SYBASE

Design Guide

Replication Server®
15.2

DOCUMENT ID: DC32580-01-1520-01
LAST REVISED: February 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

ADOUL THIS BOOK ..uuuiiiiiiie ittt e et e e e e s et e e e e e e s s et b e e e e e e e s snnbaeeeeeaeesaannees iX
CHAPTER 1 INTFOTUCTION .o 1
Centralized and distributed database systems..........ccccccoecceieiineen. 1
Advantages of replicating data...........ccccceevieieiiiie e 2
Improved PerformMancCeceevviiiiiiiiieee e
Greater data availability
Data distribution with Replication Server...........cccoccceeeiiiiiiiiieneeeens 3
Publish-and-subscribe model.............cccciiiiiniiiiies 4
Replicated fuNCliONSc.cvviiiiiii e 4
Transaction ManagemMeENt...........occuuiriiiieeeiiriiiiieree e seiiieeeeae e 5
Replication system COMPONENTS.........coocereeiiiiieeiiiieeeeee e eeee e 7
Replication system domaincccooceieeiiiiee e 8
REPlICALION SEIVETeeiiiiiiiie et 8
ID SBIVEN . 10
Replication environmMent............cccvieiiiieeiiiee e 10
Replication ManAgercceeieiiieeeeeieee e e e 11
Replication Monitoring ServiCescccccvvvviiiiviiieiee e 11
Data SEIVEIS ...t 11
Replication AQENTcooiiiiiiiiiiee et 11
Client appliCatioNScooveiiiiiiiiiieee e 12
Replication management SOIULIONSeevveeeiiiiiiiiienee e, 12
Two-tier management SOIULIONcvverviiiiiiiiiiie i, 12
Three-tier management SOIULIONccovcviiieeiee e, 13
Connecting replication system components............ccccceveceeeeninennn. 13
INterfaces file ... 13
Routes and coONNECtiONScocciiiiiiiie e 14
Master database replicationccccoeecviiiiiee e 17
NON-ASE data Server SUPPOItuveeeeeeieiiiieieeeeeeecireeee e e e e e e 18
Enterprise Connect Data Access (ECDA)ccoceevieeeeninenen. 18
Replication AQENLScooiiiiiiiiiie e 19
Processing data SErver €Irorscccuvvevvveeeiiiciiieenee e 19
Functions, function strings, and function-string classes.......... 20
Replication Server SECUTILY.........uuuiiiiee e 21

Design Guide i

Contents

LOGIN NBIMESuiiiiiieii ittt reee e e 21
PeIMISSIONS ...ttt 22
Network-based SECUTLYcoovvviiiiiiie e 23
Advanced Security OPtioN........c.cueiiiiiieiiee e 24
SUMMAIY .t 24
CHAPTER 2 Application Architecture for Replication Systems 25
APPICAtION TYPES ... 25
Decision-support applicationsccccoeoieeiiiiie e 26
Distributed OLTP applications..........cccceeiiiieeiiiiie e 28
Remote OLTP using request functionsccccocccveencenens 30
Standby appliCationsuvvvevieiiiiii 31
Effects of loose consistency on applications...........cccccceevvivvveeennnn. 32
Controlling risks in high-value transactions...........c....cccccvvveee.. 32
Measuring 1ag tiMeeevviiieiiiii e 33
Methods for updating primary dataccccceeeeeiiiiiiiiiiiee e, 33
Centralized primary maintenance...........ccccccovvevvvveeeeeeeiiivvennn. 34
Primary maintenance via network connections........................ 34
Managing update conflicts for multiple primaries 35
CHAPTER 3 Implementation StrategiesS........iiiiiiiiiei e 39
Overview of models and strategiesccccvvvveeeeeeiiiiiiiiee e, 39
Basic primary copy MOdelcoociiiiiiiieiiie e 40
Using table replication definitions.............ccoceviiiieiicieee e, 41
Using applied funCtionscccceeiiiie i 43
Distributed primary fragments modelcccccoevviiiiiiiieeeeieiie, 47
Replication definitionNsccoviiiiiiiiie e 50
SUDSCHPLONS ... 51
COrporate rOIUP ...ccceeeeiiiiieiie et 52
Replication definitionNsccoovciiiiieiie e 54
SUDSCHPLONS ... 55
Redistributed corporate rollupcccoeeeieiiiieee e 56
Warm standby applicationsccooooei i 58
Setting up a warm standby application..............ccccceeeieeeennnen. 59
Switching to the standby database...........cccccoiiiiiiiiinn. 61
Model variations and Strategiesccoceeercereeriiiiee e 63
Multiple replication definitionscccccoeeeviiiiiiee e, 64
PUDBICALIONS ... 66
RequESE FUNCHIONS. ... 71
Implementing master/detail relationships...........cccoccvvvveeeeennnn. 76
CHAPTER 4 Planning for Backup and RECOVEIYccoovuiiiiiiiiiiiiiieiniiieeees 89

iv Replication Server

Contents

Protecting against data l0SSccceeeiiiiiiiiiiieee e 89
Preventive MEASUIEScooiiiiieeiieeeeeiie e e eiee e e eee e e eeee e e s eeeeee e 90
Standby applications ... 90
SAVE INLEIVAL.....coiiiiiiiiii e 93
Coordinated dUMPS ..ccoeeeviiiiiiiieiee e 94
RECOVEIY MEASUIES ... 94
Re-creating SUDSCIIPLIONSuvvvieeiiiiiiiiiiiie e 94
Subscription reconciliation utility (rs_subcmp)c..cccoecvvvveeen. 94
Database rECOVEIYoccuviiiiiieeiiiiiiiec e 95
Restoring coordinated dumpscccceeiiieeriieee e 95
CHAPTER 5 Introduction to Replication Agentscoevuviiiviiiiiiiiieieeeeeeeeeeeees 97
Replication AGeNnt OVEIVIEWcccueiieiiiieeeeiiee e 97
Replication Agent transaction [0gS.........c.cooeiiiiieiiiiieniee e 98
Replication Agent productsccceveeeiiiiiiiieiiee e 99
Replication Agent for DB2ccoveiiiiiieiiiee e 99
Sybase Replication Agentcccoveiiiiiie i 101
CHAPTER 6 Replicating Data into Non-Adaptive Server Data Servers....... 103
Interfacing with Non-ASE data Servers..........cccoovcvviveeieeiiicvinnenn, 103
Sybase database gateway productscccccveeeviiiiiiiieieensinnnnns 104
MaAINTENANCE USEI......eiiiiiiiieiiiie ettt 105
FUNCLION-SriNG Classccooviiiiiiiiiie e 105
Creating function-string classes using inheritance................. 106
Creating distinct function-string classesccccvvevieeeiiiins 106
o g 0] ol - T PR 107
rs_lastcommit table ..o 108
rs_get_lastcommit fUNCLIONooociiiiiiiee e 110
CHAPTER 7 International Replication Design Considerations.................... 111
Designing an international replication system.............ccccceenee.. 111
Y TTS= o TR o T To U Vo = SR 112
(O T = ot (=] = S 113
Character-set CONVErSIONc.uvveeeeeeeiiiieeee e e e e e e 113
Unicode UTF-8 and UTF-16 SUPPOIt........ccoovvvveerieeesiiiiiiennn. 114
Guidelines for using character Sets........ccccccvvvvivieeeeeeniinnnen, 115
SOt OFAET ... 116
SUDSCHIPLIONS ..o 116
UNICOdE SOI OFAEN ...ttt 120
Changing the character set and sort order.............ooccvvvveereeeniinnns 121
When changing the character set changes the character width 124
SUMMATIY .o 125

Design Guide Y

Contents

APPENDIX A Capacity Planningooooiiiiiiiiiiie e 127
Overview Of reqUIrEMENtScccviiiiiiee e 127
Replication Server requiremMentscccoeeevvveeeeeeeeesivvneeeeenns 127
Replication Server requirements for primary databases....... 128
Replication Server requirements for replicate databases...... 129
Replication Server requirement for routes..............cccceeveeeeen.. 129
Data volume (queue disk space requirements).........ccc.ccoeeuvvveee.. 129
Overview of disk queue size calculation..............ccccceeeeeiinnns 130
MESSATE SIZES. .. eeieeiiiiieiiiieeeetiee e e eee e et e et e e eeee e e ens 131
Change rate (number of messages).......cccoveveveriiieeeriiineenns 134
Change volume (number of bytes)ccccceeevviiiiiiiienie s 134
Calculating table VOIUMEcvvieiiiiiiiie e 135
Overall queue diSK USAQEe........uuuviieeiiiiiiiiiiiie e eiiiiiieeee e anaes 141
Additional considerationsoocvveeiiiieeniieee e 141
Example queue usage calculations...........cccccceeeeviiiiiiienneennn, 142
Message size example calculations..........cccccceeeeviiiviieenneennn, 143
Change rate........coi i 143
Table volume example calculationscccccceeiiiiericienens 144
Inbound database volume..........cccccevveeeiiiiciiee e 144
Inbound queue size example calculationcccceeeeee. 145
Other disk space requirementscccooceeeeiiiiee e 147
Stable QUEUES ... 148
RSSD ..ttt 148
ERSSD ...ttt 148
OGS ittt 148
MEMOIY USAGE ..o s 149
Replication Server memory requirements...........cooccuvvveereenn. 149
RepAgent memory reqUIremMentsooccvvveeeeeeeniicvvneeneeenns 149
CPU USBGEciiiiiiiiiiieeeee e 151
ENabling SMP... ..o 152
Network reqUIrEMENESooi e e e 152
APPENDIX B Log Transfer LanQUage.....ccoooveeeeeeeeee e e 153
Log Transfer Language OVErVIEW.cceeveeruieeeeieieeeeieee e 153
CONNECTE SOUICEeuiiieeeeeeeeee e e e e e e e e 154
KEYWOIAS.eeeeiiiie ettt e 155

(0] o o] r=To [[0 Tor= 1 (o (P RTPPR 156
Example of CONNECt SOUICEccvvvvvvieiiiiiiiiiiiee e 156

gEt MAINTENANCE USEI.....iiiiiiieeeeeiiiiiiieee e e eibieee e 157
JELITUNCALION .t 158
Format of the origin queue ID...........ccccoevvviiiiiiiee e, 158
AISTDULE ... 159
(070] 27149z 1aTo I v= o SRR 160
Transaction-control subcommandscocccceeeiiienniineens 161

Vi Replication Server

Contents

Design Guide

applied subcommandoccoeiiiiiie i 163

execute subcommandccoceiiiiii e 171

sqglddl append subcommandcccooeiiieiiiiiee e 173

dump sUbCOMMANdcccooiiiiiiiiiiiee e 174

purge subcomMmMaNd..........oocvviiiiiieeiiiiiiee e 175

Sample RePAGENt SESSIONoccviiiiiiie s 175
.. 177

vii

Contents

viii Replication Server

About This Book

Audience

How to use this book

Design Guide

Replication Server® maintains replicated data at multiple siteson a
network. Organizations with geographically distant sites can use
Replication Server to create distributed database applications with better
performance and data avail ability than a centralized database system can
provide.

This book introduces distributed database systems built upon replication
technology and helps you design areplication system.

The Replication Server Design Guideis for everyone who uses
Replication Server. If you are new to Replication Server, begin with this
book for an introduction to Replication Server and the applications that
use replicated data.

If you are designing a new application for Replication Server, you should
read this book before you install the Replication Server software. Use the
information in this book to plan your replication system so that you will
know whereto install the software components that make up your
replication system.

Theinformation in this book is organized as follows:

e Chapter 1, “Introduction” introduces Replication Server and its
features.

o Chapter 2, “Application Architecture for Replication Systems”
discusses replication system design issues.

e Chapter 3, “Implementation Strategies’ describes models for
implementing your replication system design.

e Chapter 4, “Planning for Backup and Recovery” describesthe
preventive and corrective measures you can use to recover from
replication system failures.

+ Chapter 5, “Introduction to Replication Agents” describes Sybase®
Replication Agent™ products that you can use to replicate datafrom
adatabase that is not an Adaptive Server® Enterprise database.

Related documents

Chapter 6, “Replicating Datainto Non-Adaptive Server Data Servers’
describes the replication system components that you need to replicate
data into adata server other than Adaptive Server.

Chapter 7, “International Replication Design Considerations’ describes
how to configure languages, character sets, and sort orders for an
international environment.

Appendix A, “ Capacity Planning” explains how to estimate the amount of
disk space needed for Replication Server partitions.

Appendix B, “Log Transfer Language” describes the Log Transfer
Language (LTL) used by Replication Agentsto send transaction operation
and stored procedure invocation data to a Replication Server.

The Sybase Replication Server documentation set consists of

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase Product
Manuals at http://www.sybase.com/support/manuals/.

Installation Guide for your platform — describes installation and upgrade
procedures for all Replication Server and related products.

Configuration Guide for your platform — describes configuration
procedures for all Replication Server and related products, and explains
how to use the rs_init configuration utility.

Getting Sarted with Replication Server — provides step-by-step
instructions for installing and setting up a simple replication system.

New Features Guide — describes the new features in Replication Server.

Administration Guide — contains an introduction to replication systems.
This manual includes information and guidelines for creating and
managing a replication system, setting up security, recovering from
system failures, and improving performance.

Design Guide (this book) — contains information about designing a
replication system and integrating heterogeneous data serversinto a
replication system.

Heterogeneous Replication Guide and the Replication Server Options
documentation set — describes how to use Replication Server to replicate
data between databases supplied by different vendors.

Replication Server

http://www.sybase.com/support/manuals/

About This Book

Other sources of
information

Design Guide

Reference Manual — contains the syntax and detailed descriptions of
Replication Server commands in the Replication Command Language
(RCL); Replication Server system functions; Sybase Adaptive Server®
commands, system procedures, and stored procedures used with
Replication Server; Replication Server executable programs; and
Replication Server system tables.

Troubleshooting Guide — contains information to aid in diagnosing and
correcting problems in the replication system.

System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Replication Manager plug-in help, which contains information about
using Sybase Central ™ to manage Replication Server.

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Xi

http://www.sybase.com/support/manuals/

Sybﬁse V\c/e[)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[JFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 IntheCertification Report filter select aproduct, platform, and timeframe
and then click Go.

4 Click aCertification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Sdlect EBFYMaintenance. If prompted, enter your MySybase user name
and password.

3 Sdlect aproduct.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Xii Replication Server

http://www.sybase.com/support/techdocs/
http://certification.sybase.com/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

About This Book

Conventions

Design Guide

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Thissection describes styleand syntax conventions, RCL command formatting
conventions, and graphic icons used in this book.

Style conventions Syntax statements (displaying the syntax and options for
acommand) are printed as follows:

alter user user
set password new_passwd
[verify password old_passwd]

See " Syntax conventions’ on page xiv for more information.

Examples that show the use of Replication Server commands are printed as
follows:

alter user louise
set password somNIfic
verify password Ennul

Command names, command option names, program names, program flags,
keywords, configuration parameters, functions, and stored procedures are
printed as follows:

Use alter user to change the password for alogin name.

Variables, parameters to functions and stored procedures, and user-supplied
words arein italics in syntax and in paragraph text, as follows:

The set password hew_passwd clause specifies a new password.

Names of database objects, such as databases, tables, columns, and datatypes,
areinitalicsin paragraph text, asfollows:

The base_price column in the Items table is a money datatype.

Names of replication objects, such as function-string classes, error classes,
replication definitions, and subscriptions, are in italics, as follows:

rs_default_function_class is a default function-string class.

Xiii

Syntax conventions Syntax formatting conventions are summarized in the
following table. Examples combining these elements follow.

Table 1: Syntax formatting conventions

Key Definition
variable Variables (words standing for valuesthat you fill in) areinitalics.
{1} Curly braces mean you must choose at least one of the enclosed
options. Do not include braces in the command.
[Brackets mean you may choose or omit enclosed options. Do not

include brackets in the command.

[Vertical bars mean you may choose no more than one option
(enclosed in braces or brackets).

, Commas mean you may choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas may also be required in other syntax contexts.
() Parentheses are to be typed as part of the command.

An ellipsis (three dots) means you may repesat the last unit as
many times as you need. Do not include ellipses in the command.

Obligatory choices e Curly braces and vertical bars — choose only one option.
{red | yellow | blue}

¢ Curly braces and commas — choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}
Optional choices ¢ Oneitem in square brackets — choose it or omit it.
[anchovies]
e Sguare brackets and vertical bars— choose none or only one.
[beans | rice | sweet potatoes]

e Sguare brackets and commas — choose none, one, or more options. If you
choose more than one, separate your choices with commas.

[extra cheese, avocados, sour cream]

Repeating elements Anélipsis (...) means that you may repeat the last unit as many times as you
need. For the alter function replication definition command, for example, you can
list one or more parameters and their datatypes for either the add clause or the
add searchable parameters clause:

alter function replication definition function_rep_def
{deliver as 'proc_name' |

Xiv Replication Server

About This Book

RCL command
formatting

Command format and

command batches

Case sensitivity

Identifiers

Design Guide

add @parameter datatype [, @parameter

datatype]... |

add searchable parameters @parameter
[, @parameter]... |

send standby {all | replication definition}
parameters}

RCL commands are similar to Transact-SQL® commands. The following
sections present the formatting rules.

You can break a line anywhere except in the middle of a keyword or
identifier. You can continue a character string on the next line by typing a
backslash (\) at the end of the line.

Extra space characters on aline are ignored, except after abackslash. Do
not enter any spaces after a backslash.

You can enter more than one command in a batch, unless otherwise noted.

RCL commands are not transactional. Replication Server executes each
command in a batch without regard for the completion status of other
commands in the batch. Syntax errorsin a command prevent Replication
Server from parsing subsequent commandsin a batch.

Keywordsin RCL commands are not case-sensitive. You can enter them
with any combination of uppercase or lowercase letters.

I dentifiersand character datamay be case-sensitive, depending on the sort
order that isin effect.

« If youareusing acase-sensitive sort order, such as* binary,” you must
enter identifiers and character data with the correct combination of
uppercase and lowercase letters.

e If you areusing asort order that is not case-sensitive, such as
“nocase,” you can enter identifiers and character data with any
combination of uppercase or lowercase letters.

Identifiers are names you give to servers, databases, variables, parameters,
database objects, and replication objects. Database object names include
namesfor tables, columns, and views. Replication object namesinclude names
for replication definitions, subscriptions, functions, and publications.

Identifiers can be 1 — 255 bytes long (equivalent to 1 — 255 single-byte
characters) and must begin with aletter, the @ sign, or the _ character. See
the Replication Server Reference Manual for alist of identifiersthat have
been extended to 255 bytes.

XV

Parameters in function
strings

Icons

XVi

¢ Replication Server function parameters are the only identifiers that can
begin with the @ character. Function parameter names can include 255
characters after the @ character.

e After thefirst character, identifiers can include letters, digits, and the #, $,
or _ characters. Spaces are not allowed.

e Parametersin function strings have the same rules as identifiers, except:

e They are enclosed in question marks (?), allowing Replication Server
to locate them in the function string. Use two consecutive question
marks (??) to represent aliteral question mark in afunction string.

¢ Theexclamation point (!) introduces a parameter modifier that
indicatesthe source of the datathat will be substituted for aparameter
a runtime. Refer to the Replication Server Reference Manual for a
complete list of modifiers.

Data support Replication Server supports all Adaptive Server datatypes.

User-defined datatypes are not supported. The double precision, nchar, and
nvarchar datatypes are indirectly supported by mapping them to other
datatypes.

For more information about the supported datatypes, including how to format
them, see the Replication Server Reference Manual.

Replication Server supports a set of datatype definitions for non-Sybase data
serversthat lets you replicate column values of one datatype to a column of a
different datatype in the replicate database. See the Replication Server
Administration Guide Volume 1 for more information about heterogeneous
datatype support (HDS).

Illustrationsin thisbook useiconsto represent the components of areplication
system.

Description
@ Thisicon represents Replication Server, the Sybase server

program maintains replicated dataon alocal-areanetwork (LAN)
and processes data transactions received from other Replication
Servers on wide-area network (WAN).

Thisicon represents Adaptive Server, the Sybase dataserver. Data
) servers manage databases containing primary or replicated data.
Replication Server also works with heterogeneous data servers,
s0, unless otherwise noted, thisicon can represent any data server
in areplication system.

Replication Server

About This Book

Accessibility
features

Design Guide

Description

Thisicon represents Replication Agent, areplication system
process or module that transfers transaction log information for
primary database to a Replication Server. The Replication Agent
for Adaptive Server is RepAgent. Sybase provides Replication
Agent products for Adaptive Server™ Anywhere, DB2,
Microsoft SQL Server, and Oracle data servers.

Except for RepAgent, which is an Adaptive Server thread, all
Replication Agents are separate processes. In general, thisicon
only appears when representing a Replication Agent that isa
Separate process.

Thisicon represents client application. A client applicationisa
user process or application connected to adataserver. It may bea
front-end application program executed by a user or aprogram

that executes as an extension of the system.

plug-in (RM), a management utility that lets areplication system
administrator devel op, manage, and monitor aSybase Replication
Server environment.

@ Thisicon represents the Sybase Central Replication Manager

This document isavailablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Replication Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
siteincludes links to information on Section 508 and W3C standards.

XVii

http://www.sybase.com/accessibility

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

XViii Replication Server

CHAPTER 1 Introduction

This chapter introduces Replication Server and describes how it isused to
create and maintain distributed data applications.

Topic Page
Centralized and distributed database systems 1
Advantages of replicating data 2
Data distribution with Replication Server 3
Replication system components 7
Replication management solutions 12
Connecting replication system components 13
Master database replication 17
Non-ASE data server support 18
Replication Server security 21
Summary 24

Centralized and distributed database systems

In the traditional enterprise computing model, an Information Systems
department maintains control of a centralized corporate database system.
Mainframe computers, usually located at corporate headquarters, provide
the required performance levels. Remote sites access the corporate
database through wide-area networks (WANS) using applications
provided by the Information Systems department.

Changes in the corporate environment toward decentralized operations
have prompted organi zationsto move toward distributed database systems
that complement the new decentralized organization.

Today's global enterprise may have many local-area networks (LANS)
joined with aWAN, aswell as additional data serversand applicationson
the LANSs. Client applications at the sites need to access data locally
through the LAN or remotely through the WAN. For example, aclientin
Tokyo might locally access atable stored on the Tokyo data server or
remotely access atable stored on the New York data server.

Design Guide 1

Advantages of replicating data

In adistributed database environment, mainframe computers may be needed at
corporate or regiona headquarters to maintain sensitive corporate data, while
clients at remote sites use minicomputers and server-class workstations for
local processing.

Both centralized and distributed database systems must deal with the problems
associated with remote access:

¢ Network response slows when WAN traffic is heavy. For example, a
mission-critical transaction-processing application may be adversely
affected when a decision-support application requests alarge number of
rows.

e A centralized data server can become a bottleneck as alarge user
community contends for data server access.

* Dataisunavailable when afailure occurs on the network.

Advantages of replicating data

The performance and availability problems associated with remote database
access can be solved by replicating the data from its source database to alocal
database. Replication Server providesacost-effective, fault-tolerant systemfor
replicating data.

Replication Server keeps data up to date in multiple databases so that clients
can access local datainstead of remote, centralized databases. Compared to a
centralized data system, areplication system providesimproved system
performance and data availability and reduces communication overhead.

Because it transfers transactions, not rows, Replication Server maintains the
integrity of replicated data across the system, while also increasing data
availability. Replication Server also alows you to replicate stored procedure
invocations, further enhancing performance.

Improved performance

In a distributed replication system, data requests are completed on the local
data server without the client having to access the WAN. Performancefor local
clientsisimproved because:

*« LAN datatransfer rates are faster than WAN data transfer rates.

2 Replication Server

CHAPTER 1 Introduction

e Loca clients share local data server resources instead of competing for
central data server resources.

« Traffic and contention for locks are reduced considerably because local
decision-support applications are separated from centralized OLTP
applications.

Greater data availability

In adistributed replication system, datais replicated at local and remote sites,
so clients can continue to work regardless of what happens at the primary data
source or over the WAN.

* When afailure occurs at aremote site, clients can continue to use local
copies of replicated data.

* When aWAN failure occurs, clients can continue to use local replicated
data.

* Whenthelocal data server fails, clients can switch to replicated data at
another site.

When WAN communications fail, Replication Servers at other sites store
transactions in stable queues (disk storage) so that replicated tables at the
unavailable site can be brought up to date when communi cations resume.
When areplicated functionisinitiated in asource database, it isstored in stable
queues until it can be delivered to the destination site.

Data distribution with Replication Server

Design Guide

Replication Server works to distribute data over a network by:

* Providing application developers and system administrators with a
flexible publish-and-subscribe model for marking data and stored
procedures to be replicated

* Managing replicated transactions while retaining transaction integrity
across the network

Because Replication Server replicates transactions—incremental changes
instead of data copies—and stored procedure invocations, not the stored
procedures themselves, it provides a high-performance distributed data
environment while maintaining dataintegrity.

Data distribution with Replication Server

Publish-and-subscribe model

In afunctioning Replication Server system, transactions occurring in a source
database are detected by a Replication Agent and transferred to the local
Replication Server, which distributes the information across LANs and WANs
to Replication Servers at destination sites. These Replication Serversin turn
update the target database according to the requirements of the remote client.
If anetwork or system component fails, datain the process of being delivered
istemporarily stored in queues. When the failed component returns to
operation, the replication system resynchronizes copies of the dataand normal
replication resumes.

The primary dataisthe source of the data that Replication Server replicatesin
other databases. You “publish” data at primary sites to which Replication
Servers at other sites “subscribe.” You first create a replication definition to
designate the location of the primary data. The replication definition describes
the structure of the table and names the database that containsthe primary copy
of thetable. For easier management, you may collect replication definitions
into publications.

The creation of areplication definition or publication does not, by itself, cause
Replication Server to replicate data. You must create a subscription against the
replication definition (or the publication) to instruct Replication Server to
replicate the datain another database. A subscription resembles a SQL select
statement. It can include awhere clause to specify which rows of atable you
want to replicate in the local database, allowing you to replicate only the
necessary data.

Beginning with the 11.5 version of Replication Server, you can have multiple
replication definitions for a primary table. Replicate tables can subscribe to
different replication definitions to obtain different views of the data.

Once you have created subscriptions to replication definitions or publications,
Replication Server replicates transactions to databases with subscriptions for
the data.

Replicated functions

Replication Server lets you replicate Adaptive Server stored procedure
invocations asynchronously between databases. This method can improve
performance over normal datareplication by encapsulating many changesin a
single replicated function. Because they are not associated with table
replication definitions, replicated functions can execute stored procedures that
may or may not modify data directly.

4 Replication Server

CHAPTER 1 Introduction

You can replicate stored procedure invocations from a primary databaseto a
replicate database, or from a replicate database to a primary database. See
“Using applied functions” on page 43 and “ Request functions’ on page 71 for
details.

With replicated functions, you can execute a stored procedure in another
database. A replicated function allows you to:

* Replicate the execution of an Adaptive Server stored procedure to
subscribing sites

« Improve performance by replicating only the name and parameters of the
stored procedure rather than the actual changes

Like tables, replicated stored procedures may have replication definitions,
which are called function replication definitions, and subscriptions. When a
replicated stored procedure executes, the Replication Server passes its name
and execution parameters to subscribing sites, where the corresponding stored
procedure executes.

You create function replication definitions at the primary datasite. Replication
Server supports applied functions and request functions:

« Anapplied function isreplicated from a primary to areplicate database.
You create subscriptions at replicate sites for the function replication
definition and mark the stored procedure for replication in the primary
database. The applied function is applied at replicate database by
maint_user.

« Arequest functionisreplicated from aprimary to areplicate database. You
create subscriptions at replicate sitesfor the function replication definition
and mark the stored procedure for replication in the primary database. The
request function is applied at replicate database by the same user who
executes the stored procedure at the primary database.

Transaction management

Design Guide

Replication Server depends on data servers to provide the transaction
processing services needed to protect their stored data. To guarantee the
integrity of distributed data, data servers must comply with such transaction-
processing conventions as atomicity and consistency.

Data distribution with Replication Server

Data serversthat store primary data provide most of the concurrency control
needed for the distributed database system. If atransaction fails to update a
table with primary data, Replication Server does not distribute the transaction
to other sites. When atransaction does update primary data, Replication Server
distributes the changes and, unless afailure occurs, the update succeeds at al
sites that have subscribed to the data.

Replication Server uses optimistic concurrency control to maintain replicated
data consistency. This method differs from a pessimistic distributed
concurrency control method—such as the two-phase commit—because it
processes failures after they occur.

Optimistic concurrency control has these advantagesin areplication system:

e It promotes high availability of data because it does not lock the data for
the duration of the distributed transaction.

e It requiresfewer system resources to process atransaction.

e It doesnot require data servers to have special distributed transaction
processing featuresin order to participate in a distributed transaction.

Failed replicated transactions

A modification to primary data may fail to update a replicate copy of the data
at another site. The primary version isthe “official” copy, and updates that
succeed at the primary database are expected to succeed at sites with replicate
copies.

Some reasons for the failure of an update to areplicated table are:

e Thedata server’s maintenance user login name does not have the
permissions needed to update the replicate data.

e Thereplicate and primary versions of the data are inconsistent after a
system recovery.

¢ A client updates replicate data directly rather than updating the primary
version.

e Thedataserver storing the replicate table has constraints that are not
enforced by the data server storing the primary version.

« Thedata server storing the replicated copy of the table rejects the
transaction due to a system failure, such as lack of space in the database.

6 Replication Server

CHAPTER 1 Introduction

When a transaction fails, Replication Server receives an error from the data
server. Data server errors are mapped to Replication Server error actions. The
default action for afailed transaction is to write a message in the Replication
Server error log (including the message returned by the data server) and then
suspend the database connection. After you correct the cause of thefailure, you
can resume the database connection and Replication Server will retry thefailed
transaction.

You also can have Replication Server record afailed transaction in the
exceptionslog (a set of three tablesin the RSSD) and continue processing the
next transaction. Refer to “ Replication Server” on page 8 for a description of
the RSSD.

If you use the exceptions log, you must manually resolve the transactions that
are saved there to make the replicate data consistent with the primary data. In
some cases, the process can be automatic by encapsulating the logic for
handling the rejected transactions in an intelligent application program.

Transactions that modify data in multiple data servers and databases

A transaction that modifies primary datain more than one data server may
reguire additional concurrency control. According to the transaction
processing requirements, either all of the operationsin the transaction are
performed or none of them are performed. If atransaction fails on one data
server, it must be rolled back on all other data servers updated in the
transaction.

Normally, thereis exactly one Replication Agent for each primary database. If
a single transaction updates multiple primary databases, that transaction is
replicated as multiple independent transactions, onefor each primary database.
Or, you can sl ect to encapsul ate such transactionsin asingle stored procedure,
which then flows as an atomic unit to subscribing sites.

Replication system components

Design Guide

Replication Server has an open architecture that allows you to build a
replication system from existing systems and applications and add to it asyour
organization grows and changes.

Figure 1-1 isasimplified depiction of one replication system site in a WAN-
based, distributed database system that uses Replication Server. The sections
that follow describe each component.

Replication system components

Figure 1-1: Replication system

e @ Replication server

Replication agent

DF—3

Client
application

Data servar

Replication system domain

Replication system domain refersto all replication system componentsthat use
the same ID Server. You can set up multiple replication system domains, with
the following restrictions:

e Replication Serversin different domains cannot exchange data. Each
domain must be treated as a separate replication system with no cross-
communication between them. You cannot create a route between
Replication Serversin different domains.

¢ A database can be managed by only one Replication Server in one domain.
Any given database isin one, and only one, ID Server’'s domain. This
means you cannot create multiple connections to the same database from
different domains.

Replication Server

A Replication Server at each site coordinates the data replication activities for
the local data servers, and exchanges data with Replication Servers at other
sSites.

A Replication Server:

8 Replication Server

CHAPTER 1 Introduction

* Receivesprimary datatransactions from databases via Replication Agents
and distributes them to sites with subscriptions for the data

* Receivestransactions from other Replication Servers and applies them to
local databases

Replication Server system tables storeinformation needed to accomplish these
tasks. The system tables include descriptions of the replicated data and
replication objects such as replication definitions and subscriptions, security
recordsfor Replication Server users, routing information for other sites, access
methods for the local databases, and other administrative information.

Replication Server system tables are stored in an Adaptive Server database
called the Replication Server System Database (RSSD), or an SQL
Anywhere® (SA) database called the Embedded Replication Server System
Database (ERSSD). An RSSD or ERSSD is assigned to each Replication
Server. An Adaptive Server data server with an RSSD can also store
application databases. For more information, see the Replication Server
Administration Guide Volume 1.

Use Replication Command Language (RCL) or the Replication Manager plug-
in of Sybase Central to manage information in Replication Server. You can
execute RCL commands, which resemble SQL commands, on Replication
Server using isql, the Sybase interactive SQL utility. The Replication Server
Reference Manual isthe completereferencefor RCL. You can find information
about Replication Manager and Replication Monitoring Servicesin the
Replication Server Administration Guide Volume 1and in the online help for
Replication Manager.

Partitions and stable queues

Design Guide

Replication Server stores messages on disk to make sure that they can be
delivered following afailure. When you install a Replication Server, you
alocateaninitial disk partition that Replication Server usesfor itsdisk storage.
You can add additional partitions when you have finished installing the
Replication Server.

The partition is either araw disk device or operating system file. Because
UNIX operating systems buffer file 1/O, you may not be able to completely
recover datafollowing afailure. On such a system, use operating system files
for partitionsonly in atest environment. Useraw disk partitionsfor production
environments. See the Replication Server Reference Manual for more
information about adding partitions.

Replication system components

ID Server

Replication Server allocates stable queues fromits disk partitionsfor the routes
and connectionsit serves. Messages are saved in the stable queues at | east until
the messages are confirmed as received at their destination.

The amount of disk space you should allocate for Replication Server partitions
depends on the size of transactions and the transaction ratefor your application.
Stable queues act as buffers for data as it flows through your replication
system. If aremote site’s Replication Server is unreachable during a network
failure, the primary Replication Server stores transactions in a stable queue
until communication is restored. The more space allocated for disk partitions,
the longer the Replication Server can queue data without interrupting
operations in the primary database.

Appendix A, “Capacity Planning” explainsin detail how to calculate partition
space for a Replication Server.

TheID Server isaReplication Server that registersall Replication Serversand
databasesinthereplication system. The ID Server must berunning eachtimea:

e Replication Server isinstalled
¢ Routeiscreated
e Database connection is created or dropped

Because of thisrequirement, the ID Server isthefirst Replication Server that
you start when you install a replication system.

ThelD Server must have alogin namefor Replication Serversto usewhen they
connect to the ID Server. The login nameisrecorded in the configuration files
of all Replication Serversin the replication system by thers_init configuration
program.

Replication environment

10

A replication environment consists of a set of serversthat participate in
replication. Thisincludes the data servers, Replication Agents, Replication
Servers, and DirectConnect™ servers. A replication environment does not
have to contain all serversin areplication system domain.

Replication Server

CHAPTER 1 Introduction

Replication Manager

The Replication Manager (RM) isinstalled asaplug-in to Sybase Central. RM
isamanagement utility for devel oping, managing, and monitoring replication
environments. See the Replication Server Administration Guide Volume 1 for
more information on using RM.

Replication Monitoring Services

Data servers

The Replication Monitoring Services (RMS) acts as the middle tier in a three-
tier management solution for a replication environment. RMS monitors the
health of the servers and components in the replication environment and
provides information to troubleshoot problems and commands to fix the
problems. See the Replication Server Administration Guide Volume 1 for more
information on using RMS.

Data servers manage databases containing primary or replicated data. Clients
use them to store and retrieve data and to process queries and transactions.
Replication Server maintains replicated datain data serversby logginginasa
database user.

Replication Server supports heterogeneous data servers through an open
interface. Any system for storing data can be used as adata server if it supports
a set of required data operations and transaction processing directives.

See “Non-ASE data server support” on page 18 for more information on data
server requirements.

Replication Agent

Design Guide

A Replication Agent transfers transaction log information, which represents

changes made to primary data, from a data server to a Replication Server for
distribution to other databases. The Replication Agent for Adaptive Server is
RepAgent, which is an Adaptive Server thread.

11

Replication management solutions

The Replication Agent reads the database transaction log and transfers log
recordsfor replicated tables and replicated stored proceduresto the Replication
Server that manages the database. The Replication Server reconstructs the
transaction and forwards it to the sites that have subscriptions for the data.

A Replication Agent is needed for each database that contains primary data or
for each database where replicated stored procedures are executed. A database
that contains only copies of replicated data and has no replicated stored
procedures does not require a Replication Agent.

Because RepAgent is an Adaptive Server thread, most system diagramsinthis
book do not include a Replication Agent icon. In Chapter 5, “Introduction to
Replication Agents,” however, the Replication Agent described is a separate
process and, for clarity, system diagrams contain the Replication Agent icon.

Client applications

A client application isauser program that accesses adata server. When the data
server is an Adaptive Server, applications can be programs created with Open
Client/Server™, Embedded SQL ™, PowerBuilder®, or any other front-end
development tool compatible with Sybase Client/Server Interfaces™ (C/Sl).

Client applications should update only the primary data. Replication Server
distributesthe changesto the other sites. Client applicationsthat do not modify
data do not need to distinguish between primary and replicated data.

Replication management solutions

Replication Server offers two management sol utions to support different
replication environments

Two-tier management solution

In atwo-tier management solution, RM manages the replication environment
by connecting directly to serversin the environment without communicating
through a management layer.

12 Replication Server

CHAPTER 1 Introduction

This two-tier management solution lets you manage small, simple replication
environments with fewer than ten servers. You can create, alter, and delete
components in the replication environment. In addition to managing the
replication environment, RM also letsyou monitor the status of the serversand
replication components in the replication environment.

Three-tier management solution

In athree-tier management solution, RM can manage larger and complex
replication environments with the help of RMS. RM connectsto the serversin
the environment through RMS.

RMS provides the monitoring capabilities for the replication environment. In
this three-tier management solution, RM'S monitors the status of the servers
and other components in the replication environment, and RM provides the
client interface that displays the information provided by RMS.

Connecting replication system components

Interfaces file

Design Guide

Replication Server, Replication Agent, and Adaptive Server use C/S| to
communicate over anetwork. In addition, Replication Server uses routes and
connections to send messages to other Replication Servers and databases. The
following sections describe the interfaces file, routes, and connections.

Server programs such as data servers, Replication Servers, and Replication
Agentsareregistered in an interfacesfile (sgl.ini in Windows and interfacesin
UNIX) or aLightweight Directory Access Protocol (LDAP) server so that
client applications and other server programs can locate them.

Generally, oneinterfacesfile at each site containsentriesfor al of thelocal and
remote Replication Serversand dataservers. Theentry for each server includes
its unique name and the network information that other servers and client
programs need to connect to it.

13

Connecting replication system components

Use atext editor to maintain your interfaces file. For information about LDAP
servers, see the Replication Server Administration Guide Volume 1.

Note If you are using network-based security, available with Replication
Server version 12.0 and later, use the directory services of your network
security mechanism (rather than the interfaces file) to register Replication
Servers, Adaptive Servers, and gateway software. Refer to the documentation
that comes with your network-based security mechanism for details.

Routes and connections

Routes and connections allow Replication Servers to send messages to each
other and to send commandsto databases. A routeisaone-way message stream
that sends requests from one Replication Server to another Replication Server.
A connection is a message stream from a Replication Server to a database.
Replication Server uses alogical connection to represent the active and
standby databases in a warm standby application.

To replicate data from one database into another, you must first establish the
routes and connectionsthat allow Replication Server to move the datafrom its
source to its destination.

When you add a database to your replication system, Sybase Central or rs_init
creates the connection for you. You never have to create a connection directly
unless you are replicating data into a database that is not an Adaptive Server.

If you have more than one Replication Server in your replication system, you
must create routes between them. If you have only one Replication Server, you
do not need to create routes.

Figure 1-2 illustrates connections and routes between three Replication
Servers, one database storing primary data, and four databases storing
replicated data.

14 Replication Server

CHAPTER 1 Introduction

Figure 1-2: Routes and connections

=
Primary icati
Replication
Server 1

Replicated
Data

Replication
Sarver 2

Connection ——j
Route ———»

-
Replicated
Data

/0 V50

Replication
Server 3

Replicated
Data

When you create aroute from a primary Replication Server to areplicate
Replication Server, transactions flow from the primary server to the replicate
server.

If you plan to execute replicated stored procedures in a replicate database to
update a primary database, you must also create a route from the replicate
Replication Server to the primary Replication Server.

Direct and indirect routes

Design Guide

Inareplication system with one primary Replication Server and many replicate
Replication Servers, you can use indirect routes to reduce the load on the
primary Replication Server. Indirect routes allow Replication Server to send
messages to multiple destinations through a single intermediate Replication
Server.

Routes with intermediate sites have important advantages:

* Reduced WAN volume

15

Connecting replication system components

Replication Server distributes one copy of a message to each intermediate
site. Replication Servers at the intermediate sites duplicate the messages
for each of their outgoing queues.

¢ Reduced Replication Server load

Additional Replication Servers running on separate computers share the
processing load, reducing the amount of processing required of
Replication Servers at primary sites.

¢ Fault tolerance

M essages stored at i ntermediate sites can be used to recover from partition
failures at remote sites. See the Replication Server Administration Guide
\olume 1 for details.

Figure 1-3 shows how message distribution is handled using intermediate
sites. The message follows a direct route to the intermediate sites. From the
intermediate site, it follows a direct route to the local site. With thisrouting
arrangement, the primary site sends two messages rather than eight.

Figure 1-3: Routes in a hierarchical configuration

Sngapane

Intermediate sites reduce primary site message volume, but they increase the
time between updates at the primary and replicate servers. Plan your routes
carefully; use only the number of intermediate sites required.

If intermediate sites are not used, routes are set up in a star configuration, as
Figure 1-4 illustrates.

16 Replication Server

CHAPTER 1 Introduction

Figure 1-4: Direct routes in a star configuration

When arow is updated at aprimary site, the primary Replication Server sends
messages through the WAN to each remote site that has a subscription for the
row. For example, in Figure 1-4, New York can send identical datathrough
eight different routes. If there are many sites, the network isquickly overloaded
with redundant messages.

Creating routesin a hierarchical arrangement allows load balancing by
reducing the number of connections and messages distributed from the primary
site. Additional Replication Servers running on separate computers share the
processing load, reducing the amount of processing required of Replication
Serversat primary sites.

Master database replication

Design Guide

The master database controls the operation of Adaptive Server and stores
information about every user database and associated database devices. You
can replicate the master database, although only the DDL and system
commands used to manage logins and roles are replicated. Master database
replication does not replicate datafrom system tables, data or procedures from
any other user tablesin the master database.

Both the source Adaptive Server and the target Adaptive Server must have the
same hardware architecture type (32-bit versions and 64-bit versions are
compatible) and the same operating system (different versions are also
compatible).

17

Non-ASE data server support

For alist of supported DDL and system procedures that apply to master
database, see the Replication Server Administration Guide Volume 2.

Replication Server 12.0 and later supports master database replication with
warm standby, and with M SA in Replication Server 12.6 and later. The primary
or active Adaptive Server must be Adaptive Server 15.0 ESD #2 and later.

See the Replication Server Administration Guide Volume 1 for information
about master database replication in MSA, and the Replication Server
Administration Guide Volume 2 for information about master database
replication in awarm standby environment.

Non-ASE data server support

Support for Adaptive Server is built into Replication Server. The open
architecture of Replication Server also supports non-ASE data serversin
replication systems. Thissection containsabrief overview of open architecture
components. Seethe Replication Server Heterogeneous Replication Guide and
Chapter 6, “Replicating Datainto Non-Adaptive Server Data Servers’ for
more information.

The open architecture includes:

e Sybase Enterprise Connect™ Data Access

e Replication Agents

e Error classes and error processing actions

e Functions, function strings, and function-string classes
e User defined datatypes (UDD) and datatype translations

e Connection profiles

Enterprise Connect Data Access (ECDA)

18

ECDA isanintegrated set of software applications and connectivity tools that
allows you to access data within a heterogeneous database environment.
ECDA givesyoutheability to accessavariety of LAN-based, non-Sybase data
sources, as well as mainframe data sources. It consists of components that
provide transparent data access within an enterprise. You require a specific
ECDA component for each actively supported non-ASE database. See the
Replication Server Options Overview Guide.

Replication Server

CHAPTER 1 Introduction

Replication Agents

A Replication Agent isrequired for every database that stores primary data or
initiates replicated functions. A Replication Agent reads the data server
transaction log to detect changes to primary data and executions of replicated
stored procedures. The transaction log provides areliable source of
information about primary data modifications because it contains records of
committed, recoverable transactions.

Chapter 5, “Introduction to Replication Agents” describes the Replication
Agents for data servers other than Adaptive Server. Replication Agents for
some non-ASE data servers—such as DB2, Microsoft SQL Server, and
Oracle—are available from Sybase.

Processing data server errors

Replication Server processes the errors and status codes returned by data
serversaccording to your instructions. Each vendor’ sdata server hasadifferent
set of error codes. Replication Command Language (RCL) commands allow
you to:

* Createan error classto group together the error code mappings for a
database.

e Assign error actions, such aswarn, retry_log, and stop_replication, to data
server error codes.

* Associate an error class with a database.

Note Replication Server 15.2 and later includes for actively supported
databases, pre-loaded error classes with associated error actions. See
“Connection profiles,” in Chapter 7, “ Managing Database Connections” in the
Replication Server Administration Guide Volume 1.

See “Error class’ on page 107 for more information.

Design Guide 19

Non-ASE data server support

Functions, function strings, and function-string classes

In order to operate in a heterogeneous database environment, Replication
Server differentiates database commands from the functions it usesto
distribute data server requeststo other sites. A function is a Replication Server
object that represents a data server operation such asinsert, delete, and begin
transaction. Replication Server uses function strings to convert functions into
data-server-specific commands. A function string isatemplate that Replication
Server uses to generate a command the data server can interpret as a
transaction-control directive or data-modification instruction.

A function-string classisthe set of al function strings used with a database.
Function-string classesare provided for Adaptive Server and DB2 dataservers.
Function stringsfor transaction control directivesare defined just oncefor each
function-string class. Function strings to insert arow, delete arow, or update a
row are defined once for each replicated table in a database.

A function string can contain variabl es—identifiersenclosed in question marks
(?)—that represent the values of columns, procedure parameters, system-
defined information, and user-defined variables. Replication Server replaces
the variables with actual val ues before sending the function strings to the data
server.

Function strings can be used to generate either RPC or database commands
such as SQL statements, depending on their format. An RPC-formatted
function string contains a remote procedure call followed by alist of data
parameters. Embedded variables can be used to assign runtime values to the
parameters. Replication Server interprets RPC function strings, buildsaremote
procedure cal, and replaces the variables with runtime data values. An RPC
can execute a registered procedure in an Open Server™ gateway to a data
server or astored procedure in an Adaptive Server.

A language-formatted function string passes a database command to the data
server. Replication Server does not attempt to interpret the string, except to
replace embedded variables with runtime data values. For example, severa
relational database servers use the SQL database language. A SQL command
should be represented as alanguage function string.

20 Replication Server

CHAPTER 1 Introduction

RPC function strings can be more efficient than language function strings
because the network packets sent from Replication Server are more compact.

Note Replication Server 15.2 and later includes function string classes pre-
loaded with function stringsfor actively supported databases. See* Connection
profiles,” in Chapter 7, “Managing Database Connections’ in the Replication
Server Administration Guide Volume 1.

Replication Server security

Login names

Replication Server security includes password-protected login names and a
permission system based on the grant and revoke commands. Replication
Server 12.0 and later supports third-party security services that ensure secure
message transmission over the network and that enable user authentication.
Replication Server 12.5 and later supports secure socket layer (SSL) session-
based security through the Advanced Security option.

Each Replication Server uses login names that are distinct from data server
login names. Many clients do not need a Replication Server login name
because they accomplish their work through data server applications.

Replication Server login names

Design Guide

When you install a Replication Server, rs_init creates Replication Server login
names that other Replication Servers and Replication Agents useto log in to
Replication Server.

A replication system administrator creates and managesthe Replication Server
login names and passwords used to manage replicated data or replication
system functions such as the addition of new users or a route change.
Passwords can be encrypted.

21

Replication Server security

Data server login names

Data server login names are used with aclient application to connect to adata
server. The application uses data stored by the data server, including data
replicated by Replication Server. A Database Administrator creates and
manages data server login accounts.

Client access to replicated copies of tablesis also managed by the Database
Administrator. Since Sybase recommends that replicated tables be read-only,
clients may be permitted to view replicated data but should be prevented from
inserting, deleting, or updating rows.

To modify replicated tables, a client must modify the primary data so that the
Replication Server can distribute the changes to replicate databases that have
subscriptions for the data. To modify atable, a client must have alogin name
on the data server where the primary data is stored as well as the permissions
necessary to update the primary data.

Data server maintenance user login name

Permissions

22

Replication Server uses a maintenance user login name for each local data
server database that containsreplicated tables. It iscalled the maintenance user
login name because Replication Server uses it to maintain replicated tables.
The Database Administrator must make sure that the maintenance user login
name has the permissions needed to update the replicated tablesin the
database.

Normally, transactions applied by the maintenance user arefiltered by the
Replication Agent so they are not replicated out of a database. In certain
applications, however, these transactions must be replicated. See Chapter 3,
“Implementation Strategies” for more information on these application types.

The grant and revoke commands are used to grant and revoke Replication
Server permissions for clients. Table 1-1 lists the permissions that can be
granted to clients.

Table 1-1: Replication Server permissions
Permission Capabilities

sa Gives recipient System Administrator capabilities.
Clients with sa permission can perform any
Replication Server command.

Replication Server

CHAPTER 1 Introduction

Permission Capabilities

create object Allows recipient to create, ater, or drop Replication
Server objects, including replication definitions and
subscriptions.

primary subscribe Gives the recipient permission to create a subscription

inaprimary database, but not to create other objects.
To create a subscription at aremote site, a client needs
create object permission in the replicate database and
create object or primary subscribe permission in the
primary database.

connect source Thispermissionisrequired for login namesused by the
Replication Agent. It allows the recipient to execute
the RCL commands that are reserved for Replication
Agents.

Network-based security

With athird-party network-based security mechanism, users are authenticated
by the security system at login. Authentication is the process of verifying that
usersarewho they say they are. Usersreceive acredential that can be presented
to remote serversin lieu of apassword. Asaresult, users have seamless access
to the components of the replication system through a single login.

Network-based security mechanisms also provide avariety of data-protection
services, such as message confidentiality and out-of-sequence checking.
Replication Server requests the service, prepares the data, and sendsiit to the
network server for encryption or validation. Once the service is performed,
dataisreturned to the requesting Replication Server for distribution.

Once asecure pathway has been established, data can move in both directions.
Both ends of the pathway must support the same security mechanism and be
configured the same. The security mechanism must be installed on al
machines that make use of network security, and Replication Server 12.0 or
later must be installed on all participating machines.

See the Replication Server Reference Manual for information about network-
based security in the replication system.

Design Guide 23

Summary

Advanced Security option

Summary

24

Replication Server’s Advanced Security option provides secure socket layer
(SSL), session-based security. SSL is the standard for securing the
transmission of sensitive information, such as credit card numbers and stock
trades, over the Internet.

SSL provides alightweight, easy-to-administer security mechanism with
several encryption algorithms. It isintended for use over those database
connections and routes where heightened security is required.

See the Replication Server Administration Guide Volume 1 for information
about using the Advanced Security option.

¢ Replication Server maintains copies of tablesin different databases on a
network. The replicated copies provide two advantages to users at the
sites: faster response and greater availability.

¢ Areplication system built on Replication Server usesthe Sybase ECDA to
connect components—data servers, Replication Servers, Replication
Agents, and client applications.

¢ Replication Server is designed with an open interface that allows non-
Sybase data serversto be included in areplication system.

¢ Onecopy of atableisthe primary version. All othersare replicated copies.

e Using subscriptions, areplicated copy of atable may contain a subset of
therowsin atable.

¢ Replication Server security consists of login names, passwords, and
permissions. Replication Server also supports third-party network-based
security mechanisms.

¢ Replication Server uses optimistic concurrency control that processes
failures when they occur. Compared to other methods, optimistic
concurrency control provides greater data availability, uses fewer
resources, and works well with heterogeneous data servers.

Replication Server

CHAPTER 2

Application Architecture for
Replication Systems

This chapter discusses several topics that are important for you, as an
application designer and user, to explore before you implement
Replication Server.

Topic Page
Application types 25
Effects of loose consistency on applications 32
Methods for updating primary data 33

Application types

Design Guide

Determining the type of Replication Server application you build will in
part determine the type of replication strategy you use to implement the
application. Chapter 3, “Implementation Strategies’ covers various
replication scenarios.

Replication Server supports the following basic application types:
e Decision support

« Distributed online transaction processing (OLTP)

¢ Remote OLTP using request functions

e Warm standby

Each of these application types differsin the way it updates primary data
and in the way it distributes primary and replicated data within the
replication system.

25

Application types

Decision-support applications

Decision-support clients and production online transaction processing (OLTP)
clients use datain different ways. Decision-support clients execute lengthy
gueriesthat hold locks on tables to guarantee serial consistency. OLTP clients,
on the other hand, execute transactions that must complete quickly and cannot
accept the delays caused by decision-support clients’ datalocks. Thetwo types
of clients do not interfere with each other if they maintain separate copies of
replicated tables.

Replication Server off-loads processing associated with decision-support
applications from a centralized online transaction processing application onto
local servers. The primary database manages the transaction processing, and
the replicate databases at |ocal sites handle requests for information from
decision-support clients. Providing a separate, reference-only copy of the data
allows OLTP systems to continue unobstructed.

Multiple copies of tables containing primary data used in decision-support
applications can be maintained at a single site or at multiple sites over the
network.

Multiple copies at a single site

26

Sometimesit isuseful to maintain multiplereplicate copiesof atableat asingle
site. A subscription specifies the database where Replication Server maintains
the replicated data. You can create subscriptions for multiple copies of atable
by creating the table in different databases at the same site and then creating
subscriptions for each one.

If OLTP and decision-support clients are on the same LAN, one Replication
Server can manage both the primary data and the replicate data. Figure 2-1
illustrates such an arrangement.

Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Design Guide

Figure 2-1: Single LAN decision support replicate

QLTP

Applications .

 §

L

ar -
any

-0

Decision Suppart
Applications

D
\
=)

 §

For best performance, the databases are usually maintained by different data
servers. The subscriptions can request different subsets of the datato be
maintained in each database, so the replicated copies do not have to be
identical.

If you must have two copies of atablein the same database, you can use
multiple replication definitions for a primary table. One replication definition
could have publishers as the replicate table name, and the other publishers2.
Multiple replication definitions are also useful if you want different replicates
to receive different column subsets. See “Multiple replication definitions’ on

page 64.

Another way to update multipletablesin an Adaptive Server databaseisto use
stored procedures. Code the multiple updates in the stored procedures and
write Replication Server function stringsto execute the stored procedures. You
can also use replicated functions and stored procedures to update multiple
tables.

27

Application types

Multiple copies distributed over a network

When copies of tables are distributed over aWAN in a decision-support
application, all updates are performed by applications executing at the primary
site and are distributed to the remote sites that have subscriptions for the data.
Figure 2-2 illustrates this arrangement.

Figure 2-2: Multiple LAN decision support replicate

Primary
Site

Read-Write Client
Applicatons
- L

-~ I
Communications -
Metwork -

s

- Read-Oriy Clien
ReSIicate Applicat ons_;
ata

¥

Thistype of system uses the centralized primary maintenance method of
updating primary data. Clients at remote sites subscribe to replication
definitions or publications of primary data. They do not update primary data.
See “ Centralized primary maintenance” on page 34 for information on this
method.

Distributed OLTP applications

Although some distributed transaction-processing applications maintain
centralized primary data, others fragment primary data among replicate sites.

28 Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Design Guide

A primary fragment isahorizontal segment of atable that holds the primary
version of a set of rows. Updates are applied to the primary version first and
are then distributed to sites that have replicated copies of the data.

Sites that are responsible for, or own, portions of atable by definition have
multiple primary fragments. For example, the salesdetail table in Figure 2-3
has primary fragmentsin Chicago, New York, and San Francisco:

Figure 2-3: Table with multiple primary fragments

Chicago New York San Francisco

salesdetail salesdefail salesdetail

stor_id | title [ord_num | | stor_id | title [ord_num | stor_id | title | ord_num
[7067 o 7067 | 7067

7067]]‘ 7067] 7067]

5023 | | 5023 | 5023 |

5023 | [5023 | 5023

5023 | 5023 | 5023

8042 | 8042] 8042]

8042 | B042] 8042 |

Primary Fragments

A key constructed from one or more columns identifies the primary fragment
where arow belongs. The key for the salesdetail table is the stor_id column.

e Rowswith*“7067” inthestor_id column belong to the primary fragment at
the Chicago site.

¢ Rowswith“5023" inthestor_id column belong to the primary fragment at
the New York site.

e Rowswith*“8042” inthestor_id column belong to the primary fragment at
the San Francisco site.

There are three application model s based on multiple primary fragments:

» Digtributed primary fragments—in this model, tables at each site contain
both primary and replicated data. Updates to the primary version are
distributed to other sites. Updates to non-primary data are received from
the primary site.

* Corporate rollup —in this model, multiple primary fragments maintained
at remote sites are consolidated into a single aggregate replicate table at a
central site.

» Redistributed corporate rollup —this model is the same as the corporate
rollup model, except that the consolidated table is redistributed.

29

Application types

More information about these models can be found in Chapter 3,
“Implementation Strategies’

Remote OLTP using request functions

Replicated functions can be used to execute transactions remotely. Client
applications at remote sites can update primary data asynchronously with
request functions. The client application does not require anetwork connection
to the primary site, and the request can be accepted by the Replication Server
even when the primary site is not available.

Once the request function executes the stored procedure in the primary
database, Replication Server may replicate some or all of the data changes
made in the primary database. These changes can be propagated to replicate
databases as data rows or as applied functions.

Local update applications

30

A local update application allows clients at aremote siteto seethe updatesthey
have entered before the replication system returns them from the primary site.
For example, if acustomer account isupdated at aremote site, clientsat the site
can see the results of the transaction even if the primary site is not accessible.

Local updates can be performed by using a pending updates table. For each
replicated table, a corresponding local table contains provisional updates—
updates that have been submitted to the primary site, but that have not been
returned through the replication system. Client applications update the pending
transactionstable and, at the same time, send arequest function to the primary
site. See“ An example using alocal pending table” on page 72 for information
on implementing this type of application.

When the update succeeds against the primary copy, it is distributed to remote
sites, including the site where the transaction originated. You can create a
function string or replicated stored procedure to update the replicated table and
delete local updates from the pending table. This makesit possible for client
applications to know which transactions have been confirmed and which are
pending.

Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Standby applications

Design Guide

A warm standby application is a Replication Server application that maintains
apair of Adaptive Server databases, one of which functions as a standby copy
of the other.

Client applications generally update the active database, while Replication
Server maintains the standby database as a copy of the active database.
Replication Server keeps the standby database consistent with the active
database by replicating transactions retrieved from the active database
transaction log.

If the active databasefails, or if you need to perform maintenance on the active
database or data server, you can switch to the standby database so that client
applications can resume work with little interruption.

Figure 2-4 illustrates a warm standby system.

Figure 2-4: A warm standby system

Clients

Replication Server
Active) Standby - ,E) Standby
Dala Server osl IE Data Server
Inbound Queue
Active Standby
Database Diatabase
Distributor
|
v

To other Replicaticn Servers
or destination databases

The two databases in awarm standby application appear as asingle logical
database in the replication system. Depending on your application, thislogical
database may not participate in replication, or it may be a primary database or
areplicate database with respect to other databases in the replication system.

Several Replication Server and RepAgent features explicitly support warm
standby applications. Seethe Replication Server Administration Guide Volume
2 for more detailed information about warm standby applications.

31

Effects of loose consistency on applications

Effects of loose consistency on applications

Datain areplicate database is“loosely consistent” with the datain the primary
database. Replicate data lags behind primary data by the amount of time it
takes to distribute updates from the primary database to another part of the
replication environment. This latency can be measured in seconds (or |ess)
when the system isworking properly. If acomponent fails—if, for example, a
network connection is temporarily lost—updates can be delayed for minutes,
hours, or days. Thus, latency information can be used to monitor the
performance and health of the replication environment.

Although replicate data may lag behind primary data, it is transactionally
consistent with the primary data. Replication Server delivers transactions to
replicate databases in the order they are committed in the primary database.
Thisensuresthat the replicate data goes through the same series of statesasthe
primary data.

The importance of loose consistency varies by application and even within an
application. Some applications tolerate average system lag time and
occasional, longer delays with no special provisions. Some require special
handling when the lag time becomes too great, and some require special
handling for certain types of transactions.

Controlling risks in high-value transactions

32

The delay introduced by data replication adds risk to some business decisions.
For example, a banking application that approves cash withdrawal s uses the
most current account information available to verify that a customer’s balance
is sufficient to cover the withdrawal. If withdrawals processed in a primary
database have not reached the replicate database, an application using the
replicate database risks approving awithdrawal that exceeds the funds
available in the customer’s account.

To limit risk, the banking application can distinguish between high-value
transactions and low-value transactions. For example, it might approve a $100
withdrawal based on the account balance in the local replicate database, but it
would log in to the primary database to check the account balance before
approving a $1000 withdrawal .

Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Measuring lag time

A measure of the latency for areplicate site can be used to limit risks for some
transactions. A small lag time indicates that the primary and replicate data are
nearly consistent. An extensivelag timeindicates agreater potential difference
between the primary and replicate data.

An application can use a measure of lag timeto:

e Limitrisk by restricting the transactions clients can execute asthelag time
increases. For example, the banking application described in the previous
section could include the lag time in its approval formula. It might allow
withdrawals of up to $1000 based on the balance in the local replicated
table when the latency isless than aminute. If the lag time is more than a
minute, however, the application would log in to the primary database to
approve withdrawal s of more than $500.

« Provide clients with a“performance meter” for datareplication. Clients
can use an estimate of lag time as an advisory. For example, a decision-
support user, noting that the lag timeis high, might wait for the local data
to catch up with the primary data, and for the lag time to decrease, before
running an analysis based on replicate data.

See Chapter 4, “ Performance Tuning” in the Replication Server Administration
Guide Volume 2 for information on measuring latency.

Methods for updating primary data

Design Guide

In areplication system, the primary copy of a datarow is the definitive copy.
An update committed in the primary database is authoritative and isdistributed
to al databases with subscriptions for the data.

Replication Server distributes transactions after they are committed in the
primary database. Because changes made to replicate data are not distributed,
make the data in replicate databases read-only for clients and route al client
transactions to the primary database.

There are four ways to update primary datain areplication system based on
Replication Server:

* Primary datamaintenanceis centralized at the primary site. Clients cannot
update primary data from remote sites.

¢ Clients at remote sites update primary data through network connections.

33

Methods for updating primary data

¢ Clients at remote sites update primary data using request functions.

e Primary data maintenance is distributed at multiple primaries. Any
resulting conflicts must be avoided or resolved.

Centralized primary maintenance

This method isthe simplest, and the most restrictive, for remote clients. Client
applications at remote sites use replicate data for reference only. This
architecture can be used to create a copy of a production OLTP system that
allows decision support applicationsto run separately from the OLTP system.
See “Decision-support applications’ on page 26 for information on
applications that use this method for updating primary data.

Primary maintenance via network connections

34

For some applications, clients at remote sites must update primary data. The
easiest way to do thisisfor the client to connect directly to the primary data
server through the network. Replication Server distributes updates from the
primary to the remote sites in the usual way.

Figure 2-5illustrates this design.

Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Figure 2-5: Primary data maintenance via network

FeacHrite
Cliett Aplicatioes

Primary
Site

Lacal Fead-
Fernote Yrite
Client Applicatiors

This architecture uses client connections through the WAN. It is useful for
applications with large amounts of data and low update rates. Updates are
executed directly against the primary data so that they can be distributed to all
sites that have subscriptions for the data. At remote sites, local replicated
copies of the data can be used for decision-support applications to reduce the
network load.

Managing update conflicts for multiple primaries

Design Guide

When there are multiple primaries, remote updates should be designed so that
they do not introduce errors resulting from simultaneous requeststo update the
same information from multiple remote sites.

If updates from two different sites conflict when they are applied at a primary
site, one of the updateswill berejected, and thereplicated data at the sitewhere
the update was rejected will be inconsistent with primary data.

35

Methods for updating primary data

To handle inter-site concurrency conflicts when there are multiple primaries,
follow these guidelines:

¢ When each row has an owner — design the application so that inter-site
conflicts are impossible. For example, restrict the updates performed at
one site to rows that cannot be updated by clients at other sites. This
guarantees that updates will not conflict at the primary site.

¢ When there is no segmentation of ownership — add version control
information to function strings to allow conflicts to be detected and
handled.

Designing conflicts out of an application

One way to handle conflicting updates from different sitesis to construct the

application and the environment so that conflicts cannot happen. For example,
an applicationwith customer account information distributed to each of several
branch offices could require that an account be updated only at the customer’s
home branch. This prevents two clients from updating the same account at the
sametimein different databases.

Another technique isto include alocation key, such asabranch ID, in the
primary key for replicated tables. If each site uses aunique location key for all
of its transactions, inter-site conflicts cannot occur.

Version-controlled updates
You can use version-control updates to:
e Detect and resolve conflicting updates
¢ Resolve multiple primary conflicts when there is no single primary source
e Make multiple requests to asingle primary

Updates are accepted or rejected based on a version column that changes each
time the row is updated. The version column can be a number that increases
with each update, atimestamp, or some other value from aset of unique values.

36 Replication Server

CHAPTER 2 Application Architecture for Replication Systems

Design Guide

To update arow, an application must provide the current value of the version
column at the primary site. Typically, the value is provided as a parameter to a
replicated stored procedure. The stored procedure at the primary site checksthe
version parameter and takes appropriate action if it detects a conflict. If the
application chooses to roll back the transaction, it is written to the exceptions
log.

Note Managing update conflicts using version control requires careful
planning and design. When there are multiple primaries, it is usualy simpler
and more effective to establish ownersfor each row of atable.

37

Methods for updating primary data

38

Replication Server

CHAPTER 3

mplementation Strategies

This chapter describes several models and strategies you can use to
implement your Replication Server application design. It includes
procedures and sample scripts that you can adapt to your own application.

Topic Page
Overview of models and strategies 39
Basic primary copy model 40
Distributed primary fragments model 47
Corporate rollup 52
Redistributed corporate rollup 56
Warm standby applications 58
Model variations and strategies 63

Overview of models and strategies
The models discussed in this chapter are:

Design Guide

Basic primary copy model — centralized primary data, distributed
replicate data

Distributed primary fragments model — both primary and replicate
data distributed through the replication system

Corporate rollup — distributed primary data, centralized replicate data

Redistributed corporate rollup —same as corporaterollup, but updates
redistributed to replicate databases

Warm standby appli cations—two databases, one serving as backup for
the other, which together as alogical unit may participate in
replication

In addition, this chapter describes model variations and other strategies
you can use:

Multiple replication definitions
Publications

39

Basic primary copy model

¢ Request functions
¢ Pending tables
¢ Master/detail relationships

These methods are described in detail in “Model variations and strategies’ on
page 63.

Thetype of application you are building, the way you update primary data, and
the way you manage potential update conflicts determine the model you useto
implement your replication application.

For instance, you can use the basic primary copy model to implement either a
decision-support application or alow-volume distributed OLTP system. You
might implement a decision-support application using either the basic primary
copy model or the redistributed corporate rollup model, depending on whether
your primary dataiscentralized or fragmented. A distributed OLTP application
might be implemented using the distributed primary fragment model, with or
without corporate rollup, depending on additional decision-support needs.

Basic primary copy model

40

The basic primary copy model alows you to replicate data from a primary
database to destination databases. Thismodel iswell suited to decision-support
applications, although low-volume transaction-processing applications can
update primary dataremotely, either directly over the WAN or through request
functions (replicated stored procedures). Primary datathat is updated from
remote sites can then be replicated back to subscribing sites.

You can implement the basic primary copy model by using any or al of the
following:

e Tablereplication definitions
e Applied functions
¢ Reguest functions

This section provides basic examplesfor using table replication definitionsand
applied functions. For exampl es of request functions and other, more advanced
uses of the primary copy model, see“Model variationsand strategies’ on page
63.

Replication Server

CHAPTER 3 Implementation Strategies

Using table replication definitions

At the primary site:

At the replicate sites:

Design Guide

Using table replication definitions allows you to replicate datafrom a primary
source as read-only copies.

You can create one or many replication definitionsfor a primary table although
aparticular replicate table can subscribe to only one of them. See“Multiple
replication definitions” on page 64 for an example using multiple replication
definitions.

You also can collect replication definitionsin a publication and subscribeto al
of them at onetimewith apublication subscription. See* Publications’ on page
66 for an example using publications.

For each table you want to replicate according to the basic primary copy model,
you need to:

e Set up routes and connections between Replication Servers.
e Createthetable you want to replicate in the primary database.

¢ Createthetable (or tables) to which you want to replicate in destination
databases.

« Create indexes and grant appropriate permissions on the tables.

e Mark the primary table for replication using the sp_setreptable system
procedure.

e Create one (or more) replication definitions for the table at the primary
Replication Server.

Create subscriptions for the table replication definitions at each replicate
Replication Server.

See the Replication Server Administration Guide Volume 1 for details on
setting up the basic primary copy model.

In Figure 3-1, aclient application at the primary (Tokyo) site makes changes
to the publishers table in the primary database. At the replicate (Sydney) site,
the publishers table subscribes to the primary publishers table—for those rows
where pub_id is equal to or greater than 1000.

41

Basic primary copy model

Figure 3-1: Basic primary copy model using table replication definitions

Chent application

Primary L
Data changes primary dala.

Site

| Replication definition here. |

Communications
Matwork

Replicate
Site
| Subscription here. | @

| Replicate data changes in |
subscribing fabla.

¥
A
Y
%),

Marking the table for replication
This script marks the publishers table for replication.
-- Execute this script at Tokyo data server

-- Marks publishers for replication
sp_setreptable publishers, 'true'

go
/* end of script */

Replication definition
This script creates atable replication definition for the publishers table at the
primary Replication Server.

-- Execute this script at Tokyo Replication Server

-- Creates replication definition pubs_rep
create replication definition pubs rep

42 Replication Server

CHAPTER 3 Implementation Strategies

with primary at TOKYO DS.pubs2
with all tables named 'publishers'
(pub_id char(4),

pub_name varchar (40),

city wvarchar (20),

state varchar(2))
primary key (pub id)
go

/* end of script */

Subscription

This script creates a subscription for the replication definition defined at the
primary Replication Server.

-- Execute this script at Sydney Replication Server
-- Creates subscription pubs_sub

Create subscription pubs_sub

for pubs_rep

with replicate at SYDNEY DS.pubs2

where pub_id >= 1000

go

/* end of script */

Using applied functions

You can also use applied functions to replicate stored procedure invocationsto
remote sites with replicate data. If you use applied functions to replicate
primary data, you can:

¢ Reduce network traffic over the WAN

¢ Increase throughput and decrease latency because applied functions
execute more rapidly

« Enableamore modular system design

In the following example, aclient application at the primary (Tokyo) site
executesauser stored procedure, upd_publishers_pubs2, which makes changes
to the publishers table in the primary database. Execution of
upd_publishers_pubs2 invokes function replication, which causes the
corresponding stored procedure, also named upd_publishers_pubs2, to execute
on the replicate data server.

Design Guide 43

Basic primary copy model

At the primary site:

At the replicate site:

44

To create an applied function for an application that implements the basic
primary copy model, you need to:

Create the user stored procedure in the primary database.

Mark the user stored procedure for replicated function delivery using
Sp_setrepproc.

Grant the appropriate procedure permissions to the appropriate user.

At the primary Replication Server, create the function replication
definition for the stored procedure with parameters and datatypes that
match those of the stored procedure. You can specify only the parameters
you want to replicate.

Create a stored procedure in the replicate database with the same
parameters (or asubset of those parameters) and datatypes asthose created
inthe primary database. Grant appropriate permissionsto the procedure to
the maintenance user.

Create a subscription to the function replication definition in the replicate
Replication Server.

Replication Server

CHAPTER 3 Implementation Strategies

Figure 3-2: Basic primary copy model using applied functions

Primary s
Site Cllent application executas :
stored procedure that
changes primary data.

' Replication definition her.

Communications
Matwork

Subscrption hera.

Corresponding sfored
procedure executes to
change replicate data,

e
| Replicale
Data

Stored procedures

This script creates stored procedures for the publishers table at the primary and
replicate sites.

-- Execute this script at Tokyo and Sydney data servers
-- Creates stored procedure upd publishers pubs2
create procedure upd publishers pubs2
(epub_id char(4),

@pub name varchar (40),

@city varchar (20),
@state char(2))
as
update publishers
set
pub name = @pub name,
city = @city,
state = @state
where
pub_id = e@pub id

Design Guide 45

Basic primary copy model

go
/* end of script */

Function replication definition

This script creates an applied function replication definition for the publishers
table at the primary Replication Server. The replication definition uses the
same parametersand dataty pes asthe stored procedurein the primary database.

-- Execute this script at Tokyo Replication Server
-- Creates replication definition
_upd publishers pubs2 repdef
create applied function replication definition
upd publishers pubs2 repdef
with primary at TOKYO DS.pubs2
with all functions named upd publishers pubs2
(epub_id char(4),
@pub name varchar (40),
@city varchar (20),
@state char(2))

go
/* end of script */

Subscriptions
You can create a subscription for afunction replication definition in one of two
ways:
¢ Usethe create subscription command and the no-materialization method.

Use this method if primary datais already loaded at the replicate, and
updates are not in progress.

. Use the define subscription, activate subscription, and validate subscription
commands and the bulk materialization method.

Use this method if you are coordinating loading data with updates.

Examples of both methods follow.

Using the no-materialization method

This script creates a subscription at the replicate Replication Server using the
no-materialization method for the replication definition defined at the primary
Replication Server.

-- Execute this script at Sydney Replication Server

46 Replication Server

CHAPTER 3 Implementation Strategies

-- Creates subscription using no-materialization
-- for upd publishers pubs2 repdef
create subscription upd publishers pubs2 sub
for upd publishers pubs2 repdef
with replicate at SYDNEY DS.pubs2
without materialization
go
/* end of script */

Using bulk materialization

This script defines, activates, and validates a subscription at the replicate
Replication Server for the replication definition defined at the primary
Replication Server.

-- Execute this script at Sydney Replication Server
-- Creates subscription using bulk materialization
-- for upd publishers pubs2 repdef
define subscription upd publishers pubs2 sub

for upd publishers pubs2 repdef
with replicate at SYDNEY DS.pubs2

go

activate subscription upd publishers pubs2 sub

for upd publishers pubs2 repdef
with replicate at SYDNEY DS.pubs2
go
/* Load data. If updates are in progress,use activate
subscription with the “with suspension” clause and
resume connection after the load. */

validate subscription upd publishers pubs2 sub
for upd publishers pubs2 repdef

with replicate at SYDNEY DS.pubs2

go

/* end of script */

Distributed primary fragments model

Design Guide

In this model, tables at each site contain both primary and replicated data.
However, each site functions as a primary site for a particular subset of rows
called a fragment. Updates to the primary fragment are distributed to other
sites. Updates to nonprimary data are received from the primary sites of other
fragments.

47

Distributed primary fragments model

48

Applicationsthat use the distributed primary fragments model have distributed
tablesthat contain primary and replicated data. The Replication Server at each
site distributes modifications made to local primary data to other sites and
applies modifications received from other sites to the datathat is replicated
locally.

The following tasks must be performed at each site to replicate atablein the
distributed primary fragments model:

Createthetablein each database. The table should have the same structure
in each database.

Create indexes and grant appropriate permissions on the tables.

Allow for replication on the tables using the sp_setreptable system
procedure.

Create areplication definition for the table at each site.

At each site, create a subscription for the replication definition at the other
sites. If nisthe number of sites, create n-1 subscriptions.

Figure 3-3 diagrams the flow of datafor distributed primary fragments:

Replication Server

CHAPTER 3 Implementation Strategies

Figure 3-3: Distributed primary fragments model

Chicago

New York
Primary datg flow e >
Replicate data fow >
Primary and replicale g -
data flow '

San Francisco

Figure 3-4 illustrates a salesdetail table set up with distributed primary
fragments at three sites. Each site receives replicated data via two
subscriptions.

Design Guide 49

Distributed primary fragments model

Figure 3-4: Table with three distributed primary fragments

Chicago sales detail
stor_id title ord_num
|— TOBT
|| 7os7

5023

5023 4—' ny_sales_sub |

5023

8042 P ro—
sf_sales_sul —y
8042 L=

s ,
sales detail
New York

stor_id title ord_num

TOET
——.l chi_sales_sub
- = TOE7

5023
5023
5023

a042
- = sf_sales_sub Iq——
B042

San
Francisco sales delail
stor_id title ord_num
— TOET
— chi_sales_sub -

-

I ny_sales sub |—hv 5023

2
R
| I—

Replication definitions
These scripts create replication definitions for the salesdetail table at each site:

-- Execute this script at Chicago RSCHI.
-- Creates replication definition chi_sales.
create replication definition chi_sales_rep
with primary at DSCHI.DBCHI
with all tables named 'salesdetail'

(stor_id char(4),

ord num varchar(20),

title_id varchareé),

gty smallint,

discount float)
primary key (stor id, ord num)
searchable columns(stor id, ord num, title id)
go

50 Replication Server

CHAPTER 3 Implementation Strategies

/* end of script */
-- Execute this script at New York RSNY.
-- Creates replication definition ny sales.
create replication definition ny_ sales_rep
with primary at DSNY.DBNY
with all tables named 'salesdetail'

(stor_id char (4),

ord num varchar (20),

title_id varchare),

gty smallint,

discount float)
primary key (stor_id, ord num)
searchable columns(stor id, ord num, title id)
go
/* end of script */
-- Execute this script at San Francisco RSSF.
-- Creates replication definition sf sales.
create replication definition sf_sales_rep
with primary at DSSF.DBSF
with all tables named 'salesdetail’

(stor_id char (4),

ord_num varchar (20),

title_id varchare),

gty smallint,

discount float)
primary key (stor_id, ord num)
searchable columns(stor id, ord num, title id)
go
/* end of script */

Subscriptions

Each site has a subscription to the replication definitions at the other two sites.
These scripts create the subscriptions:

-- Execute this script at Chicago RSCHI.
-- Creates subscriptions to ny sales and sf sales.
create subscription ny sales_sub
for ny sales_rep
with replicate at DSCHI.DBCHI
where stor_id = '5023'
go
create subscription sf sales sub
for sf_sales_rep
with replicate at DSCHI.DBCHI

Design Guide o1

Corporate rollup

where stor id = '8042'
go
/* end of script */
-- Execute this script at New York RSNY.
-- Create subscriptions to chi_sales and sf sales.
create subscription chi sales sub
for chi sales sub
with replicate at DSNY.DBNY
where stor_id = '7067'
go
create subscription sf sales_sub
for sf sales rep
with replicate at DSNY.DBNY
where stor id = '8042'
go
/* end of script */
-- Execute this script at San Francisco RSSF.
-- Creates subscriptions to chi_sales and ny sales.
create subscription chi sales sub
for chi sales rep
with replicate at DSSF.DBSF
where stor _id = '7067'
go
create subscription ny sales_sub
for ny sales rep
with replicate at DSSF.DBSF
where stor id = '5023"
go
/* end of script */

Corporate rollup

52

In this model, multiple primary fragments maintained at remote sites are
consolidated into a single aggregate replicate table at a central site.

The corporate rollup model has distributed primary fragments and a single,
centralized consolidated replicate table. Thetable at each primary site contains
only thedatathat is primary at that site. No dataisreplicated to these sites. The
corporate rollup tableisa“rollup” of the data at the primary sites.

The corporate rollup model requires distinct replication definitions at each of
the primary sites. The site where the datais consolidated has a subscription for
the replication definition at each primary site.

Replication Server

CHAPTER 3 Implementation Strategies

Design Guide

Replication Agents are required at the primary sites but not at the central site,
since data will not be replicated from that site.

These tasks must be performed to create a corporate rollup from distributed
primary fragments:

* Createthetablein each primary database and in the database at the central
site. The tables should have the same structure and the same name.

« Create indexes and grant appropriate permissions on the tables.

¢ Ineach remote database, allow for replication on the table with the
sp_setreptable System procedure.

« Create areplication definition for the table at each remote site.

e At the headquarters site, where the datais to be consolidated, create
subscriptions for the replication definitions at the remote sites.

Figure 3-5illustrates the flow of datafor a corporate rollup application model.

Figure 3-5: Corporate rollup model with distributed primary fragments

/’?mat?\
é) Fragment

Chicago

/—h?m\
é) Fragment @

DSNY

Corporate
Rollup Data

RSNY

é) Fragment

DSSF

Headquarters

San Francisco

53

Corporate rollup

Figure 3-6 illustrates a salesdetail table with a corporate rollup at a
headquarters site. The headquarters site receives datafrom the remote sitesvia
three subscriptions.

Figure 3-6: Table with multiple primary fragments

Chicago
salesdetail
stor_id title | ord_num
7067 7
7067 B
HQ salesdetai p
Mew York stor_id title | ord_num
salesdetail :: chi_sales_sub }—b[o7
| stor_id | title | ord_num = = 7067
| 5023 —| 5023
(R = Ny _sales_sub 5023
| 023 J 5023
8042
P - =-|| sf_sales_sub 1-»[8042
n Francisco _)
salesdatail
stor_id title ord_num
an4z —|
8042 |

Replication definitions

These scripts create replication definitions for the salesdetail table at each
primary site:

-- Execute this script at Chicago RSCHI.
-- Creates replication definition chi sales.
create replication definition chi sales rep
with primary at DSCHI.DBCHI
with all tables named 'salesdetail’
(stor_id char(4),
ord num varchar(20),
title id wvarchare),
gty smallint,
discount float)
primary key (stor_id, ord num)
searchable columns(stor id, ord num, title id)
go
/* end of script */

54 Replication Server

CHAPTER 3 Implementation Strategies

-- Execute this script at New York RSNY.
-- Creates replication definition ny sales.
create replication definition ny_ sales_rep
with primary at DSNY.DBNY
with all tables named 'salesdetail'
(stor_id char(4),
ord num varchar (20),
title id varchare),
gty smallint,
discount float)
primary key (stor_id, ord num)
searchable columns(stor_id, ord num, title id)
go
/* end of script */
-- Execute this script at San Francisco RSSF.
-- Creates replication definition sf sales.
create replication definition sf_sales_rep
with primary at DSSF.DBSF
with all tables named 'salesdetail!
(stor_id char(4),
ord num varchar (20),
title_id varchare),
gty smallint,
discount float)
primary key (stor id, ord num)
searchable columns(stor_id, ord num, title id)
go
/* end of script */

Subscriptions

The headquarters site has subscriptions to the replication definitions at each of
the three primary sites. The primary sites have no subscriptions. This script
creates the subscriptions in the RSHQ Replication Server:

-- Execute this script at Headquarters RSHQ.
-- Creates subscriptions to chi sales, ny sales,
-- and sf sales.
create subscription chi_sales sub
for chi_sales_rep
with replicate at DSHQ.DBHQ
where stor_id = '7067'
go
create subscription ny sales sub
for ny sales_rep

Design Guide 55

Redistributed corporate rollup

with replicate at DSHQ.DBHQ
where stor id = '5023"

go

create subscription sf sales_sub
for sf_sales_rep
with replicate at DSHQ.DBHQ
where stor id = '8042'

go

/* end of script */

Redistributed corporate rollup

56

The redistributed corporate rollup is the same as the corporate rollup model,
except that the consolidated tableis redistributed back to the remote sites.

Primary fragments distributed at remote sites are rolled up into a consolidated
table at a central site. At the site where the fragments are consolidated,
RepAgent processes the consolidated table asif it were primary data.

The consolidated table is described with areplication definition. Other sites
can create subscriptions for this table.

Normally, RepAgent for Adaptive Server filters out updates made by the
mai ntenance user. This ensures that replicated datais not redistributed as
primary data.

The RepAgent send_maint_xacts_to_replicate option is provided for the
redistributed corporate rollup model. If you start RepAgent with
send_maint_xacts_to_replicate Set to “true,” RepAgent submits all updates to
the Replication Server as if they were made by a client application.

If you use the redistributed corporate rollup model:

e Donot alow primary sitesto resubscribeto their primary data. If they do,
transactions could loop endlessly through the system.

« Donot alow applicationsto update the corporate rollup table. All updates
should originate from the primary sites.

Figure 3-7 illustrates the flow of datain an application based on the
Redistributed corporate rollup model.

Replication Server

CHAPTER 3 Implementation Strategies

Design Guide

Chicago

Figure 3-7: Redistributed corporate rollup with distributed fragments

Primary
Fragment

Headquarters

S

Corporate
Rollup Data

/_‘EE\‘
é) Fragment @

MNew York

ﬁ?ﬁr}r\.
) Fragment

RepAgents send_maint_xacis_to_replicate
option saf to “frue” or LTM sfarted with -4 option

\

Consolidafed data is
rephcated fo other sites,

San Francisco \

The design of the redistributed corporate rollup model isidentical to the
corporate rollup model, except that:

¢ RepAgent must be installed at the headquarters site for the DBHQ
database. RepAgent must be started with the
send_maint_xacts_to_replicate option set sothat it will transfer log records
from the maintenance user.

¢ RepAgent isrequired for the RSHQ RSSD, since datawill be distributed
from that site.

« A replication definition must be created for the salesdetail table at the
headquarters site. Other sites can create subscriptions to this replication
definition, but the primary sites must not subscribe to their own primary
data.

57

Warm standby applications

¢ TheRSHQ Replication Server must have routes to the other sites that
create subscriptions for the consolidated replicate table. If the primary
sites create subscriptions, routes must be created to them from RSHQ.

Warm standby applications

Inawarm standby application, Replication Server maintainsapair of Adaptive
Servers, one of which acts as the backup of the other.

Typicaly, client applications update the active database while Replication
Server maintains the other database as a standby copy of the active database. I
the active database fails, or if you need to perform maintenance on the active
data server or database, you can switch to the standby database (and back) with
little interruption of client applications.

In awarm standby application, you create three connections:

e Alogical connection that Replication Server maps to the currently active
database

e A physical connection for the active database
e A physical connection for the standby database

Thelogical database in awarm standby application may, with respect to other
databases in the replication system, function as one of the following:

e A database that does not participate in replication
e A primary database
e A replicate database

The procedure in this section demonstrates how to set up a warm standby
system for a database that acts as a primary database in a replication system.

Figure 3-8 illustrates awarm standby application operating on the
BOSTON_DSdataserver for apubs2 databaseonthe NY DS dataserver. The
database is replicated to TOKYO_DS.

58 Replication Server

CHAPTER 3 Implementation Strategies

Figure 3-8: Warm standby system

NY_RS
Standby BOSTON_DS
DSl Data Server

. Inbound Queue +
Database
pubs2 Distributor
Database | __Slﬂndb‘_-f Database

To Tokyo Site
NY_DS
Data Server

A

Client
Applications

In this scenario the pubs2 database acts as a primary database in areplication
environment. The primary pubs2 database for which astandby is created is
called the active database.

| J

Setting up a warm standby application

You can use the following procedure to set up awarm standby application for
an active database. In this procedure, an active database is already established.
The procedure will be somewhat different if the active database has not yet
been created. Make sure you review the warm standby information in the
Replication Server Administration Guide Volume 1 before proceeding.

Note You must use Adaptive Server databases for this procedure.

1 Marktheentireactivedatabasefor replication to the standby databasewith
the sp_reptostandby stored procedure.

Design Guide 59

Warm standby applications

60

sp_reptostandby enables replication of datamanipulation language (DML)
and supported data definition language (DDL) commands and stored
procedures. Refer to Chapter 3, “Managing Warm Standby A pplications,”
in the Replication Server Administration Guide Volume 2 for detailed
information.

Reconfigure RepAgent using the sp_config_rep_agent stored procedure
with the send_warm_standby_xacts option. Restart RepAgent.

Grant replication_role to the active database maintenance user.

On the active data server, add the maintenance user of the standby
database to the active database, and grant replication_role to the new

mai ntenance user. This step ensures that the maintenance user ID existsin
the standby database after the database is |oaded (step 8).

Log in to the Replication Server that is to manage the warm standby
database, and create alogical connection for the active database, using the
create logical connection command. The name of the logical connection
must be the same as the name of the active database.

Note If you create the logical connection before you create the active
database connection, use different names for the logical connection and
the active database.

On the standby data server, create the standby database with the same size
as the active database.

Use Sybase Central or rs_init to create the standby database connection.
For more information, see the Replication Server online help and the
Replication Server installation and configuration guide for your platform.

After the connection is created, log in to Replication Server and use the
admin logical_status command to make sure that the new connection is
“active.”

Initialize the standby database using dump and load without the rs_init
“dump marker” option. (Or you can use bep. Refer to the Replication
Server Administration Guide Volume 2 for more information.)

a Onthe Replication Server, suspend the active database connection.

Note If you cannot suspend the active database, use dump and load
with the rs_init “dump marker” option.

b Onthe active Adaptive Server, dump the active database.

Replication Server

CHAPTER 3 Implementation Strategies

¢ Load the active database dump into the standby database.
d Onthe standby Adaptive Server, put the standby database online.

9 Onthe Replication Server, resume connections to the active and standby
databases, using the resume connection command.

Check the logical status, using the admin logical_status command. Do not
continue unless both active and standby databases are marked “ active.”

10 Verify that modifications occur from active to standby database.

Usingisgl, update arecord in the active database and then verify the update
in the standby database.

Switching to the standby database

Design Guide

If it becomes necessary to switch from the active database to the standby
database, you need to take steps to prevent client applications from executing
transactions against or updating the active database. After the switchis
complete, clients can connect to the new active database to continue their work.
See “ Switching clients to the new database” on page 62 for details.

Before switching to astandby database, you should determinewhether aswitch
iS necessary:

« Don't switchif the active data server isexperiencing atransient failure. A
transient failureisafailure fromwhich the Adaptive Server recoverswhen
restarted, without additional recovery steps.

« Do switch if the active database will be unavailable for along period of
time.

You must use the switch active command to switch the active and standby
databases. Thefollowing procedureillustrates how to switch thewarm standby
system illustrated in Figure 3-8 on page 59 from the active database to the
standby database.

1 OntheReplication Server, use switch active to switch processing to the
standby database.

2 Monitor progress of the switch. The switch is complete when the standby
connection is active and the previously active connection is suspended.

a Onthe Replication Server, check the logical status, using the
admin_logical_status command.

61

Warm standby applications

b Tofollow the progress of the switch, check the last several entriesin
the Replication Server error log.

Start the RepAgent for the new active database.
4 Decide what you want to do with the old active database. You can:

e Bring the database online as the new standby database, and resume
connections so that Replication Server can apply new transactions, or

e Drop the database connection using the drop connection command.
You can add it again later as the new standby database.

5 Usingisgl, update arecord in the new active database, and then check the
update the new standby database.

Figure 3-9: Warm standby system, after switching
NY_RS

Standby - NY_DS
DSl o Data Server

- Inbound Queus
Active Database pubs2
Database

Dgliisagsg Disiriouter Standby Database
e

To Tokyo Site

BOSTON_DS
Data Server

A
Client
Applications

Switching clients to the new database
Switching from the active to the standby database does not switch client
applications to the new active data server and database. You must devise a
method to handle client switching. For example, you could:

e Set uptwo interfacesfiles, onefor client applications and one for
Replication Server. At switch time, modify the client interfacesfile to
point to the new active server.

62 Replication Server

CHAPTER 3 Implementation Strategies

Create aninterfacesfile entry with asymbolic data server name for use by
client applications. At switch time, modify the address information
associated with the symbolic name.

Use a mechanism, such as an intermediate Open Server, to map the client
application data server connections to the currently active data server
automatically.

See the Replication Server Administration Guide Volume 2 for more
information.

Model variations and strategies

This section describes some model variations and other strategies you can use
to implement your replication system design. They are:

Design Guide

Multiple replication definitions — a strategy using multiple replication
definitions for a primary table to specify different table names, column
sets, and column names, thereby presenting differing views of the primary
table to subscribing replicate tables

Publications — a strategy that allows users to subscribe to a set of
replication definitions with a single subscription

Pending tables—a strategy used with request functionsthat allowsusersto
see the results of updates to primary data before the update has been
returned to the replicate site

Implementing master/detail relationships — uses request functions and
stored procedures to ensure proper subscription migration

63

Model variations and strategies

Multiple replication definitions

64

You can create multiple replication definitions for asingle primary table. Each
replication definition can specify different table names, column sets, and
column names, thereby presenting different views of the primary table to each
of the subscribing replicate tables.

Note You can create multiple replication definitionsfor a primary table, and a
replicate table can subscribe to multiple table replication definitions. However,
areplicate table can subscribe only to one replication definition per primary
table.

To set up a system using multiple replication definitions, follow the directions
in “Using table replication definitions” on page 41, creating multiple
replication definitions as needed and asubscription for each one. When you use
multiple replication definitions, you are using a variation of the primary copy
model.

In Figure 3-10, aclient application at the primary (Tokyo) site makes changes
to the publishers table in the primary database. At one replicate (Sydney) site,
the publishers table subscribes to the complete table, and the pubs_copy table
subscribes only to the pub_id and pub_name columns. At another replicate
(Sesttle) site, the pubs_copy table subscribes to the pub_id and pub_name
columns, where pub_id is equal to or greater than 1000.

Replication Server

CHAPTER 3 Implementation Strategies

Figure 3-10: Multiple replication definitions

publishers

Primary |

Eeplication
definitions heve,

Client application
chawrges privaary data,

\
O

Communications
Metwork.

vibscriptions here, |

N

Seattle

pubs_copy

5
(1| Feicae
El

Replication definitions

These scripts create table replication definitions for the publishers table at the
primary Replication Server. Each replication definition describes a different
view of the primary table.

-- Execute this script at Tokyo Replication Server
-- Creates replication definitions pubs_rep and
-- pubs_copy rep
create replication definition pubs rep
with primary at TOKYO DS.pubs2
with all tables named 'publishers'
(pub_id char(4),
pub_name varchar (40),
city wvarchar (20),
state varchar(2))
primary key (pub id)
go

Design Guide 65

Model variations and strategies

create replication definition pubs copy rep
with primary at TOKYO DS.pubs2
with primary table named 'publishers'
with replicate table named 'pubs copy'
(pub_id char (4),
pub _name varchar (40))
primary key (pub_ id)
go
/* end of script */

Subscriptions

These scripts create subscriptions for the replication definitions defined at the
primary Replication Server.

-- Execute this script at Sydney Replication Server
-- Creates subscription pubs sub and pubs copy rep
Create subscription pubs_sub
for pubs_rep
with replicate at SYDNEY DS.pubs2
go

create subscription pubs_ copy sub
for pubs copy rep

with replicate at SYDNEY DS.pubs2
go
/* end of script */

-- Execute this script at Seattle Replication Server
-- Creates subscription pubs_copy sub
create subscription pubs_ copy sub
for publ copy rep
with replicate at SEATTLE DS.pubs2
where pub_id >= 1000
go
/* end of script */

Publications

Use publications to collect replication definitions for tables and/or stored
procedures and then subscribe to them as a group.

With publications, you can monitor the status of one publication subscription
for aset of tables and procedures. Publication usage is not a separate model; it
provides a grouping technique that can be used by any model.

66 Replication Server

CHAPTER 3 Implementation Strategies

When you use publications, you create and manage the following objects:

e Articles—replication definition extensions for tables or stored procedures
that let you put table or function replication definitions in a publication.

¢ Publications — groups of articles from the same primary database.

e Publication subscriptions — subscriptions to a publication. When you
create apublication subscription, Replication Server createsasubscription
for each of the publication’s articles.

The following steps summarize the procedure for replicating data using
publications.

At the primary site: 1 Create or select the replication definitions to include in the publication.
2 Createthe publication, using the create publication command.

3 Create articlesthat reference the replication definitions you have chosen,
using the create article command.

4 Vadidate the publication using the validate publication command.

At the replicate site: Create a subscription for the publication using the create subscription
command.

In Figure 3-11, atable replication definition pubs_rep, referenced by two
articles, and a function replication definition, referenced by one article, are
collected in the publication pubs2_pub.

Design Guide 67

Model variations and strategies

Stored procedure

68

Figure 3-11:

Publications

publishers

Primary
Site
N I
Eeplication definitions,

here,

articles, and publication |

e publication

Communications
Metwork.

Sydney

authors

Feplicate
Site

This script creates a stored procedure update_ authors_pubs?2 that updates the
authors table in the pubs2 database. Create the same procedure at the primary
and replicate sites.

-- Execute this script at the Tokyo and Sydney

-- data servers

-- Creates the stored procedure update authors pubs2
create procedure upd authors pubs2

(eau_id id,

au_lname varchar (40),
au_fname varchar (20),

phone char(12),
address varchar(12),
city wvarchar (20),
state char(2),
country varchar(12),
postalcode char (10))

Replication Server

CHAPTER 3 Implementation Strategies

as
update authors
set
au_lname = @varchar (40),
au_fname = @varchar(20),
phone = @char(12),
address = @varchar(12),
city = @varchar(20),
state = @char(2),
country = @varchar (12),
postalcode = @char(10)
where au_id = @au_id
go
/* end of script */

Function replication definition
Thisscript creates an applied function replication definition at the primary site:

-- Execute this script at Tokyo Replication Server
-- Creates the applied function replication definition
-- upd authors rep repdef
create applied function replication definition
upd_authors rep
with primary at TOKYO DS.pubs2
with all functions named upd_authors pubs2

(@au_id id,

au_lname varchar (40),

au_fname varchar (20),

phone char(12),

address varchar(12),

city varchar (20),

state har(2),

country varchar(12),

postalcode char (10))

go

/* end of script */

Table replication definition
This script creates atable replication definition for the publishers table at the
primary Replication Server.

-- Execute this script at Tokyo Replication Server
-- Creates replication definitions pubs_rep
create replication definition pubs_ rep

Design Guide 69

Model variations and strategies

with primary at TOKYO DS.pubs2
with all tables named 'publishers'
(pub_id char (4),

pub_name varchar (40),

city wvarchar (20),

state varchar(2))
primary key (pub_ id)
go

/* end of script */

Publication

This script creates the publication pubs2_pub at the primary Replication
Server.

-- Execute this script at Tokyo Replication Server
-- Creates publication pubs pub

create publication pubs2 pub

with primary at TOKYO DS.pubs2

go

/* end of script */

Articles

This script creates articles for the publication pubs2_pub at the primary
Replication Server. It creates two articles for the replication definition
pubs_rep.

-- Execute this script at Tokyo Replication Server
-- Creates articles upd authors_art, pubs_art, and
-- pubs_copy art
create article upd authors art

for pubs2 pub
with primary at TOKYO DS.pubs2
with replication definition upd authors_ rep

go

create article pubs art
for pubs2 pub
with primary at TOKYO DS.pubs2
with replication definition pubs_rep
go

create article pubs copy art

for pubs2 pub
with primary at TOKYO DS.pubs2

70 Replication Server

CHAPTER 3 Implementation Strategies

Validation

Subscription

Request functions
You can use request functions to allow the primary database user to invoke
stored procedures on the replicate data. The following section illustrates a
system that uses request functions, applied functions, and alocal pending table.

Design Guide

with replication definition pubs rep
where pub id >= 1000

go
/* end of script */

This script changes the status of the publication pubs2_pub to “valid.”

-- Execute this script at Tokyo Replication Server
-- Validates the publication pubs2 pub

validate publication pubs2 pub

with primary at TOKYO DS.pubs2

go

/* end of script */

This script creates the subscription pubs2_pub_sub for the publication
pubs2_pub. When this script is run, Replication Server creates article
subscriptions for upd_authors_art, pubs_art, and pubs_copy_art.

-- Execute this script at Sydney Replication Server
-- Creates publication subscription pubs2 pub sub
create subscription pubs2 pub sub
for publication pubs2 pub
with primary at TOKYO DS.pubs2}
with replicate at SF.pubs2
without materialization
go
/* end of script */

71

Model variations and strategies

An example using a local pending table

At the remote site:

At the primary site:

72

The pending table is a design enhancement of applied and request functions
that allows clients at aremote site to update central data and see the updates at
the remote site before they are returned from the central site. Use thismodel to
implement local update applications.

In this strategy, a client application at a remote site executes a user stored
procedurethat updates dataat the central site using arequest function. Changes
to the central data are replicated to the remote site via an applied function. A
local pending table lets clients at the remote site see updates that are pending
at the remote site before the replication system returns the updates.

When aclient application executesthe user stored procedure at the remote data
serve, it:

e Causes an associated stored procedure to execute and update data at the
primary site

¢ Entersthose updatesin thelocal pending table

When the update succeeds at the central database, it isdistributed to the remote
sites, including the site where the transaction originated. At the remote site, a
stored procedure updates the replicated table and deletes the corresponding
updates from the pending table.

To use applied functions, request functions, and aloca pending table, you must
complete these tasks.

« Create apending table in the remote database. Grant appropriate
permissions.

¢ Create auser stored procedure in the remote database that initiates the
request function and inserts data updates into the pending table.

e Mark the user stored procedure for replicated function delivery using
Sp_setrepproc.

e Grant procedure permissions to the appropriate user.

¢ Create auser stored procedure in the remote database that updates the
remote table and del etes the corresponding update from the pending table.
Grant appropriate permissions to the maintenance user.

* Create the request function replication definition for the request function.

¢ Create asubscription to the applied function replication definition created
at the central site.

« Create the stored procedure that modifies the central data.

Replication Server

CHAPTER 3 Implementation Strategies

e Createthe applied function replication definition for the applied function.
e Create a subscription to the request function replication definition.

In this example, a client application at the remote (Sydney) site executes a
stored procedure upd_publishers_pubs2_req, which inserts values in the
publishers_pend table and causes an associated stored procedure,
upd_publishers_pubs2, to execute at the central (Tokyo) site. Execution of
upd_publishers_pubs?2 at the central site causes the stored procedure
upd_publishers_pubs to execute at the remote site, which updatesthe publishers
table and del etes the corresponding information from the publishers_pend
table.

Figure 3-12 illustrates the data flow when you use applied functions, request
functions, and alocal pending table. The gray arrows show the flow of the
request function delivery. The black arrows show the flow of the applied
function delivery.

Figure 3-12: Request functions and a local pending table

Cantral
Site e
I

Data Subscriplion for request

Appliad function replication function here

definitions here

Communications
Metwork

Y

Remote \
Site - £

Subscription for appiied
funciion hera
;@Ir'srmrs pand
)

Ragquast funclion raphication
> definitions here

Clienf application can access
pending lable o see in-
progress fransachions

.

Design Guide 73

Model variations and strategies

Pending table
This script creates a pending table in the remote database.

-- Execute this script at Sydney data server
-- Creates local pending table
create table publishers pend

(pub_id char(4) not null,

pub_name varchar(40) null,

city wvarchar(20) null,

statechar (2) null)
go

/* end of script */

Stored procedures

The script creates the stored procedure upd_publisher_pubs?2 at the central
(Tokyo) site:

-- Execute this script at Tokoyo data server
-- Creates stored procedure
create procedure upd publishers pubs2
(epub_id char (4),
@pub name varchar (40),
@city wvarchar (20),
@state char(2))
as
insert into publishers
values (e@pub_id, @pub name, @city, @state)
go
/* end of script */

The following script creates the upd_publishers_pub2_req stored procedure at
the remote (Sydney) site. The insert into clause inserts values into the
publishers_pend table.

-- Execute this script at Sydney data server
-- Creates stored procedure
create procedure upd publishers pubs2 req
(epub_id char (4),
@pub name varchar (40),
@city varchar (20),
@state char(2))
as
insert into publishers pend
values (e@pub_id, @pub name, @city, @state)
go
/* end of script */

74 Replication Server

CHAPTER 3 Implementation Strategies

This script creates the upd_publishers_pubs2 procedure for the remote
(Sydney) site. It updates the publishers table and del etes the corresponding
information from the publishers_pend table.

-- Execute this script at Sydney data server
-- Creates stored procedure upd publishers pubs2
create procedure upd publishers pubs2
(epub_id char (4),
@pub_name varchar (40),
@city varchar (20),
@state char(2))
as
update publishers
set
pub_name = @pub name,
city = @city,
state = @state
where
pub_id = e@pub id
delete from publishers_pend
where
pub_id = epub id
go
/* end of script */

Function replication definitions

This script creates the applied function replication definition at the central
(Tokyo) Replication Server:

-- Execute this script at Tokyo Replication Server
-- Creates replication definition
create applied function replication definition
upd publishers pubs2
with primary at TOKYO DS.pubs2
(epub_id char(4),
@pub_name varchar (40),
@city varchar (20),
@state char(2))
go
/* end of script */

This script creates the request function replication definition at the remote
(Sydney) Replication Server:

-- Execute this script at Sydney Replication Server
-- Creates replication definition
create request function replication definition

Design Guide 75

Model variations and strategies

upd publishers pubs2 reqg

with primary at SYDNEY DS.pubs2
with primary function named upd publishers pubs2 req
with replicate function named upd publishers pubs2
(epub_id char (4),

@pub name varchar (40),

@city wvarchar (20),

@state char(2))

go

/* end of script */

Subscription
This script creates a subscription at the remote Replication Server using the no-
meaterialization method for the applied function replication definition defined
at the central Replication Server:

-- Execute this script at Sydney Replication Server

-- Creates subscription using no-materialization

for upd publishers pubs2

create subscription upd publishers pubs2 sub

for upd publishers pubs2

with replicate at SYDNEY DS.pubs2

without materialization

go

/* end of script */
This script creates asubscription at the central Replication Server using the no-
materialization method for the request function replication definition defined

a the remote Replication Server.

-- Execute this script at Tokoyo Replication Server
-- Creates subscription using no-materialization
for upd publishers pubs2 reg

create subscription upd publishers pubs2 req sub
for upd publishers pubs2 reqg

with replicate at TOKOYO_DS.pubs2

without materialization

go

/* end of script */

Implementing master/detail relationships

You can use applied functions to replicate only selected data to remote sites.
Using applied functions in this way reduces network traffic.

76 Replication Server

CHAPTER 3 Implementation Strategies

Design Guide

To implement master/detail relationships, use applied functions to support
sel ective subscription to the master/detail tables. In this example,

¢ Thepublishers and titles tables exist in the pubs2 database at the primary
and replicate sites.

« NY_DSistheprimary sitedataserver and SF_DSisthereplicate site data
server.

Figure 3-13 describes the publishers (master) and titles (detail) tables at the
primary and replicate sites:

Figure 3-13: Sample tables used in master/detail relationship

Primary Site
pubs? database
publishers litles
pub_id pub_name city state title_id title type pub_id
0736 Mew Age Boston WA, PC9999 | MNet Eti popular 1389
Q877 Binner Washington | DC PS1372 | Comput psynch a7y
1389 Algodata Berkeley CA P32091 | ls Anger peynch 0736
PS2106 | Life Wi paynch 0736
P53333 | Jump! BXBICISE 1389
Only rows related to
¥ CA are replicated
Replicate Site
pubs2 dalabase
publishers litles
pub_id pub_name city state title_id title type pub_id
1389 Algodata Berkeley CA PC9999 | Met Eti popular 1380
PS53333 | Jump! BHEICISE 1389

The primary site containsall records, but the replicate siteisinterested only in
records related to the state of California (CA). Only a selection of publishers
and titles records need to be replicated, based on the state column. However,
only the publishers table contains a state column.

Adding a state column to the titles table adds redundancy to the system. A
second, more efficient solution ties updates to master and detail tables through
stored procedures and then replicates the stored procedures using applied
functions. The logic to maintain selective subscription is contained in the
stored procedures.

For example, if, at the primary site, a publisher’s state is changed from NY to
CA, arecord for that publisher must be inserted at the replicate site. Having
replicate rows inserted or deleted as a result of updates that cause rowsin a
subscription to change is called subscription migration.

77

Model variations and strategies

At the primary and
replicate sites:

At the primary site:

At the replicate site:

To ensure proper subscription migration, subscriptions are needed for a set of
“upper-level” stored proceduresthat control the stored proceduresthat actually
perform the updates. It is the invocation for the upper-level stored procedure
that is replicated from the primary site to the replicate site.

To handle changes in the state column, the replicate site must subscribe to
updates when either the new state or the old stateis CA.

The sections below list the activities you must perform to enable selective
substitution at the replicate Replication Server.

¢ Create stored procedures that insert records into the publishers and titles
tables and an upper-level stored procedure that controls the execution of
both insert procedures.

¢ Create stored procedures that delete records from the publishers and titles
tables and an upper-level stored procedure that controls the execution of
both del ete procedures.

¢ Create stored procedures that update records in the publishers and titles
tables and an upper-level stored procedure that controls the execution of
both update procedures.

e Grant appropriate permissions on all upper-level stored procedures.

e Mark each upper-level stored procedure for replication, using
Sp_setrepproc.

e Create afunction replication definition for each upper-level stored
procedure.

e Create subscriptions to the function replication definitions.

Stored procedures with insert clauses

Theinsert procedures are identical at the primary and replicate sites. The
upper-level stored procedure that controls the insert procedures and the insert
procedures observe the following logic:

¢ A publisher record isinserted only when thereis no title ID.
e Atitlerecord isinserted only when the publisher exists.

These scripts create the ins_publishers and ins_titles insert stored procedures
and the upper-level stored procedure ins_pub_title.

-- Execute this script at NY and SF data servers
-- Creates stored procedure
create procedure ins_publishers

78

Replication Server

CHAPTER 3 Implementation Strategies

(epub_id char(4), @pub name varchar(40)=null,
city varchar (20)=null, @state char(2)=null)
as
insert publishers values (@pub_id,
@pub_name, @city, @state)
/* end of script */

-- Execute this script at NY and SF data servers
-- Creates stored procedure
create procedure ins_titles
(etitle_id tid, @title varchar(80), @type char(12),
@pub_id char(4)=null, @price money=null, @advance money=null,
@total sales int=null, @notes varchar(200)=null,
@pubdate datetime, @contract bit)
as
if not exists (select pub_ id from publishers
where pub_id=epub_id)
raiserror 20001 “** FATAL ERROR: Invalid publishers id **”
else
insert titles values (etitle id, @title, etype, @pub_ id,
@price,@advance, @total sales, @notes, @pubdate, @contract)
/* end of script */

-- Execute this script at NY and SF data servers

-- Creates stored procedure

create procedure ins_pub_title

(epub_id char(4), @pub_name varchar(40)=null,

@city varchar (20)=null, @state char(2),

@title id tid=null, etitle varchar(80)=null, @type char(12)=null,
@price money=null, @advance money=null,

@total sales int=null, @notes varchar(200)=null,

@pubdate datetime=null, @contract bit)

as

begin
if e@epub name != null
exec ins publishers @pub id, @pub name, @city, @state
if etitle id != null

exec ins_titles @title id, @title, @type, @pub_ id, @price,
@advance, @total sales, @notes, @pubdate, @contract

end/*

end of script */

Design Guide 79

Model variations and strategies

Stored procedures with delete clauses

The delete procedures are identical at the primary and replicate sites. The
upper-level stored procedure that controls the delete procedures and the delete
procedures observe the following logic:

 Whenarecord is deleted, all dependent child records are also del eted.
e A publisher record is not deleted when atitle record exists.

These scripts create the del_publishers and del_titles stored procedures and the
upper-level stored procedure del_pub_title.

-- Execute this script at NY and SF data servers

-- Creates stored procedure

create procedure del publishers

(epub_id char(4))

as

begin

if exists (select * from titles where pub id=@pub_ id)
raiserror 20005 “**FATAL ERROR: Existing titles**”

else
delete from publishers where pub_id=@pub_id

end

/* end of script */

-- Execute this script at NY and SF data servers

-- Creates stored procedure /

create procedure del titles

(etitle_id tid, @pub_id char(4)=null)

as

if epub_id=null
delete from titles where title id=etitle_id

else
delete from titles where pub_id=@pub_id

end

/* end of script */

-- Execute this script at NY and SF data servers
-- Creates stored procedure
create procedure del pub title
(epub_id char(4), @state char(2), etitle id tid=null)
as
begin
if etitle_id != null
begin

80 Replication Server

CHAPTER 3

Implementation Strategies

exec del titles @title id
return
end
if @pub_id != null
begin
exec del titles @title id, @pub id
exec del publishers @pub id
end
end
/* end of script */

Stored procedures with update clauses

The update procedures differ at the primary and replicate sites.

At the primary site: Update procedures observe the following logic:
e Raisean error on an unknown pub_id.

* If atitle does not exist, insert one.

These scripts createthe upd_publishers and upd_titles stored procedures and the
upper-level stored procedure upd_pub_title that controls the execution of

upd_publishers and upd_titles.

Note that the upd_pub_title stored procedure has an additional column,
old_state, that enables replicates to subscribe to rows that migrate.

-- Execute this script at NY data servers

-- Creates stored procedure

create procedure upd publishers

(epub_id char(4), @pub name varchar (40),

@city varchar (20), @state char(2))

as

if not exists

(select * from publishers where pub id=epub id)

raiserror 20005 “**FATAL ERROR: Unknown publishers id**”

else

update publishers set
pub_name=@pub name,
city=@city,
state=@state

where pub id = @pub_id
end

/* end of script */

Design Guide

81

Model variations and strategies

-- Execute this script at NY data servers

-- Creates stored procedure

create procedure upd titles

(etitle_id tid, @title varchar(80), @type char(12),
@pub_id char(4)=null, @price money=null, @advance money=null,
@total sales int=null, @notes varchar(200)=null,
@pubdate datetime, @contract bit)

as

if not exists

(select * from titles where title id=etitle_id)
raiserror 20005 “**FATAL ERROR: Unknown title id#**”
else

update titles set

title=@title,

type=@type,

pub_id=epub id,

price=@price,

advance=@advance,

total sales=@total sales,

notes=@notes,

pubdate=@pubdate,

contract=@contract

where title_id = etitle_id

end

/* end of script */

-- Execute this script at NY data server

-- Creates stored procedure

create procedure upd pub title

(epub_id char(4), @pub name varchar(40)=null,

@city varchar (20)=null, @state char(2)=null,

@title id tid=null, @title wvarchar(80)=null, @type char(12)=null,
@price money=null, @advance money=null,

@total_sales int=null, @notes varchar(200)=null,

@pubdate datetime=null, @contract bit, @old_state char(2))

as

begin

if not exists (select * from publishers where pub id=e@pub_ id)
raiserror 20005 “**FATAL ERROR: Unknown publishers id**”"

else

exec upd publishers @pub id, @pub name, @city, @state
if etitle_id != null

begin

if not exists
(select * from titles where title id=etitle id)
exec ins_titles e@title id, @title, @type, @pub_id,

82 Replication Server

CHAPTER 3 Implementation Strategies

@price, @advance, @total sales, @notes, @pubdate,
@contract

else

exec upd_titles @title id, @title, @type, @pub_id, @price,

@advance, @total sales, @notes, @pubdate, @contract

end

end

/* end of script */

At the replicate site: Update procedures observe the following logic:
e Raisean error on an unknown pub_id.
o If title does not exist, insert one.
e Implement correct update migration as shown in Table 3-1.

Table 3-1: Migration strategy for replicate site (CA)

Old state New state Update procedure needs to

CA CA Update publishers and titles tables
normally.

CA NY Delete publisher and cascade delete of all
titles associated with publisher.

NY CA Insert new publisher and title (if any).

These scriptscreatetheupd_publishers and upd_titles stored procedures and the
managing stored procedure upd_pub_title that controls the execution of
upd_publishers and upd_titles.

-- Execute this script at SF data servers

-- Creates stored procedure

create procedure upd publishers

(epub_id char(4), @pub name varchar (40),

@city varchar (20), @state char(2))

as

if not exists

(select * from publishers where pub id=epub id)
raiserror 20005 “**FATAL ERROR: Unknown publishers id**”"
else

update publishers set

pub_name=@pub_name,

city=@city,

state=@state

where pub id = @pub_ id

end

/* end of script */

Design Guide 83

Model variations and strategies

-- Execute this script at SF data servers

-- Creates stored procedure

create procedure upd titles

(etitle_id tid, @title varchar(80), @type char(12),
@pub_id char(4)=null, @price money=null, @advance money=null,
@total sales int=null, @notes varchar(200)=null,
@pubdate datetime, @contract bit)

as

if not exists

(select * from titles where title id=etitle_id)
exec ins titles @title id, @title, @type, @pub id,

@price, @advance, @total sales, @notes, @pubdate,
@contract

else

update titles set

title=@title,

type=@type,

pub_id=epub id,

price=@price,

advance=@advance,

total sales=@total sales,

notes=@notes,

pubdate=@pubdate,

contract=@contract

where title id = @title id

end

/* end of script */

-- Execute this script at SF data servers

-- Creates stored procedure

create procedure upd pub title

(epub_id char(4), @pub name varchar(40)=null,

@city varchar (20)=null, @state char(2),

@title id tid=null, @title varchar(80)=null, @type char(12)=null,
@price money=null, @advance money=null,

@total sales int=null, @notes varchar(200)=null,

@pubdate datetime=null, @contract bit, @old state char(2))
as

declare @rep_state char (2)

begin

select @rep state=state from publishers

where pub id=epub id

if @old_state = @state

84 Replication Server

CHAPTER 3 Implementation Strategies

begin
exec upd publishers @pub id, @pub name,@city, @state
if etitle id != null

exec upd titles @title id, @title, @type,
@pub_id, @price,@advance, @total_ sales,
@notes, @pubdate, @contract

end
else if @rep state = @old state
begin
exec del_titles etitle_id, @pub_id
exec del_publishers epub_id
end
else if @rep state = null
begin
exec ins_publishers @pub id, @pub name, @city,
@state
if etitle _id != null
exec ins_titles @title id, @title, @type,
@pub id,@price, @advance, @total sales,
@notes, @pubdate,@contract
end
end

/* end of script */

Function replication definitions

Create applied function replication definitions on the primary Replication
Server for ins_pub_title, del_pub_title, and upd_pub_title. Note that for inserts
and deletes, only state is a searchable column; for updates, old_state is also
searchable.

-- Execute this script at NY data servers

-- Creates replication definition ins_pub_title
create applied function replication definition ins pub title
with primary at MIAMI_ DS.pubs2

(epub_id char(4),

@pub name varchar (40),

@city varchar (20),

@state char(2),

@title_id varchar(6),

@title varchar(80),

@type char(12),

@price money,

@advance money,

@total sales int,

@notes varchar (200),

Design Guide 85

Model variations and strategies

@pubdate datetime,@contract bit)
searchable parameters (@state)

go
/* end of script */

-- Execute this script at NY data servers

-- Creates replication definition upd pub title

create applied function replication definition upd pub title
with primary at MIAMI DS.pubs2

(epub_id char (4),

@pub_name varchar (40),

@city varchar (20),
@state char(2),

@title id varchar (6

@title varchar(80),
@type char(12),
@price money,
@advance money,
@total sales int,
@notes varchar (200)
@pubdate datetime,
@contract bit,

@old state char(2))

) ’

’

searchable parameters (@state, @old state)

go
/* end of script */

Subscriptions

86

This script creates the subscriptions at the replicate Replication Server using
the no-materialization method. Use this method when you don’t need to load
data at the replicate site.

To ensure proper subscription migration, you must create two subscriptionsfor
upd_pub_title.

-- Execute this script at SF data servers
-- Creates subscription for del pub title,
ins pub_title,
and upd pub title
create subscription del pub title sub
for del pub title
with replicate at SF_DS.pubs2
where @state='CA'
without materialization

go

Replication Server

CHAPTER 3 Implementation Strategies

Design Guide

create subscription ins pub title sub
for ins_pub_title

with replicate at SF_DS.pubs2

where @state='CA'

without materialization

go

create subscription upd pub_title subl
for upd pub title

with replicate at SF_DS.pubs2

where @state='CA'

without materialization

go

create subscription upd pub_title sub2
for upd pub title

with replicate at SF_DS.pubs2

where @old state ='CA'

without materialization

go

/* end of script */

87

Model variations and strategies

88 Replication Server

CHAPTER 4

Planning for Backup and
Recovery

Thischapter describesthe tool sand methodsyou can useto return primary
and replicate sites to a consistent state after a system component failure.

Topic Page
Protecting against data loss 89
Preventive measures 90
Recovery measures 94

Protecting against data loss

Design Guide

Replication Server runsin distributed database systems with many other
hardware and software components, including Adaptive Serversand other
data servers, Replication Agents, LANS, WANS, and client application
programs.

Any of these components, including Replication Server, may occasionally
fail. Replication Server is afault-tolerant system, designed with this
possibility in mind. During most failures, it waits for the failure to be
corrected and then continues its work. When failures require restarting
Replication Server or aReplication Agent, the start-up process guarantees
that replication is resumed without loss or duplication of data.

Protecting against dataloss is the same with a replication system as with
acentralized database system. In both cases, thereisone definitiveversion
of the data, and you should invest considerable planning and resources to
protect it.

In areplication system, if the primary datais protected, al replicate data
can ultimately be recovered. A site can replace lost replicate data simply
by re-creating its subscriptions.

If replicated transactions are lost at the primary site (as happens, for
example, when the primary database is rolled back to a previous dump),
consistency may be lost between primary and replicated data.

89

Preventive measures

The backup and recovery methods available in areplication system include
preventive and recovery measures. This chapter describes both of them.

Preventive measures include:

Warm standby

Hardware data mirroring (hot standby)
Longer save intervals

Coordinated dumps

Recovery measures include:

Subscription initialization
Subscription reconciliation utility (rs_subcmp)
Database recovery

Restoring coordinated dumps

Preventive measures

The following sections describe the preventive measures you can take to
protect datain your replication system.

Standby applications

You can protect the datain your replication system by maintaining separate
(standby) copies of primary data. Two possible standby methods are:

90

Warm standby application —a pair of Adaptive Server databases, one of
which isabackup copy of the other. Client applications update the active
database; Replication Server maintains the standby database by copying
supported operations to the active database.

Hardware data mirroring—aform of hot standby application. With theuse
of additional hardware, data mirroring maintains an exact copy of the
primary data by reproducing all operations on the primary data.

Replication Server

CHAPTER 4 Planning for Backup and Recovery

Comparing methods

Design Guide

In ahot standby application, a standby database can be placed into service
without interrupting client applications and without losing any transactions. A
hot standby database guarantees that transactions committed on the active
database are also committed on the standby. When both databases are up, the
active database and the standby database are in sync, and the hot standby
database is ready for immediate use.

Alternately, awarm standby application maintained by Replication Server:

Can be used in environments where data mirroring applications cannot,
especially when necessary hardware is not available.

Tolerates temporary network failures better than some hot standby
applications because committed transactions can be stored on the active
database, even when the standby database is down.

Minimizes overhead on the active database because the active database
does not need to verify that the databases arein sync.

However, awarm standby application maintained by Replication Server also:

Requires some interruption of client applications when switching to the
standby database.

May not have executed in the standby database the most recent
transactions committed in the active database.

91

Preventive measures

Warm standby

Replication Server’swarm standby application isdescribedin detail in Chapter
3, “Managing Warm Standby Applications,” in the Replication Server
Administration Guide \olume 2.

Note Replication Server version 12.0 and later supports Sybase Failover
available in Adaptive Server Enterprise version 12.0. Failover support isnot a
substitute for warm standby. While warm standby applications keep a copy of
adatabase, Failover support accesses the same database from a different
machine. Connections from Replication Server to warm standby databases
work the same way.

For detailed information about how Failover support worksin Replication
Server, see “ Configuring the Replication System to Support Sybase Failover”
in Chapter 7, “Replication System Recovery,” and Appendix B, “High
Availability on Sun Cluster 2.2, in the Replication Server Administration
Guide Volume 2.

Hardware data mirroring

92

To ensure the highest data availability, you can mirror the most critical datain
the replication system. Mirroring duplicates I/O operations to maintain two
identical copies of the data.

If the active mediafails, the standby is brought online instantly. Mirroring all
but eliminates the possibility of transaction loss.

The most beneficial places to use mirroring in areplication system are listed
here in priority order:

1 Primary database transaction logs

Transaction logs store transactions that have not been dumped to tape. If
the primary transaction log is lost, transactions must be resubmitted.

2 Primary database

A database can be recovered by reloading a previous database dump and
subsequent transaction dumps. However, recovering a database that stores
primary data also requires recovering or reinitializing the data that has
been replicated throughout the enterprise. Extended downtime is often
catastrophic for OLTP systems. Mirroring the primary data can prevent
this type of catastrophe.

3 Replication Server stable queues

Replication Server

CHAPTER 4 Planning for Backup and Recovery

Save interval

Design Guide

Replication Server stores transactions in store-and-forward disk queues
called stable queues. It alocates the queues from disk partitions assigned
to the Replication Server using the create partition command.

Note create partition makes a partition available to Replication Server.
This command replaces the existing add partition command. add partition
continues to be supported for backward compatibility. The syntax and
usage of the two commands are identical. See the “ create partition,” in
Chapter 3, “Replication Server Commands’ in the Replication Server
Reference Manual.

The data stored in stable queues is redundant; it originates in the primary
database transaction log. However, if a stable queueis lost, Replication
Server cannot deliver transactions to replicate sites. As aresult,
subscriptions at replicate sites must be reinitialized. Mirroring disk
partitions protects stable queues and minimizes potential downtime for
replicate databases.

Replication Server System Database (RSSD)

Recovering from afailure of the RSSD can be a complex process if data
such as replication definitions, subscriptions, routes, or function or error
classes have been modified since the last backup. Refer to Chapter 7,
“Replication System Recovery,” in the Replication Server Administration
Guide Volume 2 for detailed recovery information.

Mirroring the RSSD can prevent system data loss and the necessity of a
complex recovery process. If you don’t mirror the RSSD, be sure to back
up the RSSD after any RCL operation that changes system data.

You can configure aroute from one Replication Server to another, or a
connection from a Replication Server to a database, so that the Replication
Server stores stable queue messages for a period of time after delivery to the
destination. This period of timeis called the save interval.

Thesaveinterval creates abacklog of messagesat the source, which allowsthe
replication system to tolerate apartition failureif it is corrected within the save
interval. If the stable queues at the destination fail, you can rebuild them and
have the source Replication Server resend the backlogged messages.

Refer to the Replication Server Administration Guide Volume 2 for details.

93

Recovery measures

Coordinated dumps

When a database must be recovered by restoring a backup, replicated datain
the affected databases at other sites must somehow be made consi stent with the
primary data. Replication Server provides amethod for coordinating database
dumps and transaction dumps at al sitesin adistributed system. A database
dump or transaction dump is initiated from the primary database. The
Replication Agent retrieves the dump record from thelog and submitsit to the
Replication Server so that the dump regquest can be distributed to the replicate
sites. This method guaranteesthat the data can be restored to a known point of
consistency.

A coordinated dump can be used only with databasesthat store primary dataor
replicated data, but not both. It isinitiated from within a primary database.

Refer to the Replication Server Administration Guide Volume 2 for instructions
on creating coordinated dumps.

Recovery measures

The following sections describe methods for recovering datathat islost after a
component failure in areplication system.

Re-creating subscriptions

The primary version of the datais definitive, so all inconsistencies should be
resolved in itsfavor. One way to recover from afailure at aremote siteistore-
create the subscriptions. This recovery method is most expedient for small
replicated tables. Large subscriptions and primary data failures require other
recovery methods.

Subscription reconciliation utility (rs_subcmp)

94

rs_subcmp tests for rows that are missing, orphaned, or inconsistent in a
replicate table and corrects the discrepancies. Using rs_subcmp may be more
appropriate for recovering from minor inconsistencies than a more disruptive
recovery procedure such as a coordinated |oad. See the Replication Server
Reference Manual for instructions on executing rs_subcmp.

Replication Server

CHAPTER 4 Planning for Backup and Recovery

Database recovery

When a primary databasefails, all committed transactions can be recovered if
the database and the transaction log are undamaged. If the database or the
transaction log is damaged, you must load a database dump and transaction
dumps to bring the database to a known state, and then resubmit the
transactions that were executed after the last transaction dump.

When you run Replication Server and Replication Agentsin recovery mode,
you can replay transactions from reloaded dumps and make sure that all
transactions in the primary database are replicated and that no transactions are
duplicated. For more information about recovering primary databases from
dumps, see Chapter 7, “Replication System Recovery,” in the Replication
Server Administration Guide Volume 2.

Restoring coordinated dumps

Design Guide

Restoring database or transaction dumps created by the coordinated dump
process returns the primary and replicated data to a previous, consistent state.

For more information about the coordinated load procedure, see Chapter 7,
“Replication System Recovery,” in the Replication Server Administration
Guide Volume 2.

95

Recovery measures

96 Replication Server

CHAPTER 5

Introduction to Replication
Agents

Thischapter providesan overview of the Replication Agent component of
a Sybase replication system. It also provides details about how the
RepAgent for Adaptive Server and other Replication Agent products
work.

Topic Page
Replication Agent overview 97
Replication Agent transaction logs 98
Replication Agent products 99

Replication Agent overview

Design Guide

A Replication Agent is a Replication Server client that retrieves
information from the transaction log for aprimary database and formatsit
for the primary Replication Server. RepAgent is the Replication Agent
component for Adaptive Server.

Replication Agent detects changesto primary dataand ignores changesto
nonprimary data. Using Log Transfer Language (LTL), a subset of
Replication Control Language (RCL), Replication Agent sendschangesin
primary datato the primary Replication Server, which distributes the
information to replicate databases.

The Replication Agent connections statusis derived from the status of the
Replication Agent thread in the Replication Server, and the status of the
Replication Agent process that is extracting datafrom the primary
database. If either the Replication Agent thread or the Replication Agent
process is down, the RM S returns a state of “ Suspended”. The RMS aso
returns a description if either of the componentsis down.

97

Replication Agent transaction logs

Sybase provides Replication Agent components for other non-ASEe data
servers, including DB2 Universal Database, Microsoft SQL Server, and
Oracle. Seethe Replication Server Heterogeneous Replication Guide and the
Replication Server Optionsdocumentation for the databases actively supported
by Replication Server.

Replication Agent for DB2 is the Replication Agent component for the
0S/390-based DB2 Universal Database. Sybase Replication Agent isthe
Replication Agent component for DB2 Universal Database (on UNIX and
Windows platforms), Microsoft SQL Server, and Oracle.

RepAgent is an Adaptive Server thread. Replication Agent for DB2 isa
separate process that resides on the OS/390 host. Sybase Replication Agent is
a separate application that resides on a UNIX or Windows host.

A Replication Agent performs these tasks:
1 Logsin tothe Replication Server.

2 Sendsaconnect source command to identify the session as alog transfer
source and to specify the database for which transaction information will
be transferred.

3 Getsthe name of the maintenance user for the database from the
Replication Server. RepAgent filters out operations executed by the
mai ntenance user, unless the send_maint_xacts_to_replicate or
send_warm_standby_xacts configuration parameter is set to true.

4 Requests the secondary truncation point for the database from the
Replication Server. Thisreturns avalue, called the origin queue 1D, that
RepAgent usesto find the location in the transaction log where it isto
begin transferring transaction operations. The Replication Server has
aready received operations up to this location.

5 Retrievesrecords from the transaction log, beginning at the record
following the secondary truncation point, and formatstheinformation into
LTL commands.

Replication Agent transaction logs

Some Replication Agents cannot access the native transaction log of aprimary
database to acquire the information necessary to replicate transactions.

o8 Replication Server

CHAPTER 5 Introduction to Replication Agents

When a native transaction log cannot be used, the Replication Agent usesits
own proprietary transaction log to capture and record transactionsin the
primary database for replication. Such a Replication Agent generates SQL
scripts that run in the primary database to create the Replication Agent
transaction log. See the Replication Agent Administration Guide Volume 1 for
more information about the Replication Agent transaction log.

Replication Agent products

Replication Agent products extend the capabilities of Replication Server by
allowing non-Sybase database servers to serve as primary database serversin
a Sybase replication system.

Sybase offers the following Replication Agent products for non-Sybase
databases:

* Replication Agent for DB2
* Sybase Replication Agent

The following sections describe these Replication Agent products.

Replication Agent for DB2

Design Guide

Replication Agent for DB2 is areplication system component that captures
database transactions in a DB2 primary database on an OS/390 mainframe
platform and sends them to Replication Server.

Figure 5-1illustrateshow Replication Agent for DB2 sendsdatato Replication
Server.

Figure 5-1: Replication Agent data flow for DB2
Replication Agent for DB2 fitsinto areplication system as follows:

« WithReplication Agent for DB2, the primary databaseisDB2, which runs
as asubsystem in OS/390. The transaction logs are DB2 logs.

¢ Replication Agent for DB2 provides alog extract, called Replication
Extract, that reads the DB2 logs and retrieves the relevant DB2 active and
archive log entries for tables marked for replication.

99

Replication Agent products

Replication System : Primary Side

DBz

=

[TT];

Replication Agent for DB2 UDB

I)| D

Replication LTM for
Extract MVS Replication
Servar

e LTM for MV S receives the data marked for replication from Replication
Extract and transfers this data to Replication Server using the TCP/IP
communications protocol.

¢ Replication Server then applies the changes to the replicate databases.

DB2 transaction log

The DB2 database server logs changesto rowsin DB2 tablesasthey occur. The
information written to the transaction log includes copies of the databeforeand
after the changes. In DB2, these records are known as undo and redo records.
Control records are written for commits and aborts. These records are
translated to commits and rollbacks.

The DB2 log consists of aseries of data sets. Replication Extract usestheselog
data setsto identify DB2 datachanges. Since DB2 writes change recordsto the
active log as they occur, Replication Extract can process the log records
immediately after they are entered.

100 Replication Server

CHAPTER 5 Introduction to Replication Agents

Sybase Replication Agent

Design Guide

<>

Sybase Replication Agent is areplication system component that captures
transactionsin aDB2 Universal Database (on UNIX and Windows platforms),
Microsoft SQL Server, or Oracle primary database, and then transfers those
transactions to Replication Server.

The Sybase Replication Agent for DB2 Universal Database uses the native
DB2 transaction log to acquire transaction data to be replicated.

The Sybase Replication Agent for Microsoft SQL Server and Oracle createsits
own transaction log to record the transactions (or procedure invocations) to be
replicated. The Log Reader component of Replication Agent reads the
transaction log to retrieve the transaction from the primary database.

After transaction dataisretrieved from the primary database, the Log Transfer
Interface (LTI) component of Replication Agent processes the transaction and
the resulting “change set” data and generates LTL output, which Replication

Server usesto distribute the transaction to the subscribing replicate database(s).

Figure 5-2: Sybase Replication Agent data flow

Log Transfer
Manager

h 4 h 4

Replication
Log T T
Agent - T m - Reader - - |ﬁte?anci " et LTLoutto
Transaction Log ransactions Replication Server
Read from
S~

Replication Agent

Primary Database

Sybase Replication Agent uses information stored in the Replication Server
System Database (RSSD) of the primary Replication Server to determine how
to process the replicated transactions to generate the most efficient LTL.

After it receives LTL from Replication Agent, the primary Replication Server
sends the replicated transaction to areplicate database, either directly or by
way of areplicate Replication Server. The replicate Replication Server
convertsthereplicated datato the native language of the replicate database, and
then sendsiit to the replicate database server for processing. When the
replicated transaction is processed successfully by the replicate database, the
replicate database is synchronized with the primary database.

101

Replication Agent products

Sybase Replication Agent runs as a stand-al one application, independent of the
primary database server, the primary Replication Server, and any other
components of areplication system.

Sybase Replication Agent can reside on the same host machine as the primary
database or any other component of the replication system, or it can reside on
a separate machine from any other replication system components.

Replication Agent communications

Java implementation

102

Sybase Replication Agent uses the Java Database Connectivity (JDBC)
protocol for all its communications.

Replication Agent uses a single instance of the Sybase JDBC driver (jConnect
for JDBC) to manage al of its connectionsto Open Client/Server applications,
including the primary Replication Server and its RSSD.

In the case of the primary database server, Sybase Replication Agent connects
to the IDBC driver for the primary database.

While replicating transactions, Replication Agent maintains connections with
both the primary database and the primary Replication Server. In addition,
Replication Agent occasionally connects to the RSSD of the primary
Replication Server to retrieve replication definition data.

Sybase Replication Agent components are implemented in the Java
programming language. Therefore, to run Sybase Replication Agent, you must
have aJava Runtime Environment (JRE) installed on the computer that will act
as the Replication Agent host machine.

Replication Server

CHAPTER 6

Replicating Data into Non-
Adaptive Server Data Servers

This chapter describes the replication system components required to
replicate data into non-A SE data servers.

Topic Page
Interfacing with non-ASE data servers 103
Sybase database gateway products 104
Maintenance user 105
Function-string class 105
Error class 107
rs_lastcommit table 108
rs_get_lastcommit function 110

Interfacing with non-ASE data servers

Replication Server updates the replicate data stored in databases by
submitting requests to data servers. Support for Adaptive Server is
provided with Replication Server. If your database is managed by a data
server other than Adaptive Server, you must provide an interface for
Replication Server to use.

Design Guide

Thisinterface includes:

Sybase Enterprise Connect™ Data Access (ECDA) to receive
instructions from Replication Server and apply them to the data
server.

A maintenance account that Replication Server can usetologintothe
gateway.

A function-string class to use with the database. The function strings
intheclasstell Replication Server how to format requestsfor the data
server.

An error class and error action assignments to handle errors the data
server returns to Replication Server viathe gateway.

103

Sybase database gateway products

¢ Anrs_lastcommit table in each database that has replicated data.
Replication Server uses this table to keep track of the transactions that
have been successfully committed in the database.

¢ Anrs_get_lastcommit function call to retrieve the last transaction from
each source primary database.

Sybase offers several Open Server gateway application products that you can
use to access non-Sybase database servers for areplicate database.

The non-ASE data server support design of Replication Server provides
several components of thisinterface for actively supported database servers.
Thedesign providesfunction string classes, error classesand error actions, user
defined datatypes, and connection profiles to create the necessary tables and
procedures in the replicate database.

Seethe Replication Server Administration Guide Volume 1 and the Replication
Server Configuration Guide for your platform for more information about the
non-A SE support feature. See the Replication Server Heterogeneous
Replication Guide and the Replication Server Options documentation for the
databases actively supported by Replication Server.

Sybase database gateway products

104

Sybase Enterprise Connect Data AccessConnect provides the Sybase
middleware building blocks for connectivity between clients and enterprise
data sources. Using ECDA simplifies the integration of non-Sybase replicate
databases into a Sybase replication system.

You can use ECDA to connect directly to a database server. The DirectConnect
component in ECDA acts as an Open Server gateway by interpreting the Open
Client/Server protocol used by Replication Server to the native communication
protocol used by the non-Sybase replicate database.

You can use ECDA to connect to:

e Microsoft SQL Server

+ 0S/390 (UDB and DB2)

e Oracle

* ODBC accessible data sources

For more information, see the Replication Server Options documentation.

Replication Server

CHAPTER 6 Replicating Data into Non-Adaptive Server Data Servers

Maintenance user

Replication Server logs in as the maintenance user specified in create
connection for the database. The gateway can log in to the data server with the
same login name, or it can use another login name. The only requirements are
that the login name must have the permissions needed to modify the replicate
data.

Function-string class

Design Guide

The Replication Server managing a database requires a function-string class.
Replication Server provides function-string classes for Adaptive Server, and
with its non-ASE data server support features, Replication Server provides
function-string classes for al actively supported data servers. Seethe
Replication Server Options documentation for the actively supported data
servers.

If you arereplicating to anon-ASE data server that is not actively supported by
Replication Server, you must create afunction-string class for that data server.
You can either:

» Createafunction-string class that inherits function strings from a system-
provided class, or

* Createall the function strings yourself.

Replication Server sendsthe gateway acommand that it constructs by mapping
runtime valuesinto the function string supplied for the function. Depending on
how the function string iswritten and the requirements of the data server, your
gateway can pass the command directly to the data server or processit in some
way before it sends the request to the data server.

Note Replication Server 15.2 and later includes for actively supported
databases, connection profiles pre-loaded with function-string classes . See
“Connection profiles,” in Chapter 7, “ Managing Database Connections” in the
Replication Server Administration Guide Volume 1.

Refer to Chapter 2, “ Customizing Database Operations,” in the Replication
Server Administration Guide Volume 2 for alist of Replication Server system
functions that your database gateway may need to process.

105

Function-string class

Creating function-string classes using inheritance

Replication Server |etsyou share function-string definitions between function-
string classes by creating relationships between classes using a mechanism
called function-string inheritance.

The system-provided classes rs_default_function_class and
rs_db2_function_class can serve as parent classes for derived classes that
inherit function strings from the parent class. You can create aderived classin
order to customize certain function strings for your data server while retaining
al other function strings from the parent class.

Use the create function string class command to create aderived class from the
parent classrs_default_class or rs_db2_function_class that inherits from the
parent class. Create customized function strings only as needed.

Note rs_db2_function_class does not support replication of text or image data.
To enable replication of text or image datafor DB2 databases, you must
customize the rs_writetext function string using the RPC method through a
gateway. Refer to “Creating distinct function-string classes’ on page 106 for
information about rs_writetext.

Refer to Chapter 2, “ Customizing Database Operations,” in the Replication
Server Administration Guide Volume 2 for a detailed discussion of function-
string inheritance.

Creating distinct function-string classes

If you use aclass that does not inherit from a system-provided class, you must
create all function strings yourself, and add new function stringswhenever you
create a new table or function replication definition.

Use the create function string class command to create a new function-string
class, and then create function strings for all of the functions with function-
string-class scope.

You must create rs_insert, rs_update, and rs_delete function strings for each
table you replicate in the database.

If you are replicating columns with text or image datatypes, you must create
rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext function
stringsfor each text or image column. Thefunction-string name must bethetext
or image column name for the replication definition.

106 Replication Server

CHAPTER 6 Replicating Data into Non-Adaptive Server Data Servers

Error class

Design Guide

Thers_select and rs_select_with_lock function strings are needed only if the
database has the primary datafor areplication definition.

An error class determines how Replication Server handles the errors that are
returned by your gateway. You must use the create error class command to
create an error class for your gateway.

You can define error processing for data server errors with the Replication
Server API. You can create an error class for adatabase and specify responses
for each error that the data server returns.

Note Replication Server 15.2 and later includes for actively supported
databases, connection profiles pre-loaded with error classes. See“ Connection
profiles,” in Chapter 7, “Managing Database Connections” in the Replication
Server Administration Guide Volume 1 and “ Default non-ASE error classes,”
in Chapter 6, “Handling Errors and Exceptions’ in the Replication Server
Administration Guide Volume 2.

Usethe assign action command to tell Replication Server how to respond to the
errors returned by your gateway. Table 6-1 lists the possible actions.

107

rs_lastcommit table

Table 6-1: Replication Server actions for data server errors

Action Description

ignore Assume that the command succeeded and that thereis
no error or warning condition to process. This action
can be used for areturn status that indicates successful

execution.

warn Log awarning message, but do not roll back the
transaction or interrupt execution.

retry_log Roll back the transaction and retry it. The number of

retry attempts is set with configure connection. If the
error recurs after retrying, write the transaction into the
exceptionslog and continue, executing the next

transaction.

log Roll back the current transaction and log it in the
exceptionslog. Then continue, executing the next
transaction.

retry_stop Roll back the transaction and retry it. The number of

retry attemptsis set with configure connection. If the
error recurs after retrying, suspend replication for the
database.

stop_replication Roll back the current transaction and suspend
replication for the database. Thisisequivalent to using
suspend connection, and thisis the default action.

Since this action stops all replication activity for the
database, it isimportant to identify the data server

errors that can be handled without shutting down the
database connection and assign them another action.

The default error action is stop_replication. If you do not assign another action
to an error, Replication Server shuts down the connection to your gateway.

See the Replication Server Reference Manual for more information about
create error class and assign action.

rs_lastcommit table

108

Each row in the rs_lastcommit table identifies the most recent committed
transaction that was distributed to the database from a primary database.
Replication Server uses thisinformation to ensure that all transactions are
distributed.

Replication Server

CHAPTER 6 Replicating Data into Non-Adaptive Server Data Servers

Design Guide

The rs_lastcommit table should be updated by the rs_commit function string
before the transaction is committed. This guarantees that the table is updated
with every transaction Replication Server commits in the database.

Replication Server maintains the rs_lastcommit table as the maintenance user
for the database. You must make sure that the maintenance user has all of the
permissions needed for the table.

Table 6-2 lists the columns in the rs_lastcommit table.

Table 6-2: rs_lastcommit table structure

Column name Datatype Description

origin int Aninteger assigned by Replication
Server that uniquely identifies the
database where the transaction

originated
origin_gid binary(36) The origin queue | D for the commit
record in the transaction
secondary_gid binary(36) A queue ID for a stable queue used
during subscription materialization
origin_time datetime Time at origin for the transaction
dest_commit_time datetime Time the transaction was committed at
the destination

The origin_time and dest_commit_time columns are not required.

The origin column is aunique key for the table. There is one row for each
primary database whose datais replicated in this database.

If you use a coordinated dump with the database, you should update
rs_lastcommit with the rs_dumpdb and rs_dumptran function strings.

For Adaptive Server databases, the rs_commit, rs_dumpdb, and rs_dumptran
function strings execute a stored procedure named rs_update_lastcommit to
update the rs_lastcommit table. Thisisthe text of that stored procedure;

/* Create a procedure to update the
** rs lastcommit table. */
create procedure rs update lastcommit
@origin int,
@origin gid binary(36),
@secondary_gid binary(36),
@origin time datetime
as
update rs_ lastcommit
set origin gid = @origin gid,
secondary gid = @secondary gid,

109

rs_get_lastcommit function

rs_

110

origin time = @origin time,
commit time = getdate()
where origin = @origin
if (e@rowcount = 0)
begin
insert rs lastcommit (origin,
origin gid, secondary gid,
origin time, commit time,
padl, pad2, pad3, pad4,
pad5, padé, pad7, pad8)
values (@origin, @origin gid,
@secondary gid,@origin time,
getdate (), 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00)
end

go

Note Replication Server 15.2 and later creates the rs_lastcommit table for
actively supported non-A SE data servers when you initially create a
connection using a connection profile.

See the reference pages for the rs_commit, rs_dumpdb, and rs_dumptran
functionsin the Replication Server Reference Manual for more information.

get_lastcommit function

Replication Server sends an rs_get_lastcommit function call to the gateway to
retrieve the last transaction committed in the database from each source
primary database. The gateway is expected to return the first three columns
described in Table 6-2.

The function string for rs_get_lastcommit can execute a simple select:

select origin, origin gid, secondary gid
from rs lastcommit

Note Thers_get_lastcommit function is pre-defined in connection profiles for
actively supported non-ASE data servers.

Replication Server

CHAPTER 7

International Replication Design
Considerations

Thischapter discussesissuesthat pertain to setting up areplication system
in an international environment.

Topic Page
Designing an international replication system 111
Message language 112
Character sets 113
Sort order 116
Changing the character set and sort order 121
Summary 125

Designing an international replication system

Design Guide

Replication Server and Replication Manager (RM), the Sybase Central
graphical plug-in that you can use to manage your replication system,
support international environments. They provide these features:

* Localization of messages into several languages.

e Support for all Sybase-supported character sets, with character-set
conversion between Replication Server sites.

e Support for nonbinary sort orders.

When you design areplication system for an international environment, it
isimportant to understand the impact that |anguage, character set, and sort
order settings have on your system. Replication Server and the RM
provide great flexibility in the configuration of these settings. This
flexibility may lead to unexpected or unwanted results unless you follow
the configuration guidelines presented in this chapter.

111

Message language

Message language

112

You can configure Replication Server to print messages to the error log and to
clientsin several languages. Thelanguage you choose must be compatiblewith
the chosen character set. English is the default language; it is compatible with
all Sybase character sets. See the Replication Server Configuration Guide for
your platform for alist of supported languages.

Each server program in your replication system, including Replication Server,
Adaptive Server, other data servers, writes messagesto its error log in the
configured language. However, whether messages are sent to aclient in the
client’s language depends on the server.

For example, Adaptive Server checks for the language setting of its client
(Replication Server) and returns messages in that language. RepAgent, an
Adaptive Server thread, also returns messages in the client language.

However, Replication Server do not check for aclient’slanguage; instead, they
return messages to aclient in their own language. Thus, error logs can contain
messagesin different languages if the servers are configured in different
languages.

Note To avoid the confusion that can result from a mixed-language error log,
configure the same language setting for al serversand clients at a given site.

[IChanging the Replication Server message language

You can change the Replication Server message language using this procedure.

Note Because RepAgent automatically returns messages in the Replication
Server language, you do not have to set a language parameter for RepAgent.

1 Shutdown the Replication Server.

2 Using atext editor, change the value of RS_language in the Replication
Server configuration file.

3 Restart Replication Server.

Replication Server

CHAPTER 7 International Replication Design Considerations

Character sets

Replication Server supports all Sybase-supported character sets and perform
character-set conversion of data and identifiers between primary and replicate
sites. Character sets must be compatible for character-set conversion to be
successful. For example, single-byte character set data cannot be converted to
amultibyte character set. For details about character-set compatibility, see the
Adaptive Server Enterprise System Administration Guide Volume 1.

Your choice of acharacter set for agiven server isinfluenced by thelanguages
the server supports, the hardware and operating system it runs on, and the
systems with which it interacts.

These things are true of Sybase-supported character sets:
e They areall supersets of 7-bit ASCII.

* Some are completely incompatible with each other, meaning that they
have no characters in common beyond 7-bit ASCI]I.

* Among compatible character sets, some characters are not common to
both sets—that is, no two character sets have all the same characters.

To change the default character set, follow the procedure provided in
“Changing the character set and sort order” on page 121. Although changing
the default character set requires only changing the value of the RS_charset
parameter in the Replication Server configuration file, follow the steps
provided in the procedure to ensure that no replicate datais corrupted by the
change.

Character-set conversion

Design Guide

Character-set conversion takes place at the destination Replication Server.
Every message packed for the Replication Server Interface (RSI) includes the
name of the source Replication Server’s character set. The destination
Replication Server uses this information to convert the character data and
identifiersto its own character set.

When it attempts character-set conversion, Replication Server checksto see
whether the character sets are compatible. If they are incompatible, no
conversion occurs. If they are compatible and one or more characters that are
not common to both sets are encountered, a ? (question mark) is substituted for
the unrecognized characters.

113

Character sets

In the Replication Server, context determines whether a ? is substituted or a
character-set conversion exception is raised. For example, if Replication
Server detects an incompatibility in acharacter being replicated, it substitutes
a?for the character; if it detects an incompatibility when converting the
configuration file parameters, it prints an error message and shuts down.

You can use the dsi_charset_convert configuration parameter to specify
whether or not Replication Server attempts character-set conversion. For a
description of this parameter, see the configure connection command in the
Replication Server Reference Manual.

For details about how Replication Server handles character-set conversion
during subscription materialization, resolution, and reconciliation, see
“Subscriptions’ on page 116.

Unicode UTF-8 and UTF-16 support

UTF-8

114

Replication Server supportsthe default character set Unicode UTF-8 and three
Unicode datatypes, unichar, univarchar, and unitext which are UTF-16 encoded.
Unicode allowsyou to mix different languages from different language groups
in the same data server. For more information about using the Unicode
character set, seethe Adaptive Server Enterprise System Administration Guide
\olume 1.

UTF-8 (UCS Transformation Format, 8-bit form) isan international character
set that supports more than 650 of the world’s languages. UTF-8 isavariable-
length encoding of the Unicode standard using 8-bit sequences. UTF-8
supports all ASCII code values, from 0 to 127, aswell as values from many
other languages. Each nonsurrogate code value is represented in 1, 2, or 3
bytes. Code val ues beyond the basic multilingual plane (BMP) require
surrogate pairs and 4 bytes.

Adaptive Server, Oracle, IBM UDB, and Microsoft SQL Server dataserversall
support UTF-8.

Replication Server

CHAPTER 7 International Replication Design Considerations

UTF-16

Requirements

UTF-16 (UCS Transformation Format, 16-bit form) isafixed-length encoding
of the Unicode standard using 16-bit sequences, where all characters are 2
byteslong. Aswith UTF-8, code values beyond the BM P are represented using
surrogate pairs that require 4 bytes.

Both Replication Server and Adaptive Server encode three character datatype
valuesin UTF-16:

* unichar —fixed-width Unicode character datatype.
e univarchar — variable-width Unicode character datatype.

* unitext — variable-width Unicode large object datatype introduced with
ASE 15.0 and Replication Server 15.0. unitext can hold up to
1,073,741,823 Unicode characters or the equivalent of 2,147,483,647
bytes.

To use the Unicode UTF-8 default character set or the unichar and univarchar
datatypes, you must be running Replication Server version 12.5 or later and
have set the site version to 12.5 or later.

The unitext datatype will befully supported if you have asite version and route
version of 15.0 or later for the primary and replicate Replication Servers, and
the LTL version must be 700. If the LTL version islessthan 700 at connect-
source time, RepAgent and other Sybase Replication Agents will convert
unitext columns to image.

Guidelines for using character sets

Design Guide

In setting up areplication system, it is strongly recommended that all servers
at agiven Replication Server site use the same character set. It isalso
recommended that all of the Replication Serversin your replication system use
compatible character sets.

Follow these guidelines to minimize character-set conversion problems:
e Use7-bit ASCII (if possible) for all data servers, data, and object names.

If your data and object names are all 7-bit ASCII or if al of your data
servers and Replication Servers use the same character set, character set
conversion will not present problems.

115

Sort order

Sort order

Subscriptions

116

« If you need to replicate data between a single-byte and amultibyte server,
restrict character dataand object namesto 7-bit ASCI I to avoid corruption.
Otherwise, you may experience problems. For example, Replication
Server does not restrict server namesto 7-bit ASCII, but Adaptive Server
or the Connectivity Libraries may do so.

¢ When replicating between servers with different but compatible character
sets (for example, ISO_1 and CP850), make sure that object names and
character data do not include any 8-bit characters that are not common to
both character sets.

Replication Server uses sort orders, or collating sequences, to determine how
character data and identifiers are compared and ordered. Replication Server
supports all Sybase-supported sort orders, including non-binary sort orders.
Non-binary sort orders are necessary for the correct ordering of character data
and identifiersin European languages.

To change the default or Unicode sort order, follow the procedure provided in
“Changing the character set and sort order” on page 121. Although changing
the default sort order requires only changing the value of the RS_sortorder
parameter in the Replication Server configuration file, follow the steps
provided in the procedure to ensure that no replicate datais corrupted by the
change.

Note To make sure that data and identifiers are ordered consistently across
your replication system, configure all Replication Server components with the
same sort order.

Subscriptions involve comparisons of data at the:

e Primary data server during materialization

e Primary Replication Server during resolution

* Replicate Replication Server during initialization and dropping

Replication Server

CHAPTER 7 International Replication Design Considerations

¢ Replicate data server during dropping

Sort order and character-set conversion play important rolesin processing
subscriptions and must be consistent everywhere for subscriptions to be valid.

Subscription materialization

Figure 7-1 illustrates the typical message flow during subscription

materialization.

Figure 7-1: Subscription materialization

PDS

=

Sewt Ordler

Characlar-Sel
Conversion

PRS

<

RDS

B

A

RRS

During subscription materialization:

A

=)

e Thereplicate Replication Server logsin to the primary data server and

issues a select statement to retrieve the primary data.

e Theprimary data server converts all character data to the replicate
Replication Server’s character set. The replicate Replication Server’s

character set, if it isdifferent, must be installed at the primary data server.

« Thereplicate Replication Server inserts the data at the replicate data

server.

Note In bulk materialization, a subscription isinitialized by a user-chosen
mechanism outside the replication system. Therefore, you must make sure that
theinitial data selection at the primary data server uses the correct sort order
and that the character datais converted to the replicate data server character set,

if need be.

Design Guide

117

Sort order

Subscription resolution

Figure 7-2 illustrates the typical message flow during the normal lifetime of a
subscription.

Figure 7-2: Subscription resolution

RDS
Character-5Set
PDS PRS Sorf Ordar Conversion RRS

During subscription resolution:
e Adaptive Server RepAgent thread scans the log for updates.

e Theprimary Replication Server usesits sort order to determine what rows
qualify for the subscription. The primary Replication Server also addsthe
name of the primary Replication Server’s character set to the RSl message.

e Thereplicate Replication Server converts the data to its character set, if
necessary, and applies updates to the replicate data server.

Subscription reconciliation
Figure 7-3illustratesthers_subcmp process during subscription reconciliation.

118 Replication Server

CHAPTER 7 International Replication Design Considerations

Figure 7-3: Subscription reconciliation

Sorf Order Sort Order
Characlar-Sat ROS

Camersion
PDS / rs_subcmp > @

PRS RRS

D &

During subscription reconciliation:

* rs_subcmp connects to the primary data server and to the replicate data
server using the replicate data server’s character set.

* Theprimary data server converts all character datato the replicate data
server's character set (all rs_subcmp operations are performed in the
replicate data server’s character set). The replicate data server’s character
set, if it is different from the primary data server’s character set, must be
installed at the primary data server.

* rs_subcmp sends aselect statement to both data servers. The sort order of
each data server must be the same for this process to produce sensible
results.

Dematerialization

Figure 7-4 illustrates the typical message flow during subscription
dematerialization.

Design Guide 119

Sort order

Figure 7-4: Subscription dematerialization

Sort Order RDS

5 2

PRS Sort Order ¥ RRS

B &

A

During subscription dematerialization:

e Thereplicate Replication Server selectsdatafrom the replicate data server
to construct the dematerialization queue. The replicate data server usesits
sort order to select the rows.

e Thereplicate Replication Server usesits sort order to throw out rows
belonging to other subscriptions.

e Thereplicate Replication Server deletes the remaining rows from the
replicate database.

Unicode sort order

The Unicode sort order is different from the Replication Server sort order, and
must be set independently. To set the Unicode sort order, useatext editor to add
the following line to the Replication Server configuration file:

RS unicode_ sort order=unicode sort order

unicode_sort_order can be any of the Sybase-supported Unicode sort orders
listed in Table 7-1. The default value is binary.

Make sure that you suspend the connection to the data server and shut down
Replication Server before changing the Unicode sort order.

To change the current sort order, use the procedure described in “ Changing the
character set and sort order” on page 121.

120 Replication Server

CHAPTER 7

International Replication Design Considerations

Table 7-1: Supported Unicode sort orders

Name Description

defaultml UTF-16 default ML

altnoacc CP850 dt: no accent

altdict cp850 alt: lowercase first

altnocsp CP850 alt: no case preference
scandict CP850 Scandinavian dictionary
scannocp CP850 Scandinavian, no case preference
binary UTF-16 binary

dict Latin-1 English dictionary

nocase Latin-1 English, no case

nocasep Latin-1 English, no case preference
noaccent Latin-1 English, no accent

espdict Latin-1 Spanish dictionary
€spnocs Latin-1 Spanish no case

espnoac Latin-1 Spanish, no accent
rusnocs 8859-5 Russian, no case

cyrnocs 8859-5 Cyrillic, no case

eldict 8859-7 Greek dictionary

hundict 8859-2 Hungarian dictionary
hunnoac 8859-2 Hungarian, no accents
hunnocs 8859-2 Hungarian, no case
turknoac 8859-9 Turkish, no accent
turknocs 8859-9 Turkish, no case

thaidict CP874 Thai dictionary

utf8bin UTF-16 ordering matching UTF-8

You can a so specify aUnicode sort order for rs_subcmp. Seers_subcmp inthe
Replication Server Reference Manual.

Changing the character set and sort order

If you change the character set or sort order of Adaptive Server, you must also
change the character set or sort order of:

Design Guide

Each Replication Server that manages replication for the server

121

Changing the character set and sort order

Synchronize the
primary and
replication databases

122

e Each associated RSSD that resides on a separate Adaptive Server

If you change the sort order of Adaptive Server, you must also change the sort
order of thereplicate Replication Server and replicate data server to ensure that
subscriptions are processed consistently.

After changing the character set or sort order, subscription semantics may
change. Sort order changes can have obvious consequences. Suppose a
subscription contains the clause “where last_name = MacGregor.” If the sort
order is changed from dict to binary, for example, “MacGregor” no longer
qualifies for sorting.

You must make sure that the primary and replicate databases are
resynchronized after you change the character set or sort order. Sybase
recommends that you use one of these methods:

e Users_subcmp after changing the character set or sort order, or

¢ Purgeal subscriptions before changing the character set or sort order, and
then rematerialize all subscriptions after changing the character set or sort
order.

Note Usethe purge and rematerialize method if any subscriptions contain
character clauses. Only this method ensures that subscriptions with character
clauses are resynchronized.

[—IChanging the character set or sort order

All replicated transactions originating from Adaptive Server must arrive at the
replicate data server before the character set or sort order is modified. In
addition to changing the sort order or character set, this procedure ensures that
no data corruption occurs resulting from changing the character set or sort
order.

Replication Server

CHAPTER 7 International Replication Design Considerations

Design Guide

Identify all Replication Servers and Adaptive Servers that are associated
with the primary Adaptive Server—including all RSSDs for associated
Replication Servers.

Note If you are changing the character set: look up the character set of al
Adaptive Serversin the Replication Server domain to ascertain if their
character sets must also be changed. Sybase supports alternate character
sets for serversin the same domain, but the implication for usersis
significant.

If you are changing the sort order: Sybase recommends that al data
serversin the Replication Server domain share the same sort order. This
ensures that data and identifiers are ordered consistently throughout the
replication system.

Quiesce al primary updates and make sure that they have been processed
by Replication Server.

Note If you are changing the character set, make sure that there are
sufficient empty transactions to span a page in Adaptive Server. This
ensuresthat after the Adaptive Server transaction log is emptied (see step
9), there will be no data still in the old character set.

Quiesce all associated Replication Servers.

Shut down all associated Replication Servers, RepAgents, and Replication
Agents.

Change the character set and/or sort order in configuration files for the
Replication Servers and, if applicable, for the Replication Agents.

Follow Adaptive Server procedures for changing the default character set
and/or sort order of each associated Adaptive Server. See “Configuring
Character Sets, Sort Orders, and Languages’ in the Adaptive Server
Enterprise System Administration Guide Volume 1.

Shut down all associated Adaptive Servers.

Start up the associated Adaptive Serversin single-user mode—unlessyou
can guarantee that there will be no activity at the primary and replicate
databases.

123

Changing the character set and sort order

10

11

12

13
14
15

16
17

Remove the secondary truncation point from each associated Adaptive
Server. This step allows Adaptive Server to truncate log records that the
RepAgent has not yet transferred to the Replication Server. From the
Adaptive Server, enter:

dbcc settrunc('ltm', 'ignore')

Truncate the transaction log. From the Adaptive Server, enter:
dump transaction db name with truncate only

Reset the secondary truncation point. From the Adaptive Server, enter:
dbcc settrunc('ltm', 'valid')

Reset thelocator valuefor the primary databaseto zero. Thisstep instructs
Replication Server to get the new secondary truncation point from
Adaptive Server and set the locator to that value. From the Adaptive
Server, enter:

rs_zeroltm data server, db_name
Shut down and restart Adaptive Server in normal mode.
Restart the associated Replication Servers.

Allow RepAgents (or Replication Agents) to reconnect to Replication
Servers by resuming log transfer. From the Replication Server, enter:

resume log transfer from data server.db name
Start up RepAgents.
Restart replication.

When changing the character set changes the character width

If the character set change involves a change of character width, the stored
procedure messages of all databases controlled by the Replication Server must
be reloaded. The stored procedure messages are in
$SYBASE/$SYBASE_REP/scripts/rsspmsgl.sgl and rsspmsg2.sgl for UNIX,
and %SYBASEY0\%SYBASE _REP%\scripts\rsspmsgl.sql and rsspmsg2.sgl for
Windows. The commands to change the character width are described for
UNIX and Windows in the following sections.

124

Replication Server

CHAPTER 7 International Replication Design Considerations

UNIX

Windows

Summary

Design Guide

When the change is from a single-byte to a multibyte character set:

isqgl -Uuser name -Ppassword -Srssd name -Jeucjis
< S$SYBASE/S$SYBASE REP/scripts/rsspmsg2.sql

When the change is from a multibyte to a single-byte character set:

isqgl -Uuser _name -Ppassword -Srssd name -Jiso_1
< $SYBASE/S$SYBASE REP/scripts/rsspmsgl.sql

When the change is from a single-byte to a multibyte character set:

isqgl -Uuser name -Ppassword -Srssd name -Jeucjis
< %$SYBASE%\%SYBASE REP%\scripts\rsspmsg2.sqgl

When the change is from a multibyte to a single-byte character set:

isqgl -Uuser name -Ppassword -Srssd name -Jiso_1
< %$SYBASE%\%SYBASE REP%\scripts\rsspmsgl.sqgl

When the change is to the UTF-8 character set, install both rsspmsgl.sgl and
rsspmsg2.sql

* Replication Server can be configured to print messagesto error logs and
to clientsin English, French, German, and Japanese. English isthe default
language.

» Sybaserecommendsthat all serversat areplication site be configured with
the same language.

* Replication Server supports all Sybase-supported character sets and sort
orders, including non-binary sort orders and the Unicode UTF-8 character
Set.

* Replication Server performs character-set conversion of data and
identifiers between primary and replicate Replication Servers and
databases.

125

Summary

e Sybase recommendsthat all servers at areplication site use the same
character set and that al Replication Serversin your system use
compatible character sets.

e Sort order playsanimportant role in processing subscriptions, and it must
be consistent everywhere for subscriptions to be valid.

126 Replication Server

APPENDIX A Capacity Planning

This appendix contains information to help you plan the CPU, memory,
disk, and network resources you need for your replication system.

Topic Page
Overview of requirements 127
Data volume (queue disk space requirements) 129
Other disk space requirements 147
Memory usage 149
CPU usage 151
Network requirements 152

Overview of requirements

A replication system consists of Replication Servers, Replication Agents
(RepAgent or other Replication Agent), Replication Manager (RM),
Replication Monitoring Services (RMS), and data servers.

Warning! Asversions of Adaptive Server change, Replication Server
capacity planning may change as a conseguence of new Adaptive Server
transaction log space requirements.

All capacity planning in this chapter assumes that Adaptive Server is
using a 2KB page size. If you are using larger page sizes, you must
recal culate your space utilization needs to accommodate Adaptive
Server’s larger page size.

Replication Server requirements
The minimum requirements for each Replication Server are:

¢ OneReplication Agent for the Replication Server System Database
(RSSD) if there will be aroute from this Replication Server.

Design Guide 127

Overview of requirements

¢ Atleast one 20MB raw partition or operating system file for the stable
queues.

¢ AnAdaptive Server for the RSSD or SQL Anywhere (SA) SA for the
ERSSD.

An Adaptive Server for the RSSD must have:
e Atleast 10MB of free device space for the RSSD database directory

¢ Another 10MB of free device space for the RSSD transaction log
directory

An SA for an ERSSD must have:
e Atleast 5SMB of free device space for the ERSSD database directory

¢ Atleast 3MB of free device space for the ERSSD transaction log
directory

e Another 12MB of free device space for the ERSSD backup directory

e 20 user connections for the RSSD, in addition to the number of user
connections needed by Adaptive Server users. When Replication Server
starts up, severa threads attempt to read the RSSD at the same time. To
accommodate this demand, increase the number of user connections by 20.

e OneRSSD user connection for each RM and for each RMSin the
replication system and one user connection per data server for each RM
process and for each RM S process.

e Two user connections for each database containing primary data.
¢ One user connection for each replicate-only database.

¢ Atleast 512MB of RAM for the Replication Server executable program
and all the Replication Agents, plus data and stack memory. (RepAgent is
an Adaptive Server thread; it does not require any Replication Server
memory.)

Replication Server requirements for primary databases
For each primary database it manages, a Replication Server needs:

¢ RepAgent thread for Adaptive Server databases or other Replication
Agent for non-Sybase databases

¢ Oneinbound stable queue

128 Replication Server

APPENDIX A Capacity Planning

One outbound stable queue

One connection to the data server for the Data Server Interface (DSI)

See the release bulletin for more information about Adaptive Server
compatibility requirements.

Note If you are using a Replication Agent with a non-Sybase data source, see
the appropriate Replication Agent documentation for information about
compatibility requirements.

Replication Server requirements for replicate databases
For each replicate database it manages, a Replication Server needs:

One outbound stable queue

One connection to the data server for the DSI.

Replication Server requirement for routes
For each direct route to another Replication Server, aReplication Server needs:

One outbound stable queue

Data volume (queue disk space requirements)

The most significant components in estimating the amount of resources
required by the replication system are the volume of the data being replicated
and the rate at which it is being updated.

Design Guide

To calculate data volume, you need to know the following things about your
replication system:

The number of sites
The widths of the rows in replicated tables
The widths of parametersin replicated functions

The number of modifications per second

129

Data volume (queue disk space requirements)

e Theduration of atypical transaction

* Theselectivity of replication for replicated tables (the fraction of that table
replicated through the queue)

¢ Thelength of time you want queues to hold transactions when a
destination is unavailable

The following sections provide formulas for calculating queue size
requirements. You can also usethers_fillcaptable and rs_capacity proceduresin
an RSSD to get a queue size estimate. See the Replication Server Reference
Manual for information about these stored procedures.

Overview of disk queue size calculation

Figure A-1illustrates the sequence and flow of calculating data volume and
queue disk usage

130 Replication Server

APPENDIX A Capacity Planning

Figure A-1: Calculating queue disk usage

Legend: | Information you provide ‘ Calculafion resulls
Humber of Sites Message Overhead

Various
Hessage Sizes

Tablke Replication

| Row Widh Changed Seledliviy
de

uul::teh;m‘d'm Failure Duration

Transaction

Inbound
Transaction
Rate

ical Transaclion
TP Duration

Save Inferval

Message sizes

Design Guide

A Replication Server distributes database modifications using messagesin
ASCII format. Most replication system messages correspond to the del ete,
insert, update, and function execution operations.

Each table has one message size for inserts or del etes and another for updates.
Each function has its own message size. M essage sizes are expressed in bytes.

M essage sizesfor the same type of modification (insert, delete, or update) may
vary depending on whether the message is in the inbound or outbound queue.

131

Data volume (queue disk space requirements)

Table updates

Table inserts

Table deletes

132

You can cal culate message sizesin bytes for table updates, inserts, and del etes,
for functions, and for begin/commit pairs using the formulas presented bel ow.
See “Formula components” on page 133 for a description of the components.

Thisformulawill give you arough estimate of the upper limit of message size:

InboundMsgSizeupdate = InboundMsgOverhead +
ColOverhead + (RowWidth*2)

OutboundMsgSizeupdate = OutboundMsgOverhead +
(RowWidth*2) + (NumSites*8)

To get amore precise estimate, use the RowwWdthChanged figure in the
calculation, asfollows:

InboundMsgSizeupdate = InboundMsgOverhead +
ColOverhead + RowWidth + RowWidthChanged
OutboundMsgSizeupdate = OutboundMsgOverhead +
RowWidth + RowWidthChanged + (NumSites*8)

If you use the minimal columnsfeature, use this formulato calculate message
size:
InboundMsgSizeupdate = InboundMsgOverhead +
ColOverhead + (RowWidthChanged*2) +
PrimaryKeyWidth
OutboundMsgSizeupdate = OutboundMsgOverhead +
(RowWidthChanged*2) + PrimaryKeyWidth +
(NumSites*8)

See “Table update calculations’ on page 143 for examples of these
calculations.

Use the following formula to cal culate message size for table inserts. (This
formula also appliesif you use the minimal columns feature.)

InboundMsgSizeinsert = InboundMsgOverhead +
ColOverhead + RowWidth

OutboundMsgSizeinsert = OutboundMsgOverhead +
RowWidth + (NumSites*8)

If you do not use minimal columns, use this formulato cal cul ate message size
in table deletes:

InboundMsgSizeinsert = InboundMsgOverhead +
ColOverhead + RowWidth

OutboundMsgSizeinsert = OutboundMsgOverhead +
RowWidth + (NumSites*8)

If you use minimal columns, use this formulato calculate table deletes:

InboundMsgSizedelete = InboundMsgOverhead +

Replication Server

APPENDIX A Capacity Planning

Functions

Begin and commit
pairs

Formula components

Design Guide

ColOverhead + PrimaryKeyWidth
OutboundMsgSizedelete = OutboundMsgOverhead +
PrimaryKeyWidth + (NumSites*8)

Use these formulas to cal culate message size for functions:

InboundMsgSizefunction = InboundMsgOverhead +
ParameterWidth + (RowWidth*2)

OutboundMsgSizefunction = OutboundMsgOverhead +
ParameterWidth + (NumSites*8)

In the formula for inbound message size, Row\W dth does not apply to the
replicated functions feature because before and after images of replicated
functions are not sent to the inbound queue.

Use these formulas to cal culate message sizes for begins and commits:

InboundMsgSizebegin = OutboundMsgSizebegin = 250
InboundMsgSizecommit = OutboundMsgSizecommit = 200

Thetotal size of abegin/commit pair is 450 bytes. If typical transactions have
many modifications, omit the begin or commit message sizes from your
calculations. Their contribution to overall message size is negligible.

In the preceding formulas:

* InboundMsgOverhead equals 380 bytes. Each message includes a
transaction 1D, duplicate detection sequence numbers, and so on.

e OutboundMsgOverhead equals 200 bytes. Each message includes a
transaction 1D, duplicate detection sequence numbers, and so on.

» ColOverhead, which appliesto the inbound queue only, equals 30 bytes of
overhead per column, asfollows:

For an update operation without minimal columns:
(NumColumns+NumColumnsChanged) * 30
For an update operation with minimal columns:
((NumColumnsChanged*2) +NumPrimaryKeyColumns) * 30
For an insert operation (with or without minimal columns):

NumColumns * 30
For a delete operation without minimal columns:
NumColumns * 30

For a delete operation with minimal columns:

NumPrimaryKeyColumns * 30

133

Data volume (queue disk space requirements)

¢ RowWidthisthesize of the ASCII representation of thetable columns. For
example: achar(10) column uses 10 bytes, a binary(10) column uses 22
bytes.

For table updates, the RowwW dth ismultiplied by 2 because both the before
and after images of the row are distributed to the replicate sites.

¢ RowWdthChanged is the width of the changed columnsin the row. For
example, you have 10 columns with atotal RowMWdth of 200 bytes. Half
of the columns in the row change, giving you a RowwW dthChanged
measurement of approximately 100 bytes.

¢ NumStesisthe number of sitesthat amessagewill goto. Thismattersonly
when small messages are distributed to many sites and may be
insignificant if you do not have many sites. If small, you might want to
omit the number of sites factor from the formulas that use it.

e ParameterWdth isthe size of the ASCII representation of the function
parameters.

¢ Begin/Commit Pair isthe combined size of the begin message header and
the commit trailer, which equals 450 bytes.

Change rate (number of messages)

The change rate isthe maximum number of modifications (inserts, deletes, and
updates) made to the table per time period. Change rate varies from table to
table.

When planning capacity, always use a change rate greater than the maximum
change rate recorded for that table.

Note Figuresfor changeratesare expressed as operations per unit of time (for
example, 5 updates per second). Always use the same time period when
calculating rates. If you measure updates per second, then you must use
seconds as the basis for all other time period calculations.

Change volume (number of bytes)

The change volume is the amount of datathat is changed in the table per time
period. Thisamount variesfrom tableto table. It isafunction of the changerate
and data size for the table.

134 Replication Server

APPENDIX A Capacity Planning

Calculating table volume

The volume of data being replicated is the size of each message times the
number of messages replicated per second. If you know the message size of
each modification to atable and of each replicated function, you can calculate
thetotal volume of messages generated in adatabase by summing the volumes
of the individual tables and replicated functions.

Table volume upper bound method

For purposes of |ater calculations, figure table volumes and database volumes
for inbound and outbound queues separately. Or, calculate the volume for
outbound queues and use that figure as an approximation for both inbound and
outbound volumes.

Theupper bound for each table can be generated by multiplying the update rate
on thetable by the size of thelongest message. This gives you the upper bound
of the table volume.

InboundTableVolumeupper = (Max[InboundMsgSize] *
ChangeRate)
OutboundTableVolumeupper = (Max[OutboundMsgSize] *
ChangeRate
where;

« Max[InboundMsgSze] and Max] OutboundMsgSize] are the sizes of the
largest inbound and outbound message in bytes (typically, the message
size with the largest parameters).

¢ ChangeRateisthe maximum number of modificationsto thetableper time
period.

Table volume sum of values method

A more precise calculation of data volume can be achieved by summing all of
the volumes for the different types of messages.

To calculate InboundTableVolume:

InboundTableVolume =
(InboundMsgSizeupdate * ChangeRateupdate) +
(InboundMsgSizeinsert * ChangeRateinsert) +
(InboundMsgSizedelete * ChangeRatedelete) +
(InboundMsgSizefunctionl * ChangeRatefunctionl) +
(InboundMsgSizefunction2 * ChangeRatefunction2) +

Design Guide 135

Data volume (queue disk space requirements)

Transaction volume

136

To calculate OutboundTabl eVolume:

OutboundTableVolume =
(OutboundMsgSizeupdate * ChangeRateupdate) +
(OutboundMsgSizeinsert * ChangeRateinsert) +
(OutboundMsgSizedelete * ChangeRatedelete) +
(OutboundMsgSizefunctionl * ChangeRatefunctionl) +
(OutboundMsgSizefunction2 * ChangeRatefunction2) +

where:

¢ ChangeRateisthe maximum number of modificationsto thetable per time
period. ChangeRate, e refersto dataupdates, ChangeRate; eyt refersto
data insertions, and so forth.

¢ InboundMsgSze and OutboundMsgSize are the different types of
maximum inbound and outbound message sizes. (See“ Message sizes’ on

page 131.)

TransactionVolume estimates data volume generated by the begin and commit
records.

The formulafor InboundTransactionVolumeis:

InboundTransactionVolume = (MsgSizecommit +
MsgSizebegin) * InboundTransactionRate

where:
s MsgSzenegin + MSYSiZEommit €quals 450 bytes per transaction.

¢ InboundTransactionRate is the total number of transactions per time
period at the primary database. This includes al transactions—those that
updatereplicated tables and those that do not. Onetransaction may include
one or more modifications to one or more tables.

The formulafor OutboundTransactionVolumeis:

OutboundTransactionVolume = (MsgSizecommit +
MsgSizebegin) * OutboundTransactionRate

where:

* MsgSzepggin + MsgSzegommit equals 450 bytes per transaction.

Replication Server

APPENDIX A Capacity Planning

Database volume

Design Guide

¢ OutboundTransactionRate is the total number of replicated transactions
per time period replicated through a particular outbound queue. Each
transaction may include one or more modifications to one or more tables.

OutboundTransactionRate depends on;
¢ How many transactions actually update the replicated data

* How many of those transactions are replicated through a particular
outbound queue

For example, if the InboundTransactionRateis 50 transactions per second,
and half of those transactions update replicated tables, and 20 percent of
the updates to the replicated tables are replicated through queue 1, the
OutboundTransactionRate for queue 1 is 5 transactions per second (50 *
0.5* 0.2).

Calculating the OutboundTransactionRate can be complicated if
transactions contain updates to many different replicated tables with
different replication selectivities. In such cases, the
InboundTransactionRate provides a convenient upper bound for the
OutboundTransactionRate, and you may useit in your formulasinstead of
the OutboundTransactionRate.

If dl transactionsin your database are replicated through an outbound
queue, then the OutboundTransactionRate is the same as the
InboundTransactionRate.

A rough estimate of the upper limit of database volume can be calcul ated by
summing the upper bound message rates for each table.

InboundDatabaseVolumeupper =
sum (InboundTableVolumeupper) + InboundTransVolume

See “Inbound database volume” on page 144 for an example of these
calculations.

A more accurate method of determining the InboundDatabaseVolumeisto sum
the Table Volumes that were calculated using the method described in “ Table
volume upper bound method” on page 135.

InboundDatabaseVolume = sum(InboundTableVolume) +
InboundTransactionVolume

137

Data volume (queue disk space requirements)

Inbound queue size

138

An inbound queue contains the updates to al of the replicated tablesin a
primary database. The inbound queue keeps these updates for the duration of
the longest open transaction. Queue sizes are expressed in bytes.

To calculate the average size of an inbound queue:

InboundQueueSizetypical = InboundDatabaseVolume *
TransactionDurationtypical

To calculate the maximum size of an inbound queue:

InboundQueueSizelongest = InboundDatabaseVolume *
TransactionDurationlongest

where:

¢ InboundDatabaseVolume is the volume of messages calculated by the
formulas described in “ Database volume” on page 137.

You can use the OutboundDatabaseVolume to calculate the
InboundQueueSze if you do not need to be precise.

+ TransactionDurationy; 5 represents the number of seconds for atypical
transaction.

* TransactionDuration|gngeq represents the number of seconds for the
absolute transaction.

See “Inbound queue size example calculation” on page 145 for an example of
calculating the maximum size of an inbound queue.

In practice, the maximum size of the inbound queue is slightly longer than the
calculation, because while along transaction is being read, new transactions
are being added to the log. Since the duration of the longest transaction is an
approximation, when determining its value add an estimate for the short period
required to read and process it from the stable queue.

Replication Server

APPENDIX A Capacity Planning

Also note that the size of the queue may be larger if messages trickle slowly
into the Replication Server. Replication Server writes messages to stable
queues in fixed blocks of 16K. To reduce latency, it writes even partialy full
blocks every second. (You can use the init_sgm_write_delay configuration
parameter to change the time delay to something other than 1 second.) If
several messages arrive almost simultaneoudly, al of them will be written into
one block. But if the same messages arrive at staggered intervals, each may
occupy ablock of its own.

Note Since Adaptive Server transaction log requirements may increase with
new versions of Adaptive Server, Replication Server stable queue space
requirements may also increase.

Outbound queue volume

Design Guide

An outbound queue sends datato another Replication Server or to adataserver.
The destination is called a Direct Destination Site in these calculations. For
each database replicated to (or through) the Direct Destination Site, some part
of the Table Volumes passes through the queue. The fraction of atable
replicated through a queueis called replication selectivity.

An upper bound of the OutboundQueueVolume can be cal cul ated by assuming
the highest possible replication selectivity of 1 (or 100 percent) for al tables.

Then, the OutboundQueueVolumeisthe sum of all the OutboundTableVolumes
for al tables replicated through the queue.

OutboundQueueVolumeupper= sum(OutboundTableVolumes) +
OutboundTransactionVolume

For example, if two tableswith OutboundTabl eVolumes of 20K per second and
10K per second and an assumed OutboundTransactionVolume of 1K per
second are replicated through an outbound queue, the OutboundQueueVolume
would be:

20K/Sec + 10K/Sec + 1K/Sec = 31K/Sec

A more accurate measure of queue volume can be obtained by factoring in a
valuefor replication table selectivity. The formulafor OutboundQueueVolume
using ReplicationSdlectivity is:

OutboundQueueVolume = sum(OutboundTableVolume *
ReplicationSelectivity) + OutboundTransactionVolume

139

Data volume (queue disk space requirements)

Failure duration

Save interval

For example, in the previous example, if only 50 percent of thefirst table was
replicated and 80 percent of the second table was replicated, the
OutboundQueue\Vol ume would be:

(20K/Sec*0.5) + (10K/Sec*0.8) + 1K/Sec = 19K/Sec

See “ Outbound queue volume example calculation” on page 145 for an
example of this calculation.

If the direct destination site is unavailable, the queue buffersits messages. The
failure duration figure you use to establish queue size determines how long a
failure the queue can withstand.

The saveinterval specifies how long datais kept in outbound queues before it
is deleted. The saveinterval helpsin recovering from adisk or node loss.

Use the configure connection command to specify the save interval for a
database connection. Use the configure route command to specify the save
interval for aroute to another Replication Server. See the Replication Server
Reference Manual for additional information.

Outbound queue size

140

The size of an outbound queue is calculated by the formula:

OutboundQueueSize = OutboundQueueVolume *
(FailureDuration + SaveInterval)

where:

¢ OutboundQueueVolume is the amount of data in bytes entering the queue
per time period.

¢ FailureDuration isthe maximum timethe queue is expected to buffer data
for an unavailable site.

* Savelnterval isthetime the messages are kept in the queue before being
deleted.

If an outbound queue with an OutboundQueueVolume of 18K per second hasa
Savelnterval of 1 hour, and isintended to withstand 1 hour of unavailability at
the destination site, the size of the queue should be:

Replication Server

APPENDIX A Capacity Planning

OutboundQueueSize =
18K/sec * (60min + 60min) =
0.018MB/sec * 120min * 60sec/min = 130MB

See “Outbound queue size” on page 146 for amore detailed example of these
calculations.

In practice, if the actual change rates and table selectivities result in lessthan a
full 16K block being filled each second, then the figures cal culated above are
low. Replication Server writes ablock every second, whether or not the block
isfull. The worst usage of queue space occurs when small transactions are
executed morethan asecond apart. Statisticsindicatethat most blocksare from
50 percent to 95 percent full.

Overall queue disk usage

To calculate the overall total disk space required for worst-case queue usage,
use the formula:

Sum [InboundQueueSize] + Sum[OutboundQueueSize]

where:

Sum[InboundQueueSi ze] isthe sum of theinbound queue sizesfor each of
the databases.

Sum[OutboundQueueS ze] isthe sum of the outbound queue sizesfor each
direct destination.

Additional considerations

When planning your replication system, takethese considerationsinto account:

Design Guide

When one of the remote sitesis unavailable because of anetwork failure,
it islikely that the other sites on the same network will be unavailable as
well, so many queueswill grow simultaneously. Thus, you need to all ocate
enough disk spacefor all queuesto withstand asimultaneousfailure of the
planned-for duration.

When the queues start filling up, you can always add more partitionsif you
have spare disk space.

141

Data volume (queue disk space requirements)

If al the queues fill up and the inbound queue cannot accept more

messages, the primary database will not be able to truncate itslog. If you
manually override this restriction, replicate databases will not receive the
truncated updates.

Example queue usage calculations

The following sections present a series of example calculations using the

preceding formulas.

Examples, calculation parameters

These calculations use the following assumptions about the example

replication system:

Tables T1 and T2 are in database DB1.

Table T3 isin database DB2.

All three tables are replicated to sites S1, S2, and S3.

The parameters are shown in the following tables (note that not all
messages are replicated to all sites).

Table A-1: Table parameters

Columns Change rate Row width Row width

Database Table #Cols changed (num/sec) (bytes) changed # Sites
DB1 T1 10 5 20 200 100 3
DB1 T2 10 5 10 400 200 2
DB2 T3 120 100 2 1500 1000 2

Table A-2: Site parameters—table replication selectivity

Percent of Percent of Percent of

Table updates to S1 updates to S2 updates to S3

T1 10% 40% 40%

T2 40% 80% 0%

T3 20% 0% 20%

Table A-3: Transaction rates

Transaction rate DB1 DB2 S1 S2 S3

Inbound 20/sec 20/sec - - -

Outbound - - 5/sec 10/sec 8/sec

142

Replication Server

APPENDIX A Capacity Planning

Message size example calculations

These examples use the RowwW dthChanged formula (without minimal
columns) for the calculation. See “Message sizes” on page 131 for other
formulas that can be used to cal culate message size.

Table update calculations
Using the following formulas:

InboundMsgSizeupdate = InboundMsgOverhead +
ColOverhead + RowWidth + RowWidthChanged
OutboundMsgSizeupdate = OutboundMsgOverhead +
RowWidth + RowWidthChanged + (NumSites*8)

The calculations for updates for each site are;

InboundMsgSizeTl = 380 + 450 + 200 + 100 = 1130
bytes

InboundMsgSizeT2 = 380 + 450 + 400 + 200 = 1430
bytes

InboundMsgSizeT3 = 380 + 6600 + 1500 + 1000 = 9480
bytes

OutboundMsgSizeTl = 200 + 200 + 100 + 24 = 500 bytes

OutboundMsgSizeT2 = 200 + 400 + 200 + 16 = 800 bytes

OutboundMsgSizeT3 = 200 + 1500 + 1000 + 16 = 2700
bytes

Begin/commit pairs

MsgSizebegin = 250
MsgSizecommit = 200

Change rate

The change rate is the maximum number of data modifications performed on a
table per time period. Naturally, thisnumber is different for every tableinyour
replication system.

These example cal culations use the change rates shown in Table A-1 on
page 142.

Design Guide 143

Data volume (queue disk space requirements)

Table volume example calculations

Now calculate the table volumesfor tables T1, T2, and T3. For simplicity, what
is presented here is aworst-case analysis that assumes all changes are due to
SQL update statements plus their associated begin/commit pairs.

Using the upper bound formula for InboundTableVolume:
InboundTableVolume = (Max[InboundMsgSize]*ChangeRate)
The inbound table volumes for tables T1, T2, and T3 are;

InboundTableVolumeTl = 1130*20 = 23K/sec
InboundTableVolumeT2 = 1430%*10 14K/sec
InboundTableVolumeT3 = 9480*2 = 19K/sec

Using the upper bound formula for OutboundTableVolume:

OutboundTableVolume = (Max[OutboundMsgSize] *
ChangeRate)

The outbound table volumes for tables T1, T2, and T3 are:

OutboundTableVolumeTl = 524%*20 = 10K/sec
OutboundTableVolumeT2 816*10 = 8K/sec
OutboundTableVolumeT3 = 2716*2 5K/sec

where:

e InboundMsgSize and OutboundMsgSi ze are taken from the cal culations
performed in “Table update calculations’ on page 143.

e ChangeRate istaken from Table A-1 on page 142.

RSSD and log size example calculations

Each Replication Server has an RSSD with its own inbound queue. The RSSD
al so contributes to the queue volumes of the outbound queues. However, since
very little activity isexpected in the RSSD, and all transactions are very small,
you can assume that the disk space requirements for an RSSD are minimal:

¢ Inbound Queue = 2MB

¢ Outbound Queues = nothing

Inbound database volume

Based on the InboundTableVolumes cal culated above, you can calculate the
InboundDatabaseVolume using the upper bound formula:

144 Replication Server

APPENDIX A Capacity Planning

InboundDataBaseVolume = sum(InboundTableVolume) +
InboundTransactionVolume

where:

e InboundTableVolumes are taken from the cal culations on the previous
page.

* TransactionVolume is the sum of the Messageyegin and Messagecommit
pairs (250 bytes + 200 bytes) times the TransactionRate.

* Inthese examples, the transaction rates for each database are taken from
Table A-3 on page 142.

Thus, the InboundDatabaseVolumes are:

InboundDatabaseVolumeDBl1 = 23K + 14K +

(450 bytes/tran * 20 tran/sec) = 46K/sec
InboundDatabaseVolumeDB2 = 19K +
(450 bytes/tran * 20 tran/sec) = 28K/sec

Inbound queue size example calculation

Based on the InboundDatabaseVol umes, you can cal cul ate the maximum sizes
of inbound queues for DB1 and DB2 using the formula:

InboundQueueSize = InboundDatabaseVolume *
TransactionDuration

where:
¢ Inbound DatabaseVolume is the volume of messages calculated above.

e TransactionDuration is the number of seconds for the absolute longest
transaction. For the purpose of this example, assume that the
TransactionDuration for DB1 is 10 minutes, and for DB2 it is 5 minutes.

The InboundQueue sizes are:

InboundQueueDBl = 46K/sec * 600sec 28MB
InboundQueueDB2 = 28K/sec * 300sec = 8MB

Outbound queue volume example calculation

Design Guide

Now calculate the OutboundQueueVolume for tables T1, T2, and T3. Because
selectivity ismeasured on atable basis (rather than a database basis), you must
calculate outbound queue size for each table replicated throughit. Theformula
for calculating the maximum OutboundQueueVolumeis:

145

Data volume (queue disk space requirements)

OutboundQueueVolume = sum(OutboundTableVolume *
ReplicationSelectivity) + OutboundTransactionVolume

where:

e OutboundTableVolume is taken from the cal culations performed in
“Calculating table volume” on page 135.

* ReplicationSelectivity values are from Table A-2: Ste parameters—table
replication selectivity.

* TransactionVolume is the size of the Messageyegin and Messagecommit
pairs (250 bytes + 200 bytes) times the TransactionRate.

The formulafor calculating the OutboundQueueVolume for Site 1 is:

OutboundQueueVolumeSl = OutboundTransactionVolume +
(TableVolumeTl*ReplicationSelectivityT1,S51) +
(TableVolumeT2*ReplicationSelectivityT2,S51) +
(TableVolumeT3*ReplicationSelectivityT3,S1)

The OutboundQueueVolumes for the three sites are:

Sitel = (450*5) + (10K/sec*0.1l) + (8K/sec*0.4) +
(5K/sec*0.2) = 7K/sec

Site2 = (450*10) + (10K/sec*0.4) + (8K/sec*0.8) +
(5K/sec*0) = 15K/sec

Site3 = (450*8) + (10K/sec*0.4) + (8K/sec*0) +
(5K/sec*0.2) = 9K/sec

Outbound queue size

146

The size of an outbound queue is cal culated by the formula

OutboundQueueSize = OutboundQueueVolume *
(FailureDuration + SaveInterval)

where:

¢ OutboundQueueVolume is the amount of data in bytes entering the queue
per time period.

¢ FailureDuration isthe maximum timethe queue is expected to buffer data
for an unavailable site. For the purpose of these example calculations,
assume that failure duration is set at 4 hours (14,400 seconds).

« Savelnterval isthetime configured for that particular queue. For the
purpose of these calculations, assume that the save interval is 2 hours
(7200 seconds).

Replication Server

APPENDIX A Capacity Planning

e FailureDuration + Savelnterval is 21,600 seconds.
The OutboundQueueS zes for the three sites are:

Sitel = 7K/sec * 21,600sec = 151MB
Site2 = 15K/sec * 21,600sec = 324MB
Site3 = 9K/sec * 21,600sec = 194MB

Total disk queue usage example calculation

To calculate the total disk space necessary to handle all queues during aworst-
casefailure (4 hours), use the formula:

Sum (InboundQueueSizes) + Sum(OutboundQueueSizes)
where:

e InboundQueueS zes are the two queues calculated in “ Inbound queue size
example calculation” on page 145.

e OutboundQueueS zes are the three queues cal culated above.

The total disk space needed in the worst case, including 2MB for the RSSD
inbound queue, is:

2MB + 28MB + 8MB + 151MB + 324MB + 194MB = 707MB

Sybase recommends that you allocate enough space for your worst case
scenario. If you use the save interval feature (outbound queues are not
truncated even after messages are delivered to the next site), you must be sure
to all ocate enough queue space to sustain your peak transaction activity. If you
do not use save interval, then under normal circumstances, your queue
utilization will be very small, perhaps 1IMB or 2MB per queue.

The example calculations assumed that all outbound queues would have to
tolerate the same duration of failure. This assumption may not be true in your
environment. Typically, connections across a WAN must tolerate longer
duration failures than local connections.

Other disk space requirements

This section covers space requirements for Replication Servers, Replication
Agents, and data serversin areplication system.

Design Guide 147

Other disk space requirements

Stable queues

RSSD

ERSSD

Logs

148

The calculationsfor stable queues are explained in the previous sections of this
chapter.

For the RSSD, allocate at least 10M B for the dataand 10MB for thelog. These
replication system defaults are designed for arelatively small system. If you
want sufficient space for hundreds of replication definitions and thousands of
subscriptions, you should increase your data and log space to 12MB.

Errorsand rejected transactions are al so placed inthe RSSD. The administrator
should periodically truncate the tables that hold these errors and rejected
transactions. If you dump stable queues to the RSSD to help diagnose
problems, truncate those tables when they are no longer needed.

For the Embedded RSSD (ERSSD), allocate at least 5SMB for the data, 3MB
for the log, and 12MB for the backup. These replication system defaults are
designed for arelatively small system. If you want sufficient space for
hundreds of replication definitions and thousands of subscriptions, increase
your data and log space to approximately 25MB each.

Errors and rejected transactions are also placed in the ERSSD. The
administrator should periodically truncate the tables that hold these errors and
rejected transactions. If you dump stable queuesto the ERSSD to hel p diagnose
problems, truncate those tables when they are no longer needed.

Replication Servers write information, error messages, and trace output into
their error log files. You should allocate IMB to 2MB of disk storage for these
log files. If you are asked by Sybase Technical Support to turn on trace flags,
you may need to make substantially more log space available.

RepAgent writes messages to the Adaptive Server error log file.

Replication Server

APPENDIX A Capacity Planning

Memory usage

Replication Serversare separate processesin the replication system. RepAgent
isan Adaptive Server thread.

Thefollowing sections estimate the approximate memory requirementsof each

one.

Replication Server memory requirements
Asageneral guideline, on a Sun SPARC station, estimate that:

A newly installed Replication Server uses about 7MB of memory for data
and stacks.

Each DSI connection adds about 500K. This value increasesif you
configure larger values for MD memory (md_sgm_write_request_limit
configuration parameter).

Every RepAgent connection adds 500K. Thisvalue increasesif you
configure larger values for SQT memory (sqt_max_cache_size
configuration parameter).

If you have thousands of subscriptions, or if you increase the function
string cache size, you must account for that by adding more memory.

Memory for subscription rules is afunction of the columns referenced in
the subscription and the number of rules. A typical subscription adds less
than 80 bytes plus the combined size of all subscription predicate values.

Function-string cache size can grow to 200K.

Remaining system table cache size is based on the number of objects
defined. Each replication definition consumes memory equal to
approximately 250 timesthe number of itscolumns. Thismight be afactor
if you have numerous replication definitions with many columns.

RepAgent memory requirements

Most RepAgent memory comes from allocated Adaptive Server procedure
cache (shared memory). It is used for:

Design Guide

Overhead

Schema cache

149

Memory usage

Overhead

Schema cache

Transaction cache

150

¢ Transaction cache
¢ text and image cache

Refer to the Adaptive Server Enterprise System Administration Guide Volume
2 for information about increasing server memory.

Adaptive Server allocates 5612 bytes for each database for log transfer—
whether or not RepAgent is enabled.

When RepAgent isenabled, Adaptive Server allocatesan additional 2332 bytes
of memory at startup for each RepAgent.

The amount of memory used for the schema cache depends of number of
objects (tables and stored procedures) and descriptors (columns and
parameters) that are replicated. Each object and descriptor requires 128 bytes.

At startup, Adaptive Server alocates 8K of memory—which is sufficient for
64 object/descriptors. Thereafter, memory isallocated in 2K chunks. Adaptive
Server aso alocates 2048 bytes for the hash table at startup.

A “least recently used” (LRU) mechanism keeps the schema cache size
manageable by removing from memory those objects/descriptors not recently
referenced. Thus, RepAgent does not need enough memory to describe all
replicated objects. At minimum, RepAgent needs enough memory to describe
one replicated object.

RepAgent requires 256 bytes for each open transaction. Transaction cache
memory is allocated in 2K chunks. As transactions are committed or aborted,
free memory is placed in apool which must be used before new memory can
be allocated.

RepAgent requires memory for the maximum number of open transactions. If
sufficient memory is unavailable, RepAgent shuts down.

At startup, Adaptive Server allocates 2048 bytes for a hash table.

Replication Server

APPENDIX A Capacity Planning

text and image cache

The text and image cache is not affected by the size of the text and image data.
Rather, the amount of memory used is dependent on the number of replicated
tables containing text and image data and the number of columnsin the tables
that contain text and image data. Each replicated table containing text andimage
data requires 170 bytes; each replicated column requires 52 bytes.

text and image cache memory is allocated in 2K chunks. Memory is allocated
only when replicated tables exist that contain text and image data.

The text and image cache uses a free memory pool and requires sufficient
memory for all text and image data.

Other memory

« If RepAgent is enabled, Adaptive Server alocates one extra process
descriptor for RepAgent.

¢ RepAgent uses ct-lib to connect to Replication Server. ct-lib allocates
memory directly (dynamic memory) as needed.

CPU usage

Replication Server runs on multiprocessor or single-processor platforms.
Replication Server’s multi-threaded architecture supports both hardware
configurations.

When Replication Server is configured with the symmetric multiprocessor
(SMP) feature turned off, Replication Server threads run serialy. A server-
wide mutually exclusive lock (mutex) enforces serial thread execution
ensuring that threads do not run concurrently on different processors.

When Replication Server is configured with the SMP feature turned on,
Replication Server threads can runin parallel, thereby improving performance
and efficiency. The server-wide mutex isdisengaged and individual threadsuse
a combination of thread management techniques to ensure that global data,
server code, and system routines remain secure.

Design Guide 151

Network requirements

Replication Server support for multiple processors is based on Open Server
support for multiple processors, that is, a single process running multiple
threads. Replication Server uses the POSIX thread library on UNIX platforms
and the WIN32 thread library on Windows platforms. For detailed information
about Open Server support for multiple processor machines, see the Open
Server Server-Library/C Reference Manual.

Enabling SMP

To enable SMP on a multiprocessor machine, use configure replication server
with the smp_enable option. For example:

configure replication server set smp_ enable to 'on'

Network requirements

When you have calculated the insert rates into the outbound queues, you can
get an idea of the network throughput required. The throughput should allow a
Replication Server to send messages faster than messages are being added to
the queues. Network messages are usualy fractionally larger than what is
written to the outbound gqueues.

Sometimes the queues are filled in bursts and are slowly drained through a
potentially low bandwidth network. You shoul d take this behavior into account
when you calculate queue sizes and make sure that your queues can handle
bursts of incoming data in addition to connection and destination site failures.

152 Replication Server

APPENDIX B Log Transfer Language

This appendix describes the Log Transfer Language (LTL) that a
Replication Agent component sends to the primary Replication Server.

Topic Page
Log Transfer Language overview 153
connect source 154
get maintenance user 157
get truncation 158
distribute 159
Sample RepAgent session 175

Log Transfer Language overview
Table B-1 liststhe LTL commands used by replication agents.

Table B-1: Log Transfer Language commands
Command Description

connect source Identifies the Replication Server connection as alog
transfer session. See “connect source” on page 154

get maintenance user Retrievesthelogin namefor themaintenance user. See
“get maintenance user” on page 157

get truncation Retrieves the truncation point for the database from
Replication Server. See “get truncation” on page 158

distribute Submits alog record to Replication Server. This
command has several subcommands. See “ distribute”
on page 159.

The first three commandsin Table B-1 coordinate the Replication Agent
session with the Replication Server. Thelast command, distribute, submits
log records to the Replication Server.

The following sections describe the syntax and use of the LTL commands.

Design Guide 153

connect source

connect source

After logging in to Replication Server, RepAgent sends a connect source
command to identify itself. The command specifies the data server and
database |og RepAgent isforwarding, and theversion of the LTL it proposesto
use.

Here is the syntax for the connect source command:

connect source Iti data_server.database version_no
[sendallxacts] [warmstdb] [in recovery]

where data_server and database identify the data server and the database
whose log is being forwarded by the RepAgent. The version_no parameter
identifies the LTL version to be used with the connect source command.

Replication Agents and Replication Server negotiate theversion of LTL to use
for the session. This ensures that Replication Agents written for earlier
versionsof Replication Server remain compatiblewith morerecent and current
versions. Replication Server and LTL compatibility arelisted in Table B-2.

Table B-2: Replication Server and LTL compatibility

Replication Server version LTL version
15.2 720
151 710
15.0 700
12.6 500
125 400
121 300
12.0 300
115 200
11.0 103

10.1.1 102
10.1 101
10.0 100

¢ If the Replication Agent uses Replication Server version 15.2 features, it
must use LTL version 720 and connect to Replication Server version 15.2
or later.

¢ If the Replication Agent uses Replication Server version 15.1 features, it
must use LTL version 710 and connect to Replication Server version 15.1
or later.

154 Replication Server

APPENDIX B Log Transfer Language

Keywords

Design Guide

If the Replication Agent uses Replication Server version 15.0 features, it
must use LTL version 700 and connect to Replication Server version 15.0
or later.

If the Replication Agent uses Replication Server version 12.6 features, it
must use LTL version 500 and connect to Replication Server version 12.6
or later.

If the Replication Agent uses Replication Server version 12.5 features, it
must use LTL version 400 and connect to Replication Server version 12.5
or later.

If the Replication Agent uses Replication Server version 12.x features, it
must use LTL version 300 and connect to Replication Server version 12.x
or later.

If the Replication Agent uses Replication Server version 11.5 features, it
must use LTL version 200 and connect to Replication Server version 11.5
or later.

If the Replication Agent uses Replication Server version 11.0 features, it
must use LTL version 103 and connect to Replication Server version 11.0
or later.

If the Replication Agent uses Replication Server 10.1.1 features, it must
use LTL version 102 and connect to Replication Server version 10.1.1 or
later.

If the Replication Agent uses Replication Server 10.1 features, it must use
LTL version 101 and connect to Replication Server version 10.1 or later.

If the Replication Agent uses only Replication Server 10.0 features, it can
use LTL 100 and can connect to any Replication Server.

RepA gent uses different keywordswith the connect source command, based on
the parameters set for RepAgent. These keywords are:

sendallxacts —when RepAgent is started with the
send_maint_xacts_to_replicate flag, it submits all updates on replicated
tables, including updates made by the maintenance user, to the Replication
Server for distribution to subscribing replicate sites.

155

connect source

Upgrade locator

¢ warmstdb —when RepAgent is started with the send_warm_standby_xacts
flag, it submitsall updates on replicated tables, including updates made by
the maintenance user, to the Replication Server for application to the
standby database.

e inrecovery —when RepAgent is started with the for_recovery flag itisin
recovery mode. When Replication Server isin recovery mode, it permits
connections only from RepAgents that are also in recovery mode.
Recovery mode is used to replay restored transaction logs so that lost
messages can be recovered. For more information about the role of the
RepAgent in recovery mode, see Chapter 7, “ Replication System
Recovery,” in the Replication Server Administration Guide Volume 2.

In Replication Server version 11.0 and later, connect source returns an
additional row that providesthe Replication Server system version number and
an upgrade locator.

The upgrade locator gives the origin queue ID of the last message written into
theinbound queue before the system was upgraded. For detailsabout the origin
queue ID, see “Format of the origin queue ID” on page 158.

The upgrade locator is useful when you are creating a Replication Agent,
upgrading from a pre-11.0 version of Replication Server to version 11.0 or
later, and mixed-mode transactions (both applied and request functions) arein
progress.

Example of connect source

156

The following connect source example identifies the session as a RepAgent
session for the Stocks_db database in the NY _DS data server. RepAgent and
Replication Server agreeto use LTL version 700, for version 15.0 of the
Replication Server:

connect source 1lti NY DS.Stocks db 700

VERSION

700

Sysversion UpgradeLocater
1500 0x000000000. ..

Replication Server

APPENDIX B Log Transfer Language

get maintenance user

After connecting to Replication Server, RepAgent sendsaget maintenance user
command to find the login name of the maintenance user for the database.
Replication Server updates replicated copies of data as the maintenance user.
RepAgent uses the login name to distinguish primary data updates from
updates distributed through the replication system.

» Changes made by the maintenance user are the result of adistribution, and
Replication Server does not redistribute them (except to the warm standby
database, if RepAgent is configured to do so using
send_warm_standby_xacts).

» Changes made to primary data by users other than the maintenance user
are primary updates that Replication Server distributes to other databases.

The RepAgent that processes the log of a database containing replicated data
must filter out all changes made by the maintenance user.

Note Most replication agents can be run in a mode that does not filter out
transactions executed by the maintenance user. This feature is used when a
consolidated replicated tableis replicated to other sites.

Use this syntax for the get maintenance user command:
get maintenance user for data_server.database

Replication Server returns one row with achar(30) column that contains the
maintenance user login name for the database.

The following example finds the maintenance user for the pubs2 database in
the NY_DS data server:

get maintenance user for NY DS.pubs2 db

Maintenance user

pubs2 db maint

Design Guide 157

get truncation

get truncation

The get truncation command returns a 36-byte binary value called the origin
queue ID. The format of the origin queue ID is described in the next section.

RepAgent uses the origin queue ID to:
¢ Locate the last log record saved in the Replication Server inbound queue
¢ Update the truncation point in the database log

The data server log must be truncated periodically to make room for more log
records. RepAgent uses the origin queue | D to update the truncation point and
to allow the data server to truncate the log records already received by
Replication Server.

Use this syntax for the get truncation command:
get truncation data_server.database

where data_server and database identify the database whose log is being
forwarded by the Replication Agent.

Replication Server returns asingle row with one 36-byte column that contains
the origin queue ID of the last command saved in itsinbound queue. Thefirst
32 bytes of the ID are generated by the Replication Agent. Thelast 4 bytesare
appended by Replication Server for its own use and are ignored by the
Replication Agent.

Format of the origin queue ID

158

The origin queue ID isaunigque 32-byte binary string that increasesin value as
each new log record is transferred. The value must increase, because
Replication Server ignores recordswith an ID lower than the highest 1D stored
in the inbound queue.

When the Replication Server is restarted, it must be able to map the origin
gueue ID to the original log record so that it can send the next log record with
anincreased ID value.

Table B-3 shows the format of the origin queue ID generated by the Adaptive
Server RepAgent. A Replication Agent for adifferent data server can generate
origin queue IDsin any format as long as the value increases and can be used
to find the original log record. See the Replication Server Heterogeneous
Replication Guide and Replication Server Options documentation for
replication agent information for non-A SE actively supported data servers.

Replication Server

APPENDIX B Log Transfer Language

distribute

Design Guide

Table B-3: Format of the origin queue ID for Adaptive Server RepAgent
Bytes Contents

1-2 Database generation number used for recovering after reloading
coordinated dumps.

3-8 Log page timestamp for the current record.

9-14 Row ID of the current row. Row ID = page number (4 bytes) + row
number (2 bytes).

15-20 Row ID of the begin record for the oldest open transaction.
21-28 Date and time of the begin record for the oldest open transaction.

29-30 An extension used by the RepAgent to roll back orphan
transactions.

31-32 Unused.

Bytes 21-28 contain an 8-byte datetime datatype value that is the time of the
oldest partially transferred transaction in the database log. Replication Server
prints the date and timein thisfield in a message that hel ps the Database
Administrator locate the offline dumps needed for recovery. If you do not store
avaid date in thisfield, the date and time printed in the message are
meaningless. However, the message also contains the entire origin queue ID
printed in hexadecimal, so if you put the date and time in alocation other than
bytes 21-28, the replication system administrator can extract it from the origin
queue ID.

The distribute command describes transaction control and data manipulation
operations. It also conveysinformation that Replication Server usesto ensure
that transaction log information istransferred without loss or duplication, inthe
event of failure.

In general, after establishing a session, RepAgent generates a distribute
command for each operation it retrieves from the database log.

The format of the distribute command is:
distribute command_tags subcommand [values]
The command has three parts:

e Thecommand_ tagsfield is used by Replication Server to associate the
command with its transaction and to ensure reliable transfer of the
database log.

159

distribute

Command tags

origin_time

origin_gid

tran_id

160

¢ A subcommand name specifies the operation.

e The datavalues associated with the operation are required with al
subcommands except commit transaction and rollback transaction.

Replication Server normally uses command tags for two purposes:

¢ Toreassemblethe commandsin atransaction so that dataserversat remote
sites execute the transaction as a unit

e Toensurethat each command is processed only once

The syntax for command_tagsis:

[@origin_time=datetime_value]
@origin_gid=binary_value
@tran_id=binary_value
[@mode=0x08]
[@standby_only={1 | 0}]

The origin_time parameter is a datetime value that specifies the time when the
transaction or data manipulation operation occurred. It is used to report errors.
origin_time is used only with the transaction control subcommands: begin
transaction, commit transaction, and rollback transaction.

The origin_gid parameter is a 32-byte binary value that uniquely identifies the
command in the log. It is a sequence number used by Replication Server to
reject duplicate commands after a RepAgent connection has been
reestablished. The value is generated as shown in Table B-3 on page 159.

Thetran_id parameter is a 120-byte binary value that identifies the transaction
the command belongsto. Thetransaction ID must be globally unique. Oneway
to guarantee thisisto first construct a unique transaction ID for the database
log, and then attach the data server name and database nameto it.

Replication Server

APPENDIX B Log Transfer Language

mode

standby_only

For example, RepAgent constructs atran_id in the following format:
tran_id.data_server.database

wheretran_id is avalue generated by the RepAgent from information in the
log. It contains the generation number, log page timestamp, and the row
number of the log record. It is guaranteed to be unique within the database.
data_server and database identify the database whose log is being transferred
by the RepAgent.

The mode parameter is set if the owner name isto be used when Replication
Server looks up replication definitions. This parameter is optional for applied
commands. It should not be set if the owner name is unavailable.

mode isan LTL version 200 parameter; it is available with Replication Server
version 11.5 or later.

The standby_only parameter determines whether the command is sent to the
standby and/or replicate databases. If standby_only is set to 1, the command is
sent to the standby database and not to the replicate database. If standby_only
is set to 0, the command is sent to the standby and replicate databases.

standby_only isan LTL version 200 parameter and isavailablewith Replication
Server version 11.5 or later. It is optional for applied commands.

Transaction-control subcommands

begin transaction

Design Guide

The transaction-control subcommands are begin transaction, commit
transaction, and rollback transaction.

The begin transaction subcommand has the following syntax:

distribute command_tags begin [system] transaction
['tran_name'] [for 'user'[/'password’ | no_password]]

» For thesyntax and description of command_tags, see“ Command tags’ on
page 160.

161

distribute

¢ Thesystem keyword tells Replication Server not to apply this transaction
inside begin transaction/commit transaction pairs. In Adaptive Server, it is
used for transactions started internally or started in system stored
procedures. For LTL version 200 or later, system is available with
Replication Server version 11.5 or later.

e tran_nameisan optional varchar(30) value that identifies the transaction.
The transaction name does not have to be unique. Replication Server
makes the transaction name available to function strings in a system-
defined parameter.

e user and password are varchar(30) valuesthat identify the login name and
password of the user executing the transaction. user and password should
be enclosed in quotes. They are both required for asynchronous procedure
calls submitted from a non-primary site.

For LTL version 101 or later, password is optional and can be omitted
when user issupplied. For LTL version 100, password must be supplied if
user is supplied.

Use the no_password option when the primary database employs a
“unified login” or when the user on the primary database has set a proxy.
In both cases RepAgent does not recognize a user password. For LTL
version 200 or later, no_password is available with Replication Server
version 11.5 or later.

commit transaction, rollback transaction, and rollback

162

After RepAgent has submitted all of the commands in atransaction to the
Replication Server, it sends either a commit transaction, rollback transaction, or
rollback command.

Use this syntax for commit transaction, rollback transaction, and rollback:

distribute command_tags
{commit transaction |
rollback transaction |
rollback [from oqid] to] oqid}

Values are not used by commit transaction and rollback transaction.

The rollback subcommand, without the transaction keyword, requires
specification of origin queue ID (oqid) values. Thethree possible forms of this
subcommand are:

« rollback ogid—rollsback asinglelog record corresponding to the specified
origin queue ID. This option supports the mini-rollback capability in DB2.

Replication Server

APPENDIX B Log Transfer Language

* rollback to ogid —rolls back all log records between the specified origin
queue 1D and the current log record.

* rollback from oqidl to 0gid2 — rolls back a sequence of log records whose
origin queue IDsfall in the specified range.

Note Replication Server ignores rolled back transactions received from a
RepAgent.

applied subcommand

The applied subcommand describes operations recorded in the database,
including:

e Row updates
* Row inserts
* Row deletes

» Executionsof applied stored procedures (request stored proceduresusethe
execute subcommand)

e Maodificationsto text or image data
e Truncate table or partition

The syntax for the applied subcommand is:

distribute command_tags applied [owner=owner_name]
{'table'.rs_update
yielding before param_list after param_list |
'table'.rs_insert yielding after param_list |
'table'.rs_delete yielding before param_list |
‘table'.function_name [param_list]
yielding after param_list before param_list |
'table'.rs_datarow_for_writetext
yielding datarow column_list |
‘table'.rs_writetext
append [first] [last] [changed] [with log]
[textlen=100] column_list}|
'table'.rs_updatetext
{partialupd | _pu} [{first | _fi}] [last] [{changed | _ch}] [with log]
[{withouttp | _wo}]
[{offset |_ os}=offset {deletelen | _dIn}=deletelength]
[{textlen | _tl}=length] text_image_column |
‘table’.rs_truncate [partition_name][, partition_name]...] yielding}

Design Guide 163

distribute

¢ For syntax and description of command_tags, see “Command tags’ on
page 160.

« tableisthe name of the database table to which the operation was applied.
It must be enclosed in quotation marks.

¢ Replication Server uses table to associate the command with areplication
definition. Beginning with Replication Server version 11.5 and version
200LTL, if thetag @mode=0x08 is set, Replication Server also associates
the owner name with the replication definition. The create replication
definition command’s with all tables named table_identifier clause
determines how table is mapped to a replication definition:

« If thereplication definition has awith all tables named table_identifier
or with primary table named table_identifier clause, table aboveis
matched to the table_identifier or with the primary table named.

¢ If thewith all tables named table_identifier clause and the with primary
table named table_identifier clauses were omitted, then table aboveis
the name of the replication definition.

RepAgent does not need to be aware of replication definitions. It can use
the table name on the data source.

yielding clause

Forrs_update, rs_insert, andrs_delete, theyielding clauseintroduces beforeand
after images of the row affected by the operation. Depending on the operation,
the before image, the after image, or both, must be provided. For rs_truncate,
theyielding clause is empty. Table B-4 shows which operations require before
and after images:

164 Replication Server

APPENDIX B Log Transfer Language

Design Guide

Table B-4: Applied subcommand before and after images

Operation Before image After image
rs_update Yes Yes

rs_insert — Yes

rs_delete Yes —

Thetable.function_name form of the applied subcommand is used to distribute
replicated stored procedures when you use the method associated with table
replication definitions. This method is described in Appendix A,
“Asynchronous Procedures,” in the Replication Server Administration Guide
\Volume 2.

Note The preferred method for replicating stored procedures, which uses
applied and request functions, is described in Chapter 10, “Managing
Replicated Functions,” in the Replication Server Administration Guide Volume
1. This method uses the execute subcommand to distribute replicated stored
procedures (known as replicated functions).

If the stored procedure execution resultsin an insert or delete operation,
RepAgent convertsit to an rs_insert or rs_delete LTL command. If the
execution resultsin an update operation, RepAgent uses the function_name
form and supplies the before and after images of the updated row to the
Replication Server.

A Replication Server function with the same name and parameters asthe stored
procedureis defined with the create function command, and the function_name
in the applied command references thisfunction. The param list following the
function name is the list of parameters of the stored procedure.

Theyielding clause contains before and after images of the table row modified
by the function. Subscriptions on that table determine where the function is
distributed.

Before and after images are specified by aparam list, whichisalist of column
or parameter values. The syntax for param list is:

[@param_name=]literal[, [@param_name=]literal]...

e param_nameisacolumn name or, for replicated stored procedures, a
parameter name.

e literal isthe value of the column or parameter.

165

distribute

All column names in the replication definition must appear in the list.
Replication Server ignores any additional columns. Column or parameter
names can be omitted if the values are supplied in the same sequence as they
are defined in the replication definition. If the column names are included, you
can list them in any order, although there is a performance advantage if the
columns are supplied in replication definition order.

Replication Server version 10.1 and | ater supportsan optimized yielding clause.
An after image value can be omitted if it isthe same as the before image val ue.
For example, if atable hasthree columnsa, b, and c, for an update where only
column b changes, the yielding clause could be:

yielding before @a=5, @b=10, @c=15 after @b=12

Note If the minimal columnsfeatureis used, a RepAgent using LTL version
101 or later must omit identical after images. Seethe create replication definition
command in the Replication Server Reference Manual for more information
about replicating minimal columns.

Modifications to text or image data

166

Thers_datarow_for_writetext and rs_writetext forms of the applied subcommand
are used to distribute modifications to text or image data. These subcommands
arebuilt onthe Replication Server version 10.1 performancefeature of packing
dataas structured tokens. Each text or image column hasaspecial character and
length field, followed by the actual data value. Packing the datain this way
eliminatesthe need for Replication Server to interpret every byte of data, which
provides performance benefits.

rs_datarow_for_writetext carries an image of the datarow associated with atext
or non-image column that has been modified by the Transact-SQL writetext
command, by the Client-Library™ function, ct_send_data, or by the DB-
Library™ functions dbwritetext and dbmoretext. The image is used by
Replication Server to construct the primary key for subsequent modification at
the replicate database. The syntax for rs_datarow_for_writetext is:

distribute command_tags applied
'table'.rs_datarow_for_writetext
yielding datarow column_list

Replication Server

APPENDIX B Log Transfer Language

Design Guide

yielding datarow column_list carries the column names, the values of non-text
or image columns, and the replication status of text or image columns. The
replication status can be always_rep, rep_if_changed, or never_rep. The
column_list field also carries additional information, called text_status, about
the text or image columns. The text_status can be one of the following
keywords:

Table B-5: Text_status values for text and image data

Keyword Description

tpnull The column has anull text pointer. There are no modifications
to text or image columns.

tpinit Modifications were made at the primary database, which
caused atext pointer allocation.

hastext The current text or image data value follows.

notrep Thetext or image column is not replicated. No commands are

required in the replicate database because the data did not
change value and the text or image column has a
replicate_if_changed status.

zerolen Thetext or image column contains anull value after an
operation at the primary database. For example, after atext
pointer has been all ocated, there may be datavaluesin atext or
image column and an application at the primary database sets
them to null.

rs_insert and rs_update also carry the replication status and additional
text_status information for text and image columns. rs_delete carries the
replication status only.

Thers_writetext form of the applied subcommand carriesthetext or image data.
rs_writetext can carry up to 4K of thetext or image data, so the data can be
segmented and carried in multiple rs_writetext iterations. The syntax for
rs_writetext is;

distribute command_tags applied

‘table'.rs_writetext

append [first] [last] [changed] [with log]

[textlen=100] column_list
« append indicates that there are more segments of text or image datato

follow.

e first marks the first segment of datafor the text or image column.

¢ last marksthe last segment of data for the text or image column.

167

distribute

168

changed indicates that the text or image column changed value. If the
changed keyword is omitted, the text or image value did not change. This
flag is used by the minimal columns feature to discard the data after
Replication Server determinesit is not needed.

with log indicates that the modification is logged at the primary database
transaction log. It isrequired only in thefirst segment of text or image data.

textlen indicates the total size of the text or image column. It is required
only in the first segment of text or image data.

column_list contains the column name, followed by the text or image data.
The data begins with a token header, which is constructed in this order:

a
b

Thetilda (~) character, which denotes a structured token.

The period (.) character, if it istext data, or the lash (/) character, if it
isimage data.

The 3-byte character representation of the length of the text or image
data segment being carried in an rs_writetext command. The 3-byte
length is calculated by converting the length into base-64
representation, then adding the base character ! to each digit to ensure
it isaprintable character. The formulafor calculating the base-64
number is the resultant 3 digitsin d3, d2, and d1.:

d3 = len/(64* 64)
len = len - (d3*64*64)
d2 =len/64

dl = len%64

For example, the length of the text segment is 126, and d3= 0, d2=1,
and d1=62. The base character ! is added to the digits (the integer

valuefor the base character is 33), and they become!, ", and _ (0+33,
1+33, and 62+33). Thus, the structure token header is represented as:

Following is an example of the LTL commands generated from the
writetext command to update atext column called blurb:

Replication Server

APPENDIX B Log Transfer Language

distribute

@origin gid=0x00010000010000,
@tran_1d=0x00018238,

applied 'texttest'.rs datarow for writetext
yielding datarow @title id='BU1032', @price=$90.00,

@blurb=hastext always_ rep,
@picture = hastext always rep

distribute

@origin gid=0x00010000010001,
@tran_1d=0x00018238,

applied 'texttest'.rs writetext

append first last changed with log textlen = 126
@blurb = ~.!" Straight Talk About Computers is an
annotated analysis of what computers can do for
you: a no-hype guide for the critical user
distribute

@origin gid=0x00010000010002,
@tran_1d=0x00018238,

applied 'texttest'.rs writetext

append first with log textlen =

@picture = ~/&*” '0X010203..."'
distribute

@origin gid=0x00010000010003,
@tran_1d=0x00018238,

applied 'texttest'.rs writetext

append last @picture = ~/!(* 0x4990...

Partial update of LOB datatypes

rs_updatetext syntax

Parameters

Design Guide

Thers_updatetext form of the applied subcommand supports the partial update
of large object datatypes. Partial update lets you directly insert a character
string or overwrite an existing character string of atable column without
issuing delete and replace commands, as would happen in afull update.

{distribute | _ds} command_tags {applied | _ap} 'table'.rs_updatetext
{partialupd | _pu} [{first | _fi}] [last] [{changed | _ch}] [with log]
[{withouttp | _wo}]

[{offset | _os}=offsetvalue {deletelen | _dIn}=deletelength]

[{textlen | _tl}=length] text_image_column

e partialupd or _pu indicatesthat thereisone segment of L OB datafor partial
update.

» first or _fi marksthe first segment of datafor the LOB column.

* last marksthe last segment of datafor the LOB column.

169

mailto:@price=$90.00

distribute

Examples

170

e changed or _ch indicates that the LOB column changed value. Omit the
changed keyword if the LOB value did not change. The minimal columns
feature uses thisflag to discard data after Replication Server determinesit
is not needed.

e with log indicates that the modification islogged at the primary database
transaction log. with log is required only in the first segment of the LOB
data.

e withouttp or wo indicates that the datatype is an LOB datatype without a
text pointer such as varchar(max), nvarchar(max), and varbinary(max).

e offset or _os indicates the starting point in the value of LOB column at
which the partial update is performed. offsetvalue is a zero-based integer
and cannot be a negative number. offset isrequired only in thefirst partial
update command.

¢ deletelen or _din indicates the length of the section in the LOB column,
starting from offset, that isto be replaced. del etelength is a zero-based
integer and cannot be a negative number. deletelen isrequired only in the
first partial update command.

e textlen or _tl indicatesthe length of the LOB datathat isto be inserted into
the LOB column. The value of textlen can be smaller than or equal to the
the new length of the LOB column.

A partia update transaction that contains the commands begin transaction,
rs_update, rs_updatetext, and commit transaction:

distribute @origin gid=~,A{0x}0000000036e
800000011000700000007000036e8000000110001000000100002,
@origin time=~*620080317 18:01:40:653,@tran_id=~, ;
{0x}72616d6c696e647361792e6d7332303035766d31000486020
000 begin transaction for ~"(gafuser osid 52
distribute @origin gid=~,A{0x}0000000036e
800000011000700000008000036e8000000110001000000100002,
@origin time=NULL,@tran id=~,;{0x}72616d6c696e6473617
92e6d7332303035766d31000486020000 applied
owner=~"$dbo ~"+gaf oldlob.rs update yielding

before ~$%pkey=1,~$)text col=hastext always_ rep
,~$*ntext col=hastext always_rep ,~$*image col=hastext
always rep _isbinary after

distribute @origin gid=~,A{0x}0000000036e
800000011000700000009000036e8000000110001000000100002,
@origin time=~*620080317 18:01:40:653,@tran_id=~, ;
{0x}72616d6c696e647361792e6d7332303035766d31000486020
000 applied owner=~"$dbo ~"+gaf oldlob.rs updatetext
partialupd first 1last changed with log offset=10

Replication Server

APPENDIX B Log Transfer Language

deletelen=10 textlen=20~$*ntext col=~8!1!5
{0x}0062006200620062006200620062006200620062
distribute @origin gid=~,A{0x}0000000036e
80000001100080000000a000036e8000000110001000000100002,
@origin time=NULL,@tran id=~,;{0x}72616d6c696e6473617
92e6d7332303035766d31000486020000 commit transaction

Limitation e rs_updatetext does not support multiple character set conversion.
e Partial update support is restricted to Microsoft SQL Server 2005.

Truncate table or partition

Thers_truncate form of the applied subcommand is used to support the
replication of the truncate table and truncate table partition commands. The
syntax for rs_truncate is:

distribute command_tags applied [owner=owner_name]
‘table’.rs_truncate [partition_name][, partition_name]...] yielding

You must assign a partition_name for each partition specified in the truncate
table partition command.

Note RepAgent sends an rs_truncate applied subcommand with parameters
onlyif theLTL versionis700. If theLTL versionisbelow 700, RepAgent skips
the distribute command.

execute subcommand

The execute subcommand is used to send a replicated function or stored
procedure call to another Replication Server. This subcommand is used with
the preferred method for distributing stored procedures—applied and request
functions—and with the older method—request stored procedures.

Thisisthe syntax for the execute subcommand:

distribute command_tags execute
{[repfunc] function | [replication_definition.]function |
sys_sp stored_procedure} [param_list]

Design Guide 171

distribute

172

The repfunc keyword (available only with LTL version 103 or later)
indicates that the function name that follows is a user-defined function
associated with afunction replication definition. When you create a
function replication definition for a replicated stored procedure, a user-
defined function with the same name s created for you. In this case, the
execute subcommand does not include the function replication definition
name.

Replication Server distributes the execute repfunc subcommand from a
primary Replication Server to any replicate Replication Servers with
subscriptions for the associated function replication definition. However,
for request functionsin Replication Server 15.0.1 and earlier, Replication
Server distributes the execute repfunc subcommand from areplicate
Replication Server to the primary Replication Server.

When the repfunc keyword is omitted, the function name that followsisa
user-defined function associated with a table replication definition, and
replication_definitionisthe name of thereplication definition. Refer tothe
Replication Server Administration Guide Volume 2 for a detailed
description of user-defined functions.

Without the repfunc keyword, the execute subcommand is used only for
request stored procedures associated with table replication definitions.
(Applied stored procedures associated with table replication definitions
use the applied subcommand.) Replication Server distributes the execute
subcommand from areplicate Replication Server to the primary
Replication Server for the table replication definition.

If the execute subcommand does not specify areplication definition,
Replication Server searches its system tables for the function name and
then finds the associated tabl e replication definition. If the function name
is not unique, and the replication definition is not specified, an error
message reports that the function name is valid for more than one
replication definition.

function is the name of both the user-defined function and the replicated
stored procedure. When Replication Server receives the execute
command, it maps the function nameto a user-defined function previously
created by create applied function replication definition, create request
function replication definition, create function replication definition, Or create
function.

With LTL version 200 or later, RepAgent uses sys_sp to send system
stored procedures to the standby database.

Replication Server

APPENDIX B Log Transfer Language

e param listisalist of the data values supplied when the procedure was
executed. You must enclose parameter values in parentheses.

See the Replication Server Reference Manual for more information about the
create applied function replication definition, create request function replication
definition, and create function commands. Also see the Replication Server
Administration Guide Volume 2 for more information about replicated
functions and stored procedures.

Processing the rs_marker function

When rs_marker is executed, RepAgent processesit so that Replication Server
synchronizes subscription materialization cycles and warm standby
applications.

rs_marker is executed with one varchar(255) parameter named @rs_api.
RepAgent passes the parameter to the Replication Server in adistribute
command with the following syntax:

distribute command_tags param_string
For example, if a client executes rs_marker with the following command:
rs_marker @rs_ api='0x1234567"'

The Adaptive Server RepAgent submits the following command to the
Replication Server:

distribute command tags 0x1234567

Notice that the @rs_api parameter is not in quotes.

sqlddl append subcommand

The sqglddl append subcommand (LTL version 200 or later) is used to apply
DDL commands such as create table to the warm standby application as
original text strings. Because long DDL may span several commands, sglddl
append lets you indicate the first and last text strings for the DDL command
you want to apply.

sqlddl append has the following syntax:

sqlddl append [first | last] ddl_string
e firstindicates thefirst part of aDDL sequence.
e lastindicatesthelast part of aDDL sequence.

Design Guide 173

distribute

e ddl_string is part of aDDL command.

dump subcommand

The dump subcommand is used at aprimary siteto initiate a coordinated dump.
RepAgent retrieves the dump record from the transaction log and sends a dump
subcommand to the Replication Server to distribute rs_dumptran or rs_dumpdb
functionsto al sites with subscriptions for data in the database.

distribute command_tags dump [database | {transaction | tran | _tr}
[standby | stdb | status]] database_name, dump_label id

e database informs Replication Server to distribute rs_dumpdb.

e transaction or tran or _tr informs Replication Server to distribute
rs_dumptran.

e standby or stdb an optional keyword that informs the Replication Server
that the command is a dump transaction command that contains the
parameter with standby_access.

e datusisan integer value that indicates dump status:

¢ 0—thedump transaction command does not contain with
standby_access.

¢ 1 -—thedump transaction command contains the parameter with
standby_access.

e database_nameis the name of the database that was dumped.

e dump_label isavarchar(30) value that contains some information to
identify the dump. RepAgent uses the date and time of the dump for this
variable.

¢ idisavarbinary(36) timestamp for the dump.
A dump command must be sent within a transaction.

Example Thisisan example of the dump transaction command that RepAgent sends to
the Replication Server:

distribute @origin time='Apr 15 1988 10:23:23.010PM',
@origin gid=0x000000000000000000000000000000000000000
0000000000000000000000377,@tran_1d=0x0000000000000000
00000372 dump tran stdb devdb 'Apr 15 1988
10:23:23.011PM'0x000000000000000000000000000000000000
0000000000000000000000000377

174 Replication Server

APPENDIX B Log Transfer Language

purge subcommand

The purge subcommand instructs the Replication Server to purge al open
transactions in the inbound queue for which the origin queue ID (ogid) of the
begin record is less than that specified in the command.

distribute command_tags purge open_xact to ogid

» oqidistheorigin queue ID number below which you want to purge al
open transactions.

The purge subcommand requires LTL version 102 or higher.

Sample RepAgent session

This section contains a sample dialog between a RepAgent and a Replication
Server. The example transfers two transactions to the Replication Server.

The transaction log contains two concurrent transactions, “T1” and “T2”, with
log records:

Tl: begin transaction
T2: begin transaction

Tl: insert into authors ('karsen', '510 534-9219')
T2: update authors set phone = '510 986-7020"
where name = 'green' and phone = '415 986-7020"'

T2: commit transaction
T1l: commit transaction

Note LTL commands are usually submitted to Replication Server by a
RepAgent using Open Client Client-Library routines. However, you can
submit LTL commands interactively using isql.

distribute
@origin time='Dec 10 1992 8:48:12:750AM',
@origin gid=0x00000000000000000000000000000001,
@tran 1d=0x000000111111
begin transaction 'T1l' for 'user'/'password'
distribute
@origin time='Dec 10 1992 8:48:12:750AM',
@origin gid=0x00000000000000000000000000000002,
@tran 1d=0x000000222222
begin transaction 'T2' for 'user'/'password'

Design Guide 175

Sample RepAgent session

distribute
@origin time='Dec 10 1992 8:48:13:750AM',
@origin_gid=0x00000000000000000000000000000003,
@tran_1d=0x0000001111
applied 'authors'.rs_insert yielding
after @name='karsen', @phone='510 534-9219'
distribute
@origin time='Dec 10 1992 8:48:13:750AM',
@origin_gid=0x00000000000000000000000000000004,
@tran_1d=0x000000222222
applied 'authors'.rs update yielding
before @name='green', @phone='415 986-7020"'
after @name='green', @phone='510 986-7020"'
distribute
@origin_ time='Dec 10 1992 8:48:14:750AM',
@origin_gid=0x00000000000000000000000000000005,
@tran_1d=0x000000222222
commit transaction
distribute
@origin time='Dec 10 1992 8:48:14:750AM',
@origin gid=0x00000000000000000000000000000006,
@tran_1d=0x000000111111
commit transaction

You can use the get truncation command to verify that the truncation point is set
to the origin_gid from the last distribute command.

176 Replication Server

Index

Symbols

XV

A

activate subscription command 46, 47
active database 31
add partition command 93
admin_logical_status command 60, 61
advantages of replicating data 2-3
greater data availability 3
improved performance 2
afterimage 164
application models
basic primary copy 40
corporaterollup 51
distributed primary fragments 47
overview 3940
redistributed corporaterollup 55, 56
variations and strategies 63-87
warm standby 58
applied functions
definition 5
using 43
applied, distribute subcommand 163
articles, definition of 67
assign action command 108
actions for data server errors 107
assign action command actions
ignore 108
log 108
retry_log 108
retry_stop 108
stop_replication 108

warn 108
asynchronous procedure call and local update
applications 30

Design Guide

asynchronous procedure execution, concurrency

B

backup and recovery methods 89-95
preventive measures 90-94
protecting against dataloss 89-90
recovery measures 94-95

basic multilingua plane. See BMP

basic primary copy model 40
applied functions 43

35

example using table replication definitions 42

table replication definitions 41
beforeimage 164

begin transaction, distribute subcommand 161
begin/commit pairs, calculating message size for

binary(10) datatype 134

binary(36) datatype 109

BMP 114,115

bulk materialization
character setsand 117
sort ordersand 117
subscription method 47

C

C/Sl. See Client/Server Interfaces
casein RCL commands xv
centralized and distributed database system
certifications

component Xii

product Xii
changerate, calculating 134
changevolume, calculating 134
char(10) datatype 134
char(30) datatype 157
character sets

changing 121

1

133

177

Index

changing character width 124
configuring 113, 116
conversion 113
guidelinesforusing 115
requirements for Unicode 115
supported 113

Unicode 114
UTF-16 115
UTF-8 114

client applications 12
Client/Server Interfaces 12, 18, 24
column overhead 133
command tags
in distribute command 160
mode 161
origin_gid 160
origin_time 160
standby_only 161
tran_id 160
commands
activate subscription 46, 47
add partition 93
admin_logical_status 60, 61
assign action 107, 108
configure connection 108, 114, 140
configure route 140
connect source 23, 154-156
create article 67, 70
create connection 105
create error class 107, 108
create function 165, 172, 173
create function string class 106
create logical connection 60
create partition 92, 93
create publication 67,70
create replication definition 42, 50, 54, 65, 69, 164,
166
create subscription 43, 46, 51, 55, 66, 67, 71, 86
define subscription 46, 47
distribute 153, 159-175, 176
drop connection 62
get maintenance user 157
get truncation 158, 176
grant 21,22
resume connection 61
revoke 21,22

178

rs_subcmp 90, 94, 118, 119, 121, 122
suspend connection 108
switch active 61
validate publication 67, 71
validate subscription 46, 47
commit transaction, distribute subcommand 162
communication
JDBC protocol 102
Replication Agent protocols 102
components of replication system
client applications 12
dataservers 11
ID Server 10
overview 7
Replication Agent 11
replication environment 10
Replication Manager (RM) 11
Replication Monitoring Services (RMS) 11
Replication Server 8
replication system domain 8
concurrency control 6,7
optimistic 6
pessimistic distributed 6
configure connection command 108, 114, 140
configure route command 140
conflicting updates
preventing 36
version control 36
connect source keywords
in recovery 156
sendallxacts 155
warmstdb 156
connect source LTL command 23, 154-156
example 156
in RepAgent process 98
upgrade locator 156
connect source permission 23
connecting replication system components 13
connection profiles 18
connection profiles, for non-ASE dataservers 104
connections

definition 14
conventions
examples xiii

syntax statements xiv
conversion of character sets 113

Replication Server

coordinated dump, restoring 95

corporaterollup model 52, 55

CPU requirements, planning 127

CPU usage 151

create article command 67, 70

create connection command 105

create error class command 107, 108

create function command 165, 172, 173

create function string class command 106

create logical connection command 60

create object permission 23

create partition command 92, 93

create publication command 67, 70

create replication definition command 42, 50, 54,
65, 69, 164, 166

create subscription command 43,46, 51, 55, 66, 67,
71, 86

D

datarecovery

automatic 94

by re-creating subscriptions 94
data servers

described 11

login names 22

non-ASE 18

processing errors 19
data, primary. See primary data
database volume, calculating 137
datatypetrandlations 18
datatypes

binary(10) 134

binary(36) 109

char(10) 134

char(30) 157

datetime 109, 159, 160
image 106, 115, 150, 151, 163, 166
inrs_lastcommit table 109
int 109

text 106, 150, 151, 163, 166
unichar 114, 115

unitext 114, 115
univarchar 114, 115
varbinary(36) 174

Design Guide

Index

varchar(255) 173

varchar(30) 162, 174
datetime datatype 109, 159, 160
decision-support applications 26-28, 34, 40
define subscription command 46, 47
definition

identifiers xv
deletes

calculating message sizefor 132
direct routes 15
disk partitions 9
disk space requirements
planning 127
distribute LTL command 153, 159-175, 176
distribute subcommands

applied 163

begin transaction 161

commit transaction 162

dump 174

execute 171

purge 175

rollback 162

rollback transaction 162

sqlddl append 173

transaction-control subcommands 161
distributed OLTP applications 28-30
distributed primary fragmentsmodel 47, 49, 51
drop connection command 62
dump, distribute subcommand 174

example 174

parameters 174

syntax 174

129, 148

E

ECDA 18
embedded Replication Server System Database. See
ERSSD
error class 18, 19, 107
ERSSD
described 9
examples
style conventions ~ xiii
execute, distribute subcommand 171

179

Index

F in Replication system domain 8
. loginname 10
Fa_ulover 9.2 requirements 10
failure duration 140 S
identifiers
fault tolerance ~ 16 definition of xv
for non-Sybase databases 99-7? format xv
for—r.ecovery R?pAge'7t _opnon 156 function parameters ~ xvi
function replication definition length xv
creating subscriptionsfor 46 typesof xv

described 5

sample script 46, 69, 75, 85-86
function strings 20
function variable 20
functions 18, 20

calculating message sizefor 133
function-string classes 20

ignore, error action 108
image datatype 106, 115, 150, 151, 163, 166
in recovery, connect source keyword 156
inbound database volume 138

example calculations 144
inbound message overhead 133
inbound queue size

grea“.rt‘)%d 12% caculating 138
f?‘géz 106 example calculations 145
- indirect routes 15
Totzfc?;_e' on ditg;erver 105 fault tolerance 16
inheniting reducing load with additional Replication Servers
16
reducing volumeon WAN 15
G inserts
calculating message sizefor 132
get maintenance user LTL command 157 int datatype 9 109

get truncation LTL command 158, 176

interfacesfile 13
grant command 21, 22

and warm standby applications 62
international environments
support for 111, 126

H internationalization
Replication Server 111
hastext isg 9

valuefor text_status 167
hierarchical configuration 16

J

| Java (programming language) 102
Java Runtime Environment (JRE) 102

icons . . JDBCdriver 102
Adaptive Server xvi

client application xvi
Replication Agent xvi

Replication Manager ~ xvi L

Replication Server xvi lag time. See latency
ID Servgr languages

described 10

180 Replication Server

configuring 112
large object datatypes
partial update 169
latency
described 32
limiting transactionrisk 33
measuring 32
measuring replication performance 33
LDAP 13
local pending table 30, 72
local-areanetwork 1
localization of messages 111
locator
upgrade 156
Log Reader. See Replication Agent components
Log Transfer Interface (LTI). See Replication Agent
components
Log Transfer Language. See LTL
Log Transfer Manager. See Replication Agent
components
log, error action 108
log, transaction. See transaction log
logical connections
definition 14
loginnames 21
dataserver 22
ID Server 10
maintenance user 22
Replication Server 21
loose consistency 31, 32
LTI. See Replication Agent components
LTL
overview of commands 153
versionsof 154
LTL commands
connect source 23, 154-156
distribute 153, 159-175, 176
get maintenance user 157
get truncation 158, 176
LTL compatibility table 154

M

maintenance user 157
permissionsfor 22

Design Guide

Index

master database
replication. See master database replication
supported DDL and system procedures 18
master database replication 17
MSA, with 18
warm standby, with 18
master/detail implementation
strategy for 76
memory requirements 148
planning 127
RepAgent 149
Replication Server 149
message languages
configuring 112
message overhead
inbound 133
outbound 133
message Sizes
caculating 131,134
example calculations 143
minimal columns
calculating message sizefor 132
mode command tag 161
mode, distribute commandtag 161
multiple primaries
designing around update conflicts 35
managing update conflicts 35
multiple replication definitions 63, 66
MySybase xii

N

network resources, planning 127
network-based security

credentiad 23
no-materialization subscription method 46
non-ASE data servers

connection profiles 104

support for 18, 103
non-binary

sort orders 116
notrep

valuefor text_status 167
number of sites 134

181

Index

O

OLTP applications 26, 34, 40, 92
distributed 28
local update 30
using request functions 30
optimistic concurrency 6
originqueue D 98, 158
origin_qid, distribute commandtag 160
origin_time, distribute commandtag 160
outbound message overhead 133
outbound queue size
caculating 140
example calculation 146
outbound queue volume
caculating 139, 140
example calculation 145
outbound transaction rate 137

P

parameter width 134

partial update 169

partitions 9

pending table

with request functions 72
pending updatestable 30
permissions 22

connect source 23

create object 23

primary object 23

sa 22

personalized views

creating Xii
pessimistic concurrency control 6
primary data

centraized 34

client updates 12, 22
maintaining 33

and RepAgents 19
updating from remote sites 33
primary database

mirroring 92
primary fragment 29
primary object permission 23
products for non-Sybase databases ?2-102

182

publication 23

publication subscriptions

definition 67

publications 66, 71

definition of 67

described 4

procedure for creating 67
publish-and-subscribe model
described 4

purge, distribute subcommand 175

Q

queue disk usage
caculating 141

R

recovering primary databases
fromdumps 95
recovery mode 95
re-creating subscriptions 94
redistributed corporate rollup model 55, 56, 57
example 57
remote OL TP using request functions 30
remote procedurecall 20
REP_SSL feature 24
RepAgent
described 11, 98
roleinreplication system 19
samplesesson 175
See also Replication Agent
RepAgent options
for_recovery 156
send_maint_xacts_to_replicate 56, 57, 98, 155
send_warm_standby_xacts 60, 98, 156, 157
repfunc keyword 171
replicated functions
described 4
introductionto 4
used for 5
replicated stored procedures 171
replicated table, modifying 22
replicating data

Replication Server

advantages 2
replicating master database. See master database
replication
replication
basic concepts 99
Replication Agent
communication 102
described 11
for non-Sybase databases 98
overview 97
roleinreplication system 19
tasks 98
transactionlog 101
Replication Agent components
Log Reader
Log Transfer Interface (LTI)
Log Transfer Manager
Replication Command Language. See RCL 9
replication definitions
described 4
replication management solutions
three-tier 12
two-tier 12
Replication Server
application types 25-31
backup and recovery 89-95
described 8
fault tolerance 16
loginnames 21
LTL compatibility 154
non-ASE data servers, and 103
reducingload 16
Replication Server application types 25-31
decision-support applications 26-28
distributed OLTP applications 28-30
remote OL TP using request functions 30
warm standby applications 31
Replication Server System Database. See RSSD
replication system 24
components 7
diagram 8
replication, master database. See master database
replication
replication_role permission 60
request functions 71, 76
definition 5

Design Guide

Index

with pending table 72

restoring
coordinated dump 95
dumps 94

resume connection command 61
retry_log, error action 108
retry_stop, error action 108
revoke command 21, 22

RM
described 11
RMS
described 11

three-tier management solution 11, 13
rollback transaction, distribute subcommand 162
rollback, distribute subcommand 162
routes
definition 14
hierarchical configuration 16
star configuration 16
Routes and connections
diagram 15
routes and connections 14
row width changed
in calculating message size 134
rs_datarow_for_writetext function 106, 166
rs_db2_function_string_class function-string class
106

rs_default_function_string_class function-string class
106

rs_delete function 106, 164

rs_get_lastcommit function 110

rs_get_textptr function 106

rs_init configuration utility

creating connections 14

recording ID Server login name 10

recording Replication Server login name 21
rs_insert function 106, 164
rs_lastcommit table 108
rs_marker function, RepAgent processing of 173
rs_select function 107
rs_select_with_lock function 107
rs_subcmp command 90, 94, 118, 119, 121, 122

character setsand 119

sort ordersand 119
rs_textptr_init function 106
rs_truncate function 171

183

Index

rs_update function 106, 164
rs_update_lastcommit stored procedure 109
rs_updatetext 169

example 170

limitations 171

parameters 169

syntax 169
rs_writetext function 106, 166, 167
RSSD

described 9

disk requirements 128
Replication Agent accessing 101

S

sapermisson 22
Sample RepAgent session 175
saveinterval 93, 140
secure socket layers 24
security

network-based 23

Replication Server 21
send_maint_xacts_to_replicate RepAgent option 56,

57, 98, 155
send_warm_standby_xacts RepAgent option 60, 98,
156, 157

sendallxacts, connect source keyword 155
sort orders

changing 121

configuring 116

Unicode 120, 121
sp_config_rep_agent stored procedure 60
sp_reptostandby stored procedure 59
sp_setrepproc stored procedure 44, 78
sp_setreptable stored procedure 41, 48, 53
sqglddl append, distribute subcommand 173
stable queues 9

mirroring 92

standby
applications 30
database 31

standby_only, distribute commandtag 161
star configuration 16

stop_replication, error action 108

stored procedures

184

examplefor publications 68
example used with pending table 74
example, creating at primary and replicate sites 45
message location 124
rs_update_lastcommit 109
sp_config_rep_agent 60
sp_reptostandby 59
sp_setrepproc 44,78
sp_setreptable 41, 48, 53
upper-level 78
with delete clauses 80
withinsert clauses 78
with update clauses 81
subscription method
bulk materiaization 47
no-materialization 46
subscription migration 77
subscriptions
character setsand 116, 120
creating for afunction replication definition 46
described 4
primary fragments 48
sort ordersand 116, 120
suspend connection command 108
switch active command 61
switching active and standby databases 61
Sybase Enterprise Connect Data Access 18
symmetric multiprocessor 151
enabling 152
syntax conventions
identifiers xv
syntax statements, conventions xiv

T

tablereplication definitions 41
table volume
caculating 135
example calculations 144
tablefunction_name 165
text datatype 106, 150, 151, 163, 166
text or image data
modificationsto 166, 168
three-tier management solution 13
RMS 11,13

Replication Server

token header

for text orimagedata 168
total disk space

example calculations 147
tpinit

valuefor text_status 167
tpnull

valuefor text_status 167
tran_id, distribute commandtag 160
transaction

caculating volume 136

duration 138
transactionlog 97, 101

mirroring 92
transaction-control, distribute subcommands 161
transactions

faled 6
for multiple databases 7
highvalue 32

management 5
truncate table or partition 171
two-tier management solution 12

U

unichar datatype 114, 115
Unicode character sets
supported 114
Unicode sort order 120
unitext datatype 114, 115
univarchar datatype 114, 115
updates
calculating message sizefor 132
upgrade locator 156
upper-level stored procedures 78
user defined datatypes (UDD) 18
user documentation, for Replication Server x
user-defined function
mapping to areplication definition 172
UTF-16 character set 115
UTF-8 character set 114

Design Guide

Index

Vv

validate publication command 67, 71
validate subscription command 46, 47
varbinary(36) datatype 174
varchar(255) datatype 173

varchar(30) datatype 162, 174
version-controlled updates 36

w

WAN
described 1
reducing volume with routes 15
using for primary datamaintenance 35
warm standby applications 58, 63
comparison with datamirroring 90
example 59
overview 31
procedure for settingup 59
warmstdb, connect source keyword 156
warn, error action 108
wide-area network. See WAN

Y

yielding clause 165

Z

zerolen
valuefor text_status 167

185

Index

186 Replication Server

	Design Guide
	About This Book
	CHAPTER 1 Introduction
	Centralized and distributed database systems
	Advantages of replicating data
	Improved performance
	Greater data availability

	Data distribution with Replication Server
	Publish-and-subscribe model
	Replicated functions
	Transaction management
	Failed replicated transactions
	Transactions that modify data in multiple data servers and databases

	Replication system components
	Replication system domain
	Replication Server
	Partitions and stable queues

	ID Server
	Replication environment
	Replication Manager
	Replication Monitoring Services
	Data servers
	Replication Agent
	Client applications

	Replication management solutions
	Two-tier management solution
	Three-tier management solution

	Connecting replication system components
	Interfaces file
	Routes and connections
	Direct and indirect routes

	Master database replication
	Non-ASE data server support
	Enterprise Connect Data Access (ECDA)
	Replication Agents
	Processing data server errors
	Functions, function strings, and function-string classes

	Replication Server security
	Login names
	Replication Server login names
	Data server login names
	Data server maintenance user login name

	Permissions
	Network-based security
	Advanced Security option

	Summary

	CHAPTER 2 Application Architecture for Replication Systems
	Application types
	Decision-support applications
	Multiple copies at a single site
	Multiple copies distributed over a network

	Distributed OLTP applications
	Remote OLTP using request functions
	Local update applications

	Standby applications

	Effects of loose consistency on applications
	Controlling risks in high-value transactions
	Measuring lag time

	Methods for updating primary data
	Centralized primary maintenance
	Primary maintenance via network connections
	Managing update conflicts for multiple primaries
	Designing conflicts out of an application
	Version-controlled updates

	CHAPTER 3 Implementation Strategies
	Overview of models and strategies
	Basic primary copy model
	Using table replication definitions
	Marking the table for replication
	Replication definition
	Subscription

	Using applied functions
	Stored procedures
	Function replication definition
	Subscriptions

	Distributed primary fragments model
	Replication definitions
	Subscriptions

	Corporate rollup
	Replication definitions
	Subscriptions

	Redistributed corporate rollup
	Warm standby applications
	Setting up a warm standby application
	Switching to the standby database
	Switching clients to the new database

	Model variations and strategies
	Multiple replication definitions
	Replication definitions
	Subscriptions

	Publications
	Stored procedure
	Function replication definition
	Table replication definition
	Publication
	Articles
	Validation
	Subscription

	Request functions
	An example using a local pending table

	Implementing master/detail relationships
	Stored procedures with insert clauses
	Stored procedures with delete clauses
	Stored procedures with update clauses
	Function replication definitions
	Subscriptions

	CHAPTER 4 Planning for Backup and Recovery
	Protecting against data loss
	Preventive measures
	Standby applications
	Comparing methods
	Warm standby
	Hardware data mirroring

	Save interval
	Coordinated dumps

	Recovery measures
	Re-creating subscriptions
	Subscription reconciliation utility (rs_subcmp)
	Database recovery
	Restoring coordinated dumps

	CHAPTER 5 Introduction to Replication Agents
	Replication Agent overview
	Replication Agent transaction logs
	Replication Agent products
	Replication Agent for DB2
	DB2 transaction log

	Sybase Replication Agent
	Replication Agent communications
	Java implementation

	CHAPTER 6 Replicating Data into Non- Adaptive Server Data Servers
	Interfacing with non-ASE data servers
	Sybase database gateway products
	Maintenance user
	Function-string class
	Creating function-string classes using inheritance
	Creating distinct function-string classes

	Error class
	rs_lastcommit table
	rs_get_lastcommit function

	CHAPTER 7 International Replication Design Considerations
	Designing an international replication system
	Message language
	Character sets
	Character-set conversion
	Unicode UTF-8 and UTF-16 support
	UTF-8
	UTF-16
	Requirements

	Guidelines for using character sets

	Sort order
	Subscriptions
	Subscription materialization
	Subscription resolution
	Subscription reconciliation
	Dematerialization

	Unicode sort order

	Changing the character set and sort order
	When changing the character set changes the character width
	UNIX
	Windows

	Summary

	APPENDIX A Capacity Planning
	Overview of requirements
	Replication Server requirements
	Replication Server requirements for primary databases
	Replication Server requirements for replicate databases
	Replication Server requirement for routes

	Data volume (queue disk space requirements)
	Overview of disk queue size calculation
	Message sizes
	Change rate (number of messages)
	Change volume (number of bytes)
	Calculating table volume
	Table volume upper bound method
	Table volume sum of values method
	Transaction volume
	Database volume
	Inbound queue size
	Outbound queue volume
	Failure duration
	Save interval
	Outbound queue size

	Overall queue disk usage
	Additional considerations
	Example queue usage calculations
	Examples, calculation parameters

	Message size example calculations
	Table update calculations
	Begin/commit pairs

	Change rate
	Table volume example calculations
	RSSD and log size example calculations

	Inbound database volume
	Inbound queue size example calculation
	Outbound queue volume example calculation
	Outbound queue size
	Total disk queue usage example calculation

	Other disk space requirements
	Stable queues
	RSSD
	ERSSD
	Logs

	Memory usage
	Replication Server memory requirements
	RepAgent memory requirements
	Overhead
	Schema cache
	Transaction cache
	text and image cache
	Other memory

	CPU usage
	Enabling SMP

	Network requirements

	APPENDIX B Log Transfer Language
	Log Transfer Language overview
	connect source
	Keywords
	Upgrade locator
	Example of connect source

	get maintenance user
	get truncation
	Format of the origin queue ID

	distribute
	Command tags
	origin_time
	origin_qid
	tran_id
	mode
	standby_only

	Transaction-control subcommands
	begin transaction
	commit transaction, rollback transaction, and rollback

	applied subcommand
	yielding clause
	Modifications to text or image data
	Partial update of LOB datatypes
	Truncate table or partition

	execute subcommand
	Processing the rs_marker function

	sqlddl append subcommand
	dump subcommand
	purge subcommand

	Sample RepAgent session

	Index

