fileformat 426, 429
initidizing 441
overriding default dataformats 426, 429, 435
reading format definitions 448
saving preceding rowsin Adaptive Server 421

DB-Library/C Reference Manual

and Secure Adaptive Server 447
sending data from program variables 448
sending text/image values 444
setting LOGINREC for 450
setting number of columnsin host file 435
setting optionsfor 447
specifying host fileformat 426, 429
writing format definitionsto afile 451
bcp_batch 421
bcp_bind 422, 426
bcp_colfmt 426, 429
bcp_colfmt_ps 429, 433
bcp_collen 434
bep_colptr 435
bcp_columns 435, 436
and bep_bind 424
bcp_control 436, 439
bcp_done 439
and bcp_bind 426
bcp_exec 439, 441
bcp getl 441
bep_init 441, 444
bcp_moretext 444, 447
bcp_options 447
bcp_readfmt 448
bcp_sendrow 448, 449
BCP_SETL 450
bcp_setxlate 450, 451
bep_writefmt 451, 452
binary data
reading pageof 247
writing page of to the server 381
bind result column to program variable 72, 77
browse mode 26, 28
and DBPROCESS 27
determining number of tablesinvolved 365
determining whether regular column sourceis
updatable 93
identifying browsable tables 363
buffers

583

Index

command. See Command buffers 6
determining size for results 343
placing query results header in 344
row. See Row buffers 6
build_xact_string 468, 469
bulk copy 417, 419

bylist 84
returning 83
C
chained transactions 407
character set

returning client 157
returning server 305
setting 318
setting default 310
trandation 87
character set translations
freeing tables 153
loading tables 175
specifying for bcp 450
for strings 387
tables 154
character strings
and quotation marks 297
trandating from one character set to another 387
characters
getting from command buffer 157
Client/server
architecture 1,2
Client-Library
definition 4
clients
typesof 2
close_commit 469, 470
columns
compute. See Compute columns 49
regular. See Regular columns 72
returning ID of in order by clause 233
returning number in order by clause 227
command batches 15
canceling current 84
determining whether more resultsto process 210
sending to the server 347, 354

584

setting results for next command 275
and switching databases 86
verifying correctnessof 349
command buffers 6, 15
addingtextto 91, 149
checking for Transact-SQL constructs 162
clearing 154
copying portionsof 359
getting characters 157
and message handling 214
returning character length of 361
setting no clear option 92
commands
canceling entirebatch 85
determining whether it can returnrows 92
determining whether it returned rows 289
determining whether moreto process 210
getting stored procedures status number 285
processing 15, 16
returning number of current 113
returning number of rows affected by 112
setting up results for next 275
commit_xact 470
comparing
datetimevalues 129
compute clauses
returning number inresults 227
compute columns
associating with indicator variables 70
binding to program variables 54, 59
getting data 49
order returned 50
returning datalength of 52
returning maximum data length of 66
returning number inrow 225
returning select-listid 65
returning server datatypefor 68
returning type of row aggregate 67
returning user-defined datatypesfor 69
summing or averaging 50
computerows 16
determining 217
getting datafor acolumn 50
reading next 217
returning bylist for 83
returning number of columns 225

Open Client

creating a notification procedure 219, 222
creating aregistered procedure 219, 222
CS-Library
definition 4
cursor
binding 117
closing 119
fetching against 121
opening 124
retrieving column information for 120
retrieving information about 123
updating 115

data
getting user-allocated 167
reading binary 247
reading server (UNIX) 170
saving user-allocated 336
writing binary 381
writing to the server (UNIX) 172
databases
determining whether changed 86
multi-user updates 26
reading pages 247
returning name of current 216
updating 26, 28
updating on multiple servers 453
using specified 376
datatypes
Adaptive Server 11
binding compute columnsto 54, 59
binding regular columnsto 72, 77
compute columns 68
conversions supported 104, 110
conversions supported by dbaltbind 55
conversions supported by dbaltbind_ps 61
conversions supported by dbbind 73
conversions supported by dbbind_ ps 78
converting 102, 106
convertingto same 105, 112
DB-Library 412, 416
DB-Library/C 11
determining supported conversions 379

DB-Library/C Reference Manual

Index

getting precision and scale for regular column 99
returning for compute columns 68, 69
returning for regular column 98
server 103, 109
server, listof 412
user-defined, for compute columns 69
user-defined, for regular columns 100
date formats
input 408
DATEFIRST option 407
DATEFORMAT option of set command 408
dates
converting partsto character strings 135
converting to character format 131
converting valuesinto usable format 133
determining month name in specified language
209
partsof 131
returning name of day in specified language 142
returning order for specified language 138
returning parts as numeric values 139
symbols recognized by DB-Library 131
datetimeroutines 34, 35
datetime values
comparing 129
days
returning name of in specified language 142
db12hour 48, 49
dbadata 49, 52
as dternate to dbaltbind 58, 65
dbadlen 52,54
dbatbind 54, 59
asdternateto dbadata 51
dbaltbind_ps 59, 65
dbatcolid 65, 66
dbdtlen 66, 67
dbatop 67,68
dbattype 68, 69
dbaltutype 69, 70
dbanullbind 70, 71
DBARITHABORT option 407
DBARITHIGNORE option 407
DBAUTH option 407
dbbind 72,77
asaternateto dbdata 129
dbbind_ps 77,82

585

Index

DBBUFFER option 407
and DBFIRSTROW 153
and dbgetrow 166
and DBLASTROW 175
and reading result rows 218

dbbufsize 82, 83

dbbylist 83, 84

dbcancel 84, 85

dbcanquery 85, 86

DBCHAINXACTSoption 407

dbchange 86, 87

dbcharsetconv 87

dbclose 88

dbclrbuf 88, 89

dbclropt 89, 91

dbcmd 91, 92

DBCMDROW 92,93

dbcolbrowse 93, 94

dbcollen 94, 95

dbcolname 95, 96
and returning bylist 83

dbcolsource 97, 98

dbcoltype 98, 99

dbcoltypeinfo 99, 100

dbcolutype 100, 102

dbconvert 102, 106

dbconvert ps 106, 112

DBCOUNT 112,113

DBCURCMD 113,114

DBCURROW 114,115

dbcursor 115, 116

dbcursorbind 116, 119

dbcursorclose 119

dbcursorcolinfo 119, 120

dbcursorfetch 120, 123

dbcursorinfo 123, 124

dbcursoropen 124, 128

dbdata 128, 129
as dternateto dbbind 76, 82

dbdatedcmp 129, 130

dbdatedzero 130, 131

dbdatechar 131, 132

dbdatecmp 132, 133

dbdatecrack 133, 135

dbdatename 135, 138

dbdateorder 138, 139

586

dbdatepart 139, 140

DBDATEREC structure 133

DBDATETIME structure 134

converting date partsto character strings 135

converting integer component to character format
131

converting valuesinto usable format 133

returning parts as numeric values 139

dbdatezero 140, 141

dbdatlen 141, 142

dbdayname 142, 143

DBDEAD 143,144

dberrhandle 144, 148

dbexit 148, 149

dbfcmd 149, 152

DBFIRSTROW 152, 153

and dbgetrow 166

dbfree xlate 153, 154

dbfreebuf 154, 155

dbfreequal 155

dbfreesort 155, 156

dbgetchar 157

dbgetcharset 157, 158

dbgetloginfo 158, 160

dbgetlusername 160, 161

dbgetmaxprocs 161, 162

dbgetnatlang 162

dbgetoff 162, 164

dbgetpacket 164, 165

dbgetrow 165, 166

DBGETTIME 167

dbgetuserdata 167, 168

dbhasretstat 168, 170

dbinit 170

and dbexit 149

DBIORDESC (UNIX) 170,171

DBIOWDESC (UNIX) 172

DBISAVAIL 173

dbisopt 173, 174

DBLASTROW 174,175

DB-Library 4

determining versioninuse 378

initializing 170

dbload_xlate 175, 176

and freeing trandation tables 154

dbloadsort 176, 177

Open Client

dblogin 177,179
dbloginfree 179
domnyd4add 179, 180
domny4cmp 180, 181
dbmny4copy 181, 182
dbmny4divide 182, 183
dbmny4minus 183, 184
domnydmul 184, 185
dbmny4sub 185, 186
domny4zero 186, 187
dbmnyadd 187, 188
dbmnycmp 188, 189
dbmnycopy 189, 190
domnydec 190, 191
dbmnydivide 191, 192
domnydown 192, 193
dbmnyinc 194
dbmnyinit 194, 196
dbmnymaxneg 196, 197
dbmnymaxpos 197
domnyminus 198
domnymul 199
dbmnyndigit 200, 206
dbmnyscale 206, 207
dbmnysub 208
dbmnyzero 209
dbmonthname 209, 210
DBMORECMDS 210, 211
dbmoretext 211, 212
dbmsghandle 212, 216
and dberrhandle 147
dbname 216, 217
DBNATLANG option 408
dbnextrow 217, 219
and DBROWS 289
and DBROWTYPE 289
DBNOAUTOFREE option
and dbfcmd 151
and dbfreebuf 154
DBNOCOUNT option
and DBCOUNT 113
dbnpcreate 219, 221
dbnpdefine 222, 223
dbnullbind 224
dbnumalts 225
dbnumcols 225, 226

DB-Library/C Reference Manual

Index

dbnumcompute 227
DBNUMORDERS 227, 228
dbnumrets 228, 229
DBOFFSET option

and dbgetoff 163
dbopen 229, 233

gettingaLOGINREC 177

setting login responsetime 325
dbordercol 233, 234
DBPARSEONLY option 409
dbpoll 234, 239
DBPRCOL SEP option

and dbsprirow 342
dbprhead 239, 240
DBPRLINELEN option 410
DBPRLINESEP option 410
DBPROCESS structure 6

dlocating 229
closnga 88
closingall 148

de-alocatinga 88
de-alocatingall 148
determining current limit available 161
determining whether available 173
determining whether dead 143
getting client character set from 157
getting national language from 162
getting server processID 340
getting user-alocated data 167
initializing 229
marking available 306
multiple 6
saving user-allocated data 336
setting maximum number available 329
sharingsingle 173
and two-phase commit service 455
DBPRPAD option 410
and dbsprirow 342
dbprrow 240, 241
dbprtype 241, 242
dbqual 242, 245
freeing alocated memory 155
DBRBUF (UNIX) 246
dbreadpage 247
dbreadtext 248, 250
dbrecftos 250

587

Index

dbrecvpassthru 251, 253
dbregdrop 253, 254
dbregexec 254, 256
dbreghandle 256, 260
dbreginit 260, 262
dbreglist 262, 263
dbregnowatch 263, 265
dbregparam 265, 269
dbregwatch 269, 274
dbregwatchlist 274, 275
dbresults 275, 278
doretdata 278, 281
doretlen 282, 283
dbretname 283, 285
dbretstatus 285, 286
dbrettype 287, 289
DBROWCOUNT option 410
DBROWS 289
DBROWTYPE 289, 290
dbrpcinit 290, 292
dbrpcparam 292, 294

and return parameter values 228
dbrpcsend 294, 295
dorpwclr 295, 296
dbrpwset 296, 297
dbsafestr 297, 298
dbsechandle 299, 302
dbsendpassthru 303, 305
dbservcharset 305
dbsetavail 306
dbsetbusy 306, 309
dbsetconnect 309
dbsetdefcharset 310, 311
dbsetdeflang 311, 312
dbsetidle 312, 313
dbsetifile 313, 314
dbsetinterrupt 314, 317

and canceling result rows 86
DBSETLAPP 317,318
DBSETLCHARSET 318, 319
DBSETLENCRYPT 319, 320
DBSETLHOST 320, 321
DBSETLMUTUALAUTH 321
DBSETLNATLANG 322
DBSETLNETWOKRAUTH 322
dbsetloginfo 323, 325

588

dbsetlogintime 325, 326
DBSETLPACKET 326, 327
DBSETLPWD 327,328
DBSETLSERVERPRINCIPAL
DBSETLUSER 329
dbsetmaxprocs 329, 330
dbsetnull 330, 332
dbsetopt 332, 334
dbsetrow 334, 335
dbsettime 336
dbsetuserdata 336, 339
dbsetversion 339, 340
DBSHOWPLAN option 410
dbspid 340, 341
dbsprirow 341, 343
and dbsprirowlen 344
dbsprirowlen 343, 344
dbsprhead 344, 346

and dbsprirowlen 344
and dbsprline 346
dbsprline 346, 347

and dbsprirowlen 344
dbsglexec 347, 349
dbsglok 349, 354
dbsglsend 354, 355
DBSTAT option 410
DBSTORPROCID option 410
dbstrbuild 355, 357
dbstremp 358, 359

and dbstrsort 363
dbstrcpy 359, 361
dbstrlen 361, 362
dbstrsort 362, 363
dbtabbrowse 363, 364
dbtabcount 364, 365
dbtabname 365, 366
and dbtabcount 365
dbtabsource 366, 367
DBTDS 368

dbtextsize 368, 369
DBTEXTSIZE option 411
dbtsnewlen 369, 370
dbtsnewva 370, 371
dbtsput 371, 372
dbtxptr 372, 373
dbtxtimestamp 374

328

Open Client

dbtxtsnewval 375
dbtxtsput 375, 376
dbuse 376, 377
dbvarylen 377, 378
dbversion 378

dbwillconvert 379, 380
dbwritepage 381
dbwritetext 382, 387
dbxlate 387, 389
deadlock

handling 168, 337
debugging

and dbprhead 239

and dbprrow 240

and dbsprirow 341

and dbsprirowlen 344

and dbsprhead 345

and dbsprline 347

recording SQL text sent to the server 250

for two-phase commit service 468
decimal datatype

getting precision and scale for regular column 99
default character set

setting for an application 310
default language

setting for an application 311
defining anotification procedure 222
defining aregistered procedure 222
distributed transactions. See Two-phase commit

service 453

dropping aregistered procedure 253

E

embedded SQL
comparing Client-Libraryto 5

encrypted passwords 319

encryption handler
installing 299

error handling 22
and converting datatypes 103, 108
and DBDEAD 144
installing a user-function
list of errors 389
trandating messages from one language to another

144, 148

DB-Library/C Reference Manual

Index

355
uninstalling handler 147
error severity values 9
errors 389, 406
DB-Library 389
executing aregistered procedure 254, 260
exitvalues 9

F

file descriptors (UNIX)
accessto 170,172

files
header 9

functions
user-supplied to handle interrupts 314
user-supplied, indicating DB-Library is finished

reading from the server 312

user-supplied, indicating server access 306

G

gateway applications
getting
the client character set 157
the national language 162
the server character set 305

33, 251, 303

H

handler

error 22

message 22

notification 256
header files 9
host names
setting in LOGINREC 320

image values
bulk copying parts 444

589

Index

bytes |eft of
limiting size of
reading parts of
and text pointers
and text timestamps
updating 211, 382
includefiles 9
input streams
and checking for unread bytesin network buffer (UNIX)
246
responding to multiple (UNIX) 171
utilizing multiple (UNIX) 172, 355
interfacesfile
and dbopen 230
specifying name and location
interrupt handling 314

368
411
248
373
374

313

L

languages
getting name from DBPROCESS 162
setting default 311
setting name in LOGINREC 322
setting national 408
line length
specifying for rows 410
listing registered procedures 262
listing requested registered procedure notifications
logging into the server 229
login record. See LOGINREC structure 6
LOGINREC structure 6
adding remote passwords
dlocating 177
clearing all remote passwords
freeing 179
packet sizefield 164, 326

274

296

295

setting application namein 317
setting client character setin 318
setting for bcp 450

setting host namein -~ 320

setting password in - 327

setting user language namein 322

setting usernamein 329

logins, secure 299

590

M

message handling 22
and dberrhandle 147
and dbreadpage 247
and deadlock 337
installing a user function
uninstalling handler 214
MIT Kerberos 36
money routines 34, 35
months
determining name in specified language 209
multipleinput streams 234

212,216

N

network buffers
determining whether unread bytes (UNIX)
polling 234
network connections
closing 88
specifying interfacesfile 313
notification handler 256
notification procedure
creating 219, 222
defining 222
notification request
canceling 263
listing 274
notifications
listing registered procedures 274
registered procedure 256
null values
binding 330
default 331
defining 330
numeric datatype
getting precision and scale for regular column

O

offsets

typesof 163
open_commit 470, 471

options 407, 412

Open Client

246

99

checking statusof 173

clearing 89

DB-Library 407

parameter valuesof 411

setting 332
order by clauses

returning column ID in - 233

returning number of columnsin 227
output streams

utilizing multiple (UNIX) 172, 355

P

packet size

TDS 164, 326
padding

specifying characterstouse 410
parameters

registered procedure 265
passthrough operation 251, 303
passwords

remote, adding 296

remote, clearing 295

setting server 327
polling the network buffer 234
process ID

getting 340
processing plan

generating description of 410
programming

DB-Library/C 6, 12

Q

queries
aborting during arithmetic exceptions 407
ignoring arithmetic exceptions 407
quotation marks
and character strings 297

R

registered procedure 31, 33

DB-Library/C Reference Manual

Index

canceling notification request 263
creating 219, 222

defining 222

dropping 253

example 32

executing 254, 260

handler routine 256

listing currently defined 262
listing requested notifications 274
notifications 234, 254, 256
parameters 265

reguesting notifications 269
routines 33

usesof 31

regular columns

associating indicator variableswith 224

binding to program variables 72, 77

determining number of inresults 225

determining whether data length canvary 377

determining whether source column is updatable
with browse mode 93

getting data 128

getting precision and scale with dbcoltypeinfo 99

returning datalength of 141

returning datatypesfor 98

returning maximum data length of 94

returning nameof 95

returning name of source column 97

returning user-defined datatypesfor 100

regular rows 16

determining 217
limiting number to return 410
reading next 217

remote procedure calls 30, 291

adding parametersto 292

adding passwordsfor 296

advantagesof 291

clearing passwords 295

determining number of return parameter values
228

determining whether status number was generated
168

getting datatype of return parameter value 287

getting length of return parameter value 282

getting name of return parameter value 283

getting return parameter values 278

5901

Index

getting status number 285

initializing 290

processing 30, 278

signalingend of 294
remove xact 471,472
requesting aregistered procedure notification 269
result columns

compute. See Compute columns 49

regular. See Regular columns 72

returning name and number of sourcetable 366
result rows 16

buffering 407
canceling 85
compute 16

dropping from buffer 88

placing header in buffer 344

printing 240

printing column headingsof 239

processing 16, 22

putting onein buffer 341

reading next 217

regular 16
results

setting up for next query 275
return parameter values 228

determining number of 228

getting 278

getting datatype of 287

getting length of 282

getting parameter name 283
returning TDS packet size 164
returning the client character set 157
returning the national language 162
returning the server character set 305
routines 12, 36

browse mode 27

command processing 15

error handling 22

image handling 28

information retrieval 24

initialization 13

message handling 22

processcontrol 30

registered procedure 33

remote procedurecall 30

resultsprocessing 16

592

TDS 33
text handling 28
two-phase commit service 36
row aggregates
returning for acompute column 67
row buffers 166, 335
clearing 88
reading specified rows 165
returning number of first row 152
returning number of lastrow 174

rows
buffering 407
compute 16

determining type 217

determining whether returned 289
determining whether returned by command 92
dropping from buffer 88

limiting number toreturn 410

printing 240

printing column headingsof 239

reading next 217

reading specified in buffer 165

regular 17

result. See Result rows 16

returning number affected by acommand 112
returning number of current 114

returning number of first in buffer 152
returning number of lastin buffer 174
returning type of 289

specifying linelength 410

specifying separator characters 410

updating current in browsabletable 242

S

sampl e programs
DB-Library/C 7
scan_xact 472
secure Adaptive Server
andbcp 447
routinesfor 35
secure logins
installing user functionfor 299
security label handler
installing 301

Open Client

separator characters
specifying for rows 410
server 85, 167
communicating with 6
converting token values 241
datatypes 103, 109
logginginto 229
reading datafrom (UNIX) 170
recording SQL text sentto 250
sending text/image valuesto 211
setting responsetime 325
setting user passwords 327
types 2
writing datato (UNIX) 172
servers
multiple 6
setting TDS packet size 326
setting the client character set 318
sort orders 156
comparing two character strings 358
determining order of two character strings 362
freeing 155
loading 176
sprintf function 149
SQL text
recording 250
start_xact 472,473
stat_xact 473,474
statistics
performance, determining when returned 410
status numbers
for current command 285
determining whether generated 168
stored procedures
calingremotely 30
determining number of return parameter values
228
return parameter values, getting 278

return parameter values, getting datatype of 287

return parameter values, getting length of 282

return parameter values, getting parameter name of

283
returning status number 285
sendingidsof 410
and status numbers 168
sybdb.h header file 9, 145, 163

DB-Library/C Reference Manual

Index

and DB-Library options 407
and error handling 389

syberror.h header file 9, 147

and error severities 389

SYBESMSG

and error handling 147

sybfront.h header file 9

and interrupt handling 315

syntax

checking 409

tables

determining namesof 365

identifying browsable 363

returning name and number associated with result
columns 366

returning name of 365

returning number involved in aselect query 364

server work 365

Tabular Data Stream

protocol 368
routines 33, 164, 251, 303, 326

TDS

determining packet size 164
passthrough operation 251, 303
routines 33

setting packet size 326

TDS buffer

polling 234

TDS packet

receiving 251
sending 303

textand imagedata 164, 326
text pointers 373

returning value of 372

text timestamps 374

putting new valueinto DBPROCESS 375
returning valueof 374
returning value of after update 375

text values

bulk copying parts 444
bytesleft of 368
limiting sizeof 411

593

Index

reading partsof 248
and text pointers 373
and text timestamps 374
updating 211, 382

text/image data
updating 212
time

amount DB-Library waits for aserver response 167
determining when to return status 410
determining whether 12 or 24-hour 48
setting length DB-Library waits for server response
336
setting server login response 325
timestamp columns 26
putting new valuein DBPROCESS 371
returning length of after update 369
returning value of after update 370
and updating rows 243
token values
converting to readable strings 241
transactions
distributed. See Two-phase commit service 453
Transact-SQL commands
and DBPROCESS 6
tranglation tables
freeing 153
loading 175
two-phase commit service 453, 467
building names for recovery purposes 468
closing connections 469
and DBPROCESS 455
debugging 468
decrementing sitecount 471
diagnostic routines 472, 473
and interfacesfile 457
marking transactions as aborted 468
marking transactions as committed 470
opening connections 470
printing record of distributed transactions 472
returning status of a distributed transaction 473
routinesfor 36
starting a distributed transaction 472
typedefs
DB-Library/C 11
DB-Library/C, list of 413

594

U

updating databases 26, 28
on multiple servers 453
multi-user situations 26
and text/imagedata 212
user names
setting 329
user-defined datatypes
returning for acompute column 69
returning for regular columns 100
user-supplied data
retrieving for aDBPROCESS 167
savinginaDBPROCESS 336
user-supplied functions
caling to handleinterrupts 314
indicating DB-Library is finished reading from the
server 312
indicating server access 306

Vv

versions
DB-Library, determining which 378

w

where clauses
for usein updating abrowsable table 242

Open Client

	DB-Library™/C Reference Manual
	About This Book
	CHAPTER 1 Introducing DB-Library
	Client/server architecture
	Types of clients
	Types of servers

	The Open Client and Open Server products
	Open Client
	Open Server
	Open Client libraries
	What is in DB-Library/C?
	Comparing the library approach to Embedded SQL

	Data structures for communicating with servers
	DB-Library/C programming
	DB-Library/C datatypes

	DB-Library/C routines
	Initialization
	Initializing DB-Library/C
	Setting up the LOGINREC
	Establishing a server connection

	Command processing
	Building the command batch
	Accessing the command batch
	Executing the command batch
	Setting and clearing command options

	Results processing
	Setting up the results
	Getting result data
	Reading result rows
	Canceling results
	Handling stored procedure results
	Setting results timeouts

	Message and error handling
	Information retrieval
	Regular result column information
	Compute result column information
	Row buffer information
	Command state information

	Browse mode
	Text and image handling
	Datatype conversion
	Process control flow
	Remote procedure call processing
	Registered procedure call processing
	Gateway passthrough routines
	Datetime and money
	Cleanup
	Secure support
	Miscellaneous routines
	Two-phase commit service special library

	MIT Kerberos on DB-Library
	Sample programs

	CHAPTER 2 Routines
	db12hour
	dbadata
	dbadlen
	dbaltbind
	dbaltbind_ps
	dbaltcolid
	dbaltlen
	dbaltop
	dbalttype
	dbaltutype
	dbanullbind
	dbbind
	dbbind_ps
	dbbufsize
	dbbylist
	dbcancel
	dbcanquery
	dbchange
	dbcharsetconv
	dbclose
	dbclrbuf
	dbclropt
	dbcmd
	DBCMDROW
	dbcolbrowse
	dbcollen
	dbcolname
	dbcolsource
	dbcoltype
	dbcoltypeinfo
	dbcolutype
	dbconvert
	dbconvert_ps
	DBCOUNT
	DBCURCMD
	DBCURROW
	dbcursor
	dbcursorbind
	dbcursorclose
	dbcursorcolinfo
	dbcursorfetch
	dbcursorinfo
	dbcursoropen
	dbdata
	dbdate4cmp
	dbdate4zero
	dbdatechar
	dbdatecmp
	dbdatecrack
	dbdatename
	dbdateorder
	dbdatepart
	dbdatezero
	dbdatlen
	dbdayname
	DBDEAD
	dberrhandle
	dbexit
	dbfcmd
	DBFIRSTROW
	dbfree_xlate
	dbfreebuf
	dbfreequal
	dbfreesort
	dbgetchar
	dbgetcharset
	dbgetloginfo
	dbgetlusername
	dbgetmaxprocs
	dbgetnatlang
	dbgetoff
	dbgetpacket
	dbgetrow
	DBGETTIME
	dbgetuserdata
	dbhasretstat
	dbinit
	DBIORDESC
	DBIOWDESC
	DBISAVAIL
	dbisopt
	DBLASTROW
	dbload_xlate
	dbloadsort
	dblogin
	dbloginfree
	dbmny4add
	dbmny4cmp
	dbmny4copy
	dbmny4divide
	dbmny4minus
	dbmny4mul
	dbmny4sub
	dbmny4zero
	dbmnyadd
	dbmnycmp
	dbmnycopy
	dbmnydec
	dbmnydivide
	dbmnydown
	dbmnyinc
	dbmnyinit
	dbmnymaxneg
	dbmnymaxpos
	dbmnyminus
	dbmnymul
	dbmnyndigit
	dbmnyscale
	dbmnysub
	dbmnyzero
	dbmonthname
	DBMORECMDS
	dbmoretext
	dbmsghandle
	dbname
	dbnextrow
	dbnpcreate
	dbnpdefine
	dbnullbind
	dbnumalts
	dbnumcols
	dbnumcompute
	DBNUMORDERS
	dbnumrets
	dbopen
	dbordercol
	dbpoll
	dbprhead
	dbprrow
	dbprtype
	dbqual
	DBRBUF
	dbreadpage
	dbreadtext
	dbrecftos
	dbrecvpassthru
	dbregdrop
	dbregexec
	dbreghandle
	dbreginit
	dbreglist
	dbregnowatch
	dbregparam
	dbregwatch
	dbregwatchlist
	dbresults
	dbretdata
	dbretlen
	dbretname
	dbretstatus
	dbrettype
	DBROWS
	DBROWTYPE
	dbrpcinit
	dbrpcparam
	dbrpcsend
	dbrpwclr
	dbrpwset
	dbsafestr
	dbsechandle
	dbsendpassthru
	dbservcharset
	dbsetavail
	dbsetbusy
	dbsetconnect
	dbsetdefcharset
	dbsetdeflang
	dbsetidle
	dbsetifile
	dbsetinterrupt
	DBSETLAPP
	DBSETLCHARSET
	DBSETLENCRYPT
	DBSETLHOST
	DBSETLMUTUALAUTH
	DBSETLNATLANG
	DBSETLNETWORKAUTH
	dbsetloginfo
	dbsetlogintime
	DBSETLPACKET
	DBSETLPWD
	DBSETLSERVERPRINCIPAL
	DBSETLUSER
	dbsetmaxprocs
	dbsetnull
	dbsetopt
	dbsetrow
	dbsettime
	dbsetuserdata
	dbsetversion
	dbspid
	dbspr1row
	dbspr1rowlen
	dbsprhead
	dbsprline
	dbsqlexec
	dbsqlok
	dbsqlsend
	dbstrbuild
	dbstrcmp
	dbstrcpy
	dbstrlen
	dbstrsort
	dbtabbrowse
	dbtabcount
	dbtabname
	dbtabsource
	DBTDS
	dbtextsize
	dbtsnewlen
	dbtsnewval
	dbtsput
	dbtxptr
	dbtxtimestamp
	dbtxtsnewval
	dbtxtsput
	dbuse
	dbvarylen
	dbversion
	dbwillconvert
	dbwritepage
	dbwritetext
	dbxlate
	Errors
	Options
	Types

	CHAPTER 3 Bulk Copy Routines
	Introduction to bulk copy
	Transferring data into the database
	Transferring data out of the database to a flat file

	List of bulk copy routines
	bcp_batch
	bcp_bind
	bcp_colfmt
	bcp_colfmt_ps
	bcp_collen
	bcp_colptr
	bcp_columns
	bcp_control
	bcp_done
	bcp_exec
	bcp_getl
	bcp_init
	bcp_moretext
	bcp_options
	bcp_readfmt
	bcp_sendrow
	BCP_SETL
	bcp_setxlate
	bcp_writefmt

	CHAPTER 4 Two-Phase Commit Service
	Programming distributed transactions
	The commit service and the application program
	The probe process
	Two-phase commit routines
	Specifying the commit server
	Two-phase commit sample program
	Program notes
	Program note 1
	Program note 2
	Program note 3
	Program note 4
	Program note 5
	Program note 6
	Program note 7
	Program note 8

	abort_xact
	build_xact_string
	close_commit
	commit_xact
	open_commit
	remove_xact
	scan_xact
	start_xact
	stat_xact

	APPENDIX A Cursors
	Cursor overview
	DB-Library cursor capability
	Differences between DB-Library cursors and browse mode
	Differences between DB-Library and Client-Library cursors

	Sensitivity to change
	Static cursor
	Keyset-driven cursor
	Dynamic cursor
	Concurrency control

	DB-Library cursor functions
	Holding locks
	Stored procedures used by DB-Library cursors

	APPENDIX B DB-Library Error Messages
	20001
	20002
	20003
	20004
	20005
	20006
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20119
	20120
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268
	20269
	20270
	20271
	20272
	20273
	20274
	20275
	20276
	20277
	20278
	20279
	20280
	20282
	20283
	20284
	20285
	20286
	20287
	20288
	20289
	20290
	20291
	20292
	20293
	20294
	20295
	20296
	20297
	20298
	20299
	20300
	20301
	20302

	Index

